Oracle® Fusion Middleware

Connectivity and Knowledge Modules Guide for Oracle Data
Integrator

12¢(12.1.3)
E51090-01

May 2014

ORACLE

Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator, 12c
(12.1.3)

E51090-01
Copyright © 2010, 2014, Oracle and/or its affiliates. All rights reserved.
Primary Author: Laura Hofman Miquel, Aslam Khan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PREFACE ... XV
AUAIEIICE ...ttt ettt ettt et e e te e b e eseesbesae e aeessesbeessesbeessesbeessesseesseeseensesreenbesreenbenrean XV
Documentation AcCesSSIDILityccciiiiiiiiiiiiiii e XV
Related DOCUIMENEScoueuirieiiiiiieieieietetet ettt ettt sttt bttt sttt s st e st st et sbe st be st stentstenesteneeseneas XV
CONVEINTIONS ..ttt ettt ettt ettt et et e bt et esb e a e e st e et e sbeesbe s bt et e sbeeabeebe et e ebtenbebeenbesbeenbesbeesesbeens XVi

1 Introduction
1.1 TeIMUINOLOZY ...ecvviieitci it 1-1
1.2 Using This GUIAEc.ceuiiiiiiiiiiiiiiicccc e 1-2

Part| Databases, Files, and XML

2 Oracle Database
2.1 INELOAUCHON ...ttt ettt ettt et e et e ebeebeereeebeers e beessebeseenseeseenns 2-1
211 CONCEPES ..ttt 2-1
2.1.2 Knowledge Modules ... 2-1
22 Installation and Configuration............ccccciiiiiiiiiiiic e 2-3
2.2.1 System Requirements and Certificationsccooiriiiiiiiiii 2-3
222 Technology Specific Requirementscccooviiiiiiiiiiiicc 2-4
2.2.3 Connectivity Requirements...........cccooeuiiiiiiiiiiiniiiciccc s 2-5
2.3 Setting Up the TOPOlOZYceveviiiieii e 2-6
2.3.1 Creating an Oracle Data Server ... 2-6
2.3.2 Creating an Oracle Physical Schema...........cccccociiiiiiiiiiiiiiicccccas 2-7
2.4 Setting Up an Integration Project ... 2-7
2.5 Creating and Reverse-Engineering an Oracle Model..............cccoooiiiii 2-7
2.5.1 Create an Oracle MOlooueeviiieiiiececeeeecete ettt e ere v st sveeraeaaeas 2-7
2.5.2 Reverse-engineer an Oracle Modelcoocoiiiiiiiii e, 2-7
2.6 Setting up Changed Data Capturec.oooueiiiiiiiiiii e 2-8
2.7 Setting up Data QUAlItYccccceiiiiiiiiiiiic s 2-9
2.8 Designing a Mapping ...ttt 2-10
2.8.1 Loading Data from and to Oracle..........ccoooiiiiiiiiiicce 2-10
2.8.2 Integrating Data in Oracle..........ccccociiiiiiiiiiiiiiiiiiccc s 2-11
2.8.3 Designing an ETL-Style Mappingcccoeoieeieiiiicieiiiicee s 2-12
2.9 TroubleShOOtINGouiiiici s 2-16
2.9.1 Troubleshooting Oracle Database EIrors............ccccccoviiiiiiiviniiinnniiiiiccinicccne 2-16

2.9.2

3 Files

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.4
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2

Common Problems and SOIULIONS.ccouviveuviiiieieeeeceeee et 2-16

INErOAUCHON . 3-1
CONCEPES ..ttt 3-1
Knowledge ModUules ...t 3-1

Installation and Configuration............c.coerueiiiiiieeiicci e 3-2
System Requirements and Certificationsoccoeeiiiiiiiiii, 3-2
Technology Specific REQUITEMENTScccciuiuimiiiiiiiiiiciciciceecee e 3-2
Connectivity Requirements.............cocoooeueioiiiiioiiiiic s 3-3

Setting Up the TOPOLOZYvurviiieieii s 3-3
Creating a File Data SErver..........ccooiiiiiiiiceeececreeee e 3-3
Creating a File Physical Schemaccccooiiiiiii 3-4

Setting Up an Integration Project ...t 3-5

Creating and Reverse-Engineering a File Modelcccooviiiininnnnnceeenee 3-5
Create a File Model.........c.coooiiiiiiiiiccc s 3-5
Reverse-engineer a File Model...........ccoooii 3-6

Designing a Mapping ... 3-10
Loading Data From Filesccccoeeioiiiiiiiiiic e 3-10
Integrating Data in Filesc.coouoiiiiiiii e 3-12

4 Generic SQL

41
411
41.2
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.4
4.5
4.5.1
452
4.6
4.7
4.8
4.8.1
48.2
4.8.3

INErOAUCHON ... 4-1
CONCEPES .. 4-1
Knowledge Modules ...t 4-2

Installation and Configuration...........c.ocrueiiiiiciiccc e 4-5
System Requirements and Certificationscccovvvverrrrnnnnnnresrr e 4-5
Technology-Specific Requirements.............coooeueiiicieiiiiiie 4-5
Connectivity ReqUirements............ooceiiiiiiiiiii 4-5

Setting Up the TOPOLOZYcumimiuiiiiiiiiicccece e 4-5
Creating a Data SEIVETccuoiiiiiiciii 4-6
Creating a Physical Schema ..., 4-6

Setting up an Integration Project ..o 4-6

Creating and Reverse-Engineering a Model..........cccoouoiiiiiiiiiiice 4-6
Create a Data Model..........ccocoiiiiiiiiiiiiiiiiii s 4-6
Reverse-engineer a Data Model.........c.ccccoiiiiiiiiiiiiiiccecceeeeceeeeeeeae 4-6

Setting up Changed Data Capturecoooeeieiiiiiiiiiic s 4-7

Setting up Data QUAlity........ccccoeiiiiiiiiiiiiiiii e 4-7

Designing a Mapping ... s 4-7
Loading Data From and to an ANSI SQL-92 Compliant Technologyc.c.......... 4-7
Integrating Data in an ANSI SQL-92 Compliant Technologycccccevvevveerereiinnnnn. 4-9
Designing an ETL-Style Mappingc.ccccccccceeuireiieeeicereeeeeeeeeeeeeeseses e 4-9

5 XML Files

5.1
5.1.1

| B L a aeYe L ETain (o) s NN 5-1
COMICEPES ...ttt 5-1

5.1.2
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.4
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2

Knowledge Modules ..ot s 5-2

Installation and Configuration............coocrieiiicieiiiic e 5-2
System Requirements...........ccccviiiiiiiiiiiiniii e 5-2
Technologic Specific ReQUITeMEeNtsccccviiiimiiiiiiiiiiccc s 5-2
Connectivity ReqUirements...........ccccociiiiiiiiiiiiii 5-2

Setting Up the TOPOLOZYcv v 5-2
Creating an XML Data SeIver ...t 5-3
Creating a Physical Schema for XMLccooiiiiii 5-4

Setting Up an Integration Project ... 5-4

Creating and Reverse-Engineering a XML Filecccooooiiiiiiiiiie 5-4
Create an XML Model ..o 5-4
Reverse-Engineering an XML Model...........cccccoeiiiiiiiiinnccccceeeeeeeeeeeas 5-5

Designing @ Mapping......c.ccoceeeieieiiiiieiiiiieieee s 5-5
Notes about XML Mappings........ccceeeueieiiirumieieiiicieieiecie e 5-5
Loading Data from and to XIMLccccccciiiiiiiiiiiiinceceeeeeeeeeeeeeeeeeeeneeeneeennes 5-6
Integrating Data in XIML.........ccccooiiiiiiiiiiiiiiiiii 5-7

TroubleShOOtINGcuoviiii e 5-8
Detect the Errors Coming from XML........ccccccoociiiiiiiiiiiiieeeceeeeeeeeeneeeeenas 5-8
COMMON EITOTS....ooviiiiiiiiiiiiciciciiccc s 5-8

6 Complex Files

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.2
6.4
6.5
6.5.1
6.5.2
6.6

INErOAUCHON .o 6-1
CONCEPES ...ttt 6-1
Knowledge ModUulesccciiiiiiiiiiiccccceeeeeeeee e 6-2

Installation and Configuration...........cooiurueiiicieiiici e 6-2
System Requirements............ccccueviiiiiiiiiiiiiiiiiii s 6-2
Technology Specific REQUITEMENLSc.ccuiuiuimiiiiiiiiiiiieiiicceeece e 6-3
Connectivity Requirements..............ccooooeioiiiiioiiiic s 6-3

Setting Up the TOPOLOGYceviiiiiiieic e 6-3
Creating a Complex File Data SEIVer..........ccocociiiiiiiieiiiiieeeceeceeeeeeeeeeeeeeeeenas 6-3
Creating a Complex File Physical Schema............cccouoiiiiiiiiic 6-4

Setting Up an Integration Project ... 6-4

Creating and Reverse-Engineering a Complex File Modelcccccovvvninnnnninnininnee. 6-5
Create a Complex File Model..........ccooiiiiiiiiiicc s 6-5
Reverse-engineer a Complex File Model...........cccoooiiiiiiiniiiiceccce, 6-5

Designing a Mapping ... s 6-5

7 Microsoft SQL Server

71
711
71.2
7.2
7.2.1
722
7.2.3
7.3

INETOAUCHION ..ot s 7-1
COMICEPLS ...ttt 7-1
Knowledge Modules ... 7-1

Installation and Configuration............cccccciiiiiiiieicceeeeeeee e 7-2
System Requirements and Certificationsccoueiriiiiiiiii 7-2
Technology Specific ReqUITementscccccuiuiiiiiiiiiiiiiiiieiciiccceeas 7-3
Connectivity ReqUirements............cccoeiiiiiiniiiiiiiii s 7-4

Setting up the TOPOlOZYceveviiiieieici e 7-4

7.3.1 Creating a Microsoft SQL Server Data Server ... 7-4

7.3.2 Creating a Microsoft SQL Server Physical Schemacccooooiiiiiiiiii 7-5
7.4 Setting Up an Integration Project ..., 7-5
7.5 Creating and Reverse-Engineering a Microsoft SQL Server Model............c.c.ccooonrinne. 7-5
7.5.1 Create a Microsoft SQL Server Modelcccoocvieieieiierieiieieeeeeeeeeeeee et 7-5
752 Reverse-engineer a Microsoft SQL Server Modelcccccoceiiiiininicennicicene 7-5
7.6 Setting up Changed Data Captureccoooeeieiiiiiiiiici s 7-6
7.7 Setting up Data QUALItY........cooioiiiii e 7-7
7.8 Designing a Mapping ... s 7-7
7.8.1 Loading Data from and to Microsoft SQL Server ..o 7-7
7.8.2 Integrating Data in Microsoft SQL Server...........ccocoooiiiiiiiiiicieeccceeeece e 7-9

8 Microsoft Excel

8.1 INErOAUCHON ... 8-1
8.1.1 CONCEPES ..o 8-1
8.1.2 Knowledge Modules ..ot 8-1
8.2 Installation and Configuration...........c.oerieiiiiicice e 8-2
8.2.1 System Requirements and Certificationscccovvvvrrrrennnnnnenrreee e 8-2
8.2.2 Technology Specific Requirementsooocueviiiiiieiiiiiiccc 8-2
8.2.3 Connectivity ReqUirements...........c.ooocuiiiiiiiiii 8-2
8.3 Setting Up the TOPOLOZYcumimiuiiiiiiciieccce e 8-3
8.3.1 Creating a Microsoft Excel Data Server.........cocoioiiiiiciiceccee, 8-3
8.3.2 Creating a Microsoft Excel Physical Schemaccocoooiiiiiiiiie, 8-3
8.4 Setting Up an Integration Project ... 8-4
8.5 Creating and Reverse-Engineering a Microsoft Excel Model............ccccooiiiiiiinininnnne. 8-4
8.5.1 Create a Microsoft Excel Model.........cccccooviiiiiiiiiiiniiiiiiis 8-4
8.5.2 Reverse-engineer a Microsoft Excel Model..........cccccocoiiiiiiiiiiiiiiiiciccceeeene 8-4
8.6 Designing @ Mapping......cccccceieeieiiiiieiniiiieii s 8-5
8.6.1 Loading Data From and to Microsoft EXCel.........ccccoeuiiiiiiniiiiiiiccc, 8-5
8.6.2 Integrating Data in Microsoft EXCel ... 8-5
8.7 TroubleShOOtINGoouiviiei e 8-6
8.7.1 Decoding Error MESSAZES..........ccvuviiiiiiiiiriiiiiiiiciiiiiiciessssns s 8-6
8.7.2 Common Problems and SOIUtiONS..........cviiiiiiininiiii e, 8-6

9 Microsoft Access

10

vi

9.1 INETOAUCHION 1. s 9-1
9.2 COMICEPLS ..ttt 9-1
9.3 Knowledge Modules ... 9-1
9.4 Specific REQUITEMENLSc.c.cuiuiiiiiiiiiiicicieiciccce e 9-2
Netezza

10.1 INErOAUCHON ..o 10-1
10.1.1 COMICEPLS ..ttt s 10-1
10.1.2 Knowledge Modules ... 10-1
10.2 Installation and Configuration..........ccocoeveeririrrnnnrr e 10-2
10.2.1 System Requirements and Certificationscocoeveiireiiiiiiiiiie 10-2

11

12

10.2.2 Technology Specific Requirementscoooeeioiiiiiiiiieic 10-2

10.2.3 Connectivity Requirements...........c.ccooeuiiiiiiiiiiii e 10-3
10.3 Setting Up the TOPOLOZY ...c.vuvuimiiiiiiiicccccece e 10-3
10.3.1 Creating a Netezza Data Server..........coiiiiiiicc s 10-3
10.3.2 Creating a Netezza Physical Schema............ccooooi 10-3
10.4 Setting Up an Integration Projectccoceeiiiiiiiiniiiiiiicccns 10-4
10.5 Creating and Reverse-Engineering a Netezza Model ..o 10-4
10.5.1 Create a Netezza Model..........ccccooiiiiiiiiiiiiiiiiiiis 10-4
10.5.2 Reverse-engineer a Netezza Model...........cccccvvviiiiiiiiiininceeceeeeeeees 10-4
10.6 Setting up Data Qualityccooiiuiioiiii s 10-5
10.7 Designing a Mappingcccoeieieiiiiiiiiiiiittt ittt 10-5
10.7.1 Loading Data from and to Netezza.........cccccccceuiiuiiiuiiiiiiiiicicccceccceeeeeneenenees 10-5
10.7.2 Integrating Data in Netezzaccccooeeeieiiiiiiiiiiiiii 10-6
Teradata

11,1 INErOdUCHON ..o 11-1
11.1.1 CONCEPES ..ttt s 11-1
11.1.2 Knowledge Modulesccccciiiiiiiiiiccceceee s 11-1
11.2 Installation and Configuration..............cocoeeveiiiiiiiiice s 11-2
11.2.1 System Requirements and Certificationscocceooiireiiiicii 11-2
11.2.2 Technology Specific ReQUITEMENLSc.ccueuiuemiiiiiiiiiiiicceeeceeeeee s 11-3
11.2.3 Connectivity Requirements..............coooiiiiiiiiiiiiiic s 11-3
11.3 Setting up the TOPOLOZYccveviiericiicic e 11-3
11.3.1 Creating a Teradata Data SErver ... 11-4
11.3.2 Creating a Teradata Physical Schema...........cccoooiii 11-4
11.4 Setting Up an Integration Project ... 11-4
11,5 Creating and Reverse-Engineering a Teradata Modelcccccceuvenininnnnnnnnnne. 11-5
11.5.1 Create a Teradata Model..........c.cccooiiiiiiiiiiiiiiic s 11-5
11.5.2 Reverse-engineer a Teradata Modelccooooiiii 11-5
11.6 Setting up Data QUALItYcccooiviiiiiiice s 11-6
11.7 Designing a Mappingcccceuiiiiiiiiiiiicieccie e 11-6
11.7.1 Loading Data from and to Teradatacccccccceeuiiiiiiiiiiiciiiccccecccccees 11-6
11.7.2 Integrating Data in Teradata..........cccccoeeiiriiiiniiiiiececeeeeeeeeeeeeeeeees 11-8
11.7.3 Designing an ETL-Style Mappingcccceuoiieieieiicieieiiicie s 11-12
11.8 KM Optimizations for Teradata............cccccocvviririvniniiniiniiiiiiiccces 11-16
11.8.1 Primary Indexes and StatiStics.........cccccocueirriiiiciiniiiirceceer e 11-16
11.8.2 Support for Teradata Utilitiesc.cceeveiiiiiiiiiiiiiiiiccc 11-16
11.8.3 Support for Named Pipes.......cccccociuiiiiiiiiiininiiiiiiiiiccicnnas 11-17
11.8.4 Optimized Management of Temporary Tablescccccovvevrvnnnnnnnnnrnnenes 11-17
Hypersonic SQL

12,1 INEFOAUCHION ..o 12-1
12.11 COMICEPES ..ttt s 12-1
12.1.2 Knowledge Modules ... 12-1
12.2 Installation and Configuration..........coocoeveerirrrrininnin e 12-2
12.2.1 System Requirements and Certificationscoooeuoiiiieiiiii 12-2

vii

13

14

viii

12.2.2 Technology Specific Requirementscoooeiiiiiiiiiiieiic 12-2

12.2.3 Connectivity Requirements............c.ccoceiiiiiiiiiiiii e 12-2
12.3 Setting Up the TOPOLOZY ...cvvviiiii e e 12-2
12.3.1 Creating a Hypersonic SQL Data Server ... 12-2
12.3.2 Creating a Hypersonic SQL Physical Schemac.cccccooiiiiiiiiecce 12-3
12.4 Setting Up an Integration Project ..o 12-3
125 Creating and Reverse-Engineering a Hypersonic SQL Model............cccooeueiiiriiiinnne. 12-3
12.5.1 Create a Hypersonic SQL Model.........cccouoiiiiiiiiiccc e 12-4
12.5.2 Reverse-engineer a Hypersonic SQL Model..........cccccceiiiiiiiiiiiiiccecceenenee 12-4
126 Setting up Data Quality.......cccovoiiiiiiiiiii s 12-4
12.7 Designing a Mappingcccooioiiiiiiiiiiiiiit ittt s 12-4

IBM Informix

13.1 INErOdUCHON ..o 13-1
13.2 CONCEPLS .. 13-1
13.3 Knowledge Modules ... 13-1
13.4 Specific ReQUIreMENtScocviimiiiiiii e 13-2

IBM DB2 for iSeries

141 INtrodUCHON ..o 14-1
14.1.1 CONCEPES ..t 14-1
14.1.2 Knowledge Modules ... 14-1
14.2 Installation and Configuration...........oooeeieiiiiiiiii 14-2
14.2.1 System Requirements and Certificationsc.cccceevvereurrrerninernrrcicrreceeeeaes 14-2
14.2.2 Technology Specific Requirementscccoooeioiiiiiiiiiieiic 14-3
14.2.3 Connectivity Requirements...........c.coooeiiiiiiiiiii e 14-3
14.3 Setting Up the TOPOLOZYvvviiiie s 14-3
14.3.1 Creating a DB2/400 Data SEIVET ..o 14-3
14.3.2 Creating a DB2/400 Physical Schema.........cccccceiiiiiiiiiiiiecc 14-4
14.4 Setting Up an Integration Project ..o 14-4
14.5 Creating and Reverse-Engineering an IBM DB2 /400 Modelccoceviiriiiiiinneinnnne. 14-4
14.5.1 Create an IBM DB2 /400 MOlc.uveeiiiieieeeeeeeeee ettt 14-5
14.5.2 Reverse-engineer an IBM DB2/400 Modelcccccccviiiiiiiiiniinnncccrecceceeenes 14-5
14.6 Setting up Changed Data Capture ..o 14-5
14.6.1 Setting up Trigger-Based CDC ... 14-5
14.6.2 Setting up Log-Based CDC.........ccccciiiiiriiiiiecceceeeeeeeeeeeeeeee e 14-6
14.7 Setting up Data Quality.......c.ccooiiiiiiiiiiii e 14-9
14.8 Designing a Mapping ... 14-9
14.8.1 Loading Data from and to IBM DB2 for iSeriescccccoeoveiieiviicncricicrene 14-10
14.8.2 Integrating Data in IBM DB2 for iSeriesccocooeueiiiiicieiiiiiecccc 14-10
14.9 Specific Considerations with DB2 for iSeries..........cccooviviiiininiiiiiiiiiiicccccne 14-11
14.9.1 Alternative Connectivity Methods for iSeriescccccoevviirvnnnnnrrrrcreene 14-11
14.10 TroubleShOOtING ... s 14-12
14.10.1 Troubleshooting Error messages ..o 14-12
14.10.2 Common Problems and SoIUtions............ccoeeeveiiiniiiie s 14-12

15

IBM DB2 UDB

15.1 INELOAUCHON ...ttt ettt et et e b e e se e steesbesteesaesbeesaesbeessesseesaenseeas 15-1
15,2 CONCEPLS ..ot 15-1
15.3 Knowledge Modules ... 15-1
15.4 Specific REQUITEMENTSccviiiiiiiii s 15-3

Part Il Business Intelligence

16

17

Oracle Business Intelligence Enterprise Edition

16,1 INtrodUCON ..o 16-1
16.1.1 CONCEPES ..ot 16-1
16.1.2 Knowledge Modules ... 16-1
16.2 Installation and Configuration.............ccoceeieiiiiiiiiiiie 16-2
16.2.1 System Requirements and Certificationsc.ccccceerueueieinrneiceneceeceeeeeeees 16-2
16.2.2 Technology Specific Requirementsccoooeueiiiiiiiiiiiiiicc 16-2
16.2.3 Connectivity Requirements...........cccocuiiiiiiiiiiiiii e 16-2
16.3 Setting Up the TOPOLOZY ...c.ouvuimiiiiiiiicccc e 16-2
16.3.1 Creating an Oracle Bl Data Server ... 16-3
16.3.2 Creating an Oracle BI Physical Schema..........ccccooiiiiiiiiiicccc 16-3
16.4 Setting Up an Integration Project ..o 16-4
16.5 Creating and Reverse-Engineering an Oracle BIModel ..o 16-4
16.5.1 Create an Oracle BIModel..........cccccooviiiniiiiiiiniiiiiiiiies 16-4
16.5.2 Reverse-engineer an Oracle BI Modelcccccciiiiiiiiinicicccceccececeees 16-4
16.6 Setting up Data Qualitycccoooiiuiiiiiiii e 16-4
16.7 Designing a Mappingcccooiviiiiiiiiiiiiiicititi ittt 16-5
16.7.1 Loading Data from and to Oracle Bl..........cccccccciiiiiiiiiiccccceceeceeeees 16-5
16.7.2 Integrating Data in Oracle Blcoooooioiiiiiii e 16-5
Oracle Business Intelligence Enterprise Edition Data Lineage

17,1 INErOdUCHON ..o s 17-1
17.1.1 COMPONENLS.....oviiiiiiiiic s 17-1
17.1.2 Lineage LifecyCle.......cocoiiiiiiiiicccccceeeee et 17-2
17.2 Installing the Lineage in an OBIEE Server ... 17-3
17.2.1 INstallation OVEIVIEWcccuiiririeiiiiirieieciireeerett ettt 17-3
17.2.2 ReqUirements..........ccooiiiiiiiiiiiiic 17-4
17.2.3 Installation INStIUCIONSouiuiviuiiiiiiiiiiiiici s 17-5
17.2.4 Post-Installation Taskscccccreecininieiiircectreeee s 17-7
17.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage..........c.cccccceuune.... 17-8
17.4 Refreshing the OBIEE Lineage from Existing EXpOrtscccoooeeiiiiiiiiiiiiciiiie, 17-11
17.4.1 Exporting the OBIEE Repository Documentation to a Text Filecccccccceruaie. 17-11
17.4.2 Exporting the OBIEE Web Catalog Report to a Text File.......ccccocovvivnneninnnncnne. 17-12
17.4.3 Refreshing the OBIEE Lineage From Existing EXportsccccoooveveiiiiieiiiiccnne. 17-12
17.5 Automating the Lineage Tasksccccccoiiiiiiiiiiiiiiiiccecees 17-14
17.5.1 Configuring the SCrIPLSc.coviiiiiiiiieiceccr s 17-14
17.5.2 Automating Lineage Deployment...........c..ccoooriiiiiiiiiiiiincce 17-17
17.5.3 Automating Lineage Refreshccccociiiiiiiiiinininiiiincnnccas 17-18

17.6 Using the Lineage in OBIEE Dashboards............cccooooouiiiiiiiiii 17-18
17.6.1 Viewing Execution Statistics ..o 17-19
17.6.2 Viewing and Filtering Lineage Datacccoovviiniiiiiiiiiiiiccccccceccceenens 17-19
17.6.3 Using the Dashboard..............coi 17-20
17.6.4 Using Lineage and Hierarchy ... 17-20
17.6.5 Using Contextual LINeagecoovvrriirinireiniiiccc e 17-22

Part lll Other Technologies

18 JMS
18,1 INErOdUCHON ..o s 18-1
18.1.1 COMICEPES ..ttt 18-1
18.1.2 Knowledge Modules ... 18-3
18.2 Installation and Configuration..........ccceeeveiirirrnrnrirr e 18-3
18.2.1 System Requirements and Certificationsccceveiiieiiiiiiiiiice 18-4
18.2.2 Technology Specific Requirementscooceeiiiiiiiiiiiiic 18-4
18.2.3 Connectivity ReqUirements............cccocvvviiiiiiiiiiininiics 18-4
18.3 Setting up the TOPOLOZYvueveiieiiiiieii e 18-4
18.3.1 Creating a JMS Data SeIVer ... 18-4
18.3.2 Creating a JMS Physical SChema ..o 18-5
18.4 Setting Up an Integration Project ... 18-5
18.5 Creating and Defining a JMS Model...........cccoooiiiiiiiiic 18-5
18.5.1 Create @ JIMS MOdEL.......ooveieiiieeieieieereeteset ettt ettt sr b e sa et sbessesneseenans 18-5
18.5.2 Defining the JMS Datastoresccoeueveiriiiiiiieicicice e 18-6
18.6 Designing a Mappingcccoooiiiiiiiiiiiiiiitt it 18-7
18.6.1 Loading Data from a JIMS SOUICEc.cceuiuiuimiuiuiieieiciiicieicieeeceeeieeeeeee s 18-7
18.6.2 Integrating Data in a JMS Target ..o 18-7
18.7 JMS Standard Properties...........coouiiiicici e 18-9
18.7.1 USing JMS Properties ... 18-10

19 JMS XML
191 INErOAUCHON ..o s 19-1
19.11 COMICEPES ..ttt 19-1
19.1.2 Knowledge Modules ... 19-3
19.2 Installation and Configuration..........cccooeveiiirirrniinn e 19-3
19.2.1 System Requirements and Certificationscococeveiieiiiiiiciiccice 19-3
19.2.2 Technology Specific ReqUIirementscccccceueiiiiiiiiiiiiiiciicecceeeeeeeees 19-3
19.2.3 Connectivity ReqUirements............cccovuviiiiniiiiiiiiiiiiiccccs 19-4
19.3 Setting up the TOPOLOZYvueveiieieiiiici e 19-4
19.3.1 Creating a JMS XML Data SErverccccoviiiiininiiriiiinccnecscccseeescee s 194
19.3.2 Creating a JMS XML Physical SChemacccccceeiiiiiiicicicceeeecceeeneenenees 19-6
19.4 Setting Up an Integration Project ... 19-7
19.5 Creating and Reverse-Engineering a JMS XML Model.........ccccoooviiininiinniiicceine. 19-7
19.5.1 Create a JMS XML MOdELccoocveiriririiiiiiieieieieteteteese ettt ss s e esaesassessessens 19-7
19.5.2 Reverse-Engineering a JMS XML Model...........ccoooiiiiiiiiiiiciecce 19-7
19.6 Designing a Mapping ...t 19-8

20

21

22

19.6.1 Loading Data from a JMS XML SOUICEcccoeuiiiiimiriiiiiiiiiiiieicieieceeeeeeenes 19-8

19.6.2 Integrating Data in a JMS XML Target ..o 19-8
LDAP Directories

20.1 INErOAUCHON ...t s 20-1
20.1.1 CONCEPES ...t 20-1
20.1.2 Knowledge Modules ... 20-1
20.2 Installation and Configuration..........cccooereieiiiicieicicce s 20-2
20.2.1 System Requirements...........ccccoovviiiiiiiniiiiiii s 20-2
20.2.2 Technologic Specific ReqUIrementsccccceueeieiiiniiniiiiiis 20-2
20.2.3 Connectivity Requirements...........c.cooiuiiiiiiiiiii e 20-2
20.3 Setting Up the TOPOLOZY ...c.uimimimiiiiiiieiccccc e 20-2
20.3.1 Creating an LDAP Data SeIVer ...t 20-3
20.3.2 Creating a Physical Schema for LDAP ..o 20-4
20.4 Setting Up an Integration Project ... 20-4
20.5 Creating and Reverse-Engineering an LDAP Directoryccccoooimeieiiiniciiininicicne, 20-4
20.5.1 Create an LDAP Model........cccccoiiiiiiiiiiiniiiiiiis 20-4
20.5.2 Reverse-Engineering an LDAP Model ..o 20-4
20.6 Designing a Mapping......cccceeeimiiiminiiininiiininisieie it 20-5
20.6.1 Loading Data from and to LDAPcccooiiiiiic 20-5
20.6.2 Integrating Data in an LDAP Directory ... 20-6
20.7 TroubleshOOtINGcoviuiiiiii e 20-6
Oracle TimesTen In-Memory Database

211 INEFOAUCHON c.ceiit s 21-1
21.1.1 CONCEPES ..ottt s 21-1
2112 Knowledge Modulesccccciiiiiiiiiiicccccecee s 21-2
21.2 Installation and Configuration.........ccccoiieieiiiicieiicci s 21-2
21.21 System Requirements and Certificationscocoeoioiiiiiiciice 21-2
21.2.2 Technology Specific ReQUITEMENLScccceuimimiiiiiiiiiiicicceeccceeee s 21-2
21.2.3 Connectivity Requirements.............c.oooiieiiiiiiiiiiii s 21-3
21.3 Setting up the TOPOLOZYc.ovimiiiiiiiiiiiiiiiccic s 21-3
21.3.1 Creating a TimesTen Data Server ... 21-3
21.3.2 Creating a TimesTen Physical Schemacccccooiiiiiiiii 21-4
21.4 Setting Up an Integration Project ... 21-4
21.5 Creating and Reverse-Engineering a TimesTen Modelccccccccciiiiciiininnnnnne. 21-4
21.5.1 Create a TimesTen Model..........cccooiiiiiiiiiiis 21-4
215.2 Reverse-engineer a TimesTen Model............ccccccoviiiiiiiiiniiinniiinee 21-5
21.6 Setting up Data QUALILYc.ccoeuimiiiiiiiiiceeccccc s 21-5
21.7 Designing a MappPingcccceoiiumieiiiiicieieccie e 21-5
21.7.1 Loading Data from and to TimesTen..........ccccccecueiiiiiiiiiiiiiiiiniciciiccccccecceees 21-5
21.7.2 Integrating Data in TimesTenccccoviiiiiiiiniiniiie 21-6
Oracle GoldenGate

221 INITOAUCHON ... s 22-1
22.1.1 Overview of the GoldeGate CDC Process...........cccoeviviiiieiiieiiriinininiieeecseeenes 22-1

xi

23

22.1.2 Knowledge Modules ... 22-2

222 Installation and Configuration..........cooeeuiieieiiiiiiciiccc s 22-3
22.2.1 System Requirements and Certificationsc.cccceevuvereirrrrnininrnecrereeceeeeeees 22-3
22.2.2 Technology Specific Requirementscoooeeioiiiiiiiiiiii 22-4
22.2.3 Connectivity Requirements.............ccoocuiiiiiiiiiiiiii e 22-4
22.3 Working with the Oracle GoldenGate JKMSc.ccccccciiiiiiiiiiiiieccecceeeeeenenens 22-4
22.3.1 Define the TOPOLOZYc.cuoviurieiiicici e 22-4
22.3.2 Create the Replicated Tables............cccoooiiiiiiii e 22-8
22.3.3 Set Up an Integration Project ..o 22-8
22.3.4 Configure CDC for the Source Datastores.............cococeueveiicieiiiiciciicc 22-9
2235 Configure and Start Oracle GoldenGate Processes (Offline mode only) 22-11
22.3.6 Design Mappings Using Replicated Datacccccoeueuvirrvninnnnnnnncnnreeecene 22-12
22.4 Advanced Configurationcccoiirieiiiiiiiciecccic e 22-12
22.41 Initial Load Method.........cc.coiiiii 22-12
22.4.2 Tuning Replication Performances...........cccccoccecucrieiiiciinnieierseeeeeeeeeeseeeenes 22-12
22.4.3 One Source Multiple Staging Configuration (Offline mode only)c...cccoueveee. 22-13

Oracle SOA Suite Cross References

23,1 INErOAUCHON c.eviiiit s 23-1
23.1.1 CONCEPES ..ttt 23-1
23.1.2 Knowledge Modules ... 23-3
23.1.3 Overview of the SOA XREF KM Processcccccevvviiiiiiniiiniiininiicnccceens 23-4
23.2 Installation and Configuration...........cccccceiiiiiiiiiiiiiiiic 23-5
23.2.1 System Requirements and Certificationscccceevuveverrrervncerrnrcrereeceeeaes 23-6
23.2.2 Technology Specific ReqUirements ..o 23-6
23.2.3 Connectivity ReqUirements...........cccovveieiininininiininiccc s 23-6
23.3 Working with XREF using the SOA Cross References KMscccccccoecciiicncicnnncnenne. 23-6
23.3.1 Defining the TOPOIOZYccovuiuiiiiiiiiiiiiiiiiiciiciicce s 23-6
23.3.2 Setting up the Project ... 23-7
23.3.3 Designing a Mapping with the Cross-References KMs ... 23-7
23.4 Knowledge Module Options Reference.............cccocovvveviviiiiiiiniiiiiis 23-8

Part IV Appendices

A Oracle Data Integrator Driver for LDAP Reference

Xii

A1 Introduction to Oracle Data Integrator Driver for LDAP ..o, A-1
A2 LDAP Processing OVEIVIEWccciviiiiiiiiiiiiiiiiiiniiicciete st A-1
A21 LDARP to Relational Mapping........ccccceueuvureeueinieniniecieireeeieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeees A-2
A22 Managing Relational Schemas ..o A-5
A3 Installation and Configuration ... A-6
A3.1 Driver Configuration.........c.cccccucucuiiiiiiiiiiiiicceceie e eeees A-6
A3.2 Using an External Database to Store the Data.........ccccooooiiiiii A-12
A3.3 LDAP Directory Connection Configurationcccccccccuiiiniiiciniiceceecenen A-14
A3.4 Table Aliases CONfiGUIation........cccoeuvuririririiiririeiicirereee s A-15
A4 SOQL SYNEAX ...ttt A-16
A.41 SOL SEAtEIMENESeecvviiiieeiieieete ettt ettt et e et e e tbe e beesbeebeessbeessaesseesssaeseessseesaesseennses A-17

A4.2 SQL FUNCTIONS........ooiiiiriieictet ittt A-19
A5 JDBC API Implemented Featurescoooiiiiiiiiiice s A-22

B Oracle Data Integrator Driver for XML Reference

B.1 Introduction to Oracle Data Integrator Driver for XMLccocoooiiiiiiiie, B-1
B.2 XML Processing OVeIVIEWccccciiiiiiiiiiiiiiiiiiiiccc e B-2
B.2.1 XML t0 SQL MaPPING.....ceviviiiiiiiieieiiiiieieieieieieie et B-2
B.2.2 XML NAMESPACESoviiiiiiiieiiet s B-3
B.2.3 Managing SCREMASc.ccovuiiiiiiririiieecee s B-3
B.24 LOCKING ..ottt B-5
B.2.5 XML Schema (XSD) SUPPOTt.....couiiiiiieiiiicieecc s B-5
B.3 Installation and Configuration............ccccciiiiiiiiiiieececee s B-5
B.3.1 Driver Configuration........ooceueiiiieieiiiciec e B-5
B.3.2 Automatically Create Multiple Schemas.............cooooiiiiiiiiiii B-11
B.3.3 Using an External Database to Store the Data..........cccccooiiiiiiiiiiieccciciceene B-11
B.4 Detailed Driver COMMANScccoeuiiiiiiimiiiiiiiiiiiiiccicieeee s B-16
B.4.1 CREATE FILE ... s B-17
B.4.2 CREATE FOREIGNKEYS ... s B-18
B.4.3 CREATE XMLEFILE ..o B-18
B.4.4 CREATE SCHEMA ...t B-19
B.4.5 DROP FOREIGNKEYS........ccooiiiiiiiiiiiiiiccn s B-20
B.4.6 DROP SCHEMAcoiiiiiiiiiiiiiiss s s B-21
B.4.7 LOAD FILE ...ttt s B-21
B.4.8 SET SCHEMAooiiiiinc s B-22
B.4.9 SYNCHRONIZEcooviiiiiiiiiiiiiinns s B-22
B.4.10 UNLOCK FILE ...t B-23
B.4.11 TRUNCATE SCHEMA ..ot B-23
B.4.12 VALIDATE ..o s B-23
B.4.13 WRITE MAPPING FILEcocooiiiiiiiiiiiiiiiii s B-23
B.5 SOQL SYNEAX. ..ttt s B-24
B.5.1 SQL SEAtEIMENESeevveetieiieeiieieeiete et ete et ete st e e st et e e ebesreessesseessesseessesseessesssessassenssensenns B-25
B.5.2 SQL FUNCTIONS......ooiiiieiiitie sttt B-28
B.6 JDBC API Implemented FEatUres...........ccccceuriviiiiiriririiicieirceccreeeeese e B-30
B.7 Rich Metadata.......cccoeeviiiiiiiiiiiiiiii s B-31
B.7.1 Supported user-specified types for different databases.........ccccocovvveriniciininnnen. B-32
B.8 XML Schema Supported Features............ccccciiiiiiiiiiiicccceecceeeeeeeeeeeeeeeeeees B-33
B.8.1 DatatyPes ..c.ccueveieiiii B-33
B.8.2 Supported EIEMENtsccccccuiiiiiiiiiiiiiiciiiiicicc s B-34
B.8.3 Unsupported FEAtUTEScccociiiiiiiiiccecceeeeere e B-40

C Oracle Data Integrator Driver for Complex Files Reference

C.1 Introduction to Oracle Data Integrator Driver for Complex Files.........c.cccccccccceinnnnann. C-1
C.2 Complex Files Processing OVerview ..o C-1
C.21 Generating the Native Schema ... C-2
c.22 XML t0 SQL MaPPINGcucveveiemiieieieicieieieieieieieieieieieieeieeeaeaeseseseaeeeseae s seeeasseseaeasaseesesessaseees C-2
c.23 JSON SUPPOTL..oiiiiiiiiiiciicccccc e C-2

xiii

Xiv

Cc24 Supported FEAtUres ... C-2

C.3 Driver Configuration..........ccccceiiiiiiiiiiiniiiiii s C-3
C4 Detailed Driver COmMMANAScc.oooviieiiiiiiieeceeeeeie ettt ettt ereeeaeesaesenaeesreeenee s C-6
C.5 JDBC API and XML Schema Supported Features..........c.cccocceuviiiiiiniiiiiiiiiiiiiiiicns C-6

Audience

Preface

This book describes how work with different technologies in Oracle Data Integrator.
This preface contains the following topics:

= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This document is intended for developers who want to work with Knowledge
Modules for their integration processes in Oracle Data Integrator.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents in Oracle Data Integrator Library.
= Release Notes for Oracle Data Integrator

s Understanding Oracle Data Integrator

= Administering Oracle Data Integrator

= Developing Integration Projects with Oracle Data Integrator

s Installing and Configuring Oracle Data Integrator

s Upgrading Oracle Data Integrator

XV

= Application Adapters Guide for Oracle Data Integrator

s Developing Knowledge Modules with Oracle Data Integrator

» Migrating From Oracle Warehouse Builder to Oracle Data Integrator

= Oracle Data Integrator Tool Reference

s Data Services Java API Reference for Oracle Data Integrator

= Open Tools Java API Reference for Oracle Data Integrator

s Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator
= Java API Reference for Oracle Data Integrator

s Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

» Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the
JDeveloper Help Center when you press F1 or from the main menu by selecting
Help, and then Search or Table of Contents.

Conventions

XVi

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction

This book describes how work with different technologies in Oracle Data Integrator.
This book includes the following parts:

s Part], "Databases, Files, and XML"

» PartIl, "Business Intelligence"

» PartIII, "Other Technologies"

Application Adapters are covered in a separate guide. See the Application Adapters
Guide for Oracle Data Integrator for more information.

This chapter provides an introduction to the terminology used in the Oracle Data
Integrator documentation and describes the basic steps of how to use Knowledge
Modules in Oracle Data Integrator.

This chapter contains the following sections:
= Section 1.1, "Terminology"

= Section 1.2, "Using This Guide"

1.1 Terminology

This section defines some common terms that are used in this document and
throughout the related documents mentioned in the Preface.

Knowledge Module

Knowledge Modules (KMs) are components of Oracle Data Integrator that are used to
generate the code to perform specific actions against certain technologies.

Combined with a connectivity layer such as, for example, JDBC, JMS, or JCA,
Knowledge Modules allow running defined tasks against a technology, such as
connecting to this technology, extracting data from it, transforming the data, checking
it, integrating it, etc.

Application Adapter

Oracle Application Adapters for Data Integration provide specific software components
for integrating enterprise applications data. Enterprise applications suported by Oracle
Data Integrator include Oracle E-Business Suite, Siebel, SAP, etc.

An adapter is a group of Knowledge Modules. In some cases, this group also contains
an attached technology definition for Oracle Data Integrator.

Application Adapters are covered in a separate guide. See the Application Adapters
Guide for Oracle Data Integrator for more information.

Introduction 1-1

Using This Guide

1.2 Using This Guide

This guide provides conceptual information and processes for working with
knowledge modules and technologies supported in Oracle Data Integrator.

Each chapter explains how to configure a given technology, set up a project and use
the technology-specific knowledge modules to perform integration operations.

Some knowledge modules are not technology-specific and require a technology that
support an industry standard. These knowledge modules are referred to as Generic
knowledge modules. For example the knowledge modules listed in Chapter 4,
"Generic SQL" and in Chapter 18, "JMS" are designed to work respectively with any
ANSI SQL-92 compliant database and any JMS compliant message provider.

When these generic knowledge module can be used with a technology, the technology
chapter will mention it. However, we recommend using technology-specific
knowledge modules for better performances and enhanced technology-specific feature
coverage.

Before using a knowledge module, it is recommended to review the knowledge
module description in Oracle Data Integrator Studio for usage details, limitations and
requirements. In addition, although knowledge modules options are pre-configured
with default values to work out of the box, it is also recommended to review these
options and their description.

The chapters in this guide will provide you with the important usage, options,
limitation and requirement information attached to the technologies and knowledge
modules.

1-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Part |

Databases, Files, and XML

This part describes how to work with databases, files, and XML files in Oracle Data
Integrator.

Part I contains the following chapters:
» Chapter 2, "Oracle Database"

s Chapter 3, "Files"

» Chapter 4, "Generic SQL"

» Chapter 5, "XML Files"

» Chapter 6, "Complex Files"

s Chapter 7, "Microsoft SQL Server"
» Chapter 8, "Microsoft Excel"

s Chapter 9, "Microsoft Access"

» Chapter 10, "Netezza"

s Chapter 11, "Teradata"

s Chapter 12, "Hypersonic SQL"

s Chapter 13, "IBM Informix"

» Chapter 14, "IBM DB?2 for iSeries"
» Chapter 15, "IBM DB2 UDB"

2

Oracle Database

This chapter describes how to work with Oracle Database in Oracle Data Integrator.
This chapter includes the following sections:

s Section 2.1, "Introduction”

= Section 2.2, "Installation and Configuration”

= Section 2.4, "Setting Up an Integration Project”

= Section 2.5, "Creating and Reverse-Engineering an Oracle Model"

= Section 2.6, "Setting up Changed Data Capture"

= Section 2.7, "Setting up Data Quality"

s Section 2.8, "Designing a Mapping"

» Section 2.9, "Troubleshooting"

2.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle Database. All
Oracle Data Integrator features are designed to work best with the Oracle Database
engine, including reverse-engineering, changed data capture, data quality, and
mappings.

2.1.1 Concepts

The Oracle Database concepts map the Oracle Data Integrator concepts as follows: An
Oracle Instance corresponds to a data server in Oracle Data Integrator. Within this
instance, a schema maps to an Oracle Data Integrator physical schema. A set of related
objects within one schema corresponds to a data model, and each table, view or
synonym will appear as an ODI datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle
database instance.

2.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 2-1 for
handling Oracle data. The KMs use Oracle specific features. It is also possible to use
the generic SQL KMs with the Oracle Database. See Chapter 4, "Generic SQL" for more
information.

Oracle Database 2-1

Introduction

Table 2-1

Oracle Database Knowledge Modules

Knowledge Module
RKM Oracle

JKM Oracle 11g Consistent (Streams)

JKM Oracle Consistent

JKM Oracle Consistent (Update Date)

JKM Oracle Simple

JKM Oracle to Oracle Consistent (OGG
Online)

CKM Oracle
LKM File to Oracle (EXTERNAL TABLE)

LKM File to Oracle (SQLLDR)
LKM MSSQL to Oracle (BCP SQLLDR)

LKM Oracle BI to Oracle (DBLINK)

LKM Oracle to Oracle (DBLINK)

LKM Oracle to Oracle Pull (DB Link)

LKM Oracle to Oracle Push (DB Link)

LKM Oracle to Oracle (datapump)
LKM SQL to Oracle

LKM SAP BW to Oracle (SQLLDR)

LKM SAP ERP to Oracle (SQLLDR)

IKM Oracle Incremental Update

IKM Oracle Incremental Update (MERGE)

Description

Reverse-engineers tables, views, columns, primary keys, non unique
indexes and foreign keys.

Creates the journalizing infrastructure for consistent set journalizing
on Oracle 11g tables, using Oracle Streams.

This KM is deprecated.

Creates the journalizing infrastructure for consistent set journalizing
on Oracle tables using triggers.

Creates the journalizing infrastructure for consistent set journalizing
on Oracle tables using triggers based on a Last Update Date column on
the source tables.

Creates the journalizing infrastructure for simple journalizing on
Oracle tables using triggers.

Creates and manages the ODI CDC framework infrastructure when
using Oracle GoldenGate for CDC. See Chapter 22, "Oracle
GoldenGate" for more information.

Checks data integrity against constraints defined on an Oracle table.

Loads data from a file to an Oracle staging area using the
EXTERNAL TABLE SQL Command.

Loads data from a file to an Oracle staging area using the
SQL*Loader command line utility.

Loads data from a Microsoft SQL Server to Oracle database (staging
area) using the BCP and SQL*Loader utilities.

Loads data from any Oracle BI physical layer to an Oracle target
database using database links. See Chapter 16, "Oracle Business
Intelligence Enterprise Edition" for more information.

Loads data from an Oracle source database to an Oracle staging area
database using database links.

Loads data from an Oracle source database to an Oracle staging area
database using database links. It does not create a view in the source
database. It also does not creates the synonym in the staging
database. Built-in KM.

Loads and integrates data into Oracle target table using database
links. It does not create the synonym in the staging database. Any
settings in the IKM would be ignored. Built-in KM.

Loads data from an Oracle source database to an Oracle staging area
database using external tables in the datapump format.

Loads data from any ANSI SQL-92 source database to an Oracle
staging area.

Loads data from SAP BW systems to an Oracle staging using
SQL*Loader utilities. See the Application Adapters Guide for Oracle Data
Integrator for more information.

Loads data from SAP ERP systems to an Oracle staging using
SQL*Loader utilities. See the Application Adapters Guide for Oracle Data
Integrator for more information.

Integrates data in an Oracle target table in incremental update mode.
Supports Flow Control.

Integrates data in an Oracle target table in incremental update mode,
using a MERGE statement. Supports Flow Control.

2-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table 2-1 (Cont.) Oracle Database Knowledge Modules

Knowledge Module Description

IKM Oracle Incremental Update (PL SQL) Integrates data in an Oracle target table in incremental update mode
using PL/SQL. Supports Flow Control.

IKM Oracle Insert Integrates data into an Oracle target table in append mode. The data
is loaded directly in the target table with a single INSERT SQL
statement. Built-in KM.

IKM Oracle Update Integrates data into an Oracle target table in incremental update
mode. The data is loaded directly into the target table with a single
UPDATE SQL statement. Built-in KM.

IKM Oracle Merge Integrates data into an Oracle target table in incremental update
mode. The data is loaded directly into the target table with a single
MERGE SQL statement. Built-in KM.

IKM Oracle Multi-Insert Integrates data from one source into one or many Oracle target tables
in append mode, using a multi-table insert statement (MTT). This
IKM can be utilized in a single mapping to load multiple targets.
Built-in KM.

IKM Oracle Multi Table Insert Integrates data from one source into one or many Oracle target tables
in append mode, using a multi-table insert statement (MTI). Supports
Flow Control.

IKM Oracle Slowly Changing Dimension Integrates data in an Oracle target table used as a Type II Slowly
Changing Dimension. Supports Flow Control.

IKM Oracle Spatial Incremental Update Integrates data into an Oracle (9i or above) target table in incremental
update mode using the MERGE DML statement. This module
supports the SDO_GEOMETRY datatype. Supports Flow Control.

IKM Oracle to Oracle Control Append Integrates data from one Oracle instance into an Oracle target table
(DBLINK) on another Oracle instance in control append mode. Supports Flow
Control.

This IKM is typically used for ETL configurations: source and target
tables are on different Oracle instances and the mapping's staging
area is set to the logical schema of the source tables or a third schema.

SKM Oracle Generates data access Web services for Oracle databases. See
"Generating and Deploying Data Services" in the Administering Oracle
Data Integrator for information about how to use this SKM.

2.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

= Connectivity Requirements

2.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

Oracle Database 2-3

Installation and Configuration

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

2.2.2 Technology Specific Requirements

Some of the Knowledge Modules for Oracle use specific features of this database. This
section lists the requirements related to these features.

2.2.2.1 Using the SQL*Loader Utility

This section describes the requirements that must be met before using the SQL*Loader
utility with Oracle database.

s The Oracle Client and the SQL*Loader utility must be installed on the machine
running the Oracle Data Integrator Agent.

s The server names defined in the Topology must match the Oracle TNS name used
to access the Oracle instances.

= A specific log file is created by SQL*Loader. We recommend looking at this file in
case of error. Control Files (CTL), Log files (LOG), Discard Files (DSC) and Bad
files (BAD) are placed in the work directory defined in the physical schema of the
source files.

s Using the DIRECT mode requires that Oracle Data integrator Agent run on the
target Oracle server machine. The source file must also be on that machine.

2.2.2.2 Using External Tables

This section describes the requirements that must be met before using external tables
in Oracle database.

s The file to be loaded by the External Table command needs to be accessible from
the Oracle instance. This file must be located on the file system of the server
machine or reachable from a Unique Naming Convention path (UNC path) or
stored locally.

s For performance reasons, it is recommended to install the Oracle Data Integrator
Agent on the target server machine.

2.2.2.3 Using Oracle Streams

This section describes the requirements for using Oracle Streams Journalizing
knowledge modules.

Note: It is recommended to review first the "Changed Data Capture”
chapter in the Oracle Database Data Warehousing Guide, which contains
the comprehensive list of requirements for Oracle Streams.

The following requirements must be met before setting up changed data capture using
Oracle Streams:

s Oracle Streams must be installed on the Oracle Database.

s The Oracle database must run using a SPFILE (only required for AUTO_
CONFIGURATION option).

s The AQ TM_PROCESSES option must be either left to the default value, or set to
a value different from 0 and 10.

2-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

s The COMPATIBLE option should be set to 10.1 or higher.
= The database must run in ARCHIVELOG mode.

s PARALLEL_MAX_SERVERS must be increased in order to take into count the
number of Apply and Capture processes. It should be increased at least by 6 for
Standalone configuration, 9 for Low-Activity and 21 for High-Activity.

s UNDO_RETENTION must be set to 3600 at least.

s STREAMS_POOL_SIZE must be increased by 100MB for Standalone
configuration, 236MB for Low-Activity and 548MB for High-Activity.

s All the columns of the primary key defined in the ODI Model must be part of a
SUPPLEMENTAL LOG GROUP.

s When using the AUTO_CONFIGURATION knowledge module option, all the
above requirements are checked and set-up automatically, except some actions
that must be set manually. See "Using the Streams JKMs" for more information.

In order to run this KM without AUTO_CONFIGURATION knowledge module
option, the following system privileges must be granted:

= DBA role to the connection user

» Streams Administrator to the connection user
s RESOURCE role to the work schema

s SELECT ANY TABLE to the work schema

= Asynchronous mode gives the best performance on the journalized system, but
this requires extra Oracle Database initialization configuration and additional
privileges for configuration.

= Asynchronous mode requires the journalized database to be in ARCHIVELOG.
Before turning this option on, you should first understand the concept of
asynchronous AutoLog publishing. See the Oracle Database Administrator's
Guide for information about running a database in ARCHIVELOG mode. See
"Asynchronous Change Data Capture" in the Oracle Database Data Warehousing
Guide for more information on supplemental logging. This will help you to
correctly manage the archives and avoid common issues, such as hanging the
Oracle instance if the archive files are not removed regularly from the archive
repository.

= When using asynchronous mode, the user connecting to the instance must be
granted admin authorization on Oracle Streams. This is done using the DMBS_
STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure when logged in with
a user already having this privilege (for example the SYSTEM user).

s The work schema must be granted the SELECT ANY TABLE privilege to be able to
create views referring to tables stored in other schemas.

For detailed information on all other prerequisites, see the "Change Data Capture"
chapter in the Oracle Database Data Warehousing Guide.

2.2.3 Connectivity Requirements

This section lists the requirements for connecting to an Oracle Database.

Oracle Database 2-5

Setting up the Topology

JDBC Driver

Oracle Data Integrator is installed with a default version of the Oracle Type 4 JDBC
driver. This drivers directly uses the TCP/IP network layer and requires no other
installed component or configuration.

It is possible to connect an Oracle Server through the Oracle JDBC OCI Driver, or even
using ODBC. For performance reasons, it is recommended to use the Type 4 driver.

Connection Information
You must ask the Oracle DBA the following information:

s Network Name or IP address of the machine hosting the Oracle Database.
= Listening port of the Oracle listener.

= Name of the Oracle Instance (SID).

s TNS alias of the connected instance.

s Login and password of an Oracle User.

2.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating an Oracle Data Server

2. Creating an Oracle Physical Schema

2.3.1 Creating an Oracle Data Server

An Oracle data server corresponds to an Oracle Database Instance connected with a
specific Oracle user account. This user will have access to several schemas in this
instance, corresponding to the physical schemas in Oracle Data Integrator created
under the data server.

2.3.1.1 Creation of the Data Server

Create a data server for the Oracle technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining an
Oracle data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator.

= Instance/dblink: TNS Alias used for this Oracle instance. It will be used to
identify the Oracle instance when using database links and SQL*Loader.

» User/Password: Oracle user (with its password), having select privileges on
the source schemas, select/insert privileges on the target schemas and
select/insert/object creation privileges on the work schemas that will be
indicated in the Oracle physical schemas created under this data server.

2. Inthe JDBC tab:
s JDBC Driver: oracle. jdbc.OracleDriver

s JDBCURL: jdbc:oracle:thin:@<network name or ip address of
the Oracle machine>:<port of the Oracle listener
(1521)>:<name of the Oracle instance>

2-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering an Oracle Model

To connect an Oracle RAC instance with the Oracle JDBC thin driver, use an
Oracle RAC database URL as shown in the following example:

jdbc:oracle:thin:@(DESCRIPTION= (LOAD_BALANCE=on)
(ADDRESS= (PROTOCOL=TCP) (HOST=hostl) (PORT=1521))
(ADDRESS= (PROTOCOL=TCP) (HOST=host2) (PORT=1521))
(CONNECT_DATA= (SERVICE_NAME=service)))

2.3.2 Creating an Oracle Physical Schema

Create an Oracle physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

2.4 Setting Up an Integration Project

Setting up a project using the Oracle Database follows the standard procedure. See
"Creating an Integration Project” of the Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Oracle Database:

s RKM Oracle

s CKM Oracle

s LKM SQL to Oracle

s LKM File to Oracle (SQLLDR)

= LKM File to Oracle (EXTERNAL TABLE)
s IKM Oracle Incremental Update

2.5 Creating and Reverse-Engineering an Oracle Model
This section contains the following topics:
s Create an Oracle Model

= Reverse-engineer an Oracle Model

2.5.1 Create an Oracle Model

Create an Oracle Model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator.

2.5.2 Reverse-engineer an Oracle Model

Oracle supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve
the structure of the objects directly from the Oracle dictionary.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Oracle retrieves tables, views, columns,
primary keys, and references.

Oracle Database 2-7

Setting up Changed Data Capture

Consider switching to customized reverse-engineering for retrieving more metadata.
Oracle customized reverse-engineering retrieves the table and view structures,
including columns, primary keys, alternate keys, indexes, check constraints,
synonyms, and references.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as
described in "Reverse-engineering a Model" of the Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Oracle with a RKM, use the usual
procedure, as described in "Reverse-engineering a Model" of the Developing Integration
Projects with Oracle Data Integrator. This section details only the fields specific to the
Oracle technology:

In the Reverse Engineer tab of the Oracle Model, select the KM: RKM
Oracle.<project name>.

2.6 Setting up Changed Data Capture

The ODI Oracle Knowledge Modules support the Changed Data Capture feature. See
Chapter "Working with Changed Data Capture" of the Developing Integration Projects
with Oracle Data Integrator for details on how to set up journalizing and how to use
captured changes.

Oracle Journalizing Knowledge Modules support Simple Journalizing and Consistent
Set Journalizing. The Oracle JKMs use either triggers or Oracle Streams to capture data
changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 2-2 for
journalizing Oracle tables.

Table 2-2 Oracle Journalizing Knowledge Modules

KM Notes

JKM Oracle 11g Consistent (Streams) Creates the journalizing infrastructure for consistent
set journalizing on Oracle 11g tables, using Oracle
Streams.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent

set journalizing on Oracle tables using triggers.

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent
set journalizing on Oracle tables using triggers based
on a Last Update Date column on the source tables.

JKM Oracle Simple Creates the journalizing infrastructure for simple
journalizing on Oracle tables using triggers.

Note that it is also possible to use Oracle GoldenGate to consume changed records
from an Oracle database. See Chapter 22, "Oracle GoldenGate" for more information.

Using the Streams JKMs

The Streams KMs work with the default values. The following are the recommended
settings:

2-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up Data Quality

= By default, the AUTO_CONFIGURATION KM option is set to Yes. If set to Yes, the
KM provides automatic configuration of the Oracle database and ensures that all
prerequisites are met. As this option automatically changes the database
initialization parameters, it is not recommended to use it in a production
environment. You should check the Create Journal step in the Oracle Data
Integrator execution log to detect configurations tasks that have not been
performed correctly (Warning status).

= By default, the CONFIGURATION_TYPE option is set to Low Activity.Leave
this option if your database is having a low transactional activity.

Set this option to Standalone for installation on a standalone database such as a
development database or on a laptop.

Set this option to High Activity if the database is intensively used for
transactional processing.

s By default, the STREAMS_OBJECT_GROUP option is set to CDC. The value
entered is used to generate object names that can be shared across multiple CDC
sets journalized with this JKM. If the value of this option is CDC, the naming rules
listed in Table 2-3 will be applied.

Note that this option can only take upper case ASCII characters and must not
exceed 15 characters.

Table 2-3 Naming Rules Example for the CDC Group Name

Capture Process ODI_CDC_C
Queue ODI_CDC_Q
Queue Table ODI_CDC_QT
Apply Process ODI_CDC_A

= VALIDATE enables extra steps to validate the correct use of the KM. This option
checks various requirements without configuring anything (for configuration
steps, please see AUTO_CONFIGURATION option). When a requirement is not
met, an error message is written to the log and the execution of the JKM is stopped
in error.

By default, this option is set to Yes in order to provide an easier use of this
complex KM out of the box

Using the Update Date JKM

This JKM assumes that a column containing the last update date exists in all the
journalized tables. This column name is provided in the UPDATE_DATE_COL_
NAME knowledge module option.

2.7 Setting up Data Quality

Oracle Data Integrator provides the CKM Oracle for checking data integrity against
constraints defined on an Oracle table. See "Flow Control and Static Control" in
Developing Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 2—4 to perform
a check on Oracle. It is also possible to use the generic SQL KMs. See Chapter 4,
"Generic SQL" for more information.

Oracle Database 2-9

Designing a Mapping

Table 2-4 Check Knowledge Modules for Oracle Database

Recommended KM Notes

CKM Oracle Uses Oracle's Rowid to identify records

2.8 Designing a Mapping

You can use Oracle as a source, staging area or a target of a mapping. It is also possible
to create ETL-style mappings based on the Oracle technology.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning an Oracle data server.

2.8.1 Loading Data from and to Oracle

Oracle can be used as a source, target or staging area of a mapping. The LKM choice in
the Mapping's Loading Knowledge Module tab to load data between Oracle and
another type of data server is essential for the performance of a mapping.

2.8.1.1 Loading Data from Oracle

The following KMs implement optimized methods for loading data from an Oracle
database to a target or staging area database. In addition to these KMs, you can also
use the Generic SQL KMs or the KMs specific to the other technology involved.

Target or Staging Area Technology KM Notes

Oracle LKM Oracle to Oracle (dblink) Creates a view on the source server,
and synonyms on this view on the
target server.

Oracle LKM Oracle to Oracle Push (DB Creates a view on the source server,
Link) but does not create synonyms on this
view on the target server. This KM
ignores any settings on the IKM.
Built-in KM.

Oracle LKM Oracle to Oracle Pull (DB Link) Does not create a view on the source
server, or the synonyms on this view
on the target server. Built-in KM.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the datapump
format.

2.8.1.2 Loading Data to Oracle

The following KMs implement optimized methods for loading data from a source or
staging area into an Oracle database. In addition to these KMs, you can also use the
Generic SQL KMs or the KMs specific to the other technology involved.

Source or Staging Area Technology KM Notes
Oracle LKM Oracle to Oracle (dblink) Views created on the source server,
synonyms on the target.
Oracle LKM Oracle to Oracle Push (DB Views not created on the source
Link) server, synonyms created on the

target. Built-in KM.

2-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Source or Staging Area Technology KM

Notes

Oracle

SAP BW

SAP ERP

Files

Files

Oracle

Oracle BI

MSSQL

All

LKM Oracle to Oracle Pull (DB

Link)

LKM SAP BW to Oracle (SQLLDR)

LKM SAP ERP to Oracle (SQLLDR)

LKM File to Oracle (EXTERNAL

TABLE)

LKM File to Oracle (SQLLDR)

LKM Oracle to Oracle (datapump)

LKM Oracle BI to Oracle (DBLINK)

LKM MSSQL to Oracle
(BCP-SQLLDR)

LKM SQL to Oracle

2.8.2 Integrating Data in Oracle

The data integration strategies in Oracle are numerous and cover several modes. The
IKM choice in the Mapping's Physical diagram determines the performances and

possibilities for integrating.

Views not created on the source
server, synonyms not created on the
target. Built-in KM.

Uses Oracle's bulk loader. File
cannot be Staging Area.

Uses Oracle's bulk loader. File
cannot be Staging Area.

Loads file data using external tables.

Uses Oracle's bulk loader. File
cannot be Staging Area.

Uses external tables in the datapump
format.

Creates synonyms for the target
staging table and uses the OBIEE
populate command.

Unloads data from SQL Server using
BCP, loads data into Oracle using
SQL*Loader.

Faster than the Generic LKM (Uses
Statistics)

The following KMs implement optimized methods for integrating data into an Oracle
target. In addition to these KMs, you can also use the Generic SQL KMs.

Mode KM Note

Update IKM Oracle Incremental Update Optimized for Oracle. Supports Flow Control.

Update IKM Oracle Update Optimized for Oracle. Oracle UPDATE statement KM.
Built-in KM.

Update IKM Oracle Merge Optimized for Oracle. Oracle MERGE statement KM.
Built-in KM.

Update IKM Oracle Spatial Incremental Update Supports SDO_GEOMETRY datatypes. Supports Flow
Control.

Update IKM Oracle Incremental Update (MERGE) Recommended for very large volumes of data because of
bulk set-based MERGE feature. Supports Flow Control.

Update IKM Oracle Incremental Update (PL SQL) Use PL/SQL and supports long and blobs in incremental
update mode. Supports Flow Control.

Specific ~ IKM Oracle Slowly Changing Dimension ~ Supports type 2 Slowly Changing Dimensions. Supports
Flow Control.

Specific ~ IKM Oracle Multi Table Insert Supports multi-table insert statements. Supports Flow
Control.

Append IKM Oracle to Oracle Control Append Optimized for Oracle using DB*Links. Supports Flow

(DBLINK)

Control.

Oracle Database 2-11

Designing a Mapping

Mode KM Note

Append IKM Oracle Insert Optimized for Oracle. Oracle INSERT statement KM.
Built-in KM. Supports Flow Control.

Append IKM Oracle Multi-Insert Optimized for Oracle. Oracle multi-target INSERT
statement KM, applied to each target. Built-in KM.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each column of the Target datastore. This value is used by the IKM Oracle
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag and Start/End Timestamps columns.

Using Multi Table Insert

The IKM Oracle Multi Table Insert is used to integrate data from one source into one to
many Oracle target tables with a multi-table insert statement. This IKM must be used
in mappings that are sequenced in a Package. This Package must meet the following
conditions:

» The first mapping of the Package must have a temporary target and the KM option
DEFINE_QUERY set to YES.

This first mapping defines the structure of the SELECT clause of the multi-table
insert statement (that is the source flow).

= Subsequent mappings must source from this temporary datastore and have the
KM option IS_TARGET_TABLE set to YES.

» The last mapping of the Package must have the KM option EXECUTE set to YES in
order to run the multi-table insert statement.

= Do not set Use Temporary Mapping as Derived Table (Sub-Select) to true on any of
the mappings.

If large amounts of data are appended, consider to set the KM option OPTIMIZER _
HINT to /*+ APPEND */.

Using Spatial Datatypes

To perform incremental update operations on Oracle Spatial datatypes, you need to
declare the SDO_GEOMETRY datatype in the Topology and use the IKM Oracle
Spatial Incremental Update. When comparing two columns of SDO_GEOMETREY
datatype, the GEOMETRY_TOLERANCE option is used to define the error margin
inside which the geometries are considered to be equal.

See the Oracle Spatial User’s Guide and Reference for more information.

2.8.3 Designing an ETL-Style Mapping

See "Creating a Mapping" in the Developing Integration Projects with Oracle Data
Integrator for generic information on how to design mappings. This section describes
how to design an ETL-style mapping where the staging area is Oracle database or any
ANSI-92 compliant database and the target on Oracle database.

In an ETL-style mapping, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from an
Oracle staging area to an Oracle target:

= Using a Multi-connection IKM

2-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

s Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling
Oracle data: IKM Oracle to Oracle Control Append (DBLINK). You can also use the
generic SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more
information.

See Table 2-5 for more information on when to use a multi-connection IKM.
To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with the staging area on Oracle or an ANSI-92 compliant
technology and the target on Oracle using the standard procedure as described in
"Creating a Mapping" in the Developing Integration Projects with Oracle Data
Integrator. This section describes only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables
or a third schema. See "Configuring Execution Locations" in the Developing
Integration Projects with Oracle Data Integrator for information about how to change
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s)
to the staging area. See Table 2-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property
Inspector opens for this object.

In the Integration Knowledge Module tab, select an ETL multi-connection IKM to
load the data from the staging area to the target. See Table 2-5 to determine the
IKM you can use.

Note the following when setting the KM options:
s For IKM Oracle to Oracle Control Append (DBLINK)

» If large amounts of data are appended, set the KM option OPTIMIZER_HINT
to /*+ APPEND */.

s Set AUTO_CREATE_DB_LINK to true to create automatically db link on the
target schema. If AUTO_CREATE_DB_LINK is set to false (default), the link
with this name should exist in the target schema.

= If you set the options FLOW_CONTROL and STATIC_CONTROL to Yes,
select a CKM in the Check Knowledge Module tab. If FLOW_CONTROL is set
to Yes, the flow table is created on the target.

Using an LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to
load the flow table from the staging area to the target. The mono-connection IKM is
used to integrate the data flow into the target table.

Oracle Database 2-13

Designing a Mapping

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source of an ETL-style mapping. Staging area and the target are Oracle.

See Table 2-5 for more information on when to use the combination of a standard
exporting LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping;:

1.

Create a mapping with the staging area and target on Oracle using the standard
procedure as described in "Creating a Mapping" in the Developing Integration
Projects with Oracle Data Integrator. This section describes only the ETL-style
specific steps.

Change the staging area for the mapping to the logical schema of the source tables
or a third schema. See "Configuring Execution Locations" in the Developing
Integration Projects with Oracle Data Integrator for information about how to change
the staging area.

In the Physical diagram, select an access point. The Property Inspector opens for
this object.

In the Loading Knowledge Module tab, select an LKM to load from the source(s)
to the staging area. See Table 2-5 to determine the LKM you can use.

Optionally, modify the KM options.

Select the access point for the Staging Area. The Property Inspector for this object
appears.

In the Loading Knowledge Module tab, select an LKM to load from the staging
area to the target. See Table 2-5 to determine the LKM you can use.

Optionally, modify the KM options.
Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM
to update the target. See Table 2-5 to determine the IKM you can use.

2-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Table 2-5 KM Guidelines for ETL-Style Mappings with Oracle Data

Exporting
Source Staging Area Target LKM IKM KM Strategy Comment

ANSI Oracle Oracle NA IKM Oracle to Oracle Multi-connect Use this KM
SQL-92 Control Append ion IKM strategy to:
standard (DBLINK)
compliant

s Perform
control
append

s Use
DB*Links for
performance
reasons

Supports flow
and static
control.

ANSI Oracleorany Oracleor NA IKM SQL to SQL Multi-connect Allows an
SQL-92 ANSISQL-92 any Incremental Update ion IKM incremental
standard standard ANSI update strategy
compliant compliant SQL-92 with no
database standard temporary
complia target-side
nt objects. Use this
database KM if it is not
possible to create
temporary
objects in the
target server.

The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.

Supports flow
and static control

Oracle Oracle Oracle = LKM to Oracle IKM Oracle Slowly LKM +
to Oracle Changing Dimension standard IKM
(DBLINK)

Oracle Oracle Oracle LKM to Oracle IKM Oracle LKM +
to Oracle Incremental Update standard IKM
(DBLINK)

Oracle Oracle Oracle LKM to Oracle IKM Oracle LKM +
to Oracle Incremental Update standard IKM
(DBLINK) (MERGE)

Oracle Database 2-15

Troubleshooting

2.9 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using Oracle Knowledge Modules. It contains the following topics:

Troubleshooting Oracle Database Errors

Common Problems and Solutions

2.9.1 Troubleshooting Oracle Database Errors

Errors appear often in Oracle Data Integrator in the following way:

java.sqgl.SQLException: ORA-01017: invalid username/password; logon denied
at ...
at ...

the java.sqgl.SQLExceptioncode simply indicates that a query was made to the
database through the JDBC driver, which has returned an error. This error is frequently
a database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
Oracle documentation. If its contains an error code specific to Oracle, like here (in red),
the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the erroneous task.

2.9.2 Common Problems and Solutions

This section describes common problems and solutions.

ORA-12154 TNS:could not resolve service name

TNS alias resolution. This problem may occur when using the OCI driver, or a KM
using database links. Check the configuration of the TNS aliases on the machines.

ORA-02019 connection description for remote database not
found

You use a KM using non existing database links. Check the KM options for
creating the database links.

ORA-00900 invalid SQL statement
ORA-00923 FROM Keyword not found where expected

The code generated by the mapping, or typed in a procedure is invalid for Oracle.
This is usually related to an input error in the mapping, filter of join. The typical
case is a missing quote or an unclosed bracket.

A frequent cause is also the call made to a non SQL syntax, like the call to an
Oracle stored procedure using the syntax

EXECUTE SCHEMA.PACKAGE.PROC (PARAM1, PARAM2).

The valid SQL call for a stored procedure is:

BEGIN
SCHEMA . PACKAGE. PROC (PARAM1, PARAM2) ;
END;

2-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Troubleshooting

The syntax EXECUTE SCHEMA.PACKAGE . PROC (PARAM1, PARAM2) is specific to
SQL*PLUS, and do not work with JDBC.

ORA-00904 invalid column name

Keying error in a mapping/join/filter. A string which is not a column name is
interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore
with a recently modified structure. It is necessary to impact in the error table the
modification, or drop the error tables and let Oracle Data Integrator recreate it in
the next execution.

ORA-00903 invalid table name

The table used (source or target) does not exist in the Oracle schema. Check the
mapping logical/physical schema for the context, and check that the table
physically exists on the schema accessed for this context.

ORA-00972 Identifier is too Long

There is a limit in the object identifier in Oracle (usually 30 characters). When
going over this limit, this error appears. A table created during the execution of
the mapping went over this limit. and caused this error (see the execution log for
more details).

Check in the topology for the oracle technology, that the maximum lengths for the
object names (tables and columns) correspond to your Oracle configuration.

ORA-01790 expression must have same datatype as corresponding
expression

You are trying to connect two different values that can not be implicitly converted
(in a mapping, a join...). Use the explicit conversion functions on these values.

Oracle Database 2-17

Troubleshooting

2-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Files

This chapter describes how to work with Files in Oracle Data Integrator.
This chapter includes the following sections:

s Section 3.1, "Introduction”

= Section 3.2, "Installation and Configuration”

= Section 3.3, "Setting up the Topology"

= Section 3.4, "Setting Up an Integration Project”

= Section 3.5, "Creating and Reverse-Engineering a File Model"

s Section 3.6, "Designing a Mapping"

3.1 Introduction

Oracle Data Integrator supports fixed or delimited files containing ASCII or EBCDIC
data.

3.1.1 Concepts

The File technology concepts map the Oracle Data Integrator concepts as follows: A
File server corresponds to an Oracle Data Integrator data server. In this File server, a
directory containing files corresponds to a physical schema. A group of flat files within
a directory corresponds to an Oracle Data Integrator model, in which each file
corresponds to a datastore. The fields in the files correspond to the datastore columns.

Oracle Data Integrator provides a built-in driver for Files and knowledge modules for
integrating Files using this driver, using the metadata declared in the File data model
and in the topology.

Most technologies also have specific features for interacting with flat files, such as
database loaders, utilities, and external tables. Oracle Data Integrator can also benefit
from these features by using technology-specific Knowledge Modules. In terms of
performance, it is most of the time recommended to use database utilities when
handling flat files.

Note that the File technology concerns flat files (fixed and delimited). XML files are
covered in Chapter 5, "XML Files".

3.1.2 Knowledge Modules

Oracle Data Integrator provides the knowledge modules (KM) listed in this section for
handling File data using the File driver.

Files 3-1

Installation and Configuration

Note that the SQL KMs listed in Table 3-1 are generic and can be used with any
database technology. Technology-specific KMs, using features such as loaders or
external tables, are listed in the corresponding technology chapter.

Table 3-1 Knowledge Modules to read from a File

Knowledge Module Description

LKM File to SQL Loads data from an ASCII or EBCDIC File to any ANSI SQL-92
compliant database used as a staging area.

IKM SQL to File Append Integrates data in a target file from any ANSI SQL-92 compliant
staging area in replace mode.

IKM File to File (Java) Integrates data in a target file from a source file using a Java
processing. Can take several source files and generates a log and a
bad file. See Section 3.6.2.2, "IKM File to File (Java)" for more
information.

3.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the File technology:

= System Requirements and Certifications
s Technology Specific Requirements

= Connectivity Requirements

3.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

3.2.2 Technology Specific Requirements

Some of the knowledge modules for File data use specific features of the database.
This section lists the requirements related to these features.

Database Utilities

Most database technologies have their own utilities for interacting with flat files. All
require that the database client software is accessible from the Agent that runs the
mapping that is using the utility. Some examples are:

s Oracle: SQL*Loader
= Microsoft SQL Server: bcp
» Teradata: FastLoad, MultiLoad, TPump, FastExport

You can benefit from these utilities in Oracle Data Integrator by using the
technology-specific knowledge modules. See the technology-specific chapter in this
guide for more information about the knowledge modules and the requirements for
using the database utilities.

3-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

Requirements for IKM File to File (Java)

The IKM File to File (Java) generates, compiles, and runs a Java program to process the
source files. In order to use this KM, a JDK is required.

3.2.3 Connectivity Requirements

This section lists the requirements for connecting to flat files.

JDBC Driver

Oracle Data Integrator includes a built-in driver for flat files. This driver is installed
with Oracle Data Integrator and does not require additional configuration.

3.3 Setting up the Topology
Setting up the topology consists in:
1. Creating a File Data Server

2. Creating a File Physical Schema

3.3.1 Creating a File Data Server

A File data server is a container for a set of file folders (each file folder corresponding
to a physical schema).

Oracle Data Integrator provides the default FILE_GENERIC data server. This data
server suits most of the needs. In most cases, it is not required to create a File data
server, and you only need to create a physical schema under the FILE_GENERIC data
server.

3.3.1.1 Creation of the Data Server

Create a data server for the File technology using the standard procedure, as described
in "Creating a Data Server" of the Developing Integration Projects with Oracle Data
Integrator. This section details only the fields required or specific for defining a File
data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator.
» User/Password: These fields are not used for File data servers.

2. In the JDBC tab, enter the following values:
s JDBC Driver: com. sunopsis.jdbc.driver.file.FileDriver

= JDBC URL:
jdbc:snps:dbfile?<property=value>&<property=value>&. ..

You can use in the URL the properties listed in Table 3-2.

Table 3-2 JDBC File Driver Properties

Property Value Description
DATA_CONTAINS_LINE_ TRUE|FALSE If set to true, when reading data, if a record
SEPARATOR contains a character (or sequence of

characters) that is set as a line separator, it
is not considered as a line break, but the
data is read on till the read 'row size'
number of characters.

Files 3-3

Setting up the Topology

Table 3-2 (Cont.) JDBC File Driver Properties

Property Value Description

ENCODING <encoding_code> File encoding. The list of supported
encoding is available at
http://java.sun.com/j2se/1.4.2/d
ocs/guide/intl/encoding.doc.html
. The default encoding value is TS08859_
1.

ERR_FILE_PATH empty File location path. This path is taken by the
File driver and any errors encountered by
driver in parsing the data is put into
<property value> + .error. The rows that
cause problem are put into <property
value> + .bad. So this actually causes
creation of two files, in case of any
problems.

MULTIBYTES_MODE 0, 1, or 2 0 is the default and indicates no special
handling for multibyte. The driver reads
file byte by byte

1 indicates that the file contains multibyte
strings. The driver reads multibytes file
character by character.

2 indicates that the file contains mixture of
multibyte characters and binary data. The
driver read multibytes file byte by byte for
BINARY columns and character by
character for other columns.

NO_PAD_DEL_NUMERIC TRUE |FALSE Restricts left-padding of numbers (integer,
float) with spaces to match the physical
length of the column. Default value is

FALSE.
TRUNC_FIXED_STRINGS TRUE | FALSE Truncates strings to the field size for fixed
files. Default value is FALSE.
TRUNC_DEL_STRINGS TRUE | FALSE Truncates strings to the field size for

delimited files. Default value is FALSE.

OPT TRUE | FALSE Optimizes file access on multiprocessor
machines for better performance. Using
this option on single processor machines
may actually decrease performance.
Default value is FALSE.

JDBC URL example:

jdbc: snps:dbfile?ENCODING=IS08859_1&TRUNC_FIXED_
STRINGS=FALSE&OPT=TRUE

3.3.2 Creating a File Physical Schema

Create a File physical schema using the standard procedure, as described in "Creating
a Physical Schema" in Administering Oracle Data Integrator.

In your physical schema, you must set a pair of directories:

s The Directory (Schema), where Oracle Data Integrator will look for the source and
target files and create error files for invalid records detected in the source files.

= A Directory (Work Schema), where Oracle Data Integrator may create temporary
files associated to the sources and targets contained in the Data Schema.

3-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering a File Model

Notes:

= Data and Work schemas each correspond to a directory. This
directory must be accessible to the component that will access the
files. The directory can be an absolute path
(m: /public/data/files) or relative to the runtime agent or
Studio startup directory (. . /demo/£files). It is strongly advised
to use a path that is independent from the execution location.

s In UNIXin particular, the agent must have read /write permission
on both these directories.

= Keep in mind that file paths are different in Windows than they
are in UNIX. Take the platform used by the agent into account
when setting up this information.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

3.4 Setting Up an Integration Project

Setting up a project using the File database follows the standard procedure. See
"Creating an Integration Project” of the Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started:

s LKM File to SQL
s IKM SQL to File Append
= IKM File to File (Java)

In addition to these knowledge modules, you can also import file knowledge modules
specific to the other technologies involved in your product.

3.5 Creating and Reverse-Engineering a File Model
This section contains the following topics:
» Create a File Model

= Reverse-engineer a File Model

3.5.1 Create a File Model

An File model is a set of datastores, corresponding to files stored in a directory. A
model is always based on a logical schema. In a given context, the logical schema
corresponds to one physical schema. The data schema of this physical schema is the
directory containing all the files (eventually in sub-directories) described in the model.

Create a File model using the standard procedure, as described in "Creating a Model"
of the Developing Integration Projects with Oracle Data Integrator.

Files 3-5

Creating and Reverse-Engineering a File Model

3.5.2 Reverse-engineer a File Model

Oracle Data Integrator provides specific methods for reverse-engineering files. File
database supports four types of reverse-engineering;:

Delimited Files Reverse-Engineering is performed per file datastore.
Fixed Files Reverse-engineering using the Wizard is performed per file datastore.

COBOL Copybook reverse-engineering, which is available for fixed files, if a
copybook describing the file is provided. It is performed per file datastore.

Customized Reverse-Engineering, which uses a RKM (Reverse Knowledge
Module) to obtain, from a Microsoft Excel spreadsheet, column definitions of each
file datastore within a model and automatically create the file datastores in batch
without manual input.

Note: The built-in file driver uses metadata from the Oracle Data
Integrator models (field data type or length, number of header rows,
etc.). Driver-specific tags are generated by Oracle Data Integrator and
passed to the driver along with regular SQL commands. These tags
control how the driver reads or writes the file.

Similarly, when Oracle Data Integrator uses database loaders and
utilities, it uses the model metadata to control these loaders and
utilities.

It is important to pay close attention to the file definition after a
reverse-engineering process, as discrepancy between the file definition
and file content is a source of issues at run-time.

3.5.2.1 Delimited Files Reverse-Engineering
To perform a delimited file reverse-engineering:

1.

In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

In the Definition tab, enter the following fields:
= Name: Name of this datastore

= Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the browse icon next to the field.

Go to the Files tab to describe the type of file. Set the fields as follows:
» File Format: Delimited

» Heading (Number of Lines): Enter the number of lines of the header. Note
that if there is a header, the first line of the header will be used by Oracle Data
Integrator to name the columns in the file.

= Select a Record Separator.

= Select or enter the character used as a Field Separator.

= Enter a Text Delimiter if your file uses one.

= Enter a Decimal Separator if your file contains decimals.
From the File main menu, select Save.

In the Datastore Editor, go to the Attributes tab.

3-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering a File Model

In the editor toolbar, click Reverse Engineer.

Verify the datatype and length for the reverse engineered attributes. Oracle Data
Integrator infers the fields datatypes and lengths from the file content, but may set
default values (for example 50 for the strings field length) or incorrect data types
in this process.

From the File main menu, select Save.

3.5.2.2 Fixed Files Reverse-engineering using the Wizard
Oracle Data Integrator provides a wizard to graphically define the columns of a fixed

file.

To reverse-engineer a fixed file using the wizard:

1.

10.
11.

In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

In the Definition Tab, enter the following fields:
= Name: Name of this datastore

= Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the browse icon next to the field.

Go to the Files tab to describe the type of file. Set the fields as follows:

» File Format: Fixed

s Header (Number of Lines): Enter the number of lines of the header.
m Select a Record Separator.

From the File main menu, select Save.

In the Datastore Editor, go to the Attributes tab.

In the editor toolbar, click Reverse Engineer.The Attributes Setup Wizard is
launched. The Attributes Setup Wizard displays the first records of your file.

Click on the ruler (above the file contents) to create markers delimiting the
attributes. You can right-click within the ruler to delete a marker.

Attributes are created with pre-generated names (C1, C2, and so on). You can edit
the attribute name by clicking in the attribute header line (below the ruler).

In the properties panel (on the right), you can edit all the parameters of the
selected attribute. You should set at least the Attribute Name, Datatype, and
Length for each attribute.

Click OK when the attributes definition is complete.

From the File main menu, select Save.

3.5.2.3 COBOL Copybook reverse-engineering

COBOL Copybook reverse-engineering allows you to retrieve a legacy file structure
from its description contained in a COBOL Copybook file.

To reverse-engineer a fixed file using a COBOL Copybook:

1.

In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

In the Definition Tab, enter the following fields:

s Name: Name of this datastore

Files 3-7

Creating and Reverse-Engineering a File Model

= Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the browse icon next to the field.

3. Go to the Files tab to describe the type of file. Set the fields as follows:

= File Format: Fixed

s Header (Number of Lines): Enter the number of lines of the header.
m Select a Record Separator.

From the File main menu, select Save.

In the Datastore Editor, go to the Attributes tab.

Create or open a File datastore that has a fixed format.

In the Datastore Editor, go to the Attributes tab.

In the toolbar menu, click Reverse Engineer COBOL CopyBook.

© ®» N o a &

In the Reverse Engineer Cobol CopyBook Dialog, enter the following fields:
= File: Location of the Copybook file

s Character set: Copybook file charset.

s Description format (EBCDIC | ASCII): Copybook file format

» Data format (EBCDIC | ASCITI): Data file format

10. Click OK.

The attributes described in the Copybook are reverse-engineered and appear in the
attributes list.

Note: If a field has a data type declared in the Copybook with no
corresponding datatype in Oracle Data Integrator File technology,
then this attribute will appear with no data type.

3.5.2.4 Customized Reverse-Engineering

In this reverse-engineering method, Oracle Data Integrator reads from a Microsoft
Excel spreadsheet containing column definitions of each file datastore within a model
and creates the file datastores in batch.

A sample file called file_repository.xls is supplied by ODI, typically under
/demo/excel sub-directory. Follow the specific format in the sample file to input
your datastore information.

The following steps assume that you have modified this file with the description of the
structure of your flat files.

It is recommended that this file shall be closed before the reverse engineering is
started.

To perform a customized reverse-engineering, perform the following steps:

1. Create an ODBC Datasource for the Excel Spreadsheet corresponding to the Excel
Spreadsheet containing the files description.

2. Define the Data Server, Physical and Logical Schema for the Microsoft Excel
Spreadsheet

3. Run the customized reverse-engineering using the RKM File from Excel RKM.

3-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering a File Model

Create an ODBC Datasource for the Excel Spreadsheet

1.

Launch the Microsoft ODBC Administrator.

Note that ODI running on 64-bit JRE will work with 64-bit ODBC only.

Add a System DSN (Data Source Name).

Select the Microsoft Excel Driver (*.xls, and *.xIsx etc.) as the data source driver.

Name the data source ODI_EXCEL_FILE_REPO and select the file
/demo/excel/file_repository.xls as the default workbook. Be sure to
select driver version accordingly. Example, "Excel 12.0" for ".xIsx" files.

Define the Data Server, Physical and Logical Schema for the Microsoft Excel
Spreadsheet

1.

In Topology Navigator, add a Microsoft Excel data server with the following
parameters:

s Name: EXCEL_FILE REPOSITORY

s JDBC Driver: sun. jdbc. odbc.JdbcOdbeDriver
s JDBCURL: jdbc:odbc:0DI_EXCEL_FILE_REPO
= Array Fetch Size: 0

Use default values for the rest of the parameters. From the File main menu, select
Save.

Click Test Connection to see if the data sever connects to the actual Excel file.

Add a physical schema to this data server. Leave the default values in the
Definition tab.

In the Context tab of the physical schema, click Add.

In the new line, select the context that will be used for reverse engineering and
enter in the logical schema column EXCEL_FILE_REPOSITORY. This logical
schema will be created automatically. Note that this name is mandatory.

From the File main menu, select Save.

Run the customized reverse-engineering

1.

In Designer Navigator, import the RKM File (FROM EXCEL) Knowledge Module
into your project.

Note: If the EXCEL_FILE REPOSITORY logical schema does not get
created before the time of import, the customization status of the
imported RKM will be "Modified by User". Upon the creation of
EXCEL_FILE_REPOSITORY, it will be visible as source command
schema under the corresponding RKM tasks.

Open an existing File model (or create a new one). Define the parameters as you
normally will for a File model. Note that the Technology is File, not Microsoft
Excel.

In the Reverse Engineer tab, set the following parameters:
= Select Customized

s Context: Reverse Context

Files 3-9

Designing a Mapping

= Knowledge Module: RKM File (FROM EXCEL)
4. In the toolbar menu, click Reverse Engineer.

5. You can follow the reverse-engineering process in the execution log.

Note:

» The mandatory Microsoft Excel schema, EXCEL_FILE_
REPOSITORY, is automatically used by RKM File (FROM EXCEL).
It is independent from an actual File model using RKM File
(FROM EXCEL).

m Refer to Section 8.7.2, "Common Problems and Solutions" for
information on mitigating common Excel-related ODBC
exceptions.

3.6 Designing a Mapping
You can use a file as a source or a target of a mapping, but NOT as a staging area.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM
for different situations concerning a File data server.

3.6.1 Loading Data From Files

Files can be used as a source of a mapping. The LKM choice in the Loading
Knowledge Module tab to load a File to the staging area is essential for the mapping
performance.

The LKM File to SQL uses the built-in file driver for loading data from a File database
to a staging area. In addition to this KM, you can also use KMs that are specific to the
technology of the staging area or target. Such KMs support technology-specific
optimizations and use methods such as loaders or external tables.

This knowledge module, as well as other KMs relying on the built-in driver, support
the following two features attached to the driver:

= Erroneous Records Handling

= Multi-Record Files Support

Erroneous Records Handling

Oracle Data Integrator built-in driver provides error handling at column level for the
File technology. When loading a File, Oracle Data Integrator performs several controls.
One of them verifies if the data in the file is consistent with the datastore definition. If
one value from the row is inconsistent with the column description, the On Error
option - on the Control tab of the Attribute Editor - defines the action to perform and
continues to verify the remaining rows. The On Error option can take the following
values:

= Reject Error: The row containing the error is moved to a .BAD file, and a reason of
the error is written to a .ERROR file.

The .BAD and .ERROR files are located in the same directory as the file being read
and are named after this file, with a .BAD and .ERROR extension.

s Null if error (inactive trace): The row is kept in the flow and the erroneous value
is replaced by null.

3-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

s Null if error (active trace): The row is kept in the flow, the erroneous value is
replaced by null, and an reason of the error is written to the .ERROR file.

Multi-Record Files Support

Oracle Data Integrator is able to handle files that contain multiple record formats. For
example, a file may contain records representing orders (these records have 5 columns)
and other records representing order lines (these records having 8 columns with
different datatypes).

The approach in Oracle Data Integrator consists in considering each specific record
format as a different datastore.

Example 3—1 Multi Record File

This example uses the multi record file orders. txt. It contains two different record
types: orders and order lines.

Order records have the following format:

REC_CODE, ORDER_ID, CUSTOMER_ID, ORDER_DATE
Order lines records have the following format
REC_CODE, ORDER_ID, LINE_ID, PRODUCT_ID, QTY
Order records are identified by REC_CODE=0ORD
Order lines are identified by REC_CODE=LIN

To handle multi record files as a source of a mapping:

1. Create a File Model using a logical schema that points to the directory containing
the source file.

2. Identify the different record formats and structures of the flat file. In Example 3-1
two record formats can be identified: one for the orders and one for the order lines.

3. For each record format identified, do the following;:
1. Create a datastore in the File Model for each type of record.
For Example 3-1 create two datastores.

2. In the Definition tab of the Datastore Editor, enter a unique name in the Name
field and enter the flat file name in the Resource Name field. Note that the
resource name is identical for all datastores of this model.

For Example 3-1 you can use ORDERS and ORDER_LINES as the name of your
datastores. Enter orders . txt in the Resource Name field for both datastores.

3. In the Files tab, select, depending on the format of your flat file, Fixed or
Delimited from the File Format list and specify the record and field
separators.

4. In the Attributes tab, enter the attribute definitions for this record type.

5. One or more attributes can be used to identify the record type. The record
code is the field value content that is used as distinguishing element to be
found in the file. The record code must be unique and allows files with several
record patterns to be processed. In the Record Codes field, you can specify
several values separated by the semicolon (;) character.

In the Attribute Editor, assign a record code for each record type in the Record
Codes field.

Files 3-11

Designing a Mapping

In Example 3-1, enter ORD in the Record Codes field of the CODE_REC
attribute of the ORDERS datastore and enter LIN in the Record Codes field of
the CODE_REC attribute of the ORDER_LINES datastore.

With such definition, when reading data from the ORDERS datastore, the file driver
will filter only those of the records where the first attribute contains the value ORD.
The same applies to the ORDER_LINES datastore (only the records with the first
attribute containing the value LIN will be returned).

3.6.2 Integrating Data in Files

Files can be used as a source and a target of a mapping. The data integration strategies
in Files concern loading from the staging area to Files. The IKM choice in the
Integration Knowledge Module tab determines the performances and possibilities for
integrating.

Oracle Data Integrator provides two Integration Knowledge Modules for integrating
File data:
s IKM SQL to File Append

= IKM File to File (Java)

3.6.2.1 IKM SQL to File Append

The IKM SQL to File Append uses the file driver for integrating data into a Files target
from a staging area in truncate-insert mode.

This KM has the following options:

= INSERT automatically attempts to insert data into the target datastore of the
mapping.

s CREATE_TARG_TABLE creates the target table.

s TRUNCATE deletes the content of the target file and creates it if it does not exist.

s GENERATE_HEADER creates the header row for a delimited file.

In addition to this KM, you can also use IKMs that are specific to the technology of the
staging area. Such KMs support technology-specific optimizations and use methods
such as loaders or external tables.

3.6.2.2 IKM File to File (Java)

The IKM File to File (Java) is the solution for handling File-to-File use cases. This IKM
optimizes the integration performance by generating a Java program to process the
files. It can process several source files when the datastore's resource name contains a
wildcard. This program is able to run the transformations using several threads.

The IKM File to File (Java) provides two KM options for logging and error handling
purposes: LOG_FILE and BAD_FILE.

This IKM supports flat delimited and fixed files where the fields can be optionally
enclosed by text delimiters. EBCDIC and XML formats are not supported.

Using the IKM File to File (Java)

To use the IKM File to File (Java), the staging area must be on a File data server. It is
the default configuration when creating a new mapping. The staging area is located on
the target, which is the File technology.

3-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

The IKM File to File (Java) supports mappings and filters. Mappings and filters are
always executed on the source or on the staging area, never on the target. When
defining the mapping expressions and filters use the Java syntax. Note that the
mapping expressions and filter conditions must be written in a single line with no
carriage return. The IKM supports the following standard Java datatypes: string,
numeric, and date and accepts any Java transformation on these datatypes.

The following are two examples of a mapping expression:
s FIC.COLl.toLower ()
m FIC.COL1+FIC.COL2

In the second example, if COL1 and COL2 are numeric, the IKM computes the sum of
both numbers otherwise it concatenates the two strings.

The following are two examples of a filter condition:

m FIC.COLl.equals("ORDER")

L] (FIC.COL1==FIC.COL2)&& (FIC.COL3 !=None)
The following objects and features are not supported:

s Joins

s Datasets

s Changed Data Capture (CDC)

= Flow Control

= Lookups

Processing Several Files

The IKM File to File (Java) is able to process several source files. To specify several
source files use wildcards in the datastore's resource name. You can use the
PROCESSED_FILE_PREFIX and PROCESSED_FILE_SUFFIX KM options to manage
the source files by renaming them once they are processed.

Using the Logging Features

Once the mapping is completed, Oracle Data Integrator generates the following output
files according to the KM options:

= Log file: This file contains information about the loading process, including names
of the source files, the target file, and the bad file, as well as a summary of the
values set for the major KM options, error messages (if any), statistic information
about the processed rows.

Example 3-2 Log File

Source File: /xxx/abc.dat
Target File: /yyy/data/target_file.dat
Bad File: /yyy/log/target_file.bad

Header Number to skip: 1

Errors allowed: 3

Insert option: APPEND (could be REPLACE)
Thread: 1

ERROR LINE 100: FIELD COL1 IS NOT A DATE
ERROR LINE 120: UNEXPECTED ERROR

Files 3-13

Designing a Mapping

32056 Rows susccessfully read
2000 Rows not loaded due to data filter
2 Rows not loaded due to data errors

30054 Rows successfully loaded

Bad file: This file logs each row that could not be processed. If no error occurs, the
bad file is empty.

KM Options
This KM has the following options:

JAVA_HOME indicates the full path to the bin directory of your JDK. If this
options is not set, the ODI Java Home will be used.

APPEND appends the transformed data to the target file if set to Yes. If set to No,
the file is overwritten.

DISCARDMAX indicates the maximum number of records that will be discarded
into the bad file. The mapping fails when the number of discarded records exceeds
the number specified in this option.

Note: Rollback is not supported. The records that have been inserted
remain.

MAX_NB_THREADS indicates the number of parallel threads used to process the
data.

LOG_FILE indicates the log file name. If this option is not set, the log file name
will be automatically generated and the log file will be written in the target work
schema.

BAD_FILE indicates the bad file name. If this option is not set, the bad file name
will be automatically generated and the bad file will be written in the target work
schema.

SOURCE_ENCODING indicates the charset encoding for the source files. Default
is the machine's default encoding.

TARGET_ENCODING indicates the charset encoding for the target file. Default is
the machine's default encoding.

REMOVE_TEMPORARY_OBJECTS removes the log and bad files if set to Yes.

PROCESSED_FILE_PREFIX indicates the prefix that will be added to the source
file name after processing.

PROCESSED_FILE_SUFFIX indicates the suffix that will be added to the source
file name after processing.

3-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

4

Generic SQL

This chapter describes how to work with technologies supporting the ANSI SQL-92
syntax in Oracle Data Integrator.

Note: This is a generic chapter. The information described in this
chapter can be applied to technologies supporting the ANSI SQL-92
syntax, including Oracle, Microsoft SQL Server, Sybase ASE, IBM DB2,
Teradata, PostgreSQL, MySQL, Derby and so forth.

Some of the ANSI SQL-92 compliant technologies are covered in a
separate chapter in this guide. Refer to the dedicated technology
chapter for specific information on how to leverage the ODI
optimizations and database utilities of the given technology.

This chapter includes the following sections:

s Section 4.1, "Introduction”

= Section 4.2, "Installation and Configuration”

= Section 4.3, "Setting up the Topology"

m Section 4.4, "Setting up an Integration Project"

= Section 4.5, "Creating and Reverse-Engineering a Model"
= Section 4.6, "Setting up Changed Data Capture"

= Section 4.7, "Setting up Data Quality"

m Section 4.8, "Designing a Mapping"

4.1 Introduction
Oracle Data Integrator supports ANSI SQL-92 standard compliant technologies.

4.1.1 Concepts

The mapping of the concepts that are used in ANSI SQL-92 standard compliant
technologies and the Oracle Data Integrator concepts are as follows: a data server in
Oracle Data Integrator corresponds to a data processing resource that stores and serves
data in the form of tables. Depending on the technology, this resource can be named
for example, database, instance, server and so forth. Within this resource, a
sub-division maps to an Oracle Data Integrator physical schema. This sub-division can
be named schema, database, catalog, library and so forth. A set of related objects

Generic SQL 4-1

Introduction

within one schema corresponds to a data model, and each table, view or synonym will
appear as an ODI datastore, with its attributes, columns, and constraints

4.1.2 Knowledge Modules

Oracle Data Integrator provides a wide range of Knowledge Modules for handling
data stored in ANSI SQL-92 standard compliant technologies. The Knowledge
Modules listed in Table 4-1 are generic SQL Knowledge Modules and apply to the
most popular ANSI SQL-92 standard compliant databases.

Oracle Data Integrator also provides specific Knowledge Modules for some particular
databases to leverage the specific utilities. Technology-specific KMs, using features
such as loaders or external tables, are listed in the corresponding technology chapter.

Table 4-1 Generic SQL Knowledge Modules

Knowledge Module Description

CKM SQL Checks data integrity against constraints defined on a Datastore. Rejects invalid
records in the error table created dynamically. Can be used for static controls as
well as for flow controls.

Consider using this KM if you plan to check data integrity on an ANSI SQL-92
compliant database. Use specific CKMs instead if available for your database.

IKM SQL Control Append Integrates data in an ANSI SQL-92 compliant target table in replace/append
mode. When flow data needs to be checked using a CKM, this IKM creates a
temporary staging table before invoking the CKM. Supports Flow Control.

Consider using this IKM if you plan to load your SQL compliant target table in
replace mode, with or without data integrity check.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL Incremental Update Integrates data in an ANSI SQL-92 compliant target table in incremental update
mode. This KM creates a temporary staging table to stage the data flow. It then
compares its content to the target table to identify the records to insert and the
records to update. It also allows performing data integrity check by invoking the
CKM. This KM is therefore not recommended for large volumes of data.
Supports Flow Control.

Consider using this KM if you plan to load your ANSI SQL-92 compliant target
table to insert missing records and to update existing ones. Use
technology-specific incremental update IKMs whenever possible as they are
more optimized for performance.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL Incremental Update Integrates data in any AINSI-SQL92 compliant target database in incremental

(row by row) update mode. This IKM processes the data row by row, updates existing rows,
and inserts non-existent rows. It isolates invalid data in the Error Table, which
can be recycled. When using this IKM with a journalized source table, the
deletions can be synchronized. Supports Flow Control.

IKM SQL to File Append Integrates data in a target file from an ANSI SQL-92 compliant staging area in
replace mode. Supports Flow Control.

Consider using this IKM if you plan to transform and export data to a target file.
If your source datastores are located on the same data server, we recommend
using this data server as staging area to avoid extra loading phases (LKMs)

To use this IKM, the staging area must be different from the target.

IKM SQL to SQL Control Integrates data into a ANSI-SQL92 target database from any ANSI-SQL92
Append compliant staging area. Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the mapping's staging area is set to the logical schema of
the source tables or a third schema.

4-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Introduction

Table 4-1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module Description

IKM SQL to SQL Incremental Integrates data from any AINSI-SQL92 compliant database into any

Update AINSI-SQL92 compliant database target table in incremental update mode.
Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the mapping's staging area is set to the logical schema of
the source tables or a third schema.

IKM SQL Insert Integrates data into an ANSI-SQL92 target table in append mode. The data is
loaded directly in the target table with a single INSERT SQL statement. Built-in
KM.

IKM SQL Update Integrates data into an ANSI-SQL92 target table in incremental update mode.

The data is loaded directly into the target table with a single UPDATE SQL
statement. Built-in KM.

IKM SQL Merge Integrates data into an ANSI-SQL92 target table in incremental update mode.
The data is loaded directly into the target table with a single MERGE SQL
statement. Built-in KM.

LKM File to SQL Loads data from an ASCII or EBCDIC File to an ANSI SQL-92 compliant
database used as a staging area. This LKM uses the Agent to read selected data
from the source file and write the result in the staging temporary table created
dynamically.

Consider using this LKM if one of your source datastores is an ASCII or EBCDIC
file. Use technology-specific LKMs for your target staging area whenever
possible as they are more optimized for performance. For example, if you are
loading to an Oracle database, use the LKM File to Oracle (SQLLDR) or the LKM
File to Oracle (EXTERNAL TABLE) instead.

LKM SQL to File Loads and integrates data into a target flat file. This LKM ignores the settings in
the IKM. Built-in KM.
LKM SQL to SQL Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92

compliant staging area. This LKM uses the Agent to read selected data from the
source database and write the result into the staging temporary table created
dynamically.

Consider using this LKM if your source datastores are located on a SQL
compliant database different from your staging area. Use technology-specific
LKMs for your source and target staging area whenever possible as they are
more optimized for performance. For example, if you are loading from an Oracle
source server to an Oracle staging area, use the LKM Oracle to Oracle (dblink)
instead.

LKM SQL to SQL (Built-in) Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92
compliant staging area. This LKM uses the Agent to read selected data from the
source database and write the result into the staging temporary table created
dynamically. The extract options specified in the source execution unit will be
used to generate source query. Built-in KM.

Generic SQL 4-3

Introduction

Table 4-1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module
LKM SQL to SQL (row by row)

LKM SQL to SQL (JYTHON)

LKM SQL Multi-Connect
RKM SQL (JYTHON)

Description

Loads data from any ISO-92 database to any ISO-92 compliant target database.
This LKM uses a Jython script to read selected data from the database and write
the result into the target temporary table, which is created dynamically. It loads
data from a staging area to a target and indicates the state of each processed row.

The following options are used for the logging mechanism:
= LOG_LEVEL: This option is used to set the granularity of the data logged.
The following log levels can be set:

= 0:nothing to log

= l:any JDBC action will be indicated such as
'select action’, 'delete action’, 'insert action'...

s 2:in addition to level 1, all records that
generate an error will be logged

= 3:in addition to level 2, all processed records
will be logged

= LOG_FILE_NAME: Full path to the log file used. The directory into which
this log file is written must be created before executing the mapping.

= MAX_ERRORS: Specify the maximum number of errors.

The LKM process stops when the maximum number of errors specified in
this option is reached.

This Knowledge Module is NOT RECOMMENDED when using LARGE
VOLUMES. Other specific modules using Bulk utilities (SQL*LOADER, BULK
INSERT...) or direct links (DBLINKS, Linked Servers...) are usually more efficient.

Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92
compliant staging area. This LKM uses Jython scripting to read selected data
from the source database and write the result into the staging temporary table
created dynamically. This LKM allows you to modify the default JDBC data type
binding between the source database and the target staging area by editing the
underlying Jython code provided.

Consider using this LKM if your source datastores are located on an ANSI
SQL-92 compliant database different from your staging area and if you plan to
specify your own data type binding method.

Use technology-specific LKMs for your source and target staging area whenever
possible as they are more optimized for performance. For example, if you are
loading from an Oracle source server to an Oracle staging area, use the LKM
Oracle to Oracle (dblink) instead.

Enables the use of multi-connect IKM for target table. Built-in IKM.

Retrieves JDBC metadata for tables, views, system tables and columns from an
ANSI SQL-92 compliant database. This RKM may be used to specify your own
strategy to convert JDBC metadata into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the standard JDBC
reverse-engineering process due to some specificities of your JDBC driver. This
RKM allows you to edit the underlying Jython code to make it match the
specificities of your JDBC driver.

4-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

Table 4-1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module Description

SKM SQL Generates data access Web services for ANSI SQL-92 compliant databases. Data
access services include data manipulation operations such as adding, removing,
updating or filtering records as well as changed data capture operations such as
retrieving changed data. Data manipulation operations are subject to integrity
check as defined by the constraints of your datastores.

Consider using this SKM if you plan to generate and deploy data manipulation
or changed data capture web services to your Service Oriented Architecture
infrastructure. Use specific SKMs instead if available for your database

4.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
generic SQL Knowledge Modules:

= System Requirements and Certifications
s Technology-Specific Requirements

= Connectivity Requirements

4.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

4.2.2 Technology-Specific Requirements

See the Technology Specific Requirements section of the specific technology chapter
for more information.

If your technology does not have a dedicated chapter in this guide, see the
documentation of your technology for any technology-specific requirements.

4.2.3 Connectivity Requirements

See the Connectivity Requirements section of the specific technology chapter for more
information.

The Java Database Connectivity (JDBC) is the standard for connecting to a database
and other data sources. If your technology does not have a dedicated chapter in this
guide, see the documentation of your technology for the JDBC configuration
information, including the required driver files, the driver name, and the JDBC URL
format.

4.3 Setting up the Topology
Setting up the Topology consists in:

1. Creating a Data Server

Generic SQL 4-5

Setting up an Integration Project

2. Creating a Physical Schema

4.3.1 Creating a Data Server

Create a data server under the ANSI SQL-92 compliant technology listed in the
Physical Architecture accordion using the standard procedure, as described in
"Creating a Data Server" of the Developing Integration Projects with Oracle Data
Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information. For other technologies, see the documentation of your technology for the
JDBC driver name and JDBC URL format.

4.3.2 Creating a Physical Schema

Create a Physical Schema using the standard procedure, as described in "Creating a
Physical Schema" in Administering Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

4.4 Setting up an Integration Project

Setting up a Project using an ANSI SQL-92 compliant database follows the standard
procedure. See "Creating an Integration Project” of the Developing Integration Projects
with Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started
depend on the corresponding technology. If your technology has a dedicated chapter
in this guide, see this chapter for more information.

4.5 Creating and Reverse-Engineering a Model
This section contains the following topics:
s Create a Data Model

= Reverse-engineer a Data Model

4.5.1 Create a Data Model

Create a data model based on the ANSI SQL-92 compliant technology using the
standard procedure, as described in "Creating a Model" of the Developing Integration
Projects with Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

4.5.2 Reverse-engineer a Data Model

ANSI SQL-92 standard compliant technologies support both types of
reverse-engineering, the Standard reverse-engineering, which uses only the abilities of
the JDBC driver, and the Customized reverse-engineering, which uses a RKM which
provides logging features.

In most of the cases, consider using the standard JDBC reverse engineering instead of
the RKM SQL (Jython). However, you can use this RKM as a starter if you plan to
enhance it by adding your own metadata reverse-engineering behavior.

4-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering on ANSI SQL-92 technologies use the
usual procedure, as described in "Reverse-engineering a Model" of the Developing
Integration Projects with Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on ANSI SQL-92 technologies with a
RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the
Developing Integration Projects with Oracle Data Integrator. This section details only the
fields specific to the usage of the RKM SQL (Jython):

This RKM provides two logging options:
s USE_LOG: Set to Yes if you want the reverse-engineering to process log details in a
log file.

s LOG_FILE_NAME: Enter the name for the log file. Note that the directory into
which this log file is written must be created before executing the mapping.

4.6 Setting up Changed Data Capture

Oracle Data Integrator does not provide journalizing Knowledge Modules for ANSI
SQL-92 compliant technologies.

4.7 Setting up Data Quality

Oracle Data Integrator provides the CKM SQL for checking data integrity against
constraints defined on an ANSI SQL-92 compliant table. See "Flow Control and Static
Control" in Developing Integration Projects with Oracle Data Integrator for details.

4.8 Designing a Mapping

You can use ANSI SQL-92 compliant technologies as a source, staging area or a target
of a mapping. It is also possible to create ETL-style mappings based on an ANSI
SQL-92 compliant technology.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM
for different situations concerning a data server based on an ANSI SQL-92 compliant
technology.

4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology

ANSI SQL-92 compliant technologies can be used as a source, target or staging area of
a mapping. The LKM choice in the Loading Knowledge Module tab to load data
between an ANSI SQL-92 compliant technology and another type of data server is
essential for the performance of a mapping.

4.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology

The generic KMs that are listed in Table 4-2 implement methods for loading data from
an ANSI SQL-92 compliant database to a target or staging area database. In addition to
these KMS, Oracle Data Integrator provides KMs specific to the target or staging area

Generic SQL 4-7

Designing a Mapping

database. If your technology has a dedicated chapter in this guide, see this chapter for

more information.

Table 4-2 KMs to Load from an ANSI SQL-92 Compliant Technology

Source or Staging Area

KM

Notes

ANSI SQL-92 compliant
technology

ANSI SQL-92 compliant
technology

ANSI SQL-92 compliant
technology

ANSI SQL-92 compliant
technology

ANSI SQL-92 compliant
technology

LKM SQL to SQL

LKM SQL to SQL
(Built-in)

LKM SQL to SQL (Jython)

LKM SQL to SQL (row by
row)

LKM SQL to File

Standard KM for SQL-92 to SQL-92
transfers.

Built-in KM for SQL-92 to SQL-92
transfers through the agent using
JDBC.

This LKM uses Jython scripting to
read selected data from the source
database and write the result into
the staging temporary table created
dynamically. This LKM allows you
to modify the default JDBC data
types binding between the source
database and the target staging area
by editing the underlying Jython
code provided.

This LKM uses row by row logging.

Built-in KM for SQL-92 to flat file
transfers.

4.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology

The generic KMs that are listed in Table 4-3 implement methods for loading data from
a source or staging area into an ANSI SQL-92 compliant database. In addition to these
KMs, Oracle Data Integrator provides KMs specific to the source or staging area

database. If your technology has a dedicated chapter in this guide, see this chapter for

more information.

Table 4-3 KMs to Load to an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

File LKM File to SQL Standard KM

ANSI SQL-92 compliant LKM SQL to SQL Standard KM

technology

ANSI SQL-92 compliant LKM SQL to SQL Built-in KM for SQL-92 to SQL-92

technology (Built-in) transfers through the agent using
JDBC.

ANSI SQL-92 compliant LKM SQL to SQL (Jython) This LKM uses Jython scripting to

technology read selected data from the source
database and write the result into
the staging temporary table created
dynamically. This LKM allows you
to modify the default JDBC data
types binding between the source
database and the target staging area
by editing the underlying Jython
code provided.

ANSI SQL-92 compliant LKM SQL to SQL (row by This LKM uses row by row logging.

technology row)

4-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology

An ANSI SQL-92 compliant technology can be used as a target of a mapping. The IKM
choice in the Integration Knowledge Module tab determines the performance and
possibilities for integrating.

The KMs listed in Table 4—4 implement methods for integrating data into an ANSI
SQL-92 compliant target. In addition to these KMs, Oracle Data Integrator provides
KM s specific to the source or staging area database. See the corresponding technology
chapter for more information.

Table 4-4 KMs to Integrate Data in an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant IKM SQL Control Append
technology

Uses Bulk data movement inside
data server. Supports Flow
Control.

ANSI SQL-92 compliant
technology

IKM SQL Incremental Update Uses Bulk data movement inside
data server. Supports Flow
Control.

ANSI SQL-92 compliant
technology

IKM SQL Incremental Update Uses Bulk data movement inside
(row by row) data server, processes data row by
row. Supports Flow Control.

ANSI SQL-92 compliant IKM SQL Insert Uses SQL INSERT statement for
technology data movement. Built-in KM.
ANSI SQL-92 compliant IKM SQL Update Uses SQL UPDATE statement for
technology data movement. Built-in KM.
ANSI SQL-92 compliant IKM SQL Merge Uses SQL MERGE statement for
technology data movement. Built-in KM.
ANSI SQL-92 compliant ~ IKM SQL to File Append Uses agent for data movement.
technology Supports Flow Control.

ANSI SQL-92 compliant IKM SQL to SQL Incremental Uses agent or JYTHON for data
technology Update movement. Supports Flow Control.
ANSI SQL-92 compliant IKM SQL to SQL Control Uses agent for control append
technology Append strategies. Supports Flow Control.

4.8.3 Designing an ETL-Style Mapping

See "Creating a Mapping" in the Developing Integration Projects with Oracle Data
Integrator for generic information on how to design mappings. This section describes
how to design an ETL-style mapping where the staging area and target are ANSI
SQL-92 compliant.

In an ETL-style mapping, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from an
ANSI SQL-92 compliant staging area to an ANSI SQL-92 compliant target:

s Using a Multi-connection IKM
s Using a LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.
Using a Multi-connection IKM

A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers.

Generic SQL 4-9

Designing a Mapping

Oracle Data Integrator provides the following multi-connection IKMs for ANSI
SQL-92 compliant technologies: IKM SQL to SQL Incremental Update and IKM SQL to
SQL Control Append.

See Table 4-5 for more information on when to use a multi-connection IKM.
To use a multi-connection IKM in an ETL-style mapping;:

1. Create a mapping with an ANSI SQL-92 compliant staging area and target using
the standard procedure as described in "Creating a Mapping" in the Developing
Integration Projects with Oracle Data Integrator. This section describes only the
ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables
or a third schema. See "Configuring Execution Locations" in the Developing
Integration Projects with Oracle Data Integrator for information about how to change
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s)
to the staging area. See Table 4-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property
Inspector opens for this object.

In the Integration Knowledge Module, select an ETL multi-connection IKM to load
the data from the staging area to the target. See Table 4-5 to determine the IKM
you can use.

Note the following when setting the KM options:
s For IKM SQL to SQL Incremental Update

= If you do not want to create any tables on the target system, set FLOW_
CONTROL=false and FLOW_TABLE_LOCATION=STAGING.

Please note that this will lead to row-by-row processing and therefore
significantly lower performance.

s If you set the options FLOW_CONTROL or STATIC_CONTROL to true,
select a CKM in the Check Knowledge Module tab. Note that if FLOW_
CONTROL is set to true, the flow table is created on the target, regardless of
the value of FLOW_TABLE_LOCATION.

s The FLOW_TABLE_LOCATION option can take the following values:

Value Description Comment

TARGET Objects are created on the Default value.
target.

STAGING Objects are created only on Cannot be used with flow control. Leads to
the staging area, not on the row-by-row processing and therefore loss of
target. performance.

NONE No objects are created on Cannot be used with flow control. Leads to
staging area nor target. row-by-row processing and therefore loss of

performance. Requires to read source data
twice in case of journalized data sources

4-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Using a LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to
load the flow table from the staging area to the target. The mono-connection IKM is
used to integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source, staging area, and target of an ETL-style mapping.

See Table 4-5 for more information on when to use the combination of a standard LKM
and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI SQL-92 compliant staging area and target using
the standard procedure as described in "Creating a Mapping" in the Developing
Integration Projects with Oracle Data Integrator. This section describes only the
ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables
or a third schema. See "Configuring Execution Locations" in the Developing
Integration Projects with Oracle Data Integrator for information about how to change
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s)
to the staging area. See Table 4-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area. The Property Inspector opens for this
object.

7. Inthe Loading Knowledge Module tab, select an LKM to load from the staging
area to the target. See Table 4-5 to determine the LKM you can use.

8. Optionally, modify the options.
9. Select the Target by clicking its title. The Property Inspector opens for this object.

10. In the Integration Knowledge Module tab, select a standard mono-connection IKM
to update the target. SeeTable 4-5 to determine the IKM you can use.

Generic SQL 4-11

Designing a Mapping

Table 4-5 KM Guidelines for ETL-Style Mappings based on an ANSI SQL-92 standard compliant

technology

Source Staging Area

Target

Exporting
LKM IKM KM Strategy

Comment

ANSI ANSI SQL-92
SQL-92 standard
standard compliant
compliant database

ANSI ANSI SQL-92
SQL-92 standard
standard compliant
compliant database

ANSI ANSI SQL-92
SQL-92 standard
standard compliant
compliant database

ANSI
SQL-92
standard
complia
nt
database

ANSI
SQL-92
standard
complia
nt
database

ANSI
SQL-92
standard
complia
nt
database

NA IKM SQL to SQL Multi-connect
Incremental Update ion IKM

NA IKM SQL to SQL Multi-connect
Control Append ion IKM

any standard ~ IKM SQL Incremental Mono-connec
KM loading Update tion IKM
from an ANSI

SQL-92

standard

compliant

technology to

an ANSI

SQL-92

standard

compliant

technology

Allows an
incremental
update strategy
with no
temporary
target-side
objects. Use this
KM if it is not
possible to create
temporary
objects in the
target server.

The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.

Supports flow
and static control

Use this KM
strategy to
perform control
append.

Supports flow
and static
control.

Allows an
incremental
update strategy

4-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

O

XML Files

This chapter describes how to work with XML files in Oracle Data Integrator.
This chapter includes the following sections:

s Section 5.1, "Introduction”

= Section 5.2, "Installation and Configuration”

= Section 5.3, "Setting up the Topology"

= Section 5.4, "Setting Up an Integration Project”

= Section 5.5, "Creating and Reverse-Engineering a XML File"

s Section 5.6, "Designing a Mapping"

» Section 5.7, "Troubleshooting"

5.1 Introduction

Oracle Data Integrator supports XML files integration through the Oracle Data
Integrator Driver for XML.

5.1.1 Concepts

The XML concepts map the Oracle Data Integrator concepts as follows: An XML file
corresponds to a data server in Oracle Data Integrator. Within this data server, a single
schema maps the content of the XML file.

The Oracle Data Integrator Driver for XML (XML driver) loads the hierarchical
structure of the XML file into a relational schema. This relational schema is a set of
tables located in the schema that can be queried or modified using SQL. The XML
driver is also able to unload the relational schema back in the XML file.

The relational schema is reverse-engineered as a data model in ODI, with tables,
columns, and constraints. This model is used like a normal relational data model in
ODI. If the modified data within the relational schema needs to be written back to the
XML file, the XML driver provides the capability to synchronize the relational schema
into the file.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more
information on this driver.

XML Files 5-1

Installation and Configuration

5.1.2 Knowledge Modules

Oracle Data Integrator provides the IKM XML Control Append for handling XML
data. This Knowledge Module is a specific XML Knowledge Module. It has a specific
option to synchronize the data from the relational schema to the file.

In addition to this KM, you can also use an XML data server as any SQL data server.
XML data servers support both the technology-specific KMs sourcing or targeting SQL
data servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the
technology chapters for more information on these KMs.

5.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
XML Knowledge Module:

= System Requirements
s Technologic Specific Requirements

s Connectivity Requirements

5.2.1 System Requirements

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

5.2.2 Technologic Specific Requirements

There are no technology-specific requirements for using XML Files in Oracle Data
Integrator.

5.2.3 Connectivity Requirements

This section lists the requirements for connecting to XML database.

Oracle Data Integrator Driver for XML

XML files are accessed through the Oracle Data Integrator Driver for XML. This JDBC
driver is installed with Oracle Data Integrator and requires no other installed
component or configuration.

You must ask the system administrator for the following connection information:
» The location of the DTD or XSD file associated with your XML file
» The location of the XML file

5.3 Setting up the Topology

Setting up the topology consists in:
1. Creating an XML Data Server

5-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

2.

Creating a Physical Schema for XML

5.3.1 Creating an XML Data Server

An XML data server corresponds to one XML file that is accessible to Oracle Data
Integrator.

5.3.1.1 Creation of the Data Server

Create a data server for the XML technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
File data server:

1.

In the Definition tab:

= Name: Name of the data server that will appear in Oracle Data Integrator.

» User/Password: These fields are not used for XML data servers.

In the JDBC tab, enter the values according to the driver used:

s JDBC Driver: com. sunopsis.jdbc.driver.xml.SnpsXmlDriver

s JDBCURL: jdbc:snps:xml? [property=value&property=value. . .]

Table 5-1 lists the key properties of the Oracle Data Integrator Driver for XML.
These properties can be specified in the JDBC URL.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for a detailed
description of these properties and for a comprehensive list of all properties.

Table 5-1 JDBC Driver Properties

Property Value Notes

f

re

ro

<XML File location> XML file name. Use slash "/" in the path name instead of
back slash "\". It is possible to use an HTTP, FTP or File
URL to locate the file. Files located by URL are read-only.

<DTD/XSD File Description file: This file may be a DTD or XSD file. It is
location> possible to use an HTTP, FTP or File URL to locate the
file. Files located by URL are read-only.

Note that when no DTD or XSD file is present, the
relational schema is built using only the XML file
content. It is not recommended to reverse-engineer the
data model from such a structure as one XML file
instance may not contain all the possible elements
described in the DTD or XSD, and data model may be
incomplete.

<Root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This property can be
used for reverse-engineering for example a specific
message definition from a WSDL file, or when several
possible root elements exist in a XSD file.

true | false If true, the XML file is opened in read only mode.

<schema name> Name of the relational schema where the XML file will
be loaded. If this property is missing, a schema named
after the five first letters of the XML file name will
automatically be created.

XML Files 5-3

Setting Up an Integration Project

Table 5-1 (Cont.) JDBC Driver Properties

Property Value Notes

cs true | false Load the XML file in case sensitive or insensitive mode.
For case insensitive mode, all element names in the DTD
file should be distinct (For example: Abc and abc in the
same file will result in name collisions).

The following examples illustrate these properties:

Connects to the PROD20100125_001 .xm1 file described by products.xsdin
the PRODUCTS schema.

jdbc:snps:xml?f=/xml/PROD20100125_001.xml&d=/xml/products.xsd&s=PRODUCTS
Connects in read-only mode to the staff_internal.xml file described by
staff_internal.dtd inread-only mode. The schema name will be staff.

jdbc:snps:xml?f=/demo/xml/staff_internal.xml&d=/demo/xml/staff_
internal .dtd&ro=true&s=staff

5.3.2 Creating a Physical Schema for XML

Create an XML physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for
both the Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

5.4 Setting Up an Integration Project

Setting up a Project using the XML database follows the standard procedure. See
"Creating an Integration Project” of the Developing Integration Projects with Oracle Data
Integrator.

The recommended knowledge modules to import into your project for getting started
with XML are the following:

= LKM SQL to SQL
= LKM File to SQL
= IKM XML Control Append

5.5 Creating and Reverse-Engineering a XML File

This section contains the following topics:
s Create an XML Model
= Reverse-Engineering an XML Model

5.5.1 Create an XML Model

An XML file model groups a set of datastores. Each datastore typically represents an
element in the XML file.

5-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Create an XML Model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator. Select the XML
technology and the XML logical schema created when configuring the topology.

5.5.2 Reverse-Engineering an XML Model

XML supports standard reverse-engineering, which uses only the abilities of the XML
driver.

It is recommended to reference a DTD or XSD file in the dtd or d parameters of the
URL to reverse-engineer the structure from a generic description of the XML file
structure. Reverse-engineering can use an XML instance file if no XSD or DTD is
available. In this case, the relational schema structure will be inferred from the data
contained in the XML file.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering on XML use the usual procedure, as
described in "Reverse-engineering a Model" of the Developing Integration Projects with
Oracle Data Integrator.

The standard reverse-engineering process will automatically reverse-engineer the table
from the relational schema generated by the XML driver. Note that these tables
automatically include:

= Primary keys (PK columns) to preserve parent-child elements relationships

= Foreign keys (FK columns) to preserve parent-child elements relationships

s Order identifier (ORDER columns) to preserve the order of elements in the XML
file

These extra columns enable the mapping of the hierarchical XML structure into the
relational schema. See XML to SQL Mapping in the Appendix B, "Oracle Data
Integrator Driver for XML Reference" for more information.

5.6 Designing a Mapping
You can use XML as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning an XML data server.

5.6.1 Notes about XML Mappings

Read carefully these notes before working with XML in mappings.

5.6.1.1 Targeting an XML Structure

When using a datastore of an XML model as a target of a mapping, you must make
sure to load the driver-generated columns that are used for preserving the parent-child
relationships and the order in the XML hierarchy. For example, if filling records for the
region element into an XML structure as shown in Example 5-1, that correspond to a
REGION table in the relational schema, you should load the columns REGION_ID and
REGION_NAME of the REGION table. These two columns correspond to XML
attributes.

XML Files 5-5

Designing a Mapping

Example 5-1 XML Structure

<country COUNTRY_ID="6" COUNTRY_NAME="Australia">
<region REGION_ID="72" REGION_NAME="Queensland">
</country>

In Example 5-1 you must also load the following additional columns that are
automatically created by the XML Driver in the REGION table:

= REGIONPK: This column enables you to identify each <region> element.

= REGIONORDER: This column enables you to order the <region> elements in
the XML file (records are not ordered in a relational schema, whereas XML
elements are ordered).

s COUNTRYFK: This columns enables you to put the <region> element in
relation with the <country> parent element. This value is equal to the
COUNTRY.COUNTRYPK value for the Australia record in the COUNTRY table.

5.6.1.2 Synchronizing XML File and Schema

To ensure a perfect synchronization of the data in an XML file and the data in the XML
schema, the following commands have to be called:

= Before using the tables of an XML model, either to read or update data, it is
recommended that you use the SYNCHRONIZE FROM FILE command on the
XML logical schema. This operation reloads the XML hierarchical data in the
relational XML schema. The schema is loaded in the built-in or external database
storage when first accessed. Subsequent changes made to the file are not
automatically synchronized into the schema unless you issue this command.

= After performing changes in the relational schema, you must unload this schema
into the XML hierarchical data by calling the SYNCHRONIZE ALL or
SYNCHRONIZE FROM DATABASE commands on the XML Logical Schema. The
IKM XML Control Append implements this synchronize command.

These commands must be executed in procedures in the packages before (and after)
the mappings and procedures manipulating the XML schema.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more
information on these commands.

5.6.1.3 Handling Large XML Files
Large XML files can be handled with high performance with Oracle Data Integrator.

The default driver configuration stores the relational schema in a built-in engine in
memory. It is recommended to consider the use of external database storage for
handling large XML files.

See Section B.2.3.1, "Schema Storage" for more information on these commands.

5.6.2 Loading Data from and to XML

An XML file can be used as a mapping's source or target. The LKM choice in the
Loading Knowledge Module tab that is used to load data between XML files and other
types of data servers is essential for the performance of the mapping.

5-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

5.6.2.1 Loading Data from an XML Schema

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from an XML database to a target or staging area database.

Table 5-2 lists some examples of KMs that you can use to load from an XML source to
a staging area:

Table 5-2 KMs to Load from XML to a Staging Area

Staging Area KM Notes

Microsoft SQL LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Server

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

All LKM SQL to SQL Generic KM to load data between

an ANSI SQL-92 source and an
ANSI SQL-92 staging area.

5.6.2.2 Loading Data to an XML Schema

It is not advised to use an XML schema as a staging area, except if XML is the target of
the mapping and you wish to use the target as a staging area. In this case, it might be
required to load data to an XML schema.

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a source or staging area into an XML schema.

Table 5-3 lists some examples of KMs that you can use to load from a source to an
XML staging area.

Table 5-3 KMs to Load to an XML Schema

Source KM Notes

File LKM File to SQL Generic KM to load a file in a ANSI
SQL-92 staging area.

All LKM SQL to SQL Generic KM to load data between an

ANSI SQL-92 source and an ANSI
SQL-92 staging area.

5.6.3 Integrating Data in XML

XML can be used as a target of a mapping. The data integration strategies in XML
concern loading from the staging area to XML. The IKM choice in the Integration
Knowledge Module tab determines the performances and possibilities for integrating.

The IKM XML Control Append integrates data into the XML schema and has an
option to synchronize the data to the file. In addition to this KM, you can also use the
Generic SQL KMs or the KMs specific to the other technology involved. Note that if
using generic or technology-specific KMs, you must manually perform the
synchronize operation to write the changes made in the schema to the XML file.

Table 54 lists some examples of KMs that you can use to integrate data:
= From a staging area to an XML target

s From an XML staging area to an XML target. Note that in this case the staging area
is on the XML target.

XML Files 5-7

Troubleshooting

Table 5-4 KMs to Integrate Data in an XML File

Mode Staging Area KM Notes

Update XML IKM SQL Incremental Update Generic KM
Append XML IKM SQL Control Append Generic KM
Append All RDBMS IKM SQL to SQL Append Generic KM

5.7 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using XML in Oracle Data Integrator. It contains the following topics:

s Detect the Errors Coming from XML

s Common Errors

5.7.1 Detect the Errors Coming from XML

Errors appear often in Oracle Data Integrator in the following way:

java.sqgl.SQLException: No suitable driver
at ...
at ...

the java.sqgl.SQLExceptioncode simply indicates that a query was made
through the JDBC driver, which has returned an error. This error is frequently a
database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
XML driver documentation. If it contains a specific error code, like here, the error can
be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the task in error.

5.7.2 Common Errors

This section describes the most common errors with XML along with the principal
causes. It contains the following topics:

m No suitable driver
The JDBC URL is incorrect. Check that the URL syntax is valid.

m File <XML file> is already locked by another instance of the
XML driver.

The XML file is locked by another user/application. Close all application that
might be using the XML file. If such an application has crashed, then remove the
Ick file remaining in the XML file's directory.

m The DTD file "xxxxxxx.dtd" doesn't exist

This exception may occur when trying to load an XML file by the command
LOAD FILE. The error message can have two causes:

» The path of the DTD file is incorrect.

5-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Troubleshooting

s The corresponding XML file was already opened by another schema (during
connection for instance).

Table not found: S0002 Table not found: <table name> in
statement [<SQL statement>]

The table you are trying to access does not exist in the schema.

Column not found: S0022 Column not found: <column name> in
statement [<SQL statement>]

The column you are trying to access does not exist in the tables specified in the
statement.

XML Files 5-9

Troubleshooting

5-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6

Complex Files

This chapter describes how to work with Complex Files in Oracle Data Integrator.
This chapter includes the following sections:

s Section 6.1, "Introduction”

= Section 6.2, "Installation and Configuration”

= Section 6.3, "Setting up the Topology"

= Section 6.4, "Setting Up an Integration Project”

= Section 6.5, "Creating and Reverse-Engineering a Complex File Model"

= Section 6.6, "Designing a Mapping"

6.1 Introduction

Oracle Data Integrator supports several files types. This chapter describes how to
work with the Complex (or native) File format. See Chapter 3, "Files" for information
about simple fixed or delimited files containing ASCII or EBCDIC data.

For complex files it is possible to build a Native Schema description file that describes
the file structure. Using this Native Schema (nXSD) description and the Oracle Data
Integrator Driver for Complex Files, Oracle Data Integrator is able to reverse-engineer,
read and write information from complex files.

See "Native Format Builder Wizard" in the User’s Guide for Technology Adapters for more
information on the Native Schema format, and Appendix C, "Oracle Data Integrator
Driver for Complex Files Reference" for reference information on the Complex File
driver.

6.1.1 Concepts

The Oracle Data Integrator Driver for Complex Files (Complex File driver) converts native
format to a relational structure and exposes this relational structure as a data model in
Oracle Data Integrator.

The Complex File driver translates internally the native file into an XML structure, as
defined in the Native Schema (nXSD) description and from this XML file it generates a
relational schema that is consumed by Oracle Data Integrator. The overall mechanism
is shown in Figure 6-1.

Complex Files 6-1

Installation and Configuration

Figure 6—1 Complex File Driver Process

[Native File Je——] xmL (ntemal) J———| "0l .['oracle Data Integrator

Most concepts and processes that are used for Complex Files are equivalent to those
used for XML files. The main difference is the step that transparently translates the
Native File into an XML structure that is used internally by the driver but never
persisted.

The Complex File technology concepts map the Oracle Data Integrator concepts as
follows: A Complex File corresponds to an Oracle Data Integrator data server. Within
this data server, a single schema maps the content of the complex file.

The Oracle Data Integrator Driver for Complex File (Complex File driver) loads the
complex structure of the native file into a relational schema. This relational schema is a
set of tables located in the schema that can be queried or modified using SQL. The
Complex File driver is also able to unload the relational schema back into the complex
file.

The relational schema is reverse-engineered as a data model in ODI, with tables,
columns, and constraints. This model is used like a standard relational data model in
ODI. If the modified data within the relational schema needs to be written back to the
complex file, the driver provides the capability to synchronize the relational schema
into the file.

Note that for simple flat files formats (fixed and delimited), it is recommended to use
the File technology, and for XML files, the XML technology. See Chapter 3, "Files" and
Chapter 5, "XML Files" for more information.

6.1.2 Knowledge Modules

You can use a Complex File data server as any SQL data server. Complex File data
servers support both the technology-specific KMs sourcing or targeting SQL data
servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the technology
chapters for more information on these KMs.

You can also use the IKM XML Control Append when writing to a Complex File data
server. This Knowledge Module implements specific option to synchronize the data
from the relational schema to the file, which is supported by the Complex File driver.

6.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the Complex File technology:

= System Requirements
s Technology Specific Requirements

s Connectivity Requirements

6.2.1 System Requirements

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

6-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

6.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Complex Files in Oracle Data
Integrator.

6.2.3 Connectivity Requirements

This section lists the requirements for connecting to complex files.

Oracle Data Integrator Driver for Complex Files

Complex files are accessed through the Oracle Data Integrator Driver for Complex
File. This JDBC driver is installed with Oracle Data Integrator and requires no other
installed component or configuration.

You must ask the system administrator for the following connection information:
= The location of the Native Schema (nXSD) file associated with your native file

s The location of the native complex file

6.3 Setting up the Topology
Setting up the topology consists in:
1. Creating a Complex File Data Server

2. Creating a Complex File Physical Schema

6.3.1 Creating a Complex File Data Server

A Complex File data server corresponds to one native file that is accessible to Oracle
Data Integrator.

6.3.1.1 Creation of the Data Server

Create a data server for the Complex File technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Complex File data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator.
» User/Password: These fields are not used for Complex File data servers.
2. In the JDBC tab, enter the following values:

s JDBC Driver:
oracle.odi.jdbc.driver.file.complex.ComplexFileDriver

= JDBCURL: jdbc:snps:complexfile?f=<native file
location>&d=<native schema>&re=<root element
name> [&s=<schema name>&<property>=<value>...]

Complex Files 6-3

Setting Up an Integration Project

Note: The s parameter is optional. If the s parameter is not specified,
Oracle Data Integrator specifies a schema for you.

Table 6-1 lists the key properties of the Oracle Data Integrator Driver for Complex
Files. These properties can be specified in the JDBC URL.

See Appendix C, "Oracle Data Integrator Driver for Complex Files Reference" for a
detailed description of these properties and for a comprehensive list of all
properties.

Table 6-1 Complex File Driver Properties

Property Value Notes

f <native file name> Native file location. Use slash "/" in the path name
instead of back slash "\". It is possible to use an HTTP,
FTP or File URL to locate the file. Files located by URL
are read-only. This parameter is mandatory.

d <native schema> Native Schema (nXSD) file location. This parameter is
mandatory.
re <root element> Name of the element to take as the root table of the

schema. This value is case sensitive. This property can be
used for reverse-engineering for example a specific
section of the Native Schema. This parameter is
mandatory.

S <schema name> Name of the relational schema where the complex file
will be loaded. This parameter is optional.

This schema will be selected when creating the physical
schema under the Complex File data server.

The following example illustrates these properties:

Connects to the PROD20100125_001 . csv file described by products .nxsd
and expose this file as a relational structure in the PRODUCT Schema.

jdbc:snps:complexfile?f=/infiles/PROD20100125_
001.csv&d=/infiles/products.nxsd&re=root&s=PRODUCTS

6.3.2 Creating a Complex File Physical Schema

Create a Complex File physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for
both the Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

6.4 Setting Up an Integration Project

Setting up a project using the Complex File technology follows the standard
procedure. See "Creating an Integration Project” of the Developing Integration Projects
with Oracle Data Integrator.

6-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

It is recommended to import the following knowledge modules into your project for
getting started:

= LKMSQL to SQL
s IKM XML Control Append

In addition to these knowledge modules, you can also import file knowledge modules
specific to the other technologies involved in your product.

6.5 Creating and Reverse-Engineering a Complex File Model
This section contains the following topics:
» Create a Complex File Model

= Reverse-engineer a Complex File Model

6.5.1 Create a Complex File Model
A Complex File model groups a set of datastores. Each datastore typically represents

an element in the intermediate XML file generated from the native file using the native
schema.

Create a Complex File model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator.

6.5.2 Reverse-engineer a Complex File Model

The Complex File technology supports standard reverse-engineering, which uses only
the abilities of the Complex File driver.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering with a Complex File model use the usual
procedure, as described in "Reverse-engineering a Model" of the Developing Integration
Projects with Oracle Data Integrator.

This reverse-engineering uses the same process as the reverse-engineering of XML
Files. The native schema (nXSD) provided in the data server URL is used as the XSD
file to describe the XML structure. See Section 5.5.2, "Reverse-Engineering an XML
Model" and XML to SQL Mapping for more information.

6.6 Designing a Mapping
You can use a complex file as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM
for different situations concerning a Complex File data server.

Complex File data models are handled in mappings similarly to XML structures. For
example, the Synchronization model is the same for complex files and XML files and
the same knowledge modules can be used for both technologies.

See Section 5.6, "Designing a Mapping" in Chapter 5, "XML Files" for more
information.

Complex Files 6-5

Designing a Mapping

6-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

7

Microsoft SQL Server

This chapter describes how to work with Microsoft SQL Server in Oracle Data
Integrator.

This chapter includes the following sections:

s Section 7.1, "Introduction”

= Section 7.2, "Installation and Configuration"

» Section 7.3, "Setting up the Topology"

= Section 7.4, "Setting Up an Integration Project"

= Section 7.5, "Creating and Reverse-Engineering a Microsoft SQL Server Model"
= Section 7.6, "Setting up Changed Data Capture"

= Section 7.7, "Setting up Data Quality"

s Section 7.8, "Designing a Mapping"

7.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in Microsoft SQL Server.
Oracle Data Integrator features are designed to work best with Microsoft SQL Server,
including reverse-engineering, changed data capture, data integrity check, and
mappings.

7.1.1 Concepts

The Microsoft SQL Server concepts map the Oracle Data Integrator concepts as
follows: A Microsoft SQL Server server corresponds to a data server in Oracle Data
Integrator. Within this server, a database/owner pair maps to an Oracle Data
Integrator physical schema. A set of related objects within one database corresponds to
a data model, and each table, view or synonym will appear as an ODI datastore, with
its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Microsoft
SQL Server.

7.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 7-1 for
handling Microsoft SQL Server data. In addition to these specific Microsoft SQL Server
Knowledge Modules, it is also possible to use the generic SQL KMs with Microsoft
SQL Server. See Chapter 4, "Generic SQL" for more information.

Microsoft SQL Server 7-1

Installation and Configuration

Table 7-1

Microsoft SQL Server Knowledge Modules

Knowledge Module
IKM MSSQL Incremental Update

IKM MSSQL Slowly Changing Dimension
JKM MSSQL Consistent

JKM MSSQL Simple

LKM File to MSSQL (BULK)

LKM MSSQL to MSSQL (BCP)
LKM MSSQL to MSSQL (LINKED
SERVERS)

LKM MSSQL to ORACLE (BCP SQLLDR)

LKM SQL to MSSQL (BULK)

LKM SQL to MSSQL

RKM MSSQL

Description

Integrates data in a Microsoft SQL Server target table in incremental
update mode.

Integrates data in a Microsoft SQL Server target table used as a Type
IT Slowly Changing Dimension in your Data Warehouse.

Creates the journalizing infrastructure for consistent journalizing on
Microsoft SQL Server tables using triggers.

Creates the journalizing infrastructure for simple journalizing on
Microsoft SQL Server tables using triggers.

Loads data from a File to a Microsoft SQL Server staging area
database using the BULK INSERT SQL command.

Loads data from a Microsoft SQL Server source database to a
Microsoft SQL Server staging area database using the native BCP
out/BCP in commands.

Loads data from a Microsoft SQL Server source database to a
Microsoft SQL Server staging area database using the native linked
servers feature.

Loads data from a Microsoft SQL Server to an Oracle database
(staging area) using the BCP and SQLLDR utilities.

Loads data from any ANSI SQL-92 source database to a Microsoft
SQL Server staging area database using the native BULK INSERT
SQL command.

Loads data from any ANSI SQL-92 source database to a Microsoft
SQL Server staging area. This LKM is similar to the standard LKM
SQL to SQL described in Chapter 4, "Generic SQL" except that you
can specify some additional specific Microsoft SQL Server
parameters.

Retrieves metadata for Microsoft SQL Server objects: tables, views
and synonyms, as well as columns and constraints.

7.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the Microsoft SQL Server technology:

= System Requirements and Certifications

s Technology Specific Requirements

s Connectivity Requirements

7.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum

installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

7-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

7.2.2 Technology Specific Requirements

Some of the Knowledge Modules for Microsoft SQL Server use specific features of this
database. The following restrictions apply when using these Knowledge Modules. See
the Microsoft SQL Server documentation for additional information on these topics.

7.2.2.1 Using the BULK INSERT Command

This section describes the requirements that must be met before using the BULK
INSERT command with Microsoft SQL Server:

s The file to be loaded by the BULK INSERT command needs to be accessible from
the Microsoft SQL Server instance machine. It could be located on the file system
of the server or reachable from a UNC (Unique Naming Convention) path.

= UNC file paths are supported but not recommended as they may decrease
performance.

= For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

7.2.2.2 Using the BCP Command

This section describes the requirements that must be met before using the BCP
command with Microsoft SQL Server:

s The BCP utility as well as the Microsoft SQL Server Client Network Utility must
be installed on the machine running the Oracle Data Integrator Agent.

» The server names defined in the Topology must match the Microsoft SQL Server
Client connect strings used for these servers.

= White spaces in server names defined in the Client Utility are not supported.

= UNC file paths are supported but not recommended as they may decrease
performance.

» The target staging area database must have the option select into/bulk copy.
= Execution can remain pending if the file generated by the BCP program is empty.

= For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

7.2.2.3 Using Linked Servers

This section describes the requirements that must be met before using linked servers
with Microsoft SQL Server:

» The user defined in the Topology to connect to the Microsoft SQL Server instances
must have the following privileges:

s The user must be the db_owner of the staging area databases
s The user must have db_ddladmin role
= For automatic link server creation, the user must have sysdamin privileges

s The MSDTC Service must be started on both SQL Server instances (source and
target). The following hints may help you configure this service:

s The Log On As account for the MSDTC Service is a Network Service account
(and not the 'LocalSystem' account).

s MSDTC should be enabled for network transactions.

Microsoft SQL Server 7-3

Setting up the Topology

= Windows Firewall should be configured to allow the MSDTC service on the
network. By default, the Windows Firewall blocks the MSDTC program.

s The Microsoft SQL Server must be started after MSDTC has completed its
startup.

See the following links for more information about configuring the MSDTC
Service:

m http://support.microsoft.com/?kbid=816701

m http://support.microsoft.com/?kbid=839279

7.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Microsoft SQL Server database.

JDBC Driver

Oracle Data Integrator is installed with a default Microsoft SQL Server Datadirect
Driver. This drivers directly uses the TCP/IP network layer and requires no other
installed component or configuration. You can alternatively use the drivers provided
by Microsoft for SQL Server.

7.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a Microsoft SQL Server Data Server
2. Creating a Microsoft SQL Server Physical Schema

7.3.1 Creating a Microsoft SQL Server Data Server

A Microsoft SQL Server data server corresponds to a Microsoft SQL Server server
connected with a specific user account. This user will have access to several databases
in this server, corresponding to the physical schemas in Oracle Data Integrator created
under the data server.

7.3.1.1 Creation of the Data Server

Create a data server for the Microsoft SQL Server technology using the standard
procedure, as described in "Creating a Data Server" of the Developing Integration
Projects with Oracle Data Integrator. This section details only the fields required or
specific for defining a Microsoft SQL data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator
= Server: Physical name of the data server
s User/Password: Microsoft SQLServer user with its password
2. Inthe JDBC tab:
s JDBC Driver: weblogic. jdbc.sglserver.SQLServerDriver

= JDBC URL: jdbc:weblogic:sqlserver:/ /hostname:port[;property=valuel[;...]]

7-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering a Microsoft SQL Server Model

7.3.2 Creating a Microsoft SQL Server Physical Schema

Create a Microsoft SQL Server physical schema using the standard procedure, as
described in "Creating a Physical Schema" in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a
database/owner pair. The work schema should point to a temporary database and the
data schema should point to the database hosting the data to integrate.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

7.4 Setting Up an Integration Project

Setting up a project using the Microsoft SQL Server database follows the standard
procedure. See "Creating an Integration Project” of the Developing Integration Projects
with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Microsoft SQL Server:

s KM MSSQL Incremental Update

s IKM MSSQL Slowly Changing Dimension

s JKM MSSQL Consistent

s JKM MSSQL Simple

= LKM File to MSSQL (BULK)

= LKM MSSQL to MSSQL (BCP)

s LKM MSSQL to MSSQL (LINKED SERVERS)
= LKM MSSQL to ORACLE (BCP SQLLDR)

= LKM SQL to MSSQL (BULK)

= LKM SQL to MSSQL

s CKM SQL. This generic KM is used for performing integrity check for SQL Server.
= RKM MSSQL

7.5 Creating and Reverse-Engineering a Microsoft SQL Server Model

This section contains the following topics:
s Create a Microsoft SQL Server Model

= Reverse-engineer a Microsoft SQL Server Model

7.5.1 Create a Microsoft SQL Server Model

Create a Microsoft SQL Server Model using the standard procedure, as described in
"Creating a Model" of the Developing Integration Projects with Oracle Data Integrator.

7.5.2 Reverse-engineer a Microsoft SQL Server Model

Microsoft SQL Server supports both Standard reverse-engineering - which uses only
the abilities of the JDBC driver - and Customized reverse-engineering, which uses a
RKM to retrieve the metadata.

Microsoft SQL Server 7-5

Setting up Changed Data Capture

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Microsoft SQL Server retrieves tables,
views, and columns.

Consider switching to customized reverse-engineering for retrieving more metadata.
Microsoft SQL Server customized reverse-engineering retrieves the tables, views, and
synonyms. The RKM MSSQL also reverse-engineers columns that have a user defined
data type and translates the user defined data type to the native data type.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Microsoft SQL Server use the usual
procedure, as described in "Reverse-engineering a Model" of the Developing Integration
Projects with Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Microsoft SQL Server with a RKM,
use the usual procedure, as described in "Reverse-engineering a Model" of the
Developing Integration Projects with Oracle Data Integrator. This section details only the
fields specific to the Microsoft SQL Server technology:

1. In the Reverse Engineer tab of the Microsoft SQL Server Model, select the K :
RKM MSSQL.<project name>.

2. In the COMPATIBLE option, enter the Microsoft SQL Server version. This option
decides whether to enable reverse synonyms. Note that only Microsoft SQLServer
version 2005 and above support synonyms.

Note the following information when using this RKM:

» The connection user must have SELECT privileges on any INFORMATION_
SCHEMA views.

= Only native data type will be saved for the attribute with user defined data type in
the repository and model.

» User defined data types implemented through a class of assembly in the Microsoft
NET Framework common language runtime (CLR) will not be reversed.

7.6 Setting up Changed Data Capture

The ODI Microsoft SQL Server Knowledge Modules support the Changed Data
Capture feature. See Chapter "Working with Changed Data Capture" of the Developing
Integration Projects with Oracle Data Integrator for details on how to set up journalizing
and how to use captured changes.

Microsoft SQL Server Journalizing Knowledge Modules support Simple Journalizing
and Consistent Set Journalizing. The Microsoft SQL Server JKMs use triggers to
capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 7-2 for
journalizing Microsoft SQL Server tables.

Table 7-2 Microsoft SQL Server Journalizing Knowledge Modules

KM Notes

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent
journalizing on Microsoft SQL Server tables using
triggers.

7-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Table 7-2 (Cont.) Microsoft SQL Server Journalizing Knowledge Modules

KM Notes

JKM MSSQL Simple Creates the journalizing infrastructure for simple
journalizing on Microsoft SQL Server tables using
triggers.

Log-based changed data capture is possible with Microsoft SQL Server using the
Oracle GoldenGate. See Chapter 22, "Oracle GoldenGate" for more information.

7.7 Setting up Data Quality

Oracle Data Integrator provides the generic CKM SQL for checking data integrity
against constraints defined on a Microsoft SQL Server table. See "Flow Control and
Static Control" in Developing Integration Projects with Oracle Data Integrator for details.

See Chapter 4, "Generic SQL" for more information.

7.8 Designing a Mapping
You can use Microsoft SQL Server as a source, staging area or a target of a mapping.
The KM choice for a mapping or a check determines the abilities and performance of

this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Microsoft SQL Server data server.

7.8.1 Loading Data from and to Microsoft SQL Server

Microsoft SQL Server can be used as a source, target or staging area of a mapping. The
LKM choice in the Loading Knowledge Module tab to load data between Microsoft
SQL Server and another type of data server is essential for the performance of a

mapping.

7.8.1.1 Loading Data from Microsoft SQL Server

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from Microsoft SQL Server to a target or staging area
database. These optimized Microsoft SQL Server KMs are listed in Table 7-3.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to
the other technology involved to load data from Microsoft SQL Server to a target or
staging area database.

Table 7-3 KMs for loading data from Microsoft SQL Server

Source or Staging Area

Technology KM Notes
Microsoft SQL Server LKM MSSQL to MSSQL Loads data from a
(BCP) Microsoft SQL Server
source database to a
Microsoft SQL Server

staging area database
using the native BCP
out/BCP in commands.

Microsoft SQL Server 7-7

Designing a Mapping

Table 7-3 (Cont.) KMs for loading data from Microsoft SQL Server

Source or Staging Area

Technology KM Notes
Microsoft SQL Server LKM MSSQL to MSSQL Loads data from a
(LINKED SERVERS) Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native linked
servers feature.
Oracle LKM MSSQL to ORACLE Loads data from a
(BCP SQLLDR) Microsoft SQL Server to an

7.8.1.2 Loading Data to Microsoft SQL Server

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Microsoft SQL Server
database. These optimized Microsoft SQL Server KMs are listed in Table 7-4.

Oracle database (staging
area) using the BCP and
SQLLDR utilities.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to

the other technology involved.

Table 7-4 KMs for loading data to Microsoft SQL Server

Source or Staging Area
Technology

KM

Notes

File

Microsoft SQL Server

Microsoft SQL Server

SQL

SQL

LKM File to MSSQL (BULK)

LKM MSSQL to MSSQL

(BCP)

LKM MSSQL to MSSQL
(LINKED SERVERS)

LKM SQL to MSSQL (BULK)

LKM SQL to MSSQL

Loads data from a File to a
Microsoft SQL Server
staging area database
using the BULK INSERT
SQL command.

Loads data from a
Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native BCP
out/BCP in commands.

Loads data from a
Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native linked
servers feature.

Loads data from any ANSI
SQL-92 source database to
a Microsoft SQL Server
staging area database
using the native BULK
INSERT SQL command.

Loads data from any ANSI
SQL-92 source database to
a Microsoft SQL Server
staging area.

7-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

7.8.2 Integrating Data in Microsoft SQL Server

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Microsoft SQL Server. These optimized Microsoft SQL Server
KMs are listed in Table 7-5. I

In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the
performances and possibilities for integrating.

Table 7-5 KMs for integrating data to Microsoft SQL Server

KM Notes

IKM MSSQL Incremental Update Integrates data in a Microsoft SQL Server target table in
incremental update mode.

IKM MSSQL Slowly Changing Integrates data in a Microsoft SQL Server target table used
Dimension as a Type II Slowly Changing Dimension in your Data
Warehouse

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each column of the target datastore. This value is used by the IKM MSSQL
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag and Start/End Timestamps columns.

Microsoft SQL Server 7-9

Designing a Mapping

7-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

8

Microsoft Excel

This chapter describes how to work with Microsoft Excel in Oracle Data Integrator.
This chapter includes the following sections:

m Section 8.1, "Introduction”

= Section 8.2, "Installation and Configuration"

= Section 8.3, "Setting up the Topology"

= Section 8.4, "Setting Up an Integration Project”

= Section 8.5, "Creating and Reverse-Engineering a Microsoft Excel Model"

= Section 8.6, "Designing a Mapping"

» Section 8.7, "Troubleshooting"

8.1 Introduction

Oracle Data Integrator (ODI) integrates data stored into Microsoft Excel workbooks. It
allows reverse-engineering as well as read and write operations on spreadsheets.

Oracle Data Integrator uses Open Database Connectivity (ODBC) to connect to a
Microsoft Excel data server. See Section 8.2.3, "Connectivity Requirements" for more
details.

8.1.1 Concepts

A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.x1s file)
that is accessible through your local network. A single physical schema is created
under this data server.

Within this schema, a spreadsheet or a given named zone of the workbook appears as
a datastore in Oracle Data Integrator.

8.1.2 Knowledge Modules

Oracle Data Integrator provides no Knowledge Module (KM) specific to the Microsoft
Excel technology. You can use the generic SQL KMs to perform the data integration
and transformation operations of Microsoft Excel data. See Chapter 4, "Generic SQL"
for more information.

Microsoft Excel 8-1

Installation and Configuration

Note: Excel technology cannot be used as the staging area, does not
support incremental update or flow/static check. As a consequence,
the following KMs will not work with the Excel technology:

= RKMSQL (JYTHON)

= LKM File to SQL

= CKMSQL

s IKM SQL Incremental Update
s IKM SQL Control Append

» LKMSQL to SQL (JYTHON)

8.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Microsoft Excel Knowledge Module:

= System Requirements and Certifications
s Technology Specific Requirements

= Connectivity Requirements

8.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

8.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Microsoft Excel files in Oracle
Data Integrator.

8.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Microsoft Excel workbook.
To be able to access Microsoft Excel data, you need to:

= Install the Microsoft Excel ODBC Driver

» Declare a Microsoft Excel ODBC Data Source

Install the Microsoft Excel ODBC Driver

Microsoft Excel workbooks can only be accessed through ODBC connectivity. The
ODBC Diriver for Excel must be installed on your system.

8-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

Declare a Microsoft Excel ODBC Data Source

An ODBC data source must be defined for each Microsoft Excel workbook (.x1s file)
that will be accessed from ODI. ODBC datasources are created with the Microsoft
ODBC Data Source Administrator. Refer to your Microsoft Windows operating system
documentation for more information on datasource creation. Also refer to "Create an
ODBC Datasource for the Excel Spreadsheet", Section 3.5.2.4, "Customized
Reverse-Engineering".

8.3 Setting up the Topology
Setting up the Topology consists in:
1. Creating a Microsoft Excel Data Server

2, Creating a Microsoft Excel Physical Schema

8.3.1 Creating a Microsoft Excel Data Server

A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.x1s file)
that is accessible through your local network.

Create a data server for the Microsoft Excel technology using the standard procedure,
as described in "Creating a Data Server" of the Developing Integration Projects with
Oracle Data Integrator. This section details only the fields required or specific for
defining a Microsoft Excel Data Server:

1. In the Definition tab:
= Array Fetch Size: 0
= Batch Update Size: 1
2. In the JDBC tab:
s JDBC Driver: sun. jdbc.odbc.JdbcOdbeDriver
s JDBC URL: jdbc:odbc:<odbc_dsn_alias>

where <odbc_dsn_alias> is the name of your ODBC data source.

WARNING: To access a Microsoft Excel workbook via ODBC, you
must first ensure that this workbook is not currently open in a
Microsoft Excel session. This can lead to unexpected results.

8.3.2 Creating a Microsoft Excel Physical Schema

Create a Microsoft Excel Physical Schema using the standard procedure, as described
in "Creating a Physical Schema" in Administering Oracle Data Integrator.

Note that Oracle Data Integrator needs only one physical schema for each Microsoft
Excel data server. If you wish to connect a different workbook, a different data server
must be created to connect a ODBC datasource corresponding to this other workbook.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

Microsoft Excel 8-3

Setting Up an Integration Project

Note: An Excel physical schema only has a data schema, and no
work schema. Microsoft Excel cannot be used as the staging area of a

mapping.

8.4 Setting Up an Integration Project

Setting up a Project using the Microsoft Excel follows the standard procedure. See
"Creating an Integration Project” of the Developing Integration Projects with Oracle Data
Integrator.

Import the following generic SQL KMs into your project for getting started with
Microsoft Excel:

» LKMSQL to SQL
s IKM SQL to SQL Append

See Chapter 4, "Generic SQL" for more information about these KMs.

8.5 Creating and Reverse-Engineering a Microsoft Excel Model

This section contains the following topics:
» Create a Microsoft Excel Model

= Reverse-engineer a Microsoft Excel Model

8.5.1 Create a Microsoft Excel Model

A Microsoft Excel Model is a set of datastores that correspond to the tables contained
in a Microsoft Excel workbook.

Create a Microsoft Excel Model using the standard procedure, as described in
"Creating a Model" of the Developing Integration Projects with Oracle Data Integrator.

8.5.2 Reverse-engineer a Microsoft Excel Model

Microsoft Excel supports only the Standard reverse-engineering, which uses only the
abilities of the ODBC driver.

Oracle Data Integrator reverse-engineers:

» Spreadsheets: Spreadsheets appear as system tables. Such a table is named after the
spreadsheet name, followed with a dollar sign ($). This table's columns are named
after the first line of the spreadsheet. Note that new records are added at the end
of the spreadsheet.

» Named Cell Ranges in a spreadsheet. These will appear as tables named after the cell
range name. Depending on the scope of a name, the table name may be prefixed
by the name of the spreadsheet (in the following format: <spreadsheet_
name>$<zone_name>). The columns for such a table are named after the first line of
the cell range. Note that new records are added automatically below the named
cell. It is possible to create a blank named cell range that will be loaded using ODI
by naming a cell range that contains only the first header line.

In most Microsoft Excel versions, you can simply select a cell range and use the
Name a Range... popup menu to name this range. See the Microsoft Excel
documentation for conceptual information about Names and how to define a cell
range in a spreadsheet.

8-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Microsoft Excel use the usual
procedure, as described in "Reverse-engineering a Model" of the Developing Integration
Projects with Oracle Data Integrator.

Note: On the Reverse Engineer tab of your Model, select in the Types
of objects to reverse-engineer section Table and System Table to
reverse-engineer spreadsheets and named cell ranges.

8.6 Designing a Mapping

You can use a Microsoft Excel file as a source or a target of a mapping, but NOT as the
staging area

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM
for different situations concerning a Microsoft Excel server.

8.6.1 Loading Data From and to Microsoft Excel

Microsoft Excel can be used as a source or a target of a mapping. The LKM choice in
the Mapping Flow tab to load data between Microsoft Excel and another type of data
server is essential for the performance of a mapping.

8.6.1.1 Loading Data from Microsoft Excel

Oracle Data Integrator does not provide specific knowledge modules for Microsoft
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the
staging area. The following table lists some generic SQL KMs that can be used for
loading data from Microsoft Excel to any staging area.

Table 8—-1 KMs to Load from Microsoft Excel

Target or Staging Area KM Notes

Oracle LKM SQL to Oracle Loads data from any ISO-92
database to an Oracle target
database. Uses statistics.

SQL LKM SQL to SQL Loads data from any ISO-92
database to any ISO-92 compliant
target database.

Microsoft SQL Server LKM SQL to MSSQL Loads data from any ISO-92

(bulk) database to a Microsoft SQL Server

target database. Uses Bulk Loading.

8.6.1.2 Loading Data to Microsoft Excel

Because Microsoft Excel cannot be used as staging area you cannot use a LKM to load
data into Microsoft Excel. See Section 8.6.2, "Integrating Data in Microsoft Excel" for
more information on how to integrate data into Microsoft Excel.

8.6.2 Integrating Data in Microsoft Excel

Oracle Data Integrator does not provide specific knowledge modules for Microsoft
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the
staging area. For integrating data from a staging area to Microsoft Excel, you can use,
for example the IKM SQL to SQL Append.

Microsoft Excel 8-5

Troubleshooting

8.7 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using the Microsoft Excel technology in Oracle Data Integrator. It
contains the following topics:

s Decoding Error Messages

s Common Problems and Solutions

8.7.1 Decoding Error Messages

Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: java.sql.SQLException: [Microsoft][ODBC Driver Manager]
Data source name not found and no default driver specified RC=0xb
at

the java.sql.SQLException code simply indicates that a query was made through the
JDBC-ODBC bridge, which has returned an error. This error is frequently a database or
driver error, and must be interpreted in this direction.

Only the part of text in italic must first be taken in account. It must be searched in the
ODBC driver or Excel documentation. If its contains a specific error code, like here in
bold italic, the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code to find the source of the error. The code is displayed in the description tab of the
task in error.

The most common errors with Excel are detailed below, with their principal causes.

8.7.2 Common Problems and Solutions

This section describes common problems and solutions.

. [Microsoft] [ODBC Excel Driver] Invalid SQL statement; expected
'DELETE', 'INSERT', 'PROCEDURE', 'SELECT', or 'UPDATE'.

This error is probably due to a functionality limitation of the installed ODBC
driver. You might have to install a full version of ODBC driver, such as the default
one with Microsoft Office.

m Invalid Fetch Size

Make sure array Fetch Size is set to 0 for the Microsoft Excel data sever defined in
ODL

. [Microsoft] [ODBC Excel Driver] Could not decrypt file.

You might have to keep the password-protected Microsoft Excel workbook open
for the JDBC-ODBC connection to work.

s UnknownDriverException

The JDBC driver is incorrect. Check the name of the driver.

u [Microsoft] [ODBC Driver Manager] Data source name not found and no
default driver specified RC=0xb Datasource not found or driver name not
specified

The ODBC Datasource specified in the JDBC URL is incorrect.

8-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Troubleshooting

The Microsoft Jet Database engine could not find the object <object
name>

The table you are trying to access does not exist or is not defined in the Excel
spreadsheet.

Too few parameters. Expected 1.
You are trying to access an nonexisting column in the Excel spreadsheet.
Operation must use an updateable query.

This error is probably due to the fact that you have not unchecked the "read only"
option when defined the Excel DSN. Unselect this option and re-execute your

mapping.
DBCS or UTF-16 data is corrupted when loaded.

This error is due to the fact that the JDBC-ODBC Bridge of the Java machine does
not support UTF-16 data. This is a known issue in the Sun JVM that is solved in
the later releases (1.7).

Microsoft Excel 8-7

Troubleshooting

8-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

9

Microsoft Access

This chapter describes how to work with Microsoft Access in Oracle Data Integrator.
This chapter includes the following sections:

s Section 9.1, "Introduction”

= Section 9.2, "Concepts"

= Section 9.3, "Knowledge Modules"

= Section 9.4, "Specific Requirements"

9.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in a Microsoft Access
database. Oracle Data Integrator features are designed to work best with Microsoft
Access, including mappings.

9.2 Concepts

The Microsoft Access concepts map the Oracle Data Integrator concepts as follows: An
Microsoft Access database corresponds to a data server in Oracle Data Integrator.
Within this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Oracle Data Integrator uses Open Database Connectivity
(ODBC) to connect to connect to a Microsoft Access database.

9.3 Knowledge Modules

Oracle Data Integrator provides the IKM Access Incremental Update for handling
Microsoft Access data. This IKM integrates data in a Microsoft Access target table in
incremental update mode.

The IKM Access Incremental Update creates a temporary staging table to stage the
data flow and compares its content to the target table to identify the records to insert
and the records to update. It also allows performing data integrity check by invoking
the CKM.

Consider using this KM if you plan to load your Microsoft Access target table to insert
missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as the target.

This KM uses Microsoft Access specific features. It is also possible to use the generic
SQL KMs with the Microsoft Access database. See for more information.

Microsoft Access 9-1

Specific Requirements

Note: When reverse engineering MS Access, primary keys are not
retrieved. Primary key constraints have to be added manually to the
datastores for IKM Access Incremental Update to work correctly.

9.4 Specific Requirements

There are no specific requirements for using Microsoft Access in Oracle Data
Integrator.

9-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

10

Netezza

This chapter describes how to work with Netezza in Oracle Data Integrator.
This chapter includes the following sections:

s Section 10.1, "Introduction”

= Section 10.2, "Installation and Configuration”

= Section 10.3, "Setting up the Topology"

= Section 10.4, "Setting Up an Integration Project"”

= Section 10.5, "Creating and Reverse-Engineering a Netezza Model"

= Section 10.6, "Setting up Data Quality"

= Section 10.7, "Designing a Mapping"

10.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in a Netezza database. Oracle
Data Integrator features are designed to work best with Netezza, including
reverse-engineering, data integrity check, and mappings.

10.1.1 Concepts

The Netezza database concepts map the Oracle Data Integrator concepts as follows: A
Netezza cluster corresponds to a data server in Oracle Data Integrator. Within this
server, a database/owner pair maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Netezza
database.

10.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 10-1 for
handling Netezza data. These KMs use Netezza specific features. It is also possible to
use the generic SQL KMs with the Netezza database. See Chapter 4, "Generic SQL" for
more information.

Table 10-1 Netezza Knowledge Modules
Knowledge Module Description
CKM Netezza Checks data integrity against constraints defined on a Netezza table.

Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

Netezza 10-1

Installation and Configuration

Table 10-1 (Cont.) Netezza Knowledge Modules

Knowledge Module Description

IKM Netezza Control Append Integrates data in a Netezza target table in replace/append mode.
When flow data needs to be checked using a CKM, this IKM creates a
temporary staging table before invoking the CKM.

IKM Netezza Incremental Update Integrates data in a Netezza target table in incremental update mode.

IKM Netezza To File (EXTERNAL TABLE) Integrates data in a target file from a Netezza staging area. It uses the
native EXTERNAL TABLE feature of Netezza.

LKM File to Netezza (EXTERNAL TABLE) Loads data from a File to a Netezza Server staging area using the
EXTERNAL TABLE feature (dataobject).

LKM File to Netezza (NZLOAD) Loads data from a File to a Netezza Server staging area using
NZLOAD.
RKM Netezza Retrieves JDBC metadata from a Netezza database. This RKM may be

used to specify your own strategy to convert Netezza JDBC metadata
into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the
standard JDBC reverse-engineering process due to some specificities
of the Netezza JDBC driver.

10.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Netezza Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

s Connectivity Requirements

10.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

10.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Netezza use the NZLOAD utility.

The following requirements and restrictions apply for these Knowledge Modules:
» The source file must be accessible by the ODI agent executing the mapping.

s The run-time agent machine must have Netezza Performance Server client
installed. And the NZLOAD install directory needs to be in the PATH variable
when the agent is started.

= All mappings need to be on the staging area.

= All source fields need to be mapped, and must be in the same order as the target
table in Netezza.

10-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

s Date, Time, Timestamp and Numeric formats should be specified in consistent
with Netezza Data Type definition.

For KMs using the EXTERNAL TABLE feature: Make sure that the file is accessible by
the Netezza Server.

10.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Netezza database.

JDBC Driver

Oracle Data Integrator uses the Netezza JDBC to connect to a NCR Netezza database.
This driver must be installed in your Oracle Data Integrator drivers directory.

10.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a Netezza Data Server

2. Creating a Netezza Physical Schema

10.3.1 Creating a Netezza Data Server

A Netezza data server corresponds to a Netezza cluster connected with a specific
Netezza user account. This user will have access to several databases in this cluster,
corresponding to the physical schemas in Oracle Data Integrator created under the
data server.

10.3.1.1 Creation of the Data Server

Create a data server for the Netezza technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Netezza data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator
= Server: Physical name of the data server
» User/Password: Netezza user with its password
2. In the JDBC tab:
s JDBC Driver: org.netezza.Driver

s JDBCURL: jdbc:Netezza://<host>:<port>/<database>

Note: Note that Oracle Data Integrator will have write access only on
the database specified in the URL.

10.3.2 Creating a Netezza Physical Schema

Create a Netezza physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Netezza 10-3

Setting Up an Integration Project

Note: When performing this configuration, the work and data
databases names must match. Note also that the dollar sign ($) is an
invalid character for names in Netezza. Remove the dollar sign ($)
from work table and journalizing elements prefixes.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

10.4 Setting Up an Integration Project

Setting up a project using the Netezza database follows the standard procedure. See
"Creating an Integration Project” of the Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Netezza:

s CKM Netezza

s IKM Netezza Control Append

s IKM Netezza Incremental Update

= IKM Netezza To File (EXTERNAL TABLE)
= LKM File to Netezza (EXTERNAL TABLE)
» LKM File to Netezza (NZLOAD)

» RKM Netezza

10.5 Creating and Reverse-Engineering a Netezza Model
This section contains the following topics:
s Create a Netezza Model

= Reverse-engineer a Netezza Model

10.5.1 Create a Netezza Model

Create a Netezza Model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator.

10.5.2 Reverse-engineer a Netezza Model

Netezza supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

Consider switching to customized reverse-engineering if you encounter problems with
the standard JDBC reverse-engineering process due to some specificities of the
Netezza JDBC driver.

10-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Netezza use the usual procedure, as
described in "Reverse-engineering a Model" of the Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Netezza with a RKM, use the usual
procedure, as described in "Reverse-engineering a Model" of the Developing Integration
Projects with Oracle Data Integrator. This section details only the fields specific to the
Netezza technology:

1. In the Reverse Engineer tab of the Netezza Model, select the KM: RKM
Netezza.<project name>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign
Keys.

10.6 Setting up Data Quality

Oracle Data Integrator provides the CKM Netezza for checking data integrity against
constraints defined on a Netezza table. See "Flow Control and Static Control" in
Developing Integration Projects with Oracle Data Integrator for details.

10.7 Designing a Mapping
You can use Netezza as a source, staging area, or a target of a mapping.
The KM choice for a mapping or a check determines the abilities and performance of

this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Netezza data server.

10.7.1 Loading Data from and to Netezza

Netezza can be used as a source, target or staging area of a mapping. The LKM choice
in the Loading Knowledge Module tab to load data between Netezza and another type
of data server is essential for the performance of a mapping.

10.7.1.1 Loading Data from Netezza
Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a Netezza database to a target or staging area database.

For extracting data from a Netezza staging area to a file, use the IKM Netezza to File
(EXTERNAL TABLE). See Section 10.7.2, "Integrating Data in Netezza" for more
information.

10.7.1.2 Loading Data to Netezza

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Netezza database. These
optimized Netezza KMs are listed in Table 10-2. In addition to these KMs, you can also
use the Generic SQL KMs or the KMs specific to the other technology involved.

Netezza 10-5

Designing a Mapping

Table 10-2 KMs for loading data to Netezza

Source or Staging Area

Technology KM Notes
File LKM File to Netezza Loads data from a File to a Netezza
(EXTERNAL TABLE) staging area database using the
Netezza External table feature.
File LKM File to Netezza Loads data from a File to a Netezza
(NZLOAD) staging area database using the

10.7.2 Integrating Data in Netezza

NZLOAD bulk loader.

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Netezza. These optimized Netezza KMs are listed in
Table 10-3. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the
performances and possibilities for integrating.

Table 10-3 KMs for integrating data to Netezza

KM

Notes

IKM Netezza Control Append

IKM Netezza Incremental Update

IKM Netezza to File (EXTERNAL
TABLE)

Integrates data in a Netezza target table in replace/append
mode.

Integrates data in a Netezza target table in incremental
update mode.

This KM implements a DISTRIBUTE_ON option to define
the processing distribution. It is important that the chosen
column has a high cardinality (many distinct values) to
ensure evenly spread data to allow maximum processing
performance.

Please follow Netezza's recommendations on choosing a
such a column.

Valid options are:

= [PK]: Primary Key of the target table.

= [UK]: Update key of the mapping

= [RANDOM]: Random distribution

s <list of column>: a comma separated list of columns
If no value is set (empty), no index will be created.

This KM also uses an ANALYZE_TARGET option to
generate statistics on the target after integration.

Integrates data from a Netezza staging area to a file using
external tables.

This KM implements an optional BASE_TABLE option to
specify the name of a table that will be used as a template
for the external table.

10-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11

Teradata

This chapter describes how to work with Teradata in Oracle Data Integrator.
This chapter includes the following sections:

s Section 11.1, "Introduction"

= Section 11.2, "Installation and Configuration”

= Section 11.3, "Setting up the Topology"

s Section 11.4, "Setting Up an Integration Project"

= Section 11.5, "Creating and Reverse-Engineering a Teradata Model"

= Section 11.6, "Setting up Data Quality"

s Section 11.7, "Designing a Mapping"

= Section 11.8, "KM Optimizations for Teradata"

11.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an Teradata database.
Oracle Data Integrator features are designed to work best with Teradata, including
reverse-engineering, data integrity check, and mappings.

11.1.1 Concepts

The Teradata database concepts map the Oracle Data Integrator concepts as follows: A
Teradata server corresponds to a data server in Oracle Data Integrator. Within this
server, a database maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) and Teradata Utilities
to connect to Teradata database.

11.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 11-1 for
handling Teradata data. These KMs use Teradata specific features. It is also possible to
use the generic SQL KMs with the Teradata database. See Chapter 4, "Generic SQL" for
more information.

Teradata 11-1

Installation and Configuration

Table 11-1 Teradata Knowledge Modules

Knowledge Module Description

CKM Teradata Checks data integrity against constraints defined on a Teradata table.
Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the Teradata utilities
for loading files directly to the target. See Section 11.8.2, "Support for
Teradata Utilities" for more information.

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a Teradata
database target table using Teradata Utilities FastLoad, MultiLoad,
TPump or Parallel Transporter. See Section 11.8.2, "Support for
Teradata Utilities" for more information.

IKM Teradata Control Append Integrates data in a Teradata target table in replace/append mode.
IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update mode.

IKM Teradata Slowly Changing Dimension Integrates data in a Teradata target table used as a Type II Slowly
Changing Dimension in your Data Warehouse.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in replace
mode. See Section 11.8.2, "Support for Teradata Ultilities" for more
information.

IKM Teradata Multi Statement Integrates data in Teradata database target table using multi

statement requests, managed in one SQL transaction. See Using Multi
Statement Requests for more information.

IKM SQL to Teradata Control Append Integrates data from an ANSI-92 compliant source database into
Teradata target table in truncate / insert (append) mode.

This IKM is typically used for ETL configurations: source and target
tables are on different databases and the mapping's staging area is set
to the logical schema of the source tables or a third schema.

LKM File to Teradata (TTU) Loads data from a File to a Teradata staging area database using the
Teradata bulk utilities. See Section 11.8.2, "Support for Teradata
Utilities" for more information.

LKM SQL to Teradata (TTU) Loads data from a SQL compliant source database to a Teradata
staging area database using a native Teradata bulk utility. See
Section 11.8.2, "Support for Teradata Utilities" for more information.

RKM Teradata Retrieves metadata from the Teradata database using the DBC system
views. This RKM supports UNICODE columns.

11.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Teradata Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

s Connectivity Requirements

11.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

11-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

11.2.2 Technology Specific Requirements

Some of the Knowledge Modules for Teradata use the following Teradata Tools and
Utilities (TTU):

s FastLoad

= MultiLoad

s Tpump

= TFastExport

s Teradata Parallel Transporter

The following requirements and restrictions apply for these Knowledge Modules:

» Teradata Utilities must be installed on the machine running the Oracle Data
Integrator Agent.

s The server name of the Teradata Server defined in the Topology must match the
Teradata connect string used for this server (without the COP_n postfix).

s Itis recommended to install the Agent on a separate platform than the target
Teradata host. The machine were the Agent is installed should have a very large
network bandwidth to the target Teradata server.

n The IKM File to Teradata (TTU) and LKM File to Teradata (TTU) support a File
Character Set Encoding option specify the encoding of the files integrated with
TTU. If this option is unset, the default TTU charset is used.

Refer to the "Getting Started: International Character Sets and the Teradata
Database" Teradata guide for more information about character set encoding.

See the Teradata documentation for more information.

11.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Teradata Database.

JDBC Driver

Oracle Data Integrator uses the Teradata JDBC Driver to connect to a Teradata
Database. The Teradata Gateway for JDBC must be running, and this driver must be
installed in your Oracle Data Integrator installation. You can find this driver at:

http://www.teradata.com/DownloadCenter/Group48.aspx

11.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a Teradata Data Server

2. Creating a Teradata Physical Schema

Teradata 11-3

Setting Up an Integration Project

11.3.1 Creating a Teradata Data Server

A Teradata data server corresponds to a Teradata Database connected with a specific
Teradata user account. This user will have access to several databases in this Teradata
system, corresponding to the physical schemas in Oracle Data Integrator created under
the data server.

11.3.1.1 Creation of the Data Server

Create a data server for the Teradata technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Teradata data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator
= Server: Physical name of the data server
» User/Password: Teradata user with its password
2. Inthe JDBC tab:
s JDBC Driver: com. teradata.jdbc.TeraDriver
s JDBCURL: jdbc:teradata://<host>:<port>/<server>
The URL parameters are:

— <host>: Teradata gateway for JDBC machine network name or IP
address.

- <port>: gateway port number (usually 7060)

— <server>: name of the Teradata server to connect

11.3.2 Creating a Teradata Physical Schema

Create a Teradata physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

11.4 Setting Up an Integration Project

Setting up a project using the Teradata database follows the standard procedure. See
"Creating an Integration Project” of the Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Teradata:

s CKM Teradata

s IKM File to Teradata (TTU)

s IKM SQL to Teradata (TTU)

» IKM Teradata Control Append

s IKM Teradata Incremental Update

11-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering a Teradata Model

» IKM Teradata Multi Statement

s IKM Teradata Slowly Changing Dimension
» [KM Teradata to File (TTU)

» IKM SQL to Teradata Control Append

s LKM File to Teradata (TTU)

s LKM SQL to Teradata (TTU)

s RKM Teradata

11.5 Creating and Reverse-Engineering a Teradata Model

This section contains the following topics:
» Create a Teradata Model

= Reverse-engineer a Teradata Model

11.5.1 Create a Teradata Model

Create a Teradata Model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator.

11.5.2 Reverse-engineer a Teradata Model

Teradata supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve
the metadata from Teradata database using the DBC system views.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Teradata retrieves tables and columns.

Preferably use customized reverse-engineering for retrieving more metadata. Teradata
customized reverse-engineering retrieves the tables, views, columns, keys (primary
indexes and secondary indexes) and foreign keys. Descriptive information (column
titles and short descriptions) are also reverse-engineered.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Teradata use the usual procedure, as
described in "Reverse-engineering a Model" of the Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Teradata with a RKM, use the usual
procedure, as described in "Reverse-engineering a Model" of the Developing Integration
Projects with Oracle Data Integrator. This section details only the fields specific to the
Teradata technology:

1. In the Reverse Engineer tab of the Teradata Model, select the KM: RKM
Teradata.<project name>.

2. Set the REVERSE_FKS option to true if you want to reverse-engineer existing FK
constraints in the database.

3. Set the REVERSE_TABLE_CONSTRAINTS to true if you want to
reverse-engineer table constrains.

Teradata 11-5

Setting up Data Quality

4. Set REVERSE_COLUMN_CHARACTER_SET to true if you want to
reverse-engineer VARCHAR and CHAR for a Unicode database as
CHAR()CHARACTER SET UNICODE or VARCHAR()CHARACTER SET
UNICODE respectively, regardless of the use of CHARACTER SET UNICODE
clause at table creation.

The reverse-engineering process returns tables, views, columns, Keys (primary indexes
and secondary indexes) and Foreign Keys. Descriptive information (Column titles and
short descriptions) are also reverse-engineered

Note that Unique Indexes are reversed as follows:

s The unique primary index is considered as a primary key.

s The primary index is considered as a non unique index.

s The secondary unique primary index is considered as an alternate key

s The secondary non unique primary index is considered as a non unique index.

You can use this RKM to retrieve specific Teradata metadata that is not supported by
the standard JDBC interface (such as primary indexes).

11.6 Setting up Data Quality

Oracle Data Integrator provides the CKM Teradata for checking data integrity against
constraints defined on a Teradata table. See "Flow Control and Static Control" in
Developing Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 11-2 to perform
a check on Teradata.

Table 11-2 Check Knowledge Modules for Teradata Database

Recommended KM Notes

CKM Teradata Checks data integrity against constraints defined on a Teradata
table. Rejects invalid records in the error table created
dynamically. Can be used for static controls as well as flow
controls.

This KM supports the following Teradata optimizations:
= Primary Indexes

» Statistics

11.7 Designing a Mapping

You can use Teradata as a source, staging area or a target of a mapping. It is also
possible to create ETL-style mappings based on the Teradata technology.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Teradata data server.

11.7.1 Loading Data from and to Teradata

Teradata can be used as a source, target or staging area of a mapping. The LKM choice
in the Loading Knowledge Module tab to load data between Teradata and another
type of data server is essential for the performance of a mapping.

11-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

11.7.1.1 Loading Data from Teradata
Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a Teradata database to a target or staging area database.

For extracting data from a Teradata staging area to a file, use the IKM File to Teradata
(TTU). See Section 11.7.2, "Integrating Data in Teradata" for more information.

11.7.1.2 Loading Data to Teradata

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Teradata database. These
optimized Teradata KMs are listed in Table 11-3. In addition to these KMs, you can
also use the Generic SQL KMs or the KMs specific to the other technology involved.

Table 11-3 KMs for loading data to Teradata

Source or Staging Area
Technology KM Notes

File LKM File to Teradata (TTU) Loads data from a File to a Teradata
staging area database using the
Teradata bulk utilities.

Because this method uses the native
Teradata utilities to load the file in
the staging area, it is more efficient
than the standard LKM File to SQL
when dealing with large volumes of
data.

Consider using this LKM if your
source is a large flat file and your
staging area is a Teradata database.

This KM support the following
Teradata optimizations:

m Statistics

s Optimized Temporary Tables
Management

Teradata 11-7

Designing a Mapping

Table 11-3 (Cont.) KMs for loading data to Teradata

Source or Staging Area

Technology KM

Notes

SQL

11.7.2 Integrating Data in Teradata

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Teradata. These optimized Teradata KMs are listed in
Table 11-4. In addition to these KMs, you can also use the Generic SQL KMs.

LKM SQL to Teradata (TTU)

Loads data from a SQL compliant
source database to a Teradata
staging area database using a native
Teradata bulk utility.

This LKM can unload the source
data in a file or Named Pipe and
then call the specified Teradata
utility to populate the staging table
from this file/pipe. Using named
pipes avoids landing the data in a
file. This LKM is recommended for
very large volumes.

Consider using this IKM when:

s The source data located on a
SQL compliant database is
large

= Youdon't want to stage your
data between the source and
the target

= Your staging area is a Teradata
database.

This KM support the following
Teradata optimizations:

= Support for Teradata Utilities
= Support for Named Pipes

= Optimized Temporary Tables
Management

The IKM choice in the Integration Knowledge Module tab determines the
performances and possibilities for integrating.

Table 11-4 KMs for integrating data to Teradata

KM

Notes

IKM Teradata Control Append

Integrates data in a Teradata target table in
replace/append mode. When flow data needs to be
checked using a CKM, this IKM creates a temporary
staging table before invoking the CKM.

Consider using this IKM if you plan to load your Teradata
target table in replace mode, with or without data integrity
check.

To use this IKM, the staging area must be on the same data
server as the target Teradata table.

This KM support the following Teradata optimizations:
= Primary Indexes and Statistics

= Optimized Temporary Tables Management

11-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Table 11-4 (Cont.) KMs for integrating data to Teradata
KM Notes

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental
update mode. This IKM creates a temporary staging table
to stage the data flow. It then compares its content to the
target table to guess which records should be inserted and
which others should be updated. It also allows performing
data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing
to maximize performance. Therefore, this IKM is
optimized for large volumes of data.

Consider using this IKM if you plan to load your Teradata
target table to insert missing records and to update
existing ones.

To use this IKM, the staging area must be on the same data
server as the target.

This KM support the following Teradata optimizations:
= Primary Indexes and Statistics

= Optimized Temporary Tables Management

IKM Teradata Multi Statement Integrates data in Teradata database target table using
multi statement requests, managed in one SQL transaction

IKM Teradata Slowly Changing Integrates data in a Teradata target table used as a Type II

Dimension Slowly Changing Dimension in your Data Warehouse.
This IKM relies on the Slowly Changing Dimension
metadata set on the target datastore to figure out which
records should be inserted as new versions or updated as
existing versions.

Because inserts and updates are done in bulk set-based
processing, this IKM is optimized for large volumes of
data.

Consider using this IKM if you plan to load your Teradata
target table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data
server as the target and the appropriate Slowly Changing
Dimension metadata needs to be set on the target
datastore.

This KM support the following Teradata optimizations:
= Primary Indexes and Statistics
s Optimized Temporary Tables Management

This KM also includes a COMPATIBLE option. This option
corresponds to the Teradata engine major version number.
If this version is 12 or above, then a MERGE statement will
be used instead of the standard INSERT then UPDATE
statements to merge the incoming data flow into the target
table.

Teradata 11-9

Designing a Mapping

Table 11-4 (Cont.) KMs for integrating data to Teradata

KM Notes

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area
in replace mode. This IKM requires the staging area to be
on Teradata. It uses the native Teradata utilities to export
the data to the target file.

Consider using this IKM if you plan to transform and
export data to a target file from your Teradata server.

To use this IKM, the staging area must be different from
the target. It should be set to a Teradata location.

This KM support the following Teradata optimizations:
= Support for Teradata Utilities

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the
Teradata utilities for loading files directly to the target. It is
restricted to one file as source and one Teradata table as
target.

Depending on the utility you choose, you'll have the
ability to integrate the data in either replace or incremental
update mode.

Consider using this IKM if you plan to load a single flat
file to your target table. Because it uses the Teradata
utilities, this IKM is recommended for very large volumes.

To use this IKM, you have to set the staging area to the
source file's schema.

This KM support the following Teradata optimizations:
= Primary Indexes and Statistics
= Support for Teradata Utilities

s Optimized Temporary Tables Management.

11-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Table 11-4 (Cont.) KMs for integrating data to Teradata
KM Notes

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a
Teradata database target table using Teradata Utilities
TPUMP, FASTLOAD OR MULTILOAD.

This IKM is designed to leverage the power of the
Teradata utilities for loading source data directly to the
target. It can only be used when all source tables belong to
the same data server and when this data server is used as a
staging area (staging area on source). Source data can be
unloaded into a file or Named Pipe and then loaded by the
selected Teradata utility directly in the target table. Using
named pipes avoids landing the data in a file. This IKM is
recommended for very large volumes.

Depending on the utility you choose, you'll have the
ability to integrate the data in replace or incremental
update mode.

Consider using this IKM when:

= You plan to load your target table with few
transformations on the source

= All your source tables are on the same data server
(used as the staging area)

= Youdon't want to stage your data between the source
and the target

To use this IKM, you have to set the staging area to the
source data server's schema.

This KM support the following Teradata optimizations:
= Primary Indexes and Statistics

= Support for Teradata Utilities

= Support for Named Pipes

= Optimized Temporary Tables Management

IKM SQL to Teradata Control Integrates data from an ANSI-92 compliant source
Append database into Teradata target table in truncate / insert
(append) mode.

This IKM is typically used for ETL configurations: source
and target tables are on different databases and the
mapping's staging area is set to the logical schema of the
source tables or a third schema. See Section 11.7.3,
"Designing an ETL-Style Mapping" for more information.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each column of the target datastore. This value is used by the IKM Teradata
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag, and Start/End Timestamps columns.

Using Multi Statement Requests

Multi statement requests typically enable the parallel execution of simple mappings.
The Teradata performance is improved by synchronized scans and by avoiding
transient journal.

Set the KM options as follows:
= Mappings using this KM must be used within a package:

Teradata 11-11

Designing a Mapping

- In the first mapping of the package loading a table via the multi-statement set
the INIT_MULTI_STATEMENT option to YES.

— The subsequent mappings loading a table via the multi-statement must use
this KM and have the INIT_MULTI_STATEMENT option set to NO.

— The last mapping must have the EXECUTE option set to YES in order to run
the generated multi-statement.

s In the STATEMENT_TYPE option, specify the type of statement (insert or update)
for each mapping.

s In the SQL_OPTION option, specify the additional SQL sentence that is added at
the end of the query, for example QUALIFY Clause.

Note the following limitations concerning multi-statements:

= Multi-statements are only supported when they are used within a package.
= Temporary indexes are not supported.

s Updates are considered as Inserts in terms of row count.

= Updates can only have a single Dataset.

= Only executing mapping (EXECUTE = YES) reports row counts.

= Journalized source data not supported.

= Neither Flow Control nor Static Control is supported.

s The SQL_OPTION option applies only to the last Dataset.

11.7.3 Designing an ETL-Style Mapping

See "Creating a Mapping" in the Developing Integration Projects with Oracle Data
Integrator for generic information on how to design mappings. This section describes
how to design an ETL-style mapping where the staging area is on a Teradata database
or any ANSI-92 compliant database and the target on Teradata.

In an ETL-style mapping, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from a
Teradata or an ANSI-92 compliant staging area to a Teradata target:

= Using a Multi-connection IKM
s Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows integrating data into a target when the staging area
and sources are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling
Teradata data: IKM SQL to Teradata Control Append. You can also use the generic
SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more information.

See Table 11-5 for more information on when to use a multi-connection IKM.
To use a multi-connection IKM in an ETL-style mapping;:

1. Create a mapping with an ANSI-92 compliant staging area and the target on
Teradata using the standard procedure as described in "Creating a Mapping" in the

11-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Developing Integration Projects with Oracle Data Integrator. This section describes
only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables
or a third schema. See "Configuring Execution Locations" in the Developing
Integration Projects with Oracle Data Integrator for information about how to change
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s)
to the staging area. See Table 11-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property
Inspector opens for this object.

7. Inthe Integration Knowledge Module tab, select an ETL multi-connection IKM to
load the data from the staging area to the target. See Table 11-5 to determine the
IKM you can use.

Note the following when setting the KM options of the IKM SQL to Teradata Control
Append:

= If you do not want to create any tables on the target system, set FLOW_
CONTROL=false. If FLOW_CONTROL=false, the data is inserted directly into the
target table.

s If FLOW_CONTROL=true, the flow table is created on the target or on the staging
area.

= If you want to recycle data rejected from a previous control, set RECYCLE_
ERROR=true and set an update key for your mapping.

Using an LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to
load the flow table from the staging area to the target. The mono-connection IKM is
used to integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source and staging area of an ETL-style mapping. The target is Teradata.

See Table 11-5 for more information on when to use the combination of a standard
LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping;:

1. Create a mapping with an ANSI-92 compliant staging area and the target on
Teradata using the standard procedure as described in "Creating a Mapping" in the
Developing Integration Projects with Oracle Data Integrator. This section describes
only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source tables
or a third schema. See "Configuring Execution Locations" in the Developing
Integration Projects with Oracle Data Integrator for information about how to change
the staging area.

3. In the Physical diagram, select an access point. The Property Inspector opens for
this object.

Teradata 11-13

Designing a Mapping

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s)
to the staging area. See Table 11-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the access point for the Staging Area. The Property Inspector opens for this
object.

7. Inthe Loading Knowledge Module tab, select an LKM to load from the staging
area to the target. See Table 11-5 to determine the LKM you can use.

8. Optionally, modify the options.
9. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM
to update the target. See Table 11-5 to determine the IKM you can use.

11-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Table 11-5 KM Guidelines for ETL-Style Mappings with Teradata Data

Exporting
Source Staging Area Target LKM IKM KM Strategy Comment
ANSI ANSISQL-92 Teradata NA IKM SQL to Teradata Multi-connect Recommended to
SQL-92 standard Control Append ion IKM perform control
standard compliant append
compliant Supports flow
control.
ANSI Teradata or Teradata NA IKM SQL to SQL Multi-connect Allows an
SQL-92 any ANSI or any Incremental Update ion IKM incremental
standard SQL-92 ANSI update strategy
compliant standard SQL-92 with no
compliant standard temporary
database complia target-side
nt objects. Use this
database KM if it is not
possible to create
temporary
objects in the
target server.
The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.
Supports flow
and static control
ANSI Teradata or Teradata LKM SQL to IKM Teradata LKM +
SQL-92 ANSI SQL-92 Teradata (TTU) Incremental Update standard IKM
standard standard
compliant compliant
ANSI Teradata Teradata LKM SQL to IKM Teradata Slowly LKM +
SQL-92 Teradata (TTU) Changing Dimension standard IKM
standard
compliant
ANSI ANSISQL-92 Teradata LKM SQL to IKM SQL to Teradata LKM + If no flow
SQL-92 standard Teradata (TTU) (TTU) standard IKM control, this
standard compliant strategy is
compliant recommended
for large volumes
of data

Teradata 11-15

KM Optimizations for Teradata

11.8 KM Optimizations for Teradata

This section describes the specific optimizations for Teradata that are included in the
Oracle Data Integrator Knowledge Modules.

This section includes the following topics:

= Primary Indexes and Statistics

= Support for Teradata Utilities

= Support for Named Pipes

= Optimized Management of Temporary Tables

11.8.1 Primary Indexes and Statistics

Teradata performance heavily relies on primary indexes. The Teradata KMs support
customized primary indexes (PI) for temporary and target tables. This applies to
Teradata LKMs, IKMs and CKMs. The primary index for the temporary and target
tables can be defined in these KMs using the PRIMARY_INDEX KM option, which
takes the following values:

= [PK]: The PI will be the primary key of each temporary or target table. This is the
default value.

= [NOPI]: Do not specify primary index (Teradata 13.0 & above only).
= [UK]: The PI will be the update key of the mapping. This is the default value.

- <Column list>: This is a free PI based on the comma-separated list of column
names.

- <Empty string>: No primary index is specified. The Teradata engine will use
the default rule for the PI (first column of the temporary table).

Teradata MultiColumnStatistics should optionally be gathered for selected PI columns.
This is controlled by COLLECT_STATS KM option, which is set to true by default.

11.8.2 Support for Teradata Utilities

Teradata Utilities (TTU) provide an efficient method for transferring data from and to
the Teradata engine. When using a LKM or IKM supporting TTUs, it is possible to set
the method for loading data using the TERADATA_UTILITY option.

This option takes the following values when pushing data to a Teradata target (IKM)
or staging area (LKM):

ms FASTLOAD: use Teradata FastLoad

= MLOAD: use Teradata MultiLoad

= TPUMP: use Teradata TPump

s TPT-LOAD: use Teradata Parallel Transporter (Load Operator)

s TPT-SQL-INSERT: use Teradata Parallel Transporter (SQL Insert Operator)
This option takes the following values when pushing data FROM Teradata to a file:
= FEXP: use Teradata FastExport

= TPT: use Teradata Parallel Transporter

When using TTU KMs, you should also take into account the following KM
parameters:

11-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

KM Optimizations for Teradata

REPORT_NB_ROWS: This option allows you to report the number of lines
processed by the utility in a Warning step of the mapping.

SESSIONS: Number of FastLoad sessions

MAX_ALLOWED_ERRORS: Maximum number of tolerated errors. This
corresponds to the ERRLIMIT command in FastLoad /MultiLoad /TPump and to
the ErrorLimit attribute for TPT.

MULTILOAD_TPUMP_TYPE: Operation performed by the MultiLoad or TPump
utility. Valid values are INSERT, UPSERT and DELETE. For UPSERT and DELETE
an update key is required in the mapping.

For details and appropriate choice of utility and load operator, refer to the Teradata
documentation.

11.8.3 Support for Named Pipes

When using TTU KMs to move data between a SQL source and Teradata, it is possible
to increase the performances by using Named Pipes instead of files between the
unload/load processes. Named Pipes can be activated by setting the NP_USE_
NAMED_PIPE option to YES. The following options should also be taken into account
for using Named Pipes:

NP_EXEC_ON_WINDOWS: Set this option to YES if the run-time agent runs on a
windows platform.

NP_ACCESS_MODULE: Access module used for Named Pipes. This access
module is platform dependant.

NP_TTU_STARTUP_TIME: This number of seconds for the TTU to be able to
receive data through the pipe. This is the delay between the moment the KM starts
the TTU and the moment the KM starts to push data into the named pipe. This
delay is dependant on the machine workload.

11.8.4 Optimized Management of Temporary Tables

Creating and dropping Data Integrator temporary staging tables can be a resource
consuming process on a Teradata engine. The ODI_DDL KM option provides a mean
to control these DDL operations. It takes the following values:

DROP_CREATE: Always drop and recreate all temporary tables for every
execution (default behavior).

CREATE_DELETE_ALL: Create temporary tables when needed (usually for the
first execution only) and use DELETE ALL to drop the temporary table content.
Temporary table are reused for subsequent executions.

DELETE_ALL: Do not create temporary tables. Only submit DELETE ALL for all
temporary tables.

NONE: Do not issue any DDL on temporary tables. Temporary tables should be
handled separately.

Teradata 11-17

KM Optimizations for Teradata

11-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

12

Hypersonic SQL

This chapter describes how to work with Hypersonic SQL in Oracle Data Integrator.
This chapter includes the following sections:

s Section 12.1, "Introduction”

» Section 12.2, "Installation and Configuration”

= Section 12.3, "Setting up the Topology"

= Section 12.4, "Setting Up an Integration Project"”

= Section 12.5, "Creating and Reverse-Engineering a Hypersonic SQL Model"

= Section 12.6, "Setting up Data Quality"

» Section 12.7, "Designing a Mapping"

12.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an Hypersonic SQL
database. Oracle Data Integrator features are designed to work best with Hypersonic
SQL, including reverse-engineering, data integrity check, and mappings.

12.1.1 Concepts

The Hypersonic SQL database concepts map the Oracle Data Integrator concepts as
follows: A Hypersonic SQL server corresponds to a data server in Oracle Data
Integrator. Within this server, one single Oracle Data Integrator physical schema maps
to the database.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to
Hypersonic SQL.

12.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 12-1for
handling Hypersonic SQL data. These KMs use Hypersonic SQL specific features. It is
also possible to use the generic SQL KMs with the Hypersonic SQL database. See for
more information.

Hypersonic SQL 12-1

Installation and Configuration

Table 12-1 Hypersonic SQL Knowledge Modules

Knowledge Module Description

CKM HSQL Checks data integrity against constraints defined on a Hypersonic
SQL table. Rejects invalid records in the error table created
dynamically. Can be used for static controls as well as flow controls.

SKM HSQL Generates data access Web services for Hypersonic SQL databases.

12.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Hypersonic SQL Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

s Connectivity Requirements

12.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

12.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Hypersonic SQL in Oracle
Data Integrator.

12.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Hypersonic SQL Database.

JDBC Driver

Oracle Data Integrator is installed with a JDBC driver for Hypersonic SQL. This driver
directly uses the TCP/IP network layer and requires no other installed component or
configuration.

12.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a Hypersonic SQL Data Server
2. Creating a Hypersonic SQL Physical Schema

12.3.1 Creating a Hypersonic SQL Data Server

A Hypersonic SQL data server corresponds to an Hypersonic SQL Database connected
with a specific Hypersonic SQL user account. This user will have access to the

12-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering a Hypersonic SQL Model

database via a physical schema in Oracle Data Integrator created under the data
server.

Create a data server for the Hypersonic SQL technology using the standard procedure,
as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer’s
Guide for Oracle Data Integrator. This section details only the fields required or specific
for defining a Hypersonic SQL data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator
= Server: Physical name of the data server
s User/Password: Hypersonic SQL user with its password (usually sa)
2. In the JDBC tab:
s JDBC Driver: org.hsqldb. jdbcDriver
s JDBCURL: jdbc:hsgldb:hsgl://<host>:<port>
The URL parameters are:
- <host>: Hypersonic SQL machine network name or IP address

— <port>: Port number

12.3.2 Creating a Hypersonic SQL Physical Schema

Create a physical schema using the standard procedure, as described in "Creating a
Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

12.4 Setting Up an Integration Project

Setting up a project using the Hypersonic SQL database follows the standard
procedure. See "Creating an Integration Project” of the Oracle Fusion Middleware
Developer’s Guide for Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Hypersonic SQL:

« CKM HSQL

Import also the Generic SQL KMs into your project. See for more information about
these KMs.

12.5 Creating and Reverse-Engineering a Hypersonic SQL Model

This section contains the following topics:
» Create a Hypersonic SQL Model

= Reverse-engineer a Hypersonic SQL Model

Hypersonic SQL 12-3

Setting up Data Quality

12.5.1 Create a Hypersonic SQL Model

Create a Hypersonic SQL Model using the standard procedure, as described in
"Creating a Model" of the Oracle Fusion Middleware Developer’s Guide for Oracle Data
Integrator.

12.5.2 Reverse-engineer a Hypersonic SQL Model

Hypersonic SQL supports Standard reverse-engineering - which uses only the abilities
of the JDBC driver.

To perform a Standard Reverse- Engineering on Hypersonic SQL use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer’s Guide for Oracle Data Integrator.

12.6 Setting up Data Quality

Oracle Data Integrator provides the CKM HSQL for checking data integrity against
constraints defined on a Hypersonic SQL table. See "Flow Control and Static Control"
in Developing Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 12-2to perform
a check on Hypersonic SQL.

Table 12-2 Check Knowledge Modules for Hypersonic SQL Database

Recommended KM Notes

CKM HSQL Checks data integrity against constraints defined on a
Hypersonic SQL table. Rejects invalid records in the error table
created dynamically. Can be used for static controls as well as
flow controls.

12.7 Designing a Mapping
You can use Hypersonic SQL as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Hypersonic SQL data server.

Oracle Data Integrator does not provide specific loading or integration knowledge
modules for Hypersonic SQL. Use the KMs or the KMs specific to the other
technologies used as source, target, or staging area.

12-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

13

IBM Informix

This chapter describes how to work with IBM Informix in Oracle Data Integrator.
This chapter includes the following sections:

s Section 13.1, "Introduction”

= Section 13.2, "Concepts"

= Section 13.3, "Knowledge Modules"

» Section 13.4, "Specific Requirements"

13.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an IBM Informix database.
Oracle Data Integrator features are designed to work best with IBM Informix,
including reverse-engineering, journalizing, and mappings.

13.2 Concepts

The IBM Informix concepts map the Oracle Data Integrator concepts as follows: An
IBM Informix Server corresponds to a data server in Oracle Data Integrator. Within
this server, an Owner maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM
Informix database.

13.3 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 13-1 for
handling IBM Informix data. These KMs use IBM Informix specific features. It is also
possible to use the generic SQL KMs with the IBM Informix database. See for more
information.

IBM Informix 13-1

Specific Requirements

Table 13—-1 IBM Informix Knowledge Modules

Knowledge Module

Description

IKM Informix Incremental Update

JKM Informix Consistent

JKM Informix Simple

LKM Informix to Informix (SAME
SERVER)

RKM Informix

SKM Informix

Integrates data in an IBM Informix target table in incremental update
mode. This IKM creates a temporary staging table to stage the data
flow. It then compares its content to the target table to guess which
records should be inserted and which others should be updated. It
also allows performing data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your IBM Informix target
table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as
the target.

Creates the journalizing infrastructure for consistent journalizing on
IBM Informix tables using triggers.

Enables Consistent Set Changed Data Capture on IBM Informix.

The source database must have transaction logging enabled to use
this KM.

Creates the journalizing infrastructure for simple journalizing on IBM
Informix tables using triggers.

Enables Simple Changed Data Capture on IBM Informix.

Loads data from a source Informix database to a target Informix
staging area located inside the same server.

This LKM creates a view in the source database and a synonym in the
staging area database. This method if often more efficient than the
standard "LKM SQL to SQL" when dealing with large volumes of
data.

Consider using this LKM if your source tables are located on an IBM
Informix database and your staging area is on an IBM Informix
database located in the same Informix server.

Both databases must have the same logging mode enabled to use this
KM.

Retrieves IBM Informix specific metadata for tables, views, columns,
primary keys and non unique indexes. This RKM accesses the
underlying Informix catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata
from your Informix catalog when it is not provided by the default
JDBC reverse-engineering process.

Generates data access Web services for IBM Informix databases. See
SKM SQL in for more details.

13.4 Specific Requirements

There are no specific requirements for using IBM Informix in Oracle Data Integrator.

13-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

14

IBM DB2 for iSeries

This chapter describes how to work with IBM DB2 for iSeries in Oracle Data
Integrator.

This chapter includes the following sections:

s Section 14.1, "Introduction”

» Section 14.2, "Installation and Configuration"

= Section 14.3, "Setting up the Topology"

= Section 14.4, "Setting Up an Integration Project"”

= Section 14.5, "Creating and Reverse-Engineering an IBM DB2/400 Model"
= Section 14.6, "Setting up Changed Data Capture"

= Section 14.7, "Setting up Data Quality"

s Section 14.8, "Designing a Mapping"

= Section 14.9, "Specific Considerations with DB2 for iSeries"

= Section 14.10, "Troubleshooting"

14.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in IBM DB2 for iSeries. Oracle
Data Integrator features are designed to work best with IBM DB2 for iSeries, including
reverse-engineering, changed data capture, data integrity check, and mappings.

14.1.1 Concepts

The IBM DB?2 for iSeries concepts map the Oracle Data Integrator concepts as follows:
An IBM DB2 for iSeries server corresponds to a data server in Oracle Data Integrator.
Within this server, a collection or schema maps to an Oracle Data Integrator physical
schema. A set of related objects within one schema corresponds to a data model, and
each table, view or synonym will appear as an ODI datastore, with its attributes,
columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to IBM DB2
for iSeries.

14.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 14-1 for
handling IBM DB2 for iSeries data. In addition to these specific IBM DB2 for iSeries

IBM DB2 for iSeries 14-1

Installation and Configuration

Knowledge Modules, it is also possible to use the generic SQL KMs with IBM DB2 for
iSeries. See Chapter 4, "Generic SQL" for more information.

Table 14-1 IBM DB2 for iSeries Knowledge Modules

Knowledge Module Description

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in incremental
update mode.

IKM DB2 400 Incremental Update (CPYF) Integrates data in an IBM DB2 for iSeries target table in incremental
update mode. This IKM is similar to the "IKM DB2 400 Incremental
Update" except that it uses the CPYF native OS/400 command to
write to the target table, instead of set-based SQL operations.

IKM DB2 400 Slowly Changing Dimension Integrates data in an IBM DB2 for iSeries target table used as a Type
II Slowly Changing Dimension in your Data Warehouse.

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent journalizing on
IBM DB?2 for iSeries tables using triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple journalizing on IBM
DB?2 for iSeries tables using triggers.

JKM DB2 400 Simple (Journal) Creates the journalizing infrastructure for simple journalizing on IBM
DB?2 for iSeries tables using the journals.
This KM is deprecated.

LKM DB2 400 Journal to SQL Loads data from an IBM DB2 for iSeries source to a ANSI SQL-92

compliant staging area database. This LKM can source from tables
journalized with the JKM DB2 400 Simple (Journal) as it refreshes the
CDC infrastructure from the journals.

This KM is deprecated.

LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for iSeries source database to an IBM
DB?2 for iSeries staging area database using CRTDDMEF to create a
DDM file on the target and transfer data from the source to this DDM
file using CPYE.

RKM DB2 400 Retrieves metadata for IBM DB2 for iSeries: physical files, tables,
views, foreign keys, unique keys.

14.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the IBM DB2 for iSeries technology:

= System Requirements and Certifications
s Technology Specific Requirements

s Connectivity Requirements

14.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

14-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

14.2.2 Technology Specific Requirements

Some of the Knowledge Modules for IBM DB2 for iSeries use specific features of this
database. The following restrictions apply when using these Knowledge Modules.

See the IBM DB2 for iSeries documentation for additional information on these topics.

Using System commands

This section describes the requirements that must be met before using iSeries specific
commands in the knowledge modules for IBM DB2 for iSeries:

= Knowledge modules using system commands such as CPYF or CPYFRMIPF
require that the agent runs on the iSeries runs on the iSeries system.

Using CDC with Journals

This section describes the requirements that must be met before using the
Journal-based Change Data Capture with IBM DB2 for iSeries:

= This journalizing method requires that a specific program is installed and runs on
the iSeries system. See Setting up Changed Data Capture for more information.

14.2.3 Connectivity Requirements

This section lists the requirements for connecting to an IBM DB2 for iSeries system.

JDBC Driver

Oracle Data Integrator is installed with a default IBM DB2 Datadirect Driver. This
driver directly uses the TCP/IP network layer and requires no other installed
component or configuration. You can alternatively use the drivers provided by IBM,
such as the Native Driver when installing the agent on iSeries.

14.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a DB2/400 Data Server
2. Creating a DB2/400 Physical Schema

14.3.1 Creating a DB2/400 Data Server

An IBM DB2/400 data server corresponds to an iSeries server connected with a
specific user account. This user will have access to several databases in this server,
corresponding to the physical schemas in Oracle Data Integrator created under the
data server.

14.3.1.1 Creation of the Data Server

Create a data server for the IBM DB2/400 technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining an
IBM DB2/400 data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator

s Host (Data Server): Name or IP address of the host

IBM DB2 for iSeries 14-3

Setting Up an Integration Project

» User/Password: DB2 user with its password
2. In the JDBC tab:
s JDBC Driver: weblogic.jdbc.db2.DB2Driver

= JDBC URL:
jdbc:as400://<host>[;libraries=<library>] [;<property>=<val
ue>...]

The URL parameters are:
— <host>: server network name or IP address
- <library>: default library or collection to access

- <property>=<value>: connection properties. Refer to the driver's
documentation for a list of available properties.

14.3.2 Creating a DB2/400 Physical Schema

Create an IBM DB2 /400 physical schema using the standard procedure, as described
in "Creating a Physical Schema" in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a
schema (collection or library). The work schema should point to a temporary schema
and the data schema should point to the schema hosting the data to integrate.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

14.4 Setting Up an Integration Project

Setting up a project using the IBM DB2 for iSeries database follows the standard
procedure. See "Creating an Integration Project” of the Developing Integration Projects
with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with IBM DB2 for iSeries:

= IKM DB2 400 Incremental Update

= IKM DB2 400 Slowly Changing Dimension
s JKM DB2 400 Consistent

= JKM DB2 400 Simple

= RKM DB2 400

= CKMSQL

14.5 Creating and Reverse-Engineering an IBM DB2/400 Model

This section contains the following topics:
s Create an IBM DB2/400 Model
= Reverse-engineer an IBM DB2/400 Model

14-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up Changed Data Capture

14.5.1 Create an IBM DB2/400 Model

Create an IBM DB2 /400 Model using the standard procedure, as described in
"Creating a Model" of the Developing Integration Projects with Oracle Data Integrator.

14.5.2 Reverse-engineer an IBM DB2/400 Model

IBM DB2 for iSeries supports both Standard reverse-engineering - which uses only the
abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM
to retrieve the metadata.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

Consider switching to customized reverse-engineering for retrieving more metadata.
IBM DB2 for iSeries customized reverse-engineering retrieves the physical files,
database tables, database views, columns, foreign keys and primary and alternate
keys.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on IBM DB2 for iSeries use the usual
procedure, as described in "Reverse-engineering a Model" of the Developing Integration
Projects with Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on IBM DB2 for iSeries with a RKM,
use the usual procedure, as described in "Reverse-engineering a Model" of the
Developing Integration Projects with Oracle Data Integrator. This section details only the
fields specific to the IBM DB2/400 technology:

In the Reverse tab of the IBM DB2 /400 Model, select the KM: RKM DB2
400.<project name>.

14.6 Setting up Changed Data Capture
Oracle Data Integrator handles Changed Data Capture on iSeries with two methods:

s Trigger-based CDC on the journalized tables. This method is set up with the JKM
DB2/400 Simple or JKM DB2/400 Consistent. This CDC is not different from the
CDC on other systems. See Section 14.6.1, "Setting up Trigger-Based CDC" for
more information.

s Log-based CDC by reading the native iSeries transaction journals. This method
is set up with the JKM DB2/400 Journal Simple and used by the LKM DB2/400
Journal to SQL. This method does not support Consistent Set CDC and requires a
platform-specific configuration. See Section 14.6.1, "Setting up Trigger-Based CDC"
for more information.

14.6.1 Setting up Trigger-Based CDC

This method support Simple Journalizing and Consistent Set Journalizing. The IBM
DB?2 for iSeries JKMs use triggers to capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 14-2 for
journalizing IBM DB2 for iSeries tables using triggers.

IBM DB2 for iSeries 14-5

Setting up Changed Data Capture

See Chapter "Working with Changed Data Capture" of the Developing Integration
Projects with Oracle Data Integrator for details on how to set up journalizing and how to
use captured changes.

Table 14-2 IBM DB2 for iSeries Journalizing Knowledge Modules

KM Notes

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent
journalizing on IBM DB2 for iSeries tables using
triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple
journalizing on IBM DB2 for iSeries tables using
triggers.

14.6.2 Setting up Log-Based CDC

This method is set up with the JKM DB2/400 Journal Simple and used by the LKM
DB2/400 Journal to SQL. It uses also an RPG program to retrieve the journal content.

14.6.2.1 How does it work?

A iSeries transaction journal contains the entire history of the data changes for a given
period. It is handled by the iSeries system for tables that are journaled. A journaled
table is either a table from a collection, or a table for which a journal receiver and a
journal have been created and journaling started.

Reading the transaction journal is performed by the a journal retriever CDCRTVJRN
RPG program provided with Oracle Data Integrator. This program loads on demand
the tables of the Oracle Data Integrator CDC infrastructure (J$ tables) with the contents
from the transaction journal.

This program can be either scheduled on the iSeries system or called by the KMs
through a stored procedure also called CDCRTV]JRN. This stored procedure is
automatically created by the JKM DB2/400 Journal Simple and invoked by the LKM
DB2/400 Journal to SQL when data extraction is needed.

14.6.2.2 CDCRTVJRN Program Details

This program connects to the native iSeries journal for a given table, and captures
changed data information into the Oracle Data Integrator Journal (J$).

The program works as follows:
1. Journalized table attributes retrieval:
a. Table attributes retrieval: PK columns, J$ table name, last journal reading date.

b. Attributes enrichment (short names, record size, etc.) using the
QSYS.QADBXREF system table.

c. Location of the iSeries journal using the QADBRTVFD () APL
2. PK columns information retrieval:

a. PK columns attributes (short name, data types etc.) using the
QSYS.QADBIFLD system table.

b. Attributes enrichment (real physical length) using the QUSLFLD () APL

c. Data preprocessing (RPG to SQL datatype conversion) for the primary key
columns.

3. Extraction the native journal information into the J$ table:

14-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up Changed Data Capture

a. Native journal reading using the QJoRetrieveJournalEntries () APL

b. Conversion of the raw data to native SQL data and capture into the J$ table.

c. Update of the changes count.

This program accepts the parameters listed in Table 14-3.

Table 14-3 CDCRTVJRN Program Parameters

Parameter RPG Type SQL Type Description

SbsTName A138 Char(138) Full name of the subscribers table in the

following format: <Lib>.<Table>.

Example: ODILIB. SNP_SUBSCRIBERS

JrnTName A138 Char(138) Full name of the table for which the extract is

done from the journal.

Example: FINANCE . MY_COMPANY_ORDERS

JrnSubscriber A50 Char(50) Name of the current subscriber. It must

previously have been added to the list of
subscribers.

LogMessages Al Char(1) Flag activating logging in a spool file. Possible

values are: Y enable logging, and N to disable
logging.

14.6.2.3 Installing the CDC Components on iSeries

There are two major components installed on the iSeries system to enable native
journal reading:

The CDCRTVJRN Program. This program is provided in an archive that should
installed in the iSeries system. The installation process is described below.

The CDC Infrastructure. It includes the standard CDC objects (J$ tables, views, ...)
and the CDCRTV]RN Stored Procedure created by the JKM and used by the LKM
to read journals. This stored procedure executes the CDCRTVJRN program.

Note: The program must be set up in a library defined in the
Topology as the default work library for this iSeries data server. In the
examples below, this library is called ODILIB.

Installing the CDCRTVJRN Program
To install the CDCRTVJRN program:

1.

Identify the location the program SAVF file. It is located in the ODI_
HOME/setup/manual/cdc-iseries directory, and is also available on the
Oracle Data Integrator Companion CD.

2. Connect to the iSeries system.

3. Create the default work library if it does not exist yet. You can use, for example,
the following command to create an ODILIB library:
CRTLIB LIB(ODILIB)

4,

Create in this library an empty save file that has the same name as the SAVF file
(mandatory). For example:

CRTSAVF FILE(ODILIB/SAVPGM(0110)

IBM DB2 for iSeries 14-7

Setting up Changed Data Capture

5. Upload the local SAVF file on the iSeries system in the library and on top of the file
you have just created. Make sure that the upload process is performed in binary
mode.

An FTP command sequence performing the upload is given below as an example.

FTP 192.168.0.13

LCD /oracle/odi/setup/manual/cdc-iseries/
BT

CD ODILIB

PUT SAVPGM0110

BYE

= Restore the objects from the save file, using the RSTOBJ command. For example:

RSTOBJ OBJ (*ALL) SAVLIB(CDCSNPRELE) DEV (*SAVF) OBJTYPE(*ALL)
SAVF (ODILIB/SAVPGM0110) RSTLIB(ODILIB)

» Check that the objects are correctly restored. The target library should contain a
program object called CDCRTVJRN.

Use the following command below to view it:

WRKOBJ OBJ (ODILIB/CDCRTVJRN)

The CDCRTVJRN Stored Procedure

This procedure is used to call the CDCRTV]JRN program. It is automatically created by
the JKM DB2/400 Journal Simple KM when journalizing is started. Journalizing
startup is described in the Change Data Capture topic.

The syntax for the stored procedure is provided below for reference:

create procedure ODILIB.CDCRTVJRN (
SbsTName char(138), /* Qualified Subscriber Table Name */
JrnTName char (138), /* Qualified Table Name */
Subscriber char(50) , /* Subscriber Name */
LogMessages char(l) /* Create a Log (Y - Yes, N - No) */
)
language rpgle
external name 'ODILIB/CDCRTVJRN'

Note: The stored procedure and the program are installed in a
library defined in the Topology as the default work library for this
iSeries data server

14.6.2.4 Using the CDC with the Native Journals

Once the program is installed and the CDC is setup, using the native journals consists
in using the LKM DB2/400 Journal to SQL to extract journalized data from the iSeries
system. The retrieval process is triggered if the RETRIEVE_JOURNAL_ENTRIES
option is set to true for the LKM.

14.6.2.5 Problems While Reading Journals

This section list the possibly issues when using this changed data capture method.

CDCRTVJRN Program Limits
The following limits exist for the CDCRTV]JRN program:

14-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

s The source table should be journaled and the iSeries journal should be readable by
the user specified in the iSeries data server.

s The source table should have one PK defined in Oracle Data Integrator.

s The PK declared in Oracle Data Integrator should be in the 4096 first octets of the
physical record of the data file.

s The number of columns in the PK should not exceed 16.

s The total number of characters of the PK column names added to the number of
columns of the PK should not exceed 255.

= Large object datatypes are not supported in the PK. Only the following SQL types
are supported in the PK: SMALLINT, INTEGER, BIGINT, DECIMAL (Packed),
NUMERIC (Zoned), FLOAT, REAL, DOUBLE, CHAR, VARCHAR, CHAR
VARYING, DATE, TIME, TIMESTAMP and ROWID.

s Several instances of CDCRTV]JRN should not be started simultaneously on the
same system.

= Reinitializing the sequence number in the iSeries journal may have a critical
impact on the program (program hangs) if the journal entries consumption date
(SNP_SUBSCRIBERS.JRN_CURFROMDATE) is before the sequence initialization
date. To work around this problem, you should manually set a later date in SNP_
SUBSCRIBERS.JRN_CURFROMDATE.

Troubleshooting the CDCRTVJRN Program
The journal reading process can be put in trace mode:

» either by calling from your query tool the CDCRTV]JRN stored procedure with the
LogMsg parameter set to Y,

= or by forcing the CREATE_SPOOL_FILE LKM option to 1 then restarting the
mapping.

The reading process logs are stored in a spool file which can be reviewed using the
WRKSPLF command.

You can also review the raw contents of the iSeries journal using the DSPJRN
command.

14.7 Setting up Data Quality

Oracle Data Integrator provides the generic CKM SQL for checking data integrity
against constraints defined in DB2/400. See "Flow Control and Static Control" in
Developing Integration Projects with Oracle Data Integrator for details.

See Chapter 4, "Generic SQL" for more information.

14.8 Designing a Mapping
You can use IBM DB2 for iSeries as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning an IBM DB2 for iSeries data server.

IBM DB2 for iSeries 14-9

Designing a Mapping

14.8.1 Loading Data from and to IBM DB2 for iSeries

IBM DB?2 for iSeries can be used as a source, target or staging area of a mapping. The
LKM choice in the Mapping Flow tab to load data between IBM DB2 for iSeries and
another type of data server is essential for the performance of a mapping.

14.8.1.1 Loading Data from IBM DB2 for iSeries

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from IBM DB2 for iSeries to a target or staging area database.
These optimized IBM DB2 for iSeries KMs are listed in Table 14—4.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to
the other technology involved to load data from IBM DB2 for iSeries to a target or
staging area database.

Table 14-4 KMs for loading data from IBM DB2 for iSeries

Source or Staging Area
Technology KM Notes

IBM DB2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for
iSeries source database to an IBM
DB?2 for iSeries staging area database
using CRTDDMEF to create a DDM
file on the target and transfer data
from the source to this DDM file

using CPYF.
IBM DB2 for iSeries LKM DB2 400 Journal to Loads data from an IBM DB2 for
SQL iSeries source to a ANSI SQL-92

compliant staging area database. This
LKM can source from tables
journalized with the JKM DB2 400
Simple (Journal) as it refreshes the
CDC infrastructure from the journals.

14.8.1.2 Loading Data to IBM DB2 for iSeries

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into an IBM DB2 for iSeries
database. These optimized IBM DB2 for iSeries KMs are listed in Table 14-5.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to
the other technology involved.

Table 14-5 KMs for loading data to IBM DB2 for iSeries

Source or Staging Area
Technology KM Notes

IBM DB?2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for
iSeries source database to an IBM
DB?2 for iSeries staging area database
using CRTDDMF to create a DDM
file on the target and transfer data
from the source to this DDM file
using CPYF.

14.8.2 Integrating Data in IBM DB2 for iSeries

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for IBM DB2 for iSeries. These optimized IBM DB2 for iSeries
KMs are listed in Table 14-6. I

14-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Specific Considerations with DB2 for iSeries

In addition to these KMs, you can also use the Generic SQL KMs.
The IKM choice in the Mapping Flow tab determines the performances and
possibilities for integrating.

Table 14-6 KMs for integrating data to IBM DB2 for iSeries
KM Notes

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in
incremental update mode.

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in

(CPYF) incremental update mode. This IKM is similar to the "IKM
DB2 400 Incremental Update” except that it uses the CPYF
native OS/400 command to write to the target table,
instead of set-based SQL operations.

IKM DB2 400 Slowly Changing Integrates data in an IBM DB2 for iSeries target table used
Dimension as a Type II Slowly Changing Dimension in your Data
Warehouse.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each attributes of the target datastore. This value is used by the IKM DB2 400
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag and Start/End Timestamps columns.

14.9 Specific Considerations with DB2 for iSeries

This section provides specific considerations when using Oracle Data Integrator in an
iSeries environment.

14.9.1 Alternative Connectivity Methods for iSeries

It is preferable to use the built-in IBM DB2 Datadirect driver in most cases. This driver
directly use the TCP/IP network layer and require no other components installed on
the client machine. Other methods exist to connect DB2 on iSeries.

14.9.1.1 Using Client Access

It is also possible to connect through ODBC with the IBM Client Access component
installed on the machine. This method does not have very good performance and does
not support the reverse engineering and some other features. It is therefore not
recommended.

14.9.1.2 Using the IBM JT/400 and Native Drivers

This driver appears asa jt400 . zip file you must copy into your Oracle Data
Integrator installation drivers directory.

To connect DB2 for iSeries with a Java application installed on the iSeries machine,
IBM recommends that you use the JT/400 Native driver (jt400native. jar) instead
of the JT/400 driver (7£400. jar). The Native driver provides optimized access to the
DB2 system, but works only from the iSeries machine.

To support seamlessly both drivers with one connection, Oracle Data Integrator has a
built-in Driver Wrapper for AS/400. This wrapper connects through the Native driver
if possible, otherwise it uses the JT /400 driver. It is recommended that you use this
wrapper if running agents installed on AS/400 systems.

IBM DB2 for iSeries 14-11

Troubleshooting

To configure a data server with the driver wrapper:
1. Change the driver and URL to your AS/400 server with the following information:
s Driver: com. sunopsis.jdbc.driver.wrapper.SnpsDriverWrapper

m URL: jdbc:snps400:<machine_
name> [;paraml=valuel [;param2=value2...]]

2. Set the following java properties for the java machine the run-time agent deployed
on iSeries:

= HOST_NAME: comma separated list of host names identifying the current
machine.

s HOST_ IP:IP Address of the current machine.

The value allow the wrapper to identify whether this data server is accessed on the
iSeries machine or from a remote machine.

14.10 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using Oracle Knowledge Modules. It contains the following topics:

s Troubleshooting Error messages

s Common Problems and Solutions

14.10.1 Troubleshooting Error messages
Errors in Oracle Data Integrator appear often in the following way:

java.sqgl.SQLException: The application server rejected the connection.(Signon was
canceled.)

at ...

at ...

the java.sqgl.SQLExceptioncode simply indicates that a query was made to the
database through the JDBC driver, which has returned an error. This error is frequently
a database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
DB2 or iSeries documentation. If its contains sometimes an error code specific to your
system, with which the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the erroneous task.

14.10.2 Common Problems and Solutions

This section describes common problems and solutions.

14.10.2.1 Connection Errors

s UnknownDriverException
The JDBC driver is incorrect. Check the name of the driver.

s The application requester cannot establish the
connection. (<name or IP address>) Cannot open a socket on

14-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Troubleshooting

host: <name or IP address>, port: 8471 (Exception:
java.net.UnknownHostException:<name or IP address>)

Oracle Data Integrator cannot connect to the database. Either the machine name or
IP address is invalid, the DB2/400 Services are not started or the TCP/IP interface
on AS/400 is not started. Try to ping the AS/400 machine using the same machine
name or IP address, and check with the system administrator that the appropriate
services are started.

Datasource not found or driver name not specified
The ODBC Datasource specified in the JDBC URL is incorrect.

The application server rejected the connection. (Signon was
canceled.) Database login failed, please verify userid and
password. Communication Link Failure. Comm RC=8001 -
CwWBSY0001 -

The user profile used is not valid. This error occurs when typing an invalid user
name or an incorrect password.

Communication Link Failure

An error occurred with the ODBC connectivity. Refer to the Client Access
documentation for more information.

SQL5001 - Column qualifier or table &2 undefined. SQL5016 -
Object name &1 not valid for naming convention

Your JDBC connection or ODBC Datasource is configured to use the wrong
naming convention. Use the ODBC Administrator to change your datasource to
use the proper (*SQL or *SYS) naming convention, or use the appropriate option in
the JDBC URL to force the naming conversion (for instance
jdbc:as400://195.10.10.13;naming=system) . Note that if using the system naming
convention in the Local Object Mask of the Physical Schema, you must enter
%SCHEMA /%OBJECT instead of %SCHEMA.%OBJECT.

"*SQL" should always be used unless your application is specifically designed for
*SYS. Oracle Data Integrator uses the *SQL naming convention by default.

SQL0204 &1 in &2 type *&3 not found

The table you are trying to access does not exist. This may be linked to an error in
the context choice, or in the sequence of operations (E.g.: The table is a temporary
table which must be created by another mapping).

Hexadecimal characters appear in the target tables.
Accentuated characters are incorrectly transferred.

The iSeries computer attaches a language identifier or CCSID to files, tables and
even fields (columns). CCSID 65535 is a generic code that identifies a file or field
as being language independent: i.e. hexadecimal data. By definition, no translation
is performed by the drivers. If you do not wish to update the CCSID of the file,
then translation can be forced, in the JDBC URL, thanks to the flags ccsid=<ccsid
code> and convert _ccsid_65535=yes | no. See the driver's documentation for more
information.

SQLO0901 SQL system error
This error is an internal error of the DB2/400 system.

SQL0206 Column &1 not in specified tables

IBM DB2 for iSeries 14-13

Troubleshooting

Keying error in a mapping/join/filter. A string which is not a column
name is interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore
with a structure recently modified. It is necessary to impact in the error table the
modification, or drop the error tables and let Oracle Data Integrator recreate it in
the next execution.

14-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

15

IBM DB2 UDB

This chapter describes how to work with IBM DB2 UDB in Oracle Data Integrator.
This chapter includes the following sections:

s Section 15.1, "Introduction”

= Section 15.2, "Concepts"

= Section 15.3, "Knowledge Modules"

» Section 15.4, "Specific Requirements"

15.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an IBM DB2 UDB database.
Oracle Data Integrator features are designed to work best with IBM DB2 UDB,
including journalizing, data integrity checks, and mappings.

15.2 Concepts

The IBM DB2 UDB concepts map the Oracle Data Integrator concepts as follows: An
IBM DB2 UDB database corresponds to a data server in Oracle Data Integrator. Within
this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM
DB2 UDB database.

15.3 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 15-1 for
handling IBM DB2 UDB data. These KMs use IBM DB2 UDB specific features. It is also
possible to use the generic SQL KMs with the IBM DB2 UDB database. See Chapter 4,
"Generic SQL" for more information

IBM DB2 UDB 15-1

Knowledge Modules

Table 15-1 IBM DB2 UDB Knowledge Modules

Knowledge Module
IKM DB2 UDB Incremental Update

IKM DB2 UDB Slowly Changing
Dimension

JKM DB2 UDB Consistent

JKM DB2 UDB Simple

LKM DB2 UDB to DB2 UDB (EXPORT_
IMPORT)

LKM File to DB2 UDB (LOAD)

Description

Integrates data in an IBM DB2 UDB target table in incremental
update mode. This IKM creates a temporary staging table to stage the
data flow. It then compares its content to the target table to identify
which records should be inserted and which others should be
updated. It also allows performing data integrity check by invoking
the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB
target table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as
the target.

Integrates data in an IBM DB2 UDB target table used as a Type II
Slowly Changing Dimension in your Data Warehouse. This IKM
relies on the Slowly Changing Dimension metadata set on the target
datastore to figure out which records should be inserted as new
versions or updated as existing versions.

Because inserts and updates are done in bulk set-based processing,
this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB
target table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data server as
the target and the appropriate Slowly Changing Dimension metadata
needs to be set on the target datastore.

Creates the journalizing infrastructure for consistent journalizing on
IBM DB2 UDB tables using triggers.

Enables Consistent Changed Data Capture on IBM DB2 UDB.

Creates the journalizing infrastructure for simple journalizing on IBM
DB2 UDB tables using triggers.

Enables Simple Changed Data Capture on IBM DB2 UDB.

Loads data from an IBM DB2 UDB source database to an IBM DB2
UDB staging area database using the native EXPORT / IMPORT
commands.

This module uses the EXPORT CLP command to extract data in a
temporary file. Data is then loaded in the target staging DB2 UDB
table using the IMPORT CLP command. This method if often more
efficient than the standard LKM SQL to SQL when dealing with large
volumes of data.

Consider using this LKM if your source tables are located on a DB2
UDB database and your staging area is on a different DB2 UDB
database.

Loads data from a File to a DB2 UDB staging area database using the
native CLP LOAD Command.

Depending on the file type (Fixed or Delimited) this LKM will
generate the appropriate LOAD script in a temporary directory. This
script is then executed by the CLP and automatically deleted at the
end of the execution. Because this method uses the native IBM DB2
loaders, it is more efficient than the standard LKM File to SQL when
dealing with large volumes of data.

Consider using this LKM if your source is a large flat file and your
staging area is an IBM DB2 UDB database.

15-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Specific Requirements

Table 15-1 (Cont.) IBM DB2 UDB Knowledge Modules

Knowledge Module Description

LKM SQL to DB2 UDB Loads data from any ANSI SQL-92 standard compliant source
database to an IBM DB2 UDB staging area. This LKM is similar to the
standard LKM SQL to SQL described in Chapter 4, "Generic SQL"
except that you can specify some additional specific IBM DB2 UDB
parameters.

LKM SQL to DB2 UDB (LOAD) Loads data from any ANSI SQL-92 standard compliant source
database to an IBM DB2 UDB staging area using the CLP LOAD
command.

This LKM unloads the source data in a temporary file and calls the
IBM DB2 native loader using the CLP LOAD command to populate
the staging table. Because this method uses the native IBM DB2
loader, it is often more efficient than the LKM SQL to SQL or LKM
SQL to DB2 UDB methods when dealing with large volumes of data.

Consider using this LKM if your source data located on a generic
database is large, and when your staging area is an IBM DB2 UDB
database.

SKM IBM UDB Generates data access Web services for IBM DB2 UDB databases. See
SKM SQL in Chapter 4, "Generic SQL" for more information.

15.4 Specific Requirements

Some of the Knowledge Modules for IBM DB2 UDB use operating system calls to
invoke the IBM CLP command processor to perform efficient loads. The following
restrictions apply when using such Knowledge Modules:

s The IBM DB2 UDB Command Line Processor (CLP) as well as the DB2 UDB
Connect Software must be installed on the machine running the Oracle Data
Integrator Agent.

» The server names defined in the Topology must match the IBM DB2 UDB connect
strings used for these servers.

= Some DB2 UDB JDBC drivers require DB2 UDB Connect Software to be installed
on the machine running the ODI Agent.

See the IBM DB2 documentation for more information.

IBM DB2 UDB 15-3

Specific Requirements

15-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Part li

Business Intelligence

This part describes how to work with Business Intelligence in Oracle Data Integrator.
Part II contains the following chapters:
» Chapter 16, "Oracle Business Intelligence Enterprise Edition"

» Chapter 17, "Oracle Business Intelligence Enterprise Edition Data Lineage"

16

Oracle Business Intelligence Enterprise
Edition

This chapter describes how to work with Oracle Business Intelligence Enterprise
Edition in Oracle Data Integrator.

This chapter includes the following sections:

s Section 16.1, "Introduction”

= Section 16.2, "Installation and Configuration”

= Section 16.3, "Setting up the Topology"

m Section 16.4, "Setting Up an Integration Project"

= Section 16.5, "Creating and Reverse-Engineering an Oracle BI Model"
= Section 16.6, "Setting up Data Quality"

ms Section 16.7, "Designing a Mapping"

16.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data from Oracle Business
Intelligence Enterprise Edition (Oracle BI).

Oracle Data Integrator provides specific methods for reverse-engineering and
extracting data from ADF View Objects (ADF-VOs) via the Oracle BI Physical Layer
using mappings.

16.1.1 Concepts

The Oracle Business Intelligence Enterprise Edition concepts map the Oracle Data
Integrator concepts as follows: An Oracle Bl Server corresponds to a data server in
Oracle Data Integrator. Within this server, a catalog/owner pair maps to an Oracle
Data Integrator physical schema.

Oracle Data Integrator connects to this server to access, via a bypass connection pool,
the physical sources that support ADF View Objects.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle
BI Server.

16.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 16-1 for
handling Oracle BI data. These KMs use Oracle BI specific features.

Oracle Business Intelligence Enterprise Edition 16-1

Installation and Configuration

Table 16-1 Oracle Bl Knowledge Modules

Knowledge Module Description

RKM Oracle BI (Jython) Retrieves the table structure in Oracle BI (columns and primary
keys).

LKM Oracle BI to Oracle (DBLink) Loads data from an Oracle BI source to an Oracle database area using
dblinks.

LKM Oracle BI to SQL Loads data from an Oracle BI source to any ANSI SQL-92 compliant
database.

IKM Oracle BI to SQL Append Integrates data into a ANSI-SQL92 target database from an Oracle BI
source.

16.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle BI Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

s Connectivity Requirements

16.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

16.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Oracle BI in Oracle Data
Integrator.

16.2.3 Connectivity Requirements

This section lists the requirements for connecting to an Oracle BI Server.

JDBC Driver

Oracle Data Integrator uses the Oracle Bl native driver to connect to the Oracle BI
Server. This driver must be installed in your Oracle Data Integrator drivers directory.

Bypass Connection Pool

In Oracle BI, a sqlbypass database connection must be setup to bypass the ADF layer
and directly fetch data from the underlying database. The name of this connection
pool is required for creating the Oracle Bl data server in Oracle Data Integrator.

16.3 Setting up the Topology

Setting up the Topology consists of:

16-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

1. Creating an Oracle Bl Data Server

2. Creating an Oracle BI Physical Schema

16.3.1 Creating an Oracle Bl Data Server

A data server corresponds to a Oracle Bl Server. Oracle Data Integrator connects to this
server to access, via a bypass connection pool, the physical sources that support ADF
View Objects. These physical objects are located under the view objects that are
exposed in this server. This server is connected with a user who has access to several
catalogs/schemas. Catalog/schemas pairs correspond to the physical schemas that are
created under the data server.

16.3.1.1 Creation of the Data Server

Create a data server for the Oracle BI technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Oracle BI data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator
= Server: Leave this field empty.
» User/Password: Oracle Bl user with its password
2. In the JDBC tab:
s JDBC Driver: oracle.bi. jdbc.AnaJddbcDriver
s JDBCURL: jddbc:oraclebi://<host>:<port>

<host> is the server on which Oracle Bl server is installed. By default the
<port> numberis 9703.

3. In the Properties tab, add a JDBC property with the following key/value pair.
s Key:NQ_SESSION.SELECTPHYSICAL

s Value: Yes

Note: This option is required for accessing the physical data. Using
this option makes the Oracle Bl connection read-only.

4. In the Flexfield tab, set the name of the bypass connection pool in the
CONNECTION_POOL flexfield.

s Name: CONNECTION_ POOL

s Value: <connection pool name>

Note: Note this bypass connection pool must also be defined in the
Oracle BI server itself.

16.3.2 Creating an Oracle Bl Physical Schema

Create a Oracle BI physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Oracle Business Intelligence Enterprise Edition 16-3

Setting Up an Integration Project

In the physical schema the Data and Work Schemas correspond each to an Oracle Bl
Catalog/schema pair.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

16.4 Setting Up an Integration Project

Setting up a project using an Oracle BI Server follows the standard procedure. See
"Creating an Integration Project” of the Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Oracle BI:

s RKM Oracle BI (Jython)

s LKM Oracle BI to Oracle (DBLink)
s LKM Oracle BI to SQL

s IKM Oracle Bl to SQL Append

Import also the knowledge modules (IKM, CKM) required for the other technologies
involved in your project.

16.5 Creating and Reverse-Engineering an Oracle Bl Model
This section contains the following topics:
s Create an Oracle BI Model

= Reverse-engineer an Oracle BI Model

16.5.1 Create an Oracle Bl Model

Create an Oracle BI Model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator.

16.5.2 Reverse-engineer an Oracle Bl Model

Oracle BI supports Customized reverse-engineering.

To perform a Customized Reverse-Engineering on Oracle Bl with a RKM, use the
usual procedure, as described in "Reverse-engineering a Model" of the Developing
Integration Projects with Oracle Data Integrator. This section details only the fields
specific to the Oracle BI technology:

1. In the Reverse Engineer tab of the Oracle BI Model, select the KM: RKM Oracle
BI (Jython) .<project name>.

This KM implements the USE_LOG and LOG_FILE_NAME logging options to trace
the reverse-engineering process.

16.6 Setting up Data Quality

Data integrity check is not supported in an Oracle BI Server. You can check data
extracted Oracle Bl in a staging area using another technology.

16-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

16.7 Designing a Mapping
You can use Oracle Bl as a source of a mapping.

The KM choice for a mapping determines the abilities and performance of this
mapping. The recommendations in this section help in the selection of the KM for
different situations concerning an Oracle Bl server.

16.7.1 Loading Data from and to Oracle Bl

The LKM choice in the Loading Knowledge Module tab to load data between Oracle
BI and another type of data server is essential for the performance of a mapping.

16.7.1.1 Loading Data from Oracle B

Use the knowledge modules listed in Table 16-2 to load data from an Oracle Bl server
to a target or staging area database.

Table 16-2 KMs for loading data From Oracle BI

Staging Area/Target

Technology KM Notes
Oracle LKM Oracle BI to Oracle Loads data from an Oracle BI
(Dblink) source to an Oracle Database

staging area using DBLinks.

To use this knowledge module, a
DBLink must be manually created
from the source Fusion Transaction
DB (that is the database storing the
underlying data tables) to the
Oracle staging area. This DBLink
name must be the one specified in
the Oracle staging area data server
connection.

SQL LKM Oracle BI to SQL Loads data from an Oracle BI
Source to an ANSI SQL-92
compliant staging area database via

the agent.
SQL IKM Oracle BI to SQL Loads and Integrates data from an
Append Oracle BI Source to an ANSI SQL-92
compliant staging area database via
the agent.

To use this KM, you must set the
staging are of your mapping on the
source Oracle BI server.

In this configuration, no temporary
table is created and data is loaded
and integrated directly from the
source to the target tables.

16.7.1.2 Loading Data to Oracle Bl
Oracle BI cannot be used as a staging area. No LKM targets Oracle BI.

16.7.2 Integrating Data in Oracle Bl

Oracle BI cannot be used as a target or staging area. It is not possible to integrate data
into Oracle BI with the knowledge modules.

Oracle Business Intelligence Enterprise Edition 16-5

Designing a Mapping

16-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

17

Oracle Business Intelligence Enterprise

Edition Data Lineage

This chapter describes how to integrate Oracle Business Intelligence Enterprise Edition
(OBIEE) and Oracle Data Integrator (ODI) metadata to build report-to-source data
lineage.

This chapter includes the following sections:

Section 17.1, "Introduction”

Section 17.2, "Installing the Lineage in an OBIEE Server"

Section 17.3, "Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage"
Section 17.4, "Refreshing the OBIEE Lineage from Existing Exports"

Section 17.5, "Automating the Lineage Tasks"

Section 17.6, "Using the Lineage in OBIEE Dashboards"

17.1 Introduction

OBIEE users need to know the origin of the data displayed on their reports. When this
data is loaded from source systems into the data warehouse using OD], it is possible to
use the Oracle Data Integrator Lineage for Oracle Business Intelligence feature to
consolidate Oracle Data Integrator (ODI) metadata with Oracle Business Intelligence
Enterprise Edition (OBIEE) and expose this metadata in a report-to-source data lineage
dashboards in OBIEE.

17.1.1 Components
The OBIEE Lineage is made up of the following components:

Lineage Tables: These tables consolidate both the OBIEE and ODI metadata. They
are stored in the ODI Work Repository.

Lineage Artifacts for OBIEE: This pre-packaged OBIEE artifacts are deployed in
OBIEE to access the lineage information. These include:

- Lineage RPD containing the Physical, Logical and Presentation layers to
access the Lineage Tables,

- Lineage Web Catalog Requests to be used in existing dashboard to create
report -to-source dashboards,

— Images used in these dashboards.

Command Line Tools and a Wizard to automate the lineage tasks:

Oracle Business Intelligence Enterprise Edition Data Lineage 17-1

Introduction

— Deployment of the Lineage Artifacts for OBIEE in an OBIEE instance,
— Extraction of the OBIEE Metadata from a OBIEE Instance,
- Consolidation of the OBIEE and ODI Metadata in the ODI repository.

17.1.2 Lineage Lifecycle

This section describes the different phases of using OBIEE Lineage and the persons
involved in these phases.

17.1.2.1 Setting up the Lineage

OBIEE or ODI administrators set up the lineage process. Setting up this process is
required once and consists of the following tasks:

1. Deploying the Lineage Artifacts for OBIEE

2, Configuring and automating the Extraction/Consolidation (Refresh) Process

17.1.2.2 Refreshing the Lineage

OBIEE or ODI project managers refresh the lineage when either ODI or OBIEE
metadata has changed, to synchronize the lineage tables content with their active
OBIEE and ODI systems' metadata. This refresh process:

1. Extracts the OBIEE Metadata from a OBIEE Instance

2, Consolidates the OBIEE and ODI Metadata in the Lineage Tables stored in the ODI
Work Repository.

During this phase, a correspondence between the ODI Data Models and the OBIEE
Physical Databases must be provided. By doing this mapping, you indicate that an
existing model definition in Oracle Data Integrator corresponds to an existing database
in OBIEE. These two should contain the same tables. By providing this mapping
information, you enable the lineage to consolidate the OBIEE and ODI metadata and
build an end-to-end lineage.

17.1.2.3 Using the Lineage

The lineage is used to extend existing dashboards. You can create specific links in these
dashboards to browse the data lineage and view the execution statistics of the ODI
sessions.

You can also customize your own dashboards using the pre-packaged Lineage
Artifacts for OBIEE.

Figure 17-1 describes the Lineage lifecycle after the initial setup.

17-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installing the Lineage in an OBIEE Server

Figure 17-1 Lineage Lifecycle

) OBI-EE Server
! Web Catalog
. ! Dashboards b
ODI Repository * Based on DWH reports
P * Links to the Lineage
* Models) T
* Interfaces/Packages a BIEE Webcat Lineage
1| * Reguests Requests
e » Pre-packaged
¥ Requests
- <
Lineage Tables -
* OBI-EE Metadata (Catalog « RPD) < 5 | RPD
$ ODI Metadata < ' ||| miee RPD Lineage RPD
A * Physical * Physical
e * Logical * Logical
* Presentation * Presentation

a3

The BIEE metadata is extracted (1) and consolidated with the ODI Metadata in the
lineage tables (2). The lineage tables are accessed from the end-user's dashboard (3)
through the Lineage Artifacts deployed in the BIEE Server.

17.2 Installing the Lineage in an OBIEE Server
This section contains information and instructions for installing OBIEE Lineage:
= Installation Overview
= Requirements
= Installation Instructions

s Post-Installation Tasks

17.2.1 Installation Overview
Installing Lineage in an OBIEE Server deploys the required OBIEE artifacts in the
OBIEE Repository and Web Catalog. The OBIEE Lineage artifacts are the Lineage RPD,
the Lineage Web Catalog Requests, and the dashboard images. These artifacts are used
to access the lineage content from your reports and dashboards.

The installation is performed using the OBIEE Lineage Wizard. This wizard guides
you through the installation, and also through the configuration and refresh of the
Oracle Data Integrator (ODI) Lineage for Oracle Business Intelligence Enterprise
edition (OBIEE).

After installation and configuration are complete, there are some post-installation
tasks you need to perform, depending on your OBIEE version.

The complete installation flow is as follows:

Installation Flow when Using OBIEE 10g

When using OBIEE 10g, the OBIEE Lineage wizard installs only the Lineage RPD. To
install the Lineage Web Catalog Requests and the dashboard images, you have to
perform some additional tasks. The following installation flow describes the complete

Oracle Business Intelligence Enterprise Edition Data Lineage 17-3

Installing the Lineage in an OBIEE Server

installation instructions, including the deployment of the Web Catalog Requests and
Images:

1.
2.

Review the Requirements.
Installing and Starting the OBIEE Lineage Wizard.

Note that you can also use the install lineage script instead of the OBIEE Lineage
wizard. See Section 17.5.2, "Automating Lineage Deployment" for more
information.

Use the OBIEE Lineage wizard to install Lineage in OBIEE Server and deploy the
OBIEE Lineage artifacts. See Section 17.2.3.2, "Deploying the OBIEE Lineage
Artifacts using the Wizard".

Deploy the Web Catalog requests in the OBIEE 10g Web Catalog. See
Section 17.2.4, "Post-Installation Tasks".

Deploy the images. See Section 17.2.4, "Post-Installation Tasks".

Update the BI Physical Layer Connection to ODI Work Repository. See
Section 17.2.4, "Post-Installation Tasks".

Installation Flow when Using OBIEE 11g

When using OBIEE 11g, the OBIEE Lineage wizard installs only the Lineage RPD and
the Web catalog Requests. To install the dashboard images, you have to perform some
additional tasks. The following installation flow describes the complete installation
instructions, including the deployment Images:

1.
2

Review the Requirements.
Installing and Starting the OBIEE Lineage Wizard.

Note that you can also use the install lineage script instead of the OBIEE Lineage
wizard. See Section 17.5.2, "Automating Lineage Deployment" for more
information.

Use the OBIEE Lineage wizard to install Lineage in OBIEE Server and deploy the
OBIEE Lineage artifacts. See Section 17.2.3.2, "Deploying the OBIEE Lineage
Artifacts using the Wizard".

Deploy the images. See Section 17.2.4, "Post-Installation Tasks".

Update the BI Physical Layer Connection to ODI Work Repository. See
Section 17.2.4, "Post-Installation Tasks".

17.2.2 Requirements

Before installing OBIEE Lineage, you should review the following requirements:

The OBIEE Lineage Wizard requires a Java Runtime Environment 1.6 (JRE). Before
starting the wizard, make sure that your JAVA_HOME is pointing to a valid JRE.

The work repository has to be stored in an Oracle database.

Before installing the artifacts, stop the BI Server and BI Presentation services
component.

Make a backup copy of the OBIEE RPD and Webcat.
Make sure the RPD file used by the server is NOT open in the BI Admin tool.

Install and Execute OBIEE Lineage Wizard or Command Line tools on the machine
where the BI Admin tool is installed.

17-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installing the Lineage in an OBIEE Server

s The database user used to connect the Work Repository schema must have
sufficient privileges to create views in the schema hosting the Work Repository.

17.2.3 Installation Instructions

This section provides the installation instructions and contains the following topics:
s Installing and Starting the OBIEE Lineage Wizard
= Deploying the OBIEE Lineage Artifacts using the Wizard

Note: After performing the installation instructions, please perform
the required post-installation tasks describes in Section 17.2.4,
"Post-Installation Tasks".

17.2.3.1 Installing and Starting the OBIEE Lineage Wizard

The OBIEE Lineage wizard is included in the odiobilineage. zip file, which is
located in the <ODI_Home>/odi/misc/biee-1lineage directory.

Perform the following steps to start the OBIEE Lineage wizard:

1. Extract the contents of the zip file to a directory. For example, extract the content of
this file to C: \biee_lineage\ folder.

2. Start the wizard by executing one of the following commands from the /bin
sub-folder:

= On UNIX operating systems:
./refreshlineage.sh

= On Windows operating systems:
refreshlineage.bat

You can also use the installlineage.bat script to start the wizard. When one
of these scripts is started with no parameter, it opens the OBIEE Lineage Wizard

Note: You can also use the install lineage script instead of the OBIEE
Lineage wizard for installing the Lineage Artifacts from a command
line. The install and export options are supported only on Windows.
The refresh lineage option is supported both on Windows and Unix.
See Section 17.5.2, "Automating Lineage Deployment” for more
information.

17.2.3.2 Deploying the OBIEE Lineage Artifacts using the Wizard

This section describes how to install OBIEE Lineage in OBIEE Server and how to
deploy the required OBIEE Lineage artifacts in the OBIEE Repository and Web Catalog
using the OBIEE Lineage wizard.

To install Lineage in OBIEE Server and deploy the required artifacts:

1. Start the wizard as described in Section 17.2.3.1, "Installing and Starting the OBIEE
Lineage Wizard".

The wizard displays a sequence of screens, in the order listed in Table 17-1.

2. Follow the instructions in Table 17-1.

Oracle Business Intelligence Enterprise Edition Data Lineage 17-5

Installing the Lineage in an OBIEE Server

If you need additional help with any of the installation screens, click Help to access the
online help.

Table 17-1 Instructions for Deploying the OBIEE Lineage Artifacts

When Does This Screen

No. Screen Appear? Description and Action Required
1 Welcome Screen Always Click Next to continue.
2 Select Action Screen Always Select Install Lineage in OBIEE Server.
Click Next to continue.
3 OBIEE Repository If Install Lineage in OBIEE Provide the connection information to your existing
Connection Server or Export Metadata ~ OBIEE Repository for deploying the required

Information Screen from OBIEE and Refresh Lineage Artifacts:
Lineage is selected on the

Select Action screen. Oracle Home: Specify the Oracle Home

directory for the OBIEE installation. You can
click Browse to select an existing directory in
your system. For example: C:/obieellg/Oracle_
BI1

= RPD File Location: Enter the location of your
BIEE Repository (RPD) file.

» User: Enter the OBIEE repository administrator
user name. This field is only mandatory for

OBIEE 10g and is disabled for OBIEE 11g.

= Password: Enter the OBIEE repository
administrator password.

Click Next to continue.

4 OBIEE Web Catalog If Install Lineage in OBIEE Provide the connection information to the OBIEE
Connection Server or Export OBIEE Web Catalog for installing the required Lineage
Information Screen Metadata and Refresh Artifacts:

Lineage is selected on the

Select Action screen. OBIEE Version: Displays the OBIEE version.

This version is detected from the RPD selected
If using OBIEE 10g, this in the previous screen.

ir?z;erﬁ?aﬁydiﬁ:glelihzcﬁrfg:; = Web Catalog Location: Enter the location of the
Artifacts. See Section 17.2.4, OBIEE Web Catalog.

"Post-Installation Tasks" for w OBIEE Instance Home: Enter the Home

more information. Directory of your OBIEE Instance. For example:
C:\OBIEE\Middleware\instances\insta
ncel.

= Web Catalog Folder Name: Enter the name of
the web catalog folder into which the Lineage
Artifacts will be deployed. For example:
/shared

Click Next to continue and deploy the lineage
artifacts.

5 Wallet Information Always Select Store passwords in secure wallet check box.

Screen Enter the wallet password or create a new wallet

password and click OK.
Click Next to continue.

Note: If you do not want to store the passwords in
secure wallet, ensure that the Store passwords in
secure wallet check box is not selected and click
Next.

6 Action Complete Always Click Finish to complete the wizard.
Screen

17-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installing the Lineage in an OBIEE Server

After installing the Lineage on the OBIEE Server, you should deploy the OBIEE
Lineage Artifacts. See Section 17.2.4, "Post-Installation Tasks" for more information.

17.2.4 Post-Installation Tasks

This section describes the post-installation tasks. Theses tasks depend on your OBIEE
Server version.

For OBIEE 10g, you need to perform the following post-installation tasks:

= Deploy the Web Catalog Requests in the OBIEE 10g Web Catalog

= Deploy the Dashboard Images

= Update the BI Physical Layer Connection to the ODI Work Repository
For OBIEE 11g, you need to perform the following post-installation tasks:

= Deploy the Dashboard Images

= Update the BI Physical Layer Connection to the ODI Work Repository

Deploy the Web Catalog Requests in the OBIEE 10g Web Catalog

Note: This procedure is required for OBIEE 10g only.

The OBIEE/ODI Lineage comes with a Web Catalog for building your reports on top
of the Lineage and ODI Repository tables.

To import the Web Catalog requests, perform the following steps:
1. Connect to your Web Catalog.
To connect to your Web Catalog:

1. Select Start > All Programs > Oracle Business Intelligence > Catalog
Manager.

2. Click File > Open Catalog.
3. Provide the path to the web catalog used by the BI Server.
4. Click OK.

2. (Optional Step) Make a backup copy of the catalog into which you want to install
the lineage artifacts.

To make a backup copy:

1. Select the catalog.

2. Select File > Archive.

3. Provide a name for the archive file, for example webcatalog_backup.cat.
4. Click OK.

3. Expand the catalog and select the shared folder into which the ODI catalog items
will be imported.

4. Select File > Unarchive.

5. In the Unarchive catalog window, enter in the Archive File Path field the location
of the ODI catalog archive file. Note that this file is located in the
/artifacts/10g sub-folder of the Lineage installation folder.

Oracle Business Intelligence Enterprise Edition Data Lineage 17-7

Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

s For OBIEE 10.1.3.3, enter artifacts/10godi_catalog_archive_

10g.cat
s For OBIEE 10.1.34, enter artifacts/10g/0di_catalog_archive_10_1_
3_4.cat
6. Click OK.

A new folder called ODI appears in the catalog folder.

Deploy the Dashboard Images

The prepackaged requests use images that should be deployed into the application
server that hosts the analytic application. Theses tasks depend on your OBIEE Server
version:

= For OBIEE 10g, copy the dashboard images (hie.gif and 1in.gif, located in
the /artifacts/images sub-folder of the Lineage installation folder) to the res
folder under the deployment directory of the Bl analytics application.

For example:
<0C4J_HOME>\j2ee\home\applications\analytics\analytics\res

= For OBIEE 11g, copy the dashboard images (hie.gif and 1in.gif, located in
the in the /artifacts/images sub-folder of the Lineage installation folder) to
the res folder under the deployment directory of the Bl analytics application.

For example:

<DOMAIN_HOME>\servers\<SERVER_NAME>\tmp_WL_user\analytics_
11.1.1\7dezjl\war\res

Update the Bl Physical Layer Connection to the ODI Work Repository

1. Start the Oracle BI Administration tool. For example, select All Programs > Oracle
Business Intelligence > Administration.

2. Open the RPD file (. rpd) used by the BI Server.

3. Expand the ORACLE_ODI_REPOSITORY database in the OBIEE Physical Layer,
double-click the Connection Pool node, and edit the Connection Pool to match
your ODI work repository configuration:

1. Update the Data source name, Username and Password fields.
2. Click OK.

3. Right-click the Physical schema and rename it to match the schema of the ODI
Work Repository.

4. Click OK to save your changes.
4. Expand the renamed schema and test this updated connection as follows:

1. Right-click one of the tables of this physical schema and updating the row
count.

2. Right-click the same table again and select View data to view data with the
updated row count.

17.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

This section describes how to export metadata from the OBIEE Repository and Web
Catalog and how to consolidate it with ODI Metadata into the Lineage.

17-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

To export metadata from OBIEE and Refresh Lineage:

1. Start the OBIEE Lineage wizard as described in Section 17.2.3.1, "Installing and
Starting the OBIEE Lineage Wizard".

Note: With OBIEE 10g it is not possible to automatically export the
web catalog content; As a consequence, you need to perform manually
an export of the web catalog content. See Section 17.4.2, "Exporting the
OBIEE Web Catalog Report to a Text File" for more information.

You will provide the location of this export file to the wizard.

Note: You can also use the refresh lineage script instead of the OBIEE
Lineage wizard. See Section 17.5.3, "Automating Lineage Refresh" for
more information.

The wizard displays a sequence of screens, in the order listed in Table 17-2.
2. Follow the instructions in Table 17-2.
If you need additional help with any of the installation screens, click Help to access the

online help.

Table 17-2 Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

When Does This Screen

No. Screen Appear? Description and Action Required

1 Welcome Screen Always Click Next to continue.

2 Select Action Screen Always Select Export Metadata from OBIEE and Refresh
Lineage.

Click Next to continue.

3 OBIEE Repository If Install Lineage in OBIEE Provide the connection information to the OBIEE
Connection Server or Export Metadata Repository for extracting Metadata:
Information Screen from OBIEE and Refresh
Lineage is selected on the
Select Action screen

= Oracle Home: Specify the Oracle Home
directory for the OBIEE installation. You can
click Browse to select an existing directory in
your system. For example: C:/obieellg/Oracle_
BI1

= RPD File Location: Enter the location of your
BIEE Repository (RPD) file.

= User: Enter the OBIEE repository administrator
user name. This field is only mandatory for

OBIEE 10g and is disabled for OBIEE 11g.

= Password: Enter the OBIEE repository
administrator password.

Click Next to continue.

Oracle Business Intelligence Enterprise Edition Data Lineage 17-9

Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

Table 17-2 (Cont.) Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

No.

Screen

When Does This Screen
Appear?

Description and Action Required

5

OBIEE Web Catalog
Connection
Information Screen

ODI Repository
Connection
Information Screen

If Install Lineage in OBIEE
Server or Export OBIEE
Metadata and Refresh
Lineage is selected on the
Select Action screen.

If using OBIEE 10g, This
screen only allows selection
of a Web Catalog Export
File.

If Export Metadata from
OBIEE and Refresh Lineage
or Refresh Lineage is
selected on the Select Action
screen.

Provide the connection information to extract
metadata from the OBIEE Web Catalog (OBIEE 11g),
or provide the location to a web catalog export
(OBIEE 10g):

» OBIEE Version: Enter the OBIEE version. This
version is selected from RPD previously
selected.

= Web Catalog Location: Enter the location of the
OBIEE web catalog from which the metadata is
exported.

If using OBIEE 10g, this field is replaced with a
Web Catalog Export File field. Select the web
catalog export file created manually using the
procedure described in Section 17.4.2,
"Exporting the OBIEE Web Catalog Report to a
Text File".

s OBIEE Instance Home: Enter the home
directory of your OBIEE Instance. For example:
C:\OBIEE\Middleware\instances\insta
ncel. If using OBIEE 10g, this field is disabled.

= Web Catalog Folder Name: Enter the name of
the web catalog folder that needs to be exported.
For example: /shared. If using OBIEE 10g, this
field is disabled.

Click Next to continue and install the lineage
artifacts.

Provide the ODI repository connection information:
Oracle Data Integrator Connection

s User: Enter the ODI username. This user should
have SUPERVISOR privileges.

= Password: Enter this user's password.
Database Connection (Master Repository)

s User: Enter the database user name to connect to
the schema (or database, library) that contains
the ODI Master Repository.

= Password: Enter this user's password.

s Driver Name: Enter the name of the driver used
to connect to the master repository.

s URL: Enter the URL used to connect to the
master repository.

Work Repository

= Work Repository: Use the Select button to select
a work repository attached to the master
repository. The Lineage Tables will be created in
this Work Repository, and the lineage
consolidated into these tables.

Click Next to continue.

17-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Refreshing the OBIEE Lineage from Existing Exports

Table 17-2 (Cont.) Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

When Does This Screen
No. Screen Appear?

Description and Action Required

6 Mapping Information If Export Metadata from
OBIEE and Refresh Lineage
or Refresh Lineage is
selected on the Select Action

screen.

7 Wallet Information Always
Screen

8 Action Complete Always
Screen

Use this table to provide the correspondence
mapping between the ODI data models and the
OBIEE physical schemas:

From the BI Mapping -Physical DB, Schema,
Catalog list, select the OBIEE physical schema
you want to map.

2. From the ODI Model list, select the ODI Model
you want to map to this OBIEE schema.

3. For each mapping that you want to define, click
Add. This adds a new row to the table.

4. Repeat the previous steps for each mapping.

Click Next to continue.

Select Store passwords in secure wallet check box.

Enter the wallet password or create a new wallet
password and click OK.

Click Next to continue.

Note: If you do not want to store the passwords in
secure wallet, ensure that the Store passwords in
secure wallet check box is not selected and click
Next.

Click Finish to dismiss the wizard.

17.4 Refreshing the OBIEE Lineage from Existing Exports

This section describes how to refresh the OBIEE Lineage from existing exports. This
operation consolidates OBIEE Repository and Web Catalog exports manually created
with ODI Repository metadata into the Lineage. This section also describes how to
export the OBIEE Repository and the Web Catalog.

This section contains the following topics:

= Exporting the OBIEE Repository Documentation to a Text File

= Exporting the OBIEE Web Catalog Report to a Text File

= Refreshing the OBIEE Lineage From Existing Exports

17.4.1 Exporting the OBIEE Repository Documentation to a Text File

This section explains how to manually export the OBIEE Repository metadata for
consolidating it in the OBIEE Lineage.

To export the OBIEE Repository documentation to a text file:

1. Open the Oracle BI Administration tool and connect to the OBIEE Repository
containing the metadata that you want to include in the lineage.

2. In the OBIEE Administration tool, select Tools > Utilities.

3. In the Utilities dialog, select the Repository Documentation utility and click

Execute.

4, Save the repository documentation in a temporary file, for example

c:\temp\repo_doc. txt.

Oracle Business Intelligence Enterprise Edition Data Lineage 17-11

Refreshing the OBIEE Lineage from Existing Exports

Make sure to save this repository documentation as Tab-separated values (*.txt)
file type

5. Click Save.

17.4.2 Exporting the OBIEE Web Catalog Report to a Text File

This section explains how to manually export the OBIEE Web Catalog metadata for
consolidating it in the OBIEE Lineage.

To export the OBIEE Web Catalog report to a text file:

1. Open OBIEE Catalog Manager and connect to the catalog that contains the
metadata that you want to include in the lineage.

2. Select the catalog folder containing the reports that you want to include in the
lineage, for example /shared/Paint Demo or /shared/ODI.

3. Select Tools > Create Report.

4. In the Create Catalog Report dialog, select the following columns to include in the
report: Owner, Request Folder, Request Name, Request Subject Area, Request Criteria
Formula, Request Criteria Table, Request Criteria Column.

Make sure to include these columns in this precise order.
5. Save the report in a temporary file, for example c: \ temp\webcat_doc. txt.
6. Click OK.
7. Check the Report Preview and click OK.

17.4.3 Refreshing the OBIEE Lineage From Existing Exports

This section describes how to refresh the OBIEE Lineage from existing OBIEE
Repository and Web Catalog exports created manually.

To refresh the OBIEE Lineage:

1. Start the OBIEE Lineage wizard as described in Section 17.2.3.1, "Installing and
Starting the OBIEE Lineage Wizard".

Note: You can also use the refresh lineage script instead of the OBIEE
Lineage wizard. See Section 17.5.3, "Automating Lineage Refresh" for
more information.

The wizard displays a sequence of screens, in the order listed in Table 17-3.
2. Follow the instructions in Table 17-3.

If you need additional help with any of the installation screens, click Help to access the
online help.

17-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Refreshing the OBIEE Lineage from Existing Exports

Table 17-3 Instructions for Refreshing the OBIEE Lineage Artifacts

No. Screen

When Does This Screen
Appear?

Description and Action Required

1 Welcome Screen
2 Select Action Screen
3 OBIEE Export

Location Screen

4 ODI Repository
Connection
Information Screen

Always
Always

Only if Refresh Lineage is
selected on the Select Action
screen.

If Export Metadata from
OBIEE and Refresh Lineage
or Refresh Lineage is
selected on the Select Action
screen.

Click Next to continue.

Select Refresh Lineage.

Click Next to continue.

Provide the location of the OBIEE metadata exports:

Repository Export File: Enter the location of the
repository export file. See Section 17.4.1,
"Exporting the OBIEE Repository
Documentation to a Text File" for more
information.

= Web Catalog Export File: Enter the location of
the web catalog export file. See Section 17.4.2,
"Exporting the OBIEE Web Catalog Report to a
Text File" for more information.

Click Next to continue.

Provide the ODI repository connection information:
Oracle Data Integrator Connection

s User: Enter the ODI username. This user should
have SUPERVISOR privileges.

= Password: Enter this user's password.
Database Connection (Master Repository)

» User: Enter the database user name to connect to
the schema (or database, library) that contains
the ODI Master Repository.

= Password: Enter this user's password.

s Driver Name: Enter the name of the driver used
to connect to the master repository.

= URL: Enter the URL used to connect to the
master repository.

Work Repository

= Work Repository: Use the Select button to select
a work repository attached to the master
repository. The Lineage Tables will be created in
this Work Repository, and the lineage
consolidated into these tables.

Click Next to continue.

Oracle Business Intelligence Enterprise Edition Data Lineage 17-13

Automating the Lineage Tasks

Table 17-3 (Cont.) Instructions for Refreshing the OBIEE Lineage Artifacts

When Does This Screen

No. Screen Appear? Description and Action Required

5 Mapping Information If Export Metadata from Use this table to provide the correspondence
OBIEE and Refresh Lineage mapping between the ODI data models and the
or Refresh Lineage is OBIEE physical schemas:
selected on the Select Action

1. From the BI Mapping -Physical DB, Schema,
Catalog list, select the OBIEE physical schema
you want to map.

2. From the ODI Model list, select the ODI Model
you want to map to this OBIEE schema.

screen.

3. For each mapping that you want to define, click
Add. This adds a new row to the table.

4. Repeat the previous steps for each mapping.

Click Next to continue.

6 Wallet Information Always Select Store passwords in secure wallet check box.

Screen Enter the wallet password or create a new wallet

password and click OK.
Click Next to continue.

Note: If you do not want to store the passwords in
secure wallet, ensure that the Store passwords in
secure wallet check box is not selected and click
Next.

7 Action Complete Always Click Finish to dismiss the wizard.
Screen

17.5 Automating the Lineage Tasks

Scripts are also provided to automate the lineage tasks. These scripts can be used
instead of the wizard and require that option values are provided in a property file
instead.

The scripts for automating the lineage tasks are in the /bin sub-folder of the Lineage
installation folder.

This section describes how to automate lineage tasks with scripts and contains the
following topics:

= Configuring the Scripts
= Automating Lineage Deployment

= Automating Lineage Refresh

17.5.1 Configuring the Scripts

Before starting any of the scripts, you need to provide the configuration information in
a property file. This property file contains the values provided via the wizard user
interface.

Note: When running the wizard, a property file is automatically
generated in the / tmp sub-folder of the Lineage installation folder.
You can re-use this property file as a starting point for working with
the command line scripts.

17-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Automating the Lineage Tasks

Figure 17—4 lists the properties defined in the property file.

Table 17-4 Properties

Required
Property Values for Description
OBIEE_VERSION <10g|1llg> install | Version of the OBIEE Server.
export
| refresh
OBIEE_RPD <rpd_file_ install | Location of the repository (.rpd)
location> export file of the BI Server.
OBIEE_WEBCAT <web_catalog_ install | Location of the Web Catalog folder
folder> export used by the BI Server.
Required
only for
OBIEE 11g
OBIEE_RPD_PASS <rpd_file_pwd> install | The RPD File Password.
export
OBIEE_RPD_USER <rpd_file_ install | The RPD File username.
username> export
Required
only for
OBIEE 10g
OBIEE_RPD_ <rpd_export_ refresh Location of the OBIEE Repository
EXPORT_FILE file_location> Documentation export file used for
refreshing the lineage.
OBIEE_WEBCAT_ <webcat_export_ refresh Location of the OBIEE Web catalog
EXPORT_FILE file_location> report used for refreshing the
lineage.
OBIEE_ORACLE_ <obiee_oracle_ install | The BI Server Oracle Home
HOME home> export directory
OBIEE_ <obiee_instance_ install | The BI Server Instance Home
INSTANCE_HOME home> export directory.
Required
only for
OBIEE 11g.
ODI_MASTER_ <odi_master_url> export | The JDBC URL to connect to the
URL refresh ODI Master Repository
ODI_MASTER _ <odi_master_ export | The DB Driver to connect to the
DRIVER driver> refresh ODI Master Repository
ODI_ <odi_supervisor_ export | The ODI Password for ODI User
SUPERVISOR_PASS pwd> refresh with SUPERVISOR privileges
ODI_ <odi_supervisor_ export The ODI user with SUPERVISOR
SUPERVISOR_ user> | refresh privileges
USER
ODI_MASTER_ <odi_master_ export | The ODI Master repository
USER user> refresh username
ODI_MASTER _ <odi_master_ export | The ODI Master repository
PASS password> refresh password
ODI_SECU_ <odi_work_rep> export | The Name of the Work Repository
WORK_REP refresh containing the lineage tables.

Oracle Business Intelligence Enterprise Edition Data Lineage 17-15

Automating the Lineage Tasks

Table 17-4 (Cont.) Properties

Required
Property Values for Description
OBIEE_WEBCAT_ <webcat_folder_ install | The Web Catalog folder to export
FOLDER_TO_ to_export> export in the report. For example:
EXPORT /shared/0ODI
INSTALL_ODI_ <yes|no> only used in Set to yes to deploy ODI Artifacts
LINEAGE script on the BIEE Server.
EXPORT_OBIEE_ <yes|no> only used in Set to yes to export Bl Metadata as
METADATA script flat files. Set to no to only refresh

lineage metadata.

Example 17-1 shows a sample property file:

Example 17-1 Property File

Version of BIEE Server. Values: 10g / 1llg
OBIEE_VERSION=10g

The location of the repository documentation (.rpd) file of the BI Server
OBIEE_RPD=C:/obieellg/instances/instance2/bifoundation/
OracleBIServerComponent/coreapplication_obisl/repository/TechDemo_11g.rpd

The location of the Web Catalog folder used by the BI Server.

Required only for OBIEE 1llg.
OBIEE_WEBCAT=C:/obieellg/instances/instance2/bifoundation/
OracleBIPresentationServicesComponent/coreapplication_obipsl/catalog/TechDemo

The OBIEE Repository user. Required only for OBIEE 10g.
OBIEE_RPD_USER=Administrator

The password of the OBIEE Repository user
OBIEE_RPD_PASS=<obiee password>

The location of the exported Repository Documentation file
OBIEE_RPD_EXPORT FILE=c:/odi/lineage/run/repo_doc.txt

The location of the exported Web catalog file
OBIEE_WEBCAT_EXPORT_FILE=c:/odi/lineage/run/webcat_doc.txt

The BI Server Oracle Home directory
OBIEE_ORACLE_HOME=C:/obieellg/Oracle_BI1

The BI Server Instance Home directory. Required only for OBIEE 1lg.
OBIEE_INSTANCE_HOME=C: /obieellg/instances/instance2

The JDBC URL to connect to the ODI Master Repository
ODI_MASTER_URL=jdbc:oracle:thin:@localhost:1521:0rcl

The JDBC Driver to connect to the ODI Master Repository
ODI_MASTER_DRIVER=oracle.jdbc.OracleDriver

The Database user for the schema that contains the ODI master repository.
ODI_MASTER_USER=MASTER_REPO

This user's password

ODI_MASTER_PASS=<master_password>

The ODI user with SUPERVISOR privileges
ODI_SUPERVISOR_USER=SUPERVISOR

The ODI Password of the ODI User with SUPERVISOR privileges
ODI_SUPERVISOR_PASS=<supervisor password>

Work Repository containing the lineage

17-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Automating the Lineage Tasks

ODI_SECU_WORK_REP=WORK_REP1

The Web Catalog folder to export in the report. Eg: /shared/ODI
OBIEE_WEBCAT_FOLDER_TO_EXPORT=/shared/0ODI

Option to deploy ODI Artifacts on the BI Server.
INSTALL_ODI_LINEAGE=no

Option to export BI Metadata as flat files
EXPORT_OBIEE_METADATA=yes

Encoding Passwords

To avoid storing the passwords in plain text, use the encode. [sh|cmd]
<password> command to encode and store the passwords in the property file. If the
password are encoded, the property names will change to ODI_MASTER_REPO_
ENCODED_PASS, ODI_SUPERVISOR_ENCODED_PASS, and OBIEE_RPD_
ENCODED_PASS.

17.5.2 Automating Lineage Deployment
The install lineage script deploys the following ODI Artifacts in the OBIEE Server:

= Lineage RPD
= Lineage Web Catalog (11g OBIEE only)

The script uses the OBIEE tools to merge the Lineage RPD and Lineage Web Catalog
with the BIEE Server components.

Note: After running this script, you have to perform the tasks
described in Section 17.2.4, "Post-Installation Tasks".

Syntax

The script syntax is as follows:

installlineage.bat [-propertyFile=property_file] [-prop_name=prop_value [...]]
[-usage]

where:

s propertyfile represents the Property File that contains all the required
properties to install the lineage artifacts. See Section 17.5.1, "Configuring the
Scripts" for more information. If no value is specified, the User Wizard will be
launched to gather the required information from the User. All the properties in
the property file can be overridden by specifying the property value in the
command line option -propName=propValue.

= prop_name represents the property that can be specified. The value specified in
prop_value will override the value specified in the property file (if any).

s prop_value represents the value for the prop_name property. It will override
the value specified in the property file (if any).

= usage prints the detailed usage information

= walletPassword represents the value of the wallet password. If this option is
not provided, you will be prompted to enter the password through command line.
This option is valid only for command line mode execution of the Lineage tool and
not the UI wizard mode.

Oracle Business Intelligence Enterprise Edition Data Lineage 17-17

Using the Lineage in OBIEE Dashboards

17.5.3 Automating Lineage Refresh

The refresh lineage script performs one of the following operations, depending on the
value set in the EXPORT_OBIEE_METADATA option defined in the property file:

= Export and refresh metadata, if the EXPORT_OBIEE_METADATA option is set to
Yes

= Refresh lineage metadata, if the EXPORT_OBIEE_METADATA option is set to No

Note that in order to use refreshlineage. sh you need to manually copy the
repo_doc. text and the webcat_doc. txt files to the target Linux machine.

Syntax
The script syntax is as follows:

refreshlineage [-propertyFile=property_file] [-mappingFile=mapping file] [-prop_
name=prop_value [...]] [-usage]

where:

s propertyfile represents the Property File that contains all the required
properties to export and consolidate lineage metadata. See Section 17.5.1,
"Configuring the Scripts" for more information. If no value is specified, the User
Wizard will be launched to gather the required information from the User. All the
properties in the property file can be overridden by specifying the property value
in the command line option -prop_name=prop_value.

» mappingfile represents the mapping of the Model code to BI_ PHYSICAL_DB,
BI_PHYSICAL_SCHEMA and BI_PHYSICAL_CATALOG. This mapping must be

provided in the form of a comma separated values (. csv) file.

= walletPassword represents the value of the wallet password. If this option is
not provided, you will be prompted to enter the password through command line.
This option is valid only for command line mode execution of the Lineage tool and
not the UI wizard mode.

Note: If propertyfile and mappingfile options are not
specified, the UI wizard will be shown to take user input. Otherwise
the script will be run from command line itself taking the values from
the property file and mapping file to refresh lineage and the UI wizard
will not be shown.

Example 17-2 shows a sample mapping file.

Example 17-2 Mapping File

(c) Copyright Oracle. All rights reserved.

Sample Mapping File for ODI-OBIEE Metadata Lineage

Format: BI Physical DB, BI Physical Schema, BI Physical Catalog, ODI Model ID
Note: Lines starting with # are considered as comments.

DB-1, Schema-1,Catalog-1,modell

DB-2, Schema-2,Catalog-2,model?2

17.6 Using the Lineage in OBIEE Dashboards

The OBIEE Lineage Artifact deployed in the BIEE Server allow for many usage
scenarios. The most common usage scenarios are listed in this section:

17-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Using the Lineage in OBIEE Dashboards

= Viewing Execution Statistics

= Viewing and Filtering Lineage Data
s Using the Dashboard

= Using Lineage and Hierarchy

= Using Contextual Lineage

17.6.1 Viewing Execution Statistics

In this scenario, we want to display the execution statistics of ODI within a OBI-EE
dashboard.

To add ODI statistics, insert the RuntimeStats request from the Lineage Web Catalog
into your dashboard. The statistics appear as shown in Figure 17-2.

Figure 17-2 Runtime Statistics

ORACLE’ Interactive Dashboards My board SOUTHAND € Certer Dashboard ODI Demo Dashboard Consumer Dashboard Porals Sales Dashboard

woard TRI D orts
0DI Demo Dashboard Welcome, Administratorl Y Alerts! - Dashboards - Answers - More Products ~ - Seftings v - Log Out
Last Runtime Statistics = Query Lineage | Customer Per Country | Customers Per Reps |_Page Options ~
Oracle Dat: Run-Time
A
RuntimeStats
Session Step Step Step Nb Step Hb Step Hb. Step Hb Step Wb
(1]} Session Name Step Name Type Start Date End Date Duration Inserts Updates Deletes Errors Rows
12,052 loadMeasures loadMeasures F 31272008 311212008 42 0 0 0 0 16
Cloanet Clmtorer - ciesneed Cuslormon iy 1211812007 121872007 1 5 i 0 0 10
9052 p Data
OdiDataGuaity 1 SE 12/18/2007 1211872007 24 0 0 0 0 0
5,052 Cleanse Customer OuDataCuaty 1 SE 12/18/2007 12872007 3 0 0 0 0 0
*" Data Send Emall on Error SE 12A168/2007 124812007 3 0 0 0 0 1]
7052 Cleanse Customer OciDataCualty 1 SE 121872007 12H8/2007] 1] o 0 0 0
"7 Data Send Email on Error SE 121872007 1241812007 3 0 0 0 0]
6052 Cleanse Customer OdiDataCualty 1 SE 12A 82007 121872007 0 0 o 0 0 0
" |Deta Send Email on Error SE 121812007 128/2007 3 0 0 0 0 o
Load Cities F 12182007 121872007 1 0 [0 3 3

17.6.2 Viewing and Filtering Lineage Data
In this scenario, you want to view the lineage data and filter the results.

To create such a dashboard, add the Prompt Lineage dashboard prompt and the
LineageRequestColumns request on a dashboard. Both objects are in the lineage web
catalog as shown in Figure 17-3.

Figure 17-3 Lineage Web Catalog

Properties |Delete

Properties [Rename [Delete|
Section 1
Properties |R-znarr.e Delete]
PromptLineage

Properties IRenzme lDe lete

LineageRequestColumns

Oracle Business Intelligence Enterprise Edition Data Lineage 17-19

Using the Lineage in OBIEE Dashboards

Figure 17—4 shows the resulting dashboard.

Figure 17-4 Resulting Dashboard

ORACLE" Interactive Dashboards My Dashboard SOUTHWAND Contact Center Dashboard ODI Demo Dashboard Consumer Dashboard Portals Sales D

Service Dashbosrd TRI Dashboard Reports

0D1 Demo Dashboard Welcome, Administrator] ¥ Alerts! - Dashboards - Answers - More Froducts ~ - Seftings ~ ~ Log Out
Last Runtime Statistics | Query Lineage Customer Per Country | Customers Per Reps Page Options ~
A

Origin Folder/Cat alos Re: st/ Table
B Request Comn v | /shared/ODI Customer Demo ¥ I
(a1 5

B Logical Cobunn
Columns Used By a Request Bl Physical Cokumn
Note: Click on the images to folow data ineag|(Bl Presentation Column
Bl Requast Column
001 Column T
Target Column Expression Used Columns: Metadata Lineage
Column Table Column
Catalog Folder Request Hame Hame Expression Catalog Hame Hame Origin Lineage Hierarchy
o e 00l = , Bl Presentation
COUNTRY Courtries COUNTRY Customers Couniries | COUNTRY e '8 &
- N ool " Bl Prasantation
stomer Lis Reps , ¢ 5 CLIST_NA stomers ¢ A
Customer List with Reps. CUST_NAME Customers CLIST_NAME Customars | Customers | CUST NAME = R =
o0l Bl Presentation
= PERS s SALES PERS e ES PERS
SALES PERS Customers SALES PERS Cussiomers Customers |SALES PERS B &
fshared/ODI Customer oy s CIT oo - . Bl Presentation
Demo i o T Customers “0%% feLe Column ® &
Customer Per Countriss - o0l n - Bl Prasantation
v C COUNTI L 5 ‘
vt COUNTRY Countries COUNTRY Customers | Courities | COUNTRY e T =

0l Bl Presentation

REGION Regions REGION Regions REGION

Customers Column

17.6.3 Using the Dashboard

In this dashboard, you can filter using:

s The Origin of the column (ODI Column or OBI-EE Logical, Physical, Presentation
or Request Column)

s The OBI-EE Folder/Catalog or ODI Project containing the table and the column
s The Request or table containing the column

Click Go to display the filtered list of columns.

17.6.4 Using Lineage and Hierarchy

From this request, you can display the Lineage and Hierarchy for each column by
clicking one of the following buttons:

T
55

Lineage

Hierarchy

Using the Lineage
The Lineage icon allows you to drill down into a column lineage. The lineage goes
down the following path:

> The OBIEE Presentation Column(s) used in a request's column
> The OBIEE Logical Column(s) used in a Presentation Column
> The OBIEE Physical Column(s) used in a Presentation Column
> The ODI Column(s) corresponding to OBIEE Physical Column(s)

17-20 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Using the Lineage in OBIEE Dashboards

> The ODI source columns used to load a given ODI target column via an
ODI mapping. This path can recurse if the source columns are targets for other ODI

mappings.
For each level of the lineage, the dashboard displays:
» The Type, Catalog, Table Name, and Column Name for the (target) column

s The Type, Catalog, Table Name, and Column Name for the (source) column(s)

s The transformation Expression between the source column(s) and the target
column

s If the expression is an ODI mapping, you can drill down the ODI run-time
statistics (Exec. Stats) for this transformation.

= You can drill down at any point of the lineage by clicking Lineage in the view.

Figure 17-5 shows one lineage level displayed in a dashboard.

Figure 17-5 Lineage Level

ORACLE’ Interactive Dashboards My Dashboard SOUTHWIND Cortact Center Dashboard OO Demo Dashboard Consumer Dashboard Portals Sales Dashboar

Dashbosed TRI Dashboard Reports

0DI Demo Dashboard welcome, Administratort ¥ Alerts! - Dashboards - Answers - More Products ~ - Seftings ~ - Log

Columns and Expressions Used 1o Populate a Column
Mote: Cick on the images to folow data ineage

Target Column Transformation Expression Used Columns
Column Type Catalog Table Name Column Name Expression Exec Stats Catalog Table Name Column Mame Lineage Column Type
Bl Presentation Column ODI Customers Customers CUST_NAME (Same Column) ® ODI CUST_DW_DEV CUSTOMER CUST_NAME T BiLogical Column

Using the Hierarchy

The Hierarchy displays the entire lineage of a given request column in a hierarchical
view. Figure 17-6 shows the hierarchical column lineage.

Figure 17-6 Hierarchical Column Lineage

ORALCLE' Interactive Dashboards My Dashbosrd SOUTHWIND Cortact Center Dashboard ODI Demo Dashboard Consumer Dashboard Portsls Sales Dachboart

Service Dashboard TR Deshbosrd Reperts

001 Dema Dashboard Welcome, Administrator! Y Alerds! - Dashboards - Answers - More Products - Settings + - Log Out
Hierarchical Column Lineage

Used Used Used
Table Column Column
Column Type Bxpression Used Catalog Hame Hame Origin
- ;]
{shared {ODI Customer Demo. Customer List with Reps. CUST_NAME REQUES! ¢ stomers CUST_NAME ODICustomers Customers CUST_NAME Presentation
B o0l Bl Logical
. 0Dl Customers. Customers. CUST_NAME zru-gudim (Ssme Column) CLST [ey SUSTOMER CLST_NAME o
ODI CUST_DW_DEV.CUSTOMER. CLIST_NAME Bilogical ppet m cLST_DW_DEV CUSTOMER CUST_AME cusToMeRr cusT_uame @ Fhrscal
Coumn == = = Coburmn
Bl Py sical Oraclke Saes
- CUSTOMER.CUST_NAME C (Seme Cohumin) Wi o CUSTOMER CUST_NANE ODICokstn
Intcap(CUSTOMER FIRST_MAME) | '' [indcap SOL Server FIRST_MAME ODI Colurn
Oracle Sales Warehouse CUSTOMER CLET_NAME 0Dl Celumn (CUSTOMER LAST_NANE) Sales CUSTOMER LAST) =

This screen capture shows the hierarchical column lineage in the dashboard.

B R R R R R R R R 2 R R e s 2

Oracle Business Intelligence Enterprise Edition Data Lineage 17-21

Using the Lineage in OBIEE Dashboards

17.6.5 Using Contextual Lineage

You can create contextual lineage link using the LineageRequestColumns on any
dashboard. This contextual lineage link will open a dashboard showing the lineage for
a given request.

To create contextual lineage:

1.
2.

Edit a Dashboard.
Insert a Text object with the following code:

<p><font class=Nav onclick="JavaScript:GoNavEx (event, '<lineage requests_
folder>/LineageRequestColumns', '', 'Target Column', 'Catalog', '<your_request_
folder>', 'Target Column', 'Table Name', '<your request_name>');"> Metadata Lineage

In this code, you must set the following items according to your configuration:

s <lineage requests_folder> is the folder containing the
LineageRequestColumns request. This folder is the folder into which the OBIEE
Lineage Requests have been deployed.

s <your_ request_folder> is the folder containing the request for which you
want to display the lineage.

s <your_request_name> is the name of the request for which you want to
display the lineage.

For example, if the lineage requests are installed in the /shared/ODI folder, and
you want to view lineage for the /shared/ODI Customer Demo/Customer
Per Countries Chart request, the code will be:

<p><font class=Nav onclick="JavaScript:GoNavEx (event,

' /shared/ODI/LineageRequestColumns','', 'Target Column', 'Catalog','/shared/ODI
Customer Demo', 'Target Column', 'Table Name', 'Customer Per Countries
Chart');"> Metadata
Lineage

Before saving your code, make sure that Contains HTML Markup is selected in
the Text Properties editor as shown in Figure 17-7.

Figure 17-7 Text Properties Editor

Text Properties

Enter text and formatting tags below to include on your Dashboard

B||#| |u| | LineBreak | | cCortains HTML Markup

talog’,'fshar Dl
tomer Per Countr

Preview

OK Cancel

17-22 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Using the Lineage in OBIEE Dashboards

This text will create a link on the dashboard that opens the column lineage for the
given request.

4. Click OK.
The Metadata Lineage object is added to the dashboard as shown in Figure 17-8.

Figure 17-8 Text Object on Dashboard

0DI Demo welcome, N _ _ More
Dashboard Administrator! bl e Products ~

Last Runtime || Query ‘ ‘ Customers Per
Statistics Lineage Reps

Autralia France Germany Gereat Britain

-]

Customers
L]

[

[-]

Country
Modify - Refresh

% Metadata Lineage

Clicking Metadata Lineage displays the dashboard shown in Figure 17-9.
Figure 17-9 What is displayed when clicking on "Metadata Lineage"

Columns Used By a Request
Note: Click on the images to follow data lineage

Transformation
Target Column Expression Used Columns Metadata Lineage
Catalog Request Column Table Column
Folder Hame Hame Expression Catalog MHame Hame Origin Lineage Hierarchy
” ool ;)
Ty Cities CITY BT Cities Ty Presentation % .&
Column
fsharediopi -US1O™! oo Bl
Customer Co - COUNTRY Countries COUNTRY Tt Countries COUNTRY Presentation % &
Demo c Column
hart
obi =
REGION Regions REGION T Regions REGION Presentation % &,

Oracle Business Intelligence Enterprise Edition Data Lineage 17-23

Using the Lineage in OBIEE Dashboards

17-24 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Part lli

Other Technologies

This part describes how to work with other technologies in Oracle Data Integrator.

Part I1I contains the following chapters:

Chapter 18, "JMS"

Chapter 19, "JMS XML"

Chapter 20, "LDAP Directories"

Chapter 21, "Oracle TimesTen In-Memory Database"
Chapter 22, "Oracle GoldenGate"

Chapter 23, "Oracle SOA Suite Cross References"

18

JMS

This chapter describes how to work with Java Message Services (JMS) in Oracle Data
Integrator.

This chapter includes the following sections:

s Section 18.1, "Introduction”

» Section 18.2, "Installation and Configuration"

= Section 18.3, "Setting up the Topology"

= Section 18.4, "Setting Up an Integration Project"”

» Section 18.5, "Creating and Defining a JMS Model"
» Section 18.6, "Designing a Mapping"

= Section 18.7, "JMS Standard Properties"

18.1 Introduction

Oracle Data Integrator provides a simple and transparent method to integrate J]MS
destinations. This chapter focuses on processing JMS messages with a text payload in
batch mode. For XML payload processing, refer to Chapter 19, "JMS XML".

18.1.1 Concepts

The JMS Knowledge Modules apply to most popular J]MS compliant middleware,
including Oracle Service Bus, Sonic MQ, and so forth. Most of these Knowledge
Modules include transaction handling to ensure message delivery.

18.1.1.1 JMS Message Structure

This section describes the structure of a message in a JMS destination.
A JMS Message consists of three sections:

= Header

»s Properties

= Payload

Header

The header contains in the header fields standard metadata concerning the message,
including the destination (JMSDestination), Message ID (JMSMessagelD), Message
Type (JMSType), and so forth.

JMS 18-1

Introduction

Properties

The properties section contains additional metadata concerning the message. These
metadata are properties, that can be separated in three groups:

= JMS-Defined properties which are optional JMS Headers. Their name begins with
JMSX(JMSXUserID, IMSXApplID, etc.).

= Provider-specific properties. They are specific to the router vendor. Their names
start with JMS_<vendor name>.

= Application-specific properties. These properties depend on the application
sending the messages. These are user-defined information that is not included in
the message payload.

The Header and Properties sections provide a set of header fields and properties that:
» Have a specific Java data type (Boolean, string, short, and so forth),
= Can be accessed for reading and/or writing,

= Can be used for filtering on the router through the JMS Selector.

Payload

The payload section contains the message content. This content can be anything (text,
XML, binary, and so forth).

18.1.1.2 Using a JMS Destination

Oracle Data Integrator is able to process JMS Text and Byte messages that are delivered
by a JMS destination. Each message is considered as a container for rows of data and is
handled through the JMS Queue or JMS Topic technology.

With JMS Queue/JMS Topic technologies, each JMS destination is defined similarly to
a flat file datastore. Each message in the destination is a record in the datastore.

In the topology, each JMS router is defined as a JMS Topic/Queue data server, with a
single physical schema. A JMS router may be defined therefore twice to access its
topics using one data server, and its queues using another one.

Each JMS destination (Topic of Queue) is defined as a JMS datastore which resource
name matches the name of the JMS destination (name of the queue or topic as defined
in the router). A model groups message structures related to different topics or queues.

The JMS datastore structure is defined similarly to a flat file (delimited or fixed width).
The properties or header fields of the message can be declared with JMS-specific data
types as additional pseudo-columns in this flat file structure. Each message in the
destination is processed as a record of a JMS datastore.

Processing Messages

JMS destinations are handled as regular file datastores and messages as rows from
these datastores. With these technologies, entire message sets are produced and
consumed within each mapping.

Message publishing as well consumption requires a commit action to finalize
removing/posting the message from/to the JMS destination. Committing is
particularly important when reading. Without a commit, the message is read but not
consumed. It remains in the JMS Topic/Queue and will be re-read at a later time.

Both the message content and pseudo-columns can be used as regular attributes in the
mappings (for mapping, filter, etc.). Certain pseudo-columns (such as the one

18-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

representing the MESSAGE_ID property) are read-only, and some properties of header
fields are used (or set) through the Knowledge Module options.

Using Data Integrator you can transfer information either through the message
payload - the attributes -, or through the properties - pseudo-columns - (application
properties, for example).

Using the properties to carry information is restricted by third-party applications
producing or consuming the messages.

Filtering Messages

It is possible to filter messages from a JMS destination in two ways:

= By defining a filter using the datastore's attributes and pseudo-columns. In this
case Data Integrator performs the filtering operation after consuming the
messages. This implies that messages rejected by this filter may also be consumed.

» By defining a Message Selector MESSAGE_SELECTOR KM option). This type of
filter can only use the properties or header fields of the message. The filter is
processed by the router, and only the messages respecting the filter are consumed,
reducing the number of messages transferred.

18.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 18-1 for
handling JMS messages.

Table 18-1 JMS Knowledge Modules

Knowledge Module

Description

IKM SQL to JMS Append

LKM JMS to SQL

Integrates data into a JMS compliant message queue or topic in text
or binary format from any SQL compliant staging area.

Consider using this IKM if you plan to transform and export data to
a target JMS queue or topic. If most of your source datastores are
located on the same data server, we recommend using this data
server as staging area to avoid extra loading phases (LKMs).

To use this IKM, the staging area must be different from the target.

Loads data from a text or binary JMS compliant message queue or
topic to any SQL compliant database used as a staging area. This
LKM uses the Agent to read selected messages from the source
queue/topic and write the result in the staging temporary table
created dynamically.

To ensure message delivery, the message consumer (or subscriber)
does not commit the read until the data is actually integrated into the
target by the IKM.

Consider using this LKM if one of your source datastores is a text or
binary JMS message.

18.2 Installation and Configuration

Make sure you have read the information in this section before you start using the JMS

Knowledge Modules:

= System Requirements and Certifications

s Technology Specific Requirements

s Connectivity Requirements

JMS 18-3

Setting up the Topology

18.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

18.2.2 Technology Specific Requirements

The JMS destinations are usually accessed via a JNDI service. The configuration and
specific requirements for JNDI and JMS depends on the JMS Provider you are
connecting to. Refer to the J]MS Provider specific documentation for more details.

18.2.3 Connectivity Requirements

Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the
JMS Provider documentation for the connectivity requirement of this provider.

18.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a JMS Data Server
2. Creating a JMS Physical Schema

18.3.1 Creating a JMS Data Server

A JMS data server corresponds to one JMS provider/router that is accessible through
your local network.

It exists two types of JMS data servers: JMS Queue and JMS Topic.
» A JMS Queue data server is used to access several queues in the JMS router.

= A JMS Topic data server is used to access several topics in the JMS router

18.3.1.1 Creation of the Data Server

Create a data server either for the J]MS Queue technology or for the JMS Topic
technology using the standard procedure, as described in "Creating a Data Server" of
the Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator. This section
details only the fields required or specific for defining a JMS Queue or JMS Topic data
server.

1. In the Definition tab:
= Name: Name of the data server as it will appear in Oracle Data Integrator.
» User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:
s JNDI Authentication: Set this field to None.

= JNDI User: Enter the username to connect to the JNDI directory (optional
step).

18-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Defining a JMS Model

= Password: This user's password (optional step).
= JNDI Protocol: From the list, select the JNDI protocol (optional step).

s JNDI Driver: Name of the initial context factory java class to connect to the
JNDI provider, for example: com.sun.jndi.ldap.LdapCtxFactory for LDAP

= JNDI URL: <JMS_RESOURCE>, for example 1dap://<host>:<port>/<dn> for
LDAP

= JNDI Resource: Logical name of the JNDI resource corresponding to your JMS
Queue or Topic connection factory.

For example, specify QueueConnectionFactory if you want to access a
message queue and TopicConnectionFactory if you want to access a topic.
Note that these parameters are specific to the JNDI directory and the provider.

18.3.2 Creating a JMS Physical Schema

Create a JMS physical schema using the standard procedure, as described in "Creating
a Physical Schema" in Administering Oracle Data Integrator.

Note: Only one physical schema is required per JMS data server.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

18.4 Setting Up an Integration Project

Setting up a project using JMS follows the standard procedure. See "Creating an
Integration Project" of the Oracle Fusion Middleware Developer’s Guide for Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with JMS:

s IKM SQL to JMS Append
= LKMJMS to SQL

18.5 Creating and Defining a JMS Model

This section contains the following topics:
m Create a JMS Model
s Defining the JMS Datastores

Note: It is not possible to reverse-engineer a JMS model. To create a
datastore you have to create a JMS model and define the JMS
datastores.

18.5.1 Create a JMS Model

Create a JMS Model using the standard procedure, as described in "Creating a Model"
of the Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator.

JMS 18-5

Creating and Defining a JMS Model

A JMS Model is a set of datastores corresponding to the Topics or Queues of a router.
Each datastore corresponds to a specific Queue or Topic. The datastore structure
defines the message structure for this queue or topic. A model is always based on a
Logical Schema. In a given Context, the Logical Schema corresponds to one JMS
Physical Schema. The Data Schema corresponding to this Physical Schema contains the
Topics or Queues.

18.5.2 Defining the JMS Datastores

In Oracle Data Integrator, each datastore is a JMS Topic or Queue. Each message in this
topic or queue is a row of the datastore.

A JMS message may carry any type of information and there is no metadata retrieval
method available. Therefore reverse-engineering is not possible.

To define the datastore structure, do one of the following:

s Create the datastore as a file datastore and manually declare the message
structures.

s Use the File reverse-engineering through an Excel spreadsheet in order to
automate the reverse engineering of messages. See Chapter 3, "Files" for more
information about this reverse-engineering method.

s Duplicate a datastore from another model into the JMS model.

Important: The datastores' resource names must be identical to the
name of JMS destinations (this is the logical JNDI name) that will
carry the message corresponding to their data. Note that these names
are frequently case-sensitive.

Declaring JMS Properties as Pseudo-Columns

The property pseudo-columns represent properties or header fields of a message.
These pseudo-columns are defined in the Oracle Data Integrator model as attributes in
the JMS datastore, with JMS-specific datatypes. The JMS-specific datatypes are called
JMS_xxx (for example: JMS String, JMS Long, JMS Int, and so forth).

To define these property pseudo-columns, simply declare additional attributes named
identically to the properties and specified with the appropriate JMS-specific datatypes.

If you define pseudo-columns that are named like standard, provider-specific or
application-specific properties, they will be consumed or published with the message
as such. If a pseudo-column is not listed in the standard or provider-specific set of JMS
properties, It is considered as additional application-specific property.

For example, to use or set in mappings the JMSPriority default property on messages
consumed from or pushed to a JMS queue called CUSTOMER, you would add a
attribute called JMSPriority (with this exact case) to the CUSTOMER datastore. This
attribute would have the JMS Int datatype available for the JMS Queue technology.

18-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Warning:

= Property pseudo-columns must be defined and positioned in the
JMS datastore after the attributes making up the message payload
in a DELIMITED file format. Use the Order field in the column
definition to position these columns. The order of the
pseudo-columns themselves is not important as long as they
appear at the end of the datastore definition.

] Pseudo-columns names are case-sensitive.

For more information about JMS Properties, see:
= Section 18.7, "JMS Standard Properties"
= Section 18.7.1, "Using JMS Properties"

18.6 Designing a Mapping

You can use JMS as a source or a target of a mapping. It cannot be used as the staging
area.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning JMS messages.

18.6.1 Loading Data from a JMS Source

JMS can be used as a source or a target in a mapping. Data from a JMS message Queue
or Topic can be loaded to any SQL compliant database used as a staging area. The
LKM choice in the Mapping Flow tab to load data between JMS and another type of
data server is essential for the performance of a mapping.

Oracle Data Integrator provides the LKM JMS to SQL for loading data from a JMS
source to a Staging Area. This LKM loads data from a text or binary JMS compliant
message queue or topic to any SQL compliant database used as a staging area.

Table 18-2 lists the JMS specific options.

18.6.2 Integrating Data in a JMS Target

Oracle Data Integrator provides the IKM SQL to JMS Append that implements
optimized data integration strategies for JMS. This IKM integrates data into a JMS
compliant message queue or topic in text or binary format from any SQL compliant
staging area. Table 18-2 lists the JMS specific KM options of this IKM.

The IKM choice in the Mapping Flow tab determines the performances and
possibilities for integrating.

JMS Knowledge Modules Options

Table 18-2 lists the JMS specific KM options of the JMS IKM and LKM.

The JMS specific options of this LKM are similar to the options of the IKM SQL to JMS
Append. There are only two differences:

s The DELETE_TEMPORARY_OBJECTS option is only provided for the LKM.
= The PUBLISH option is only provided for the IKM.

JMS 18-7

Designing a Mapping

Table 18-2 JMS Specific KM Options

Option

Used to

Description

PUBLISH

JMS_COMMIT

JMSDELIVERYMODE

JMSEXPIRATION

JMSPRIORITY

SENDMESSAGETYPE

JMSTYPE
CLIENTID

DURABLE

MESSAGEMAXNUMBER

MESSAGETIMEOUT

Write

Read /Write

Write

Write

Write

Write

Write
Read

Read

Read

Read

NEXTMESSAGETIMEOUT Read

MESSAGESELECTOR

Read

Check this option if you want to publish new
messages in the destination. This option is set to
Yes by default.

Commit the publication or consumption of a
message. Uncheck this option if you don't want to
commit your publication/consumption on your
router. This option is set to Yes by default.

JMS delivery mode (1: Non Persistent, 2:
Persistent). A persistent message remains on the
server and is recovered on server crash.

Expiration delay in milliseconds for the message on
the server [0..4 000 000 000]. O signifies that the
message never expires.

Warning! After this delay, a message is considered
as expired, and is no longer available in the topic or
queue. When developing mappings it is advised to
set this parameter to zero.

Relative Priority of the message: 0 (lowest) to 9
(highest).

Type of message to send (1 -> BytesMessage, 2
->TextMessage).

Optional name of the message.

Subscriber identification string. This option is
described only for J]MS compatibility.

Not used for publication.

D: Session is durable. Indicates that the subscriber
definition remains on the router after
disconnection.

Maximum number of messages retrieved [0 .. 4 000
000 000]. 0: All messages are retrieved.

Time to wait for the first message in milliseconds [0
..4 000 000 000]. if MESSAGETIMEOUT is equal to
0, then there is no timeout.

MESSAGETIMEOUT and
MESSAGEMAXNUMBER cannot be both equal to
zero. if MESSAGETIMEOUT= 0 and
MESSAGEMAXNUMBER =0, then
MESSAGETIMEOUT takes the value 1.

Warning! A mapping may retrieve no message if
this timeout value is too small.

Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value is
1000.

Warning! A mapping may retrieve only part of the
messages available in the topic or the queue if this
value is too small.

Message selector in ISO SQL syntax. See
Section 18.7.1, "Using JMS Properties" for more
information on message selectors.

18-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

JMS Standard Properties

18.7 JMS Standard Properties

This section describes the JMS properties contained in the message header and how to
use them.

In Oracle Data Integrator, pseudo-columns corresponding to the JMS Standard
properties should be declared in accordance with the descriptions provided in
Table 18-3.

The JMS type and access mode columns refer to the use of these properties in Oracle
Data Integrator or in Java programs. In Oracle Data Integrator, some of these
properties are used through the IKM options, and the pseudo-column values should
not be set by the mappings.

For more details on using these properties in a Java program, see
http://java.sun.com/products/jms/.

Table 18-3 Standard JMS Properties of Message Headers

Access
Property JMS Type (Read/Write) Description
JMSDestination JMS String R Name of the destination (topic or

queue) of the message.

JMSDeliveryMode JMS Integer R/W (setby IKM Distribution mode: 1 = Not
option) Persistent or 2 = Persistent. A
persistent message is never lost,
even if a router crashes.

When sending messages, this
property is set by the
JMSDELIVERYMODE KM option.

JMSMessagelD JMS String R Unique Identifier for a message. This
identifier is used internally by the
router.

JMSTimestamp JMS Long R Date and time of the message

sending operation. This time is
stored in a UTC standard format (1).

JMSExpiration JMS Long R/W (setby IKM Message expiration date and time.
option) This time is stored in a UTC
standard format (1).

To set this property the
JMSEXPIRATION KM option must
be used.

JMSRedelivered JMS Boolean R Indicates if the message was resent.
This occurs when a message
consumer fails to acknowledge the
message reception.

JMSPriority JMS Int R/W Name of the destination (topic or
queue) the message replies should
be sent to.

JMSCorrelationID ~ JMS String R/W Correlation ID for the message. This

may be the J]MSMessagelD of the
message this message generating
this reply. It may also be an
application-specific identifier.

JMS 18-9

JMS Standard Properties

Table 18-3 (Cont.) Standard JMS Properties of Message Headers

Access

Property JMS Type (Read/Write) Description

JMSType JMS String R/W (setby IKM Message type label. This type is a
option) string value describing the message

in a functional manner (for example
SalesEvent, SupportProblem).

To set this property the JIMSTYPE
KM option must be used.

Table 18—4 lists the optional J]MS-defined properties in the JMS standard.

Table 18-4 Optional JMS Properties of Message Headers

Access

Property JMS Type (Read/Write) Description

JMSXUserID JMS String R Client User ID.

JMSXAppID JMS String R Client Application ID.

JMSSXProducerTXI JMS String R Transaction ID for the production

D session. This ID is the same for all
the messages sent to a destination by
a producer between two JMS
commit operations.

JMSSXConsumerTX JMS String R Transaction ID for current

ID consumption session. This ID is the
same of a batch of message read
from a destination by a consumer
between two JMS commit read
operations.

JMSXRcvTimestam JMS Long R Message reception date and time.

P This time is stored in a UTC
standard format (1).

JMSXDeliveryCoun JMS Int R Number of times a message is

t received. Always set to 1.

JMSXState JMS Int R Message state. Always set to 2
(Ready).

JMSXGrouplID JMS String R/W ID of the group to which the
message belongs.

JMSXGroupSeq JMS Int R/W Sequence number of the message in

the group of messages.

(1): The UTC (Universal Time Coordinated) standard is the number of milliseconds
that have elapsed since January 1st, 1970

18.7.1 Using JMS Properties

In addition to their contents, messages have a set of properties attached to them. These
may be provider-specific, application-specific (user defined) or JMS Standard
Properties.

JMS properties are used in Oracle Data Integrator as complementary information to
the message, and are used, for example, to filter the messages.

18-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

JMS Standard Properties

18.7.1.1 Declaring JMS Properties

When Defining the JMS Datastores, you must append pseudo-columns corresponding
to the JMS properties that you want to use in your mappings. See Declaring JMS
Properties as Pseudo-Columns for more information.

18.7.1.2 Filtering on the Router

With this type of filtering, the filter is specified when sending the JMS read query.
Only messages matching the message selector filter are retrieved. The message selector
is specified in Oracle Data Integrator using the MESSAGE_SELECTOR KM option

Note: Router filtering is not a J]MS mandatory feature. It may be
unavailable. Please confirm that it is available by reviewing the J]MS
provider documentation.

The MESSAGE_SELECTOR is programmed in an SQL WHERE syntax. Comparison,
boolean and mathematical operators are supported:

+, -, * [/, =, > <, <>, »>=, <=, OR, AND, BETWEEN, IN, NOT, LIKE, IS NULL.

Notes:

s The IS NULL clause handles properties with an empty value but
does not handle nonexistent application-specific properties.

For example, if the selector COLOR IS NULL is defined, a message
with the application-specific property COLOR specified with an
empty value is consumed correctly. Another message in the same
topic/queue without this property specified would raise an
exception.

Examples
Filter all messages with priority greater than 5

JMSPriority > 5
Filter all messages with priority not less than 6 and with the type Sales_Event.

NOT JMSPriority < 6 AND JMSType = 'Sales_Event'

18.7.1.3 Filtering on the Client

Filtering is performed after receiving the messages, and is setup by creating a standard
Oracle Data Integrator mapping filter, which must be executed on the staging area. A
filter uses pseudo-columns from the source J]MS datastore. The pseudo-columns
defined in the Oracle Data Integrator datastore represent the JMS properties. See
Declaring JMS Properties as Pseudo-Columns for more information. Note that
messages filtered this way are considered as consumed from the queue or topic.

18.7.1.4 Using Property Values as Source Data

It is possible to use the values of JMS properties as source data in a mapping. This is
carried out by specifying the pseudo-columns of the source JMS datastore in the
mapping. See Declaring JMS Properties as Pseudo-Columns for more information.

JMS 18-11

JMS Standard Properties

18.7.1.5 Setting Properties when Sending a Message

When sending messages it is possible to specify JMS properties by mapping values of
the pseudo-columns in a mapping targeting a JMS datastore. Certain properties may
be set using KM options. See Section 18.7, "JMS Standard Properties" for more

information.

18-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

19

JMS XML

This chapter describes how to work with Java Message Services (JMS) with a XML
payload in Oracle Data Integrator.

This chapter includes the following sections:

s Section 19.1, "Introduction”

= Section 19.2, "Installation and Configuration"

= Section 19.3, "Setting up the Topology"

= Section 19.4, "Setting Up an Integration Project"”

= Section 19.5, "Creating and Reverse-Engineering a J]MS XML Model"
= Section 19.6, "Designing a Mapping"

19.1 Introduction

Oracle Data Integrator provides a simple and transparent method to integrate J]MS
destinations. This chapter focuses on processing JMS messages with a XML payload.
For text payload processing in batch mode, refer to Chapter 18, "JMS".

19.1.1 Concepts

The JMS XML Knowledge Modules apply to most popular JMS compliant
middleware, including Oracle Service Bus, Sonic MQ), and so forth. Most of these
Knowledge Modules include transaction handling to ensure message delivery.

19.1.1.1 JMS Message Structure

See Section 19.1.1.1, "JMS Message Structure" for information about the JMS message
structure.

19.1.1.2 Using a JMS Destination

Oracle Data Integrator is able to process XML messages that are delivered by a J]MS
destination. Each message is considered as a container for XML data and is handled
through the JMS XML Queue or JMS XML Topic technology.

With JMS XML Queue/JMS XML Topic technologies, each messages payload contains
a complete XML data structure. This structure is mapped into a relational schema
(XML Schema) that appears as a model, using the Oracle Data Integrator XML Driver.

JMS XML 19-1

Introduction

Note: This method is extremely similar to XML files processing. In
JMS XML, the message payload is the XML file. See Chapter 5, "XML
Files"and Appendix B, "Oracle Data Integrator Driver for XML
Reference"for more information about XML Files processing and the
XML Driver.

In the topology, each JMS destination is defined as a JMS XML Topic/Queue data
server with a single physical schema. A data server/physical schema pair will be
declared for each topic or queue delivering message in the XML format.

The structure of the XML message mapped into a relational structure (called the XML
schema) appears as a data model. Each datastore in this model represents a portion
(typically, an element type) in the XML file.

Processing Messages

As each XML message corresponds to an Oracle Data Integrator model, the entire
model must be used and loaded as one single unit when a JMS XML message is
consumed or produced. The processing unit for an XML message is the package.

It is not possible to declare the properties or header fields of the message in the model
or use them as attributes in a mapping. They still can be used in message selectors, or
be set through KM options.

Consuming an XML message
Processing an incoming XML message is performed in packages as follows:

1. Synchronize the [MS message to the XML schema: This operation reads the message
and generates the XML schema. This is usually performed by the first mapping
accessing the message.

2. Extract the data: A sequence of mappings use datastores from the XML schema as
sources. This data is usable until the session is terminated, another message is read
by a new Synchronize action, or the Commit [MS Read is performed.

3. Commit JMS Read: This operation validates the message consumption and deletes
the XML schema. It should be performed by the last mapping which extracts data
from the XML message.

Producing an XML message

To produce an XML message, a package must be designed to perform the following
tasks:

1. Initialize the XML schema: This operation creates an empty XML schema
corresponding to the XML message to generate. This operation is usually
performed in the first mapping loading the structure.

2. Load the data: A sequence of mappings loads data into the XML schema.

3. Synchronize the XML schema to [MS: This operation converts the XML schema to an
XML message, and sends it to the JMS destination. This operation is usually
performed by the last mapping loading the schema.

Filtering Messages

It is possible to filter messages from a J]MS XML destination by defining a Message
Selector (MESSAGE_SELECTOR KM option) to filter messages on the server. This type
of filter can use only the properties or header fields of the message. The filter is

19-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

processed by the server, reducing the amount of information read by Data Integrator.
It is also possible to filter data in the mapping using data extracted from the XML
schema. These filters are processed in Data Integrator, after the message is
synchronized to the XML schema.

19.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 19-1 for
handling XML messages.

Table 19-1 JMS XML Knowledge Modules

Knowledge Module Description

IKM SQL to JMS XML Append Integrates data into a JMS compliant message queue or topic in XML
format from any ANSI SQL-92 standard compliant staging area.

LKM JMS XML to SQL Loads data from a JMS compliant message queue or topic in XML to
any ANSI SQL-92 standard compliant database used as a staging
area.

19.2 Installation and Configuration

Make sure you have read the information in this section before you start using the JMS
Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

s Connectivity Requirements

19.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

19.2.2 Technology Specific Requirements

The JMS destinations are usually accessed via a JNDI service. The configuration and
specific requirements for JNDI and JMS depends on the JMS Provider you are
connecting to. Refer to the J]MS Provider specific documentation for more details.

JMS XML 19-3

Setting up the Topology

Note: By default, a sequence of four ';' is used as fixed record
separator for JMS XML driver read operations. If the XML data also
contains a sequence of four or more ';' characters, an error will occur
and you must set the record separator to a different value. This is
achieved using the Doracle.odi.jmsxmlColSepString JVM option.
For example, Doracle.odi. jmsxmlColSepString="2????" will set the
JMS XML driver record separator to "????" instead of ";;;;".

This option must be set in the following locations:

= In Studio, this parameter is set in the odi.conf parameter file.
Add a new AddvMOption entry.

s For 12¢ Standalone/Colocated Agents, use ODI_INSTANCE_OPTIONS
in the instance.sh script.

» For 11g Standalone Agents, use ODI_ADDITIONAL_ JAVA_OPTIONS in
the odiparams file.

= For JEE Agents, add it to JAVA_OPTIONS in the
startManagedWeblogic script.

19.2.3 Connectivity Requirements

This section lists the requirements for connecting to a JMS XML database.

Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the
JMS Provider documentation for the connectivity requirement of this provider.

XML Configuration

XML content is accessed through the Oracle Data Integrator JDBC for XML driver. The
driver is installed with Oracle Data Integrator.

Ask your system administrator for the location of the DTD file describing the XML
content.

19.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a J]MS XML Data Server
2. Creating a JMS XML Physical Schema

19.3.1 Creating a JMS XML Data Server

An JMS XML data server corresponds to one JMS provider/router that is accessible
through your local network.

There are two types of JMS XML data servers: JMS Queue XML and JMS Topic XML.

s A JMS Queue XML data server is used to connect a single queue in the JMS router to
integrate XML messages.

s A JMS Topic XML data server is used to connect a single Topic in the JMS router to
integrate XML messages.

The Oracle Data Integrator JMS driver loads the messages that contains the XML
content into a relational schema in memory. This schema represents the hierarchical

19-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

structure of the XML message and enables unloading the relational structure back to
the JMS messages.

19.3.1.1 Creation of the Data Server

Create a data server either for the J]MS Queue XML technology or for the J]MS Topic
XML technology using the standard procedure, as described in "Creating a Data
Server" of the Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator.

The creation process for a JMS XML Queue or JMS Topic XML data server is identical
to the creation process of an XML data server except that you need to define a JNDI
connection with JMS XML specific information in the JNDI URL. See Section 5.3.1,
"Creating an XML Data Server" for more information.

This section details only the fields required or specific for defining a J]MS Queue XML
or JMS Topic XML data server.

1. In the Definition tab:
= Name: Name of the data server as it will appear in Oracle Data Integrator.
» User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:
» JNDI Authentication: From the list, select the authentication mode.

= JNDI User: Enter the username to connect to the JNDI directory (not
mandatory).

s Password: This user's password (not mandatory).
= JNDI Protocol: From the list, select the JNDI protocol (not mandatory).

= JNDI Driver: Name of the initial context factory java class to connect to the
JNDI provider, for example:

com.sun.jndi.ldap.LdapCtxFactory

s JNDI URL: <JMS_RESOURCE>?d=<DTD_FILE>&s=<SCHEMA>&JIMS_
DESTINATION=<JMS_DESTINATION_NAME>.

The JNDI URL properties are described inTable 19-2.

= JNDI Resource: Logical name of the JNDI resource corresponding to your JMS
Queue (or Topic) connection factory.

Note: Specify QueueConnectionFactory if you want to access a
message queue and TopicConnectionFactory if you want to access a
topic. Note that these parameters are specific to the JNDI directory.

Table 19-2 JNDI URL Properties

Parameter Value Notes

d <DTD File location> DTD File location (relative or absolute) in UNC format.
Use slash "/" in the path name and not backslash "\" in
the file path. This parameter is mandatory.

re <Root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This parameter can
be used for reverse-engineering a specific message
definition from a WSDL file, or when several possible
root elements exist in a XSD file.

JMS XML 19-5

Setting up the Topology

Table 19-2 (Cont.) JNDI URL Properties

Parameter Value Notes
ro true | false If true, the XML file is opened in read only mode.
s <schema name> Name of the relational schema where the XML file will

be loaded.This value must match the one set for the
physical schema attached to this data server. This
parameter is mandatory.

cs true | false Load the XML file in case sensitive or insensitive mode.
For case insensitive mode, all element names in the
DTD file should be distinct (Ex: Abc and abc in the
same file are banned). The case sensitive parameter is a
permanent parameter for the schema. It CANNOT be
changed after schema creation. Please note that when
opening the XML file in insensitive mode, case will be
preserved for the XML file.

JMSXML_ 5B23245D Hexadecimal code of the string used as a line separator

ROWSEPARA (line break) for different XML contents. Default value is

TOR 5B23245D which corresponds to the string [#$].

JMS_ JNDI Queue name or JNDI Name of the JMS Queue or Topic. This parameter

DESTINATIO Topic name is mandatory.

N

transform_ boolean (true | false) Transform Non Ascii. Set to false to keep non-ascii

nonascii or tna characters. Default is true. This parameter is not
mandatory.

Example

If using an LDAP directory as the JNDI provider, you should use the following

parameters:

s JNDI Driver: com. sun.jndi.ldap.LdapCtxFactory

s JNDIURL: 1dap: //<1ldap_host>:<port>/<dn>?d=<DTD_FILE>&s=<SCHEMA>&JMS_
DESTINATION=<JMS_DESTINATION_NAME>

s JNDI Resource: <Name of the connection factory>

19.3.2 Creating a JMS XML Physical Schema

19-6

Create a JMS XML physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Note: For the name of the Schema and Work Schema use the schema
name defined in the s=<schema name> property of the JNDI URL of
the JMS Queue XML or JMS Topic XML data server.

Note: Only one physical schema is required per JMS XML data
server.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Creating and Reverse-Engineering a JMS XML Model

19.4 Setting Up an Integration Project

Setting up a project using J]MS XML follows the standard procedure. See "Creating an
Integration Project" of the Oracle Fusion Middleware Developer’s Guide for Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with JMS XML:

= IKM SQL to JMS XML Append
= LKMJMS XML to SQL

19.5 Creating and Reverse-Engineering a JMS XML Model

This section contains the following topics:
s Create a JMS XML Model
= Reverse-Engineering a JMS XML Model

19.5.1 Create a JMS XML Model

Create a JMS Queue XML or JMS Topic XML Model using the standard procedure, as
described in "Creating a Model" of the Oracle Fusion Middleware Developer’s Guide for
Oracle Data Integrator.

A JMS Queue XML or JMS Topic XML Model corresponds to a set of datastores, with
each datastore representing an entry level in the XML file. The models contain
datastores describing the structure of the JMS messages. A model contains the message
structure of one topic or one queue. This model's structure is reverse-engineered from
the DTD or the XML file specified in the data server definition, using standard
reverse-engineering.

19.5.2 Reverse-Engineering a JMS XML Model

JMS XML supports Standard reverse-engineering - which uses only the abilities of the
XML driver.

To perform a Standard Reverse-Engineering on JMS Queue XML or JMS Topic XML
use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle
Fusion Middleware Developer’s Guide for Oracle Data Integrator.

Oracle Data Integrator will automatically add the following attributes to the datastores
generated from the XML data:

s Primary keys (PK attributes) for parent-child relationships
s Foreign keys (FK attributes) for parent-child relationships

» Order identifier (ORDER attributes) to enable the retrieval of the order in which
the data appear in the XML file.

These extra attributes enable the hierarchical XML structure's mapping in a relational
structure stored in the schema. See Appendix B, "Oracle Data Integrator Driver for
XML Reference" for more information.

JMS XML 19-7

Designing a Mapping

19.6 Designing a Mapping

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning XML messages.

19.6.1 Loading Data from a JMS XML Source

JMS XML can be used as a source or a target in a mapping. Data from an XML
message Queue or Topic can be loaded to any ANSI SQL-92 standard compliant
database used as a staging area. The LKM choice in the Mapping Flow tab to load data
between JMS XML and another type of data server is essential for successful data
extraction.

Oracle Data Integrator provides the LKM JMS XML to SQL for loading data from a
JMS compliant message queue or topic in XML to any ANSI SQL-92 standard
compliant database used as a staging area. This LKM uses the Agent to read selected
messages from the source queue/topic and write the result in the staging temporary
table created dynamically.To ensure message delivery, the message consumer (or
subscriber) does not commit the read until the data is actually integrated into the
target by the IKM.Consider using this LKM if one of your source datastores is an XML
JMS message.

In order to load XML messages from a JMS provider, the following steps must be
followed:

s The first mapping reading the XML message from the JMS XML source must use
the LKM JMS XML to SQL with the SYNCHRO_JMS_TO_XML LKM option set to
Yes. This option creates and loads the XML schema from the message retrieved
from the queue or topic.

s The last mapping should commit the message consumption by setting the JMS_
COMMIT to Yes.

Table 19-3 lists the JMS specific options of this knowledge module.

19.6.2 Integrating Data in a JMS XML Target

Oracle Data Integrator provides the IKM SQL to JMS XML Append that implements
optimized data integration strategies for JMS XML. This IKM integrates data into a
JMS compliant message queue or topic in XML format from any ANSI SQL-92
standard compliant staging area.

To use this IKM, the staging area must be different from the target.

In order to integrate XML data into a JMS XML target, the following steps must be
followed:

s The first mapping loading the XML schema must provide a value for the ROOT_
TABLE (it is the model's table that corresponds to the root element of the XML
file), and also set the INITIALIZE_XML_SCHEMA option to Yes.

Note: The root table of the XML schema usually corresponds to the
datastore at the top of the hierarchy tree view of the J]MS XML model.
Therefore the ROOT_TABLE parameter should take the value of the
resource name for this datastore.

19-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

= The mappings should load the datastores in the hierarchy order, starting by the
top of the hierarchy and going down. The mappings loading subsequent levels of
the XML schema hierarchy should load the foreign key attribute linking the
current hierarchy level to a higher one.

For example, when loading the second level of the hierarchy (the one under the
root table), the foreign key attribute should be set to '0' (Zero), as it is the value
that is set by the IKM in the root table primary key when the root table is
initialized.

s The last mapping should send the XML schema to the JMS provider by setting the
SYNCHRO_JMS_TO_XML parameter to Yes.

Example
An XML file format generates a schema with the following hierarchy of datastores:

+ GEOGRAPHY_DIM (GEO_DIMPK, ...)

+--- COUNTRY (GEO_DIMFK, COUNTRYPK, COUNTRY_NAME, ...)

+--- REGION (COUNTRYFK, REGIONPK, REGION_NAME, ...)

In this hierarchy, GEOGRAPHY_DIM is the root table, and its GEOGRAPHY_DIMPK
attribute is set to '0' at initialization time. The tables should be loaded in the
GEOGRAPHY_DIM, COUNTRY, REGION sequence.

= When loading the second level of the XML hierarchy (COUNTRY) make sure that
the FK field linking this level to the root table level is set to '0". In the model above,
when loading COUNTRY, we must load the COUNTRY.GEOGRAPHY_DIMFK set
to'0".

= You must also link the records of REGION to the COUNTRY level by loading the
REGION.COUNTRYEFK attribute with values that correspond to a parent record in
COUNTRY (having REGION.COUNTRYFK = COUNTRY.COUNTRYPK).

For more information on loading data to XML schemas, see Appendix B, "Oracle Data
Integrator Driver for XML Reference".

Table 19-3 lists the JMS specific KM options of this IKM. Options that are specific to
XML messages are in bold.

JMS XML Knowledge Modules Options
Table 19-3 lists the KM options for the LKM and IKM for JMS XML. Options that are
specific to XML messages are in bold.

Although most options are the same for the LKM and IKM, there are only few
differences:

s The INITIALIZE XML_SCHEMA and ROOT_TABLE options are only provided
for the IKM.

s The DELETE_TEMPORARY_OBJECTS and JMS_COMMIT options are only
provided for the LKM.

= Set JMS_COMMIT to Yes to commit the message consumption on the Router (JMS
XML).

JMS XML 19-9

Designing a Mapping

Table 19-3 JMS Specific KM Options

Option Used to Description

CLIENTID Read Subscriber identification string.
Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber
definition remains on the router after
disconnection.

INITIALIZE_XML._ Write Initializes an empty XML schema. This option must

SCHEMA be set to YES for the first mapping loading the
schema.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2:

Persistent). A persistent message remains on the
server and is recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on
the server [0..4 000 000 000]. O signifies that the
message never expires.

Warning! After this delay, a message is considered
as expired, and is no longer available in the topic or
queue. When developing mappings it is advised to
set this parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9
(highest).

JMSTYPE Write Optional name of the message.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000
000 000]. 0: All messages are retrieved.

MESSAGESELECTOR Read Message selector in ISO SQL syntax for filtering on

the router. See Section 18.7.1, "Using JMS
Properties" for more information on message
selectors.

MESSAGETIMEOUT Read Time to wait for the first message in milliseconds [0
..4 000 000 000]. If MESSAGETIMEOUT is equal to
0, then there is no timeout.

MESSAGETIMEOUT and
MESSAGEMAXNUMBER cannot be both equal to
zero. If MESSAGETIMEOUT= 0 and MESSAGEMAXNUMBER
=0, then MESSAGETIMEOUT takes the value 1.

Warning! A mapping may retrieve no message if
this timeout value is too small.

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value is
1000.

Warning! A mapping may retrieve only part of the
messages available in the topic or the queue if this
value is too small.

ROOT_TABLE Write Resource name of the datastore that is the root of
the XML model hierarchy. Option applicable only
to first mapping loading the schema (INITIALIZE_
XML_SCHEMA=true). IKM inserts a record for the
root element of the XML schema, if ROOT_
TABLE<>" and INITTALIZE_XML_SCHEMA =true.

Warning! Use only, if no mapping will populate the
root table of the XML structure. Otherwise a
duplicate root element will be encountered.

19-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

Table 19-3 (Cont.) JMS Specific KM Options

Option Used to Description

SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2
->TextMessage).

SYNCHRO_XML_TO_JMS Write Generates the XML message from the XML schema,

and sends this message. This option must be set to
YES for the last mapping that writes to the schema

XML.

JMS XML 19-11

Designing a Mapping

19-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

20

LDAP Directories

This chapter describes how to work with LDAP directories in Oracle Data Integrator.
This chapter includes the following sections:

s Section 20.1, "Introduction”

» Section 20.2, "Installation and Configuration"

= Section 20.3, "Setting up the Topology"

= Section 20.4, "Setting Up an Integration Project"”

= Section 20.5, "Creating and Reverse-Engineering an LDAP Directory"

» Section 20.6, "Designing a Mapping"

= Section 20.7, "Troubleshooting"

20.1 Introduction

Oracle Data Integrator supports LDAP directories integration using the Oracle Data
Integrator Driver for LDAP.

20.1.1 Concepts

The LDAP concepts map the Oracle Data Integrator concepts as follows: An LDAP
directory tree, more specifically the entry point to this LDAP tree, corresponds to a
data server in Oracle Data Integrator. Within this data server, a single schema maps the
content of the LDAP directory tree.

The Oracle Data Integrator Driver for LDAP (LDAP driver) loads the hierarchical
structure of the LDAP tree into a relational schema. This relational schema is a set of
tables that can be queried or modified using standard SQL statements.

The relational schema is reverse-engineered as a data model in ODI, with tables,
columns, and constraints. This model is used like a normal relational data model in
ODI. Any changes performed in the relational schema data (insert/update) is
immediately impacted by the driver in the LDAP data.

See Appendix A, "Oracle Data Integrator Driver for LDAP Reference" for more
information on this driver.

20.1.2 Knowledge Modules

Oracle Data Integrator does not provide specific Knowledge Modules (KM) for the
LDAP technology. You can use LDAP as a SQL data server. LDAP data servers support
both the technology-specific KMs sourcing or targeting SQL data servers, as well as

LDAP Directories 20-1

Installation and Configuration

the generic KMs. See Chapter 4, "Generic SQL" or the technology chapters for more
information on these KMs.

20.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the LDAP technology.

= System Requirements
= Technologic Specific Requirements

s Connectivity Requirements

20.2.1 System Requirements

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

20.2.2 Technologic Specific Requirements

There are no technology-specific requirements for using LDAP directories in Oracle
Data Integrator.

20.2.3 Connectivity Requirements

This section lists the requirements for connecting to LDAP database.

Oracle Data Integrator Driver for LDAP

LDAP directories are accessed through the Oracle Data Integrator Driver for LDAP.
This JDBC driver is installed with Oracle Data Integrator.

To connect to an LDAP directory you must ask the system administrator for the
following connection information:

s The URL to connect to the directory
s The User and Password to connect to the directory

s The Base Distinguished Name (Base DN). This is the location in the LDAP tree that
ODI will access.

You may also require a connection to the Reference LDAP Tree structure and to an
External Storage database for the driver. See Appendix B, "Oracle Data Integrator
Driver for XML Reference" for more information on these concepts and configuration
parameters.

20.3 Setting up the Topology

Setting up the topology consists in:
1. Creating an LDAP Data Server

20-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

2. Creating a Physical Schema for LDAP

20.3.1 Creating an LDAP Data Server

An LDAP data server corresponds to an LDAP tree that is accessible to Oracle Data
Integrator.

20.3.1.1 Creation of the Data Server

Create a data server for the LDAP technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
LDAP data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in Oracle Data Integrator.
s User/Password: Name and password of the LDAP directory user.
2. Inthe JDBC tab, enter the values according to the driver used:
s JDBC Driver: com. sunopsis.ldap.jdbc.driver.SnpsLdapDriver
= JDBC URL: The driver supports two URL formats:
— Jjdbc:snps:ldap?<property>=<value> [&<property>=<value>...]

— Jjdbc:snps:ldap2?<property>=<value> [&<property>=<value>...

]

These two URLs accept the key properties listed in Table 20-1. See
Appendix A.3.1, "Driver Configuration" for a detailed description of these
properties and for a comprehensive list of all JDBC driver properties.

Note: The first URL requires the LDAP directory password to be
encoded. The second URL allows you to give the LDAP directory
password without encoding it. It is recommended to use the first URL
to secure the LDAP directory password.

Table 20-1 JDBC Driver Properties

Property Value Notes

ldap_auth <authentication LDAP Directory authentication method. See the auth property in Table A-1
mode>

ldap_url <LDAP URL> LDAP Directory URL. The URL must not contain spaces. If there are spaces

in the URL, replace them with %20.
See the url property in Table A-1

ldap_user <LDAP user name> LDAP Directory user name. See the user property in Table A-1

ldap_ <LDAP user LDAP Directory user password. This password must be encoded if using the
password password> jdbc:snps:ldap URL syntax.

See the password property in Table A-1
ldap_ <base DN> LDAP Directory basedn. The basedn must not contain spaces. If there are
basedn spaces in the basedn, replace them with %20.

See the basedn property in Table A-1

LDAP Directories 20-3

Setting Up an Integration Project

URL Examples

To connect an Oracle Internet Directory on server OHOST_OID and port 3060, using
the user orcladmin, and accessing this directory tree from the basedn
dc=us, dc=oracle, dc=com you can use the following URL:

jdbc:snps:ldap?ldap_url=ldap://OHOST_OID:3060/
&ldap_basedn=dc=us,dc=oracle, dc=com
&1ldap_password=ENCODED_PASSWORD
&ldap_user=cn=orcladmin

20.3.2 Creating a Physical Schema for LDAP

Create an LDAP physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

20.4 Setting Up an Integration Project

Setting up a Project using the LDAP database follows the standard procedure. See
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data
Integrator.

The recommended knowledge modules to import into your project for getting started
are the following:

= LKM SQL to SQL
= LKM File to SQL
= IKM SQL Control Append

20.5 Creating and Reverse-Engineering an LDAP Directory
This section contains the following topics:
s Create an LDAP Model
= Reverse-Engineering an LDAP Model

20.5.1 Create an LDAP Model

A data model groups a set of datastores. Each datastore represents in the context of a
directory a class or group of classes. Typically, classes are mapped to tables and
attributes to column. See Appendix A.2.1, "LDAP to Relational Mapping" for more
information.

Create an LDAP Model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator.

20.5.2 Reverse-Engineering an LDAP Model

LDAP supports standard reverse-engineering, which uses only the abilities of the
LDAP driver.

When the reverse-engineering process of the LDAP driver translates the LDAP tree
into a relational database structure, it constructs tables from sets of objects in the tree.

20-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

The names of these tables must reflect this original structure in order to maintain the
mapping between the two. As a result, the table names are composed of the original
LDAP object names that may be extremely long and not appropriate as datastore
names in mappings.

The solution consists in creating an alias file that contains a list of short and clear table
name aliases. See Appendix A.3.4, "Table Aliases Configuration" for more information.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on LDAP use the usual procedure, as
described in "Reverse-engineering a Model" of the Developing Integration Projects with
Oracle Data Integrator.

The standard reverse-engineering process will automatically map the LDAP tree
contents to a relational database structure. Note that these tables automatically include
primary key and foreign key columns to map the directory hierarchy.

The reverse-engineering process also creates a ROOT table that represents the root of
the LDAP tree structure from the LDAP entry point downwards.

See Appendix A.2, "LDAP Processing Overview" for more information.

20.6 Designing a Mapping
You can use LDAP entries as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning an LDAP data server.

20.6.1 Loading Data from and to LDAP

An LDAP directory can be used as a mapping's source or target. The LKM choice in
the Loading Knowledge Module tab that is used to load data between LDAP entries
and other types of data servers is essential for the performance of the mapping.

20.6.1.1 Loading Data from an LDAP Directory

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from an LDAP database to a target or staging area database.

Table 20-2 lists some examples of KMs that you can use to load from an LDAP source
to a staging area.

Table 20-2 KMs to Load from LDAP to a Staging Area

Staging Area KM Notes

Microsoft SQL LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Server

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

Sybase LKM SQL to Sybase ASE (BCP) Uses Sybase's bulk loader.

All LKM SQL to SQL Generic KM

20.6.1.2 Loading Data to an LDAP Directory

It is not advised to use an LDAP directory as a staging area.

LDAP Directories 20-5

Troubleshooting

20.6.2 Integrating Data in an LDAP Directory

LDAP can be used as a target of a mapping. The IKM choice in the Integration
Knowledge Module tab determines the performances and possibilities for integrating.

Use the Generic SQL KMs or the KMs specific to the other technology involved to
integrate data in an LDAP directory.

Table 20-3 lists some examples of KMs that you can use to integrate data from a
staging area to an LDAP target.

Table 20-3 KMs to Integrate Data in an LDAP Directory

Mode KM Notes

Append IKM SQL to SQL Append Generic KM

20.7 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using LDAP in Oracle Data Integrator. It contains the following
topics:

= SQL operations (insert, update, delete) performed on the relational model are not
propagated to the LDAP directory.

You are probably using an external RDBMS to store your relational model.

m Jjava.util.MissingResourceException: Can't find bundle for
base name ldap_....

The property bundle file is missing, present in the incorrect directory or the
filename is incorrect.

s Jjava.sdgl.SQLException: A NamingException occurred saying:
[LDAP: error code 32

The connection property bundle is possibly incorrect. Check the property values in
the bundle files.

s Jjava.sdgl.SQLException: A NamingException occurred saying:
[LDAP: error code 49 - Invalid Credentials]

The authentication property is possibly incorrect. Check the password.

m Jjava.sdgl.SQLException: Exception class
javax.naming.NameNotFoundException occurred saying: [LDAP:
error code 32 - No Such Object].

The LDAP tree entry point is possibly incorrect. Check the target
DistinguishedName in the LDAP URL.

m Jjava.sqgl.SQLException: No suitable driver

This error message indicates that the driver is unable to process the URL is
registered. The JDBC URL is probably incorrect. Check that the URL syntax is
valid. See Section A.3, "Installation and Configuration".

20-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

21

Oracle TimesTen In-Memory Database

This chapter describes how to work with Oracle TimesTen In-Memory Database in
Oracle Data Integrator.

This chapter includes the following sections:

s Section 21.1, "Introduction”

= Section 21.2, "Installation and Configuration"

= Section 21.3, "Setting up the Topology"

= Section 21.4, "Setting Up an Integration Project"”

= Section 21.5, "Creating and Reverse-Engineering a TimesTen Model"
= Section 21.6, "Setting up Data Quality"

» Section 21.7, "Designing a Mapping"

21.1 Introduction

The Oracle TimesTen In-Memory Database (TimesTen) provides real-time data
management. It provides application-tier database and transaction management built
on a memory-optimized architecture accessed through industry-standard interfaces.
Optional data replication and Oracle caching extend the product to enable multi-node
and multi-tier configurations that exploit the full performance potential of today's
networked, memory-rich computing platforms.

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, TimesTen operates on databases that fit entirely in
physical memory using standard SQL interfaces. High availability for the in-memory
database is provided through real-time transactional replication.

TimesTen supports a variety of programming interfaces, including JDBC (Java
Database Connectivity) and PL/SQL (Oracle procedural language extension for SQL).

21.1.1 Concepts

The TimesTen concepts map the Oracle Data Integrator concepts as follows: An Oracle
TimesTen In-Memory Database instance corresponds to a data server in Oracle Data
Integrator. Within this database instance, the database/owner pair maps to an Oracle
Data Integrator physical schema. A set of related objects within one database
corresponds to a data model, and each table, view or synonym will appear as an ODI
datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle
TimesTen In-Memory Database ODBC DSN.

Oracle TimesTen In-Memory Database 21-1

Installation and Configuration

21.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 21-1 for
handling TimesTen data. These KMs use TimesTen specific features. It is also possible
to use the generic SQL KMs with the TimesTen database. See Chapter 4, "Generic SQL"
for more information.

Table 21-1 TimesTen Knowledge Modules

Knowledge Module Description

IKM TimesTen Incremental Update Integrates data from staging area into a TimesTen target table using

(MERGE) TimesTen JDBC driver in incremental update mode. For example,
inexistent rows are inserted; already existing rows are updated.

LKM SQL to TimesTen Loads data from an ANSI SQL-92 source to a TimesTen staging table
using the TimesTen JDBC driver.

LKM File to TimesTen (ttBulkCp) Loads data from a file to a TimesTen staging table using ttBulkCp
utility.

21.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
TimesTen Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

= Connectivity Requirements

21.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator/index.htm
1

21.2.2 Technology Specific Requirements
Some of the Knowledge Modules for TimesTen use the ttBulkCp utility.

The following requirements and restrictions apply for these Knowledge Modules:

s The host of the ODI Agent running the job must have the TimesTen Client utilities
installed (TTBULKCP)

= Data transformations should be executed on the staging area or target
» The correct ODBC entry must be created on the agent machine:

— Client DSN: A Client DSN specifies a remote database and uses the TimesTen
Client. A Client DSN refers to a TimesTen database indirectly by specifying a
hostname, DSN pair, where the hostname represents the server machine on
which TimesTen Server is running and the DSN refers to a Server DSN that
specifies the TimesTen database on the server host.

21-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Setting up the Topology

— Server DSN: A Server DSN is always defined as a system DSN and is defined
on the server system for each database on that server that will be accessed by
clientapplications. The format and attributes of a server DSN are very similar
to those of a Data Manager DSN.

21.2.3 Connectivity Requirements
This section lists the requirements for connecting to a TimesTen database.
To be able to access Microsoft Excel data, you need to:
» Install the TimesTen ODBC Driver
s Declare a TimesTen ODBC Data Source
s JDBC Driver
= ODI Agent

Install the TimesTen ODBC Driver

Microsoft Excel workbooks can only be accessed through ODBC connectivity. The
ODBC Diriver for TimesTen must be installed on your system.

Declare a TimesTen ODBC Data Source

An ODBC data source must be defined for each Microsoft Excel workbook (.x1s file)
that will be accessed from ODI. ODBC datasources are created with the Microsoft
ODBC Data Source Administrator. Refer to your Microsoft Windows operating system
documentation for more information on datasource creation.

JDBC Driver

Oracle Data Integrator uses the TimesTen JDBC driver to connect to a TimesTen
database. This driver must be installed in your Oracle Data Integrator drivers
directory.

ODI Agent

The ODI Agent running the job must have the TimesTen JDBC Driver and ODBC
driver installed and configured.

21.3 Setting up the Topology
Setting up the Topology consists of:
1. Creating a TimesTen Data Server

2. Creating a TimesTen Physical Schema

21.3.1 Creating a TimesTen Data Server

A TimesTen data server corresponds to a TimesTen database.

21.3.1.1 Creation of the Data Server

Create a data server for the TimesTen technology using the standard procedure, as
described in "Creating a Data Server" of the Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
TimesTen data server:

1. In the Definition tab:

Oracle TimesTen In-Memory Database 21-3

Setting Up an Integration Project

= Name: Name of the data server that will appear in Oracle Data Integrator
= Server: Physical name of the data server
n User/Password: TimesTen user with its password
2. In the JDBC tab:
s JDBC Driver: org.TimesTen.Driver
s JDBC URL: jdbc:timesten:direct:dsn=<DSNname>

where DSNname is the name of an ODBC datasource configured on the machine
running the agent

Note: Note that Oracle Data Integrator will have write access only on
the database specified in the URL.

21.3.2 Creating a TimesTen Physical Schema

Create a TimesTen physical schema using the standard procedure, as described in
"Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

21.4 Setting Up an Integration Project

Setting up a project using the TimesTen database follows the standard procedure. See
"Creating an Integration Project" of the Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with TimesTen:

= CKMSQL

= IKM SQL Control Append

s IKM TimesTen Incremental Update (MERGE)
= LKM SQL to TimesTen

s LKM File to TimesTen (ttBulkCp)

= RKMSQL (Jython)

21.5 Creating and Reverse-Engineering a TimesTen Model
This section contains the following topics:
s Create a TimesTen Model

= Reverse-engineer a TimesTen Model

21.5.1 Create a TimesTen Model

Create a TimesTen Model using the standard procedure, as described in "Creating a
Model" of the Developing Integration Projects with Oracle Data Integrator.

21-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Designing a Mapping

21.5.2 Reverse-engineer a TimesTen Model

TimesTen supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

Consider switching to customized reverse-engineering if you encounter problems with
the standard JDBC reverse-engineering process due to some specificities of the
TimesTen JDBC driver.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on TimesTen use the usual procedure, as
described in "Reverse-engineering a Model" of the Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on TimesTen with a RKM, use the
usual procedure, as described in "Reverse-engineering a Model" of the Developing
Integration Projects with Oracle Data Integrator. This section details only the fields
specific to the TimesTen technology:

1. In the Reverse Engineer tab of the TimesTen Model, select the KM: RKM SQL
(Jython) .<project name>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign
Keys.

21.6 Setting up Data Quality

Oracle Data Integrator provides the CKM SQL for checking data integrity against
constraints defined on a TimesTen table. See "Flow Control and Static Control" in
Developing Integration Projects with Oracle Data Integrator for details.

See Chapter 4, "Generic SQL" for more information.

21.7 Designing a Mapping
You can use TimesTen as a source, staging area, or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of the
KM for different situations concerning a TimesTen data server.

21.7.1 Loading Data from and to TimesTen

TimesTen can be used as a source, target or staging area of a mapping. The LKM choice
in the Loading Knowledge Module tab to load data between TimesTen and another
type of data server is essential for the performance of a mapping.

21.7.1.1 Loading Data from TimesTen

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a TimesTen database to a target or staging area database.

Oracle TimesTen In-Memory Database 21-5

Designing a Mapping

For extracting data from a TimesTen staging area to a TimesTen table, use the IKM
TimesTen Incremental Update (MERGE). See Section 21.7.1.1, "Loading Data from
TimesTen" for more information.

21.7.1.2 Loading Data to TimesTen

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a TimesTen database.
These optimized TimesTen KMs are listed in Table 21-2. In addition to these KMs, you
can also use the Generic SQL KMs or the KMs specific to the other technology
involved.

Table 21-2 KMs for loading data to TimesTen

Source or Staging Area
Technology KM Notes

SQL LKM SQL to TimesTen Loads data from an ANSI SQL-92
source to a TimesTen staging table
using the TimesTen JDBC driver.

File LKM File to TimesTen Loads data from a file to a TimesTen
(ttBulkCp) staging table using ttBulkCp utility.

21.7.2 Integrating Data in TimesTen

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for TimesTen. These optimized TimesTen KMs are listed in
Table 21-3. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the
performances and possibilities for integrating.

Table 21-3 KMs for integrating data to TimesTen

KM Notes
IKM TimesTen Incremental Integrates data from staging area into a TimesTen target
Update (MERGE) table using TimesTen JDBC driver in incremental update

mode. For example, inexistent rows are inserted; already
existing rows are updated.

21-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

22

Oracle GoldenGate

This chapter describes how to work with Oracle GoldenGate in order to capture
changes on source transactional systems and replicate them in a staging server for
consumption by Oracle Data Integrator mappings.

This chapter includes the following sections:

s Section 22.1, "Introduction”

m Section 22.2, "Installation and Configuration”

= Section 22.3, "Working with the Oracle GoldenGate JKMs"

= Section 22.4, "Advanced Configuration"

22.1 Introduction

Oracle GoldenGate (OGG) product offers solutions that provide key business
applications with continuous availability and real-time information. It provides
guaranteed capture, routing, transformation and delivery across heterogeneous
databases and environments in real-time.

Using the Oracle GoldenGate knowledge modules requires that you know and
understand Oracle GoldenGate concepts and architecture. See the Oracle GoldenGate
Documentation on OTN for more information:

http://www.oracle.com/technetwork/middleware/goldengate/overview
/index.html

22.1.1 Overview of the GoldeGate CDC Process

Oracle Data Integrator can capture changes in a source database using Oracle
GoldenGate to process them in the ODI CDC framework. Oracle Data Integrator uses
Oracle GoldenGate to replicate data from a source database to a staging database. This
staging database contains a copy of the source tables and the ODI Changed Data
Capture (CDC) infrastructure, both loaded using Oracle GoldenGate.

The staging database can be stored in an Oracle or Teradata schema. The source
database can be Oracle, Microsoft SQL Server, DB2 UDB, or Sybase ASE. In this
chapter, <database> refers to any of these source database technologies.

Setting up CDC with GoldenGate is done using the following process:

1. A replica of the source tables is created in the staging database, using, for example,
the Oracle Data Integrator Common Format Designer feature.

Oracle GoldenGate 22-1

Introduction

2. Oracle Data Integrator Changed Data Capture (CDC) is activated on the source
tables using either the JKM <database> to Oracle Consistent (OGG Online) or the
JKM <database> to Teradata Consistent (OGG Online).

3. Thejournals are started in either online mode or offline mode.

= Online mode: Starting the journals in online mode configures and starts the
GoldenGate Capture (Extract) process to capture the changes in the source
database and corresponding Delivery (Replicat) processes to replicate the
changes in the staging database. Changes are replicated into both the
replicated source table and the CDC infrastructure.

The GoldenGate Capture and Delivery processes are deployed and started
using the GoldenGate JAgent interface. The GoldenGate JAgent facilitates
communication between Oracle Data Integrator and Oracle GoldenGate.

= Offline mode: Starting the journals in offline mode creates the Oracle
GoldenGate configuration files and sets up a CDC infrastructure in the staging
database. Note that no active process is started for capturing source data at
this stage.

Using the generated configuration files, an Oracle GoldenGate Capture
process is configured and started to capture changes from the source database,
and corresponding Delivery processes are configured and started to replicate
these changes into the staging database. Changes are replicated into both the
replicated source table and the CDC infrastructure.

GoldenGate can optionally be configured to perform the initial load of the
source data into the staging tables.

4. ODI mappings can source from the replicated tables and use captured changes
seamlessly within any ODI scenario.

22.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules listed in Table 22-1 for
replicating online data from a source to a staging database. Like any other CDC JKMs,
the Oracle GoldenGate JKMs journalize data in the source server.

The JKM <database> to Oracle Consistent (OGG Online) and the JKM <database> to
Teradata Consistent (OGG Online) perform the same tasks:

s Create and manage the ODI CDC framework infrastructure on the replicated
tables.

= If the journals are started in online mode, configure and start the Oracle Capture
and Delivery processes on the GoldenGate servers using the GoldenGate JAgent.

s If thejournals are started in offline mode, generate the parameter files to set up the
Oracle GoldenGate Capture and Delivery processes and the Readme . txt
explaining how to complete the setup.

= Provide extra steps to check the configuration of the source database and proposes
tips to correct the configuration.

Table 22-1 Oracle GoldenGate Knowledge Modules

Knowledge Module Description

JKM Oracle to Oracle Creates the infrastructure for consistent set journalizing on an

Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from an Oracle source to this
staging server.

22-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table 22-1 (Cont) Oracle GoldenGate Knowledge Modules

Knowledge Module Description

JKM DB2 UDB to Oracle Creates the infrastructure for consistent set journalizing on an

Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from an IBM DB2 UDB source
to this staging server.

JKM Sybase ASE to Oracle Creates the infrastructure for consistent set journalizing on an

Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from a Sybase ASE source to
this staging server.

JKM MSSQL to Oracle Creates the infrastructure for consistent set journalizing on an

Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from a Microsoft SQL Server
source to this staging server.

JKM Oracle to Teradata Creates the infrastructure for consistent set journalizing on a

Consistent (OGG Online) Teradata staging server and generates the Oracle GoldenGate
configuration for replicating data from an Oracle source to this
staging server.

JKM DB2 UDB to Teradata Creates the infrastructure for consistent set journalizing on a

Consistent (OGG Online) Teradata staging server and generates the Oracle GoldenGate
configuration for replicating data from an IBM DB2 UDB source
to this staging server.

JKM Sybase ASE to Teradata Creates the infrastructure for consistent set journalizing on a

Consistent (OGG Online) Teradata staging server and generates the Oracle GoldenGate
configuration for replicating data from a Sybase ASE source to
this staging server.

JKM MSSQL to Teradata Creates the infrastructure for consistent set journalizing on a

Consistent (OGG Online) Teradata staging server and generates the Oracle GoldenGate
configuration for replicating data from a Microsoft SQL Server
source to this staging server.

22.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle GoldenGate Knowledge Modules:

= System Requirements and Certifications

s Technology Specific Requirements

22.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

See also the Oracle GoldenGate documentation on OTN for source and staging
database version platform support.

Oracle GoldenGate 22-3

Working with the Oracle GoldenGate JKMs

22.2.2 Technology Specific Requirements

In order to run the Capture and Delivery processes, Oracle GoldenGate must be
installed on both the source and staging servers. Installing Oracle GoldenGate installs
all of the components required to run and manage GoldenGate processes.

Oracle GoldenGate Manager Process must be running on each system before Capture
or Delivery can be started, and must remain running during their execution for
resource management.

In order to perform online journalizing, the Oracle GoldenGate JAgent process must
be configured and running on the Oracle GoldenGate instances.

Oracle GoldenGate has specific requirement and installation instructions that must be
performed before starting the Capture and Delivery processes configured with the
Oracle GoldenGate JKMs. See the Oracle GoldenGate Documentation on OTN for
more information.

22.2.3 Connectivity Requirements

If the source database is Oracle, there are no connectivity requirements for using
Oracle GoldenGate data in Oracle Data Integrator.

If the source database is IBM DB2 UDB, Microsoft SQL Server, or Sybase ASE, Oracle
GoldenGate uses the ODBC driver to connect to the source database. You need to
install the ODBC driver and to declare the data source in your system. You also need
to set the data source name (DSN) in the KM option SRC_DSN.

22.3 Working with the Oracle GoldenGate JKMs

To use the JKM <database> to Oracle Consistent (OGG Online) or the JKM <database>
to Teradata Consistent (OGG Online) in your Oracle Data Integrator integration
projects, you need to perform the following steps:

1. Define the Topology
Create the Replicated Tables
Set Up an Integration Project

2

3

4. Configure CDC for the Source Datastores

5. Configure and Start Oracle GoldenGate Processes (Offline mode only)
6

Design Mappings Using Replicated Data

22.3.1 Define the Topology

This step consists in declaring in Oracle Data Integrator the staging data server, the
source data server, as well as the physical and logical schemas attached to these
servers.

To define the topology in this configuration, perform the following tasks:
1. Define the Source Data Server

2. Create the Source Physical Schema

3. Define the Staging Server

4. Create the Staging Physical Schema

5. Define the Oracle GoldenGate Data Servers

22-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Working with the Oracle GoldenGate JKMs

6. Create the Oracle GoldenGate Physical Schemas
7. Create the Oracle GoldenGate Logical Schemas

22.3.1.1 Define the Source Data Server

You have to define a source data server from which Oracle GoldenGate will capture
changes.

Create a data server for your source technology using the standard procedure. For
more information, see the chapter corresponding to your source technology in this
guide:

" Section 2.3.1, "Creating an Oracle Data Server"
" Section 7.3.1, "Creating a Microsoft SQL Server Data Server"

This data server represents the source database instance.

22.3.1.2 Create the Source Physical Schema

Create a physical schema under the data server that you have created in
Section 22.3.1.1, "Define the Source Data Server". Use the standard procedure, as
described in "Creating a Physical Schema" in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

22.3.1.3 Define the Staging Server

Create a data server for the Oracle or Teradata technology. For more information, see:
» Section 2.3.1, "Creating an Oracle Data Server"

» Section 11.3.1, "Creating a Teradata Data Server"

22.3.1.4 Create the Staging Physical Schema

Create an Oracle or Teradata physical schema using the standard procedure, as
described in "Creating a Physical Schema" in Administering Oracle Data Integrator.

Note: The physical schema defined in the staging server will contain
in the data schema the changed records captured and replicated by the
Oracle GoldenGate processes. The work schema will be used to store
the ODI CDC infrastructure.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" in Administering Oracle Data Integrator and
associate it in a given context.

22.3.1.5 Define the Oracle GoldenGate Data Servers

An Oracle GoldenGate data server corresponds to the Oracle GoldenGate JAgent
process in Oracle Data Integrator (ODI). The Oracle GoldenGate JAgent process
facilitates communication between ODI and the Oracle GoldenGate servers. You must
create a JAgent process for both the source and the target Oracle GoldenGate servers.

Create a data server for the Oracle GoldenGate technology using the standard
procedure, as described in "Creating a Data Server" of the Developing Integration

Oracle GoldenGate 22-5

Working with the Oracle GoldenGate JKMs

Projects with Oracle Data Integrator. This section details only the fields required or
specific for defining an Oracle GoldenGate data server:

1. In the Definition tab:
= Name: Name of the data server that will appear in the Oracle Data Integrator.
s Host: Hostname or the IP address of the server where the JAgent process is
running.
= JMX Port: Port number of the JAgent process.
= Manager Port: Port number of the Oracle GoldenGate manager instance.
= JMX User: User name to connect to the JAgent.
s Password: Password of the user credentials.

= Installation Path: Location path for the Oracle GoldenGate installation. You
must use this path when you create the capture process definitions from a
model.

22.3.1.6 Create the Oracle GoldenGate Physical Schemas

The Oracle GoldenGate physical schemas in ODI correspond to the GoldenGate

Capture and Delivery processes that perform CDC in Oracle GoldenGate. You must
define the Oracle GoldenGate physical schemas to configure the Capture process on
the source GoldenGate server and Delivery process on the target GoldenGate server.

Create a physical schema under the Oracle GoldenGate data server that you have
created in Section 22.3.1.5, "Define the Oracle GoldenGate Data Servers". Use the
standard procedure, as described in "Creating a Physical Schema" in Administering
Oracle Data Integrator. This section details only the fields required or specific to create
the physical schemas to configure the Oracle GoldenGate Capture and Replicate
processes.

Note: Alternatively, you can create the Oracle GoldenGate physical
schemas from the model. See Section 22.3.4.1, "Create Oracle
GoldenGate Physical Schemas from the model" for information about
how to create physical schemas from the model.

GoldenGate Capture Process Fields

Note that the GoldenGate Capture process must be configured on the source
GoldenGate server.

1. In the Process Definition tab:

= Process Type: Type of the process that you want to configure. Select Capture
as the process type.

= Name: Name of the process (physical schema) in Oracle Data Integrator.
Process name cannot exceed 8 characters and only upper case is allowed.

» Trail File Path: Location of the Oracle GoldenGate trail file. Only two
characters for the file name part are allowed.

= Remote Trail File Path: Location of the remote trail file. Only two characters
for the file name part are allowed.

» Trail File Size: Size of the Oracle GoldenGate trail file in Megabytes.

= Report Fetch: Enables report information to include the fetching statistics.

22-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Working with the Oracle GoldenGate JKMs

= Report Count Frequency: Reports the total operations count at specific
intervals. If the interval is not specified the entry is not added to the parameter
file.

= Select a parameter: List of available Oracle GoldenGate parameters. Only the
parameters for the supported database are listed. Select a parameter and click
Add. A template of the selected parameter is added to the text box.

See the Oracle GoldenGate Reference Guide on OTN for information about the
GoldenGate parameters.

Delivery Process Fields

Note that the GoldenGate Delivery process must be configured on the target
GoldenGate server.

1. In the Process Definition tab:

= Process Type: Type of the process that you want to configure. Select Delivery
as the process type.

= Name: Name of the process (physical schema) in Oracle Data Integrator.
Process name cannot exceed 7 characters and only uppercase is allowed.

s Trail File Path: Location of the trail file. Only two characters for the filename
part are allowed.

= Discard File Path: Location of the discard file.
» Definition File Path: Location of the definition file.
= Report Detail: Enables report information to include any collision counts.

= Report Count Frequency: Report the total operations count at specific
intervals. If the interval is not specified the entry is not added to the parameter
file.

= Select a parameter: List of available Oracle GoldenGate parameters. Only the
parameters for the supported database are listed. Select a parameter and click
Add.

See the Oracle GoldenGate Reference Guide on OTN for information about the
GoldenGate parameters.

22.3.1.7 Create the Oracle GoldenGate Logical Schemas

Create logical schemas for the GoldenGate physical schemas (GoldenGate Capture and
Delivery processes) that you created in section Section 22.3.1.6, "Create the Oracle
GoldenGate Physical Schemas". You must create a logical schema for both the Capture
process and the Delivery process.

To create logical schemas:

1. In the Topology Navigator expand the Technologies node in the Logical
Architecture accordion.

2. Right-click Oracle GoldenGate and select New Logical Schema.
3. Fill in the Logical Schema Name.

4. Select the appropriate process type, either Capture or Delivery, to which you want
to attach your logical schema.

5. For each Context in the left column, select an existing Physical Schema in the right
column. This Physical Schema is automatically associated to the logical schema in
this context. Repeat this operation for all necessary contexts.

Oracle GoldenGate 22-7

Working with the Oracle GoldenGate JKMs

6. From File menu, click Save.

22.3.2 Create the Replicated Tables

Oracle GoldenGate will replicate in the staging server the records changed in the
source. In order to perform this replication, the source table structures must be
replicated in the staging server.

To replicate these source tables:

1.

Create a new Data Model using the Oracle or Teradata technology. This model
must use the logical schema created using the instructions in Section 22.3.1.4,
"Create the Staging Physical Schema".

See "Creating a Model" in the Developing Integration Projects with Oracle Data
Integratorfor more information on model creation.

Note that you do not need to reverse-engineer this data model.

Create a new diagram for this model and add to this diagram the source tables
that you want to replicate.

Generate the DDL Scripts and run these scripts for creating the tables in the
staging data server.

An initial load of the source data can be made to replicate this data into the staging
tables. You can perform this initial load with ODI using the Generate Interface IN
feature of Common Format Designer. Alternately, you can use Oracle GoldenGate
to perform this initial load, by specifying a capture or delivery process to perform
the initial load or by setting the USE_OGG_FOR_INIT JKM option to Yes to create
a process to perform the initial load when you Configure CDC for the Source
Datastores.

Note: See "Creating Data Models with Common Format Designer"
in the Developing Integration Projects with Oracle Data Integrator for
more information on diagrams, generating DDL, and generating
Interface IN features.

22.3.3 Set Up an Integration Project

Setting up a project using Oracle GoldenGate features follows the standard procedure.
See "Creating an Integration Project” of the Developing Integration Projects with Oracle
Data Integrator.

Depending on the technology of your source data server and staging server, import
one of the following KMs into your project:

JKM Oracle to Oracle Consistent (OGG Online)

JKM DB2 UDB to Oracle Consistent (OGG Online)
JKM Sybase ASE to Oracle Consistent (OGG Online)
JKM MSSQL to Oracle Consistent (OGG Online)

JKM Oracle to Teradata Consistent (OGG Online)
JKM DB2 UDB to Teradata Consistent (OGG Online)
JKM Sybase ASE to Teradata Consistent (OGG Online)
JKM MSSQL to Teradata Consistent (OGG Online)

22-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Working with the Oracle GoldenGate JKMs

22.3.4 Configure CDC for the Source Datastores

Changed Data Capture must be configured for the source datastores. This
configuration is similar to setting up consistent set journalizing and is performed
using the following steps.

1.

Edit the data model that contains the source datastore. In the Journalizing tab of
the data model, set the Journalizing Mode to Consistent Set and select the
appropriate JKM <database> to Oracle Consistent (OGG Online) or JKM
<database> to Teradata Consistent (OGG Online).

Select the following GoldenGate processes (physical schemas) using the process
selection drop-down list:

= Capture Process
s Delivery Process
s Initial Load Capture Process
s Initial Load Delivery Process

If you do not want to use an existing GoldenGate process, you can create new
processes from here using the Create button next to the <Process Name> field. See
Section 22.3.4.1, "Create Oracle GoldenGate Physical Schemas from the model" for
information about how to create GoldenGate processes from the model.

Set the KM options as follows:

= ONLINE: If you set this option to true, the JKM configures the CDC
infrastructure and configures and starts the GoldenGate Capture and Delivery
processes. If you set this option to false, the JKM generates the CDC
infrastructure and the configuration files that are required to set up the
GoldenGate Capture and Delivery processes. It also generates the
Readme . txt that contains the instructions to configure and start the
GoldenGate processes.

For more information about online and offline mode, see Section 22.1.1,
"Overview of the GoldeGate CDC Process".

For information about how to configure and start GoldenGate processes using
the configuration files, see Section 22.3.5, "Configure and Start Oracle
GoldenGate Processes (Offline mode only)".

= LOCAL_TEMP_DIR: Full path to a temporary folder into which the Oracle
GoldenGate configuration files will be generated

s SRC_DSN: Name of the data source. This KM option is required when the
ODBC driver is used. Note that this option does not exist in the JKM Oracle to
Oracle Consistent (OGG Online).

Note: For Sybase users only: When defining the data source name,
you have to add the database server name to the datasource name as
follows:

DSN_name@SYBASE_DBSERVER

s USE_OGG_FOR_INIT: Applicable for offline mode only. Generate the Oracle
GoldenGate processes to perform the initial load of the replicated tables. If you
have performed this initial load using Oracle Data Integrator while Creating
the Replicated Tables, you can leave this option to NO.

Oracle GoldenGate 22-9

Working with the Oracle GoldenGate JKMs

2. Select the datastores that you want to replicate or the model if want to replicate all
datastores, right-click then select Changed Data Capture > Add to CDC.

3. Select the model, right-click then select Changed Data Capture > Subscriber >
Subscribe. Add subscribers for this model.

4. Select the model, right-click then select Changed Data Capture > Start Journal. If
journals are started in online mode (ONLINE option for the JKM is set to true), the
JKM creates the CDC infrastructure and configures and starts the Oracle
GoldenGate processes. If journals are started in offline mode (ONLINE option for
the JKM is set to false), the JKM creates the CDC infrastructure and generates the
configuration files that are required to configure the Oracle GoldenGate processes.
It also generates Readme . txt that contains the instructions to configure and start
the GoldenGate processes.

For information about how to configure and start GoldenGate processes, see
Section 22.3.5, "Configure and Start Oracle GoldenGate Processes (Offline mode
only)".

You can review the result of the journal startup action:

s Ifjournals are started in online mode, the Oracle GoldenGate processes are
configured and started. The changed data in the source datastores is captured and
replicated in the staging tables.

s If the journals are started in offline mode, the Oracle GoldenGate configuration
files, as well as a Readme . txt file are generated in the directory that is specified
in the LOCAL_TEMP_DIR KM option. You can use these files to Configure and
Start Oracle GoldenGate Processes (Offline mode only).

s The CDC infrastructure is set up correctly. The journalized datastores appear in
the Models accordion with a Journalizing Active flag. You can right-click the
model and select Changed Data Capture > Journal Data... to access the
journalized data for these datastores.

See "Using Journalizing" in the Developing Integration Projects with Oracle Data Integrator
for more conceptual information and detailed instructions on CDC.

Note: Although this CDC configuration supports consistent set
journalizing, it is not required to order datastores in the Journalized
Tables tab of the model after adding them to CDC.

22.3.4.1 Create Oracle GoldenGate Physical Schemas from the model

You can create the Oracle GoldenGate physical schemas for the following GoldenGate
processes from the Journalizing tab of the Model Editor.

= Capture Process

= Delivery Process

» Initial Capture Process (Capture process to be used for initial load)
» Initial Delivery Process (Delivery process to be used for initial load)

When you create the Oracle GoldenGate physical schemas from the models, the
default values are derived from the JAgent and the Model details.

To create the Oracle GoldenGate physical schemas from the model:

1. In the Designer Navigator expand the Models panel.

22-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Working with the Oracle GoldenGate JKMs

® N o o &

10.
11.
12.
13.
14.

Expand the Models folder that contains the model from which you want to create
the physical schemas.

Right-click the Model and select Open.

Click the Journalizing tab of the Model Editor.

Click Create button next to the Capture Process field.
Select the appropriate JAgent and Context.

Fill in the Process Name and Logical Process Name.

Click OK to create and select the Capture process.

WARNING: The physical schema generated for the Capture process
needs to be changed manually. The Remote Trail File Path property
of the physical schema uses the path for the Capture instance and
needs to be changed to use the path for the Delivery instance.

Click Create button next to the Delivery Process field.

Select the appropriate JAgent and Context.

Fill in the Process Name and Logical Process Name.

Select the Target Database Logical Schema for the Delivery process.
Click OK.

Similarly, click Create buttons next to the Initial Load Capture Process and Initial
Load Delivery Process fields to create physical schemas for them.

22.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only)

Note: This section is applicable only if the journals are started in
offline mode. That means only if the ONLINE option for the JKM is set
to false.

The JKM generates in the LOCAL_TEMP_DIR a folder named after the source and
target object groups. This folder contains the following:

The Readme . txt file that contains detailed instructions for configuring and
starting the Oracle GoldenGate processes.

The src folder that contains configuration files to upload on the source server, in
the Oracle GoldenGate installation directory.

The stg folder that contains configuration files to upload on the staging server, in
the Oracle GoldenGate installation directory.

The detailed instructions, customized for your configuration, are provided in the
readme file.

These instructions include:

1.
2.

Uploading or copying files from the src folder to the source server.

Uploading or copying files from the stg folder to the staging server.

Oracle GoldenGate 22-11

Advanced Configuration

3. Running on the source server the OBEY file generated by the JKM for starting the
Capture process, using the ggsci command line.

4. Generating on the source server definition file using the defgen command line.
5. Copying this definition file to the staging server.
6. If the initial load option is used:

= Running on the staging server the OBEY file generated by the JKM for the
initial load, using the ggsci command line.

= Running on the source server the OBEY file generated by the JKM for the initial
load, using the ggsci command line.

7. Finally Running on the staging server the OBEY file generated by the JKM for the
starting the Delivery processes, using the ggsci command line.

See the Oracle GoldenGate documentation on OTN for more information on OBEY
files, the ggsci and defgen utilities.

22.3.6 Design Mappings Using Replicated Data

You can use the data in the replicated data as a source in your mappings. This process
is similar to using a source datastore journalized in consistent set mode. See "Using
Changed Data: Consistent Set Journalizing" in the Developing Integration Projects with
Oracle Data Integrator for more information.

22.4 Advanced Configuration
This section includes the following advanced configuration topics:
» Initial Load Method
s Tuning Replication Performances

= One Source Multiple Staging Configuration (Offline mode only)

22.4.1 Initial Load Method

The staging tables contain a replica of the structure and data from the source tables.
The Oracle GoldenGate processes capture changes on the source tables and apply
them to the target. Yet the staging tables must be initially loaded with the original
content of the source tables. You can use the following methods to perform the initial
load:

» Using Oracle GoldenGate: A specific GoldenGate process loads the whole content of
the source tables into the staging tables.

» Using Oracle Data Integrator: The Generate Interfaces IN option of Oracle Data
Integrator's Common Format Designer. This method uses ODI mappings to
transfer the data.

» Using database backup/restore tools to copy data and structures.

22.4.2 Tuning Replication Performances

The following KM options can be used to improve replication performances:

s COMPATIBLE: This Oracle-specific option affects the use of the PURGE key word
and the way statistics (using DBMS_STATS or ANALYZE) are collected. Set this
value to the database version of your staging server.

22-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Advanced Configuration

= NB_APPLY_PROCESS: Number of Oracle GoldenGate Delivery processes created
on the staging server.

s TRAIL_FILE_SIZE: Size of the Oracle GoldenGate trail file in Megabytes.

For the NB_APPLY_PROCESS and TRAIL_FILE_SIZE parameters, see the Oracle
GoldenGate Documentation on OTN for more information on performance tuning.

22.4.3 One Source Multiple Staging Configuration (Offline mode only)

Note that one source multiple staging configuration can be done only in the offline
journalizing mode.

It is possible to set up a configuration where changes are captured on a single source
and replicated to several staging servers. The example below illustrates how to set this
up in a typical configuration.

Replication should source from source server SRC and replicate in both STG1 and
STG2 staging servers.

1. Edit the source model and ensure that the logical schema for STG1 is selected.

2, Start the journals in offline mode and follow the instructions in the readme to set
up the Oracle GoldenGate processes in SRC and STG1.

3. Edit the source model again, and select the logical schema for STG2.

4, Start the journals in offline mode and follow the instructions in the readme to set
up the Oracle GoldenGate process in SRC and STG2.

Note: Playing the configuration on SRC again will not recreate a
capture process, trail files, or definition files. It will simply create a
new Oracle GoldenGate Datapump process to push data to STG2.

Oracle GoldenGate 22-13

Advanced Configuration

22-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

23

Oracle SOA Suite Cross References

This chapter describes how to work with Oracle SOA Suite cross references in Oracle
Data Integrator.

This chapter includes the following sections:

s Section 23.1, "Introduction”

» Section 23.2, "Installation and Configuration”

= Section 23.3, "Working with XREF using the SOA Cross References KMs"
= Section 23.4, "Knowledge Module Options Reference"

23.1 Introduction

Oracle Data Integrator features are designed to work best with Oracle SOA Suite cross
references, including mappings that load a target table from several source tables and
handle cross references.

23.1.1 Concepts

Cross-referencing is the Oracle Fusion Middleware Function, available through the
Oracle BPEL Process Manager and Oracle Mediator, previously Enterprise Service Bus
(ESB), and leveraged typically by any loosely coupled integration built on the Service
Oriented Architecture. It is used to manage the runtime correlation between the
various participating applications of the integration.

23.1.1.1 General Principles

The cross-referencing feature of Oracle SOA Suite enables you to associate identifiers
for equivalent entities created in different applications. For example, you can use cross
references to associate a customer entity created in one application (with native id
Cust_100) with an entity for the same customer in another application (with native id
CT_001).

Cross-referencing (XREF) facilitates mapping of native keys for entities across
applications. For example, correlate the same order across different ERP systems.

The implementation of cross-referencing uses a database schema to store a cross
reference information to reference records across systems and data stores.

For more information about cross references, see "Working with Cross References" in
the Developer’s Guide for Oracle SOA Suite.

The optional ability to update or delete source table data after the data is loaded into
the target table is also a need in integration. This requires that the bulk integration

Oracle SOA Suite Cross References 23-1

Introduction

provides support for either updating some attributes like a status field or purging the
source records once they have been successfully processed to the target system.

23.1.1.2 Cross Reference Table Structures
The XREF data can be stored in multiple cross reference tables and in two formats:

Generic (legacy) table - The table name is XREF_DATA and the table structure
stores the cross references for all entities. The table format is as follows:

XREF_TABLE_NAME NOT NULL VARCHAR2 (2000)
XREF_COLUMN_NAME NOT NULL VARCHAR2 (2000)
ROW_NUMBER NOT NULL VARCHAR2 (48)

VALUE NOT NULL VARCHAR2(2000)
IS_DELETED NOT NULL VARCHAR2 (1)
LAST_MODIFIED NOT NULL TIMESTAMP (6)

This table stores cross references for multiple entities. In this table:
— XREF_TABLE_NAME is the name of the cross reference table

— XREF_COLUMN_NAME is the name of the column to be populated. This column
name, for example the application name, is used as a unique identifier for the
cross reference table.

- ROW_NUMBER stores a unique identifier (Row Number) for a given entity
instance, regardless of the application

- VALUE is the value of the record identifier for a given entity in this application

A specific XREF_COLUMN_NAME entry called COMMON exists to store a
generated identifier that is common to all applications.

For example, an ORDER existing in both SIEBEL and EBS will be mapped in a
generic table as shown below:

Table 23-1 Example of an XREF_DATA (Partial)

XREF_TABLE_NAME XREF_COLUMN_NAME ROW_NUMBER VALUE

ORDER SIEBEL 100012345 SBL_101
ORDER EBS 100012345 EBS_002
ORDER COMMON 100012345 COM_100

Custom (new) table structure - The table is specific to one entity and has a custom
structure. For example:

ROW_ID VARCHAR2 (48) NOT NULL PK,
APP1 VARCHAR2 (100) ,
APP2 VARCHAR2 (100) ,

COMMON VARCHAR2(100),
LAST_MODIFIED TIMESTAMP NOT NULL

Where:

— Columns such as APP1 and APP2 are used to store PK values on different
applications and link to the same source record

— ROW_ID (Row Number) is used to uniquely identify records within a XREF data
table.

23-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Introduction

- COM holds the common value for the integration layer and is passed among
participating applications to establish the cross reference

The same ORDER existing in both SIEBEL and EBS would be mapped in a custom
XREF_ORDER table as shown below:
Table 23-2 Example of a Custom Table: XREF_ORDERS (Partial)
ROW_ID SIEBEL EBS COMMON
100012345 SBL_101 EBS_002 COM_100

See Section 23.3.3, "Designing a Mapping with the Cross-References KMs" and
Section 23.4, "Knowledge Module Options Reference" for more information.

23.1.1.3 Handling Cross Reference Table Structures

The IKM SQL Control Append (SOA XREF) provides the following parameters to
handle these two table structures:

s XREF_DATA_STRUCTURE: This option can be set to 1legacy to use the XREF_
DATA generic table, or to new to use the custom table structure.

If using the generic table structure, you must set the following options:

s XREF TABLE_NAME: Value inserted in the XREF_TABLE_NAME column of the
XREF_DATA table. In the example above (See Table 23-1) this option would be
ORDER.

s XREF _COLUMN_NAME: Value inserted in the XREF_COLUMN_NAME column
of the XREF_DATA table. This value corresponds to the application that is the
target of the current mapping. In the example above (See Table 23-1), this option
would take either the value SIEBEL or EBS depending on which system is
targeted.

If using the custom table structure, you must use the following options:

s XREF DATA_TABLE: Name of the cross reference table. It defaults to XREF__DATA.
In the example above (See Table 23-2), this table name would be XREF_ORDER.

s XREF_DATA_TABLE_COLUMN: Name of the column that stores the cross
references for the application that is the target of the current mapping. In the
example above (See Table 23-2), this option would take either the value SIEBEL or
EBS depending on which system is targeted.

23.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 23-3 for
handling SOA cross references (XREF).

These new Knowledge Modules introduce parameters to support SOA cross
references. See Section 23.1.1.2, "Cross Reference Table Structures" and Section 23.3.3,
"Designing a Mapping with the Cross-References KMs" for more information on these
parameters.

Oracle SOA Suite Cross References 23-3

Introduction

Table 23-3 SOA XREF Knowledge Modules

Knowledge Module Description
LKM SQL to SQL (SOA XREF) This KM replaces the LKM SQL to SQL (ESB XREF).

This KM supports cross references while loading data from a
standard ISO source to any ISO-92 database.

Depending of the option SRC_UPDATE_DELETE_ACTION, this
LKM can DELETE or UPDATE source records.

The LKM SQL to SQL (SOA XREF) has to be used in conjunction with
the IKM SQL Control Append (SOA XREF) in the same mapping.

LKM MSSQL to SQL (SOA XREF) This KM replaces the LKM MSSQL to SQL (ESB XREF).

This KM is a version of the LKM SQL to SQL (SOA XREF) optimized
for Microsoft SQL Server.

IKM SQL Control Append (SOA XREF) This KM replaces the IKM SQL Control Append (ESB XREF).

This KM provides support for cross references while integrating data
in any ISO-92 compliant database target table in truncate/insert
(append) mode. This KM provides also data control: Invalid data is
isolated in an error table and can be recycled.

When loading data to the target, this KM also populates PK/GUID
XREF table on a separate database.

This IKM SQL Control Append (SOA XREF) has to be used in
conjunction with the LKM SQL to SQL (SOA XREF) or LKM MSSQL
to SQL (SOA XREEF).

23.1.3 Overview of the SOA XREF KM Process

To load the cross reference tables while performing integration with Oracle Data
Integrator, you must use the SOA XREF knowledge modules. These knowledge
modules will load the cross reference tables while extracting or loading information
across systems.

Note: In order to maintain the cross referencing between source and
target systems, the LKM and IKM supporting cross referencing must
be used in conjunction.

The overall process can be divided into the following three main phases:
1. Loading Phase (LKM)

2. Integration and Cross-Referencing Phase (IKM)

3. Updating/Deleting Processed Records (LKM)

23.1.3.1 Loading Phase (LKM)

During the loading phase, a Source Primary Key is created using columns from the
source table. This Source Primary Key is computed using a user-defined SQL expression
that should return a VARCHAR value. This expression is specified in the SRC_PK_
EXPRESSION KM option.

For example, for a source Order Line Table (aliased OLINE in the mapping) you can
use the following expression:

TO_CHAR (OLINE.ORDER_ID) || '-' || TO_CHAR(OLINE.LINE_ID)

This value will be finally used to populate the cross reference table.

23-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

23.1.3.2 Integration and Cross-Referencing Phase (IKM)

During the integration phase, a Common ID is created for the target table. The value for
the Common ID is computed from the expression in the XREF_SYS_GUID KM option.
This expression can be for example:

= A database sequence (<SEQUENCE_NAME>. NEXTVAL)

= A function returning a global unique Id (SYS_GUID() for Oracle, NewID() for
SQL Server)

This Common ID can also be automatically pushed to the target columns of the target
table that are marked with the UD1 flag.

Both the Common ID and the Source Primary Key are pushed to the cross reference table.
In addition, the IKM pushes to the cross reference table a unique Row Number value
that creates the cross reference between the Source Primary Key and Common ID. This
Row Number value is computed from the XREF_ ROWNUMBER_EXPRESSION KM
option, which takes typically expressions similar to the Common ID to generate a
unique identifier.

The same Common ID is reused (and not re-computed) if the same source row is used
to load several target tables across several mappings with the Cross-References KMs.
This allows the creation of cross references between a unique source row and different
targets rows.

23.1.3.3 Updating/Deleting Processed Records (LKM)

This optional phase (parameterized by the SRC_UPDATE_DELETE_ACTION KM
option) deletes or updates source records based on the successfully processed source
records:

s If SRC_UPDATE_DELETE_ACTION takes the DELETE value, the source records
processed by the mapping are deleted.

s If SRC_UPDATE_DELETE_ACTION takes the UPDATE value, a source column of
the source table will be updated with an expression for all the processed source
records. The following KM options parameterize this behavior:

- SRC_UPD_COL: Name of the source column to update

- SRC_UPD_COL_EXPRESSION: Expression used to generate the value to
update in the column

It is possible to execute delete and update operations on a table different table from the
source table. To do this, you must set the following KM options in the LKM:

s SRC_PK_LOGICAL_SCHEMA: Oracle Data Integrator Logical schema containing
the source table to impact.

s SRC_PK_TABLE_NAME: Name of the source table to impact.
s SRC_PK TABLE_ALIAS: Table alias for this table.

23.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
SOA XREF Knowledge Modules:

= System Requirements and Certifications
s Technology Specific Requirements

= Connectivity Requirements

Oracle SOA Suite Cross References 23-5

Working with XREF using the SOA Cross References KMs

23.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

23.2.2 Technology Specific Requirements

There are no technology requirements for using Oracle SOA Suite cross references in
Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQI
Server apply also to Oracle SOA Suite cross references. For more information, see:

s Chapter 2, "Oracle Database"
s Chapter 7, "Microsoft SQL Server"

23.2.3 Connectivity Requirements

There are no connectivity requirements for using Oracle SOA Suite cross references in
Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQI
Server apply also to Oracle SOA Suite cross references. For more information, see:

s Chapter 2, "Oracle Database"
s Chapter 7, "Microsoft SQL Server"

23.3 Working with XREF using the SOA Cross References KMs

This section consists of the following topics:

s Defining the Topology

= Setting up the Project

= Designing a Mapping with the Cross-References KMs

23.3.1 Defining the Topology

The steps to create the topology in Oracle Data Integrator, which are specific to
projects using SOA XREF KMs, are the following;:

1. Create the data servers, physical and logical schemas corresponding to the sources
and targets.

2. Create a data server and a physical schema for the Oracle or Microsoft SQL Server
technology as described in the following sections:

= Section 2.3.1, "Creating an Oracle Data Server" and Section 2.3.2, "Creating an
Oracle Physical Schema"

= Section 7.3.1, "Creating a Microsoft SQL Server Data Server" and Section 7.3.2,
"Creating a Microsoft SQL Server Physical Schema"

This data server and this physical schema must point to the Oracle instance and
schema or to the Microsoft SQL Server database containing the cross reference
tables.

23-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Working with XREF using the SOA Cross References KMs

Create a logical schema called XREF pointing to the physical schema. containing
the cross reference table.

See "Creating a Logical Schema" in Administering Oracle Data Integrator for more
information.

23.3.2 Setting up the Project

Import the following KMs into your project, if they are not already in your project:

IKM SQL Control Append (SOA XREF)

LKM SQL to SQL (SOA XREF) or LKM MSSQL to SQL (SOA XREF) if using
Microsoft SQL Server

23.3.3 Designing a Mapping with the Cross-References KMs

To create a mapping, which both loads a target table from several source tables and
handles cross references between one of the sources and the target, run the following
steps:

1.

Create a mapping with the source and target datastores which will have the cross
references.

Create joins, filters and mappings as usual.

Mapping the Common ID: If you want to map in a target column the Common ID
generated for the cross reference table, check the UD1 flag for this column and
enter a dummy mapping. For example a constant value such as'X"'.

In the Physical diagram of the mapping, select the access point for the execution
unit containing the source table to cross reference. The Property Inspector for this
object opens.

In the Loading Knowledge Module tab, select the LKM SQL to SQL (SOA XREF)
or LKM MSSQL to SQL (SOA XREEF) if the source data store is in Microsoft SQL
Server.

Specify the KM options as follows:

s Specify in SRC_PK_EXPRESSION the expression representing the Source
Primary Key value that you want to store in the XREF table.

If the source table has just one attribute defined as a key, enter the attribute
name (for example SEQ_NO).

If the source key has multiple attributes, specify the expression to use for
deriving the key value. For example, if there are two key attributes SEQ_NO
and DOC_DATE in the table and you want to store the concatenated value of
those attributes as your source value in the XREF table enter SEQ_NO | |
DOC_DATE. This option is mandatory.

s Optionally set the SRC_UPDATE_DELETE_ACTION to impact the source
table, as described in Section 23.1.3.3, "Updating/Deleting Processed Records
(LKM)"

In the Physical diagram of the mapping, select the access point for your staging
area. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select the IKM SQL Control Append
(SOA XREP).

Specify the KM options as follows:

Oracle SOA Suite Cross References 23-7

Knowledge Module Options Reference

s XREF_DATA_STRUCTURE: Enter New to use the new XREF_DATA Table
structure. Otherwise enter Legacy to use legacy XREF_DATA Table. Default is
New. Configure the options depending on the table structure you are using, as
specified in Section 23.1.1.3, "Handling Cross Reference Table Structures"

s XREF_SYS_GUID_EXPRESSION: Enter the expression to be used to
computing the Common ID. This expression can be for example:

— adatabase sequence (<SEQUENCE_NAME> . NEXTVAL)

- a function returning a global unique Id (SYS_GUID() for Oracle and
NewID () for SQL Server)

s XREF_ROWNUMBER_EXPRESSION: This is the value that is pushed into the
Row Number column. Use the default value of GUID unless you have the need
to change it to a sequence.

s FLOW_CONTROL: Set to YES in order to be able to use the CKM Oracle.

Note: If the target table doesn't have any placeholder for the Common
ID and you are for example planning to populate the source identifier
in one of the target attributes, you must use the standard mapping
rules of ODI to indicate which source identifier to populate in which
attribute.

If the target attribute that you want to load with the Common ID is a
unique key of the target table, it needs to be mapped. You must put a
dummy mapping on that attribute. At runtime, this dummy mapping
will be overwritten with the generated common identifier by the
integration knowledge module. Make sure to flag this target attribute
with UD1.

23.4 Knowledge Module Options Reference

This section lists the KM options for the following Knowledge Modules:
= LKM SQL to SQL (SOA XREF)

= LKM MSSQL to SQL (SOA XREF)

s IKM SQL Control Append (SOA XREF)

23-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Knowledge Module Options Reference

Table 23—-4 LKM SQL to SQL (SOA XREF)

Option Values

Mandatory

Description

SRC_UPDATE_DELETE_ NONE | UPDATE | DEL
ACTION ETE

SRC_PK_EXPRESSION Concatenating
expression

SRC_PK_LOGICAL_ Name of source table's
SCHEMA logical schema

SRC_PK_TABLE_NAME Source table name,
default is MY_TABLE

SRC_PK_TABLE_ALIAS Source table alias,
default is

MY_ALIAS

SRC_UPD_COL Aliased source column
name

SRC_UPD_EXPRESSION Literal or expression

DELETE_TEMPORARY_ Yes|No
OBJECTS

Yes

Yes

No

No

No

Yes

Indicates what action to take on source
records after integrating data into the target.
See Section 23.1.3.3, "Updating/Deleting
Processed Records (LKM)" for more
information.

Expression that concatenates values from the
PK to have them fit in a single large varchar
column. For example: for the source Orderline
Table (aliased OLINE in the mapping) you
can use expression:

TO_CHAR (OLINE.ORDER_ID) || '-' ||
TO_CHAR (OLINE.LINE_ID)

Indicates the source table's logical schema.
The source table is the one from which we
want to delete or update records after
processing them. This logical schema is used
to resolve the actual physical schema at
runtime depending on the Context. For
example: ORDER_BOOKING. This option is
required only when SRC_UPDATE_DELETE_
ACTION is set to UPDATE or DELETE.

Indicate the source table name of which we
want to delete or update records after
processing them. For example: ORDERS This
option is required only when SRC_UPDATE_
DELETE_ACTION is set to UPDATE or
DELETE.

Indicate the source table's alias within this
mapping. The source table is the one from
which we want to delete or update records
after processing them. For example: ORD. This
option is required only when SRC_UPDATE_
DELETE_ACTION is set to UPDATE or
DELETE.

Aliased source column name that holds the
update flag indicator. The value of this
column will be updated after integration
when SRC_UPDATE_DELETE_ACTION is
set to UPDATE with the expression literal
SRC_UPD_EXPRESSION. The alias used for
the column should match the one defined for
the source table. For example: ORD. LOADED_
FLAG. This option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE.

Literal or expression used to update the SRC_
UPD_COL. This value will be used to update
this column after integration when SRC_
UPDATE_DELETE_ACTION is set to
UPDATE. For example: RECORDS

PROCESSED. This option is required only
when SRC_UPDATE_DELETE_ACTION is
set to UPDATE.

Set this option to NO if you wish to retain
temporary objects (files and scripts) after
integration. Useful for debugging.

Oracle SOA Suite Cross References 23-9

Knowledge Module Options Reference

LKM MSSQL to SQL (SOA XREF)
See Table 234 for details on the LKM MSSQL to SQL (SOA XREF) options.

Table 23-5 IKM SQL Control Append (SOA XREF)

Option Values Mandatory Description

INSERT Yes | No Yes Automatically attempts to insert data into the
Target Datastore of the Mapping.

COMMIT Yes | No Yes Commit all data inserted in the target
datastore.

FLOW_CONTROL Yes | No Yes Check this option if you wish to perform flow
control.

RECYCLE_ERRORS Yes | No Yes Check this option to recycle data rejected from
a previous control.

STATIC_CONTROL Yes | No Yes Check this option to control the target table
after having inserted or updated target data.

TRUNCATE Yes | No Yes Check this option if you wish to truncate the
target datastore.

DELETE_ALL Yes | No Yes Check this option if you wish to delete all the
rows of the target datastore.

CREATE_TARG_TABLE Yes|No Yes Check this option if you wish to create the
target table.

DELETE_TEMPORARY_ Yes|No Yes Set this option to NO if you wish to retain

OBJECTS temporary objects (tables, files and scripts)
after integration. Useful for debugging.

XREF_TABLE_NAME XREF table name Yes, if using Table Name to use in the XREEF table.

XREF_COLUMN_NAME

XREF_SYS_GUID_
EXPRESSION

XREF_ROWNUMBER _
EXPRESSION

Column name

SYS_GUID()

SYS_GUID()

Legacy
XREF table
structure.

Yes, if using
Legacy
XREF table
structure.

Yes

Yes

Example: ORDERS. See Section 23.1.1.3,
"Handling Cross Reference Table Structures”
for more information.

Primary key column name to use as a literal in
the XREF table. See Section 23.1.1.3,
"Handling Cross Reference Table Structures”
for more information.

Enter the expression used to populate the
common ID for the XREF table (column name
"VALUE"). Valid examples are: SYS_GUID(),
MY_SEQUENCE .NEXTVAL, and so forth.

Enter the expression used to populate the
row_number for the XREF table. For example
for Oracle: SYS_GUID(),MY__

SEQUENCE . NEXTVAL and so forth.

23-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Knowledge Module Options Reference

Table 23-5 (Cont.) IKM SQL Control Append (SOA XREF)

Option Values Mandatory Description
XREF_DATA _ New | Legacy Yes Enter New to use the new XREF_DATA Table
STRUCTURE structure.. Otherwise enter Legacy to use
legacy XREF_DATA Table. Default is New. See
Section 23.1.1.3, "Handling Cross Reference
Table Structures" for more information.
XREF_DATA_TABLE XREF table name No.Canbe Enter the name of the table storing cross
used with reference information. Default is XREF_DATA.
custom See Section 23.1.1.3, "Handling Cross
XREF table Reference Table Structures" for more
structure. information.
XREF_DATA_TABLE_ XREF data table Yes, if using For new XREF data structure only: Enter the

COLUMN

column name

custom
XREEF table
structure

column name of the XREF data table to store
the source key values. See Section 23.1.1.3,
"Handling Cross Reference Table Structures"
for more information.

Oracle SOA Suite Cross References 23-11

Knowledge Module Options Reference

23-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Part IV

Appendices

Part IV contains the following appendices:
s Appendix A, "Oracle Data Integrator Driver for LDAP Reference"
= Appendix B, "Oracle Data Integrator Driver for XML Reference"

s Appendix C, "Oracle Data Integrator Driver for Complex Files Reference"

A

Oracle Data Integrator Driver for LDAP
Reference

This appendix describes how to work with the Oracle Data Integrator driver for LDAP.
This appendix includes the following sections:

= Section A.1, "Introduction to Oracle Data Integrator Driver for LDAP"

m Section A.2, "LDAP Processing Overview"

= Section A.3, "Installation and Configuration"

= Section A4, "SQL Syntax"

ms Section A.5, "J[DBC API Implemented Features"

A.1 Introduction to Oracle Data Integrator Driver for LDAP

With Oracle Data Integrator Driver for LDAP (LDAP driver) Oracle Data Integrator is
able to manipulate complex LDAP trees using standard SQL queries.

The LDAP driver supports:

= Manipulation of LDAP entries, their object classes and attributes
= Standard SQL (Structured Query Language) Syntax

» Correlated subqueries, inner and outer joins

= ORDER BY and GROUP BY

= COUNT, SUM, MIN, MAX, AVG and other functions

s All Standard SQL functions

= Referential Integrity (foreign keys)

= Persisting modifications into directories

A.2 LDAP Processing Overview
The LDAP driver works in the following way:

1. The driver loads (upon connection) the LDAP structure and data into a relational
schema, using a LDAP to Relational Mapping.

2. The user works on the relational schema, manipulating data through regular SQL
statements. Any changes performed in the relational schema data (insert/update)
are immediately impacted by the driver in the LDAP data.

Oracle Data Integrator Driver for LDAP Reference A-1

LDAP Processing Overview

A.2.1 LDAP to Relational Mapping

The LDAP to Relational Mapping is a complex but automated process that is used to
generate a relational structure. As LDAP servers do not provide metadata information
in a standard way, this mapping is performed using data introspection from the LDAP
tree. Therefore, automatic mapping is carried out on the contents of the LDAP tree
used as a source for this process.

This section contains the following topics:
= General Principle

s Grouping Factor

= Mapping Exceptions

»s Reference LDAP Tree

A.2.1.1 General Principle

The LDAP driver maps LDAP elements to a relational schema in the following way:

= Each LDAP class or combination of classes is mapped to a table. Each entry from
the LDAP tree is mapped to a record in the table.

s Each attribute of the class instances is mapped to a column.

= Hierarchical relationships between entries are mapped using foreign keys. A table
representing a hierarchical level is created with a primary key called
<tablename>PK. Records reference their parent tables through a <parent_
level_tablename>FK column. The root of the LDAP tree structure is mapped
to a table called ROOT containing a ROOTPK column in a unique record.

= Attributes with multiple values for an entry (for example, a Person entry with
several email attributes) are mapped as sub-tables called <parent_
tablename><attribute_name>. Each sub-table contains a <parent_
tablename>FK column linking it to the parent table.

Figure A-1 shows an LDAP tree with OrganizationalUnit entries linking to Person
instances. In this case, certain Person entries have multiple email addresses.

Figure A-1 LDAP Tree Example

§& LDAP Browser\Editor v2.8.1 - [Idap:ffoursfo=Goliath,dc=sunopsis,d... |Z|[E|rz|
File Edit View LDIF Help

Blz|a#|n|a]s] s 2[F]&]a]
[1 o=Goliath,de=5unopsis,di=com 1 Aftribute | Yalue

¢ [ou=Sales ' telephoneMumber 123 456 987

D creJdohn Srmith cpntterr%unupsig.cnm
sSUppor@sUnNopsis.com
D cn=Faul Young o— .

: |description Technical Support
@ [ou=Marketing “|objectClass tap
[cr=Martha Grirm “lobjectClass persan

@ [ou=Support zjcn Chriz Potter
[} er=Chris Potter :

'Readv

This LDAP tree will be mapped into the following relational structure:

A-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

LDAP Processing Overview

s The ROOT table represents the root of the hierarchy and contains one ROOTPK
column.

s The ORGANIZATIONALUNIT table represents different organizationallnit instances
of the tree. It contains the ORGANIZATIONALUNITPK primary key column and the
attributes of the organizationalUnit instances (cn, telephoneNumber, etc.). It is linked
to the ROOT table by the ROOTFK foreign key column.

= The PERSON table represents the instances of the person class. It contains the
PERSONPK primary key column and the ORGANIZATIONALUNITFK linking it to
the ORGANIZATIONALUNIT table and the attributes of PERSON instances,
(telephoneNumber, description, cn).

» The email attribute appears as a PERSON_EMAIL table containing the EMAIL
column and a PERSONFK linking a list of email attributes to a PERSON record.

Figure A-2 shows the resulting relational structure.

Figure A-2 Relational Structure mapped from the LDAP Tree Example shown in
Figure A-1

ROOTFE
TELEFHOMNE
M
DESCRIPTION

ORGAMIZATIONALUMITFE
TELEPHOMEMUMBER.

A.2.1.2 Grouping Factor

In LDAP directories, class entries are often specified by inheriting attributes from
multiple class definitions. In the relational mapping procedure, the LDAP driver
translates this fact by combining each combination of classes in an LDAP entry to
generate a new table.

For example, some entries of the Person class may also be instances of either of the
Manager or BoardMember classes (or both). In this case, the mapping procedure would
generate a PERSON table (for the instances of Person) but also MANAGER_PERSON,
BOARDMEMBER_PERSON, BOARDMEMBER_MANAGER_PERSON and so forth, tables
depending on the combination of classes existing in the LDAP tree.

In order to avoid unnecessary multiplication of generated tables, it is possible to
parameterize this behavior. The Grouping Factor parameter allows this by defining the
number of divergent classes below which the instances remain grouped together in the
same table. This resulting table contains flag columns named IS_<classname>, whose
values determine the class subset to which the instance belongs. For example, if IS_
<classname> is set to 1, then the instance represented by the record belongs to
<classname>.

Oracle Data Integrator Driver for LDAP Reference A-3

LDAP Processing Overview

The behavior where one table is created for each combination of classes corresponds to
a Grouping Factor equal to zero. With a grouping factor equal to one, instances with
only one divergent class remain in the same table.

In our example, with a Grouping Factor higher than or equal to 2, all company person
instances (including Person, Manager and BoardMember class instances) are grouped in
the PERSON table. The IS_MANAGER and IS_BOARDMEMBER columns enable the
determination of PERSON records that are also in the Manager and /or BoardMember
classes.

A.2.1.3 Mapping Exceptions

This section details some specific situations of the mapping process.

s Table name length limits and collisions: In certain cases, name-length restrictions
may result in possible object name collisions. The LDAP driver avoids such
situations by automatically generating 3 digit suffixes to the object name.

s Key column: It is possible to have the driver automatically create an additional
SNPSLDAPKEY column containing the Relative Distinguished Name (RDN) that
can be used as identifier for the current record (original LDAP class instance). This
is done by setting the key_column URL property to true. This SNPSLDAPKEY
column must be loaded if performing DML commands that update the LDAP tree
contents. Note that this column is created only in tables that originate from LDAP
instances. Tables that correspond to multiple valued instance attributes will not be
created with these columns.

s Case sensitivity: This is set by the case_sens URL property that makes the
RDBMS and LDAP servers to enforce case-sensitivity.

= Special characters: It is possible in LDAP to have non-alphanumeric characters
into attribute or class names. These characters are converted to underscores ("_")
during the mapping. Exception: If non alphanumeric, the first character is

non

converted to "x".

= SQL Reversed Keywords: Generated tables and columns with names that match
SQL keywords are automatically renamed (an underscore is added after their
name) in the relational structure to avoid naming conflicts between table/column
names and SQL keywords. For example, a class named SELECT will be mapped to
a table named SELECT_.

A.2.1.4 Reference LDAP Tree

As LDAP servers do not provide metadata information in a standard way, the LDAP to
Relational Mapping process is performed by default using data introspection from the
LDAP tree.

With the LDAP driver it is also possible to use a Reference LDAP Tree for the LDAP to
Relational Mapping process instead of using the LDAP tree that contains the actual data.

This Reference LDAP Tree is configured using the ldap_metadata property of the
driver URL. This property specifies a.properties file that contains the connection
information to a LDAP tree whose hierarchical structure rigorously reflects that of the
operational LDAP tree but without the accompanying data volume.

This technique reveals certain advantages:

» The Reference LDAP Tree can be maintained by the directory administrator as a
stable definition of the operational LDAP tree.

» The Reference LDAP Tree contains few instances that make up the skeleton of the
real LDAP tree, and the LDAP to Relational Mapping process runs faster on this

A-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

LDAP Processing Overview

small reference tree. This is particularly important for large operational LDAP
directories, and will result in reduced processing time and resources for running
the procedure.

The use of this technique, however, imposes a certain number of constraints in the
design of the precise structure of the Reference LDAP Tree:

= All optional LDAP instance attributes must be instantiated in the reference entries.
Even if these attributes are absent in the operational LDAP directory entries, they
must be declared in the Reference LDAP Tree if they are to be used at a later time.

= Any multiple valued attributes that exist in the operational LDAP directory must
be instantiated as such in the Reference LDAP Tree. For example, if any Person
instance in the operational LDAP directory possesses two telephoneNumber
attributes, then the generic Person class must instantiate at least two
telephoneNumber attributes in the Reference LDAP Tree.

Note: These issues have a direct impact on the generated relational
structure by forcing the creation of additional tables and columns to
map multiple attribute fields and must be taken into consideration
when designing the Reference LDAP Tree.

A.2.2 Managing Relational Schemas
This section contains the following topics:
= Relational Schema Storage

= Accessing Data in the Relational Structure

A.2.2.1 Relational Schema Storage

The relational structure resulting from the LDAP to Relational mapping may be
managed by virtual mapping or stored in an external database.

The virtual mapping stores the relational structure in the run-time agent's memory and
requires no other component. The relational structure is transparently mapped by the
driver to the LDAP tree structure. SQL commands and functions that are available for
the LDAP driver are listed in the SQL Syntax.

Note: The virtual mapping may require a large amount of memory
for large LDAP tree structures.

The external database may be any relational database management system. The driver
connects through JDBC to this engine and uses it to store the relational schema. This
method provides the following benefits:

= Processing and storage capabilities of the selected external database engine.

m Acccess to the specific SQL statements, procedures, and functions of the external
database engine.

» Flexible persistence of the relational structure. This schema content may persist
after the connection to the LDAP driver is closed.

See Section A.3.2, "Using an External Database to Store the Data" for more information
on how to set up external storage.

Oracle Data Integrator Driver for LDAP Reference A-5

Installation and Configuration

A.2.2.2 Accessing Data in the Relational Structure

DML operations on tables in the relational are executed with standard SQL statements.

Modifications made to the relational data are propagated to the directory depending
on the selected storage :

In the case where the virtual mapping is used, all insert, update, and delete requests
are automatically propagated to the original LDAP server in an autocommit mode.
No explicit COMMIT or ROLLBACK statements will have any impact on the
Oracle Data Integrator driver for LDAP.

In the case where the external database is used to store the relational structure, all
types of DML statements may be used with the driver. However, it is important to
know that no modifications will be propagated to the original LDAP server.

A.3 Installation and Configuration

The Oracle Data Integrator driver for LDAP is automatically installed during the
Oracle Data Integrator installation. The following topics cover advanced configuration
topics and reference information.

This section contains the following topics:

Driver Configuration
Using an External Database to Store the Data
LDAP Directory Connection Configuration

Table Aliases Configuration

Note: You must add the libraries and drivers required to connect the
LDAP directory using JNDI to the Oracle Data Integrator classpath.

Note: If using an external database engine you must also make sure
that the JDBC driver used to connect to the external database and the
.properties file are in the classpath.

A.3.1 Driver Configuration

This section details the driver configuration.

The driver name is: com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver
The driver supports two URL formats:

s Jdbc:snps:ldap?<property=value>[&...]

s Jjdbc:snps:ldap2?<property=value>[&...]

The first URL requires the LDAP directory password to be encoded. The second
URL allows you to give the LDAP directory password without encoding it.

Note: Itis recommended to use the first URL to secure the LDAP
directory password.

The LDAP driver uses different properties depending on the established
connection. Figure A-3 shows when to use which properties.

A-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Figure A-3 Properties Files for LDAP Driver

LDAP Directory .propecties files

Contains the connection information
ldap for the LDAP Directory.
The properties start with 1dap .
For example, 1dap basedn

LB
L-‘T“‘T—‘_

L

W Driver Reference LDAP Tree -properties files
Contains the connection information
E Im_ for the Reference Diractory,
D — The properties start with 1m_.

For example, 1lm_basedn

vy
External Database

.properties files
Contains the external database
dab connection information:
The properties start with db_ .
For example, db_url

For example.
Oracle or H5QIL

The LDAP driver connects to the LDAP directory. You can configure this
connection with the properties that start with 1dap_. For example, 1dap_
basedn. Instead of passing the LDAP directory properties in the driver URL, you
can use a properties file for the configuration of the connection to the LDAP
directory. This properties file must be specified in the 1dap_props property of the
driver URL.

If you want to use the hierarchical structure of the LDAP tree without the
accompanying data volume, you can use the Reference LDAP tree. The connection
to the Reference LDAP tree is configured with the properties that start with 1m_.
For example, 1m_basedn. Instead of passing the 1m_ properties in the driver
URL, you can use a properties file. This properties file must be specified in the
ldap_metadata property of the driver URL. See Section A.2.1.4, "Reference
LDAP Tree" for more information.

To configure the connection of the LDAP driver to an external database, use the
properties that start with db_. For example, db_url. Instead of passing the
external database properties in the driver URL, you can use a properties file for the
configuration of the connection to the external database. This properties file must
be specified in the db_props property of the driver URL. See Section A.3.2,
"Using an External Database to Store the Data" for more information.

Table A-1 describes the properties that can be passed in the driver URL.

Oracle Data Integrator Driver for LDAP Reference A-7

Installation and Configuration

Table A-1

Driver Properties

Property

Mandatory Type

Default

Description

db_propsor No
dp

ldap_props No
orlp

ldap_ No
metadata or
Im

case_sensor No
cs

alias_ No
bundle or
ab

alias_ No
bundle_
encoding or

abe

string (file
location)

string (file
location)

string (file
location)

boolean (true
| false)

string (file
location)

string
(encoding
code)

Empty
string

N/A

N/A

false

Empty
string

Default
encodin

&

Name of a . properties file containing the external
database connection configuration. See Section A.3.2, "Using
an External Database to Store the Data" for the details of this
file content.

Note: This property should contain the name of the
.properties file without the file extension.

Note: This . properties file must be in the run-time agent
classpath.

Note: You can specify the external database connection
configuration using all the db_ properties listed below in
this table.

Name of a . properties file containing the directory
connection configuration. See Section A.3.3, "LDAP
Directory Connection Configuration" for the details of this
file content.

Note: This property should contain the name of the
.properties file without the file extension.

Note: This . properties file must be in the run-time agent
classpath.

Note: You can specify the LDAP directory connection
configuration using all the 1dap_ properties listed below in
this table.

Name of a . properties file containing the directory
connection configuration for the Referenice LDAP Tree. See
Section A.3.3, "LDAP Directory Connection Configuration"
for the details of this file content, and Section A.2.1.4,
"Reference LDAP Tree" for an explanation of the reference
tree.

Note: This property should contain the name of the
.properties file without the file extension.

Note: This . properties file must be in the run-time agent
classpath.

Note: You can specify the reference LDAP directory
connection configuration using all the 1m_ properties listed
below in this table.

Enable / disable case sensitive mode for both LDAP- and
RDBMS-managed objects.

Full name of a properties file including both the absolute
path to the properties file and the file extension. The
properties file is a file that contains the list of aliases for the
LDAP to Relational Mapping. If this file does not exist, it
will be created by the driver. See Section A.3.4, "Table
Aliases Configuration" for more information.

Note: The file extension does not need to be .properties.

Alias bundle file encoding. This encoding is used while
reading and overwriting the alias_bundle file. If it is not
defined then the default encoding would be used.

You will find a list of supported encoding at the following
URL:
http://java.sun.com/j2se/1.3/docs/guide/intl
/encoding.doc.html.

A-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table A-1 (Cont.) Driver Properties

Property Mandatory Type Default Description

grouping_ No integer 2 Determines how many object classes will be grouped

factor or gf together to set up a single relational table mapping. See
Section A.2.1.2, "Grouping Factor" for more information.

key_column No boolean (true false If set to true, a technical column called SNPSLDAPKEY is

or ke | false) created to store the Relative Distinguished Name (RDN) for
each LDAP entry. See Section A.2.1.3, "Mapping Exceptions"
for more information.

numeric_ No boolean (true false If set to true, all internal Primary and Foreign Keys are of

ids or ni | false) NUMERIC type. Otherwise, they are of the VARCHAR type.

id_lengthor No integer 10 /30 The length of the internal Primary and Foreign Key

il columns. The default is 10 for NUMERIC column types and
30 for VARCHAR column types.

table_prefix No string N/A Prefix added to relational tables of the current connection.

or tp

log_file or If No string (file N/A Trace log file name. If the log file name is not set the trace

location)

data is displayed on the standard output.

The presence of this property triggers trace logging for a
particular relational schema.

Oracle Data Integrator Driver for LDAP Reference A-9

Installation and Configuration

Table A-1 (Cont.) Driver Properties

Property

Mandatory Type

Default

Description

log_level or No

i

ldap_auth

ldap_url
ldap_user

ldap_
password

ldap_
basedn

Im_auth

Im_url

Yes

integer

string

string

string

string

string

string

string

1

simple

N/A
Empty
string
Empty
string

N/A

simple

N/A

Log level. This property is ignored if log_file is not specified.
The log level can is a bit mask that can be specified either in
hexadecimal or decimal value.

Log Level Values:

= 0x1 (1): General information (important)

= 0x2 (2): General information (detailed)

s 0x4 (4): SQL statements

= 0x8 (8): LDAP-Relational mapping information

= 0x10 (16): LDAP-Relational mapping validation &
renaming information (Table and columns name
modifications, etc)

= 0x20 (32): Display the LDAP model parsed and the
corresponding relational model.

= 0x40 (64): Display the table creation statements.
= 0x80 (128): Display data insert statements.

= 0x100 (256): Grouping information (important)
= 0x200 (512): Grouping information (detailed)

= 0x400 (1024): Display details on the relational model
building

= 0x800 (2048): Display the elements read from the LDAP
tree

= 0x1000 (4096): Display SQL statements causing changes
into the LDAP tree

Examples:

= Important and detailed general information: log_
level=3 (1+2)

= Trace native SQL commands and important internal
events: log_level=5 (1+4)

= Trace relational mapping calculation and validation:
log_level=24 (16+8)

» Trace all events: log_level=8191 (1+2+ ... + 2048 + 4096)

LDAP Directory authentication method. See the auth
property in Section A.3.3, "LDAP Directory Connection
Configuration".

LDAP Directory URL. See the url property in Section A.3.3,
"LDAP Directory Connection Configuration”.

LDAP Directory user name. See the user property in
Section A.3.3, "LDAP Directory Connection Configuration".

LDAP Directory user password. See the password property
in Section A.3.3, "LDAP Directory Connection
Configuration".

LDAP Directory basedn. See the basedn property in
Section A.3.3, "LDAP Directory Connection Configuration".

Reference LDAP authentication method. See the auth
property in Section A.3.3, "LDAP Directory Connection
Configuration".

Reference LDAP URL. See the ur1l property in Section A.3.3,
"LDAP Directory Connection Configuration".

A-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table A-1 (Cont.) Driver Properties

Property Mandatory Type Default Description
Im_user No string Empty Reference LDAP Directory user name. See the user
string property in Section A.3.3, "LDAP Directory Connection
Configuration".
Im_ No string Empty Reference LDAP Directory user password. See the
password string password property in Section A.3.3, "LDAP Directory
Connection Configuration".
Im_basedn No string N/A Reference LDAP Directory basedn. See the basedn property
in Section A.3.3, "LDAP Directory Connection
Configuration".
db_driver Yes string N/A External Database JDBC Driver. See the driver property in
Section A.3.2, "Using an External Database to Store the
Data".
db_url Yes string N/A External Database JDBC URL. See the url property in
Section A.3.2, "Using an External Database to Store the
Data".
db_user No string Empty External Database user. See the user property in
string Section A.3.2, "Using an External Database to Store the
Data".
db_ No string Empty External Database password. See the password property in
password string Section A.3.2, "Using an External Database to Store the
Data".
db_schema No string Empty External Database schema. See the schema property in
string Section A.3.2, "Using an External Database to Store the
Data".
db_catalog No string Empty External Database catalog. See the catalog property in
string Section A.3.2, "Using an External Database to Store the
Data".
db_drop_ No boolean true Drop tables on disconnect on the external database. See the
on_ (true | false) drop_on_disconnect property in Section A.3.2, "Using
disconnect an External Database to Store the Data".
or db_dod
db_load_ No string ci Loading method for the external database. See the 1oad_
mode or mode property in Section A.3.2, "Using an External Database
db_Im to Store the Data".
page_size No integer 1000 Read data from LDAP servers with this page size limit.
transform_ No boolean true Transform Non Ascii. Set to false to keep non-ascii

nonascii or
tna

(true | false)

characters.

URL Examples
The following section lists URL examples:

jdbc:snps:1ldap?lp=1ldap_mir&ldap_basedn=o=tests&gf=10&1f=

Connects to the LDAP directory specified in the Idap_mir . properties file,
overriding the basedn property of the ldap bundle and using a grouping factor of
10. General information (important) is sent to the standard output.

jdbc:snps:1ldap?lp=1dap_
ours&lm=generic&ab=c:/tmp/aliases.txt&gf=10&kc=true

Connects to the LDAP directory using the ldap_ours . properties file; a generic
Directory tree for relational model creation is signaled by the Im property; an alias

Oracle Data Integrator Driver for LDAP Reference A-11

Installation and Configuration

bundle file is used for the creation of the relational structure; a maximum
grouping factor of 10 is used; key column creation is enabled for the
SNPSLDAPKEY field to allow updates requests in the relational model.

s Jdbc:snps:ldap?lp=ldap_mir&dp=mysqgl_mir_ ldap&ldap_
basedn=dc=tests&lm=1dap_mir&lm_
basedn=dc=model&ab=d:/temp/mapldap.txt&

Connects to the LDAP directory using the Idap_mir . properties file; overriding
ldap basedn property; using the "dc=model" subtree of the same directory to
perform mapping; using an alias bundle; overriding the Im database property
(load mode); specifying a grouping factor of 0 to indicate no grouping (grouping
disabled); Full trace logging is activated.

= Connects to a LDAP directory on the hydraroid machine. The LDAP server
connection information - url, base dn, user and password - is specified in the URL
using the Idap_xxx properties.

jdbc:snps:ldap?ldap_url=ldap://hydraroid:389/dc=1localhost,dc=1ocaldomain&ldap_
password=KPLEKFMJKCLFJIJMDFDDGPGPDB&1dap_user=cn=orcladmin&ldap_
basedn=ou=applications

A.3.2 Using an External Database to Store the Data

The relational structure resulting from the LDAP to relational mapping of the LDAP
tree can be stored in the run-time agent's memory or in an external database.

Note: The list of technologies that support external storage is
available on Oracle Technical Network (OTN) :

http://www.oracle.com/technology/software/products/i
as/files/fusion_certification.html

The external storage is configured with a set of properties described in Table A-2.
The external storage properties can be passed in several ways:

= Passing the Properties in the Driver URL

» Setting the Properties in ODI Studio

= Setting the Properties in a Properties File

A.3.2.1 Passing the Properties in the Driver URL

The properties can be directly set in the driver URL. When using this method, the
properties have to be prefixed with db_ . For example, if connecting to an Oracle
database, specify the Oracle JDBC driver name in the driver parameter as follows:

db_driver=oracle.jdbc.OracleDriver.

A.3.2.2 Setting the Properties in ODI Studio

The properties can be specified on the Properties tab of the Data Server editor in
Topology Navigator. When using this method, the properties have to be prefixed with
db_. For example, if you want to set the driver parameter:

1. In the Key column, enter db_driver

2. Inthe Value column, enter oracle. jdbc.OracleDriver if you are connecting
to an Oracle database.

A-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

A.3.2.3 Setting the Properties in a Properties File

The properties can be set in an external database properties file. This properties file, also
called property bundle, is a text file with the . properties extension containing a set of
lines with on each line a <property>=<value> pair.

This external database porperties file contains the properties of a JDBC connection to
the relational database schema. The properties file is referenced using the db_props
property in the JDBC URL.

Note: It is important to understand that the LDAP driver loads
external property bundle files once only at runtime startup. If errors
occur in these files, it is advisable to exit Oracle Data Integrator and
then reload it before re-testing.

When using this method, note the following:

s The properties in the properties file are not prefixed and used as described in
Table A-2.

s The db_props property is set to the name of the properties file without the
.properties extension. For example, if you have in your classpath the prod_
directory.properties file, you should refer to this file as follows: db_
props=prod_directory.

The db_props property indicates that the schema must be loaded in a database
schema whose connection information is stored in a external database properties file.

» The properties files have to be deployed by the agent using the LDAP connection.
The location the properties file depends on the agent you are using;:

— Local agent (Studio): Place the external DB properties file in the
<user.dir>/odi/oracledi/userlib folder

- Standalone Agent: Place the external DB properties file in
oracledi/agent/drivers folder

— JavaEE Agent: The external DB properties file should be packed into a JAR or
ZIP file and added to the template generated by the Java EE agent. See
"Deploying an Agent in a Java EE Application Server (Oracle WebLogic
Server)" in the Administering Oracle Data Integrator for more information.

= When using property bundle files, you must make sure that the property bundle is
present in the Oracle Data Integrator classpath. Typically, you should install this
bundle in the drivers directories.

Note: When connecting to the external database, the LDAP driver
uses JDBC connectivity. Make sure that the JDBC driver to access this
external database is also available in the ODI classpath.

It is possible to set or override the external database properties on the URL. These
properties must be prefixed with the string db_. For example:

jdbc:snps:1ldap?ldap_url=1dap://localhost:389/&ldap_basedn=o=company&db_
driver=oracle.jdbc.OracleDriver&db_url=<external_db_url>

The properties for configuring external storage are described in Table A-2.

Oracle Data Integrator Driver for LDAP Reference A-13

Installation and Configuration

Table A-2 External Database Connection Properties

Property Mandatory Type Default Description

driver Yes string N/A JDBC driver name

url Yes string N/A JDBC URL

user No string Empty string Login used to connect the database
password No string Empty string Encrypted database user password.

Note: To encrypt the password, use the encode . bat
command. See the Installing and Configuring Oracle Data
Integrator for more information.

schema No string Empty string Database schema storing the LDAP Tree. This property
should not be used for Microsoft SQLServer, and the catalog
property should be used instead.

catalog No string Empty string Database catalog storing the LDAP Tree. For Microsoft SQL
Server only. This property should not be used simultaneously
with the schema property.

drop_on_ No boolean true If true, drop the tables from the database at disconnection
disconnect (true | time. If set to false the tables are preserved in the database.
or dod false)

load_mode No string ci The loading method. Values may be:

or Im

= n (none): the model and table mappings are created in
memory only.

= dci (drop_create_insert): drop all tables that may cause
name conflicts then create tables and load the LDAP tree
into the relational model.

= ci(create_insert): Create the relational tables and throw an
exception for existing tables, then load the LDAP tree
into the relational model.

unicode No boolean For MS SQL Server:
(true | If unicode = true, nvarchar is used.
false)
If unicode = false or not set, varchar is used.
varchar_ No integer 255 Size of all the columns of the relational structure that will be
length or vl used to contain string data.

The following is an example of an external database . properties file to connect to
an external Oracle database:

driver=oracle.jdbc.OracleDriver
url=jdbc:oracle:thin:@hydraro:1521:SNPTST1
user=LDAP_T 1

password=ENCODED_PASSWORD

schema=LDAP_T_1

A.3.3 LDAP Directory Connection Configuration

The Oracle Data Integrator driver for LDAP uses the properties described in Table A-3
to connect to a directory server that contains the LDAP data or the Referenice LDAP Tree.
These properties can be provided either in a property bundle file or on the driver URL.

The properties for configuring a directory connection are detailed in Table A-3.

A-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table A-3 LDAP Directory Connection Properties

Property Mandatory Type Default Description

auth No
url Yes
user No

password No

basedn No

string simple The authentication method

string N/A URL to connect to the directory. It is an LDAP URL.

Note: This driver supports the LDAPS (LDAP over SSL) protocol.
The LDAPS URL must start with Idaps://. To connect a server
using LDAPS, you must manually install the certificate in the java
machine. See the keytool program provided with the JVM for more
information.

string Empty The LDAP server user-login name. Mandatory only if "auth” is
string set.

Note: If user and password properties are provided to create the
connection with the JDBC Driver for LDAP, then they are used to
connect the LDAP directory.

string Empty LDAP server user-login password. Mandatory only if "auth” is
string set.

Note: The password needs to be encrypted, unless the
jdbc:snps:ldap2’ URL syntax.

Note: To encrypt the password, use the encode . bat command.
See the Installing and Configuring Oracle Data Integrator for more
information.

string N/A The base dn with which you wish to connect to the LDAP tree.
The base dn is the top level of the LDAP directory tree. If it not
specified, the base dn specified in the LDAP URL is used.

The following is an example of an LDAP properties file content:

url=1ldap://ours:389
user=cn=Directory Manager
password=ENCODED_PASSWORD
basedn=dc=oracle,dc=com

A.3.4 Table Aliases Configuration

The LDAP driver allows a certain flexibility in the definition of the model table names
in Oracle Data Integrator by the use of table aliases. This is particularly useful when
the algorithm used to navigate the LDAP tree generates long composite names from
the LDAP object class hierarchy. To avoid issues related to RDBMS-specific object
name-length constraints, the LDAP driver can set up and use aliases.

Note: It is also possible to change the default "Maximum Table Name
Length" and "Maximum Column Name Length" values on the Others
tab of the Technology Editor in the Physical Architecture accordion.

To create a table alias file:

1. Inthe LDAP Driver Data Server URL, include and set the alias_bundle (ab)
property that indicates the name of the alias text file, for example:

jdbc:snps:1dap?..... &ab=C:/tmp/aliases.txt&. ...

The alias file is created by the driver at connection time when the alias_bundle
property is specified. Typically, a user connects initially through the LDAP driver

Oracle Data Integrator Driver for LDAP Reference A-15

SQL Syntax

which creates this file containing a list of potential table names to be created by the
reverse-engineering operation.

2. Test the connection to the LDAP data server.

3. Verify the that the text file has been created and has the expected structure. The list
consists of <original table name > = <desired alias name> values.
Example A-1 shows an extract of an alias file after the user has provided
shortened names. See step 4 for more information.

Example A-1 Alias File

INETORGPERSON_ORGANIZATIONALPERSON_PERSON_BISOBJECT_MAIL = PERSONMAIL
ORGANIZATIONALUNIT_RFC822MAILMEMBER = ORG_228MAIL
INETORGPERSON_ORGANIZATIONALPERSON_PERSON = ORG_PERSON
ORGANIZATIONALUNIT_MEMBER = ORG_UN_MEMBER

ORGANIZATIONALUNIT = ORG_UNIT

ROOT = ROOT

4. In the alias text file, add short text value aliases to replace the originally derived
composite names and save the file.

5. Reconnect to the same LDAP data server. The relational schema is created and this
time the aliases will be used for defining relational table names.

6. Now reverse-engineer the LDAP directory as described in Section 20.5.2,
"Reverse-Engineering an LDAP Model". Oracle Data Integrator will create
datastores with the table names defined as aliases in the alias file.

Note: If any modifications have been applied to the object class
structure or attribute sets of the LDAP directory, the driver will
rewrite this file while including the new or modified entries to the
table name list.

A.4 SQL Syntax

The SQL statements described in Section A.4.1, "SQL Statements" are available when
using the Oracle Data Integrator driver for LDAP. They enable the management of
relational data structure and data through standard SQL Syntax.

Note:

» If you are using an external database you may use its proprietary
query engine syntax in place of the following commands.

s The LDAP driver works uniquely in auto commit mode. No
explicit transaction management with COMMIT or ROLLBACK
commands is permitted.

= When using an external database to store LDAP tree data, DDL
statements may only be carried out on temporary tables.

Table A—4 summarizes the recommendations to apply when performing the listed
DML operations on specific key fields.

A-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

SQL Syntax

Table A-4 DML Opertaions on Key Fields

Type of Column Insert Update Delete

Foreign Key Pay attention to master Not permitted = Pay attention to master table
table referential constraints referential constraints and
and ordered table populate ordered delete requests.
operations.

Primary Key Pay attention to slave table ~ Not permitted Pay attention to slave table
referential constraints and referential constraints and
ordered table populate ordered delete requests
operations.

IS_xxx Pay attention to associating Not permitted OK

the correct flag value to the
original object class.

Key_Column Pay attention to setting the ~ Not permitted OK
RDN value in the correct
LDAP syntax.

A.4.1 SQL Statements

Any number of commands may be combined. The semicolon (;) may be used to
separate each command but is not necessary.

A.4.1.1 DISCONNECT

DISCONNECT

Closes this connection.

Remarks

= Itis not required to call this command when using the JDBC interface: it is called
automatically when the connection is closed.

= After disconnecting, it is not possible to execute other queries with this connection.

A.4.1.2 INSERT INTO

Insert one or more new rows of data into a table.

INSERT INTO <table_name> [(<column_name> [,...])]
{ VALUES (<expression> [,...]) | <SELECT Statement> }

A.4.1.3 SELECT

Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table name>.* | * } [, ...]
[INTO <new_table>]
FROM <table_list>
[WHERE <expression>]
[GROUP BY <expression> [, ...]]
[ORDER BY <order_expression> [, ...]]
[{ UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement>
]
<table_list> ::=
<table_name> [{ INNER | LEFT [OUTER] } JOIN <table_name> ON <expression>]
[, ...1]

<select_expression> ::=

Oracle Data Integrator Driver for LDAP Reference A-17

SQL Syntax

{ <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG}
(<expression>) <column_alias>}

<order_expression> ::=
{ <column_number> | <column_alias> | <select_expression> } [ASC | DESC]

A.4.1.4 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

A.4.1.5 Expressions, Condition & values

<expression> ::=

[NOT] <condition> [{ OR | AND } <condition>

]

<condition> ::=

{ <value> [|| <value>]

| <value> { = | < | <= | > | »>= | <> | != | IS [NOT] } <value>
| EXISTS(<select_statement>)

| <value> BETWEEN <value> AND <value>

| <value> [NOT] IN ({<value> [, ...] | selectStatement }
| <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=

[+ -1 {term [{ + |- | *]/} term]
| (condition)

| function ([parameter] [,...])

| selectStatement giving one value

<term> ::=
{ 'string' | number | floatingpoint | [table.]lcolumn | TRUE | FALSE | NULL }

<string> ::=
= Starts and ends with a single . In a string started with ' use " to create a ".

» LIKE uses '%' to match any (including 0) number of characters, and '_' to match
exactly one character. To search for '%" itself, "\ %' must be used, for '_' use '_'; or
any other escaping character may be set using the ESCAPE clause.

<name> ::=

= A name starts with a letter and is followed by any number of letters or digits.
Lowercase is changed to uppercase except for strings and quoted identifiers.
Names are not case-sensitive.

= Quoted identifiers can be used as names (for example for tables or columns).
Quoted identifiers start and end with ". In a quoted identifier use "" to create a "
With quoted identifiers it is possible to create mixed case table and column names.
Example: CREATE TABLE "Address" ("Nr" INTEGER,"Name" VARCHAR);
SELECT * FROM "Address". Quoted identifiers are not strings.

<values> ::=
= A 'date' value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

= A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

» Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example
is 3 bytes, first 0, second 4 and last 255 (0xff).

A-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

SQL Syntax

A.4.2 SQL FUNCTIONS

Table A-5 describes the numeric functions.

Table A-5 Numeric Functions

Function Description

ABS(d) returns the absolute value of a double value
ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

BITAND(a,b) returnsa &b

BITOR(a,b) returnsa | b

CEILING(d) returns the smallest integer that is not less than d
COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d
FLOOR(d) returns the largest integer that is not greater than d
LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller than 1.0
ROUND(a,b) rounds a to b digits after the decimal point
SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0
SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigonometric tangent of an angle
TRUNCATE(a,b) truncates a to b digits after the decimal point

Table A-6 describes the string functions.

Table A-6 String Functions

Function

Description

ASCII(s)

BIT_LENGTH(s)

CHAR(c)

returns the ASCII code of the leftmost character of s
returns the string length in bits

returns a character that has the ASCII code ¢

CHAR_LENGTH(s) returns the string length in characters

Oracle Data Integrator Driver for LDAP Reference A-19

SQL Syntax

Table A-6 (Cont.) String Functions

Function Description

CONCAT(strl,str2) returns strl + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

HEXTORAW(s1) returns the string translated from hexadecimal to raw

INSERT(s,start,len,s2) returns a string where len number of characters beginning at start
has been replaced by s2

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is found in
s, starting at start

LTRIM(s) removes all leading blanks in s
OCTET_LENGTH(s) returns the string length in bytes
RAWTOHEX(s) returns translated string
REPEAT(s,count) returns s repeated count times

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing blanks

SOUNDEX(s) returns a four character code representing the sound of s
SPACE(count) returns a string consisting of count spaces
SUBSTR(s,start[,len]) (alias for substring)

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len.
Another syntax is SUBSTRING(s FROM start [FOR len])

TRIM TRIM([{LEADING | TRAILING | BOTH}] FROM s): removes
trailing and/or leading spaces from s.

UCASE(s) converts s to upper case
LOWER(s) converts s to lower case
UPPER(s) converts s to upper case

Table A-7 describes the date and time functions.

Table A-7 Date and Time Functions

Function Description

CURDATE() returns the current date
CURTIMEY() returns the current time
CURRENT_DATE returns the current date
CURRENT_TIME returns the current time

CURRENT_TIMESTAMP returns the current timestamp

A-20 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

SQL Syntax

Table A-7 (Cont.) Date and Time Functions

Function Description

DATEDIFF(s, d1,d2) returns the counts of unit of times specified in s elapsed from
datetime d1 to datetime d2. s may take the following values:
‘'ms'="millisecond’, 'ss'='second’,'mi'="minute’,'hh'="hour’, 'dd'='day’,
'mm'="month’, 'yy' = 'year'".

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

DAYOFYEAR(date) returns the day of the year (1-366)

EXTRACT EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE |
SECOND} FROM <datetime>): extracts the appropriate part from
the <datetime> value.

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Note that A date value starts and ends with ', the format is yyyy-mm-dd (see
java.sql.Date). A time value starts and ends with ', the format is hh:mm:ss (see

java.sql.Time).

Table A-8 describes the system functions.

Table A-8 System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp
CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2
CONVERT(term,type) converts exp to another data type

COALESCENCE(el,e2,e3,...) if el is not null then it is returned, else €2 is evaluated. If e2 is

NULLIF(v1,v2)
CASE WHEN

CAST(term AS type)

null, then is it returned, else e3 is evaluated and so on.
returns v1 if v1 is not equal to v2, else returns null

There are two syntax for the CASE WHEN statement:

CASE vl WHEN v2 THEN v3 [ELSE v4] END: if v1 equals v2
then returns v3 [otherwise v4 or null if ELSE is not specified].

CASE WHEN el THEN v1[WHEN e2 THEN v2] [ELSE v4]
END: when el is true return v1 [optionally repeated for more
cases] [otherwise v4 or null if there is no ELSE]

converts exp to another data type

Table A-9 describes the system and connection functions.

Oracle Data Integrator Driver for LDAP Reference A-21

JDBC API Implemented Features

Table A-9 System and Connection Functions

Function Description

DATABASE() returns the name of the database of this connection

USER() returns the user name of this connection

IDENTITY() returns the last identity values that was inserted by this connection

A.5 JDBC API Implemented Features

Table A-10 lists the JDBC API features of the Oracle Data Integrator driver for LDAP.

Table A-10 JDBC API Features

Feature Groups JDBC Version Support
Batch Update 2.0 Core Yes
Blob/Clob 2.0 Core No
JNDI DataSources 2.0 Optional No
Failover support - No
Transaction SavePoints 3.0 No
Unicode support - No
Disributed Transaction 2.0 Optional No
Connection Pooling 2.0 Optional No
Cluster support - No

The following table identifies the JDBC classes supported by the Oracle Data
Integrator driver for LDAP.

Table A-11 JDBC Classes

JDBC Classes JDBC Version Support
Array 2.0 Core No
Blob 2.0 Core No
Clob 2.0 Core No
CallableStatement 1.0 Yes
Connection 1.0 Yes
ConnectionPoolDataSource 2.0 Optional No
DatabaseMetaData 1.0 Yes
DataSource 2.0 Optional No
Driver 1.0 Yes
PreparedStatement 1.0 Yes
Ref 2.0 Core No
RowSet 2.0 Optional No
ResultSet 1.0 Yes
ResultSetMetaData 1.0 Yes
Statement 1.0 Yes

A-22 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

JDBC API Implemented Features

Table A-11 (Cont.) JDBC Classes

JDBC Classes JDBC Version Support
Struct 2.0 Core No
XAConnection 2.0 Optional No
XADataSource 2.0 Optional No

Oracle Data Integrator Driver for LDAP Reference A-23

JDBC API Implemented Features

A-24 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B

Oracle Data Integrator Driver for XML

Reference

This appendix describes how to work with the Oracle Data Integrator driver for XML.

This appendix includes the following sections:

Section B.1, "Introduction to Oracle Data Integrator Driver for XML"
Section B.2, "XML Processing Overview"

Section B.3, "Installation and Configuration”

Section B.4, "Detailed Driver Commands"

Section B.5, "SQL Syntax"

Section B.6, "JDBC API Implemented Features"

Section B.7, "Rich Metadata"

Section B.8, "XML Schema Supported Features"

B.1 Introduction to Oracle Data Integrator Driver for XML

Oracle Data Integrator Driver for XML (XML driver) handles an XML document as a
JDBC data source. This allows Oracle Data Integrator to use XML documents as data
servers.

With Oracle Data Integrator Driver for XML, Oracle Data Integrator can query XML
documents using standard SQL syntax and perform changes in the XML files. These
operations occur within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for XML supports the following features:

Standard SQL (Structured Query Language) Syntax
Correlated subqueries, inner and outer joins

ORDER BY and GROUP BY

COUNT, SUM, MIN, MAX, AVG and other functions
Standard SQL functions

Transaction Management

Referential Integrity (foreign keys)

Saving Changes made on XML data into the XML files

Oracle Data Integrator Driver for XML Reference B-1

XML Processing Overview

B.2 XML Processing Overview
The XML driver works in the following way:

1. The driver loads (upon connection or user request) the XML structure and data into
a relational schema, using a XML to SQL Mapping.

2. The user works on the relational schema, manipulating data through regular SQL
statements or specific driver commands for driver operations.

3. Upon disconnection or user request, the XML driver synchronizes the data and
structure stored in the schema back to the XML file.

B.2.1 XML to SQL Mapping

The XML to SQL Mapping is a complex process that is used to map a hierarchical
structure (XML) into a relational structure (schema). This mapping is automatic.

Elements and Attributes Mapping
The XML driver maps XML elements and attributes the following way:

= Elements are mapped as tables with the same name.

= Attributes are mapped as columns named like the attributes. Each column is
created in the table representing the attribute's element.

Hierarchy & Order Mapping
Extra data may appear in the relational structure as follows:

= Inorder to map the hierarchy of XML elements, or a one-to-many relation between
elements, the XML driver generates in each table corresponding to an element the
following extra columns:

- <element_name>PK: This column identifies the element.

- <parent_element_name>FK: This column links the current element to its
parent in the hierarchy. It contains a value matching the parent element's
<element_name>PK value. In case of XML recursion the parent element or
ancestors of the parent element can be located in the same table.

s Records in a table, unlike elements in an XML file, are not ordered, unless a
specific column is used to define the order. The driver generates also a column
named <element_name>ORDER to preserve the order of the elements. When
adding new rows in the relational schema, make sure that the ORDER column is
correctly set to have the elements correctly ordered under the parent element.

» The root of the hierarchy is identified by a root table named after the root element.
This table contains a single record with the following columns:

- <root_element_name>PK: All level 1 sub-elements will refer to this PK
entry.

— SNPSFILENAME: This column contains the names of the XML file loaded into
this schema.

- SNPSFILEPATH: This column contains the XML file path.

— SNPSLOADDATE: This column contains the date and time when the file was
loaded into the schema.

The values in this table are managed by the driver and should not be modified.

B-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

XML Processing Overview

Mapping Exceptions
This section details some specific situations for the mapping of extra data.

= Elements containing only #PCDATA are not mapped as tables, but as columns of
the table representing their parent element. These columns are named <element_
name>_DATA.

= List Attributes are mapped as a new table with a link (PK, FK) to the table
representing the element containing the list.

s XML elements and attributes with names that match SQL reserved keywords are
automatically renamed (an underscore is added after their name) in the relational
structure to avoid naming conflict between table/column names and SQL
reserved keywords. For example, an element named SELECT will be mapped to a
table named SELECT_. Such elements are restored in the XML file with their
original naming when a synchronize operation takes place.

Note that extra objects created by the driver are used to keep the XML file consistency.
These records must be loaded in the relational schema before it is synchronized to an
XML file.

B.2.2 XML Namespaces

The XML driver supports XML namespaces (xm1ns :) specified for XML attributes
and elements.

Elements or attributes specified with a namespace (using the syntax
<namespace>:<element or attribute name>)are mapped as tables or
columns prefixed with the namespace using the syntax: <namespace>_<element
or attribute name>. When synchronizing the XML data back to the file, the
namespace information is automatically generated.

Note: Inv3 mode, the table names are not prefixed with
<namespace>_.

B.2.3 Managing Schemas

A schema corresponds to the concept used in Oracle database and other RDBM systems
and is a container that holds a set of relational tables. A schema is a generic relational
structure in which an entire set of XML file instances may be successfully parsed and
extracted. The identified elements and attributes are inserted in the appropriate
relational tables and fields.

This schema is generated by the XML driver from either an XML instance file, a DTD
file, or an XSD file. It is recommended to generate the schema from a DTD or XSD file.

Note that only a single DTD or XSD file may be referenced in definition of an XML
data server URL. In this case, this DTD or XSD may be considered as a master DTD or
XSD file if the artifact includes references to other DTD / XSD files. Note that in
certain cases multiple schemas may be required. In this case use the add_schema_
bundle property.

B.2.3.1 Schema Storage

The schema may be stored either in a built-in engine or in an external database.

» The built-in engine requires no other component to run. The XML schema is stored
in memory within the driver. The SQL commands and functions available on this
driver are detailed in the SQL Syntax.

Oracle Data Integrator Driver for XML Reference B-3

XML Processing Overview

s The external database can be a relational database management system. The driver
connects through JDBC to this engine, and uses it to store the schema. This enables
the:

— Use of the processing and storage power of the RDBMS engine
— Use of the statements and functions of the RDBMS
— Persistence of schema storage

See Section B.3.3, "Using an External Database to Store the Data" for more
information.

B.2.3.2 Multiple Schemas

It is possible to handle, within the same JDBC connection, multiple schemas and to
load multiple XML files simultaneously. It is possible to CREATE, TRUNCATE, SET,
and LOAD FILE INTO schemas. When connecting to the JDBC driver, you connect to
the schema that is specified on the URL. It is possible to set the current schema to
another one using the SET SCHEMA command. See Section B.4, "Detailed Driver
Commands" for more information.

The default schema is a specific schema that is used for storing temporary data. The
default schema is read-only and cannot be used to store XML files. It is recommeded to
create a schema for each XML file.

It is also possible to automatically create additional schemas with different XML
structures when creating the connection to the driver. See Section B.3.1, "Driver
Configuration" for more information.

B.2.3.3 Accessing Data in the Schemas
Data in the schemas is handled using the SQL language.

It is possible to access tables in a schema that is different from the current schema. To
access the tables of a different schema, prefix the table name with the schema name,
followed by a period character (.). For example:

SELECT coll, schemal.table2.col2, tablel.col3 FROM tablel, schemal.tablel.

This query returns data from tablel in the current schema, and from table2 from
schema2.

Note: Note that the other schema must be located on the same
storage space - built-in engine or external database - as than the current
schema.

B.2.3.4 Case Sensitivity

A schema cannot be case-sensitive. All elements in the schema (tables and columns)
are in UPPERCAGSE. If the XML file element names contain lowercase letters, they are
converted to upper case. When the elements are synchronized to the XML file, their
names are created with their original case.

B.2.3.5 Loading/Synchronizing

A schema is usually automatically created when connecting to an XML file, and
loaded with the data contained in the XML file. It is possible to force the schema
creation and the data loading in the schema using specific driver commands. See
Section B.4, "Detailed Driver Commands" for more information. It is also possible to

B-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

force a synchronization process of the data by using the SYNCHRONIZE command, as
described in Section B.4.9, "SYNCHRONIZE".

B.2.4 Locking

When accessing an XML file, the driver locks it in order to prevent other instances of
the driver to connect to the file. The lock file has the same name as the XML file but an
.1lck extension.

If the driver is incorrectly disconnected, a lock may remain on the file. To remove it,
delete the . 1ck file. It is also possible to unlock an XML file with the UNLOCK FILE
command.

B.2.5 XML Schema (XSD) Support

XSD is supported by the XML driver for describing XML file structures. See
Section B.8, "XML Schema Supported Features" for more information.

In addition, the XML driver supports document validation against XSD schemas
specified within the XML file. This operation may be performed using the VALIDATE
driver specific command.

B.3 Installation and Configuration

The Oracle Data Integrator driver for XML is automatically installed with Oracle Data
Integrator. The following topics cover advanced configuration topics and reference
information.

This section contains the following topics:
= Driver Configuration
= Automatically Create Multiple Schemas

= Using an External Database to Store the Data

Note: If using an External Database storage, you must also make
sure that the JDBC driver used to connect the external database, as
well as the . properties file are in the classpath.

B.3.1 Driver Configuration
This section details the driver configuration.

s The driver name is: com. sunopsis.jdbc.driver.xml.SnpsXmlDriver

s The URL Syntax is:
jdbc:snps:xml?f=<filename>[&s=<schema>&<property>=<value>...]

The properties for the URL are detailed in Table B-1.

Oracle Data Integrator Driver for XML Reference B-5

Installation and Configuration

Table B-1 Driver Properties

Property Mandatory Type Default Description

blank_attribute_ No boolean (true | false If this option is set to true, any empty element in the

as_column or false) XML file that does not have child element of its own is

baac considered as a column rather than a table.

file or f Yes string (file - XML file name. Use slash "/" in the path name instead

location) of back slash "\". It is possible to use an HTTP, FTP or

File URL to locate the file. Files located by URL are
read-only.

For an XML file, if this property is missing, a relational
schema is created by the XML driver from the
DTD/XSD file and no XML file is searched for.

dtdord No string (file - Description file: This file may be a DTD or XSD file. It is
location) possible to use an HTTP, FTP or File URL to locate the
file. Files located by URL are read-only.

Note that the DTD or XSD file that is specified in the
URL takes precedence over the DTD or XSD file that is
specified within the XML file. References should be
made with an absolute path.

For an XML file, if this property is missing, and no DTD
or XSD is referenced in the XML file, the driver will
automatically consider a DTD file name similar to the
XML file name with .dtd extension.

A DTD file may be created from the XML file structure
depending on the generate_dtd URL property.

Note that when no DTD or XSD file is present, the
relational structure is built using only the XML file
content. It is not recommended to reverse-engineer the
data model from such a structure as one XML file
instance may not contain all the possible elements
described in the DTD or XSD, and data model may be
incomplete.

root_elt or re No String - Name of the element to take as the root table of the
schema. This value is case sensitive. This property can
be used for reverse-engineering for example a specific
message definition from a WSDL file, or when several
possible root elements exist in a XSD file.

Important: This property is used to designate ONLY the
Element in the XSD / DTD file which will serve as the
Root Element DEFINITION of any XML instance file
Root Element.

read_only orro No boolean (true | false Open the XML file in read only mode.
false)

B-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table B-1 (Cont.) Driver Properties

Property Mandatory Type

Default

Description

schema or s No

standalone or st No

ns_prefix_ No
generation or
nspg

no_default_nsor No
ndns

no_closing_tags No
or nct

string

boolean (true |
false)

auto | xml |
xsd

boolean (true |
false)

boolean (true |
false)

false

auto

false

false

Name of the schema where the XML file will be loaded.
If this property is missing, a schema name is
automatically generated from the XML file name.

If this property is not specified in the XML data Server
URL, the XML Driver will automatically create a
schema name. This schema will be named after the five
first letters of the XML file name.

Note: It is not possible to make more than one
connection to a schema. Subsequent connections fail if
trying to connect to a schema already in use.

Important: The schema name should be specified in
uppercase.

Important: It is forbidden to have a schema name
identical to an XML ELEMENT name.

If this option is set to true, the schema for this
connection is completely isolated from all other
schemas. With this option, you can specify the same
schema name for several connections, each schema
being kept separated. When using this option, tables in
this schema cannot be accessed from other schemas,
and this connection cannot access tables from other
schemas. The schema is restricted to this connection and
only this one. Other connections cannot see this schema.

This option is active only for In-Memory HSQL
intermediate database. Using this option causes
increased memory consumption by the agent, as for
every staging schema, an entirely new HSQL instance is
created in the in-memory.

Useful for parallel jobs with the same topology in order
to avoid that the jobs overlap each other.

Note: This option is not applicable when an external
database is used.

This option defines how namespace prefixes are
generated and written in the XML file.

= auto (default): Prefixes are automatically generated
from the namespace names themselves when
possible or generated as nsl, ns2, etc.

= xml: Namespace prefixes are taken from the source
XML file, if any.

= xsd: Namespace prefixes are taken from the XSD
file, if any.

Note that the xsd option value assumes that a similar
prefix is not used in several XSD files to reference a
different namespace.

If this property is set to true, the driver generates the
target file with no default namespace entry.

If this property is set to true, the driver generates the
empty tags without their closing tags (for example
<element/>). If set to false the driver generates an
empty element as <element></element>. This property
is true by default if the v1_compatibility property is
used.

Oracle Data Integrator Driver for XML Reference B-7

Installation and Configuration

Table B-1 (Cont.) Driver Properties

Property

Mandatory Type

Default

Description

db_propsordp No

load_data_on_ No
connect or ldoc

drop_on_discor No
dod

ignore_ No
unknown_
elements or iue

useMaxValue No

generate_dtd or No
gd

java_encoding No
or je

string

boolean (true |
false)

boolean (true |
false)

boolean (true |
false)

boolean (true |
false)

true

false

false

false

yes | no | auto auto

string
(encoding
code)

UTEF8

This property is used to use an external database
instead of the memory engine to store the schema.

The db_props property indicates that the schema must
be loaded in a database schema whose connection
information are stored in a external database property
file named like the db_props property with the
extension .properties. This property file must be
located in the application's classpath.

Load automatically the data in the schema when
performing the JDBC connection. If set to false, a
SYNCHRONIZE statement is required after the
connection to load the data.

This option is useful to test the connection or browse
metadata without loading all the data.

Drop automatically the schema when closing the JDBC
connection.

If true, the schema is stored in the built-in engine, it is
always dropped.

If true and the data is on an external database, only the
current reference to the schema in memory will be
dropped, but the tables will remain in the external
database. This means that if you try to connect to this
schema again, it will reuse the tables in the external
database rather than starting from scratch (as it would
when the data is loaded in memory).

Ignore all elements in the XML file that do not exist in
the associated DTD (Document Type Definition) or XSD
(XML Schema Definition) file.

When this property is set to true, elements for which
maxOccurs is not specified in the XSD are considered as
maxQOccurs ="unbounded". Otherwise, the driver
assumes that maxOccurs=1 when maxQOccurs is not
specified.

Defines if a DTD file must be created from the XML file
structure:

= auto: create the DTD file if the it does not exist. if
the DTD exists, does nothing.

= yes: always create the DTD file. An existing DTD
will be overwritten.

= no: never create the DTD file. The DTD file must
exist.

Warning: DTD files created using this option contain
only the definition of XML elements appearing in the
XML file, and may not be complete.

Target file encoding (for example: IS08859_1). You
will find a list of supported encoding at the following
URL:
http://download.oracle.com/javase/6/docs/
technotes/guides/intl/encoding.doc.html.

Note that if the Java encoding is specified, the XML
encoding should also be specified.

B-8 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table B-1 (Cont.) Driver Properties

Property

Mandatory Type

Default

Description

useimplicitmaxv No
alue or uimv

xml_encodingor No
xe

vl_compatibility No
orvl

compat_mode No

numeric_idsor No
ni

id_length or il No

no_batch_ No
update or nobu

boolean (true |
false)

string
(encoding
code)

boolean (true |
false)

string

boolean (true |
false)

integer

boolean (true |
false)

false

UTEF8

false

v3

true

10 / 30

false

With this property set to yes, an elements for which
maxOccurs is not specified in the XSD is considered as
multivalued (maxOccurs="unbounded").

Encoding specified in the generated XML File, in the tag
(for example ISO-8859-1: <?xml version="1.0"
encoding="IS0-8859-1"7?>. You will find a list of
supported encoding at the following URL:
http://download.oracle.com/javase/6/docs/
technotes/guides/intl/encoding.doc.html.

Note that if the XML encoding is specified, the Java
encoding should also be specified.

With this property set to true, the driver performs the
XML to SQL mapping as if in version 1.x. This property
is provided for compatibility.

Indicates the compatibility with mapping modes. This
property can take the following values:

= vlisequivalentto vl_compatibility=true
which is the 1.x compatibility mode

= v2indicates the 10g/11g compatibility mode where
the custom written XSD parser is used

Please note that when you use a DTD or only a
XML file, you must specify compat_mode=v2 in
the JDBC URL. For example:

jdbc:snps:xml?file=/tmp/myfile.xml&com
pat_mode=v2

jdbc:snps:xml?f=/tmp/myfile.xml&compat
_mode=v2

= v3indicates the compability with the XDK XSD
parser.

Please note that compat_mode=v3 is not
supported when you use a DTD or only a XML file.
For example, the following syntaxes are not
supported:

jdbc:snps:xml?file=/tmp/myfile.xml&com
pat_mode=v3

jdbc:snps:xml?f=/tmp/myfile.xml&compat
_mode=v3

If compat_mode=v3, the vl_compatibility
property will be ignored.

If set to true, all internal Primary and Foreign Keys are
of NUMERIC type. Otherwise, they are of the
VARCHAR type.

The length of the internal Primary and Foreign Key
columns. The default is 10 for NUMERIC column types
and 30 for VARCHAR column.

Batch update is not used for this connection. The
command to set the batch update is not sent. This
prevents errors to occur for external databases that do
not support this JDBC feature, or allows to debug errors
related to batch update usage.

Oracle Data Integrator Driver for XML Reference B-9

Installation and Configuration

Table B-1 (Cont.) Driver Properties

Property

Mandatory Type

Default Description

add_schema_
bundle or asb

add_schema_
path or asp

transform_
nonascii or tna

max_table_
name_length or
mitnl

max_column_
name_length or
mcnl

case_sens or cs

No string

No string
(directory)

No boolean

(true | false)

No integer

No integer

No boolean (true |
false)

Additional schemas bundle file. This property indicates
that additional schemas must be created at connection
time. The description for these extra schemas are
located in an additional schemas property file named
like the add_schema_bundle property with the
extension ".properties". The additional schemas
property file contains a list of valid JDBC driver's URL.
In this file, the property names are ignored. Only the list
of values is taken into account.

All these additional schemas are created with the drop_
on_disconnect option set to true by default.

Example of additional schemas property files contents:

addschema_
1=jdbc:snps:xml?f=c:/myfile.xml&ro=true&s
=myschemal addschema_
2=jdbc:snps:xml?file=c:/myfile2.xml&s=mys
chema2 addschema_
3=jdbc:snps:xml?d=c:/myfile3.dtd&s=mysche
ma3

Directory containing a set of XSD files. For each XSD
file in this directory, an additional schema is created in
the built-in engine or external database storage, based
on this XSD. Note that no object is created in the
external database storage for these additional schemas.
The schema names are default generated named (5 first
characters of the file name, uppercased).

Note: This option is not supported in v3 mode.

true Transform Non Ascii. Set to false to keep non-ascii

characters.

Maximum length of table names irrespective of the
value as supported by internal /external DB.

Maximum length of column names irrespective of the
value as supported by internal /external DB.

true Indicates whether the table and column names are case

sensitive or not. Name comparisons are carried out
accordingly.

Table B-2 lists URL samples.

Table B-2 URL Samples

URL Sample

Action

jdbc:snps:xml

jdbc:snps:xml?f=/tmp/
myfile.xml&ro=true&d=
/tmp/mydtd.dtd

jdbc:snps:xml?file=/t
mp/myfile.xml

jdbc:snps:xml?s=mysch
ema

Connects to the default schema.
Open the /tmp/myfile.xml file in read only mode, using the
/tmp/mydtd.dtd DTD.

Open the /tmp/myfile.xml file in read/write mode.

Connect directly to the schema myschema

B-10 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

B.3.2 Automatically Create Multiple Schemas

It is possible to automatically create additional schemas with different XML structures
when creating the connection with the driver. This is performed by:

s Declaring in the add_schema_bundle URL property a property file that contains a
list of JDBC URLSs corresponding to the different additional schemas to create.

s Declaring in the add_schema_path URL property a directory that contains a set of
XSD files. For each XSD file an additional schema is created in the built-in engine,
based on the XML schema description.

» Specifying additional valid driver URLs as JDBC properties, named addschema_X
(X is a number). An additional schema will be created for each URL found in a
JDBC property called addschema_X.

Note that all these additional schemas are automatically dropped when their last
connection is closed.

B.3.3 Using an External Database to Store the Data

In most cases, the XML driver stores the relational schema mapping of the XML
schema in a built-in engine. It is also possible to store the relational schema in an
external relational database.

Use external storage:

s When loading very large XML files with the XML driver into the relational schema
derived by the XML driver

= To reduce the overall time taken to process the files with the built-in engine of the
XML driver

= To avoid timeouts to the ODI repositories. Please note that the time taken to
process an XML file is dependent on:

— The complexity of the XML file structure
— The length of XML file content
— The host server RAM resources
— The host server CPU resources

Before using external storage, ensure that you have understood the impacts of its
usage and that you have increased the ODI timeout to values which conform to your
performance requirements.

Note: Supported RDBMS for external storage include Oracle,
Microsoft SQL Server, MySQL, and Hypersonic SQL 2.0. The complete
list of technologies that support external storage is available on Oracle
Technical Network (OTN) :

http://www.oracle.com/technology/products/oracle-dat
a-integrator/index.html.

These schemas are created in addition to the one that may be created with the
properties specified in the JDBC driver URL.

The external storage is configured with a set of properties described in Table B-3.
These properties can be passed in several ways:

= Passing the Properties in the Driver URL

Oracle Data Integrator Driver for XML Reference B-11

Installation and Configuration

» Setting the Properties in ODI Studio

= Setting the Properties in a Properties File

Passing the Properties in the Driver URL

The properties can be directly set in the driver URL. When using this method, the
properties have to be prefixed with dp_ . For example, if connecting to an Oracle
database, specify the Oracle JDBC driver name in the driver parameter as follows:

dp_driver=oracle.jdbc.OracleDriver.

Setting the Properties in ODI Studio

The properties can be specified on the Properties tab of the Data Server editor in
Topology Navigator. When using this method, the properties have to be prefixed with
dp_. For example, if you want to set the driver parameter:

1. In the Key column, enter dp_driver

2. In the Value column, enter oracle. jdbc.OracleDriver if you are connecting
to an Oracle database.

Setting the Properties in a Properties File

The properties can be set in an external database properties file. This properties file, also
called property bundle, is a text file with the . properties extension containing a set of
lines with on each line a <property>=<value> pair.

This external database porperties file contains the properties of a JDBC connection to
the relational database schema. The properties file is referenced using the db_props
property in the JDBC URL.

When using this method, note the following:

s The properties in the properties file are not prefixed and used as described in
Table B-3.

s The db_props property is set to the name of the properties file including the
.properties extension. The db_props property indicates that the schema must
be loaded in a database schema whose connection information is stored in a
external database properties file.

= The properties files has to be deployed by the agent using the XML connection.
The location of the properties file depends on the agent you are using;:

— Local agent (Studio): Place the external DB properties file in the
<user.dir>/odi/oracledi/userlib folder

— Standalone Agent: Place the external DB properties file in domain_home/1lib
folder

— JavaEE Agent: The external DB properties file should be packed into a JAR or
ZIP file and added to the template generated by the Java EE agent. See
"Deploying an Agent in a Java EE Application Server (Oracle WebLogic
Server)" in the Administering Oracle Data Integrator for more information.

= The properties file must be set in the classpath of Oracle Data Integrator that uses
the XML driver. Typically, you can install it with your custom drivers.

Note: When connecting to the external database, the XML driver
uses JDBC connectivity. Make sure that the JDBC driver to access this
external database is also available in the ODI classpath.

B-12 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

It is possible to set or override the external database properties on the URL. These
properties must be prefixed with the string dp_. For example:

jdbc:snps:xml?file=/temp/payload.xml&dp_driver=<external_db_driver>&dp_

url=<external db_url>

The properties for configuring external storage are described in Table B-3.

Table B-3 Properties of the External Database Properties File

Property Mandatory Type Default Description

driver Yes string - JDBC driver name.
Important: The driver class file must be in the classpath
of the java application.

url Yes string - JDBC URL

user Yes string - Login used to connect the database

password Yes string - Encrypted password of the user.
Note: To encrypt the password, use the encode . bat
command. See the Installing and Configuring Oracle Data
Integrator for more information.

schema Yes string - Database schema storing the relational schema and the
XML data.
Note for MS SQLServer that:
= If schema is not specified, tables will be created

under the default schema of the user
= If schema is specified, tables will be created under
this schema

Limitation when using v3 mode: When using an
external database, make sure that the provided or
calculated schema name exists. The schema driver
property value must match the schema property value
of the external database. Otherwise an error is raised.

catalog Yes string - For Microsoft SQL Server only. Database catalog storing
the XML data & information.

drop_on_ No string N Drop the tables from the database schema if they already

connect or doc (YIN) exist. If set to N the existing tables are preserved.

create_tables or No (YINI AUTO Y: create systematically the tables in the schema.

ct AUTO) N: never create the tables in the schema
AUTO: Create the tables if they do not exist.

create_indexes No string Y Y: create indexes on tables' PK and FK

ora (YIN) N: do not create the indexes. This value provides faster
INSERT but dramatically slows SELECT in the data. It
also saves storage space on your RDB.

numeric_scale No integer empty Scale of the numeric columns generated during the XML

or ns to SQL mapping.

truncate_ No string Y Y: truncate all data when connecting

before_load or (YIN) N: preserve existing data

tbl P &

ids_in_db or No string Y Y: preserve identifiers (counters) in the database for a

iidb (YIN) future append connection

N: do not preserve identifiers. Future append is not
possible.

Oracle Data Integrator Driver for XML Reference B-13

Installation and Configuration

Table B-3 (Cont.) Properties of the External Database Properties File

Property

Mandatory Type

Default

Description

drop_tables_
on_drop_
schema or
dtods

use_prepared_
statements or
ups

use_batch_
update or ubu

batch_update_
size or bus

commit_
periodically or

p

num_inserts_
before_commit
or nibc

No

string
(YIN)

string
(YIN)

string
(YIN)

integer

string
(YIN)

integer

Y

30

1000

Y: a DROP SCHEMA does not only causes the reference
to the database schema to be erased from the driver, but
also causes all tables to be dropped.

N: DROP SCHEMA erases the reference to the database
schema from the driver, but the tables are kept in the
database schema.

Y: use the prepared statements with the database
connection to perform driver operation (load /unload
files).

N: do not use the prepare statement.

Processing is usually faster with prepare statement. The
database and driver must support prepared statements in
order to use this option.

Y: use batch update with the database connection.
N: do not use batch update.

Inserting data is usually faster with batch update. Should
be set to true only if the following conditions are met:

s The database and driver support batch update
s The database supports prepared statements
» The use_prepared_statements parameter is set toYes

Note: The batch update options specified here are only
used to load the data in the schema. To use batch update
when manipulating data in the schema, you must specify
batch update options in your Java application.

Batch update size. Records will be written in the database
schema by batches of this size, if the use_batch_update
property is set to true.

A COMMIT will be sent regularly when loading data
from the XML file into the database schema. This regular
COMMIT avoids overloading of the database log when
loading large XML data files.

Should be set to true only if the following conditions are
met:

s The database supports batch update

» The database supports prepared statements

s The use_prepared_statements parameter is set to Yes
» The use_batch_updates parameters is set to Yes

Note: The commit options specified here are only used to
load the data in the schema. To commit when performing
transactions in the schema, you must specify the commit
in your Java application.

Interval in records between each COMMIT, if the
commit_periodically property is set to true.

B-14 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Installation and Configuration

Table B-3 (Cont.) Properties of the External Database Properties File

Property Mandatory Type

Default

Description

reserve_chars_ No
for_column or
rcfc

reserve_chars_ No
for_table or rcft

varchar_length No
or vl

default_type_ No
varchar or dtvc

default_length_ No

varchar or

dlvce

numeric_length No
ornl

unicode No

multi_user_safe No
or mus

integer

integer

integer

string
(YIN)

integer

integer

boolean
(true |
false)

boolean
(true |
false)

3

255

255

10

false

Long XML names are truncated to fit the maximum
allowed size on the RDBMS, according to the maximum
allowed size for column names returned by the JDBC
driver.

However, there are some situations when you will want
to reserve characters to make the driver-generated names
shorter. The number of reserved character is defined in
the reserve_chars_for_column value.

For example, on a database with a maximum of 30
characters and with this property set to 3 (which is the
default), all column names will not be larger than 27
characters.

Same as reserve_chars_for_column (rcfc) property but
applies to names of the table created in the RDBMS
schema.

Size of all the columns of the relational structure that will
be used to contain string data.

This property does not apply to Annotation or
Documentation elements. For those elements dlvc should
be used instead.

If set to Yes, the default datatype used in the relational
schema for columns storing XML annotation and
documentation elements is VARCHAR of size 255. The
length of this column is specified using the dlvc property.
If set to false, the LONG datatype if used. This property
should be set to yes for technologies that do not support
multiple LONG columns within the same table, such as
Oracle.

Default length of the VARCHAR column used for storing
XML annotation and documentation elements. This
properties is valid only if dtvc is set to yes.

For example:

default_length_varchar=2000 where 2000 is the
new desired default column size.

Size of all the columns of the relational structure that will
be used to contain numeric data.

For MS SQL Server:
If unicode = true, nvarchar is used.

If unicode = false or not set, varchar is used.

Its usage controls the way row ids are generated. If
multi_user_safe is set to true, then each ID generation is
tasked to the DB. If set to false at the very beginning of
the data load, retrieve the IDs which are stored in the ID
table and then work off that stored data in-memory. At
the end of the data load this is then pushed to the DB.

The following sample is an example of a property file for using an Oracle Database as

the external storage:

driver=oracle.jdbc.OracleDriver

url=jdbc:oracle:thin:@HOST:PORT:SID
user=USER_NAME
password=ENCODED_PASSWORD

Oracle Data Integrator Driver for XML Reference B-15

Detailed Driver Commands

schema=USER_NAME
drop_on_connect=Y
create_tables=AUTO
create_indexes=Y
truncate_before_load=Y
ids_in_db=Y
drop_tables_on_drop_schema=Y
use_prepared_statements=Y
use_batch_update=Y
batch_update_size=30
commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

The following sample is an example of a property file for using a Microsoft SQL Server
database as the external storage:

driver=com.microsoft.jdbc.sqglserver.SQLServerDriver
url=jdbc:microsoft:sglserver://SERVER_NAME:PORT; SelectMethod=cursor
user=USER_NAME

password=ENCODED_PASSWORD

schema=0WNNER_NAME

drop_on_connect=Y

create_tables=AUTO

create_indexes=Y

truncate_before_load=Y

ids_in_db=Y

drop_tables_on_drop_schema=Y
use_prepared_statements=Y

use_batch_update=Y

batch_update_size=30

commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

B.4 Detailed Driver Commands

Note: The notion of SCHEMA referred to in these commands refers
to the string value set with the s=. . . . parameter in the XML Driver
Data Server URL present in the physical architecture.

The following statements are specific to the XML driver, and allow to manage XML
files and schemas. They can be launched as standard SQL statements on the JDBC
connection to the XML driver.

To manipulate the data stored in the schemas, you may use standard SQL syntax. This
syntax is either the built-in engine's SQL Syntax, or the SQL Syntax of the External
Database engine you use.

Conventions
The following conventions are used within this document:

= [A]means A is optional

= [A | B]means A or B but the parameter is optional.

B-16 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Detailed Driver Commands

This section details the following driver specific commands:

{ B | C} means B or C must be used.
[A] [B] means a set of arguments that are not ordered.
(and) are the characters '(' and ')".

keywords are in UPPERCASE

CREATE FILE
CREATE FOREIGNKEYS
CREATE XMLFILE
CREATE SCHEMA
DROP FOREIGNKEYS
DROP SCHEMA
LOAD FILE

SET SCHEMA
SYNCHRONIZE
UNLOCK FILE
TRUNCATE SCHEMA
VALIDATE

WRITE MAPPING FILE
COMMIT

CREATE TABLE
DELETE
DISCONNECT

DROP TABLE

INSERT INTO
ROLLBACK

SELECT

SET AUTOCOMMIT
UPDATE

B.4.1 CREATE FILE

Create an empty XML instance file containing all ELEMENTS (including optional
ELEMENTS) present in the related XSD or DTD file. However, no XML ATTRIBUTES
declared in these files will be referenced in the created XML instance file.

The attributes are handled differently between compat_mode v1/v2 and v3. In v1/v2
mode attributes are not written, while in v3 mode attributes are also written out.

CREATE [EMPTY] FILE <file_name> [FROM SCHEMA <schema_name>]

[JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]

[NO_CLOSING_TAGS] [NO_DEFAULT_NS]

Oracle Data Integrator Driver for XML Reference B-17

Detailed Driver Commands

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag.
Example of generated tag: <?xml version="1.0" encoding="IS0-8859-1"?>

Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS

If this parameter is specified, the driver generates the empty tags with closing tag. By
default, the driver generates an empty element as <element></element>. with the
no_closing_tags parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default
namespace entry.

Remarks
» If the file name contains spaces, enclose it in double quotes

s The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.2 CREATE FOREIGNKEYS

Create physically all the foreign keys joining the tables from the relational schema in
the database. This command is helpful to enforce integrity constraints on the schema.

Note: When requested, the driver always returns "virtual" foreign
keys, corresponding to the relational structure mapping. It does not
return the real foreign keys enforced at database level.

CREATE FOREIGNKEYS

Remarks

After using CREATE FOREIGNKEYS, it is not possible any longer to perform a LOAD
FILE.

B.4.3 CREATE XMLFILE

Generate an XML file called <file_name> from the default schema data, or from a
specific schema.

CREATE XMLFILE <file_name> [FROM SCHEMA <schema_name>]
[JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]
[NO_CLOSING_TAGS] [NO_DEFAULT_NS]

B-18 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Detailed Driver Commands

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag. Example of generated tag: <?xml
version="1.0" encoding="IS0-8859-1"7?>.

Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS

If this parameter is specified, the driver generates the empty tags with closing tag. By
default, the driver generates an empty element as <element></element>. with the
no_closing_tags parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default
namespace entry.

Remarks
» If the file name contains spaces, enclose it in double quotes

s The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.4 CREATE SCHEMA

Create in <schema_name> an empty schema or a schema with tables mapping the
structure of the description file specified as <dtd/xsd_name>.

Note: This command cannot be used on an external database.

CREATE SCHEMA <schema_name> [WITH DTD <dtd/xsd_name>] [REPLACE]
[ROOTELT <root element>] [READONLY] [COMPAT MODE <compatibility mode>]
[JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the
schema.

REPLACE
Specify if an existing schema structure must be replaced with the new one.

ROOTELT
Element in the description file considered as the root of the XML file. This element
name is case sensitive.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

Oracle Data Integrator Driver for XML Reference B-19

Detailed Driver Commands

COMPAT_MODE
Indicates the compatibility with mapping modes. This property can take the following
values:

v1 is equivalent to v1_compatibility=true wich is the 1.x compatibility mode
v2 is the 10¢/11g mode. This is the default mode.

Please note that when you use a DTD or only a XML file, you must specify
compat_mode=v2 in the JDBC URL. For example:

jdbc:snps:xml?d=/tmp/myDTD.dtd&compat_mode=v2
jdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v2

v3 indicates the compatibility with the XDK XSD parser. Please note that compat_
mode=v3 is not supported when you use a DTD or only a XML file. For example,
the following syntaxes are not supported:

— Jjdbc:snps:xml?d=/tmp/myDTD.dtd&compat_mode=v3
— Jjdbc:snps:xml?f=/tmp/myfile.xml&compat_mode=v3

If compat_mode=v3, the vl_compatibility property will be ignored.

Note: When using the SYNCHRONIZE command, only those DB
schemas that have been created with 'v3' option will parse the
DTD/XSD in the 'v3' mode. In 'v3' mode all the restrictions on schema
name value corresponding with DB property for schema name etc.
will apply.

JAVA_ENCODING
Encoding of the target XML file(s) generated from schema.

Note: Java and XML encoding should always be specified together.

XML_ENCODING
Encoding generated in the target files' XML tag. Example of generated tag: <?xml
version="1.0" encoding="IS0-8859-1"7?>.

Remarks

The XML file data is not loaded. This command is similar to LOAD FILE but does
not load the XML file data.

The schema is created in READONLY mode since no XML file is associated with it.

The connection schema does not automatically switch to the newly created
schema.

If the file name contains spaces, enclose the name in double quotes.

The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.5 DROP FOREIGNKEYS

Drop all the foreign keys on the tables of the relational schema in the database. This
command is helpful to drop all integrity constraints on the schema.

DROP FOREIGNKEYS

B-20 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Detailed Driver Commands

B.4.6 DROP SCHEMA

Drop an existing schema. If <schema_name> is not specified, the current schema is
dropped. It is not possible to drop a schema if there are pending connections to this
schema. Trying to drop a schema with existing connections causes an exception.

DROP SCHEMA [<schema_name>]

B.4.7 LOAD FILE

Load the <file_name> XML file into the specified <schema_name> XML schema. If
a schema name is not specified with the ON SCHEMA parameter, one is generated
with the XML file name. If a schema with the specified or generated name is found,
then the properties of that schema are inherited. If a schema with the specified or
generated name does not exist at runtime, a new XML JDBC URL with only the
properties specified in the LOAD FILE command is created. This schema does not
inherit any of the properties of the current schema.

LOAD FILE <file_name> [WITH DTD <dtd/xsd_name> | INSERT_ONLY] [ON SCHEMA <schema_
name>] [REPLACE] [READONLY] [ROOTELT <root element>] [AUTO_UNLOCK] [DB_PROPS
<external database properties>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the
schema.

INSERT_ONLY
Adds the data from the XML file in the schema if it already exists. The new XML file
should have valid description file for the existing schema.

ON SCHEMA
Force the file to be loaded in <schema_name>. Note that the current schema is not set
after the command automatically to <schema_name>.

REPLACE
Specify if an existing schema structure with the same name must be replaced with the
one that is being loaded.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

ROOTELT
Element in the description file considered as the root of the XML file. This element
name is case sensitive.

AUTO_UNLOCK

If the XML file is already locked by another driver instance, an exception occurs unless
the AUTO_UNLOCK is specified. This parameter unlocks automatically the file if it is
locked.

DB_PROPS
Loads the file in the external database identified by the properties file called <external
database properties>.properties.

Oracle Data Integrator Driver for XML Reference B-21

Detailed Driver Commands

Remarks
= Enclose the file name in double quotes.

= When no schema is specified, the driver automatically generates a schema name
from the file name.

= The connection schema does not automatically switch to the loaded schema.

= If the XML file is already open in another schema, an exception occurs.

B.4.8 SET SCHEMA

Set the current schema to <schema_name>.

SET SCHEMA <schema_name>

Remarks
It is necessary to specify a name for the schema.

B.4.9 SYNCHRONIZE

Synchronize data in the schema with the file data.

SYNCHRONIZE [ALL | SCHEMA <schema_name>] [FROM FILE/FROM DATABASE]
[IGNORE CONFLICTS]

Parameters

ALL
Synchronizes all schemas

SCHEMA
Synchronizes only <schema_name>

FROM FILE
Forces the data to be loaded from the file to the schema. Erases all changes in the
schema.

FROM DATABASE
Forces the data to be loaded from the schema to the file. Erases all changes in the file.

IGNORE CONFLICTS

If FROM FILE/DATABASE are not specified, the driver automatically determines
where data have been modified (in the FILE or DATABASE) and updates the
unmodified data. If both the FILE and the DATABASE have been modified, the driver
issues a Conflict Error. if the IGNORE CONFLICTS parameter is used, no error is
issued, and if performing a SYNCHRONIZE ALL, the following schemas will be
synchronized.

Note: A schema is marked updated only when a data modification
(update, delete, insert, drop) is executed in a connection to that
schema. It is not marked as updated, when the order is launched from
a connection to another schema.

B-22 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Detailed Driver Commands

B.4.10 UNLOCK FILE

Unlocks <file_name> if it is locked by another instance of the driver.

UNLOCK FILE <file_name>

B.4.11 TRUNCATE SCHEMA

Clears all data from the current schema, or from <schema_name>.

TRUNCATE SCHEMA [<schema_name>]

B.4.12 VALIDATE

Verifies that the XML file <file_name> is well-formed and validates the content of the
XML file <file_name> against the XML Schema (XSD) if the schema is referenced in
the XML file. This command returns an exception if the file is not valid. For a full
description of the validation performed, see:

http://xerces.apache.org/xerces2-j/features.html#validation.sche
ma

VALIDATE [FILE <file_name>] [ERROR_ON_WARNING | IGNORE_ON_WARNING]
[ERROR_ON_ERROR | IGNORE_ON_ERROR]
[ERROR_ON_FATAIL,_ERROR | IGNORE_ON_FATAL_ERROR] [VERBOSE]

Parameters

FILE <file_name>
Name of the XML file to validate.

ERROR_ON_WARNING | IGNORE_ON_WARNING
Ignore or generate errors on XSD validation warnings, such as values out of range. The
default value is IGNORE_ON_WARNING.

ERROR_ON_ERROR | IGNORE_ON_ERROR
Ignore or generate errors on XSD validation errors, such as non conform attribute or
element. The default value is ERROR_ON_ERROR.

ERROR_ON_FATAL_ERROR | IGNORE_ON_FATAL_ERROR
Ignore or generate errors on XSD validation fatal errors, such as malformed XML. The
default value is ERROR_ON_FATAL_ERROR.

VERBOSE
Displays on the Java console the detailed errors and number of the line causing the
error. Nothing is displayed by default on the console.

B.4.13 WRITE MAPPING FILE

Writes out the element/attribute name to table/table.column name mapping for each
element/attribute to the specified file. The mapping file helps to understand the
relational structure that has been created for the XSD/DTD file. This command can be
used only when the schema was created in v3 mode. Otherwise exception is thrown.

WRITEMAPPINGFILE FILE <file-path> [FROM SCHEMA <schema-name>]
[JAVA_ENCODING <java_encoding> XML_ENCODING <xml-encoding>]

Oracle Data Integrator Driver for XML Reference B-23

SQL Syntax

Parameters

file_path
Name of the generated mapping file

FROM_SCHEMA
If the optional FROM SCHEMA parameter is not provided, the current schema will be
used.

JAVA_ENCODING

Encoding of the generated file, for example: IS08859_1. You will find a list of
supported encoding at the following URL:
http://download.oracle.com/javase/6/docs/technotes/guides/intl/e
ncoding.doc.html.

Note that if the Java encoding is specified, the XML encoding should also be specified.

XML_ENCODING
Encoding in the xml tag of the generated file.

Example of generated tag: <?xml version="1.0" encoding="IS0-8859-1"?>

You will find a list of supported encoding at the following URL:
http://download.oracle.com/javase/6/docs/technotes/guides/intl/e
ncoding.doc.html.

Note that if the XML encoding is specified, the Java encoding should also be specified.

Example B-1 Mapping File

<?xml version = '1.0' encoding = 'UTF-8'?>
<personnel xmlns:x2r="http://www.oracle.com/odi/xml-mapping"
x2r: tableName="PERSONNEL" >
<person x2r:tableName="PERSON" id="ID" select="SELECT ">
<email x2r:tableName="EMAIL"></email>
<link x2r:tableName="LINK" manager="MANAGER"
subordinates="SUBORDINATES"></1link>
<name x2r:tableName="NAME">
<given x2r:columnName="GIVEN"></given>
<family x2r:columnName="FAMILY"></family>
</name>
<url x2r:tableName="URL" href="HREF"></url>
</person>
</personnel>

B.5 SQL Syntax

The following statements are available when using the built-in engine to store the
XML schema. They enable the management of the data and data structure in the
schema through Standard SQL Syntax.

This section contains the following topics:
s SQL Statements
= SQL FUNCTIONS

Note: If you are using an external database, you may use the
database engine querying syntax instead of this one.

B-24 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

SQL Syntax

B.5.1 SQL Statements

Any number of commands may be combined. You can optionally use the semicolon
character (;) to separate each command.

This section details the following commands:

= COMMIT
= CREATE TABLE
» DELETE

= DISCONNECT
= DROP TABLE
= INSERT INTO
= ROLLBACK

= SELECT
= SET AUTOCOMMIT
s UPDATE

= Expressions, Condition and Values

B.5.1.1 COMMIT

Ends a transaction on the schema and makes the changes permanent.

COMMIT [WORK]

B.5.1.2 CREATE TABLE

Create a tables and its constraints in the relational schema.

CREATE TABLE <table_name>

(<columnDefinition> [, ...] [, <constraintDefinition>...])
<columnDefinition> ::=
<column_name> <datatype> [(anything)] [[NOT] NULL] [IDENTITY] [PRIMARY KEY]

<constraintDefinition> ::=
[CONSTRAINT <constraint_name>]
UNIQUE (<column_name> [,<column>...]) |
PRIMARY KEY (<column_name> [,<column_name>...]) |
FOREIGN KEY (<column_name> [,<column_name>...])
REFERENCES <referenced_table> (<column_name> [,<column_name>...])

Remarks

s IDENTITY columns are automatically incremented integer columns. The last
inserted value into an identity column for a connection is available using the
IDENTITY() function.

= Valid datatypes are: BIT, TINYINT, BIGINT, LONGVARBINARY, VARBINARY,
BINARY, LONGVARCHAR, CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE, VARCHAR, DATE, TIME, TIMESTAMP,
OBJECT

Oracle Data Integrator Driver for XML Reference B-25

SQL Syntax

B.5.1.3 DELETE

Remove rows in a table in the relational schema. This function uses a standard SQL
Syntax.

DELETE FROM <table_name> [WHERE <expression>]

B.5.1.4 DISCONNECT

Closes this connection.

DISCONNECT

Remarks

s Itis not required to call this command when using the JDBC interface: it is called
automatically when the connection is closed.

= After disconnecting, it is not possible to execute other queries with this connection.

B.5.1.5 DROP TABLE

Remove a table, the data and indexes from the relational schema.

DROP TABLE <table_name>

B.5.1.6 INSERT INTO

Insert one or more new rows of data into a table.

INSERT INTO <table_name> [(<column_name> [,...])]
{ VALUES (<expression> [,...]) | <SELECT Statement> }

B.5.1.7 ROLLBACK
Undo the changes made since the last COMMIT or ROLLBACK.

ROLLBACK

B.5.1.8 SELECT

Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table_name>.* | * } [, ...]
[INTO <new_table>]
FROM <table_ list>
[WHERE <expression>]
[GROUP BY <expression> [, ...]]
[ORDER BY <order_expression> [, ...]]
[{ UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement>]

<table_list> ::=
<table_name> [{ INNER | LEFT [OUTER] } JOIN <table_name>
ON <expression>] [, ...]

<select_expression> ::=
{ <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG}

(<expression>) <column_alias>}

<order_expression> ::=
{ <column_number> | <column_alias> | <select_expression> } [ASC | DESC]

B-26 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

SQL Syntax

B.5.1.9 SET AUTOCOMMIT

Switches on or off the connection's auto-commit mode. If switched on, then all
statements will be committed as individual transactions. Otherwise, the statements are
grouped into transactions that are terminated by either COMMIT or ROLLBACK. By
default, new connections are in auto-commit mode.

SET AUTOCOMMIT { TRUE ‘ FALSE }

B.5.1.10 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

B.5.1.11 Expressions, Condition and Values

<expression> ::=
[NOT] <condition> [{ OR | AND } <condition>]

<condition> ::=
{ <value> [|| <value>]
| <value> { = | < | <= | > | »>= | <> | !=| IS [NOT] } <value>
| EXISTS(<select_statement>)
| <value> BETWEEN <value> AND <value>
\ <value> [NOT] IN ({<value> [, ...] | selectStatement }
\ <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=
[+ -1{term [{ +] -] * |/} term]
| (condition)
| function ([parameter] [,...])
\ selectStatement_giving one_value

<term> ::=
{ 'string' | number | floatingpoint | [table.lcolumn | TRUE | FALSE | NULL }

<string> ::=
= Starts and ends with a single ". In a string started with ' use " to create a ".

» LIKE uses '%' to match any (including 0) number of characters, and '_' to match
exactly one character. To search for '%" itself, "\ %' must be used, for '_' use '_'; or
any other escaping character may be set using the ESCAPE clause.

<name> ::=

= A name starts with a letter and is followed by any number of letters or digits.
Lowercase is changed to uppercase except for strings and quoted identifiers.
Names are not case-sensitive.

= Quoted identifiers can be used as names (for example for tables or columns).
Quoted identifiers start and end with ". In a quoted identifier use "" to create a "
With quoted identifiers it is possible to create mixed case table and column names.
Example: CREATE TABLE "Address" ("Nr" INTEGER, "Name" VARCHAR);
SELECT * FROM "Address". Quoted identifiers are not strings.

<values> ::=
= A 'date’ value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

= A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

Oracle Data Integrator Driver for XML Reference B-27

» Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example

is 3 bytes, first 0, second 4 and last 255 (0xff).

B.5.2 SQL FUNCTIONS

Table B—4 lists the numerical functions.

Table B-4 Numerical Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and
smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is
bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

BITAND(a,b) returna & b

BITOR(a,b) returnsa | b

Table B-5 lists the string functions.

Table B-5 String Functions

Function Description

ASCII(s) returns the ASCII code of the leftmost character of s

B-28 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

SQL Syntax

Table B-5 (Cont.) String Functions

Function Description

CHAR(c) returns a character that has the ASCII code ¢
CONCAT(str1,str2) returns strl + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

INSERT(s,start,len,s2)

LCASE(s)

LEFT(s,count)
LENGTH(s)
LOCATE(search,s,[start])

LTRIM(s)
REPEAT(s,count)
REPLACE(s,replace,s2)
RIGHT(s,count)
RTRIM(s)
SOUNDEX(s)
SPACE(count)
SUBSTRING(s,start[,len])
UCASE(s)

LOWER(s)

UPPER(s)

returns a string where len number of characters beginning at
start has been replaced by s2

converts s to lower case
returns the leftmost count of characters of s
returns the number of characters in s

returns the first index (1=left, 0=not found) where search is
found in s, starting at start

removes all leading blanks in s

returns s repeated count times

replaces all occurrences of replace in s with s2

returns the rightmost count of characters of s

removes all trailing blanks

returns a four character code representing the sound of s
returns a string consisting of count spaces

returns the substring starting at start (1=left) with length len
converts s to upper case

converts s to lower case

converts s to upper case

Table B-6 lists the date/time functions.

Note that a date value starts and ends with a single quote ('), the format is
yyyy-mm-dd (see java.sql.Date). A time value starts and ends with a single quote ('),
the format is hh:mm: ss (see java.sql.Time).

Table B-6 Date/Time Functions

Function Description

CURDATE() returns the current date
CURTIME() returns the current time
DAYNAME(date) returns the name of the day
DAYOFMONTH(date) returns the day of the month (1-31)
DAYOFWEEK(date) returns the day of the week (1 means Sunday)
DAYOFYEAR(date) returns the day of the year (1-366)
HOUR(time) return the hour (0-23)
MINUTE(time) returns the minute (0-59)
MONTH(date) returns the month (1-12)
MONTHNAME(date) returns the name of the month

Oracle Data Integrator Driver for XML Reference B-29

JDBC API Implemented Features

Table B-6 (Cont.) Date/Time Functions

Function Description

NOW() returns the current date and time as a timestamp
QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Table B-7 lists the system functions.

Table B-7 System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp
CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2
CONVERT(term, type) converts exp to another data type
CAST(term AS type) converts exp to another data type

B.6 JDBC APl Implemented Features

Table B8 lists the JDBC API features that are implemented in the Oracle Data
Integrator Driver for XML:

Table B-8 JDBC API Features

Feature Groups JDBC Version Support
Batch Update 2.0 Core Yes
Blob/Clob 2.0 Core Yes
JNDI DataSources 2.0 Optional Yes
Failover support - Yes
Transaction SavePoints 3.0 Yes
Unicode support - No
Distributed Transaction 2.0 Optional No
Connection Pooling 2.0 Optional No
Cluster support - No

Table B-9 lists JDBC Java classes.

Table B-9 JDBC Java Classes

JDBC Class JDBC Version Support
Array 2.0 Core No
Blob 2.0 Core Yes
CallableStatement 1.0 Yes
Clob 2.0 Core Yes
Connection 1.0 Yes

B-30 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Rich Metadata

Table B-9 (Cont.) JDBC Java Classes

JDBC Class JDBC Version Support
ConnectionPoolDataSource 2.0 Optional No
DatabaseMetaData 1.0 Yes
DataSource 2.0 Optional No
Driver 1.0 Yes
Ref 2.0 Core No
ResultSet 1.0 Yes
ResultSetMetaData 1.0 Yes
RowSet 2.0 Optional No
Statement 1.0 Yes
Struct 2.0 Core No
PreparedStatement 1.0 Yes
XAConnection 2.0 Optional No
XADataSource 2.0 Optional No

B.7 Rich Metadata

When creating RDB structures based on XML schema, there must be flexibility to
supply the driver with metadata. For example, in situations where RDB table/column
names can conflict if element/attributes have same local names.

The ODI XML driver attaches an attribute in the x2r namespace
(http://www.oracle.com/odi/xml-mapping) to the elements/attribute namely:
x2r:tableName /x2r:columnName. If conflicting names do not have the metadata
attribute, then they are appended with an incrementing number until a non-conflicting
table/column name is obtained.

The new object model maintains a map between xpath and table/table.column names
for each element/attribute.

If two elements with same name and same type exist in two different locations, same
table is used for storing the data but FK reference to parent element is used to
differentiate the data. The new implementation creates new tables. Table B-10 lists the
table attributes.

Table B-10 Table Attributes

Attribute Type Description

To be attached to elements that resolve to RDB
tables/attributes that are lists or enumerations whose local
names match.

x2r:tableName String

To be attached to attributes whose local names match or for
elements that map to columns, but whose local names
match with each other or with an attribute of the
containing type.

x2r:columnName String

Oracle Data Integrator Driver for XML Reference B-31

Rich Metadata

Table B-10 (Cont.) Table Attributes

Attribute Type Description
x2r:columnDataTyp String Lets you provide the datatype information as a string from
e a mapping table that we will provide.

May only be attached to elements that the driver will map
to columns or to attributes. If this parameter is provided
user must also supply x2r:columnLength and/or
x2r:columnPrecision as required for the datatype.

x2r:columnLength integer Length of the column.

By default the values hard-coded in the driver are used.
VARCHAR and NUMERIC have global override option in
JDBC URL. This attribute, if provided, overrides both the
default value and the global overrride.

May only be attached to elements that the driver will map
to columns or to attributes.

x2r:columnPrecision integer Precision of the column. Used by driver only for those
datatypes that allow it. Same logic as for columnLength is
used when determining the value to be applied.

May only be attached to elements that the driver will map
to columns or to attributes.

The following sample is an example of an XSD enriched with metadata.

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:x2r="http://www.oracle.com/odi/xml-mapping">
<xs:element name="root">
<xs:complexType>
<Xs:sequence>
<!-- Example for redefining table name -->
<xs:element name="person" maxOccurs="unbounded" x2r:tableName="CUSTOMER">
<xs:complexType>
<XS:sequence>
<!-- Example for redefining column name -->
<xs:element name="given" type="xs:string" x2r:columnName="FIRST"/>
<xs:element name="last" type="xs:string"/>

<!-- Example for redefining column length -->
<xs:element name="address" type="xs:string" x2r:columnLength="400"/>
<!-- Example for redefining column type -->

<xs:element name="notes" type="xs:string" x2r:columnDataType="CLOB"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

B.7.1 Supported user-specified types for different databases

Table B-11 provides the details of the supported user-specified types for different
databases. Using any other type name will raise exception.

Table B-11 Supported user-specified types for databases

Type HSQL Oracle MySQL MS SQL Server
SMALLINT X X X

B-32 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

XML Schema Supported Features

Table B-11 (Cont.) Supported user-specified types for databases

Type HSQL Oracle MySQL MS SQL Server
INTEGER X X

REAL X X
NUMERIC X X

NUMBER X

FLOAT X X X
DOUBLE X X

DECIMAL X X

CHAR X X X X
NCHAR X X X
VARCHAR X X X X
VARCHAR?2 X

NVARCHAR?2 X

BLOB X X X

CLOB X X

NCLOB X

TEXT X X
DATE X X X

TIME X X

TIMESTAMP X X X X

B.8 XML Schema Supported Features

The driver supports part of the XML Schema (XSD) specification. Supported elements
are listed in this section.

For more information on the XML Schema specification, see the W3C specification at
http://www.w3.0rg/TR/xmlschema-1/.

This section contains the following topics:
= Datatypes
= Supported Elements

= Unsupported Features

B.8.1 Datatypes
The following datatypes are supported:

» These datatypes are converted to String columns: string, normalizedString, token,
nmtoken, nmtokens, anyUri, id, idref, date, datetime, time, hexBinary

» These datatypes are converted to Integer columns: int, positivelnteger,
negativelnteger, nonNegativelnteger, onPositivelnteger, long, unsignedLong,
unsignedInt, short, unsignedShort, byte, unsignedByte, boolean (Boolean are
converted to a numeric column with 0 or 1, but they can take "true" or "false"
values from the input files)

Oracle Data Integrator Driver for XML Reference B-33

XML Schema Supported Features

s These datatypes are converted to Decimal (with 2 decimal places) columns:
decimal, float, double

B.8.2 Supported Elements

This section lists all schema elements. Supported syntax elements are shown in bold.
Unsupported syntax elements are shown in regular font. They are ignored by the
driver.

This section details the following schema elements:
= Al

= Any

= AnyAttribute

= AnyType

= Attribute

= AttributeGroup
» Choice

s ComplexContent
s ComplexType

= Element

= Extension

s Group

s Import

= Include

s List

» Restriction

s Schema

= Sequence

= SimpleContent

= SimpleType

Note: XML files generated or updated using the XML driver should
ideally be validated against their corresponding XSD files using the
VALIDATE command after generation.

B.8.2.1 All

This element specifies that child elements can appear in any order and that each child
element can occur zero or one time.

Note that child elements mandatory properties (minOccurs=1) are not managed by the
driver. This should be handled by checks on the data, and by validating the XML
contents against the XSD.

<all
id=ID

B-34 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

XML Schema Supported Features

maxOccurs=1
minOccurs=0|1
any attributes
>
(annotation?, element*)
</all>

B.8.2.2 Any

This element enables you to extend the XML document with elements not specified by
the schema.

<any
1d=ID
maxOccurs:(nonNégativeInteger/unbounded):l
minOccurs=nonNegativelnteger:1
namespaces= ((##any|##other) [List of (anyURI[(##targetNamespace|##local))):##any
processContents=(lax|skip|strict):strict
any attributes
>
(annotation?)
</any>

B.8.2.3 AnyAttribute

This element enables you to extend the XML document with attributes not specified by
the schema.

<anyAttribute
id=ID
namespaces= ((##any|##other) [List of (anyURI| (##targetNamespace|##local))):##any
processContents=(lax|skip|strict):strict
any attributes
>
(annotation?)
</anyAttribute>

B.8.2.4 AnyType
This XML Schema type is the root type for all XML Schema types.

<xsd:element name="something" type="xsd:anyType"/>

B.8.2.5 Attribute

This element defines an attribute.

<attribute
default=string
1d=ID
name=NCName
type=QName
use=optional |prohibited|required
ref=QName
fixed=string
form=qualified|unqualified
any attributes
>
(annotation?, (simpleType?))
</attribute>

Oracle Data Integrator Driver for XML Reference B-35

XML Schema Supported Features

Note that the use attribute of this element defines the column mapped by the driver
for the attribute as mandatory or not.

B.8.2.6 AttributeGroup

This element defines a set of attributes.

<attributeGroup
1d=ID
name=NCName
ref=QName
any attributes
>
(annotation?), ((attribute|attributeGroup) *,anyAttribute?))
</attributeGroup>

B.8.2.7 Choice

This element allows one and only of the elements to be present within the containing
element.

<choice
id=ID
maxOccurs:nonNegativeInteger\unbounded
minOccurs=nonNegativeInteger
any attributes
>
(annotation?, (element |group |choice|sequence|any) *)
</choice>
Note that the child element's unique nature are not managed by the driver. This
should be handled by checks on the data, and by validating the XML contents against
the XSD.

B.8.2.8 ComplexContent

This element defines extensions or restrictions on a complex type.

<complexContent
id=ID
mixed=true|false
any attributes
>
(annotation?, (restriction|extension))
</complexContent>

B.8.2.9 ComplexType

This element defines a complex type.

<complexType
name=NCName
id=ID
abstract=true|false
mixed=true|false
block=(#all|list of (extension|restriction))
final=(#all|list of (extension|restriction))
any attributes
>
(annotation?, (simpleContent |complexContent| ((group|all|choice|sequence)?, ((attribu
te|attributeGroup) *, anyAttribute?))))
</complexType>

B-36 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

XML Schema Supported Features

B.8.2.10 Element

This element defines an element of the XML file.

<element
name=NCName
maxOccurs=nonNégativeInteger|unbounded
minOccurs=nonNegativelnteger
type=QName
1d=ID
ref=QName
substitutionGroup=QName
default=string
fixed=string
form=qualified|unqualified
nillable=true|false
abstract=true|false
block=(#all|list of (extension|restriction))
final=(#all|list of (extension|restriction))
any attributes
>
annotation?, ((simpleType|complexType)?, (unique|key|keyref)*))
</element>

Note: The maxOccurs and minOccurs attributes of the element are
used in the XML-to-SQL mapping. If a child element is of a simple
type and is monovalued (one occurrence only), then this element is
mapped to a simple column in the table corresponding to its parent
element. Otherwise, a table linked to the parent element's table is
created.

Note that if no reference to either minOccurs or maxOccurs is
mentioned in an element then the element is consider as monovalued
and is transformed to a column. This behavior can be changed using
the useImplicitMaxValue URL property. When this property is set
to yes, an elements for which maxOccurs is not specified in the XSD is
considered as multivalued (maxOccurs ="unbounded").

Note: Using different sub-elements with the same name but with
different types is not supported by XML driver. An XSD with such a
structure will not be processed correctly.

B.8.2.11 Extension

This element extends an existing simpleType or complexType element

<extension
id=ID
base=0QName
any attributes
>
(annotation?, ((group|all|choice|sequence)?, ((attribute|attributeGroup)*, anyAttribu
te?)))
</extension>

Oracle Data Integrator Driver for XML Reference B-37

XML Schema Supported Features

B.8.2.12 Group

The group element is used to define a group of elements to be used in complex type
definitions.

<group
id=ID
name=NCName
ref=QName
maxOccurs=nonNegativelInteger |unbounded
minOccurs=nonNegativelInteger
any attributes
>
(annotation?, (all|choice|sequence)?)
</group>

B.8.2.13 Import

This element is used to add multiple schemas with different target namespace to a
document.

<import
id=ID
namespace=anyURI
schemaLocation=anyURI
any attributes

>

(annotation?)

</import>

B.8.2.14 Include

This element is used to add multiple schemas with the same target namespace to a
document.

<include
id=ID
schemaLocation=anyURI
any attributes

>

(annotation?)

</include>

B.8.2.15 List

This element defines a simple type element as a list of values of a specified data type.

<list
id=ID
itemType=QName
any attributes
>

(annotation?, (simpleType?))
</list>

B.8.2.16 Restriction

This element defines restrictions on a simpleType, simpleContent, or a
complexContent.
<restriction

1d=ID

base=QName

B-38 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

XML Schema Supported Features

any attributes
>
Content for simpleType:
(annotation?, (simpleType?, (minExclusive|minInclusive|maxExclusive|maxInclusive|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern) *))
Content for simpleContent:
(annotation?, (simpleType?, (minExclusive |minInclusive|maxExclusive|maxInclusive]|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern) *)?, ((attribute|attributeGroup)*,anyAttribute?Y
Content for complexContent:
(annotation?, (group|all|choice|sequence)?,
((attribute|attributeGroup) *,anyAttribute?))
</restriction>

B.8.2.17 Schema

This element defines the root element of a schema.

<schema
id=ID
attributeFormDefault:qualified|unqualified
elementFormDefault:qualified|unqualified
blockDefault=(#all|list of (extension|restriction|substitution))
finalDefault=(#all|list of (extension|restriction|list]|union))
targetNamespace=anyURI
version=token
xmlns=anyURI
any attributes

>

((include|import|redefine|annotation)*, (((simpleType |complexType|group]|
attributeGroup) |element |attribute|notation),annotation*) *)
</schema>

B.8.2.18 Sequence

This element specifies that the child elements must appear in a sequence. Each child
element can occur 0 or more times.

<sequence
1d=ID
maXOccurs:nonNegativeInteger|unbounded
minOccurs=nonNegativelnteger
any attributes
>
(annotation?, (element |group |choice|sequence|any) *)
</sequence>

Note the following:

s The Sequence order is not managed by the driver. The sequence order should be
handled by loading the xxx_ORDER column generated by the driver.

s The maxOccurs and minOccurs attributes are not managed by the driver. This
should be handled by checks on the data, and by validating the XML contents
against the XSD.

B.8.2.19 SimpleContent

This element contains extensions or restrictions on a text-only complex type or on a
simple type as content.

Oracle Data Integrator Driver for XML Reference B-39

XML Schema Supported Features

<simpleContent
id=ID
any attributes
>
(annotation?, (restriction|extension))
</simpleContent>

B.8.2.20 SimpleType
This element defines a simple type element.
<simpleType

name=NCName

id=ID

any attributes
>
(annotation?, (restriction|list|union))
</simpleType>

B.8.3 Unsupported Features

The following elements and features are not supported or implemented by the XML
driver.

B.8.3.1 Unsupported Elements
The following schema elements are not supported by the XML driver.

s Key/keyRef/Unique: These elements allow the definition of constraints in the
schema. These elements and their child elements (selector, field) are ignored.

= Redefine: The redefine element redefines simple and complex types, groups, and
attribute groups from an external schema. This element is not supported.

In v3 mode an error is raised, if any unsupported XSD element is encountered.

WARNING: Elements and attributes allowed in an XML file due to
an Any or AnyAttribute clause in the XSD may cause errors when
the file is loaded.

B.8.3.2 Unsupported Features

Multipass parsing is supported in v3 mode. The other modes do not support multipass
parsing.

B.8.3.3 Unsupported Datatypes
The following datatypes are not supported:

= gYear

= gYearMonth
= gMonth

= gMonthDay
s gDay

= language

s ENTITY

B-40 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

XML Schema Supported Features

= ENTITIES
= NOTATION
= IDREFS

Oracle Data Integrator Driver for XML Reference B-41

XML Schema Supported Features

B-42 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

C

Oracle Data Integrator Driver for Complex

Files Reference

This appendix describes how to work with the Oracle Data Integrator driver for
Complex Files.

This appendix includes the following sections:

Section C.1, "Introduction to Oracle Data Integrator Driver for Complex Files"
Section C.2, "Complex Files Processing Overview"

Section C.3, "Driver Configuration"

Section C.4, "Detailed Driver Commands"

Section C.5, "JDBC API and XML Schema Supported Features"

C.1 Introduction to Oracle Data Integrator Driver for Complex Files

The Oracle Data Integrator Driver for Complex Files (Complex File driver) handles files in a
Complex (or Native) Format as a JDBC data source. This allows Oracle Data Integrator
to use complex files as data servers.

With the Complex File driver, Oracle Data Integrator can query complex files using
standard SQL syntax and perform changes in the complex files. These operations
occur within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for Complex Files supports the following features:

Standard SQL (Structured Query Language) Syntax
Correlated subqueries, inner and outer joins

ORDER BY and GROUP BY

COUNT, SUM, MIN, MAX, AVG and other functions
Standard SQL functions

Transaction Management

Referential Integrity (foreign keys)

Saving changes into the complex files

C.2 Complex Files Processing Overview

The Complex File driver uses a Native Schema file. This file, written in the nXSD format
describes the structure of the Native File and how to translate it to an XML file.

Oracle Data Integrator Driver for Complex Files Reference C-1

Complex Files Processing Overview

The Complex File driver translates internally the native file into an XML structure, as
defined in the Native Schema (nXSD) description and from this XML file it generates a
relational schema that is consumed by Oracle Data Integrator. The overall mechanism
is shown in Figure C-1.

Figure C-1 Complex File Driver Process

[Native File Je———] XML (internal) ———»| Reatonal L[oracle Data Integrator |

The second part of the process, starting from the XML structure, corresponds precisely
to the capabilities of the Oracle Data Integrator Driver for XML.

The Complex Files driver works in the following way:

1. The complex file is translated to an intermediate XML file using the Native
Schema (nXSD) file. Note that no physical file is created for the intermediate XML
file but a streaming XML structure.

2. The driver loads the XML structure and data into a relational schema, using a XML
to SQL Mapping.

3. The user works on the relational schema, manipulating data through regular SQL
statements or specific driver commands for driver operations.

4. Upon disconnection or user request, the Complex Files driver synchronizes the data
and structure stored in the schema back to the complex file.

C.2.1 Generating the Native Schema

The Native Schema can be created manually, or generated using the Native Format
Builder Wizard available as part of Fusion Middleware Technology Adapters. See
"Native Format Builder Wizard" in the User’s Guide for Technology Adapters for more
information on the Native Schema format and the Native Format Builder Wizard.

C.2.2 XML to SQL Mapping

The XML to SQL Mapping is a complex process that is used to map a hierarchical
structure (XML) into a relational structure (schema). This mapping is automatic. See
Section B.2.1, "XML to SQL Mapping" for more information.

C.2.3 JSON Support

Flat files in JSON format are supported through the nXSD format. The nXSD file can
be created manually or through the Native Format Builder Wizard (See "Generating
the Native Schema" for details). If an XSD file with no nXSD annotation is used, you
need to provide additional JDBC property: tt=json or translator_type=json,
which will enable the driver to use the JSON translator for parsing the input file.

C.2.4 Supported Features

The Complex File driver supports the same features as the XML driver:

= Schema Storage in a built-in engine or external database is supported in the same
way as the XML Driver. See Section B.2.3.1, "Schema Storage" and Section B.3.3,
"Using an External Database to Store the Data"for more information.

= Multiple Schemas are supported, with the following differences:

C-2 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Driver Configuration

— Only a single schema can be created at connection time, based on the Native
Schema file.

— Parameters allowing creating multiple schemas at connection time as
indicated in Section B.3.2, "Automatically Create Multiple Schemas" are not
supported. This includes add_schema_bundle, add_schema_path, and addschema_
X.

- Additional schemas can be created after the connection using the CREATE
SCHEMA and LOAD FILE commands.

Case-sensitivity is managed similarly to the XML driver. See Section B.2.3.4, "Case
Sensitivity" for more information.

Loading/Synchronizing with the Complex File driver works the same way as the
XML Driver. Loading /Synchronizing operations automatically propagate to the
Native file. See Section B.2.3.5, "Loading/Synchronizing" for more information.

Locking is supported. When connected, the complex file is locked and when
disconnected, it is unlocked. The UNLOCK FILE command is supported.

C.3 Driver Configuration

The Oracle Data Integrator driver for Complex Files is automatically installed with
Oracle Data Integrator. The following topics cover advanced configuration topics and
reference information.

This section details the driver configuration.

The driver name is:
oracle.odi.jdbc.driver.file.complex.ComplexFileDriver

The URL Syntax is: jdbc: snps:complexfile?f=<native file
location>&d=<native schema>&re=<root element name>[&s=<schema
name>&<property>=<value>...]

The properties for the URL are detailed in Table C.

Table C-1 Driver Properties

Property Mandatory Type Default Description
file or f Yes string (file - Native file location. Use slash "/" in the path name
location) instead of back slash "\". It is possible to use an HTTP,
FTP or File URL to locate the file. Files located by URL
are read-only. This parameter is mandatory.
dtd ord Yes string (file - Native Schema (nXSD) file location. This parameter is
location) mandatory.
root_elt or re Yes String - Name of the element to take as the root table of the
schema. This value is case sensitive. This property can
be used for reverse-engineering for example a specific
section of the Native Schema. This parameter is
mandatory.
read_only orro No boolean (true | false Open the native file in read only mode.

false)

Oracle Data Integrator Driver for Complex Files Reference C-3

Driver Configuration

Table C-1 (Cont.) Driver Properties

Property

Mandatory Type

Default Description

schema or s No

standalone No

translator_type No
or tt

db_propsordp No

load_data_on_ No
connect or ldoc

drop_on_discor No
dod

useMaxValue No

string -

boolean (true | false
false)

string (json) -

string -

boolean (true | true
false)

boolean (true | false
false)

boolean (true | false
false)

Name of the relational schema where the complex file
will be loaded. This parameter is mandatory.

This schema will be selected when creating the physical
schema under the Complex File data server.

Note: It is not possible to make more than one
connection to a schema. Subsequent connections fail if
trying to connect to a schema already in use.

Important: The schema name should be specified in
uppercase, and cannot be named like an existing XML
element.

If this option is set to true, the schema for this
connection is completely isolated from all other
schemas. With this option, you can specify the same
schema name for several connections, each schema
being kept separated. When using this option, tables in
this schema cannot be accessed from other schemas,
and this connection cannot access tables from other
schemas.

Note: This option is not applicable when an external
database is used.

If this option is set to json, the xsd does not require
nXSD annotations and will automatically use the JSON
translator for parsing the input file.

This property is used to use an external database
instead of the memory engine to store the schema.

See Section B.3.3, "Using an External Database to Store
the Data" for more information.

Automatically load the data in the schema when
performing the JDBC connection. If set to false, a
SYNCHRONIZE statement is required after the
connection to load the data.

This option is useful to test the connection or browse
metadata without loading all the data.

Automatically drop the schema when closing the JDBC
connection.

If true, the schema is stored in the built-in engine, it is
always dropped.

If the schema is stored in an external database, the
driver attempts to drop the database schema, but might
fail if tables still exist in this schema. The drop_tables_
on_drop_schema property can be specified in the
external database property file to ensure that all tables
are automatically dropped when the schema is
dropped. See Section B.3.3, "Using an External Database
to Store the Data" for more information.

When this property is set to true, elements for which
maxOccurs is not specified in the schema are
considered as maxOccurs ="unbounded". Otherwise,
the driver assumes that maxOccurs=1 when maxOccurs
is not specified.

C-4 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Driver Configuration

Table C-1 (Cont.) Driver Properties

Property

Mandatory Type

Default

Description

java_encoding
or je

numeric_id or ni

id_length or il

numeric_scaleor
ns

no_batch_
update or nobu

log_file or If

log_level or 1l

transform_
nonascii or tna

No

No

No

No

No

No

No

string
(encoding
code)

boolean (true |
false)

integer

integer

boolean (true |
false)

string (file
location)

Integer

boolean
(true | false)

UTEF8

true

10 / 30

empty

false

true

Target file encoding (for example: I1S08859_1). You
will find a list of supported encoding at the following
URL:
http://java.sun.com/j2se/1.3/docs/guide/i
ntl/encoding.doc.html.

If set to true, all internal Primary and Foreign Keys are
of NUMERIC type. Otherwise, they are of the
VARCHAR type.

The length of the internal Primary and Foreign Key
columns. The default is 10 for NUMERIC column types
and 30 for VARCHAR column.

Scale of the numeric columns generated in the relational
schema.

Batch update is not used for this connection. The
command to set the batch update is not sent. This
prevents errors to occur for external databases that do
not support this JDBC feature, or allows to debug errors
related to batch update usage.

Log file name. If the log file is empty, the trace is
displayed in the standard output.

The presence of this property triggers the trace for the
schema. Each schema may have a different trace file.

Log level. The log level is a mask of the following
values:

= 1:Important internal events

m 2: Detailed internal events

s 4: Native SQL commands

= 8 XML-Relational mapping calculation

= 16: XML-Relational mapping validation (Table
names changes, etc)

Examples:

» Trace Important & Detailed internal events: 1og_
level=3 (1+2)

= Trace Native SQL commands and Important
internal events: log_level=5 (1+4)

= Trace XML-Relational mapping calculation and
validation: log_level=24 (16+8)

m Traceallevents: log _level=31 (1+2+4+8+16)

Transform Non Ascii. Set to false to keep non-ascii
characters.

The following example illustrates these properties:

Connects to the PROD20100125_001 . csv file described by products.nxsd and
expose this file as a relational structure in the PRODUCT Schema.

jdbc:snps:complexfile?f=/infiles/PROD20100125_
001.csv&d=/infiles/products.nxsd&re=root&s=PRODUCTS

Oracle Data Integrator Driver for Complex Files Reference C-5

Detailed Driver Commands

C.4 Detailed Driver Commands

The Complex File driver supports the same SQL syntax as the XML driver. See
Section B.5, "SQL Syntax" for the SQL Syntax supported by the XML Driver.

The exceptions to this rule are the following:

= In the Complex File driver syntax, the commands that are related to the XML file
such as CREATE FILE or LOAD FILE, are applied to the Native File. For example,
the command CREATE FILE creates a native format file from the schema content.

= VALIDATE is not supported.

» CREATE FILE is supported but the NO_CLOSING_TAGS and NO_DEFAULT_NS
parameters are ignored.

s CREATE SCHEMA requires the WITH DTD parameter.
= LOAD FILE requires the WITH DTD parameter.

C.5 JDBC API and XML Schema Supported Features

The Complex File driver supports the same JDBC features as the XML driver. See
Section B.5, "SQL Syntax" for more information.

C-6 Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

	Contents
	Preface
	1 Introduction
	1.1 Terminology
	1.2 Using This Guide

	Part I Databases, Files, and XML
	2 Oracle Database
	2.1 Introduction
	2.1.1 Concepts
	2.1.2 Knowledge Modules

	2.2 Installation and Configuration
	2.2.1 System Requirements and Certifications
	2.2.2 Technology Specific Requirements
	2.2.2.1 Using the SQL*Loader Utility
	2.2.2.2 Using External Tables
	2.2.2.3 Using Oracle Streams

	2.2.3 Connectivity Requirements

	2.3 Setting up the Topology
	2.3.1 Creating an Oracle Data Server
	2.3.1.1 Creation of the Data Server

	2.3.2 Creating an Oracle Physical Schema

	2.4 Setting Up an Integration Project
	2.5 Creating and Reverse-Engineering an Oracle Model
	2.5.1 Create an Oracle Model
	2.5.2 Reverse-engineer an Oracle Model

	2.6 Setting up Changed Data Capture
	2.7 Setting up Data Quality
	2.8 Designing a Mapping
	2.8.1 Loading Data from and to Oracle
	2.8.1.1 Loading Data from Oracle
	2.8.1.2 Loading Data to Oracle

	2.8.2 Integrating Data in Oracle
	2.8.3 Designing an ETL-Style Mapping

	2.9 Troubleshooting
	2.9.1 Troubleshooting Oracle Database Errors
	2.9.2 Common Problems and Solutions

	3 Files
	3.1 Introduction
	3.1.1 Concepts
	3.1.2 Knowledge Modules

	3.2 Installation and Configuration
	3.2.1 System Requirements and Certifications
	3.2.2 Technology Specific Requirements
	3.2.3 Connectivity Requirements

	3.3 Setting up the Topology
	3.3.1 Creating a File Data Server
	3.3.1.1 Creation of the Data Server

	3.3.2 Creating a File Physical Schema

	3.4 Setting Up an Integration Project
	3.5 Creating and Reverse-Engineering a File Model
	3.5.1 Create a File Model
	3.5.2 Reverse-engineer a File Model
	3.5.2.1 Delimited Files Reverse-Engineering
	3.5.2.2 Fixed Files Reverse-engineering using the Wizard
	3.5.2.3 COBOL Copybook reverse-engineering
	3.5.2.4 Customized Reverse-Engineering

	3.6 Designing a Mapping
	3.6.1 Loading Data From Files
	3.6.2 Integrating Data in Files
	3.6.2.1 IKM SQL to File Append
	3.6.2.2 IKM File to File (Java)

	4 Generic SQL
	4.1 Introduction
	4.1.1 Concepts
	4.1.2 Knowledge Modules

	4.2 Installation and Configuration
	4.2.1 System Requirements and Certifications
	4.2.2 Technology-Specific Requirements
	4.2.3 Connectivity Requirements

	4.3 Setting up the Topology
	4.3.1 Creating a Data Server
	4.3.2 Creating a Physical Schema

	4.4 Setting up an Integration Project
	4.5 Creating and Reverse-Engineering a Model
	4.5.1 Create a Data Model
	4.5.2 Reverse-engineer a Data Model

	4.6 Setting up Changed Data Capture
	4.7 Setting up Data Quality
	4.8 Designing a Mapping
	4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
	4.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
	4.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology

	4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
	4.8.3 Designing an ETL-Style Mapping

	5 XML Files
	5.1 Introduction
	5.1.1 Concepts
	5.1.2 Knowledge Modules

	5.2 Installation and Configuration
	5.2.1 System Requirements
	5.2.2 Technologic Specific Requirements
	5.2.3 Connectivity Requirements

	5.3 Setting up the Topology
	5.3.1 Creating an XML Data Server
	5.3.1.1 Creation of the Data Server

	5.3.2 Creating a Physical Schema for XML

	5.4 Setting Up an Integration Project
	5.5 Creating and Reverse-Engineering a XML File
	5.5.1 Create an XML Model
	5.5.2 Reverse-Engineering an XML Model

	5.6 Designing a Mapping
	5.6.1 Notes about XML Mappings
	5.6.1.1 Targeting an XML Structure
	5.6.1.2 Synchronizing XML File and Schema
	5.6.1.3 Handling Large XML Files

	5.6.2 Loading Data from and to XML
	5.6.2.1 Loading Data from an XML Schema
	5.6.2.2 Loading Data to an XML Schema

	5.6.3 Integrating Data in XML

	5.7 Troubleshooting
	5.7.1 Detect the Errors Coming from XML
	5.7.2 Common Errors

	6 Complex Files
	6.1 Introduction
	6.1.1 Concepts
	6.1.2 Knowledge Modules

	6.2 Installation and Configuration
	6.2.1 System Requirements
	6.2.2 Technology Specific Requirements
	6.2.3 Connectivity Requirements

	6.3 Setting up the Topology
	6.3.1 Creating a Complex File Data Server
	6.3.1.1 Creation of the Data Server

	6.3.2 Creating a Complex File Physical Schema

	6.4 Setting Up an Integration Project
	6.5 Creating and Reverse-Engineering a Complex File Model
	6.5.1 Create a Complex File Model
	6.5.2 Reverse-engineer a Complex File Model

	6.6 Designing a Mapping

	7 Microsoft SQL Server
	7.1 Introduction
	7.1.1 Concepts
	7.1.2 Knowledge Modules

	7.2 Installation and Configuration
	7.2.1 System Requirements and Certifications
	7.2.2 Technology Specific Requirements
	7.2.2.1 Using the BULK INSERT Command
	7.2.2.2 Using the BCP Command
	7.2.2.3 Using Linked Servers

	7.2.3 Connectivity Requirements

	7.3 Setting up the Topology
	7.3.1 Creating a Microsoft SQL Server Data Server
	7.3.1.1 Creation of the Data Server

	7.3.2 Creating a Microsoft SQL Server Physical Schema

	7.4 Setting Up an Integration Project
	7.5 Creating and Reverse-Engineering a Microsoft SQL Server Model
	7.5.1 Create a Microsoft SQL Server Model
	7.5.2 Reverse-engineer a Microsoft SQL Server Model

	7.6 Setting up Changed Data Capture
	7.7 Setting up Data Quality
	7.8 Designing a Mapping
	7.8.1 Loading Data from and to Microsoft SQL Server
	7.8.1.1 Loading Data from Microsoft SQL Server
	7.8.1.2 Loading Data to Microsoft SQL Server

	7.8.2 Integrating Data in Microsoft SQL Server

	8 Microsoft Excel
	8.1 Introduction
	8.1.1 Concepts
	8.1.2 Knowledge Modules

	8.2 Installation and Configuration
	8.2.1 System Requirements and Certifications
	8.2.2 Technology Specific Requirements
	8.2.3 Connectivity Requirements

	8.3 Setting up the Topology
	8.3.1 Creating a Microsoft Excel Data Server
	8.3.2 Creating a Microsoft Excel Physical Schema

	8.4 Setting Up an Integration Project
	8.5 Creating and Reverse-Engineering a Microsoft Excel Model
	8.5.1 Create a Microsoft Excel Model
	8.5.2 Reverse-engineer a Microsoft Excel Model

	8.6 Designing a Mapping
	8.6.1 Loading Data From and to Microsoft Excel
	8.6.1.1 Loading Data from Microsoft Excel
	8.6.1.2 Loading Data to Microsoft Excel

	8.6.2 Integrating Data in Microsoft Excel

	8.7 Troubleshooting
	8.7.1 Decoding Error Messages
	8.7.2 Common Problems and Solutions

	9 Microsoft Access
	9.1 Introduction
	9.2 Concepts
	9.3 Knowledge Modules
	9.4 Specific Requirements
	10 Netezza
	10.1 Introduction
	10.1.1 Concepts
	10.1.2 Knowledge Modules

	10.2 Installation and Configuration
	10.2.1 System Requirements and Certifications
	10.2.2 Technology Specific Requirements
	10.2.3 Connectivity Requirements

	10.3 Setting up the Topology
	10.3.1 Creating a Netezza Data Server
	10.3.1.1 Creation of the Data Server

	10.3.2 Creating a Netezza Physical Schema

	10.4 Setting Up an Integration Project
	10.5 Creating and Reverse-Engineering a Netezza Model
	10.5.1 Create a Netezza Model
	10.5.2 Reverse-engineer a Netezza Model

	10.6 Setting up Data Quality
	10.7 Designing a Mapping
	10.7.1 Loading Data from and to Netezza
	10.7.1.1 Loading Data from Netezza
	10.7.1.2 Loading Data to Netezza

	10.7.2 Integrating Data in Netezza

	11 Teradata
	11.1 Introduction
	11.1.1 Concepts
	11.1.2 Knowledge Modules

	11.2 Installation and Configuration
	11.2.1 System Requirements and Certifications
	11.2.2 Technology Specific Requirements
	11.2.3 Connectivity Requirements

	11.3 Setting up the Topology
	11.3.1 Creating a Teradata Data Server
	11.3.1.1 Creation of the Data Server

	11.3.2 Creating a Teradata Physical Schema

	11.4 Setting Up an Integration Project
	11.5 Creating and Reverse-Engineering a Teradata Model
	11.5.1 Create a Teradata Model
	11.5.2 Reverse-engineer a Teradata Model

	11.6 Setting up Data Quality
	11.7 Designing a Mapping
	11.7.1 Loading Data from and to Teradata
	11.7.1.1 Loading Data from Teradata
	11.7.1.2 Loading Data to Teradata

	11.7.2 Integrating Data in Teradata
	11.7.3 Designing an ETL-Style Mapping

	11.8 KM Optimizations for Teradata
	11.8.1 Primary Indexes and Statistics
	11.8.2 Support for Teradata Utilities
	11.8.3 Support for Named Pipes
	11.8.4 Optimized Management of Temporary Tables

	12 Hypersonic SQL
	12.1 Introduction
	12.1.1 Concepts
	12.1.2 Knowledge Modules

	12.2 Installation and Configuration
	12.2.1 System Requirements and Certifications
	12.2.2 Technology Specific Requirements
	12.2.3 Connectivity Requirements

	12.3 Setting up the Topology
	12.3.1 Creating a Hypersonic SQL Data Server
	12.3.2 Creating a Hypersonic SQL Physical Schema

	12.4 Setting Up an Integration Project
	12.5 Creating and Reverse-Engineering a Hypersonic SQL Model
	12.5.1 Create a Hypersonic SQL Model
	12.5.2 Reverse-engineer a Hypersonic SQL Model

	12.6 Setting up Data Quality
	12.7 Designing a Mapping

	13 IBM Informix
	13.1 Introduction
	13.2 Concepts
	13.3 Knowledge Modules
	13.4 Specific Requirements
	14 IBM DB2 for iSeries
	14.1 Introduction
	14.1.1 Concepts
	14.1.2 Knowledge Modules

	14.2 Installation and Configuration
	14.2.1 System Requirements and Certifications
	14.2.2 Technology Specific Requirements
	14.2.3 Connectivity Requirements

	14.3 Setting up the Topology
	14.3.1 Creating a DB2/400 Data Server
	14.3.1.1 Creation of the Data Server

	14.3.2 Creating a DB2/400 Physical Schema

	14.4 Setting Up an Integration Project
	14.5 Creating and Reverse-Engineering an IBM DB2/400 Model
	14.5.1 Create an IBM DB2/400 Model
	14.5.2 Reverse-engineer an IBM DB2/400 Model

	14.6 Setting up Changed Data Capture
	14.6.1 Setting up Trigger-Based CDC
	14.6.2 Setting up Log-Based CDC
	14.6.2.1 How does it work?
	14.6.2.2 CDCRTVJRN Program Details
	14.6.2.3 Installing the CDC Components on iSeries
	14.6.2.4 Using the CDC with the Native Journals
	14.6.2.5 Problems While Reading Journals

	14.7 Setting up Data Quality
	14.8 Designing a Mapping
	14.8.1 Loading Data from and to IBM DB2 for iSeries
	14.8.1.1 Loading Data from IBM DB2 for iSeries
	14.8.1.2 Loading Data to IBM DB2 for iSeries

	14.8.2 Integrating Data in IBM DB2 for iSeries

	14.9 Specific Considerations with DB2 for iSeries
	14.9.1 Alternative Connectivity Methods for iSeries
	14.9.1.1 Using Client Access
	14.9.1.2 Using the IBM JT/400 and Native Drivers

	14.10 Troubleshooting
	14.10.1 Troubleshooting Error messages
	14.10.2 Common Problems and Solutions
	14.10.2.1 Connection Errors

	15 IBM DB2 UDB
	15.1 Introduction
	15.2 Concepts
	15.3 Knowledge Modules
	15.4 Specific Requirements

	Part II Business Intelligence
	16 Oracle Business Intelligence Enterprise Edition
	16.1 Introduction
	16.1.1 Concepts
	16.1.2 Knowledge Modules

	16.2 Installation and Configuration
	16.2.1 System Requirements and Certifications
	16.2.2 Technology Specific Requirements
	16.2.3 Connectivity Requirements

	16.3 Setting up the Topology
	16.3.1 Creating an Oracle BI Data Server
	16.3.1.1 Creation of the Data Server

	16.3.2 Creating an Oracle BI Physical Schema

	16.4 Setting Up an Integration Project
	16.5 Creating and Reverse-Engineering an Oracle BI Model
	16.5.1 Create an Oracle BI Model
	16.5.2 Reverse-engineer an Oracle BI Model

	16.6 Setting up Data Quality
	16.7 Designing a Mapping
	16.7.1 Loading Data from and to Oracle BI
	16.7.1.1 Loading Data from Oracle BI
	16.7.1.2 Loading Data to Oracle BI

	16.7.2 Integrating Data in Oracle BI

	17 Oracle Business Intelligence Enterprise Edition Data Lineage
	17.1 Introduction
	17.1.1 Components
	17.1.2 Lineage Lifecycle
	17.1.2.1 Setting up the Lineage
	17.1.2.2 Refreshing the Lineage
	17.1.2.3 Using the Lineage

	17.2 Installing the Lineage in an OBIEE Server
	17.2.1 Installation Overview
	17.2.2 Requirements
	17.2.3 Installation Instructions
	17.2.3.1 Installing and Starting the OBIEE Lineage Wizard
	17.2.3.2 Deploying the OBIEE Lineage Artifacts using the Wizard

	17.2.4 Post-Installation Tasks

	17.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage
	17.4 Refreshing the OBIEE Lineage from Existing Exports
	17.4.1 Exporting the OBIEE Repository Documentation to a Text File
	17.4.2 Exporting the OBIEE Web Catalog Report to a Text File
	17.4.3 Refreshing the OBIEE Lineage From Existing Exports

	17.5 Automating the Lineage Tasks
	17.5.1 Configuring the Scripts
	17.5.2 Automating Lineage Deployment
	17.5.3 Automating Lineage Refresh

	17.6 Using the Lineage in OBIEE Dashboards
	17.6.1 Viewing Execution Statistics
	17.6.2 Viewing and Filtering Lineage Data
	17.6.3 Using the Dashboard
	17.6.4 Using Lineage and Hierarchy
	17.6.5 Using Contextual Lineage

	Part III Other Technologies
	18 JMS
	18.1 Introduction
	18.1.1 Concepts
	18.1.1.1 JMS Message Structure
	18.1.1.2 Using a JMS Destination

	18.1.2 Knowledge Modules

	18.2 Installation and Configuration
	18.2.1 System Requirements and Certifications
	18.2.2 Technology Specific Requirements
	18.2.3 Connectivity Requirements

	18.3 Setting up the Topology
	18.3.1 Creating a JMS Data Server
	18.3.1.1 Creation of the Data Server

	18.3.2 Creating a JMS Physical Schema

	18.4 Setting Up an Integration Project
	18.5 Creating and Defining a JMS Model
	18.5.1 Create a JMS Model
	18.5.2 Defining the JMS Datastores

	18.6 Designing a Mapping
	18.6.1 Loading Data from a JMS Source
	18.6.2 Integrating Data in a JMS Target

	18.7 JMS Standard Properties
	18.7.1 Using JMS Properties
	18.7.1.1 Declaring JMS Properties
	18.7.1.2 Filtering on the Router
	18.7.1.3 Filtering on the Client
	18.7.1.4 Using Property Values as Source Data
	18.7.1.5 Setting Properties when Sending a Message

	19 JMS XML
	19.1 Introduction
	19.1.1 Concepts
	19.1.1.1 JMS Message Structure
	19.1.1.2 Using a JMS Destination

	19.1.2 Knowledge Modules

	19.2 Installation and Configuration
	19.2.1 System Requirements and Certifications
	19.2.2 Technology Specific Requirements
	19.2.3 Connectivity Requirements

	19.3 Setting up the Topology
	19.3.1 Creating a JMS XML Data Server
	19.3.1.1 Creation of the Data Server

	19.3.2 Creating a JMS XML Physical Schema

	19.4 Setting Up an Integration Project
	19.5 Creating and Reverse-Engineering a JMS XML Model
	19.5.1 Create a JMS XML Model
	19.5.2 Reverse-Engineering a JMS XML Model

	19.6 Designing a Mapping
	19.6.1 Loading Data from a JMS XML Source
	19.6.2 Integrating Data in a JMS XML Target

	20 LDAP Directories
	20.1 Introduction
	20.1.1 Concepts
	20.1.2 Knowledge Modules

	20.2 Installation and Configuration
	20.2.1 System Requirements
	20.2.2 Technologic Specific Requirements
	20.2.3 Connectivity Requirements

	20.3 Setting up the Topology
	20.3.1 Creating an LDAP Data Server
	20.3.1.1 Creation of the Data Server

	20.3.2 Creating a Physical Schema for LDAP

	20.4 Setting Up an Integration Project
	20.5 Creating and Reverse-Engineering an LDAP Directory
	20.5.1 Create an LDAP Model
	20.5.2 Reverse-Engineering an LDAP Model

	20.6 Designing a Mapping
	20.6.1 Loading Data from and to LDAP
	20.6.1.1 Loading Data from an LDAP Directory
	20.6.1.2 Loading Data to an LDAP Directory

	20.6.2 Integrating Data in an LDAP Directory

	20.7 Troubleshooting

	21 Oracle TimesTen In-Memory Database
	21.1 Introduction
	21.1.1 Concepts
	21.1.2 Knowledge Modules

	21.2 Installation and Configuration
	21.2.1 System Requirements and Certifications
	21.2.2 Technology Specific Requirements
	21.2.3 Connectivity Requirements

	21.3 Setting up the Topology
	21.3.1 Creating a TimesTen Data Server
	21.3.1.1 Creation of the Data Server

	21.3.2 Creating a TimesTen Physical Schema

	21.4 Setting Up an Integration Project
	21.5 Creating and Reverse-Engineering a TimesTen Model
	21.5.1 Create a TimesTen Model
	21.5.2 Reverse-engineer a TimesTen Model

	21.6 Setting up Data Quality
	21.7 Designing a Mapping
	21.7.1 Loading Data from and to TimesTen
	21.7.1.1 Loading Data from TimesTen
	21.7.1.2 Loading Data to TimesTen

	21.7.2 Integrating Data in TimesTen

	22 Oracle GoldenGate
	22.1 Introduction
	22.1.1 Overview of the GoldeGate CDC Process
	22.1.2 Knowledge Modules

	22.2 Installation and Configuration
	22.2.1 System Requirements and Certifications
	22.2.2 Technology Specific Requirements
	22.2.3 Connectivity Requirements

	22.3 Working with the Oracle GoldenGate JKMs
	22.3.1 Define the Topology
	22.3.1.1 Define the Source Data Server
	22.3.1.2 Create the Source Physical Schema
	22.3.1.3 Define the Staging Server
	22.3.1.4 Create the Staging Physical Schema
	22.3.1.5 Define the Oracle GoldenGate Data Servers
	22.3.1.6 Create the Oracle GoldenGate Physical Schemas
	22.3.1.7 Create the Oracle GoldenGate Logical Schemas

	22.3.2 Create the Replicated Tables
	22.3.3 Set Up an Integration Project
	22.3.4 Configure CDC for the Source Datastores
	22.3.4.1 Create Oracle GoldenGate Physical Schemas from the model

	22.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only)
	22.3.6 Design Mappings Using Replicated Data

	22.4 Advanced Configuration
	22.4.1 Initial Load Method
	22.4.2 Tuning Replication Performances
	22.4.3 One Source Multiple Staging Configuration (Offline mode only)

	23 Oracle SOA Suite Cross References
	23.1 Introduction
	23.1.1 Concepts
	23.1.1.1 General Principles
	23.1.1.2 Cross Reference Table Structures
	23.1.1.3 Handling Cross Reference Table Structures

	23.1.2 Knowledge Modules
	23.1.3 Overview of the SOA XREF KM Process
	23.1.3.1 Loading Phase (LKM)
	23.1.3.2 Integration and Cross-Referencing Phase (IKM)
	23.1.3.3 Updating/Deleting Processed Records (LKM)

	23.2 Installation and Configuration
	23.2.1 System Requirements and Certifications
	23.2.2 Technology Specific Requirements
	23.2.3 Connectivity Requirements

	23.3 Working with XREF using the SOA Cross References KMs
	23.3.1 Defining the Topology
	23.3.2 Setting up the Project
	23.3.3 Designing a Mapping with the Cross-References KMs

	23.4 Knowledge Module Options Reference

	Part IV Appendices
	A Oracle Data Integrator Driver for LDAP Reference
	A.1 Introduction to Oracle Data Integrator Driver for LDAP
	A.2 LDAP Processing Overview
	A.2.1 LDAP to Relational Mapping
	A.2.1.1 General Principle
	A.2.1.2 Grouping Factor
	A.2.1.3 Mapping Exceptions
	A.2.1.4 Reference LDAP Tree

	A.2.2 Managing Relational Schemas
	A.2.2.1 Relational Schema Storage
	A.2.2.2 Accessing Data in the Relational Structure

	A.3 Installation and Configuration
	A.3.1 Driver Configuration
	A.3.2 Using an External Database to Store the Data
	A.3.2.1 Passing the Properties in the Driver URL
	A.3.2.2 Setting the Properties in ODI Studio
	A.3.2.3 Setting the Properties in a Properties File

	A.3.3 LDAP Directory Connection Configuration
	A.3.4 Table Aliases Configuration

	A.4 SQL Syntax
	A.4.1 SQL Statements
	A.4.1.1 DISCONNECT
	A.4.1.2 INSERT INTO
	A.4.1.3 SELECT
	A.4.1.4 UPDATE
	A.4.1.5 Expressions, Condition & values

	A.4.2 SQL FUNCTIONS

	A.5 JDBC API Implemented Features

	B Oracle Data Integrator Driver for XML Reference
	B.1 Introduction to Oracle Data Integrator Driver for XML
	B.2 XML Processing Overview
	B.2.1 XML to SQL Mapping
	B.2.2 XML Namespaces
	B.2.3 Managing Schemas
	B.2.3.1 Schema Storage
	B.2.3.2 Multiple Schemas
	B.2.3.3 Accessing Data in the Schemas
	B.2.3.4 Case Sensitivity
	B.2.3.5 Loading/Synchronizing

	B.2.4 Locking
	B.2.5 XML Schema (XSD) Support

	B.3 Installation and Configuration
	B.3.1 Driver Configuration
	B.3.2 Automatically Create Multiple Schemas
	B.3.3 Using an External Database to Store the Data

	B.4 Detailed Driver Commands
	B.4.1 CREATE FILE
	B.4.2 CREATE FOREIGNKEYS
	B.4.3 CREATE XMLFILE
	B.4.4 CREATE SCHEMA
	B.4.5 DROP FOREIGNKEYS
	B.4.6 DROP SCHEMA
	B.4.7 LOAD FILE
	B.4.8 SET SCHEMA
	B.4.9 SYNCHRONIZE
	B.4.10 UNLOCK FILE
	B.4.11 TRUNCATE SCHEMA
	B.4.12 VALIDATE
	B.4.13 WRITE MAPPING FILE

	B.5 SQL Syntax
	B.5.1 SQL Statements
	B.5.1.1 COMMIT
	B.5.1.2 CREATE TABLE
	B.5.1.3 DELETE
	B.5.1.4 DISCONNECT
	B.5.1.5 DROP TABLE
	B.5.1.6 INSERT INTO
	B.5.1.7 ROLLBACK
	B.5.1.8 SELECT
	B.5.1.9 SET AUTOCOMMIT
	B.5.1.10 UPDATE
	B.5.1.11 Expressions, Condition and Values

	B.5.2 SQL FUNCTIONS

	B.6 JDBC API Implemented Features
	B.7 Rich Metadata
	B.7.1 Supported user-specified types for different databases

	B.8 XML Schema Supported Features
	B.8.1 Datatypes
	B.8.2 Supported Elements
	B.8.2.1 All
	B.8.2.2 Any
	B.8.2.3 AnyAttribute
	B.8.2.4 AnyType
	B.8.2.5 Attribute
	B.8.2.6 AttributeGroup
	B.8.2.7 Choice
	B.8.2.8 ComplexContent
	B.8.2.9 ComplexType
	B.8.2.10 Element
	B.8.2.11 Extension
	B.8.2.12 Group
	B.8.2.13 Import
	B.8.2.14 Include
	B.8.2.15 List
	B.8.2.16 Restriction
	B.8.2.17 Schema
	B.8.2.18 Sequence
	B.8.2.19 SimpleContent
	B.8.2.20 SimpleType

	B.8.3 Unsupported Features
	B.8.3.1 Unsupported Elements
	B.8.3.2 Unsupported Features
	B.8.3.3 Unsupported Datatypes

	C Oracle Data Integrator Driver for Complex Files Reference
	C.1 Introduction to Oracle Data Integrator Driver for Complex Files
	C.2 Complex Files Processing Overview
	C.2.1 Generating the Native Schema
	C.2.2 XML to SQL Mapping
	C.2.3 JSON Support
	C.2.4 Supported Features

	C.3 Driver Configuration
	C.4 Detailed Driver Commands
	C.5 JDBC API and XML Schema Supported Features

