
 

Oracle® Fusion Middleware
Connectivity and Knowledge Modules Guide for Oracle Data 
Integrator  

12c (12.1.3) 

E51090-01

May 2014



Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator, 12c 
(12.1.3)

E51090-01

Copyright © 2010, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Laura Hofman Miquel, Aslam Khan

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, 
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly 
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle 
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your 
access to or use of third-party content, products, or services.



iii

Contents

Preface ...............................................................................................................................................................    xv

Audience.....................................................................................................................................................     xv
Documentation Accessibility ...................................................................................................................     xv
Related Documents ...................................................................................................................................     xv
Conventions ...............................................................................................................................................    xvi

1 Introduction

1.1 Terminology.................................................................................................................................   1-1
1.2 Using This Guide ........................................................................................................................   1-2

Part I Databases, Files, and XML 

2 Oracle Database

2.1 Introduction .................................................................................................................................   2-1
2.1.1 Concepts................................................................................................................................   2-1
2.1.2 Knowledge Modules ...........................................................................................................   2-1
2.2 Installation and Configuration..................................................................................................   2-3
2.2.1 System Requirements and Certifications .........................................................................   2-3
2.2.2 Technology Specific Requirements ...................................................................................   2-4
2.2.3 Connectivity Requirements................................................................................................   2-5
2.3 Setting up the Topology.............................................................................................................   2-6
2.3.1 Creating an Oracle Data Server .........................................................................................   2-6
2.3.2 Creating an Oracle Physical Schema.................................................................................   2-7
2.4 Setting Up an Integration Project .............................................................................................   2-7
2.5 Creating and Reverse-Engineering an Oracle Model ............................................................   2-7
2.5.1 Create an Oracle Model ......................................................................................................   2-7
2.5.2 Reverse-engineer an Oracle Model ...................................................................................   2-7
2.6 Setting up Changed Data Capture ...........................................................................................   2-8
2.7 Setting up Data Quality .............................................................................................................   2-9
2.8 Designing a Mapping ..............................................................................................................    2-10
2.8.1 Loading Data from and to Oracle...................................................................................    2-10
2.8.2 Integrating Data in Oracle ...............................................................................................    2-11
2.8.3 Designing an ETL-Style Mapping ..................................................................................    2-12
2.9 Troubleshooting .......................................................................................................................    2-16
2.9.1 Troubleshooting Oracle Database Errors ......................................................................    2-16



iv

2.9.2 Common Problems and Solutions..................................................................................    2-16

3 Files

3.1 Introduction .................................................................................................................................   3-1
3.1.1 Concepts................................................................................................................................   3-1
3.1.2 Knowledge Modules ...........................................................................................................   3-1
3.2 Installation and Configuration..................................................................................................   3-2
3.2.1 System Requirements and Certifications .........................................................................   3-2
3.2.2 Technology Specific Requirements ...................................................................................   3-2
3.2.3 Connectivity Requirements................................................................................................   3-3
3.3 Setting up the Topology.............................................................................................................   3-3
3.3.1 Creating a File Data Server.................................................................................................   3-3
3.3.2 Creating a File Physical Schema ........................................................................................   3-4
3.4 Setting Up an Integration Project .............................................................................................   3-5
3.5 Creating and Reverse-Engineering a File Model ...................................................................   3-5
3.5.1 Create a File Model..............................................................................................................   3-5
3.5.2 Reverse-engineer a File Model...........................................................................................   3-6
3.6 Designing a Mapping ..............................................................................................................    3-10
3.6.1 Loading Data From Files .................................................................................................    3-10
3.6.2 Integrating Data in Files ..................................................................................................    3-12

4 Generic SQL

4.1 Introduction .................................................................................................................................   4-1
4.1.1 Concepts................................................................................................................................   4-1
4.1.2 Knowledge Modules ...........................................................................................................   4-2
4.2 Installation and Configuration..................................................................................................   4-5
4.2.1 System Requirements and Certifications .........................................................................   4-5
4.2.2 Technology-Specific Requirements...................................................................................   4-5
4.2.3 Connectivity Requirements................................................................................................   4-5
4.3 Setting up the Topology.............................................................................................................   4-5
4.3.1 Creating a Data Server ........................................................................................................   4-6
4.3.2 Creating a Physical Schema ...............................................................................................   4-6
4.4 Setting up an Integration Project ..............................................................................................   4-6
4.5 Creating and Reverse-Engineering a Model ...........................................................................   4-6
4.5.1 Create a Data Model............................................................................................................   4-6
4.5.2 Reverse-engineer a Data Model.........................................................................................   4-6
4.6 Setting up Changed Data Capture ...........................................................................................   4-7
4.7 Setting up Data Quality..............................................................................................................   4-7
4.8 Designing a Mapping ................................................................................................................   4-7
4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology .........................   4-7
4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology.......................................   4-9
4.8.3 Designing an ETL-Style Mapping .....................................................................................   4-9

5 XML Files 

5.1 Introduction .................................................................................................................................   5-1
5.1.1 Concepts................................................................................................................................   5-1



v

5.1.2 Knowledge Modules ...........................................................................................................   5-2
5.2 Installation and Configuration..................................................................................................   5-2
5.2.1 System Requirements..........................................................................................................   5-2
5.2.2 Technologic Specific Requirements ..................................................................................   5-2
5.2.3 Connectivity Requirements................................................................................................   5-2
5.3 Setting up the Topology.............................................................................................................   5-2
5.3.1 Creating an XML Data Server ............................................................................................   5-3
5.3.2 Creating a Physical Schema for XML ...............................................................................   5-4
5.4 Setting Up an Integration Project .............................................................................................   5-4
5.5 Creating and Reverse-Engineering a XML File ......................................................................   5-4
5.5.1 Create an XML Model .........................................................................................................   5-4
5.5.2 Reverse-Engineering an XML Model................................................................................   5-5
5.6 Designing a Mapping .................................................................................................................   5-5
5.6.1 Notes about XML Mappings..............................................................................................   5-5
5.6.2 Loading Data from and to XML ........................................................................................   5-6
5.6.3 Integrating Data in XML.....................................................................................................   5-7
5.7 Troubleshooting ..........................................................................................................................   5-8
5.7.1 Detect the Errors Coming from XML................................................................................   5-8
5.7.2 Common Errors....................................................................................................................   5-8

6 Complex Files

6.1 Introduction .................................................................................................................................   6-1
6.1.1 Concepts................................................................................................................................   6-1
6.1.2 Knowledge Modules ...........................................................................................................   6-2
6.2 Installation and Configuration..................................................................................................   6-2
6.2.1 System Requirements..........................................................................................................   6-2
6.2.2 Technology Specific Requirements ...................................................................................   6-3
6.2.3 Connectivity Requirements................................................................................................   6-3
6.3 Setting up the Topology.............................................................................................................   6-3
6.3.1 Creating a Complex File Data Server................................................................................   6-3
6.3.2 Creating a Complex File Physical Schema.......................................................................   6-4
6.4 Setting Up an Integration Project .............................................................................................   6-4
6.5 Creating and Reverse-Engineering a Complex File Model ..................................................   6-5
6.5.1 Create a Complex File Model.............................................................................................   6-5
6.5.2 Reverse-engineer a Complex File Model..........................................................................   6-5
6.6 Designing a Mapping .................................................................................................................   6-5

7 Microsoft SQL Server 

7.1 Introduction .................................................................................................................................   7-1
7.1.1 Concepts................................................................................................................................   7-1
7.1.2 Knowledge Modules ...........................................................................................................   7-1
7.2 Installation and Configuration..................................................................................................   7-2
7.2.1 System Requirements and Certifications .........................................................................   7-2
7.2.2 Technology Specific Requirements ...................................................................................   7-3
7.2.3 Connectivity Requirements................................................................................................   7-4
7.3 Setting up the Topology.............................................................................................................   7-4



vi

7.3.1 Creating a Microsoft SQL Server Data Server .................................................................   7-4
7.3.2 Creating a Microsoft SQL Server Physical Schema ........................................................   7-5
7.4 Setting Up an Integration Project .............................................................................................   7-5
7.5 Creating and Reverse-Engineering a Microsoft SQL Server Model ....................................   7-5
7.5.1 Create a Microsoft SQL Server Model ..............................................................................   7-5
7.5.2 Reverse-engineer a Microsoft SQL Server Model ...........................................................   7-5
7.6 Setting up Changed Data Capture ...........................................................................................   7-6
7.7 Setting up Data Quality..............................................................................................................   7-7
7.8 Designing a Mapping .................................................................................................................   7-7
7.8.1 Loading Data from and to Microsoft SQL Server ...........................................................   7-7
7.8.2 Integrating Data in Microsoft SQL Server........................................................................   7-9

8 Microsoft Excel 

8.1 Introduction .................................................................................................................................   8-1
8.1.1 Concepts................................................................................................................................   8-1
8.1.2 Knowledge Modules ...........................................................................................................   8-1
8.2 Installation and Configuration..................................................................................................   8-2
8.2.1 System Requirements and Certifications .........................................................................   8-2
8.2.2 Technology Specific Requirements ...................................................................................   8-2
8.2.3 Connectivity Requirements................................................................................................   8-2
8.3 Setting up the Topology.............................................................................................................   8-3
8.3.1 Creating a Microsoft Excel Data Server............................................................................   8-3
8.3.2 Creating a Microsoft Excel Physical Schema ...................................................................   8-3
8.4 Setting Up an Integration Project .............................................................................................   8-4
8.5 Creating and Reverse-Engineering a Microsoft Excel Model...............................................   8-4
8.5.1 Create a Microsoft Excel Model.........................................................................................   8-4
8.5.2 Reverse-engineer a Microsoft Excel Model......................................................................   8-4
8.6 Designing a Mapping .................................................................................................................   8-5
8.6.1 Loading Data From and to Microsoft Excel .....................................................................   8-5
8.6.2 Integrating Data in Microsoft Excel ..................................................................................   8-5
8.7 Troubleshooting ..........................................................................................................................   8-6
8.7.1 Decoding Error Messages...................................................................................................   8-6
8.7.2 Common Problems and Solutions.....................................................................................   8-6

9 Microsoft Access

9.1 Introduction .................................................................................................................................   9-1
9.2 Concepts .......................................................................................................................................   9-1
9.3 Knowledge Modules ..................................................................................................................   9-1
9.4 Specific Requirements ................................................................................................................   9-2

10 Netezza

10.1 Introduction ..............................................................................................................................    10-1
10.1.1 Concepts.............................................................................................................................    10-1
10.1.2 Knowledge Modules ........................................................................................................    10-1
10.2 Installation and Configuration...............................................................................................    10-2
10.2.1 System Requirements and Certifications ......................................................................    10-2



vii

10.2.2 Technology Specific Requirements ................................................................................    10-2
10.2.3 Connectivity Requirements.............................................................................................    10-3
10.3 Setting up the Topology..........................................................................................................    10-3
10.3.1 Creating a Netezza Data Server......................................................................................    10-3
10.3.2 Creating a Netezza Physical Schema .............................................................................    10-3
10.4 Setting Up an Integration Project ..........................................................................................    10-4
10.5 Creating and Reverse-Engineering a Netezza Model ........................................................    10-4
10.5.1 Create a Netezza Model...................................................................................................    10-4
10.5.2 Reverse-engineer a Netezza Model................................................................................    10-4
10.6 Setting up Data Quality ..........................................................................................................    10-5
10.7 Designing a Mapping ..............................................................................................................    10-5
10.7.1 Loading Data from and to Netezza................................................................................    10-5
10.7.2 Integrating Data in Netezza ............................................................................................    10-6

11 Teradata

11.1 Introduction ..............................................................................................................................    11-1
11.1.1 Concepts.............................................................................................................................    11-1
11.1.2 Knowledge Modules ........................................................................................................    11-1
11.2 Installation and Configuration...............................................................................................    11-2
11.2.1 System Requirements and Certifications ......................................................................    11-2
11.2.2 Technology Specific Requirements ................................................................................    11-3
11.2.3 Connectivity Requirements.............................................................................................    11-3
11.3 Setting up the Topology..........................................................................................................    11-3
11.3.1 Creating a Teradata Data Server ....................................................................................    11-4
11.3.2 Creating a Teradata Physical Schema............................................................................    11-4
11.4 Setting Up an Integration Project ..........................................................................................    11-4
11.5 Creating and Reverse-Engineering a Teradata Model .......................................................    11-5
11.5.1 Create a Teradata Model..................................................................................................    11-5
11.5.2 Reverse-engineer a Teradata Model ..............................................................................    11-5
11.6 Setting up Data Quality ..........................................................................................................    11-6
11.7 Designing a Mapping ..............................................................................................................    11-6
11.7.1 Loading Data from and to Teradata ..............................................................................    11-6
11.7.2 Integrating Data in Teradata ...........................................................................................    11-8
11.7.3 Designing an ETL-Style Mapping ................................................................................    11-12
11.8 KM Optimizations for Teradata...........................................................................................    11-16
11.8.1 Primary Indexes and Statistics......................................................................................    11-16
11.8.2 Support for Teradata Utilities .......................................................................................    11-16
11.8.3 Support for Named Pipes ..............................................................................................    11-17
11.8.4 Optimized Management of Temporary Tables .........................................................    11-17

12 Hypersonic SQL

12.1 Introduction ..............................................................................................................................    12-1
12.1.1 Concepts.............................................................................................................................    12-1
12.1.2 Knowledge Modules ........................................................................................................    12-1
12.2 Installation and Configuration...............................................................................................    12-2
12.2.1 System Requirements and Certifications ......................................................................    12-2



viii

12.2.2 Technology Specific Requirements ................................................................................    12-2
12.2.3 Connectivity Requirements.............................................................................................    12-2
12.3 Setting up the Topology..........................................................................................................    12-2
12.3.1 Creating a Hypersonic SQL Data Server.......................................................................    12-2
12.3.2 Creating a Hypersonic SQL Physical Schema ..............................................................    12-3
12.4 Setting Up an Integration Project ..........................................................................................    12-3
12.5 Creating and Reverse-Engineering a Hypersonic SQL Model..........................................    12-3
12.5.1 Create a Hypersonic SQL Model ....................................................................................    12-4
12.5.2 Reverse-engineer a Hypersonic SQL Model.................................................................    12-4
12.6 Setting up Data Quality...........................................................................................................    12-4
12.7 Designing a Mapping ..............................................................................................................    12-4

13 IBM Informix

13.1 Introduction ..............................................................................................................................    13-1
13.2 Concepts ....................................................................................................................................    13-1
13.3 Knowledge Modules ...............................................................................................................    13-1
13.4 Specific Requirements .............................................................................................................    13-2

14 IBM DB2 for iSeries 

14.1 Introduction ..............................................................................................................................    14-1
14.1.1 Concepts.............................................................................................................................    14-1
14.1.2 Knowledge Modules ........................................................................................................    14-1
14.2 Installation and Configuration...............................................................................................    14-2
14.2.1 System Requirements and Certifications ......................................................................    14-2
14.2.2 Technology Specific Requirements ................................................................................    14-3
14.2.3 Connectivity Requirements.............................................................................................    14-3
14.3 Setting up the Topology..........................................................................................................    14-3
14.3.1 Creating a DB2/400 Data Server ....................................................................................    14-3
14.3.2 Creating a DB2/400 Physical Schema............................................................................    14-4
14.4 Setting Up an Integration Project ..........................................................................................    14-4
14.5 Creating and Reverse-Engineering an IBM DB2/400 Model ............................................    14-4
14.5.1 Create an IBM DB2/400 Model ......................................................................................    14-5
14.5.2 Reverse-engineer an IBM DB2/400 Model ...................................................................    14-5
14.6 Setting up Changed Data Capture ........................................................................................    14-5
14.6.1 Setting up Trigger-Based CDC .......................................................................................    14-5
14.6.2 Setting up Log-Based CDC..............................................................................................    14-6
14.7 Setting up Data Quality...........................................................................................................    14-9
14.8 Designing a Mapping ..............................................................................................................    14-9
14.8.1 Loading Data from and to IBM DB2 for iSeries ........................................................    14-10
14.8.2 Integrating Data in IBM DB2 for iSeries .....................................................................    14-10
14.9 Specific Considerations with DB2 for iSeries.....................................................................    14-11
14.9.1 Alternative Connectivity Methods for iSeries ............................................................    14-11
14.10 Troubleshooting .....................................................................................................................    14-12
14.10.1 Troubleshooting Error messages..................................................................................    14-12
14.10.2 Common Problems and Solutions................................................................................    14-12



ix

15 IBM DB2 UDB

15.1 Introduction ..............................................................................................................................    15-1
15.2 Concepts ....................................................................................................................................    15-1
15.3 Knowledge Modules ...............................................................................................................    15-1
15.4 Specific Requirements .............................................................................................................    15-3

Part II Business Intelligence 

16 Oracle Business Intelligence Enterprise Edition 

16.1 Introduction ..............................................................................................................................    16-1
16.1.1 Concepts.............................................................................................................................    16-1
16.1.2 Knowledge Modules ........................................................................................................    16-1
16.2 Installation and Configuration...............................................................................................    16-2
16.2.1 System Requirements and Certifications ......................................................................    16-2
16.2.2 Technology Specific Requirements ................................................................................    16-2
16.2.3 Connectivity Requirements.............................................................................................    16-2
16.3 Setting up the Topology..........................................................................................................    16-2
16.3.1 Creating an Oracle BI Data Server .................................................................................    16-3
16.3.2 Creating an Oracle BI Physical Schema.........................................................................    16-3
16.4 Setting Up an Integration Project ..........................................................................................    16-4
16.5 Creating and Reverse-Engineering an Oracle BI Model ....................................................    16-4
16.5.1 Create an Oracle BI Model...............................................................................................    16-4
16.5.2 Reverse-engineer an Oracle BI Model ...........................................................................    16-4
16.6 Setting up Data Quality ..........................................................................................................    16-4
16.7 Designing a Mapping ..............................................................................................................    16-5
16.7.1 Loading Data from and to Oracle BI..............................................................................    16-5
16.7.2 Integrating Data in Oracle BI ..........................................................................................    16-5

17 Oracle Business Intelligence Enterprise Edition Data Lineage

17.1 Introduction ..............................................................................................................................    17-1
17.1.1 Components.......................................................................................................................    17-1
17.1.2 Lineage Lifecycle...............................................................................................................    17-2
17.2 Installing the Lineage in an OBIEE Server ...........................................................................    17-3
17.2.1 Installation Overview.......................................................................................................    17-3
17.2.2 Requirements.....................................................................................................................    17-4
17.2.3 Installation Instructions ...................................................................................................    17-5
17.2.4 Post-Installation Tasks .....................................................................................................    17-7
17.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage ............................    17-8
17.4 Refreshing the OBIEE Lineage from Existing Exports .....................................................    17-11
17.4.1 Exporting the OBIEE Repository Documentation to a Text File .............................    17-11
17.4.2 Exporting the OBIEE Web Catalog Report to a Text File..........................................    17-12
17.4.3 Refreshing the OBIEE Lineage From Existing Exports .............................................    17-12
17.5 Automating the Lineage Tasks ............................................................................................    17-14
17.5.1 Configuring the Scripts ..................................................................................................    17-14
17.5.2 Automating Lineage Deployment................................................................................    17-17
17.5.3 Automating Lineage Refresh ........................................................................................    17-18



x

17.6 Using the Lineage in OBIEE Dashboards...........................................................................    17-18
17.6.1 Viewing Execution Statistics .........................................................................................    17-19
17.6.2 Viewing and Filtering Lineage Data ............................................................................    17-19
17.6.3 Using the Dashboard......................................................................................................    17-20
17.6.4 Using Lineage and Hierarchy .......................................................................................    17-20
17.6.5 Using Contextual Lineage .............................................................................................    17-22

Part III Other Technologies 

18 JMS

18.1 Introduction ..............................................................................................................................    18-1
18.1.1 Concepts.............................................................................................................................    18-1
18.1.2 Knowledge Modules ........................................................................................................    18-3
18.2 Installation and Configuration...............................................................................................    18-3
18.2.1 System Requirements and Certifications ......................................................................    18-4
18.2.2 Technology Specific Requirements ................................................................................    18-4
18.2.3 Connectivity Requirements.............................................................................................    18-4
18.3 Setting up the Topology..........................................................................................................    18-4
18.3.1 Creating a JMS Data Server .............................................................................................    18-4
18.3.2 Creating a JMS Physical Schema ....................................................................................    18-5
18.4 Setting Up an Integration Project ..........................................................................................    18-5
18.5 Creating and Defining a JMS Model .....................................................................................    18-5
18.5.1 Create a JMS Model ..........................................................................................................    18-5
18.5.2 Defining the JMS Datastores ...........................................................................................    18-6
18.6 Designing a Mapping ..............................................................................................................    18-7
18.6.1 Loading Data from a JMS Source ...................................................................................    18-7
18.6.2 Integrating Data in a JMS Target ....................................................................................    18-7
18.7 JMS Standard Properties .........................................................................................................    18-9
18.7.1 Using JMS Properties .....................................................................................................    18-10

19 JMS XML 

19.1 Introduction ..............................................................................................................................    19-1
19.1.1 Concepts.............................................................................................................................    19-1
19.1.2 Knowledge Modules ........................................................................................................    19-3
19.2 Installation and Configuration...............................................................................................    19-3
19.2.1 System Requirements and Certifications ......................................................................    19-3
19.2.2 Technology Specific Requirements ................................................................................    19-3
19.2.3 Connectivity Requirements.............................................................................................    19-4
19.3 Setting up the Topology..........................................................................................................    19-4
19.3.1 Creating a JMS XML Data Server ...................................................................................    19-4
19.3.2 Creating a JMS XML Physical Schema ..........................................................................    19-6
19.4 Setting Up an Integration Project ..........................................................................................    19-7
19.5 Creating and Reverse-Engineering a JMS XML Model......................................................    19-7
19.5.1 Create a JMS XML Model ................................................................................................    19-7
19.5.2 Reverse-Engineering a JMS XML Model.......................................................................    19-7
19.6 Designing a Mapping ..............................................................................................................    19-8



xi

19.6.1 Loading Data from a JMS XML Source .........................................................................    19-8
19.6.2 Integrating Data in a JMS XML Target ..........................................................................    19-8

20 LDAP Directories 

20.1 Introduction ..............................................................................................................................    20-1
20.1.1 Concepts.............................................................................................................................    20-1
20.1.2 Knowledge Modules ........................................................................................................    20-1
20.2 Installation and Configuration...............................................................................................    20-2
20.2.1 System Requirements.......................................................................................................    20-2
20.2.2 Technologic Specific Requirements ...............................................................................    20-2
20.2.3 Connectivity Requirements.............................................................................................    20-2
20.3 Setting up the Topology..........................................................................................................    20-2
20.3.1 Creating an LDAP Data Server.......................................................................................    20-3
20.3.2 Creating a Physical Schema for LDAP ..........................................................................    20-4
20.4 Setting Up an Integration Project ..........................................................................................    20-4
20.5 Creating and Reverse-Engineering an LDAP Directory ....................................................    20-4
20.5.1 Create an LDAP Model....................................................................................................    20-4
20.5.2 Reverse-Engineering an LDAP Model ..........................................................................    20-4
20.6 Designing a Mapping ..............................................................................................................    20-5
20.6.1 Loading Data from and to LDAP ...................................................................................    20-5
20.6.2 Integrating Data in an LDAP Directory ........................................................................    20-6
20.7 Troubleshooting .......................................................................................................................    20-6

21 Oracle TimesTen In-Memory Database 

21.1 Introduction ..............................................................................................................................    21-1
21.1.1 Concepts.............................................................................................................................    21-1
21.1.2 Knowledge Modules ........................................................................................................    21-2
21.2 Installation and Configuration...............................................................................................    21-2
21.2.1 System Requirements and Certifications ......................................................................    21-2
21.2.2 Technology Specific Requirements ................................................................................    21-2
21.2.3 Connectivity Requirements.............................................................................................    21-3
21.3 Setting up the Topology..........................................................................................................    21-3
21.3.1 Creating a TimesTen Data Server...................................................................................    21-3
21.3.2 Creating a TimesTen Physical Schema ..........................................................................    21-4
21.4 Setting Up an Integration Project ..........................................................................................    21-4
21.5 Creating and Reverse-Engineering a TimesTen Model .....................................................    21-4
21.5.1 Create a TimesTen Model................................................................................................    21-4
21.5.2 Reverse-engineer a TimesTen Model.............................................................................    21-5
21.6 Setting up Data Quality ..........................................................................................................    21-5
21.7 Designing a Mapping ..............................................................................................................    21-5
21.7.1 Loading Data from and to TimesTen.............................................................................    21-5
21.7.2 Integrating Data in TimesTen .........................................................................................    21-6

22 Oracle GoldenGate

22.1 Introduction ..............................................................................................................................    22-1
22.1.1 Overview of the GoldeGate CDC Process.....................................................................    22-1



xii

22.1.2 Knowledge Modules ........................................................................................................    22-2
22.2 Installation and Configuration...............................................................................................    22-3
22.2.1 System Requirements and Certifications ......................................................................    22-3
22.2.2 Technology Specific Requirements ................................................................................    22-4
22.2.3 Connectivity Requirements.............................................................................................    22-4
22.3 Working with the Oracle GoldenGate JKMs .......................................................................    22-4
22.3.1 Define the Topology.........................................................................................................    22-4
22.3.2 Create the Replicated Tables ...........................................................................................    22-8
22.3.3 Set Up an Integration Project ..........................................................................................    22-8
22.3.4 Configure CDC for the Source Datastores ....................................................................    22-9
22.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only) ...............    22-11
22.3.6 Design Mappings Using Replicated Data ...................................................................    22-12
22.4 Advanced Configuration ......................................................................................................    22-12
22.4.1 Initial Load Method........................................................................................................    22-12
22.4.2 Tuning Replication Performances ................................................................................    22-12
22.4.3 One Source Multiple Staging Configuration (Offline mode only) ..........................    22-13

23 Oracle SOA Suite Cross References

23.1 Introduction ..............................................................................................................................    23-1
23.1.1 Concepts.............................................................................................................................    23-1
23.1.2 Knowledge Modules ........................................................................................................    23-3
23.1.3 Overview of the SOA XREF KM Process ......................................................................    23-4
23.2 Installation and Configuration...............................................................................................    23-5
23.2.1 System Requirements and Certifications ......................................................................    23-6
23.2.2 Technology Specific Requirements ................................................................................    23-6
23.2.3 Connectivity Requirements.............................................................................................    23-6
23.3 Working with XREF using the SOA Cross References KMs .............................................    23-6
23.3.1 Defining the Topology .....................................................................................................    23-6
23.3.2 Setting up the Project .......................................................................................................    23-7
23.3.3 Designing a Mapping with the Cross-References KMs ..............................................    23-7
23.4 Knowledge Module Options Reference................................................................................    23-8

Part IV Appendices 

A Oracle Data Integrator Driver for LDAP Reference

A.1 Introduction to Oracle Data Integrator Driver for LDAP ....................................................    A-1
A.2 LDAP Processing Overview.....................................................................................................    A-1
A.2.1 LDAP to Relational Mapping............................................................................................    A-2
A.2.2 Managing Relational Schemas ..........................................................................................    A-5
A.3 Installation and Configuration ................................................................................................    A-6
A.3.1 Driver Configuration..........................................................................................................    A-6
A.3.2 Using an External Database to Store the Data..............................................................    A-12
A.3.3 LDAP Directory Connection Configuration .................................................................    A-14
A.3.4 Table Aliases Configuration............................................................................................    A-15
A.4 SQL Syntax................................................................................................................................    A-16
A.4.1 SQL Statements .................................................................................................................    A-17



xiii

A.4.2 SQL FUNCTIONS.............................................................................................................    A-19
A.5 JDBC API Implemented Features ..........................................................................................    A-22

B Oracle Data Integrator Driver for XML Reference

B.1 Introduction to Oracle Data Integrator Driver for XML ......................................................    B-1
B.2 XML Processing Overview .......................................................................................................    B-2
B.2.1 XML to SQL Mapping........................................................................................................    B-2
B.2.2 XML Namespaces ...............................................................................................................    B-3
B.2.3 Managing Schemas.............................................................................................................    B-3
B.2.4 Locking.................................................................................................................................    B-5
B.2.5 XML Schema (XSD) Support.............................................................................................    B-5
B.3 Installation and Configuration.................................................................................................    B-5
B.3.1 Driver Configuration..........................................................................................................    B-5
B.3.2 Automatically Create Multiple Schemas.......................................................................    B-11
B.3.3 Using an External Database to Store the Data..............................................................    B-11
B.4 Detailed Driver Commands ...................................................................................................    B-16
B.4.1 CREATE FILE....................................................................................................................    B-17
B.4.2 CREATE FOREIGNKEYS ................................................................................................    B-18
B.4.3 CREATE XMLFILE...........................................................................................................    B-18
B.4.4 CREATE SCHEMA...........................................................................................................    B-19
B.4.5 DROP FOREIGNKEYS.....................................................................................................    B-20
B.4.6 DROP SCHEMA ...............................................................................................................    B-21
B.4.7 LOAD FILE ........................................................................................................................    B-21
B.4.8 SET SCHEMA....................................................................................................................    B-22
B.4.9 SYNCHRONIZE ...............................................................................................................    B-22
B.4.10 UNLOCK FILE ..................................................................................................................    B-23
B.4.11 TRUNCATE SCHEMA ....................................................................................................    B-23
B.4.12 VALIDATE ........................................................................................................................    B-23
B.4.13 WRITE MAPPING FILE ..................................................................................................    B-23
B.5 SQL Syntax................................................................................................................................    B-24
B.5.1 SQL Statements .................................................................................................................    B-25
B.5.2 SQL FUNCTIONS.............................................................................................................    B-28
B.6 JDBC API Implemented Features ..........................................................................................    B-30
B.7 Rich Metadata...........................................................................................................................    B-31
B.7.1 Supported user-specified types for different databases..............................................    B-32
B.8 XML Schema Supported Features .........................................................................................    B-33
B.8.1 Datatypes ...........................................................................................................................    B-33
B.8.2 Supported Elements .........................................................................................................    B-34
B.8.3 Unsupported Features .....................................................................................................    B-40

C Oracle Data Integrator Driver for Complex Files Reference

C.1 Introduction to Oracle Data Integrator Driver for Complex Files ......................................    C-1
C.2 Complex Files Processing Overview.......................................................................................    C-1
C.2.1 Generating the Native Schema .........................................................................................    C-2
C.2.2 XML to SQL Mapping........................................................................................................    C-2
C.2.3 JSON Support ......................................................................................................................    C-2



xiv

C.2.4 Supported Features ............................................................................................................    C-2
C.3 Driver Configuration.................................................................................................................    C-3
C.4 Detailed Driver Commands .....................................................................................................    C-6
C.5 JDBC API and XML Schema Supported Features.................................................................    C-6



xv

Preface

This book describes how work with different technologies in Oracle Data Integrator.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for developers who want to work with Knowledge 
Modules for their integration processes in Oracle Data Integrator.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are 
hearing impaired.

Related Documents
For more information, see the following documents in Oracle Data Integrator Library.

■ Release Notes for Oracle Data Integrator

■ Understanding Oracle Data Integrator

■ Administering Oracle Data Integrator

■ Developing Integration Projects with Oracle Data Integrator

■ Installing and Configuring Oracle Data Integrator

■ Upgrading Oracle Data Integrator



xvi

■ Application Adapters Guide for Oracle Data Integrator

■ Developing Knowledge Modules with Oracle Data Integrator

■ Migrating From Oracle Warehouse Builder to Oracle Data Integrator

■ Oracle Data Integrator Tool Reference

■ Data Services Java API Reference for Oracle Data Integrator

■ Open Tools Java API Reference for Oracle Data Integrator

■ Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator

■ Java API Reference for Oracle Data Integrator

■ Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

■ Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the 
JDeveloper Help Center when you press F1 or from the main menu by selecting 
Help, and then Search or Table of Contents.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



1

Introduction 1-1

1Introduction

This book describes how work with different technologies in Oracle Data Integrator.

This book includes the following parts: 

■ Part I, "Databases, Files, and XML"

■ Part II, "Business Intelligence"

■ Part III, "Other Technologies"

Application Adapters are covered in a separate guide. See the Application Adapters 
Guide for Oracle Data Integrator for more information.

This chapter provides an introduction to the terminology used in the Oracle Data 
Integrator documentation and describes the basic steps of how to use Knowledge 
Modules in Oracle Data Integrator.

This chapter contains the following sections:

■ Section 1.1, "Terminology"

■ Section 1.2, "Using This Guide"

1.1 Terminology
This section defines some common terms that are used in this document and 
throughout the related documents mentioned in the Preface.

Knowledge Module
Knowledge Modules (KMs) are components of Oracle Data Integrator that are used to 
generate the code to perform specific actions against certain technologies.

Combined with a connectivity layer such as, for example, JDBC, JMS, or JCA, 
Knowledge Modules allow running defined tasks against a technology, such as 
connecting to this technology, extracting data from it, transforming the data, checking 
it, integrating it, etc.

Application Adapter
Oracle Application Adapters for Data Integration provide specific software components 
for integrating enterprise applications data. Enterprise applications suported by Oracle 
Data Integrator include Oracle E-Business Suite, Siebel, SAP, etc.

An adapter is a group of Knowledge Modules. In some cases, this group also contains 
an attached technology definition for Oracle Data Integrator.

Application Adapters are covered in a separate guide. See the Application Adapters 
Guide for Oracle Data Integrator for more information.



Using This Guide

1-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

1.2 Using This Guide
This guide provides conceptual information and processes for working with 
knowledge modules and technologies supported in Oracle Data Integrator.

Each chapter explains how to configure a given technology, set up a project and use 
the technology-specific knowledge modules to perform integration operations.

Some knowledge modules are not technology-specific and require a technology that 
support an industry standard. These knowledge modules are referred to as Generic 
knowledge modules. For example the knowledge modules listed in Chapter 4, 
"Generic SQL" and in Chapter 18, "JMS" are designed to work respectively with any 
ANSI SQL-92 compliant database and any JMS compliant message provider.

When these generic knowledge module can be used with a technology, the technology 
chapter will mention it. However, we recommend using technology-specific 
knowledge modules for better performances and enhanced technology-specific feature 
coverage.

Before using a knowledge module, it is recommended to review the knowledge 
module description in Oracle Data Integrator Studio for usage details, limitations and 
requirements. In addition, although knowledge modules options are pre-configured 
with default values to work out of the box, it is also recommended to review these 
options and their description.

The chapters in this guide will provide you with the important usage, options, 
limitation and requirement information attached to the technologies and knowledge 
modules. 



Part I
Part I Databases, Files, and XML

This part describes how to work with databases, files, and XML files in Oracle Data 
Integrator.

Part I contains the following chapters:

■ Chapter 2, "Oracle Database"

■ Chapter 3, "Files"

■ Chapter 4, "Generic SQL"

■ Chapter 5, "XML Files"

■ Chapter 6, "Complex Files"

■ Chapter 7, "Microsoft SQL Server"

■ Chapter 8, "Microsoft Excel"

■ Chapter 9, "Microsoft Access"

■ Chapter 10, "Netezza"

■ Chapter 11, "Teradata"

■ Chapter 12, "Hypersonic SQL"

■ Chapter 13, "IBM Informix"

■ Chapter 14, "IBM DB2 for iSeries"

■ Chapter 15, "IBM DB2 UDB"





2

Oracle Database 2-1

2Oracle Database

This chapter describes how to work with Oracle Database in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 2.1, "Introduction"

■ Section 2.2, "Installation and Configuration"

■ Section 2.4, "Setting Up an Integration Project"

■ Section 2.5, "Creating and Reverse-Engineering an Oracle Model"

■ Section 2.6, "Setting up Changed Data Capture"

■ Section 2.7, "Setting up Data Quality"

■ Section 2.8, "Designing a Mapping"

■ Section 2.9, "Troubleshooting"

2.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle Database. All 
Oracle Data Integrator features are designed to work best with the Oracle Database 
engine, including reverse-engineering, changed data capture, data quality, and 
mappings.

2.1.1 Concepts
The Oracle Database concepts map the Oracle Data Integrator concepts as follows: An 
Oracle Instance corresponds to a data server in Oracle Data Integrator. Within this 
instance, a schema maps to an Oracle Data Integrator physical schema. A set of related 
objects within one schema corresponds to a data model, and each table, view or 
synonym will appear as an ODI datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle 
database instance.

2.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 2–1 for 
handling Oracle data. The KMs use Oracle specific features. It is also possible to use 
the generic SQL KMs with the Oracle Database. See Chapter 4, "Generic SQL" for more 
information.



Introduction

2-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 2–1 Oracle Database Knowledge Modules

Knowledge Module Description

RKM Oracle Reverse-engineers tables, views, columns, primary keys, non unique 
indexes and foreign keys.

JKM Oracle 11g Consistent (Streams) Creates the journalizing infrastructure for consistent set journalizing 
on Oracle 11g tables, using Oracle Streams.

This KM is deprecated.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent set journalizing 
on Oracle tables using triggers.

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent set journalizing 
on Oracle tables using triggers based on a Last Update Date column on 
the source tables.

JKM Oracle Simple Creates the journalizing infrastructure for simple journalizing on 
Oracle tables using triggers.

JKM Oracle to Oracle Consistent (OGG 
Online)

Creates and manages the ODI CDC framework infrastructure when 
using Oracle GoldenGate for CDC. See Chapter 22, "Oracle 
GoldenGate" for more information.

CKM Oracle Checks data integrity against constraints defined on an Oracle table. 

LKM File to Oracle (EXTERNAL TABLE) Loads data from a file to an Oracle staging area using the 
EXTERNAL TABLE SQL Command.

LKM File to Oracle (SQLLDR) Loads data from a file to an Oracle staging area using the 
SQL*Loader command line utility.

LKM MSSQL to Oracle (BCP SQLLDR) Loads data from a Microsoft SQL Server to Oracle database (staging 
area) using the BCP and SQL*Loader utilities.

LKM Oracle BI to Oracle (DBLINK) Loads data from any Oracle BI physical layer to an Oracle target 
database using database links. See Chapter 16, "Oracle Business 
Intelligence Enterprise Edition" for more information.

LKM Oracle to Oracle (DBLINK) Loads data from an Oracle source database to an Oracle staging area 
database using database links.

LKM Oracle to Oracle Pull (DB Link) Loads data from an Oracle source database to an Oracle staging area 
database using database links. It does not create a view in the source 
database. It also does not creates the synonym in the staging 
database. Built-in KM.

LKM Oracle to Oracle Push (DB Link) Loads and integrates data into Oracle target table using database 
links. It does not create the synonym in the staging database. Any 
settings in the IKM would be ignored. Built-in KM.

LKM Oracle to Oracle (datapump) Loads data from an Oracle source database to an Oracle staging area 
database using external tables in the datapump format.

LKM SQL to Oracle Loads data from any ANSI SQL-92 source database to an Oracle 
staging area.

LKM SAP BW to Oracle (SQLLDR) Loads data from SAP BW systems to an Oracle staging using 
SQL*Loader utilities. See the Application Adapters Guide for Oracle Data 
Integrator for more information.

LKM SAP ERP to Oracle (SQLLDR) Loads data from SAP ERP systems to an Oracle staging using 
SQL*Loader utilities. See the Application Adapters Guide for Oracle Data 
Integrator for more information.

IKM Oracle Incremental Update Integrates data in an Oracle target table in incremental update mode. 
Supports Flow Control.

IKM Oracle Incremental Update (MERGE) Integrates data in an Oracle target table in incremental update mode, 
using a MERGE statement. Supports Flow Control.



Installation and Configuration

Oracle Database 2-3

2.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
Oracle Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

2.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

IKM Oracle Incremental Update (PL SQL) Integrates data in an Oracle target table in incremental update mode 
using PL/SQL. Supports Flow Control.

IKM Oracle Insert Integrates data into an Oracle target table in append mode. The data 
is loaded directly in the target table with a single INSERT SQL 
statement. Built-in KM.

IKM Oracle Update Integrates data into an Oracle target table in incremental update 
mode. The data is loaded directly into the target table with a single 
UPDATE SQL statement. Built-in KM.

IKM Oracle Merge Integrates data into an Oracle target table in incremental update 
mode. The data is loaded directly into the target table with a single 
MERGE SQL statement. Built-in KM.

IKM Oracle Multi-Insert Integrates data from one source into one or many Oracle target tables 
in append mode, using a multi-table insert statement (MTI). This 
IKM can be utilized in a single mapping to load multiple targets. 
Built-in KM.

IKM Oracle Multi Table Insert Integrates data from one source into one or many Oracle target tables 
in append mode, using a multi-table insert statement (MTI). Supports 
Flow Control.

IKM Oracle Slowly Changing Dimension Integrates data in an Oracle target table used as a Type II Slowly 
Changing Dimension. Supports Flow Control.

IKM Oracle Spatial Incremental Update Integrates data into an Oracle (9i or above) target table in incremental 
update mode using the MERGE DML statement. This module 
supports the SDO_GEOMETRY datatype. Supports Flow Control.

IKM Oracle to Oracle Control Append 
(DBLINK)

Integrates data from one Oracle instance into an Oracle target table 
on another Oracle instance in control append mode. Supports Flow 
Control.

This IKM is typically used for ETL configurations: source and target 
tables are on different Oracle instances and the mapping's staging 
area is set to the logical schema of the source tables or a third schema.

SKM Oracle Generates data access Web services for Oracle databases. See 
"Generating and Deploying Data Services" in the Administering Oracle 
Data Integrator for information about how to use this SKM.

Table 2–1 (Cont.) Oracle Database Knowledge Modules

Knowledge Module Description



Installation and Configuration

2-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

2.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Oracle use specific features of this database. This 
section lists the requirements related to these features.

2.2.2.1 Using the SQL*Loader Utility
This section describes the requirements that must be met before using the SQL*Loader 
utility with Oracle database.

■ The Oracle Client and the SQL*Loader utility must be installed on the machine 
running the Oracle Data Integrator Agent.

■ The server names defined in the Topology must match the Oracle TNS name used 
to access the Oracle instances.

■ A specific log file is created by SQL*Loader. We recommend looking at this file in 
case of error. Control Files (CTL), Log files (LOG), Discard Files (DSC) and Bad 
files (BAD) are placed in the work directory defined in the physical schema of the 
source files.

■ Using the DIRECT mode requires that Oracle Data integrator Agent run on the 
target Oracle server machine. The source file must also be on that machine.

2.2.2.2 Using External Tables
This section describes the requirements that must be met before using external tables 
in Oracle database.

■ The file to be loaded by the External Table command needs to be accessible from 
the Oracle instance. This file must be located on the file system of the server 
machine or reachable from a Unique Naming Convention path (UNC path) or 
stored locally.

■ For performance reasons, it is recommended to install the Oracle Data Integrator 
Agent on the target server machine.

2.2.2.3 Using Oracle Streams
This section describes the requirements for using Oracle Streams Journalizing 
knowledge modules.

The following requirements must be met before setting up changed data capture using 
Oracle Streams:

■ Oracle Streams must be installed on the Oracle Database. 

■ The Oracle database must run using a SPFILE (only required for AUTO_
CONFIGURATION option).

■ The AQ_TM_PROCESSES option must be either left to the default value, or set to 
a value different from 0 and 10.

Note: It is recommended to review first the "Changed Data Capture" 
chapter in the Oracle Database Data Warehousing Guide, which contains 
the comprehensive list of requirements for Oracle Streams.



Installation and Configuration

Oracle Database 2-5

■ The COMPATIBLE option should be set to 10.1 or higher.

■ The database must run in ARCHIVELOG mode.

■ PARALLEL_MAX_SERVERS must be increased in order to take into count the 
number of Apply and Capture processes. It should be increased at least by 6 for 
Standalone configuration, 9 for Low-Activity and 21 for High-Activity.

■ UNDO_RETENTION must be set to 3600 at least.

■ STREAMS_POOL_SIZE must be increased by 100MB for Standalone 
configuration, 236MB for Low-Activity and 548MB for High-Activity.

■ All the columns of the primary key defined in the ODI Model must be part of a 
SUPPLEMENTAL LOG GROUP.

■ When using the AUTO_CONFIGURATION knowledge module option, all the 
above requirements are checked and set-up automatically, except some actions 
that must be set manually. See "Using the Streams JKMs" for more information.

In order to run this KM without AUTO_CONFIGURATION knowledge module 
option, the following system privileges must be granted:

■ DBA role to the connection user

■ Streams Administrator to the connection user

■ RESOURCE role to the work schema

■ SELECT ANY TABLE to the work schema

■ Asynchronous mode gives the best performance on the journalized system, but 
this requires extra Oracle Database initialization configuration and additional 
privileges for configuration.

■ Asynchronous mode requires the journalized database to be in ARCHIVELOG. 
Before turning this option on, you should first understand the concept of 
asynchronous AutoLog publishing. See the Oracle Database Administrator's 
Guide for information about running a database in ARCHIVELOG mode. See 
"Asynchronous Change Data Capture" in the Oracle Database Data Warehousing 
Guide for more information on supplemental logging. This will help you to 
correctly manage the archives and avoid common issues, such as hanging the 
Oracle instance if the archive files are not removed regularly from the archive 
repository.

■ When using asynchronous mode, the user connecting to the instance must be 
granted admin authorization on Oracle Streams. This is done using the DMBS_
STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure when logged in with 
a user already having this privilege (for example the SYSTEM user).

■ The work schema must be granted the SELECT ANY TABLE privilege to be able to 
create views referring to tables stored in other schemas.

For detailed information on all other prerequisites, see the "Change Data Capture" 
chapter in the Oracle Database Data Warehousing Guide.

2.2.3 Connectivity Requirements
This section lists the requirements for connecting to an Oracle Database. 



Setting up the Topology

2-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

JDBC Driver
Oracle Data Integrator is installed with a default version of the Oracle Type 4 JDBC 
driver. This drivers directly uses the TCP/IP network layer and requires no other 
installed component or configuration.

It is possible to connect an Oracle Server through the Oracle JDBC OCI Driver, or even 
using ODBC. For performance reasons, it is recommended to use the Type 4 driver.

Connection Information
You must ask the Oracle DBA the following information:

■ Network Name or IP address of the machine hosting the Oracle Database.

■ Listening port of the Oracle listener.

■ Name of the Oracle Instance (SID).

■ TNS alias of the connected instance.

■ Login and password of an Oracle User. 

2.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating an Oracle Data Server

2. Creating an Oracle Physical Schema

2.3.1 Creating an Oracle Data Server
An Oracle data server corresponds to an Oracle Database Instance connected with a 
specific Oracle user account. This user will have access to several schemas in this 
instance, corresponding to the physical schemas in Oracle Data Integrator created 
under the data server.

2.3.1.1 Creation of the Data Server
Create a data server for the Oracle technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining an 
Oracle data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ Instance/dblink: TNS Alias used for this Oracle instance. It will be used to 
identify the Oracle instance when using database links and SQL*Loader.

■ User/Password: Oracle user (with its password), having select privileges on 
the source schemas, select/insert privileges on the target schemas and 
select/insert/object creation privileges on the work schemas that will be 
indicated in the Oracle physical schemas created under this data server.

2. In the JDBC tab:

■ JDBC Driver: oracle.jdbc.OracleDriver

■ JDBC URL: jdbc:oracle:thin:@<network name or ip address of 
the Oracle machine>:<port of the Oracle listener 
(1521)>:<name of the Oracle instance>



Creating and Reverse-Engineering an Oracle Model

Oracle Database 2-7

To connect an Oracle RAC instance with the Oracle JDBC thin driver, use an 
Oracle RAC database URL as shown in the following example:

jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=on)
(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=host2) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=service)))

2.3.2 Creating an Oracle Physical Schema
Create an Oracle physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

2.4 Setting Up an Integration Project
Setting up a project using the Oracle Database follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with Oracle Database:

■ RKM Oracle

■ CKM Oracle

■ LKM SQL to Oracle

■ LKM File to Oracle (SQLLDR)

■ LKM File to Oracle (EXTERNAL TABLE)

■ IKM Oracle Incremental Update

2.5 Creating and Reverse-Engineering an Oracle Model
This section contains the following topics:

■ Create an Oracle Model

■ Reverse-engineer an Oracle Model

2.5.1 Create an Oracle Model
Create an Oracle Model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator.

2.5.2 Reverse-engineer an Oracle Model
Oracle supports both Standard reverse-engineering - which uses only the abilities of 
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve 
the structure of the objects directly from the Oracle dictionary.

In most of the cases, consider using the standard JDBC reverse engineering for 
starting. Standard reverse-engineering with Oracle retrieves tables, views, columns, 
primary keys, and references.



Setting up Changed Data Capture

2-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Consider switching to customized reverse-engineering for retrieving more metadata. 
Oracle customized reverse-engineering retrieves the table and view structures, 
including columns, primary keys, alternate keys, indexes, check constraints, 
synonyms, and references.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as 
described in "Reverse-engineering a Model" of the Developing Integration Projects with 
Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Oracle with a RKM, use the usual 
procedure, as described in "Reverse-engineering a Model" of the Developing Integration 
Projects with Oracle Data Integrator. This section details only the fields specific to the 
Oracle technology:

In the Reverse Engineer tab of the Oracle Model, select the KM: RKM 
Oracle.<project name>.

2.6 Setting up Changed Data Capture
The ODI Oracle Knowledge Modules support the Changed Data Capture feature. See 
Chapter "Working with Changed Data Capture" of the Developing Integration Projects 
with Oracle Data Integrator for details on how to set up journalizing and how to use 
captured changes.

Oracle Journalizing Knowledge Modules support Simple Journalizing and Consistent 
Set Journalizing. The Oracle JKMs use either triggers or Oracle Streams to capture data 
changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 2–2 for 
journalizing Oracle tables.

Note that it is also possible to use Oracle GoldenGate to consume changed records 
from an Oracle database. See Chapter 22, "Oracle GoldenGate" for more information.

Using the Streams JKMs
The Streams KMs work with the default values. The following are the recommended 
settings:

Table 2–2 Oracle Journalizing Knowledge Modules

KM Notes

JKM Oracle 11g Consistent (Streams) Creates the journalizing infrastructure for consistent 
set journalizing on Oracle 11g tables, using Oracle 
Streams.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent 
set journalizing on Oracle tables using triggers.

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent 
set journalizing on Oracle tables using triggers based 
on a Last Update Date column on the source tables.

JKM Oracle Simple Creates the journalizing infrastructure for simple 
journalizing on Oracle tables using triggers.



Setting up Data Quality

Oracle Database 2-9

■ By default, the AUTO_CONFIGURATION KM option is set to Yes. If set to Yes, the 
KM provides automatic configuration of the Oracle database and ensures that all 
prerequisites are met. As this option automatically changes the database 
initialization parameters, it is not recommended to use it in a production 
environment. You should check the Create Journal step in the Oracle Data 
Integrator execution log to detect configurations tasks that have not been 
performed correctly (Warning status).

■ By default, the CONFIGURATION_TYPE option is set to Low Activity. Leave 
this option if your database is having a low transactional activity. 

 Set this option to Standalone for installation on a standalone database such as a 
development database or on a laptop. 

Set this option to High Activity if the database is intensively used for 
transactional processing.

■ By default, the STREAMS_OBJECT_GROUP option is set to CDC. The value 
entered is used to generate object names that can be shared across multiple CDC 
sets journalized with this JKM. If the value of this option is CDC, the naming rules 
listed in Table 2–3 will be applied. 

Note that this option can only take upper case ASCII characters and must not 
exceed 15 characters.

■ VALIDATE enables extra steps to validate the correct use of the KM. This option 
checks various requirements without configuring anything (for configuration 
steps, please see AUTO_CONFIGURATION option). When a requirement is not 
met, an error message is written to the log and the execution of the JKM is stopped 
in error.

By default, this option is set to Yes in order to provide an easier use of this 
complex KM out of the box

Using the Update Date JKM
This JKM assumes that a column containing the last update date exists in all the 
journalized tables. This column name is provided in the UPDATE_DATE_COL_
NAME knowledge module option.

2.7 Setting up Data Quality
Oracle Data Integrator provides the CKM Oracle for checking data integrity against 
constraints defined on an Oracle table. See "Flow Control and Static Control" in 
Developing Integration Projects with Oracle Data Integrator for details. 

Oracle Data Integrator provides the Knowledge Module listed in Table 2–4 to perform 
a check on Oracle. It is also possible to use the generic SQL KMs. See Chapter 4, 
"Generic SQL" for more information.

Table 2–3 Naming Rules Example for the CDC Group Name

Capture Process ODI_CDC_C

Queue ODI_CDC_Q

Queue Table ODI_CDC_QT

Apply Process ODI_CDC_A



Designing a Mapping

2-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2.8 Designing a Mapping
You can use Oracle as a source, staging area or a target of a mapping. It is also possible 
to create ETL-style mappings based on the Oracle technology.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning an Oracle data server.

2.8.1 Loading Data from and to Oracle
Oracle can be used as a source, target or staging area of a mapping. The LKM choice in 
the Mapping's Loading Knowledge Module tab to load data between Oracle and 
another type of data server is essential for the performance of a mapping.

2.8.1.1 Loading Data from Oracle
The following KMs implement optimized methods for loading data from an Oracle 
database to a target or staging area database. In addition to these KMs, you can also 
use the Generic SQL KMs or the KMs specific to the other technology involved.

2.8.1.2 Loading Data to Oracle
The following KMs implement optimized methods for loading data from a source or 
staging area into an Oracle database. In addition to these KMs, you can also use the 
Generic SQL KMs or the KMs specific to the other technology involved.

Table 2–4 Check Knowledge Modules for Oracle Database

Recommended KM Notes

CKM Oracle Uses Oracle's Rowid to identify records

Target or Staging Area Technology KM Notes

Oracle LKM Oracle to Oracle (dblink) Creates a view on the source server, 
and synonyms on this view on the 
target server.

Oracle LKM Oracle to Oracle Push (DB 
Link)

Creates a view on the source server, 
but does not create synonyms on this 
view on the target server. This KM 
ignores any settings on the IKM. 
Built-in KM.

Oracle LKM Oracle to Oracle Pull (DB Link) Does not create a view on the source 
server, or the synonyms on this view 
on the target server. Built-in KM.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the datapump 
format.

Source or Staging Area Technology KM Notes

Oracle LKM Oracle to Oracle (dblink) Views created on the source server, 
synonyms on the target.

Oracle LKM Oracle to Oracle Push (DB 
Link)

Views not created on the source 
server, synonyms created on the 
target. Built-in KM.



Designing a Mapping

Oracle Database 2-11

2.8.2 Integrating Data in Oracle
The data integration strategies in Oracle are numerous and cover several modes. The 
IKM choice in the Mapping's Physical diagram determines the performances and 
possibilities for integrating.

The following KMs implement optimized methods for integrating data into an Oracle 
target. In addition to these KMs, you can also use the Generic SQL KMs.

Oracle LKM Oracle to Oracle Pull (DB 
Link)

Views not created on the source 
server, synonyms not created on the 
target. Built-in KM.

SAP BW LKM SAP BW to Oracle (SQLLDR) Uses Oracle's bulk loader. File 
cannot be Staging Area.

SAP ERP LKM SAP ERP to Oracle (SQLLDR) Uses Oracle's bulk loader. File 
cannot be Staging Area.

Files LKM File to Oracle (EXTERNAL 
TABLE)

Loads file data using external tables.

Files LKM File to Oracle (SQLLDR) Uses Oracle's bulk loader. File 
cannot be Staging Area.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the datapump 
format.

Oracle BI LKM Oracle BI to Oracle (DBLINK) Creates synonyms for the target 
staging table and uses the OBIEE 
populate command. 

MSSQL LKM MSSQL to Oracle 
(BCP-SQLLDR)

Unloads data from SQL Server using 
BCP, loads data into Oracle using 
SQL*Loader.

All LKM SQL to Oracle Faster than the Generic LKM (Uses 
Statistics)

Mode KM Note

Update IKM Oracle Incremental Update Optimized for Oracle. Supports Flow Control.

Update IKM Oracle Update Optimized for Oracle. Oracle UPDATE statement KM. 
Built-in KM.

Update IKM Oracle Merge Optimized for Oracle. Oracle MERGE statement KM. 
Built-in KM.

Update IKM Oracle Spatial Incremental Update Supports SDO_GEOMETRY datatypes. Supports Flow 
Control.

Update IKM Oracle Incremental Update (MERGE) Recommended for very large volumes of data because of 
bulk set-based MERGE feature. Supports Flow Control.

Update IKM Oracle Incremental Update (PL SQL) Use PL/SQL and supports long and blobs in incremental 
update mode. Supports Flow Control.

Specific IKM Oracle Slowly Changing Dimension Supports type 2 Slowly Changing Dimensions. Supports 
Flow Control.

Specific IKM Oracle Multi Table Insert Supports multi-table insert statements. Supports Flow 
Control.

Append IKM Oracle to Oracle Control Append 
(DBLINK)

Optimized for Oracle using DB*Links. Supports Flow 
Control.

Source or Staging Area Technology KM Notes



Designing a Mapping

2-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension 
value for each column of the Target datastore. This value is used by the IKM Oracle 
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or 
Insert Column, Current Record Flag and Start/End Timestamps columns.

Using Multi Table Insert
The IKM Oracle Multi Table Insert is used to integrate data from one source into one to 
many Oracle target tables with a multi-table insert statement. This IKM must be used 
in mappings that are sequenced in a Package. This Package must meet the following 
conditions:

■ The first mapping of the Package must have a temporary target and the KM option 
DEFINE_QUERY set to YES.

This first mapping defines the structure of the SELECT clause of the multi-table 
insert statement (that is the source flow).

■ Subsequent mappings must source from this temporary datastore and have the 
KM option IS_TARGET_TABLE set to YES.

■ The last mapping of the Package must have the KM option EXECUTE set to YES in 
order to run the multi-table insert statement.

■ Do not set Use Temporary Mapping as Derived Table (Sub-Select) to true on any of 
the mappings.

If large amounts of data are appended, consider to set the KM option OPTIMIZER_
HINT to /*+ APPEND */.

Using Spatial Datatypes
To perform incremental update operations on Oracle Spatial datatypes, you need to 
declare the SDO_GEOMETRY datatype in the Topology and use the IKM Oracle 
Spatial Incremental Update. When comparing two columns of SDO_GEOMETREY 
datatype, the GEOMETRY_TOLERANCE option is used to define the error margin 
inside which the geometries are considered to be equal.

See the Oracle Spatial User's Guide and Reference for more information.

2.8.3 Designing an ETL-Style Mapping
See "Creating a Mapping" in the Developing Integration Projects with Oracle Data 
Integrator for generic information on how to design mappings. This section describes 
how to design an ETL-style mapping where the staging area is Oracle database or any 
ANSI-92 compliant database and the target on Oracle database.

In an ETL-style mapping, ODI processes the data in a staging area, which is different 
from the target. Oracle Data Integrator provides two ways for loading the data from an 
Oracle staging area to an Oracle target:

■ Using a Multi-connection IKM

Append IKM Oracle Insert Optimized for Oracle. Oracle INSERT statement KM. 
Built-in KM. Supports Flow Control.

Append IKM Oracle Multi-Insert Optimized for Oracle. Oracle multi-target INSERT 
statement KM, applied to each target. Built-in KM.

Mode KM Note



Designing a Mapping

Oracle Database 2-13

■ Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM
A multi-connection IKM allows updating a target where the staging area and sources 
are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling 
Oracle data: IKM Oracle to Oracle Control Append (DBLINK). You can also use the 
generic SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more 
information.

See Table 2–5 for more information on when to use a multi-connection IKM. 

To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with the staging area on Oracle or an ANSI-92 compliant 
technology and the target on Oracle using the standard procedure as described in 
"Creating a Mapping" in the Developing Integration Projects with Oracle Data 
Integrator. This section describes only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables 
or a third schema. See "Configuring Execution Locations" in the Developing 
Integration Projects with Oracle Data Integrator for information about how to change 
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for 
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) 
to the staging area. See Table 2–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property 
Inspector opens for this object.

In the Integration Knowledge Module tab, select an ETL multi-connection IKM to 
load the data from the staging area to the target. See Table 2–5 to determine the 
IKM you can use.

Note the following when setting the KM options:

■ For IKM Oracle to Oracle Control Append (DBLINK)

■ If large amounts of data are appended, set the KM option OPTIMIZER_HINT 
to /*+ APPEND */.

■ Set AUTO_CREATE_DB_LINK to true to create automatically db link on the 
target schema. If AUTO_CREATE_DB_LINK is set to false (default), the link 
with this name should exist in the target schema.

■ If you set the options FLOW_CONTROL and STATIC_CONTROL to Yes, 
select a CKM in the Check Knowledge Module tab. If FLOW_CONTROL is set 
to Yes, the flow table is created on the target.

Using an LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in 
combination with a standard mono-connection IKM. The exporting LKM is used to 
load the flow table from the staging area to the target. The mono-connection IKM is 
used to integrate the data flow into the target table.



Designing a Mapping

2-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a 
source of an ETL-style mapping. Staging area and the target are Oracle.

See Table 2–5 for more information on when to use the combination of a standard 
exporting LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping with the staging area and target on Oracle using the standard 
procedure as described in "Creating a Mapping" in the Developing Integration 
Projects with Oracle Data Integrator. This section describes only the ETL-style 
specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables 
or a third schema. See "Configuring Execution Locations" in the Developing 
Integration Projects with Oracle Data Integrator for information about how to change 
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for 
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) 
to the staging area. See Table 2–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area. The Property Inspector for this object 
appears.

7. In the Loading Knowledge Module tab, select an LKM to load from the staging 
area to the target. See Table 2–5 to determine the LKM you can use.

8. Optionally, modify the KM options.

9. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM 
to update the target. See Table 2–5 to determine the IKM you can use.



Designing a Mapping

Oracle Database 2-15

Table 2–5 KM Guidelines for ETL-Style Mappings with Oracle Data

Source Staging Area Target
Exporting 
LKM IKM KM Strategy Comment

ANSI 
SQL-92 
standard 
compliant

Oracle Oracle NA IKM Oracle to Oracle 
Control Append 
(DBLINK)

Multi-connect
ion IKM

Use this KM 
strategy to:

■ Perform 
control 
append

■ Use 
DB*Links for 
performance 
reasons

Supports flow 
and static 
control. 

ANSI 
SQL-92 
standard 
compliant

Oracle or any 
ANSI SQL-92 
standard 
compliant 
database

Oracle or 
any 
ANSI 
SQL-92 
standard 
complia
nt 
database

NA IKM SQL to SQL 
Incremental Update

Multi-connect
ion IKM

Allows an 
incremental 
update strategy 
with no 
temporary 
target-side 
objects. Use this 
KM if it is not 
possible to create 
temporary 
objects in the 
target server.

The application 
updates are 
made without 
temporary 
objects on the 
target, the 
updates are 
made directly 
from source to 
target. The 
configuration 
where the flow 
table is created 
on the staging 
area and not in 
the target should 
be used only for 
small volumes of 
data.

Supports flow 
and static control

Oracle Oracle Oracle LKM to Oracle 
to Oracle 
(DBLINK)

IKM Oracle Slowly 
Changing Dimension

LKM + 
standard IKM

Oracle Oracle Oracle LKM to Oracle 
to Oracle 
(DBLINK)

IKM Oracle 
Incremental Update

LKM + 
standard IKM

Oracle Oracle Oracle LKM to Oracle 
to Oracle 
(DBLINK)

IKM Oracle 
Incremental Update 
(MERGE)

LKM + 
standard IKM



Troubleshooting

2-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2.9 Troubleshooting
This section provides information on how to troubleshoot problems that you might 
encounter when using Oracle Knowledge Modules. It contains the following topics:

■ Troubleshooting Oracle Database Errors

■ Common Problems and Solutions

2.9.1 Troubleshooting Oracle Database Errors
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: ORA-01017: invalid username/password; logon denied
at ...
at ...
...

the java.sql.SQLExceptioncode simply indicates that a query was made to the 
database through the JDBC driver, which has returned an error. This error is frequently 
a database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the 
Oracle documentation. If its contains an error code specific to Oracle, like here (in red), 
the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL 
code send to the database to find the source of the error. The code is displayed in the 
description tab of the erroneous task.

2.9.2 Common Problems and Solutions
This section describes common problems and solutions.

■ ORA-12154 TNS:could not resolve service name

TNS alias resolution. This problem may occur when using the OCI driver, or a KM 
using database links. Check the configuration of the TNS aliases on the machines.

■ ORA-02019 connection description for remote database not 
found

You use a KM using non existing database links. Check the KM options for 
creating the database links.

■ ORA-00900 invalid SQL statement

ORA-00923 FROM Keyword not found where expected

The code generated by the mapping, or typed in a procedure is invalid for Oracle. 
This is usually related to an input error in the mapping, filter of join. The typical 
case is a missing quote or an unclosed bracket.

A frequent cause is also the call made to a non SQL syntax, like the call to an 
Oracle stored procedure using the syntax 

EXECUTE SCHEMA.PACKAGE.PROC(PARAM1, PARAM2).

The valid SQL call for a stored procedure is:

BEGIN
SCHEMA.PACKAGE.PROC(PARAM1, PARAM2);
END;



Troubleshooting

Oracle Database 2-17

The syntax EXECUTE SCHEMA.PACKAGE.PROC(PARAM1, PARAM2) is specific to 
SQL*PLUS, and do not work with JDBC.

■ ORA-00904 invalid column name

Keying error in a mapping/join/filter. A string which is not a column name is 
interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore 
with a recently modified structure. It is necessary to impact in the error table the 
modification, or drop the error tables and let Oracle Data Integrator recreate it in 
the next execution.

■ ORA-00903 invalid table name

The table used (source or target) does not exist in the Oracle schema. Check the 
mapping logical/physical schema for the context, and check that the table 
physically exists on the schema accessed for this context.

■ ORA-00972 Identifier is too Long

There is a limit in the object identifier in Oracle (usually 30 characters). When 
going over this limit, this error appears. A table created during the execution of 
the mapping went over this limit. and caused this error (see the execution log for 
more details).

Check in the topology for the oracle technology, that the maximum lengths for the 
object names (tables and columns) correspond to your Oracle configuration.

■ ORA-01790 expression must have same datatype as corresponding 
expression

You are trying to connect two different values that can not be implicitly converted 
(in a mapping, a join...). Use the explicit conversion functions on these values.



Troubleshooting

2-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



3

Files 3-1

3Files

This chapter describes how to work with Files in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 3.1, "Introduction"

■ Section 3.2, "Installation and Configuration"

■ Section 3.3, "Setting up the Topology"

■ Section 3.4, "Setting Up an Integration Project"

■ Section 3.5, "Creating and Reverse-Engineering a File Model"

■ Section 3.6, "Designing a Mapping"

3.1 Introduction
Oracle Data Integrator supports fixed or delimited files containing ASCII or EBCDIC 
data.

3.1.1 Concepts
The File technology concepts map the Oracle Data Integrator concepts as follows: A 
File server corresponds to an Oracle Data Integrator data server. In this File server, a 
directory containing files corresponds to a physical schema. A group of flat files within 
a directory corresponds to an Oracle Data Integrator model, in which each file 
corresponds to a datastore. The fields in the files correspond to the datastore columns.

Oracle Data Integrator provides a built-in driver for Files and knowledge modules for 
integrating Files using this driver, using the metadata declared in the File data model 
and in the topology.

Most technologies also have specific features for interacting with flat files, such as 
database loaders, utilities, and external tables. Oracle Data Integrator can also benefit 
from these features by using technology-specific Knowledge Modules. In terms of 
performance, it is most of the time recommended to use database utilities when 
handling flat files. 

Note that the File technology concerns flat files (fixed and delimited). XML files are 
covered in Chapter 5, "XML Files".

3.1.2 Knowledge Modules
Oracle Data Integrator provides the knowledge modules (KM) listed in this section for 
handling File data using the File driver. 



Installation and Configuration

3-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Note that the SQL KMs listed in Table 3–1 are generic and can be used with any 
database technology. Technology-specific KMs, using features such as loaders or 
external tables, are listed in the corresponding technology chapter.

3.2 Installation and Configuration
Make sure you have read the information in this section before you start working with 
the File technology:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

3.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

3.2.2 Technology Specific Requirements
Some of the knowledge modules for File data use specific features of the database. 
This section lists the requirements related to these features.

Database Utilities
Most database technologies have their own utilities for interacting with flat files. All 
require that the database client software is accessible from the Agent that runs the 
mapping that is using the utility. Some examples are:

■ Oracle: SQL*Loader

■ Microsoft SQL Server: bcp

■ Teradata: FastLoad, MultiLoad, TPump, FastExport

You can benefit from these utilities in Oracle Data Integrator by using the 
technology-specific knowledge modules. See the technology-specific chapter in this 
guide for more information about the knowledge modules and the requirements for 
using the database utilities.

Table 3–1 Knowledge Modules to read from a File

Knowledge Module Description

LKM File to SQL Loads data from an ASCII or EBCDIC File to any ANSI SQL-92 
compliant database used as a staging area.

IKM SQL to File Append Integrates data in a target file from any ANSI SQL-92 compliant 
staging area in replace mode.

IKM File to File (Java) Integrates data in a target file from a source file using a Java 
processing. Can take several source files and generates a log and a 
bad file. See Section 3.6.2.2, "IKM File to File (Java)" for more 
information.



Setting up the Topology

Files 3-3

Requirements for IKM File to File (Java)
The IKM File to File (Java) generates, compiles, and runs a Java program to process the 
source files. In order to use this KM, a JDK is required.

3.2.3 Connectivity Requirements
This section lists the requirements for connecting to flat files. 

JDBC Driver
Oracle Data Integrator includes a built-in driver for flat files. This driver is installed 
with Oracle Data Integrator and does not require additional configuration.

3.3 Setting up the Topology
Setting up the topology consists in: 

1. Creating a File Data Server

2. Creating a File Physical Schema

3.3.1 Creating a File Data Server
A File data server is a container for a set of file folders (each file folder corresponding 
to a physical schema).

Oracle Data Integrator provides the default FILE_GENERIC data server. This data 
server suits most of the needs. In most cases, it is not required to create a File data 
server, and you only need to create a physical schema under the FILE_GENERIC data 
server.

3.3.1.1 Creation of the Data Server
Create a data server for the File technology using the standard procedure, as described 
in "Creating a Data Server" of the Developing Integration Projects with Oracle Data 
Integrator. This section details only the fields required or specific for defining a File 
data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ User/Password: These fields are not used for File data servers.

2. In the JDBC tab, enter the following values:

■ JDBC Driver: com.sunopsis.jdbc.driver.file.FileDriver

■ JDBC URL: 
jdbc:snps:dbfile?<property=value>&<property=value>&...

You can use in the URL the properties listed in Table 3–2.

Table 3–2 JDBC File Driver Properties

Property Value Description

DATA_CONTAINS_LINE_
SEPARATOR

TRUE|FALSE If set to true, when reading data, if a record 
contains a character (or sequence of 
characters) that is set as a line separator, it 
is not considered as a line break, but the 
data is read on till the read 'row size' 
number of characters.



Setting up the Topology

3-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

JDBC URL example:

jdbc:snps:dbfile?ENCODING=ISO8859_1&TRUNC_FIXED_
STRINGS=FALSE&OPT=TRUE

3.3.2 Creating a File Physical Schema
Create a File physical schema using the standard procedure, as described in "Creating 
a Physical Schema" in Administering Oracle Data Integrator.

In your physical schema, you must set a pair of directories:

■ The Directory (Schema), where Oracle Data Integrator will look for the source and 
target files and create error files for invalid records detected in the source files.

■ A Directory (Work Schema), where Oracle Data Integrator may create temporary 
files associated to the sources and targets contained in the Data Schema.

ENCODING <encoding_code> File encoding. The list of supported 
encoding is available at 
http://java.sun.com/j2se/1.4.2/d
ocs/guide/intl/encoding.doc.html
. The default encoding value is ISO8859_
1.

ERR_FILE_PATH empty File location path. This path is taken by the 
File driver and any errors encountered by 
driver in parsing the data is put into 
<property value> + .error. The rows that 
cause problem are put into <property 
value> + .bad. So this actually causes 
creation of two files, in case of any 
problems.

MULTIBYTES_MODE  0, 1, or 2 0 is the default and indicates no special 
handling for multibyte. The driver reads 
file byte by byte

1 indicates that the file contains multibyte 
strings. The driver reads multibytes file 
character by character.

2 indicates that the file contains mixture of 
multibyte characters and binary data. The 
driver read multibytes file byte by byte for 
BINARY columns and character by 
character for other columns.

NO_PAD_DEL_NUMERIC TRUE|FALSE Restricts left-padding of numbers (integer, 
float) with spaces to match the physical 
length of the column. Default value is 
FALSE.

TRUNC_FIXED_STRINGS TRUE|FALSE Truncates strings to the field size for fixed 
files. Default value is FALSE.

TRUNC_DEL_STRINGS TRUE|FALSE Truncates strings to the field size for 
delimited files. Default value is FALSE.

OPT TRUE|FALSE Optimizes file access on multiprocessor 
machines for better performance. Using 
this option on single processor machines 
may actually decrease performance. 
Default value is FALSE.

Table 3–2 (Cont.) JDBC File Driver Properties

Property Value Description



Creating and Reverse-Engineering a File Model

Files 3-5

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

3.4 Setting Up an Integration Project
Setting up a project using the File database follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started:

■ LKM File to SQL

■ IKM SQL to File Append

■ IKM File to File (Java)

In addition to these knowledge modules, you can also import file knowledge modules 
specific to the other technologies involved in your product.

3.5 Creating and Reverse-Engineering a File Model
This section contains the following topics:

■ Create a File Model

■ Reverse-engineer a File Model

3.5.1 Create a File Model
An File model is a set of datastores, corresponding to files stored in a directory. A 
model is always based on a logical schema. In a given context, the logical schema 
corresponds to one physical schema. The data schema of this physical schema is the 
directory containing all the files (eventually in sub-directories) described in the model.

Create a File model using the standard procedure, as described in "Creating a Model" 
of the Developing Integration Projects with Oracle Data Integrator. 

Notes:  

■ Data and Work schemas each correspond to a directory. This 
directory must be accessible to the component that will access the 
files. The directory can be an absolute path 
(m:/public/data/files) or relative to the runtime agent or 
Studio startup directory (../demo/files). It is strongly advised 
to use a path that is independent from the execution location. 

■ In UNIX in particular, the agent must have read/write permission 
on both these directories. 

■ Keep in mind that file paths are different in Windows than they 
are in UNIX. Take the platform used by the agent into account 
when setting up this information.



Creating and Reverse-Engineering a File Model

3-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

3.5.2 Reverse-engineer a File Model
Oracle Data Integrator provides specific methods for reverse-engineering files. File 
database supports four types of reverse-engineering:

■ Delimited Files Reverse-Engineering is performed per file datastore.

■ Fixed Files Reverse-engineering using the Wizard is performed per file datastore.

■ COBOL Copybook reverse-engineering, which is available for fixed files, if a 
copybook describing the file is provided. It is performed per file datastore.

■ Customized Reverse-Engineering, which uses a RKM (Reverse Knowledge 
Module) to obtain, from a Microsoft Excel spreadsheet, column definitions of each 
file datastore within a model and automatically create the file datastores in batch 
without manual input.

3.5.2.1 Delimited Files Reverse-Engineering
To perform a delimited file reverse-engineering:

1. In the Models accordion, right click your File Model and select New Datastore. 
The Datastore Editor opens.

2. In the Definition tab, enter the following fields:

■ Name: Name of this datastore

■ Resource Name: Sub-directory (if needed) and name of the file. You can 
browse for the file using the browse icon next to the field.

3. Go to the Files tab to describe the type of file. Set the fields as follows:

■ File Format: Delimited

■ Heading (Number of Lines): Enter the number of lines of the header. Note 
that if there is a header, the first line of the header will be used by Oracle Data 
Integrator to name the columns in the file.

■ Select a Record Separator.

■ Select or enter the character used as a Field Separator.

■ Enter a Text Delimiter if your file uses one.

■ Enter a Decimal Separator if your file contains decimals.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Attributes tab.

Note:  The built-in file driver uses metadata from the Oracle Data 
Integrator models (field data type or length, number of header rows, 
etc.). Driver-specific tags are generated by Oracle Data Integrator and 
passed to the driver along with regular SQL commands. These tags 
control how the driver reads or writes the file. 

Similarly, when Oracle Data Integrator uses database loaders and 
utilities, it uses the model metadata to control these loaders and 
utilities.

It is important to pay close attention to the file definition after a 
reverse-engineering process, as discrepancy between the file definition 
and file content is a source of issues at run-time.



Creating and Reverse-Engineering a File Model

Files 3-7

6. In the editor toolbar, click Reverse Engineer.

7. Verify the datatype and length for the reverse engineered attributes. Oracle Data 
Integrator infers the fields datatypes and lengths from the file content, but may set 
default values (for example 50 for the strings field length) or incorrect data types 
in this process.

8. From the File main menu, select Save.

3.5.2.2 Fixed Files Reverse-engineering using the Wizard
Oracle Data Integrator provides a wizard to graphically define the columns of a fixed 
file.

To reverse-engineer a fixed file using the wizard:

1. In the Models accordion, right click your File Model and select New Datastore. 
The Datastore Editor opens.

2. In the Definition Tab, enter the following fields:

■ Name: Name of this datastore

■ Resource Name: Sub-directory (if needed) and name of the file. You can 
browse for the file using the browse icon next to the field.

3. Go to the Files tab to describe the type of file. Set the fields as follows:

■ File Format: Fixed

■ Header (Number of Lines): Enter the number of lines of the header.

■ Select a Record Separator.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Attributes tab.

6. In the editor toolbar, click Reverse Engineer.The Attributes Setup Wizard is 
launched. The Attributes Setup Wizard displays the first records of your file.

7. Click on the ruler (above the file contents) to create markers delimiting the 
attributes. You can right-click within the ruler to delete a marker.

8. Attributes are created with pre-generated names (C1, C2, and so on). You can edit 
the attribute name by clicking in the attribute header line (below the ruler).

9. In the properties panel (on the right), you can edit all the parameters of the 
selected attribute. You should set at least the Attribute Name, Datatype, and 
Length for each attribute.

10. Click OK when the attributes definition is complete.

11. From the File main menu, select Save.

3.5.2.3 COBOL Copybook reverse-engineering
COBOL Copybook reverse-engineering allows you to retrieve a legacy file structure 
from its description contained in a COBOL Copybook file.

To reverse-engineer a fixed file using a COBOL Copybook:

1. In the Models accordion, right click your File Model and select New Datastore. 
The Datastore Editor opens.

2. In the Definition Tab, enter the following fields:

■ Name: Name of this datastore



Creating and Reverse-Engineering a File Model

3-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Resource Name: Sub-directory (if needed) and name of the file. You can 
browse for the file using the browse icon next to the field.

3. Go to the Files tab to describe the type of file. Set the fields as follows:

■ File Format: Fixed

■ Header (Number of Lines): Enter the number of lines of the header.

■ Select a Record Separator.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Attributes tab.

6. Create or open a File datastore that has a fixed format.

7. In the Datastore Editor, go to the Attributes tab.

8. In the toolbar menu, click Reverse Engineer COBOL CopyBook.

9. In the Reverse Engineer Cobol CopyBook Dialog, enter the following fields:

■ File: Location of the Copybook file

■ Character set: Copybook file charset.

■ Description format (EBCDIC | ASCII): Copybook file format

■ Data format (EBCDIC | ASCII): Data file format

10. Click OK.

The attributes described in the Copybook are reverse-engineered and appear in the 
attributes list.

3.5.2.4 Customized Reverse-Engineering
In this reverse-engineering method, Oracle Data Integrator reads from a Microsoft 
Excel spreadsheet containing column definitions of each file datastore within a model 
and creates the file datastores in batch.

A sample file called file_repository.xls is supplied by ODI, typically under 
/demo/excel sub-directory. Follow the specific format in the sample file to input 
your datastore information.

The following steps assume that you have modified this file with the description of the 
structure of your flat files.

It is recommended that this file shall be closed before the reverse engineering is 
started.

To perform a customized reverse-engineering, perform the following steps:

1. Create an ODBC Datasource for the Excel Spreadsheet corresponding to the Excel 
Spreadsheet containing the files description.

2. Define the Data Server, Physical and Logical Schema for the Microsoft Excel 
Spreadsheet

3. Run the customized reverse-engineering using the RKM File from Excel RKM.

Note: If a field has a data type declared in the Copybook with no 
corresponding datatype in Oracle Data Integrator File technology, 
then this attribute will appear with no data type.



Creating and Reverse-Engineering a File Model

Files 3-9

Create an ODBC Datasource for the Excel Spreadsheet
1. Launch the Microsoft ODBC Administrator. 

Note that ODI running on 64-bit JRE will work with 64-bit ODBC only.

2. Add a System DSN (Data Source Name).

3. Select the Microsoft Excel Driver (*.xls, and *.xlsx etc.) as the data source driver.

4. Name the data source ODI_EXCEL_FILE_REPO and select the file 
/demo/excel/file_repository.xls as the default workbook. Be sure to 
select driver version accordingly. Example, "Excel 12.0" for ".xlsx" files.

Define the Data Server, Physical and Logical Schema for the Microsoft Excel 
Spreadsheet
1. In Topology Navigator, add a Microsoft Excel data server with the following 

parameters:

■ Name: EXCEL_FILE_REPOSITORY

■ JDBC Driver: sun.jdbc.odbc.JdbcOdbcDriver

■ JDBC URL: jdbc:odbc:ODI_EXCEL_FILE_REPO

■ Array Fetch Size: 0

2. Use default values for the rest of the parameters. From the File main menu, select 
Save.

3. Click Test Connection to see if the data sever connects to the actual Excel file.

4. Add a physical schema to this data server. Leave the default values in the 
Definition tab.

1. In the Context tab of the physical schema, click Add.

2. In the new line, select the context that will be used for reverse engineering and 
enter in the logical schema column EXCEL_FILE_REPOSITORY. This logical 
schema will be created automatically. Note that this name is mandatory.

3. From the File main menu, select Save.

Run the customized reverse-engineering
1. In Designer Navigator, import the RKM File (FROM EXCEL) Knowledge Module 

into your project.

2. Open an existing File model (or create a new one). Define the parameters as you 
normally will for a File model. Note that the Technology is File, not Microsoft 
Excel.

3. In the Reverse Engineer tab, set the following parameters:

■ Select Customized

■ Context: Reverse Context

Note: If the EXCEL_FILE_REPOSITORY logical schema does not get 
created before the time of import, the customization status of the 
imported RKM will be "Modified by User". Upon the creation of 
EXCEL_FILE_REPOSITORY, it will be visible as source command 
schema under the corresponding RKM tasks.



Designing a Mapping

3-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Knowledge Module: RKM File (FROM EXCEL)

4. In the toolbar menu, click Reverse Engineer.

5. You can follow the reverse-engineering process in the execution log.

3.6 Designing a Mapping
You can use a file as a source or a target of a mapping, but NOT as a staging area.

The KM choice for a mapping or a check determines the abilities and performances of 
this mapping or check. The recommendations below help in the selection of the KM 
for different situations concerning a File data server.

3.6.1 Loading Data From Files
Files can be used as a source of a mapping. The LKM choice in the Loading 
Knowledge Module tab to load a File to the staging area is essential for the mapping 
performance.

The LKM File to SQL uses the built-in file driver for loading data from a File database 
to a staging area. In addition to this KM, you can also use KMs that are specific to the 
technology of the staging area or target. Such KMs support technology-specific 
optimizations and use methods such as loaders or external tables.

This knowledge module, as well as other KMs relying on the built-in driver, support 
the following two features attached to the driver:

■ Erroneous Records Handling

■ Multi-Record Files Support

Erroneous Records Handling
Oracle Data Integrator built-in driver provides error handling at column level for the 
File technology. When loading a File, Oracle Data Integrator performs several controls. 
One of them verifies if the data in the file is consistent with the datastore definition. If 
one value from the row is inconsistent with the column description, the On Error 
option - on the Control tab of the Attribute Editor - defines the action to perform and 
continues to verify the remaining rows. The On Error option can take the following 
values:

■ Reject Error: The row containing the error is moved to a .BAD file, and a reason of 
the error is written to a .ERROR file.

The .BAD and .ERROR files are located in the same directory as the file being read 
and are named after this file, with a .BAD and .ERROR extension.

■ Null if error (inactive trace): The row is kept in the flow and the erroneous value 
is replaced by null.

Note:

■ The mandatory Microsoft Excel schema, EXCEL_FILE_
REPOSITORY, is automatically used by RKM File (FROM EXCEL). 
It is independent from an actual File model using RKM File 
(FROM EXCEL).

■ Refer to Section 8.7.2, "Common Problems and Solutions" for 
information on mitigating common Excel-related ODBC 
exceptions.



Designing a Mapping

Files 3-11

■ Null if error (active trace): The row is kept in the flow, the erroneous value is 
replaced by null, and an reason of the error is written to the .ERROR file.

Multi-Record Files Support
Oracle Data Integrator is able to handle files that contain multiple record formats. For 
example, a file may contain records representing orders (these records have 5 columns) 
and other records representing order lines (these records having 8 columns with 
different datatypes).

The approach in Oracle Data Integrator consists in considering each specific record 
format as a different datastore.

Example 3–1 Multi Record File

This example uses the multi record file orders.txt. It contains two different record 
types: orders and order lines.

Order records have the following format:

REC_CODE,ORDER_ID,CUSTOMER_ID,ORDER_DATE

Order lines records have the following format

REC_CODE,ORDER_ID,LINE_ID,PRODUCT_ID,QTY

Order records are identified by REC_CODE=ORD

Order lines are identified by REC_CODE=LIN

To handle multi record files as a source of a mapping:

1. Create a File Model using a logical schema that points to the directory containing 
the source file. 

2. Identify the different record formats and structures of the flat file. In Example 3–1 
two record formats can be identified: one for the orders and one for the order lines.

3. For each record format identified, do the following:

1. Create a datastore in the File Model for each type of record. 

For Example 3–1 create two datastores.

2. In the Definition tab of the Datastore Editor, enter a unique name in the Name 
field and enter the flat file name in the Resource Name field. Note that the 
resource name is identical for all datastores of this model. 

For Example 3–1 you can use ORDERS and ORDER_LINES as the name of your 
datastores. Enter orders.txt in the Resource Name field for both datastores.

3. In the Files tab, select, depending on the format of your flat file, Fixed or 
Delimited from the File Format list and specify the record and field 
separators.

4. In the Attributes tab, enter the attribute definitions for this record type.

5. One or more attributes can be used to identify the record type. The record 
code is the field value content that is used as distinguishing element to be 
found in the file. The record code must be unique and allows files with several 
record patterns to be processed. In the Record Codes field, you can specify 
several values separated by the semicolon (;) character.

In the Attribute Editor, assign a record code for each record type in the Record 
Codes field. 



Designing a Mapping

3-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

In Example 3–1, enter ORD in the Record Codes field of the CODE_REC 
attribute of the ORDERS datastore and enter LIN in the Record Codes field of 
the CODE_REC attribute of the ORDER_LINES datastore.

With such definition, when reading data from the ORDERS datastore, the file driver 
will filter only those of the records where the first attribute contains the value ORD. 
The same applies to the ORDER_LINES datastore (only the records with the first 
attribute containing the value LIN will be returned).

3.6.2 Integrating Data in Files
Files can be used as a source and a target of a mapping. The data integration strategies 
in Files concern loading from the staging area to Files. The IKM choice in the 
Integration Knowledge Module tab determines the performances and possibilities for 
integrating.

Oracle Data Integrator provides two Integration Knowledge Modules for integrating 
File data:

■ IKM SQL to File Append

■ IKM File to File (Java)

3.6.2.1 IKM SQL to File Append
The IKM SQL to File Append uses the file driver for integrating data into a Files target 
from a staging area in truncate-insert mode.

This KM has the following options:

■ INSERT automatically attempts to insert data into the target datastore of the 
mapping.

■ CREATE_TARG_TABLE creates the target table.

■ TRUNCATE deletes the content of the target file and creates it if it does not exist.

■ GENERATE_HEADER creates the header row for a delimited file.

In addition to this KM, you can also use IKMs that are specific to the technology of the 
staging area. Such KMs support technology-specific optimizations and use methods 
such as loaders or external tables.

3.6.2.2 IKM File to File (Java)
The IKM File to File (Java) is the solution for handling File-to-File use cases. This IKM 
optimizes the integration performance by generating a Java program to process the 
files. It can process several source files when the datastore's resource name contains a 
wildcard. This program is able to run the transformations using several threads.

The IKM File to File (Java) provides two KM options for logging and error handling 
purposes: LOG_FILE and BAD_FILE.

This IKM supports flat delimited and fixed files where the fields can be optionally 
enclosed by text delimiters. EBCDIC and XML formats are not supported.

Using the IKM File to File (Java)
To use the IKM File to File (Java), the staging area must be on a File data server. It is 
the default configuration when creating a new mapping. The staging area is located on 
the target, which is the File technology.



Designing a Mapping

Files 3-13

The IKM File to File (Java) supports mappings and filters. Mappings and filters are 
always executed on the source or on the staging area, never on the target. When 
defining the mapping expressions and filters use the Java syntax. Note that the 
mapping expressions and filter conditions must be written in a single line with no 
carriage return. The IKM supports the following standard Java datatypes: string, 
numeric, and date and accepts any Java transformation on these datatypes. 

The following are two examples of a mapping expression:

■ FIC.COL1.toLower()

■ FIC.COL1+FIC.COL2

In the second example, if COL1 and COL2 are numeric, the IKM computes the sum of 
both numbers otherwise it concatenates the two strings.

The following are two examples of a filter condition:

■ FIC.COL1.equals("ORDER")

■ (FIC.COL1==FIC.COL2)&&(FIC.COL3 !=None)

The following objects and features are not supported:

■ Joins

■ Datasets

■ Changed Data Capture (CDC)

■ Flow Control

■ Lookups

Processing Several Files
The IKM File to File (Java) is able to process several source files. To specify several 
source files use wildcards in the datastore's resource name. You can use the 
PROCESSED_FILE_PREFIX and PROCESSED_FILE_SUFFIX KM options to manage 
the source files by renaming them once they are processed.

Using the Logging Features
Once the mapping is completed, Oracle Data Integrator generates the following output 
files according to the KM options:

■ Log file: This file contains information about the loading process, including names 
of the source files, the target file, and the bad file, as well as a summary of the 
values set for the major KM options, error messages (if any), statistic information 
about the processed rows.

Example 3–2 Log File

Source File: /xxx/abc.dat
Target File: /yyy/data/target_file.dat
Bad File: /yyy/log/target_file.bad

Header Number to skip: 1
Errors allowed: 3
Insert option: APPEND (could be REPLACE)
Thread: 1

ERROR LINE 100: FIELD COL1 IS NOT A DATE
ERROR LINE 120: UNEXPECTED ERROR



Designing a Mapping

3-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

32056 Rows susccessfully read
2000 Rows not loaded due to data filter
2 Rows not loaded due to data errors

30054 Rows successfully loaded

■ Bad file: This file logs each row that could not be processed. If no error occurs, the 
bad file is empty.

KM Options
This KM has the following options:

■ JAVA_HOME indicates the full path to the bin directory of your JDK. If this 
options is not set, the ODI Java Home will be used.

■ APPEND appends the transformed data to the target file if set to Yes. If set to No, 
the file is overwritten.

■ DISCARDMAX indicates the maximum number of records that will be discarded 
into the bad file. The mapping fails when the number of discarded records exceeds 
the number specified in this option. 

■ MAX_NB_THREADS indicates the number of parallel threads used to process the 
data.

■ LOG_FILE indicates the log file name. If this option is not set, the log file name 
will be automatically generated and the log file will be written in the target work 
schema.

■ BAD_FILE indicates the bad file name. If this option is not set, the bad file name 
will be automatically generated and the bad file will be written in the target work 
schema.

■ SOURCE_ENCODING indicates the charset encoding for the source files. Default 
is the machine's default encoding.

■ TARGET_ENCODING indicates the charset encoding for the target file. Default is 
the machine's default encoding.

■ REMOVE_TEMPORARY_OBJECTS removes the log and bad files if set to Yes.

■ PROCESSED_FILE_PREFIX indicates the prefix that will be added to the source 
file name after processing.

■ PROCESSED_FILE_SUFFIX indicates the suffix that will be added to the source 
file name after processing.

Note: Rollback is not supported. The records that have been inserted 
remain.



4

Generic SQL 4-1

4Generic SQL

This chapter describes how to work with technologies supporting the ANSI SQL-92 
syntax in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 4.1, "Introduction"

■ Section 4.2, "Installation and Configuration"

■ Section 4.3, "Setting up the Topology"

■ Section 4.4, "Setting up an Integration Project"

■ Section 4.5, "Creating and Reverse-Engineering a Model"

■ Section 4.6, "Setting up Changed Data Capture"

■ Section 4.7, "Setting up Data Quality"

■ Section 4.8, "Designing a Mapping"

4.1 Introduction
Oracle Data Integrator supports ANSI SQL-92 standard compliant technologies.

4.1.1 Concepts
The mapping of the concepts that are used in ANSI SQL-92 standard compliant 
technologies and the Oracle Data Integrator concepts are as follows: a data server in 
Oracle Data Integrator corresponds to a data processing resource that stores and serves 
data in the form of tables. Depending on the technology, this resource can be named 
for example, database, instance, server and so forth. Within this resource, a 
sub-division maps to an Oracle Data Integrator physical schema. This sub-division can 
be named schema, database, catalog, library and so forth. A set of related objects 

Note: This is a generic chapter. The information described in this 
chapter can be applied to technologies supporting the ANSI SQL-92 
syntax, including Oracle, Microsoft SQL Server, Sybase ASE, IBM DB2, 
Teradata, PostgreSQL, MySQL, Derby and so forth. 

Some of the ANSI SQL-92 compliant technologies are covered in a 
separate chapter in this guide. Refer to the dedicated technology 
chapter for specific information on how to leverage the ODI 
optimizations and database utilities of the given technology.



Introduction

4-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

within one schema corresponds to a data model, and each table, view or synonym will 
appear as an ODI datastore, with its attributes, columns, and constraints

4.1.2 Knowledge Modules
Oracle Data Integrator provides a wide range of Knowledge Modules for handling 
data stored in ANSI SQL-92 standard compliant technologies. The Knowledge 
Modules listed in Table 4–1 are generic SQL Knowledge Modules and apply to the 
most popular ANSI SQL-92 standard compliant databases.

Oracle Data Integrator also provides specific Knowledge Modules for some particular 
databases to leverage the specific utilities. Technology-specific KMs, using features 
such as loaders or external tables, are listed in the corresponding technology chapter.

Table 4–1 Generic SQL Knowledge Modules

Knowledge Module Description

CKM SQL Checks data integrity against constraints defined on a Datastore. Rejects invalid 
records in the error table created dynamically. Can be used for static controls as 
well as for flow controls.

Consider using this KM if you plan to check data integrity on an ANSI SQL-92 
compliant database. Use specific CKMs instead if available for your database.

IKM SQL Control Append Integrates data in an ANSI SQL-92 compliant target table in replace/append 
mode. When flow data needs to be checked using a CKM, this IKM creates a 
temporary staging table before invoking the CKM. Supports Flow Control.

Consider using this IKM if you plan to load your SQL compliant target table in 
replace mode, with or without data integrity check.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL Incremental Update Integrates data in an ANSI SQL-92 compliant target table in incremental update 
mode. This KM creates a temporary staging table to stage the data flow. It then 
compares its content to the target table to identify the records to insert and the 
records to update. It also allows performing data integrity check by invoking the 
CKM. This KM is therefore not recommended for large volumes of data. 
Supports Flow Control.

Consider using this KM if you plan to load your ANSI SQL-92 compliant target 
table to insert missing records and to update existing ones. Use 
technology-specific incremental update IKMs whenever possible as they are 
more optimized for performance.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL Incremental Update 
(row by row)

Integrates data in any AINSI-SQL92 compliant target database in incremental 
update mode. This IKM processes the data row by row, updates existing rows, 
and inserts non-existent rows. It isolates invalid data in the Error Table, which 
can be recycled. When using this IKM with a journalized source table, the 
deletions can be synchronized. Supports Flow Control.

IKM SQL to File Append Integrates data in a target file from an ANSI SQL-92 compliant staging area in 
replace mode. Supports Flow Control.

Consider using this IKM if you plan to transform and export data to a target file. 
If your source datastores are located on the same data server, we recommend 
using this data server as staging area to avoid extra loading phases (LKMs)

To use this IKM, the staging area must be different from the target.

IKM SQL to SQL Control 
Append

Integrates data into a ANSI-SQL92 target database from any ANSI-SQL92 
compliant staging area. Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on 
different databases and the mapping's staging area is set to the logical schema of 
the source tables or a third schema.



Introduction

Generic SQL 4-3

IKM SQL to SQL Incremental 
Update

Integrates data from any AINSI-SQL92 compliant database into any 
AINSI-SQL92 compliant database target table in incremental update mode. 
Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on 
different databases and the mapping's staging area is set to the logical schema of 
the source tables or a third schema.

IKM SQL Insert Integrates data into an ANSI-SQL92 target table in append mode. The data is 
loaded directly in the target table with a single INSERT SQL statement. Built-in 
KM.

IKM SQL Update Integrates data into an ANSI-SQL92 target table in incremental update mode. 
The data is loaded directly into the target table with a single UPDATE SQL 
statement. Built-in KM.

IKM SQL Merge Integrates data into an ANSI-SQL92 target table in incremental update mode. 
The data is loaded directly into the target table with a single MERGE SQL 
statement. Built-in KM.

LKM File to SQL Loads data from an ASCII or EBCDIC File to an ANSI SQL-92 compliant 
database used as a staging area. This LKM uses the Agent to read selected data 
from the source file and write the result in the staging temporary table created 
dynamically.

Consider using this LKM if one of your source datastores is an ASCII or EBCDIC 
file. Use technology-specific LKMs for your target staging area whenever 
possible as they are more optimized for performance. For example, if you are 
loading to an Oracle database, use the LKM File to Oracle (SQLLDR) or the LKM 
File to Oracle (EXTERNAL TABLE) instead.

LKM SQL to File Loads and integrates data into a target flat file. This LKM ignores the settings in 
the IKM. Built-in KM.

LKM SQL to SQL Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 
compliant staging area. This LKM uses the Agent to read selected data from the 
source database and write the result into the staging temporary table created 
dynamically.

Consider using this LKM if your source datastores are located on a SQL 
compliant database different from your staging area. Use technology-specific 
LKMs for your source and target staging area whenever possible as they are 
more optimized for performance. For example, if you are loading from an Oracle 
source server to an Oracle staging area, use the LKM Oracle to Oracle (dblink) 
instead.

LKM SQL to SQL (Built-in) Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 
compliant staging area. This LKM uses the Agent to read selected data from the 
source database and write the result into the staging temporary table created 
dynamically. The extract options specified in the source execution unit will be 
used to generate source query. Built-in KM.

Table 4–1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module Description



Introduction

4-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

LKM SQL to SQL (row by row) Loads data from any ISO-92 database to any ISO-92 compliant target database. 
This LKM uses a Jython script to read selected data from the database and write 
the result into the target temporary table, which is created dynamically. It loads 
data from a staging area to a target and indicates the state of each processed row.

The following options are used for the logging mechanism:

■ LOG_LEVEL: This option is used to set the granularity of the data logged.

The following log levels can be set:

■ 0: nothing to log

■ 1: any JDBC action will be indicated such as 
'select action', 'delete action', 'insert action'…

■ 2: in addition to level 1, all records that 
generate an error will be logged

■ 3: in addition to level 2, all processed records 
will be logged

■ LOG_FILE_NAME: Full path to the log file used. The directory into which 
this log file is written must be created before executing the mapping. 

■ MAX_ERRORS: Specify the maximum number of errors.

The LKM process stops when the maximum number of errors specified in 
this option is reached.

This Knowledge Module is NOT RECOMMENDED when using LARGE 
VOLUMES. Other specific modules using Bulk utilities (SQL*LOADER, BULK 
INSERT...) or direct links (DBLINKS, Linked Servers...) are usually more efficient.

LKM SQL to SQL (JYTHON) Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 
compliant staging area. This LKM uses Jython scripting to read selected data 
from the source database and write the result into the staging temporary table 
created dynamically. This LKM allows you to modify the default JDBC data type 
binding between the source database and the target staging area by editing the 
underlying Jython code provided.

Consider using this LKM if your source datastores are located on an ANSI 
SQL-92 compliant database different from your staging area and if you plan to 
specify your own data type binding method.

Use technology-specific LKMs for your source and target staging area whenever 
possible as they are more optimized for performance. For example, if you are 
loading from an Oracle source server to an Oracle staging area, use the LKM 
Oracle to Oracle (dblink) instead.

LKM SQL Multi-Connect Enables the use of multi-connect IKM for target table. Built-in IKM.

RKM SQL (JYTHON) Retrieves JDBC metadata for tables, views, system tables and columns from an 
ANSI SQL-92 compliant database. This RKM may be used to specify your own 
strategy to convert JDBC metadata into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the standard JDBC 
reverse-engineering process due to some specificities of your JDBC driver. This 
RKM allows you to edit the underlying Jython code to make it match the 
specificities of your JDBC driver.

Table 4–1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module Description



Setting up the Topology

Generic SQL 4-5

4.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
generic SQL Knowledge Modules:

■ System Requirements and Certifications

■ Technology-Specific Requirements

■ Connectivity Requirements

4.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

4.2.2 Technology-Specific Requirements
See the Technology Specific Requirements section of the specific technology chapter 
for more information. 

If your technology does not have a dedicated chapter in this guide, see the 
documentation of your technology for any technology-specific requirements.

4.2.3 Connectivity Requirements
See the Connectivity Requirements section of the specific technology chapter for more 
information. 

The Java Database Connectivity (JDBC) is the standard for connecting to a database 
and other data sources. If your technology does not have a dedicated chapter in this 
guide, see the documentation of your technology for the JDBC configuration 
information, including the required driver files, the driver name, and the JDBC URL 
format.

4.3 Setting up the Topology
Setting up the Topology consists in:

1. Creating a Data Server

SKM SQL Generates data access Web services for ANSI SQL-92 compliant databases. Data 
access services include data manipulation operations such as adding, removing, 
updating or filtering records as well as changed data capture operations such as 
retrieving changed data. Data manipulation operations are subject to integrity 
check as defined by the constraints of your datastores.

Consider using this SKM if you plan to generate and deploy data manipulation 
or changed data capture web services to your Service Oriented Architecture 
infrastructure. Use specific SKMs instead if available for your database

Table 4–1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module Description



Setting up an Integration Project

4-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2. Creating a Physical Schema

4.3.1 Creating a Data Server
Create a data server under the ANSI SQL-92 compliant technology listed in the 
Physical Architecture accordion using the standard procedure, as described in 
"Creating a Data Server" of the Developing Integration Projects with Oracle Data 
Integrator. 

If your technology has a dedicated chapter in this guide, see this chapter for more 
information. For other technologies, see the documentation of your technology for the 
JDBC driver name and JDBC URL format.

4.3.2 Creating a Physical Schema
Create a Physical Schema using the standard procedure, as described in "Creating a 
Physical Schema" in Administering Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more 
information.

4.4 Setting up an Integration Project
Setting up a Project using an ANSI SQL-92 compliant database follows the standard 
procedure. See "Creating an Integration Project" of the Developing Integration Projects 
with Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started 
depend on the corresponding technology. If your technology has a dedicated chapter 
in this guide, see this chapter for more information.

4.5 Creating and Reverse-Engineering a Model
This section contains the following topics:

■ Create a Data Model

■ Reverse-engineer a Data Model

4.5.1 Create a Data Model
Create a data model based on the ANSI SQL-92 compliant technology using the 
standard procedure, as described in "Creating a Model" of the Developing Integration 
Projects with Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more 
information.

4.5.2 Reverse-engineer a Data Model
ANSI SQL-92 standard compliant technologies support both types of 
reverse-engineering, the Standard reverse-engineering, which uses only the abilities of 
the JDBC driver, and the Customized reverse-engineering, which uses a RKM which 
provides logging features.

In most of the cases, consider using the standard JDBC reverse engineering instead of 
the RKM SQL (Jython). However, you can use this RKM as a starter if you plan to 
enhance it by adding your own metadata reverse-engineering behavior.



Designing a Mapping

Generic SQL 4-7

Standard Reverse-Engineering
To perform a Standard Reverse- Engineering on ANSI SQL-92 technologies use the 
usual procedure, as described in "Reverse-engineering a Model" of the Developing 
Integration Projects with Oracle Data Integrator. 

If your technology has a dedicated chapter in this guide, see this chapter for more 
information.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on ANSI SQL-92 technologies with a 
RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the 
Developing Integration Projects with Oracle Data Integrator. This section details only the 
fields specific to the usage of the RKM SQL (Jython):

This RKM provides two logging options:

■ USE_LOG: Set to Yes if you want the reverse-engineering to process log details in a 
log file.

■ LOG_FILE_NAME: Enter the name for the log file. Note that the directory into 
which this log file is written must be created before executing the mapping. 

4.6 Setting up Changed Data Capture
Oracle Data Integrator does not provide journalizing Knowledge Modules for ANSI 
SQL-92 compliant technologies.

4.7 Setting up Data Quality
Oracle Data Integrator provides the CKM SQL for checking data integrity against 
constraints defined on an ANSI SQL-92 compliant table. See "Flow Control and Static 
Control" in Developing Integration Projects with Oracle Data Integrator for details. 

4.8 Designing a Mapping 
You can use ANSI SQL-92 compliant technologies as a source, staging area or a target 
of a mapping. It is also possible to create ETL-style mappings based on an ANSI 
SQL-92 compliant technology.

The KM choice for a mapping or a check determines the abilities and performances of 
this mapping or check. The recommendations below help in the selection of the KM 
for different situations concerning a data server based on an ANSI SQL-92 compliant 
technology.

4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
ANSI SQL-92 compliant technologies can be used as a source, target or staging area of 
a mapping. The LKM choice in the Loading Knowledge Module tab to load data 
between an ANSI SQL-92 compliant technology and another type of data server is 
essential for the performance of a mapping.

4.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
The generic KMs that are listed in Table 4–2 implement methods for loading data from 
an ANSI SQL-92 compliant database to a target or staging area database. In addition to 
these KMS, Oracle Data Integrator provides KMs specific to the target or staging area 



Designing a Mapping

4-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

database. If your technology has a dedicated chapter in this guide, see this chapter for 
more information.

4.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology
The generic KMs that are listed in Table 4–3 implement methods for loading data from 
a source or staging area into an ANSI SQL-92 compliant database. In addition to these 
KMs, Oracle Data Integrator provides KMs specific to the source or staging area 
database. If your technology has a dedicated chapter in this guide, see this chapter for 
more information.

Table 4–2 KMs to Load from an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant 
technology

LKM SQL to SQL Standard KM for SQL-92 to SQL-92 
transfers.

ANSI SQL-92 compliant 
technology

LKM SQL to SQL 
(Built-in)

Built-in KM for SQL-92 to SQL-92 
transfers through the agent using 
JDBC.

ANSI SQL-92 compliant 
technology

LKM SQL to SQL (Jython) This LKM uses Jython scripting to 
read selected data from the source 
database and write the result into 
the staging temporary table created 
dynamically. This LKM allows you 
to modify the default JDBC data 
types binding between the source 
database and the target staging area 
by editing the underlying Jython 
code provided.

ANSI SQL-92 compliant 
technology

LKM SQL to SQL (row by 
row)

This LKM uses row by row logging.

ANSI SQL-92 compliant 
technology

LKM SQL to File Built-in KM for SQL-92 to flat file 
transfers.

Table 4–3 KMs to Load to an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

File LKM File to SQL Standard KM

ANSI SQL-92 compliant 
technology

LKM SQL to SQL Standard KM

ANSI SQL-92 compliant 
technology

LKM SQL to SQL 
(Built-in)

Built-in KM for SQL-92 to SQL-92 
transfers through the agent using 
JDBC.

ANSI SQL-92 compliant 
technology

LKM SQL to SQL (Jython) This LKM uses Jython scripting to 
read selected data from the source 
database and write the result into 
the staging temporary table created 
dynamically. This LKM allows you 
to modify the default JDBC data 
types binding between the source 
database and the target staging area 
by editing the underlying Jython 
code provided.

ANSI SQL-92 compliant 
technology

LKM SQL to SQL (row by 
row)

This LKM uses row by row logging.



Designing a Mapping

Generic SQL 4-9

4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
An ANSI SQL-92 compliant technology can be used as a target of a mapping. The IKM 
choice in the Integration Knowledge Module tab determines the performance and 
possibilities for integrating.

The KMs listed in Table 4–4 implement methods for integrating data into an ANSI 
SQL-92 compliant target. In addition to these KMs, Oracle Data Integrator provides 
KMs specific to the source or staging area database. See the corresponding technology 
chapter for more information.

4.8.3 Designing an ETL-Style Mapping
See "Creating a Mapping" in the Developing Integration Projects with Oracle Data 
Integrator for generic information on how to design mappings. This section describes 
how to design an ETL-style mapping where the staging area and target are ANSI 
SQL-92 compliant. 

In an ETL-style mapping, ODI processes the data in a staging area, which is different 
from the target. Oracle Data Integrator provides two ways for loading the data from an 
ANSI SQL-92 compliant staging area to an ANSI SQL-92 compliant target:

■ Using a Multi-connection IKM

■ Using a LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM
A multi-connection IKM allows updating a target where the staging area and sources 
are on different data servers.

Table 4–4 KMs to Integrate Data in an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant 
technology

IKM SQL Control Append Uses Bulk data movement inside 
data server. Supports Flow 
Control.

ANSI SQL-92 compliant 
technology

IKM SQL Incremental Update Uses Bulk data movement inside 
data server. Supports Flow 
Control.

ANSI SQL-92 compliant 
technology

IKM SQL Incremental Update 
(row by row)

Uses Bulk data movement inside 
data server, processes data row by 
row. Supports Flow Control.

ANSI SQL-92 compliant 
technology

IKM SQL Insert Uses SQL INSERT statement for 
data movement. Built-in KM.

ANSI SQL-92 compliant 
technology

IKM SQL Update Uses SQL UPDATE statement for 
data movement. Built-in KM.

ANSI SQL-92 compliant 
technology

IKM SQL Merge Uses SQL MERGE statement for 
data movement. Built-in KM.

ANSI SQL-92 compliant 
technology

IKM SQL to File Append Uses agent for data movement. 
Supports Flow Control.

ANSI SQL-92 compliant 
technology

IKM SQL to SQL Incremental 
Update

Uses agent or JYTHON for data 
movement. Supports Flow Control.

ANSI SQL-92 compliant 
technology

IKM SQL to SQL Control 
Append

Uses agent for control append 
strategies. Supports Flow Control.



Designing a Mapping

4-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Oracle Data Integrator provides the following multi-connection IKMs for ANSI 
SQL-92 compliant technologies: IKM SQL to SQL Incremental Update and IKM SQL to 
SQL Control Append.

See Table 4–5 for more information on when to use a multi-connection IKM. 

To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI SQL-92 compliant staging area and target using 
the standard procedure as described in "Creating a Mapping" in the Developing 
Integration Projects with Oracle Data Integrator. This section describes only the 
ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables 
or a third schema. See "Configuring Execution Locations" in the Developing 
Integration Projects with Oracle Data Integrator for information about how to change 
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for 
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) 
to the staging area. See Table 4–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property 
Inspector opens for this object.

In the Integration Knowledge Module, select an ETL multi-connection IKM to load 
the data from the staging area to the target. See Table 4–5 to determine the IKM 
you can use.

Note the following when setting the KM options:

■ For IKM SQL to SQL Incremental Update

■ If you do not want to create any tables on the target system, set FLOW_
CONTROL=false and FLOW_TABLE_LOCATION=STAGING.

Please note that this will lead to row-by-row processing and therefore 
significantly lower performance.

■ If you set the options FLOW_CONTROL or STATIC_CONTROL to true, 
select a CKM in the Check Knowledge Module tab. Note that if FLOW_
CONTROL is set to true, the flow table is created on the target, regardless of 
the value of FLOW_TABLE_LOCATION.

■ The FLOW_TABLE_LOCATION option can take the following values:

Value Description Comment

TARGET Objects are created on the 
target.

Default value.

STAGING Objects are created only on 
the staging area, not on the 
target.

Cannot be used with flow control. Leads to 
row-by-row processing and therefore loss of 
performance.

NONE No objects are created on 
staging area nor target.

Cannot be used with flow control. Leads to 
row-by-row processing and therefore loss of 
performance. Requires to read source data 
twice in case of journalized data sources



Designing a Mapping

Generic SQL 4-11

Using a LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in 
combination with a standard mono-connection IKM. The exporting LKM is used to 
load the flow table from the staging area to the target. The mono-connection IKM is 
used to integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a 
source, staging area, and target of an ETL-style mapping.

See Table 4–5 for more information on when to use the combination of a standard LKM 
and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI SQL-92 compliant staging area and target using 
the standard procedure as described in "Creating a Mapping" in the Developing 
Integration Projects with Oracle Data Integrator. This section describes only the 
ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables 
or a third schema. See "Configuring Execution Locations" in the Developing 
Integration Projects with Oracle Data Integrator for information about how to change 
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for 
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) 
to the staging area. See Table 4–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area. The Property Inspector opens for this 
object.

7. In the Loading Knowledge Module tab, select an LKM to load from the staging 
area to the target. See Table 4–5 to determine the LKM you can use.

8. Optionally, modify the options.

9. Select the Target by clicking its title. The Property Inspector opens for this object.

10. In the Integration Knowledge Module tab, select a standard mono-connection IKM 
to update the target. SeeTable 4–5 to determine the IKM you can use.



Designing a Mapping

4-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 4–5 KM Guidelines for ETL-Style Mappings based on an ANSI SQL-92 standard compliant 
technology

Source Staging Area Target
Exporting 
LKM IKM KM Strategy Comment

ANSI 
SQL-92 
standard 
compliant

ANSI SQL-92 
standard 
compliant 
database

ANSI 
SQL-92 
standard 
complia
nt 
database

NA IKM SQL to SQL 
Incremental Update

Multi-connect
ion IKM

Allows an 
incremental 
update strategy 
with no 
temporary 
target-side 
objects. Use this 
KM if it is not 
possible to create 
temporary 
objects in the 
target server.

The application 
updates are 
made without 
temporary 
objects on the 
target, the 
updates are 
made directly 
from source to 
target. The 
configuration 
where the flow 
table is created 
on the staging 
area and not in 
the target should 
be used only for 
small volumes of 
data.

Supports flow 
and static control

ANSI 
SQL-92 
standard 
compliant

ANSI SQL-92 
standard 
compliant 
database

ANSI 
SQL-92 
standard 
complia
nt 
database

NA IKM SQL to SQL 
Control Append 

Multi-connect
ion IKM

Use this KM 
strategy to 
perform control 
append.

Supports flow 
and static 
control. 

ANSI 
SQL-92 
standard 
compliant

ANSI SQL-92 
standard 
compliant 
database

ANSI 
SQL-92 
standard 
complia
nt 
database

any standard 
KM loading 
from an ANSI 
SQL-92 
standard 
compliant 
technology to 
an ANSI 
SQL-92 
standard 
compliant 
technology

IKM SQL Incremental 
Update 

Mono-connec
tion IKM

Allows an 
incremental 
update strategy



5

XML Files 5-1

5XML Files

This chapter describes how to work with XML files in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 5.1, "Introduction"

■ Section 5.2, "Installation and Configuration"

■ Section 5.3, "Setting up the Topology"

■ Section 5.4, "Setting Up an Integration Project"

■ Section 5.5, "Creating and Reverse-Engineering a XML File"

■ Section 5.6, "Designing a Mapping"

■ Section 5.7, "Troubleshooting"

5.1 Introduction
Oracle Data Integrator supports XML files integration through the Oracle Data 
Integrator Driver for XML. 

5.1.1 Concepts
The XML concepts map the Oracle Data Integrator concepts as follows: An XML file 
corresponds to a data server in Oracle Data Integrator. Within this data server, a single 
schema maps the content of the XML file.

The Oracle Data Integrator Driver for XML (XML driver) loads the hierarchical 
structure of the XML file into a relational schema. This relational schema is a set of 
tables located in the schema that can be queried or modified using SQL. The XML 
driver is also able to unload the relational schema back in the XML file.

The relational schema is reverse-engineered as a data model in ODI, with tables, 
columns, and constraints. This model is used like a normal relational data model in 
ODI. If the modified data within the relational schema needs to be written back to the 
XML file, the XML driver provides the capability to synchronize the relational schema 
into the file.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more 
information on this driver.



Installation and Configuration

5-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

5.1.2 Knowledge Modules
Oracle Data Integrator provides the IKM XML Control Append for handling XML 
data. This Knowledge Module is a specific XML Knowledge Module. It has a specific 
option to synchronize the data from the relational schema to the file.

In addition to this KM, you can also use an XML data server as any SQL data server. 
XML data servers support both the technology-specific KMs sourcing or targeting SQL 
data servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the 
technology chapters for more information on these KMs. 

5.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
XML Knowledge Module:

■ System Requirements

■ Technologic Specific Requirements

■ Connectivity Requirements

5.2.1 System Requirements
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

5.2.2 Technologic Specific Requirements
There are no technology-specific requirements for using XML Files in Oracle Data 
Integrator. 

5.2.3 Connectivity Requirements
This section lists the requirements for connecting to XML database. 

Oracle Data Integrator Driver for XML
XML files are accessed through the Oracle Data Integrator Driver for XML. This JDBC 
driver is installed with Oracle Data Integrator and requires no other installed 
component or configuration.

You must ask the system administrator for the following connection information:

■ The location of the DTD or XSD file associated with your XML file

■ The location of the XML file

5.3 Setting up the Topology
Setting up the topology consists in: 

1. Creating an XML Data Server



Setting up the Topology

XML Files 5-3

2. Creating a Physical Schema for XML

5.3.1 Creating an XML Data Server
An XML data server corresponds to one XML file that is accessible to Oracle Data 
Integrator.

5.3.1.1 Creation of the Data Server
Create a data server for the XML technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining a 
File data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ User/Password: These fields are not used for XML data servers.

2. In the JDBC tab, enter the values according to the driver used:

■ JDBC Driver: com.sunopsis.jdbc.driver.xml.SnpsXmlDriver

■ JDBC URL: jdbc:snps:xml?[property=value&property=value...]

Table 5–1 lists the key properties of the Oracle Data Integrator Driver for XML. 
These properties can be specified in the JDBC URL. 

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for a detailed 
description of these properties and for a comprehensive list of all properties.

Table 5–1 JDBC Driver Properties

Property Value Notes

f <XML File location> XML file name. Use slash "/" in the path name instead of 
back slash "\". It is possible to use an HTTP, FTP or File 
URL to locate the file. Files located by URL are read-only.

d <DTD/XSD File 
location>

Description file: This file may be a DTD or XSD file. It is 
possible to use an HTTP, FTP or File URL to locate the 
file. Files located by URL are read-only.

Note that when no DTD or XSD file is present, the 
relational schema is built using only the XML file 
content. It is not recommended to reverse-engineer the 
data model from such a structure as one XML file 
instance may not contain all the possible elements 
described in the DTD or XSD, and data model may be 
incomplete.

re <Root element> Name of the element to take as the root table of the 
schema. This value is case sensitive. This property can be 
used for reverse-engineering for example a specific 
message definition from a WSDL file, or when several 
possible root elements exist in a XSD file.

ro true | false If true, the XML file is opened in read only mode.

s <schema name> Name of the relational schema where the XML file will 
be loaded. If this property is missing, a schema named 
after the five first letters of the XML file name will 
automatically be created.



Setting Up an Integration Project

5-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The following examples illustrate these properties:

Connects to the PROD20100125_001.xml file described by products.xsd in 
the PRODUCTS schema.

jdbc:snps:xml?f=/xml/PROD20100125_001.xml&d=/xml/products.xsd&s=PRODUCTS

Connects in read-only mode to the staff_internal.xml file described by 
staff_internal.dtd in read-only mode. The schema name will be staff.

jdbc:snps:xml?f=/demo/xml/staff_internal.xml&d=/demo/xml/staff_
internal.dtd&ro=true&s=staff

5.3.2 Creating a Physical Schema for XML
Create an XML physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for 
both the Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

5.4 Setting Up an Integration Project
Setting up a Project using the XML database follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

The recommended knowledge modules to import into your project for getting started 
with XML are the following:

■ LKM SQL to SQL

■ LKM File to SQL

■ IKM XML Control Append

5.5 Creating and Reverse-Engineering a XML File
This section contains the following topics:

■ Create an XML Model

■ Reverse-Engineering an XML Model

5.5.1 Create an XML Model
An XML file model groups a set of datastores. Each datastore typically represents an 
element in the XML file.

cs true | false Load the XML file in case sensitive or insensitive mode. 
For case insensitive mode, all element names in the DTD 
file should be distinct (For example: Abc and abc in the 
same file will result in name collisions).

Table 5–1 (Cont.) JDBC Driver Properties

Property Value Notes



Designing a Mapping

XML Files 5-5

Create an XML Model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator. Select the XML 
technology and the XML logical schema created when configuring the topology.

5.5.2 Reverse-Engineering an XML Model
XML supports standard reverse-engineering, which uses only the abilities of the XML 
driver.

It is recommended to reference a DTD or XSD file in the dtd or d parameters of the 
URL to reverse-engineer the structure from a generic description of the XML file 
structure. Reverse-engineering can use an XML instance file if no XSD or DTD is 
available. In this case, the relational schema structure will be inferred from the data 
contained in the XML file.

Standard Reverse-Engineering
To perform a Standard Reverse- Engineering on XML use the usual procedure, as 
described in "Reverse-engineering a Model" of the Developing Integration Projects with 
Oracle Data Integrator.

The standard reverse-engineering process will automatically reverse-engineer the table 
from the relational schema generated by the XML driver. Note that these tables 
automatically include:

■ Primary keys (PK columns) to preserve parent-child elements relationships

■ Foreign keys (FK columns) to preserve parent-child elements relationships

■ Order identifier (ORDER columns) to preserve the order of elements in the XML 
file

These extra columns enable the mapping of the hierarchical XML structure into the 
relational schema. See XML to SQL Mapping in the Appendix B, "Oracle Data 
Integrator Driver for XML Reference" for more information.

5.6 Designing a Mapping
You can use XML as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning an XML data server.

5.6.1 Notes about XML Mappings
Read carefully these notes before working with XML in mappings.

5.6.1.1 Targeting an XML Structure
When using a datastore of an XML model as a target of a mapping, you must make 
sure to load the driver-generated columns that are used for preserving the parent-child 
relationships and the order in the XML hierarchy. For example, if filling records for the 
region element into an XML structure as shown in Example 5–1, that correspond to a 
REGION table in the relational schema, you should load the columns REGION_ID and 
REGION_NAME of the REGION table. These two columns correspond to XML 
attributes.



Designing a Mapping

5-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Example 5–1 XML Structure

<country COUNTRY_ID="6" COUNTRY_NAME="Australia">
    <region REGION_ID="72" REGION_NAME="Queensland">
</country>

In Example 5–1 you must also load the following additional columns that are 
automatically created by the XML Driver in the REGION table:

■ REGIONPK: This column enables you to identify each <region> element.

■ REGIONORDER: This column enables you to order the <region> elements in 
the XML file (records are not ordered in a relational schema, whereas XML 
elements are ordered).

■ COUNTRYFK: This columns enables you to put the <region> element in 
relation with the <country> parent element. This value is equal to the 
COUNTRY.COUNTRYPK value for the Australia record in the COUNTRY table.

5.6.1.2 Synchronizing XML File and Schema
To ensure a perfect synchronization of the data in an XML file and the data in the XML 
schema, the following commands have to be called:

■ Before using the tables of an XML model, either to read or update data, it is 
recommended that you use the SYNCHRONIZE FROM FILE command on the 
XML logical schema. This operation reloads the XML hierarchical data in the 
relational XML schema. The schema is loaded in the built-in or external database 
storage when first accessed. Subsequent changes made to the file are not 
automatically synchronized into the schema unless you issue this command.

■ After performing changes in the relational schema, you must unload this schema 
into the XML hierarchical data by calling the SYNCHRONIZE ALL or 
SYNCHRONIZE FROM DATABASE commands on the XML Logical Schema. The 
IKM XML Control Append implements this synchronize command.

These commands must be executed in procedures in the packages before (and after) 
the mappings and procedures manipulating the XML schema.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more 
information on these commands.

5.6.1.3 Handling Large XML Files
Large XML files can be handled with high performance with Oracle Data Integrator.

The default driver configuration stores the relational schema in a built-in engine in 
memory. It is recommended to consider the use of external database storage for 
handling large XML files.

See Section B.2.3.1, "Schema Storage" for more information on these commands.

5.6.2 Loading Data from and to XML
An XML file can be used as a mapping's source or target. The LKM choice in the 
Loading Knowledge Module tab that is used to load data between XML files and other 
types of data servers is essential for the performance of the mapping.



Designing a Mapping

XML Files 5-7

5.6.2.1 Loading Data from an XML Schema
Use the Generic SQL KMs or the KMs specific to the other technology involved to load 
data from an XML database to a target or staging area database.

Table 5–2 lists some examples of KMs that you can use to load from an XML source to 
a staging area:

5.6.2.2 Loading Data to an XML Schema
It is not advised to use an XML schema as a staging area, except if XML is the target of 
the mapping and you wish to use the target as a staging area. In this case, it might be 
required to load data to an XML schema.

Use the Generic SQL KMs or the KMs specific to the other technology involved to load 
data from a source or staging area into an XML schema.

Table 5–3 lists some examples of KMs that you can use to load from a source to an 
XML staging area.

5.6.3 Integrating Data in XML
XML can be used as a target of a mapping. The data integration strategies in XML 
concern loading from the staging area to XML. The IKM choice in the Integration 
Knowledge Module tab determines the performances and possibilities for integrating.

The IKM XML Control Append integrates data into the XML schema and has an 
option to synchronize the data to the file. In addition to this KM, you can also use the 
Generic SQL KMs or the KMs specific to the other technology involved. Note that if 
using generic or technology-specific KMs, you must manually perform the 
synchronize operation to write the changes made in the schema to the XML file.

Table 5–4 lists some examples of KMs that you can use to integrate data:

■ From a staging area to an XML target

■ From an XML staging area to an XML target. Note that in this case the staging area 
is on the XML target.

Table 5–2 KMs to Load from XML to a Staging Area

Staging Area KM Notes

Microsoft SQL 
Server

LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses 
Statistics)

All LKM SQL to SQL Generic KM to load data between 
an ANSI SQL-92 source and an 
ANSI SQL-92 staging area.

Table 5–3 KMs to Load to an XML Schema

Source KM Notes

File LKM File to SQL Generic KM to load a file in a ANSI 
SQL-92 staging area.

All LKM SQL to SQL Generic KM to load data between an 
ANSI SQL-92 source and an ANSI 
SQL-92 staging area.



Troubleshooting

5-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

5.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might 
encounter when using XML in Oracle Data Integrator. It contains the following topics:

■ Detect the Errors Coming from XML

■ Common Errors

5.7.1 Detect the Errors Coming from XML
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: No suitable driver
at ... 
at ... 
...

the java.sql.SQLExceptioncode simply indicates that a query was made 
through the JDBC driver, which has returned an error. This error is frequently a 
database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the 
XML driver documentation. If it contains a specific error code, like here, the error can 
be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL 
code send to the database to find the source of the error. The code is displayed in the 
description tab of the task in error.

5.7.2 Common Errors
This section describes the most common errors with XML along with the principal 
causes. It contains the following topics:

■ No suitable driver

The JDBC URL is incorrect. Check that the URL syntax is valid.

■ File <XML file> is already locked by another instance of the 
XML driver.

The XML file is locked by another user/application. Close all application that 
might be using the XML file. If such an application has crashed, then remove the 
.lck file remaining in the XML file's directory.

■ The DTD file "xxxxxxx.dtd" doesn't exist

This exception may occur when trying to load an XML file by the command 
LOAD FILE. The error message can have two causes:

■ The path of the DTD file is incorrect.

Table 5–4 KMs to Integrate Data in an XML File

Mode Staging Area KM Notes

Update XML IKM SQL Incremental Update Generic KM

Append XML IKM SQL Control Append Generic KM

Append All RDBMS IKM SQL to SQL Append Generic KM



Troubleshooting

XML Files 5-9

■ The corresponding XML file was already opened by another schema (during 
connection for instance).

■ Table not found: S0002 Table not found: <table name> in 
statement [<SQL statement>]

The table you are trying to access does not exist in the schema.

■ Column not found: S0022 Column not found: <column name> in 
statement [<SQL statement>]

The column you are trying to access does not exist in the tables specified in the 
statement.



Troubleshooting

5-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



6

Complex Files 6-1

6Complex Files

This chapter describes how to work with Complex Files in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 6.1, "Introduction"

■ Section 6.2, "Installation and Configuration"

■ Section 6.3, "Setting up the Topology"

■ Section 6.4, "Setting Up an Integration Project"

■ Section 6.5, "Creating and Reverse-Engineering a Complex File Model"

■ Section 6.6, "Designing a Mapping"

6.1 Introduction
Oracle Data Integrator supports several files types. This chapter describes how to 
work with the Complex (or native) File format. See Chapter 3, "Files" for information 
about simple fixed or delimited files containing ASCII or EBCDIC data.

For complex files it is possible to build a Native Schema description file that describes 
the file structure. Using this Native Schema (nXSD) description and the Oracle Data 
Integrator Driver for Complex Files, Oracle Data Integrator is able to reverse-engineer, 
read and write information from complex files.

See "Native Format Builder Wizard" in the User's Guide for Technology Adapters for more 
information on the Native Schema format, and Appendix C, "Oracle Data Integrator 
Driver for Complex Files Reference" for reference information on the Complex File 
driver.

6.1.1 Concepts
The Oracle Data Integrator Driver for Complex Files (Complex File driver) converts native 
format to a relational structure and exposes this relational structure as a data model in 
Oracle Data Integrator.

The Complex File driver translates internally the native file into an XML structure, as 
defined in the Native Schema (nXSD) description and from this XML file it generates a 
relational schema that is consumed by Oracle Data Integrator. The overall mechanism 
is shown in Figure 6–1.



Installation and Configuration

6-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Figure 6–1 Complex File Driver Process

Most concepts and processes that are used for Complex Files are equivalent to those 
used for XML files. The main difference is the step that transparently translates the 
Native File into an XML structure that is used internally by the driver but never 
persisted.

The Complex File technology concepts map the Oracle Data Integrator concepts as 
follows: A Complex File corresponds to an Oracle Data Integrator data server. Within 
this data server, a single schema maps the content of the complex file.

The Oracle Data Integrator Driver for Complex File (Complex File driver) loads the 
complex structure of the native file into a relational schema. This relational schema is a 
set of tables located in the schema that can be queried or modified using SQL. The 
Complex File driver is also able to unload the relational schema back into the complex 
file.

The relational schema is reverse-engineered as a data model in ODI, with tables, 
columns, and constraints. This model is used like a standard relational data model in 
ODI. If the modified data within the relational schema needs to be written back to the 
complex file, the driver provides the capability to synchronize the relational schema 
into the file.

Note that for simple flat files formats (fixed and delimited), it is recommended to use 
the File technology, and for XML files, the XML technology. See Chapter 3, "Files" and 
Chapter 5, "XML Files" for more information.

6.1.2 Knowledge Modules
You can use a Complex File data server as any SQL data server. Complex File data 
servers support both the technology-specific KMs sourcing or targeting SQL data 
servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the technology 
chapters for more information on these KMs. 

You can also use the IKM XML Control Append when writing to a Complex File data 
server. This Knowledge Module implements specific option to synchronize the data 
from the relational schema to the file, which is supported by the Complex File driver.

6.2 Installation and Configuration
Make sure you have read the information in this section before you start working with 
the Complex File technology:

■ System Requirements

■ Technology Specific Requirements

■ Connectivity Requirements

6.2.1 System Requirements
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 



Setting up the Topology

Complex Files 6-3

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

6.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Complex Files in Oracle Data 
Integrator.

6.2.3 Connectivity Requirements
This section lists the requirements for connecting to complex files. 

Oracle Data Integrator Driver for Complex Files
Complex files are accessed through the Oracle Data Integrator Driver for Complex 
File. This JDBC driver is installed with Oracle Data Integrator and requires no other 
installed component or configuration.

You must ask the system administrator for the following connection information:

■ The location of the Native Schema (nXSD) file associated with your native file

■ The location of the native complex file

6.3 Setting up the Topology
Setting up the topology consists in: 

1. Creating a Complex File Data Server

2. Creating a Complex File Physical Schema

6.3.1 Creating a Complex File Data Server
A Complex File data server corresponds to one native file that is accessible to Oracle 
Data Integrator.

6.3.1.1 Creation of the Data Server
Create a data server for the Complex File technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining a 
Complex File data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ User/Password: These fields are not used for Complex File data servers.

2. In the JDBC tab, enter the following values:

■ JDBC Driver: 
oracle.odi.jdbc.driver.file.complex.ComplexFileDriver

■ JDBC URL: jdbc:snps:complexfile?f=<native file 
location>&d=<native schema>&re=<root element 
name>[&s=<schema name>&<property>=<value>...]



Setting Up an Integration Project

6-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 6–1 lists the key properties of the Oracle Data Integrator Driver for Complex 
Files. These properties can be specified in the JDBC URL. 

See Appendix C, "Oracle Data Integrator Driver for Complex Files Reference" for a 
detailed description of these properties and for a comprehensive list of all 
properties.

The following example illustrates these properties:

Connects to the PROD20100125_001.csv file described by products.nxsd 
and expose this file as a relational structure in the PRODUCT Schema.

jdbc:snps:complexfile?f=/infiles/PROD20100125_
001.csv&d=/infiles/products.nxsd&re=root&s=PRODUCTS

6.3.2 Creating a Complex File Physical Schema
Create a Complex File physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for 
both the Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

6.4 Setting Up an Integration Project
Setting up a project using the Complex File technology follows the standard 
procedure. See "Creating an Integration Project" of the Developing Integration Projects 
with Oracle Data Integrator. 

Note: The s parameter is optional.  If the s parameter is not specified, 
Oracle Data Integrator specifies a schema for you.

Table 6–1 Complex File Driver Properties

Property Value Notes

f <native file name> Native file location. Use slash "/" in the path name 
instead of back slash "\". It is possible to use an HTTP, 
FTP or File URL to locate the file. Files located by URL 
are read-only. This parameter is mandatory.

d <native schema> Native Schema (nXSD) file location. This parameter is 
mandatory.

re <root element> Name of the element to take as the root table of the 
schema. This value is case sensitive. This property can be 
used for reverse-engineering for example a specific 
section of the Native Schema. This parameter is 
mandatory.

s <schema name> Name of the relational schema where the complex file 
will be loaded. This parameter is optional.

This schema will be selected when creating the physical 
schema under the Complex File data server.



Designing a Mapping

Complex Files 6-5

It is recommended to import the following knowledge modules into your project for 
getting started:

■ LKM SQL to SQL

■ IKM XML Control Append

In addition to these knowledge modules, you can also import file knowledge modules 
specific to the other technologies involved in your product.

6.5 Creating and Reverse-Engineering a Complex File Model
This section contains the following topics:

■ Create a Complex File Model

■ Reverse-engineer a Complex File Model

6.5.1 Create a Complex File Model
A Complex File model groups a set of datastores. Each datastore typically represents 
an element in the intermediate XML file generated from the native file using the native 
schema.

Create a Complex File model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator. 

6.5.2 Reverse-engineer a Complex File Model
The Complex File technology supports standard reverse-engineering, which uses only 
the abilities of the Complex File driver.

Standard Reverse-Engineering
To perform a Standard Reverse- Engineering with a Complex File model use the usual 
procedure, as described in "Reverse-engineering a Model" of the Developing Integration 
Projects with Oracle Data Integrator.

This reverse-engineering uses the same process as the reverse-engineering of XML 
Files. The native schema (nXSD) provided in the data server URL is used as the XSD 
file to describe the XML structure. See Section 5.5.2, "Reverse-Engineering an XML 
Model" and XML to SQL Mapping for more information.

6.6 Designing a Mapping
You can use a complex file as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of 
this mapping or check. The recommendations below help in the selection of the KM 
for different situations concerning a Complex File data server.

Complex File data models are handled in mappings similarly to XML structures. For 
example, the Synchronization model is the same for complex files and XML files and 
the same knowledge modules can be used for both technologies.

See Section 5.6, "Designing a Mapping" in Chapter 5, "XML Files" for more 
information.



Designing a Mapping

6-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



7

Microsoft SQL Server 7-1

7Microsoft SQL Server

This chapter describes how to work with Microsoft SQL Server in Oracle Data 
Integrator.

This chapter includes the following sections:

■ Section 7.1, "Introduction"

■ Section 7.2, "Installation and Configuration"

■ Section 7.3, "Setting up the Topology"

■ Section 7.4, "Setting Up an Integration Project"

■ Section 7.5, "Creating and Reverse-Engineering a Microsoft SQL Server Model"

■ Section 7.6, "Setting up Changed Data Capture"

■ Section 7.7, "Setting up Data Quality"

■ Section 7.8, "Designing a Mapping"

7.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in Microsoft SQL Server.  
Oracle Data Integrator features are designed to work best with Microsoft SQL Server, 
including reverse-engineering, changed data capture, data integrity check, and 
mappings. 

7.1.1 Concepts
The Microsoft SQL Server concepts map the Oracle Data Integrator concepts as 
follows: A Microsoft SQL Server server corresponds to a data server in Oracle Data 
Integrator. Within this server, a database/owner pair maps to an Oracle Data 
Integrator physical schema. A set of related objects within one database corresponds to 
a data model, and each table, view or synonym will appear as an ODI datastore, with 
its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Microsoft 
SQL Server.

7.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 7–1 for 
handling Microsoft SQL Server data. In addition to these specific Microsoft SQL Server 
Knowledge Modules, it is also possible to use the generic SQL KMs with Microsoft 
SQL Server. See Chapter 4, "Generic SQL" for more information.



Installation and Configuration

7-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

7.2 Installation and Configuration
Make sure you have read the information in this section before you start working with 
the Microsoft SQL Server technology:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

7.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

Table 7–1 Microsoft SQL Server Knowledge Modules

Knowledge Module Description

IKM MSSQL Incremental Update Integrates data in a Microsoft SQL Server target table in incremental 
update mode. 

IKM MSSQL Slowly Changing Dimension Integrates data in a Microsoft SQL Server target table used as a Type 
II Slowly Changing Dimension in your Data Warehouse.

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent journalizing on 
Microsoft SQL Server tables using triggers.

JKM MSSQL Simple Creates the journalizing infrastructure for simple journalizing on 
Microsoft SQL Server tables using triggers.

LKM File to MSSQL (BULK) Loads data from a File to a Microsoft SQL Server staging area 
database using the BULK INSERT SQL command.

LKM MSSQL to MSSQL (BCP) Loads data from a Microsoft SQL Server source database to a 
Microsoft SQL Server staging area database using the native BCP 
out/BCP in commands.

LKM MSSQL to MSSQL (LINKED 
SERVERS)

Loads data from a Microsoft SQL Server source database to a 
Microsoft SQL Server staging area database using the native linked 
servers feature.

LKM MSSQL to ORACLE (BCP SQLLDR) Loads data from a Microsoft SQL Server to an Oracle database 
(staging area) using the BCP and SQLLDR utilities.

LKM SQL to MSSQL (BULK) Loads data from any ANSI SQL-92 source database to a Microsoft 
SQL Server staging area database using the native BULK INSERT 
SQL command.

LKM SQL to MSSQL Loads data from any ANSI SQL-92 source database to a Microsoft 
SQL Server staging area. This LKM is similar to the standard LKM 
SQL to SQL described in Chapter 4, "Generic SQL" except that you 
can specify some additional specific Microsoft SQL Server 
parameters.

RKM MSSQL Retrieves metadata for Microsoft SQL Server objects: tables, views 
and synonyms, as well as columns and constraints. 



Installation and Configuration

Microsoft SQL Server 7-3

7.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Microsoft SQL Server use specific features of this 
database. The following restrictions apply when using these Knowledge Modules. See 
the Microsoft SQL Server documentation for additional information on these topics.

7.2.2.1 Using the BULK INSERT Command
This section describes the requirements that must be met before using the BULK 
INSERT command with Microsoft SQL Server:

■ The file to be loaded by the BULK INSERT command needs to be accessible from 
the Microsoft SQL Server instance machine. It could be located on the file system 
of the server or reachable from a UNC (Unique Naming Convention) path.

■ UNC file paths are supported but not recommended as they may decrease 
performance.

■ For performance reasons, it is often recommended to install Oracle Data Integrator 
Agent on the target server machine.

7.2.2.2 Using the BCP Command
This section describes the requirements that must be met before using the BCP 
command with Microsoft SQL Server:

■ The BCP utility as well as the Microsoft SQL Server Client Network Utility must 
be installed on the machine running the Oracle Data Integrator Agent.

■ The server names defined in the Topology must match the Microsoft SQL Server 
Client connect strings used for these servers.

■ White spaces in server names defined in the Client Utility are not supported.

■ UNC file paths are supported but not recommended as they may decrease 
performance.

■ The target staging area database must have the option select into/bulk copy.

■ Execution can remain pending if the file generated by the BCP program is empty.

■ For performance reasons, it is often recommended to install Oracle Data Integrator 
Agent on the target server machine.

7.2.2.3 Using Linked Servers
This section describes the requirements that must be met before using linked servers 
with Microsoft SQL Server:

■ The user defined in the Topology to connect to the Microsoft SQL Server instances 
must have the following privileges:

■ The user must be the db_owner of the staging area databases

■ The user must have db_ddladmin role

■ For automatic link server creation, the user must have sysdamin privileges

■ The MSDTC Service must be started on both SQL Server instances (source and 
target). The following hints may help you configure this service:

■ The Log On As account for the MSDTC Service is a Network Service account 
(and not the 'LocalSystem' account).

■ MSDTC should be enabled for network transactions.



Setting up the Topology

7-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Windows Firewall should be configured to allow the MSDTC service on the 
network. By default, the Windows Firewall blocks the MSDTC program.

■ The Microsoft SQL Server must be started after MSDTC has completed its 
startup.

See the following links for more information about configuring the MSDTC 
Service:

■ http://support.microsoft.com/?kbid=816701

■ http://support.microsoft.com/?kbid=839279

7.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Microsoft SQL Server database. 

JDBC Driver
Oracle Data Integrator is installed with a default Microsoft SQL Server Datadirect 
Driver. This drivers directly uses the TCP/IP network layer and requires no other 
installed component or configuration. You can alternatively use the drivers provided 
by Microsoft for SQL Server.

7.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a Microsoft SQL Server Data Server

2. Creating a Microsoft SQL Server Physical Schema

7.3.1 Creating a Microsoft SQL Server Data Server
A Microsoft SQL Server data server corresponds to a Microsoft SQL Server server 
connected with a specific user account. This user will have access to several databases 
in this server, corresponding to the physical schemas in Oracle Data Integrator created 
under the data server.

7.3.1.1 Creation of the Data Server
Create a data server for the Microsoft SQL Server technology using the standard 
procedure, as described in "Creating a Data Server" of the Developing Integration 
Projects with Oracle Data Integrator. This section details only the fields required or 
specific for defining a Microsoft SQL data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Microsoft SQLServer user with its password

2. In the JDBC tab:

■ JDBC Driver: weblogic.jdbc.sqlserver.SQLServerDriver

■ JDBC URL: jdbc:weblogic:sqlserver://hostname:port[;property=value[;...]]



Creating and Reverse-Engineering a Microsoft SQL Server Model

Microsoft SQL Server 7-5

7.3.2 Creating a Microsoft SQL Server Physical Schema
Create a Microsoft SQL Server physical schema using the standard procedure, as 
described in "Creating a Physical Schema" in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a 
database/owner pair. The work schema should point to a temporary database and the 
data schema should point to the database hosting the data to integrate. 

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

7.4 Setting Up an Integration Project
Setting up a project using the Microsoft SQL Server database follows the standard 
procedure. See "Creating an Integration Project" of the Developing Integration Projects 
with Oracle Data Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with Microsoft SQL Server:

■ IKM MSSQL Incremental Update

■ IKM MSSQL Slowly Changing Dimension

■ JKM MSSQL Consistent

■ JKM MSSQL Simple

■ LKM File to MSSQL (BULK)

■ LKM MSSQL to MSSQL (BCP)

■ LKM MSSQL to MSSQL (LINKED SERVERS)

■ LKM MSSQL to ORACLE (BCP SQLLDR)

■ LKM SQL to MSSQL (BULK)

■ LKM SQL to MSSQL

■ CKM SQL. This generic KM is used for performing integrity check for SQL Server. 

■ RKM MSSQL

7.5 Creating and Reverse-Engineering a Microsoft SQL Server Model
This section contains the following topics:

■ Create a Microsoft SQL Server Model

■ Reverse-engineer a Microsoft SQL Server Model

7.5.1 Create a Microsoft SQL Server Model
Create a Microsoft SQL Server Model using the standard procedure, as described in 
"Creating a Model" of the Developing Integration Projects with Oracle Data Integrator.

7.5.2 Reverse-engineer a Microsoft SQL Server Model
Microsoft SQL Server supports both Standard reverse-engineering - which uses only 
the abilities of the JDBC driver - and Customized reverse-engineering, which uses a 
RKM to retrieve the metadata.



Setting up Changed Data Capture

7-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

In most of the cases, consider using the standard JDBC reverse engineering for 
starting. Standard reverse-engineering with Microsoft SQL Server retrieves tables, 
views, and columns.

Consider switching to customized reverse-engineering for retrieving more metadata. 
Microsoft SQL Server customized reverse-engineering retrieves the tables, views, and 
synonyms. The RKM MSSQL also reverse-engineers columns that have a user defined 
data type and translates the user defined data type to the native data type.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Microsoft SQL Server use the usual 
procedure, as described in "Reverse-engineering a Model" of the Developing Integration 
Projects with Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Microsoft SQL Server with a RKM, 
use the usual procedure, as described in "Reverse-engineering a Model" of the 
Developing Integration Projects with Oracle Data Integrator. This section details only the 
fields specific to the Microsoft SQL Server technology:

1. In the Reverse Engineer tab of the Microsoft SQL Server Model, select the KM: 
RKM MSSQL.<project name>.

2. In the COMPATIBLE option, enter the Microsoft SQL Server version. This option 
decides whether to enable reverse synonyms. Note that only Microsoft SQLServer 
version 2005 and above support synonyms.

Note the following information when using this RKM:

■ The connection user must have SELECT privileges on any INFORMATION_
SCHEMA views.

■ Only native data type will be saved for the attribute with user defined data type in 
the repository and model.

■ User defined data types implemented through a class of assembly in the Microsoft 
.NET Framework common language runtime (CLR) will not be reversed.

7.6 Setting up Changed Data Capture
The ODI Microsoft SQL Server Knowledge Modules support the Changed Data 
Capture feature. See Chapter "Working with Changed Data Capture" of the Developing 
Integration Projects with Oracle Data Integrator for details on how to set up journalizing 
and how to use captured changes.

Microsoft SQL Server Journalizing Knowledge Modules support Simple Journalizing 
and Consistent Set Journalizing. The Microsoft SQL Server JKMs use triggers to 
capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 7–2 for 
journalizing Microsoft SQL Server tables.

Table 7–2 Microsoft SQL Server Journalizing Knowledge Modules

KM Notes

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent 
journalizing on Microsoft SQL Server tables using 
triggers.



Designing a Mapping

Microsoft SQL Server 7-7

Log-based changed data capture is possible with Microsoft SQL Server using the 
Oracle GoldenGate. See Chapter 22, "Oracle GoldenGate" for more information.

7.7 Setting up Data Quality
Oracle Data Integrator provides the generic CKM SQL for checking data integrity 
against constraints defined on a Microsoft SQL Server table. See "Flow Control and 
Static Control" in Developing Integration Projects with Oracle Data Integrator for details. 

See Chapter 4, "Generic SQL" for more information.

7.8 Designing a Mapping
You can use Microsoft SQL Server as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning a Microsoft SQL Server data server.

7.8.1 Loading Data from and to Microsoft SQL Server
Microsoft SQL Server can be used as a source, target or staging area of a mapping. The 
LKM choice in the Loading Knowledge Module tab to load data between Microsoft 
SQL Server and another type of data server is essential for the performance of a 
mapping.

7.8.1.1 Loading Data from Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized 
methods for loading data from Microsoft SQL Server to a target or staging area 
database. These optimized Microsoft SQL Server KMs are listed in Table 7–3. 

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to 
the other technology involved to load data from Microsoft SQL Server to a target or 
staging area database.

JKM MSSQL Simple Creates the journalizing infrastructure for simple 
journalizing on Microsoft SQL Server tables using 
triggers.

Table 7–3 KMs for loading data from Microsoft SQL Server

Source or Staging Area 
Technology KM Notes

Microsoft SQL Server LKM MSSQL to MSSQL 
(BCP)

Loads data from a 
Microsoft SQL Server 
source database to a 
Microsoft SQL Server 
staging area database 
using the native BCP 
out/BCP in commands.

Table 7–2 (Cont.) Microsoft SQL Server Journalizing Knowledge Modules

KM Notes



Designing a Mapping

7-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

7.8.1.2 Loading Data to Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized 
methods for loading data from a source or staging area into a Microsoft SQL Server 
database. These optimized Microsoft SQL Server KMs are listed in Table 7–4. 

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to 
the other technology involved.

Microsoft SQL Server LKM MSSQL to MSSQL 
(LINKED SERVERS)

Loads data from a 
Microsoft SQL Server 
source database to a 
Microsoft SQL Server 
staging area database 
using the native linked 
servers feature.

Oracle LKM MSSQL to ORACLE 
(BCP SQLLDR)

Loads data from a 
Microsoft SQL Server to an 
Oracle database (staging 
area) using the BCP and 
SQLLDR utilities.

Table 7–4 KMs for loading data to Microsoft SQL Server

Source or Staging Area 
Technology KM Notes

File LKM File to MSSQL (BULK) Loads data from a File to a 
Microsoft SQL Server 
staging area database 
using the BULK INSERT 
SQL command.

Microsoft SQL Server LKM MSSQL to MSSQL 
(BCP)

Loads data from a 
Microsoft SQL Server 
source database to a 
Microsoft SQL Server 
staging area database 
using the native BCP 
out/BCP in commands.

Microsoft SQL Server LKM MSSQL to MSSQL 
(LINKED SERVERS)

Loads data from a 
Microsoft SQL Server 
source database to a 
Microsoft SQL Server 
staging area database 
using the native linked 
servers feature.

SQL LKM SQL to MSSQL (BULK) Loads data from any ANSI 
SQL-92 source database to 
a Microsoft SQL Server 
staging area database 
using the native BULK 
INSERT SQL command.

SQL LKM SQL to MSSQL Loads data from any ANSI 
SQL-92 source database to 
a Microsoft SQL Server 
staging area. 

Table 7–3 (Cont.) KMs for loading data from Microsoft SQL Server

Source or Staging Area 
Technology KM Notes



Designing a Mapping

Microsoft SQL Server 7-9

7.8.2 Integrating Data in Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized data 
integration strategies for Microsoft SQL Server. These optimized Microsoft SQL Server 
KMs are listed in Table 7–5. I

In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the 
performances and possibilities for integrating.

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension 
value for each column of the target datastore. This value is used by the IKM MSSQL 
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or 
Insert Column, Current Record Flag and Start/End Timestamps columns.

Table 7–5 KMs for integrating data to Microsoft SQL Server

KM Notes

IKM MSSQL Incremental Update Integrates data in a Microsoft SQL Server target table in 
incremental update mode.

IKM MSSQL Slowly Changing 
Dimension

Integrates data in a Microsoft SQL Server target table used 
as a Type II Slowly Changing Dimension in your Data 
Warehouse



Designing a Mapping

7-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



8

Microsoft Excel 8-1

8Microsoft Excel

This chapter describes how to work with Microsoft Excel in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 8.1, "Introduction"

■ Section 8.2, "Installation and Configuration"

■ Section 8.3, "Setting up the Topology"

■ Section 8.4, "Setting Up an Integration Project"

■ Section 8.5, "Creating and Reverse-Engineering a Microsoft Excel Model"

■ Section 8.6, "Designing a Mapping"

■ Section 8.7, "Troubleshooting"

8.1 Introduction
Oracle Data Integrator (ODI) integrates data stored into Microsoft Excel workbooks. It 
allows reverse-engineering as well as read and write operations on spreadsheets.

Oracle Data Integrator uses Open Database Connectivity (ODBC) to connect to a 
Microsoft Excel data server. See Section 8.2.3, "Connectivity Requirements" for more 
details.

8.1.1 Concepts
A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.xls file) 
that is accessible through your local network. A single physical schema is created 
under this data server.

Within this schema, a spreadsheet or a given named zone of the workbook appears as 
a datastore in Oracle Data Integrator.

8.1.2 Knowledge Modules
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Microsoft 
Excel technology. You can use the generic SQL KMs to perform the data integration 
and transformation operations of Microsoft Excel data. See Chapter 4, "Generic SQL" 
for more information.



Installation and Configuration

8-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

8.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
Microsoft Excel Knowledge Module:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

8.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

8.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Microsoft Excel files in Oracle 
Data Integrator. 

8.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Microsoft Excel workbook. 

To be able to access Microsoft Excel data, you need to:

■ Install the Microsoft Excel ODBC Driver 

■ Declare a Microsoft Excel ODBC Data Source

Install the Microsoft Excel ODBC Driver
Microsoft Excel workbooks can only be accessed through ODBC connectivity. The 
ODBC Driver for Excel must be installed on your system. 

Note: Excel technology cannot be used as the staging area, does not 
support incremental update or flow/static check. As a consequence, 
the following KMs will not work with the Excel technology:

■ RKM SQL (JYTHON) 

■ LKM File to SQL

■ CKM SQL

■ IKM SQL Incremental Update 

■ IKM SQL Control Append 

■ LKM SQL to SQL (JYTHON)



Setting up the Topology

Microsoft Excel 8-3

Declare a Microsoft Excel ODBC Data Source
An ODBC data source must be defined for each Microsoft Excel workbook (.xls file) 
that will be accessed from ODI. ODBC datasources are created with the Microsoft 
ODBC Data Source Administrator. Refer to your Microsoft Windows operating system 
documentation for more information on datasource creation. Also refer to "Create an 
ODBC Datasource for the Excel Spreadsheet", Section 3.5.2.4, "Customized 
Reverse-Engineering".

8.3 Setting up the Topology
Setting up the Topology consists in: 

1. Creating a Microsoft Excel Data Server

2. Creating a Microsoft Excel Physical Schema

8.3.1 Creating a Microsoft Excel Data Server
A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.xls file) 
that is accessible through your local network.

Create a data server for the Microsoft Excel technology using the standard procedure, 
as described in "Creating a Data Server" of the Developing Integration Projects with 
Oracle Data Integrator. This section details only the fields required or specific for 
defining a Microsoft Excel Data Server:

1. In the Definition tab:

■ Array Fetch Size: 0

■ Batch Update Size: 1

2. In the JDBC tab:

■ JDBC Driver: sun.jdbc.odbc.JdbcOdbcDriver

■ JDBC URL: jdbc:odbc:<odbc_dsn_alias>

where <odbc_dsn_alias> is the name of your ODBC data source.

8.3.2 Creating a Microsoft Excel Physical Schema
Create a Microsoft Excel Physical Schema using the standard procedure, as described 
in "Creating a Physical Schema" in Administering Oracle Data Integrator.

Note that Oracle Data Integrator needs only one physical schema for each Microsoft 
Excel data server. If you wish to connect a different workbook, a different data server 
must be created to connect a ODBC datasource corresponding to this other workbook.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

WARNING: To access a Microsoft Excel workbook via ODBC, you 
must first ensure that this workbook is not currently open in a 
Microsoft Excel session. This can lead to unexpected results.



Setting Up an Integration Project

8-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

8.4 Setting Up an Integration Project
Setting up a Project using the Microsoft Excel follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

Import the following generic SQL KMs into your project for getting started with 
Microsoft Excel:

■ LKM SQL to SQL

■ IKM SQL to SQL Append

See Chapter 4, "Generic SQL" for more information about these KMs.

8.5 Creating and Reverse-Engineering a Microsoft Excel Model
This section contains the following topics:

■ Create a Microsoft Excel Model

■ Reverse-engineer a Microsoft Excel Model

8.5.1 Create a Microsoft Excel Model
A Microsoft Excel Model is a set of datastores that correspond to the tables contained 
in a Microsoft Excel workbook.

Create a Microsoft Excel Model using the standard procedure, as described in 
"Creating a Model" of the Developing Integration Projects with Oracle Data Integrator.

8.5.2 Reverse-engineer a Microsoft Excel Model
Microsoft Excel supports only the Standard reverse-engineering, which uses only the 
abilities of the ODBC driver. 

Oracle Data Integrator reverse-engineers:

■ Spreadsheets: Spreadsheets appear as system tables. Such a table is named after the 
spreadsheet name, followed with a dollar sign ($). This table's columns are named 
after the first line of the spreadsheet. Note that new records are added at the end 
of the spreadsheet.

■ Named Cell Ranges in a spreadsheet. These will appear as tables named after the cell 
range name. Depending on the scope of a name, the table name may be prefixed 
by the name of the spreadsheet (in the following format: <spreadsheet_
name>$<zone_name>). The columns for such a table are named after the first line of 
the cell range. Note that new records are added automatically below the named 
cell. It is possible to create a blank named cell range that will be loaded using ODI 
by naming a cell range that contains only the first header line.

In most Microsoft Excel versions, you can simply select a cell range and use the 
Name a Range... popup menu to name this range. See the Microsoft Excel 
documentation for conceptual information about Names and how to define a cell 
range in a spreadsheet. 

Note: An Excel physical schema only has a data schema, and no 
work schema. Microsoft Excel cannot be used as the staging area of a 
mapping.



Designing a Mapping

Microsoft Excel 8-5

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Microsoft Excel use the usual 
procedure, as described in "Reverse-engineering a Model" of the Developing Integration 
Projects with Oracle Data Integrator.

8.6 Designing a Mapping
You can use a Microsoft Excel file as a source or a target of a mapping, but NOT as the 
staging area

The KM choice for a mapping or a check determines the abilities and performances of 
this mapping or check. The recommendations below help in the selection of the KM 
for different situations concerning a Microsoft Excel server.

8.6.1 Loading Data From and to Microsoft Excel
Microsoft Excel can be used as a source or a target of a mapping. The LKM choice in 
the Mapping Flow tab to load data between Microsoft Excel and another type of data 
server is essential for the performance of a mapping.

8.6.1.1 Loading Data from Microsoft Excel
Oracle Data Integrator does not provide specific knowledge modules for Microsoft 
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the 
staging area. The following table lists some generic SQL KMs that can be used for 
loading data from Microsoft Excel to any staging area.

8.6.1.2 Loading Data to Microsoft Excel
Because Microsoft Excel cannot be used as staging area you cannot use a LKM to load 
data into Microsoft Excel. See Section 8.6.2, "Integrating Data in Microsoft Excel" for 
more information on how to integrate data into Microsoft Excel.

8.6.2 Integrating Data in Microsoft Excel
Oracle Data Integrator does not provide specific knowledge modules for Microsoft 
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the 
staging area. For integrating data from a staging area to Microsoft Excel, you can use, 
for example the IKM SQL to SQL Append.

Note: On the Reverse Engineer tab of your Model, select in the Types 
of objects to reverse-engineer section Table and System Table to 
reverse-engineer spreadsheets and named cell ranges.

Table 8–1 KMs to Load from Microsoft Excel

Target or Staging Area KM Notes

Oracle LKM SQL to Oracle Loads data from any ISO-92 
database to an Oracle target 
database. Uses statistics.

SQL LKM SQL to SQL Loads data from any ISO-92 
database to any ISO-92 compliant 
target database.

Microsoft SQL Server LKM SQL to MSSQL 
(bulk)

Loads data from any ISO-92 
database to a Microsoft SQL Server 
target database. Uses Bulk Loading.



Troubleshooting

8-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

8.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might 
encounter when using the Microsoft Excel technology in Oracle Data Integrator. It 
contains the following topics:

■ Decoding Error Messages

■ Common Problems and Solutions

8.7.1 Decoding Error Messages
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: java.sql.SQLException: [Microsoft][ODBC Driver Manager] 
Data source name not found and no default driver specified RC=Oxb
at ... ...

the java.sql.SQLException code simply indicates that a query was made through the 
JDBC-ODBC bridge, which has returned an error. This error is frequently a database or 
driver error, and must be interpreted in this direction.

Only the part of text in italic must first be taken in account. It must be searched in the 
ODBC driver or Excel documentation. If its contains a specific error code, like here in 
bold italic, the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL 
code to find the source of the error. The code is displayed in the description tab of the 
task in error.

The most common errors with Excel are detailed below, with their principal causes.

8.7.2 Common Problems and Solutions
This section describes common problems and solutions.

■ [Microsoft][ODBC Excel Driver] Invalid SQL statement; expected 
'DELETE', 'INSERT', 'PROCEDURE', 'SELECT', or 'UPDATE'.

This error is probably due to a functionality limitation of the installed ODBC 
driver. You might have to install a full version of ODBC driver, such as the default 
one with Microsoft Office.

■ Invalid Fetch Size

Make sure array Fetch Size is set to 0 for the Microsoft Excel data sever defined in 
ODI.

■ [Microsoft][ODBC Excel Driver] Could not decrypt file.

You might have to keep the password-protected Microsoft Excel workbook open 
for the JDBC-ODBC connection to work.

■ UnknownDriverException

The JDBC driver is incorrect. Check the name of the driver.

■ [Microsoft][ODBC Driver Manager] Data source name not found and no 
default driver specified RC=0xb Datasource not found or driver name not 
specified

The ODBC Datasource specified in the JDBC URL is incorrect.



Troubleshooting

Microsoft Excel 8-7

■ The Microsoft Jet Database engine could not find the object <object 
name>

The table you are trying to access does not exist or is not defined in the Excel 
spreadsheet.

■ Too few parameters. Expected 1.

You are trying to access an nonexisting column in the Excel spreadsheet.

■ Operation must use an updateable query.

This error is probably due to the fact that you have not unchecked the "read only" 
option when defined the Excel DSN. Unselect this option and re-execute your 
mapping.

■ DBCS or UTF-16 data is corrupted when loaded.

This error is due to the fact that the JDBC-ODBC Bridge of the Java machine does 
not support UTF-16 data. This is a known issue in the Sun JVM that is solved in 
the later releases (1.7).



Troubleshooting

8-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



9

Microsoft Access 9-1

9Microsoft Access

This chapter describes how to work with Microsoft Access in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 9.1, "Introduction"

■ Section 9.2, "Concepts"

■ Section 9.3, "Knowledge Modules"

■ Section 9.4, "Specific Requirements"

9.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Microsoft Access 
database. Oracle Data Integrator features are designed to work best with Microsoft 
Access, including mappings.

9.2 Concepts
The Microsoft Access concepts map the Oracle Data Integrator concepts as follows: An 
Microsoft Access database corresponds to a data server in Oracle Data Integrator. 
Within this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Oracle Data Integrator uses Open Database Connectivity 
(ODBC) to connect to connect to a Microsoft Access database.

9.3 Knowledge Modules
Oracle Data Integrator provides the IKM Access Incremental Update for handling 
Microsoft Access data. This IKM integrates data in a Microsoft Access target table in 
incremental update mode.

The IKM Access Incremental Update creates a temporary staging table to stage the 
data flow and compares its content to the target table to identify the records to insert 
and the records to update. It also allows performing data integrity check by invoking 
the CKM.

Consider using this KM if you plan to load your Microsoft Access target table to insert 
missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as the target.

This KM uses Microsoft Access specific features. It is also possible to use the generic 
SQL KMs with the Microsoft Access database. See for more information.



Specific Requirements

9-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

9.4 Specific Requirements
There are no specific requirements for using Microsoft Access in Oracle Data 
Integrator.

Note: When reverse engineering MS Access, primary keys are not 
retrieved. Primary key constraints have to be added manually to the 
datastores for IKM Access Incremental Update to work correctly.



10

Netezza 10-1

10Netezza

This chapter describes how to work with Netezza in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 10.1, "Introduction"

■ Section 10.2, "Installation and Configuration"

■ Section 10.3, "Setting up the Topology"

■ Section 10.4, "Setting Up an Integration Project"

■ Section 10.5, "Creating and Reverse-Engineering a Netezza Model"

■ Section 10.6, "Setting up Data Quality"

■ Section 10.7, "Designing a Mapping"

10.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Netezza database. Oracle 
Data Integrator features are designed to work best with Netezza, including 
reverse-engineering, data integrity check, and mappings.

10.1.1 Concepts
The Netezza database concepts map the Oracle Data Integrator concepts as follows: A 
Netezza cluster corresponds to a data server in Oracle Data Integrator. Within this 
server, a database/owner pair maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Netezza 
database.

10.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 10–1 for 
handling Netezza data. These KMs use Netezza specific features. It is also possible to 
use the generic SQL KMs with the Netezza database. See Chapter 4, "Generic SQL" for 
more information.

Table 10–1 Netezza Knowledge Modules

Knowledge Module Description

CKM Netezza Checks data integrity against constraints defined on a Netezza table. 
Rejects invalid records in the error table created dynamically. Can be 
used for static controls as well as flow controls.



Installation and Configuration

10-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

10.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
Netezza Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

10.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

10.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Netezza use the NZLOAD utility.

The following requirements and restrictions apply for these Knowledge Modules:

■ The source file must be accessible by the ODI agent executing the mapping.

■ The run-time agent machine must have Netezza Performance Server client 
installed. And the NZLOAD install directory needs to be in the PATH variable 
when the agent is started.

■ All mappings need to be on the staging area.

■ All source fields need to be mapped, and must be in the same order as the target 
table in Netezza. 

IKM Netezza Control Append Integrates data in a Netezza target table in replace/append mode. 
When flow data needs to be checked using a CKM, this IKM creates a 
temporary staging table before invoking the CKM.

IKM Netezza Incremental Update Integrates data in a Netezza target table in incremental update mode. 

IKM Netezza To File (EXTERNAL TABLE) Integrates data in a target file from a Netezza staging area. It uses the 
native EXTERNAL TABLE feature of Netezza.

LKM File to Netezza (EXTERNAL TABLE) Loads data from a File to a Netezza Server staging area using the 
EXTERNAL TABLE feature (dataobject).

LKM File to Netezza (NZLOAD) Loads data from a File to a Netezza Server staging area using 
NZLOAD.

RKM Netezza Retrieves JDBC metadata from a Netezza database. This RKM may be 
used to specify your own strategy to convert Netezza JDBC metadata 
into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the 
standard JDBC reverse-engineering process due to some specificities 
of the Netezza JDBC driver.

Table 10–1 (Cont.) Netezza Knowledge Modules

Knowledge Module Description



Setting up the Topology

Netezza 10-3

■ Date, Time, Timestamp and Numeric formats should be specified in consistent 
with Netezza Data Type definition.

For KMs using the EXTERNAL TABLE feature: Make sure that the file is accessible by 
the Netezza Server.

10.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Netezza database. 

JDBC Driver
Oracle Data Integrator uses the Netezza JDBC to connect to a NCR Netezza database. 
This driver must be installed in your Oracle Data Integrator drivers directory.

10.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a Netezza Data Server

2. Creating a Netezza Physical Schema

10.3.1 Creating a Netezza Data Server
A Netezza data server corresponds to a Netezza cluster connected with a specific 
Netezza user account. This user will have access to several databases in this cluster, 
corresponding to the physical schemas in Oracle Data Integrator created under the 
data server.

10.3.1.1 Creation of the Data Server
Create a data server for the Netezza technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining a 
Netezza data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Netezza user with its password

2. In the JDBC tab:

■ JDBC Driver: org.netezza.Driver

■ JDBC URL: jdbc:Netezza://<host>:<port>/<database>

10.3.2 Creating a Netezza Physical Schema
Create a Netezza physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Note: Note that Oracle Data Integrator will have write access only on 
the database specified in the URL.



Setting Up an Integration Project

10-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

10.4 Setting Up an Integration Project
Setting up a project using the Netezza database follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with Netezza:

■ CKM Netezza

■ IKM Netezza Control Append

■ IKM Netezza Incremental Update

■ IKM Netezza To File (EXTERNAL TABLE)

■ LKM File to Netezza (EXTERNAL TABLE)

■ LKM File to Netezza (NZLOAD)

■ RKM Netezza

10.5 Creating and Reverse-Engineering a Netezza Model
This section contains the following topics:

■ Create a Netezza Model

■ Reverse-engineer a Netezza Model

10.5.1 Create a Netezza Model
Create a Netezza Model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator.

10.5.2 Reverse-engineer a Netezza Model
Netezza supports both Standard reverse-engineering - which uses only the abilities of 
the JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for 
starting.

Consider switching to customized reverse-engineering if you encounter problems with 
the standard JDBC reverse-engineering process due to some specificities of the 
Netezza JDBC driver.

Note: When performing this configuration, the work and data 
databases names must match. Note also that the dollar sign ($) is an 
invalid character for names in Netezza. Remove the dollar sign ($) 
from work table and journalizing elements prefixes.



Designing a Mapping

Netezza 10-5

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Netezza use the usual procedure, as 
described in "Reverse-engineering a Model" of the Developing Integration Projects with 
Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Netezza with a RKM, use the usual 
procedure, as described in "Reverse-engineering a Model" of the Developing Integration 
Projects with Oracle Data Integrator. This section details only the fields specific to the 
Netezza technology:

1. In the Reverse Engineer tab of the Netezza Model, select the KM: RKM 
Netezza.<project name>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign 
Keys. 

10.6 Setting up Data Quality
Oracle Data Integrator provides the CKM Netezza for checking data integrity against 
constraints defined on a Netezza table. See "Flow Control and Static Control" in 
Developing Integration Projects with Oracle Data Integrator for details.

10.7 Designing a Mapping
You can use Netezza as a source, staging area, or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning a Netezza data server.

10.7.1 Loading Data from and to Netezza
Netezza can be used as a source, target or staging area of a mapping. The LKM choice 
in the Loading Knowledge Module tab to load data between Netezza and another type 
of data server is essential for the performance of a mapping.

10.7.1.1 Loading Data from Netezza
Use the Generic SQL KMs or the KMs specific to the other technology involved to load 
data from a Netezza database to a target or staging area database.

For extracting data from a Netezza staging area to a file, use the IKM Netezza to File 
(EXTERNAL TABLE). See Section 10.7.2, "Integrating Data in Netezza" for more 
information.

10.7.1.2 Loading Data to Netezza
Oracle Data Integrator provides Knowledge Modules that implement optimized 
methods for loading data from a source or staging area into a Netezza database. These 
optimized Netezza KMs are listed in Table 10–2. In addition to these KMs, you can also 
use the Generic SQL KMs or the KMs specific to the other technology involved.



Designing a Mapping

10-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

10.7.2 Integrating Data in Netezza
Oracle Data Integrator provides Knowledge Modules that implement optimized data 
integration strategies for Netezza. These optimized Netezza KMs are listed in 
Table 10–3. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the 
performances and possibilities for integrating.

Table 10–2 KMs for loading data to Netezza

Source or Staging Area 
Technology KM Notes

File LKM File to Netezza 
(EXTERNAL TABLE)

Loads data from a File to a Netezza 
staging area database using the 
Netezza External table feature.

File LKM File to Netezza 
(NZLOAD)

Loads data from a File to a Netezza 
staging area database using the 
NZLOAD bulk loader.

Table 10–3 KMs for integrating data to Netezza

KM Notes

IKM Netezza Control Append Integrates data in a Netezza target table in replace/append 
mode.

IKM Netezza Incremental Update Integrates data in a Netezza target table in incremental 
update mode. 

This KM implements a DISTRIBUTE_ON option to define 
the processing distribution. It is important that the chosen 
column has a high cardinality (many distinct values) to 
ensure evenly spread data to allow maximum processing 
performance. 

Please follow Netezza's recommendations on choosing a 
such a column.

Valid options are:

■ [PK]: Primary Key of the target table.

■ [UK]: Update key of the mapping

■ [RANDOM]: Random distribution

■ <list of column>: a comma separated list of columns

If no value is set (empty), no index will be created.

This KM also uses an ANALYZE_TARGET option to 
generate statistics on the target after integration.

IKM Netezza to File (EXTERNAL 
TABLE)

Integrates data from a Netezza staging area to a file using 
external tables.

This KM implements an optional BASE_TABLE option to 
specify the name of a table that will be used as a template 
for the external table.



11

Teradata 11-1

11Teradata

This chapter describes how to work with Teradata in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 11.1, "Introduction"

■ Section 11.2, "Installation and Configuration"

■ Section 11.3, "Setting up the Topology"

■ Section 11.4, "Setting Up an Integration Project"

■ Section 11.5, "Creating and Reverse-Engineering a Teradata Model"

■ Section 11.6, "Setting up Data Quality"

■ Section 11.7, "Designing a Mapping"

■ Section 11.8, "KM Optimizations for Teradata"

11.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Teradata database. 
Oracle Data Integrator features are designed to work best with Teradata, including 
reverse-engineering, data integrity check, and mappings.

11.1.1 Concepts
The Teradata database concepts map the Oracle Data Integrator concepts as follows: A 
Teradata server corresponds to a data server in Oracle Data Integrator. Within this 
server, a database maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) and Teradata Utilities 
to connect to Teradata database.

11.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 11–1 for 
handling Teradata data. These KMs use Teradata specific features. It is also possible to 
use the generic SQL KMs with the Teradata database. See Chapter 4, "Generic SQL" for 
more information.



Installation and Configuration

11-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
Teradata Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

11.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

Table 11–1 Teradata Knowledge Modules

Knowledge Module Description

CKM Teradata Checks data integrity against constraints defined on a Teradata table. 
Rejects invalid records in the error table created dynamically. Can be 
used for static controls as well as flow controls.

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the Teradata utilities 
for loading files directly to the target. See Section 11.8.2, "Support for 
Teradata Utilities" for more information.

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a Teradata 
database target table using Teradata Utilities FastLoad, MultiLoad, 
TPump or Parallel Transporter. See Section 11.8.2, "Support for 
Teradata Utilities" for more information.

IKM Teradata Control Append Integrates data in a Teradata target table in replace/append mode.

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update mode. 

IKM Teradata Slowly Changing Dimension Integrates data in a Teradata target table used as a Type II Slowly 
Changing Dimension in your Data Warehouse.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in replace 
mode. See Section 11.8.2, "Support for Teradata Utilities" for more 
information.

IKM Teradata Multi Statement Integrates data in Teradata database target table using multi 
statement requests, managed in one SQL transaction. See Using Multi 
Statement Requests for more information.

IKM SQL to Teradata Control Append Integrates data from an ANSI-92 compliant source database into 
Teradata target table in truncate / insert (append) mode. 

This IKM is typically used for ETL configurations: source and target 
tables are on different databases and the mapping's staging area is set 
to the logical schema of the source tables or a third schema.

LKM File to Teradata (TTU) Loads data from a File to a Teradata staging area database using the 
Teradata bulk utilities. See Section 11.8.2, "Support for Teradata 
Utilities" for more information.

LKM SQL to Teradata (TTU) Loads data from a SQL compliant source database to a Teradata 
staging area database using a native Teradata bulk utility. See 
Section 11.8.2, "Support for Teradata Utilities" for more information.

RKM Teradata Retrieves metadata from the Teradata database using the DBC system 
views. This RKM supports UNICODE columns.



Setting up the Topology

Teradata 11-3

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

11.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Teradata use the following Teradata Tools and 
Utilities (TTU):

■ FastLoad

■ MultiLoad

■ Tpump

■ FastExport

■ Teradata Parallel Transporter

The following requirements and restrictions apply for these Knowledge Modules:

■ Teradata Utilities must be installed on the machine running the Oracle Data 
Integrator Agent.

■ The server name of the Teradata Server defined in the Topology must match the 
Teradata connect string used for this server (without the COP_n postfix).

■ It is recommended to install the Agent on a separate platform than the target 
Teradata host. The machine were the Agent is installed should have a very large 
network bandwidth to the target Teradata server.

■ The IKM File to Teradata (TTU) and LKM File to Teradata (TTU) support a File 
Character Set Encoding option specify the encoding of the files integrated with 
TTU. If this option is unset, the default TTU charset is used. 
Refer to the "Getting Started: International Character Sets and the Teradata 
Database" Teradata guide for more information about character set encoding.

See the Teradata documentation for more information.

11.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Teradata Database. 

JDBC Driver
Oracle Data Integrator uses the Teradata JDBC Driver to connect to a Teradata 
Database. The Teradata Gateway for JDBC must be running, and this driver must be 
installed in your Oracle Data Integrator installation. You can find this driver at:

http://www.teradata.com/DownloadCenter/Group48.aspx

11.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a Teradata Data Server

2. Creating a Teradata Physical Schema



Setting Up an Integration Project

11-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11.3.1 Creating a Teradata Data Server
A Teradata data server corresponds to a Teradata Database connected with a specific 
Teradata user account. This user will have access to several databases in this Teradata 
system, corresponding to the physical schemas in Oracle Data Integrator created under 
the data server.

11.3.1.1 Creation of the Data Server
Create a data server for the Teradata technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining a 
Teradata data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Teradata user with its password

2. In the JDBC tab:

■ JDBC Driver: com.teradata.jdbc.TeraDriver

■ JDBC URL: jdbc:teradata://<host>:<port>/<server>

The URL parameters are:

– <host>: Teradata gateway for JDBC machine network name or IP 
address.

– <port>: gateway port number (usually 7060)

– <server>: name of the Teradata server to connect

11.3.2 Creating a Teradata Physical Schema
Create a Teradata physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

11.4 Setting Up an Integration Project
Setting up a project using the Teradata database follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with Teradata:

■ CKM Teradata

■ IKM File to Teradata (TTU)

■ IKM SQL to Teradata (TTU)

■ IKM Teradata Control Append

■ IKM Teradata Incremental Update



Creating and Reverse-Engineering a Teradata Model

Teradata 11-5

■ IKM Teradata Multi Statement

■ IKM Teradata Slowly Changing Dimension

■ IKM Teradata to File (TTU)

■ IKM SQL to Teradata Control Append

■ LKM File to Teradata (TTU)

■ LKM SQL to Teradata (TTU)

■ RKM Teradata

11.5 Creating and Reverse-Engineering a Teradata Model
This section contains the following topics:

■ Create a Teradata Model

■ Reverse-engineer a Teradata Model

11.5.1 Create a Teradata Model
Create a Teradata Model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator.

11.5.2 Reverse-engineer a Teradata Model
Teradata supports both Standard reverse-engineering - which uses only the abilities of 
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve 
the metadata from Teradata database using the DBC system views.

In most of the cases, consider using the standard JDBC reverse engineering for 
starting. Standard reverse-engineering with Teradata retrieves tables and columns.

Preferably use customized reverse-engineering for retrieving more metadata. Teradata 
customized reverse-engineering retrieves the tables, views, columns, keys (primary 
indexes and secondary indexes) and foreign keys. Descriptive information (column 
titles and short descriptions) are also reverse-engineered.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Teradata use the usual procedure, as 
described in "Reverse-engineering a Model" of the Developing Integration Projects with 
Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Teradata with a RKM, use the usual 
procedure, as described in "Reverse-engineering a Model" of the Developing Integration 
Projects with Oracle Data Integrator. This section details only the fields specific to the 
Teradata technology:

1. In the Reverse Engineer tab of the Teradata Model, select the KM: RKM 
Teradata.<project name>.

2. Set the REVERSE_FKS option to true if you want to reverse-engineer existing FK 
constraints in the database.

3. Set the REVERSE_TABLE_CONSTRAINTS to true if you want to 
reverse-engineer table constrains.



Setting up Data Quality

11-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

4. Set REVERSE_COLUMN_CHARACTER_SET to true if you want to 
reverse-engineer VARCHAR and CHAR for a Unicode database as 
CHAR()CHARACTER SET UNICODE or VARCHAR()CHARACTER SET 
UNICODE respectively, regardless of the use of CHARACTER SET UNICODE 
clause at table creation.

The reverse-engineering process returns tables, views, columns, Keys (primary indexes 
and secondary indexes) and Foreign Keys. Descriptive information (Column titles and 
short descriptions) are also reverse-engineered

Note that Unique Indexes are reversed as follows:

■ The unique primary index is considered as a primary key.

■ The primary index is considered as a non unique index.

■ The secondary unique primary index is considered as an alternate key

■ The secondary non unique primary index is considered as a non unique index.

You can use this RKM to retrieve specific Teradata metadata that is not supported by 
the standard JDBC interface (such as primary indexes).

11.6 Setting up Data Quality
Oracle Data Integrator provides the CKM Teradata for checking data integrity against 
constraints defined on a Teradata table. See "Flow Control and Static Control" in 
Developing Integration Projects with Oracle Data Integrator for details. 

Oracle Data Integrator provides the Knowledge Module listed in Table 11–2 to perform 
a check on Teradata.

11.7 Designing a Mapping
You can use Teradata as a source, staging area or a target of a mapping. It is also 
possible to create ETL-style mappings based on the Teradata technology.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning a Teradata data server.

11.7.1 Loading Data from and to Teradata
Teradata can be used as a source, target or staging area of a mapping. The LKM choice 
in the Loading Knowledge Module tab to load data between Teradata and another 
type of data server is essential for the performance of a mapping.

Table 11–2 Check Knowledge Modules for Teradata Database

Recommended KM Notes

CKM Teradata Checks data integrity against constraints defined on a Teradata 
table. Rejects invalid records in the error table created 
dynamically. Can be used for static controls as well as flow 
controls.

This KM supports the following Teradata optimizations:

■ Primary Indexes

■ Statistics



Designing a Mapping

Teradata 11-7

11.7.1.1 Loading Data from Teradata
Use the Generic SQL KMs or the KMs specific to the other technology involved to load 
data from a Teradata database to a target or staging area database.

For extracting data from a Teradata staging area to a file, use the IKM File to Teradata 
(TTU). See Section 11.7.2, "Integrating Data in Teradata" for more information.

11.7.1.2 Loading Data to Teradata
Oracle Data Integrator provides Knowledge Modules that implement optimized 
methods for loading data from a source or staging area into a Teradata database. These 
optimized Teradata KMs are listed in Table 11–3. In addition to these KMs, you can 
also use the Generic SQL KMs or the KMs specific to the other technology involved.

Table 11–3 KMs for loading data to Teradata

Source or Staging Area 
Technology KM Notes

File LKM File to Teradata (TTU) Loads data from a File to a Teradata 
staging area database using the 
Teradata bulk utilities.

Because this method uses the native 
Teradata utilities to load the file in 
the staging area, it is more efficient 
than the standard LKM File to SQL 
when dealing with large volumes of 
data.

Consider using this LKM if your 
source is a large flat file and your 
staging area is a Teradata database.

This KM support the following 
Teradata optimizations:

■ Statistics

■ Optimized Temporary Tables 
Management



Designing a Mapping

11-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11.7.2 Integrating Data in Teradata
Oracle Data Integrator provides Knowledge Modules that implement optimized data 
integration strategies for Teradata. These optimized Teradata KMs are listed in 
Table 11–4. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the 
performances and possibilities for integrating.

SQL LKM SQL to Teradata (TTU) Loads data from a SQL compliant 
source database to a Teradata 
staging area database using a native 
Teradata bulk utility.

This LKM can unload the source 
data in a file or Named Pipe and 
then call the specified Teradata 
utility to populate the staging table 
from this file/pipe. Using named 
pipes avoids landing the data in a 
file. This LKM is recommended for 
very large volumes.

Consider using this IKM when:

■ The source data located on a 
SQL compliant database is 
large

■ You don't want to stage your 
data between the source and 
the target

■ Your staging area is a Teradata 
database.

This KM support the following 
Teradata optimizations:

■ Support for Teradata Utilities

■ Support for Named Pipes

■ Optimized Temporary Tables 
Management

Table 11–4 KMs for integrating data to Teradata

KM Notes

IKM Teradata Control Append Integrates data in a Teradata target table in 
replace/append mode. When flow data needs to be 
checked using a CKM, this IKM creates a temporary 
staging table before invoking the CKM.

Consider using this IKM if you plan to load your Teradata 
target table in replace mode, with or without data integrity 
check.

To use this IKM, the staging area must be on the same data 
server as the target Teradata table.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Optimized Temporary Tables Management

Table 11–3 (Cont.) KMs for loading data to Teradata

Source or Staging Area 
Technology KM Notes



Designing a Mapping

Teradata 11-9

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental 
update mode. This IKM creates a temporary staging table 
to stage the data flow. It then compares its content to the 
target table to guess which records should be inserted and 
which others should be updated. It also allows performing 
data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing 
to maximize performance. Therefore, this IKM is 
optimized for large volumes of data.

Consider using this IKM if you plan to load your Teradata 
target table to insert missing records and to update 
existing ones.

To use this IKM, the staging area must be on the same data 
server as the target.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Optimized Temporary Tables Management

IKM Teradata Multi Statement Integrates data in Teradata database target table using 
multi statement requests, managed in one SQL transaction

IKM Teradata Slowly Changing 
Dimension

Integrates data in a Teradata target table used as a Type II 
Slowly Changing Dimension in your Data Warehouse. 
This IKM relies on the Slowly Changing Dimension 
metadata set on the target datastore to figure out which 
records should be inserted as new versions or updated as 
existing versions.

Because inserts and updates are done in bulk set-based 
processing, this IKM is optimized for large volumes of 
data.

Consider using this IKM if you plan to load your Teradata 
target table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data 
server as the target and the appropriate Slowly Changing 
Dimension metadata needs to be set on the target 
datastore.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Optimized Temporary Tables Management

This KM also includes a COMPATIBLE option. This option 
corresponds to the Teradata engine major version number. 
If this version is 12 or above, then a MERGE statement will 
be used instead of the standard INSERT then UPDATE 
statements to merge the incoming data flow into the target 
table.

Table 11–4 (Cont.) KMs for integrating data to Teradata

KM Notes



Designing a Mapping

11-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area 
in replace mode. This IKM requires the staging area to be 
on Teradata. It uses the native Teradata utilities to export 
the data to the target file.

Consider using this IKM if you plan to transform and 
export data to a target file from your Teradata server.

To use this IKM, the staging area must be different from 
the target. It should be set to a Teradata location.

This KM support the following Teradata optimizations:

■ Support for Teradata Utilities

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the 
Teradata utilities for loading files directly to the target. It is 
restricted to one file as source and one Teradata table as 
target.

Depending on the utility you choose, you'll have the 
ability to integrate the data in either replace or incremental 
update mode.

Consider using this IKM if you plan to load a single flat 
file to your target table. Because it uses the Teradata 
utilities, this IKM is recommended for very large volumes.

To use this IKM, you have to set the staging area to the 
source file's schema.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Support for Teradata Utilities

■ Optimized Temporary Tables Management.

Table 11–4 (Cont.) KMs for integrating data to Teradata

KM Notes



Designing a Mapping

Teradata 11-11

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension 
value for each column of the target datastore. This value is used by the IKM Teradata 
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or 
Insert Column, Current Record Flag, and Start/End Timestamps columns.

Using Multi Statement Requests
Multi statement requests typically enable the parallel execution of simple mappings. 
The Teradata performance is improved by synchronized scans and by avoiding 
transient journal.

Set the KM options as follows:

■ Mappings using this KM must be used within a package:

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a 
Teradata database target table using Teradata Utilities 
TPUMP, FASTLOAD OR MULTILOAD.

This IKM is designed to leverage the power of the 
Teradata utilities for loading source data directly to the 
target. It can only be used when all source tables belong to 
the same data server and when this data server is used as a 
staging area (staging area on source). Source data can be 
unloaded into a file or Named Pipe and then loaded by the 
selected Teradata utility directly in the target table. Using 
named pipes avoids landing the data in a file. This IKM is 
recommended for very large volumes.

Depending on the utility you choose, you'll have the 
ability to integrate the data in replace or incremental 
update mode.

Consider using this IKM when:

■ You plan to load your target table with few 
transformations on the source

■ All your source tables are on the same data server 
(used as the staging area)

■ You don't want to stage your data between the source 
and the target

To use this IKM, you have to set the staging area to the 
source data server's schema.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Support for Teradata Utilities

■ Support for Named Pipes

■ Optimized Temporary Tables Management

IKM SQL to Teradata Control 
Append

Integrates data from an ANSI-92 compliant source 
database into Teradata target table in truncate / insert 
(append) mode. 

This IKM is typically used for ETL configurations: source 
and target tables are on different databases and the 
mapping's staging area is set to the logical schema of the 
source tables or a third schema. See Section 11.7.3, 
"Designing an ETL-Style Mapping" for more information.

Table 11–4 (Cont.) KMs for integrating data to Teradata

KM Notes



Designing a Mapping

11-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

– In the first mapping of the package loading a table via the multi-statement set 
the INIT_MULTI_STATEMENT option to YES.

– The subsequent mappings loading a table via the multi-statement must use 
this KM and have the INIT_MULTI_STATEMENT option set to NO.

– The last mapping must have the EXECUTE option set to YES in order to run 
the generated multi-statement.

■ In the STATEMENT_TYPE option, specify the type of statement (insert or update) 
for each mapping.

■ In the SQL_OPTION option, specify the additional SQL sentence that is added at 
the end of the query, for example QUALIFY Clause. 

Note the following limitations concerning multi-statements:

■ Multi-statements are only supported when they are used within a package.

■ Temporary indexes are not supported.

■ Updates are considered as Inserts in terms of row count.

■ Updates can only have a single Dataset.

■ Only executing mapping (EXECUTE = YES) reports row counts.

■ Journalized source data not supported.

■ Neither Flow Control nor Static Control is supported.

■ The SQL_OPTION option applies only to the last Dataset.

11.7.3 Designing an ETL-Style Mapping
See "Creating a Mapping" in the Developing Integration Projects with Oracle Data 
Integrator for generic information on how to design mappings. This section describes 
how to design an ETL-style mapping where the staging area is on a Teradata database 
or any ANSI-92 compliant database and the target on Teradata.

In an ETL-style mapping, ODI processes the data in a staging area, which is different 
from the target. Oracle Data Integrator provides two ways for loading the data from a 
Teradata or an ANSI-92 compliant staging area to a Teradata target:

■ Using a Multi-connection IKM

■ Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM
A multi-connection IKM allows integrating data into a target when the staging area 
and sources are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling 
Teradata data: IKM SQL to Teradata Control Append. You can also use the generic 
SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more information.

See Table 11–5 for more information on when to use a multi-connection IKM. 

To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI-92 compliant staging area and the target on 
Teradata using the standard procedure as described in "Creating a Mapping" in the 



Designing a Mapping

Teradata 11-13

Developing Integration Projects with Oracle Data Integrator. This section describes 
only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables 
or a third schema. See "Configuring Execution Locations" in the Developing 
Integration Projects with Oracle Data Integrator for information about how to change 
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for 
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) 
to the staging area. See Table 11–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property 
Inspector opens for this object.

7. In the  Integration Knowledge Module tab, select an ETL multi-connection IKM to 
load the data from the staging area to the target. See Table 11–5 to determine the 
IKM you can use.

Note the following when setting the KM options of the IKM SQL to Teradata Control 
Append:

■ If you do not want to create any tables on the target system, set FLOW_
CONTROL=false. If FLOW_CONTROL=false, the data is inserted directly into the 
target table.

■ If FLOW_CONTROL=true, the flow table is created on the target or on the staging 
area.

■ If you want to recycle data rejected from a previous control, set RECYCLE_
ERROR=true and set an update key for your mapping.

Using an LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in 
combination with a standard mono-connection IKM. The exporting LKM is used to 
load the flow table from the staging area to the target. The mono-connection IKM is 
used to integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a 
source and staging area of an ETL-style mapping. The target is Teradata.

See Table 11–5 for more information on when to use the combination of a standard 
LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI-92 compliant staging area and the target on 
Teradata using the standard procedure as described in "Creating a Mapping" in the 
Developing Integration Projects with Oracle Data Integrator. This section describes 
only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables 
or a third schema. See "Configuring Execution Locations" in the Developing 
Integration Projects with Oracle Data Integrator for information about how to change 
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for 
this object.



Designing a Mapping

11-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) 
to the staging area. See Table 11–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area.  The Property Inspector opens for this 
object.

7. In the Loading Knowledge Module tab, select an LKM to load from the staging 
area to the target. See Table 11–5 to determine the LKM you can use.

8. Optionally, modify the options.

9. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM 
to update the target. See Table 11–5 to determine the IKM you can use.



Designing a Mapping

Teradata 11-15

Table 11–5 KM Guidelines for ETL-Style Mappings with Teradata Data

Source Staging Area Target
Exporting 
LKM IKM KM Strategy Comment

ANSI 
SQL-92 
standard 
compliant

ANSI SQL-92 
standard 
compliant

Teradata NA IKM SQL to Teradata 
Control Append

Multi-connect
ion IKM

Recommended to 
perform control 
append

Supports flow 
control.

ANSI 
SQL-92 
standard 
compliant

Teradata or 
any ANSI 
SQL-92 
standard 
compliant 
database

Teradata 
or any 
ANSI 
SQL-92 
standard 
complia
nt 
database

NA IKM SQL to SQL 
Incremental Update

Multi-connect
ion IKM

Allows an 
incremental 
update strategy 
with no 
temporary 
target-side 
objects. Use this 
KM if it is not 
possible to create 
temporary 
objects in the 
target server.

The application 
updates are 
made without 
temporary 
objects on the 
target, the 
updates are 
made directly 
from source to 
target. The 
configuration 
where the flow 
table is created 
on the staging 
area and not in 
the target should 
be used only for 
small volumes of 
data.

Supports flow 
and static control

ANSI 
SQL-92 
standard 
compliant

Teradata or 
ANSI SQL-92 
standard 
compliant

Teradata LKM SQL to 
Teradata (TTU)

IKM Teradata 
Incremental Update

LKM + 
standard IKM

ANSI 
SQL-92 
standard 
compliant

Teradata Teradata LKM SQL to 
Teradata (TTU)

IKM Teradata Slowly 
Changing Dimension

LKM + 
standard IKM

ANSI 
SQL-92 
standard 
compliant

ANSI SQL-92 
standard 
compliant

Teradata LKM SQL to 
Teradata (TTU)

IKM SQL to Teradata 
(TTU)

LKM + 
standard IKM

If no flow 
control, this 
strategy is 
recommended 
for large volumes 
of data



KM Optimizations for Teradata

11-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11.8 KM Optimizations for Teradata
This section describes the specific optimizations for Teradata that are included in the 
Oracle Data Integrator Knowledge Modules.

This section includes the following topics:

■ Primary Indexes and Statistics

■ Support for Teradata Utilities

■ Support for Named Pipes

■ Optimized Management of Temporary Tables

11.8.1 Primary Indexes and Statistics
Teradata performance heavily relies on primary indexes. The Teradata KMs support 
customized primary indexes (PI) for temporary and target tables. This applies to 
Teradata LKMs, IKMs and CKMs. The primary index for the temporary and target 
tables can be defined in these KMs using the PRIMARY_INDEX KM option, which 
takes the following values:

■ [PK]: The PI will be the primary key of each temporary or target table. This is the 
default value.

■ [NOPI]: Do not specify primary index (Teradata 13.0 & above only).

■ [UK]: The PI will be the update key of the mapping. This is the default value. 

– <Column list>: This is a free PI based on the comma-separated list of column 
names.

– <Empty string>: No primary index is specified. The Teradata engine will use 
the default rule for the PI (first column of the temporary table).

Teradata MultiColumnStatistics should optionally be gathered for selected PI columns. 
This is controlled by COLLECT_STATS KM option, which is set to true by default.

11.8.2 Support for Teradata Utilities
Teradata Utilities (TTU) provide an efficient method for transferring data from and to 
the Teradata engine. When using a LKM or IKM supporting TTUs, it is possible to set 
the method for loading data using the TERADATA_UTILITY option.

This option takes the following values when pushing data to a Teradata target (IKM) 
or staging area (LKM):

■ FASTLOAD: use Teradata FastLoad

■ MLOAD: use Teradata MultiLoad

■ TPUMP: use Teradata TPump

■ TPT-LOAD: use Teradata Parallel Transporter (Load Operator)

■ TPT-SQL-INSERT: use Teradata Parallel Transporter (SQL Insert Operator)

This option takes the following values when pushing data FROM Teradata to a file:

■ FEXP: use Teradata FastExport

■ TPT: use Teradata Parallel Transporter

When using TTU KMs, you should also take into account the following KM 
parameters:



KM Optimizations for Teradata

Teradata 11-17

■ REPORT_NB_ROWS: This option allows you to report the number of lines 
processed by the utility in a Warning step of the mapping.

■ SESSIONS: Number of FastLoad sessions

■ MAX_ALLOWED_ERRORS: Maximum number of tolerated errors. This 
corresponds to the ERRLIMIT command in FastLoad/MultiLoad/TPump and to 
the ErrorLimit attribute for TPT.

■ MULTILOAD_TPUMP_TYPE: Operation performed by the MultiLoad or TPump 
utility. Valid values are INSERT, UPSERT and DELETE. For UPSERT and DELETE 
an update key is required in the mapping.

For details and appropriate choice of utility and load operator, refer to the Teradata 
documentation.

11.8.3 Support for Named Pipes
When using TTU KMs to move data between a SQL source and Teradata, it is possible 
to increase the performances by using Named Pipes instead of files between the 
unload/load processes. Named Pipes can be activated by setting the NP_USE_
NAMED_PIPE option to YES. The following options should also be taken into account 
for using Named Pipes:

■ NP_EXEC_ON_WINDOWS: Set this option to YES if the run-time agent runs on a 
windows platform.

■ NP_ACCESS_MODULE: Access module used for Named Pipes. This access 
module is platform dependant.

■ NP_TTU_STARTUP_TIME: This number of seconds for the TTU to be able to 
receive data through the pipe. This is the delay between the moment the KM starts 
the TTU and the moment the KM starts to push data into the named pipe. This 
delay is dependant on the machine workload.

11.8.4 Optimized Management of Temporary Tables 
Creating and dropping Data Integrator temporary staging tables can be a resource 
consuming process on a Teradata engine. The ODI_DDL KM option provides a mean 
to control these DDL operations. It takes the following values:

■ DROP_CREATE: Always drop and recreate all temporary tables for every 
execution (default behavior).

■ CREATE_DELETE_ALL: Create temporary tables when needed (usually for the 
first execution only) and use DELETE ALL to drop the temporary table content. 
Temporary table are reused for subsequent executions.

■ DELETE_ALL: Do not create temporary tables. Only submit DELETE ALL for all 
temporary tables.

■ NONE: Do not issue any DDL on temporary tables. Temporary tables should be 
handled separately.



KM Optimizations for Teradata

11-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



12

Hypersonic SQL 12-1

12Hypersonic SQL

This chapter describes how to work with Hypersonic SQL in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 12.1, "Introduction"

■ Section 12.2, "Installation and Configuration"

■ Section 12.3, "Setting up the Topology"

■ Section 12.4, "Setting Up an Integration Project"

■ Section 12.5, "Creating and Reverse-Engineering a Hypersonic SQL Model"

■ Section 12.6, "Setting up Data Quality"

■ Section 12.7, "Designing a Mapping"

12.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Hypersonic SQL 
database. Oracle Data Integrator features are designed to work best with Hypersonic 
SQL, including reverse-engineering, data integrity check, and mappings.

12.1.1 Concepts
The Hypersonic SQL database concepts map the Oracle Data Integrator concepts as 
follows: A Hypersonic SQL server corresponds to a data server in Oracle Data 
Integrator. Within this server, one single Oracle Data Integrator physical schema maps 
to the database.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to 
Hypersonic SQL.

12.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 12–1for 
handling Hypersonic SQL data. These KMs use Hypersonic SQL specific features. It is 
also possible to use the generic SQL KMs with the Hypersonic SQL database. See for 
more information.



Installation and Configuration

12-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

12.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
Hypersonic SQL Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

12.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

12.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Hypersonic SQL in Oracle 
Data Integrator.

12.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Hypersonic SQL Database. 

JDBC Driver
Oracle Data Integrator is installed with a JDBC driver for Hypersonic SQL. This driver 
directly uses the TCP/IP network layer and requires no other installed component or 
configuration.

12.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a Hypersonic SQL Data Server

2. Creating a Hypersonic SQL Physical Schema

12.3.1 Creating a Hypersonic SQL Data Server
A Hypersonic SQL data server corresponds to an Hypersonic SQL Database connected 
with a specific Hypersonic SQL user account. This user will have access to the 

Table 12–1 Hypersonic SQL Knowledge Modules

Knowledge Module Description

CKM HSQL Checks data integrity against constraints defined on a Hypersonic 
SQL table. Rejects invalid records in the error table created 
dynamically. Can be used for static controls as well as flow controls.

SKM HSQL Generates data access Web services for Hypersonic SQL databases. 



Creating and Reverse-Engineering a Hypersonic SQL Model

Hypersonic SQL 12-3

database via a physical schema in Oracle Data Integrator created under the data 
server.

Create a data server for the Hypersonic SQL technology using the standard procedure, 
as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's 
Guide for Oracle Data Integrator. This section details only the fields required or specific 
for defining a Hypersonic SQL data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Hypersonic SQL user with its password (usually sa)

2. In the JDBC tab:

■ JDBC Driver: org.hsqldb.jdbcDriver

■ JDBC URL: jdbc:hsqldb:hsql://<host>:<port>

The URL parameters are:

– <host>: Hypersonic SQL machine network name or IP address

– <port>: Port number

12.3.2 Creating a Hypersonic SQL Physical Schema
Create a physical schema using the standard procedure, as described in "Creating a 
Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

12.4 Setting Up an Integration Project
Setting up a project using the Hypersonic SQL database follows the standard 
procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware 
Developer's Guide for Oracle Data Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with Hypersonic SQL:

■ CKM HSQL

Import also the Generic SQL KMs into your project. See for more information about 
these KMs.

12.5 Creating and Reverse-Engineering a Hypersonic SQL Model
This section contains the following topics:

■ Create a Hypersonic SQL Model

■ Reverse-engineer a Hypersonic SQL Model



Setting up Data Quality

12-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

12.5.1 Create a Hypersonic SQL Model
Create a Hypersonic SQL Model using the standard procedure, as described in 
"Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data 
Integrator.

12.5.2 Reverse-engineer a Hypersonic SQL Model
Hypersonic SQL supports Standard reverse-engineering - which uses only the abilities 
of the JDBC driver.

To perform a Standard Reverse- Engineering on Hypersonic SQL use the usual 
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion 
Middleware Developer's Guide for Oracle Data Integrator.

12.6 Setting up Data Quality
Oracle Data Integrator provides the CKM HSQL for checking data integrity against 
constraints defined on a Hypersonic SQL table. See "Flow Control and Static Control" 
in Developing Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 12–2to perform 
a check on Hypersonic SQL.

12.7 Designing a Mapping
You can use Hypersonic SQL as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning a Hypersonic SQL data server.

Oracle Data Integrator does not provide specific loading or integration knowledge 
modules for Hypersonic SQL. Use the KMs or the KMs specific to the other 
technologies used as source, target, or staging area.

Table 12–2 Check Knowledge Modules for Hypersonic SQL Database

Recommended KM Notes

CKM HSQL Checks data integrity against constraints defined on a 
Hypersonic SQL table. Rejects invalid records in the error table 
created dynamically. Can be used for static controls as well as 
flow controls.



13

IBM Informix 13-1

13IBM Informix

This chapter describes how to work with IBM Informix in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 13.1, "Introduction"

■ Section 13.2, "Concepts"

■ Section 13.3, "Knowledge Modules"

■ Section 13.4, "Specific Requirements"

13.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM Informix database. 
Oracle Data Integrator features are designed to work best with IBM Informix, 
including reverse-engineering, journalizing, and mappings.

13.2 Concepts
The IBM Informix concepts map the Oracle Data Integrator concepts as follows: An 
IBM Informix Server corresponds to a data server in Oracle Data Integrator. Within 
this server, an Owner maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM 
Informix database.

13.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 13–1 for 
handling IBM Informix data. These KMs use IBM Informix specific features. It is also 
possible to use the generic SQL KMs with the IBM Informix database. See for more 
information.



Specific Requirements

13-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

13.4 Specific Requirements
There are no specific requirements for using IBM Informix in Oracle Data Integrator.

Table 13–1 IBM Informix Knowledge Modules

Knowledge Module Description

IKM Informix Incremental Update Integrates data in an IBM Informix target table in incremental update 
mode. This IKM creates a temporary staging table to stage the data 
flow. It then compares its content to the target table to guess which 
records should be inserted and which others should be updated. It 
also allows performing data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to 
maximize performance. Therefore, this IKM is optimized for large 
volumes of data.

Consider using this IKM if you plan to load your IBM Informix target 
table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as 
the target.

JKM Informix Consistent Creates the journalizing infrastructure for consistent journalizing on 
IBM Informix tables using triggers.

Enables Consistent Set Changed Data Capture on IBM Informix.

The source database must have transaction logging enabled to use 
this KM.

JKM Informix Simple Creates the journalizing infrastructure for simple journalizing on IBM 
Informix tables using triggers.

Enables Simple Changed Data Capture on IBM Informix.

LKM Informix to Informix (SAME 
SERVER)

Loads data from a source Informix database to a target Informix 
staging area located inside the same server.

This LKM creates a view in the source database and a synonym in the 
staging area database. This method if often more efficient than the 
standard "LKM SQL to SQL" when dealing with large volumes of 
data.

Consider using this LKM if your source tables are located on an IBM 
Informix database and your staging area is on an IBM Informix 
database located in the same Informix server.

Both databases must have the same logging mode enabled to use this 
KM.

RKM Informix Retrieves IBM Informix specific metadata for tables, views, columns, 
primary keys and non unique indexes. This RKM accesses the 
underlying Informix catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata 
from your Informix catalog when it is not provided by the default 
JDBC reverse-engineering process.

SKM Informix Generates data access Web services for IBM Informix databases. See 
SKM SQL in for more details.



14

IBM DB2 for iSeries 14-1

14IBM DB2 for iSeries

This chapter describes how to work with IBM DB2 for iSeries in Oracle Data 
Integrator.

This chapter includes the following sections:

■ Section 14.1, "Introduction"

■ Section 14.2, "Installation and Configuration"

■ Section 14.3, "Setting up the Topology"

■ Section 14.4, "Setting Up an Integration Project"

■ Section 14.5, "Creating and Reverse-Engineering an IBM DB2/400 Model"

■ Section 14.6, "Setting up Changed Data Capture"

■ Section 14.7, "Setting up Data Quality"

■ Section 14.8, "Designing a Mapping"

■ Section 14.9, "Specific Considerations with DB2 for iSeries"

■ Section 14.10, "Troubleshooting"

14.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in IBM DB2 for iSeries. Oracle 
Data Integrator features are designed to work best with IBM DB2 for iSeries, including 
reverse-engineering, changed data capture, data integrity check, and mappings. 

14.1.1 Concepts
The IBM DB2 for iSeries concepts map the Oracle Data Integrator concepts as follows: 
An IBM DB2 for iSeries server corresponds to a data server in Oracle Data Integrator. 
Within this server, a collection or schema maps to an Oracle Data Integrator physical 
schema. A set of related objects within one schema corresponds to a data model, and 
each table, view or synonym will appear as an ODI datastore, with its attributes, 
columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to IBM DB2 
for iSeries.

14.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 14–1 for 
handling IBM DB2 for iSeries data. In addition to these specific IBM DB2 for iSeries 



Installation and Configuration

14-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Knowledge Modules, it is also possible to use the generic SQL KMs with IBM DB2 for 
iSeries. See Chapter 4, "Generic SQL" for more information.

14.2 Installation and Configuration
Make sure you have read the information in this section before you start working with 
the IBM DB2 for iSeries technology:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

14.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

Table 14–1 IBM DB2 for iSeries Knowledge Modules

Knowledge Module Description

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in incremental 
update mode. 

IKM DB2 400 Incremental Update (CPYF) Integrates data in an IBM DB2 for iSeries target table in incremental 
update mode. This IKM is similar to the "IKM DB2 400 Incremental 
Update" except that it uses the CPYF native OS/400 command to 
write to the target table, instead of set-based SQL operations. 

IKM DB2 400 Slowly Changing Dimension Integrates data in an IBM DB2 for iSeries target table used as a Type 
II Slowly Changing Dimension in your Data Warehouse.

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent journalizing on 
IBM DB2 for iSeries tables using triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple journalizing on IBM 
DB2 for iSeries tables using triggers.

JKM DB2 400 Simple (Journal) Creates the journalizing infrastructure for simple journalizing on IBM 
DB2 for iSeries tables using the journals.

This KM is deprecated.

LKM DB2 400 Journal to SQL Loads data from an IBM DB2 for iSeries source to a ANSI SQL-92 
compliant staging area database. This LKM can source from tables 
journalized with the JKM DB2 400 Simple (Journal) as it refreshes the 
CDC infrastructure from the journals.

This KM is deprecated.

LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for iSeries source database to an IBM 
DB2 for iSeries staging area database using CRTDDMF to create a 
DDM file on the target and transfer data from the source to this DDM 
file using CPYF.

RKM DB2 400 Retrieves metadata for IBM DB2 for iSeries: physical files, tables, 
views, foreign keys, unique keys.



Setting up the Topology

IBM DB2 for iSeries 14-3

14.2.2 Technology Specific Requirements
Some of the Knowledge Modules for IBM DB2 for iSeries use specific features of this 
database. The following restrictions apply when using these Knowledge Modules. 

See the IBM DB2 for iSeries documentation for additional information on these topics.

Using System commands
This section describes the requirements that must be met before using iSeries specific 
commands in the knowledge modules for IBM DB2 for iSeries:

■ Knowledge modules using system commands such as CPYF or CPYFRMIPF 
require that the agent runs on the iSeries runs on the iSeries system.

Using CDC with Journals
This section describes the requirements that must be met before using the 
Journal-based Change Data Capture with IBM DB2 for iSeries:

■ This journalizing method requires that a specific program is installed and runs on 
the iSeries system. See Setting up Changed Data Capture for more information.

14.2.3 Connectivity Requirements
This section lists the requirements for connecting to an IBM DB2 for iSeries system. 

JDBC Driver
Oracle Data Integrator is installed with a default IBM DB2 Datadirect Driver. This 
driver directly uses the TCP/IP network layer and requires no other installed 
component or configuration. You can alternatively use the drivers provided by IBM, 
such as the Native Driver when installing the agent on iSeries.

14.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a DB2/400 Data Server

2. Creating a DB2/400 Physical Schema

14.3.1 Creating a DB2/400 Data Server
An IBM DB2/400 data server corresponds to an iSeries server connected with a 
specific user account. This user will have access to several databases in this server, 
corresponding to the physical schemas in Oracle Data Integrator created under the 
data server.

14.3.1.1 Creation of the Data Server
Create a data server for the IBM DB2/400 technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining an 
IBM DB2/400 data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Host (Data Server): Name or IP address of the host



Setting Up an Integration Project

14-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ User/Password: DB2 user with its password

2. In the JDBC tab:

■ JDBC Driver: weblogic.jdbc.db2.DB2Driver

■ JDBC URL: 
jdbc:as400://<host>[;libraries=<library>][;<property>=<val
ue>...]

The URL parameters are:

– <host>: server network name or IP address

– <library>:  default library or collection to access

– <property>=<value>: connection properties. Refer to the driver's 
documentation for a list of available properties.

14.3.2 Creating a DB2/400 Physical Schema
Create an IBM DB2/400 physical schema using the standard procedure, as described 
in "Creating a Physical Schema" in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a 
schema (collection or library). The work schema should point to a temporary schema 
and the data schema should point to the schema hosting the data to integrate. 

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

14.4 Setting Up an Integration Project
Setting up a project using the IBM DB2 for iSeries database follows the standard 
procedure. See "Creating an Integration Project" of the Developing Integration Projects 
with Oracle Data Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with IBM DB2 for iSeries:

■ IKM DB2 400 Incremental Update

■ IKM DB2 400 Slowly Changing Dimension

■ JKM DB2 400 Consistent

■ JKM DB2 400 Simple

■ RKM DB2 400

■ CKM SQL

14.5 Creating and Reverse-Engineering an IBM DB2/400 Model
This section contains the following topics:

■ Create an IBM DB2/400 Model

■ Reverse-engineer an IBM DB2/400 Model



Setting up Changed Data Capture

IBM DB2 for iSeries 14-5

14.5.1 Create an IBM DB2/400 Model
Create an IBM DB2/400 Model using the standard procedure, as described in 
"Creating a Model" of the Developing Integration Projects with Oracle Data Integrator.

14.5.2 Reverse-engineer an IBM DB2/400 Model
IBM DB2 for iSeries supports both Standard reverse-engineering - which uses only the 
abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM 
to retrieve the metadata.

In most of the cases, consider using the standard JDBC reverse engineering for 
starting.

Consider switching to customized reverse-engineering for retrieving more metadata. 
IBM DB2 for iSeries customized reverse-engineering retrieves the physical files, 
database tables, database views, columns, foreign keys and primary and alternate 
keys.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on IBM DB2 for iSeries use the usual 
procedure, as described in "Reverse-engineering a Model" of the Developing Integration 
Projects with Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on IBM DB2 for iSeries with a RKM, 
use the usual procedure, as described in "Reverse-engineering a Model" of the 
Developing Integration Projects with Oracle Data Integrator. This section details only the 
fields specific to the IBM DB2/400 technology:

In the Reverse tab of the IBM DB2/400 Model, select the KM: RKM DB2 
400.<project name>.

14.6 Setting up Changed Data Capture
Oracle Data Integrator handles Changed Data Capture on iSeries with two methods:

■ Trigger-based CDC on the journalized tables. This method is set up with the JKM 
DB2/400 Simple or JKM DB2/400 Consistent. This CDC is not different from the 
CDC on other systems. See Section 14.6.1, "Setting up Trigger-Based CDC" for 
more information.

■ Log-based CDC by reading the native iSeries transaction journals. This method 
is set up with the JKM DB2/400 Journal Simple and used by the LKM DB2/400 
Journal to SQL. This method does not support Consistent Set CDC and requires a 
platform-specific configuration. See Section 14.6.1, "Setting up Trigger-Based CDC" 
for more information.

14.6.1 Setting up Trigger-Based CDC
This method support Simple Journalizing and Consistent Set Journalizing. The IBM 
DB2 for iSeries JKMs use triggers to capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 14–2 for 
journalizing IBM DB2 for iSeries tables using triggers.



Setting up Changed Data Capture

14-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

See Chapter "Working with Changed Data Capture" of the Developing Integration 
Projects with Oracle Data Integrator for details on how to set up journalizing and how to 
use captured changes.

14.6.2 Setting up Log-Based CDC
This method is set up with the JKM DB2/400 Journal Simple and used by the LKM 
DB2/400 Journal to SQL. It uses also an RPG program to retrieve the journal content. 

14.6.2.1 How does it work?
A iSeries transaction journal contains the entire history of the data changes for a given 
period. It is handled by the iSeries system for tables that are journaled. A journaled 
table is either a table from a collection, or a table for which a journal receiver and a 
journal have been created and journaling started.

Reading the transaction journal is performed by the a journal retriever CDCRTVJRN 
RPG program provided with Oracle Data Integrator. This program loads on demand 
the tables of the Oracle Data Integrator CDC infrastructure (J$ tables) with the contents 
from the transaction journal.

This program can be either scheduled on the iSeries system or called by the KMs 
through a stored procedure also called CDCRTVJRN. This stored procedure is 
automatically created by the JKM DB2/400 Journal Simple and invoked by the LKM 
DB2/400 Journal to SQL when data extraction is needed.

14.6.2.2 CDCRTVJRN Program Details
This program connects to the native iSeries journal for a given table, and captures 
changed data information into the Oracle Data Integrator Journal (J$).

The program works as follows:

1. Journalized table attributes retrieval:

a. Table attributes retrieval: PK columns, J$ table name, last journal reading date.

b. Attributes enrichment (short names, record size, etc.) using the 
QSYS.QADBXREF system table.

c. Location of the iSeries journal using the QADBRTVFD() API.

2. PK columns information retrieval:

a. PK columns attributes (short name, data types etc.) using the 
QSYS.QADBIFLD system table.

b. Attributes enrichment (real physical length) using the QUSLFLD() API.

c. Data preprocessing (RPG to SQL datatype conversion) for the primary key 
columns.

3. Extraction the native journal information into the J$ table:

Table 14–2 IBM DB2 for iSeries Journalizing Knowledge Modules

KM Notes

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent 
journalizing on IBM DB2 for iSeries tables using 
triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple 
journalizing on IBM DB2 for iSeries tables using 
triggers.



Setting up Changed Data Capture

IBM DB2 for iSeries 14-7

a. Native journal reading using the QJoRetrieveJournalEntries() API.

b. Conversion of the raw data to native SQL data and capture into the J$ table.

c. Update of the changes count.

This program accepts the parameters listed in Table 14–3.

14.6.2.3 Installing the CDC Components on iSeries
There are two major components installed on the iSeries system to enable native 
journal reading:

■ The CDCRTVJRN Program. This program is provided in an archive that should 
installed in the iSeries system. The installation process is described below.

■ The CDC Infrastructure. It includes the standard CDC objects (J$ tables, views, ...) 
and the CDCRTVJRN Stored Procedure created by the JKM and used by the LKM 
to read journals. This stored procedure executes the CDCRTVJRN program.

Installing the CDCRTVJRN Program
To install the CDCRTVJRN program:

1. Identify the location the program SAVF file. It is located in the ODI_
HOME/setup/manual/cdc-iseries directory, and is also available on the 
Oracle Data Integrator Companion CD.

2. Connect to the iSeries system.

3. Create the default work library if it does not exist yet. You can use, for example, 
the following command to create an ODILIB library:

CRTLIB LIB(ODILIB)

4. Create in this library an empty save file that has the same name as the SAVF file 
(mandatory). For example:

CRTSAVF FILE(ODILIB/SAVPGM0110)

Table 14–3 CDCRTVJRN Program Parameters

Parameter RPG Type SQL Type Description

SbsTName A138 Char(138) Full name of the subscribers table in the 
following format: <Lib>.<Table>.

Example: ODILIB.SNP_SUBSCRIBERS

JrnTName A138 Char(138) Full name of the table for which the extract is 
done from the journal.

Example: FINANCE.MY_COMPANY_ORDERS

JrnSubscriber A50 Char(50) Name of the current subscriber. It must 
previously have been added to the list of 
subscribers.

LogMessages A1 Char(1) Flag activating logging in a spool file. Possible 
values are: Y enable logging, and N to disable 
logging.

Note: The program must be set up in a library defined in the 
Topology as the default work library for this iSeries data server. In the 
examples below, this library is called ODILIB.



Setting up Changed Data Capture

14-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

5. Upload the local SAVF file on the iSeries system in the library and on top of the file 
you have just created. Make sure that the upload process is performed in binary 
mode. 

An FTP command sequence performing the upload is given below as an example.

FTP 192.168.0.13
LCD /oracle/odi/setup/manual/cdc-iseries/
BI
CD ODILIB
PUT SAVPGM0110 
BYE

■ Restore the objects from the save file, using the RSTOBJ command. For example:

RSTOBJ OBJ(*ALL) SAVLIB(CDCSNPRELE) DEV(*SAVF) OBJTYPE(*ALL) 
SAVF(ODILIB/SAVPGM0110) RSTLIB(ODILIB)

■ Check that the objects are correctly restored. The target library should contain a 
program object called CDCRTVJRN. 

Use the following command below to view it: 

WRKOBJ OBJ(ODILIB/CDCRTVJRN)

The CDCRTVJRN Stored Procedure
This procedure is used to call the CDCRTVJRN program. It is automatically created by 
the JKM DB2/400 Journal Simple KM when journalizing is started. Journalizing 
startup is described in the Change Data Capture topic.

The syntax for the stored procedure is provided below for reference:

create procedure ODILIB.CDCRTVJRN(
   SbsTName char(138), /* Qualified Subscriber Table Name */
   JrnTName char(138), /* Qualified Table Name */
   Subscriber char(50) , /* Subscriber Name */
   LogMessages char(1) /* Create a Log (Y - Yes, N - No) */
)
language rpgle
external name 'ODILIB/CDCRTVJRN'

14.6.2.4 Using the CDC with the Native Journals
Once the program is installed and the CDC is setup, using the native journals consists 
in using the LKM DB2/400 Journal to SQL to extract journalized data from the iSeries 
system. The retrieval process is triggered if the RETRIEVE_JOURNAL_ENTRIES 
option is set to true for the LKM.

14.6.2.5 Problems While Reading Journals
This section list the possibly issues when using this changed data capture method.

CDCRTVJRN Program Limits
The following limits exist for the CDCRTVJRN program:

Note: The stored procedure and the program are installed in a 
library defined in the Topology as the default work library for this 
iSeries data server



Designing a Mapping

IBM DB2 for iSeries 14-9

■ The source table should be journaled and the iSeries journal should be readable by 
the user specified in the iSeries data server.

■ The source table should have one PK defined in Oracle Data Integrator.

■ The PK declared in Oracle Data Integrator should be in the 4096 first octets of the 
physical record of the data file.

■ The number of columns in the PK should not exceed 16.

■ The total number of characters of the PK column names added to the number of 
columns of the PK should not exceed 255.

■ Large object datatypes are not supported in the PK. Only the following SQL types 
are supported in the PK: SMALLINT, INTEGER, BIGINT, DECIMAL (Packed), 
NUMERIC (Zoned), FLOAT, REAL, DOUBLE, CHAR, VARCHAR, CHAR 
VARYING, DATE, TIME, TIMESTAMP and ROWID.

■ Several instances of CDCRTVJRN should not be started simultaneously on the 
same system.

■ Reinitializing the sequence number in the iSeries journal may have a critical 
impact on the program (program hangs) if the journal entries consumption date 
(SNP_SUBSCRIBERS.JRN_CURFROMDATE) is before the sequence initialization 
date. To work around this problem, you should manually set a later date in SNP_
SUBSCRIBERS.JRN_CURFROMDATE.

Troubleshooting the CDCRTVJRN Program
The journal reading process can be put in trace mode:

■ either by calling from your query tool the CDCRTVJRN stored procedure with the 
LogMsg parameter set to Y,

■ or by forcing the CREATE_SPOOL_FILE LKM option to 1 then restarting the 
mapping.

The reading process logs are stored in a spool file which can be reviewed using the 
WRKSPLF command.

You can also review the raw contents of the iSeries journal using the DSPJRN 
command.

14.7 Setting up Data Quality
Oracle Data Integrator provides the generic CKM SQL for checking data integrity 
against constraints defined in DB2/400. See "Flow Control and Static Control" in 
Developing Integration Projects with Oracle Data Integrator for details.

See Chapter 4, "Generic SQL" for more information.

14.8 Designing a Mapping
You can use IBM DB2 for iSeries as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning an IBM DB2 for iSeries data server.



Designing a Mapping

14-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

14.8.1 Loading Data from and to IBM DB2 for iSeries 
IBM DB2 for iSeries can be used as a source, target or staging area of a mapping. The 
LKM choice in the Mapping Flow tab to load data between IBM DB2 for iSeries and 
another type of data server is essential for the performance of a mapping.

14.8.1.1 Loading Data from IBM DB2 for iSeries 
Oracle Data Integrator provides Knowledge Modules that implement optimized 
methods for loading data from IBM DB2 for iSeries to a target or staging area database. 
These optimized IBM DB2 for iSeries KMs are listed in Table 14–4. 

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to 
the other technology involved to load data from IBM DB2 for iSeries to a target or 
staging area database.

14.8.1.2 Loading Data to IBM DB2 for iSeries 
Oracle Data Integrator provides Knowledge Modules that implement optimized 
methods for loading data from a source or staging area into an IBM DB2 for iSeries 
database. These optimized IBM DB2 for iSeries KMs are listed in Table 14–5. 

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to 
the other technology involved.

14.8.2 Integrating Data in IBM DB2 for iSeries 
Oracle Data Integrator provides Knowledge Modules that implement optimized data 
integration strategies for IBM DB2 for iSeries. These optimized IBM DB2 for iSeries 
KMs are listed in Table 14–6. I

Table 14–4 KMs for loading data from IBM DB2 for iSeries 

Source or Staging Area 
Technology KM Notes

IBM DB2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for 
iSeries source database to an IBM 
DB2 for iSeries staging area database 
using CRTDDMF to create a DDM 
file on the target and transfer data 
from the source to this DDM file 
using CPYF.

IBM DB2 for iSeries LKM DB2 400 Journal to 
SQL

Loads data from an IBM DB2 for 
iSeries source to a ANSI SQL-92 
compliant staging area database. This 
LKM can source from tables 
journalized with the JKM DB2 400 
Simple (Journal) as it refreshes the 
CDC infrastructure from the journals.

Table 14–5 KMs for loading data to IBM DB2 for iSeries 

Source or Staging Area 
Technology KM Notes

IBM DB2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for 
iSeries source database to an IBM 
DB2 for iSeries staging area database 
using CRTDDMF to create a DDM 
file on the target and transfer data 
from the source to this DDM file 
using CPYF.



Specific Considerations with DB2 for iSeries

IBM DB2 for iSeries 14-11

In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Mapping Flow tab determines the performances and 
possibilities for integrating.

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension 
value for each attributes of the target datastore. This value is used by the IKM DB2 400 
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or 
Insert Column, Current Record Flag and Start/End Timestamps columns.

14.9 Specific Considerations with DB2 for iSeries
This section provides specific considerations when using Oracle Data Integrator in an 
iSeries environment.

14.9.1 Alternative Connectivity Methods for iSeries
It is preferable to use the built-in IBM DB2 Datadirect driver in most cases. This driver 
directly use the TCP/IP network layer and require no other components installed on 
the client machine. Other methods exist to connect DB2 on iSeries.

14.9.1.1 Using Client Access
It is also possible to connect through ODBC with the IBM Client Access component 
installed on the machine. This method does not have very good performance and does 
not support the reverse engineering and some other features. It is therefore not 
recommended.

14.9.1.2 Using the IBM JT/400 and Native Drivers
This driver appears as a jt400.zip file you must copy into your Oracle Data 
Integrator installation drivers directory.

To connect DB2 for iSeries with a Java application installed on the iSeries machine, 
IBM recommends that you use the JT/400 Native driver (jt400native.jar) instead 
of the JT/400 driver (jt400.jar). The Native driver provides optimized access to the 
DB2 system, but works only from the iSeries machine.

To support seamlessly both drivers with one connection, Oracle Data Integrator has a 
built-in Driver Wrapper for AS/400. This wrapper connects through the Native driver 
if possible, otherwise it uses the JT/400 driver. It is recommended that you use this 
wrapper if running agents installed on AS/400 systems.

Table 14–6 KMs for integrating data to IBM DB2 for iSeries 

KM Notes

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in 
incremental update mode. 

IKM DB2 400 Incremental Update 
(CPYF)

Integrates data in an IBM DB2 for iSeries target table in 
incremental update mode. This IKM is similar to the "IKM 
DB2 400 Incremental Update" except that it uses the CPYF 
native OS/400 command to write to the target table, 
instead of set-based SQL operations. 

IKM DB2 400 Slowly Changing 
Dimension

Integrates data in an IBM DB2 for iSeries target table used 
as a Type II Slowly Changing Dimension in your Data 
Warehouse.



Troubleshooting

14-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

To configure a data server with the driver wrapper:

1. Change the driver and URL to your AS/400 server with the following information:

■ Driver: com.sunopsis.jdbc.driver.wrapper.SnpsDriverWrapper

■ URL: jdbc:snps400:<machine_
name>[;param1=value1[;param2=value2...]]

2. Set the following java properties for the java machine the run-time agent deployed 
on iSeries:

■ HOST_NAME: comma separated list of host names identifying the current 
machine.

■ HOST_IP: IP Address of the current machine.

The value allow the wrapper to identify whether this data server is accessed on the 
iSeries machine or from a remote machine.

14.10 Troubleshooting
This section provides information on how to troubleshoot problems that you might 
encounter when using Oracle Knowledge Modules. It contains the following topics:

■ Troubleshooting Error messages

■ Common Problems and Solutions

14.10.1 Troubleshooting Error messages
Errors in Oracle Data Integrator appear often in the following way:

java.sql.SQLException: The application server rejected the connection.(Signon was 
canceled.)
at ...
at ...
...

the java.sql.SQLExceptioncode simply indicates that a query was made to the 
database through the JDBC driver, which has returned an error. This error is frequently 
a database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the 
DB2 or iSeries documentation. If its contains sometimes an error code specific to your 
system, with which the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL 
code send to the database to find the source of the error. The code is displayed in the 
description tab of the erroneous task.

14.10.2 Common Problems and Solutions
This section describes common problems and solutions.

14.10.2.1 Connection Errors
■ UnknownDriverException

The JDBC driver is incorrect. Check the name of the driver.

■ The application requester cannot establish the 
connection.(<name or IP address>) Cannot open a socket on 



Troubleshooting

IBM DB2 for iSeries 14-13

host: <name or IP address>, port: 8471 (Exception: 
java.net.UnknownHostException:<name or IP address>)

Oracle Data Integrator cannot connect to the database. Either the machine name or 
IP address is invalid, the DB2/400 Services are not started or the TCP/IP interface 
on AS/400 is not started. Try to ping the AS/400 machine using the same machine 
name or IP address, and check with the system administrator that the appropriate 
services are started.

■ Datasource not found or driver name not specified

The ODBC Datasource specified in the JDBC URL is incorrect.

■ The application server rejected the connection.(Signon was 
canceled.) Database login failed, please verify userid and 
password. Communication Link Failure. Comm RC=8001 - 
CWBSY0001 - ...

The user profile used is not valid. This error occurs when typing an invalid user 
name or an incorrect password.

■ Communication Link Failure

An error occurred with the ODBC connectivity. Refer to the Client Access 
documentation for more information.

■ SQL5001 - Column qualifier or table &2 undefined. SQL5016 - 
Object name &1 not valid for naming convention

Your JDBC connection or ODBC Datasource is configured to use the wrong 
naming convention. Use the ODBC Administrator to change your datasource to 
use the proper (*SQL or *SYS) naming convention, or use the appropriate option in 
the JDBC URL to force the naming conversion (for instance 
jdbc:as400://195.10.10.13;naming=system) . Note that if using the system naming 
convention in the Local Object Mask of the Physical Schema, you must enter 
%SCHEMA/%OBJECT instead of %SCHEMA.%OBJECT.

"*SQL" should always be used unless your application is specifically designed for 
*SYS. Oracle Data Integrator uses the *SQL naming convention by default.

■ SQL0204 &1 in &2 type *&3 not found

The table you are trying to access does not exist. This may be linked to an error in 
the context choice, or in the sequence of operations (E.g.: The table is a temporary 
table which must be created by another mapping).

■ Hexadecimal characters appear in the target tables. 
Accentuated characters are incorrectly transferred.

The iSeries computer attaches a language identifier or CCSID to files, tables and 
even fields (columns). CCSID 65535 is a generic code that identifies a file or field 
as being language independent: i.e. hexadecimal data. By definition, no translation 
is performed by the drivers. If you do not wish to update the CCSID of the file, 
then translation can be forced, in the JDBC URL, thanks to the flags ccsid=<ccsid 
code> and convert _ccsid_65535=yes|no. See the driver's documentation for more 
information.

■ SQL0901 SQL system error

This error is an internal error of the DB2/400 system.

■ SQL0206 Column &1 not in specified tables



Troubleshooting

14-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Keying error in a mapping/join/filter. A string which is not a column 
name is interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore 
with a structure recently modified. It is necessary to impact in the error table the 
modification, or drop the error tables and let Oracle Data Integrator recreate it in 
the next execution.



15

IBM DB2 UDB 15-1

15IBM DB2 UDB

This chapter describes how to work with IBM DB2 UDB in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 15.1, "Introduction"

■ Section 15.2, "Concepts"

■ Section 15.3, "Knowledge Modules"

■ Section 15.4, "Specific Requirements"

15.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM DB2 UDB database. 
Oracle Data Integrator features are designed to work best with IBM DB2 UDB, 
including journalizing, data integrity checks, and mappings.

15.2 Concepts
The IBM DB2 UDB concepts map the Oracle Data Integrator concepts as follows: An 
IBM DB2 UDB database corresponds to a data server in Oracle Data Integrator. Within 
this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM 
DB2 UDB database.

15.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 15–1 for 
handling IBM DB2 UDB data. These KMs use IBM DB2 UDB specific features. It is also 
possible to use the generic SQL KMs with the IBM DB2 UDB database. See Chapter 4, 
"Generic SQL" for more information



Knowledge Modules

15-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 15–1 IBM DB2 UDB Knowledge Modules

Knowledge Module Description

IKM DB2 UDB Incremental Update Integrates data in an IBM DB2 UDB target table in incremental 
update mode. This IKM creates a temporary staging table to stage the 
data flow. It then compares its content to the target table to identify 
which records should be inserted and which others should be 
updated. It also allows performing data integrity check by invoking 
the CKM.

Inserts and updates are done in bulk set-based processing to 
maximize performance. Therefore, this IKM is optimized for large 
volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB 
target table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as 
the target.

IKM DB2 UDB Slowly Changing 
Dimension

Integrates data in an IBM DB2 UDB target table used as a Type II 
Slowly Changing Dimension in your Data Warehouse. This IKM 
relies on the Slowly Changing Dimension metadata set on the target 
datastore to figure out which records should be inserted as new 
versions or updated as existing versions.

Because inserts and updates are done in bulk set-based processing, 
this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB 
target table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data server as 
the target and the appropriate Slowly Changing Dimension metadata 
needs to be set on the target datastore.

JKM DB2 UDB Consistent Creates the journalizing infrastructure for consistent journalizing on 
IBM DB2 UDB tables using triggers.

Enables Consistent Changed Data Capture on IBM DB2 UDB.

JKM DB2 UDB Simple Creates the journalizing infrastructure for simple journalizing on IBM 
DB2 UDB tables using triggers.

Enables Simple Changed Data Capture on IBM DB2 UDB.

LKM DB2 UDB to DB2 UDB (EXPORT_
IMPORT)

Loads data from an IBM DB2 UDB source database to an IBM DB2 
UDB staging area database using the native EXPORT / IMPORT 
commands.

This module uses the EXPORT CLP command to extract data in a 
temporary file. Data is then loaded in the target staging DB2 UDB 
table using the IMPORT CLP command. This method if often more 
efficient than the standard LKM SQL to SQL when dealing with large 
volumes of data.

Consider using this LKM if your source tables are located on a DB2 
UDB database and your staging area is on a different DB2 UDB 
database.

LKM File to DB2 UDB (LOAD) Loads data from a File to a DB2 UDB staging area database using the 
native CLP LOAD Command.

Depending on the file type (Fixed or Delimited) this LKM will 
generate the appropriate LOAD script in a temporary directory. This 
script is then executed by the CLP and automatically deleted at the 
end of the execution. Because this method uses the native IBM DB2 
loaders, it is more efficient than the standard LKM File to SQL when 
dealing with large volumes of data.

Consider using this LKM if your source is a large flat file and your 
staging area is an IBM DB2 UDB database.



Specific Requirements

IBM DB2 UDB 15-3

15.4 Specific Requirements
Some of the Knowledge Modules for IBM DB2 UDB use operating system calls to 
invoke the IBM CLP command processor to perform efficient loads. The following 
restrictions apply when using such Knowledge Modules:

■ The IBM DB2 UDB Command Line Processor (CLP) as well as the DB2 UDB 
Connect Software must be installed on the machine running the Oracle Data 
Integrator Agent.

■ The server names defined in the Topology must match the IBM DB2 UDB connect 
strings used for these servers.

■ Some DB2 UDB JDBC drivers require DB2 UDB Connect Software to be installed 
on the machine running the ODI Agent.

See the IBM DB2 documentation for more information.

LKM SQL to DB2 UDB Loads data from any ANSI SQL-92 standard compliant source 
database to an IBM DB2 UDB staging area. This LKM is similar to the 
standard LKM SQL to SQL described in Chapter 4, "Generic SQL" 
except that you can specify some additional specific IBM DB2 UDB 
parameters.

LKM SQL to DB2 UDB (LOAD) Loads data from any ANSI SQL-92 standard compliant source 
database to an IBM DB2 UDB staging area using the CLP LOAD 
command.

This LKM unloads the source data in a temporary file and calls the 
IBM DB2 native loader using the CLP LOAD command to populate 
the staging table. Because this method uses the native IBM DB2 
loader, it is often more efficient than the LKM SQL to SQL or LKM 
SQL to DB2 UDB methods when dealing with large volumes of data.

Consider using this LKM if your source data located on a generic 
database is large, and when your staging area is an IBM DB2 UDB 
database.

SKM IBM UDB Generates data access Web services for IBM DB2 UDB databases. See 
SKM SQL in Chapter 4, "Generic SQL" for more information.

Table 15–1 (Cont.) IBM DB2 UDB Knowledge Modules

Knowledge Module Description



Specific Requirements

15-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



Part II
Part II Business Intelligence

This part describes how to work with Business Intelligence in Oracle Data Integrator.

Part II contains the following chapters:

■ Chapter 16, "Oracle Business Intelligence Enterprise Edition"

■ Chapter 17, "Oracle Business Intelligence Enterprise Edition Data Lineage"





16

Oracle Business Intelligence Enterprise Edition 16-1

16Oracle Business Intelligence Enterprise
Edition

This chapter describes how to work with Oracle Business Intelligence Enterprise 
Edition in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 16.1, "Introduction"

■ Section 16.2, "Installation and Configuration"

■ Section 16.3, "Setting up the Topology"

■ Section 16.4, "Setting Up an Integration Project"

■ Section 16.5, "Creating and Reverse-Engineering an Oracle BI Model"

■ Section 16.6, "Setting up Data Quality"

■ Section 16.7, "Designing a Mapping"

16.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data from Oracle Business 
Intelligence Enterprise Edition (Oracle BI).

Oracle Data Integrator provides specific methods for reverse-engineering and 
extracting data from ADF View Objects (ADF-VOs) via the Oracle BI Physical Layer 
using mappings.

16.1.1 Concepts
The Oracle Business Intelligence Enterprise Edition concepts map the Oracle Data 
Integrator concepts as follows: An Oracle BI Server corresponds to a data server in 
Oracle Data Integrator. Within this server, a catalog/owner pair maps to an Oracle 
Data Integrator physical schema.

Oracle Data Integrator connects to this server to access, via a bypass connection pool, 
the physical sources that support ADF View Objects.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle 
BI Server.

16.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 16–1 for 
handling Oracle BI data. These KMs use Oracle BI specific features.



Installation and Configuration

16-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

16.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
Oracle BI Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

16.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

16.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle BI in Oracle Data 
Integrator.

16.2.3 Connectivity Requirements
This section lists the requirements for connecting to an Oracle BI Server. 

JDBC Driver
Oracle Data Integrator uses the Oracle BI native driver to connect to the Oracle BI 
Server. This driver must be installed in your Oracle Data Integrator drivers directory.

Bypass Connection Pool
In Oracle BI, a sqlbypass database connection must be setup to bypass the ADF layer 
and directly fetch data from the underlying database. The name of this connection 
pool is required for creating the Oracle BI data server in Oracle Data Integrator.

16.3 Setting up the Topology
Setting up the Topology consists of: 

Table 16–1 Oracle BI Knowledge Modules

Knowledge Module Description

RKM Oracle BI (Jython) Retrieves the table structure in Oracle BI (columns and primary 
keys).

LKM Oracle BI to Oracle (DBLink) Loads data from an Oracle BI source to an Oracle database area using 
dblinks.

LKM Oracle BI to SQL Loads data from an Oracle BI source to any ANSI SQL-92 compliant 
database. 

IKM Oracle BI to SQL Append Integrates data into a ANSI-SQL92 target database from an Oracle BI 
source.



Setting up the Topology

Oracle Business Intelligence Enterprise Edition 16-3

1. Creating an Oracle BI Data Server

2. Creating an Oracle BI Physical Schema

16.3.1 Creating an Oracle BI Data Server
A data server corresponds to a Oracle BI Server. Oracle Data Integrator connects to this 
server to access, via a bypass connection pool, the physical sources that support ADF 
View Objects. These physical objects are located under the view objects that are 
exposed in this server. This server is connected with a user who has access to several 
catalogs/schemas. Catalog/schemas pairs correspond to the physical schemas that are 
created under the data server.

16.3.1.1 Creation of the Data Server
Create a data server for the Oracle BI technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining a 
Oracle BI data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Leave this field empty.

■ User/Password: Oracle BI user with its password

2. In the JDBC tab:

■ JDBC Driver: oracle.bi.jdbc.AnaJdbcDriver

■ JDBC URL: jddbc:oraclebi://<host>:<port>

<host> is the server on which Oracle BI server is installed. By default the 
<port> number is 9703.

3. In the Properties tab, add a JDBC property with the following key/value pair.

■ Key: NQ_SESSION.SELECTPHYSICAL

■ Value: Yes

4. In the Flexfield tab, set the name of the bypass connection pool in the 
CONNECTION_POOL flexfield.

■ Name: CONNECTION_POOL

■ Value: <connection pool name>

16.3.2 Creating an Oracle BI Physical Schema
Create a Oracle BI physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Note: This option is required for accessing the physical data. Using 
this option makes the Oracle BI connection read-only.

Note: Note this bypass connection pool must also be defined in the 
Oracle BI server itself.



Setting Up an Integration Project

16-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

In the physical schema the Data and Work Schemas correspond each to an Oracle BI 
Catalog/schema pair.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

16.4 Setting Up an Integration Project
Setting up a project using an Oracle BI Server follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with Oracle BI:

■ RKM Oracle BI (Jython)

■ LKM Oracle BI to Oracle (DBLink)

■ LKM Oracle BI to SQL

■ IKM Oracle BI to SQL Append

Import also the knowledge modules (IKM, CKM) required for the other technologies 
involved in your project.

16.5 Creating and Reverse-Engineering an Oracle BI Model
This section contains the following topics:

■ Create an Oracle BI Model

■ Reverse-engineer an Oracle BI Model

16.5.1 Create an Oracle BI Model
Create an Oracle BI Model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator.

16.5.2 Reverse-engineer an Oracle BI Model
Oracle BI supports Customized reverse-engineering.

To perform a Customized Reverse-Engineering on Oracle BI with a RKM, use the 
usual procedure, as described in "Reverse-engineering a Model" of the Developing 
Integration Projects with Oracle Data Integrator. This section details only the fields 
specific to the Oracle BI technology:

1. In the Reverse Engineer tab of the Oracle BI Model, select the KM: RKM Oracle 
BI (Jython).<project name>.

This KM implements the USE_LOG and LOG_FILE_NAME logging options to trace 
the reverse-engineering process.

16.6 Setting up Data Quality
Data integrity check is not supported in an Oracle BI Server. You can check data 
extracted Oracle BI in a staging area using another technology.



Designing a Mapping

Oracle Business Intelligence Enterprise Edition 16-5

16.7 Designing a Mapping
You can use Oracle BI as a source of a mapping.

The KM choice for a mapping determines the abilities and performance of this 
mapping. The recommendations in this section help in the selection of the KM for 
different situations concerning an Oracle BI server.

16.7.1 Loading Data from and to Oracle BI
The LKM choice in the Loading Knowledge Module tab to load data between Oracle 
BI and another type of data server is essential for the performance of a mapping.

16.7.1.1 Loading Data from Oracle BI
Use the knowledge modules listed in Table 16–2 to load data from an Oracle BI server 
to a target or staging area database.

16.7.1.2 Loading Data to Oracle BI
Oracle BI cannot be used as a staging area. No LKM targets Oracle BI.

16.7.2 Integrating Data in Oracle BI
Oracle BI cannot be used as a target or staging area. It is not possible to integrate data 
into Oracle BI with the knowledge modules.

Table 16–2 KMs for loading data From Oracle BI

Staging Area/Target 
Technology KM Notes

Oracle LKM Oracle BI to Oracle 
(Dblink)

Loads data from an Oracle BI 
source to an Oracle Database 
staging area using DBLinks. 

To use this knowledge module, a 
DBLink must be manually created 
from the source Fusion Transaction 
DB (that is the database storing the 
underlying data tables) to the 
Oracle staging area. This DBLink 
name must be the one specified in 
the Oracle staging area data server 
connection.

SQL LKM Oracle BI to SQL Loads data from an Oracle BI 
Source to an ANSI SQL-92 
compliant staging area database via 
the agent.

SQL IKM Oracle BI to SQL 
Append

Loads and Integrates data from an 
Oracle BI Source to an ANSI SQL-92 
compliant staging area database via 
the agent. 

To use this KM, you must set the 
staging are of your mapping on the 
source Oracle BI server. 

In this configuration, no temporary 
table is created and data is loaded 
and integrated directly from the 
source to the target tables.



Designing a Mapping

16-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



17

Oracle Business Intelligence Enterprise Edition Data Lineage 17-1

17Oracle Business Intelligence Enterprise
Edition Data Lineage

This chapter describes how to integrate Oracle Business Intelligence Enterprise Edition 
(OBIEE) and Oracle Data Integrator (ODI) metadata to build report-to-source data 
lineage.

This chapter includes the following sections:

■ Section 17.1, "Introduction"

■ Section 17.2, "Installing the Lineage in an OBIEE Server"

■ Section 17.3, "Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage"

■ Section 17.4, "Refreshing the OBIEE Lineage from Existing Exports"

■ Section 17.5, "Automating the Lineage Tasks"

■ Section 17.6, "Using the Lineage in OBIEE Dashboards"

17.1 Introduction
OBIEE users need to know the origin of the data displayed on their reports. When this 
data is loaded from source systems into the data warehouse using ODI, it is possible to 
use the Oracle Data Integrator Lineage for Oracle Business Intelligence feature to 
consolidate Oracle Data Integrator (ODI) metadata with Oracle Business Intelligence 
Enterprise Edition (OBIEE) and expose this metadata in a report-to-source data lineage 
dashboards in OBIEE. 

17.1.1 Components
The OBIEE Lineage is made up of the following components:

■ Lineage Tables: These tables consolidate both the OBIEE and ODI metadata. They 
are stored in the ODI Work Repository.

■ Lineage Artifacts for OBIEE: This pre-packaged OBIEE artifacts are deployed in 
OBIEE to access the lineage information. These include: 

– Lineage RPD containing the Physical, Logical and Presentation layers to 
access the Lineage Tables,

– Lineage Web Catalog Requests to be used in existing dashboard to create 
report -to-source dashboards,

– Images used in these dashboards.

■ Command Line Tools and a Wizard to automate the lineage tasks:



Introduction

17-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

– Deployment of the Lineage Artifacts for OBIEE in an OBIEE instance,

– Extraction of the OBIEE Metadata from a OBIEE Instance,

– Consolidation of the OBIEE and ODI Metadata in the ODI repository.

17.1.2 Lineage Lifecycle
This section describes the different phases of using OBIEE Lineage and the persons 
involved in these phases.

17.1.2.1 Setting up the Lineage
OBIEE or ODI administrators set up the lineage process. Setting up this process is 
required once and consists of the following tasks:

1. Deploying the Lineage Artifacts for OBIEE

2. Configuring and automating the Extraction/Consolidation (Refresh) Process

17.1.2.2 Refreshing the Lineage
OBIEE or ODI project managers refresh the lineage when either ODI or OBIEE 
metadata has changed, to synchronize the lineage tables content with their active 
OBIEE and ODI systems' metadata. This refresh process:

1. Extracts the OBIEE Metadata from a OBIEE Instance

2. Consolidates the OBIEE and ODI Metadata in the Lineage Tables stored in the ODI 
Work Repository.

During this phase, a correspondence between the ODI Data Models and the OBIEE 
Physical Databases must be provided. By doing this mapping, you indicate that an 
existing model definition in Oracle Data Integrator corresponds to an existing database 
in OBIEE. These two should contain the same tables. By providing this mapping 
information, you enable the lineage to consolidate the OBIEE and ODI metadata and 
build an end-to-end lineage.

17.1.2.3 Using the Lineage
The lineage is used to extend existing dashboards. You can create specific links in these 
dashboards to browse the data lineage and view the execution statistics of the ODI 
sessions. 

You can also customize your own dashboards using the pre-packaged Lineage 
Artifacts for OBIEE.

Figure 17–1 describes the Lineage lifecycle after the initial setup. 



Installing the Lineage in an OBIEE Server

Oracle Business Intelligence Enterprise Edition Data Lineage 17-3

Figure 17–1 Lineage Lifecycle

The BIEE metadata is extracted (1) and consolidated with the ODI Metadata in the 
lineage tables (2). The lineage tables are accessed from the end-user's dashboard (3) 
through the Lineage Artifacts deployed in the BIEE Server.

17.2 Installing the Lineage in an OBIEE Server
This section contains information and instructions for installing OBIEE Lineage:

■ Installation Overview

■ Requirements

■ Installation Instructions

■ Post-Installation Tasks

17.2.1 Installation Overview
Installing Lineage in an OBIEE Server deploys the required OBIEE artifacts in the 
OBIEE Repository and Web Catalog. The OBIEE Lineage artifacts are the Lineage RPD, 
the Lineage Web Catalog Requests, and the dashboard images. These artifacts are used 
to access the lineage content from your reports and dashboards.

The installation is performed using the OBIEE Lineage Wizard. This wizard guides 
you through the installation, and also through the configuration and refresh of the 
Oracle Data Integrator (ODI) Lineage for Oracle Business Intelligence Enterprise 
edition (OBIEE).

After installation and configuration are complete, there are some post-installation 
tasks you need to perform, depending on your OBIEE version.

The complete installation flow is as follows:

Installation Flow when Using OBIEE 10g
When using OBIEE 10g, the OBIEE Lineage wizard installs only the Lineage RPD. To 
install the Lineage Web Catalog Requests and the dashboard images, you have to 
perform some additional tasks. The following installation flow describes the complete 



Installing the Lineage in an OBIEE Server

17-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

installation instructions, including the deployment of the Web Catalog Requests and 
Images:

1. Review the Requirements.

2. Installing and Starting the OBIEE Lineage Wizard.

Note that you can also use the install lineage script instead of the OBIEE Lineage 
wizard. See Section 17.5.2, "Automating Lineage Deployment" for more 
information.

3. Use the OBIEE Lineage wizard to install Lineage in OBIEE Server and deploy the 
OBIEE Lineage artifacts. See Section 17.2.3.2, "Deploying the OBIEE Lineage 
Artifacts using the Wizard".

4. Deploy the Web Catalog requests in the OBIEE 10g Web Catalog. See 
Section 17.2.4, "Post-Installation Tasks".

5. Deploy the images. See Section 17.2.4, "Post-Installation Tasks".

6. Update the BI Physical Layer Connection to ODI Work Repository. See 
Section 17.2.4, "Post-Installation Tasks".

Installation Flow when Using OBIEE 11g
When using OBIEE 11g, the OBIEE Lineage wizard installs only the Lineage RPD and 
the Web catalog Requests. To install the dashboard images, you have to perform some 
additional tasks. The following installation flow describes the complete installation 
instructions, including the deployment Images:

1. Review the Requirements.

2. Installing and Starting the OBIEE Lineage Wizard. 

Note that you can also use the install lineage script instead of the OBIEE Lineage 
wizard. See Section 17.5.2, "Automating Lineage Deployment" for more 
information.

3. Use the OBIEE Lineage wizard to install Lineage in OBIEE Server and deploy the 
OBIEE Lineage artifacts. See Section 17.2.3.2, "Deploying the OBIEE Lineage 
Artifacts using the Wizard".

4. Deploy the images. See Section 17.2.4, "Post-Installation Tasks".

5. Update the BI Physical Layer Connection to ODI Work Repository. See 
Section 17.2.4, "Post-Installation Tasks".

17.2.2 Requirements
Before installing OBIEE Lineage, you should review the following requirements:

■ The OBIEE Lineage Wizard requires a Java Runtime Environment 1.6 (JRE). Before 
starting the wizard, make sure that your JAVA_HOME is pointing to a valid JRE.

■ The work repository has to be stored in an Oracle database.

■ Before installing the artifacts, stop the BI Server and BI Presentation services 
component.

■ Make a backup copy of the OBIEE RPD and Webcat.

■ Make sure the RPD file used by the server is NOT open in the BI Admin tool.

■ Install and Execute OBIEE Lineage Wizard or Command Line tools on the machine 
where the BI Admin tool is installed.



Installing the Lineage in an OBIEE Server

Oracle Business Intelligence Enterprise Edition Data Lineage 17-5

■ The database user used to connect the Work Repository schema must have 
sufficient privileges to create views in the schema hosting the Work Repository.

17.2.3 Installation Instructions
This section provides the installation instructions and contains the following topics:

■ Installing and Starting the OBIEE Lineage Wizard

■ Deploying the OBIEE Lineage Artifacts using the Wizard

17.2.3.1 Installing and Starting the OBIEE Lineage Wizard
The OBIEE Lineage wizard is included in the odiobilineage.zip file, which is 
located in the <ODI_Home>/odi/misc/biee-lineage directory.

Perform the following steps to start the OBIEE Lineage wizard:

1. Extract the contents of the zip file to a directory. For example, extract the content of 
this file to C:\biee_lineage\ folder.

2. Start the wizard by executing one of the following commands from the /bin 
sub-folder:

■ On UNIX operating systems:

./refreshlineage.sh

■ On Windows operating systems:

refreshlineage.bat 

You can also use the installlineage.bat script to start the wizard. When one 
of these scripts is started with no parameter, it opens the OBIEE Lineage Wizard

17.2.3.2 Deploying the OBIEE Lineage Artifacts using the Wizard
This section describes how to install OBIEE Lineage in OBIEE Server and how to 
deploy the required OBIEE Lineage artifacts in the OBIEE Repository and Web Catalog 
using the OBIEE Lineage wizard. 

To install Lineage in OBIEE Server and deploy the required artifacts:

1. Start the wizard as described in Section 17.2.3.1, "Installing and Starting the OBIEE 
Lineage Wizard".

The wizard displays a sequence of screens, in the order listed in Table 17–1.

2. Follow the instructions in Table 17–1.

Note: After performing the installation instructions, please perform 
the required post-installation tasks describes in Section 17.2.4, 
"Post-Installation Tasks".

Note: You can also use the install lineage script instead of the OBIEE 
Lineage wizard for installing the Lineage Artifacts from a command 
line. The install and export options are supported only on Windows. 
The refresh lineage option is supported both on Windows and Unix. 
See Section 17.5.2, "Automating Lineage Deployment" for more 
information.



Installing the Lineage in an OBIEE Server

17-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

If you need additional help with any of the installation screens, click Help to access the 
online help.

Table 17–1 Instructions for Deploying the OBIEE Lineage Artifacts

No. Screen
When Does This Screen 
Appear? Description and Action Required

1 Welcome Screen Always Click Next to continue.

2 Select Action Screen Always Select Install Lineage in OBIEE Server.

Click Next to continue.

3 OBIEE Repository 
Connection 
Information Screen

If Install Lineage in OBIEE 
Server or Export Metadata 
from OBIEE and Refresh 
Lineage is selected on the 
Select Action screen.

Provide the connection information to your existing 
OBIEE Repository for deploying the required 
Lineage Artifacts:

■ Oracle Home: Specify the Oracle Home 
directory for the OBIEE installation. You can 
click Browse to select an existing directory in 
your system. For example: C:/obiee11g/Oracle_
BI1

■ RPD File Location: Enter the location of your 
BIEE Repository (RPD) file.

■ User: Enter the OBIEE repository administrator 
user name. This field is only mandatory for 
OBIEE 10g and is disabled for OBIEE 11g.

■ Password: Enter the OBIEE repository 
administrator password.

Click Next to continue.

4 OBIEE Web Catalog 
Connection 
Information Screen

If Install Lineage in OBIEE 
Server or Export OBIEE 
Metadata and Refresh 
Lineage is selected on the 
Select Action screen.

If using OBIEE 10g, this 
screen is disabled. You must 
manually install the Lineage 
Artifacts. See Section 17.2.4, 
"Post-Installation Tasks" for 
more information. 

Provide the connection information to the OBIEE 
Web Catalog for installing the required Lineage 
Artifacts:

■ OBIEE Version: Displays the OBIEE version. 
This version is detected from the RPD selected 
in the previous screen.

■ Web Catalog Location: Enter the location of the 
OBIEE Web Catalog.

■ OBIEE Instance Home: Enter the Home 
Directory of your OBIEE Instance. For example: 
C:\OBIEE\Middleware\instances\insta
nce1.

■ Web Catalog Folder Name: Enter the name of 
the web catalog folder into which the Lineage 
Artifacts will be deployed. For example: 
/shared

Click Next to continue and deploy the lineage 
artifacts.

5 Wallet Information 
Screen

Always Select Store passwords in secure wallet check box.

Enter the wallet password or create a new wallet 
password and click OK.

Click Next to continue.

Note: If you do not want to store the passwords in 
secure wallet, ensure that the Store passwords in 
secure wallet check box is not selected and click 
Next.

6 Action Complete 
Screen

Always Click Finish to complete the wizard.



Installing the Lineage in an OBIEE Server

Oracle Business Intelligence Enterprise Edition Data Lineage 17-7

After installing the Lineage on the OBIEE Server, you should deploy the OBIEE 
Lineage Artifacts. See Section 17.2.4, "Post-Installation Tasks" for more information.

17.2.4 Post-Installation Tasks
This section describes the post-installation tasks. Theses tasks depend on your OBIEE 
Server version.

For OBIEE 10g, you need to perform the following post-installation tasks:

■ Deploy the Web Catalog Requests in the OBIEE 10g Web Catalog

■ Deploy the Dashboard Images

■ Update the BI Physical Layer Connection to the ODI Work Repository

For OBIEE 11g, you need to perform the following post-installation tasks:

■ Deploy the Dashboard Images

■ Update the BI Physical Layer Connection to the ODI Work Repository

Deploy the Web Catalog Requests in the OBIEE 10g Web Catalog 

The OBIEE/ODI Lineage comes with a Web Catalog for building your reports on top 
of the Lineage and ODI Repository tables.

To import the Web Catalog requests, perform the following steps:

1. Connect to your Web Catalog. 

To connect to your Web Catalog:

1. Select Start > All Programs > Oracle Business Intelligence > Catalog 
Manager. 

2. Click File > Open Catalog. 

3. Provide the path to the web catalog used by the BI Server. 

4. Click OK.

2. (Optional Step) Make a backup copy of the catalog into which you want to install 
the lineage artifacts. 

To make a backup copy:

1. Select the catalog.

2. Select File > Archive. 

3. Provide a name for the archive file, for example webcatalog_backup.cat.

4. Click OK.

3. Expand the catalog and select the shared folder into which the ODI catalog items 
will be imported.

4. Select File > Unarchive.

5. In the Unarchive catalog window, enter in the Archive File Path field the location 
of the ODI catalog archive file. Note that this file is located in the 
/artifacts/10g sub-folder of the Lineage installation folder.

Note: This procedure is required for OBIEE 10g only.



Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

17-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ For OBIEE 10.1.3.3, enter artifacts/10godi_catalog_archive_
10g.cat 

■ For OBIEE 10.1.3.4, enter artifacts/10g/odi_catalog_archive_10_1_
3_4.cat

6. Click OK. 

A new folder called ODI appears in the catalog folder.

Deploy the Dashboard Images
The prepackaged requests use images that should be deployed into the application 
server that hosts the analytic application. Theses tasks depend on your OBIEE Server 
version:

■ For OBIEE 10g, copy the dashboard images (hie.gif and lin.gif, located in 
the /artifacts/images sub-folder of the Lineage installation folder) to the res 
folder under the deployment directory of the BI analytics application.

For example:

<OC4J_HOME>\j2ee\home\applications\analytics\analytics\res

■ For OBIEE 11g, copy the dashboard images (hie.gif and lin.gif, located in 
the in the /artifacts/images sub-folder of the Lineage installation folder) to 
the res folder under the deployment directory of the BI analytics application.

For example:

<DOMAIN_HOME>\servers\<SERVER_NAME>\tmp\_WL_user\analytics_
11.1.1\7dezjl\war\res

Update the BI Physical Layer Connection to the ODI Work Repository
1. Start the Oracle BI Administration tool. For example, select All Programs > Oracle 

Business Intelligence > Administration.

2. Open the RPD file (.rpd) used by the BI Server. 

3. Expand the ORACLE_ODI_REPOSITORY database in the OBIEE Physical Layer, 
double-click the Connection Pool node, and edit the Connection Pool to match 
your ODI work repository configuration:

1. Update the Data source name, Username and Password fields. 

2. Click OK.

3. Right-click the Physical schema and rename it to match the schema of the ODI 
Work Repository.

4.  Click OK to save your changes.

4. Expand the renamed schema and test this updated connection as follows:

1. Right-click one of the tables of this physical schema and updating the row 
count.

2. Right-click the same table again and select View data to view data with the 
updated row count.

17.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage
This section describes how to export metadata from the OBIEE Repository and Web 
Catalog and how to consolidate it with ODI Metadata into the Lineage.



Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

Oracle Business Intelligence Enterprise Edition Data Lineage 17-9

To export metadata from OBIEE and Refresh Lineage:

1. Start the OBIEE Lineage wizard as described in Section 17.2.3.1, "Installing and 
Starting the OBIEE Lineage Wizard".

The wizard displays a sequence of screens, in the order listed in Table 17–2.

2. Follow the instructions in Table 17–2.

If you need additional help with any of the installation screens, click Help to access the 
online help.

Note: With OBIEE 10g it is not possible to automatically export the 
web catalog content; As a consequence, you need to perform manually 
an export of the web catalog content. See Section 17.4.2, "Exporting the 
OBIEE Web Catalog Report to a Text File" for more information.

You will provide the location of this export file to the wizard. 

Note: You can also use the refresh lineage script instead of the OBIEE 
Lineage wizard. See Section 17.5.3, "Automating Lineage Refresh" for 
more information.

Table 17–2 Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

No. Screen
When Does This Screen 
Appear? Description and Action Required

1 Welcome Screen Always Click Next to continue.

2 Select Action Screen Always Select Export Metadata from OBIEE and Refresh 
Lineage.

Click Next to continue.

3 OBIEE Repository 
Connection 
Information Screen

If Install Lineage in OBIEE 
Server or Export Metadata 
from OBIEE and Refresh 
Lineage is selected on the 
Select Action screen

Provide the connection information to the OBIEE 
Repository for extracting Metadata:

■ Oracle Home: Specify the Oracle Home 
directory for the OBIEE installation. You can 
click Browse to select an existing directory in 
your system. For example: C:/obiee11g/Oracle_
BI1

■ RPD File Location: Enter the location of your 
BIEE Repository (RPD) file.

■ User: Enter the OBIEE repository administrator 
user name. This field is only mandatory for 
OBIEE 10g and is disabled for OBIEE 11g.

■ Password: Enter the OBIEE repository 
administrator password.

Click Next to continue.



Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

17-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

4 OBIEE Web Catalog 
Connection 
Information Screen

If Install Lineage in OBIEE 
Server or Export OBIEE 
Metadata and Refresh 
Lineage is selected on the 
Select Action screen.

If using OBIEE 10g, This 
screen only allows selection 
of a Web Catalog Export 
File.

Provide the connection information to extract 
metadata from the OBIEE Web Catalog (OBIEE 11g), 
or provide the location to a web catalog export 
(OBIEE 10g):

■ OBIEE Version: Enter the OBIEE version. This 
version is selected from RPD previously 
selected.

■ Web Catalog Location: Enter the location of the 
OBIEE web catalog from which the metadata is 
exported. 

If using OBIEE 10g, this field is replaced with a 
Web Catalog Export File field. Select the web 
catalog export file created manually using the 
procedure described in Section 17.4.2, 
"Exporting the OBIEE Web Catalog Report to a 
Text File".

■ OBIEE Instance Home: Enter the home 
directory of your OBIEE Instance. For example: 
C:\OBIEE\Middleware\instances\insta
nce1. If using OBIEE 10g, this field is disabled.

■ Web Catalog Folder Name: Enter the name of 
the web catalog folder that needs to be exported. 
For example: /shared. If using OBIEE 10g, this 
field is disabled.

Click Next to continue and install the lineage 
artifacts.

5 ODI Repository 
Connection 
Information Screen

If Export Metadata from 
OBIEE and Refresh Lineage 
or Refresh Lineage is 
selected on the Select Action 
screen.

Provide the ODI repository connection information:

Oracle Data Integrator Connection 

■ User: Enter the ODI username. This user should 
have SUPERVISOR privileges.

■ Password: Enter this user's password.

Database Connection (Master Repository)

■ User: Enter the database user name to connect to 
the schema (or database, library) that contains 
the ODI Master Repository.

■ Password: Enter this user's password.

■ Driver Name: Enter the name of the driver used 
to connect to the master repository.

■ URL: Enter the URL used to connect to the 
master repository.

Work Repository 

■ Work Repository: Use the Select button to select 
a work repository attached to the master 
repository. The Lineage Tables will be created in 
this Work Repository, and the lineage 
consolidated into these tables.

Click Next to continue.

Table 17–2 (Cont.) Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

No. Screen
When Does This Screen 
Appear? Description and Action Required



Refreshing the OBIEE Lineage from Existing Exports

Oracle Business Intelligence Enterprise Edition Data Lineage 17-11

17.4 Refreshing the OBIEE Lineage from Existing Exports
This section describes how to refresh the OBIEE Lineage from existing exports. This 
operation consolidates OBIEE Repository and Web Catalog exports manually created 
with ODI Repository metadata into the Lineage. This section also describes how to 
export the OBIEE Repository and the Web Catalog.

This section contains the following topics:

■ Exporting the OBIEE Repository Documentation to a Text File

■ Exporting the OBIEE Web Catalog Report to a Text File

■ Refreshing the OBIEE Lineage From Existing Exports

17.4.1 Exporting the OBIEE Repository Documentation to a Text File 
This section explains how to manually export the OBIEE Repository metadata for 
consolidating it in the OBIEE Lineage. 

To export the OBIEE Repository documentation to a text file:

1. Open the Oracle BI Administration tool and connect to the OBIEE Repository 
containing the metadata that you want to include in the lineage.

2. In the OBIEE Administration tool, select Tools > Utilities. 

3. In the Utilities dialog, select the Repository Documentation utility and click 
Execute. 

4. Save the repository documentation in a temporary file, for example 
c:\temp\repo_doc.txt. 

6 Mapping Information If Export Metadata from 
OBIEE and Refresh Lineage 
or Refresh Lineage is 
selected on the Select Action 
screen.

Use this table to provide the correspondence 
mapping between the ODI data models and the 
OBIEE physical schemas:

1. From the BI Mapping -Physical DB, Schema, 
Catalog list, select the OBIEE physical schema 
you want to map. 

2. From the ODI Model list, select the ODI Model 
you want to map to this OBIEE schema. 

3. For each mapping that you want to define, click 
Add. This adds a new row to the table.

4. Repeat the previous steps for each mapping.

Click Next to continue.

7 Wallet Information 
Screen

Always Select Store passwords in secure wallet check box.

Enter the wallet password or create a new wallet 
password and click OK.

Click Next to continue.

Note: If you do not want to store the passwords in 
secure wallet, ensure that the Store passwords in 
secure wallet check box is not selected and click 
Next. 

8 Action Complete 
Screen

Always Click Finish to dismiss the wizard.

Table 17–2 (Cont.) Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

No. Screen
When Does This Screen 
Appear? Description and Action Required



Refreshing the OBIEE Lineage from Existing Exports

17-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Make sure to save this repository documentation as Tab-separated values (*.txt) 
file type

5. Click Save.

17.4.2 Exporting the OBIEE Web Catalog Report to a Text File
This section explains how to manually export the OBIEE Web Catalog metadata for 
consolidating it in the OBIEE Lineage.

To export the OBIEE Web Catalog report to a text file:

1. Open OBIEE Catalog Manager and connect to the catalog that contains the 
metadata that you want to include in the lineage. 

2. Select the catalog folder containing the reports that you want to include in the 
lineage, for example /shared/Paint Demo or /shared/ODI. 

3. Select Tools > Create Report.

4. In the Create Catalog Report dialog, select the following columns to include in the 
report: Owner, Request Folder, Request Name, Request Subject Area, Request Criteria 
Formula, Request Criteria Table, Request Criteria Column.

Make sure to include these columns in this precise order.

5. Save the report in a temporary file, for example c:\temp\webcat_doc.txt.

6. Click OK. 

7. Check the Report Preview and click OK.

17.4.3 Refreshing the OBIEE Lineage From Existing Exports
This section describes how to refresh the OBIEE Lineage from existing OBIEE 
Repository and Web Catalog exports created manually.

To refresh the OBIEE Lineage:

1. Start the OBIEE Lineage wizard as described in Section 17.2.3.1, "Installing and 
Starting the OBIEE Lineage Wizard".

The wizard displays a sequence of screens, in the order listed in Table 17–3.

2. Follow the instructions in Table 17–3.

If you need additional help with any of the installation screens, click Help to access the 
online help.

Note: You can also use the refresh lineage script instead of the OBIEE 
Lineage wizard. See Section 17.5.3, "Automating Lineage Refresh" for 
more information.



Refreshing the OBIEE Lineage from Existing Exports

Oracle Business Intelligence Enterprise Edition Data Lineage 17-13

Table 17–3 Instructions for Refreshing the OBIEE Lineage Artifacts

No. Screen
When Does This Screen 
Appear? Description and Action Required

1 Welcome Screen Always Click Next to continue.

2 Select Action Screen Always Select Refresh Lineage.

Click Next to continue.

3 OBIEE Export 
Location Screen

Only if Refresh Lineage is 
selected on the Select Action 
screen.

Provide the location of the OBIEE metadata exports:

■ Repository Export File: Enter the location of the 
repository export file. See Section 17.4.1, 
"Exporting the OBIEE Repository 
Documentation to a Text File" for more 
information.

■ Web Catalog Export File: Enter the location of 
the web catalog export file. See Section 17.4.2, 
"Exporting the OBIEE Web Catalog Report to a 
Text File" for more information.

Click Next to continue.

4 ODI Repository 
Connection 
Information Screen

If Export Metadata from 
OBIEE and Refresh Lineage 
or Refresh Lineage is 
selected on the Select Action 
screen.

Provide the ODI repository connection information:

Oracle Data Integrator Connection 

■ User: Enter the ODI username. This user should 
have SUPERVISOR privileges.

■ Password: Enter this user's password.

Database Connection (Master Repository)

■ User: Enter the database user name to connect to 
the schema (or database, library) that contains 
the ODI Master Repository.

■ Password: Enter this user's password.

■ Driver Name: Enter the name of the driver used 
to connect to the master repository.

■ URL: Enter the URL used to connect to the 
master repository.

Work Repository 

■ Work Repository: Use the Select button to select 
a work repository attached to the master 
repository. The Lineage Tables will be created in 
this Work Repository, and the lineage 
consolidated into these tables.

Click Next to continue.



Automating the Lineage Tasks

17-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

17.5 Automating the Lineage Tasks
Scripts are also provided to automate the lineage tasks. These scripts can be used 
instead of the wizard and require that option values are provided in a property file 
instead.

The scripts for automating the lineage tasks are in the /bin sub-folder of the Lineage 
installation folder.

This section describes how to automate lineage tasks with scripts and contains the 
following topics:

■ Configuring the Scripts

■ Automating Lineage Deployment

■ Automating Lineage Refresh

17.5.1 Configuring the Scripts
Before starting any of the scripts, you need to provide the configuration information in 
a property file. This property file contains the values provided via the wizard user 
interface.

5 Mapping Information If Export Metadata from 
OBIEE and Refresh Lineage 
or Refresh Lineage is 
selected on the Select Action 
screen.

Use this table to provide the correspondence 
mapping between the ODI data models and the 
OBIEE physical schemas:

1. From the BI Mapping -Physical DB, Schema, 
Catalog list, select the OBIEE physical schema 
you want to map. 

2. From the ODI Model list, select the ODI Model 
you want to map to this OBIEE schema. 

3. For each mapping that you want to define, click 
Add. This adds a new row to the table.

4. Repeat the previous steps for each mapping.

Click Next to continue.

6 Wallet Information 
Screen

Always Select Store passwords in secure wallet check box.

Enter the wallet password or create a new wallet 
password and click OK.

Click Next to continue.

Note: If you do not want to store the passwords in 
secure wallet, ensure that the Store passwords in 
secure wallet check box is not selected and click 
Next.

7 Action Complete 
Screen

Always Click Finish to dismiss the wizard.

Note: When running the wizard, a property file is automatically 
generated in the /tmp sub-folder of the Lineage installation folder. 
You can re-use this property file as a starting point for working with 
the command line scripts.

Table 17–3 (Cont.) Instructions for Refreshing the OBIEE Lineage Artifacts

No. Screen
When Does This Screen 
Appear? Description and Action Required



Automating the Lineage Tasks

Oracle Business Intelligence Enterprise Edition Data Lineage 17-15

Figure 17–4 lists the properties defined in the property file.

Table 17–4 Properties 

Property Values
Required 
for Description

OBIEE_VERSION <10g|11g> install | 
export 
|refresh

Version of the OBIEE Server.

OBIEE_RPD <rpd_file_
location>

install | 
export 

Location of the repository (.rpd) 
file of the BI Server.

OBIEE_WEBCAT <web_catalog_
folder>

install | 
export 
Required 
only for 
OBIEE 11g

Location of the Web Catalog folder 
used by the BI Server.

OBIEE_RPD_PASS <rpd_file_pwd> install | 
export

The RPD File Password.

OBIEE_RPD_USER <rpd_file_
username>

install | 
export

Required 
only for 
OBIEE 10g

The RPD File username.

OBIEE_RPD_
EXPORT_FILE

<rpd_export_
file_location>

refresh Location of the OBIEE Repository 
Documentation export file used for 
refreshing the lineage.

OBIEE_WEBCAT_
EXPORT_FILE

<webcat_export_
file_location>

refresh Location of the OBIEE Web catalog 
report used for refreshing the 
lineage.

OBIEE_ORACLE_
HOME

<obiee_oracle_
home>

install | 
export

The BI Server Oracle Home 
directory

OBIEE_
INSTANCE_HOME

<obiee_instance_
home>

install | 
export

Required 
only for 
OBIEE 11g.

The BI Server Instance Home 
directory. 

ODI_MASTER_
URL

<odi_master_url> export | 
refresh

The JDBC URL to connect to the 
ODI Master Repository

ODI_MASTER_
DRIVER

<odi_master_
driver>

export| 
refresh

The DB Driver to connect to the 
ODI Master Repository

ODI_
SUPERVISOR_PASS

<odi_supervisor_
pwd>

 export | 
refresh

The ODI Password for ODI User 
with SUPERVISOR privileges

ODI_
SUPERVISOR_
USER

<odi_supervisor_
user>

 export 
|refresh

The ODI user with SUPERVISOR 
privileges

ODI_MASTER_
USER

<odi_master_
user>

export | 
refresh

The ODI Master repository 
username

ODI_MASTER_
PASS

<odi_master_
password>

export | 
refresh

The ODI Master repository 
password

ODI_SECU_
WORK_REP

<odi_work_rep> export | 
refresh

The Name of the Work Repository 
containing the lineage tables.



Automating the Lineage Tasks

17-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Example 17–1 shows a sample property file:

Example 17–1 Property File

# Version of BIEE Server. Values: 10g / 11g
OBIEE_VERSION=10g

# The location of the repository documentation (.rpd) file of the BI Server
OBIEE_RPD=C:/obiee11g/instances/instance2/bifoundation/ 
OracleBIServerComponent/coreapplication_obis1/repository/TechDemo_11g.rpd

# The location of the Web Catalog folder used by the BI Server. 
# Required only for OBIEE 11g.
OBIEE_WEBCAT=C:/obiee11g/instances/instance2/bifoundation/ 
OracleBIPresentationServicesComponent/coreapplication_obips1/catalog/TechDemo

# The OBIEE Repository user. Required only for OBIEE 10g. 
OBIEE_RPD_USER=Administrator
# The password of the OBIEE Repository user
OBIEE_RPD_PASS=<obiee password>

# The location of the exported Repository Documentation file
OBIEE_RPD_EXPORT_FILE=c:/odi/lineage/run/repo_doc.txt
# The location of the exported Web catalog file
OBIEE_WEBCAT_EXPORT_FILE=c:/odi/lineage/run/webcat_doc.txt

# The BI Server Oracle Home directory
OBIEE_ORACLE_HOME=C:/obiee11g/Oracle_BI1
 # The BI Server Instance Home directory. Required only for OBIEE 11g.
OBIEE_INSTANCE_HOME=C:/obiee11g/instances/instance2

# The JDBC URL to connect to the ODI Master Repository
ODI_MASTER_URL=jdbc:oracle:thin:@localhost:1521:orcl
# The JDBC Driver to connect to the ODI Master Repository
ODI_MASTER_DRIVER=oracle.jdbc.OracleDriver
# The Database user for the schema that contains the ODI master repository. 
ODI_MASTER_USER=MASTER_REPO
# This user's password 
ODI_MASTER_PASS=<master_password>

# The ODI user with SUPERVISOR privileges
ODI_SUPERVISOR_USER=SUPERVISOR
# The ODI Password of the ODI User with SUPERVISOR privileges
ODI_SUPERVISOR_PASS=<supervisor password>

# Work Repository containing the lineage

OBIEE_WEBCAT_
FOLDER_TO_
EXPORT

<webcat_folder_
to_export>

install | 
export

The Web Catalog folder to export 
in the report. For example: 
/shared/ODI

INSTALL_ODI_
LINEAGE

<yes|no> only used in 
script

Set to yes to deploy ODI Artifacts 
on the BIEE Server.

EXPORT_OBIEE_
METADATA

<yes|no> only used in 
script

Set to yes to export BI Metadata as 
flat files. Set to no to only refresh 
lineage metadata.

Table 17–4 (Cont.) Properties 

Property Values
Required 
for Description



Automating the Lineage Tasks

Oracle Business Intelligence Enterprise Edition Data Lineage 17-17

ODI_SECU_WORK_REP=WORK_REP1

# The Web Catalog folder to export in the report. Eg: /shared/ODI
OBIEE_WEBCAT_FOLDER_TO_EXPORT=/shared/ODI

# Option to deploy ODI Artifacts on the BI Server. 
INSTALL_ODI_LINEAGE=no
# Option to export BI Metadata as flat files
EXPORT_OBIEE_METADATA=yes

Encoding Passwords
To avoid storing the passwords in plain text, use the encode.[sh|cmd] 
<password> command to encode and store the passwords in the property file. If the 
password are encoded, the property names will change to ODI_MASTER_REPO_
ENCODED_PASS, ODI_SUPERVISOR_ENCODED_PASS, and OBIEE_RPD_
ENCODED_PASS. 

17.5.2 Automating Lineage Deployment
The install lineage script deploys the following ODI Artifacts in the OBIEE Server:

■ Lineage RPD

■ Lineage Web Catalog (11g OBIEE only)

The script uses the OBIEE tools to merge the Lineage RPD and Lineage Web Catalog 
with the BIEE Server components.

Syntax
The script syntax is as follows:

installlineage.bat [-propertyFile=property_file] [-prop_name=prop_value [...]] 
[-usage]

where:

■ propertyfile represents the Property File that contains all the required 
properties to install the lineage artifacts. See Section 17.5.1, "Configuring the 
Scripts" for more information. If no value is specified, the User Wizard will be 
launched to gather the required information from the User. All the properties in 
the property file can be overridden by specifying the property value in the 
command line option -propName=propValue.

■ prop_name represents the property that can be specified. The value specified in 
prop_value will override the value specified in the property file (if any).

■ prop_value represents the value for the prop_name property. It will override 
the value specified in the property file (if any).

■ usage prints the detailed usage information

■ walletPassword represents the value of the wallet password. If this option is 
not provided, you will be prompted to enter the password through command line. 
This option is valid only for command line mode execution of the Lineage tool and 
not the UI wizard mode.

Note: After running this script, you have to perform the tasks 
described in Section 17.2.4, "Post-Installation Tasks".



Using the Lineage in OBIEE Dashboards

17-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

17.5.3 Automating Lineage Refresh
The refresh lineage script performs one of the following operations, depending on the 
value set in the EXPORT_OBIEE_METADATA option defined in the property file:

■ Export and refresh metadata, if the EXPORT_OBIEE_METADATA option is set to 
Yes

■ Refresh lineage metadata, if the EXPORT_OBIEE_METADATA option is set to No

Note that in order to use refreshlineage.sh you need to manually copy the 
repo_doc.text and the webcat_doc.txt files to the target Linux machine.

Syntax
The script syntax is as follows:

refreshlineage  [-propertyFile=property_file] [-mappingFile=mapping_file] [-prop_
name=prop_value [...]] [-usage]

where:

■ propertyfile represents the Property File that contains all the required 
properties to export and consolidate lineage metadata. See Section 17.5.1, 
"Configuring the Scripts" for more information. If no value is specified, the User 
Wizard will be launched to gather the required information from the User. All the 
properties in the property file can be overridden by specifying the property value 
in the command line option -prop_name=prop_value.

■ mappingfile represents the mapping of the Model code to BI_PHYSICAL_DB, 
BI_PHYSICAL_SCHEMA and BI_PHYSICAL_CATALOG. This mapping must be 
provided in the form of a comma separated values (.csv) file.

■ walletPassword represents the value of the wallet password. If this option is 
not provided, you will be prompted to enter the password through command line. 
This option is valid only for command line mode execution of the Lineage tool and 
not the UI wizard mode.

Example 17–2 shows a sample mapping file.

Example 17–2 Mapping File

# (c) Copyright Oracle.  All rights reserved.
# Sample Mapping File for ODI-OBIEE Metadata Lineage
# Format: BI Physical DB, BI Physical Schema, BI Physical Catalog, ODI Model ID
# Note: Lines starting with # are considered as comments.
DB-1,Schema-1,Catalog-1,model1
DB-2,Schema-2,Catalog-2,model2

17.6 Using the Lineage in OBIEE Dashboards
The OBIEE Lineage Artifact deployed in the BIEE Server allow for many usage 
scenarios. The most common usage scenarios are listed in this section:

Note: If propertyfile and mappingfile options are not 
specified, the UI wizard will be shown to take user input. Otherwise 
the script will be run from command line itself taking the values from 
the property file and mapping file to refresh lineage and the UI wizard 
will not be shown.



Using the Lineage in OBIEE Dashboards

Oracle Business Intelligence Enterprise Edition Data Lineage 17-19

■ Viewing Execution Statistics

■ Viewing and Filtering Lineage Data

■ Using the Dashboard

■ Using Lineage and Hierarchy

■ Using Contextual Lineage

17.6.1 Viewing Execution Statistics
In this scenario, we want to display the execution statistics of ODI within a OBI-EE 
dashboard.

To add ODI statistics, insert the RuntimeStats request from the Lineage Web Catalog 
into your dashboard. The statistics appear as shown in Figure 17–2.

Figure 17–2 Runtime Statistics

17.6.2 Viewing and Filtering Lineage Data
In this scenario, you want to view the lineage data and filter the results.

To create such a dashboard, add the Prompt Lineage dashboard prompt and the 
LineageRequestColumns request on a dashboard. Both objects are in the lineage web 
catalog as shown in Figure 17–3.

Figure 17–3 Lineage Web Catalog



Using the Lineage in OBIEE Dashboards

17-20 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Figure 17–4 shows the resulting dashboard.

Figure 17–4 Resulting Dashboard

17.6.3 Using the Dashboard
In this dashboard, you can filter using:

■ The Origin of the column (ODI Column or OBI-EE Logical, Physical, Presentation 
or Request Column) 

■ The OBI-EE Folder/Catalog or ODI Project containing the table and the column

■ The Request or table containing the column

Click Go to display the filtered list of columns.

17.6.4 Using Lineage and Hierarchy
From this request, you can display the Lineage and Hierarchy for each column by 
clicking one of the following buttons:

Using the Lineage
The Lineage icon allows you to drill down into a column lineage. The lineage goes 
down the following path:

> The OBIEE Presentation Column(s) used in a request's column

    > The OBIEE Logical Column(s) used in a Presentation Column

        > The OBIEE Physical Column(s) used in a Presentation Column

            > The ODI Column(s) corresponding to OBIEE Physical Column(s)

Lineage

Hierarchy



Using the Lineage in OBIEE Dashboards

Oracle Business Intelligence Enterprise Edition Data Lineage 17-21

                > The ODI source columns used to load a given ODI target column via an 
ODI mapping. This path can recurse if the source columns are targets for other ODI 
mappings.

For each level of the lineage, the dashboard displays:

■ The Type, Catalog, Table Name, and Column Name for the (target) column

■ The Type, Catalog, Table Name, and Column Name for the (source) column(s)

■ The transformation Expression between the source column(s) and the target 
column

■ If the expression is an ODI mapping, you can drill down the ODI run-time 
statistics (Exec. Stats) for this transformation.

■ You can drill down at any point of the lineage by clicking Lineage in the view.

Figure 17–5 shows one lineage level displayed in a dashboard.

Figure 17–5 Lineage Level

Using the Hierarchy
The Hierarchy displays the entire lineage of a given request column in a hierarchical 
view. Figure 17–6 shows the hierarchical column lineage.

Figure 17–6 Hierarchical Column Lineage

This screen capture shows the hierarchical column lineage in the dashboard.

***********************************************************************************************

 



Using the Lineage in OBIEE Dashboards

17-22 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

17.6.5 Using Contextual Lineage
You can create contextual lineage link using the LineageRequestColumns on any 
dashboard. This contextual lineage link will open a dashboard showing the lineage for 
a given request.

To create contextual lineage:

1. Edit a Dashboard.

2. Insert a Text object with the following code:

<p><font class=Nav onclick="JavaScript:GoNavEx(event, '<lineage_requests_
folder>/LineageRequestColumns','','Target Column','Catalog','<your_request_
folder>','Target Column','Table Name','<your_request_name>');"><img 
src="res/lin.gif" alt="Navigate Metadata Lineage">&nbsp;Metadata Lineage</font>

In this code, you must set the following items according to your configuration:

■ <lineage_requests_folder> is the folder containing the 
LineageRequestColumns request. This folder is the folder into which the OBIEE 
Lineage Requests have been deployed.

■ <your_request_folder> is the folder containing the request for which you 
want to display the lineage.

■ <your_request_name> is the name of the request for which you want to 
display the lineage.

For example, if the lineage requests are installed in the /shared/ODI folder, and 
you want to view lineage for the /shared/ODI Customer Demo/Customer 
Per Countries Chart request, the code will be:

<p><font class=Nav onclick="JavaScript:GoNavEx(event, 
'/shared/ODI/LineageRequestColumns','','Target Column','Catalog','/shared/ODI  
Customer Demo','Target Column','Table Name','Customer Per Countries 
Chart');"><img src="res/lin.gif" alt="Navigate Metadata Lineage">&nbsp;Metadata 
Lineage</font>

3. Before saving your code, make sure that Contains HTML Markup is selected in 
the Text Properties editor as shown in Figure 17–7.

Figure 17–7 Text Properties Editor



Using the Lineage in OBIEE Dashboards

Oracle Business Intelligence Enterprise Edition Data Lineage 17-23

This text will create a link on the dashboard that opens the column lineage for the 
given request.

4. Click OK.

The Metadata Lineage object is added to the dashboard as shown in Figure 17–8.

Figure 17–8 Text Object on Dashboard

Clicking Metadata Lineage displays the dashboard shown in Figure 17–9.

Figure 17–9 What is displayed when clicking on "Metadata Lineage"



Using the Lineage in OBIEE Dashboards

17-24 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



Part III
Part III Other Technologies

This part describes how to work with other technologies in Oracle Data Integrator.

Part III contains the following chapters:

■ Chapter 18, "JMS"

■ Chapter 19, "JMS XML"

■ Chapter 20, "LDAP Directories"

■ Chapter 21, "Oracle TimesTen In-Memory Database"

■ Chapter 22, "Oracle GoldenGate"

■ Chapter 23, "Oracle SOA Suite Cross References"





18

JMS 18-1

18JMS

This chapter describes how to work with Java Message Services (JMS) in Oracle Data 
Integrator.

This chapter includes the following sections:

■ Section 18.1, "Introduction"

■ Section 18.2, "Installation and Configuration"

■ Section 18.3, "Setting up the Topology"

■ Section 18.4, "Setting Up an Integration Project"

■ Section 18.5, "Creating and Defining a JMS Model"

■ Section 18.6, "Designing a Mapping"

■ Section 18.7, "JMS Standard Properties"

18.1 Introduction
Oracle Data Integrator provides a simple and transparent method to integrate JMS 
destinations. This chapter focuses on processing JMS messages with a text payload in 
batch mode. For XML payload processing, refer to Chapter 19, "JMS XML".

18.1.1 Concepts
The JMS Knowledge Modules apply to most popular JMS compliant middleware, 
including Oracle Service Bus, Sonic MQ, and so forth. Most of these Knowledge 
Modules include transaction handling to ensure message delivery. 

18.1.1.1 JMS Message Structure
This section describes the structure of a message in a JMS destination.

A JMS Message consists of three sections:

■ Header

■ Properties

■ Payload

Header
The header contains in the header fields standard metadata concerning the message, 
including the destination (JMSDestination), Message ID (JMSMessageID), Message 
Type (JMSType), and so forth.



Introduction

18-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Properties
The properties section contains additional metadata concerning the message. These 
metadata are properties, that can be separated in three groups:

■ JMS-Defined properties which are optional JMS Headers. Their name begins with 
JMSX(JMSXUserID, JMSXAppID, etc.).

■ Provider-specific properties. They are specific to the router vendor. Their names 
start with JMS_<vendor name>.

■ Application-specific properties. These properties depend on the application 
sending the messages. These are user-defined information that is not included in 
the message payload.

The Header and Properties sections provide a set of header fields and properties that:

■ Have a specific Java data type (Boolean, string, short, and so forth),

■ Can be accessed for reading and/or writing,

■ Can be used for filtering on the router through the JMS Selector.

Payload
The payload section contains the message content. This content can be anything (text, 
XML, binary, and so forth).

18.1.1.2 Using a JMS Destination
Oracle Data Integrator is able to process JMS Text and Byte messages that are delivered 
by a JMS destination. Each message is considered as a container for rows of data and is 
handled through the JMS Queue or JMS Topic technology.

With JMS Queue/JMS Topic technologies, each JMS destination is defined similarly to 
a flat file datastore. Each message in the destination is a record in the datastore.

In the topology, each JMS router is defined as a JMS Topic/Queue data server, with a 
single physical schema. A JMS router may be defined therefore twice to access its 
topics using one data server, and its queues using another one.

Each JMS destination (Topic of Queue) is defined as a JMS datastore which resource 
name matches the name of the JMS destination (name of the queue or topic as defined 
in the router). A model groups message structures related to different topics or queues. 

The JMS datastore structure is defined similarly to a flat file (delimited or fixed width). 
The properties or header fields of the message can be declared with JMS-specific data 
types as additional pseudo-columns in this flat file structure. Each message in the 
destination is processed as a record of a JMS datastore. 

Processing Messages
JMS destinations are handled as regular file datastores and messages as rows from 
these datastores. With these technologies, entire message sets are produced and 
consumed within each mapping.

Message publishing as well consumption requires a commit action to finalize 
removing/posting the message from/to the JMS destination. Committing is 
particularly important when reading. Without a commit, the message is read but not 
consumed. It remains in the JMS Topic/Queue and will be re-read at a later time.

Both the message content and pseudo-columns can be used as regular attributes in the 
mappings (for mapping, filter, etc.). Certain pseudo-columns (such as the one 



Installation and Configuration

JMS 18-3

representing the MESSAGE_ID property) are read-only, and some properties of header 
fields are used (or set) through the Knowledge Module options.

Using Data Integrator you can transfer information either through the message 
payload - the attributes - , or through the properties - pseudo-columns - (application 
properties, for example).

Using the properties to carry information is restricted by third-party applications 
producing or consuming the messages.

Filtering Messages
It is possible to filter messages from a JMS destination in two ways:

■ By defining a filter using the datastore's attributes and pseudo-columns. In this 
case Data Integrator performs the filtering operation after consuming the 
messages. This implies that messages rejected by this filter may also be consumed.

■ By defining a Message Selector (MESSAGE_SELECTOR KM option). This type of 
filter can only use the properties or header fields of the message. The filter is 
processed by the router, and only the messages respecting the filter are consumed, 
reducing the number of messages transferred.

18.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 18–1 for 
handling JMS messages.

18.2 Installation and Configuration
Make sure you have read the information in this section before you start using the JMS 
Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

Table 18–1 JMS Knowledge Modules

Knowledge Module Description

IKM SQL to JMS Append Integrates data into a JMS compliant message queue or topic in text 
or binary format from any SQL compliant staging area.

Consider using this IKM if you plan to transform and export data to 
a target JMS queue or topic. If most of your source datastores are 
located on the same data server, we recommend using this data 
server as staging area to avoid extra loading phases (LKMs).

To use this IKM, the staging area must be different from the target.

LKM JMS to SQL Loads data from a text or binary JMS compliant message queue or 
topic to any SQL compliant database used as a staging area. This 
LKM uses the Agent to read selected messages from the source 
queue/topic and write the result in the staging temporary table 
created dynamically.

To ensure message delivery, the message consumer (or subscriber) 
does not commit the read until the data is actually integrated into the 
target by the IKM.

Consider using this LKM if one of your source datastores is a text or 
binary JMS message.



Setting up the Topology

18-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

18.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

18.2.2 Technology Specific Requirements
The JMS destinations are usually accessed via a JNDI service. The configuration and 
specific requirements for JNDI and JMS depends on the JMS Provider you are 
connecting to. Refer to the JMS Provider specific documentation for more details.

18.2.3 Connectivity Requirements
Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the 
JMS Provider documentation for the connectivity requirement of this provider.

18.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a JMS Data Server

2. Creating a JMS Physical Schema

18.3.1 Creating a JMS Data Server
A JMS data server corresponds to one JMS provider/router that is accessible through 
your local network.

It exists two types of JMS data servers: JMS Queue and JMS Topic.

■ A JMS Queue data server is used to access several queues in the JMS router.

■ A JMS Topic data server is used to access several topics in the JMS router

18.3.1.1 Creation of the Data Server
Create a data server either for the JMS Queue technology or for the JMS Topic 
technology using the standard procedure, as described in "Creating a Data Server" of 
the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section 
details only the fields required or specific for defining a JMS Queue or JMS Topic data 
server.

1. In the Definition tab:

■ Name: Name of the data server as it will appear in Oracle Data Integrator.

■ User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:

■ JNDI Authentication: Set this field to None.

■ JNDI User: Enter the username to connect to the JNDI directory (optional 
step).



Creating and Defining a JMS Model

JMS 18-5

■ Password: This user's password (optional step).

■ JNDI Protocol: From the list, select the JNDI protocol (optional step).

■ JNDI Driver: Name of the initial context factory java class to connect to the 
JNDI provider, for example: com.sun.jndi.ldap.LdapCtxFactory for LDAP

■ JNDI URL: <JMS_RESOURCE>, for example ldap://<host>:<port>/<dn> for 
LDAP 

■ JNDI Resource: Logical name of the JNDI resource corresponding to your JMS 
Queue or Topic connection factory.

For example, specify QueueConnectionFactory if you want to access a 
message queue and TopicConnectionFactory if you want to access a topic. 
Note that these parameters are specific to the JNDI directory and the provider.

18.3.2 Creating a JMS Physical Schema
Create a JMS physical schema using the standard procedure, as described in "Creating 
a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

18.4 Setting Up an Integration Project
Setting up a project using JMS follows the standard procedure. See "Creating an 
Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with JMS:

■ IKM SQL to JMS Append

■ LKM JMS to SQL

18.5 Creating and Defining a JMS Model
This section contains the following topics:

■ Create a JMS Model

■ Defining the JMS Datastores

18.5.1 Create a JMS Model
Create a JMS Model using the standard procedure, as described in "Creating a Model" 
of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

Note: Only one physical schema is required per JMS data server.

Note: It is not possible to reverse-engineer a JMS model. To create a 
datastore you have to create a JMS model and define the JMS 
datastores.



Creating and Defining a JMS Model

18-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

A JMS Model is a set of datastores corresponding to the Topics or Queues of a router. 
Each datastore corresponds to a specific Queue or Topic. The datastore structure 
defines the message structure for this queue or topic. A model is always based on a 
Logical Schema. In a given Context, the Logical Schema corresponds to one JMS 
Physical Schema. The Data Schema corresponding to this Physical Schema contains the 
Topics or Queues.

18.5.2 Defining the JMS Datastores
In Oracle Data Integrator, each datastore is a JMS Topic or Queue. Each message in this 
topic or queue is a row of the datastore. 

A JMS message may carry any type of information and there is no metadata retrieval 
method available. Therefore reverse-engineering is not possible.

To define the datastore structure, do one of the following:

■ Create the datastore as a file datastore and manually declare the message 
structures.

■ Use the File reverse-engineering through an Excel spreadsheet in order to 
automate the reverse engineering of messages. See Chapter 3, "Files" for more 
information about this reverse-engineering method.

■ Duplicate a datastore from another model into the JMS model.

Declaring JMS Properties as Pseudo-Columns
The property pseudo-columns represent properties or header fields of a message. 
These pseudo-columns are defined in the Oracle Data Integrator model as attributes in 
the JMS datastore, with JMS-specific datatypes. The JMS-specific datatypes are called 
JMS_xxx (for example: JMS String, JMS Long, JMS Int, and so forth).

To define these property pseudo-columns, simply declare additional attributes named 
identically to the properties and specified with the appropriate JMS-specific datatypes.

If you define pseudo-columns that are named like standard, provider-specific or 
application-specific properties, they will be consumed or published with the message 
as such. If a pseudo-column is not listed in the standard or provider-specific set of JMS 
properties, It is considered as additional application-specific property. 

For example, to use or set in mappings the JMSPriority default property on messages 
consumed from or pushed to a JMS queue called CUSTOMER, you would add a 
attribute called JMSPriority (with this exact case) to the CUSTOMER datastore. This 
attribute would have the JMS Int datatype available for the JMS Queue technology. 

Important: The datastores' resource names must be identical to the 
name of JMS destinations (this is the logical JNDI name) that will 
carry the message corresponding to their data. Note that these names 
are frequently case-sensitive.



Designing a Mapping

JMS 18-7

For more information about JMS Properties, see: 

■ Section 18.7, "JMS Standard Properties"

■ Section 18.7.1, "Using JMS Properties"

18.6 Designing a Mapping
You can use JMS as a source or a target of a mapping. It cannot be used as the staging 
area.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning JMS messages.

18.6.1 Loading Data from a JMS Source
JMS can be used as a source or a target in a mapping. Data from a JMS message Queue 
or Topic can be loaded to any SQL compliant database used as a staging area. The 
LKM choice in the Mapping Flow tab to load data between JMS and another type of 
data server is essential for the performance of a mapping.

Oracle Data Integrator provides the LKM JMS to SQL for loading data from a JMS 
source to a Staging Area. This LKM loads data from a text or binary JMS compliant 
message queue or topic to any SQL compliant database used as a staging area. 

Table 18–2 lists the JMS specific options. 

18.6.2 Integrating Data in a JMS Target
Oracle Data Integrator provides the IKM SQL to JMS Append that implements 
optimized data integration strategies for JMS. This IKM integrates data into a JMS 
compliant message queue or topic in text or binary format from any SQL compliant 
staging area. Table 18–2 lists the JMS specific KM options of this IKM.

The IKM choice in the Mapping Flow tab determines the performances and 
possibilities for integrating.

JMS Knowledge Modules Options
Table 18–2 lists the JMS specific KM options of the JMS IKM and LKM.

The JMS specific options of this LKM are similar to the options of the IKM SQL to JMS 
Append. There are only two differences:

■ The DELETE_TEMPORARY_OBJECTS option is only provided for the LKM.

■ The PUBLISH option is only provided for the IKM.

Warning:

■ Property pseudo-columns must be defined and positioned in the 
JMS datastore after the attributes making up the message payload 
in a DELIMITED file format. Use the Order field in the column 
definition to position these columns. The order of the 
pseudo-columns themselves is not important as long as they 
appear at the end of the datastore definition.

■ Pseudo-columns names are case-sensitive.



Designing a Mapping

18-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 18–2 JMS Specific KM Options

Option Used to Description

PUBLISH Write Check this option if you want to publish new 
messages in the destination. This option is set to 
Yes by default.

JMS_COMMIT Read/Write Commit the publication or consumption of a 
message. Uncheck this option if you don't want to 
commit your publication/consumption on your 
router. This option is set to Yes by default.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2: 
Persistent). A persistent message remains on the 
server and is recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on 
the server [0..4 000 000 000]. 0 signifies that the 
message never expires.

Warning! After this delay, a message is considered 
as expired, and is no longer available in the topic or 
queue. When developing mappings it is advised to 
set this parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9 
(highest).

SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2 
->TextMessage).

JMSTYPE Write Optional name of the message.

CLIENTID Read Subscriber identification string. This option is 
described only for JMS compatibility.

Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber 
definition remains on the router after 
disconnection.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000 
000 000]. 0: All messages are retrieved.

MESSAGETIMEOUT Read Time to wait for the first message in milliseconds [0 
.. 4 000 000 000]. if MESSAGETIMEOUT is equal to 
0, then there is no timeout. 

MESSAGETIMEOUT and 
MESSAGEMAXNUMBER cannot be both equal to 
zero. if MESSAGETIMEOUT= 0 and 
MESSAGEMAXNUMBER =0, then 
MESSAGETIMEOUT takes the value 1.

Warning! A mapping may retrieve no message if 
this timeout value is too small. 

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in 
milliseconds [0 .. 4 000 000 000]. The default value is 
1000.

Warning! A mapping may retrieve only part of the 
messages available in the topic or the queue if this 
value is too small.

MESSAGESELECTOR Read Message selector in ISO SQL syntax. See 
Section 18.7.1, "Using JMS Properties" for more 
information on message selectors.



JMS Standard Properties

JMS 18-9

18.7 JMS Standard Properties
This section describes the JMS properties contained in the message header and how to 
use them. 

In Oracle Data Integrator, pseudo-columns corresponding to the JMS Standard 
properties should be declared in accordance with the descriptions provided in 
Table 18–3.

The JMS type and access mode columns refer to the use of these properties in Oracle 
Data Integrator or in Java programs. In Oracle Data Integrator, some of these 
properties are used through the IKM options, and the pseudo-column values should 
not be set by the mappings.

For more details on using these properties in a Java program, see 
http://java.sun.com/products/jms/.

Table 18–3 Standard JMS Properties of Message Headers 

Property JMS Type
Access 
(Read/Write) Description

JMSDestination JMS String R Name of the destination (topic or 
queue) of the message.

JMSDeliveryMode JMS Integer R/W (set by IKM 
option)

Distribution mode: 1 = Not 
Persistent or 2 = Persistent. A 
persistent message is never lost, 
even if a router crashes.

When sending messages, this 
property is set by the 
JMSDELIVERYMODE KM option.

JMSMessageID JMS String R Unique Identifier for a message. This 
identifier is used internally by the 
router.

JMSTimestamp JMS Long R Date and time of the message 
sending operation. This time is 
stored in a UTC standard format (1).

JMSExpiration JMS Long R/W (set by IKM 
option)

Message expiration date and time. 
This time is stored in a UTC 
standard format (1).

To set this property the 
JMSEXPIRATION KM option must 
be used.

JMSRedelivered JMS Boolean R Indicates if the message was resent. 
This occurs when a message 
consumer fails to acknowledge the 
message reception.

JMSPriority JMS Int R/W Name of the destination (topic or 
queue) the message replies should 
be sent to.

JMSCorrelationID JMS String R/W Correlation ID for the message. This 
may be the JMSMessageID of the 
message this message generating 
this reply. It may also be an 
application-specific identifier.



JMS Standard Properties

18-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 18–4 lists the optional JMS-defined properties in the JMS standard.

(1): The UTC (Universal Time Coordinated) standard is the number of milliseconds 
that have elapsed since January 1st, 1970

18.7.1 Using JMS Properties
In addition to their contents, messages have a set of properties attached to them. These 
may be provider-specific, application-specific (user defined) or JMS Standard 
Properties. 

JMS properties are used in Oracle Data Integrator as complementary information to 
the message, and are used, for example, to filter the messages.

JMSType JMS String R/W (set by IKM 
option)

Message type label. This type is a 
string value describing the message 
in a functional manner (for example 
SalesEvent, SupportProblem).

To set this property the JMSTYPE 
KM option must be used.

Table 18–4 Optional JMS Properties of Message Headers 

Property JMS Type
Access 
(Read/Write) Description

JMSXUserID JMS String R Client User ID.

JMSXAppID JMS String R Client Application ID.

JMSSXProducerTXI
D

JMS String R Transaction ID for the production 
session. This ID is the same for all 
the messages sent to a destination by 
a producer between two JMS 
commit operations.

JMSSXConsumerTX
ID

JMS String R Transaction ID for current 
consumption session. This ID is the 
same of a batch of message read 
from a destination by a consumer 
between two JMS commit read 
operations.

JMSXRcvTimestam
p

JMS Long R Message reception date and time. 
This time is stored in a UTC 
standard format (1).

JMSXDeliveryCoun
t

JMS Int R Number of times a message is 
received. Always set to 1.

JMSXState JMS Int R Message state. Always set to 2 
(Ready).

JMSXGroupID JMS String R/W ID of the group to which the 
message belongs.

JMSXGroupSeq JMS Int R/W Sequence number of the message in 
the group of messages.

Table 18–3 (Cont.) Standard JMS Properties of Message Headers 

Property JMS Type
Access 
(Read/Write) Description



JMS Standard Properties

JMS 18-11

18.7.1.1 Declaring JMS Properties
When Defining the JMS Datastores, you must append pseudo-columns corresponding 
to the JMS properties that you want to use in your mappings. See Declaring JMS 
Properties as Pseudo-Columns for more information.

18.7.1.2 Filtering on the Router
With this type of filtering, the filter is specified when sending the JMS read query. 
Only messages matching the message selector filter are retrieved. The message selector 
is specified in Oracle Data Integrator using the MESSAGE_SELECTOR KM option

The MESSAGE_SELECTOR is programmed in an SQL WHERE syntax. Comparison, 
boolean and mathematical operators are supported:

 +, -, *, /, =, >, <, <>, >=, <=, OR, AND, BETWEEN, IN, NOT, LIKE, IS NULL. 

Examples
Filter all messages with priority greater than 5

JMSPriority > 5

Filter all messages with priority not less than 6 and with the type Sales_Event.

NOT JMSPriority < 6 AND JMSType = 'Sales_Event'

18.7.1.3 Filtering on the Client
Filtering is performed after receiving the messages, and is setup by creating a standard 
Oracle Data Integrator mapping filter, which must be executed on the staging area. A 
filter uses pseudo-columns from the source JMS datastore. The pseudo-columns 
defined in the Oracle Data Integrator datastore represent the JMS properties. See 
Declaring JMS Properties as Pseudo-Columns for more information. Note that 
messages filtered this way are considered as consumed from the queue or topic.

18.7.1.4 Using Property Values as Source Data
It is possible to use the values of JMS properties as source data in a mapping. This is 
carried out by specifying the pseudo-columns of the source JMS datastore in the 
mapping. See Declaring JMS Properties as Pseudo-Columns for more information.

Note: Router filtering is not a JMS mandatory feature. It may be 
unavailable. Please confirm that it is available by reviewing the JMS 
provider documentation.

Notes:

■ The IS NULL clause handles properties with an empty value but 
does not handle nonexistent application-specific properties.

For example, if the selector COLOR IS NULL is defined, a message 
with the application-specific property COLOR specified with an 
empty value is consumed correctly. Another message in the same 
topic/queue without this property specified would raise an 
exception.



JMS Standard Properties

18-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

18.7.1.5 Setting Properties when Sending a Message
When sending messages it is possible to specify JMS properties by mapping values of 
the pseudo-columns in a mapping targeting a JMS datastore. Certain properties may 
be set using KM options. See Section 18.7, "JMS Standard Properties" for more 
information.



19

JMS XML 19-1

19JMS XML

This chapter describes how to work with Java Message Services (JMS) with a XML 
payload in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 19.1, "Introduction"

■ Section 19.2, "Installation and Configuration"

■ Section 19.3, "Setting up the Topology"

■ Section 19.4, "Setting Up an Integration Project"

■ Section 19.5, "Creating and Reverse-Engineering a JMS XML Model"

■ Section 19.6, "Designing a Mapping"

19.1 Introduction
Oracle Data Integrator provides a simple and transparent method to integrate JMS 
destinations. This chapter focuses on processing JMS messages with a XML payload. 
For text payload processing in batch mode, refer to Chapter 18, "JMS".

19.1.1 Concepts
The JMS XML Knowledge Modules apply to most popular JMS compliant 
middleware, including Oracle Service Bus, Sonic MQ, and so forth. Most of these 
Knowledge Modules include transaction handling to ensure message delivery. 

19.1.1.1 JMS Message Structure
See Section 19.1.1.1, "JMS Message Structure" for information about the JMS message 
structure.

19.1.1.2 Using a JMS Destination
Oracle Data Integrator is able to process XML messages that are delivered by a JMS 
destination. Each message is considered as a container for XML data and is handled 
through the JMS XML Queue or JMS XML Topic technology.

With JMS XML Queue/JMS XML Topic technologies, each messages payload contains 
a complete XML data structure. This structure is mapped into a relational schema 
(XML Schema) that appears as a model, using the Oracle Data Integrator XML Driver. 



Introduction

19-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

In the topology, each JMS destination is defined as a JMS XML Topic/Queue data 
server with a single physical schema. A data server/physical schema pair will be 
declared for each topic or queue delivering message in the XML format.

The structure of the XML message mapped into a relational structure (called the XML 
schema) appears as a data model. Each datastore in this model represents a portion 
(typically, an element type) in the XML file.

Processing Messages
As each XML message corresponds to an Oracle Data Integrator model, the entire 
model must be used and loaded as one single unit when a JMS XML message is 
consumed or produced. The processing unit for an XML message is the package. 

It is not possible to declare the properties or header fields of the message in the model 
or use them as attributes in a mapping. They still can be used in message selectors, or 
be set through KM options.

Consuming an XML message
Processing an incoming XML message is performed in packages as follows:

1. Synchronize the JMS message to the XML schema: This operation reads the message 
and generates the XML schema. This is usually performed by the first mapping 
accessing the message.

2. Extract the data: A sequence of mappings use datastores from the XML schema as 
sources. This data is usable until the session is terminated, another message is read 
by a new Synchronize action, or the Commit JMS Read is performed.

3. Commit JMS Read: This operation validates the message consumption and deletes 
the XML schema. It should be performed by the last mapping which extracts data 
from the XML message.

Producing an XML message
To produce an XML message, a package must be designed to perform the following 
tasks:

1. Initialize the XML schema: This operation creates an empty XML schema 
corresponding to the XML message to generate. This operation is usually 
performed in the first mapping loading the structure.

2. Load the data: A sequence of mappings loads data into the XML schema.

3. Synchronize the XML schema to JMS: This operation converts the XML schema to an 
XML message, and sends it to the JMS destination. This operation is usually 
performed by the last mapping loading the schema.

Filtering Messages
It is possible to filter messages from a JMS XML destination by defining a Message 
Selector (MESSAGE_SELECTOR KM option) to filter messages on the server. This type 
of filter can use only the properties or header fields of the message. The filter is 

Note: This method is extremely similar to XML files processing. In 
JMS XML, the message payload is the XML file. See Chapter 5, "XML 
Files"and Appendix B, "Oracle Data Integrator Driver for XML 
Reference"for more information about XML Files processing and the 
XML Driver.



Installation and Configuration

JMS XML 19-3

processed by the server, reducing the amount of information read by Data Integrator. 
It is also possible to filter data in the mapping using data extracted from the XML 
schema. These filters are processed in Data Integrator, after the message is 
synchronized to the XML schema.

19.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 19–1 for 
handling XML messages.

19.2 Installation and Configuration
Make sure you have read the information in this section before you start using the JMS 
Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

19.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

19.2.2 Technology Specific Requirements
The JMS destinations are usually accessed via a JNDI service. The configuration and 
specific requirements for JNDI and JMS depends on the JMS Provider you are 
connecting to. Refer to the JMS Provider specific documentation for more details.

Table 19–1 JMS XML Knowledge Modules

Knowledge Module Description

IKM SQL to JMS XML Append Integrates data into a JMS compliant message queue or topic in XML 
format from any ANSI SQL-92 standard compliant staging area.

LKM JMS XML to SQL Loads data from a JMS compliant message queue or topic in XML to 
any ANSI SQL-92 standard compliant database used as a staging 
area. 



Setting up the Topology

19-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

19.2.3 Connectivity Requirements
This section lists the requirements for connecting to a JMS XML database. 

Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the 
JMS Provider documentation for the connectivity requirement of this provider.

XML Configuration
XML content is accessed through the Oracle Data Integrator JDBC for XML driver. The 
driver is installed with Oracle Data Integrator.

Ask your system administrator for the location of the DTD file describing the XML 
content.

19.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a JMS XML Data Server

2. Creating a JMS XML Physical Schema

19.3.1 Creating a JMS XML Data Server
An JMS XML data server corresponds to one JMS provider/router that is accessible 
through your local network.

There are two types of JMS XML data servers: JMS Queue XML and JMS Topic XML.

■ A JMS Queue XML data server is used to connect a single queue in the JMS router to 
integrate XML messages.

■ A JMS Topic XML data server is used to connect a single Topic in the JMS router to 
integrate XML messages.

The Oracle Data Integrator JMS driver loads the messages that contains the XML 
content into a relational schema in memory. This schema represents the hierarchical 

Note: By default, a sequence of four ';' is used as fixed record 
separator for JMS XML driver read operations. If the XML data also 
contains a sequence of four or more ';' characters, an error will occur 
and you must set the record separator to a different value. This is 
achieved using the Doracle.odi.jmsxmlColSepString JVM option. 
For example, Doracle.odi.jmsxmlColSepString="????" will set the 
JMS XML driver record separator to "????" instead of ";;;;".

This option must be set in the following locations:

■ In Studio, this parameter is set in the odi.conf parameter file. 
Add a new AddVMOption entry.

■ For 12c Standalone/Colocated Agents, use ODI_INSTANCE_OPTIONS 
in the instance.sh script.

■ For 11g Standalone Agents, use ODI_ADDITIONAL_JAVA_OPTIONS in 
the odiparams file.

■ For JEE Agents, add it to JAVA_OPTIONS in the 
startManagedWeblogic script.



Setting up the Topology

JMS XML 19-5

structure of the XML message and enables unloading the relational structure back to 
the JMS messages.

19.3.1.1 Creation of the Data Server
Create a data server either for the JMS Queue XML technology or for the JMS Topic 
XML technology using the standard procedure, as described in "Creating a Data 
Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. 

The creation process for a JMS XML Queue or JMS Topic XML data server is identical 
to the creation process of an XML data server except that you need to define a JNDI 
connection with JMS XML specific information in the JNDI URL. See Section 5.3.1, 
"Creating an XML Data Server" for more information.

This section details only the fields required or specific for defining a JMS Queue XML 
or JMS Topic XML data server.

1. In the Definition tab:

■ Name: Name of the data server as it will appear in Oracle Data Integrator.

■ User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:

■ JNDI Authentication: From the list, select the authentication mode.

■ JNDI User: Enter the username to connect to the JNDI directory (not 
mandatory).

■ Password: This user's password (not mandatory).

■ JNDI Protocol: From the list, select the JNDI protocol (not mandatory).

■ JNDI Driver: Name of the initial context factory java class to connect to the 
JNDI provider, for example:

com.sun.jndi.ldap.LdapCtxFactory

■ JNDI URL: <JMS_RESOURCE>?d=<DTD_FILE>&s=<SCHEMA>&JMS_
DESTINATION=<JMS_DESTINATION_NAME>. 

The JNDI URL properties are described inTable 19–2.

■ JNDI Resource: Logical name of the JNDI resource corresponding to your JMS 
Queue (or Topic) connection factory.

Note: Specify QueueConnectionFactory if you want to access a 
message queue and TopicConnectionFactory if you want to access a 
topic. Note that these parameters are specific to the JNDI directory.

Table 19–2 JNDI URL Properties

Parameter Value Notes

d <DTD File location> DTD File location (relative or absolute) in UNC format. 
Use slash "/" in the path name and not backslash "\" in 
the file path. This parameter is mandatory.

re <Root element> Name of the element to take as the root table of the 
schema. This value is case sensitive. This parameter can 
be used for reverse-engineering a specific message 
definition from a WSDL file, or when several possible 
root elements exist in a XSD file.



Setting up the Topology

19-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Example
If using an LDAP directory as the JNDI provider, you should use the following 
parameters:

■ JNDI Driver: com.sun.jndi.ldap.LdapCtxFactory

■ JNDI URL: ldap://<ldap_host>:<port>/<dn>?d=<DTD_FILE>&s=<SCHEMA>&JMS_
DESTINATION=<JMS_DESTINATION_NAME>

■ JNDI Resource: <Name of the connection factory>

19.3.2 Creating a JMS XML Physical Schema
Create a JMS XML physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

ro true | false If true, the XML file is opened in read only mode.

s <schema name> Name of the relational schema where the XML file will 
be loaded.This value must match the one set for the 
physical schema attached to this data server. This 
parameter is mandatory.

cs true | false Load the XML file in case sensitive or insensitive mode. 
For case insensitive mode, all element names in the 
DTD file should be distinct (Ex: Abc and abc in the 
same file are banned). The case sensitive parameter is a 
permanent parameter for the schema. It CANNOT be 
changed after schema creation. Please note that when 
opening the XML file in insensitive mode, case will be 
preserved for the XML file.

JMSXML_
ROWSEPARA
TOR

5B23245D Hexadecimal code of the string used as a line separator 
(line break) for different XML contents. Default value is 
5B23245D which corresponds to the string [#$]. 

JMS_
DESTINATIO
N

JNDI Queue name or 
Topic name

JNDI Name of the JMS Queue or Topic. This parameter 
is mandatory.

transform_
nonascii or tna

boolean (true|false) Transform Non Ascii. Set to false to keep non-ascii 
characters. Default is true. This parameter is not 
mandatory.

Note: For the name of the Schema and Work Schema use the schema 
name defined in the s=<schema name> property of the JNDI URL of 
the JMS Queue XML or JMS Topic XML data server.

Note: Only one physical schema is required per JMS XML data 
server.

Table 19–2 (Cont.) JNDI URL Properties

Parameter Value Notes



Creating and Reverse-Engineering a JMS XML Model

JMS XML 19-7

19.4 Setting Up an Integration Project
Setting up a project using JMS XML follows the standard procedure. See "Creating an 
Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with JMS XML:

■ IKM SQL to JMS XML Append

■ LKM JMS XML to SQL

19.5 Creating and Reverse-Engineering a JMS XML Model
This section contains the following topics:

■ Create a JMS XML Model

■ Reverse-Engineering a JMS XML Model

19.5.1 Create a JMS XML Model
Create a JMS Queue XML or JMS Topic XML Model using the standard procedure, as 
described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for 
Oracle Data Integrator.

A JMS Queue XML or JMS Topic XML Model corresponds to a set of datastores, with 
each datastore representing an entry level in the XML file. The models contain 
datastores describing the structure of the JMS messages. A model contains the message 
structure of one topic or one queue. This model's structure is reverse-engineered from 
the DTD or the XML file specified in the data server definition, using standard 
reverse-engineering. 

19.5.2 Reverse-Engineering a JMS XML Model
JMS XML supports Standard reverse-engineering - which uses only the abilities of the 
XML driver.

To perform a Standard Reverse-Engineering on JMS Queue XML or JMS Topic XML 
use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle 
Fusion Middleware Developer's Guide for Oracle Data Integrator.

Oracle Data Integrator will automatically add the following attributes to the datastores 
generated from the XML data:

■ Primary keys (PK attributes) for parent-child relationships

■ Foreign keys (FK attributes) for parent-child relationships

■ Order identifier (ORDER attributes) to enable the retrieval of the order in which 
the data appear in the XML file.

These extra attributes enable the hierarchical XML structure's mapping in a relational 
structure stored in the schema. See Appendix B, "Oracle Data Integrator Driver for 
XML Reference" for more information.



Designing a Mapping

19-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

19.6 Designing a Mapping
The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning XML messages.

19.6.1 Loading Data from a JMS XML Source
JMS XML can be used as a source or a target in a mapping. Data from an XML 
message Queue or Topic can be loaded to any ANSI SQL-92 standard compliant 
database used as a staging area. The LKM choice in the Mapping Flow tab to load data 
between JMS XML and another type of data server is essential for successful data 
extraction.

Oracle Data Integrator provides the LKM JMS XML to SQL for loading data from a 
JMS compliant message queue or topic in XML to any ANSI SQL-92 standard 
compliant database used as a staging area. This LKM uses the Agent to read selected 
messages from the source queue/topic and write the result in the staging temporary 
table created dynamically.To ensure message delivery, the message consumer (or 
subscriber) does not commit the read until the data is actually integrated into the 
target by the IKM.Consider using this LKM if one of your source datastores is an XML 
JMS message. 

In order to load XML messages from a JMS provider, the following steps must be 
followed:

■ The first mapping reading the XML message from the JMS XML source must use 
the LKM JMS XML to SQL with the SYNCHRO_JMS_TO_XML LKM option set to 
Yes. This option creates and loads the XML schema from the message retrieved 
from the queue or topic.

■ The last mapping should commit the message consumption by setting the JMS_
COMMIT to Yes.

Table 19–3 lists the JMS specific options of this knowledge module.

19.6.2 Integrating Data in a JMS XML Target
Oracle Data Integrator provides the IKM SQL to JMS XML Append that implements 
optimized data integration strategies for JMS XML. This IKM integrates data into a 
JMS compliant message queue or topic in XML format from any ANSI SQL-92 
standard compliant staging area.

To use this IKM, the staging area must be different from the target. 

In order to integrate XML data into a JMS XML target, the following steps must be 
followed:

■ The first mapping loading the XML schema must provide a value for the ROOT_
TABLE (it is the model's table that corresponds to the root element of the XML 
file), and also set the INITIALIZE_XML_SCHEMA option to Yes.

Note: The root table of the XML schema usually corresponds to the 
datastore at the top of the hierarchy tree view of the JMS XML model. 
Therefore the ROOT_TABLE parameter should take the value of the 
resource name for this datastore.



Designing a Mapping

JMS XML 19-9

■ The mappings should load the datastores in the hierarchy order, starting by the 
top of the hierarchy and going down. The mappings loading subsequent levels of 
the XML schema hierarchy should load the foreign key attribute linking the 
current hierarchy level to a higher one.

For example, when loading the second level of the hierarchy (the one under the 
root table), the foreign key attribute should be set to '0' (Zero), as it is the value 
that is set by the IKM in the root table primary key when the root table is 
initialized.

■ The last mapping should send the XML schema to the JMS provider by setting the 
SYNCHRO_JMS_TO_XML parameter to Yes.

Example
An XML file format generates a schema with the following hierarchy of datastores:

+ GEOGRAPHY_DIM (GEO_DIMPK, ...)
  |
  +--- COUNTRY (GEO_DIMFK, COUNTRYPK, COUNTRY_NAME, ...)
       |
       +--- REGION (COUNTRYFK, REGIONPK, REGION_NAME, ...)

In this hierarchy, GEOGRAPHY_DIM is the root table, and its GEOGRAPHY_DIMPK 
attribute is set to '0' at initialization time. The tables should be loaded in the 
GEOGRAPHY_DIM, COUNTRY, REGION sequence.

■ When loading the second level of the XML hierarchy (COUNTRY) make sure that 
the FK field linking this level to the root table level is set to '0'. In the model above, 
when loading COUNTRY, we must load the COUNTRY.GEOGRAPHY_DIMFK set 
to '0'.

■ You must also link the records of REGION to the COUNTRY level by loading the 
REGION.COUNTRYFK attribute with values that correspond to a parent record in 
COUNTRY (having REGION.COUNTRYFK = COUNTRY.COUNTRYPK).

For more information on loading data to XML schemas, see Appendix B, "Oracle Data 
Integrator Driver for XML Reference".

Table 19–3 lists the JMS specific KM options of this IKM. Options that are specific to 
XML messages are in bold.

JMS XML Knowledge Modules Options
Table 19–3 lists the KM options for the LKM and IKM for JMS XML. Options that are 
specific to XML messages are in bold.

Although most options are the same for the LKM and IKM, there are only few 
differences:

■ The INITIALIZE_XML_SCHEMA and ROOT_TABLE options are only provided 
for the IKM.

■ The DELETE_TEMPORARY_OBJECTS and JMS_COMMIT options are only 
provided for the LKM. 

■ Set JMS_COMMIT to Yes to commit the message consumption on the Router (JMS 
XML).



Designing a Mapping

19-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 19–3 JMS Specific KM Options

Option Used to Description

CLIENTID Read Subscriber identification string.

Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber 
definition remains on the router after 
disconnection.

INITIALIZE_XML_
SCHEMA

Write Initializes an empty XML schema. This option must 
be set to YES for the first mapping loading the 
schema.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2: 
Persistent). A persistent message remains on the 
server and is recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on 
the server [0..4 000 000 000]. 0 signifies that the 
message never expires.

Warning! After this delay, a message is considered 
as expired, and is no longer available in the topic or 
queue. When developing mappings it is advised to 
set this parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9 
(highest).

JMSTYPE Write Optional name of the message.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000 
000 000]. 0: All messages are retrieved.

MESSAGESELECTOR Read Message selector in ISO SQL syntax for filtering on 
the router. See Section 18.7.1, "Using JMS 
Properties" for more information on message 
selectors.

MESSAGETIMEOUT Read Time to wait for the first message in milliseconds [0 
.. 4 000 000 000]. If MESSAGETIMEOUT is equal to 
0, then there is no timeout. 

MESSAGETIMEOUT and 
MESSAGEMAXNUMBER cannot be both equal to 
zero. If MESSAGETIMEOUT= 0 and MESSAGEMAXNUMBER 
=0, then MESSAGETIMEOUT takes the value 1.

Warning! A mapping may retrieve no message if 
this timeout value is too small. 

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in 
milliseconds [0 .. 4 000 000 000]. The default value is 
1000.

Warning! A mapping may retrieve only part of the 
messages available in the topic or the queue if this 
value is too small.

ROOT_TABLE Write Resource name of the datastore that is the root of 
the XML model hierarchy. Option applicable only 
to first mapping loading the schema (INITIALIZE_
XML_SCHEMA=true). IKM inserts a record for the 
root element of the XML schema, if ROOT_
TABLE<>'' and INITIALIZE_XML_SCHEMA=true.

Warning! Use only, if no mapping will populate the 
root table of the XML structure. Otherwise a 
duplicate root element will be encountered.



Designing a Mapping

JMS XML 19-11

SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2 
->TextMessage).

SYNCHRO_XML_TO_JMS Write Generates the XML message from the XML schema, 
and sends this message. This option must be set to 
YES for the last mapping that writes to the schema 
XML.

Table 19–3 (Cont.) JMS Specific KM Options

Option Used to Description



Designing a Mapping

19-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



20

LDAP Directories 20-1

20LDAP Directories

This chapter describes how to work with LDAP directories in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 20.1, "Introduction"

■ Section 20.2, "Installation and Configuration"

■ Section 20.3, "Setting up the Topology"

■ Section 20.4, "Setting Up an Integration Project"

■ Section 20.5, "Creating and Reverse-Engineering an LDAP Directory"

■ Section 20.6, "Designing a Mapping"

■ Section 20.7, "Troubleshooting"

20.1 Introduction
Oracle Data Integrator supports LDAP directories integration using the Oracle Data 
Integrator Driver for LDAP. 

20.1.1 Concepts
The LDAP concepts map the Oracle Data Integrator concepts as follows: An LDAP 
directory tree, more specifically the entry point to this LDAP tree, corresponds to a 
data server in Oracle Data Integrator. Within this data server, a single schema maps the 
content of the LDAP directory tree.

The Oracle Data Integrator Driver for LDAP (LDAP driver) loads the hierarchical 
structure of the LDAP tree into a relational schema. This relational schema is a set of 
tables that can be queried or modified using standard SQL statements.

The relational schema is reverse-engineered as a data model in ODI, with tables, 
columns, and constraints. This model is used like a normal relational data model in 
ODI. Any changes performed in the relational schema data (insert/update) is 
immediately impacted by the driver in the LDAP data.

See Appendix A, "Oracle Data Integrator Driver for LDAP Reference" for more 
information on this driver.

20.1.2 Knowledge Modules
Oracle Data Integrator does not provide specific Knowledge Modules (KM) for the 
LDAP technology. You can use LDAP as a SQL data server. LDAP data servers support 
both the technology-specific KMs sourcing or targeting SQL data servers, as well as 



Installation and Configuration

20-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

the generic KMs. See Chapter 4, "Generic SQL" or the technology chapters for more 
information on these KMs.

20.2 Installation and Configuration
Make sure you have read the information in this section before you start working with 
the LDAP technology.

■ System Requirements

■ Technologic Specific Requirements

■ Connectivity Requirements

20.2.1 System Requirements
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

20.2.2 Technologic Specific Requirements
There are no technology-specific requirements for using LDAP directories in Oracle 
Data Integrator. 

20.2.3 Connectivity Requirements
This section lists the requirements for connecting to LDAP database. 

Oracle Data Integrator Driver for LDAP
LDAP directories are accessed through the Oracle Data Integrator Driver for LDAP. 
This JDBC driver is installed with Oracle Data Integrator.

To connect to an LDAP directory you must ask the system administrator for the 
following connection information:

■ The URL to connect to the directory

■ The User and Password to connect to the directory

■ The Base Distinguished Name (Base DN). This is the location in the LDAP tree that 
ODI will access.

You may also require a connection to the Reference LDAP Tree structure and to an 
External Storage database for the driver. See Appendix B, "Oracle Data Integrator 
Driver for XML Reference" for more information on these concepts and configuration 
parameters.

20.3 Setting up the Topology
Setting up the topology consists in: 

1. Creating an LDAP Data Server



Setting up the Topology

LDAP Directories 20-3

2. Creating a Physical Schema for LDAP

20.3.1 Creating an LDAP Data Server
An LDAP data server corresponds to an LDAP tree that is accessible to Oracle Data 
Integrator.

20.3.1.1 Creation of the Data Server
Create a data server for the LDAP technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining a 
LDAP data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ User/Password: Name and password of the LDAP directory user.

2. In the JDBC tab, enter the values according to the driver used:

■ JDBC Driver: com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver

■ JDBC URL: The driver supports two URL formats:

– jdbc:snps:ldap?<property>=<value>[&<property>=<value>...]

– jdbc:snps:ldap2?<property>=<value>[&<property>=<value>...
]

These two URLs accept the key properties listed in Table 20–1. See 
Appendix A.3.1, "Driver Configuration" for a detailed description of these 
properties and for a comprehensive list of all JDBC driver properties.

Note: The first URL requires the LDAP directory password to be 
encoded. The second URL allows you to give the LDAP directory 
password without encoding it. It is recommended to use the first URL 
to secure the LDAP directory password.

Table 20–1 JDBC Driver Properties

Property Value Notes

ldap_auth <authentication 
mode>

LDAP Directory authentication method. See the auth property in Table A–1

ldap_url <LDAP URL> LDAP Directory URL. The URL must not contain spaces. If there are spaces 
in the URL, replace them with %20.

See the url property in Table A–1

ldap_user <LDAP user name> LDAP Directory user name. See the user property in Table A–1

ldap_
password

<LDAP user 
password>

LDAP Directory user password. This password must be encoded if using the 
jdbc:snps:ldap URL syntax.

See the password property in Table A–1

ldap_
basedn

<base DN> LDAP Directory basedn. The basedn must not contain spaces. If there are 
spaces in the basedn, replace them with %20.

See the basedn property in Table A–1



Setting Up an Integration Project

20-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

URL Examples
To connect an Oracle Internet Directory on server OHOST_OID and port 3060, using 
the user orcladmin, and accessing this directory tree from the basedn 
dc=us,dc=oracle,dc=com  you can use the following URL:

jdbc:snps:ldap?ldap_url=ldap://OHOST_OID:3060/
&ldap_basedn=dc=us,dc=oracle,dc=com
&ldap_password=ENCODED_PASSWORD
&ldap_user=cn=orcladmin

20.3.2 Creating a Physical Schema for LDAP
Create an LDAP physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

20.4 Setting Up an Integration Project
Setting up a Project using the LDAP database follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

The recommended knowledge modules to import into your project for getting started 
are the following:

■ LKM SQL to SQL

■ LKM File to SQL

■ IKM SQL Control Append

20.5 Creating and Reverse-Engineering an LDAP Directory
This section contains the following topics:

■ Create an LDAP Model

■ Reverse-Engineering an LDAP Model

20.5.1 Create an LDAP Model
A data model groups a set of datastores. Each datastore represents in the context of a 
directory a class or group of classes. Typically, classes are mapped to tables and 
attributes to column. See Appendix A.2.1, "LDAP to Relational Mapping" for more 
information.

Create an LDAP Model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator.

20.5.2 Reverse-Engineering an LDAP Model
LDAP supports standard reverse-engineering, which uses only the abilities of the 
LDAP driver.

When the reverse-engineering process of the LDAP driver translates the LDAP tree 
into a relational database structure, it constructs tables from sets of objects in the tree.



Designing a Mapping

LDAP Directories 20-5

The names of these tables must reflect this original structure in order to maintain the 
mapping between the two. As a result, the table names are composed of the original 
LDAP object names that may be extremely long and not appropriate as datastore 
names in mappings.

The solution consists in creating an alias file that contains a list of short and clear table 
name aliases. See Appendix A.3.4, "Table Aliases Configuration" for more information.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on LDAP use the usual procedure, as 
described in "Reverse-engineering a Model" of the Developing Integration Projects with 
Oracle Data Integrator. 

The standard reverse-engineering process will automatically map the LDAP tree 
contents to a relational database structure. Note that these tables automatically include 
primary key and foreign key columns to map the directory hierarchy.

The reverse-engineering process also creates a ROOT table that represents the root of 
the LDAP tree structure from the LDAP entry point downwards.

See Appendix A.2, "LDAP Processing Overview" for more information.

20.6 Designing a Mapping
You can use LDAP entries as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning an LDAP data server.

20.6.1 Loading Data from and to LDAP
An LDAP directory can be used as a mapping's source or target. The LKM choice in 
the Loading Knowledge Module tab that is used to load data between LDAP entries 
and other types of data servers is essential for the performance of the mapping.

20.6.1.1 Loading Data from an LDAP Directory
Use the Generic SQL KMs or the KMs specific to the other technology involved to load 
data from an LDAP database to a target or staging area database.

Table 20–2 lists some examples of KMs that you can use to load from an LDAP source 
to a staging area.

20.6.1.2 Loading Data to an LDAP Directory
It is not advised to use an LDAP directory as a staging area.

Table 20–2 KMs to Load from LDAP to a Staging Area

Staging Area KM Notes

Microsoft SQL 
Server

LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses 
Statistics)

Sybase LKM SQL to Sybase ASE (BCP) Uses Sybase's bulk loader.

All LKM SQL to SQL Generic KM



Troubleshooting

20-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

20.6.2 Integrating Data in an LDAP Directory
LDAP can be used as a target of a mapping. The IKM choice in the Integration 
Knowledge Module tab determines the performances and possibilities for integrating.

Use the Generic SQL KMs or the KMs specific to the other technology involved to 
integrate data in an LDAP directory. 

Table 20–3 lists some examples of KMs that you can use to integrate data from a 
staging area to an LDAP target.

20.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might 
encounter when using LDAP in Oracle Data Integrator. It contains the following 
topics:

■ SQL operations (insert, update, delete) performed on the relational model are not 
propagated to the LDAP directory.

You are probably using an external RDBMS to store your relational model.

■ java.util.MissingResourceException: Can't find bundle for 
base name ldap_....

The property bundle file is missing, present in the incorrect directory or the 
filename is incorrect.

■ java.sql.SQLException: A NamingException occurred saying: 
[LDAP: error code 32 ....

The connection property bundle is possibly incorrect. Check the property values in 
the bundle files.

■ java.sql.SQLException: A NamingException occurred saying: 
[LDAP: error code 49 - Invalid Credentials]

The authentication property is possibly incorrect. Check the password.

■ java.sql.SQLException: Exception class 
javax.naming.NameNotFoundException occurred saying: [LDAP: 
error code 32 - No Such Object].

The LDAP tree entry point is possibly incorrect. Check the target 
DistinguishedName in the LDAP URL.

■ java.sql.SQLException: No suitable driver

This error message indicates that the driver is unable to process the URL is 
registered. The JDBC URL is probably incorrect. Check that the URL syntax is 
valid. See Section A.3, "Installation and Configuration".

Table 20–3 KMs to Integrate Data in an LDAP Directory

Mode KM Notes

Append IKM SQL to SQL Append Generic KM



21

Oracle TimesTen In-Memory Database 21-1

21Oracle TimesTen In-Memory Database

This chapter describes how to work with Oracle TimesTen In-Memory Database in 
Oracle Data Integrator.

This chapter includes the following sections:

■ Section 21.1, "Introduction"

■ Section 21.2, "Installation and Configuration"

■ Section 21.3, "Setting up the Topology"

■ Section 21.4, "Setting Up an Integration Project"

■ Section 21.5, "Creating and Reverse-Engineering a TimesTen Model"

■ Section 21.6, "Setting up Data Quality"

■ Section 21.7, "Designing a Mapping"

21.1 Introduction
The Oracle TimesTen In-Memory Database (TimesTen) provides real-time data 
management. It provides application-tier database and transaction management built 
on a memory-optimized architecture accessed through industry-standard interfaces. 
Optional data replication and Oracle caching extend the product to enable multi-node 
and multi-tier configurations that exploit the full performance potential of today's 
networked, memory-rich computing platforms.

Oracle TimesTen In-Memory Database is a memory-optimized relational database. 
Deployed in the application tier, TimesTen operates on databases that fit entirely in 
physical memory using standard SQL interfaces. High availability for the in-memory 
database is provided through real-time transactional replication.

TimesTen supports a variety of programming interfaces, including JDBC (Java 
Database Connectivity) and PL/SQL (Oracle procedural language extension for SQL).

21.1.1 Concepts
The TimesTen concepts map the Oracle Data Integrator concepts as follows: An Oracle 
TimesTen In-Memory Database instance corresponds to a data server in Oracle Data 
Integrator. Within this database instance, the database/owner pair maps to an Oracle 
Data Integrator physical schema. A set of related objects within one database 
corresponds to a data model, and each table, view or synonym will appear as an ODI 
datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle 
TimesTen In-Memory Database ODBC DSN.



Installation and Configuration

21-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

21.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 21–1 for 
handling TimesTen data. These KMs use TimesTen specific features. It is also possible 
to use the generic SQL KMs with the TimesTen database. See Chapter 4, "Generic SQL" 
for more information.

21.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
TimesTen Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

21.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator/index.htm
l

21.2.2 Technology Specific Requirements
Some of the Knowledge Modules for TimesTen use the ttBulkCp utility.

The following requirements and restrictions apply for these Knowledge Modules:

■ The host of the ODI Agent running the job must have the TimesTen Client utilities 
installed (TTBULKCP)

■ Data transformations should be executed on the staging area or target

■ The correct ODBC entry must be created on the agent machine:

– Client DSN: A Client DSN specifies a remote database and uses the TimesTen 
Client. A Client DSN refers to a TimesTen database indirectly by specifying a 
hostname, DSN pair, where the hostname represents the server machine on 
which TimesTen Server is running and the DSN refers to a Server DSN that 
specifies the TimesTen database on the server host.

Table 21–1 TimesTen Knowledge Modules

Knowledge Module Description

IKM TimesTen Incremental Update 
(MERGE)

Integrates data from staging area into a TimesTen target table using 
TimesTen JDBC driver in incremental update mode. For example, 
inexistent rows are inserted; already existing rows are updated.

LKM SQL to TimesTen Loads data from an ANSI SQL-92 source to a TimesTen staging table 
using the TimesTen JDBC driver.

LKM File to TimesTen (ttBulkCp) Loads data from a file to a TimesTen staging table using ttBulkCp 
utility.



Setting up the Topology

Oracle TimesTen In-Memory Database 21-3

– Server DSN: A Server DSN is always defined as a system DSN and is defined 
on the server system for each database on that server that will be accessed by 
clientapplications. The format and attributes of a server DSN are very similar 
to those of a Data Manager DSN.

21.2.3 Connectivity Requirements
This section lists the requirements for connecting to a TimesTen database. 

To be able to access Microsoft Excel data, you need to:

■ Install the TimesTen ODBC Driver 

■ Declare a TimesTen ODBC Data Source

■ JDBC Driver

■ ODI Agent

Install the TimesTen ODBC Driver
Microsoft Excel workbooks can only be accessed through ODBC connectivity. The 
ODBC Driver for TimesTen must be installed on your system. 

Declare a TimesTen ODBC Data Source
An ODBC data source must be defined for each Microsoft Excel workbook (.xls file) 
that will be accessed from ODI. ODBC datasources are created with the Microsoft 
ODBC Data Source Administrator. Refer to your Microsoft Windows operating system 
documentation for more information on datasource creation.

JDBC Driver
Oracle Data Integrator uses the TimesTen JDBC driver to connect to a TimesTen 
database. This driver must be installed in your Oracle Data Integrator drivers 
directory.

ODI Agent
The ODI Agent running the job must have the TimesTen JDBC Driver and ODBC 
driver installed and configured.

21.3 Setting up the Topology
Setting up the Topology consists of: 

1. Creating a TimesTen Data Server

2. Creating a TimesTen Physical Schema

21.3.1 Creating a TimesTen Data Server
A TimesTen data server corresponds to a TimesTen database.

21.3.1.1 Creation of the Data Server
Create a data server for the TimesTen technology using the standard procedure, as 
described in "Creating a Data Server" of the Developing Integration Projects with Oracle 
Data Integrator. This section details only the fields required or specific for defining a 
TimesTen data server:

1. In the Definition tab:



Setting Up an Integration Project

21-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: TimesTen user with its password

2. In the JDBC tab:

■ JDBC Driver: org.TimesTen.Driver

■ JDBC URL: jdbc:timesten:direct:dsn=<DSNname> 

where DSNname is the name of an ODBC datasource configured on the machine 
running the agent

21.3.2 Creating a TimesTen Physical Schema
Create a TimesTen physical schema using the standard procedure, as described in 
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

21.4 Setting Up an Integration Project
Setting up a project using the TimesTen database follows the standard procedure. See 
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data 
Integrator. 

It is recommended to import the following knowledge modules into your project for 
getting started with TimesTen:

■ CKM SQL

■ IKM SQL Control Append

■ IKM TimesTen Incremental Update (MERGE)

■ LKM SQL to TimesTen

■ LKM File to TimesTen (ttBulkCp)

■ RKM SQL (Jython)

21.5 Creating and Reverse-Engineering a TimesTen Model
This section contains the following topics:

■ Create a TimesTen Model

■ Reverse-engineer a TimesTen Model

21.5.1 Create a TimesTen Model
Create a TimesTen Model using the standard procedure, as described in "Creating a 
Model" of the Developing Integration Projects with Oracle Data Integrator.

Note: Note that Oracle Data Integrator will have write access only on 
the database specified in the URL.



Designing a Mapping

Oracle TimesTen In-Memory Database 21-5

21.5.2 Reverse-engineer a TimesTen Model
TimesTen supports both Standard reverse-engineering - which uses only the abilities of 
the JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for 
starting.

Consider switching to customized reverse-engineering if you encounter problems with 
the standard JDBC reverse-engineering process due to some specificities of the 
TimesTen JDBC driver.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on TimesTen use the usual procedure, as 
described in "Reverse-engineering a Model" of the Developing Integration Projects with 
Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on TimesTen with a RKM, use the 
usual procedure, as described in "Reverse-engineering a Model" of the Developing 
Integration Projects with Oracle Data Integrator. This section details only the fields 
specific to the TimesTen technology:

1. In the Reverse Engineer tab of the TimesTen Model, select the KM: RKM SQL 
(Jython).<project name>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign 
Keys.

21.6 Setting up Data Quality
Oracle Data Integrator provides the CKM SQL for checking data integrity against 
constraints defined on a TimesTen table. See "Flow Control and Static Control" in 
Developing Integration Projects with Oracle Data Integrator for details.

See Chapter 4, "Generic SQL" for more information.

21.7 Designing a Mapping
You can use TimesTen as a source, staging area, or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of 
this mapping or check. The recommendations in this section help in the selection of the 
KM for different situations concerning a TimesTen data server.

21.7.1 Loading Data from and to TimesTen
TimesTen can be used as a source, target or staging area of a mapping. The LKM choice 
in the Loading Knowledge Module tab to load data between TimesTen and another 
type of data server is essential for the performance of a mapping.

21.7.1.1 Loading Data from TimesTen
Use the Generic SQL KMs or the KMs specific to the other technology involved to load 
data from a TimesTen database to a target or staging area database.



Designing a Mapping

21-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

For extracting data from a TimesTen staging area to a TimesTen table, use the IKM 
TimesTen Incremental Update (MERGE). See Section 21.7.1.1, "Loading Data from 
TimesTen" for more information.

21.7.1.2 Loading Data to TimesTen
Oracle Data Integrator provides Knowledge Modules that implement optimized 
methods for loading data from a source or staging area into a TimesTen database. 
These optimized TimesTen KMs are listed in Table 21–2. In addition to these KMs, you 
can also use the Generic SQL KMs or the KMs specific to the other technology 
involved.

21.7.2 Integrating Data in TimesTen
Oracle Data Integrator provides Knowledge Modules that implement optimized data 
integration strategies for TimesTen. These optimized TimesTen KMs are listed in 
Table 21–3. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the 
performances and possibilities for integrating.

Table 21–2 KMs for loading data to TimesTen

Source or Staging Area 
Technology KM Notes

SQL LKM SQL to TimesTen Loads data from an ANSI SQL-92 
source to a TimesTen staging table 
using the TimesTen JDBC driver.

File LKM File to TimesTen 
(ttBulkCp)

Loads data from a file to a TimesTen 
staging table using ttBulkCp utility.

Table 21–3 KMs for integrating data to TimesTen

KM Notes

IKM TimesTen Incremental 
Update (MERGE)

Integrates data from staging area into a TimesTen target 
table using TimesTen JDBC driver in incremental update 
mode. For example, inexistent rows are inserted; already 
existing rows are updated.



22

Oracle GoldenGate 22-1

22Oracle GoldenGate

This chapter describes how to work with Oracle GoldenGate in order to capture 
changes on source transactional systems and replicate them in a staging server for 
consumption by Oracle Data Integrator mappings.

This chapter includes the following sections:

■ Section 22.1, "Introduction"

■ Section 22.2, "Installation and Configuration"

■ Section 22.3, "Working with the Oracle GoldenGate JKMs"

■ Section 22.4, "Advanced Configuration"

22.1 Introduction
Oracle GoldenGate (OGG) product offers solutions that provide key business 
applications with continuous availability and real-time information. It provides 
guaranteed capture, routing, transformation and delivery across heterogeneous 
databases and environments in real-time.

Using the Oracle GoldenGate knowledge modules requires that you know and 
understand Oracle GoldenGate concepts and architecture. See the Oracle GoldenGate 
Documentation on OTN for more information:

http://www.oracle.com/technetwork/middleware/goldengate/overview
/index.html

22.1.1 Overview of the GoldeGate CDC Process
Oracle Data Integrator can capture changes in a source database using Oracle 
GoldenGate to process them in the ODI CDC framework. Oracle Data Integrator uses 
Oracle GoldenGate to replicate data from a source  database to a staging database. This 
staging database contains a copy of the source tables and the ODI Changed Data 
Capture (CDC) infrastructure, both loaded using Oracle GoldenGate.

The staging database can be stored in an Oracle or Teradata schema. The source 
database can be Oracle, Microsoft SQL Server, DB2 UDB, or Sybase ASE. In this 
chapter, <database> refers to any of these source database technologies. 

Setting up CDC with GoldenGate is done using the following process:

1. A replica of the source tables is created in the staging database, using, for example, 
the Oracle Data Integrator Common Format Designer feature.



Introduction

22-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2. Oracle Data Integrator Changed Data Capture (CDC) is activated on the source 
tables using either the JKM <database> to Oracle Consistent (OGG Online) or the  
JKM <database> to Teradata Consistent (OGG Online).

3. The journals are started in either online mode or offline mode.

■ Online mode: Starting the journals in online mode configures and starts the 
GoldenGate Capture (Extract) process to capture the changes in the source 
database and corresponding Delivery (Replicat) processes to replicate the 
changes in the staging database. Changes are replicated into both the 
replicated source table and the CDC infrastructure.

The GoldenGate Capture and Delivery processes are deployed and started 
using the GoldenGate JAgent interface. The GoldenGate JAgent facilitates 
communication between Oracle Data Integrator and Oracle GoldenGate.

■ Offline mode: Starting the journals in offline mode creates the Oracle 
GoldenGate configuration files and sets up a CDC infrastructure in the staging 
database. Note that no active process is started for capturing source data at 
this stage.

Using the generated configuration files, an Oracle GoldenGate Capture 
process is configured and started to capture changes from the source database, 
and corresponding Delivery processes are configured and started to replicate 
these changes into the staging database. Changes are replicated into both the 
replicated source table and the CDC infrastructure.

GoldenGate can optionally be configured to perform the initial load of the 
source data into the staging tables.

4. ODI mappings can source from the replicated tables and use captured changes 
seamlessly within any ODI scenario.

22.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules listed in Table 22–1 for 
replicating online data from a source to a staging database. Like any other CDC JKMs, 
the Oracle GoldenGate JKMs journalize data in the source server.

The JKM <database> to Oracle Consistent (OGG Online) and the JKM <database> to 
Teradata Consistent (OGG Online) perform the same tasks:

■ Create and manage the ODI CDC framework infrastructure on the replicated 
tables.

■ If the journals are started in online mode, configure and start the Oracle Capture 
and Delivery processes on the GoldenGate servers using the GoldenGate JAgent.

■ If the journals are started in offline mode, generate the parameter files to set up the 
Oracle GoldenGate Capture and Delivery processes and the Readme.txt 
explaining how to complete the setup.

■ Provide extra steps to check the configuration of the source database and proposes 
tips to correct the configuration.

Table 22–1 Oracle GoldenGate Knowledge Modules

Knowledge Module Description

JKM Oracle to Oracle 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an 
Oracle staging server and generates the Oracle GoldenGate 
configuration for replicating data from an Oracle source to this 
staging server.



Installation and Configuration

Oracle GoldenGate 22-3

22.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
Oracle GoldenGate Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

22.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

See also the Oracle GoldenGate documentation on OTN for source and staging 
database version platform support.

JKM DB2 UDB to Oracle 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an 
Oracle staging server and generates the Oracle GoldenGate 
configuration for replicating data from an IBM DB2 UDB source 
to this staging server.

JKM Sybase ASE to Oracle 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an 
Oracle staging server and generates the Oracle GoldenGate 
configuration for replicating data from a Sybase ASE source to 
this staging server.

JKM MSSQL to Oracle 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on an 
Oracle staging server and generates the Oracle GoldenGate 
configuration for replicating data from a Microsoft SQL Server 
source to this staging server.

JKM Oracle to Teradata 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a 
Teradata staging server and generates the Oracle GoldenGate 
configuration for replicating data from an Oracle source to this 
staging server.

JKM DB2 UDB to Teradata 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a 
Teradata staging server and generates the Oracle GoldenGate 
configuration for replicating data from an IBM DB2 UDB source 
to this staging server.

JKM Sybase ASE to Teradata 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a 
Teradata staging server and generates the Oracle GoldenGate 
configuration for replicating data from a Sybase ASE source to 
this staging server.

JKM MSSQL to Teradata 
Consistent (OGG Online)

Creates the infrastructure for consistent set journalizing on a 
Teradata staging server and generates the Oracle GoldenGate 
configuration for replicating data from a Microsoft SQL Server 
source to this staging server.

Table 22–1 (Cont.) Oracle GoldenGate Knowledge Modules

Knowledge Module Description



Working with the Oracle GoldenGate JKMs

22-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

22.2.2 Technology Specific Requirements
In order to run the Capture and Delivery processes, Oracle GoldenGate must be 
installed on both the source and staging servers. Installing Oracle GoldenGate installs 
all of the components required to run and manage GoldenGate processes.

Oracle GoldenGate Manager Process must be running on each system before Capture 
or Delivery can be started, and must remain running during their execution for 
resource management.

In order to perform online journalizing, the Oracle GoldenGate JAgent process must 
be configured and running on the Oracle GoldenGate instances.

Oracle GoldenGate has specific requirement and installation instructions that must be 
performed before starting the Capture and Delivery processes configured with the 
Oracle GoldenGate JKMs. See the Oracle GoldenGate Documentation on OTN for 
more information.

22.2.3 Connectivity Requirements
If the source database is Oracle, there are no connectivity requirements for using 
Oracle GoldenGate data in Oracle Data Integrator.

If the source database is IBM DB2 UDB, Microsoft SQL Server, or Sybase ASE, Oracle 
GoldenGate uses the ODBC driver to connect to the source database. You need to 
install the ODBC driver and to declare the data source in your system. You also need 
to set the data source name (DSN) in the KM option SRC_DSN.

22.3 Working with the Oracle GoldenGate JKMs
To use the JKM <database> to Oracle Consistent (OGG Online) or the JKM <database> 
to Teradata Consistent (OGG Online) in your Oracle Data Integrator integration 
projects, you need to perform the following steps:

1. Define the Topology

2. Create the Replicated Tables

3. Set Up an Integration Project

4. Configure CDC for the Source Datastores

5. Configure and Start Oracle GoldenGate Processes (Offline mode only)

6. Design Mappings Using Replicated Data

22.3.1 Define the Topology
This step consists in declaring in Oracle Data Integrator the staging data server, the 
source data server, as well as the physical and logical schemas attached to these 
servers.

To define the topology in this configuration, perform the following tasks:

1. Define the Source Data Server

2. Create the Source Physical Schema

3. Define the Staging Server

4. Create the Staging Physical Schema

5. Define the Oracle GoldenGate Data Servers



Working with the Oracle GoldenGate JKMs

Oracle GoldenGate 22-5

6. Create the Oracle GoldenGate Physical Schemas

7. Create the Oracle GoldenGate Logical Schemas

22.3.1.1 Define the Source Data Server
You have to define a source data server from which Oracle GoldenGate will capture 
changes.

Create a data server for your source technology using the standard procedure. For 
more information, see the chapter corresponding to your source technology in this 
guide:

■  Section 2.3.1, "Creating an Oracle Data Server"

■  Section 7.3.1, "Creating a Microsoft SQL Server Data Server"

This data server represents the source database instance.

22.3.1.2 Create the Source Physical Schema
Create a physical schema under the data server that you have created in 
Section 22.3.1.1, "Define the Source Data Server". Use the standard procedure, as 
described in "Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

22.3.1.3 Define the Staging Server
Create a data server for the Oracle or Teradata technology. For more information, see:

■ Section 2.3.1, "Creating an Oracle Data Server" 

■ Section 11.3.1, "Creating a Teradata Data Server"

22.3.1.4 Create the Staging Physical Schema
Create an Oracle or Teradata physical schema using the standard procedure, as 
described in "Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as 
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and 
associate it in a given context.

22.3.1.5 Define the Oracle GoldenGate Data Servers
An Oracle GoldenGate data server corresponds to the Oracle GoldenGate JAgent 
process in Oracle Data Integrator (ODI). The Oracle GoldenGate JAgent process 
facilitates communication between ODI and the Oracle GoldenGate servers. You must 
create a JAgent process for both the source and the target Oracle GoldenGate servers.

Create a data server for the Oracle GoldenGate technology using the standard 
procedure, as described in "Creating a Data Server" of the Developing Integration 

Note:  The physical schema defined in the staging server will contain 
in the data schema the changed records captured and replicated by the 
Oracle GoldenGate processes. The work schema will be used to store 
the ODI CDC infrastructure.



Working with the Oracle GoldenGate JKMs

22-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Projects with Oracle Data Integrator. This section details only the fields required or 
specific for defining an Oracle GoldenGate data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in the Oracle Data Integrator.

■ Host: Hostname or the IP address of the server where the JAgent process is 
running.

■ JMX Port: Port number of the JAgent process.

■ Manager Port: Port number of the Oracle GoldenGate manager instance.

■ JMX User: User name to connect to the JAgent.

■ Password: Password of the user credentials.

■ Installation Path: Location path for the Oracle GoldenGate installation. You 
must use this path when you create the capture process definitions from a 
model.

22.3.1.6 Create the Oracle GoldenGate Physical Schemas
The Oracle GoldenGate physical schemas in ODI correspond to the GoldenGate 
Capture and Delivery processes that perform CDC in Oracle GoldenGate. You must 
define the Oracle GoldenGate physical schemas to configure the Capture process on 
the source GoldenGate server and Delivery process on the target GoldenGate server.

Create a physical schema under the Oracle GoldenGate data server that you have 
created in Section 22.3.1.5, "Define the Oracle GoldenGate Data Servers". Use the 
standard procedure, as described in "Creating a Physical Schema" in Administering 
Oracle Data Integrator. This section details only the fields required or specific to create 
the physical schemas to configure the Oracle GoldenGate Capture and Replicate 
processes.

GoldenGate Capture Process Fields

Note that the GoldenGate Capture process must be configured on the source 
GoldenGate server.

1. In the Process Definition tab:

■ Process Type: Type of the process that you want to configure. Select Capture 
as the process type.

■ Name: Name of the process (physical schema) in Oracle Data Integrator. 
Process name cannot exceed 8 characters and only upper case is allowed.

■ Trail File Path: Location of the Oracle GoldenGate trail file. Only two 
characters for the file name part are allowed.

■ Remote Trail File Path: Location of the remote trail file. Only two characters 
for the file name part are allowed.

■ Trail File Size: Size of the Oracle GoldenGate trail file in Megabytes.

■ Report Fetch: Enables report information to include the fetching statistics.

Note: Alternatively, you can create the Oracle GoldenGate physical 
schemas from the model. See Section 22.3.4.1, "Create Oracle 
GoldenGate Physical Schemas from the model" for information about 
how to create physical schemas from the model.



Working with the Oracle GoldenGate JKMs

Oracle GoldenGate 22-7

■ Report Count Frequency: Reports the total operations count at specific 
intervals. If the interval is not specified the entry is not added to the parameter 
file.

■ Select a parameter: List of available Oracle GoldenGate parameters. Only the 
parameters for the supported database are listed. Select a parameter and click 
Add. A template of the selected parameter is added to the text box.

See the Oracle GoldenGate Reference Guide on OTN for information about the 
GoldenGate parameters.

Delivery Process Fields

Note that the GoldenGate Delivery process must be configured on the target 
GoldenGate server.

1. In the Process Definition tab:

■ Process Type: Type of the process that you want to configure. Select Delivery 
as the process type.

■ Name: Name of the process (physical schema) in Oracle Data Integrator. 
Process name cannot exceed 7 characters and only uppercase is allowed.

■ Trail File Path: Location of the trail file. Only two characters for the filename 
part are allowed.

■ Discard File Path: Location of the discard file.

■ Definition File Path: Location of the definition file.

■ Report Detail: Enables report information to include any collision counts.

■ Report Count Frequency: Report the total operations count at specific 
intervals. If the interval is not specified the entry is not added to the parameter 
file.

■ Select a parameter: List of available Oracle GoldenGate parameters. Only the 
parameters for the supported database are listed. Select a parameter and click 
Add.

See the Oracle GoldenGate Reference Guide on OTN for information about the 
GoldenGate parameters.

22.3.1.7 Create the Oracle GoldenGate Logical Schemas
Create logical schemas for the GoldenGate physical schemas (GoldenGate Capture and 
Delivery processes) that you created in section Section 22.3.1.6, "Create the Oracle 
GoldenGate Physical Schemas". You must create a logical schema for both the Capture 
process and the Delivery process.

To create logical schemas:

1. In the Topology Navigator expand the Technologies node in the Logical 
Architecture accordion.

2. Right-click Oracle GoldenGate and select New Logical Schema.

3. Fill in the Logical Schema Name.

4. Select the appropriate process type, either Capture or Delivery, to which you want 
to attach your logical schema.

5. For each Context in the left column, select an existing Physical Schema in the right 
column. This Physical Schema is automatically associated to the logical schema in 
this context. Repeat this operation for all necessary contexts.



Working with the Oracle GoldenGate JKMs

22-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6. From File menu, click Save.

22.3.2 Create the Replicated Tables
Oracle GoldenGate will replicate in the staging server the records changed in the 
source. In order to perform this replication, the source table structures must be 
replicated in the staging server.

To replicate these source tables:

1. Create a new Data Model using the Oracle or Teradata technology. This model 
must use the logical schema created using the instructions in Section 22.3.1.4, 
"Create the Staging Physical Schema". 

See "Creating a Model" in the Developing Integration Projects with Oracle Data 
Integratorfor more information on model creation.

Note that you do not need to reverse-engineer this data model.

2. Create a new diagram for this model and add to this diagram the source tables 
that you want to replicate. 

3. Generate the DDL Scripts and run these scripts for creating the tables in the 
staging data server. 

4. An initial load of the source data can be made to replicate this data into the staging 
tables. You can perform this initial load with ODI using the Generate Interface IN 
feature of Common Format Designer. Alternately, you can use Oracle GoldenGate 
to perform this initial load, by specifying a capture or delivery process to perform 
the initial load or by setting the USE_OGG_FOR_INIT JKM option to Yes to create 
a process to perform the initial load when you Configure CDC for the Source 
Datastores.

22.3.3 Set Up an Integration Project
Setting up a project using Oracle GoldenGate features follows the standard procedure. 
See "Creating an Integration Project" of the Developing Integration Projects with Oracle 
Data Integrator. 

Depending on the technology of your source data server and staging server, import 
one of the following KMs into your project:

■ JKM Oracle to Oracle Consistent (OGG Online)

■ JKM DB2 UDB to Oracle Consistent (OGG Online)

■ JKM Sybase ASE to Oracle Consistent (OGG Online)

■ JKM MSSQL to Oracle Consistent (OGG Online)

■ JKM Oracle to Teradata Consistent (OGG Online)

■ JKM DB2 UDB to Teradata Consistent (OGG Online)

■ JKM Sybase ASE to Teradata Consistent (OGG Online)

■ JKM MSSQL to Teradata Consistent (OGG Online)

Note:  See "Creating Data Models with Common Format Designer" 
in the Developing Integration Projects with Oracle Data Integrator for 
more information on diagrams, generating DDL, and generating 
Interface IN features.



Working with the Oracle GoldenGate JKMs

Oracle GoldenGate 22-9

22.3.4 Configure CDC for the Source Datastores
Changed Data Capture must be configured for the source datastores. This 
configuration is similar to setting up consistent set journalizing and is performed 
using the following steps.

1. Edit the data model that contains the source datastore. In the Journalizing tab of 
the data model, set the Journalizing Mode to Consistent Set and select the 
appropriate JKM <database> to Oracle Consistent (OGG Online) or JKM 
<database> to Teradata Consistent (OGG Online).

Select the following GoldenGate processes (physical schemas) using the process 
selection drop-down list:

■ Capture Process

■ Delivery Process

■ Initial Load Capture Process

■ Initial Load Delivery Process

If you do not want to use an existing GoldenGate process, you can create new 
processes from here using the Create button next to the <Process Name> field. See 
Section 22.3.4.1, "Create Oracle GoldenGate Physical Schemas from the model" for 
information about how to create GoldenGate processes from the model.

Set the KM options as follows:

■ ONLINE: If you set this option to true, the JKM configures the CDC 
infrastructure and configures and starts the GoldenGate Capture and Delivery 
processes. If you set this option to false, the JKM generates the CDC 
infrastructure and the configuration files that are required to set up the 
GoldenGate Capture and Delivery processes. It also generates the 
Readme.txt that contains the instructions to configure and start the 
GoldenGate processes. 

For more information about online and offline mode, see Section 22.1.1, 
"Overview of the GoldeGate CDC Process".

For information about how to configure and start GoldenGate processes using 
the configuration files, see Section 22.3.5, "Configure and Start Oracle 
GoldenGate Processes (Offline mode only)".

■ LOCAL_TEMP_DIR: Full path to a temporary folder into which the Oracle 
GoldenGate configuration files will be generated

■ SRC_DSN: Name of the data source. This KM option is required when the 
ODBC driver is used. Note that this option does not exist in the JKM Oracle to 
Oracle Consistent (OGG Online).

■ USE_OGG_FOR_INIT: Applicable for offline mode only. Generate the Oracle 
GoldenGate processes to perform the initial load of the replicated tables. If you 
have performed this initial load using Oracle Data Integrator while Creating 
the Replicated Tables, you can leave this option to NO.

Note: For Sybase users only: When defining the data source name, 
you have to add the database server name to the datasource name as 
follows:

DSN_name@SYBASE_DBSERVER



Working with the Oracle GoldenGate JKMs

22-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2. Select the datastores that you want to replicate or the model if want to replicate all 
datastores, right-click then select Changed Data Capture > Add to CDC. 

3. Select the model, right-click then select Changed Data Capture > Subscriber > 
Subscribe. Add subscribers for this model.

4. Select the model, right-click then select Changed Data Capture > Start Journal. If 
journals are started in online mode (ONLINE option for the JKM is set to true), the 
JKM creates the CDC infrastructure and configures and starts the Oracle 
GoldenGate processes. If journals are started in offline mode (ONLINE option for 
the JKM is set to false), the JKM creates the CDC infrastructure and generates the 
configuration files that are required to configure the Oracle GoldenGate processes. 
It also generates Readme.txt that contains the instructions to configure and start 
the GoldenGate processes.

For information about how to configure and start GoldenGate processes, see 
Section 22.3.5, "Configure and Start Oracle GoldenGate Processes (Offline mode 
only)".

You can review the result of the journal startup action:

■ If journals are started in online mode, the Oracle GoldenGate processes are 
configured and started. The changed data in the source datastores is captured and 
replicated in the staging tables.

■ If the journals are started in offline mode, the Oracle GoldenGate configuration 
files, as well as a Readme.txt file are generated in the directory that is specified 
in the LOCAL_TEMP_DIR KM option. You can use these files to Configure and 
Start Oracle GoldenGate Processes (Offline mode only).

■ The CDC infrastructure is set up correctly. The journalized datastores appear in 
the Models accordion with a Journalizing Active flag. You can right-click the 
model and select Changed Data Capture > Journal Data… to access the 
journalized data for these datastores.

See "Using Journalizing" in the Developing Integration Projects with Oracle Data Integrator 
for more conceptual information and detailed instructions on CDC.

22.3.4.1 Create Oracle GoldenGate Physical Schemas from the model
You can create the Oracle GoldenGate physical schemas for the following GoldenGate 
processes from the Journalizing tab of the Model Editor. 

■ Capture Process

■ Delivery Process

■ Initial Capture Process (Capture process to be used for initial load)

■ Initial Delivery Process (Delivery process to be used for initial load)

When you create the Oracle GoldenGate physical schemas from the models, the 
default values are derived from the JAgent and the Model details.

To create the Oracle GoldenGate physical schemas from the model:

1. In the Designer Navigator expand the Models panel.

Note: Although this CDC configuration supports consistent set 
journalizing, it is not required to order datastores in the Journalized 
Tables tab of the model after adding them to CDC.



Working with the Oracle GoldenGate JKMs

Oracle GoldenGate 22-11

2. Expand the Models folder that contains the model from which you want to create 
the physical schemas.

3. Right-click the Model and select Open.

4. Click the Journalizing tab of the Model Editor.

5. Click Create button next to the Capture Process field.

6. Select the appropriate JAgent and Context.

7. Fill in the Process Name and Logical Process Name.

8. Click OK to create and select the Capture process.

9. Click Create button next to the Delivery Process field.

10. Select the appropriate JAgent and Context.

11. Fill in the Process Name and Logical Process Name.

12. Select the Target Database Logical Schema for the Delivery process.

13. Click OK.

14. Similarly, click Create buttons next to the Initial Load Capture Process and Initial 
Load Delivery Process fields to create physical schemas for them.

22.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only)

The JKM generates in the LOCAL_TEMP_DIR a folder named after the source and 
target object groups. This folder contains the following:

■ The Readme.txt file that contains detailed instructions for configuring and 
starting the Oracle GoldenGate processes.

■ The src folder that contains configuration files to upload on the source server, in 
the Oracle GoldenGate installation directory.

■ The stg folder that contains configuration files to upload on the staging server, in 
the Oracle GoldenGate installation directory.

The detailed instructions, customized for your configuration, are provided in the 
readme file.

These instructions include:

1. Uploading or copying files from the src folder to the source server.

2. Uploading or copying files from the stg folder to the staging server.

WARNING: The physical schema generated for the Capture process 
needs to be changed manually. The Remote Trail File Path property 
of the physical schema uses the path for the Capture instance and 
needs to be changed to use the path for the Delivery instance.

Note: This section is applicable only if the journals are started in 
offline mode. That means only if the ONLINE option for the JKM is set 
to false.



Advanced Configuration

22-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

3. Running on the source server the OBEY file generated by the JKM for starting the 
Capture process, using the ggsci command line.

4. Generating on the source server definition file using the defgen command line.

5. Copying this definition file to the staging server.

6. If the initial load option is used:

■ Running on the staging server the OBEY file generated by the JKM for the 
initial load, using the ggsci command line.

■ Running on the source server the OBEY file generated by the JKM for the initial 
load, using the ggsci command line.

7. Finally Running on the staging server the OBEY file generated by the JKM for the 
starting the Delivery processes, using the ggsci command line.

See the Oracle GoldenGate documentation on OTN for more information on OBEY 
files, the ggsci and defgen utilities.

22.3.6 Design Mappings Using Replicated Data
You can use the data in the replicated data as a source in your mappings. This process 
is similar to using a source datastore journalized in consistent set mode. See "Using 
Changed Data: Consistent Set Journalizing" in the Developing Integration Projects with 
Oracle Data Integrator for more information.

22.4 Advanced Configuration
This section includes the following advanced configuration topics:

■ Initial Load Method

■ Tuning Replication Performances

■ One Source Multiple Staging Configuration (Offline mode only)

22.4.1 Initial Load Method
The staging tables contain a replica of the structure and data from the source tables. 
The Oracle GoldenGate processes capture changes on the source tables and apply 
them to the target. Yet the staging tables must be initially loaded with the original 
content of the source tables. You can use the following methods to perform the initial 
load:

■ Using Oracle GoldenGate: A specific GoldenGate process loads the whole content of 
the source tables into the staging tables.

■ Using Oracle Data Integrator: The Generate Interfaces IN option of Oracle Data 
Integrator's Common Format Designer. This method uses ODI mappings to 
transfer the data.

■ Using database backup/restore tools to copy data and structures.

22.4.2 Tuning Replication Performances
The following KM options can be used to improve replication performances:

■ COMPATIBLE: This Oracle-specific option affects the use of the PURGE key word 
and the way statistics (using DBMS_STATS or ANALYZE) are collected. Set this 
value to the database version of your staging server.



Advanced Configuration

Oracle GoldenGate 22-13

■ NB_APPLY_PROCESS: Number of Oracle GoldenGate Delivery processes created 
on the staging server.

■ TRAIL_FILE_SIZE: Size of the Oracle GoldenGate trail file in Megabytes.

For the NB_APPLY_PROCESS and TRAIL_FILE_SIZE parameters, see the Oracle 
GoldenGate Documentation on OTN for more information on performance tuning.

22.4.3 One Source Multiple Staging Configuration (Offline mode only)
Note that one source multiple staging configuration can be done only in the offline 
journalizing mode.

It is possible to set up a configuration where changes are captured on a single source 
and replicated to several staging servers. The example below illustrates how to set this 
up in a typical configuration.

Replication should source from source server SRC and replicate in both STG1 and 
STG2 staging servers.

1. Edit the source model and ensure that the logical schema for STG1 is selected.

2. Start the journals in offline mode and follow the instructions in the readme to set 
up the Oracle GoldenGate processes in SRC and STG1.

3. Edit the source model again, and select the logical schema for STG2.

4. Start the journals in offline mode and follow the instructions in the readme to set 
up the Oracle GoldenGate process in SRC and STG2.

Note: Playing the configuration on SRC again will not recreate a 
capture process, trail files, or definition files. It will simply create a 
new Oracle GoldenGate Datapump process to push data to STG2.



Advanced Configuration

22-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



23

Oracle SOA Suite Cross References 23-1

23Oracle SOA Suite Cross References

This chapter describes how to work with Oracle SOA Suite cross references in Oracle 
Data Integrator.

This chapter includes the following sections:

■ Section 23.1, "Introduction"

■ Section 23.2, "Installation and Configuration"

■ Section 23.3, "Working with XREF using the SOA Cross References KMs"

■ Section 23.4, "Knowledge Module Options Reference"

23.1 Introduction
Oracle Data Integrator features are designed to work best with Oracle SOA Suite cross 
references, including mappings that load a target table from several source tables and 
handle cross references.

23.1.1 Concepts
Cross-referencing is the Oracle Fusion Middleware Function, available through the 
Oracle BPEL Process Manager and Oracle Mediator, previously Enterprise Service Bus 
(ESB), and leveraged typically by any loosely coupled integration built on the Service 
Oriented Architecture. It is used to manage the runtime correlation between the 
various participating applications of the integration.

23.1.1.1 General Principles
The cross-referencing feature of Oracle SOA Suite enables you to associate identifiers 
for equivalent entities created in different applications. For example, you can use cross 
references to associate a customer entity created in one application (with native id 
Cust_100) with an entity for the same customer in another application (with native id 
CT_001).

Cross-referencing (XREF) facilitates mapping of native keys for entities across 
applications. For example, correlate the same order across different ERP systems.

The implementation of cross-referencing uses a database schema to store a cross 
reference information to reference records across systems and data stores.

For more information about cross references, see "Working with Cross References" in 
the Developer's Guide for Oracle SOA Suite.

The optional ability to update or delete source table data after the data is loaded into 
the target table is also a need in integration. This requires that the bulk integration 



Introduction

23-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

provides support for either updating some attributes like a status field or purging the 
source records once they have been successfully processed to the target system.

23.1.1.2 Cross Reference Table Structures
The XREF data can be stored in multiple cross reference tables and in two formats:

■ Generic (legacy) table - The table name is XREF_DATA and the table structure 
stores the cross references for all entities. The table format is as follows:

XREF_TABLE_NAME  NOT NULL VARCHAR2(2000)
XREF_COLUMN_NAME NOT NULL VARCHAR2(2000)
ROW_NUMBER NOT NULL VARCHAR2(48)
VALUE  NOT NULL VARCHAR2(2000)
IS_DELETED  NOT NULL VARCHAR2(1)
LAST_MODIFIED NOT NULL TIMESTAMP(6)

This table stores cross references for multiple entities. In this table:

– XREF_TABLE_NAME is the name of the cross reference table

– XREF_COLUMN_NAME is the name of the column to be populated. This column 
name, for example the application name,  is used as  a unique identifier for the 
cross reference table. 

– ROW_NUMBER stores a unique identifier (Row Number) for a given entity 
instance, regardless of the application

– VALUE is the value of the record identifier for a given entity in this application

A specific XREF_COLUMN_NAME entry called COMMON exists to store a 
generated identifier that is common to all applications.

For example, an ORDER existing in both SIEBEL and EBS will be mapped in a 
generic table as shown below:

■ Custom (new) table structure - The table is specific to one entity and has a custom 
structure. For example:

ROW_ID  VARCHAR2(48) NOT NULL PK, 
APP1   VARCHAR2(100), 
APP2   VARCHAR2(100), 
...
COMMON   VARCHAR2(100), 
LAST_MODIFIED  TIMESTAMP NOT NULL

Where:

– Columns such as APP1 and APP2 are used to store PK values on different 
applications and link to the same source record

– ROW_ID (Row Number) is used to uniquely identify records within a XREF data 
table.

Table 23–1 Example of an XREF_DATA (Partial)

XREF_TABLE_NAME XREF_COLUMN_NAME ROW_NUMBER VALUE

ORDER SIEBEL 100012345 SBL_101

ORDER EBS 100012345 EBS_002

ORDER COMMON 100012345 COM_100



Introduction

Oracle SOA Suite Cross References 23-3

– COM holds the common value for the integration layer and is passed among 
participating applications to establish the cross reference

The same ORDER existing in both SIEBEL and EBS would be mapped in a custom 
XREF_ORDER table as shown below:

See Section 23.3.3, "Designing a Mapping with the Cross-References KMs" and 
Section 23.4, "Knowledge Module Options Reference" for more information.

23.1.1.3 Handling Cross Reference Table Structures
The IKM SQL Control Append (SOA XREF) provides the following parameters to 
handle these two table structures:

■ XREF_DATA_STRUCTURE: This option can be set to legacy to use the XREF_
DATA generic table, or to new to use the custom table structure.

If using the generic table structure, you must set the following options:

■ XREF_TABLE_NAME: Value inserted in the XREF_TABLE_NAME column of the 
XREF_DATA table. In the example above (See Table 23–1) this option would be 
ORDER.

■ XREF_COLUMN_NAME: Value inserted in the XREF_COLUMN_NAME column 
of the XREF_DATA table. This value corresponds to the application that is the 
target of the current mapping. In the example above (See Table 23–1), this option 
would take either the value SIEBEL or EBS depending on which system is 
targeted.

If using the custom table structure, you must use the following options:

■ XREF_DATA_TABLE: Name of the cross reference table. It defaults to XREF_DATA. 
In the example above (See Table 23–2), this table name would be XREF_ORDER.

■ XREF_DATA_TABLE_COLUMN: Name of the column that stores the cross 
references for the application that is the target of the current mapping. In the 
example above (See Table 23–2), this option would take either the value SIEBEL or 
EBS depending on which system is targeted.

23.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 23–3 for 
handling SOA cross references (XREF). 

These new Knowledge Modules introduce parameters to support SOA cross 
references. See Section 23.1.1.2, "Cross Reference Table Structures" and Section 23.3.3, 
"Designing a Mapping with the Cross-References KMs" for more information on these 
parameters. 

Table 23–2 Example of a Custom Table: XREF_ORDERS (Partial)

ROW_ID SIEBEL EBS COMMON

100012345 SBL_101 EBS_002 COM_100



Introduction

23-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

23.1.3 Overview of the SOA XREF KM Process
To load the cross reference tables while performing integration with Oracle Data 
Integrator, you must use the SOA XREF knowledge modules. These knowledge 
modules will load the cross reference tables while extracting or loading information 
across systems.

The overall process can be divided into the following three main phases:

1. Loading Phase (LKM)

2. Integration and Cross-Referencing Phase (IKM)

3. Updating/Deleting Processed Records (LKM)

23.1.3.1 Loading Phase (LKM)
During the loading phase, a Source Primary Key is created using columns from the 
source table. This Source Primary Key is computed using a user-defined SQL expression 
that should return a VARCHAR value. This expression is specified in the SRC_PK_
EXPRESSION KM option.

For example, for a source Order Line Table (aliased OLINE in the mapping) you can 
use the following expression: 

TO_CHAR(OLINE.ORDER_ID) || '-' || TO_CHAR(OLINE.LINE_ID)

This value will be finally used to populate the cross reference table.

Table 23–3 SOA XREF Knowledge Modules

Knowledge Module Description

LKM SQL to SQL (SOA XREF) This KM replaces the LKM SQL to SQL (ESB XREF).

This KM supports cross references while loading data from a 
standard ISO source to any ISO-92 database.

Depending of the option SRC_UPDATE_DELETE_ACTION, this 
LKM can DELETE or UPDATE source records.

The LKM SQL to SQL (SOA XREF) has to be used in conjunction with 
the IKM SQL Control Append (SOA XREF) in the same mapping.

LKM MSSQL to SQL (SOA XREF) This KM replaces the LKM MSSQL to SQL (ESB XREF).

This KM is a version of the LKM SQL to SQL (SOA XREF) optimized 
for Microsoft SQL Server.

IKM SQL Control Append (SOA XREF) This KM replaces the IKM SQL Control Append (ESB XREF).

This KM provides support for cross references while integrating data 
in any ISO-92 compliant database target table in truncate/insert 
(append) mode. This KM provides also data control: Invalid data is 
isolated in an error table and can be recycled.

When loading data to the target, this KM also populates PK/GUID 
XREF table on a separate database.

This IKM SQL Control Append (SOA XREF) has to be used in 
conjunction with the LKM SQL to SQL (SOA XREF) or LKM MSSQL 
to SQL (SOA XREF).

Note: In order to maintain the cross referencing between source and 
target systems, the LKM and IKM supporting cross referencing must 
be used in conjunction.



Installation and Configuration

Oracle SOA Suite Cross References 23-5

23.1.3.2 Integration and Cross-Referencing Phase (IKM)
During the integration phase, a Common ID is created for the target table. The value for 
the Common ID is computed from the expression in the XREF_SYS_GUID KM option. 
This expression can be for example:

■ A database sequence (<SEQUENCE_NAME>. NEXTVAL)

■ A function returning a global unique Id (SYS_GUID() for Oracle, NewID() for 
SQL Server)

This Common ID can also be automatically pushed to the target columns of the target 
table that are marked with the UD1 flag.

Both the Common ID and the Source Primary Key are pushed to the cross reference table. 
In addition, the IKM pushes to the cross reference table a unique Row Number value 
that creates the cross reference between the Source Primary Key and Common ID. This 
Row Number value is computed from the XREF_ROWNUMBER_EXPRESSION KM 
option, which takes typically expressions similar to the Common ID to generate a 
unique identifier.

The same Common ID is reused (and not re-computed) if the same source row is used 
to load several target tables across several mappings with the Cross-References KMs. 
This allows the creation of cross references between a unique source row and different 
targets rows.

23.1.3.3 Updating/Deleting Processed Records (LKM)
This optional phase (parameterized by the SRC_UPDATE_DELETE_ACTION KM 
option) deletes or updates source records based on the successfully processed source 
records:

■ If SRC_UPDATE_DELETE_ACTION takes the DELETE value, the source records 
processed by the mapping are deleted.

■ If SRC_UPDATE_DELETE_ACTION takes the UPDATE value, a source column of 
the source table will be updated with an expression for all the processed source 
records. The following KM options parameterize this behavior:

– SRC_UPD_COL: Name of the source column to update

– SRC_UPD_COL_EXPRESSION: Expression used to generate the value to 
update in the column

It is possible to execute delete and update operations on a table different table from the 
source table. To do this, you must set the following KM options in the LKM:

■ SRC_PK_LOGICAL_SCHEMA: Oracle Data Integrator Logical schema containing 
the source table to impact.

■ SRC_PK_TABLE_NAME: Name of the source table to impact.

■ SRC_PK_TABLE_ALIAS: Table alias for this table.

23.2 Installation and Configuration
Make sure you have read the information in this section before you start using the 
SOA XREF Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements



Working with XREF using the SOA Cross References KMs

23-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

23.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and 
certification documentation to ensure that your environment meets the minimum 
installation requirements for the products you are installing. 

The list of supported platforms and versions is available on Oracle Technical Network 
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

23.2.2 Technology Specific Requirements
There are no technology requirements for using Oracle SOA Suite cross references in 
Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQl 
Server apply also to Oracle SOA Suite cross references. For more information, see:

■  Chapter 2, "Oracle Database"

■ Chapter 7, "Microsoft SQL Server"

23.2.3 Connectivity Requirements
There are no connectivity requirements for using Oracle SOA Suite cross references in 
Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQl 
Server apply also to Oracle SOA Suite cross references. For more information, see:

■  Chapter 2, "Oracle Database"

■ Chapter 7, "Microsoft SQL Server"

23.3 Working with XREF using the SOA Cross References KMs
This section consists of the following topics:

■ Defining the Topology

■ Setting up the Project

■ Designing a Mapping with the Cross-References KMs

23.3.1 Defining the Topology
The steps to create the topology in Oracle Data Integrator, which are specific to 
projects using SOA XREF KMs, are the following:

1. Create the data servers, physical and logical schemas corresponding to the sources 
and targets.

2. Create a data server and a physical schema for the Oracle or Microsoft SQL Server 
technology as described in the following sections:

■  Section 2.3.1, "Creating an Oracle Data Server" and Section 2.3.2, "Creating an 
Oracle Physical Schema"

■  Section 7.3.1, "Creating a Microsoft SQL Server Data Server" and Section 7.3.2, 
"Creating a Microsoft SQL Server Physical Schema"

This data server and this physical schema must point to the Oracle instance and 
schema or to the Microsoft SQL Server database containing the cross reference 
tables.



Working with XREF using the SOA Cross References KMs

Oracle SOA Suite Cross References 23-7

3. Create a logical schema called XREF pointing to the physical schema. containing 
the cross reference table.

See "Creating a Logical Schema" in Administering Oracle Data Integrator for more 
information.

23.3.2 Setting up the Project
Import the following KMs into your project, if they are not already in your project:

■ IKM SQL Control Append (SOA XREF)

■ LKM SQL to SQL (SOA XREF) or LKM MSSQL to SQL (SOA XREF) if using 
Microsoft SQL Server

23.3.3 Designing a Mapping with the Cross-References KMs
To create a mapping, which both loads a target table from several source tables and 
handles cross references between one of the sources and the target, run the following 
steps:

1. Create a mapping with the source and target datastores which will have the cross 
references.

2. Create joins, filters and mappings as usual.

Mapping the Common ID: If you want to map in a target column the Common ID 
generated for the cross reference table, check the UD1 flag for this column and 
enter a dummy mapping. For example a constant value such as'X'.

3. In the Physical diagram of the mapping, select the access point for the execution 
unit containing the source table to cross reference. The Property Inspector for this 
object opens. 

4. In the Loading Knowledge Module tab, select the LKM SQL to SQL (SOA XREF) 
or LKM MSSQL to SQL (SOA XREF) if the source data store is in Microsoft SQL 
Server.

5. Specify the KM options as follows:

■ Specify in SRC_PK_EXPRESSION the expression representing the Source 
Primary Key value that you want to store in the XREF table.

If the source table has just one attribute defined as a key, enter the attribute 
name (for example SEQ_NO).

If the source key has multiple attributes, specify the expression to use for 
deriving the key value. For example, if there are two key attributes SEQ_NO 
and DOC_DATE in the table and you want to store the concatenated value of 
those attributes as your source value in the XREF table enter SEQ_NO || 
DOC_DATE. This option is mandatory.

■ Optionally set the SRC_UPDATE_DELETE_ACTION to impact the source 
table, as described in Section 23.1.3.3, "Updating/Deleting Processed Records 
(LKM)"

6. In the Physical diagram of the mapping, select the access point for your staging 
area. The Property Inspector opens for this object.

7. In the Integration Knowledge Module tab, select the IKM SQL Control Append 
(SOA XREF).

8. Specify the KM options as follows:



Knowledge Module Options Reference

23-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ XREF_DATA_STRUCTURE: Enter New to use the new XREF_DATA Table 
structure. Otherwise enter Legacy to use legacy XREF_DATA Table. Default is 
New. Configure the options depending on the table structure you are using, as 
specified in Section 23.1.1.3, "Handling Cross Reference Table Structures"

■ XREF_SYS_GUID_EXPRESSION: Enter the expression to be used to 
computing the Common ID. This expression can be for example:

– a database sequence (<SEQUENCE_NAME>.NEXTVAL)

– a function returning a global unique Id (SYS_GUID() for Oracle and 
NewID() for SQL Server)

■ XREF_ROWNUMBER_EXPRESSION: This is the value that is pushed into the 
Row Number column. Use the default value of GUID unless you have the need 
to change it to a sequence.

■ FLOW_CONTROL: Set to YES in order to be able to use the CKM Oracle.

23.4 Knowledge Module Options Reference
This section lists the KM options for the following Knowledge Modules:

■ LKM SQL to SQL (SOA XREF)

■ LKM MSSQL to SQL (SOA XREF)

■ IKM SQL Control Append (SOA XREF)

Note: If the target table doesn't have any placeholder for the Common 
ID and you are for example planning to populate the source identifier 
in one of the target attributes, you must use the standard mapping 
rules of ODI to indicate which source identifier to populate in which 
attribute.

If the target attribute that you want to load with the Common ID is a 
unique key of the target table, it needs to be mapped. You must put a 
dummy mapping on that attribute. At runtime, this dummy mapping 
will be overwritten with the generated common identifier by the 
integration knowledge module. Make sure to flag this target attribute 
with UD1.



Knowledge Module Options Reference

Oracle SOA Suite Cross References 23-9

Table 23–4 LKM SQL to SQL (SOA XREF)

Option Values Mandatory Description

SRC_UPDATE_DELETE_
ACTION

NONE|UPDATE|DEL
ETE

Yes Indicates what action to take on source 
records after integrating data into the target. 
See Section 23.1.3.3, "Updating/Deleting 
Processed Records (LKM)" for more 
information.

SRC_PK_EXPRESSION Concatenating 
expression

Yes Expression that concatenates values from the 
PK to have them fit in a single large varchar 
column. For example: for the source Orderline 
Table (aliased OLINE in the mapping) you 
can use expression: 

TO_CHAR(OLINE.ORDER_ID) || '-' || 
TO_CHAR(OLINE.LINE_ID)

SRC_PK_LOGICAL_
SCHEMA

Name of source table's 
logical schema

No Indicates the source table's logical schema. 
The source table is the one from which we 
want to delete or update records after 
processing them. This logical schema is used 
to resolve the actual physical schema at 
runtime depending on the Context. For 
example: ORDER_BOOKING. This option is 
required only when SRC_UPDATE_DELETE_
ACTION is set to UPDATE or DELETE.

SRC_PK_TABLE_NAME Source table name, 
default is MY_TABLE

No Indicate the source table name of which we 
want to delete or update records after 
processing them. For example: ORDERS This 
option is required only when SRC_UPDATE_
DELETE_ACTION is set to UPDATE or 
DELETE.

SRC_PK_TABLE_ALIAS Source table alias, 
default is

MY_ALIAS

No Indicate the source table's alias within this 
mapping. The source table is the one from 
which we want to delete or update records 
after processing them. For example: ORD. This 
option is required only when SRC_UPDATE_
DELETE_ACTION is set to UPDATE or 
DELETE.

SRC_UPD_COL Aliased source column 
name

No Aliased source column name that holds the 
update flag indicator. The value of this 
column will be updated after integration 
when SRC_UPDATE_DELETE_ACTION is 
set to UPDATE with the expression literal 
SRC_UPD_EXPRESSION. The alias used for 
the column should match the one defined for 
the source table. For example: ORD.LOADED_
FLAG. This option is required only when 
SRC_UPDATE_DELETE_ACTION is set to 
UPDATE.

SRC_UPD_EXPRESSION Literal or expression No Literal or expression used to update the SRC_
UPD_COL. This value will be used to update 
this column after integration when SRC_
UPDATE_DELETE_ACTION is set to 
UPDATE. For example: RECORDS 
PROCESSED. This option is required only 
when SRC_UPDATE_DELETE_ACTION is 
set to UPDATE.

DELETE_TEMPORARY_
OBJECTS

Yes|No Yes Set this option to NO if you wish to retain 
temporary objects (files and scripts) after 
integration. Useful for debugging.



Knowledge Module Options Reference

23-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

LKM MSSQL to SQL (SOA XREF)
See Table 23–4 for details on the LKM MSSQL to SQL (SOA XREF) options.

Table 23–5 IKM SQL Control Append (SOA XREF)

Option Values Mandatory Description

INSERT Yes|No Yes Automatically attempts to insert data into the 
Target Datastore of the Mapping.

COMMIT Yes|No Yes Commit all data inserted in the target 
datastore.

FLOW_CONTROL Yes|No Yes Check this option if you wish to perform flow 
control.

RECYCLE_ERRORS Yes|No Yes Check this option to recycle data rejected from 
a previous control.

STATIC_CONTROL Yes|No Yes Check this option to control the target table 
after having inserted or updated target data.

TRUNCATE Yes|No Yes Check this option if you wish to truncate the 
target datastore.

DELETE_ALL Yes|No Yes Check this option if you wish to delete all the 
rows of the target datastore.

CREATE_TARG_TABLE Yes|No Yes Check this option if you wish to create the 
target table.

DELETE_TEMPORARY_
OBJECTS

Yes|No Yes Set this option to NO if you wish to retain 
temporary objects (tables, files and scripts) 
after integration. Useful for debugging.

XREF_TABLE_NAME XREF table name Yes, if using 
Legacy 
XREF table 
structure.

Table Name to use in the XREF table. 
Example: ORDERS. See Section 23.1.1.3, 
"Handling Cross Reference Table Structures" 
for more information.

XREF_COLUMN_NAME Column name Yes, if using 
Legacy 
XREF table 
structure.

Primary key column name to use as a literal in 
the XREF table. See Section 23.1.1.3, 
"Handling Cross Reference Table Structures" 
for more information.

XREF_SYS_GUID_
EXPRESSION

SYS_GUID() Yes Enter the expression used to populate the 
common ID for the XREF table (column name 
"VALUE"). Valid examples are: SYS_GUID(), 
MY_SEQUENCE.NEXTVAL, and so forth.

XREF_ROWNUMBER_
EXPRESSION

SYS_GUID() Yes Enter the expression used to populate the 
row_number for the XREF table. For example 
for Oracle: SYS_GUID(), MY_
SEQUENCE.NEXTVAL and so forth.



Knowledge Module Options Reference

Oracle SOA Suite Cross References 23-11

XREF_DATA_
STRUCTURE

New|Legacy Yes Enter New to use the new XREF_DATA Table 
structure.. Otherwise enter Legacy to use 
legacy XREF_DATA Table. Default is New. See 
Section 23.1.1.3, "Handling Cross Reference 
Table Structures" for more information.

XREF_DATA_TABLE XREF table name No. Can be 
used with 
custom 
XREF table 
structure.

Enter the name of the table storing cross 
reference information. Default is XREF_DATA. 
See Section 23.1.1.3, "Handling Cross 
Reference Table Structures" for more 
information.

XREF_DATA_TABLE_
COLUMN

XREF data table 
column name

Yes, if using 
custom 
XREF table 
structure

For new XREF data structure only: Enter the 
column name of the XREF data table to store 
the source key values. See Section 23.1.1.3, 
"Handling Cross Reference Table Structures" 
for more information.

Table 23–5 (Cont.) IKM SQL Control Append (SOA XREF)

Option Values Mandatory Description



Knowledge Module Options Reference

23-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



Part IV
Part IV Appendices

Part IV contains the following appendices:

■ Appendix A, "Oracle Data Integrator Driver for LDAP Reference"

■ Appendix B, "Oracle Data Integrator Driver for XML Reference"

■ Appendix C, "Oracle Data Integrator Driver for Complex Files Reference"





A

Oracle Data Integrator Driver for LDAP Reference A-1

AOracle Data Integrator Driver for LDAP
Reference

This appendix describes how to work with the Oracle Data Integrator driver for LDAP.

This appendix includes the following sections:

■ Section A.1, "Introduction to Oracle Data Integrator Driver for LDAP"

■ Section A.2, "LDAP Processing Overview"

■ Section A.3, "Installation and Configuration"

■ Section A.4, "SQL Syntax"

■ Section A.5, "JDBC API Implemented Features"

A.1 Introduction to Oracle Data Integrator Driver for LDAP
With Oracle Data Integrator Driver for LDAP (LDAP driver) Oracle Data Integrator is 
able to manipulate complex LDAP trees using standard SQL queries.

The LDAP driver supports:

■ Manipulation of LDAP entries, their object classes and attributes

■ Standard SQL (Structured Query Language) Syntax

■ Correlated subqueries, inner and outer joins

■ ORDER BY and GROUP BY

■ COUNT, SUM, MIN, MAX, AVG and other functions

■ All Standard SQL functions

■ Referential Integrity (foreign keys)

■ Persisting modifications into directories

A.2 LDAP Processing Overview
The LDAP driver works in the following way:

1. The driver loads (upon connection) the LDAP structure and data into a relational 
schema, using a LDAP to Relational Mapping.

2. The user works on the relational schema, manipulating data through regular SQL 
statements. Any changes performed in the relational schema data (insert/update) 
are immediately impacted by the driver in the LDAP data.



LDAP Processing Overview

A-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

A.2.1 LDAP to Relational Mapping
The LDAP to Relational Mapping is a complex but automated process that is used to 
generate a relational structure. As LDAP servers do not provide metadata information 
in a standard way, this mapping is performed using data introspection from the LDAP 
tree. Therefore, automatic mapping is carried out on the contents of the LDAP tree 
used as a source for this process.

This section contains the following topics:

■ General Principle

■ Grouping Factor

■ Mapping Exceptions

■ Reference LDAP Tree

A.2.1.1 General Principle
The LDAP driver maps LDAP elements to a relational schema in the following way:

■ Each LDAP class or combination of classes is mapped to a table. Each entry from 
the LDAP tree is mapped to a record in the table.

■ Each attribute of the class instances is mapped to a column.

■ Hierarchical relationships between entries are mapped using foreign keys. A table 
representing a hierarchical level is created with a primary key called 
<tablename>PK. Records reference their parent tables through a <parent_
level_tablename>FK column. The root of the LDAP tree structure is mapped 
to a table called ROOT containing a ROOTPK column in a unique record.

■ Attributes with multiple values for an entry (for example, a Person entry with 
several email attributes) are mapped as sub-tables called <parent_
tablename><attribute_name>. Each sub-table contains a <parent_
tablename>FK column linking it to the parent table.

Figure A–1 shows an LDAP tree with OrganizationalUnit entries linking to Person 
instances. In this case, certain Person entries have multiple email addresses.

Figure A–1 LDAP Tree Example

This LDAP tree will be mapped into the following relational structure:



LDAP Processing Overview

Oracle Data Integrator Driver for LDAP Reference A-3

■ The ROOT table represents the root of the hierarchy and contains one ROOTPK 
column.

■ The ORGANIZATIONALUNIT table represents different organizationalUnit instances 
of the tree. It contains the ORGANIZATIONALUNITPK primary key column and the 
attributes of the organizationalUnit instances (cn, telephoneNumber, etc.). It is linked 
to the ROOT table by the ROOTFK foreign key column.

■ The PERSON table represents the instances of the person class. It contains the 
PERSONPK primary key column and the ORGANIZATIONALUNITFK linking it to 
the ORGANIZATIONALUNIT table and the attributes of PERSON instances, 
(telephoneNumber, description, cn).

■ The email attribute appears as a PERSON_EMAIL table containing the EMAIL 
column and a PERSONFK linking a list of email attributes to a PERSON record.

Figure A–2 shows the resulting relational structure.

Figure A–2 Relational Structure mapped from the LDAP Tree Example shown in 
Figure A–1

A.2.1.2 Grouping Factor
In LDAP directories, class entries are often specified by inheriting attributes from 
multiple class definitions. In the relational mapping procedure, the LDAP driver 
translates this fact by combining each combination of classes in an LDAP entry to 
generate a new table.

For example, some entries of the Person class may also be instances of either of the 
Manager or BoardMember classes (or both). In this case, the mapping procedure would 
generate a PERSON table (for the instances of Person) but also MANAGER_PERSON, 
BOARDMEMBER_PERSON, BOARDMEMBER_MANAGER_PERSON and so forth, tables 
depending on the combination of classes existing in the LDAP tree.

In order to avoid unnecessary multiplication of generated tables, it is possible to 
parameterize this behavior. The Grouping Factor parameter allows this by defining the 
number of divergent classes below which the instances remain grouped together in the 
same table. This resulting table contains flag columns named IS_<classname>, whose 
values determine the class subset to which the instance belongs. For example, if IS_
<classname> is set to 1, then the instance represented by the record belongs to 
<classname>.



LDAP Processing Overview

A-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The behavior where one table is created for each combination of classes corresponds to 
a Grouping Factor equal to zero. With a grouping factor equal to one, instances with 
only one divergent class remain in the same table.

In our example, with a Grouping Factor higher than or equal to 2, all company person 
instances (including Person, Manager and BoardMember class instances) are grouped in 
the PERSON table. The IS_MANAGER and IS_BOARDMEMBER columns enable the 
determination of PERSON records that are also in the Manager and/or BoardMember 
classes.

A.2.1.3 Mapping Exceptions
This section details some specific situations of the mapping process.

■ Table name length limits and collisions: In certain cases, name-length restrictions 
may result in possible object name collisions. The LDAP driver avoids such 
situations by automatically generating 3 digit suffixes to the object name.

■ Key column: It is possible to have the driver automatically create an additional 
SNPSLDAPKEY column containing the Relative Distinguished Name (RDN) that 
can be used as identifier for the current record (original LDAP class instance). This 
is done by setting the key_column URL property to true. This SNPSLDAPKEY 
column must be loaded if performing DML commands that update the LDAP tree 
contents. Note that this column is created only in tables that originate from LDAP 
instances. Tables that correspond to multiple valued instance attributes will not be 
created with these columns.

■ Case sensitivity: This is set by the case_sens URL property that makes the 
RDBMS and LDAP servers to enforce case-sensitivity.

■ Special characters: It is possible in LDAP to have non-alphanumeric characters 
into attribute or class names. These characters are converted to underscores ("_") 
during the mapping. Exception: If non alphanumeric, the first character is 
converted to "x".

■ SQL Reversed Keywords: Generated tables and columns with names that match 
SQL keywords are automatically renamed (an underscore is added after their 
name) in the relational structure to avoid naming conflicts between table/column 
names and SQL keywords. For example, a class named SELECT will be mapped to 
a table named SELECT_.

A.2.1.4 Reference LDAP Tree
As LDAP servers do not provide metadata information in a standard way, the LDAP to 
Relational Mapping process is performed by default using data introspection from the 
LDAP tree. 

With the LDAP driver it is also possible to use a Reference LDAP Tree for the LDAP to 
Relational Mapping process instead of using the LDAP tree that contains the actual data. 

This Reference LDAP Tree is configured using the ldap_metadata property of the 
driver URL. This property specifies a.properties file that contains the connection 
information to a LDAP tree whose hierarchical structure rigorously reflects that of the 
operational LDAP tree but without the accompanying data volume.

This technique reveals certain advantages:

■ The Reference LDAP Tree can be maintained by the directory administrator as a 
stable definition of the operational LDAP tree.

■ The Reference LDAP Tree contains few instances that make up the skeleton of the 
real LDAP tree, and the LDAP to Relational Mapping process runs faster on this 



LDAP Processing Overview

Oracle Data Integrator Driver for LDAP Reference A-5

small reference tree. This is particularly important for large operational LDAP 
directories, and will result in reduced processing time and resources for running 
the procedure.

The use of this technique, however, imposes a certain number of constraints in the 
design of the precise structure of the Reference LDAP Tree:

■ All optional LDAP instance attributes must be instantiated in the reference entries. 
Even if these attributes are absent in the operational LDAP directory entries, they 
must be declared in the Reference LDAP Tree if they are to be used at a later time.

■ Any multiple valued attributes that exist in the operational LDAP directory must 
be instantiated as such in the Reference LDAP Tree. For example, if any Person 
instance in the operational LDAP directory possesses two telephoneNumber 
attributes, then the generic Person class must instantiate at least two 
telephoneNumber attributes in the Reference LDAP Tree.

A.2.2 Managing Relational Schemas
This section contains the following topics: 

■ Relational Schema Storage

■ Accessing Data in the Relational Structure

A.2.2.1 Relational Schema Storage
The relational structure resulting from the LDAP to Relational mapping may be 
managed by virtual mapping or stored in an external database.

The virtual mapping stores the relational structure in the run-time agent's memory and 
requires no other component. The relational structure is transparently mapped by the 
driver to the LDAP tree structure. SQL commands and functions that are available for 
the LDAP driver are listed in the SQL Syntax.

The external database may be any relational database management system. The driver 
connects through JDBC to this engine and uses it to store the relational schema. This 
method provides the following benefits:

■ Processing and storage capabilities of the selected external database engine.

■ Acccess to the specific SQL statements, procedures, and functions of the external 
database engine.

■ Flexible persistence of the relational structure. This schema content may persist 
after the connection to the LDAP driver is closed.

See Section A.3.2, "Using an External Database to Store the Data" for more information 
on how to set up external storage.

Note: These issues have a direct impact on the generated relational 
structure by forcing the creation of additional tables and columns to 
map multiple attribute fields and must be taken into consideration 
when designing the Reference LDAP Tree.

Note: The virtual mapping may require a large amount of memory 
for large LDAP tree structures.



Installation and Configuration

A-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

A.2.2.2 Accessing Data in the Relational Structure
DML operations on tables in the relational are executed with standard SQL statements.

Modifications made to the relational data are propagated to the directory depending 
on the selected storage  :

■ In the case where the virtual mapping is used, all insert, update, and delete requests 
are automatically propagated to the original LDAP server in an autocommit mode. 
No explicit COMMIT or ROLLBACK statements will have any impact on the 
Oracle Data Integrator driver for LDAP.

■ In the case where the external database is used to store the relational structure, all 
types of DML statements may be used with the driver. However, it is important to 
know that no modifications will be propagated to the original LDAP server.

A.3 Installation and Configuration 
The  Oracle Data Integrator driver for LDAP is automatically installed during the 
Oracle Data Integrator installation. The following topics cover advanced configuration 
topics and reference information.

This section contains the following topics:

■ Driver Configuration

■ Using an External Database to Store the Data

■ LDAP Directory Connection Configuration

■ Table Aliases Configuration

A.3.1 Driver Configuration
This section details the driver configuration.

■ The driver name is:  com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver

■ The driver supports two URL formats:  

■ jdbc:snps:ldap?<property=value>[&...]

■ jdbc:snps:ldap2?<property=value>[&...]

The first URL requires the LDAP directory password to be encoded. The second 
URL allows you to give the LDAP directory password without encoding it. 

The LDAP driver uses different properties depending on the established 
connection. Figure A–3 shows when to use which properties.

Note: You must add the libraries and drivers required to connect the 
LDAP directory using JNDI to the Oracle Data Integrator classpath. 

Note: If using an external database engine you must also make sure 
that the JDBC driver used to connect to the external database and the 
.properties file are in the classpath.

Note: It is recommended to use the first URL to secure the LDAP 
directory password.



Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-7

Figure A–3 Properties Files for LDAP Driver

The LDAP driver connects to the LDAP directory. You can configure this 
connection with the properties that start with  ldap_. For example, ldap_
basedn.  Instead of passing the LDAP directory properties in the driver URL, you 
can use a properties file for the configuration of the connection to the LDAP 
directory. This properties file must be specified in the ldap_props property of the 
driver URL.

If you want to use the hierarchical structure of the LDAP tree without the 
accompanying data volume, you can use the Reference LDAP tree. The connection 
to the Reference LDAP tree is configured with the properties that start with lm_. 
For example, lm_basedn. Instead of passing the lm_ properties in the driver 
URL, you can use a properties file. This properties file must be specified in the 
ldap_metadata property of the driver URL.  See Section A.2.1.4, "Reference 
LDAP Tree" for more information.

To configure the connection of the LDAP driver to an external database, use the 
properties that start with db_. For example, db_url. Instead of passing the 
external database properties in the driver URL, you can use a properties file for the 
configuration of the connection to the external database. This properties file must 
be specified in the db_props property of the driver URL. See Section A.3.2, 
"Using an External Database to Store the Data" for more information.

Table A–1 describes the properties that can be passed in the driver URL.



Installation and Configuration

A-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table A–1 Driver Properties

Property Mandatory Type Default Description

db_props or 
dp

No string (file 
location)

Empty 
string

Name of a .properties file containing the external 
database connection configuration. See Section A.3.2, "Using 
an External Database to Store the Data" for the details of this 
file content.

Note: This property should contain the name of the  
.properties file without the file extension.

Note: This .properties file must be in the run-time agent 
classpath.

Note: You can specify the external database connection 
configuration using all the db_ properties listed below in 
this table.

ldap_props 
or lp

No string (file 
location)

N/A Name of a .properties file containing the directory 
connection configuration. See Section A.3.3, "LDAP 
Directory Connection Configuration" for the details of this 
file content.

Note: This property should contain the name of the  
.properties file without the file extension.

Note: This .properties file must be in the run-time agent 
classpath.

Note: You can specify the LDAP directory connection 
configuration using all the ldap_ properties listed below in 
this table.

ldap_
metadata or 
lm

No string (file 
location)

N/A Name of a .properties file containing the directory 
connection configuration for the Reference LDAP Tree. See 
Section A.3.3, "LDAP Directory Connection Configuration" 
for the details of this file content, and  Section A.2.1.4, 
"Reference LDAP Tree" for an explanation of the reference 
tree.

Note: This property should contain the name of the  
.properties file without the file extension.

Note: This .properties file must be in the run-time agent 
classpath.

Note: You can specify the reference LDAP directory 
connection configuration using all the lm_ properties listed 
below in this table.

case_sens or 
cs

No boolean (true 
| false)

false Enable / disable case sensitive mode for both LDAP- and 
RDBMS-managed objects.

alias_
bundle or 
ab

No string (file 
location)

Empty 
string

Full name of a properties file including both the absolute 
path to the properties file and the file extension. The 
properties file is a file  that contains the list of aliases for the 
LDAP to Relational Mapping. If this file does not exist, it 
will be created by the driver.  See Section A.3.4, "Table 
Aliases Configuration" for more information.

Note: The file extension does not need to be .properties. 

alias_
bundle_
encoding or 
abe

No string 
(encoding 
code)

Default 
encodin
g

Alias bundle file encoding. This encoding is used while 
reading and overwriting the alias_bundle file. If it is not 
defined then the default encoding would be used. 

You will find a list of supported encoding at the following 
URL: 
http://java.sun.com/j2se/1.3/docs/guide/intl
/encoding.doc.html.



Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-9

grouping_
factor or gf

No integer 2 Determines how many object classes will be grouped 
together to set up a single relational table mapping. See 
Section A.2.1.2, "Grouping Factor" for more information.

key_column 
or kc

No boolean (true 
| false)

false If set to true, a technical column called SNPSLDAPKEY is 
created to store the Relative Distinguished Name (RDN) for 
each LDAP entry. See Section A.2.1.3, "Mapping Exceptions" 
for more information.

numeric_
ids or ni

No boolean (true 
| false)

false If set to true, all internal Primary and Foreign Keys are of 
NUMERIC type. Otherwise, they are of the VARCHAR type.

id_length or 
il

No integer 10 / 30 The length of the internal Primary and Foreign Key 
columns. The default is 10 for NUMERIC column types and 
30 for VARCHAR column types.

table_prefix 
or tp

No string N/A Prefix added to relational tables of the current connection.

log_file or lf No string (file 
location)

N/A Trace log file name. If the log file name is not set the trace 
data is displayed on the standard output.

The presence of this property triggers trace logging for a 
particular relational schema.

Table A–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Installation and Configuration

A-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

log_level or 
ll

No integer 1 Log level. This property is ignored if log_file is not specified. 
The log level can is a bit mask that can be specified either in 
hexadecimal or decimal value.

Log Level Values:

■ 0x1 (1): General information (important)

■ 0x2 (2): General information (detailed)

■ 0x4 (4): SQL statements

■ 0x8 (8): LDAP-Relational mapping information

■ 0x10 (16): LDAP-Relational mapping validation & 
renaming information (Table and columns name 
modifications, etc)

■ 0x20 (32): Display the LDAP model parsed and the 
corresponding relational model.

■ 0x40 (64): Display the table creation statements.

■ 0x80 (128): Display data insert statements.

■ 0x100 (256): Grouping information (important)

■ 0x200 (512): Grouping information (detailed)

■ 0x400 (1024): Display details on the relational model 
building

■ 0x800 (2048): Display the elements read from the LDAP 
tree

■ 0x1000 (4096): Display SQL statements causing changes 
into the LDAP tree

Examples:

■ Important and detailed general information: log_
level=3 (1+2)

■ Trace native SQL commands and important internal 
events: log_level=5 (1+4)

■ Trace relational mapping calculation and validation: 
log_level=24 (16+8)

■ Trace all events: log_level=8191 (1+2+ ... + 2048 + 4096)

ldap_auth No string simple LDAP Directory authentication method. See the auth 
property in  Section A.3.3, "LDAP Directory Connection 
Configuration".

ldap_url Yes string N/A LDAP Directory URL. See the url property in Section A.3.3, 
"LDAP Directory Connection Configuration".

ldap_user No string Empty 
string

LDAP Directory user name. See the user property in 
Section A.3.3, "LDAP Directory Connection Configuration".

ldap_
password

No string Empty 
string

LDAP Directory user password. See the password property 
in Section A.3.3, "LDAP Directory Connection 
Configuration".

ldap_
basedn

No string N/A LDAP Directory basedn. See the basedn property in 
Section A.3.3, "LDAP Directory Connection Configuration".

lm_auth No string simple Reference LDAP authentication method. See the auth 
property in Section A.3.3, "LDAP Directory Connection 
Configuration".

lm_url Yes string N/A Reference LDAP URL. See the url property in Section A.3.3, 
"LDAP Directory Connection Configuration".

Table A–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-11

URL Examples
The following section lists URL examples:

■ jdbc:snps:ldap?lp=ldap_mir&ldap_basedn=o=tests&gf=10&lf=

Connects to the LDAP directory specified in the ldap_mir .properties file, 
overriding the basedn property of the ldap bundle and using a grouping factor of 
10. General information (important) is sent to the standard output.

■ jdbc:snps:ldap?lp=ldap_
ours&lm=generic&ab=c:/tmp/aliases.txt&gf=10&kc=true

Connects to the LDAP directory using the ldap_ours .properties file; a generic 
Directory tree for relational model creation is signaled by the lm property; an alias 

lm_user No string Empty 
string

Reference LDAP  Directory user name. See the user 
property in Section A.3.3, "LDAP Directory Connection 
Configuration".

lm_
password

No string Empty 
string

Reference LDAP Directory user password. See the 
password property in Section A.3.3, "LDAP Directory 
Connection Configuration".

lm_basedn No string N/A Reference LDAP Directory basedn. See the basedn property 
in Section A.3.3, "LDAP Directory Connection 
Configuration".

db_driver Yes string N/A External Database JDBC Driver. See the driver property in 
Section A.3.2, "Using an External Database to Store the 
Data".

db_url Yes string N/A External Database JDBC URL. See the url property in 
Section A.3.2, "Using an External Database to Store the 
Data".

db_user No string Empty 
string

External Database user. See the user property in 
Section A.3.2, "Using an External Database to Store the 
Data".

db_
password

No string Empty 
string

External Database password. See the password property in 
Section A.3.2, "Using an External Database to Store the 
Data".

db_schema No string Empty 
string

External Database schema. See the schema property in 
Section A.3.2, "Using an External Database to Store the 
Data".

db_catalog No string Empty 
string

External Database catalog. See the catalog property in 
Section A.3.2, "Using an External Database to Store the 
Data".

db_drop_
on_
disconnect 
or db_dod

No boolean 
(true|false)

true Drop tables on disconnect on the external database. See the 
drop_on_disconnect property in Section A.3.2, "Using 
an External Database to Store the Data".

db_load_
mode or 
db_lm

No string ci Loading method for the external database. See the load_
mode property in Section A.3.2, "Using an External Database 
to Store the Data".

page_size No integer 1000 Read data from LDAP servers with this page size limit.

transform_
nonascii or 
tna

No boolean 
(true|false)

true Transform Non Ascii. Set to false to keep non-ascii 
characters.

Table A–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Installation and Configuration

A-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

bundle file is used for the creation of the relational structure; a maximum 
grouping factor of 10 is used; key column creation is enabled for the 
SNPSLDAPKEY field to allow updates requests in the relational model.

■ jdbc:snps:ldap?lp=ldap_mir&dp=mysql_mir_ldap&ldap_
basedn=dc=tests&lm=ldap_mir&lm_
basedn=dc=model&ab=d:/temp/mapldap.txt&

Connects to the LDAP directory using the ldap_mir .properties file; overriding 
ldap basedn property; using the "dc=model" subtree of the same directory to 
perform mapping; using an alias bundle; overriding the lm database property 
(load mode); specifying a grouping factor of 0 to indicate no grouping (grouping 
disabled); Full trace logging is activated.

■ Connects to a LDAP directory on the hydraroid machine. The LDAP server 
connection information - url, base dn, user and password - is specified in the URL 
using the ldap_xxx properties.

jdbc:snps:ldap?ldap_url=ldap://hydraroid:389/dc=localhost,dc=localdomain&ldap_
password=KPLEKFMJKCLFJMDFDDGPGPDB&ldap_user=cn=orcladmin&ldap_
basedn=ou=applications

A.3.2 Using an External Database to Store the Data
The relational structure resulting from the LDAP to relational mapping of the LDAP 
tree can be stored in the run-time agent's memory or in an external database.

The external storage is configured with a set of properties described in Table A–2.

 The external storage properties can be passed in several ways:

■ Passing the Properties in the Driver URL

■ Setting the Properties in ODI Studio

■ Setting the Properties in a Properties File

A.3.2.1 Passing the Properties in the Driver URL
The properties can be directly set in the driver URL.  When using this method, the 
properties have to be prefixed with db_ . For example, if connecting to an Oracle 
database, specify the Oracle JDBC driver name in the driver parameter as follows:

db_driver=oracle.jdbc.OracleDriver.

A.3.2.2 Setting the Properties in ODI Studio
The properties can be specified on the Properties tab of the Data Server editor in 
Topology Navigator. When using this method, the properties have to be prefixed with 
db_. For example, if you want to set the driver parameter:

1. In the Key column, enter db_driver

2. In the Value column, enter oracle.jdbc.OracleDriver if you are connecting 
to an Oracle database.

Note: The list of technologies that support external storage is 
available on Oracle Technical Network (OTN) :

http://www.oracle.com/technology/software/products/i
as/files/fusion_certification.html



Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-13

A.3.2.3 Setting the Properties in a Properties File
The properties can be set in an external database properties file. This properties file, also 
called property bundle, is a text file with the .properties extension containing a set of 
lines with on each line a <property>=<value> pair.

This external database porperties file contains the properties of a JDBC connection to 
the relational database schema. The properties file is referenced using the db_props 
property in the JDBC URL. 

When using this method, note the following:

■ The properties in the properties file are not prefixed and used as described in 
Table A–2.

■ The db_props property is set to the name of the properties file without the 
.properties extension. For example, if you have in your classpath the prod_
directory.properties file, you should refer to this file as follows:  db_
props=prod_directory. 

The db_props property indicates that the schema must be loaded in a database 
schema whose connection information is stored in a external database properties file.

■ The properties files have to be deployed by the agent using the LDAP connection. 
The location the properties file depends on the agent you are using:

– Local agent (Studio): Place the external DB properties file in the 
<user.dir>/odi/oracledi/userlib folder

– Standalone Agent: Place the external DB properties file in 
oracledi/agent/drivers folder

– JavaEE Agent: The external DB properties file should be packed into a JAR or 
ZIP file and added to the template generated by the Java EE agent. See 
"Deploying an Agent in a Java EE Application Server (Oracle WebLogic 
Server)" in the Administering Oracle Data Integrator for more information. 

■ When using property bundle files, you must make sure that the property bundle is 
present in the Oracle Data Integrator classpath. Typically, you should install this 
bundle in the drivers directories. 

It is possible to set or override the external database properties on the URL. These 
properties must be prefixed with the string db_. For example:

jdbc:snps:ldap?ldap_url=ldap://localhost:389/&ldap_basedn=o=company&db_
driver=oracle.jdbc.OracleDriver&db_url=<external_db_url>

The properties for configuring external storage are described in Table A–2.

Note: It is important to understand that the LDAP driver loads 
external property bundle files once only at runtime startup. If errors 
occur in these files, it is advisable to exit Oracle Data Integrator and 
then reload it before re-testing.

Note: When connecting to the external database, the LDAP driver 
uses JDBC connectivity. Make sure that the JDBC driver to access this 
external database is also available in the ODI classpath. 



Installation and Configuration

A-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The following is an example of an external database .properties file to connect to 
an external Oracle database:

driver=oracle.jdbc.OracleDriver
url=jdbc:oracle:thin:@hydraro:1521:SNPTST1
user=LDAP_T_1
password=ENCODED_PASSWORD
schema=LDAP_T_1

A.3.3 LDAP Directory Connection Configuration
The Oracle Data Integrator driver for LDAP uses the properties described in Table A–3 
to connect to a directory server that contains the LDAP data or the Reference LDAP Tree. 
These properties can be provided either in a property bundle file or on the driver URL.

The properties for configuring a directory connection are detailed in Table A–3.

Table A–2 External Database Connection Properties

Property Mandatory Type Default Description

driver Yes string N/A JDBC driver name

url Yes string N/A JDBC URL

user No string Empty string Login used to connect the database

password No string Empty string Encrypted database user password.

Note: To encrypt the password, use the encode.bat 
command. See the Installing and Configuring Oracle Data 
Integrator for more information.

schema No string Empty string Database schema storing the LDAP Tree. This property 
should not be used for Microsoft SQLServer, and the catalog 
property should be used instead. 

catalog No string Empty string Database catalog storing the LDAP Tree. For Microsoft SQL 
Server only. This property should not be used simultaneously 
with the schema property.

drop_on_
disconnect 
or dod

No boolean 
(true | 
false)

true If true, drop the tables from the database at disconnection 
time. If set to false the tables are preserved in the database.

load_mode 
or lm

No string ci The loading method. Values may be:

■ n (none): the model and table mappings are created in 
memory only.

■ dci (drop_create_insert): drop all tables that may cause 
name conflicts then create tables and load the LDAP tree 
into the relational model.

■ ci(create_insert): Create the relational tables and throw an 
exception for existing tables, then load the LDAP tree 
into the relational model.

unicode No boolean 
(true | 
false)

For MS SQL Server:

If unicode =  true, nvarchar is used.

If unicode = false or not set, varchar is used.

varchar_
length or vl

No integer 255 Size of all the columns of the relational structure that will be 
used to contain string data.



Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-15

The following is an example of an LDAP properties file content:

url=ldap://ours:389
user=cn=Directory Manager
password=ENCODED_PASSWORD
basedn=dc=oracle,dc=com

A.3.4 Table Aliases Configuration
The LDAP driver allows a certain flexibility in the definition of the model table names 
in Oracle Data Integrator by the use of table aliases. This is particularly useful when 
the algorithm used to navigate the LDAP tree generates long composite names from 
the LDAP object class hierarchy. To avoid issues related to RDBMS-specific object 
name-length constraints, the LDAP driver can set up and use aliases.

To create a table alias file:

1. In the LDAP Driver Data Server URL, include and set the alias_bundle (ab) 
property that indicates the name of the alias text file, for example:

jdbc:snps:ldap?.....&ab=C:/tmp/aliases.txt&....

The alias file is created by the driver at connection time when the alias_bundle 
property is specified. Typically, a user connects initially through the LDAP driver 

Table A–3 LDAP Directory Connection Properties

Property Mandatory Type Default Description

auth No string simple The authentication method

url Yes string N/A URL to connect to the directory. It is an LDAP URL.

Note: This driver supports the LDAPS (LDAP over SSL) protocol. 
The LDAPS URL must start with ldaps://. To connect a server 
using LDAPS, you must manually install the certificate in the java 
machine. See the keytool program provided with the JVM for more 
information.

user No string Empty 
string

The LDAP server user-login name. Mandatory only if "auth" is 
set.

Note: If user and password properties are provided to create the 
connection with the JDBC Driver for LDAP, then they are used to 
connect the LDAP directory.

password No string Empty 
string

LDAP server user-login password. Mandatory only if "auth" is 
set.

Note: The password needs to be encrypted, unless the 
'jdbc:snps:ldap2' URL syntax.

Note: To encrypt the password, use the encode.bat command. 
See the Installing and Configuring Oracle Data Integrator for more 
information.

basedn No string N/A The base dn with which you wish to connect to the LDAP tree. 
The base dn is the top level of the LDAP directory tree. If it not 
specified, the base dn specified in the LDAP URL is used.

Note: It is also possible to change the default "Maximum Table Name 
Length" and "Maximum Column Name Length" values on the Others 
tab of the Technology Editor in the Physical Architecture accordion.



SQL Syntax

A-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

which creates this file containing a list of potential table names to be created by the 
reverse-engineering operation.

2. Test the connection to the LDAP data server.

3. Verify the that the text file has been created and has the expected structure. The list 
consists of <original table name > = <desired alias name> values. 
Example A–1 shows an extract of an alias file after the user has provided 
shortened names. See step 4 for more information.

Example A–1 Alias File

INETORGPERSON_ORGANIZATIONALPERSON_PERSON_BISOBJECT_MAIL = PERSONMAIL
ORGANIZATIONALUNIT_RFC822MAILMEMBER = ORG_228MAIL
INETORGPERSON_ORGANIZATIONALPERSON_PERSON = ORG_PERSON
ORGANIZATIONALUNIT_MEMBER = ORG_UN_MEMBER
ORGANIZATIONALUNIT = ORG_UNIT
ROOT = ROOT
....
 
4. In the alias text file, add short text value aliases to replace the originally derived 

composite names and save the file.

5. Reconnect to the same LDAP data server. The relational schema is created and this 
time the aliases will be used for defining relational table names.

6. Now reverse-engineer the LDAP directory as described in Section 20.5.2, 
"Reverse-Engineering an LDAP Model". Oracle Data Integrator will create 
datastores with the table names defined as aliases in the alias file.

A.4 SQL Syntax
The SQL statements described in Section A.4.1, "SQL Statements" are available when 
using the Oracle Data Integrator driver for LDAP. They enable the management of 
relational data structure and data through standard SQL Syntax.

Table A–4 summarizes the recommendations to apply when performing the listed 
DML operations on specific key fields.

Note: If any modifications have been applied to the object class 
structure or attribute sets of the LDAP directory, the driver will 
rewrite this file while including the new or modified entries to the 
table name list.

Note:

■ If you are using an external database you may use its proprietary 
query engine syntax in place of the following commands.

■ The LDAP driver works uniquely in auto commit mode. No 
explicit transaction management with COMMIT or ROLLBACK 
commands is permitted.

■ When using an external database to store LDAP tree data, DDL 
statements may only be carried out on temporary tables.



SQL Syntax

Oracle Data Integrator Driver for LDAP Reference A-17

A.4.1 SQL Statements
Any number of commands may be combined. The semicolon (;) may be used to 
separate each command but is not necessary.

A.4.1.1 DISCONNECT
DISCONNECT

Closes this connection.

Remarks
■ It is not required to call this command when using the JDBC interface: it is called 

automatically when the connection is closed.

■ After disconnecting, it is not possible to execute other queries with this connection.

A.4.1.2 INSERT INTO
Insert one or more new rows of data into a table.

INSERT INTO <table_name> [ ( <column_name> [,...] ) ] 
      { VALUES (<expression> [,...]) | <SELECT Statement> }

A.4.1.3 SELECT
Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table_name>.* | * } [, ... ]
    [ INTO <new_table> ]
      FROM <table_list>
    [ WHERE <expression> ]
    [ GROUP BY <expression> [, ...] ]
    [ ORDER BY <order_expression> [, ...] ]
    [ { UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement>
 ]
<table_list> ::=
<table_name> [ { INNER | LEFT [OUTER] } JOIN <table_name> ON <expression> ] 
   [, ...]

<select_expression> ::=

Table A–4 DML Opertaions on Key Fields

Type of Column Insert Update Delete

Foreign Key Pay attention to master 
table referential constraints 
and ordered table populate 
operations.

Not permitted Pay attention to master table 
referential constraints and 
ordered delete requests.

Primary Key Pay attention to slave table 
referential constraints and 
ordered table populate 
operations.

Not permitted Pay attention to slave table 
referential constraints and 
ordered delete requests

IS_xxx Pay attention to associating 
the correct flag value to the 
original object class.

Not permitted OK

Key_Column Pay attention to setting the 
RDN value in the correct 
LDAP syntax.

Not permitted OK



SQL Syntax

A-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

{ <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG} 
  (<expression>) <column_alias>}

<order_expression> ::=
{ <column_number> | <column_alias> | <select_expression> } [ ASC | DESC ]

A.4.1.4 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

A.4.1.5 Expressions, Condition & values
<expression> ::=
[NOT] <condition> [ { OR | AND } <condition> 
]
<condition> ::=
{ <value> [ || <value> ]
| <value> { = | < | <= | > | >= | <> | != | IS [NOT] } <value>
| EXISTS(<select_statement>)
| <value> BETWEEN <value> AND <value>
| <value> [NOT] IN ( {<value> [, ...] | selectStatement } )
| <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=
[ + | - ] { term [ { + | - | * | / } term ]
| ( condition )
| function ( [parameter] [,...] )
| selectStatement giving one value

<term> ::=
{ 'string' | number | floatingpoint | [table.]column | TRUE | FALSE | NULL }

<string> ::=
■ Starts and ends with a single '. In a string started with ' use '' to create a '.

■ LIKE uses '%' to match any (including 0) number of characters, and '_' to match 
exactly one character. To search for '%' itself, '\%' must be used, for '_' use '\_'; or 
any other escaping character may be set using the ESCAPE clause.

<name> ::=
■ A name starts with a letter and is followed by any number of letters or digits. 

Lowercase is changed to uppercase except for strings and quoted identifiers. 
Names are not case-sensitive.

■ Quoted identifiers can be used as names (for example for tables or columns). 
Quoted identifiers start and end with ". In a quoted identifier use "" to create a ". 
With quoted identifiers it is possible to create mixed case table and column names. 
Example: CREATE TABLE "Address" ("Nr" INTEGER,"Name" VARCHAR); 
SELECT * FROM "Address". Quoted identifiers are not strings.

<values> ::=
■ A 'date' value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

■ A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

■ Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example 
is 3 bytes, first 0, second 4 and last 255 (0xff).



SQL Syntax

Oracle Data Integrator Driver for LDAP Reference A-19

A.4.2 SQL FUNCTIONS
Table A–5 describes the numeric functions.

Table A–6 describes the string functions.

Table A–5 Numeric Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

BITAND(a,b) returns a & b

BITOR(a,b) returns a | b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

Table A–6 String Functions

Function Description

ASCII(s) returns the ASCII code of the leftmost character of s

BIT_LENGTH(s) returns the string length in bits

CHAR(c) returns a character that has the ASCII code c

CHAR_LENGTH(s) returns the string length in characters



SQL Syntax

A-20 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table A–7 describes the date and time functions.

CONCAT(str1,str2) returns str1 + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

HEXTORAW(s1) returns the string translated from hexadecimal to raw

INSERT(s,start,len,s2) returns a string where len number of characters beginning at start 
has been replaced by s2

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is found in 
s, starting at start

LTRIM(s) removes all leading blanks in s

OCTET_LENGTH(s) returns the string length in bytes

RAWTOHEX(s) returns translated string

REPEAT(s,count) returns s repeated count times

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing blanks

SOUNDEX(s) returns a four character code representing the sound of s

SPACE(count) returns a string consisting of count spaces

SUBSTR(s,start[,len]) (alias for substring)

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len.

Another syntax is SUBSTRING(s FROM start [FOR len])

TRIM TRIM([{LEADING | TRAILING | BOTH}] FROM s): removes 
trailing and/or leading spaces from s.

UCASE(s) converts s to upper case

LOWER(s) converts s to lower case

UPPER(s) converts s to upper case

Table A–7 Date and Time Functions

Function Description

CURDATE() returns the current date

CURTIME() returns the current time

CURRENT_DATE returns the current date

CURRENT_TIME returns the current time

CURRENT_TIMESTAMP returns the current timestamp

Table A–6 (Cont.) String Functions

Function Description



SQL Syntax

Oracle Data Integrator Driver for LDAP Reference A-21

Note that A date value starts and ends with ', the format is yyyy-mm-dd (see 
java.sql.Date). A time value starts and ends with ', the format is hh:mm:ss (see 
java.sql.Time).

Table A–8 describes the system functions.

Table A–9 describes the system and connection functions.

DATEDIFF(s, d1,d2) returns the counts of unit of times specified in s elapsed from 
datetime d1 to datetime d2. s may take the following values: 
'ms'='millisecond', 'ss'='second','mi'='minute','hh'='hour', 'dd'='day', 
'mm'='month', 'yy' = 'year'.

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

DAYOFYEAR(date) returns the day of the year (1-366)

EXTRACT EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | 
SECOND} FROM <datetime>): extracts the appropriate part from 
the <datetime> value.

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Table A–8 System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp

CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2

CONVERT(term,type) converts exp to another data type

COALESCENCE(e1,e2,e3,...) if e1 is not null then it is returned, else e2 is evaluated. If e2 is 
null, then is it returned, else e3 is evaluated and so on.

NULLIF(v1,v2) returns v1 if v1 is not equal to v2, else returns null

CASE WHEN There are two syntax for the CASE WHEN statement:

CASE v1 WHEN v2 THEN v3 [ELSE v4] END: if v1 equals v2 
then returns v3 [otherwise v4 or null if ELSE is not specified].

CASE WHEN e1 THEN v1[WHEN e2 THEN v2] [ELSE v4] 
END: when e1 is true return v1 [optionally repeated for more 
cases] [otherwise v4 or null if there is no ELSE]

CAST(term AS type) converts exp to another data type

Table A–7 (Cont.) Date and Time Functions

Function Description



JDBC API Implemented Features

A-22 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

A.5 JDBC API Implemented Features
Table A–10 lists the JDBC API features of the Oracle Data Integrator driver for LDAP.

The following table identifies the JDBC classes supported by the Oracle Data 
Integrator driver for LDAP.

Table A–9 System and Connection Functions

Function Description

DATABASE() returns the name of the database of this connection

USER() returns the user name of this connection

IDENTITY() returns the last identity values that was inserted by this connection

Table A–10 JDBC API Features

Feature Groups JDBC Version Support

Batch Update 2.0 Core Yes

Blob/Clob 2.0 Core No

JNDI DataSources 2.0 Optional No

Failover support - No

Transaction SavePoints 3.0 No

Unicode support - No

Disributed Transaction 2.0 Optional No

Connection Pooling 2.0 Optional No

Cluster support - No

Table A–11 JDBC Classes

JDBC Classes JDBC Version Support

Array 2.0 Core No

Blob 2.0 Core No

Clob 2.0 Core No

CallableStatement 1.0 Yes

Connection 1.0 Yes

ConnectionPoolDataSource 2.0 Optional No

DatabaseMetaData 1.0 Yes

DataSource 2.0 Optional No

Driver 1.0 Yes

PreparedStatement 1.0 Yes

Ref 2.0 Core No

RowSet 2.0 Optional No

ResultSet 1.0 Yes

ResultSetMetaData 1.0 Yes

Statement 1.0 Yes



JDBC API Implemented Features

Oracle Data Integrator Driver for LDAP Reference A-23

Struct 2.0 Core No

XAConnection 2.0 Optional No

XADataSource 2.0 Optional No

Table A–11 (Cont.) JDBC Classes

JDBC Classes JDBC Version Support



JDBC API Implemented Features

A-24 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



B

Oracle Data Integrator Driver for XML Reference B-1

BOracle Data Integrator Driver for XML
Reference

This appendix describes how to work with the Oracle Data Integrator driver for XML.

This appendix includes the following sections:

■ Section B.1, "Introduction to Oracle Data Integrator Driver for XML"

■ Section B.2, "XML Processing Overview"

■ Section B.3, "Installation and Configuration"

■ Section B.4, "Detailed Driver Commands"

■ Section B.5, "SQL Syntax"

■ Section B.6, "JDBC API Implemented Features"

■ Section B.7, "Rich Metadata"

■ Section B.8, "XML Schema Supported Features"

B.1 Introduction to Oracle Data Integrator Driver for XML
Oracle Data Integrator Driver for XML (XML driver) handles an XML document as a 
JDBC data source. This allows Oracle Data Integrator to use XML documents as data 
servers.

With Oracle Data Integrator Driver for XML, Oracle Data Integrator can query XML 
documents using standard SQL syntax and perform changes in the XML files. These 
operations occur within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for XML supports the following features:

■ Standard SQL (Structured Query Language) Syntax

■ Correlated subqueries, inner and outer joins

■ ORDER BY and GROUP BY

■ COUNT, SUM, MIN, MAX, AVG and other functions

■ Standard SQL functions

■ Transaction Management

■ Referential Integrity (foreign keys)

■ Saving Changes made on XML data into the XML files



XML Processing Overview

B-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.2 XML Processing Overview
The XML driver works in the following way:

1. The driver loads (upon connection or user request) the XML structure and data into 
a relational schema, using a XML to SQL Mapping.

2. The user works on the relational schema, manipulating data through regular SQL 
statements or specific driver commands for driver operations.

3. Upon disconnection or user request, the XML driver synchronizes the data and 
structure stored in the schema back to the XML file.

B.2.1 XML to SQL Mapping
The XML to SQL Mapping is a complex process that is used to map a hierarchical 
structure (XML) into a relational structure (schema). This mapping is automatic.

Elements and Attributes Mapping
The XML driver maps XML elements and attributes the following way:

■ Elements are mapped as tables with the same name.

■ Attributes are mapped as columns named like the attributes. Each column is 
created in the table representing the attribute's element.

Hierarchy & Order Mapping 
Extra data may appear in the relational structure as follows:

■ In order to map the hierarchy of XML elements, or a one-to-many relation between 
elements, the XML driver generates in each table corresponding to an element the 
following extra columns:

– <element_name>PK: This column identifies the element.

– <parent_element_name>FK: This column links the current element to its 
parent in the hierarchy. It contains a value matching the parent element's 
<element_name>PK value. In case of XML recursion the parent element or 
ancestors of the parent element can be located in the same table.

■ Records in a table, unlike elements in an XML file, are not ordered, unless a 
specific column is used to define the order. The driver generates also a column 
named <element_name>ORDER to preserve the order of the elements. When 
adding new rows in the relational schema, make sure that the ORDER column is 
correctly set to have the elements correctly ordered under the parent element.

■ The root of the hierarchy is identified by a root table named after the root element. 
This table contains a single record with the following columns:

– <root_element_name>PK: All level 1 sub-elements will refer to this PK 
entry.

– SNPSFILENAME: This column contains the names of the XML file loaded into 
this schema.

– SNPSFILEPATH: This column contains the XML file path.

– SNPSLOADDATE: This column contains the date and time when the file was 
loaded into the schema.

The values in this table are managed by the driver and should not be modified.



XML Processing Overview

Oracle Data Integrator Driver for XML Reference B-3

Mapping Exceptions
This section details some specific situations for the mapping of extra data.

■ Elements containing only #PCDATA are not mapped as tables, but as columns of 
the table representing their parent element. These columns are named <element_
name>_DATA.

■ List Attributes are mapped as a new table with a link (PK, FK) to the table 
representing the element containing the list.

■ XML elements and attributes with names that match SQL reserved keywords are 
automatically renamed (an underscore is added after their name) in the relational 
structure to avoid naming conflict between table/column names and SQL 
reserved keywords. For example, an element named SELECT will be mapped to a 
table named SELECT_. Such elements are restored in the XML file with their 
original naming when a synchronize operation takes place.

Note that extra objects created by the driver are used to keep the XML file consistency. 
These records must be loaded in the relational schema before it is synchronized to an 
XML file.

B.2.2 XML Namespaces
The XML driver supports XML namespaces (xmlns:) specified for XML attributes 
and elements.

Elements or attributes specified with a namespace (using the syntax 
<namespace>:<element or attribute name>) are mapped as tables or 
columns prefixed with the namespace using the syntax: <namespace>_<element 
or attribute name>. When synchronizing the XML data back to the file, the 
namespace information is automatically generated.

B.2.3 Managing Schemas
A schema corresponds to the concept used in Oracle database and other RDBM systems 
and is a container that holds a set of relational tables. A schema is a generic relational 
structure in which an entire set of XML file instances may be successfully parsed and 
extracted. The identified elements and attributes are inserted in the appropriate 
relational tables and fields.

This schema is generated by the XML driver from either an XML instance file, a DTD 
file, or an XSD file. It is recommended to generate the schema from a DTD or XSD file. 

Note that only a single DTD or XSD file may be referenced in definition of an XML 
data server URL. In this case, this DTD or XSD may be considered as a master DTD or 
XSD file if the artifact includes references to other DTD / XSD files. Note that in 
certain cases multiple schemas may be required. In this case use the add_schema_
bundle property.

B.2.3.1 Schema Storage
The schema may be stored either in a built-in engine or in an external database.

■ The built-in engine requires no other component to run. The XML schema is stored 
in memory within the driver. The SQL commands and functions available on this 
driver are detailed in the SQL Syntax.

Note: In v3 mode, the table names are not prefixed with 
<namespace>_.



XML Processing Overview

B-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ The external database can be a relational database management system. The driver 
connects through JDBC to this engine, and uses it to store the schema. This enables 
the:

– Use of the processing and storage power of the RDBMS engine

– Use of the statements and functions of the RDBMS

– Persistence of schema storage

See Section B.3.3, "Using an External Database to Store the Data" for more 
information.

B.2.3.2 Multiple Schemas
It is possible to handle, within the same JDBC connection, multiple schemas and to 
load multiple XML files simultaneously. It is possible to CREATE, TRUNCATE, SET, 
and LOAD FILE INTO schemas. When connecting to the JDBC driver, you connect to 
the schema that is specified on the URL. It is possible to set the current schema to 
another one using the SET SCHEMA command. See Section B.4, "Detailed Driver 
Commands" for more information.

The default schema is a specific schema that is used for storing temporary data. The 
default schema is read-only and cannot be used to store XML files. It is recommeded to 
create a schema for each XML file.

It is also possible to automatically create additional schemas with different XML 
structures when creating the connection to the driver. See Section B.3.1, "Driver 
Configuration" for more information.

B.2.3.3 Accessing Data in the Schemas
Data in the schemas is handled using the SQL language.

It is possible to access tables in a schema that is different from the current schema. To 
access the tables of a different schema, prefix the table name with the schema name, 
followed by a period character (.). For example: 

SELECT col1, schema2.table2.col2, table1.col3 FROM table1, schema2.table2.

This query returns data from table1 in the current schema, and from table2 from 
schema2.

B.2.3.4 Case Sensitivity
A schema cannot be case-sensitive. All elements in the schema (tables and columns) 
are in UPPERCASE. If the XML file element names contain lowercase letters, they are 
converted to upper case. When the elements are synchronized to the XML file, their 
names are created with their original case.

B.2.3.5 Loading/Synchronizing
A schema is usually automatically created when connecting to an XML file, and 
loaded with the data contained in the XML file. It is possible to force the schema 
creation and the data loading in the schema using specific driver commands. See 
Section B.4, "Detailed Driver Commands" for more information. It is also possible to 

Note:  Note that the other schema must be located on the same 
storage space - built-in engine or external database - as than the current 
schema.



Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-5

force a synchronization process of the data by using the SYNCHRONIZE command, as 
described in Section B.4.9, "SYNCHRONIZE".

B.2.4 Locking
When accessing an XML file, the driver locks it in order to prevent other instances of 
the driver to connect to the file. The lock file has the same name as the XML file but an 
.lck extension.

If the driver is incorrectly disconnected, a lock may remain on the file. To remove it, 
delete the .lck file. It is also possible to unlock an XML file with the UNLOCK FILE 
command.

B.2.5 XML Schema (XSD) Support
XSD is supported by the XML driver for describing XML file structures. See 
Section B.8, "XML Schema Supported Features" for more information.

In addition, the XML driver supports document validation against XSD schemas 
specified within the XML file. This operation may be performed using the VALIDATE 
driver specific command.

B.3 Installation and Configuration
The Oracle Data Integrator driver for XML is automatically installed with Oracle Data 
Integrator. The following topics cover advanced configuration topics and reference 
information.

This section contains the following topics:

■ Driver Configuration

■ Automatically Create Multiple Schemas

■ Using an External Database to Store the Data

B.3.1 Driver Configuration
This section details the driver configuration.

■ The driver name is: com.sunopsis.jdbc.driver.xml.SnpsXmlDriver

■ The URL Syntax is: 
jdbc:snps:xml?f=<filename>[&s=<schema>&<property>=<value>...]

The properties for the URL are detailed in Table B–1.

Note: If using an External Database storage, you must also make 
sure that the JDBC driver used to connect the external database, as 
well as the.properties file are in the classpath.



Installation and Configuration

B-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table B–1 Driver Properties

Property Mandatory Type Default Description

blank_attribute_
as_column or 
baac

No boolean (true | 
false)

false If this option is set to true, any empty element in the 
XML file that does not have child element of its own is 
considered as a column rather than a table.

file or f Yes string (file 
location)

- XML file name. Use slash "/" in the path name instead 
of back slash "\". It is possible to use an HTTP, FTP or 
File URL to locate the file. Files located by URL are 
read-only.

For an XML file, if this property is missing, a relational 
schema is created by the XML driver from the 
DTD/XSD file and no XML file is searched for.

dtd or d No string (file 
location)

- Description file: This file may be a DTD or XSD file. It is 
possible to use an HTTP, FTP or File URL to locate the 
file. Files located by URL are read-only.

Note that the DTD or XSD file that is specified in the 
URL takes precedence over the DTD or XSD file that is 
specified within the XML file. References should be 
made with an absolute path.

For an XML file, if this property is missing, and no DTD 
or XSD is referenced in the XML file, the driver will 
automatically consider a DTD file name similar to the 
XML file name with .dtd extension.

A DTD file may be created from the XML file structure 
depending on the generate_dtd URL property.

Note that when no DTD or XSD file is present, the 
relational structure is built using only the XML file 
content. It is not recommended to reverse-engineer the 
data model from such a structure as one XML file 
instance may not contain all the possible elements 
described in the DTD or XSD, and data model may be 
incomplete.

root_elt or re No String - Name of the element to take as the root table of the 
schema. This value is case sensitive. This property can 
be used for reverse-engineering for example a specific 
message definition from a WSDL file, or when several 
possible root elements exist in a XSD file.

Important: This property is used to designate ONLY the 
Element in the XSD / DTD file which will serve as the 
Root Element DEFINITION of any XML instance file 
Root Element.

read_only or ro No boolean (true | 
false)

false Open the XML file in read only mode.



Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-7

schema or s No string - Name of the schema where the XML file will be loaded. 
If this property is missing, a schema name is 
automatically generated from the XML file name.

If this property is not specified in the XML data Server 
URL, the XML Driver will automatically create a 
schema name. This schema will be named after the five 
first letters of the XML file name.

Note: It is not possible to make more than one 
connection to a schema. Subsequent connections fail if 
trying to connect to a schema already in use.

Important: The schema name should be specified in 
uppercase.

Important: It is forbidden to have a schema name 
identical to an XML ELEMENT name. 

standalone or st No boolean (true | 
false)

false If this option is set to true, the schema for this 
connection is completely isolated from all other 
schemas. With this option, you can specify the same 
schema name for several connections, each schema 
being kept separated. When using this option, tables in 
this schema cannot be accessed from other schemas, 
and this connection cannot access tables from other 
schemas. The schema is restricted to this connection and 
only this one. Other connections cannot see this schema.

This option is active only for In-Memory HSQL 
intermediate database. Using this option causes 
increased memory consumption by the agent, as for  
every staging schema, an entirely new HSQL instance is 
created in the in-memory.

Useful for parallel jobs with the same topology in order 
to avoid that the jobs overlap each other.

Note: This option is not applicable when an external 
database is used.

ns_prefix_
generation or 
nspg

No auto | xml | 
xsd

auto This option defines how namespace prefixes are 
generated and written in the XML file.

■ auto (default): Prefixes are automatically generated 
from the namespace names themselves when 
possible or generated as ns1, ns2, etc.

■ xml: Namespace prefixes are taken from the source 
XML file, if any.

■ xsd: Namespace prefixes are taken from the XSD 
file, if any.

Note that the xsd option value assumes that a similar 
prefix is not used in several XSD files to reference a 
different namespace.

no_default_ns or 
ndns

No boolean (true | 
false)

false If this property is set to true, the driver generates the 
target file with no default namespace entry.

no_closing_tags 
or nct

No boolean (true | 
false)

false If this property is set to true, the driver generates the 
empty tags without their closing tags (for example 
<element/>). If set to false the driver generates an 
empty element as <element></element>. This property 
is true by default if the v1_compatibility property is 
used.

Table B–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Installation and Configuration

B-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

db_props or dp No string - This property is used to use an external database 
instead of the memory engine to store the schema.

The db_props property indicates that the schema must 
be loaded in a database schema whose connection 
information are stored in a external database property 
file named like the db_props property with the 
extension .properties. This property file must be 
located in the application's classpath.

load_data_on_
connect or ldoc

No boolean (true | 
false)

true Load automatically the data in the schema when 
performing the JDBC connection. If set to false, a 
SYNCHRONIZE statement is required after the 
connection to load the data.

This option is useful to test the connection or browse 
metadata without loading all the data.

drop_on_disc or 
dod

No boolean (true | 
false)

false Drop automatically the schema when closing the JDBC 
connection.

If true, the schema is stored in the built-in engine, it is 
always dropped.

If true and the data is on an external database, only the 
current reference to the schema in memory will be 
dropped, but the tables will remain in the external 
database. This means that if you try to connect to this 
schema again, it will reuse the tables in the external 
database rather than starting from scratch (as it would 
when the data is loaded in memory).

ignore_
unknown_
elements or iue

No boolean (true | 
false)

false Ignore all elements in the XML file that do not exist in 
the associated DTD (Document Type Definition) or XSD 
(XML Schema Definition) file.

useMaxValue No boolean (true | 
false)

false When this property is set to true, elements for which 
maxOccurs is not specified in the XSD are considered as 
maxOccurs ="unbounded". Otherwise, the driver 
assumes that maxOccurs=1 when maxOccurs is not 
specified. 

generate_dtd or 
gd

No yes | no | auto auto Defines if a DTD file must be created from the XML file 
structure:

■ auto: create the DTD file if the it does not exist. if 
the DTD exists, does nothing.

■ yes: always create the DTD file. An existing DTD 
will be overwritten.

■ no: never create the DTD file. The DTD file must 
exist.

Warning: DTD files created using this option contain 
only the definition of XML elements appearing in the 
XML file, and may not be complete.

java_encoding 
or je

No string 
(encoding 
code)

UTF8 Target file encoding (for example: ISO8859_1). You 
will find a list of supported encoding at the following 
URL: 
http://download.oracle.com/javase/6/docs/
technotes/guides/intl/encoding.doc.html. 

Note that if the Java encoding is specified, the XML 
encoding should also be specified.

Table B–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-9

useimplicitmaxv
alue or uimv

No boolean (true | 
false)

false  With this property set to yes, an elements for which 
maxOccurs is not specified in the XSD is considered as 
multivalued (maxOccurs="unbounded").

xml_encoding or 
xe

No string 
(encoding 
code)

UTF8 Encoding specified in the generated XML File, in the tag 
(for example ISO-8859-1: <?xml version="1.0" 
encoding="ISO-8859-1"?>. You will find a list of 
supported encoding at the following URL: 
http://download.oracle.com/javase/6/docs/
technotes/guides/intl/encoding.doc.html.

Note that if the XML encoding is specified, the Java 
encoding should also be specified.

v1_compatibility 
or v1

No boolean (true | 
false)

false With this property set to true, the driver performs the 
XML to SQL mapping as if in version 1.x. This property 
is provided for compatibility.

compat_mode No string v3 Indicates the compatibility with mapping modes. This 
property can take the following values:

■ v1 is equivalent to v1_compatibility=true 
which is the 1.x compatibility mode

■ v2 indicates the 10g/11g compatibility mode where 
the custom written XSD parser is used

Please note that when you use a DTD or only a 
XML file, you must specify compat_mode=v2 in 
the JDBC URL. For example: 

jdbc:snps:xml?file=/tmp/myfile.xml&com
pat_mode=v2

jdbc:snps:xml?f=/tmp/myfile.xml&compat
_mode=v2

■ v3 indicates the compability with the XDK XSD 
parser.

Please note that compat_mode=v3 is not 
supported when you use a DTD or only a XML file. 
For example, the following syntaxes are not 
supported:

jdbc:snps:xml?file=/tmp/myfile.xml&com
pat_mode=v3

jdbc:snps:xml?f=/tmp/myfile.xml&compat
_mode=v3

If compat_mode=v3, the v1_compatibility 
property will be ignored.

numeric_ids or 
ni

No boolean (true | 
false)

true If set to true, all internal Primary and Foreign Keys are 
of NUMERIC type. Otherwise, they are of the 
VARCHAR type.

id_length or il No integer 10 / 30 The length of the internal Primary and Foreign Key 
columns. The default is 10 for NUMERIC column types 
and 30 for VARCHAR column.

no_batch_
update or nobu

No boolean (true | 
false)

false Batch update is not used for this connection. The 
command to set the batch update is not sent. This 
prevents errors to occur for external databases that do 
not support this JDBC feature, or allows to debug errors 
related to batch update usage.

Table B–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Installation and Configuration

B-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table B–2 lists URL samples.

add_schema_
bundle or asb

No string - Additional schemas bundle file. This property indicates 
that additional schemas must be created at connection 
time. The description for these extra schemas are 
located in an additional schemas property file named 
like the add_schema_bundle property with the 
extension ".properties". The additional schemas 
property file contains a list of valid JDBC driver's URL. 
In this file, the property names are ignored. Only the list 
of values is taken into account.

All these additional schemas are created with the drop_
on_disconnect option set to true by default.

Example of additional schemas property files contents:

addschema_
1=jdbc:snps:xml?f=c:/myfile.xml&ro=true&s
=myschema1 addschema_
2=jdbc:snps:xml?file=c:/myfile2.xml&s=mys
chema2 addschema_
3=jdbc:snps:xml?d=c:/myfile3.dtd&s=mysche
ma3

add_schema_
path or asp

No string 
(directory)

- Directory containing a set of XSD files. For each XSD 
file in this directory, an additional schema is created in 
the built-in engine or external database storage, based 
on this XSD. Note that no object is created in the 
external database storage for these additional schemas. 
The schema names are default generated named (5 first 
characters of the file name, uppercased).

Note: This option is not supported in v3 mode.

transform_
nonascii or tna

No boolean 
(true|false)

true Transform Non Ascii. Set to false to keep non-ascii 
characters.

max_table_
name_length or 
mtnl

No integer - Maximum length of table names irrespective of the 
value as supported by internal/external DB.

max_column_
name_length or 
mcnl

No integer - Maximum length of column names irrespective of the 
value as supported by internal/external DB.

case_sens or cs No boolean (true | 
false)

true Indicates whether the table and column names are case 
sensitive or not. Name comparisons are carried out 
accordingly.

Table B–2 URL Samples

URL Sample Action

jdbc:snps:xml Connects to the default schema.

jdbc:snps:xml?f=/tmp/
myfile.xml&ro=true&d=
/tmp/mydtd.dtd

Open the /tmp/myfile.xml file in read only mode, using the 
/tmp/mydtd.dtd DTD.

jdbc:snps:xml?file=/t
mp/myfile.xml

Open the /tmp/myfile.xml file in read/write mode.

jdbc:snps:xml?s=mysch
ema

Connect directly to the schema myschema

Table B–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-11

B.3.2 Automatically Create Multiple Schemas
It is possible to automatically create additional schemas with different XML structures 
when creating the connection with the driver. This is performed by:

■ Declaring in the add_schema_bundle URL property a property file that contains a 
list of JDBC URLs corresponding to the different additional schemas to create.

■ Declaring in the add_schema_path URL property a directory that contains a set of 
XSD files. For each XSD file an additional schema is created in the built-in engine, 
based on the XML schema description.

■ Specifying additional valid driver URLs as JDBC properties, named addschema_X 
(X is a number). An additional schema will be created for each URL found in a 
JDBC property called addschema_X.

Note that all these additional schemas are automatically dropped when their last 
connection is closed.

B.3.3 Using an External Database to Store the Data
In most cases, the XML driver stores the relational schema mapping of the XML 
schema in a built-in engine. It is also possible to store the relational schema in an 
external relational database.

Use external storage:

■ When loading very large XML files with the XML driver into the relational schema 
derived by the XML driver

■ To reduce the overall time taken to process the files with the built-in engine of the 
XML driver

■ To avoid timeouts to the ODI repositories. Please note that the time taken to 
process an XML file is dependent on:

– The complexity of the XML file structure

– The length of XML file content

– The host server RAM resources

– The host server CPU resources

Before using  external storage, ensure that you have understood the impacts of its 
usage and that you have increased the ODI timeout to values which conform to your 
performance requirements.

These schemas are created in addition to the one that may be created with the 
properties specified in the JDBC driver URL.

The external storage is configured with a set of properties described in Table B–3. 
These properties can be passed in several ways:

■ Passing the Properties in the Driver URL

Note: Supported RDBMS for external storage include Oracle, 
Microsoft SQL Server, MySQL, and Hypersonic SQL 2.0. The complete 
list of technologies that support external storage is available on Oracle 
Technical Network (OTN) :

http://www.oracle.com/technology/products/oracle-dat
a-integrator/index.html.



Installation and Configuration

B-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Setting the Properties in ODI Studio

■ Setting the Properties in a Properties File

Passing the Properties in the Driver URL
The properties can be directly set in the driver URL.  When using this method, the 
properties have to be prefixed with dp_ . For example, if connecting to an Oracle 
database, specify the Oracle JDBC driver name in the driver parameter as follows:

dp_driver=oracle.jdbc.OracleDriver.

Setting the Properties in ODI Studio
The properties can be specified on the Properties tab of the Data Server editor in 
Topology Navigator. When using this method, the properties have to be prefixed with 
dp_. For example, if you want to set the driver parameter:

1. In the Key column, enter dp_driver

2. In the Value column, enter oracle.jdbc.OracleDriver if you are connecting 
to an Oracle database.

Setting the Properties in a Properties File
The properties can be set in an external database properties file. This properties file, also 
called property bundle, is a text file with the .properties extension containing a set of 
lines with on each line a <property>=<value> pair.

This external database porperties file contains the properties of a JDBC connection to 
the relational database schema. The properties file is referenced using the db_props 
property in the JDBC URL. 

When using this method, note the following:

■ The properties in the properties file are not prefixed and used as described in 
Table B–3.

■ The db_props property is set to the name of the properties file including the 
.properties extension. The db_props property indicates that the schema must 
be loaded in a database schema whose connection information is stored in a 
external database properties file.

■ The properties files has to be deployed by the agent using the XML connection. 
The location of the properties file depends on the agent you are using:

– Local agent (Studio): Place the external DB properties file in the 
<user.dir>/odi/oracledi/userlib folder

– Standalone Agent: Place the external DB properties file in domain_home/lib 
folder

– JavaEE Agent: The external DB properties file should be packed into a JAR or 
ZIP file and added to the template generated by the Java EE agent. See 
"Deploying an Agent in a Java EE Application Server (Oracle WebLogic 
Server)" in the Administering Oracle Data Integrator for more information. 

■ The properties file must be set in the classpath of Oracle Data Integrator that uses 
the XML driver. Typically, you can install it with your custom drivers.

Note: When connecting to the external database, the XML driver 
uses JDBC connectivity. Make sure that the JDBC driver to access this 
external database is also available in the ODI classpath. 



Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-13

It is possible to set or override the external database properties on the URL. These 
properties must be prefixed with the string dp_. For example:

jdbc:snps:xml?file=/temp/payload.xml&dp_driver=<external_db_driver>&dp_
url=<external_db_url>

The properties for configuring external storage are described in Table B–3.

Table B–3 Properties of the External Database Properties File

Property Mandatory Type Default Description

driver Yes string - JDBC driver name.

Important: The driver class file must be in the classpath 
of the java application.

url Yes string - JDBC URL

user Yes string - Login used to connect the database

password Yes string - Encrypted password of the user.

Note: To encrypt the password, use the encode.bat 
command. See the Installing and Configuring Oracle Data 
Integrator for more information.

schema Yes string - Database schema storing the relational schema and the 
XML data. 

Note for MS SQLServer that:

■ If schema is not specified, tables will be created 
under the default schema of the user

■ If schema is specified, tables will be created under 
this schema

Limitation when using v3 mode: When using an 
external database, make sure that the provided or 
calculated schema name exists. The schema driver 
property value must match the schema property value 
of the external database. Otherwise an error is raised.

catalog Yes string - For Microsoft SQL Server only. Database catalog storing 
the XML data & information.

drop_on_
connect or doc

No string 
(Y|N)

N Drop the tables from the database schema if they already 
exist. If set to N the existing tables are preserved.

create_tables or 
ct

No (Y | N | 
AUTO)

AUTO Y: create systematically the tables in the schema.

N: never create the tables in the schema

AUTO: Create the tables if they do not exist.

create_indexes 
or ci

No string 
(Y|N)

Y Y: create indexes on tables' PK and FK

N: do not create the indexes. This value provides faster 
INSERT but dramatically slows SELECT in the data. It 
also saves storage space on your RDB.

numeric_scale 
or ns

No integer empty Scale of the numeric columns generated during the XML 
to SQL mapping.

truncate_
before_load or 
tbl

No string 
(Y|N)

Y Y: truncate all data when connecting

N: preserve existing data

ids_in_db or 
iidb

No string 
(Y|N)

Y Y: preserve identifiers (counters) in the database for a 
future append connection

N: do not preserve identifiers. Future append is not 
possible.



Installation and Configuration

B-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

drop_tables_
on_drop_
schema or 
dtods

No string 
(Y|N)

Y Y: a DROP SCHEMA does not only causes the reference 
to the database schema to be erased from the driver, but 
also causes all tables to be dropped.

N: DROP SCHEMA erases the reference to the database 
schema from the driver, but the tables are kept in the 
database schema.

use_prepared_
statements or 
ups

No string 
(Y|N)

Y Y: use the prepared statements with the database 
connection to perform driver operation (load/unload 
files).

N: do not use the prepare statement.

Processing is usually faster with prepare statement. The 
database and driver must support prepared statements in 
order to use this option.

use_batch_
update or ubu

No string 
(Y|N)

Y Y: use batch update with the database connection.

N: do not use batch update.

Inserting data is usually faster with batch update. Should 
be set to true only if the following conditions are met:

■ The database and driver support batch update 

■ The database supports prepared statements

■ The use_prepared_statements parameter is set toYes

Note: The batch update options specified here are only 
used to load the data in the schema. To use batch update 
when manipulating data in the schema, you must specify 
batch update options in your Java application.

batch_update_
size or bus

No integer 30 Batch update size. Records will be written in the database 
schema by batches of this size, if the use_batch_update 
property is set to true.

commit_
periodically or 
cp

No string 
(Y|N)

Y A COMMIT will be sent regularly when loading data 
from the XML file into the database schema. This regular 
COMMIT avoids overloading of the database log when 
loading large XML data files.

Should be set to true only if the following conditions are 
met:

■ The database supports batch update

■ The database supports prepared statements

■ The use_prepared_statements parameter is set to Yes

■ The use_batch_updates parameters is set to Yes

Note: The commit options specified here are only used to 
load the data in the schema. To commit when performing 
transactions in the schema, you must specify the commit 
in your Java application.

num_inserts_
before_commit 
or nibc

No integer 1000 Interval in records between each COMMIT, if the 
commit_periodically property is set to true.

Table B–3 (Cont.) Properties of the External Database Properties File

Property Mandatory Type Default Description



Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-15

The following sample is an example of a property file for using an Oracle Database as 
the external storage:

driver=oracle.jdbc.OracleDriver
url=jdbc:oracle:thin:@HOST:PORT:SID
user=USER_NAME
password=ENCODED_PASSWORD

reserve_chars_
for_column or 
rcfc

No integer 3 Long XML names are truncated to fit the maximum 
allowed size on the RDBMS, according to the maximum 
allowed size for column names returned by the JDBC 
driver.

However, there are some situations when you will want 
to reserve characters to make the driver-generated names 
shorter. The number of reserved character is defined in 
the reserve_chars_for_column value.

For example, on a database with a maximum of 30 
characters and with this property set to 3 (which is the 
default), all column names will not be larger than 27 
characters.

reserve_chars_
for_table or rcft

No integer 3 Same as reserve_chars_for_column (rcfc) property but 
applies to names of the table created in the RDBMS 
schema.

varchar_length 
or vl

No integer 255 Size of all the columns of the relational structure that will 
be used to contain string data.

This property does not apply to Annotation or 
Documentation elements. For those elements dlvc should 
be used instead.

default_type_
varchar or dtvc

No string 
(Y|N)

N If set to Yes, the default datatype used in the relational 
schema for columns storing XML annotation and 
documentation elements is VARCHAR of size 255. The 
length of this column is specified using the dlvc property. 
If set to false, the LONG datatype if used. This property 
should be set to yes for technologies that do not support 
multiple LONG columns within the same table, such as 
Oracle.

default_length_
varchar or

dlvc

No integer 255 Default length of the VARCHAR column used for storing 
XML annotation and documentation elements. This 
properties is valid only if dtvc is set to yes.

For example:

default_length_varchar=2000 where 2000 is the 
new desired default column size.

numeric_length 
or nl

No integer 10 Size of all the columns of the relational structure that will 
be used to contain numeric data.

unicode No boolean 
(true | 
false)

For MS SQL Server: 

If unicode = true, nvarchar is used.

If unicode = false or not set, varchar is used.

multi_user_safe 
or mus

No boolean 
(true | 
false)

false Its usage controls the way row ids are generated. If 
multi_user_safe is set to true, then each ID generation is 
tasked to the DB. If set to false at the very beginning of 
the data load, retrieve the IDs which are stored in the ID 
table and then work off that stored data in-memory. At 
the end of the data load this is then pushed to the DB.

Table B–3 (Cont.) Properties of the External Database Properties File

Property Mandatory Type Default Description



Detailed Driver Commands

B-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

schema=USER_NAME
drop_on_connect=Y
create_tables=AUTO
create_indexes=Y
truncate_before_load=Y
ids_in_db=Y
drop_tables_on_drop_schema=Y
use_prepared_statements=Y
use_batch_update=Y
batch_update_size=30
commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

The following sample is an example of a property file for using a Microsoft SQL Server 
database as the external storage:

driver=com.microsoft.jdbc.sqlserver.SQLServerDriver
url=jdbc:microsoft:sqlserver://SERVER_NAME:PORT;SelectMethod=cursor
user=USER_NAME
password=ENCODED_PASSWORD
schema=OWNNER_NAME
drop_on_connect=Y
create_tables=AUTO
create_indexes=Y
truncate_before_load=Y
ids_in_db=Y
drop_tables_on_drop_schema=Y
use_prepared_statements=Y
use_batch_update=Y
batch_update_size=30
commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

B.4 Detailed Driver Commands

The following statements are specific to the XML driver, and allow to manage XML 
files and schemas. They can be launched as standard SQL statements on the JDBC 
connection to the XML driver.

To manipulate the data stored in the schemas, you may use standard SQL syntax. This 
syntax is either the built-in engine's SQL Syntax, or the SQL Syntax of the External 
Database engine you use.

Conventions
The following conventions are used within this document:

■ [ A ] means A is optional

■ [ A | B ] means A or B but the parameter is optional.

Note: The notion of SCHEMA referred to in these commands refers 
to the string value set with the s=.... parameter in the XML Driver 
Data Server URL present in the physical architecture.



Detailed Driver Commands

Oracle Data Integrator Driver for XML Reference B-17

■ { B | C } means B or C must be used.

■ [A] [B] means a set of arguments that are not ordered.

■ ( and ) are the characters '(' and ')'.

■ keywords are in UPPERCASE

This section details the following driver specific commands:

■ CREATE FILE

■ CREATE FOREIGNKEYS

■ CREATE XMLFILE

■ CREATE SCHEMA

■ DROP FOREIGNKEYS

■ DROP SCHEMA

■ LOAD FILE

■ SET SCHEMA

■ SYNCHRONIZE

■ UNLOCK FILE

■ TRUNCATE SCHEMA

■ VALIDATE

■ WRITE MAPPING FILE

■ COMMIT

■ CREATE TABLE

■ DELETE

■ DISCONNECT

■ DROP TABLE

■ INSERT INTO

■ ROLLBACK

■ SELECT

■ SET AUTOCOMMIT

■ UPDATE

B.4.1 CREATE FILE
Create an empty XML instance file containing all ELEMENTS (including optional 
ELEMENTS) present in the related XSD or DTD file. However, no XML ATTRIBUTES 
declared in these files will be referenced in the created XML instance file. 

The attributes are handled differently between compat_mode v1/v2 and v3. In v1/v2 
mode attributes are not written, while in v3 mode attributes are also written out.

CREATE [EMPTY] FILE <file_name> [FROM SCHEMA <schema_name>] 
    [JAVA_ENCODING <java_encoding>  XML_ENCODING <xml_encoding>] 
    [NO_CLOSING_TAGS] [NO_DEFAULT_NS]



Detailed Driver Commands

B-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag. 

Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>

Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS
If this parameter is specified, the driver generates the empty tags with closing tag. By 
default, the driver generates an empty element as <element></element>. with the 
no_closing_tags parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default 
namespace entry.

Remarks
■ If the file name contains spaces, enclose it in double quotes

■ The encoding values should be enclosed in double quotes as they may contain 
special characters.

B.4.2 CREATE FOREIGNKEYS
Create physically all the foreign keys joining the tables from the relational schema in 
the database. This command is helpful to enforce integrity constraints on the schema.

CREATE FOREIGNKEYS

Remarks
After using CREATE FOREIGNKEYS, it is not possible any longer to perform a LOAD 
FILE.

B.4.3 CREATE XMLFILE
Generate an XML file called <file_name> from the default schema data, or from a 
specific schema.

CREATE XMLFILE <file_name> [FROM SCHEMA <schema_name>] 
    [JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>] 
    [NO_CLOSING_TAGS][NO_DEFAULT_NS] 

Note: When requested, the driver always returns "virtual" foreign 
keys, corresponding to the relational structure mapping. It does not 
return the real foreign keys enforced at database level.



Detailed Driver Commands

Oracle Data Integrator Driver for XML Reference B-19

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag. Example of generated tag: <?xml 
version="1.0" encoding="ISO-8859-1"?>.

Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS
If this parameter is specified, the driver generates the empty tags with closing tag. By 
default, the driver generates an empty element as <element></element>. with the 
no_closing_tags parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default 
namespace entry.

Remarks
■ If the file name contains spaces, enclose it in double quotes

■ The encoding values should be enclosed in double quotes as they may contain 
special characters.

B.4.4 CREATE SCHEMA
Create in <schema_name> an empty schema or a schema with tables mapping the 
structure of the description file specified as <dtd/xsd_name>.

CREATE SCHEMA <schema_name> [WITH DTD <dtd/xsd_name>] [REPLACE] 
   [ROOTELT <root element>] [READONLY] [COMPAT_MODE <compatibility mode>]
   [JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the 
schema.

REPLACE
Specify if an existing schema structure must be replaced with the new one.

ROOTELT
Element in the description file considered as the root of the XML file. This element 
name is case sensitive.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

Note: This command cannot be used on an external database.



Detailed Driver Commands

B-20 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

COMPAT_MODE
Indicates the compatibility with mapping modes. This property can take the following 
values:

■ v1 is equivalent to v1_compatibility=true wich is the 1.x compatibility mode

■ v2 is the 10g/11g mode. This is the default mode. 

Please note that when you use a DTD or only a XML file, you must specify 
compat_mode=v2 in the JDBC URL. For example:

jdbc:snps:xml?d=/tmp/myDTD.dtd&compat_mode=v2

jdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v2

■ v3 indicates the compatibility with the XDK XSD parser. Please note that compat_
mode=v3 is not supported when you use a DTD or only a XML file. For example, 
the following syntaxes are not supported:

– jdbc:snps:xml?d=/tmp/myDTD.dtd&compat_mode=v3

– jdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v3

If compat_mode=v3, the v1_compatibility property will be ignored.

JAVA_ENCODING
Encoding of the target XML file(s) generated from schema.

Note: Java and XML encoding should always be specified together.

XML_ENCODING
Encoding generated in the target files' XML tag. Example of generated tag: <?xml 
version="1.0" encoding="ISO-8859-1"?>.

Remarks
■ The XML file data is not loaded. This command is similar to LOAD FILE but does 

not load the XML file data.

■ The schema is created in READONLY mode since no XML file is associated with it.

■ The connection schema does not automatically switch to the newly created 
schema.

■ If the file name contains spaces, enclose the name in double quotes.

■ The encoding values should be enclosed in double quotes as they may contain 
special characters.

B.4.5 DROP FOREIGNKEYS
Drop all the foreign keys on the tables of the relational schema in the database. This 
command is helpful to drop all integrity constraints on the schema.

DROP FOREIGNKEYS

Note: When using the SYNCHRONIZE command, only those DB 
schemas that have been created with 'v3' option will parse the 
DTD/XSD in the 'v3' mode. In 'v3' mode all the restrictions on schema 
name value corresponding with DB property for schema name etc. 
will apply.



Detailed Driver Commands

Oracle Data Integrator Driver for XML Reference B-21

B.4.6 DROP SCHEMA
Drop an existing schema. If <schema_name> is not specified, the current schema is 
dropped. It is not possible to drop a schema if there are pending connections to this 
schema. Trying to drop a schema with existing connections causes an exception.

DROP SCHEMA [<schema_name>]

B.4.7 LOAD FILE
Load the <file_name> XML file into the specified <schema_name> XML schema. If 
a schema name is not specified with the ON SCHEMA parameter, one is generated 
with the XML file name. If a schema with the specified or generated name is found, 
then the properties of that schema are inherited. If a schema with the specified or 
generated name does not exist at runtime, a new XML JDBC URL with only the 
properties specified in the LOAD FILE command is created. This schema does not 
inherit any of the properties of the current schema.

LOAD FILE <file_name> [WITH DTD <dtd/xsd_name> | INSERT_ONLY] [ON SCHEMA <schema_
name>] [REPLACE] [READONLY] [ROOTELT <root element>] [AUTO_UNLOCK] [DB_PROPS 
<external database properties>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the 
schema.

INSERT_ONLY
Adds the data from the XML file in the schema if it already exists. The new XML file 
should have valid description file for the existing schema.

ON SCHEMA
Force the file to be loaded in <schema_name>. Note that the current schema is not set 
after the command automatically to <schema_name>.

REPLACE
Specify if an existing schema structure with the same name must be replaced with the 
one that is being loaded.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

ROOTELT
Element in the description file considered as the root of the XML file. This element 
name is case sensitive.

AUTO_UNLOCK
If the XML file is already locked by another driver instance, an exception occurs unless 
the AUTO_UNLOCK is specified. This parameter unlocks automatically the file if it is 
locked.

DB_PROPS
Loads the file in the external database identified by the properties file called <external 
database properties>.properties.



Detailed Driver Commands

B-22 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Remarks
■ Enclose the file name in double quotes.

■ When no schema is specified, the driver automatically generates a schema name 
from the file name.

■ The connection schema does not automatically switch to the loaded schema.

■ If the XML file is already open in another schema, an exception occurs.

B.4.8 SET SCHEMA
Set the current schema to <schema_name>.

SET SCHEMA <schema_name>

Remarks
It is necessary to specify a name for the schema.

B.4.9 SYNCHRONIZE
Synchronize data in the schema with the file data.

SYNCHRONIZE [ALL | SCHEMA <schema_name>] [FROM FILE/FROM DATABASE] 
 [IGNORE CONFLICTS]

Parameters

ALL
Synchronizes all schemas

SCHEMA
Synchronizes only <schema_name>

FROM FILE
Forces the data to be loaded from the file to the schema. Erases all changes in the 
schema.

FROM DATABASE
Forces the data to be loaded from the schema to the file. Erases all changes in the file.

IGNORE CONFLICTS
If FROM FILE/DATABASE are not specified, the driver automatically determines 
where data have been modified (in the FILE or DATABASE) and updates the 
unmodified data. If both the FILE and the DATABASE have been modified, the driver 
issues a Conflict Error. if the IGNORE CONFLICTS parameter is used, no error is 
issued, and if performing a SYNCHRONIZE ALL, the following schemas will be 
synchronized.

Note: A schema is marked updated only when a data modification 
(update, delete, insert, drop) is executed in a connection to that 
schema. It is not marked as updated, when the order is launched from 
a connection to another schema.



Detailed Driver Commands

Oracle Data Integrator Driver for XML Reference B-23

B.4.10 UNLOCK FILE
Unlocks <file_name> if it is locked by another instance of the driver.

UNLOCK FILE <file_name>

B.4.11 TRUNCATE SCHEMA
Clears all data from the current schema, or from <schema_name>.

TRUNCATE SCHEMA [<schema_name>]

B.4.12 VALIDATE
Verifies that the XML file <file_name> is well-formed and validates the content of the  
XML file <file_name> against the XML Schema (XSD) if the schema is referenced in 
the XML file. This command returns an exception if the file is not valid.  For a full 
description of the validation performed, see:

http://xerces.apache.org/xerces2-j/features.html#validation.sche
ma 

VALIDATE [FILE <file_name>] [ERROR_ON_WARNING|IGNORE_ON_WARNING] 
   [ERROR_ON_ERROR|IGNORE_ON_ERROR] 
   [ERROR_ON_FATAL_ERROR|IGNORE_ON_FATAL_ERROR] [VERBOSE]

Parameters

FILE <file_name>
Name of the XML file to validate.

ERROR_ON_WARNING | IGNORE_ON_WARNING
Ignore or generate errors on XSD validation warnings, such as values out of range. The 
default value is IGNORE_ON_WARNING.

ERROR_ON_ERROR | IGNORE_ON_ERROR
Ignore or generate errors on XSD validation errors, such as non conform attribute or 
element. The default value is ERROR_ON_ERROR.

ERROR_ON_FATAL_ERROR | IGNORE_ON_FATAL_ERROR
Ignore or generate errors on XSD validation fatal errors, such as malformed XML. The 
default value is ERROR_ON_FATAL_ERROR.

VERBOSE
Displays on the Java console the detailed errors and number of the line causing the 
error. Nothing is displayed by default on the console.

B.4.13 WRITE MAPPING FILE
Writes out the element/attribute name to table/table.column name mapping for each 
element/attribute to the specified file. The mapping file helps to understand the 
relational structure that has been created for the XSD/DTD file. This command can be 
used only when the schema was created in v3 mode. Otherwise exception is thrown.

WRITEMAPPINGFILE FILE <file-path> [FROM SCHEMA <schema-name>] 
   [JAVA_ENCODING <java_encoding> XML_ENCODING <xml-encoding>]



SQL Syntax

B-24 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Parameters

file_path
Name of the generated mapping file

FROM_SCHEMA
If the optional FROM SCHEMA parameter is not provided, the current schema will be 
used. 

JAVA_ENCODING
Encoding of the generated file, for example: ISO8859_1. You will find a list of 
supported encoding at the following URL: 
http://download.oracle.com/javase/6/docs/technotes/guides/intl/e
ncoding.doc.html. 

Note that if the Java encoding is specified, the XML encoding should also be specified.

XML_ENCODING
Encoding in the xml tag of the generated file.

Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>

You will find a list of supported encoding at the following URL: 
http://download.oracle.com/javase/6/docs/technotes/guides/intl/e
ncoding.doc.html.

Note that if the XML encoding is specified, the Java encoding should also be specified.

Example B–1 Mapping File

<?xml version = '1.0' encoding = 'UTF-8'?>
<personnel xmlns:x2r="http://www.oracle.com/odi/xml-mapping" 
x2r:tableName="PERSONNEL"> 
   <person x2r:tableName="PERSON" id="ID" select="SELECT_">   
      <email x2r:tableName="EMAIL"></email>
      <link x2r:tableName="LINK" manager="MANAGER" 
subordinates="SUBORDINATES"></link>
      <name x2r:tableName="NAME">
         <given x2r:columnName="GIVEN"></given>
         <family x2r:columnName="FAMILY"></family>
      </name>
      <url x2r:tableName="URL" href="HREF"></url>
   </person>
</personnel>

B.5 SQL Syntax
The following statements are available when using the built-in engine to store the 
XML schema. They enable the management of the data and data structure in the 
schema through Standard SQL Syntax.

This section contains the following topics:

■ SQL Statements

■ SQL FUNCTIONS

Note: If you are using an external database, you may use the 
database engine querying syntax instead of this one.



SQL Syntax

Oracle Data Integrator Driver for XML Reference B-25

B.5.1 SQL Statements
Any number of commands may be combined. You can optionally use the semicolon 
character (;) to separate each command.

This section details the following commands:

■ COMMIT

■ CREATE TABLE

■ DELETE

■ DISCONNECT

■ DROP TABLE

■ INSERT INTO

■ ROLLBACK

■ SELECT

■ SET AUTOCOMMIT

■ UPDATE

■ Expressions, Condition and Values

B.5.1.1 COMMIT
Ends a transaction on the schema and makes the changes permanent.

COMMIT [WORK]

B.5.1.2 CREATE TABLE
Create a tables and its constraints in the relational schema.

CREATE TABLE <table_name> 
  ( <columnDefinition> [, ...] [, <constraintDefinition>...])

<columnDefinition> ::=
    <column_name> <datatype> [(anything)] [[NOT] NULL] [IDENTITY] [PRIMARY KEY]

<constraintDefinition> ::=
[ CONSTRAINT <constraint_name> ]
    UNIQUE ( <column_name> [,<column>...] ) |
    PRIMARY KEY ( <column_name> [,<column_name>...] ) |
    FOREIGN KEY ( <column_name> [,<column_name>...] ) 
    REFERENCES <referenced_table> ( <column_name> [,<column_name>...] )

Remarks
■ IDENTITY columns are automatically incremented integer columns. The last 

inserted value into an identity column for a connection is available using the 
IDENTITY() function.

■ Valid datatypes are: BIT, TINYINT, BIGINT, LONGVARBINARY, VARBINARY, 
BINARY, LONGVARCHAR, CHAR, NUMERIC, DECIMAL, INTEGER, 
SMALLINT, FLOAT, REAL, DOUBLE, VARCHAR, DATE, TIME, TIMESTAMP, 
OBJECT



SQL Syntax

B-26 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.5.1.3 DELETE
Remove rows in a table in the relational schema. This function uses a standard SQL 
Syntax.

DELETE FROM <table_name> [ WHERE <expression> ]

B.5.1.4 DISCONNECT
Closes this connection.

DISCONNECT

Remarks
■ It is not required to call this command when using the JDBC interface: it is called 

automatically when the connection is closed.

■ After disconnecting, it is not possible to execute other queries with this connection.

B.5.1.5 DROP TABLE
Remove a table, the data and indexes from the relational schema.

DROP TABLE <table_name>

B.5.1.6 INSERT INTO
Insert one or more new rows of data into a table.

INSERT INTO <table_name> [ ( <column_name> [,...] ) ] 
    { VALUES (<expression> [,...]) | <SELECT Statement> }

B.5.1.7 ROLLBACK
Undo the changes made since the last COMMIT or ROLLBACK.

ROLLBACK

B.5.1.8 SELECT
Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table_name>.* | * } [, ... ]
[  INTO <new_table> ]
   FROM <table_list>
[  WHERE <expression> ]
[  GROUP BY <expression> [, ...] ]
[  ORDER BY <order_expression> [, ...] ]
[  { UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement> ]

<table_list> ::=
     <table_name> [ { INNER | LEFT [OUTER] } JOIN <table_name> 
     ON <expression> ]  [, ...]

<select_expression> ::=
      { <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG} 
       (<expression>) <column_alias>}

<order_expression> ::=
      { <column_number> | <column_alias> | <select_expression> } [ ASC | DESC ]



SQL Syntax

Oracle Data Integrator Driver for XML Reference B-27

B.5.1.9 SET AUTOCOMMIT
Switches on or off the connection's auto-commit mode. If switched on, then all 
statements will be committed as individual transactions. Otherwise, the statements are 
grouped into transactions that are terminated by either COMMIT or ROLLBACK. By 
default, new connections are in auto-commit mode.

SET AUTOCOMMIT { TRUE | FALSE }

B.5.1.10 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

B.5.1.11 Expressions, Condition and Values
<expression> ::=
     [NOT] <condition> [ { OR | AND } <condition> ]

<condition> ::=
     { <value> [ || <value> ]
      | <value> { = | < | <= | > | >= | <> | != | IS [NOT] } <value>
      | EXISTS(<select_statement>)
      | <value> BETWEEN <value> AND <value>
      | <value> [NOT] IN ( {<value> [, ...] | selectStatement } )
      | <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=
      [ + | - ] { term [ { + | - | * | / } term ]
      | ( condition )
      | function ( [parameter] [,...] )
      | selectStatement_giving_one_value

<term> ::=
      { 'string' | number | floatingpoint | [table.]column | TRUE | FALSE | NULL }

<string> ::=
■ Starts and ends with a single '. In a string started with ' use '' to create a '.

■ LIKE uses '%' to match any (including 0) number of characters, and '_' to match 
exactly one character. To search for '%' itself, '\%' must be used, for '_' use '\_'; or 
any other escaping character may be set using the ESCAPE clause.

<name> ::=
■ A name starts with a letter and is followed by any number of letters or digits. 

Lowercase is changed to uppercase except for strings and quoted identifiers. 
Names are not case-sensitive.

■ Quoted identifiers can be used as names (for example for tables or columns). 
Quoted identifiers start and end with ". In a quoted identifier use "" to create a ". 
With quoted identifiers it is possible to create mixed case table and column names. 
Example: CREATE TABLE "Address" ("Nr" INTEGER, "Name" VARCHAR); 
SELECT * FROM "Address". Quoted identifiers are not strings.

<values> ::=
■ A 'date' value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

■ A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).



SQL Syntax

B-28 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example 
is 3 bytes, first 0, second 4 and last 255 (0xff).

B.5.2 SQL FUNCTIONS
Table B–4 lists the numerical functions.

Table B–5 lists the string functions.

Table B–4 Numerical Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and 
smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is 
bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

BITAND(a,b) return a & b

BITOR(a,b) returns a | b

Table B–5 String Functions

Function Description

ASCII(s) returns the ASCII code of the leftmost character of s



SQL Syntax

Oracle Data Integrator Driver for XML Reference B-29

Table B–6 lists the date/time functions.

Note that a date value starts and ends with a single quote ('), the format is 
yyyy-mm-dd (see java.sql.Date). A time value starts and ends with a single quote ('), 
the format is hh:mm:ss (see java.sql.Time).

CHAR(c) returns a character that has the ASCII code c

CONCAT(str1,str2) returns str1 + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

INSERT(s,start,len,s2) returns a string where len number of characters beginning at 
start has been replaced by s2

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is 
found in s, starting at start

LTRIM(s) removes all leading blanks in s

REPEAT(s,count) returns s repeated count times

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing blanks

SOUNDEX(s) returns a four character code representing the sound of s

SPACE(count) returns a string consisting of count spaces

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len

UCASE(s) converts s to upper case

LOWER(s) converts s to lower case

UPPER(s) converts s to upper case

Table B–6 Date/Time Functions

Function Description

CURDATE() returns the current date

CURTIME() returns the current time

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

DAYOFYEAR(date) returns the day of the year (1-366)

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

Table B–5 (Cont.) String Functions

Function Description



JDBC API Implemented Features

B-30 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table B–7 lists the system functions.

B.6 JDBC API Implemented Features
Table B–8 lists the JDBC API features that are implemented in the Oracle Data 
Integrator Driver for XML:

Table B–9 lists JDBC Java classes.

NOW() returns the current date and time as a timestamp

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Table B–7 System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp

CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2

CONVERT(term,type) converts exp to another data type

CAST(term AS type) converts exp to another data type

Table B–8 JDBC API Features

Feature Groups JDBC Version Support

Batch Update 2.0 Core Yes

Blob/Clob 2.0 Core Yes

JNDI DataSources 2.0 Optional Yes

Failover support - Yes

Transaction SavePoints 3.0 Yes

Unicode support - No

Distributed Transaction 2.0 Optional No

Connection Pooling 2.0 Optional No

Cluster support - No

Table B–9 JDBC Java Classes

JDBC Class JDBC Version Support

Array 2.0 Core No

Blob 2.0 Core Yes

CallableStatement 1.0 Yes

Clob 2.0 Core Yes

Connection 1.0 Yes

Table B–6 (Cont.) Date/Time Functions

Function Description



Rich Metadata

Oracle Data Integrator Driver for XML Reference B-31

B.7 Rich Metadata
When creating RDB structures based on XML schema, there must be flexibility to 
supply the driver with metadata. For example, in situations where RDB table/column 
names can conflict if element/attributes have same local names.

The ODI XML driver attaches an attribute in the x2r namespace 
(http://www.oracle.com/odi/xml-mapping) to the elements/attribute namely: 
x2r:tableName/x2r:columnName. If conflicting names do not have the metadata 
attribute, then they are appended with an incrementing number until a non-conflicting 
table/column name is obtained.

The new object model maintains a map between xpath and table/table.column names 
for each element/attribute.

If two elements with same name and same type exist in two different locations, same 
table is used for storing the data but FK reference to parent element is used to 
differentiate the data. The new implementation creates new tables. Table B–10 lists the 
table attributes.

ConnectionPoolDataSource 2.0 Optional No

DatabaseMetaData 1.0 Yes

DataSource 2.0 Optional No

Driver 1.0 Yes

Ref 2.0 Core No

ResultSet 1.0 Yes

ResultSetMetaData 1.0 Yes

RowSet 2.0 Optional No

Statement 1.0 Yes

Struct 2.0 Core No

PreparedStatement 1.0 Yes

XAConnection 2.0 Optional No

XADataSource 2.0 Optional No

Table B–10 Table Attributes

Attribute Type Description

x2r:tableName String To be attached to elements that resolve to RDB 
tables/attributes that are lists or enumerations whose local 
names match.

x2r:columnName String To be attached to attributes whose local names match or for 
elements that map to columns, but whose local names 
match with each other or with an attribute of the 
containing type.

Table B–9 (Cont.) JDBC Java Classes

JDBC Class JDBC Version Support



Rich Metadata

B-32 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The following sample is an example of an XSD enriched with metadata.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns:x2r="http://www.oracle.com/odi/xml-mapping">
 <xs:element name="root">
  <xs:complexType>
   <xs:sequence>
     <!--  Example for redefining table name  -->
    <xs:element name="person" maxOccurs="unbounded" x2r:tableName="CUSTOMER">
     <xs:complexType>
      <xs:sequence>
       <!--  Example for redefining column name  -->
       <xs:element name="given" type="xs:string" x2r:columnName="FIRST"/>
       <xs:element name="last" type="xs:string"/>
       <!--  Example for redefining column length  -->
       <xs:element name="address" type="xs:string" x2r:columnLength="400"/>
       <!--  Example for redefining column type  -->
       <xs:element name="notes" type="xs:string" x2r:columnDataType="CLOB"/>
      </xs:sequence>
     </xs:complexType>
    </xs:element>
   </xs:sequence>
  </xs:complexType>
 </xs:element>
</xs:schema>

B.7.1 Supported user-specified types for different databases
Table B–11 provides the details of the supported user-specified types for different 
databases. Using any other type name will raise exception.

x2r:columnDataTyp
e

String Lets you provide the datatype information as a string from 
a mapping table that we will provide.

May only be attached to elements that the driver will map 
to columns or to attributes. If this parameter is provided 
user must also supply x2r:columnLength and/or 
x2r:columnPrecision as required for the datatype.

x2r:columnLength integer Length of the column.

By default the values hard-coded in the driver are used. 
VARCHAR and NUMERIC have global override option in 
JDBC URL. This attribute, if provided, overrides both the 
default value and the global overrride.

May only be attached to elements that the driver will map 
to columns or to attributes.

x2r:columnPrecision integer Precision of the column. Used by driver only for those 
datatypes that allow it. Same logic as for columnLength is 
used when determining the value to be applied.

May only be attached to elements that the driver will map 
to columns or to attributes.

Table B–11 Supported user-specified types for databases

Type HSQL Oracle MySQL MS SQL Server

SMALLINT X X X

Table B–10 (Cont.) Table Attributes

Attribute Type Description



XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-33

B.8 XML Schema Supported Features
The driver supports part of the XML Schema (XSD) specification. Supported elements 
are listed in this section. 

For more information on the XML Schema specification, see the W3C specification at 
http://www.w3.org/TR/xmlschema-1/.

This section contains the following topics:

■ Datatypes

■ Supported Elements

■ Unsupported Features

B.8.1 Datatypes
The following datatypes are supported:

■ These datatypes are converted to String columns: string, normalizedString, token, 
nmtoken, nmtokens, anyUri, id, idref, date, datetime, time, hexBinary

■ These datatypes are converted to Integer columns: int, positiveInteger, 
negativeInteger, nonNegativeInteger, onPositiveInteger, long, unsignedLong, 
unsignedInt, short, unsignedShort, byte, unsignedByte, boolean (Boolean are 
converted to a numeric column with 0 or 1, but they can take "true" or "false" 
values from the input files)

INTEGER X X

REAL X X

NUMERIC X X

NUMBER X

FLOAT X X X

DOUBLE X X

DECIMAL X X

CHAR X X X X

NCHAR X X X

VARCHAR X X X X

VARCHAR2 X

NVARCHAR2 X

BLOB X X X

CLOB X X

NCLOB X

TEXT X X

DATE X X X

TIME X X X

TIMESTAMP X X X X

Table B–11 (Cont.) Supported user-specified types for databases

Type HSQL Oracle MySQL MS SQL Server



XML Schema Supported Features

B-34 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ These datatypes are converted to Decimal (with 2 decimal places) columns: 
decimal, float, double

B.8.2 Supported Elements
This section lists all schema elements. Supported syntax elements are shown in bold. 
Unsupported syntax elements are shown in regular font. They are ignored by the 
driver.

This section details the following schema elements:

■ All

■ Any

■ AnyAttribute

■ AnyType

■ Attribute

■ AttributeGroup

■ Choice

■ ComplexContent

■ ComplexType

■ Element

■ Extension

■ Group

■ Import

■ Include

■ List

■ Restriction

■ Schema

■ Sequence

■ SimpleContent

■ SimpleType

B.8.2.1 All
This element specifies that child elements can appear in any order and that each child 
element can occur zero or one time.

Note that child elements mandatory properties (minOccurs=1) are not managed by the 
driver. This should be handled by checks on the data, and by validating the XML 
contents against the XSD.

<all
    id=ID

Note: XML files generated or updated using the XML driver should 
ideally be validated against their corresponding XSD files using the 
VALIDATE command after generation.



XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-35

    maxOccurs=1
    minOccurs=0|1
    any attributes
>
(annotation?,element*)
</all>

B.8.2.2 Any
This element enables you to extend the XML document with elements not specified by 
the schema.

<any
    id=ID
    maxOccurs=(nonNegativeInteger|unbounded):1
    minOccurs=nonNegativeInteger:1
    namespace=((##any|##other)|List of (anyURI|(##targetNamespace|##local))):##any
    processContents=(lax|skip|strict):strict
    any attributes
>
(annotation?)
</any>

B.8.2.3 AnyAttribute
This element enables you to extend the XML document with attributes not specified by 
the schema.

<anyAttribute
    id=ID
    namespace=((##any|##other)|List of (anyURI|(##targetNamespace|##local))):##any
    processContents=(lax|skip|strict):strict
    any attributes
>
(annotation?)
</anyAttribute>

B.8.2.4 AnyType
This XML Schema type is the root type for all XML Schema types.

<xsd:element name="something" type="xsd:anyType"/>

B.8.2.5 Attribute
This element defines an attribute.

<attribute
    default=string
    id=ID
    name=NCName
    type=QName
    use=optional|prohibited|required
    ref=QName
    fixed=string
    form=qualified|unqualified
    any attributes
>
(annotation?,(simpleType?))
</attribute>



XML Schema Supported Features

B-36 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Note that the use attribute of this element defines the column mapped by the driver 
for the attribute as mandatory or not.

B.8.2.6 AttributeGroup
This element defines a set of attributes.

<attributeGroup
    id=ID
    name=NCName
    ref=QName
    any attributes
>
(annotation?),((attribute|attributeGroup)*,anyAttribute?))
</attributeGroup>

B.8.2.7 Choice
This element allows one and only of the elements to be present within the containing 
element.

<choice
    id=ID
    maxOccurs=nonNegativeInteger|unbounded
    minOccurs=nonNegativeInteger
    any attributes
>
(annotation?,(element|group|choice|sequence|any)*)
</choice>
Note that the child element's unique nature are not managed by the driver. This 
should be handled by checks on the data, and by validating the XML contents against 
the XSD.

B.8.2.8 ComplexContent
This element defines extensions or restrictions on a complex type.

<complexContent
    id=ID
    mixed=true|false
    any attributes
>
(annotation?,(restriction|extension))
</complexContent>

B.8.2.9 ComplexType
This element defines a complex type.

<complexType
    name=NCName
    id=ID
    abstract=true|false
    mixed=true|false
    block=(#all|list of (extension|restriction))
    final=(#all|list of (extension|restriction))
    any attributes
>
(annotation?,(simpleContent|complexContent|((group|all|choice|sequence)?,((attribu
te|attributeGroup)*,anyAttribute?))))
</complexType>



XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-37

B.8.2.10 Element
This element defines an element of the XML file.

<element
    name=NCName
    maxOccurs=nonNegativeInteger|unbounded
    minOccurs=nonNegativeInteger
    type=QName
    id=ID
    ref=QName
    substitutionGroup=QName
    default=string
    fixed=string
    form=qualified|unqualified
    nillable=true|false
    abstract=true|false
    block=(#all|list of (extension|restriction))
    final=(#all|list of (extension|restriction))
    any attributes
>
annotation?,((simpleType|complexType)?,(unique|key|keyref)*))
</element>

B.8.2.11 Extension
This element extends an existing simpleType or complexType element

<extension
    id=ID
    base=QName
    any attributes
>
(annotation?,((group|all|choice|sequence)?,((attribute|attributeGroup)*,anyAttribu
te?)))
</extension>

Note: The maxOccurs and minOccurs attributes of the element are 
used in the XML-to-SQL mapping. If a child element is of a simple 
type and is monovalued (one occurrence only), then this element is 
mapped to a simple column in the table corresponding to its parent 
element. Otherwise, a table linked to the parent element's table is 
created. 

Note that if no reference to either minOccurs or maxOccurs is 
mentioned in an element then the element is consider as monovalued 
and is transformed to a column. This behavior can be changed using 
the useImplicitMaxValue URL property. When this property is set 
to yes,  an elements for which maxOccurs is not specified in the XSD is 
considered as multivalued (maxOccurs ="unbounded").

Note: Using different sub-elements with the same name but with 
different types is not supported by XML driver. An XSD with such a 
structure will not be processed correctly.



XML Schema Supported Features

B-38 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.8.2.12 Group
The group element is used to define a group of elements to be used in complex type 
definitions.

<group
    id=ID
    name=NCName
    ref=QName
    maxOccurs=nonNegativeInteger|unbounded
    minOccurs=nonNegativeInteger
    any attributes
>
(annotation?,(all|choice|sequence)?)
</group>

B.8.2.13 Import
This element is used to add multiple schemas with different target namespace to a 
document.

<import
    id=ID
    namespace=anyURI
    schemaLocation=anyURI
    any attributes
>
(annotation?)
</import>

B.8.2.14 Include
This element is used to add multiple schemas with the same target namespace to a 
document.

<include
    id=ID
    schemaLocation=anyURI
    any attributes
>
(annotation?)
</include>

B.8.2.15 List
This element defines a simple type element as a list of values of a specified data type.

<list
    id=ID
    itemType=QName
    any attributes
>
(annotation?,(simpleType?))
</list>

B.8.2.16 Restriction
This element defines restrictions on a simpleType, simpleContent, or a 
complexContent.

<restriction
     id=ID
     base=QName



XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-39

     any attributes
>
Content for simpleType:
(annotation?,(simpleType?,(minExclusive|minInclusive|maxExclusive|maxInclusive|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern)*))
Content for simpleContent:
(annotation?,(simpleType?,(minExclusive|minInclusive|maxExclusive|maxInclusive|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern)*)?, ((attribute|attributeGroup)*,anyAttribute?))
Content for complexContent:
(annotation?,(group|all|choice|sequence)?, 
((attribute|attributeGroup)*,anyAttribute?))
</restriction>

B.8.2.17 Schema
This element defines the root element of a schema.

<schema
     id=ID
     attributeFormDefault=qualified|unqualified
     elementFormDefault=qualified|unqualified
     blockDefault=(#all|list of (extension|restriction|substitution))
     finalDefault=(#all|list of (extension|restriction|list|union))
     targetNamespace=anyURI
     version=token
     xmlns=anyURI
     any attributes
>
((include|import|redefine|annotation)*,(((simpleType|complexType|group|
attributeGroup)|element|attribute|notation),annotation*)*)
</schema>

B.8.2.18 Sequence
This element specifies that the child elements must appear in a sequence. Each child 
element can occur 0 or more times.

<sequence
     id=ID
     maxOccurs=nonNegativeInteger|unbounded
     minOccurs=nonNegativeInteger
     any attributes
>
(annotation?,(element|group|choice|sequence|any)*)
</sequence>

Note the following:

■ The Sequence order is not managed by the driver. The sequence order should be 
handled by loading the xxx_ORDER column generated by the driver.

■ The maxOccurs and minOccurs attributes are not managed by the driver. This 
should be handled by checks on the data, and by validating the XML contents 
against the XSD.

B.8.2.19 SimpleContent
This element contains extensions or restrictions on a text-only complex type or on a 
simple type as content.



XML Schema Supported Features

B-40 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

<simpleContent
     id=ID
     any attributes
>
(annotation?,(restriction|extension))
</simpleContent>

B.8.2.20 SimpleType
This element defines a simple type element.

<simpleType
     name=NCName
     id=ID
     any attributes
>
(annotation?,(restriction|list|union))
</simpleType>

B.8.3 Unsupported Features
The following elements and features are not supported or implemented by the XML 
driver.

B.8.3.1 Unsupported Elements
The following schema elements are not supported by the XML driver.

■ Key/keyRef/Unique: These elements allow the definition of constraints in the 
schema. These elements and their child elements (selector, field) are ignored.

■ Redefine: The redefine element redefines simple and complex types, groups, and 
attribute groups from an external schema. This element is not supported.

In v3 mode an error is raised, if any unsupported XSD element is encountered.

B.8.3.2 Unsupported Features
Multipass parsing is supported in v3 mode. The other modes do not support multipass 
parsing.

B.8.3.3 Unsupported Datatypes
The following datatypes are not supported:

■ gYear

■ gYearMonth

■ gMonth

■ gMonthDay

■ gDay

■ language

■ ENTITY

WARNING: Elements and attributes allowed in an XML file due to 
an Any or AnyAttribute clause in the XSD may cause errors when 
the file is loaded.



XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-41

■ ENTITIES

■ NOTATION

■ IDREFS



XML Schema Supported Features

B-42 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator



C

Oracle Data Integrator Driver for Complex Files Reference C-1

COracle Data Integrator Driver for Complex
Files Reference

This appendix describes how to work with the Oracle Data Integrator driver for 
Complex Files.

This appendix includes the following sections:

■ Section C.1, "Introduction to Oracle Data Integrator Driver for Complex Files"

■ Section C.2, "Complex Files Processing Overview"

■ Section C.3, "Driver Configuration"

■ Section C.4, "Detailed Driver Commands"

■ Section C.5, "JDBC API and XML Schema Supported Features"

C.1 Introduction to Oracle Data Integrator Driver for Complex Files
The Oracle Data Integrator Driver for Complex Files (Complex File driver) handles files in a 
Complex (or Native) Format as a JDBC data source. This allows Oracle Data Integrator 
to use complex files as data servers.

With the Complex File driver, Oracle Data Integrator can query complex files using 
standard SQL syntax and perform changes in the complex files. These operations 
occur within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for Complex Files supports the following features:

■ Standard SQL (Structured Query Language) Syntax

■ Correlated subqueries, inner and outer joins

■ ORDER BY and GROUP BY

■ COUNT, SUM, MIN, MAX, AVG and other functions

■ Standard SQL functions

■ Transaction Management

■ Referential Integrity (foreign keys)

■ Saving changes into the complex files

C.2 Complex Files Processing Overview
The Complex File driver uses a Native Schema file. This file, written in the nXSD format 
describes the structure of the Native File and how to translate it to an XML file.



Complex Files Processing Overview

C-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The Complex File driver translates internally the native file into an XML structure, as 
defined in the Native Schema (nXSD) description and from this XML file it generates a 
relational schema that is consumed by Oracle Data Integrator. The overall mechanism 
is shown in Figure C–1.

Figure C–1 Complex File Driver Process

The second part of the process, starting from the XML structure, corresponds precisely 
to the capabilities of the Oracle Data Integrator Driver for XML.

The Complex Files driver works in the following way:

1. The complex file is translated to an intermediate XML file using the Native 
Schema (nXSD) file. Note that no physical file is created for the intermediate XML 
file but a streaming XML structure.

2. The driver loads the XML structure and data into a relational schema, using a XML 
to SQL Mapping.

3. The user works on the relational schema, manipulating data through regular SQL 
statements or specific driver commands for driver operations.

4. Upon disconnection or user request, the Complex Files driver synchronizes the data 
and structure stored in the schema back to the complex file.

C.2.1 Generating the Native Schema
The Native Schema can be created manually, or generated using the Native Format 
Builder Wizard available as part of Fusion Middleware Technology Adapters. See 
"Native Format Builder Wizard" in the User's Guide for Technology Adapters for more 
information on the Native Schema format and the Native Format Builder Wizard.

C.2.2 XML to SQL Mapping
The XML to SQL Mapping is a complex process that is used to map a hierarchical 
structure (XML) into a relational structure (schema). This mapping is automatic. See 
Section B.2.1, "XML to SQL Mapping" for more information.

C.2.3 JSON Support
Flat files in JSON format are supported through the nXSD format. The nXSD file can 
be created manually or through the Native Format Builder Wizard (See "Generating 
the Native Schema" for details). If an XSD file with no nXSD annotation is used, you 
need to provide additional JDBC property: tt=json or translator_type=json, 
which will enable the driver to use the JSON translator for parsing the input file.

C.2.4 Supported Features
The Complex File driver supports the same features as the XML driver:

■ Schema Storage in a built-in engine or external database is supported in the same 
way as the XML Driver. See Section B.2.3.1, "Schema Storage" and Section B.3.3, 
"Using an External Database to Store the Data"for more information.

■ Multiple Schemas are supported, with the following differences:



Driver Configuration

Oracle Data Integrator Driver for Complex Files Reference C-3

– Only a single schema can be created at connection time, based on the Native 
Schema file.

– Parameters allowing creating multiple schemas at connection time as 
indicated in Section B.3.2, "Automatically Create Multiple Schemas" are not 
supported. This includes add_schema_bundle, add_schema_path, and addschema_
X.

– Additional schemas can be created after the connection using the CREATE 
SCHEMA and LOAD FILE commands.

■ Case-sensitivity is managed similarly to the XML driver. See Section B.2.3.4, "Case 
Sensitivity" for more information.

■ Loading/Synchronizing with the Complex File driver works the same way as the 
XML Driver. Loading/Synchronizing operations automatically propagate to the 
Native file. See Section B.2.3.5, "Loading/Synchronizing" for more information.

■ Locking is supported. When connected, the complex file is locked and when 
disconnected,  it is unlocked. The UNLOCK FILE command is supported.

C.3 Driver Configuration
The Oracle Data Integrator driver for Complex Files is automatically installed with 
Oracle Data Integrator. The following topics cover advanced configuration topics and 
reference information.

This section details the driver configuration.

■ The driver name is: 
oracle.odi.jdbc.driver.file.complex.ComplexFileDriver

■ The URL Syntax is: jdbc:snps:complexfile?f=<native file 
location>&d=<native schema>&re=<root element name>[&s=<schema 
name>&<property>=<value>...]

The properties for the URL are detailed in Table C.

Table C–1 Driver Properties

Property Mandatory Type Default Description

file or f Yes string (file 
location)

- Native file location. Use slash "/" in the path name 
instead of back slash "\". It is possible to use an HTTP, 
FTP or File URL to locate the file. Files located by URL 
are read-only. This parameter is mandatory.

dtd or d Yes string (file 
location)

- Native Schema (nXSD) file location. This parameter is 
mandatory.

root_elt or re Yes String - Name of the element to take as the root table of the 
schema. This value is case sensitive. This property can 
be used for reverse-engineering for example a specific 
section of the Native Schema. This parameter is 
mandatory.

read_only or ro No boolean (true | 
false)

false Open the native file in read only mode.



Driver Configuration

C-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

schema or s No string - Name of the relational schema where the complex file 
will be loaded. This parameter is mandatory.

This schema will be selected when creating the physical 
schema under the Complex File data server.

Note: It is not possible to make more than one 
connection to a schema. Subsequent connections fail if 
trying to connect to a schema already in use.

Important: The schema name should be specified in 
uppercase, and cannot be named like an existing XML 
element.

standalone No boolean (true | 
false)

false If this option is set to true, the schema for this 
connection is completely isolated from all other 
schemas. With this option, you can specify the same 
schema name for several connections, each schema 
being kept separated. When using this option, tables in 
this schema cannot be accessed from other schemas, 
and this connection cannot access tables from other 
schemas.

Note: This option is not applicable when an external 
database is used.

translator_type 
or tt

No string (json) - If this option is set to json, the xsd does not require 
nXSD annotations and will automatically use the JSON 
translator for parsing the input file. 

db_props or dp No string - This property is used to use an external database 
instead of the memory engine to store the schema.

See Section B.3.3, "Using an External Database to Store 
the Data" for more information.

load_data_on_
connect or ldoc

No boolean (true | 
false)

true Automatically load the data in the schema when 
performing the JDBC connection. If set to false, a 
SYNCHRONIZE statement is required after the 
connection to load the data.

This option is useful to test the connection or browse 
metadata without loading all the data.

drop_on_disc or 
dod

No boolean (true | 
false)

false Automatically drop the schema when closing the JDBC 
connection.

If true, the schema is stored in the built-in engine, it is 
always dropped.

If the schema is stored in an external database, the 
driver attempts to drop the database schema, but might 
fail if tables still exist in this schema. The drop_tables_
on_drop_schema property can be specified in the 
external database property file to ensure that all tables 
are automatically dropped when the schema is 
dropped. See Section B.3.3, "Using an External Database 
to Store the Data" for more information.

useMaxValue No boolean (true | 
false)

false When this property is set to true, elements for which 
maxOccurs is not specified in the schema are 
considered as maxOccurs ="unbounded". Otherwise, 
the driver assumes that maxOccurs=1 when maxOccurs 
is not specified. 

Table C–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Driver Configuration

Oracle Data Integrator Driver for Complex Files Reference C-5

The following example illustrates these properties:

Connects to the PROD20100125_001.csv file described by products.nxsd and 
expose this file as a relational structure in the PRODUCT Schema.

jdbc:snps:complexfile?f=/infiles/PROD20100125_
001.csv&d=/infiles/products.nxsd&re=root&s=PRODUCTS

java_encoding 
or je

No string 
(encoding 
code)

UTF8 Target file encoding (for example: ISO8859_1). You 
will find a list of supported encoding at the following 
URL: 
http://java.sun.com/j2se/1.3/docs/guide/i
ntl/encoding.doc.html. 

numeric_id or ni No boolean (true | 
false)

true If set to true, all internal Primary and Foreign Keys are 
of NUMERIC type. Otherwise, they are of the 
VARCHAR type.

id_length or il No integer 10 / 30 The length of the internal Primary and Foreign Key 
columns. The default is 10 for NUMERIC column types 
and 30 for VARCHAR column.

numeric_scale or 
ns

No integer empty Scale of the numeric columns generated in the relational 
schema.

no_batch_
update or nobu

No boolean (true | 
false)

false Batch update is not used for this connection. The 
command to set the batch update is not sent. This 
prevents errors to occur for external databases that do 
not support this JDBC feature, or allows to debug errors 
related to batch update usage.

log_file or lf No string (file 
location)

- Log file name. If the log file is empty, the trace is 
displayed in the standard output.

The presence of this property triggers the trace for the 
schema. Each schema may have a different trace file.

log_level or ll No Integer - Log level. The log level is a mask of the following 
values:

■ 1: Important internal events

■ 2: Detailed internal events

■ 4: Native SQL commands

■ 8: XML-Relational mapping calculation

■ 16: XML-Relational mapping validation (Table 
names changes, etc)

Examples:

■ Trace Important & Detailed internal events: log_
level=3 (1+2)

■ Trace Native SQL commands and Important 
internal events: log_level=5 (1+4)

■ Trace XML-Relational mapping calculation and 
validation: log_level=24 (16+8)

■ Trace all events: log_level=31 (1+2+4+8+16)

transform_
nonascii or tna

No boolean 
(true|false)

true Transform Non Ascii. Set to false to keep non-ascii 
characters.

Table C–1 (Cont.) Driver Properties

Property Mandatory Type Default Description



Detailed Driver Commands

C-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

C.4 Detailed Driver Commands
The Complex File driver supports the same SQL syntax as the XML driver. See 
Section B.5, "SQL Syntax" for the SQL Syntax supported by the XML Driver.

The exceptions to this rule are the following:

■ In the Complex File driver syntax, the commands that are related to the XML file 
such as CREATE FILE or LOAD FILE, are applied to the Native File. For example, 
the command CREATE FILE creates a native format file from the schema content. 

■ VALIDATE is not supported.

■ CREATE FILE is supported but the NO_CLOSING_TAGS and NO_DEFAULT_NS 
parameters are ignored.

■ CREATE SCHEMA requires the WITH DTD parameter.

■ LOAD FILE requires the WITH DTD parameter.

C.5 JDBC API and XML Schema Supported Features
The Complex File driver supports the same JDBC features as the XML driver. See 
Section B.5, "SQL Syntax" for more information. 


	Contents
	Preface
	1 Introduction
	1.1 Terminology
	1.2 Using This Guide


	Part I Databases, Files, and XML
	2 Oracle Database
	2.1 Introduction
	2.1.1 Concepts
	2.1.2 Knowledge Modules

	2.2 Installation and Configuration
	2.2.1 System Requirements and Certifications
	2.2.2 Technology Specific Requirements
	2.2.2.1 Using the SQL*Loader Utility
	2.2.2.2 Using External Tables
	2.2.2.3 Using Oracle Streams

	2.2.3 Connectivity Requirements

	2.3 Setting up the Topology
	2.3.1 Creating an Oracle Data Server
	2.3.1.1 Creation of the Data Server

	2.3.2 Creating an Oracle Physical Schema

	2.4 Setting Up an Integration Project
	2.5 Creating and Reverse-Engineering an Oracle Model
	2.5.1 Create an Oracle Model
	2.5.2 Reverse-engineer an Oracle Model

	2.6 Setting up Changed Data Capture
	2.7 Setting up Data Quality
	2.8 Designing a Mapping
	2.8.1 Loading Data from and to Oracle
	2.8.1.1 Loading Data from Oracle
	2.8.1.2 Loading Data to Oracle

	2.8.2 Integrating Data in Oracle
	2.8.3 Designing an ETL-Style Mapping

	2.9 Troubleshooting
	2.9.1 Troubleshooting Oracle Database Errors
	2.9.2 Common Problems and Solutions


	3 Files
	3.1 Introduction
	3.1.1 Concepts
	3.1.2 Knowledge Modules

	3.2 Installation and Configuration
	3.2.1 System Requirements and Certifications
	3.2.2 Technology Specific Requirements
	3.2.3 Connectivity Requirements

	3.3 Setting up the Topology
	3.3.1 Creating a File Data Server
	3.3.1.1 Creation of the Data Server

	3.3.2 Creating a File Physical Schema

	3.4 Setting Up an Integration Project
	3.5 Creating and Reverse-Engineering a File Model
	3.5.1 Create a File Model
	3.5.2 Reverse-engineer a File Model
	3.5.2.1 Delimited Files Reverse-Engineering
	3.5.2.2 Fixed Files Reverse-engineering using the Wizard
	3.5.2.3 COBOL Copybook reverse-engineering
	3.5.2.4 Customized Reverse-Engineering


	3.6 Designing a Mapping
	3.6.1 Loading Data From Files
	3.6.2 Integrating Data in Files
	3.6.2.1 IKM SQL to File Append
	3.6.2.2 IKM File to File (Java)



	4 Generic SQL
	4.1 Introduction
	4.1.1 Concepts
	4.1.2 Knowledge Modules

	4.2 Installation and Configuration
	4.2.1 System Requirements and Certifications
	4.2.2 Technology-Specific Requirements
	4.2.3 Connectivity Requirements

	4.3 Setting up the Topology
	4.3.1 Creating a Data Server
	4.3.2 Creating a Physical Schema

	4.4 Setting up an Integration Project
	4.5 Creating and Reverse-Engineering a Model
	4.5.1 Create a Data Model
	4.5.2 Reverse-engineer a Data Model

	4.6 Setting up Changed Data Capture
	4.7 Setting up Data Quality
	4.8 Designing a Mapping
	4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
	4.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
	4.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology

	4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
	4.8.3 Designing an ETL-Style Mapping


	5 XML Files
	5.1 Introduction
	5.1.1 Concepts
	5.1.2 Knowledge Modules

	5.2 Installation and Configuration
	5.2.1 System Requirements
	5.2.2 Technologic Specific Requirements
	5.2.3 Connectivity Requirements

	5.3 Setting up the Topology
	5.3.1 Creating an XML Data Server
	5.3.1.1 Creation of the Data Server

	5.3.2 Creating a Physical Schema for XML

	5.4 Setting Up an Integration Project
	5.5 Creating and Reverse-Engineering a XML File
	5.5.1 Create an XML Model
	5.5.2 Reverse-Engineering an XML Model

	5.6 Designing a Mapping
	5.6.1 Notes about XML Mappings
	5.6.1.1 Targeting an XML Structure
	5.6.1.2 Synchronizing XML File and Schema
	5.6.1.3 Handling Large XML Files

	5.6.2 Loading Data from and to XML
	5.6.2.1 Loading Data from an XML Schema
	5.6.2.2 Loading Data to an XML Schema

	5.6.3 Integrating Data in XML

	5.7 Troubleshooting
	5.7.1 Detect the Errors Coming from XML
	5.7.2 Common Errors


	6 Complex Files
	6.1 Introduction
	6.1.1 Concepts
	6.1.2 Knowledge Modules

	6.2 Installation and Configuration
	6.2.1 System Requirements
	6.2.2 Technology Specific Requirements
	6.2.3 Connectivity Requirements

	6.3 Setting up the Topology
	6.3.1 Creating a Complex File Data Server
	6.3.1.1 Creation of the Data Server

	6.3.2 Creating a Complex File Physical Schema

	6.4 Setting Up an Integration Project
	6.5 Creating and Reverse-Engineering a Complex File Model
	6.5.1 Create a Complex File Model
	6.5.2 Reverse-engineer a Complex File Model

	6.6 Designing a Mapping

	7 Microsoft SQL Server
	7.1 Introduction
	7.1.1 Concepts
	7.1.2 Knowledge Modules

	7.2 Installation and Configuration
	7.2.1 System Requirements and Certifications
	7.2.2 Technology Specific Requirements
	7.2.2.1 Using the BULK INSERT Command
	7.2.2.2 Using the BCP Command
	7.2.2.3 Using Linked Servers

	7.2.3 Connectivity Requirements

	7.3 Setting up the Topology
	7.3.1 Creating a Microsoft SQL Server Data Server
	7.3.1.1 Creation of the Data Server

	7.3.2 Creating a Microsoft SQL Server Physical Schema

	7.4 Setting Up an Integration Project
	7.5 Creating and Reverse-Engineering a Microsoft SQL Server Model
	7.5.1 Create a Microsoft SQL Server Model
	7.5.2 Reverse-engineer a Microsoft SQL Server Model

	7.6 Setting up Changed Data Capture
	7.7 Setting up Data Quality
	7.8 Designing a Mapping
	7.8.1 Loading Data from and to Microsoft SQL Server
	7.8.1.1 Loading Data from Microsoft SQL Server
	7.8.1.2 Loading Data to Microsoft SQL Server

	7.8.2 Integrating Data in Microsoft SQL Server



	8 Microsoft Excel
	8.1 Introduction
	8.1.1 Concepts
	8.1.2 Knowledge Modules

	8.2 Installation and Configuration
	8.2.1 System Requirements and Certifications
	8.2.2 Technology Specific Requirements
	8.2.3 Connectivity Requirements

	8.3 Setting up the Topology
	8.3.1 Creating a Microsoft Excel Data Server
	8.3.2 Creating a Microsoft Excel Physical Schema

	8.4 Setting Up an Integration Project
	8.5 Creating and Reverse-Engineering a Microsoft Excel Model
	8.5.1 Create a Microsoft Excel Model
	8.5.2 Reverse-engineer a Microsoft Excel Model

	8.6 Designing a Mapping
	8.6.1 Loading Data From and to Microsoft Excel
	8.6.1.1 Loading Data from Microsoft Excel
	8.6.1.2 Loading Data to Microsoft Excel

	8.6.2 Integrating Data in Microsoft Excel

	8.7 Troubleshooting
	8.7.1 Decoding Error Messages
	8.7.2 Common Problems and Solutions


	9 Microsoft Access
	9.1 Introduction
	9.2 Concepts
	9.3 Knowledge Modules
	9.4 Specific Requirements
	10 Netezza
	10.1 Introduction
	10.1.1 Concepts
	10.1.2 Knowledge Modules

	10.2 Installation and Configuration
	10.2.1 System Requirements and Certifications
	10.2.2 Technology Specific Requirements
	10.2.3 Connectivity Requirements

	10.3 Setting up the Topology
	10.3.1 Creating a Netezza Data Server
	10.3.1.1 Creation of the Data Server

	10.3.2 Creating a Netezza Physical Schema

	10.4 Setting Up an Integration Project
	10.5 Creating and Reverse-Engineering a Netezza Model
	10.5.1 Create a Netezza Model
	10.5.2 Reverse-engineer a Netezza Model

	10.6 Setting up Data Quality
	10.7 Designing a Mapping
	10.7.1 Loading Data from and to Netezza
	10.7.1.1 Loading Data from Netezza
	10.7.1.2 Loading Data to Netezza

	10.7.2 Integrating Data in Netezza


	11 Teradata
	11.1 Introduction
	11.1.1 Concepts
	11.1.2 Knowledge Modules

	11.2 Installation and Configuration
	11.2.1 System Requirements and Certifications
	11.2.2 Technology Specific Requirements
	11.2.3 Connectivity Requirements

	11.3 Setting up the Topology
	11.3.1 Creating a Teradata Data Server
	11.3.1.1 Creation of the Data Server

	11.3.2 Creating a Teradata Physical Schema

	11.4 Setting Up an Integration Project
	11.5 Creating and Reverse-Engineering a Teradata Model
	11.5.1 Create a Teradata Model
	11.5.2 Reverse-engineer a Teradata Model

	11.6 Setting up Data Quality
	11.7 Designing a Mapping
	11.7.1 Loading Data from and to Teradata
	11.7.1.1 Loading Data from Teradata
	11.7.1.2 Loading Data to Teradata

	11.7.2 Integrating Data in Teradata
	11.7.3 Designing an ETL-Style Mapping

	11.8 KM Optimizations for Teradata
	11.8.1 Primary Indexes and Statistics
	11.8.2 Support for Teradata Utilities
	11.8.3 Support for Named Pipes
	11.8.4 Optimized Management of Temporary Tables



	12 Hypersonic SQL
	12.1 Introduction
	12.1.1 Concepts
	12.1.2 Knowledge Modules

	12.2 Installation and Configuration
	12.2.1 System Requirements and Certifications
	12.2.2 Technology Specific Requirements
	12.2.3 Connectivity Requirements

	12.3 Setting up the Topology
	12.3.1 Creating a Hypersonic SQL Data Server
	12.3.2 Creating a Hypersonic SQL Physical Schema

	12.4 Setting Up an Integration Project
	12.5 Creating and Reverse-Engineering a Hypersonic SQL Model
	12.5.1 Create a Hypersonic SQL Model
	12.5.2 Reverse-engineer a Hypersonic SQL Model

	12.6 Setting up Data Quality
	12.7 Designing a Mapping

	13 IBM Informix
	13.1 Introduction
	13.2 Concepts
	13.3 Knowledge Modules
	13.4 Specific Requirements
	14 IBM DB2 for iSeries
	14.1 Introduction
	14.1.1 Concepts
	14.1.2 Knowledge Modules

	14.2 Installation and Configuration
	14.2.1 System Requirements and Certifications
	14.2.2 Technology Specific Requirements
	14.2.3 Connectivity Requirements

	14.3 Setting up the Topology
	14.3.1 Creating a DB2/400 Data Server
	14.3.1.1 Creation of the Data Server

	14.3.2 Creating a DB2/400 Physical Schema

	14.4 Setting Up an Integration Project
	14.5 Creating and Reverse-Engineering an IBM DB2/400 Model
	14.5.1 Create an IBM DB2/400 Model
	14.5.2 Reverse-engineer an IBM DB2/400 Model

	14.6 Setting up Changed Data Capture
	14.6.1 Setting up Trigger-Based CDC
	14.6.2 Setting up Log-Based CDC
	14.6.2.1 How does it work?
	14.6.2.2 CDCRTVJRN Program Details
	14.6.2.3 Installing the CDC Components on iSeries
	14.6.2.4 Using the CDC with the Native Journals
	14.6.2.5 Problems While Reading Journals


	14.7 Setting up Data Quality
	14.8 Designing a Mapping
	14.8.1 Loading Data from and to IBM DB2 for iSeries
	14.8.1.1 Loading Data from IBM DB2 for iSeries
	14.8.1.2 Loading Data to IBM DB2 for iSeries

	14.8.2 Integrating Data in IBM DB2 for iSeries

	14.9 Specific Considerations with DB2 for iSeries
	14.9.1 Alternative Connectivity Methods for iSeries
	14.9.1.1 Using Client Access
	14.9.1.2 Using the IBM JT/400 and Native Drivers


	14.10 Troubleshooting
	14.10.1 Troubleshooting Error messages
	14.10.2 Common Problems and Solutions
	14.10.2.1 Connection Errors



	15 IBM DB2 UDB
	15.1 Introduction
	15.2 Concepts
	15.3 Knowledge Modules
	15.4 Specific Requirements


	Part II Business Intelligence
	16 Oracle Business Intelligence Enterprise Edition
	16.1 Introduction
	16.1.1 Concepts
	16.1.2 Knowledge Modules

	16.2 Installation and Configuration
	16.2.1 System Requirements and Certifications
	16.2.2 Technology Specific Requirements
	16.2.3 Connectivity Requirements

	16.3 Setting up the Topology
	16.3.1 Creating an Oracle BI Data Server
	16.3.1.1 Creation of the Data Server

	16.3.2 Creating an Oracle BI Physical Schema

	16.4 Setting Up an Integration Project
	16.5 Creating and Reverse-Engineering an Oracle BI Model
	16.5.1 Create an Oracle BI Model
	16.5.2 Reverse-engineer an Oracle BI Model

	16.6 Setting up Data Quality
	16.7 Designing a Mapping
	16.7.1 Loading Data from and to Oracle BI
	16.7.1.1 Loading Data from Oracle BI
	16.7.1.2 Loading Data to Oracle BI

	16.7.2 Integrating Data in Oracle BI


	17 Oracle Business Intelligence Enterprise Edition Data Lineage
	17.1 Introduction
	17.1.1 Components
	17.1.2 Lineage Lifecycle
	17.1.2.1 Setting up the Lineage
	17.1.2.2 Refreshing the Lineage
	17.1.2.3 Using the Lineage


	17.2 Installing the Lineage in an OBIEE Server
	17.2.1 Installation Overview
	17.2.2 Requirements
	17.2.3 Installation Instructions
	17.2.3.1 Installing and Starting the OBIEE Lineage Wizard
	17.2.3.2 Deploying the OBIEE Lineage Artifacts using the Wizard

	17.2.4 Post-Installation Tasks

	17.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage
	17.4 Refreshing the OBIEE Lineage from Existing Exports
	17.4.1 Exporting the OBIEE Repository Documentation to a Text File
	17.4.2 Exporting the OBIEE Web Catalog Report to a Text File
	17.4.3 Refreshing the OBIEE Lineage From Existing Exports

	17.5 Automating the Lineage Tasks
	17.5.1 Configuring the Scripts
	17.5.2 Automating Lineage Deployment
	17.5.3 Automating Lineage Refresh

	17.6 Using the Lineage in OBIEE Dashboards
	17.6.1 Viewing Execution Statistics
	17.6.2 Viewing and Filtering Lineage Data
	17.6.3 Using the Dashboard
	17.6.4 Using Lineage and Hierarchy
	17.6.5 Using Contextual Lineage



	Part III Other Technologies
	18 JMS
	18.1 Introduction
	18.1.1 Concepts
	18.1.1.1 JMS Message Structure
	18.1.1.2 Using a JMS Destination

	18.1.2 Knowledge Modules

	18.2 Installation and Configuration
	18.2.1 System Requirements and Certifications
	18.2.2 Technology Specific Requirements
	18.2.3 Connectivity Requirements

	18.3 Setting up the Topology
	18.3.1 Creating a JMS Data Server
	18.3.1.1 Creation of the Data Server

	18.3.2 Creating a JMS Physical Schema

	18.4 Setting Up an Integration Project
	18.5 Creating and Defining a JMS Model
	18.5.1 Create a JMS Model
	18.5.2 Defining the JMS Datastores

	18.6 Designing a Mapping
	18.6.1 Loading Data from a JMS Source
	18.6.2 Integrating Data in a JMS Target

	18.7 JMS Standard Properties
	18.7.1 Using JMS Properties
	18.7.1.1 Declaring JMS Properties
	18.7.1.2 Filtering on the Router
	18.7.1.3 Filtering on the Client
	18.7.1.4 Using Property Values as Source Data
	18.7.1.5 Setting Properties when Sending a Message



	19 JMS XML
	19.1 Introduction
	19.1.1 Concepts
	19.1.1.1 JMS Message Structure
	19.1.1.2 Using a JMS Destination

	19.1.2 Knowledge Modules

	19.2 Installation and Configuration
	19.2.1 System Requirements and Certifications
	19.2.2 Technology Specific Requirements
	19.2.3 Connectivity Requirements

	19.3 Setting up the Topology
	19.3.1 Creating a JMS XML Data Server
	19.3.1.1 Creation of the Data Server

	19.3.2 Creating a JMS XML Physical Schema

	19.4 Setting Up an Integration Project
	19.5 Creating and Reverse-Engineering a JMS XML Model
	19.5.1 Create a JMS XML Model
	19.5.2 Reverse-Engineering a JMS XML Model

	19.6 Designing a Mapping
	19.6.1 Loading Data from a JMS XML Source
	19.6.2 Integrating Data in a JMS XML Target

	20 LDAP Directories
	20.1 Introduction
	20.1.1 Concepts
	20.1.2 Knowledge Modules

	20.2 Installation and Configuration
	20.2.1 System Requirements
	20.2.2 Technologic Specific Requirements
	20.2.3 Connectivity Requirements

	20.3 Setting up the Topology
	20.3.1 Creating an LDAP Data Server
	20.3.1.1 Creation of the Data Server

	20.3.2 Creating a Physical Schema for LDAP

	20.4 Setting Up an Integration Project
	20.5 Creating and Reverse-Engineering an LDAP Directory
	20.5.1 Create an LDAP Model
	20.5.2 Reverse-Engineering an LDAP Model

	20.6 Designing a Mapping
	20.6.1 Loading Data from and to LDAP
	20.6.1.1 Loading Data from an LDAP Directory
	20.6.1.2 Loading Data to an LDAP Directory

	20.6.2 Integrating Data in an LDAP Directory

	20.7 Troubleshooting

	21 Oracle TimesTen In-Memory Database
	21.1 Introduction
	21.1.1 Concepts
	21.1.2 Knowledge Modules

	21.2 Installation and Configuration
	21.2.1 System Requirements and Certifications
	21.2.2 Technology Specific Requirements
	21.2.3 Connectivity Requirements

	21.3 Setting up the Topology
	21.3.1 Creating a TimesTen Data Server
	21.3.1.1 Creation of the Data Server

	21.3.2 Creating a TimesTen Physical Schema

	21.4 Setting Up an Integration Project
	21.5 Creating and Reverse-Engineering a TimesTen Model
	21.5.1 Create a TimesTen Model
	21.5.2 Reverse-engineer a TimesTen Model

	21.6 Setting up Data Quality
	21.7 Designing a Mapping
	21.7.1 Loading Data from and to TimesTen
	21.7.1.1 Loading Data from TimesTen
	21.7.1.2 Loading Data to TimesTen

	21.7.2 Integrating Data in TimesTen


	22 Oracle GoldenGate
	22.1 Introduction
	22.1.1 Overview of the GoldeGate CDC Process
	22.1.2 Knowledge Modules

	22.2 Installation and Configuration
	22.2.1 System Requirements and Certifications
	22.2.2 Technology Specific Requirements
	22.2.3 Connectivity Requirements

	22.3 Working with the Oracle GoldenGate JKMs
	22.3.1 Define the Topology
	22.3.1.1 Define the Source Data Server
	22.3.1.2 Create the Source Physical Schema
	22.3.1.3 Define the Staging Server
	22.3.1.4 Create the Staging Physical Schema
	22.3.1.5 Define the Oracle GoldenGate Data Servers
	22.3.1.6 Create the Oracle GoldenGate Physical Schemas
	22.3.1.7 Create the Oracle GoldenGate Logical Schemas

	22.3.2 Create the Replicated Tables
	22.3.3 Set Up an Integration Project
	22.3.4 Configure CDC for the Source Datastores
	22.3.4.1 Create Oracle GoldenGate Physical Schemas from the model

	22.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only)
	22.3.6 Design Mappings Using Replicated Data

	22.4 Advanced Configuration
	22.4.1 Initial Load Method
	22.4.2 Tuning Replication Performances
	22.4.3 One Source Multiple Staging Configuration (Offline mode only)


	23 Oracle SOA Suite Cross References
	23.1 Introduction
	23.1.1 Concepts
	23.1.1.1 General Principles
	23.1.1.2 Cross Reference Table Structures
	23.1.1.3 Handling Cross Reference Table Structures

	23.1.2 Knowledge Modules
	23.1.3 Overview of the SOA XREF KM Process
	23.1.3.1 Loading Phase (LKM)
	23.1.3.2 Integration and Cross-Referencing Phase (IKM)
	23.1.3.3 Updating/Deleting Processed Records (LKM)


	23.2 Installation and Configuration
	23.2.1 System Requirements and Certifications
	23.2.2 Technology Specific Requirements
	23.2.3 Connectivity Requirements

	23.3 Working with XREF using the SOA Cross References KMs
	23.3.1 Defining the Topology
	23.3.2 Setting up the Project
	23.3.3 Designing a Mapping with the Cross-References KMs

	23.4 Knowledge Module Options Reference


	Part IV Appendices
	A Oracle Data Integrator Driver for LDAP Reference
	A.1 Introduction to Oracle Data Integrator Driver for LDAP
	A.2 LDAP Processing Overview
	A.2.1 LDAP to Relational Mapping
	A.2.1.1 General Principle
	A.2.1.2 Grouping Factor
	A.2.1.3 Mapping Exceptions
	A.2.1.4 Reference LDAP Tree

	A.2.2 Managing Relational Schemas
	A.2.2.1 Relational Schema Storage
	A.2.2.2 Accessing Data in the Relational Structure


	A.3 Installation and Configuration
	A.3.1 Driver Configuration
	A.3.2 Using an External Database to Store the Data
	A.3.2.1 Passing the Properties in the Driver URL
	A.3.2.2 Setting the Properties in ODI Studio
	A.3.2.3 Setting the Properties in a Properties File

	A.3.3 LDAP Directory Connection Configuration
	A.3.4 Table Aliases Configuration

	A.4 SQL Syntax
	A.4.1 SQL Statements
	A.4.1.1 DISCONNECT
	A.4.1.2 INSERT INTO
	A.4.1.3 SELECT
	A.4.1.4 UPDATE
	A.4.1.5 Expressions, Condition & values

	A.4.2 SQL FUNCTIONS

	A.5 JDBC API Implemented Features

	B Oracle Data Integrator Driver for XML Reference
	B.1 Introduction to Oracle Data Integrator Driver for XML
	B.2 XML Processing Overview
	B.2.1 XML to SQL Mapping
	B.2.2 XML Namespaces
	B.2.3 Managing Schemas
	B.2.3.1 Schema Storage
	B.2.3.2 Multiple Schemas
	B.2.3.3 Accessing Data in the Schemas
	B.2.3.4 Case Sensitivity
	B.2.3.5 Loading/Synchronizing

	B.2.4 Locking
	B.2.5 XML Schema (XSD) Support

	B.3 Installation and Configuration
	B.3.1 Driver Configuration
	B.3.2 Automatically Create Multiple Schemas
	B.3.3 Using an External Database to Store the Data

	B.4 Detailed Driver Commands
	B.4.1 CREATE FILE
	B.4.2 CREATE FOREIGNKEYS
	B.4.3 CREATE XMLFILE
	B.4.4 CREATE SCHEMA
	B.4.5 DROP FOREIGNKEYS
	B.4.6 DROP SCHEMA
	B.4.7 LOAD FILE
	B.4.8 SET SCHEMA
	B.4.9 SYNCHRONIZE
	B.4.10 UNLOCK FILE
	B.4.11 TRUNCATE SCHEMA
	B.4.12 VALIDATE
	B.4.13 WRITE MAPPING FILE

	B.5 SQL Syntax
	B.5.1 SQL Statements
	B.5.1.1 COMMIT
	B.5.1.2 CREATE TABLE
	B.5.1.3 DELETE
	B.5.1.4 DISCONNECT
	B.5.1.5 DROP TABLE
	B.5.1.6 INSERT INTO
	B.5.1.7 ROLLBACK
	B.5.1.8 SELECT
	B.5.1.9 SET AUTOCOMMIT
	B.5.1.10 UPDATE
	B.5.1.11 Expressions, Condition and Values

	B.5.2 SQL FUNCTIONS

	B.6 JDBC API Implemented Features
	B.7 Rich Metadata
	B.7.1 Supported user-specified types for different databases

	B.8 XML Schema Supported Features
	B.8.1 Datatypes
	B.8.2 Supported Elements
	B.8.2.1 All
	B.8.2.2 Any
	B.8.2.3 AnyAttribute
	B.8.2.4 AnyType
	B.8.2.5 Attribute
	B.8.2.6 AttributeGroup
	B.8.2.7 Choice
	B.8.2.8 ComplexContent
	B.8.2.9 ComplexType
	B.8.2.10 Element
	B.8.2.11 Extension
	B.8.2.12 Group
	B.8.2.13 Import
	B.8.2.14 Include
	B.8.2.15 List
	B.8.2.16 Restriction
	B.8.2.17 Schema
	B.8.2.18 Sequence
	B.8.2.19 SimpleContent
	B.8.2.20 SimpleType

	B.8.3 Unsupported Features
	B.8.3.1 Unsupported Elements
	B.8.3.2 Unsupported Features
	B.8.3.3 Unsupported Datatypes



	C Oracle Data Integrator Driver for Complex Files Reference
	C.1 Introduction to Oracle Data Integrator Driver for Complex Files
	C.2 Complex Files Processing Overview
	C.2.1 Generating the Native Schema
	C.2.2 XML to SQL Mapping
	C.2.3 JSON Support
	C.2.4 Supported Features

	C.3 Driver Configuration
	C.4 Detailed Driver Commands
	C.5 JDBC API and XML Schema Supported Features


