




5 Creating Data Models with Common Format Designer


This chapter describes how to use Oracle Data Integrator's Common Format Designer feature for creating a data model by assembling elements from other models. It also details how to generate the DDL scripts for creating or updating a model's implementation in your data servers, and how to automatically generate the mappings to load data from and to a model.

This chapter includes the following sections:

	
Introduction to Common Format Designer


	
Using the Diagram


	
Generating DDL scripts


	
Generating Mapping IN/OUT






Introduction to Common Format Designer

Common Format Designer (CFD) is used to quickly design a data model in Oracle Data Integrator. This data model may be designed as an entirely new model or assembled using elements from other data models. CFD can automatically generate the Data Definition Language (DDL) scripts for implementing this model into a data server.

Users can for example use Common Format Designer to create operational datastores, datamarts, or master data canonical format by assembling heterogeneous sources.

CFD enables a user to modify an existing model and automatically generate the DDL scripts for synchronizing differences between a data model described in Oracle Data Integrator and its implementation in the data server.



What is a Diagram?

A diagram is a graphical view of a subset of the datastores contained in a sub-model (or data model). A data model may have several diagrams attached to it.

A diagram is built:

	
by assembling datastores from models and sub-models.


	
by creating blank datastores into which you either create new attributes or assemble attributes from other datastores.









Why assemble datastores and attributes from other models?

When assembling datastores and attributes from other models or sub-models in a diagram, Oracle Data Integrator keeps track of the origin of the datastore or attribute that is added to the diagram. These references to the original datastores and attributes enable Oracle Data Integrator to automatically generate the mappings to the assembled datastores (mappings IN)

Automatic mapping generation does not work to load datastores and attributes that are not created from other model's datastores and attributes. It is still possible to create the mappings manually, or complete generated mapping for the attributes not automatically mapped.






Graphical Synonyms

In a diagram, a datastore may appear several times as a Graphical Synonym. A synonym is a graphical representation of a datastore. Graphical synonyms are used to make the diagram more readable.

If you delete a datastore from a diagram, Designer prompts you to delete either the synonym (the datastore remains), or the datastore itself (all synonyms for this datastore are deleted).

References in the diagram are attached to a datastore's graphical synonym. It is possible create graphical synonyms at will, and move the references graphical representation to any graphical synonym of the datastores involved in the references.








Using the Diagram

From a diagram, you can edit all the model elements (datastore, attributes, references, filters, etc.) visible in this diagram, using their popup menu, directly available from the diagram. Changes performed in the diagram immediately apply to the model.



Creating a New Diagram

To create a new diagram:

	
In the Models tree in Designer Navigator, expand the data model or sub-model into which you want to create the diagram, then select the Diagrams node.


	
Right-click, then select New Diagram to open the Diagram Editor.


	
On the Definition tab of the Diagram Editor enter the diagram's Name and Description.


	
Select Save from the File main menu.




The new diagram appears under the Diagrams node of the model.






Create Datastores and Attributes

To insert an existing datastore in a diagram:

	
Open the Diagram Editor by double-clicking the diagram under the Diagrams node under the model's node.


	
In the Diagram Editor, select the Diagram tab.


	
Select the datastore from the Models tree in Designer Navigator.


	
Drag this datastore into the diagram. If the datastore comes from a model/sub-model different from the current model/sub-model, Designer will prompt you to create a copy of this datastore in the current model. If the datastore already exists in the diagram, Oracle Data Integrator will prompt you to either create new graphical synonym, or create a duplicate of the datastore.




The new graphical synonym for the datastore appears in the diagram. If you have added a datastore from another model, or chosen to create a duplicate, the new datastore appears in model.

If references (join) existed in the original models between tables inserted to the diagram, these references are also copied.

To create a graphical synonym of a datastore already in the diagram select Create Graphical Synonym in the popup menu of the datastore.

To create a new datastore in a diagram:

	
In the Diagram Editor, select the Diagram tab.


	
In the Diagram Editor toolbar, click Add Datastore.


	
Click into the diagram workbench.


	
An Editor appears for this new datastore. Follow the process described in Chapter 3, "Creating and Using Data Models and Datastores," for creating your datastore.




To add attributes from another datastore:

	
In the Diagram Editor, select the Diagram tab.


	
Select a attribute under a datastore from the Models tree of the Designer Navigator.


	
Drag this attribute into the datastore in the diagram to which you want to append this attribute. The Attribute Editor appears to edit this new attribute. Edit the attribute according to your needs.


	
Select Save from the File main menu. The new attribute is added to the datastore.









Creating Graphical Synonyms

To create a graphical synonym for a datastore:

	
In the Diagram tab, select the datastore.


	
Right-click, then select Create Graphical Synonym.




The new graphical synonym appears in the diagram.

This operation does not add a new datastore. It creates only a new representation for the datastore in the diagram.






Creating and Editing Constraints and Filters

To add a new condition, filter, key to a datastore:

	
In the Diagram tab, select the datastore.


	
Right-click then select the appropriate option: Add Key, Add Filter, etc.


	
A new Editor appears for the new condition, filter, key, etc. Follow the process described in Chapter 3, "Creating and Using Data Models and Datastores," for creating this element.




Conditions, filters and references are added to the diagram when you add the datastore which references them into the diagram. It is possible to drag into the diagram these objects if they have been added to the datastore after you have added it to the diagram.

To edit a key on a attribute:

If a attribute is part of a key (Primary, Alternate), it is possible to edit the key from this attribute in the diagram.

	
In the Diagram tab, select one of the attribute participating to the key.


	
Right-click then select the name of the key in the pop-up menu, then select Edit in the sub-menu.




To create a reference between two datastores:

	
In the Diagram Editor, select the Diagram tab.


	
In the toolbar click the Add Reference button.


	
Click the first datastore of the reference, then drag the cursor to the second datastore while keeping the mouse button pressed.


	
Release the mouse button. The Reference Editor appears.


	
Set this reference's parameters according to the process described in Chapter 3, "Creating and Using Data Models and Datastores."




To move a reference to another graphical synonym:

	
In the Diagram Editor, select the Diagram tab.


	
In the Diagram tab, select the reference you wish to modify.


	
Right-click and select Display Options.


	
Select the synonyms to be used as the parent and child of the reference.


	
Click OK. The reference representation appears now on the selected synonyms.




This operation does not change the reference itself. It only alters its representation in the diagram.






Printing a Diagram

Once you have saved your diagram you can save the diagram in PNG format, print it or generate a complete PDF report.

To print or generate a diagram report:

	
On the Diagram tab of your diagram, select Print Options from the Diagram menu.


	
In the Data Model Printing editor select according to your needs one of the following options:

	
Generate the complete PDF report


	
Save the diagram in PNG


	
Print your diagram





	
Click OK.







	
Note:

If you do not specify a different location, The PDF and PNG files are saved to the default locations specified in the user preferences. To set these values, select the Preferences... option from the Tools menu. Expand the ODI node, and then the System node, and select Reports. Enter (or search for) the location of your Default PDF generation directory and Directory for saving your diagrams (PNG).
















Generating DDL scripts

When data structure changes have been performed in a data server, you usually perform an incremental reverse-engineering in Oracle Data Integrator to retrieve the new metadata from the data server.

When a diagram or data model is designed or modified in Oracle Data Integrator, it is necessary to implement the data model or the changes in the data server containing the model implementation. This operation is performed with DDL scripts. The DDL scripts are generated in the form of Oracle Data Integrator procedures containing DDL commands (create table, alter table, etc). This procedure may be executed on the data server to apply the changes.

The DDL generation supports two types of datastores: tables and system tables.




	
Note:

The templates for the DDL scripts are defined as Action Groups. Check in the Topology Navigator that you have the appropriate action group for the technology of the model before starting DDL scripts generation. For more information on action groups, please refer to the Knowledge Module Developer's Guide for Oracle Data Integrator.










Before generating DDL Scripts

In certain cases, constraints that are defined in the data model but not in the database, are not displayed in the Generate DDL editor. To ensure that these conditions appear in the Generate DDL editor, perform the following tasks:

	
For Keys: Select Defined in the Database and Active in the Control tab of the Key editor


	
For References: Select Defined in the Database in the Definition tab of the Reference editor


	
For Conditions: Select Defined in the Database and Active in the Control tab of the Condition editor





Generating DDL Scripts

To generate the DDL scripts:

	
In the Models tree of Designer Navigator, select the data model for which you want to generate the DDL scripts.


	
Right-click, then select Generate DDL. The Generate DDL for Oracle Data Integrator Model dialog is displayed.


	
In the Generate DDL dialog, click Yes if you want to process only tables that are in the Oracle Data Integrator model, otherwise click No and tables that are not in the model will be also included.

Oracle Data Integrator retrieves current state of the data structure from the data server, and compares it to the model definition. The progression is displayed in the status bar. The Generate DDL Editor appears, with the differences detected.


	
Select the Action Group to use for the DDL script generation.


	
Click Search to select the Generation Folder into which the procedure will be created.


	
Select the folder and click OK.


	
Filter the type of changes you want to display using the Filters check boxes.


	
Select the changes to apply by checking the Synchronization option. The following icons indicate the type of changes:

	
- : Element existing in the data model but not in the data server.


	
+ : Element existing in the data server but not in the data model.


	
= : Element existing in both the data model and the data server, but with differences in its properties (example: a column resized) or attached elements (example: a table including new columns).





	
Click OK to generate the DDL script.




Oracle Data Integrator generates the DDL scripts in a procedure and opens the Procedure Editor for this procedure.






Generating Mapping IN/OUT

For a given model or datastore assembled using Common Format Designer, Oracle Data Integrator is able to generate:

	
Mappings IN: These mappings are used to load the model's datastores assembled from other datastores/attributes. They are the integration process merging data from the original datastores into the composite datastores.


	
Mappings OUT: These mappings are used to extract data from the model's datastores. They are generated using the mappings (including the mappings IN) already loading the model's datastore. They reverse the integration process to propagate the data from the composite datastore to the original datastores.




For example, an Active Integration Hub (AIH) assembles information coming from several other applications. It is made up of composite datastores built from several data models, assembled in a diagram. The AIH is loaded using the Mappings IN, and is able to send the data it contains to the original systems using the Mappings OUT.

To generate the Mappings IN:

	
In the Models tree of Designer Navigator, select the data model or datastore for which you want to generate the mappings.


	
Right-click, then select Generate Mappings IN. Oracle Data Integrator looks for the original datastores and attributes used to build the current model or datastore. The Generate Mappings IN Editor appears with a list of datastores for which Mappings IN may be generated.


	
Select an Optimization Context for your mappings. This context will define how the flow for the generated mappings will look like, and will condition the automated selection of KMs.


	
Click the Search button to select the Generation Folder into which the mappings will be generated.


	
In the Candidate Datastores table, check the Generate Mapping option for the datastores to load.


	
Edit the content of the Mapping Name column to rename the integration mappings.


	
Click OK. Mapping generation starts.




The generated mappings appear in the specified folder.




	
Note:

Mappings automatically generated are built using predefined rules based on repository metadata. These mappings can not be executed immediately. They must be carefully reviewed and modified before execution












	
Note:

If no candidate datastore is found when generating the Mappings IN, then it is likely that the datastores you are trying to load are not built from other datastores or attributes. Automatic mapping generation does not work to load datastores and attributes that are not created from other model's datastores and attributes.









To generate the Mapping OUT:

	
In the Models tree of Designer Navigator, select the data model or datastore for which you want to generate the mappings.


	
Right-click, then select Generate Mapping OUT. Oracle Data Integrator looks for the existing mappings loading these the datastores. The Generate Mappings OUT Editor appears with a list of datastores for which Mappings OUT may be generated.


	
Select an Optimization Context for your mappings. This context will define how the flow for the generated mappings will look like, and will condition the automated selection of KMs.


	
Click the Search button to select the Generation Folder into which the mappings will be generated.


	
In the Candidate Datastores, check the Generation and Generate Mapping check boxes to select either all or some of the candidate datastore to load from the target datastore of the existing mappings.


	
Edit the content of the Mapping Name column to rename the integration mappings.


	
Click OK. Mapping generation starts.




The generated mappings appear in the specified folder.




	
Note:

Mappings automatically generated are built using the available metadata and do not always render the expected rules. These mappings must be carefully reviewed and modified before execution.












	
Note:

If no candidate datastore is found when generating the Mappings OUT, then it is likely that no mapping loads the datastores you have selected to generate the mappings OUT. The mappings OUT from a datastore are generated from the mappings loading this datastore. Without any valid mapping loading a datastore, not propagation mapping from this datastore can be generated.













Part IV



Managing Integration Projects

This part describes how to organize and maintain your Oracle Data Integrator projects.

This part contains the following chapters:

	
Chapter 16, "Organizing and Documenting Integration Projects"


	
Chapter 17, "Using Version Control"


	
Chapter 18, "Exporting and Importing"






Oracle® Fusion Middleware

Developing Integration Projects with Oracle Data Integrator

12c (12.1.3)

E51087-01

May 2014




Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator, 12c (12.1.3)

E51087-01

Copyright © 2010, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Authors:  Laura Hofman Miquel, Joshua Stanley

Contributing Authors: Alex Kotopoulis, Michael Reiche, Jon Patt, Alex Prazma, Gail Risdal

Contributors: David Allan, Linda Bittarelli, Sophia Chen, Pratima Chennupati, Victor Chow, Sowmya Dhandapani, Daniel Gallagher, Gary Hostetler, Kevin Hwang, Aslam Khan, Sebu T. Koleth, Christian Kurz, Venkata Lakkaraju, Thomas Lau, Deekshit Mantampady, Kevin McDonough, Luda Mogilevich, Ale Paez, Suresh Pendap, Sandrine Riley, Julien Testut, Sachin Thatte, Julie Timmons, Jay Turner, Vikas Varma, Robert Velisar, Winnie Wan, Geoff Watters, Jennifer Waywell

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.



8 Creating and Using Mappings


This chapter describes how to create and use mappings.

This chapter includes the following sections:

	
Introduction to Mappings


	
Creating a Mapping


	
Using Mapping Components


	
Creating a Mapping Using a Dataset


	
Physical Design


	
Reusable Mappings


	
Editing Mappings Using the Property Inspector and the Structure Panel


	
Flow Control and Static Control


	
Designing E-LT and ETL-Style Mappings






Introduction to Mappings

Mappings are the logical and physical organization of your data sources, targets, and the transformations through which the data flows from source to target. You create and manage mappings using the mapping editor, a new feature of ODI 12c.

The mapping editor opens whenever you open a mapping. Mappings are organized in folders under individual projects, found under Projects in the Designer Navigator.



Parts of a Mapping

A mapping is made up of and defined by the following parts:

	
Datastores

Data from source datastores is extracted by a mapping, and can be filtered during the loading process. Target datastores are the elements that are loaded by the mapping. Datastores act as Projector Components.

Datastores that will be used as sources and targets of the loading process must exist in data models before you can use them in a mapping. See Chapter 3, "Creating and Using Data Models and Datastores" for more information.


	
Datasets

Optionally, you can use datasets within mappings as sources. A Dataset is a logical container organizing datastores by an entity relationship declared as joins and filters, rather than the flow mechanism used elsewhere in mappings. Datasets operate similarly to ODI 11g interfaces, and if you import 11g interfaces into ODI 12c, ODI will automatically create datasets based on your interface logic. Datasets act as Selector Components.


	
Reusable Mappings

Reusable mappings are modular, encapsulated flows of components which you can save and re-use. You can place a reusable mapping inside another mapping, or another reusable mapping (that is, reusable mappings may be nested). A reusable mapping can also include datastores as sources and targets itself, like other mapping components. Reusable mappings act as Projector Components.


	
Other Components

ODI provides additional components that are used in between sources and targets to manipulate the data. These components are available on the component palette in the mapping diagram.

The following are the components available by default in the component palette:

	
Expression


	
Aggregate


	
Distinct


	
Set


	
Filter


	
Join


	
Lookup


	
Pivot


	
Sort


	
Split


	
Subquery Filter


	
Table Function


	
Unpivot





	
Connectors

Connectors create a flow of data between mapping components. Most components can have both input and output connectors. Datastores with only output connectors are considered sources; datastores with only input connectors are considered targets. Some components can support multiple input or output connectors; for example, the split component supports two or more output connectors, allowing you to split data into multiple downstream flows.

	
Connector points define the connections between components inside a mapping. A connector point is a single pathway for input or output for a component.


	
Connector ports are the small circles on the left and/or right sides of components displayed in the mapping diagram.




In the mapping diagram, two components connected by a single visible line between their connector ports could have one or more connector points. The diagram only shows a single line to represent all of the connections between two components. You can select the line to show details about the connection in the property inspector.


	
Staging Schemas

Optionally, you can specify a staging area for a mapping or for a specific physical mapping design of a mapping. If you want to define a different staging area than any of the source or target datastores, you must define the correct physical and logical schemas in the mapping's execution context before creating a mapping. See Chapter 2, "Overview of Oracle Data Integrator Topology" for more information.


	
Knowledge Modules

Knowledge modules define how data will be transferred between data servers and loaded into data targets. Knowledge Modules (IKMs, LKMs, EKMs, and CKMs) that will be selected in the flow must be imported into the project or must be available as global Knowledge Modules.

IKMs allow you to define (or specify) how the actual transformation and loading is performed.

LKMs allow you to specify how the transfer of the data between one data server to another data server is performed.

When used as flow control, CKMs allow you to check for errors in the data flow during the loading of records into a target datastore. When used as static control, CKMs can be used to check for any errors in a table. You can launch static control at any time on a model to see if the data satisfies constraints.

You can select a strategy to perform these tasks by selecting an appropriate KM. For example, you can decide whether to use a JDBC to transfer data between two databases, or use an Oracle database link if the transfer is between two Oracle databases.

See Chapter 6, "Creating an Integration Project" for more information.


	
Variables, Sequences, and User Functions

Variables, Sequences, and User Functions that will be used in expressions within your mappings must be created in the project. See Chapter 10, "Creating and Using Procedures, Variables, Sequences, and User Functions" for more information.









Navigating the Mapping Editor

The mapping editor provides a single environment for designing and editing mappings.

Mappings are organized within folders in a project in the Designer Navigator. Each folder has a mappings node, within which all mappings are listed.

To open the mapping editor, right-click an existing mapping and select Open, or double-click the mapping. To create a new mapping, right-click the Mappings node and select New Mapping. The mapping is opened as a tab on the main pane of ODI Studio. Select the tab corresponding to a mapping to view the mapping editor.


Figure 8-1 Mapping Editor

[image: Description of Figure 8-1 follows]






The mapping editor consists of the sections described in Table 8-1:


Table 8-1 Mapping Editor Sections

	Section	Location in Figure 8-1	Description
	
Mapping Diagram

	
Middle

	
The mapping diagram displays an editable logical or physical view of a mapping. These views are sometimes called the logical diagram or the physical diagram.

You can drag datastores into the diagram from the Models tree, and Reusable Mappings from the Global Objects or Projects tree, into the mapping diagram. You can also drag components from the component palette to define various data operations.


	
Mapping Editor tabs

	
Middle, at the bottom of the mapping diagram

	
The Mapping Editor tabs are ordered according to the mapping creation process. These tabs are:

	
Overview: displays the general properties of the mapping


	
Logical: displays the logical organization of the mapping in the mapping diagram


	
Physical: displays the physical organization of the mapping in the mapping diagram





	
Property Inspector

	
Bottom

	
Displays properties for the selected object.

If the Property Inspector does not display, select Properties from the Window menu.


	
Component Palette

	
Right

	
Displays the mapping components you can use for creating mappings. You can drag and drop components into the logical mapping diagram from the components palette.

If the Component Palette does not display, select Components from the Window menu.


	
Structure Panel

	
Not shown

	
Displays a text-based hierarchical tree view of a mapping, which is navigable using the tab and arrow keys.

The Structure Panel does not display by default. To open it, select Structure from the Window menu.


	
Thumbnail Panel

	
Not shown

	
Displays a miniature graphic of a mapping, with a rectangle indicating the portion currently showing in the mapping diagram. This panel is useful for navigating very large or complex mappings.

The Thumbnail Panel does not display by default. To open it, select Thumbnail from the Window menu.














Creating a Mapping

Creating a mapping follows a standard process which can vary depending on the use case.

Using the logical diagram of the mapping editor, you can construct your mapping by dragging components onto the diagram, dragging connections between the components, dragging attributes across those connections, and modifying the properties of the components using the property inspector. When the logical diagram is complete, you can use the physical diagram to define where and how the integration process will run on your physical infrastructure. When the logical and physical design of your mapping is complete, you can run it.

The following step sequence is usually performed when creating a mapping, and can be used as a guideline to design your first mappings:

	
Creating a New Mapping


	
Adding and Removing Components


	
Connecting and Configuring Components


	
Defining a Physical Configuration


	
Running Mappings







	
Note:

You can also use the Property Inspector and the Structure Panel to perform the steps 2 to 5. See "Editing Mappings Using the Property Inspector and the Structure Panel" for more information.











Creating a New Mapping

To create a new mapping:

	
In Designer Navigator select the Mappings node in the folder under the project where you want to create the mapping.


	
Right-click and select New Mapping. The New Mapping dialog is displayed.


	
In the New Mapping dialog, fill in the mapping Name. Optionally, enter a Description. If you want the new mapping to contain a new empty dataset, select Create Empty Dataset. Click OK.




	
Note:

You can add and remove datasets (including this empty dataset) after you create a mapping. Datasets are entirely optional and all behavior of a dataset can be created using other components in the mapping editor.

In ODI 12c, Datasets offer you the option to create data flows using the entity relationship method familiar to users of previous versions of ODI. In some cases creating an entity relationship diagram may be faster than creating a flow diagram, or make it easier and faster to introduce changes.

When a physical diagram is calculated based on a logical diagram containing a Dataset, the entity relationships in the Dataset are automatically converted by ODI into a flow diagram and merged with the surrounding flow. You do not need to be concerned with how the flow is connected.









Your new mapping opens in a new tab in the main pane of ODI Studio.




	
Tip:

To display the editor of a datastore, a reusable mapping, or a dataset that is used in the Mapping tab, you can right-click the object and select Open.

















Adding and Removing Components

Add components to the logical diagram by dragging them from the Component Palette. Drag datastores and reusable mappings from the Designer Navigator.

Delete components from a mapping by selecting them, and then either pressing the Delete key, or using the right-click context menu to select Delete. A confirmation dialog is shown.

Source and target datastores are the elements that will be extracted by, and loaded by, the mapping.

Between the source and target datastores are arranged all the other components of a mapping. When the mapping is run, data will flow from the source datastores, through the components you define, and into the target datastores.


Preserving and Removing Downstream Expressions

Where applicable, when you delete a component, a check box in the confirmation dialog allows you to preserve, or remove, downstream expressions; such expressions may have been created when you connected or modified a component. By default ODI preserves these expressions.

This feature allows you to make changes to a mapping without destroying work you have already done. For example, when a source datastore is mapped to a target datastore, the attributes are all mapped. You then realize that you need to filter the source data. To add the filter, one option is to delete the connection between the two datastores, but preserve the expressions set on the target datastore, and then connect a filter in the middle. None of the mapping expressions are lost.






Connecting and Configuring Components

Create connectors between components by dragging from the originating connector port to the destination connector port. Connectors can also be implicitly created by dragging attributes between components. When creating a connector between two ports, an attribute matching dialog may be shown which allows you to automatically map attributes based on name or position.



Attribute Matching

The Attribute Matching Dialog is displayed when a connector is drawn to a projector component (see: "Projector Components") in the Mapping Editor. The Attribute Matching Dialog gives you an option to automatically create expressions to map attributes from the source to the target component based on a matching mechanism. It also gives the option to create new attributes on the target based on the source, or new attributes on the source based on the target.

This feature allows you to easily define a set of attributes in a component that are derived from another component. For example, you could drag a connection from a new, empty Set component to a downstream target datastore. If you leave checked the Create Attributes On Source option in the Attribute Matching dialog, the Set component will be populated with all of the attributes of the target datastore. When you connect the Set component to upstream components, you will already have the target attributes ready for you to map the upstream attributes to.






Connector Points and Connector Ports

Review "Connectors" for an introduction to ODI connector terminology.

You can click a connector port on one component and drag a line to another component's connector port to define a connection. If the connection is allowed, ODI will either use an unused existing connector point on each component, or create an additional connector point as needed. The connection is displayed in the mapping diagram with a line drawn between the connector ports of the two connected components. Only a single line is shown even if two components have multiple connections between them.

Most components can use both input and output connectors to other components, which are visible in the mapping diagram as small circles on the sides of the component. The component type may place limitations on how many connectors of each type are allowed, and some components can have only input or only output connections.

Some components allow the addition or deletion of connector points using the property inspector.

For example, a Join component by default has two input connector points and one output connector point. It is allowed to have more than two inputs, though. If you drag a third connection to the input connector port of a join component, ODI creates a third input connector point. You can also select a Join component and, in the property inspector, in the Connector Points section, click the green plus icon to add additional Input Connector Points.




	
Note:

You cannot drag a connection to or from an input port that already has the maximum number of connections. For example, a target datastore can only have one input connector point; if you try to drag another connection to the input connector port, no connection is created.









You can delete a connector by right-clicking the line between two connector points and selecting Delete, or by selecting the line and pressing the Delete key.






Defining New Attributes

When you add components to a mapping, you may need to create attributes in them in order to move data across the flow from sources, through intermediate components, to targets. Typically you define new attributes to perform transformations of the data.

Use any of the following methods to define new attributes:

	
Attribute Matching Dialog: This dialog is displayed in certain cases when dragging a connection from a connector port on one component to a connector port on another, when at least one component is a projector component.

The attribute matching dialog includes an option to create attributes on the target. If target already has attributes with matching names, ODI will automatically map to these attributes. If you choose By Position, ODI will map the first attributes to existing attributes in the target, and then add the rest (if there are more) below it. For example, if there are three attributes in the target component, and the source has 12, the first three attributes map to the existing attributes, and then the remaining nine are copied over with their existing labels.


	
Drag and drop attributes: Drag and drop a single (or multi-selected) attribute from a one component into another component (into a blank area of the component graphic, not on top of an existing attribute). ODI creates a connection (if one did not already exist), and also creates the attribute.




	
Tip:

If the graphic for a component is "full", you can hover over the attributes and a scroll bar appears on the right. Scroll to the bottom to expose a blank line. You can then drag attributes to the blank area.

If you drag an attribute onto another attribute, ODI maps it into that attribute, even if the names do not match. This does not create a new attribute on the target component.










	
Add new attributes in the property inspector: In the property inspector, on the Attributes tab, use the green plus icon to create a new attribute. You can select or enter the new attribute's name, data type, and other properties in the Attributes table. You can then map to the new attribute by dragging attributes from other components onto the new attribute.




	
Caution:

ODI will allow you to create an illegal data type connection. Therefore, you should always set the appropriate data type when you create a new attribute. For example, if you intend to map an attribute with a DATE data type to a new attribute, you should set the new attribute to have the DATE type as well.

Type-mismatch errors will be caught during execution as a SQL error.

















Defining Expressions and Conditions

Expressions and conditions are used to map individual attributes from component to component. Component types determine the default expressions and conditions that will be converted into the underlying code of your mapping.

For example, any target component has an expression for each attribute. A filter, join, or lookup component will use code (such as SQL) to create the expression appropriate to the component type.




	
Tip:

When an expression is set on the target, any source attributes referenced by that expression are highlighted in magenta in the upstream sources. For example, an expression emp.empno on the target column tgt_empno, when tgt_empno is selected (by clicking on it), the attribute empno on the source datastore emp is highlighted.

This highlighting function is useful for rapidly verifying that each desired target attribute has an expression with valid cross references. If an expression is manually edited incorrectly, such as if a source attribute is misspelled, the cross reference will be invalid, and no source attribute will be highlighted when clicking that target attribute.









You can modify the expressions and conditions of any component by modifying the code displayed in various property fields.




	
Note:

Oracle recommends using the expression editor instead of manually editing expressions in most cases. Selection of a source attribute from the expression editor will always give the expression a valid cross reference, minimizing editing errors. For more information, see "The Expression Editor".









Expressions have a result type, such as VARCHAR or NUMERIC. The result type of conditions are boolean, meaning, the result of a condition should always evaluate to TRUE or FALSE. A condition is needed for filter, join, and lookup (selector) components, while an expression is used in datastore, aggregate, and distinct (projector) components, to perform some transformation or create the attribute-level mappings.

Every projector component can have expressions on its attributes. (For most projector components, an attribute has one expression, but the attribute of the Set component can have multiple expressions.) If you modify the expression for an attribute, a small "f" icon appears on the attribute in the logical diagram. This icon provides a visual cue that a function has been placed there.

To define the mapping of a target attribute:

	
In the mapping editor, select an attribute to display the attribute's properties in the Property Inspector.


	
In the Target tab (for expressions) or Condition tab (for conditions), modify the Expression or Condition field(s) to create the required logic.




	
Tip:

The attributes from any component in the diagram can be drag-and-dropped into an expression field to automatically add the fully-qualified attribute name to the code.










	
Optionally, select or hover over any field in the property inspector containing an expression, and then click the gear icon that appears to the right of the field, to open the advanced Expression Editor.

The attributes on the left are only the ones that are in scope (have already been connected). So if you create a component with no upstream or downstream connection to a component with attributes, no attributes are listed.


	
Optionally, after modifying an expression or condition, consider validating your mapping to check for errors in your SQL code. Click the green check mark icon at the top of the logical diagram. Validation errors, if any, will be displayed in a panel.











Defining a Physical Configuration

In the Physical tab of the mapping editor, you define the loading and integration strategies for mapped data. Oracle Data Integrator automatically computes the flow depending on the configuration in the mapping's logical diagram. It proposes default knowledge modules (KMs) for the data flow. The Physical tab enables you to view the data flow and select the KMs used to load and integrate data.

For more information about physical design, see "Physical Design".






Running Mappings

Once a mapping is created, you can run it. This section briefly summarizes the process of running a mapping. For detailed information about running your integration processes, see: "Running Integration Processes" in Administering Oracle Data Integrator.

To run a mapping:

	
From the Projects menu of the Designer Navigator, right-click a mapping and select Run.

Or, with the mapping open in the mapping editor, click the run icon in the toolbar. Or, select Run from the Run menu.


	
In the Run dialog, select the execution parameters:

	
Select the Context into which the mapping must be executed. For more information about contexts, see: "Contexts".


	
Select the Physical Mapping Design you want to run. See: "Creating and Managing Physical Mapping Designs".


	
Select the Logical Agent that will run the mapping. The object can also be executed using the agent that is built into Oracle Data Integrator Studio, by selecting Local (No Agent). For more information about logical agents, see: "Agents".


	
Select a Log Level to control the detail of messages that will appear in the validator when the mapping is run. For more information about logging, see: "Managing the Log" in Administering Oracle Data Integrator.


	
Check the Simulation box if you want to preview the code without actually running it. In this case no data will be changed on the source or target datastores. For more information, see: "Simulating an Execution" in Administering Oracle Data Integrator.





	
Click OK.


	
The Information dialog appears. If your session started successfully, you will see "Session started."


	
Click OK.




	
Notes:

	
When you run a mapping, the Validation Results pane opens. You can review any validation warnings or errors there.


	
You can see your session in the Operator navigator Session List. Expand the Sessions node and then expand the mapping you ran to see your session. The session icon indicates whether the session is still running, completed, or stopped due to errors. For more information about monitoring your sessions, see: "Monitoring Integration Processes" in Administering Oracle Data Integrator.






















Using Mapping Components

In the logical view of the mapping editor, you design a mapping by combining datastores with other components. You can use the mapping diagram to arrange and connect components such as datasets, filters, sorts, and so on. You can form connections between datastores and components by dragging lines between the connector ports displayed on these objects.

Mapping components can be divided into two categories which describe how they are used in a mapping: projector components and selector components.


Projector Components

Projectors are components that influence the attributes present in the data that flows through a mapping. Projector components define their own attributes: attributes from preceding components are mapped through expressions to the projector's attributes. A projector hides attributes originating from preceding components; all succeeding components can only use the attributes from the projector.

Review the following topics to learn how to use the various projector components:

	
"Source and Target Datastores"


	
"Creating Multiple Targets"


	
"Adding a Reusable Mapping"


	
"Creating Aggregates"


	
"Creating Distincts"


	
"Creating Pivots"


	
"Creating Sets"


	
"Creating Subquery Filters"


	
"Creating Table Functions"


	
"Creating Unpivots"





Selector Components

Selector components reuse attributes from preceding components. Join and Lookup selectors combine attributes from the preceding components. For example, a Filter component following a datastore component reuses all attributes from the datastore component. As a consequence, selector components don't display their own attributes in the diagram and as part of the properties; they are displayed as a round shape. (The Expression component is an exception to this rule.)

When mapping attributes from a selector component to another component in the mapping, you can select and then drag an attribute from the source, across a chain of connected selector components, to a target datastore or next projector component. ODI will automatically create the necessary queries to bring that attribute across the intermediary selector components.

Review the following topics to learn how to use the various selector components:

	
"Creating Expressions"


	
"Creating Filters"


	
"Creating Joins and Lookups"


	
"Creating Sorts"


	
"Creating Splits"


	
"Creating a Dataset in a Mapping"






The Expression Editor

Most of the components you use in a mapping are actually representations of an expression in the code that acts on the data as it flows from your source to your target datastores. When you create or modify these components, you can edit the expression's code directly in the Property Inspector.

To assist you with more complex expressions, you can also open an advanced editor called the Expression Editor. (In some cases, the editor is labeled according to the type of component; for example, from a Filter component, the editor is called the Filter Condition Advanced Editor. However, the functionality provided is the same.)

To access the Expression Editor, select a component, and in the Property Inspector, select or hover over with the mouse pointer any field containing code. A gear icon appears to the right of the field. Click the gear icon to open the Expression Editor.

For example, to see the gear icon in a Filter component, select or hover over the Filter Condition field on the Condition tab; to see the gear icon in a Datastore component, select or hover over the Journalized Data Filter field of the Journalizing tab.

A typical example view of the Expression Editor is shown in Figure 8-2


Figure 8-2 Example Expression Editor

[image: Description of Figure 8-2 follows]






The Expression Editor is made up of the following panels:

	
Attributes: This panel appears on the left of the Expression Editor. When editing an expression for a mapping, this panel contains the names of attributes which are "in scope," meaning, attributes that are currently visible and can be referenced by the expression of the component. For example, if a component is connected to a source datastore, all of the attributes of that datastore are listed.


	
Expression: This panel appears in the middle of the Expression Editor. It displays the current code of the expression. You can directly type code here, or drag and drop elements from the other panels.


	
Technology functions: This panel appears below the expression. It lists the language elements and functions appropriate for the given technology.


	
Variables, Sequences, User Functions and odiRef API: This panel appears to the right of the technology functions and contains:

	
Project and global Variables.


	
Project and global Sequences.


	
Project and global User-Defined Functions.


	
OdiRef Substitution Methods.







Standard editing functions (cut/copy/paste/undo/redo) are available using the tool bar buttons.






Source and Target Datastores

To insert a source or target datastore in a mapping:

	
In the Designer Navigator, expand the Models tree and expand the model or sub-model containing the datastore to be inserted as a source or target.


	
Select this datastore, then drag it into the mapping panel. The datastore appears.


	
To make the datastore a source, drag a link from the output (right) connector of the datastore to one or more components. A datastore is not a source until it has at least one outgoing connection.

To make the datastore a target, drag a link from a component to the input (left) connector of the datastore. A datastore is not a target until it has an incoming connection.




Once you have defined a datastore you may wish to view its data.

To display the data of a datastore in a mapping:

	
Right-click the title of the datastore in the mapping diagram.


	
Select Data...




The Data Editor opens.






Creating Multiple Targets

In Oracle Data Integrator 12c, creating multiple targets in a mapping is straightforward. Every datastore component which has inputs but no outputs in the logical diagram is considered a target.

ODI allows splitting a component output into multiple flows at any point of a mapping. You can also create a single mapping with multiple independent flows, avoiding the need for a package to coordinate multiple mappings.

The output port of many components can be connected to multiple downstream components, which will cause all rows of the component result to be processed in each of the downstream flows. If rows should be routed or conditionally processed in the downstream flows, consider using a split component to define the split conditions.




	
See Also:

"Creating Splits"











Specifying Target Order

Mappings with multiple targets do not, by default, follow a defined order of loading data to targets. You can define a partial or complete order by using the Target Load Order property. Targets which you do not explicitly assign an order will be loaded in an arbitrary order by ODI.




	
Note:

Target load order also applies to reusable mappings. If a reusable mapping contains a source or a target datastore, you can include the reusable mapping component in the target load order property of the parent mapping.









The order of processing multiple targets can be set in the Target Load Order property of the mapping:

	
Click the background in the logical diagram to deselect objects in the mapping. The property inspector displays the properties for the mapping.


	
In the property inspector, accept the default target load order, or enter a new target load order, in the Target Load Order field.




	
Note:

A default load order is automatically computed based on primary key/foreign key relationships of the target datastores in the mapping. You can modify this default if needed, even if the resultant load order conflicts with the primary key/foreign key relationship. A warning will be displayed when you validate the mapping in this case.









Select or hover over the Target Load Order field and click the gear icon to open the Target Load Order Dialog. This dialog displays all available datastores (and reusable mappings containing datastores) that can be targets, allowing you to move one or more to the Ordered Targets field. In the Ordered Targets field, use the icons on the right to rearrange the order of processing.







	
Tip:

Target Order is useful when a mapping has multiple targets and there are foreign key (FK) relationships between the targets. For example, suppose a mapping has two targets called EMP and DEPT, and EMP.DEPTNO is a FK to DEPT.DEPTNO. If the source data contains information about the employee and the department, the information about the department (DEPT) must be loaded first before any rows about the employee can be loaded (EMP). To ensure this happens, the target load order should be set to DEPT, EMP.
















Adding a Reusable Mapping

Reusable mappings may be stored within folders in a project, or as global objects within the Global Objects tree, of the Designer Navigator.

To add a reusable mapping to a mapping:

	
To add a reusable mapping stored within the current project:

In the Designer Navigator, expand the Projects tree and expand the tree for the project you are working on. Expand the Reusable Mappings node to list all reusable mappings stored within this project.

To add a global reusable mapping:

In the Designer Navigator, expand the Global Objects tree, and expand the Reusable Mappings node to list all global reusable mappings.


	
Select a reusable mapping, and drag it into the mapping diagram. A reusable mapping component is added to the diagram as an interface to the underlying reusable mapping.









Creating Aggregates

The aggregate component is a projector component (see: "Projector Components") which groups and combines attributes using aggregate functions, such as average, count, maximum, sum, and so on. ODI will automatically select attributes without aggregation functions to be used as group-by attributes. You can override this by using the Is Group By and Manual Group By Clause properties.

To create an aggregate component:

	
Drag and drop the aggregate component from the component palette into the logical diagram.


	
Define the attributes of the aggregate if the attributes will be different from the source components. To do this, select the Attributes tab in the property inspector, and click the green plus icon to add attributes. Enter new attribute names in the Target column and assign them appropriate values.

If attributes in the aggregate component will be the same as those in a source component, use attribute matching (see Step 4).


	
Create a connection from a source component by dragging a line from the connector port of the source to the connector port of the aggregate component.


	
The Attribute Matching dialog will be shown. If attributes in the aggregate component will be the same as those in a source component, check the Create Attributes on Target box (see: "Attribute Matching").


	
If necessary, map all attributes from source to target that were not mapped though attribute matching, and create transformation expressions as necessary (see: "Defining Expressions and Conditions").


	
In the property inspector, the attributes are listed in a table on the Attributes tab. Specify aggregation functions for each attribute as needed. By default all attributes not mapped using aggregation functions (such as sum, count, avg, max, min, and so on) will be used as Group By.

You can modify an aggregation expression by clicking the attribute. For example, if you want to calculate average salary per department, you might have two attributes: the first attribute called AVG_SAL, which you give the expression AVG(EMP.SAL), while the second attribute called DEPTNO has no expression. If Is Group By is set to Auto, DEPTNO will be automatically included in the GROUP BY clause of the generated code.

You can override this default by changing the property Is Group By on a given attribute from Auto to Yes or No, by double-clicking on the table cell and selecting the desired option from the drop down list.

You can set a different GROUP BY clause other than the default for the entire aggregate component. Select the General tab in the property inspector, and then set a Manual Group by Clause. For example, set the Manual Group by Clause to YEAR(customer.birthdate) to group by birthday year.


	
Optionally, add a HAVING clause by setting the HAVING property of the aggregate component: for example, SUM(order.amount) > 1000.









Creating Distincts

A distinct is a projector component (see: "Projector Components") that projects a subset of attributes in the flow. The values of each row have to be unique; the behavior follows the rules of the SQL DISTINCT clause.

To select distinct rows from a source datastore:

	
Drag and drop a Distinct component from the component palette into the logical diagram.


	
Connect the preceding component to the Distinct component by dragging a line from the preceding component to the Distinct component.

The Attribute Mapping Dialog will appear: select Create Attributes On Target to create all of the attributes in the Distinct component. Alternatively, you can manually map attributes as desired using the Attributes tab in the property inspector.


	
The distinct component will now filter all rows that have all projected attributes matching.









Creating Expressions

An expression is a selector component (see: "Selector Components") that inherits attributes from a preceding component in the flow and adds additional reusable attributes. An expression can be used to define a number of reusable expressions within a single mapping. Attributes can be renamed and transformed from source attributes using SQL expressions. The behavior follows the rules of the SQL SELECT clause.

The best use of an expression component is in cases where intermediate transformations are used multiple times, such as when pre-calculating fields that are used in multiple targets.

If a transformation is used only once, consider performing the transformation in the target datastore or other component.




	
Tip:

If you want to reuse expressions across multiple mappings, consider using reusable mappings or user functions, depending on the complexity. See: "Reusable Mappings", and "Working with User Functions".









To create an expression component:

	
Drag and drop an Expression component from the component palette into the logical diagram.


	
Connect a preceding component to the Expression component by dragging a line from the preceding component to the Expression component.

The Attribute Mapping Dialog will appear; select Create Attributes On Target to create all of the attributes in the Expression component.

In some cases you might want the expression component to match the attributes of a downstream component. In this case, connect the expression component with the downstream component first and select Create Attributes on Source to populate the Expression component with attributes from the target.


	
Add attributes to the expression component as desired using the Attributes tab in the property inspector. It might be useful to add attributes for pre-calculated fields that are used in multiple expressions in downstream components.


	
Edit the expressions of individual attributes as necessary (see: "Defining Expressions and Conditions").









Creating Filters

A filter is a selector component (see: "Selector Components") that can select a subset of data based on a filter condition. The behavior follows the rules of the SQL WHERE clause.

Filters can be located in a dataset or directly in a mapping as a flow component.

When used in a dataset, a filter is connected to one datastore or reusable mapping to filter all projections of this component out of the dataset. For more information, see Creating a Mapping Using a Dataset.

To define a filter in a mapping:

	
Drag and drop a Filter component from the component palette into the logical diagram.


	
Drag an attribute from the preceding component onto the filter component. A connector will be drawn from the preceding component to the filter, and the attribute will be referenced in the filter condition.

In the Condition tab of the Property Inspector, edit the Filter Condition and complete the expression. For example, if you want to select from the CUSTOMER table (that is the source datastore with the CUSTOMER alias) only those records with a NAME that is not null, an expression could be CUSTOMER.NAME IS NOT NULL.




	
Tip:

Click the gear icon to the right of the Filter Condition field to open the Filter Condition Advanced Editor. The gear icon is only shown when you have selected or are hovering over the Filter Condition field with your mouse pointer. For more information about the Filter Condition Advanced Editor, see: "The Expression Editor".










	
Optionally, on the General tab of the Property Inspector, enter a new name in the Name field. Using a unique name is useful if you have multiple filters in your mapping.


	
Optionally, set an Execute on Hint, to indicate your preferred execution location: No hint, Source, Staging, or Target. The physical diagram will locate the execution of the filter according to your hint, if possible. For more information, see "Configuring Execution Locations".









Creating Joins and Lookups

This section contains the following topics:

	
About Joins


	
About Lookups


	
Creating a Join or Lookup





About Joins

A Join is a selector component (see: "Selector Components") that creates a join between multiple flows. The attributes from upstream components are combined as attributes of the Join component.

A Join can be located in a dataset or directly in a mapping as a flow component. A join combines data from two or more data flows, which may be datastores, datasets, reusable mappings, or combinations of various components.

When used in a dataset, a join combines the data of the datastores using the selected join type. For more information, see Creating a Mapping Using a Dataset.

A join used as a flow component can join two or more sources of attributes, such as datastores or other upstream components. A join condition can be formed by dragging attributes from two or more components successively onto a join component in the mapping diagram; by default the join condition will be an equi-join between the two attributes.


About Lookups

A Lookup is a selector component (see: "Selector Components") that returns data from a lookup flow being given a value from a driving flow. The attributes of both flows are combined, similarly to a join component.

Lookups can be located in a dataset or directly in a mapping as a flow component.

When used in a dataset, a Lookup is connected to two datastores or reusable mappings combining the data of the datastores using the selected join type. For more information, see Creating a Mapping Using a Dataset.

Lookups used as flow components (that is, not in a dataset) can join two flows. A lookup condition can be created by dragging an attribute from the driving flow and then the lookup flow onto the lookup component; the lookup condition will be an equi-join between the two attributes.

The Multiple Match Rows property defines which row from the lookup result must be selected as the lookup result if the lookup returns multiple results. Multiple rows are returned when the lookup condition specified matches multiple records.

You can select one of the following options to specify the action to perform when multiple rows are returned by the lookup operation:

	
Error: multiple rows will cause a mapping failure

This option indicates that when the lookup operation returns multiple rows, the mapping execution fails.




	
Note:

In ODI 12.1.3, the Deprecated - Error: multiple rows will cause a mapping failure option with the EXPRESSION_IN_SELECT option value is deprecated. It is included for backward compatibility with certain patched versions of ODI 12.1.2.

This option is replaced with the ERROR_WHEN_MULTIPLE_ROW option of Error: multiple rows will cause a mapping failure.










	
All Rows (number of result rows may differ from the number of input rows)

This option indicates that when the lookup operation returns multiple rows, all the rows should be returned as the lookup result.




	
Note:

In ODI 12.1.3, the Deprecated - All rows (number of result rows may differ from the number of input rows option with the LEFT_OUTER option value is deprecated. It is included for backward compatibility with certain patched versions of ODI 12.1.2.

This option is replaced with the ALL_ROWS option of All rows (number of result rows may differ from the number of input rows.










	
Select any single row

This option indicates that when the lookup operation returns multiple rows, any one row from the returned rows must be selected as the lookup result.


	
Select first single row

This option indicates that when the lookup operation returns multiple rows, the first row from the returned rows must be selected as the lookup result.


	
Select nth single row

This option indicates that when the lookup operation returns multiple rows, the nth row from the result rows must be selected as the lookup result. When you select this option, the Nth Row Number field appears, where you can specify the value of n.


	
Select last single row

This option indicates that when the lookup operation returns multiple rows, the last row from the returned rows must be selected as the lookup result.




Use the Lookup Attributes Default Value & Order By table to specify how the result set that contains multiple rows should be ordered, and what the default value should be if no matches are found for the input attribute in the lookup flow through the lookup condition. Ensure that the attributes are listed in the same order (from top to bottom) in which you want the result set to be ordered. For example, to implement an ordering such as ORDER BY attr2, attr3, and then attr1, the attributes should be listed in the same order. You can use the arrow buttons to change the position of the attributes to specify the order.

The No-Match Rows property indicates the action to be performed when there are no rows that satisfy the lookup condition. You can select one of the following options to perform when no rows are returned by the lookup operation:

	
Return no row

This option does not return any row when no row in the lookup results satisfies the lookup condition.


	
Return a row with the following default values

This option returns a row that contains default values when no row in the lookup results satisfies the lookup condition. Use the Lookup Attributes Default Value & Order By: table below this option to specify the default values for each lookup attribute.





Creating a Join or Lookup

To create a join or a lookup between two upstream components:

	
Drag a join or lookup from the component palette into the logical diagram.


	
Drag the attributes participating in the join or lookup condition from the preceding components onto the join or lookup component. For example, if attribute ID from source datastore CUSTOMER and then CUSTID from source datastore ORDER are dragged onto a join, then the join condition CUSTOMER.ID = ORDER.CUSTID is created.




	
Note:

When more than two attributes are dragged into a join or lookup, ODI compares and combines attributes with an AND operator. For example, if you dragged attributes from sources A and B into a Join component in the following order:


A.FIRSTNAME
B.FIRSTNAME
A.LASTNAME
B.LASTNAME


The following join condition would be created:


A.FIRSTNAME=B.FIRSTNAME AND A.LASTNAME=B.LASTNAME


You can continue with additional pairs of attributes in the same way.

You can edit the condition after it is created, as necessary.










	
In the Condition tab of the Property Inspector, edit the Join Condition or Lookup Condition and complete the expression.




	
Tip:

Click the gear icon to the right of the Join Condition or Lookup Condition field to open the Expression Editor. The gear icon is only shown when you have selected or are hovering over the condition field with your mouse pointer. For more information about the Expression Editor, see: "The Expression Editor".










	
Optionally, set an Execute on Hint, to indicate your preferred execution location: No hint, Source, Staging, or Target. The physical diagram will locate the execution of the filter according to your hint, if possible.


	
For a join:

Select the Join Type by checking the various boxes (Cross, Natural, Left Outer, Right Outer, Full Outer (by checking both left and right boxes), or (by leaving all boxes empty) Inner Join). The text describing which rows are retrieved by the join is updated.

For a lookup:

Select the Multiple Match Rows by selecting an option from the drop down list. The Technical Description field is updated with the SQL code representing the lookup, using fully-qualified attribute names.

If applicable, use the Lookup Attributes Default Value & Order By table to specify how a result set that contains multiple rows should be ordered.

Select a value for the No-Match Rows property to indicate the action to be performed when there are no rows that satisfy the lookup condition.


	
Optionally, for joins, if you want to use an ordered join syntax for this join, check the Generate ANSI Syntax box.

The Join Order box will be checked if you enable Generate ANSI Syntax, and the join will be automatically assigned an order number.


	
For joins inside of datasets, define the join order. Check the Join Order check box, and then in the User Defined field, enter an integer. A join component with a smaller join order number means that particular join will be processed first among other joins. The join order number determines how the joins are ordered in the FROM clause. A smaller join order number means that the join will be performed earlier than other joins. This is important when there are outer joins in the dataset.

For example: A mapping has two joins, JOIN1 and JOIN2. JOIN1 connects A and B, and its join type is LEFT OUTER JOIN. JOIN2 connects B and C, and its join type is RIGHT OUTER JOIN.

To generate (A LEFT OUTER JOIN B) RIGHT OUTER JOIN C, assign a join order 10 for JOIN1 and 20 for JOIN2.

To generate A LEFT OUTER JOIN (B RIGHT OUTER JOIN C), assign a join order 20 for JOIN1 and 10 for JOIN2.









Creating Pivots

A pivot component is a projector component (see: "Projector Components") that lets you transform data that is contained in multiple input rows into a single output row. The pivot component lets you extract data from a source once, and produce one row from a set of source rows that are grouped by attributes in the source data. The pivot component can be placed anywhere in the data flow of a mapping.



Example: Pivoting Sales Data

Table 8-2 shows a sample of data from the SALES relational table. The QUARTER attribute has 4 possible character values, one for each quarter of the year. All the sales figures are contained in one attribute, SALES.


Table 8-2 SALES

	YEAR	QUARTER	SALES
	
2010

	
Q1

	
10.5


	
2010

	
Q2

	
11.4


	
2010

	
Q3

	
9.5


	
2010

	
Q4

	
8.7


	
2011

	
Q1

	
9.5


	
2011

	
Q2

	
10.5


	
2011

	
Q3

	
10.3


	
2011

	
Q4

	
7.6








Table 8-3 depicts data from the relational table SALES after pivoting the table. The data that was formerly contained in the QUARTER attribute (Q1, Q2, Q3, and Q4) corresponds to 4 separate attributes (Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales). The sales figures formerly contained in the SALES attribute are distributed across the 4 attributes for each quarter.


Table 8-3 PIVOTED DATA

	Year	Q1_Sales	Q2_Sales	Q3_Sales	Q4_Sales
	
2010

	
10.5

	
11.4

	
9.5

	
8.7


	
2011

	
9.5

	
10.5

	
10.3

	
7.6












The Row Locator

When you use the pivot component, multiple input rows are transformed into a single row based on the row locator. The row locator is an attribute that you must select from the source to correspond with the set of output attributes that you define. It is necessary to specify a row locator to perform the pivot operation.

In this example, the row locator is the attribute QUARTER from the SALES table and it corresponds to the attributes Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales attributes in the pivoted output data.






Using the Pivot Component

To use a pivot component in a mapping:

	
Drag and drop the source datastore into the logical diagram.


	
Drag and drop a Pivot component from the component palette into the logical diagram.


	
From the source datastore drag and drop the appropriate attributes on the pivot component. In this example, the YEAR attribute.




	
Note:

Do not drag the row locator attribute or the attributes that contain the data values that correspond to the output attributes. In this example, QUARTER is the row locator attribute and SALES is the attribute that contain the data values (sales figures) that correspond to the Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales output attributes.










	
Select the pivot component. The properties of the pivot component are displayed in the Property Inspector.


	
Enter a name and description for the pivot component.


	
If required, change the Aggregate Function for the pivot component. The default is MIN.


	
Type in the expression or use the Expression Editor to specify the row locator. In this example, since the QUARTER attribute in the SALES table is the row locator, the expression will be SALES.QUARTER.


	
Under Row Locator Values, click the + sign to add the row locator values. In this example, the possible values for the row locator attribute QUARTER are Q1, Q2, Q3, and Q4.


	
Under Attributes, add output attributes to correspond to each input row. If required, you can add new attributes or rename the listed attributes.

In this example, add 4 new attributes, Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales that will correspond to 4 input rows Q1, Q2, Q3, and Q4 respectively.


	
If required, change the expression for each attribute to pick up the sales figures from the source and select a matching row for each attribute.

In this example, set the expressions for each attribute to SALES.SALES and set the matching rows to Q1, Q2, Q3, and Q4 respectively.


	
Drag and drop the target datastore into the logical diagram.


	
Connect the pivot component to the target datastore by dragging a link from the output (right) connector of the pivot component to the input (left) connector of the target datastore.


	
Drag and drop the appropriate attributes of the pivot component on to the target datastore. In this example, YEAR, Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales.


	
Go to the physical diagram and assign new KMs if you want to.

Save and execute the mapping to perform the pivot operation.











Creating Sets

A set component is a projector component (see: "Projector Components") that combines multiple input flows into one using set operation such as UNION, INTERSECT, EXCEPT, MINUS and others. The behavior reflects the SQL operators.

Additional input flows can be added to the set component by connecting new flows to it. The number of input flows is shown in the list of Input Connector Points in the Operators tab. If an input flow is removed, the input connector point needs to be removed as well.

To create a set from two or more sources:

	
Drag and drop a Set component from the component palette into the logical diagram.


	
Define the attributes of the set if the attributes will be different from the source components. To do this, select the Attributes tab in the property inspector, and click the green plus icon to add attributes. Select the new attribute names in the Target column and assign them appropriate values.

If Attributes will be the same as those in a source component, use attribute matching (see step 4).


	
Create a connection from the first source by dragging a line from the connector port of the source to the connector port of the Set component.


	
The Attribute Matching dialog will be shown. If attributes of the set should be the same as the source component, check the Create Attributes on Target box (see: "Attribute Matching").


	
If necessary, map all attributes from source to target that were not mapped through attribute matching, and create transformation expressions as necessary (see: "Defining Expressions and Conditions").


	
All mapped attributes will be marked by a yellow arrow in the logical diagram. This shows that not all sources have been mapped for this attribute; a set has at least two sources.


	
Repeat the connection and attribute mapping steps for all sources to be connected to this set component. After completion, no yellow arrows should remain.


	
In the property inspector, select the Operators tab and select cells in the Operator column to choose the appropriate set operators (UNION, EXCEPT, INTERSECT, and so on). UNION is chosen by default. You can also change the order of the connected sources to change the set behavior.







	
Note:

You can set Execute On Hint on the attributes of the set component, but there is also an Execute On Hint property for the set component itself. The hint on the component indicates the preferred location where the actual set operation (UNION, EXCEPT, and so on) is performed, while the hint on an attribute indicates where the preferred location of the expression is performed.

A common use case is that the set operation is performed on a staging execution unit, but some of its expressions can be done on the source execution unit. For more information about execution units, see "Configuring Execution Locations".














Creating Sorts

A Sort is a projector component (see: "Projector Components") that will apply a sort order to the rows of the processed dataset, using the SQL ORDER BY statement.

To create a sort on a source datastore:

	
Drag and drop a Sort component from the component palette into the logical diagram.


	
Drag the attribute to be sorted on from a preceding component onto the sort component. If the rows should be sorted based on multiple attributes, they can be dragged in desired order onto the sort component.


	
Select the sort component and select the Condition tab in the property inspector. The Sorter Condition field follows the syntax of the SQL ORDER BY statement of the underlying database; multiple fields can be listed separated by commas, and ASC or DESC can be appended after each field to define if the sort will be ascending or descending.









Creating Splits

A Split is a selector component (see: "Selector Components") that divides a flow into two or more flows based on specified conditions. Split conditions are not necessarily mutually exclusive: a source row is evaluated against all split conditions and may be valid for multiple output flows.

If a flow is divided unconditionally into multiple flows, no split component is necessary: you can connect multiple downstream components to a single outgoing connector port of any preceding component, and the data output by that preceding component will be routed to all downstream components.

A split component is used to conditionally route rows to multiple proceeding flows and targets.

To create a split to multiple targets in a mapping:

	
Drag and drop a Split component from the component palette into the logical diagram.


	
Connect the split component to the preceding component by dragging a line from the preceding component to the split component.


	
Connect the split component to each following component. If either of the upstream or downstream components contain attributes, the Attribute Mapping Dialog will appear. In the Connection Path section of the dialog, it will default to the first unmapped connector point and will add connector points as needed. Change this selection if a specific connector point should be used.


	
In the property inspector, open the Split Conditions tab. In the Output Connector Points table, enter expressions to select rows for each target. If an expression is left empty, all rows will be mapped to the selected target. Check the Remainder box to map all rows that have not been selected by any of the other targets.









Creating Subquery Filters

A subquery filter component is a projector component (see: "Projector Components") that lets you to filter rows based on the results of a subquery. The conditions that you can use to filter rows are EXISTS, NOT EXISTS, IN, and NOT IN.

For example, the EMP datastore contains employee data and the DEPT datastore contains department data. You can use a subquery to fetch a set of records from the DEPT datastore and then filter rows from the EMP datastore by using one of the subquery conditions.

A subquery filter component has two input connector points and one output connector point. The two input connector points are Driver Input connector point and Subquery Filter Input connector point. The Driver Input connector point is where the main datastore is set, which drives the whole query. The Subquery Filter Input connector point is where the datastore that is used in the sub-query is set. In the example, EMP is the Driver Input connector point and DEPT is the Subquery Filter Input connector point.

To filter rows using a subquery filter component:

	
Drag and drop a subquery filter component from the component palette into the logical diagram.


	
Connect the subquery filter component with the source datastores and the target datastore.


	
Drag and drop the input attributes from the source datastores on the subquery filter component.


	
Drag and drop the output attributes of the subquery filter component on the target datastore.


	
Go to the Connector Points tab and select the input datastores for the driver input connector point and the subquery filter input connector point.


	
Click the subquery filter component. The properties of the subquery filter component are displayed in the Property Inspector.


	
Go to the Attributes tab. The output connector point attributes are listed. Set the expressions for the driver input connector point and the subquery filter connector point.




	
Note:

You are required to set an expression for the subquery filter input connector point only if the subquery filter input role is set to one of the following:

IN, NOT IN, =, >, <, >=, <=, !=, <>, ^=










	
Go to the Condition tab.


	
Type an expression in the Subquery Filter Condition field. It is necessary to specify a subquery filter condition if the subquery filter input role is set to EXISTS or NOT EXISTS.


	
Select a subquery filter input role from the Subquery Filter Input Role drop-down list.


	
Select a group comparison condition from the Group Comparison Condition drop-down list. A group comparison condition can be used only with the following subquery input roles:

=, >, <, >=, <=, !=, <>, ^=


	
Save and then execute the mapping.









Creating Table Functions

A table function component is a projector component (see: "Projector Components") that represents a table function in a mapping. Table function components enable you to manipulate a set of input rows and return another set of output rows of the same or different cardinality. The set of output rows can be queried like a physical table. A table function component can be placed anywhere in a mapping, as a source, a target, or a data flow component.

A table function component can have multiple input connector points and one output connector point. The input connector point attributes act as the input parameters for the table function, while the output connector point attributes are used to store the return values.

For each input connector, you can define the parameter type, REF_CURSOR or SCALAR, depending on the type of attributes the input connector point will hold.

To use a table function component in a mapping:

	
Create a table function in the database if it does not exist.


	
Right-click the Mappings node and select New Mapping.


	
Drag and drop the source datastore into the logical diagram.


	
Drag and drop a table function component from the component palette into the logical diagram. A table function component is created with no input connector points and one default output connector point.


	
Click the table function component. The properties of the table function component are displayed in the Property Inspector.


	
In the property inspector, go to the Attributes tab.


	
Type the name of the table function in the Name field. If the table function is in a different schema, type the function name as SCHEMA_NAME.FUNCTION_NAME.


	
Go to the Connector Points tab and click the + sign to add new input connector points. Do not forget to set the appropriate parameter type for each input connector.




	
Note:

Each REF_CURSOR attribute must be held by a separate input connector point with its parameter type set to REF_CURSOR. Multiple SCALAR attributes can be held by a single input connector point with its parameter type set to SCALAR.










	
Go to the Attributes tab and add attributes for the input connector points (created in previous step) and the output connector point. The input connector point attributes act as the input parameters for the table function, while the output connector point attributes are used to store the return values.


	
Drag and drop the required attributes from the source datastore on the appropriate attributes for the input connector points of the table function component. A connection between the source datastore and the table function component is created.


	
Drag and drop the target datastore into the logical diagram.


	
Drag and drop the output attributes of the table function component on the attributes of the target datastore.


	
Go to the physical diagram of the mapping and ensure that the table function component is in the correct execution unit. If it is not, move the table function to the correct execution unit.


	
Assign new KMs if you want to.


	
Save and then execute the mapping.









Creating Unpivots

An unpivot component is a projector component (see: "Projector Components") that lets you transform data that is contained across attributes into multiple rows.

The unpivot component does the reverse of what the pivot component does. Similar to the pivot component, an unpivot component can be placed anywhere in the flow of a mapping.

The unpivot component is specifically useful in situations when you extract data from non-relational data sources such as a flat file, which contains data across attributes rather than rows.



Example: Unpivoting Sales Data

The external table, QUARTERLY_SALES_DATA, shown in Table 8-4, contains data from a flat file. There is a row for each year and separate attributes for sales in each quarter.


Table 8-4 QUARTERLY_SALES_DATA

	Year	Q1_Sales	Q2_Sales	Q3_Sales	Q4_Sales
	
2010

	
10.5

	
11.4

	
9.5

	
8.7


	
2011

	
9.5

	
10.5

	
10.3

	
7.6








Table 8-5 shows a sample of the data after an unpivot operation is performed. The data that was formerly contained across multiple attributes (Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales) is now contained in a single attribute (SALES). The unpivot component breaks the data in a single attribute (Q1_Sales) into two attributes (QUARTER and SALES). A single row in QUARTERLY_SALES_DATA corresponds to 4 rows (one for sales in each quarter) in the unpivoted data.


Table 8-5 UNPIVOTED DATA

	YEAR	QUARTER	SALES
	
2010

	
Q1

	
10.5


	
2010

	
Q2

	
11.4


	
2010

	
Q3

	
9.5


	
2010

	
Q4

	
8.7


	
2011

	
Q1

	
9.5


	
2011

	
Q2

	
10.5


	
2011

	
Q3

	
10.3


	
2011

	
Q4

	
7.6












The Row Locator

The row locator is an output attribute that corresponds to the repeated set of data from the source. The unpivot component transforms a single input attribute into multiple rows and generates values for a row locator. The other attributes that correspond to the data from the source are referred as value locators. In this example, the attribute QUARTER is the row locator and the attribute SALES is the value locator.




	
Note:

To use the unpivot component, you are required to create the row locator and the value locator attributes for the unpivot component.

The Value Locator field in the Unpivot Transforms table can be populated with an arbitrary expression. For example:


UNPIVOT_EMP_SALES.Q1_SALES + 100














Using the Unpivot Component

To use an unpivot component in a mapping:

	
Drag and drop the source data store into the logical diagram.


	
Drag and drop an unpivot component from the component palette into the logical diagram.


	
From the source datastore drag and drop the appropriate attributes on the unpivot component. In this example, the YEAR attribute.




	
Note:

Do not drag the attributes that contain the data that corresponds to the value locator. In this example, Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales.










	
Select the unpivot component. The properties of the unpivot component are displayed in the Property Inspector.


	
Enter a name and description for the unpivot component.


	
Create the row locator and value locator attributes using the Attribute Editor. In this example, you need to create two attributes named QUARTER and SALES.




	
Note:

Do not forget to define the appropriate data types and constraints (if required) for the attributes.










	
In the Property Inspector, under UNPIVOT, select the row locator attribute from the Row Locator drop-down list. In this example, QUARTER.

Now that the row locator is selected, the other attributes can act as value locators. In this example, SALES.


	
Under UNPIVOT TRANSFORMS, click + to add transform rules for each output attribute. Edit the default values of the transform rules and specify the appropriate expressions to create the required logic.

In this example, you need to add 4 transform rules, one for each quarter. The transform rules define the values that will be populated in the row locator attribute QUARTER and the value locator attribute SALES. The QUARTER attribute must be populated with constant values (Q1, Q2, Q3, and Q4), while the SALES attribute must be populated with the values from source datastore attributes (Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales).


	
Leave the INCLUDE NULLS check box selected to generate rows with no data for the attributes that are defined as NULL.


	
Drag and drop the target datastore into the logical diagram.


	
Connect the unpivot component to the target datastore by dragging a link from the output (right) connector of the unpivot component to the input (left) connector of the target datastore.


	
Drag and drop the appropriate attributes of the unpivot component on to the target datastore. In this example, YEAR, QUARTER, and SALES.


	
Go to the physical diagram and assign new KMs if you want to.


	
Click Save and then execute the mapping to perform the unpivot operation.













Creating a Mapping Using a Dataset

A dataset component is a container component that allows you to group multiple data sources and join them through relationship joins. A dataset can contain the following components:

	
Datastores


	
Joins


	
Lookups


	
Filters


	
Reusable Mappings: Only reusable mappings with no input signature and one output signature are allowed.




Create Joins and lookups by dragging an attribute from one datastore to another inside the dataset. A dialog is shown to select if the relationship will be a join or lookup.




	
Note:

A driving table will have the key to look up, while the lookup table has additional information to add to the result.

In a dataset, drag an attribute from the driving table to the lookup table. An arrow will point from the driving table to the lookup table in the diagram.

By comparison, in a flow-based lookup (a lookup in a mapping that is not inside a dataset), the driving and lookup sources are determined by the order in which connections are created. The first connection is called DRIVER_INPUT1, the second connection LOOKUP_INPUT1.









Create a filter by dragging a datastore or reusable mapping attribute onto the dataset background. Joins, lookups, and filters cannot be dragged from the component palette into the dataset.

This section contains the following topics:

	
Differences Between Flow and Dataset Modeling


	
Creating a Dataset in a Mapping


	
Converting a Dataset to Flow-Based Mapping






Differences Between Flow and Dataset Modeling

Datasets are container components which contain one or more source datastores, which are related using filters and joins. To other components in a mapping, a dataset is indistinguishable from any other projector component (like a datastore); the results of filters and joins inside the dataset are represented on its output port.

Within a dataset, data sources are related using relationships instead of a flow. This is displayed using an entity relationship diagram. When you switch to the physical tab of the mapping editor, datasets disappear: ODI models the physical flow of data exactly the same as if a flow diagram had been defined in the logical tab of the mapping editor.

Datasets mimic the ODI 11g way of organizing data sources, as opposed to the flow metaphor used in an ODI 12c mapping. If you import projects from ODI 11g, interfaces converted into mappings will contain datasets containing your source datastores.

When you create a new, empty mapping, you are prompted whether you would like to include an empty dataset. You can delete this empty dataset without harm, and you can always add an empty dataset to any mapping. The option to include an empty dataset is purely for your convenience.

A dataset exists only within a mapping or reusable mapping, and cannot be independently designed as a separate object.






Creating a Dataset in a Mapping

To create a dataset in a mapping, drag a dataset from the component palette into the logical diagram. You can then drag datastores into the dataset from the Models section of the Designer Navigator. Drag attributes from one datastore to another within a dataset to define join and lookup relationships.

Drag a connection from the dataset's output connector point to the input connector point on other components in your mapping, to integrate it into your data flow.




	
See Also:

To create a Join or Lookup inside a Dataset, see: "Creating a Join or Lookup"














Converting a Dataset to Flow-Based Mapping

You can individually convert datasets into a flow-based mapping diagram, which is merged with the parent mapping flow diagram.

The effect of conversion of a dataset into a flow is the permanent removal of the dataset, together with the entity relationship design. It is replaced by an equivalent flow-based design. The effect of the conversion is irreversible.

To convert a dataset into a flow-based mapping:

	
Select the dataset in the mapping diagram.


	
Right click on the title and select Convert to Flow from the context menu.


	
A warning and confirmation dialog is displayed. Click Yes to perform the conversion, or click No to cancel the conversion.

The dataset is converted into flow-based mapping components.











Physical Design

The physical tab shows the distribution of execution among different execution units that represent physical servers. ODI computes a default physical mapping design containing execution units and groups based on the logical design, the topology of those items and any rules you have defined.

You can also customize this design by using the physical diagram. You can use the diagram to move components between execution units, or onto the diagram background, which creates a separate execution unit. Multiple execution units can be grouped into execution groups, which enable parallel execution of the contained execution units.

A mapping can have multiple physical mapping designs; they are listed in tabs under the diagram. By having multiple physical mapping designs you can create different execution strategies for the same mapping.

To create new physical mapping tabs, click the Create New tab.

To delete physical mapping designs, right-click on the physical mapping design tab you want to delete, and select Delete from the context menu.

Physical components define how a mapping is executed at runtime; they are the physical representation of logical components. Depending on the logical component a physical component might have a different set of properties.

This section contains the following topics:

	
About the Physical Mapping Diagram


	
Selecting LKMs, IKMs and CKMs


	
Configuring Execution Locations


	
Adding Commands to be Executed Before and After a Mapping


	
Configuring In-Session Parallelism


	
Configuring Parallel Target Table Load


	
Configuring Temporary Indexes


	
Configuring Journalizing


	
Configuring Extraction Options


	
Creating and Managing Physical Mapping Designs






About the Physical Mapping Diagram

In the physical diagram, the following items appear:

	
Physical Mapping Design: The entire physical diagram represents one physical mapping design. Click the background or select the white tab with the physical mapping design label to display the physical mapping properties. By default, the staging location is colocated on the target, but you can explicitly select a different staging location to cause ODI to automatically move staging to a different host.

You can define additional physical mapping designs by clicking the small tab at the bottom of the physical diagram, next to the current physical mapping design tab. A new physical mapping design is created automatically from the logical design of the mapping.


	
Execution Groups: Yellow boxes display groups of objects called execution units, which are executed in parallel within the same execution group. These are usually Source Groups and Target Groups:

	
Source Execution Group(s): Source Datastores that are within the same dataset or are located on the same physical data server are grouped in a single source execution group in the physical diagram. A source execution group represents a group of datastores that can be extracted at the same time.


	
Target Execution Group(s): Target Datastores that are located on the same physical data server are grouped in a single target execution group in the physical diagram. A target execution group represents a group of datastores that can be written to at the same time.





	
Execution Units: Within the yellow execution groups are blue boxes called execution units. Execution units within a single execution group are on the same physical data server, but may be different structures.


	
Access Points: In the target execution group, whenever the flow of data goes from one execution unit to another there is an access point (shown with a round icon). Loading Knowledge Modules (LKMs) control how data is transferred from one execution unit to another.

An access point is created on the target side of a pair of execution units, when data moves from the source side to the target side (unless you use Execute On Hint in the logical diagram to suggest a different execution location). You cannot move an access point node to the source side. However, you can drag an access point node to the empty diagram area and a new execution unit will be created, between the original source and target execution units in the diagram.


	
Components: mapping components such as joins, filters, and so on are also shown on the physical diagram.




You use the following knowledge modules (KMs) in the physical tab:

	
Loading Knowledge Modules (LKMs): LKMs define how data is moved. One LKM is selected for each access point for moving data from the sources to a staging area. An LKM can be also selected to move data from a staging area not located within a target execution unit, to a target, when a single technology IKM is selected for the staging area. Select an access point to define or change its LKM in the property inspector.


	
Integration Knowledge Modules (IKMs) and Check Knowledge Modules (CKMs): IKMs and CKMs define how data is integrated into the target. One IKM and one CKM is typically selected on a target datastore. When the staging area is different from the target, the selected IKM can be a multi-technology IKM that moves and integrates data from the staging area into the target. Select a target datastore to define or change its IKM and CKM in the property inspector.







	
Notes:

	
Only built-in KMs, or KMs that have already been imported into the project or the global KM list, can be selected in the mapping. Make sure that you have imported the appropriate KMs in the project before proceeding.


	
For more information on the KMs and their options, refer to the KM description and to the Connectivity and Knowledge Modules Guide for Oracle Data Integrator.

















Selecting LKMs, IKMs and CKMs

ODI automatically selects knowledge modules in the physical diagram as you create your logical diagram.




	
Note:

The Integration Type property of a target datastore (which can have the values Control Append, Incremental Update, or Slowly Changing Dimension) is referenced by ODI when it selects a KM. This property is also used to restrict the IKM selection shown, so you will only see IKMs listed that are applicable.









You can use the physical diagram to change the KMs in use.


To change the LKM in use:

	
In the physical diagram, select an access point. The Property Inspector opens for this object.


	
Select the Loading Knowledge Module tab, and then select a different LKM from the Loading Knowledge Module list.


	
KMs are set with default options that work in most use cases. You can optionally modify the KM Options.




	
Note:

If an identically-named option exists, when switching from one KM to another KM options of the previous KM are retained. However, options that are not duplicated in the new KM are lost.













To change the IKM in use:




	
Note:

In order to use a multi-connect IKM on the target node, you must select LKM SQL Multi-Connect, or no LKM, for the access point of that execution unit. If another LKM is selected, only mono-connect IKMs are selectable.









	
In the physical diagram, select a target datastore by clicking its title. The Property Inspector opens for this object.


	
In the Property Inspector, select the Integration Knowledge Module tab, and then select an IKM from the Integration Knowledge Module list.


	
KMs are set with default options that work in most use cases. You can optionally modify the KM Options.




	
Note:

If an identically-named option exists, when switching from one KM to another KM options of the previous KM are retained. However, options that are not duplicated in the new KM are lost.













To change the CKM in use:

	
In the physical diagram, select a target datastore by clicking its title. The Property Inspector opens for this object.


	
In the Property Inspector, select the Check Knowledge Module tab, and then select a CKM from the Check Knowledge Module list.


	
KMs are set with default options that work in most use cases. You can optionally modify the KM Options.




	
Note:

If an identically-named option exists, when switching from one KM to another KM options of the previous KM are retained. However, options that are not duplicated in the new KM are lost.

















Configuring Execution Locations

In the physical tab of the mapping editor, you can change the staging area and determine where components will be executed. When you designed the mapping using components in the logical diagram, you optionally set preferred execution locations using the Execute On Hint property. In the physical diagram, ODI attempts to follow these hints where possible.

You can further manipulate execution locations in the physical tab. See the following topics for details:

	
Moving Physical Nodes


	
Moving Expressions


	
Defining New Execution Units






Moving Physical Nodes

You can move the execution location of a physical node. Select the node and drag it from one Execution Group into another Execution Group. Or, drag it to a blank area of the physical diagram, and ODI will automatically create a new Execution Group for the component.

You can change the order of execution of certain components only. The following components can be reordered on the physical diagram:

	
Expressions


	
Filters


	
Joins


	
Lookups









Moving Expressions

You can move expressions in the physical diagram. Select the Execution Unit and in the property inspector, select the Expressions tab. The execution location of the expression is shown in the Execute on property. Double-click the property to alter the execution location.






Defining New Execution Units

You can define a new execution unit by dragging a component from its current execution unit onto a blank area of the physical diagram. A new execution unit and group is created. Select the execution unit to modify its properties using the property inspector.








Adding Commands to be Executed Before and After a Mapping

ODI allows the addition of commands to be executed before and after a mapping. These commands can be in ODI-supported languages such as SQL, Jython, Groovy, and others. In the SQL language the Begin Mapping and End Mapping commands are executed in the same transaction as the mapping. The physical design of a mapping has the following properties to control this behavior:


	Property	Description
	
Begin Mapping Command

	
Command to be executed at the beginning of the mapping.


	
Technology for Begin Mapping Command

	
Technology that this command will be executed with.


	
Location for Begin Mapping Command

	
Logical Schema that this command will be executed in.


	
End Mapping Command

	
Command to be executed at the end of the mapping.


	
Technology for End Mapping Command

	
Technology that this command will be executed with.


	
Location for End Mapping Command

	
Logical Schema that this command will be executed in.








You can view and set these properties from the Property Inspector by selecting a Physical Mapping Design.






Configuring In-Session Parallelism

ODI agent is the scheduler that runs an entire ODI mapping job on a given host. If your have two or more loads, it will either run them one after another (serialized), or simultaneously (parallelized, using separate processor threads).

Execution units in the same execution group are parallelized. If you move an execution unit into its own group, it is no longer parallelized with other execution units: it is now serialized. The system will select the order in which separate execution groups are run.

You might choose to run loads serially to reduce instantaneous system resource usage, while you might choose to run loads in parallel to reduce the longevity of system resource usage.






Configuring Parallel Target Table Load

You can enable parallel target table loading in a physical mapping design. Select the physical mapping design (by clicking on the tab at the bottom of the physical diagram, or clicking an empty area of the diagram) and in the property inspector, check the box for the property Use Unique Temporary Object Names.

This option allows multiple instances of the same mapping to be executed concurrently. To load data from source to staging area, C$ tables are created in the staging database.




	
Note:

In ODI 11g, C$ table names were derived from the target table of the interface. As a result, when multiple instances of the same mapping were executed at the same time, data from different sessions could load into the same C$ table and cause conflicts.

In ODI 12c, if the option Use Unique Temporary Object Names is set to true, the system generates a globally-unique name for C$ tables for each mapping execution. This prevents any conflict from occurring.














Configuring Temporary Indexes

If you want ODI to automatically generate a temporary index to optimize the execution of a filter, join, or datastore, select the node in the physical diagram. In the property inspector, select the Temporary Indexes tab. You can double-click the Index Type field to select a temporary index type.




	
Note:

The creation of temporary indexes may be a time consuming operation in the overall flow. Oracle recommends reviewing execution statistics and comparing the execution time saved by the indexes to the time spent creating them.














Configuring Journalizing

A source datastore can be configured in the physical diagram to use journalized data only. This is done by enabling Journalized Data Only in the General properties of a source datastore. The check box is only available if the referenced datastore is added to CDC in the model navigator.

Only one datastore per mapping can have journalizing enabled.

For more information about journalizing, see Chapter 4, "Using Journalizing."






Configuring Extraction Options

Each component in the physical diagram, excluding access points and target datastores, has an Extraction Options tab in the property inspector. Extraction options influence the way that SQL is generated for the given component. Most components have an empty list of extraction options, meaning that no further configuration of the SQL generation is supported.

Extraction options are driven by the Extract Knowledge Module (XKM) selected in the Advanced sub-tab of the Extract Options tab. XKMs are part of ODI and cannot be created or modified by the user.






Creating and Managing Physical Mapping Designs

The entire physical diagram represents one physical mapping design. Click the background or select the white tab with the physical mapping design label to display the physical mapping properties for the displayed physical mapping design.

You can define additional physical mapping designs by clicking the small tab at the bottom of the physical diagram, next to the current physical mapping design tab(s). A new physical mapping design is created automatically, generated from the logical design of the mapping. You can modify this physical mapping design, and save it as part of the mapping.

For example, you could use one physical mapping design for your initial load, and another physical mapping design for incremental load using changed data capture (CDC). The two physical mapping designs would have different journalizing and knowledge module settings.

As another example, you could use different optimization contexts for each physical mapping design. Each optimization context represents a slightly different users' topology. One optimization context can represent a development environment, and another context represents a testing environment. You could select different KMs appropriate for these two different topologies.








Reusable Mappings

Reusable mappings allow you to encapsulate a multi-step integration (or portion of an integration) into a single component, which you can save and use just as any other components in your mappings. Reusable mappings are a convenient way to avoid the labor of creating a similar or identical subroutine of data manipulation that you will use many times in your mappings.

For example, you could load data from two tables in a join component, pass it through a filter component, and then a distinct component, and then output to a target datastore. You could then save this procedure as a reusable mapping, and place it into future mappings that you create or modify.

After you place a reusable mapping component in a mapping, you can select it and make modifications to it that only affect the current mapping.

Reusable mappings consist of the following:

	
Input Signature and Output Signature components: These components describe the attributes that will be used to map into and out of the reusable mapping. When the reusable mapping is used in a mapping, these are the attributes that can be matched by other mapping components.


	
Regular mapping components: Reusable mappings can include all of the regular mapping components, including datastores, projector components, and selector components. You can use these exactly as in regular mappings, creating a logical flow.




By combining regular mapping components with signature components, you can create a reusable mapping intended to serve as a data source, as a data target, or as an intermediate step in a mapping flow. When you work on a regular mapping, you can use a reusable mapping as if it were a single component.



Creating a Reusable Mapping

You can create a reusable mapping within a project, or as a global object. To create a reusable mapping, perform the following steps:

	
From the designer navigator:

Open a project, right-click Reusable Mappings, and select New Reusable Mapping.

Or, expand the Global Objects tree, right click Global Reusable Mappings, and select New Reusable Mapping.


	
Enter a name and, optionally, a description for the new reusable mapping. Optionally, select Create Default Input Signature and/or Create Default Output Signature. These options add empty input and output signatures to your reusable mapping; you can add or remove input and output signatures later while editing your reusable mapping.




	
Note:

In order to make use of these signatures, you will need to connect them to your reusable mapping flow.










	
Drag components from the component palette into the reusable mapping diagram, and drag datastores and other reusable mappings from the designer navigator, to assemble your reusable mapping logic. Follow all of the same processes as for creating a normal mapping.




	
Note:

When you have a reusable mapping open for editing, the component palette contains the Input Signature and Output Signature components in addition to the regular mapping components.










	
Validate your reusable mapping by clicking the Validate the Mapping button (a green check mark icon). Any errors will be displayed in a new error pane.

When you are finished creating your reusable mapping, click File and select Save, or click the Save button, to save your reusable mapping. You can now use your reusable mapping in your mapping projects.











Editing Mappings Using the Property Inspector and the Structure Panel

You can use the Property Inspector with the Structure Panel to perform the same actions as on the logical and physical diagrams of the mapping editor, in a non-graphical form.


Using the Structure Panel

When creating and editing mappings without using the logical and physical diagrams, you will need to open the Structure Panel. The Structure Panel provides an expandable tree view of a mapping, which you can traverse using the tab keys, allowing you to select the components of your mapping. When you select a component or attribute in the Structure Panel, its properties are shown in the Property Inspector exactly the same as if you had selected the component in the logical or physical diagram.

The Structure Panel is useful for accessibility requirements, such as when using a screen reader.

To open the structure panel, select Window from the main menu and then click Structure. You can also open the Structure Panel using the hotkey Ctrl+Shift-S.

This section contains the following topics:

	
Adding and Removing Components


	
Editing a Component


	
Customizing Tables


	
Using Keyboard Navigation for Common Tasks






Adding and Removing Components

With the Property Inspector, the Component Palette, and the Structure Panel, you can add or remove components of a mapping.



Adding Components

To add a component to a mapping with the Component Palette and the Structure Panel:

	
With the mapping open in the Mapping Editor, open the Component Palette.


	
Select the desired component using the Tab key, and hit Enter to add the selected component to the mapping diagram and the Structure Panel.









Removing Components

To remove a component with the Structure Panel:

	
In the Structure Panel, select the component you want to remove.


	
While holding down Ctrl+Shift, hit Tab to open a pop-up dialog. Keep holding down Ctrl+Shift, and use the arrow keys to navigate to the left column and select the mapping. You can then use the right arrow key to select the logical or physical diagram. Release the Ctrl+Shift keys after you select the logical diagram.

Alternatively, select Windows > Documents... from the main menu bar. Select the mapping from the list of document windows, and click Switch to Document.


	
The component you selected in the Structure Panel in step 1 is now highlighted in the mapping diagram. Hit Delete to delete the component. A dialog box confirms the deletion.











Editing a Component

To edit a component of a mapping using the Structure Panel and the Property Inspector:

	
In the Structure Panel, select a component. The component's properties are shown in the Property Inspector.


	
In the Property Inspector, modify properties as needed. Use the Attributes tab to add or remove attributes. Use the Connector Points tab to add connections to other components in your mapping.


	
Expand any component in the Structure Panel to list individual attributes. You can then select individual attributes to show their properties in the Property Inspector.









Customizing Tables

There are two ways to customize the tables in the Property Inspector to affect which columns are shown. In each case, open the Structure Panel and select a component to display its properties in the Property Inspector. Then, select a tab containing a table and use one of the following methods:

	
From the table toolbar, click the Select Columns... icon (on the top right corner of the table) and then, from the drop down menu, select the columns to display in the table. Currently displayed columns are marked with a check mark.


	
Use the Customize Table Dialog:

	
From the table toolbar, click Select Columns....


	
From the drop down menu, select Select Columns...


	
In the Customize Table Dialog, select the columns to display in the table.


	
Click OK.












Using Keyboard Navigation for Common Tasks

This section describes the keyboard navigation in the Property Inspector.

Table 8-6 shows the common tasks and the keyboard navigation used in the Property Inspector.


Table 8-6 Keyboard Navigation for Common Tasks

	Navigation	Task
	
Arrow keys

	
Navigate: move one cell up, down, left, or right


	
TAB

	
Move to next cell


	
SHIFT+TAB

	
Move to previous cell


	
SPACEBAR

	
Start editing a text, display items of a list, or change value of a checkbox


	
CTRL+C

	
Copy the selection


	
CTRL+V

	
Paste the selection


	
ESC

	
Cancel an entry in the cell


	
ENTER

	
Complete a cell entry and move to the next cell or activate a button


	
DELETE

	
Clear the content of the selection (for text fields only)


	
BACKSPACE

	
Delete the content of the selection or delete the preceding character in the active cell (for text fields only)


	
HOME

	
Move to the first cell of the row


	
END

	
Move to the last cell of the row


	
PAGE UP

	
Move up to the first cell of the column


	
PAGE DOWN

	
Move down to the last cell of the column














Flow Control and Static Control

In a mapping, it is possible to set two points of control. Flow Control checks the data in the incoming flow before it gets integrated into a target, and Static Control checks constraints on the target datastore after integration.

IKMs can have options to run FLOW_CONTROL and to run STATIC_CONTROL. If you want to enable either of these you must set the option in the IKM, which is a property set on the target datastore. In the physical diagram, select the datastore, and select the Integration Knowledge Module tab in the property inspector. If flow control options are available, they are listed in the Options table. Double-click an option to change it.




	
Notes:

	
Flow control is not supported for component KMs like IKM Oracle Insert. For more information, see "Knowledge Modules" in Connectivity and Knowledge Modules Guide for Oracle Data Integrator. The description of each IKM indicates if it supports flow control.


	
In ODI 11g the CKM to be used when flow or static control is invoked was defined on the interface. ODI 12c supports multiple targets on different technologies within the same mapping, so the CKM is now defined on each target datastore












This section contains the following topics:

	
Setting up Flow Control


	
Setting up Static Control


	
Defining the Update Key






Setting up Flow Control

The flow control strategy defines how data is checked against the constraints defined on a target datastore before being integrated into this datastore. It is defined by a Check Knowledge Module (CKM). The CKM can be selected on the target datastore physical node. The constraints that checked by a CKM are specified in the properties of the datastore component on the logical tab.

To define the CKM used in a mapping, see: "Selecting LKMs, IKMs and CKMs".






Setting up Static Control

The post-integration control strategy defines how data is checked against the constraints defined on the target datastore. This check takes place once the data is integrated into the target datastore. It is defined by a CKM. In order to have the post-integration control running, you must set the STATIC_CONTROL option in the IKM to true. Post-integration control requires that a primary key is defined in the data model for the target datastore of your mapping.

The settings Maximum Number of Errors Allowed and Integration Errors as Percentage can be set on the target datastore component. Select the datastore in the logical diagram, and in the property inspector, select the Target tab.

Post-integration control uses the same CKM as flow control.






Defining the Update Key

If you want to use update or flow control features in your mapping, it is necessary to define an update key on the target datastore.

The update key of a target datastore component contains one or more attributes. It can be the unique key of the datastore that it is bound to, or a group of attributes that are marked as the key attribute. The update key identifies each record to update or check before insertion into the target.

To define the update key from a unique key:

	
In the mapping diagram, select the header of a target datastore component. The component's properties will be displayed in the Property Inspector.


	
In the Target properties, select an Update Key from the drop down list.







	
Notes:

	
The Target properties are only shown for datastores which are the target of incoming data. If you do not see the Target properties, your datastore does not have an incoming connection defined.


	
Only unique keys defined in the model for this datastore appear in this list.












You can also define an update key from the attributes if:

	
You don't have a unique key on your datastore.


	
You want to specify the key regardless of already defined keys.




When you define an update key from the attributes, you select manually individual attributes to be part of the update key.

To define the update key from the attributes:

	
Unselect the update key, if it is selected.


	
In the Target Datastore panel, select one of the attributes that is part of the update key to display the Property Inspector.


	
In the Property Inspector, under Target properties, check the Key box. A key symbol appears in front of the key attribute(s) in the datastore component displayed in the mapping editor logical diagram.


	
Repeat the operation for each attribute that is part of the update key.











Designing E-LT and ETL-Style Mappings




	
See Also:

E-LT and ETL are defined and described in "What is E-LT" in Understanding Oracle Data Integrator.









In an E-LT-style integration mapping, ODI processes the data in a staging area, which is located on the target. Staging area and target are located on the same RDBMS. The data is loaded from the source(s) to the target. To create an E-LT-style integration mapping, follow the standard procedure described in "Creating a Mapping".

In an ETL-style mapping, ODI processes the data in a staging area, which is different from the target. The data is first extracted from the source(s) and then loaded to the staging area. The data transformations take place in the staging area and the intermediate results are stored in temporary tables in the staging area. The data loading and transformation tasks are performed with the standard ELT KMs.

Oracle Data Integrator provides two ways for loading the data from the staging area to the target:

	
Using a Multi-connection IKM


	
Using an LKM and a mono-connection IKM




Depending on the KM strategy that is used, flow and static control are supported. See "Designing an ETL-Style Mapping" in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator for more information.


Using a Multi-connection IKM

A multi-connection IKM allows updating a target where the staging area and sources are on different data servers. Figure 8-3 shows the configuration of an integration mapping using a multi-connection IKM to update the target data.


Figure 8-3 ETL-Mapping with Multi-connection IKM

[image: Description of Figure 8-3 follows]






See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that corresponds to the technology of your staging area for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style mapping:

	
Create a mapping using the standard procedure as described in "Creating a Mapping". This section describes only the ETL-style specific steps.


	
In the Physical tab of the Mapping Editor, select a physical mapping design by clicking the desired physical mapping design tab and clicking on the diagram background. In the property inspector, the field Preset Staging Location defines the staging location. The empty entry specifies the target schema as staging location. Select a different schema as a staging location other than the target.


	
Select an Access Point component in the physical schema and go to the property inspector. For more information about Access Points, see: "About the Physical Mapping Diagram".


	
Select an LKM from the LKM Selector list to load from the source(s) to the staging area. See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that corresponds to the technology of your staging area to determine the LKM you can use.


	
Optionally, modify the KM options.


	
In the Physical diagram, select a target datastore. The property inspector opens for this target object.

In the Property Inspector, select an ETL multi-connection IKM from the IKM Selector list to load the data from the staging area to the target. See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that corresponds to the technology of your staging area to determine the IKM you can use.


	
Optionally, modify the KM options.





Using an LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in combination with a standard mono-connection IKM. Figure 8-4 shows the configuration of an integration mapping using an exporting LKM and a mono-connection IKM to update the target data. The exporting LKM is used to load the flow table from the staging area to the target. The mono-connection IKM is used to integrate the data flow into the target table.


Figure 8-4 ETL-Mapping with an LKM and a Mono-connection IKM

[image: Description of Figure 8-4 follows]






Note that this configuration (LKM + exporting LKM + mono-connection IKM) has the following limitations:

	
Neither simple CDC nor consistent CDC are supported when the source is on the same data server as the staging area (explicitly chosen in the Mapping Editor)


	
Temporary Indexes are not supported




See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that corresponds to the technology of your staging area for more information on when to use the combination of a standard LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

	
Create a mapping using the standard procedure as described in "Creating a Mapping". This section describes only the ETL-style specific steps.


	
In the Physical tab of the Mapping Editor, select a physical mapping design by clicking the desired physical mapping design tab and clicking on the diagram background. In the property inspector, the field Preset Staging Location defines the staging location. The empty entry specifies the target schema as staging location. Select a different schema as a staging location other than the target.


	
Select an Access Point component in the physical schema and go to the property inspector. For more information about Access Points, see: "About the Physical Mapping Diagram".


	
In the Property Inspector, in the Loading Knowledge Module tab, select an LKM from the Loading Knowledge Module drop-down list to load from the source(s) to the staging area. See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that corresponds to the technology of your staging area to determine the LKM you can use.


	
Optionally, modify the KM options. Double-click a cell in the Value column of the options table to change the value.


	
Select the access point node of a target execution unit. In the Property Inspector, in the Loading Knowledge Module tab, select an LKM from the Loading Knowledge Module drop-down list to load from the staging area to the target. See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that corresponds to the technology of your staging area to determine the LKM you can use.


	
Optionally, modify the options.


	
Select the Target by clicking its title. The Property Inspector opens for this object.

In the Property Inspector, in the Integration Knowledge Module tab, select a standard mono-connection IKM from the Integration Knowledge Module drop-down list to update the target. See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that corresponds to the technology of your staging area to determine the IKM you can use.


	
Optionally, modify the KM options.








6 Creating an Integration Project


This chapter describes the different components involved in an integration project, and explains how to start a project.

This chapter includes the following sections:

	
Introduction to Integration Projects


	
Creating a New Project


	
Managing Knowledge Modules


	
Organizing the Project with Folders






Introduction to Integration Projects

An integration project may be composed of several types of components. These components include organizational objects, such as folders, and development objects such as mappings and variables. "Oracle Data Integrator Project Components" details the different components involved in an integration project.

A project has also a defined life cycle which can be adapted to your practices. "Project Life Cycle" suggests a typical project life cycle.



Oracle Data Integrator Project Components

Components involved in a project include components contained in the project and global components referenced by the project. In addition, a project also uses components defined in the models and topology.



Oracle Data Integrator Project Components

The following components are stored into a project. They appear in the in the Project accordion in the Designer Navigator, under the project's node.


Folder

Folders are components that help organizing the work into a project. Folders contain packages, mappings, procedures, and subfolders.


Packages

A package is a workflow, made up of a sequence of steps organized into an execution diagram. Packages assemble and reference other components from a project such as mappings, procedure or variable. See Chapter 7, "Creating and Using Packages," for more information on packages.


Mappings

A mapping is a reusable dataflow. It is a set of declarative rules that describes the loading of one or several target datastores from one or more source datastores. See Chapter 8, "Creating and Using Mappings," for more information on mappings and reusable mappings.


Procedure

A Procedure is a reusable component that groups a sequence of operations that do not fit in the mapping concept.

Examples of procedures:

	
Wait and unzip a file


	
Send a batch of files via FTP


	
Receive emails


	
Purge a database





Variable

A variable's value is stored in Oracle Data Integrator. This value may change during the execution.


Sequence

A sequence is a variable automatically incremented when used. Between two uses the value is persistent.


User Functions

User functions allow you to define customized functions or "function aliases," for which you will define technology-dependent implementations. They are usable in mappings and procedures.

See Chapter 10, "Creating and Using Procedures, Variables, Sequences, and User Functions," for more information about the components described above.


Knowledge Modules

Oracle Data Integrator uses Knowledge Modules at several points of a project design. A Knowledge Module is a code template related to a given technology that provides a specific function (loading data, reverse-engineering, journalizing).


Marker

A component of a project may be flagged in order to reflect a methodology or organization. Flags are defined using markers. These markers are organized into groups, and can be applied to most objects in a project. See Chapter 16, "Organizing and Documenting Integration Projects," for more information on markers.


Scenario

When a package, mapping, procedure, or variable component has been fully developed, it is compiled in a scenario. A scenario is the execution unit for production. Scenarios can be scheduled for automated execution. See Chapter 11, "Using Scenarios," for more information on scenarios.






Global Components

Global components are similar to project objects. The main difference is their scope. They have a global scope and can be used in any project. Global objects include Variables, Knowledge Modules, Sequences, Markers, Reusable Mappings, and User Functions.








Project Life Cycle

The project life cycle depends on the methods and organization of your development team. The following steps must be considered as guidelines for creating, working with and maintaining an integration project.

	
Create a new project and import Knowledge Modules for this project.


	
Define the project organization and practices using folders, markers and documentation.


	
Create reusable components: mappings, procedures, variables, sequences. Perform unitary tests.


	
Assemble these components into packages. Perform integration tests.


	
Release the work in scenarios.


	
Optionally, organize scenarios into Load Plans. See Chapter 12, "Using Load Plans."











Creating a New Project

To create a project:

	
In Designer Navigator, click New Project in the toolbar of the Projects accordion.


	
Enter the Name of the project.


	
Keep or change the automatically-generated project code. Because this code is used to identify objects within this project, oracle recommends using a compact string. For example, if the project is called Corporate Datawarehouse, a compact code could be CORP_DWH.


	
From the File menu, click Save.




The new project appears in the Projects tree with one empty folder.






Managing Knowledge Modules

Knowledge Modules (KMs) are components of Oracle Data Integrator's integration technology. KMs contain the knowledge required by ODI to perform a specific set of tasks against a specific technology or set of technologies.

Oracle Data Integrator uses six different types of Knowledge Modules:

	
RKM (Reverse Knowledge Modules) are used to perform a customized reverse-engineering of data models for a specific technology. These KMs are used in data models. See Chapter 3, "Creating and Using Data Models and Datastores."


	
LKM (Loading Knowledge Modules) are used to extract data from source systems (files, middleware, database, etc.). These KMs are used in mappings. See Chapter 8, "Creating and Using Mappings."


	
JKM (Journalizing Knowledge Modules) are used to create a journal of data modifications (insert, update and delete) of the source databases to keep track of the changes. These KMs are used in data models and used for Changed Data Capture. See Chapter 4, "Using Journalizing."


	
IKM (Integration Knowledge Modules) are used to integrate (load) data to the target tables. These KMs are used in mappings. See Chapter 8, "Creating and Using Mappings."


	
CKM (Check Knowledge Modules) are used to check that constraints on the sources and targets are not violated. These KMs are used in data models' static check and mappings' flow checks. See Chapter 3, "Creating and Using Data Models and Datastores," and Chapter 8, "Creating and Using Mappings."


	
SKM (Service Knowledge Modules) are used to generate the code required for creating data services. These KMs are used in data models. See "Generating and Deploying Data Services" in Administering Oracle Data Integrator.






Project and Global Knowledge Modules

Knowledge Modules can be created and used as Project Knowledge Modules or Global Knowledge Modules. Global Knowledge Modules can be used in all projects, while Project Knowledge Modules can only be used within the project into which they have been imported.

Global KMs are listed in Designer Navigator in the Global Objects accordion, while Project KMs appear under the project into which they have been imported. See "Importing Objects" for more information on how to import a Knowledge Module.

ODI also provides Built-In KMs that are always present and don't need to be imported. All Built-In KMs are of type LKM or IKM and cover the technologies Oracle, File, and Generic. For more information about Built-In KMs see the Connectivity and Knowledge Modules Guide for Oracle Data Integrator.

When using global KMs, note the following:

	
Global KMs should only reference global objects. Project objects are not allowed.


	
You can only use global markers to tag a global KM.


	
It is not possible to transform a project KM into a global KM and vice versa.


	
If a global KM is modified, the changes will be seen by any ODI object using the Knowledge Module.


	
Be careful when deleting a global KM. A missing KM causes execution errors.


	
To distinguish global from project KMs, the prefix GLOBAL is used for the name of global KMs if they are listed with project KMs.


	
The order in which the global and project KMs are displayed changes depending on the context:

	
The KM Selector lists in the Mapping Editor displays first the project KMs, then the global KMs. The GLOBAL or PROJECT_CODE prefix is used.


	
The KM Selector lists in the Model editor displays first the global KMs, then the project KMs. The GLOBAL or PROJECT_CODE prefix is used.












Knowledge Module Naming Conventions

Oracle Data Integrator's KMs are named according to a convention that facilitates the choice of the KM. This naming convention is as follows:


Loading Knowledge Modules

They are named with the following convention: LKM <source technology> to <target technology> [(loading method)].

In this convention the source and target technologies are the source and target of the data movement this LKM can manage. When the technology is SQL, then the technology can be any technology supporting JDBC and SQL. When the technology is JMS, the technology can be any technology supporting JMS connectivity.

The loading method is the technical method used for moving the data. This method is specific to the technology involved. When no method is specified, the technical method used is a standard Java connectivity (JDBC, JMS and such) and data is loaded via the run-time agent. Using a KM that uses a loading method specific to the source and/or target technology usually brings better performances.

Examples of LKMs are given below:

	
LKM Oracle to Oracle (DBLink) loads data from an Oracle data server to another Oracle data server using the Oracle DBLink.


	
LKM File to Oracle (SQLLDR) loads data from a file into an Oracle data server using SQLLoader.


	
LKM SQL to SQL (Built-In) loads data from a data server supporting SQL into another one. This is the most generic loading Knowledge Module, which works for most data servers.





Integration Knowledge Modules

They are named with the following convention: IKM [<staging technology>] to <target technology> [<integration mode>] [(<integration method>)].

In this convention, the target technology is the technology of the target into which data will be integrated. IKMs may have a staging technology when the target is not located on the same server as the staging area. These KMs are referred to as Multi-technology IKMs. They are used when the target cannot be used as the staging area. For example, with the File technology.

The integration mode is the mode used for integrating record from the data flow into the target. Common modes are:

	
Append: Insert records from the flow into the target. It is possible to optionally delete all records from the target before the insert. Existing records are not updated.


	
Control Append: Same as above, but in addition the data flow is checked in the process.


	
Incremental Update: Same as above. In addition, it is possible to update existing records with data from the flow.


	
Slowly Changing Dimension: Integrate data into a table using Type 2 slowly changing dimensions (SCD).




The integration method is the technical method used for integrating the data into the target. This method is specific to the technologies involved. When no method is specified, the technical method used is a standard Java connectivity (JDBC, JMS and such) and SQL language. Using a KM that uses an integration method specific to a given technology usually brings better performance.

Examples of IKMs are given below:

	
IKM Oracle Merge integrates data from an Oracle staging area into an Oracle target located in the same data server using the incremental update mode. This KM uses the Oracle Merge Table feature.


	
IKM SQL to File Append integrates data from a SQL-enabled staging area into a file. It uses the append mode.


	
IKM SQL Incremental Update integrates data from a SQL-enabled staging area into a target located in the same data server. This IKM is suitable for all cases when the staging area is located on the same data server as the target, and works with most technologies.


	
IKM SQL to SQL Append integrates data from a SQL-enabled staging area into a target located in a different SQL-enabled data server. This IKM is suitable for cases when the staging area is located on a different server than the target, and works with most technologies.





Check Knowledge Modules

They are named with the following convention: CKM <staging technology>.

In this convention, the staging technology is the technology of the staging area into which data will be checked.

Examples of CKMs are given below:

	
CKM SQL checks the quality of an integration flow when the staging area is in a SQL-enabled data server. This is a very generic check Knowledge Module that works with most technologies.


	
CKM Oracle checks the quality of an integration flow when the staging area is in an Oracle data server.





Reverse-engineering Knowledge Modules

They are named with the following convention: RKM <reversed technology> [(reverse method)].

In this convention, the reversed technology is the technology of the data model that is reverse-engineered. The reverse method is the technical method used for performing the reverse-engineering process.

Examples of RKMs are given below:

	
RKM Oracle reverse-engineers an Oracle data model


	
RKM Netezza reverse-engineers a Netezza data model





Journalizing Knowledge Modules

They are named with the following convention: JKM <journalized technology> <journalizing mode> (<journalizing method>).

In this convention, the journalized technology is the technology into which changed data capture is activated. The journalizing mode is either Consistent or Simple. For more information about these modes, see Chapter 4, "Using Journalizing."

The journalizing method is the technical method for capturing the changes. When not specified, the method used for performing the capture process is triggers.

Examples of JKMs are given below:

	
JKM Oracle to Oracle Consistent (OGG Online) creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from an Oracle source to this staging server.


	
JKM Oracle Simple enables CDC for Oracle in simple mode using triggers.


	
JKM MSSQL Simple Creates the journalizing infrastructure for simple journalizing on Microsoft SQL Server tables using triggers.





Service Knowledge Modules

They are named with the following convention: SKM <data server technology>.

In this convention, the data server technology is the technology into which the data to be accessed with web services is stored.






Choosing the Right Knowledge Modules

Oracle Data Integrator provides a large range of Knowledge Modules out of the box. When starting an integration project, you can start with the built-in KMs introduced in ODI 12c, and import additional Knowledge Modules as needed for your project.

It is possible to import additional KMs after setting up the project, and it is possible to change the KMs used afterwards. The following guidelines can be used for choosing the right KMs when starting a new project:

	
Start with Generic KMs. The SQL KMs work with almost all technologies. If you are not comfortable with the source/target technologies you are working with, you can start by using the generic SQL KMs, as they use standard SQL. A simple project can start with the following generic KMs: LKM File to SQL, LKM SQL to SQL (Built-In), IKM SQL to SQL Append, IKM SQL Insert, CKM SQL.


	
Start with simple KMs. If you are not comfortable with the technologies you are integrating, do not start using the KMs using complex integration methods or modes.


	
Select KMs that match your source/target combinations to increase performance. The more specific the KM to a technology combination, the better the performance. For achieving the best performances, make sure to switch to KMs that match the source/target combination you have, and that leverage the features from these sources/targets.


	
Select KMs according to your infrastructure limitations. If it is not possible to use the target data servers as the staging area for security reasons, make sure to have multi-technology IKMs available in your project.


	
Select JKMs and SKMs only if you need them. Do not import JKMs or SKMs if you do not plan to use Changed Data Capture or Data Services. You can import them later when needed.


	
Review the KM documentation and options. KMs include a Description field that contain useful information. Each of the KM options is also described. All KMs are detailed in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator.









Importing and Replacing Knowledge Modules

Two main operations allow you to manage KMs into a project:

	
When you create a new project you can use the Built-In KMs. If you want to use new KMs, you must import either a project KM or a global KM. See "Project and Global Knowledge Modules" for more information on the knowledge module's scope.


	
If you want to start using a new version of an existing global or project KM, or if you want to replace an existing KM in use with another one, then you can replace this KM.




This section includes the following topics:

	
Importing a Project Knowledge Module


	
Replacing a Knowledge Module


	
Importing a Global Knowledge Module





Importing a Project Knowledge Module

To import a Project Knowledge Module into a project:

	
In the Projects accordion in Designer Navigator, select the project into which you want to import the KM.


	
Right-click and select Import > Import Knowledge Modules....


	
Specify the File Import Directory. A list of the KMs export files available in this directory appears. KMs included in the ODI installation are located in:


<Oracle_Home>/odi/sdk/xml-reference


	
Select several KMs from the list and then click OK.


	
Oracle Data Integrator imports the selected KMs and presents an import report.


	
Click Close to close this report.




The Knowledge Modules are imported into you project. They are arranged under the Knowledge Modules node of the project, grouped per KM type.




	
Note:

Knowledge modules can be imported in Duplication mode only. To replace an existing Knowledge Modules, use the import replace method described below. When importing a KM in Duplication mode and if the KM already exists in the project, ODI creates a new KM with prefix copy_of.










Replacing a Knowledge Module

When you want to replace a global KM or a KM in a project by another one and have all mappings automatically use the new KM, you must use the Import Replace mode.

To import a Knowledge Module in replace mode:

	
In Designer Navigator, select the Knowledge Module you wish to replace.


	
Right-click and select Import Replace.


	
In the Replace Object dialog, select the export file of the KM you want to use as a replacement. KMs included in the ODI installation are located in:


<Oracle_Home>/odi/sdk/xml-reference


	
Click OK.




The Knowledge Module is now replaced by the new one.




	
Note:

When replacing a Knowledge module by another one, Oracle Data Integrator sets the options in mappings for the new module using the option name similarities with the old module's options. When a KM option was set by the user in a mapping, this value is preserved if the new KM has an option with the same name. New options are set to the default value. It is advised to check the values of these options in the mappings.

Replacing a KM by another one may lead to issues if the KMs have different structure or behavior, for example when you replace a IKM with a RKM. It is advised to check the mappings' design and execution with the new KM.










Importing a Global Knowledge Module

To import a global knowledge module in Oracle Data Integrator:

	
In the Navigator, select the Global Knowledge Modules node in the Global Objects accordion.


	
Right-click and select Import Knowledge Modules.


	
In the Import dialog:

	
Select the Import Type. See "Import Modes" for more information.


	
Specify the File Import Directory. A list of the KMs export files available in this directory appears. KMs included in the ODI installation are located in:


<Oracle_Home>/odi/sdk/xml-reference


	
Select the file(s) to import from the list.





	
Click OK.




The global KM is now available in all your projects.






Encrypting and Decrypting a Knowledge Module

Encrypting a Knowledge Module (KM) or Procedure allows you to protect valuable code. An encrypted KM or procedure cannot be read or modified if it is not decrypted. The commands generated in the log by an Encrypted KM or procedure are also unreadable.

Oracle Data Integrator uses a AES Encryption algorithm based on a personal encryption key. This key can be saved in a file and can be reused to perform encryption or decryption operations.




	
WARNING:

There is no way to decrypt an encrypted KM or procedure without the encryption key. Oracle therefore strongly advises keeping this key in a safe location. Oracle also recommends using a unique key for each deployment.










To Encrypt a KM or a Procedure:

	
In the Projects tree in Designer Navigator, expand the project, and select the KM or procedure you want to encrypt.


	
Right-click and select Encrypt.


	
In the Encryption Options window, you can either:

	
Encrypt with a personal key that already exists by giving the location of the personal key file or by typing in the value of the personal key.


	
Get a new encryption key to have a new key generated by ODI.





	
Click OK to encrypt the KM or procedure. If you have chosen to generate a new key, a window will appear with the new key. You can save the key in a file from here.





To decrypt a KM or a procedure:

	
In the Projects tree in Designer Navigator, expand the project, and select the KM or procedure you want to decrypt.


	
Right-click and select Decrypt.


	
In the KM Decryption or Procedure Decryption window, either

	
Select an existing encryption key file;


	
or type in (or paste) the string corresponding to your personal key.





	
Click OK to decrypt.











Organizing the Project with Folders

In a project, mappings, procedures, and packages are organized into folders and sub-folders. Oracle recommends maintaining a good organization of the project by using folders. Folders simplify finding objects developed in the project and facilitate the maintenance tasks. Organization is detailed in Chapter 16, "Organizing and Documenting Integration Projects.".





12 Using Load Plans


This chapter gives an introduction to Load Plans. It describes how to create a Load Plan and provides information about how to work with Load Plans.

This chapter includes the following sections:

	
Introduction to Load Plans


	
Creating a Load Plan


	
Running Load Plans


	
Using Load Plans in Production






Introduction to Load Plans

Oracle Data Integrator is often used for populating very large data warehouses. In these use cases, it is common to have thousands of tables being populated using hundreds of scenarios. The execution of these scenarios has to be organized in such a way that the data throughput from the sources to the target is the most efficient within the batch window. Load Plans help the user organizing the execution of scenarios in a hierarchy of sequential and parallel steps for these type of use cases.

A Load Plan is an executable object in Oracle Data Integrator that can contain a hierarchy of steps that can be executed conditionally, in parallel or in series. The leaf nodes of this hierarchy are Scenarios. Packages, mappings, variables, and procedures can be added to Load Plans for executions in the form of scenarios. For more information, see "Creating a Load Plan".

Load Plans allow setting and using variables at multiple levels. See "Working with Variables in Load Plans" for more information. Load Plans also support exception handling strategies in the event of a scenario ending in error. See "Handling Load Plan Exceptions and Restartability" for more information.

Load Plans can be started, stopped, and restarted from a command line, from Oracle Data Integrator Studio, Oracle Data Integrator Console or a Web Service interface. They can also be scheduled using the run-time agent's built-in scheduler or an external scheduler. When a Load Plan is executed, a Load Plan Instance is created. Each attempt to run this Load Plan Instance is a separate Load Plan Run. See "Running Load Plans" for more information.

A Load Plan can be modified in production environments and steps can be enabled or disabled according to the production needs. Load Plan objects can be designed and viewed in the Designer and Operator Navigators. Various design operations (such as create, edit, delete, and so forth) can be performed on a Load Plan object if a user connects to a development work repository, but some design operations will not be available in an execution work repository. See "Editing Load Plan Steps" for more information.

Once created, a Load Plan is stored in the work repository. The Load Plan can be exported then imported to another repository and executed in different contexts. Load Plans can also be versioned. See "Exporting, Importing and Versioning Load Plans" for more information.

Load Plans appear in Designer Navigator and in Operator Navigator in the Load Plans and Scenarios accordion. The Load Plan Runs are displayed in the Load Plan Executions accordion in Operator Navigator.



Load Plan Execution Lifecycle

When running or scheduling a Load Plan you provide the variable values, the contexts and logical agents used for this Load Plan execution.

Executing a Load Plan creates a Load Plan instance and a first Load Plan run. This Load Plan instance is separated from the original Load Plan, and the Load Plan Run corresponds to the first attempt to execute this instance. If a run is restarted a new Load Plan run is created under this Load Plan instance. As a consequence, each execution attempt of the Load Plan Instance is preserved as a different Load Plan run in the Log.

See "Running Load Plans" for more information.

For a load plan instance, only one run can be running, and it must be the last load plan instance run. However, as with Scenarios, it is possible to run multiple instances of the same load plan (determined by the load plan's internal ID) concurrently, depending on the Concurrent Execution Control settings for the load plan.

For more information about how ODI handles concurrent execution, and about using the Concurrent Execution Control, see "Controlling Concurrent Execution of Scenarios and Load Plans",






Differences between Packages, Scenarios, and Load Plans

A Load Plan is the largest executable object in Oracle Data Integrator. It uses Scenarios in its steps. When an executable object is used in a Load Plan, it is automatically converted into a scenario. For example, a package is used in the form of a scenario in Load Plans. Note that Load Plans cannot be added to a Load Plan. However, it is possible to add a scenario in form of a Run Scenario step that starts another Load Plan using the OdiStartLoadPlan tool.

Load plans are not substitutes for packages or scenarios, but are used to organize at a higher level the execution of packages and scenarios.

Unlike packages, Load Plans provide native support for parallelism, restartability and exception handling. Load plans are moved to production as is, whereas packages are moved in the form of scenarios. Load Plans can be created in Production environments.

The Load Plan instances and Load Plan runs are similar to Sessions. The difference is that when a session is restarted, the existing session is overwritten by the new execution. The new Load Plan Run does not overwrite the existing Load Plan Run, it is added after the previous Load Plan Runs for this Load Plan Instance. Note that the Load Plan Instance cannot be modified at run-time.






Load Plan Structure

A Load Plan is made up of a sequence of several types of steps. Each step can contain several child steps. Depending on the step type, the steps can be executed conditionally, in parallel or sequentially. By default, a Load Plan contains an empty root serial step. This root step is mandatory and the step type cannot be changed.

Table 12-1 lists the different types of Load Plan steps and the possible child steps.


Table 12-1 Load Plan Steps

	Type	Description	Possible Child Steps
	
Serial Step

	
Defines a serial execution of its child steps. Child steps are ordered and a child step is executed only when the previous one is terminated.

The root step is a Serial step.

	
	
Serial step


	
Parallel step


	
Run Scenario step


	
Case step





	
Parallel Step

	
Defines a parallel execution of its child steps. Child steps are started immediately in their order of Priority.

	
	
Serial step


	
Parallel step


	
Run Scenario step


	
Case step





	
Run Scenario Step

	
Launches the execution of a scenario.

	
This type of step cannot have a child steps.


	
Case Step

When Step

Else Steps

	
The combination of these steps allows conditional branching based on the value of a variable.

Note: If you have several When steps under a Case step, only the first enabled When step that satisfies the condition is executed. If no When step satisfies the condition or the Case step does not contain any When steps, the Else step is executed.

	
Of a Case Step:

	
When step


	
Else step




Of a When step:

	
Serial step


	
Parallel step


	
Run Scenario step


	
Case step




Of an Else step:

	
Serial step


	
Parallel step


	
Run Scenario step


	
Case step





	
Exception Step

	
Defines a group of steps that is executed when an exception is encountered in the associated step from the Step Hierarchy. The same exception step can be attached to several steps in the Steps Hierarchy.

	
	
Serial step


	
Parallel step


	
Run Scenario step


	
Case step











Figure 12-1 shows a sample Load Plan created in Oracle Data Integrator. This sample Load Plan loads a data warehouse:

	
Dimensions are loaded in parallel. This includes the LOAD_TIME_DIM, LOAD_PRODUCT_DIM, LOAD_CUSTOMER_DIM scenarios, the geographical dimension and depending on the value of the ODI_VAR_SESS1 variable, the CUST_NORTH or CUST_SOUTH scenario.


	
The geographical dimension consists of a sequence of three scenarios (LOAD_GEO_ZONE_DIM, LOAD_COUNTRIES_DIM, LOAD_CITIES_DIM).


	
After the dimensions are loaded, the two fact tables are loaded in parallel (LOAD_SALES_FACT and LOAD_MARKETING_FACT scenarios).





Figure 12-1 Sample Load Plan

[image: Description of Figure 12-1 follows]










Introduction to the Load Plan Editor

The Load Plan Editor provides a single environment for designing Load Plans. Figure 12-2 gives an overview of the Load Plan Editor.


Figure 12-2 Steps Tab of the Load Pan Editor

[image: Description of Figure 12-2 follows]






The Load Plan steps are added, edited and organized in the Steps tab of the Load Plan Editor. The Steps Hierarchy table defines the organization of the steps in the Load Plan. Each row in this table represents a step and displays its main properties.

You can drag components such as packages, integration mappings, variables, procedures, or scenarios from the Designer Navigator into the Steps Hierarchy table for creating Run Scenario steps for these components.

You can also use the Add Step Wizard or the Quick Step tool to add Run Scenario steps and other types of steps into this Load Plan. See "Adding Load Plan Steps" for more information.

The Load Plan Editor toolbar, located on top of the Steps Hierarchy table, provides tools for creating, organizing, and sequencing the steps in the Load Plan. Table 12-2 details the different toolbar components.


Table 12-2 Load Plan Editor Toolbar

	Icon	Name	Description
	[image: Search]
	
Search

	
Searches for a step in the Steps Hierarchy table.


	[image: Expand All icon]
	
Expand All

	
Expands all tree nodes in the Steps Hierarchy table.


	[image: Collapse All icon]
	
Collapse All

	
Collapses all tree nodes in the Steps Hierarchy table.


	[image: Add Step]
	
Add Step

	
Opens a Add Step menu. You can either select the Add Step Wizard or a Quick Step tool to add a step. See "Adding Load Plan Steps" for more information.


	[image: Remove Step icon]
	
Remove Step

	
Removes the selected step and all its child steps.


	[image: Navigation arrows]
	
Reorder arrows: Move Up, Move Down, Move Out, Move In

	
Use the reorder arrows to move the selected step to the required position.








The Properties Panel, located under the Steps Hierarchy table, displays the properties for the object that is selected in the Steps Hierarchy table.








Creating a Load Plan

This section describes how to create a new Load Plan in ODI Studio.

	
Define a new Load Plan. See "Creating a New Load Plan" for more information.


	
Add Steps into the Load Plan and define the Load Plan Sequence. See "Defining the Load Plan Step Sequence" for more information.


	
Define how the exceptions should be handled. See "Handling Load Plan Exceptions and Restartability" for more information.






Creating a New Load Plan

Load Plans can be created from the Designer or Operator Navigator.

To create a new Load Plan:

	
In Designer Navigator or Operator Navigator, click New Load Plan in the toolbar of the Load Plans and Scenarios accordion. The Load Plan Editor is displayed.


	
In the Load Plan Editor, type in the Name, Folder Name, and a Description for this Load Plan.


	
Optionally, set the following parameters:

	
Log Sessions: Select how the session logs should be preserved for the sessions started by the Load Plan. Possible values are:

	
Always: Always keep session logs (Default)


	
Never: Never keep session logs. Note that for Run Scenario steps that are configured as Restart from Failed Step or Restart from Failed Task, the agent will behave as if the parameter is set to Error as the whole session needs to be preserved for restartability.


	
Error: Only keep the session log if the session completed in an error state.





	
Log Session Step: Select how the logs should be maintained for the session steps of each of the session started by the Load Plan. Note that this applies only when the session log is preserved. Possible values are:

	
By Scenario Settings: Session step logs are preserved depending on the scenario settings. Note that for scenarios created from packages, you can specify whether to preserve or not the steps in the advanced step property called Log Steps in the Journal. Other scenarios preserve all the steps (Default).


	
Never: Never keep session step logs. Note that for Run Scenario steps that are configured as Restart from Failed Step or Restart from Failed Task, the agent will behave as if the parameter is set to Error as the whole session needs to be preserved for restartability.


	
Errors: Only keep session step log if the step is in an error state.





	
Session Tasks Log Level: Select the log level for sessions. This value corresponds to the Log Level value when starting unitary scenarios. Default is 5. Note that when Run Scenario steps are configured as Restart from Failed Step or Restart From Failed Task, this parameter is ignored as the whole session needs to be preserved for restartability.


	
Keywords: Enter a comma separated list of keywords that will be set on the sessions started from this load plan. These keywords improve the organization of ODI logs by session folders and automatic classification. Note that you can overwrite these keywords at the level of the child steps. See "Managing the Log" in Administering Oracle Data Integrator for more information.





	
Optionally, modify the Concurrent Execution Controller options:

	
Enable the Limit Concurrent Executions check box if you do not want to allow multiple instances of this load plan to be run at the same time. If Limit Concurrent Executions is disabled (unchecked), no restriction is imposed and more than one instance of this load plan can be running simultaneously.


	
If Limit Concurrent Executions is enabled, set your desired Violation Behavior:

	
Raise Execution Error: if an instance of the load plan is already running, attempting to run another instance will result in a session being created but immediately ending with an execution error message identifying the session that is currently running which caused the Concurrent Execution Control error.


	
Wait to Execute: if an instance of the load plan is already running, additional executions will be placed in a wait status and the system will poll for its turn to run. The session's status is updated periodically to show the currently running session, as well as all concurrent sessions (if any) that are waiting in line to run after the running instance is complete.

If you select this option, the Wait Polling Interval sets how often the system will check to see if the running instance has completed. You can only enter a Wait Polling Interval if Wait to Execute is selected.

If you do not specify a wait polling interval, the default for the executing agent will be used: in ODI 12.1.3, the default agent value is 30 seconds.








	
Select the Steps tab and add steps as described in "Defining the Load Plan Step Sequence".


	
If your Load Plan requires conditional branching, or if your scenarios use variables, select the Variables tab and declare variables as described in "Declaring Load Plan Variables".


	
To add exception steps that are used in the event of a load plan step failing, select the Exceptions tab and define exception steps as described in "Defining Exceptions Flows".


	
From the File menu, click Save.




The Load Plan appears in the Load Plans and Scenarios accordion. You can organize your Load Plans by grouping related Load Plans and Scenarios into a Load Plan and Scenarios folder.






Defining the Load Plan Step Sequence

Load Plans are an organized hierarchy of child steps. This hierarchy allows conditional processing of steps in parallel or in series.

The execution flow can be configured at two stages:

	
At Design-time, when defining the Steps Hierarchy:

	
When you add a step to a Load Plan, you select the step type. The step type defines the possible child steps and how these child steps are executed: in parallel, in series, or conditionally based on the value of a variable (Case step). See Table 12-1, "Load Plan Steps" for more information on step types.


	
When you add a step to a Load Plan, you also decide where to insert the step. You can add a child step, a sibling step after the selected step, or a sibling step before the selected step. See "Adding Load Plan Steps" for more information.


	
You can also reorganize the order of the Load Plan steps by dragging the step to the wanted position or by using the arrows in the Step table toolbar. See Table 12-2, "Load Plan Editor Toolbar" for more information.





	
At design-time and run-time by enabling or disabling a step. In the Steps hierarchy table, you can enable or disable a step. Note that disabling a step also disables all its child steps. Disabled steps and all their child steps are not executed when you run the load plan.




This section contains the following topics:

	
Adding Load Plan Steps


	
Editing Load Plan Steps


	
Deleting a Step


	
Duplicating a Step






Adding Load Plan Steps

A Load Plan step can be added by using the Add Step Wizard or by selecting the Quick Step tool for a specific step type. A load plan step can be also createdby dragging an object (such as a scenario, package, etc.) and dropping it onto a container step. The step will be created as a child of the selected step. See Table 12-1, "Load Plan Steps" for more information on the different types of Load Plan steps. To create Run Scenario steps, you can also drag components such as packages, mappings, variables, procedures, or scenarios from the Designer Navigator into the Steps Hierarchy table. Oracle Data Integrator automatically creates a Run Scenario step for the inserted component.

When a Load Plan step is added, it is inserted into the Steps Hierarchy with the minimum required settings. See "Editing Load Plan Steps" for more information on how to configure Load Plan steps.


Adding a Load Plan Step with the Add Step Wizard

To insert Load Plan step with the Add Step Wizard:

	
Open the Load Plan Editor and go to the Steps tab.


	
Select a step in the Steps Hierarchy table.


	
In the Load Plan Editor toolbar, select Add Step > Add Step Wizard.


	
In the Add Step Wizard, select:

	
Step Type. Possible step types are: Serial, Parallel, Run Scenario, Case, When, and Else. See Table 12-1, "Load Plan Steps" for more information on the different step types.


	
Step Location. This parameter defines where the step is added.

	
Add a child step to selection: The step is added under the selected step.


	
Add a sibling step after selection: The step is added on the same level after the selected step.


	
Add a sibling step before selection: The step is added on the same level before the selected step.










	
Note:

Only values that are valid for the current selection are displayed for the Step Type and Step Location.










	
Click Next.


	
Follow the instructions in Table 12-3 for the step type you are adding.


Table 12-3 Add Step Wizard Actions

	Step Type	Description and Action Required
	
Serial or Parallel step

	
Enter a Step Name for the new Load Plan step.


	
Run Scenario step

	
	
Click the Lookup Scenario button.


	
In the Lookup Scenario dialog, you can select the scenario you want to add to your Load Plan and click OK.

Alternately, to create a scenario for an executable object and use this scenario, select this object type in the Executable Object Type selection box, then select the executable object that you want to run with this Run Scenario step and click OK. Enter the new scenario name and version and click OK. A new scenario is created for this object and used in this Run Scenario Step.

Tip: At design time, you may want to create a Run Scenario step using a scenario that does not exist yet. In this case, instead of selecting an existing scenario, enter directly a Scenario Name and a Version number and click Finish. Later on, you can select the scenario using the Modify Run Scenario Step wizard. See "Change the Scenario of a Run Scenario Step" for more information.

Note that when you use the version number -1, the latest version of the scenario will be used, based on the string's lexical sorting order.


	
The Step Name is automatically populated with the name of the scenario and the Version field with the version number of the scenario. Optionally, change the Step Name.


	
Click Next.


	
In the Add to Load Plan column, select the scenario variables that you want to add to the Load Plan variables. If the scenario uses certain variables as its startup parameters, they are automatically added to the Load Plan variables.

See "Working with Variables in Load Plans" for more information.





	
Case

	
	
Select the variable you want to use for the conditional branching. Note that you can either select one of the load plan variables from the list or click Lookup Variable to add a new variable to the load plan and use it for this case step.

See "Working with Variables in Load Plans" for more information.


	
The Step Name is automatically populated with the step type and name of the variable. Optionally, change the Step Name.

See "Editing Load Plan Steps" for more information.





	
When

	
	
Select the Operator to use in the WHEN clause evaluation. Possible values are:

	
Less Than (<)


	
Less Than or Equal (<=)


	
Different (<>)


	
Equals (=)


	
Greater Than (>)


	
Greater Than or Equal (>=)


	
Is not Null


	
Is Null





	
Enter the Value to use in the WHEN clause evaluation.


	
The Step Name is automatically populated with the operator that is used. Optionally, change the Step Name.

See "Editing Load Plan Steps" for more information.





	
Else

	
The Step Name is automatically populated with the step type. Optionally, change the Step Name.

See "Editing Load Plan Steps" for more information.








	
Click Finish.


	
The step is added in the steps hierarchy.







	
Note:

You can reorganize the order of the Load Plan steps by dragging the step to the desired position or by using the reorder arrows in the Step table toolbar to move a step in the Steps Hierarchy.










Adding a Load Plan Step with the Quick Step Tool

To insert Load Plan step with the Quick Step Tool:

	
Open the Load Plan editor and go to the Steps tab.


	
In the Steps Hierarchy, select the Load Plan step under which you want to create a child step.


	
In the Steps toolbar, select Add Step and the Quick Step option corresponding to the Step type you want to add. Table 12-4 lists the options of the Quick Step tool.


Table 12-4 Quick Step Tool

	Quick Step tool option	Description and Action Required
	
[image: serial step icon]


	
Adds a serial step as a child of the selected step. Default values are used. You can modify these values in the Steps Hierarchy table or in the Property Inspector. See "Editing Load Plan Steps" for more information.


	
[image: parallel step icon]


	
Adds a parallel step as a child of the selected step. Default values are used. You can modify these values in the Steps Hierarchy table or in the Property Inspector. See "Editing Load Plan Steps" for more information.


	[image: run scenario step icon]
	
Adds a run scenario step as a child of the selected step. Follow the instructions for Run Scenario steps in Table 12-3.


	[image: case step icon]
	
Adds a Case step as a child of the selected step. Follow the instructions for Case steps in Table 12-3.


	[image: when step icon]
	
Adds a When step as a child of the selected step. Follow the instructions for When steps in Table 12-3.


	[image: else step icon]
	
Adds an Else step as a child of the selected step. Follow the instructions for Else steps in Table 12-3.











	
Note:

Only step types that are valid for the current selection are enabled in the Quick Step tool.

















Editing Load Plan Steps

To edit a Load Plan step:

	
Open the Load Plan editor and go to the Steps tab.


	
In the Steps Hierarchy table, select the Load Plan step you want modify. The Property Inspector displays the step properties.


	
Edit the Load Plan step properties according to your needs.




The following operations are common tasks when editing steps:

	
Change the Scenario of a Run Scenario Step


	
Set Advanced Options for Run Scenario Steps


	
Open the Linked Object of Run Scenario Steps


	
Change the Test Variable in Case Steps


	
Define the Exception and Restart Behavior


	
Regenerate Scenarios


	
Refresh Scenarios to Latest Version





Change the Scenario of a Run Scenario Step

To change the scenario:

	
In the Steps Hierarchy table of the Steps or Exceptions tab, select the Run Scenario step.


	
In the Step Properties section of the Properties Inspector, click Lookup Scenario. This opens the Modify Run Scenario Step wizard.


	
In the Modify Run Scenario Step wizard, click Lookup Scenario and follow the instructions in Table 12-3 corresponding to the Run Scenario step.





Set Advanced Options for Run Scenario Steps

You can set the following properties for Run Scenario steps in the Property Inspector:

	
Priority: Priority for this step when the scenario needs to start in parallel. The integer value range is from 0 to 100 (100 being the highest priority). Default is 0. The priority of a Run Scenario step is evaluated among all runnable scenarios within a running Load Plan. The Run Scenario step with the highest priority is executed first.


	
Context: Context that is used for the step execution. Default context is the Load Plan context that is defined in the Start Load Plan Dialog when executing a Load Plan. Note that if you only specify the Context and no Logical Agent value, the step is started on the same physical agent that started the Load Plan, but in this specified context.


	
Logical Agent: Logical agent that is used for the step execution. By default, the logical agent, which is defined in the Start Load Plan Dialog when executing a Load Plan, is used. Note that if you set only the Logical Agent and no context, the step is started with the physical agent corresponding to the specified Logical Agent resolved in the context specified when starting the Load Plan. If no Logical Agent value is specified, the step is started on the same physical agent that started the Load Plan (whether a context is specified for the step or not).





Open the Linked Object of Run Scenario Steps

Run Scenario steps can be created for packages, mappings, variables, procedures, or scenarios. Once this Run Scenario step is created, you can open the Object Editor of the original object to view and edit it.

To view and edit the linked object of Run Scenario steps:

	
In the Steps Hierarchy table of the Steps or Exceptions tab, select the Run Scenario step.


	
Right-click and select Open the Linked Object.




The Object Editor of the linked object is displayed.


Change the Test Variable in Case Steps

To change the variable that is used for evaluating the tests defined in the WHEN statements:

	
In the Steps Hierarchy table of the Steps tab or Exceptions tab, select the Case step.


	
In the Step Properties section of the Properties Inspector, click Lookup Variable. This opens the Modify Case Step Dialog.


	
In the Modify Case Step Dialog, click Lookup Variable and follow the instructions in Table 12-3, "Add Step Wizard Actions" corresponding to the Case step.





Define the Exception and Restart Behavior

Exception and Restart behavior can be set on the steps in the Steps Hierarchy table. See "Handling Load Plan Exceptions and Restartability" for more information.


Regenerate Scenarios

To regenerate all the scenarios of a given Load Plan step, including the scenarios of its child steps:

	
From the Steps Hierarchy table of the Steps tab or Exceptions tab, select the Load Plan step.


	
Right-click and select Regenerate. Note that this option is not available for scenarios with the version number -1.


	
Click OK.







	
Caution:

Regenerating a scenario cannot be undone. For important scenarios, it is better to generate a scenario with a new version number.










Refresh Scenarios to Latest Version

To modify all the scenario steps of a given Load Plan step, including the scenarios of its child steps, and set the scenario version to the latest version available for each scenario:

	
From the Steps Hierarchy table of the Steps tab or Exceptions tab, select the Load Plan step.


	
Right-click and select Refresh Scenarios to Latest Version. Note that the latest scenario version is determined by the Scenario Creation timestamp. While during the ODI agent execution, the latest scenario is determined by alphabetical ascending sorting of the Scenario Version string value and picking up the last from the list.




	
Note:

This option is not available for scenarios with the version number -1.










	
Click OK.









Deleting a Step

To delete a step:

	
Open the Load Plan Editor and go to the Steps tab.


	
In the Steps Hierarchy table, select the step to delete.


	
In the Load Plan Editor toolbar, select Remove Step.




The step and its child steps are removed from the Steps Hierarchy table.




	
Note:

It is not possible to undo a delete operation in the Steps Hierarchy table.














Duplicating a Step

To duplicate a step:

	
Open the Load Plan Editor and go to the Steps tab.


	
In the Steps Hierarchy table, right-click the step to duplicate and select Duplicate Selection.


	
A copy of this step, including its child steps, is created and added as a sibling step after the original step to the Step Hierarchy table.




You can now move and edit this step.








Working with Variables in Load Plans

Project and Global Variables used in a Load Plan are declared as Load Plan Variables in the Load Plan editor. These variables are automatically available in all steps and their value passed to the Load Plan steps.

The variables values are passed to the Load Plan on startup as startup parameters. At a step level, you can overwrite the variable value (by setting it or forcing a refresh) for this step and its child steps.




	
Note:

Load plan variables are copies of Project and Global variables. Thus, changes to the definition of the original project and global variables are not automatically propagated to corresponding variables that are already created in a load plan. You can use the Refresh Variable Definition option on the right-click context menu to update the definition of a load plan variable with the current value from the corresponding Project or Global variable.

Because a load plan variable is a copy of the original project or global variable, at startup, Load Plans do not take into account the default value of the original project or global variable, or the historized/latest value of the variable in the execution context. The value of the variable is either the one specified when starting the Load Plan, or the value set/refreshed within the Load Plan.









You can use variables in Run Scenario steps - the variable values are passed as startup parameters to the scenario - or in Case/When/Else steps for conditional branching.

This section contains the following topics:

	
Declaring Load Plan Variables


	
Setting Variable Values in a Step






Declaring Load Plan Variables

To declare a Load Plan variable:

	
Open the Load Plan editor and go to the Variables tab.


	
From the Load Plan Editor toolbar, select Add Variable. The Lookup Variable dialog is displayed.


	
In the Lookup Variable dialog, select the variable to add your Load Plan.


	
The variable appears in the Variables tab of the Load Plan Editor and in the Property Inspector of each step.









Setting Variable Values in a Step

Variables in a step inherit their value from the value from the parent step and ultimately from the value specified for the variables when starting the Load Plan.

For each step, except for Else and When steps, you can also overwrite the variable value, and change the value used for this step and its child steps.

Variable values overwritten or refreshed at a given step are available to all the step's descendants, until the value is overwritten or refreshed again for a descendant branch. Similarly, a variable value overwritten or refreshed at a given step does not affect the value for sibling or parent steps.

To override variable values at step level:

	
Open the Load Plan editor and go to the Steps tab.


	
In the Steps Hierarchy table, select the step for which you want to overwrite the variable value.


	
In the Property Inspector, go to the Variables section. The variables that are defined for this Load Plan are listed in this Variables table. You can modify the following variable parameters:

Select Overwrite, if you want to specify a variable value for this step and all its children. Once you have chosen to overwrite the variable value, you can either:

	
Set a new variable value in the Value field.


	
Select Refresh to refresh this variable prior to executing the step. The Refresh option can be selected only for variables with a Select Query defined for refreshing the variable value.




	
Note:

If the refresh SQL of a Global or Project variable has changed, the variable refresh SQL of the corresponding load plan variable is not updated automatically. You can update the load plan variable refresh SQL by selecting the Refresh Variable Definition option from the right-click context menu for a load plan variable on the Variables tab of the load plan editor.






















Handling Load Plan Exceptions and Restartability

Load Plans provide two features for handling error cases in the execution flows: Exceptions and Restartability.


Exceptions

An Exception Step contains a hierarchy of steps that is defined on the Exceptions tab of the Load Plan editor.

You can associate a given exception step to one or more steps in the Load Plan. When a step in the Load Plan errors out, the associated exception step is executed automatically.

Exceptions can be optionally raised to the parent step of the failing step. Raising an exception fails the parent step, which can consequently execute its exception step.


Restartability

When a Load Plan Run is restarted after a failure, the failed Load Plan steps are restarted depending on the Restart Type parameter. For example, you can define whether a parallel step should restart all its child steps or only those that have failed.

This section contains the following topics:

	
Defining Exceptions Flows


	
Using Exception Handling


	
Defining the Restart Behavior






Defining Exceptions Flows

Exception steps are created and defined on the Exceptions tab of the Load Plan Editor.

This tab contains a list of Exception Steps. Each Exception Step consists in a hierarchy of Load Plan steps.The Exceptions tab is similar to the Steps tab in the Load Plan editor. The main differences are:

	
There is no root step for the Exception Step hierarchy. Each exception step is a separate root step.


	
The Serial, Parallel, Run Scenario, and Case steps have the same properties as on the Steps tab but do not have an Exception Handling properties group. An exception step that errors out cannot raise another exception step.




An Exception step can be created either by using the Add Step Wizard or with the Quick Step tool by selecting the Add Step > Exception Step in the Load Plan Editor toolbar. By default, the Exception step is created with the Step name: Exception. You can modify this name in the Steps Hierarchy table or in the Property Inspector.

To create an Exception step with the Add Step Wizard:

	
Open the Load Plan Editor and go to the Exceptions tab.


	
In the Load Plan Editor toolbar, select Add Step > Add Step Wizard.


	
In the Add Step Wizard, select Exception from the Step Type list.




	
Note:

Only values that are valid for the current selection are displayed for the Step Type.










	
Click Next.


	
In the Step Name field, enter a name for the Exception step.


	
Click Finish.


	
The Exception step is added in the steps hierarchy.




You can now define the exception flow by adding new steps and organizing the hierarchy under this exception step.






Using Exception Handling

Defining exception handling for a Load Plan step consists of associating an Exception Step to this Load Plan step and defining the exception behavior. Exceptions steps can be set for each step except for When and Else steps.

To define exception handling for a Load Plan step:

	
Open the Load Plan Editor and go to the Steps tab.


	
In the Steps Hierarchy table, select the step for which you want to define an exception behavior. The Property Inspector displays the Step properties.


	
In the Exception Handling section of the Property Inspector, set the parameters as follows:

	
Timeout (s): Enter the maximum time (in seconds) that this step takes before it is aborted by the Load Plan. When a time-out is reached, the step is marked in error and the Exception step (if defined) is executed. In this case, the exception step never times out. If needed, a timeout can be set on a parent step to safe guard such a potential long running situation.

If the step fails before the timeout and an exception step is executed, then the execution time of the step plus the execution time of the exception step should not exceed the timeout, otherwise the exception step will fail when the timeout is reached.

Note that the default value of zero (0) indicates an infinite timeout.


	
Exception Step: From the list, select the Exception step to execute if this step fails. Note that only Exception steps that have been created and defined on the Exceptions tab of the Load Plan Editor appear in this list. See "Defining Exceptions Flows" for more information on how to create an Exception step.


	
Exception Behavior: Defines how this step behaves in case an exception is encountered. Select one of the following:

	
Run Exception and Raise: Runs the Exception Step (if any) and raises the exception to the parent step.


	
Run Exception and Ignore: Runs the Exception Step (if any) and ignores the exception. The parent step is notified of a successful run. Note that if an exception is caused by the exception step itself, the parent step is notified of the failure.







For Parallel steps only, the following parameters may be set:

Max Error Child Count: Displays the maximum number of child steps in error that is accepted before this step is to be considered in error. When the number of failed child steps exceeds this value, the parallel step is considered failed. The currently running child steps are continued or stopped depending on the Restart Type parameter for this parallel step:

	
If the Restart type is Restart from failed children, the Load Plan waits for all child sessions (these are the currently running sessions and the ones waiting to be executed) to run and complete before it raises the error to the parent step.


	
If the Restart Type is Restart all children, the Load Plan kills all running child sessions and does not start any new ones before it raises the error to the parent.












Defining the Restart Behavior

The Restart Type option defines how a step in error restarts when the Load Plan is restarted. You can define the Restart Type parameter in the Exception Handling section of the Properties Inspector.

Depending on the step type, the Restart Type parameter can take the values listed in Table 12-5.


Table 12-5 Restart Type Values

	Step Type	Values and Description
	
Serial

	
	
Restart all children: When the Load Plan is restarted and if this step is in error, the sequence of steps restarts from the first one.


	
Restart from failure: When the Load Plan is restarted and if this step is in error, the sequence of child steps starts from the one that has failed.





	
Parallel

	
	
Restart all children: When the Load Plan is restarted and if this step is in error, all the child steps are restarted regardless of their status. This is the default value.


	
Restart from failed children: When the Load Plan is restarted and if this step is in error, only the failed child steps are restarted in parallel.





	
Run Scenario

	
	
Restart from new session: When restarting the Load Plan and this Run Scenario step is in error, start the scenario and create a new session. This is the default value.


	
Restart from failed step: When restarting the Load Plan and this Run Scenario step is in error, restart the session from the step in error. All the tasks under this step are restarted.


	
Restart from failed task: When restarting the Load Plan and this Run Scenario step is in error, restart the session from the task in error.




The same limitation as those described in "Restarting a Session" in Administering Oracle Data Integrator apply to the sessions restarted from a failed step or failed task.
















Running Load Plans

You can run a Load Plan from Designer Navigator or Operator Navigator in ODI Studio.




	
Caution:

Unless concurrent execution has been limited by using the Concurrent Execution Controller options on the Definition tab of a load plan, no restriction is imposed to prevent multiple instances of a load plan from running simultaneously. It is possible for two or more instances of a load plan to perform data read/write operations on the same data sources and targets simultaneously. Use the Limit Concurrent Executions option to disallow this behavior programmatically if concurrent execution would be undesirable.

See "Creating a New Load Plan" for details.









To run a Load Plan in Designer Navigator or Operator Navigator:

	
In the Load Plans and Scenarios accordion, select the Load Plan you want to execute.


	
Right-click and select Execute.


	
In the Start Load Plan dialog, select the execution parameters:

	
Select the Context into which the Load Plan will be executed.


	
Select the Logical Agent that will run the Load Plan.


	
In the Variables table, enter the Startup values for the variables used in this Load Plan.





	
Click OK.


	
The Load Plan Started dialog is displayed.


	
Click OK.




The Load Plan execution starts: a Load Plan instance is created along with the first Load Plan run. You can review the Load Plan execution in the Operator Navigator.

For more information, see "Monitoring Integration Processes" in Administering Oracle Data Integrator, and see also "Running Integration Processes" in Administering Oracle Data Integrator for more information on the other run-time operations on Load Plans.






Using Load Plans in Production

Using Load Plans in production involves the following tasks:

	
Scheduling, starting, monitoring, stopping and restarting Load Plans. See "Scheduling and Running Load Plans in Production" for information.


	
Moving Load Plans across environments. See "Exporting, Importing and Versioning Load Plans"






Scheduling and Running Load Plans in Production

"Running Integration Processes" in Administering Oracle Data Integrator describes how to schedule and run load plans, including executing, restarting, and stopping load plan runs.






Exporting, Importing and Versioning Load Plans

A Load Plan can be exported and then imported into a development or execution repository. This operation is used to deploy Load Plans in a different repository, possibly in a different environment or site.

The export (and import) procedure allows you to transfer Oracle Data Integrator objects from one repository to another.



Exporting Load Plans

It is possible to export a single Load Plan or several Load Plans at once.

Exporting one single Load Plan follows the standard procedure described in "Exporting one ODI Object".

For more information on exporting several Load Plans at once, see "Export Multiple ODI Objects".

Note that when you export a Load Plan and you select Export child objects, all its child steps, schedules, and variables are also exported.




	
Note:

The export of a Load Plan does not include the scenarios referenced by the Load Plan. Scenarios used in a Load Plan need to be exported separately. How to export scenarios is described in "Exporting Scenarios".














Importing Load Plans

Importing a Load Plan in a development repository is performed via Designer or Operator Navigator. With an execution repository, only Operator Navigator is available for this purpose.

The Load Plan import uses the standard object import method. See "Importing Objects" for more information.




	
Note:

The export of a Load Plan does not include the scenarios referenced by the Load Plan. Scenarios used in a Load Plan need to be imported separately.














Versioning Load Plans

Load Plans can also be deployed and promoted to production using versions and solutions. See Chapter 17, "Using Version Control," for more information.








 
15 Using Groovy Scripting


This chapter provides an introduction to the Groovy language and explains how to use Groovy scripting in Oracle Data Integrator.

This appendix includes the following sections:

	
Introduction to Groovy


	
Introduction to the Groovy Editor


	
Using the Groovy Editor


	
Automating Development Tasks - Examples






Introduction to Groovy

Groovy is a scripting language with Java-like syntax for the Java platform. The Groovy scripting language simplifies the authoring of code by employing dot-separated notation, yet still supporting syntax to manipulate collections, Strings, and JavaBeans.

For more information about the Groovy language, see the following web site:

http://groovy.codehaus.org/






Introduction to the Groovy Editor

The Groovy editor provides a single environment for creating, editing, and executing Groovy scripts within the ODI Studio context. Figure 15-1 gives an overview of the Groovy editor.


Figure 15-1 Groovy Editor

[image: Description of Figure 15-1 follows]






The Groovy editor provides all standard features of a code editor such as syntax highlighting and common code editor commands except for debugging. The following commands are supported and accessed through the context menu or through the Source main menu:

	
Show Whitespace


	
Text Edits

	
Join Line


	
Delete Current Line


	
Trim Trailing Whitespace


	
Convert Leading Tabs to Spaces


	
Convert Leading Spaces to Tabs





	
Indent Block


	
Unindent Block


	
Move Up


	
Move Down









Using the Groovy Editor

You can perform the following actions with the Groovy editor:

	
Create a Groovy Script


	
Open and Edit an Existing Groovy Script


	
Save a Groovy Script


	
Execute a Groovy Script


	
Stop the Execution of a Groovy Script


	
Perform Advanced Actions






Create a Groovy Script

To create a Groovy script in ODI Studio:

	
From the Tools Main menu select Groovy > New Script.

This opens the Groovy editor.


	
Enter the Groovy code.




You can now save or execute the script.






Open and Edit an Existing Groovy Script

To edit a Groovy Script that has been previously created:

	
From the Tools Main menu select Groovy > Open Script or Recent Scripts.


	
Select the Groovy file and click Open.

This opens the selected file in the Groovy editor.


	
Edit the Groovy script.




You can now save or execute the script.






Save a Groovy Script

To save a Groovy script that is currently open in the Groovy editor:

From the Tools Main menu select Groovy > Save Script or Save Script As.




	
Note:

The Save main toolbar option is not associated with the Groovy Editor.














Execute a Groovy Script

You can execute one or several Groovy scripts at once and also execute one script several times in parallel.

You can only execute a script that is opened in the Groovy editor. ODI Studio does not execute a selection of the script, it executes the whole Groovy script.

To execute a Groovy script in ODI Studio:

	
Select the script that you want to execute in the Groovy editor.


	
Click Execute in the toolbar.


	
The script is executed.




You can now follow the execution in the Log window.




	
Notes:

	
Each script execution launches its own Log window. The Log window is named according to the following format: Running <script_name>


	
Groovy writes output to two different streams. If it is a class, it writes to System.out, which is a global output stream. If it is from a script (non-class), then it creates one stream for every execution. This can be captured by ODI. So, only output written to a script is shown in the Log window.

You can add System.setOut(out) in the beginning of a Groovy script so that the messages printed by an external class can be redirected to messages log.

















Stop the Execution of a Groovy Script

You can only stop running scripts. If no script is running, the Stop buttons are deactivated.

The execution of Groovy scripts can be stopped using two methods:

	
Clicking Stop in the Log tab. This stops the execution of the particular script.


	
Click Stop on the toolbar. If several scripts are running, you can select the script execution to stop from the drop down list.









Perform Advanced Actions

This section describes some advanced actions that you can perform with the Groovy editor.


Use Custom Libraries

The Groovy editor is able to access external libraries for example if an external driver is needed.

To use external libraries, do one of the following:

	
Copy the custom libraries to the userlib folder. This folder is located:

	
On Windows operating systems:

%APPDATA%/odi/oracledi/userlib


	
On UNIX operating systems:

~/.odi/oracledi/userlib





	
Add the custom libraries to the additional_path.txt file. This file is located in the userlib folder and has the following content:


; Additional paths file
; You can add here paths to additional libraries
; Examples:
;       C:\ java\libs\myjar.jar
;       C:\ java\libs\myzip.zip
;       C:\java\libs\*.jar will add all jars contained in the C:\java\libs\ directory
;       C:\java\libs\**\*.jar will add all jars contained in the C:\java\libs\ directory and subdirectories





Define Additional Groovy Execution Classpath

You can define a Groovy execution classpath in addition to all classpath entries available to ODI Studio.

To define an additional Groovy execution classpath:

	
Before executing the Groovy script, select from the Tools Main menu Preferences...


	
In the Preferences dialog, navigate to the Groovy Preferences page.


	
Enter the classpath and click OK.




	
Note:

You do not need to restart ODI Studio after adding or changing the classpath.













Read Input with odiInputStream Variable

Oracle Data Integrator provides the odiInputStream variable to read input streams. This variable is used as follows:

odiInputStream.withReader { println (it.readLine())}

When this feature is used an Input text field is displayed on the bottom of the Log tab. Enter a string text and press ENTER to pass this value to the script. The script is exited once the value is passed to the script.

Example 15-1 shows another example of how to use an input stream. In this example you can provide input until you click Stop <script_name>.


Example 15-1 InputStream


odiInputStream.withReader { reader ->
  while (true) {
    println reader.readLine(); 
  }
}
 





Using Several Scripts

If you are using several scripts at once, note the following:

	
A log tab is opened for each execution.


	
If a script is referring to another script, the output of the second will not be redirected to the log tab. This is a known Groovy limitation with no workaround.





Using the ODI Instance

Oracle Data Integrator provides the variable odiInstance. This variable is available for any Groovy script running within ODI Studio. It represents the ODI instance, more precisely the connection to the repository, in which the script is executed. Note that this instance will be null if ODI Studio is not connected to a repository.

The odiInstance variable is initialized by the ODI Studio code before executing the code. You can use bind APIs of the Groovy SDK for this purpose. Example 15-2, "Creating a Project" shows how you can use the odiInstance variable.








Automating Development Tasks - Examples

Oracle Data Integrator provides support for the use of Groovy to automate development tasks. These tasks include for example:

	
Example 15-2, "Creating a Project"


	
Example 15-3, "External Groovy File"


	
Example 15-4, "Class from External File"


	
Example 15-5, "For Studio UI Automation"




Example 15-2 shows how to create an ODI Project with a Groovy script.


Example 15-2 Creating a Project


import oracle.odi.core.persistence.transaction.ITransactionDefinition;
import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition;
import oracle.odi.core.persistence.transaction.ITransactionManager;
import oracle.odi.core.persistence.transaction.ITransactionStatus;
import oracle.odi.domain.project.OdiProject;
import oracle.odi.domain.project.OdiFolder;
 
 
ITransactionDefinition txnDef = new DefaultTransactionDefinition();
ITransactionManager tm = odiInstance.getTransactionManager()
ITransactionStatus txnStatus = tm.getTransaction(txnDef)
OdiProject myProject = new OdiProject("New Project 1","NEW_PROJECT_1")
OdiFolder myFolder = new OdiFolder(myProject,"Test Folder 001")
odiInstance.getTransactionalEntityManager().persist(myProject)
tm.commit(txnStatus)




Example 15-3 shows how to import an external Groovy script.


Example 15-3 External Groovy File


//Created by ODI Studio
import gd.Test1;
println "Hello World"
Test1 t1 = new Test1()
println t1.getName()
 




Example 15-4 shows how to call a class from a different Groovy script.


Example 15-4 Class from External File


import gd.GroovyTestClass
 
GroovyTestClass tc = new GroovyTestClass()
println tc.getClassLoaderName()
 




Example 15-5 shows how to implement Studio UI automation.


Example 15-5 For Studio UI Automation


import javax.swing.JMenuItem;
import javax.swing.JMenu;
import oracle.ide.Ide;
 
((JMenuItem)Ide.getMenubar().getGUI(false).getComponent(4)).doClick();
JMenu mnu = ((JMenu)Ide.getMenubar().getGUI(false).getComponent(4));
((JMenuItem)mnu.getMenuComponents()[0]).doClick()







3 Creating and Using Data Models and Datastores


This chapter describes how to create a model, how to reverse-engineer this model to populate it with datastores and how to create manually datastores of a model. This chapter also explains how to use partitioning and check the quality of the data in a model.

This chapter includes the following sections:

	
Introduction to Models


	
Creating and Reverse-Engineering a Model


	
Creating and Reverse-Engineering a Datastore


	
Editing and Viewing a Datastore's Data


	
Using Partitioning


	
Checking Data Quality in a Model






Introduction to Models

A Model is the description of a set of datastores. It corresponds to a group of tabular data structures stored in a data server. A model is based on a Logical Schema defined in the topology. In a given Context, this Logical Schema is mapped to a Physical Schema. The Data Schema of this Physical Schema contains physical data structure: tables, files, JMS messages, elements from an XML file, that are represented as datastores.

Models as well as all their components are based on the relational paradigm (table, attributes, keys, etc.). Models in Data Integrator only contain Metadata, that is the description of the data structures. They do not contain a copy of the actual data.




	
Note:

Frequently used technologies have their reverse and model creation methods detailed in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator.









Models can be organized into model folders and the datastores of a model can be organized into sub-models. "Organizing Models with Folders" describes how to create and organize model folders and sub-models.



Datastores

A datastore represents a data structure. It can be a table, a flat file, a message queue or any other data structure accessible by Oracle Data Integrator.

A datastore describes data in a tabular structure. Datastores are composed of attributes.

As datastores are based on the relational paradigm, it is also possible to associate the following elements to a datastore:

	
Keys

A Key is a set of attributes with a specific role in the relational paradigm. Primary and Alternate Keys identify each record uniquely. Non-Unique Indexes enable optimized record access.


	
References

A Reference is a functional link between two datastores. It corresponds to a Foreign Key in a relational model. For example: The INVOICE datastore references the CUSTOMER datastore through the customer number.


	
Conditions and Filters

Conditions and Filters are a WHERE-type SQL expressions attached to a datastore. They are used to validate or filter the data in this datastore.









Data Integrity

A model contains constraints such as Keys, References or Conditions, but also non-null flags on attributes. Oracle Data Integrator includes a data integrity framework for ensuring the quality of a data model.

This framework allows to perform:

	
Static Checks to verify the integrity of the data contained in a data model. This operation is performed to assess the quality of the data in a model when constraints do not physically exist in the data server but are defined in Data Integrator only.


	
Flow Check to verify the integrity of a data flow before it is integrated into a given datastore. The data flow is checked against the constraints defined in Oracle Data Integrator for the datastore that is the target of the data flow.









Reverse-engineering

A new model is created with no datastores. Reverse-engineering is the process that populates the model in Oracle Data Integrator by retrieving metadata from the data server containing the data structures. There are two different types of reverse-engineering:

	
Standard reverse-engineering uses standard JDBC driver features to retrieve the metadata. Note that unique keys are not reverse-engineered when using a standard reverse-engineering.


	
Customized reverse-engineering uses a technology-specific Reverse Knowledge Module (RKM) to retrieve the metadata, using a method specific to the given technology. This method is recommended if a technology specific RKM exists because it usually retrieves more information than the Standard reverse-engineering method. See the Connectivity and Knowledge Modules Guide for Oracle Data Integrator for a list of available RKMs.




Other methods for reverse-engineering exist for flat file datastores. They are detailed in "Reverse-Engineering File Datastores".

Oracle Data Integrator is able to reverse-engineer models containing datastore shortcuts. For more information, see Chapter 14, "Using Shortcuts".






Changed Data Capture

Change Data Capture (CDC), also referred to as Journalizing, allows to trap changes occurring on the data. CDC is used in Oracle Data Integrator to eliminate the transfer of unchanged data. This feature can be used for example for data synchronization and replication.

Journalizing can be applied to models, sub-models or datastores based on certain type of technologies.

For information about setting up Changed Data Capture, see Chapter 4, "Using Journalizing".








Creating and Reverse-Engineering a Model

Now that the key components of an ODI model have been described, an overview is provided on how to create and reverse-engineer a model:

	
Creating a Model


	
Creating a Model and Topology Objects


	
Reverse-engineering a Model






Creating a Model

A Model is a set of datastores corresponding to data structures contained in a Physical Schema.




	
Tip:

To create a new model and new topology objects at the same time, use the procedure described in "Creating a Model and Topology Objects".









To create a Model:

	
In Designer Navigator expand the Models panel.


	
Right-click then select New Model.


	
Fill in the following fields in the Definition tab:

	
Name: Name of the model used in the user interface.


	
Technology: Select the model's technology.


	
Logical Schema: Select the Logical Schema on which your model will be based.





	
On the Reverse Engineer tab, select a Context which will be used for the model's reverse-engineering.

Note that if there is only one context that maps the logical schema, this context will be set automatically.


	
Select Save from the File main menu.




The model is created, but contains no datastore yet.






Creating a Model and Topology Objects

You can create a Model along with other topology objects, including new data servers, contexts and schemas, at the same time:

	
In ODI Studio, select File and click New....


	
In the New Gallery dialog, select Create a New Model and Topology Objects and click OK.


	
In the Create New Model and Topology Objects dialog, fill in the following fields:

	
Name: Name of the model used in the user interface.


	
Technology: Select the model's technology.


	
Logical Schema: Select the Logical Schema on which your model will be based.


	
Context: Select the context that will be used for the model's reverse-engineering.





	
In the Data Server section of the Create New Model and Topology Objects dialog, fill in the data server fields. These fields are described in detail in "Creating a Data Server" in Administering Oracle Data Integrator.


	
In the Physical Schema section of the Create New Model and Topology Objects dialog, fill in the physical schema details. These fields are described in detail in "Creating a Physical Schema" in Administering Oracle Data Integrator.


	
Click OK. The model and topology objects are created, but the model contains no datastore yet.









Reverse-engineering a Model

To automatically populate datastores into the model you need to perform a reverse-engineering for this model.


Standard Reverse-Engineering

A Standard Reverse-Engineering uses the capacities of the JDBC driver used to connect the data server to retrieve the model metadata.

To perform a Standard Reverse- Engineering:

	
In the Reverse Engineer tab of your Model:

	
Select Standard.


	
Select the Context used for the reverse-engineering


	
Select the Types of objects to reverse-engineer. Only object of these types will be taken into account by the reverse-engineering process.


	
Enter in the Mask field the mask of tables to reverse engineer. The mask selects the objects to reverse. This mask uses the SQL LIKE syntax. The percent (%) symbol means zero or more characters, and the underscore (_) symbol means one character.


	
Optionally, you can specify the characters to remove for the table alias. These are the characters to delete in order to derive the alias. Note that if the datastores already exist, the characters specified here will not be removed from the table alias. Updating a datastore is not applied to the table alias.





	
In the Selective Reverse-Engineering tab select Selective Reverse-Engineering, New Datastores, Existing Datastores and Objects to Reverse Engineer.


	
A list of datastores to be reverse-engineered appears. Leave those you wish to reverse-engineer checked.


	
Select Save from the File main menu.


	
Click Reverse Engineer in the Model toolbar menu.


	
Oracle Data Integrator launches a reverse-engineering process for the selected datastores. A progress bar indicates the progress of the reverse-engineering process.




The reverse-engineered datastores appear under the model node in the Models panel.


Customized Reverse-Engineering

A Customized Reverse-Engineering uses a Reverse-engineering Knowledge Module (RKM), to retrieve metadata for a specific type of technology and create the corresponding datastore definition in the data model.

For example, for the Oracle technology, the RKM Oracle accesses the database dictionary tables to retrieve the definition of tables, attributes, keys, etc., that are created in the model.




	
Note:

The RKM must be available as a global RKM or imported into the project. Refer to Chapter 6, "Creating an Integration Project," for more information on KM import.









To perform a Customized Reverse-Engineering using a RKM:

	
In the Reverse Engineer tab of your Model:

	
Select Customized.


	
Select the Context used for the reverse-engineering


	
Select the Types of objects to reverse-engineer. Only object of these types will be taken into account by the reverse-engineering process.


	
Enter in the Mask the mask of tables to reverse engineer.


	
Select the KM that you want to use for performing the reverse-engineering process. This KM is typically called RKM <technology>.<name of the project>.


	
Optionally, you can specify the characters to remove for the table alias. These are the characters to delete in order to derive the alias. Note that if the datastores already exist, the characters specified here will not be removed from the table alias. Updating a datastore is not applied to the table alias.





	
Click Reverse Engineer in the Model toolbar menu, then Yes to validate the changes.


	
Click OK.


	
The Session Started Window appears.


	
Click OK.




You can review the reverse-engineering tasks in the Operator Navigator. If the reverse-engineering process completes correctly, reverse-engineered datastores appear under the model node in the Models panel.








Creating and Reverse-Engineering a Datastore

Although the recommended method for creating datastores in a model is reverse-engineering, it is possible to manually define datastores in a blank model. It is the recommended path for creating flat file datastores.



Creating a Datastore

To create a datastore:

	
From the Models tree in Designer Navigator, select a Model or a Sub-Model.


	
Right-click and select New Datastore.


	
In the Definition tab, fill in the following fields:

	
Name of the Datastore: This is the name that appears in the trees and that is used to reference the datastore from a project.




	
Note:

Do not use ODI reserved names like, for example, JRN_FLAG, JRN_SUBSCRIBER, and JRN_DATE for the datastore name. These names would cause Duplicate Attribute name SQL errors in ODI intermediate tables such as error tables.










	
Resource Name: Name of the object in the form recognized by the data server which stores it. This may be a table name, a file name, the name of a JMS Queue, etc.


	
Alias: This is a default alias used to prefix this datastore's attributes names in expressions.





	
If the datastore represents a flat file (delimited or fixed), in the File tab, fill in the following fields:

	
File Format: Select the type of your flat file, fixed or delimited.


	
Header: Number of header lines for the flat file.


	
Record Separator and Field Separator define the characters used to separate records (lines) in the file, and fields within one record.

Record Separator: One or several characters separating lines (or records) in the file:

	
MS-DOS: DOS carriage return


	
Unix: UNIX carriage return


	
Other: Free text you can input as characters or hexadecimal codes




Field Separator: One ore several characters separating the fields in a record.

	
Tabulation


	
Space


	
Other: Free text you can input as characters or hexadecimal code








	
Select Save from the File main menu.




The datastore is created. If this is a File datastore, refer to Reverse-Engineering File Datastores for creating attributes for this datastore. It is also possible to manually edit attributes for all datastores. See Adding and Deleting Datastore Attributes for more information.






Reverse-Engineering File Datastores

Oracle Data Integrator provides specific methods for reverse-engineering flat files. The methods for reversing flat files are described below.



Reverse-Engineering Fixed Files

Fixed files can be reversed engineered using a wizard into which the boundaries of the fixed attributes and their parameters can be defined.

	
Go to the Attributes tab the file datastore that has a fixed format.


	
Click the Reverse Engineer button. A window opens displaying the first records of your file.


	
Click on the ruler (above the file contents) to create markers delimiting the attributes. Right-click in the ruler to delete a marker.


	
Attributes are created with pre-generated names (C1, C2, and so on). You can edit the attribute name by clicking in the attribute header line (below the ruler).


	
In the properties panel (on the right), you can edit the parameters of the selected attribute.


	
You must set at least the Attribute Name, Datatype and Length for each attribute. Note that attribute names of File datastores cannot contain spaces.


	
Click OK when the attributes definition is complete to close the wizard.


	
Select Save from the File main menu.









Reverse-Engineering Delimited Files

Delimited files can be reversed engineered using a a built-in JDBC which analyzes the file to detect the attributes and reads the attribute names from the file header.

	
Go to the Attributes tab the file datastore that has a delimited format.


	
Click the Reverse Engineer button.


	
Oracle Data Integrator creates the list of attributes according to your file content. The attribute type and length are set to default values. Attribute names are pre-generated names (C1, C2, and so on) or names taken from the first Header line declared for this file.


	
Review and if needed modify the Attribute Name, Datatype and Length for each attribute. Note that attribute names of File datastores cannot contain spaces.


	
Select Save from the File main menu.









Reverse-Engineering COBOL Files

Fixed COBOL files structures are frequently described in Copybook files. Oracle Data Integrator can reverse-engineer the Copybook file structure into a datastore structure.

	
Go to the Attributes tab the file datastore that has a fixed format.


	
Click the Reverse Engineer COBOL Copybook button.


	
Fill in the following fields:

	
File: Location of the Copybook file.


	
Character Set: Copybook file character set.


	
Description format (EBCDIC or ASCII): Copybook file format


	
Data format (EBCDIC or ASCII): Data file format.





	
Click OK. The attributes described in the Copybook are reverse-engineered and appear in the attribute list.


	
Select Save from the File main menu.











Adding and Deleting Datastore Attributes

To add attributes to a datastore:

	
In the Attributes tab of the datastore, click Add Attribute in the tool bar menu.


	
An empty line appears. Fill in the information about the new attribute. You should at least fill in the Name, Datatype and Length fields.


	
Repeat steps 1 and 2 for each attribute you want to add to the datastore.


	
Select Save from the File main menu.




To delete attributes from a datastore:

	
In the Attributes tab of the datastore, select the attribute to delete.


	
Click the Delete Attribute button. The attribute disappears from the list.









Adding and Deleting Constraints and Filters

Oracle Data Integrator manages constraints on data model including Keys, References, Conditions and Mandatory Attributes. It includes a data integrity framework for ensuring the quality of a data model based on these constraints.

Filters are not constraints but are defined similarly to Conditions. A Filter is not used to enforce a data quality rule on a datastore, but is used to automatically filter this datastore when using it as a source.



Keys

To create a key for a datastore:

	
In the Designer Navigator, expand in the Model tree the model and then the datastore into which you want to add the key.


	
Select the Constraints node, right-click and select New Key.


	
Enter the Name for the constraint, and then select the Key or Index Type. Primary Keys and Alternate Keys can be checked and can act as an update key in an interface. Non-Unique Index are used mainly for performance reasons.


	
In the Attributes tab, select the list of attributes that belong to this key.


	
In the Control tab, select whether this constraint should be checked by default in a Static or Flow check.


	
By clicking the Check button, you can retrieve the number of records that do not respect this constraint.


	
Select Save from the File main menu.









References

To create a reference between two datastores:

	
In the Designer Navigator, expand in the Model tree the model and then one of the datastores into which you want to add the reference.


	
Select the Constraints node, right-click and select New Reference.


	
Enter the Name for the constraint, and then select the Type for the reference. In a User Reference the two datastores are linked based on attribute equality. In a Complex User Reference any expression can be used to link the two datastores. A Database Reference is a reference based on attribute equality that has been reverse-engineered from a database engine.


	
If you want to reference a datastore that exists in a model, select the Model and the Table that you want to link to the current datastore.


	
If you want to link a table that does not exist in a model, leave the Model and Table fields undefined, and set the Catalog, Schema and Table names to identify your datastore.


	
If you are defining a User or Database reference, in the Attributes tab, define the matching attributes from the two linked datastores.


	
If you are defining a Complex User reference, enter in the Expression tab the expression that relates attributes from the two linked datastores.


	
In the Control tab, select whether this constraint should be checked by default in a Static or Flow check.


	
By clicking the Check button, you can retrieve the number of records that respect or do not respect this constraint.


	
Select Save from the File main menu.









Conditions

To create a condition for a datastore:

	
In the Designer Navigator, expand in the Model tree the model and then one of the datastores into which you want to add the condition.


	
Select the Constraints node, right-click and select New Condition.


	
Enter the Name for the constraint, and then select the Type for the condition. An Oracle Data Integrator Condition is a condition that exists only in the model and does not exist in the database. A Database Condition is a condition that is defined in the database and has been reverse-engineered.


	
In the Where field enter the expression that implements the condition. This expression is a SQL WHERE expression that valid records should respect.


	
Type in the Message field the error message for this constraint.


	
In the Control tab, select whether this constraint should be checked by default in a Static or Flow check.


	
By clicking the Check button, you can retrieve the number of records that do not respect this constraint.


	
Select Save from the File main menu.









Mandatory Attributes

To define mandatory attributes for a datastore:

	
In the Designer Navigator, expand in the Model tree the model containing the datastores.


	
Double-click the datastore containing the attribute that must be set as mandatory. The Datastore Editor appears.


	
In the Attributes tab, check the Not Null field for each attribute that is mandatory.


	
Select Save from the File main menu.









Filter

To add a filter to a datastore:

	
In the Designer Navigator, expand in the Model tree the model and then one of the datastores into which you want to add the filter.


	
Select the Filter node, right-click and select New Condition.


	
Enter the Name for the filter.


	
In the Where field enter the expression that implements the filter. This expression is a SQL WHERE expression used to filter source records.


	
In the Control tab, check Filter Active for Static Control if you want data from this table to be filtered prior to checking it a static control.


	
Select Save from the File main menu.













Editing and Viewing a Datastore's Data

To view a datastore's data:

	
Select the datastore from the model in the Designer Navigator.


	
Right-click and select View Data.




The data appear in a non editable grid.

To edit a datastore's data:

	
Select the datastore from the model in the Designer Navigator.


	
Right-click and select Data...




The data appear in an editable grid in the Data Editor. The Refresh button enables you to edit and run again the query returning the datastore data. You can filter the data and perform free queries on the datastore using this method.

It is possible to edit a datastore's data if the connectivity used and the data server user's privileges allow it, and if the datastore structure enables to identify each row of the datastore (PK, etc.).




	
Note:

The data displayed is the data stored in the physical schema corresponding to the model's logical schema, in the current working context.














Using Partitioning

Oracle Data Integrator is able to use database-defined partitions when processing data in partitioned tables used as source or targets of mappings. These partitions are created in the datastore corresponding to the table, either through the reverse-engineering process or manually. For example with the Oracle technology, partitions are reverse-engineered using the RKM Oracle.

The partitioning methods supported depend on the technology of the datastore. For example, for the Oracle technology the following partitioning methods are supported: Range, Hash, List.

Once defined on a datastore, partitions can be selected when this datastore is used as a source or a target of a mapping. Refer to Chapter 8, "Creating and Using Mappings," for information.

If using the common format designer, you can also create partitions when performing the Generate DDL operation.



Manually Defining Partitions and Sub-Partitions of Model Datastores

Partition information can be reverse-engineered along with the datastore structures or defined manually.




	
Note:

Standard reverse-engineering does not support the revers-engineering of partitions. To reverse-engineer partitions and sub-partitions, you have to use customized reverse-engineering.









To manually define partitions and sub-partitions for a datastore:

	
In the Models accordion, double-click the datastore for which you want to define the partition or sub-partition. The Datastore Editor opens.


	
In the Partitions tab, enter the following details to define the partition and sub-partition:

	
Partition by

Select the partitioning method. This list displays the partitioning methods supported by the technology on which the model relies.


	
Sub-Partition by

If you want to define sub-partitions in addition to partitions, select the sub-partitioning method. This list displays the partitioning methods supported by the technology on which the model relies.





	
Click Add Partition.


	
In the Name field, enter a name for the partition, for example: FY08.


	
In the Description field, enter a description for the partition, for example: Operations for Fiscal Year 08.


	
If you want to add:

	
additional partitions, repeat steps 3 through 5.


	
a sub-partition of a selected partition, click Add Sub-Partition and repeat steps 4 and 5.





	
From the File menu, select Save.











Checking Data Quality in a Model

Data Quality control is essential in ensuring the overall consistency of the data in your information system's applications.

Application data is not always valid for the constraints and declarative rules imposed by the information system. You may, for instance, find orders with no customer, or order lines with no product, etc. In addition, such incorrect data may propagate via integration flows.



Introduction to Data Integrity

Oracle Data Integrator provides a working environment to detect these constraint violation and store them for recycling or reporting purposes.

There are two different main types of controls: Static Control and Flow Control. We will examine the differences between the two.


Static Control

Static Control implies the existence of rules that are used to verify the integrity of your application data. Some of these rules (referred to as constraints) may already be implemented in your data servers (using primary keys, reference constraints, etc.)

With Oracle Data Integrator, you can refine the validation of your data by defining additional constraints, without implementing them directly in your servers. This procedure is called Static Control since it allows you to perform checks directly on existing - or static - data. Note that the active database constraints (these are those that have Defined in the Database and Active selected on the Controls tab) need no additional control from Oracle Data Integrator since they are already controlled by the database.


Flow Control

The information systems targeted by transformation and integration processes often implement their own declarative rules. The Flow Control function is used to verify an application's incoming data according to these constraints before loading the data into these targets. Setting up flow control is detailed in to Chapter 8, "Creating and Using Mappings."






Checking a Constraint

While creating a constraint in Oracle Data Integrator, it is possible to retrieve the number of lines violating this constraint. This action, referred as Synchronous Control is performed from the Control tab of the given constraint Editor by clicking the Check button.

The result of a synchronous control is not persistent. This type of control is used to quickly evaluate the validity of a constraint definition.






Perform a Static Check on a Model, Sub-Model or Datastore

To perform a Static Check on a Model, Sub-Model or Datastore:

	
In the Models tree in the Designer Navigator, select the model that you want to check.


	
Double-click this model to edit it.


	
In the Control tab of the model Editor, select the Check Knowledge Module (CKM) used in the static check.


	
From the File menu, select Save All.


	
Right-click the model, sub-model or datastore that you want to check in the Model tree in the Designer Navigator and select Control > Check. Or, in the model editor menu bar, click the Check Model button.


	
In the Run dialog, select the execution parameters:

	
Select the Context into which the step must be executed.


	
Select the Logical Agent that will run the step.


	
Select a Log Level.


	
Check the Delete Errors from the Checked Tables option if you want rows detected as erroneous to be removed from the checked tables.


	
Select Recurse Sub-Models to check sub-models of this models


	
Optionally, select Simulation. This option performs a simulation of the run operation and generates a run report, without actually affecting data.




See "Execution Parameters" in Administering Oracle Data Integrator for more information about the execution parameters.


	
Click OK.


	
The Session Started Window (or, if running a simulation, the Simulation window) appears.


	
Click OK.




You can review the check tasks in the Operator Navigator. If the control process completes correctly, you can review the erroneous records for each datastore that has been checked.






Reviewing Erroneous Records

To view a datastore's errors:

	
Select the datastore from the model in the Designer Navigator.


	
Right-click and select Control > Errors....




The erroneous rows detected for this datastore appear in a grid.







Part III



Developing Integration Projects

This part describes how to develop integration projects in Oracle Data Integrator.

This part contains the following chapters:

	
Chapter 6, "Creating an Integration Project"


	
Chapter 7, "Creating and Using Packages"


	
Chapter 8, "Creating and Using Mappings"


	
Chapter 9, "Using Compatibility Mode"


	
Chapter 10, "Creating and Using Procedures, Variables, Sequences, and User Functions"


	
Chapter 11, "Using Scenarios"


	
Chapter 12, "Using Load Plans"


	
Chapter 13, "Using Web Services"


	
Chapter 14, "Using Shortcuts"






Part II



Managing and Reverse-Engineering Metadata

This part describes how to manage and reverse-engineer metadata in Oracle Data Integrator.

This part contains the following chapters:

	
Chapter 3, "Creating and Using Data Models and Datastores"


	
Chapter 4, "Using Journalizing"


	
Chapter 5, "Creating Data Models with Common Format Designer"






16 Organizing and Documenting Integration Projects


This chapter describes how to organize and document your work in Oracle Data Integrator.

This chapter includes the following sections:

	
Organizing Projects with Folders


	
Organizing Models with Folders


	
Using Cross-References


	
Using Markers and Memos


	
Handling Concurrent Changes


	
Creating PDF Reports






Organizing Projects with Folders

Before you begin creating an integration project with Oracle Data Integrator, it is recommended to think about how the project will be organized.

Rearranging your project afterwards may be dangerous. You might have to redo all the links and cross-references manually to reflect new locations.

Within a project, mappings, procedures and packages are organized into folders and sub-folders. It is recommended to maintain your project well organized by grouping related project components into folders and sub-folders according to criteria specific to the project. Folders simplify finding objects developed in the project and facilitate the maintenance tasks. Sub-folders can be created to an unlimited number of levels.

Note that you can also use markers to organize your projects. Refer to "Using Markers and Memos" for more information.



Creating a New Folder

To create a new folder:


	
In Designer Navigator expand the Projects accordion.


	
Select the project into which you want to add a folder.


	
Right-click and select New Folder.


	
In the Name field, enter a name for your folder.


	
Select Save from the File main menu.




The empty folder appears.

To create a sub-folder:

	
Create a new folder, as described in "Creating a New Folder".


	
Drag and drop the new folder into the parent folder.









Arranging Project Folders

To arrange your project folders in the project hierarchy, drag and drop a folder into other folders or on the Project. Note that it is not possible to move a folder from one Project to another Project.








Organizing Models with Folders

A model folder groups related models according to criteria specific to the project. A model folder may also contain other model folders. Sub-folders can be created to an unlimited number of levels.

Note that you can also use markers to organize your models. Refer to "Using Markers and Memos" for more information.



Creating a New Model Folder

To create a model folder:

	
In Designer Navigator expand the Models accordion.


	
Click New Model Folder in the toolbar of the Models accordion.


	
In the Name field, enter a name for your folder.


	
Select Save from the File main menu.




The empty model folder appears.






Arranging Model Folders

To move a model into a folder:

	
In Designer Navigator expand the Models accordion.


	
Select the model, then drag and drop it on the icon of the destination model folder.




The model moves from its current location to the selected model folder.

Note the following when arranging model folders:

	
A model can only be in one folder at a time.


	
Model folders can be also moved into other model folders.









Creating and Organizing Sub-Models

A sub-model is an object that allows you to organize and classify the datastores of a model in a hierarchical structure. The root of the structure is the model. A sub-model groups functionally homogeneous datastores within a model. The datastores of a model can be inserted into a sub-model using drag and drop, or by automatic distribution.

The classification is performed:

	
During the reverse-engineering process, the RKM may create sub-models and automatically distribute datastores into these sub-models. For example RKM handling large data models from ERP systems use this method.


	
Manually, by drag and dropping existing datastores into the sub-models.


	
Automatically, using the distribution based on the datastore's name.




To create a sub-model:

	
In Designer Navigator expand the Models accordion.


	
In the Models accordion, select the model or the sub-model into which you want to add a sub-model.


	
Right-click and select New Sub-Model.


	
On the Definition tab, enter a name for your sub-model in the Name field.


	
Click OK.




The new sub-model is created with no datastore.


Arranging Sub-Models

To manually file a datastore into a sub-model:

	
In Designer Navigator expand the Models accordion.


	
In the Models accordion, select the datastore you wan to move into the sub-folder.


	
Drag and drop it into the sub-model.




The datastore disappears from the model and appears in the sub-model.


Setting-up Automatic Distribution

Distribution allows you to define an automatic distribution of the datastores in your sub-models.

Datastores names are compared to the automatic assignment mask. If they match this pattern, then they are moved into this sub-model. This operation can be performed manually or automatically depending on the Datastore Distribution Rule.

There are two methods to classify:

	
By clicking Distribution in the Distribution tab of a sub-model, the current rule is applied to the datastores.


	
At the end of a reverse-engineering process, all sub-model rules are applied, the order defined by the Order of mask application after a Reverse Engineer values for all sub-models.




To set up the automatic distribution of the datastores in a sub-model:

	
In the sub-model's Distribution tab, select the Datastore distribution rule:

The Datastore Distribution rule determines which datastores will be taken into account and compared to the automatic assignment mask:

	
No automatic distribution: No datastore is taken in account. Distribution must be made manually.


	
Automatic Distribution of all Datastores not already in a Sub-Model: Datastores located in the root model in the sub-model tree are taken in account.


	
Automatic Distribution of all Datastores: All datastores in the model (and sub-models) are taken in account.





	
In the Automatic Assignment Mask field, enter the pattern the datastore names must match to be classified into this sub-model.


	
In the Order of mask application after a Reverse Engineer field, enter the order in which all rules should be applied at the end of a reverse. Consequently, a rule with a high order on all datastores will have precedence. A rule with a high order on non-classified datastores will apply only to datastores ignored by the other rules' patterns. At the end of the reverse, new datastores are considered non classified. Those already classified in a sub-model stay attached to their sub-model.


	
Click Distribution. The current rule is applied to the datastores.











Using Cross-References

Objects in Oracle Data Integrator (datastores, models, mappings, etc.) are interlinked by relationships varying from simple usage associations (a mapping uses Knowledge Modules) to complex ones such as code-interpretation relationships (a variable is used in the mappings or filters of a mapping). These relationships are implemented as cross-references. They are used to check/maintain consistency between related objects within a work repository. Cross-references, for example, prevent you from deleting an object if it is currently referenced elsewhere in the work repository.

Not all relationships appear as cross-references:

	
Relationships with objects from the master repository (For example, a data model is related to a technology) are not implemented as cross-references, but as loose references based on object codes (context code, technology code, datatype code, etc). Modifications to these codes may cause inconsistency in the references.


	
Strong relationships in the work repository (a folder belongs to a project) are enforced in the graphical user interface and within the repository (in the host database as foreign keys). These relationships may not normally be broken.






Browsing Cross-References

When modifying an object, it is necessary to analyze the impact of these changes on other developments. For example, if the length of a column is altered, the mappings using this column as a source or a target may require modification. Cross-references enable you to immediately identify the objects referenced or referencing a given object, and in this way provide effective impact analysis.

Cross-references may be browsed in Designer Navigator as described in Table 16-1.


Table 16-1 Cross-References in Designer Navigator

	Accordion	Icon	Description
	
Projects and Other accordion

	
[image: Used in icon]


	
The Uses and Used by nodes appear under an object node. The Uses node lists the objects from which the current object is referenced. In the case of a variable, for example, the packages containing steps referencing this variable and the mappings, filters, etc. will be displayed. The Used by node lists the objects that are using the current object.


	
Models accordion

	
[image: Used in icon]


	
The Uses node appears under an object node and lists the objects referencing the current datastore, model or sub-model as a source or a target of an mapping, or in package steps.


	
Models accordion

	
[image: Used to Populate or Populated by icon]


	
The Used to Populate and Populated By nodes display the datastores used to populate, or populated by, the current datastore








These cross-referenced nodes can be expanded. The referencing or referenced objects can be displayed or edited from the cross-reference node.






Resolving Missing References

When performing version restoration operations, it may happen that an object in the work repository references nonexistent objects. For example, restoring an old version of a project without restoring all the associated objects used in its procedures or packages.




	
Note:

The mapping framework has built into its design a mechanism for dealing with missing or invalid references. Because of this, ODI import in 12c will not create and report the import missing references for mappings. Instead, the mapping framework attempts to reconcile invalid or missing references when a mapping is opened.









Such a situation causes Missing References errors messages in Oracle Data Integrator when opening the objects (for example, a package) which references nonexistent objects. An object with missing cross-references is marked in the tree with the missing reference marker and its parent objects are flagged with a warning icon.

To display the details of the missing references for an object:

	
In Designer Navigator, double-click the object with the missing reference marker.


	
The object editor opens. In the object editor, select the Missing References tab.


	
The list of referenced objects missing for the cross-references is displayed in this tab.




To resolve missing references:

Missing cross-reference may be resolved in two ways:

	
By importing/restoring the missing referenced object. See Chapter 17, "Using Version Control," and Chapter 18, "Exporting and Importing," for more information.


	
By modifying the referencing object in order to remove the reference to the missing object (for example, remove the Refresh Variable step referencing the nonexistent variable from a package, and replace it with another variable).







	
Note:

If a block of code (such a procedure command) contains one or more missing references, the first change applied to this code is considered without any further check. This is because all the missing references are removed when the code is changed and the cross-references computed, even if some parts of the code are still referring to an object that doesn't exist.
















Using Markers and Memos

Almost all project and model elements may have descriptive markers and memos attached to them to reflect your project's methodology or help with development.



Markers

Flags are defined using markers. These markers are organized into groups, and can be applied to most objects in a project or a models.

Typical marker groups are:

	
The development cycle (development, test, production)


	
Priorities (low, medium, urgent, critical)


	
Progress (10%, 20%, etc)





Global and Project Markers

Markers are defined in a project or in the Other view (Global Markers). The project markers can be used only on objects of the project, and global markers can be used in all models of the repository.


Flagging Objects

To flag an object with an icon marker:

	
In Designer Navigator, select an object in the Projects or Models accordion.


	
Right-click and select Add Marker, then select the marker group and the marker you want to set.




The marker icon appears in the tree. The marked object also appears under the marker's node. You can thus see all objects having a certain marker.

If you click in the tree an icon marker belonging to an auto-incremented marker group, you switch the marker to the next one in the marker group, and the icon changes accordingly.




	
Note:

Markers will not appear if the option Show Markers and Memo Flags is not checked. See "Hiding Markers and Memos" for more information.









To flag an object with string, numeric and date markers:

	
In Designer Navigator, double-click the object in the Projects or Models accordion.


	
In the object editor, select the Markers tab.


	
Click Insert a Marker.


	
In the new line, select the Group and Marker. You may also set the Value.




If the marker has an associated icon, it appears in the tree.


Filtering Using Markers

Markers can be used for informational purposes (for example, to have a global view of a project progress and resources). They can also be used when automating scenario generation by filter the packages. See "Generating a Group of Scenarios" for more information.

The list of all objects using a certain marker is shown below the marker's node.


Customizing Markers

A new project is created with default markers. It is possible to customize the markers for a specific project as well as the global markers.

To define a marker group:

	
In Designer Navigator, click the Markers node in the Project accordion, or the Global Markers node in the Others accordion.


	
Right-click and select New Marker Group.


	
In the Group Name field, enter the name for the marker group, then define its Display Properties and Attributes.


	
Click Insert a new Marker to create a new marker in the group.


	
Select the marker Icon. If a marker stores date or a number, the icon should be set to <none>.


	
Select the marker Name, Type and other options.


	
Repeat operations 4 to 6 to add more markers to the group.


	
Select Save from the File main menu.









Memos

A memo is an unlimited amount of text attached to virtually any object, visible on its Memo tab. When an object has a memo attached, the memo icon appears next to it.

To edit an object's memo:

	
Right-click the object.


	
Select Edit Memo.


	
The Object editor opens, and the Memo tab is selected.





Hiding Markers and Memos

You can temporarily hide all markers and memo flags from the tree views, to improve readability.

To hide all markers and memo flags:

Deselect the Display Markers and Memo Flags option in the Designer Navigator toolbar menu. This preference is stored on a per-machine basis.








Handling Concurrent Changes

Several users can work simultaneously in the same Oracle Data Integrator project or model. As they may be all connected to the same repository, the changes they perform are considered as concurrent.

Oracle Data Integrator provides two methods for handling these concurrent changes: "Concurrent Editing Check" and "Object Locking". This two methods can be used simultaneously or separately.



Concurrent Editing Check

The user parameter, Check for concurrent editing, can be set to prevent you from erasing the work performed by another user on the object you try to save. You can set this parameter by clicking Preferences from the Tools option on the menu bar; expand the ODI node, and then the System node, and select the Concurrent Development node.

If this parameter is checked, when saving changes to any object, Oracle Data Integrator checks whether other changes have been made to the same object by another user since you opened it. If another user has made changes, the object cannot be saved, and you must cancel your changes.






Object Locking

The object locking mechanism can be activated in Oracle D