Oracle® Fusion Middleware
Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator
12c (12.1.3.0.1)
E51091-03

March 2015
Contents

Preface ... vii
- Audience .. vii
- Documentation Accessibility .. vii
- Related Documents ... vii
- Conventions .. viii

1 **Overview of Oracle Data Integrator SAP BW Knowledge Modules**
 - 1.1 Overview .. 1-1

2 **Setting Up the Environment**
 - 2.1 Before You Begin ... 2-1
 - 2.1.1 System Requirements and Certification 2-1
 - 2.1.2 Setting Up the SAP System ... 2-2
 - 2.1.3 Gathering SAP Connection Information 2-3
 - 2.2 Installing Oracle Data Integrator ... 2-3
 - 2.3 Installing and Configuring the Oracle DB Target.................. 2-3
 - 2.4 Installing and Configuring JCo .. 2-6
 - 2.5 Configuring Oracle Data Integrator 2-7
 - 2.5.1 Add the Open Tool ... 2-7

3 **Configuring the Topology**
 - 3.1 Configuring the File Server for SAP ABAP 3-2
 - 3.2 Configuring the Target Data Server 3-3
 - 3.3 Configuring the SAP Source Server 3-5
 - 3.3.1 Configuring the Data Server ... 3-5
 - 3.3.2 Configuring the Logical Schema 3-6

4 **Creating a New Project**
 - 4.1 Creating a New Project .. 4-1

5 **Reverse-Engineering Data Models**
 - 5.1 Reverse-Engineering the Oracle Target 5-1
 - 5.2 Reverse-Engineering the SAP BW Source Datastores 5-2
 - 5.2.1 Creating the Data Model ... 5-3
6 Creating and Running the Mapping

6.1 Creating the Mapping .. 6-1

6.1.1 Info Cube Extraction ... 6-2

6.1.1.1 Create the Mapping ... 6-2

6.1.1.2 Define the Source and Target Datastores .. 6-2

6.1.1.3 Create the Mappings .. 6-2

6.1.1.4 Define the Mapping Flow ... 6-3

6.1.2 Info Object Extraction .. 6-4

6.1.2.1 Create the Mapping .. 6-4

6.1.2.2 Define the Source and Target Datastores .. 6-4

6.1.2.3 Define Joins between Info Object's Main table and Text Table 6-4

6.1.2.4 Create the Mappings ... 6-5

6.1.2.5 Define the Mapping Flow .. 6-6

6.1.3 Info Object Hierarchy Extraction ... 6-7

6.1.3.1 Create the Mapping .. 6-7

6.1.3.2 Define the Source and Target Datastores .. 6-7

6.1.3.3 Create the Mappings .. 6-8

6.1.3.4 Define the Mapping Flow .. 6-8

6.1.4 Info Object Interval Hierarchy Extraction ... 6-9

6.1.4.1 Create the Mapping .. 6-9

6.1.4.2 Define the Source and Target Datastores .. 6-9

6.1.4.3 Define Joins between Sources (Info Object Main table and InfoObject Hierarchy Table) 6-10

6.1.4.4 Create the Mappings .. 6-11

6.1.4.5 Define the Mapping Flow .. 6-12

6.1.5 ODS/DSO Extraction .. 6-13

6.1.5.1 Create the Mapping .. 6-13

6.1.5.2 Define the Source and Target Datastores .. 6-13

6.1.5.3 Create the Mappings .. 6-13

6.1.5.4 Define the Mapping Flow .. 6-14

6.1.6 Info Cube & Related Info Object Extraction ... 6-14

6.1.6.1 Create the Mapping .. 6-14

6.1.6.2 Define the Source and Target Datastores .. 6-15

6.1.6.3 Define Joins between Sources (Info Cube & Object) .. 6-15

6.1.6.4 Create the Mappings .. 6-16

6.1.6.5 Define the Mapping Flow .. 6-17

6.1.7 Info Cube Extraction with Navigational Attributes ... 6-17

6.1.7.1 Create the Mapping .. 6-17

6.1.7.2 Define the Source and Target Datastores .. 6-18

6.1.7.3 Define Joins Between Sources (Info Cube & Info Object) ... 6-18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.7.4</td>
<td>Create the Mappings</td>
<td>6-19</td>
</tr>
<tr>
<td>6.1.7.5</td>
<td>Define the Mapping Flow</td>
<td>6-20</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Open Hub Extraction</td>
<td>6-21</td>
</tr>
<tr>
<td>6.1.8.1</td>
<td>Create the Mapping</td>
<td>6-21</td>
</tr>
<tr>
<td>6.1.8.2</td>
<td>Define the Source and Target Datastores</td>
<td>6-21</td>
</tr>
<tr>
<td>6.1.8.3</td>
<td>Create the Mappings</td>
<td>6-22</td>
</tr>
<tr>
<td>6.1.8.4</td>
<td>Define the Mapping Flow</td>
<td>6-22</td>
</tr>
<tr>
<td>6.2</td>
<td>Running the Mapping</td>
<td>6-23</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Running the Mapping</td>
<td>6-23</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Review the Mapping Execution</td>
<td>6-24</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Review the Resulting Data</td>
<td>6-24</td>
</tr>
<tr>
<td>7</td>
<td>Creating a Package for Delta Extraction</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Modify the Mapping Flow</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2</td>
<td>Creating the MIN_REQUEST_ID Variable</td>
<td>7-2</td>
</tr>
<tr>
<td>7.3</td>
<td>Creating a Package for Delta Extraction</td>
<td>7-3</td>
</tr>
<tr>
<td>7.4</td>
<td>Running the Package</td>
<td>7-4</td>
</tr>
<tr>
<td>8</td>
<td>Going Further with Oracle Data Integrator</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Going further with Oracle Data Integrator</td>
<td>8-1</td>
</tr>
<tr>
<td>9</td>
<td>More Information</td>
<td></td>
</tr>
</tbody>
</table>
Preface

The purpose of this document is to provide you with an overview of the possibilities offered by SAP BW Knowledge Modules and how to use them in Oracle Data Integrator.

This document provides examples to help you understand how to approach an ETL project with Oracle Data Integrator, loading a Data Warehouse with data from SAP BW systems, while validating data quality.

This project should take approximately 90 minutes to complete. You may save your work in order to pause and resume at any point in the project.

It is recommended that you use Oracle Data Integrator before proceeding with this guide. A good introduction to Oracle Data Integrator is the guide *Oracle Fusion Middleware Getting Started with Oracle Data Integrator*.

It is recommended that you also review the SAP ABAP - BW chapter of the *Developing Knowledge Modules with Oracle Data Integrator* for more information about the SAP BW KMs.

Audience

This document is intended for developers and administrators who want to use Oracle Data Integrator Application Adapters with SAP BW systems using SAP JCo libraries, as a development tool for their integration processes.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in Oracle Data Integrator Library.

- Release Notes for Oracle Data Integrator
- Understanding Oracle Data Integrator
- Administering Oracle Data Integrator
- Developing Integration Projects with Oracle Data Integrator
- Installing and Configuring Oracle Data Integrator
- Upgrading Oracle Data Integrator
- Application Adapters Guide for Oracle Data Integrator
- Developing Knowledge Modules with Oracle Data Integrator
- Connectivity and Knowledge Modules Guide for Oracle Data Integrator
- Migrating From Oracle Warehouse Builder to Oracle Data Integrator
- Oracle Data Integrator Tool Reference
- Data Services Java API Reference for Oracle Data Integrator
- Open Tools Java API Reference for Oracle Data Integrator
- Java API Reference for Oracle Data Integrator
- Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator
- Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the JDeveloper Help Center when you press F1 or from the main menu by selecting Help, and then Search or Table of Contents.

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Overview of Oracle Data Integrator SAP BW Knowledge Modules

This chapter provides an overview of Oracle Data Integrator SAP BW Knowledge Modules.

1.1 Overview

The Oracle Data Integrator SAP BW Knowledge Modules provide integration from SAP BW systems using SAP JCo libraries. This set of KMs has the following features:

- Reads SAP data from SAP BW system
- Loads this SAP data into Oracle / non-Oracle Staging Area
- Reverse-engineers metadata of warehouse and proposes a tree browser to pick up only the required metadata

This adapter includes two knowledge modules:

- **RKM SAP BW**: Its main role is to perform customized reverse-engineering of SAP BW data targets into ODI datastores (Models). The SAP BW RKM is in charge of connecting to the SAP BW System, which provides the SAP BW data target’s metadata information, and transforming and writing the resulting metadata into Oracle Data Integrator’s repository.

- **The LKM SAP BW to Oracle (SQLLDR)/LKM SAP BW to SQL** connects to SAP BW and retrieves data targets defined in the SAP Model. It is used in the mappings. The LKM is in charge of loading source data from a SAP BW System to an Oracle/non-Oracle staging area.
Overview
This chapter describes how to set up your SAP BW environment for use with Oracle Data Integrator.

This chapter includes the following sections:

- Before You Begin
- Installing Oracle Data Integrator
- Installing and Configuring the Oracle DB Target
- Installing and Configuring JCo
- Configuring Oracle Data Integrator

2.1 Before You Begin

Before you begin, consider the following:

- System Requirements and Certification
- Setting Up the SAP System
- Gathering SAP Connection Information

Caution: All three sub-sections below must be followed and completed successfully before any parts of the ODI SAP Adapter can be used or tested.

Please take into account that these SAP related tasks usually take some time, as they need to be scheduled with your SAP administration team.

All these activities must be completed before proceeding to the ODI related installation activities.

2.1.1 System Requirements and Certification

Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.

The Oracle Data Integrator requirements are listed in the *Installing and Configuring Oracle Data Integrator*.

The requirements specific to the Oracle Data Integrator SAP ABAP - BW Adapter are:
Before You Begin

Oracle Data Integrator 11.1.1.7.0 with Patch 20235601 (ODI SAP Adapter v37) or later ODI 11g version, or Oracle Data Integrator 12.1.3.0.0 with Patch 19561419 (ODI SAP Adapter v37) or later ODI 12c version.

A Java Connector (JCo) version compatible with adapter must be used. The list of supported JCo versions is available in the Compatibility Matrix available from the Oracle Technology Network (OTN). A minimum version of JCo 3.0.2 is required.

A JVM version compatible with both Oracle Data Integrator and JCo must be used. A minimum version of JVM 1.5 is required due to JCo pre-requisites.

The connector supports two transfer modes for transferring data from SAP system to the ODI agent: data transfer using a Shared Directory and data transfer through FTP. For details and restrictions see "File Transfer Considerations" of Application Adapters Guide for Oracle Data Integrator. Depending on the chosen file transfer mode the following requirements must be met:

- **Data transfer through a Shared Directory (recommended transfer method)**
 The LKM SAP BW to Oracle (SQLLDR) requires a folder that is shared between the SAP system and the ODI agent. The SAP application server transfers the data by writing it out into a folder that is accessible from the SAP system and the ODI agent machine. This is typically done by sharing a folder of the ODI agent machine with the SAP system. Note that the shared folder does not necessarily have to be located on the ODI agent machine. A shared folder on a third machine is also possible, as long as the shared folder is accessible to both the ODI agent machine and the SAP system.

 Note: For security reasons, the SAP folders should not be shared with the ODI agent. Share only folders of the ODI agent machine with the SAP system.

 The shared folder must be accessible to SAP system and not just to the underlying operating system. This means that the folder needs to be declared in SAP transaction AL11 and the folder opens successfully in AL11.

- **Data transfer through FTP** LKM SAP BW to Oracle (SQLLDR) requires a FTP server to upload data from the SAP BW system. This data is either read locally by the agent executing the mapping (when this agent runs on the FTP server machine), or remotely (when this agent is located on a different machine than the FTP server). This FTP server must be accessible over the network from both the SAP BW machine and the agent machine.

 For LKM SAP BW to Oracle (SQLLDR) only: SQLLoader is required on the machine running the agent. SQLLoader is used for loading data extracted from SAP BW system to the Oracle staging area.

2.1.2 Setting Up the SAP System

The SAP Adapter integrates with the SAP system through some SAP RFCs. These components need to be installed by the SAP Administration team. Please ask your SAP administrator to perform the installation steps described in section *Installing ODI SAP Components* and then the validation steps described in section *Validating the ODI SAP Setup* of the Application Adapters Guide for Oracle Data Integrator.
2.1.3 Gathering SAP Connection Information

In order to connect to the SAP BW system, you must request the following information from your SAP administrators:

- **SAP BW System IP Address or Hostname**: IP address/Hostname is the technical name given to the host on which SAP is running.
- **SAP User**: SAP User is the unique user name given to a user for logging on the SAP BW System.
- **SAP Password**: Case-sensitive password used by the user to log in.
- **SAP Language**: Code of the language used when logging in. For example: EN for English, DE for German.
- **SAP Client Number**: The three-digit number assigned to the self-contained unit which is called Client in SAP. A Client can be a training, development, testing, or production client or represent different divisions in a large company.
- **SAP System Number**: The two-digit number assigned to a SAP instance which is also called Web Application Server or WAS.
- **SAP System ID**: The three-character, unique identifier of a SAP system in a landscape.
- **SAP Transport Layer Name**: This string uniquely identifies a transport layer in a SAP landscape. It allows ODI to create transport requests for later deployment in SAP. Even though there is a default value here, this transport layer name must be provided by your SAP Basis team. Not doing so may result in significant delays during installation.
- **SAP BW Version**: BW 3.5 or BI 7.0.
- **SAP Character Set**: The character set is only required if your SAP system is not a UNICODE system. For a complete list of character sets, see "Locale Data" in the Oracle Database Globalization Support Guide. For example, EB8ISO8859P2 for Croatian Data. For UNICODE systems, use UTF8.

Note: All the connection data listed above (except SAP SNC Connection Properties and SAP Router String) are mandatory and should be requested from the SAP Administrators. You may consider requesting support during connection setup from your SAP administrators.

2.2 Installing Oracle Data Integrator

Before starting with this project, you need to install and configure Oracle Data Integrator. See the Oracle Fusion Middleware Getting Started with Oracle Data Integrator and the Installing and Configuring Oracle Data Integrator for more information.

2.3 Installing and Configuring the Oracle DB Target

This project uses an Oracle database engine as the target and as the staging area for the mappings. You can download for example an Oracle XE database from the Oracle Technology Network (OTN). Install and configure this database.

This project targets an Oracle table that can be created using the following script:

```sql
-- Create demo target schema
```
CREATE USER ODI_SAP_DEMO IDENTIFIED BY ODI_SAP_DEMO DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP;
GRANT CONNECT, RESOURCE TO ODI_SAP_DEMO;

-- Create demo target tables
-- For ODS/DSO

CREATE TABLE ODI_SAP_DEMO.W_PURCH_DS {
 PO_GUID VARCHAR2(100),
 ORDER_ITEM_GUID VARCHAR2(100),
 ACC_ASS_GUID VARCHAR2(100),
 GUIDE_CONTRCT VARCHAR2(100),
 ORDER_QUANT NUMBER,
 NET_PRICE NUMBER,
 PRICE_UNIT CHAR(5),
 NO_OF_PURCH_ODR NUMBER};
ALTER TABLE ODI_SAP_DEMO.W_PURCH_DS ADD CONSTRAINT PK_W_PURCH_DS PRIMARY KEY (PO_GUID);

-- For INFO OBJECT

CREATE TABLE ODI_SAP_DEMO.W_ACCNT_VENDR_DS {
 VENDOR CHAR(10),
 PCOMPANY CHAR(10),
 PHONE CHAR(20),
 PLANT CHAR(10),
 STREET VARCHAR(50),
 MED_DESC VARCHAR(100)};
ALTER TABLE ODI_SAP_DEMO.W_ACCNT_VENDR_DS ADD CONSTRAINT PK_W_ACCNT_VENDR_DS PRIMARY KEY (VENDOR);

-- For INFO OBJECT HIERARCHY

CREATE TABLE ODI_SAP_DEMO.W_GL_ACCOUNT_HIER_DS {
 HIER_NAME CHAR(50),
 NODEID NUMBER(20),
 INFOOBJECT_NAME CHAR(80),
 NODENAME CHAR(80),
 TLEVEL NUMBER(5),
 PARENTID NUMBER(20),
 CHILIDID NUMBER(20),
 NEXTID NUMBER(20)};
ALTER TABLE ODI_SAP_DEMO.W_GL_ACCOUNT_HIER_DS ADD CONSTRAINT PK_W_GL_ACCOUNT_HIER_DS PRIMARY KEY (HIER_NAME, NODEID);

-- For INFO OBJECT INTERVAL HIERARCHY

CREATE TABLE TARGET_INTERVAL_HIERARCHY {
 RSHIENM VARCHAR2(30 BYTE),
 NODEID NUMBER(8),
 PARENTID NUMBER(8)
 INTERVL VARCHAR2(1 BYTE),
 LEAFFROM VARCHAR2(60 BYTE),
 LEAFTO VARCHAR2(60 BYTE),
}
CREATE TABLE ODI_SAP_DEMO.W_VENDR_BAL_DS (
 OCOMP_CODE CHAR(6),
 OCREDITOR CHAR(10),
 ORC_ACCOUNT CHAR(10),
 TOT_DEBT_POST NUMBER,
 TOT_CR_POST NUMBER,
 CUMULATIVE_BAL NUMBER);

ALTER TABLE ODI_SAP_DEMO.W_VENDR_BAL_DS ADD CONSTRAINT PK_W_VENDR_BAL_DS PRIMARY KEY (OCOMP_CODE);

CREATE TABLE ODI_SAP_DEMO.W_VENDER_CUBE_OBJ_DS (
 COMP_CODE CHAR(10),
 VENDOR CHAR(10),
 GL_ACCOUNT CHAR(10),
 SALES_FOR_PERIOD NUMBER,
 CUM_BALANCE NUMBER,
 PLANT CHAR(10),
 MEDIUM_DESC VARCHAR2(100));

ALTER TABLE ODI_SAP_DEMO.W_VENDER_CUBE_OBJ_DS ADD CONSTRAINT PK_W_VENDER_CUBE_OBJ_DS PRIMARY KEY (COMP_CODE);

CREATE TABLE "TARGET_NAVIGATIONAL_ATTRIBUTES"(
 IOPK_CUSTOMER VARCHAR2(10 BYTE),
 IOPKUSTGROUP VARCHAR2(2 BYTE),
 IOPKPK_CUSTOMER VARCHAR2(10 BYTE),
 IOPK_PK_PLANT VARCHAR2(4 BYTE),
 IOPKCALMONTH NUMBER(6),
 IOPK_CALWEEK NUMBER(6),
 IOPKTHIP_POINT VARCHAR2(4 BYTE),
 REQUID VARCHAR2(30 BYTE),
 KP_ODEL_VOL NUMBER(17,3),
 KP_OSHIPPDATE NUMBER(17),
 KP_OLOADDATEK NUMBER(17),
 KP_OACT_GL_DYNKEY NUMBER(17),
 KP_OMAYAV_DYNKEY NUMBER(17),
 KP_ODATE_QTY NUMBER(17,3),
 CUSTOMER VARCHAR2(10 BYTE),
 PLANT VARCHAR2(4 BYTE),
 PHONE VARCHAR2(16 BYTE),
 FCOMPANY VARCHAR2(6 BYTE),
 OUTL_TYPE VARCHAR2(4 BYTE),
 NIELSEN_ID VARCHAR2(2 BYTE),
 LOGSYS VARCHAR2(10 BYTE),
 ..
2.4 Installing and Configuring JCo

The SAP adapter uses Java Connector (JCo) to connect to the SAP system. JCo must be configured before proceeding with the project.

To install and configure JCo:

1. Download a supported JCo version for your configuration from http://service.sap.com/connectors. Check the supported JCo version in the Certification Matrix available at Oracle Technology Network. Note that a minimum version of JCo 3.0.2 is required.

2. Unzip the appropriate distribution package into an arbitrary directory <sapjco-install-path>.

3. Follow the installation instructions in <sapjco-install-path>/javadoc/installation.html for the respective platform.

Notes:

- Choose the SAP JCo package matching your operating system and your system architecture (32/64Bit). E.g. if you are running ODI inside a 32-Bit JVM, you must download the 32-Bit SAP JCo, even if the CPU and OS are 64-Bit. Mixing 32-bit and 64-bit architecture is not possible due to native libraries required by SAP JCo and will result in connection failure.
- odi.conf contains the JDK path used for ODI Studio.
4. **Copy sapjco3.jar and sapjco3.dll:**

 For ODI 10g: Copy `sapjco3.jar` and `sapjco3.dll` (or respective binary like `libsapjco3.so`) into the `oracledi/drivers` directory.

 For ODI 11g: Copy `sapjco3.jar` and `sapjco3.dll` (or respective binary like `libsapjco3.so`) into the `<ODI_HOME>/odi_misc` directory (ODI Studio) and into the `<ODI_HOME>/oracledi/agent/drivers` directory (Standalone Agent) and into the `<WLS_DOMAIN>/lib` directory (JEE Agent).

 For ODI 12c: Copy `sapjco3.jar` and `sapjco3.dll` (or respective binary like `libsapjco3.so`) into the `<ODI_HOME>/odi/sdk/lib` directory (ODI Studio, ODI Standalone Agent) and into the `<WLS_DOMAIN>/lib` directory (JEE Agent).

5. Restart ODI Studio and any agents.

6. Check the JCo installation. This will be also checked later in this guide.

2.5 Configuring Oracle Data Integrator

Perform the following steps to configure Oracle Data Integrator:

1. **Add the Open Tool**

2.5.1 Add the Open Tool

 The complete process of installing and adding an Open Tool to ODI is described in Oracle Data Integrator Tool Reference. This section details only the SAP ABAP specific steps.

 1. Connect to Designer.
 2. Select **File > Add/Remove Open Tools...**
 3. In the Add/remove Open Tools window, enter the following name in the Open Tool class name field: `oracle.odi.sap.km._OdiSapAbapExecuteStoppable`.
 4. Click **Add Open Tool**.
 5. The Open Tool appears as shown below.
6. Click **OK**.
This chapter describes how to configure the topology by using a practical example. This project demonstrates how to extract data from the SAP BW data targets listed below:

- **ODS/DSO:**

 Source data target `0BBP_PO` from SAP BW is the ODS containing vendor information.

 Target `W_PURCH_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains purchase order info.

- **Info Object:**

 Source data target `0CREDITOR` is the Info object from SAP BW containing Account number of supplier/vendor.

 Target `W_ACCNT_VENDR_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains account number info of supplier/vendor.

- **Info Object Hierarchy:**

 Source data target `0GL_ACCOUNT` is the Info object from SAP BW containing General Ledger Information.

 Target `W_GL_ACCOUNT_HIER_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains account number info of supplier/vendor.

- **Info Cube:**

 Source data target `0FIAP_C20` is the Info cube from SAP BW containing vendor balances.

 Target `W_VENDR_BAL_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains vendor balances.

- **Info Cube & related Info Objects:**

 Source data targets `0FIAP_C20` and `0CREDITOR` are the Info Cube & Info Object respectively both containing the vendor related information.

 Target `W_VENDER_CUBE_OBJ_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources as per join condition.

- **Open Hub:**

 Source data target `ZOHD_SALE` is an Open Hub destination name and its associated table is `/BIC/OHZOHD_SALE` which contains the sales information.
Target W_OPENHUB_SALES_DS is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains sales information.

- **Delta Extraction:**

 For delta Extraction you need to pass the value for two KM options i.e. FIRST_REQ_ID and LAST_REQ_ID from any above said data targets except Info Object after full load. The FIRST_REQ_ID is the start point of Delta Extraction and LAST_REQ_ID is the end point of Delta Extraction.

This chapter includes the following sections:

- Configuring the File Server for SAP ABAP
- Configuring the Target Data Server
- Configuring the SAP Source Server

3.1 Configuring the File Server for SAP ABAP

Perform the following operations after installing or upgrading your Oracle Data Integrator version:

1. Connect to Topology Manager.

2. If this SAP ABAP technology does not exist in your Master Repository, import the SAP ABAP technology in Synonym INSERT_UPDATE mode from the /impexp folder.

3. Perform an upgrade of the Master Repository. Refer to the *Installing and Configuring Oracle Data Integrator* for more information on the Master Repository upgrade process.

4. In Topology Manager, open the JavaBeanShell technology and check on the Language tab that the JYTHON language is listed. If not, add it.

5. Create a File data server pointing to an existing FTP/file server into which the extraction file will be pushed from SAP and picked up for SQL*Loader. For use with FTP transfer, set the following parameters. For use with shared folder transfer, the settings on the data server do not matter.

 - **Host (Data Server):** FTP server IP host name or IP address.
 - **User:** Username to log into FTP server.
 - **Password:** Password for the user.

6. For use with “LKM SAP BW to SQL” these additional parameters must be configured:

 - **JDBC driver class:** com.sunopsis.jdbc.driver.file.FileDriver
 - **JDBC URL:** jdbc:snps:dbfile?ENCODING=UTF8

 The above URL is for SAP UNICODE systems. For non-UNICODE systems, please see details on ENCODING parameter in "Creating a File Data Server" of *Connectivity and Knowledge Modules Guide for Oracle Data Integrator*. The encoding chosen on this URL must match the code page used by the SAP Application Server.

7. In this File data server create a Physical Schema representing the folder in the File server to which the extraction file will be pushed. For use with FTP transfer, see details below. For use with shared folder transfer and for more details, see
Configuring the Target Data Server

“Transfer using a Shared Directory (recommended)” of Application Adapters Guide for Oracle Data Integrator:

- **Data Schema**: Path on the FTP server to upload or download extraction files from the remote location. This path is used when uploading extraction files from the SAP BW system into the FTP server. It is also used by a remote agent to download the extraction files. Note that this path must use slashes and must end with a slash character.

- **Work Schema**: Local path on the FTP server’s machine. This path is used by an agent installed on this machine to access the extraction files without passing via the FTP server. This access method is used if the FTP_TRANSFER_METHOD parameter of the LKM SAP BW to Oracle (SQLLDR)/ LKM SAP BW to SQL is set to NONE. As Work Schema is an OS file name, slashes/backslashes should be used according to OS.

 Path names given on Data and Work schemas are not necessarily the same: the FTP service may provide access to a FTP directory named /sapfiles while the files can be stored locally in c:\inetpub\ftproot\sapfiles.

 Refer to "File Transfer Considerations" of Application Adapters Guide for Oracle Data Integrator.

8. If the corresponding Logical Schema called File Server for SAP ABAP does not exist yet, create it. This Logical Schema name is fixed and must be mapped to the Physical Schema created in the previous step.

3.2 Configuring the Target Data Server

This section describes how to setup an Oracle Data Server. Please use respective settings when configuring a non-Oracle Target Data Server for use with LKM SAP BW to SQL.

1. Connect to Topology Manager.

2. In the Physical Architecture tree view, expand the Technologies node and select the Oracle technology.

3. Right-click and select **New Data Server**.

4. Enter the data server Definition as shown below:
5. Select the JDBC tab, and enter the JDBC connection information to your data server as shown below:

Make sure to change the URL to match your Oracle instance configuration.

6. Click Test Connection to test the connection to this data server.

7. From the File menu, click Save.

8. Right-click the data server you created and select New Physical Schema.

9. In the Physical Schema windows that appears, select the ODI_SAP_DEMO for both Schema and Work Schema.

 If you already have a Work Schema for ODI defined for this data server, you can use it instead of the ODI_SAP_DEMO Schema.

10. Go to the Context tab.

11. Click Add and enter in the Logical Schema field the value ODI_SAP_DEMO.

12. From the File menu, click Save.
3.3 Configuring the SAP Source Server

The following topics describe how to configure the SAP source server:

- Configuring the Data Server
- Configuring the Logical Schema

3.3.1 Configuring the Data Server

1. In the Physical Architecture tree view, expand the Technologies node, select the SAP ABAP technology.
2. Right-click and select New Data Server.
3. Enter the data server definition. Set the parameters for this data server as follows:
 - **Name**: SAP_BW. The name of the data server as it will appear in ODI.
 - **Host (Data Server)**: SAP BW System IP Address or Hostname.
 - **User**: SAP User, as provided by the SAP Administrator.
 - **Password**: This user’s SAP Password. This password is case-sensitive.
4. Set the Flexfield values for this data server in the Flexfields tab:
 - **SAP Language**: Code of the language used when logging in. For example EN for English, DE for German.
 - **SAP Client Number**: The three-digit number assigned to the self-contained unit which is called Client in SAP. A Client can be a training, development, testing or production client or represent different divisions in a large company.
 - **SAP System Number**: The two-digit number assigned to a SAP instance which is also called Web Application Server or WAS.
 - **SAP System ID**: The three-character, unique identifier of a SAP system in a landscape.
 - **SAP Character Set**: The character set is only required if your SAP system is not a UNICODE system. For a complete list of character sets, see “Locale Data” in the Oracle Database Globalization Support Guide. For example, EB8ISO8859P2 for Croatian Data. For UNICODE systems, use UTF8.

Note: This FlexField is only used with "LKM SAP BW to Oracle (SQLLDR)". For use with "LKM SAP BW to SQL" please define the character set using the ENCODING parameter in the file driver URL, as described in "Configuring the File Server for SAP ABAP" on page 3-2 for non-UNICODE SAP systems.

- **SAP BW Version**: Enter the SAP BW Version as follows:
 - For SAP BW 7.0 and higher systems enter 700
 - For SAP BI 3.5 systems enter 350
- **SAP ERP Version & SAP ABAP Version**: unused in SAP BW Connector.
- **SAP Transport Layer Name**: This transport layer is used by ODI to create any new transport requests. The default transport layer name is SAP. If the SAP system uses a different transport layer, this FlexField must be updated accordingly. Otherwise, any TR creation will fail.
5. From the File menu, click Save.

Note: The Test Connection button for validating SAP Connection definition is not supported for this connection.

Except for the data server name, all the parameters that you provide while defining the SAP Data server should be provided by the SAP Administrators. See "Setting Up the SAP System" on page 2-2 for more information.

The SAP Adapter requires privileges to perform set up and execution operations. Please provide your administrators with the list of privileges listed in A1. SAP ABAP BW Required Privileges of Application Adapters Guide for Oracle Data Integrator. These privileges are required for the SAP user that they will provide you to login the SAP System.

See "Gathering SAP Connection Information" on page 2-3 for more information about these parameters.

3.3.2 Configuring the Logical Schema

1. In the Physical Schema window, do not edit the Definition tab.

2. Select the Context tab, click Add and enter the Logical Schema name LOGICAL_SAP_BW.

![SAP_BW_Default](image)

<table>
<thead>
<tr>
<th>Definition</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Logical Schema</td>
</tr>
<tr>
<td>Privileges</td>
<td>Development</td>
</tr>
<tr>
<td>Flexfields</td>
<td>LOGICAL_SAP_BW</td>
</tr>
</tbody>
</table>

3. From the File menu, click Save.
This chapter describes how to create a new Project for SAP.
In order to work with the data servers you have created, you must create a project and import the appropriate knowledge modules for reverse-engineering the data structures and integrating the data.

4.1 Creating a New Project

To create a new Project for SAP BW:
1. Connect to Designer.
2. In the Projects tree view click New Project.
3. In the Definition tab, enter SAP BW Demo for the Project name.
4. From the File menu, click Save to save your project.
5. Expand the SAP Demo Project, select the First Folder node.
6. Rename this folder to SDE_BW_DataTargets.
7. Right-click the SAP Demo Project in the Projects tree view.
8. Right-click and select Import Knowledge Modules.
9. Select in the File import directory the directory containing your BW KMs. By default, they are located in the ../impexp directory.
10. Select the following KMs:
 - IKM Oracle Incremental Update
 - LKM SAP BW to Oracle (SQLLDR)
 - LKM SAP BW to SQL
 - RKM SAP BW
 - RKM SAP ERP Connection Test
11. Click OK to perform the import.
This chapter describes how to reverse-engineer the Oracle target and SAP source data models.

This chapter includes the following sections:
- Reverse-Engineering the Oracle Target
- Reverse-Engineering the SAP BW Source Datastores

5.1 Reverse-Engineering the Oracle Target

To reverse-engineer the Oracle data model:

1. Connect to Designer.
2. In the Models tree view, click New Model.
3. In the Definition tab, enter the model parameters as shown below:

 ![Oracle Target Model Parameters]

 - Name: Oracle Target
 - Code: ORACLE_TARGET
 - Technology: Oracle
 - Logical Schema: ODI_SAP_DEMO
 - Action Group: <Generic Action>
 - Description:

4. In the Reverse Engineer tab, select the Global context.
5. Click Reverse Engineer, then from the File menu, click Save.

5.2 Reverse-Engineering the SAP BW Source Datastores

To reverse-engineer the SAP BW Source data targets you need to perform the following tasks:

1. Creating the Data Model
2. Validating the SAP Connection
3. Starting the Reverse-Engineering Process

This section also includes the following topics:

- Using the SAP Metadata Browser
- Reverse-Engineering Without GUI
5.2.1 Creating the Data Model

1. In the Models tree view, click **New Model**.
2. In the Definition tab, select **SAP ABAP** technology and the Logical Schema previously created (in our example it is the **LOGICAL_SAP_BW Logical Schema**).
3. In the Reverse Engineer tab:
 1. Select **Customized** option.
 2. Select the **Global context**.
 3. Select the **RKM SAP Connection Test you have imported** in the **SAP BW Demo project**.

5.2.2 Validating the SAP Connection

1. In the Models tree view, open the **SAP BW Source Model**.
2. Click **Reverse Engineer** and confirm the start of the reverse-engineering process.
 This process runs two tests:
 - Establish a test connection to the SAP BW system and
 - Validate the proper setup of SAP JCo by displaying the About dialog.
3. In a few seconds, you should see the SAP JCo-About dialog as shown here:
Please verify the JCo version number (see "System Requirements and Certification" on page 2-1 for more details) and verify that a path for the JCo Library is given (.dll for Windows). If this is not the case or you see any error message in this about dialog, please review the SAP JCo installation, as described in your SAP JCo package, and run this test again.

Note: Closing the JCo-About-Dialog will also close ODI.

4. Once you have validated SAP JCo installation, open ODI Operator.
5. In the Operator, expand the Reverse-Engineering session down to the task level.
6. Verify whether the task "Test SAP Connection" has been executed successfully. If not, view the task details to identify the connection problem. The output of this task must contain Successfully connected to SAP System. If not, the connection test has failed and the connection problem must be analyzed before you continue. Do not continue until you have successfully validated the SAP connection!

Note: If you want to validate the SAP connectivity independent of ODI, please see A2. SAP Stand-Alone Connection Test in Application Adapters Guide for Oracle Data Integrator.

5.2.3 Starting the Reverse-Engineering Process

To start the reverse-engineering process of the SAP BW datastores:

1. In the Models tree view, open the SAP BW Source Model.
2. In the Reverse Engineer tab:
 a. Select the Customized option.
 b. Select the Global context.
 c. Select the RKM SAP BW you have imported in the SAP BW Demo project.
 d. Set the USE_GUI KM option to Yes.
 e. Set other parameters according to your SAP configuration. See the Application Adapters Guide for Oracle Data Integrator for more information on the RKM options.
3. From the File menu, click Save to save your changes.
4. Click Reverse Engineer to start the reverse-engineering process.
5. Click OK.
6. The Sessions Started Dialog is displayed.
7. Click OK.
8. For first time RKM use only: Validate in Operator that the session is now in status running. If session has failed, please validate settings. Do not move on until all installation steps have been completed successfully.

5.2.4 Using the SAP Metadata Browser

As you have set the USE_GUI option to Yes, the RKM displays in the SAP BW Metadata Browser the SAP objects organized in the tree view as shown below.
5.2.4.1 The Tree View

The SAP BW Data targets are organized into a tree view. Only the SAP BW Data targets available in the SAP BW system are displayed. By expanding the tree view, you can see Info Cubes, Info Objects, ODS/DSO, Open Hub, and select those that you want to reverse-engineer.

Note that only the data targets selected in the tree view are reverse-engineered.
5.2.4.2 The Search Panel

The Search option group allows you search specific objects in the browser, based on:

- Info Cube Name
- Info Object Name
- ODS/DSO
- Open Hub

For the example project for Info Cube, the data target 0FIAP_C20 is used:

1. Enter 0FIAP_C20 in the Name field.
2. Select the InfoCube data target.
3. Click Search to find the object to reverse-engineer. The results are highlighted in the tree view.
4. Click Reverse.
5. Oracle Data Integrator starts the reverse-engineering process on the selected data target. The reverse-engineered data targets appear under the Model.
6. Perform steps 1 to 5 to reverse-engineer the following objects:
 a. InfoCube 0SD_C04
b. InfoObject 0SOLD_TO

c. InfoObject 0CREDITOR

d. InfoObject 0GL_ACCOUNT

e. ODS/DSO 0BBP_PO

f. Open Hub destination ZOHD_SALE (/BIC/OHZOHD_SALE)

5.2.5 Reverse-Engineering Without GUI

If you want to perform a reverse-engineering without using the SAP BW Metadata Browser, you set the corresponding parameters in the SAP BW KM. For example, for Info Cube, enter the following parameters in the SAP BW KM options:

- USE_GUI: No
- INFOCUBE_NAME: 0FIAP_C20

With this configuration, the Info Cube data target will be reverse-engineered without displaying the SAP BW Metadata Browser.

By using the appropriate KM options, you can also select a filter for the reversed data targets based on for example an Info object, or a ODS/DSO, or an Open Hub table.

Refer to the Application Adapters Guide for Oracle Data Integrator for more information on the RKM options.

Note: It is not possible to view the data in the SAP BW data targets from Oracle Data Integrator.

What happens when you reverse-engineer SAP BW data targets?

The ODI SAP Components installed into the SAP BW system during adapter installation (Section Installing ODI SAP Components in Application Adapters Guide for Oracle Data Integrator) provide a few RFCs giving access to BW metadata. With these RFCs the Oracle Data Integrator is able to retrieve the SAP BW metadata and to display it in the SAP BW Metadata Browser. The selected metadata is then reverse-engineered from SAP BW into the Oracle Data Integrator repository. The repository only contains the description of the SAP BW metadata, and no data at all.

In addition to the data targets definitions organized and enriched with user-friendly information, the keys definitions are also retrieved. The model appearing in Oracle Data Integrator shows all the information required for performing integration tasks on the SAP BW Model.
Creating and Running the Mapping

This chapter describes how to create and run the mapping.

This chapter includes the following sections:

- Creating the Mapping
- Running the Mapping

6.1 Creating the Mapping

Now that the ODI source and target data models have been created, it is possible to create the ODI mappings to extract data from the following SAP BW data targets:

- The Info Cube 0FIAP_C20 data target to W_VENDR_BAL_DS Oracle table.
- The Info Object 0CREDITOR data target to W_ACCNT_VENDR_DS Oracle table.
- The Hierarchy data from Info Object 0GL_ACCOUNT to W_GL_ACCOUNT_HIER_DS Oracle table.
- The Interval Hierarchy data from InfoObject 0GL_ACCOUNT to TARGET_INTERVAL_HIERARCHY Oracle table.
- The ODS/DSO 0BBP_PO data target to W_PURCH_DS Oracle table.
- The Info Cube 0FIAP_C20 and Info Object 0CREDITOR data targets join to W_VENDER_CUBE_OBJ_DS Oracle table.
- The InfoCube and Navigation Attribute data from IC 0SD_C04 / IO 0SOLD_TO to TARGET_NAVIGATIONAL_ATTRIBUTES Oracle table.
- The Open Hub destination ZOHD_SALE (/BIC/OHZOHD_SALE) to W_OPENHUB_SALES_DS Oracle table.

Delta Extraction can be done on any above said data targets except Info Object. How to perform delta extraction is described in Chapter 7, "Creating a Package for Delta Extraction."

To create the mapping, perform the following steps:

- Info Cube Extraction
- Info Object Extraction
- Info Object Hierarchy Extraction
- Info Object Interval Hierarchy Extraction
- ODS/DSO Extraction
- Info Cube & Related Info Object Extraction
6.1.1 Info Cube Extraction

This section describes how to create a mapping in ODI in order to load data from the SAP BW source model representing the InfoCube 0FIAP_C20 data target to the W_VENDR_BAL_DS Oracle target model.

6.1.1.1 Create the Mapping

To create the mapping:

1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Mappings node.
5. Right-click and select **New Mapping**.
6. In the Mapping Definition tab, enter the mapping name: InfoCube_SAP_BW_VendorBal.W_VENDR_BAL_DS.
7. From the **File** menu, click **Save** to save your mapping.

6.1.1.2 Define the Source and Target Datastores

To define the source and target datastores:

1. In the Models tree view, select the W_VENDR_BAL_DS datastore from the Oracle_Target Model.
2. Drag this datastore into the Target Datastore area of the Logical diagram (right area of the Logical diagram).
3. In the Models tree view, select the 0FIAP_C20 Vendor Balances datastore from the SAP BW Source model.
4. Drag this datastore into the Sources area of the Logical diagram (left area of the Logical diagram).

6.1.1.3 Create the Mappings

To create the mappings of the target datastore:

1. Select the 0COMP_CODE attribute from the target datastore.
2. Drag the IOPK_0FIAP_C201_0COMP_CODE_PK_COMP_CODE attribute from the 0FIAP_C20 Vendor Balances source datastore onto the COMP_CODE attribute of the target datastore.
3. Make sure that the **Execute on Hint** is set to **Source**. The mapping should look as shown below:
4. Repeat this operation to perform the following simple mappings:

- \texttt{W_VENDR_BAL_DS.OCREDITOR = 0FIAP_C20.IOPK_0FIAP_C202_OCREDITOR_PK_VENDOR}
- \texttt{W_VENDR_BAL_DS.ORC ACCOUNT = 0FIAP_C20.IOPK_0FIAP_C202_ORC_ACCOUNT_PK_GL_ACCOUNT}
- \texttt{W_VENDR_BAL_DS.TOTAL DEBIT POSTING = 0FIAP_C20.KF_0DEBIT}
- \texttt{W_VENDR_BAL_DS.TOTAL CREDIT POSTING = 0FIAP_C20.KF_0DEBIT}
- \texttt{W_VENDR_BAL_DS.CUMULATIVE BALANCE = 0FIAP_C20.KF_0BALANCE}

6.1.1.4 Define the Mapping Flow

To define the mapping flow:

1. Select the Physical diagram. The Flow diagram looks as shown below:

2. In the target group, select the access point for the source group that contains Info Cube 0FIAP_C20 data target. This source group represents the source dataset made up of SAP BW data target.

3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list.

4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping.

5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list.

6. Set the IKM options as follows:
 a. Select No for the FLOW_CONTROL option.
6.1.2 Info Object Extraction

This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the Info Object 0CREDITOR data target to the _ACCNT_VENDR_DS Oracle target model.

6.1.2.1 Create the Mapping

1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Mappings node.
5. Right-click and select New Mapping.
6. In the Mapping Definition tab, enter the mapping name: InfoObject_SAP_BW_VendorAcc._ACCNT_VENDR_DS.
7. From the File menu, click Save and close your mapping.

6.1.2.2 Define the Source and Target Datastores

To define the source and target datastores:

1. In the Models tree view, select the W_ACCNT_VENDR_DS datastore from the Oracle_Target Model.
2. Drag this datastore into the Target Datastore area of the Logical diagram (right area of the Logical diagram).
3. In the Models tree view, select the Info Object’s main table 0CREDITOR Vendor datastore from the SAP BW Source model.
4. Drag this datastore into the Sources area of the Logical diagram (left area of the Logical diagram).
5. Perform the same operation for the Info Object text table TXT_0CREDITOR Texts: Char._Vendor datastore from the SAP BW Source model.

6.1.2.3 Define Joins between Info Object’s Main table and Text Table

To create joins between the source datastores of Info Object’s main table and text table in the mapping:

1. In the Logical diagram when you drag the Info Object's text table TXT_0CREDITOR Texts: Char._Vendor the join will be automatically created on attribute vendor from the 0CREDITOR Vendor Info object’s main table datastore and the Vendor attribute of Info Object's text table TXT_0CREDITOR Texts: Char._Vendor. This defines the first join on the vendor Key identifier, as shown below:
2. In the Properties panel, select Join Order and make sure that the Execute on Hint option is set to Source as shown below:

3. Make sure that table number of main table 0CREDITOR is smaller than that of text table TXT_0CREDITOR. In 1:n relationships the parent table has to be the first in a join.

4. Change join type to left outer join (All rows from 0CREDITOR and matching ones from TXT_0CREDITOR).

6.1.2.4 Create the Mappings

To create the mappings of the target datastore:
1. Select the VENDOR attribute from the target datastore.

2. Drag the VENDOR attribute from the 0CREDITOR source data target onto the VENDOR attribute of the target datastore.

3. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below:

4. Repeat this operation to perform the following simple mappings:
 - W_ACCNT_VENDR_DS.PCOMPANY = 0CREDITOR.PCOMPANY
 - W_ACCNT_VENDR_DSPHONE = 0CREDITOR.PHONE
 - W_ACCNT_VENDR_DS.PLANT = 0CREDITOR.PLANT
 - W_ACCNT_VENDR_DS.STREET = 0CREDITOR.STREET
 - W_ACCNT_VENDR_DS.MED_DESC = TXT_0CREDITOR.TXTMD

6.1.2.5 Define the Mapping Flow

To define the mapping flow:

1. Select the Physical diagram. The Flow diagram looks as shown below:

2. In the target group, select the access point for the source group that contains both the Info Object's main table 0CREDITOR and text table TXT_0CREDITOR. This source group represents the source dataset made up of Info Object's main table & text table joined SAP BW data targets.

3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list.
4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping.

5. In the Property panel, under the Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list.

6. Set the IKM options as follows:
 a. Select No for the FLOW_CONTROL option.
 b. Leave other options as they are.

7. From the File menu, click Save and close your mapping.

6.1.3 Info Object Hierarchy Extraction

This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the hierarchy data for Info Object 0GL_ACCOUNT data target to the W_GL_ACCOUNT_HIER_DS Oracle target model.

6.1.3.1 Create the Mapping

1. Open Designer.

2. In the Projects tree view, expand the SAP BW Demo Project.

3. Expand the SAP_BW_DataTargets folder.

4. Select the Mappings node.

5. Right-click and select New Mapping.

6. In the Mapping Definition tab, enter the mapping name: InfoObject_SAP_BW_GlAccount.W_GL_ACCOUNT_HIER_DS.

7. From the File menu, click Save to save your mapping.

6.1.3.2 Define the Source and Target Datastores

To define the source and target datastores:

1. In the Models tree view, select the W_GL_ACCOUNT_DS datastore from the Oracle Target Model.

2. Drag this datastore into the target area of the Logical diagram (right area of the Logical diagram).

3. In the Models tree view, select the Info Object’s hierarchy table HIER_0GL_ACCOUNT datastore from the SAP BW Source model.

4. Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram).

5. Add the following filter condition on the RSHIENM source attribute: RSHIENM = 'ACI1'

 Please note that ACI1 is the name of a hierarchy defined for 0GL_ACCOUNT. A list of defined hierarchies is available under Description section of the Definition tab when opening the hierarchy data store.

6. After adding the filter condition the Sources diagram should look as shown below:
6.1.3.3 Create the Mappings

To create the mappings of the target datastore:

1. Select the HIER_NAME attribute from the target datastore.
2. Drag the RSHIENM attribute from the HIER_0GL_ACCOUNT source data target onto the HIER_NAME attribute of the target datastore.
3. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below:

4. Repeat this operation to perform the following simple mappings:
 - W_GL_ACCOUNT_HIER_DS.NODEID = HIER_0GL_ACCOUNT.NODEID
 - W_GL_ACCOUNT_HIER_DS.INFOOBJECT_NAME = HIER_0GL_ACCOUNT.IOBJNM
 - W_GL_ACCOUNT_HIER_DS.NODENAME = HIER_0GL_ACCOUNT.NODENAME
 - W_GL_ACCOUNT_HIER_DS.TLEVEL = HIER_0GL_ACCOUNT.TLEVEL
 - W_GL_ACCOUNT_HIER_DS.PARENTID = HIER_0GL_ACCOUNT.PARENTID
 - W_GL_ACCOUNT_HIER_DS.CHILDID = HIER_0GL_ACCOUNT.CHILDID
 - W_GL_ACCOUNT_HIER_DS.NEXTID = HIER_0GL_ACCOUNT.NEXTID

6.1.3.4 Define the Mapping Flow

To define the mapping flow:

1. Select the Physical diagram. The Flow diagram looks as shown below:
2. In the target group, select the access point for the source group that contains both the Info Object’s main table `0CREDITOR` and text table `TXT_0CREDITOR`. This source group represents the source dataset made up of Info Object’s main table & text table joined SAP BW data targets.

3. In the Property panel, under Loading Knowledge Module, select `LKM SAP BW to Oracle (SQLLDR)` or `LKM SAP BW to SQL` from the Loading Knowledge Module drop-down list.

4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping.

5. In the Property panel, under Integration Knowledge Module, select `IKM Oracle Incremental Update` from the Integration Knowledge Module drop-down list.

6. Set the IKM options as follows:
 a. Select No for the `FLOW_CONTROL` option.
 b. Leave other options as they are.

7. From the File menu, click Save and close your mapping.

6.1.4 Info Object Interval Hierarchy Extraction

This section describes how to extract data from InfoObject and InfoObject hierarchy table containing an interval hierarchy. The data is extracted from InfoObject `0GL_ACCOUNT` and InfoObject hierarchy table `HIER_0GL_ACCOUNT`.

6.1.4.1 Create the Mapping

1. Open Designer.

2. In the Projects tree view, expand the `SAP BW Demo` Project.

3. Expand the `SAP_BW_DataTargets` folder.

4. Select the Mappings node.

5. Right-click and select New Mapping.

6. In the Mapping Definition tab, enter the mapping name: `InfoObject_InfoObjectHierarchy_join.0GL_ACCOUNT`.

7. From the File menu, click Save to save your mapping.

6.1.4.2 Define the Source and Target Datastores

To define the source and target datastores:

1. In the Models tree view, select the `TARGET_INTERVAL_HIERARCHY` datastore from the Oracle_Target Model `W_SD_DELIVERY_CUBE_SOLDTO`.
2. Drag this datastore into the target area of the Logical diagram (right area of the Logical diagram).

3. In the Models tree view, select the InfoObject 0GL_ACCOUNT from the SAP BW source model.

4. Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram).

5. Perform the same operation for the InfoObject hierarchy table HIER_0GL_Account datastore from the SAP BW Source model.

6.1.4.3 Define Joins between Sources (Info Object Main table and InfoObject Hierarchy Table)

The join between InfoObject and InfoObject Hierarchy table may automatically be added by ODI. - There may be situations when more than one join shows up. E.g. when the same InfoObject is referenced more than once in different characteristics. Such unwanted extra joins have to be removed.

Apply source-side Filters on RSHIENM and VERSION:

Add joins: all joins must be executed on staging area. Not on source.

The join expression looks like this:
The final join and filter setup should look like this:

6.1.4.4 Create the Mappings
To create the mappings of the target datastore:

1. Drag the NODEID attribute from the HIER_0GL_ACCOUNT source data target onto the NODEID attribute of the TARGET_INTERVAL_HIERARCHY target datastore.

2. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below:
3. Repeat this operation to perform the following simple mappings:

- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.RSHIENM} = \text{HIER_OGL_ACCOUNT.RSHIENM} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.PARENTID} = \text{HIER_OGL_ACCOUNT.PARENTID} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.INTERVL} = \text{HIER_OGL_ACCOUNT.INTERVAL} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.LEAFFROM} = \text{HIER_OGL_ACCOUNT.LEAFFROM} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.LEAPTO} = \text{HIER_OGL_ACCOUNT.LEAPTO} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.VERSION} = \text{HIER_OGL_ACCOUNT.VERSION} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.CHRT_ACCTS} = \text{OGL_ACCOUNT.CHRT_ACCTS} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.GL_ACCOUNT} = \text{OGL_ACCOUNT.GL_ACCOUNT} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.BAL_FLAG} = \text{OGL_ACCOUNT.BAL_FLAG} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.GLACCEXT} = \text{OGL_ACCOUNT.GLACCEXT} \)
- \(\text{TG} _\text{TARGET_INTERVAL_HIERARCHY.INCST_FLAG} = \text{OGL_ACCOUNT.INCST_FLAG} \)

6.1.4.5 Define the Mapping Flow

To define the mapping flow:

1. Select the Physical diagram. The Flow diagram looks as shown below:

2. In the target group, select the access point for the ODI Source Group.

3. In the Property panel, under Loading Knowledge Module, verify that LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL has been set.

4. In the target group, select the target Oracle datastore, which is also used as the staging area for this mapping.

5. In the Property panel, under Integration Knowledge Module, verify that IKM SQL Control Append has been set.

6.1.5 ODS/DSO Extraction

This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the ODS/DSO 0BBP_P0 data target to the W_PURCH_DS Oracle target model.

6.1.5.1 Create the Mapping

1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Mappings node.
5. Right-click and select New Mapping.
6. In the Mapping Definition tab, enter the mapping name: ODS_SAP_BW_PurchOrd1.W_PURCH_DS.
7. From the File menu, click Save to save your mapping.

6.1.5.2 Define the Source and Target Datastores

To define the source and target datastores:

1. In the Models tree view, select the W_PURCH_DS datastore from the Oracle_Target Model.
2. Drag this datastore into the targets area of the Logical diagram (right area of the Logical diagram).
3. In the Models tree view, select the 0BBP_P0 Purchase Order - Single Documents datastore from the SAP BW Source model.
4. Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram).

6.1.5.3 Create the Mappings

To create the mappings of the target datastore:

1. Select the PO_GUIDE attribute from the target datastore.
2. Drag the BBP_POGUID attribute from the 0BBP_P0 Purchase Order - Single Documents source data target onto the PO_GUIDE attribute of the target datastore.
3. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below:

4. Repeat this operation to perform the following simple mappings:
6.1.5.4 Define the Mapping Flow

To define the mapping flow:

1. Select the Physical diagram. The Flow diagram looks as shown below:

2. In the target group, select the access point for the source group that contains ODS/DSO 0BBP_PO data targets. This source group represents the source dataset made up of SAP BW data target.

3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list.

4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping.

5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list.

6. Set the IKM options as follows:
 a. Select No for the FLOW_CONTROL option.
 b. Leave other options as they are.

7. From the File menu, click Save and close your mapping.

6.1.6 Info Cube & Related Info Object Extraction

This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the Info Cube 0FIAP_C20 and Info Object 0CREDITOR data targets join to the W_VENDER_CUBE_OBJ_DS Oracle target model.

6.1.6.1 Create the Mapping

1. Open Designer.

2. In the Projects tree view, expand the SAP BW Demo Project.

3. Expand the SAP_BW_DataTargets folder.
4. Select the Mappings node.
5. Right-click and select **New Mapping**.
6. In the Mapping Definition tab, enter the mapping name: `InfoCube_InfoObject_join.W_VENDER_CUBE_OBJ_DS`.
7. From the **File** menu, click **Save** to save your mapping.

6.1.6.2 Define the Source and Target Datastores

To define the source and target datastores:

1. In the Models tree view, select the `W_VENDER_CUBE_OBJ_DS` datastore from the Oracle_Target Model.
2. Drag this datastore into the target area of the Logical diagram (right area of the Logical diagram).
3. In the Models tree view, select the Info Cube `0FIAP_C20 Vendor Balances` datastore from the SAP BW Source model.
4. Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram).
5. Perform the same operation for the Info Object's main table `0CREDITOR Vendor` and text table `TXT_0CREDITOR Texts: Char. Vendor` datastore from the SAP BW Source model.

6.1.6.3 Define Joins between Sources (Info Cube & Object)

To create joins between the source datastores of a mapping:

1. In the Sources area of the Logical diagram drag the `IOPK_0FIAP_C202_0CREDITOR_PK_VENDOR` attribute from the Info Cube `0FIAP_C20 Vendor Balances` datastore onto the `VENDOR` attribute in the Info Object's main table `0CREDITOR Vendor`. This defines the first join on the Vendor Key identifier, as shown below:

2. In the Properties panel, you can see the join clause: `0FIAP_C20.IOPK_0FIAP_C202_0CREDITOR_PK_VENDOR=0CREDITOR.VENDOR`
3. In the Properties panel, select **Generate ANSI Syntax** and **Join Order** options, and make sure that **Execute on Hint** option is set to Source as shown below:

4. Make sure that table number of `0FIAP_C20` is smaller than that of `0CREDITOR`. In 1:n relationships the parent data target has to be the first in a join.

5. Change join between `0FIAP_C20` and `0CREDITOR` to left outer join (All rows from `0FIAP_C20` and matching ones from `0CREDITOR`).

6. Change join between `0CREDITOR` and `TXT_0CREDITOR` to left outer join (All rows from `0CREDITOR` and matching ones from `TXT_0CREDITOR`.

6.1.6.4 Create the Mappings

To create the mappings of the target datastore:

1. Select the **COMP_CODE** attribute from the target datastore.

2. Drag the `IOPK_0FIAP_C201_0COMP_CODE_PK_COMP_CODE` attribute from the `0FIAP_C20` Vendor Balances source data target onto the **COMP_CODE** attribute of the target datastore.

3. Make sure that the **Execute on Hint** option is set to **Source**. The mapping should look as shown below:

4. Repeat this operation to perform the following simple mappings:
 - `W_VENDER_CUBE_OBJ_DS.VENDOR = 0FIAP_C20.IOPK_0FIAP_C202_0CREDITOR_PK_VENDOR`
6.1.6.5 Define the Mapping Flow

To define the mapping flow:

1. Select the Physical diagram. The Flow diagram looks as shown below:

 ![Flow Diagram]

2. In the target group, select the access point for the source group that contains both the Info Cube and Info Object tables. This source group represents the source dataset made up of two joined SAP BW data targets.

3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list.

4. In the Property panel, select the target Oracle database, which is also used as the staging area for this mapping.

5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list.

6. Set the IKM options as follows:

a. Select No for the FLOW_CONTROL option.

b. Leave other options as they are.

7. From the File menu, click Save and close your mapping.

6.1.7 Info Cube Extraction with Navigational Attributes

This section describes how to create a mapping in ODI in order to load data from a SAP InfoCube and its navigation attributes. The data is extracted from Info Cube 0SD_C04 and InfoObject 0SOLD_T0.
6.1.7.1 Create the Mapping
1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Mappings node.
5. Right-click and select New Mapping.
6. In the Mapping Definition tab, enter the mapping name: InfoCube_InfoObject_Nav_join.0SD_C04.
7. From the File menu, click Save to save your mapping.

6.1.7.2 Define the Source and Target Datastores
To define the source and target datastores:
1. In the Models tree view, select the 0SD_C04 datastore from the Oracle Target Model
 TARGET_NAVIGATIONAL ATTRIBUTES.
2. Drag this datastore into the targets area of the Logical diagram (right area of the Logical diagram).
3. In the Models tree view, select the Info Cube 0SD_C04 Delivery service datastore from the SAP BW Source model.
4. Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram).
5. Perform the same operation for the Info Object main table 0SOLD_TO Customer datastore from the SAP BW Source model.

6.1.7.3 Define Joins Between Sources (Info Cube & Info Object)
The join between InfoCube and InfoObject will automatically be added by ODI. There may be situations when more than one join shows up. E.g. when the same InfoObject is referenced more than once in different characteristics. Such unwanted extra joins have to be removed.
The final join setup with its join expression should look like this:
6.1.7.4 Create the Mappings

To create the mappings of the target datastore:
1. Drag the 0SD_C04.IOPK_0SD_C041_0SOLD_TO_PK_CUSTOMER attribute from the 0SD_C041 Delivery service Source data target onto the IOPK_0SD_C041_0CUST_GROUP_PK_CUST_GROUP attribute of the target datastore.

2. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below:

3. Repeat this operation to perform the following simple mappings:

6.1.7.5 Define the Mapping Flow
To define the mapping flow:
1. Select the Physical diagram. The Flow diagram appears as follows:
2. In the target group, select the access points for the ODI Source Datastores.

3. In the Property panel, verify that LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL has been set for every ODI Source Datastore.

 Note: This mapping will generate several SAP ABAP extraction programs. One for retrieving any display attributes and key figures from the InfoCube and one for each InfoObject containing navigation attributes.

4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping.

5. In the Property panel, under Integration Knowledge Module, verify that IKM SQL Control Append has been set for the target datastore.

6. Execute the Mapping. Verify that Info Cube and Navigational attributes got populated into the target datastore.

6.1.8 Open Hub Extraction

This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the Open Hub destination ZOHDD_SALE (/BIC/OH2OHDD_SALE) to the W_OPENHUB_SALES_DS Oracle target model.

6.1.8.1 Create the Mapping

1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Mappings node.
5. Right-click and select New Mapping.
6. In the Mapping Definition tab, enter the mapping name: OpenHub_Sales.W_OPENHUB_SALES_DS.
7. From the File menu, click Save to save your mapping.

6.1.8.2 Define the Source and Target Datastores

To define the source and target datastores:
1. In the Models tree view, select the `W_OPENHUB_SALES_DS` datastore from the Oracle_Target Model.

2. Drag this datastore into the targets area of the Logical diagram (right area of the Logical diagram).

3. In the Models tree view, select the `ZOHD_SALE` datastore from the SAP BW Source model.

4. Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram).

6.1.8.3 Create the Mappings

To create the mappings of the target datastore:

1. Select the `OHREQUID` attribute from the target datastore.

2. Drag the `OHREQUID` attribute from the `ZOHD_SALE` source data target onto the `OHREQUID` attribute of the target datastore.

3. Make sure that the **Execute on Hint** option is set to **Source**. The mapping should look as shown below:

4. Repeat this operation to perform the following simple mappings:
 - `W_OPENHUB_SALES_DS.DATA_PACKAGE = ZOHD_SALE.DATAPAKID`
 - `W_OPENHUB_SALES_DS.DATA_RECORD = ZOHD_SALE.RECORD`
 - `W_OPENHUB_SALES_DS.CUSTOMER = ZOHD_SALE.D_CUSTOMER`
 - `W_OPENHUB_SALES_DS.MATERIAL = ZOHD_SALE.D_MATERIAL`
 - `W_OPENHUB_SALES_DS.MATERIAL_PRICE = ZOHD_SALE.PRICE_MAT`
 - `W_OPENHUB_SALES_DS.CURRENCY = ZOHD_SALE.CURRENCY`
 - `W_OPENHUB_SALES_DS.QUANTITY = ZOHD_SALE./BIC/ZQTY`
 - `W_OPENHUB_SALES_DS.TOTAL_REVENUE = ZOHD_SALE./BIC/ZREV`

6.1.8.4 Define the Mapping Flow

To define the mapping flow:

1. Select the Physical diagram. The Flow diagram looks as shown below:
2. In the target group, select the access point for the source group that contains Open Hub Destination Table ZOHD_SALE. This source group represents the source dataset made up of SAP BW Open Hub table.

3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list.

4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping.

5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list.

6. Set the IKM options as follows:
 a. Select No for the FLOW_CONTROL option.
 b. Leave other options as they are.

7. From the File menu, click Save and close your mapping.

6.2 Running the Mapping

This section contains the following topics:

- Running the Mapping
- Review the Mapping Execution
- Review the Resulting Data

6.2.1 Running the Mapping

To run the mapping:

1. In the Projects tree view, expand the SAP Demo Project
2. Expand the SAP_BW_DataTargets folder.
3. Expand the Mappings node.
5. Right-click and select Run.
6. In the Execution window that appears, click OK.
7. Click OK in the Session Started window.

What happens when you run the mapping?

First, Oracle Data Integrator creates an ABAP program that does the following:
1. It performs the extraction of the data on the SAP BW system. In this example, the extraction will be done on Info Cube source data targets and then returns the resultset in an extraction file.

2. It uploads the extraction file into a FTP data server. This FTP host is specified via the File Logical Schema called File Server for SAP ABAP. This Logical Schema is mapped to a Physical Schema and therefore a data server in the given context. This data server contains the connection information for the FTP host.

Then, the ABAP code is uploaded using the OdiSapAbapExecute tool. The ABAP program is pushed into the SAP Function group given in the SAP_FUNCTION_GROUP_NAME LKM option. This phase can be suppressed by setting the UPLOAD_ABAP_CODE LKM option to No.

The ABAP code is executed also by the OdiSapAbapExecute tool. At the end of the ABAP code execution, the extraction file is available in the FTP host.

The Oracle Data Integrator agent is able to download this extraction file from the FTP host, or directly access it, depending on the FTP_TRANSFER_METHOD specified in the IKM option.

Finally, when the agent accesses the extraction file, it uses SQL*Loader or a JDBC Connection to load this file into the Oracle/non-Oracle staging area. The rest of the integration process takes place within the Oracle/non-Oracle engine.

6.2.2 Review the Mapping Execution

To review the mapping execution:

1. Connect to Operator.

2. In the Operator, select the Session List tree view.

3. Expand the All Executions node in this tree view.

4. The latest session is the first entry of this list.

5. Double click the InfoCube_SAP_BW_VendorBal.W_VENDR_BAL_DS node to see the session details and the number of lines processed.

6.2.3 Review the Resulting Data

To review the resulting data:

1. In the Designer, in the Models tree view, expand the Oracle Target Model.

2. Select the W_VENDR_BAL_DS datastore, right-click and select Data to view the data integrated into the target Oracle table.

3. Repeat the same steps for remaining mappings:
 - InfoObject_SAP_BW_VendorAcc.W_ACCNT_VENDR_DS
 - ODS_SAP_BW_PurchOrdl.W_PURCH_DS
 - InfoCube_InfoObject_join.W_VENDER_CUBE_OBJ_DS
 - OpenHub_Sales.W_OPENHUB_SALES_DS
Creating a Package for Delta Extraction

This chapter describes how to create a package for delta extraction.

So far we have seen examples of extracting data from BW data targets. The instructions in this chapter explain how the mappings introduced in the previous chapters can be turned into delta extraction mappings.

In delta extraction mappings only the data, which was changed after last extraction, is extracted. Delta extraction mappings are only supported for InfoCubes, ODS/DSO and Open Hub objects, but not for InfoObjects.

This chapter includes the following sections:

- Modify the Mapping Flow
- Creating the MIN_REQUEST_ID Variable
- Creating a Package for Delta Extraction
- Running the Package

7.1 Modify the Mapping Flow

The first step is to modify the mapping:

1. Select the desired Mappings.
2. Double click the mapping.
3. Select the Physical diagram.
4. In the target group, select the access point for the source group.
5. In the Property panel, under Loading Knowledge Module, set KM option values for FIRST_REQ_ID and LAST_REQ_ID KM as shown below.
6. From the File menu, click Save and close your mapping.

7.2 Creating the MIN_REQUEST_ID Variable

The second step consists of creating an ODI variable that stores the last extracted request ID. This request ID serves as the starting point for the next extraction run:

1. Create a MIN_REQUEST_ID variable to hold the last request id. The MIN_REQUEST_ID variable has to be a numeric variable with a Keep History or Last-value Action as shown below.

2. The value of this variable is updated at the end of the delta extraction package described in the third step. It happens once delta extraction is finished and the
MAX REQUEST ID will be fetched from SAP BW system and will be stored into the ODI Variable (MIN_REQUEST_ID). The refresh expression shown here is used to update the variable:

```
Select <@=odSAPBWDeRef.getLstOrMaxReqId(0)@> FROM DUAL
```

7.3 Creating a Package for Delta Extraction

In the third step the building blocks created in the previous steps are put together: Variable and Mappings are arranged into a Package:

1. Open the SAP Demo Project.
2. Create a new Package named SAP Demo.
3. Insert a Declare Variable step to this Package:
 - Drag and Drop the MIN_REQUEST_ID variable and select the "Declare Variable" step type.
4. Insert a Flow step to this Package:
 - Drag and drop the Mapping created in the previous sections for InfoCube/ODS or OpenHub-Extraction in the Package.
5. Insert a Refresh Variable step to this Package.
 - Drag and Drop the MIN_REQUEST_ID variable and select the "Refresh Variable" step type.
6. Define the step sequence.
 - Define the Refresh Variable step as the First Step.
 - Link it to the Flow step that is the next step upon success.
 - Link the Flow step to the Refresh Variable step that is the next step upon success and the last step in the Package. Add arrows between the variables.

Your Package should look as shown on this screenshot.
7.4 Running the Package

To run the Package:

- In the Projects tree view, expand the SAP Demo Project.
- Select the SAP Demo Package.
- Right-click and select Run.
- In the Execution window, click OK.
- In the Session Started window, click OK.

What happens when you execute the delta extraction Package?
First, Oracle Data Integrator initializes the variable MIN_REQUEST_ID with the last historized value (declare variable step). This value is then passed into ABAP extraction program to specify where to start the data extraction. The KM queries the SAP system for the highest assigned request ID. All data between min and max request ID will be extracted (mapping).

After the execution of the mapping the refresh variable step stores the highest request ID into MIN_REQUEST_ID for next extraction run.
This chapter describes what steps to take next with Oracle Data Integrator.
You have now completed a Project extracting data from a SAP BW system.
In this Project, you have:

- Set up the environment and topology to work with SAP BW.
- Created and reverse-engineered a SAP BW data model.
- Created different mappings to load the data from Info Cube, Info Object, ODS/DSO, Info Cube & Info Object join, Open Hub destination table, Delta SAP BW data targets & tables into the Oracle database.

Refer to individual KM options and their descriptions as well as to "Considerations for SAP BW Integration" in "Application Adapters Guide for Oracle Data Integrator" for more information on the SAP BW KM features and options.

Note: In case the execution did not complete successfully, please check the ODI Operator and ODI Logs for details. In addition to this, the following log files will contain execution information.

- `<System Temp Dir or local FTP dir>/ ZODI_<Mapping Id>_<SrcSet>_<Context>.out`
- `<System Temp Dir or local FTP dir>/ ZODI_<Mapping Id>_<SrcSet>_<Context>.err`

Refer to "Log Files," in Application Adapters Guide for Oracle Data Integrator for more details.

8.1 Going further with Oracle Data Integrator

Use the demonstration environment to familiarize yourself with Oracle Data Integrator. You can go further with Oracle Data Integrator by taking advantage of the samples available on the Oracle Technology Network.
This chapter provides links to sections where you can find more information about the ODI Adapter for SAP ABAP BW.

More information about the ODI adapter for SAP ABAP BW can be in the following sections of the *Application Adapters Guide for Oracle Data Integrator*:

- SAP ABAP BW
- Additional Information for SAP ABAP BW Adapter
- Installing ODI SAP Components
- Moving ODI and SAP Components from Development to Production