

8 Service Migration

This chapter describes the service migration mechanisms supported by WebLogic Server 12.1.3.

This chapter includes the following sections:

	
Understanding the Service Migration Framework

	
Pre-Migration Requirements

	
Roadmap for Configuring Automatic Migration of JMS-related Services

	
Best Practices for Targeting JMS when Configuring Automatic Service Migration

	
Roadmap for Configuring Manual Migration of JMS-related Services

	
Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service

	
Manual Migration of the JTA Transaction Recovery Service

	
Automatic Migration of User-Defined Singleton Services

This chapter focuses on migrating failed services. WebLogic Server also supports whole server-level migration, where a migratable server instance, and all of its services, is migrated to a different physical machine upon failure. For information on failed server migration, see Chapter 7, "Whole Server Migration."

WebLogic Server also supports replication and failover at the application level. For more information, see Chapter 6, "Failover and Replication in a Cluster."

	
Caution:

Support for automatic whole server migration on Solaris 10 systems using the Solaris Zones feature can be found in Note 3: Support For Sun Solaris 10 In Multi-Zone Operation at http://www.oracle.com/technetwork/middleware/ias/oracleas-supported-virtualization-089265.html.

Understanding the Service Migration Framework

In a WebLogic Server cluster, most subsystem services are hosted homogeneously on all server instances in the cluster, enabling transparent failover from one server to another. In contrast, pinned services, such as JMS-related services, the JTA Transaction Recovery Service, and user-defined singleton services are hosted on individual server instances within a cluster—for these services, the WebLogic Server migration framework supports failure recovery with service migration, as opposed to failover. See Migratable Services.

Service-level migration in WebLogic Server is the process of moving the pinned services from one server instance to a different available server instance within the cluster. Service migration is controlled by a logical migratable target, which serves as a grouping of services that is hosted on only one physical server instance in a cluster. You can select a migratable target in place of a server instance or cluster when targeting certain pinned services. High availability is achieved by migrating a migratable target from one clustered server instance to another when a problem occurs on the original server instance. You can also manually migrate a migratable target for scheduled maintenance, or you can configure the migratable target for automatic migration. See Understanding Migratable Targets In a Cluster.

The migration framework provides tools and infrastructure for configuring and migrating targets, and, in the case of automatic service migration, it leverages the WebLogic Server health monitoring subsystem to monitor the health of services hosted by a migratable target. See Migration Processing Tools and Automatic Service Migration Infrastructure. For definitions of the terms that apply to server and service migration, see Migration Terminology.

Migratable Services

WebLogic Server supports service-level migration for JMS-related services, the JTA Transaction Recovery Service, and user-defined singleton services. These are referred to as migratable services because you can move them from one server instance to another within a cluster. The following migratable services can be configured for automatic or manual migration.

JMS-related Services

JMS services are singleton services, and, therefore, are not active on all server instances in a cluster. Instead, they are pinned to a single server instance in the cluster to preserve data consistency. To ensure that singleton JMS services do not introduce a single point of failure for dependent applications in the cluster, WebLogic Server can be configured to automatically or manually migrate them to any server instance in the migratable target list.

	
JMS Server—management containers for the queues and topics in JMS modules that are targeted to them. See "JMS Server Configuration" in Administering JMS Resources for Oracle WebLogic Server.

	
Store-and-Forward (SAF) Service—store-and-forward messages between local sending and remote receiving endpoints, even when the remote endpoint is not available at the moment the messages are sent. Only sending SAF agents configured for JMS SAF (sending capability only) are migratable. See Administering the Store-and-Forward Service for Oracle WebLogic Server.

	
Path Service—a persistent map that can be used to store the mapping of a group of messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. It provides a way to enforce ordering by pinning messages to a member of a cluster hosting servlets, distributed queue members, or Store-and-Forward agents. One path service is configured per cluster. See "Using the WebLogic Path Service" in Administering JMS Resources for Oracle WebLogic Server.

	
Custom Persistent Store—a user-defined, disk-based file store or JDBC-accessible database for storing subsystem data, such as persistent JMS messages or store-and-forward messages. See "Using the WebLogic Persistent Store" in Administering Server Environments for Oracle WebLogic Server.

JTA Transaction Recovery Service

The Transaction Recovery Service automatically attempts to recover transactions on system startup by parsing all transaction log records for incomplete transactions and completing them. For detailed information, see "Transaction Recovery After a Server Fails" in Developing JTA Applications for Oracle WebLogic Server.

User-defined Singleton Services

Within an application, you can define a singleton service that can be used to perform tasks that you want to be executed on only one member of a cluster at any give time. See Automatic Migration of User-Defined Singleton Services.

Understanding Migratable Targets In a Cluster

You can configure JMS and JTA services for high availability by using migratable targets. A migratable target is a special target that can migrate from one server instance in a cluster to another. As such, a migratable target provides a way to group migratable services that should move together. When the migratable target is migrated, all services hosted by that target are migrated.

In order to configure a migratable JMS service for migration, it must be deployed to a migratable target. A migratable target specifies a set of server instances that can host a target, and can optionally specify a user-preferred host for the services and an ordered list of candidate backup servers should the preferred server instance fail. Only one of these server instances can host the migratable target at any one time.

Once a service is configured to use a migratable target, then the service is independent from the server member that is currently hosting it. For example, if a JMS server with a deployed JMS queue is configured to use a migratable target, then the queue is independent of when a specific server member is available. In other words, the queue is always available when the migratable target is hosted by any server instance in the cluster.

An administrator can manually migrate pinned migratable services from one server instance to another in the cluster, either in response to a server failure or as part of regularly scheduled maintenance. If you do not configure a migratable target in the cluster, migratable services can be migrated to any WebLogic Server instance in the cluster. See Roadmap for Configuring Manual Migration of JMS-related Services.

Policies for Manual and Automatic Service Migration

A migratable target provides migration policies that define whether the hosted services will be manually migrated (the system default) or automatically migrated from an unhealthy hosting server instance to a healthy active server instance with the help of the health monitoring subsystem. There are two types of automatic service migration policies, as described in the following sections.

Manual Migration

When a migratable target uses the manual policy (the system default), an administrator can manually migrate pinned migratable services from one server instance to another in the cluster, either in response to a server failure or as part of regularly scheduled maintenance.

See Roadmap for Configuring Manual Migration of JMS-related Services.

Exactly-Once

This policy indicates that if at least one Managed Server in the candidate list is running, then the service will be active somewhere in the cluster if server instances fail or are shut down (either gracefully or forcibly). It is important to note that this value can lead to target grouping. For example, if you have five exactly-once migratable targets and only start one Managed Server in the cluster, then all five targets will be activated on that server instance.

	
Tip:

As a best practice, a migratable target hosting a path service should always be set to exactly-once, so if its hosting server member fails or is shut down, the path service will automatically migrate to another server instance and will always be active in the cluster.

Example use-case for JMS servers:

A domain has a cluster of three Managed Servers, with one JMS server deployed on a member server in the cluster. Applications deployed to the cluster send messages to the queues targeted to the JMS server. MDBs in another domain drain the queues associated with the JMS server. The MDBs only want to drain from one set of queues, not from many instances of the same queue. In other words, this environment uses clustering for scalability, load balancing, and failover for its applications, but not for its JMS server. Therefore, this environment would benefit from the automatic migration of the JMS server as an exactly-once service to an available cluster member.

See Roadmap for Configuring Automatic Migration of JMS-related Services.

Failure-Recovery

This policy indicates that the service will only start if its user-preferred server (UPS) is started. If an administrator manually shuts down the UPS, either gracefully or forcibly, then a failure-recovery service will not migrate. However, if the UPS fails due to an internal error, then a failure-recovery service will be migrated to another candidate server instance. If such a candidate server instance is unavailable (due to a manual shutdown or an internal failure), then the migration framework will first attempt to reactivate the service on its UPS server. If the UPS server is not available at that time, then the service will be migrated to another candidate server instance.

Example use-case for JMS servers:

A domain has a cluster of three Managed Servers, with a JMS server on each member server and a distributed queue member on each JMS server. There is also an MDB targeted to the cluster that drains from the distributed queue member on the local server member. In other words, this environment uses clustering for overall scalability, load balancing, and failover. Therefore, this environment would benefit from the automatic migration of a JMS server as an failure-recovery service to a UPS member.

	
Caution:

If a server instance is also configured to use the automatic whole server migration framework, which will shut down the server when its expired lease cannot be renewed, then any failure-recovery services configured on that server instance will not automatically migrate, no matter how the server instance is manually shut down by an administrator (for example, force shutdown versus graceful shutdown). For more information, see Automatic Whole Server Migration.

See the Roadmap for Configuring Automatic Migration of JMS-related Services.

Options For Attempting to Restart Failed Services Before Migrating

A migratable target provides options to attempt to deactivate and reactivate a failed service, instead of migrating the service. See In-Place Restarting of Failed Migratable Services.

For more information about the default values for all migratable target options, see MigratableTargetMBean in the MBean Reference for Oracle WebLogic Server.

User-Preferred Servers and Candidate Servers

When deploying a JMS service to the migratable target, you can select the user-preferred server (UPS) target to host the service. When configuring a migratable target, you can also specify constrained candidate servers (CCS) that can potentially host the service should the user-preferred server fail. If the migratable target does not specify a constrained candidate server, the JMS server can be migrated to any available server instance in the cluster.

WebLogic Server enables you to create separate migratable targets for JMS services. This allows you to always keep each service running on a different server instance in the cluster, if necessary. Conversely, you can configure the same selection of server instances as the constrained candidate servers for both JTA and JMS, to ensure that the services remain co-located on the same server instance in the cluster.

Example Migratable Targets In a Cluster

Figure 8-1 shows a cluster of three Managed Servers, all hosting migratable targets. Server A is hosting a migratable target (MT1) for JMS server A (with two queues) and a custom store; Server B is hosting MT2 for a path service and a custom store and is also hosting MT3 for JMS server B (with two queues) and a custom store; Server C is hosting MT4 for JMS server C (with two queues) and a custom store.

All the migratable targets are configured to be automatically migrated, with the MT1, MT3, and MT4 targets using the failure-recovery policy, and the MT2 target using the exactly-once policy.

Figure 8-1 Migratable Targets In a Cluster

[image: Description of Figure 8-1 follows]

In the above example, the MT2 exactly-once target will automatically start the path service and store on any running Managed Server in the candidate list. This way, if the hosting server should fail, it guarantees that the services will always be active somewhere in the cluster, even if the target's user preferred server (UPS) is shut down gracefully. However, as described in Policies for Manual and Automatic Service Migration, this policy can also lead to target grouping with multiple JMS services being hosted on a single server instance.

Whereas, if the UPS is shut down gracefully or forcibly, then the MT1, MT3, and MT4 failure-recovery targets will automatically start the JMS server and store services on its UPS, but the pinned services will not be migrated anywhere. However, if the UPS shuts down due to an internal error, then the services will be migrated to another candidate server.

Targeting Rules for JMS Servers

When not using migratable targets, a JMS server can be targeted to a specific cluster member and can use either the default file or a custom store. However, when targeted to a migratable target, a JMS server must use a custom persistent store, and must be targeted to the same migratable target used by the custom store. A JMS server, SAF agent, and custom store can share a migratable target. See Custom Store Availability for JMS Services.

WebLogic Server will create the migratable targets for each server instance in a cluster and then create separate JMS servers that are targeted individually to each migratable target, if a JMS system resource target is the cluster.

Targeting Rules for SAF Agents

When not using migratable targets, a SAF agent can be targeted to an entire cluster or a list of multiple server instances in a cluster, with the requirement that the SAF agent and each server instance in the cluster must use the default persistent store. However, when targeted to a migratable target, a SAF agent must use a custom persistent store, and must be targeted to the same migratable target used by the custom store, similar to a JMS server. A SAF agent, JMS server, and custom store can share a migratable target. See Special Considerations When Targeting SAF Agents or Path Service.

WebLogic Server will create the migratable targets for each server in a cluster and then create separate SAF agents that are targeted individually to each migratable target. This handling increases throughput and high availability.

In addition, consider the following topics when targeting SAF agents to migratable targets.

Re-targeting SAF Agents to Migratable Targets

To preserve SAF message consistency, WebLogic Server prevents you from retargeting an existing SAF agent to a migratable target. Instead, you must delete the existing SAF agent and configure a new SAF agent with the same values and target it to a migratable target.

Targeting Migratable SAF Agents For Increased Message Throughput

When not using migratable targets, a SAF agent can be targeted to an entire cluster or multiple server instances in a cluster for increased message throughput. However, When a SAF agent is targeted to a migratable target, it cannot be targeted to any other server instances in the cluster, including an entire cluster. Therefore, if you want to increase throughput by importing a JMS destination to multiple SAF agents on separate server instances in a cluster, then you should create migratable targets for each server instance in the cluster and then create separate SAF agents that are targeted individually to each migratable target.

Targeting SAF Agents For Consistent Quality-of-Service

A WebLogic Server administrator has the freedom to configure and deploy multiple SAF agents in the same cluster or on the same server instance. As such, there could be situations where the same server instance has both migratable SAF agents and non-migratable SAF agents. For such cases, the behavior of a JMS client application may vary depending on which SAF agent handles the messages.

For example, an imported destination can be deployed to multiple SAF agents, and messages sent to the imported destination will be load-balanced among all SAF agents. If the list of the SAF agents contains non-migratable agents, the JMS client application may have a limited sense of high availability. Therefore, a recommended best practice is to deploy an imported destination to one or more SAF agents that provide the same level of high availability functionality. In other words, to ensure consistent forwarding quality and behavior, you should target the imported destination to a set of SAF agents that are all targeted to migratable targets or are all targeted to non-migratable targets.

Targeting Rules for Path Service

When not using migratable targets, a path service is targeted to a single member of a cluster and can use either the default file store or a custom store. However, when targeted to a migratable target, a path service cannot use the default store, so a custom store must be configured and targeted to the same migratable target. As an additional best practice, the path service and its custom store should be the only users of that migratable target. Whereas, a JMS server, SAF agent, and custom store can share a migratable target.

Special Considerations For Targeting a Path Service

As a best practice, when the path service for a cluster is targeted to a migratable target, the path service and its custom store should be the only users of that migratable target.

When a path service is targeted to a migratable target, its provides enhanced storage of message unit-of-order (UOO) information for JMS distributed destinations, since the UOO information will be based on the entire migratable target instead of being based only on the server instance hosting the distributed destinations member.

Targeting Rules for Custom Stores

All JMS-related services require a custom persistent store that is targeted to the same migratable targets as the JMS services. When a custom store is targeted to a migratable target, the store <directory> parameter must be configured so that the store directory is accessible from all candidate server members in the migratable target.

WebLogic Server will create the migratable targets for each server instance in a cluster and then create separate JMS servers and file stores that are targeted individually to each migratable target, if a JMS system resource target is the cluster.

See Custom Store Availability for JMS Services.

Migratable Targets For the JTA Transaction Recovery Service

For JTA, a migratable target configuration should not be configured because a migratable target is automatically defined for JTA at the server level. To enable JTA automatic migration select the Automatic JTA Migration Enabled checkbox. The default migration policy for JTA is manual, but when configured for automatic migration, the JTA policy is internally set to failure-recovery. This means that Transaction Recovery Service will only start if its user-preferred server (UPS) is started. If an administrator shuts down the UPS, either gracefully or forcibly, this service will not be migrated.

However, if the UPS shuts down due to an internal error, then this service will be migrated to another candidate server instance. If such a candidate server instance is unavailable (due to a manual shutdown or an internal failure), then the migration framework will first attempt to reactivate the service on its UPS server instance. If the UPS server is not available at that time, then the service will be migrated to another candidate server instance.

Migration Processing Tools

WebLogic Server migration framework provides infrastructure and facilities to perform the manual or automatic migration of JMS-related services and the JTA Transaction Recovery Service. By default, an administrator must manually execute the process in order to successfully migrate the services from one server instance to another server instance. However, these services can also be easily configured to automatically migrate in response to a server failure.

Administration Console

An administrator can use the WebLogic Server Administration Console to configure and perform the migration process.

For more information, see the following topics in the Oracle WebLogic Server Administration Console Online Help:

	
"Configure JMS-related services migration"

	
"Configure the JTA Transaction Recovery Service for migration"

WebLogic Scripting Tool

An administrator can use the WebLogic Scripting Tool (WLST) command-line interface utility to manage the life cycle of a server instance, including configuring and performing the migration process.

For more information, see "Life Cycle Commands" in WLST Command Reference for WebLogic Server.

Automatic Service Migration Infrastructure

The service migration framework depends on the following components to monitor server health issues and automatically migrate the pinned services to a healthy server instance.

Leasing for Migratable Services

Leasing is the process WebLogic Server uses to manage services that are required to run on only one member of a cluster at a time. Leasing ensures exclusive ownership of a cluster-wide entity. Within a cluster, there is a single owner of a lease. Additionally, leases can failover in case of server or cluster failure. This helps to avoid having a single point of failure. See Leasing.

Using the Automatic Migration option requires setting the cluster Migration Basis policy to either Database or Consensus leasing, as follows:

Database Leasing

If you are using a high availability database, such as Oracle RAC, to manage leasing information, configure the database for server migration according to the procedures outlined in High-availability Database Leasing.

Setting Migration Basis to Database leasing requires that the Data Source For Automatic Migration option is set with a valid JDBC system resource. This implies that there is a table created on that resource that the Managed Servers will use for leasing. For more information on creating a JDBC data source, see "Configuring JDBC Data Sources" in Administering JDBC Data Sources for Oracle WebLogic Server.

Consensus Leasing

Setting Migration Basis to Consensus leasing means that the member servers maintain leasing information in-memory, which removes the requirement of having a high-availability database to use leasing. This version of leasing requires that you use Node Manager to control server instances within the cluster. It also requires that all server instances that are migratable, or which could host a migratable target, have a Node Manager instance associated with them. Node Manager is required for health monitoring information about the member server instances involved. See Non-database Consensus Leasing.

Node Manager

When using automatic service migration, Node Manager is required for health monitoring information about the member servers, as follows:

	
Consensus leasing—Node Manager must be running on every machine hosting Managed Servers within the cluster.

	
Database leasing—Node Manager must be running on every machine hosting Managed Servers within the cluster only if pre/post-migration scripts are defined. If pre/post-migration scripts are not defined, then Node Manager is not required.

For general information about configuring Node Manager, see "Using Node Manager to Control Servers" in Administering Node Manager for Oracle WebLogic Server.

Administration Server Not Required When Migrating Services

To eliminate a single point of failure during migration, automatic service migration of migratable services is not dependent on the availability of the Administration Server at the time of migration.

Service Health Monitoring

To accommodate service migration requests, the migratable target performs basic health monitoring on migratable services that are deployed on it that implement a health monitoring interface. The advantage of having a migratable target perform this job is that it is guaranteed to be local. Plus, the migratable target has a direct communication channel to the leasing system and can request that the lease be released (thus triggering a migration) when bad health is detected.

How Health Monitoring of the JTA Transaction Recovery Service Triggers Automatic Migration

When JTA has automatic migration enabled, the server defaults to shutting down if the JTA subsystem reports itself as unhealthy (FAILED). For example, if any I/O error occurs when accessing the transaction log, then JTA health state will change to FAILED.

When the primary server fails, the migratable service framework automatically migrates the Transaction Recovery Service to a backup server. The automatic service migration framework selects a backup server from the configured candidate servers. If a backup server fails before completing the transaction recovery actions, and then is restarted, the Transaction Recovery Service will eventually be migrated to another server instance in the cluster (either the primary server will reclaim it or the migration framework will notice that the backup server instance's lease has expired).

After successful migration, if the backup server is shut down normally, then when the backup server is rebooted, the Transaction Recovery Service will again be activated on the backup server. This is consistent with manual service migration. As with manual service migration, the Transaction Recovery Service service cannot be migrated from a running primary server.

How Health Monitoring of JMS-related Services Triggers Automatic Migration

When the JMS-related services have automatic migration enabled:

	
JMS Server—Maintains its run-time health state and registers and updates its health to the health monitoring subsystem. When a service the JMS server depends upon, such as its targeted persistent store, reports the FAILED health state, it is detected by the migration framework. The migration process takes place based on the migratable target's configured automatic migration policy. Typically, the migration framework deactivates the JMS server and other users of the migratable target on the current user-preferred server and migrates them onto a healthy available server instance from the constrained candidate server list.

	
SAF Service—The health state of the SAF service comes from its configured SAF agents. If the SAF service detects an unhealthy state, the whole SAF agent instance will be reported as unhealthy. The SAF agent has the same health monitoring capabilities as a JMS server. Typically, the migration framework deactivates the SAF agent on the current user-preferred server instance and migrates it onto a healthy available server instance from the constrained candidate server list.

	
Path Service—The path service itself will not change its health state, but instead depends on the server instance and its custom store to trigger migration.

	
Persistent Store—Registers its health to the health monitoring subsystem. If there are any errors reported by the I/O layer—such that if the persistent store cannot continue with read/write and needs to be restarted before it can guarantee data consistency—then the store's health is marked as FAILED and reported as FAILED to the health monitoring subsystem. This is detected by the automatic migration framework and triggers the auto-migration of the store and the subsystem services that are depending on that store from the current user-preferred server instance onto a healthy available server instance from the constrained candidate server list.

In-Place Restarting of Failed Migratable Services

Some migratable services, such as JMS, have the unique requirement in that sometimes it is beneficial for the service to be restarted in place, instead of migrated. Therefore, migratable targets provide restart-in-place options to attempt to deactivate and reactivate a failed service, instead of migrating the service.

The migration framework only attempts to restart a service if the server instance's health is satisfactory (for example, in a RUNNING state). If the server instance is not healthy for whatever reason, the framework immediately proceeds to the migration stage, skipping all in-place restarts.

The cluster Singleton Monitor checks for the RestartOnFailure value in the service's MigratableTargetMBean. If it the value is false, then the service is migrated. If the value is true, then the migration framework attempts to deactivate and activate in place. If the reactivation fails, the migration framework pauses for the user-specified SecondsBetweenRestarts seconds. This is repeated for the specified NumberOfRestartAttempts attempts. If all restart attempts fail, then the service is migrated to a healthy server member.

Migrating a Service From an Unavailable Server

There are special considerations when you migrate a service from a server instance that has crashed or is unavailable to the Administration Server. If the Administration Server cannot reach the previously active host of the service at the time you perform the migration, that Managed Server's local configuration information (for example, migratable target) will not be updated to reflect that it is no longer the active host for the service. In this situation, you must purge the unreachable Managed Server's local configuration cache before starting it again. This prevents the previous active host from hosting a service that has been migrated to another Managed Server.

JMS and JTA Automatic Service Migration Interaction

In some automatic service migration cases, the migratable targets for JMS services and the JTA Transaction Recovery Service can be migrated to different candidate servers with uncommitted transactions in progress. However, JMS and JTA service states are independent in time and location; therefore, JMS service availability does not depend on JTA transaction recovery being complete.

However, in-doubt transactions will not resolve until both services are running and can re-establish communication. An in-doubt transaction is an incomplete transaction that involves multiple participating resources (such as a JMS server and a database), where one or more of the resources are waiting for the transaction manager to tell them whether to rollback, commit, or forget their part of the transaction. Transactions can become in-doubt if they are in-progress when a transaction manager or participating resource crashes.

JTA continues to attempt to recover transactions when a resource is not available until the recovery abandon time period expires, which defaults to 24 hours.

Pre-Migration Requirements

WebLogic Server imposes certain constraints and prerequisites for service configuration in order to support service migration. These constraints are service specific and also depend on your enterprise application architecture.

Custom Store Availability for JMS Services

Migratable JMS-related services cannot use the default persistent store, so you must configure a custom store and target it to the same migratable target as the JMS server or SAF agent. As a best practice, a path service should use its own custom store and migratable target.

The custom file store or JDBC store must either be:

	
Accessible from all candidate server members in the migratable target.

	
If the application uses file-based persistence (file store), the store's <directory> parameter must be configured so that it is accessible from all candidate server members in the migratable target. For highest reliability, use a shared storage solution that is itself highly available—for example, a storage area network (SAN) or a dual-ported SCSI disk.

	
If the application uses JDBC-based persistence (JDBC store), then the JDBC connection information for that database instance, such as data source and connection pool, has to be available from all candidate servers members.

	
Migrated to a backup server target by pre-migration and post-migration scripts in the ORACLE_HOME/user_projects/domains/mydomain/bin/service_migration directory, where mydomain is a domain-specific directory, with the same name as the domain.

	
Note:

Basic directions for creating pre-migration and post-migration scripts are provided in the readme.txt file in this directory.

In some cases, scripts may be needed to dismount the disk from the previous server and mount it on the backup server. These scripts are configured on Node Manager, using the PreScript() and PostScript() methods in the MigratableTargetMBean in the MBean Reference for Oracle WebLogic Server, or by using the WebLogic Server Administration Console. In other cases, a script may be needed to move (not copy) a custom file store directory to the backup server instance. The old configured file store directory should not be left for the next time the migratable target is hosted by the old server instance. Therefore, the WebLogic Server administrator should delete or move the files to another directory.

Default File Store Availability for JTA

To migrate the JTA Transaction Recovery Service from a failed server instance in a cluster to another server instance (the backup server instance) in the same cluster, the backup server instance must have access to the transaction log (TLOG) records from the failed server. Transaction log records are stored in the default persistent store for the server.

If you plan to use service migration in the event of a failure, you must configure the default persistent store so that it stores records in a shared storage system that is accessible to any potential machine to which a failed migratable server might be migrated. For highest reliability, use a shared storage solution that is itself highly available—for example, a storage area network (SAN) or a dual-ported disk. In addition, only JTA and other non-migratable services can share the same default store.

Optionally, you may also want to use pre-migration and post-migration scripts to perform any unmounting and mounting of shared storage, as needed. Basic directions for creating pre-migration and post-migration scripts are provided in a readme.txt file in the ORACLE_HOME/user_projects/domains/mydomain/bin/service_migration directory, where mydomain is a domain-specific directory, with the same name as the domain.

Server State and Manual Service Migration

For automatic migration, when the current (source) server fails, the migration framework will automatically migrate the Transaction Recovery Service to a target backup server.

For manual migration, you cannot migrate the Transaction Recovery Service to a backup server instance from a running server instance. You must stop the server instance before migrating the Transactions Recovery Service.

Table 8-1 shows the support for migration based on the running state.

Table 8-1 Server Running State and Manual Migration Support

	Server State Information for Current Server	Server State Information for Backup Server	Messaging Migration Allowed?	JTA Migration Allowed?
	
Running

	
Running

	
Yes

	
No

	
Running

	
Standby

	
Yes

	
No

	
Running

	
Not running

	
Yes

	
No

	
Standby

	
Running

	
Yes

	
No

	
Standby

	
Standby

	
Yes

	
No

	
Standby

	
Not Running

	
Yes

	
No

	
Not Running

	
Running

	
Yes

	
Yes

	
Not Running

	
Standby

	
Yes

	
No

	
Not Running

	
Not Running

	
Yes

	
Yes

Roadmap for Configuring Automatic Migration of JMS-related Services

WebLogic JMS leverages the migration framework by allowing an administrator to specify a migratable target for JMS-related services, such as JMS servers and SAF agents. The WebLogic administrator can also configure migratable services that will be automatically migrated from a failed server based on WebLogic Server health monitoring capabilities.

	
Note:

JMS services can be migrated independently of the JTA Transaction Recovery Service. However, since the JTA Transaction Recovery Service provides the transaction control of the other subsystem services, it is usually migrated along with the other subsystem services. This ensures that the transaction integrity is maintained before and after the migration of the subsystem services.

To configure automatic JMS service migration on a migratable target within a cluster, perform the following tasks:

	
Step 1: Configure Managed Servers and Node Manager

	
Step 2: Configure the Migration Leasing Basis

	
Step 3: Configure Migratable Targets

	
Step 4: Configure and Target Custom Stores

	
Step 5: Target the JMS Services

	
Step 6: Restart the Administration Server and Managed Servers With Modified Migration Policies

	
Step 7: Manually Migrate JMS Services Back to the Original Server

Step 1: Configure Managed Servers and Node Manager

Configure the Managed Servers in the cluster for migration, including assigning Managed Servers to a machine. In certain cases, Node Manager must also be running and configured to allow automatic server migration.

For step-by-step instructions for using the WebLogic Server Administration Console to complete these tasks, refer to the following topics in the Oracle WebLogic Server Administration Console Online Help:

	
"Create Managed Servers"

	
Note:

You must set a unique Listen Address value for the Managed Server instance that will host a migrated the JMS server. Otherwise, the migration will fail.

	
"Create and configure machines"

	
"Configure Node Manager"

	
Note:

For automatic service migration, Consensus leasing requires that you use Node Manager to control server instances within the cluster and that all migratable servers must have a Node Manager instance associated with them. For Database leasing, Node Manager is required only if pre-migration and post-migration scripts are defined. If pre-migration and post-migration scripts are not defined, then Node Manager is not required.

For general information on configuring Node Manager, see "Using Node Manager to Control Servers" in Administering Node Manager for Oracle WebLogic Server.

Step 2: Configure the Migration Leasing Basis

On the Cluster > Configuration > Migration page in the WebLogic Server Administration Console, configure the cluster Migration Basis according to how your data persistence environment is configured, selecting either Database Leasing or Consensus Leasing. See Leasing for Migratable Services.

Step 3: Configure Migratable Targets

You should perform this step before targeting any JMS-related services or enabling the JTA Transaction Recovery Service migration.

Configuring a Migratable Server as an Automatically Migratable Target

The Migratable Target Summary table in the WebLogic Server Administration Console displays the system-generated migratable targets of servername (migratable), which are automatically generated for each running server instance in a cluster. However, these are only generic templates and still need to be targeted and configured for automatic migration.

Create a New Migratable Target

When creating a new migratable target, the WebLogic Server Administration Console provides a mechanism for creating, targeting, and selecting a migration policy.

Select a User Preferred Server

When you create a new migratable target using the WebLogic Server Administration Console, you can initially choose a preferred server instance in the cluster on which to associate the target. The User Preferred Server is the most appropriate server instance for hosting the migratable target.

	
Note:

An automatically migrated service may not end up being hosted on the specified User Preferred Server. In order to verify which server is hosting a migrated service, use the WebLogic Server Administration Console to check the Current Hosting Server information on the Migratable Target > Control page in the WebLogic Server Administration Console. For more information, see "Migratable Target: Control" in Oracle WebLogic Server Administration Console Online Help.

Select a Service Migration Policy

The default migration policy for migratable targets is Manual Service Migration Only, so you must select one of the following auto-migration policies:

	
Auto-Migrate Exactly-Once Services—Indicates that if at least one Managed Server in the candidate list is running, then the service will be active somewhere in the cluster if server instances should fail or are shut down (either gracefully or forcibly).

	
Note:

This value can lead to target grouping. For example, if you have five exactly-once migratable targets and only start one Managed Server in the cluster, then all five targets will be activated on that server instance.

	
Auto-Migrate Failure-Recovery Services—This policy indicates that the service will only start if its User Preferred Server (UPS) is started. If an administrator shuts down the UPS either gracefully or forcibly, this service will not be migrated. However, if the UPS fails due to an internal error, the service will be migrated to another candidate server instance. If such a candidate server instance is unavailable (due to a manual shutdown or an internal failure), then the migration framework will first attempt to reactivate the service on its UPS server. If the UPS server is not available at that time, then the service will be migrated to another candidate server instance.

See Policies for Manual and Automatic Service Migration.

Optionally Select Constrained Candidate Servers

When creating migratable targets that use the exactly-once services migration policy, you may also want to restrict the potential member servers to which JMS servers can be migrated. A recommended best practice is to limit each migratable target's candidate server set to a primary, secondary, and perhaps a tertiary server instance. Then as each server starts, the migratable targets will be restricted to their candidate server instances, rather than being satisfied by the first server instance to come online. Administrators can then manually migrate services to idle server instances.

For the cluster's path service, however, the candidate server instances for the migratable target should be the entire cluster, which is the default setting.

On the migratable target Configuration > Migration page in the WebLogic Server Administration Console, the Constrained Candidate Servers Available box lists all of the Managed Servers that could possibly support the migratable target. The Managed Servers become valid Candidate Servers when you move them into the Chosen box.

Optionally Specify Pre/Post-Migration Scripts

After creating a migratable target, you may also want to specify whether you are providing any pre-migration and post-migration scripts to perform any unmounting and mounting of the shared custom file store, as needed.

	
Pre-Migration Script Path—the path to the pre-migration script to run before a migratable target is actually activated.

	
Post-Migration Script Path—the path to the post-migration script to run after a migratable target is fully deactivated.

	
Post-Migration Script Failure Cancels Automatic Migration—specifies whether or not a failure during execution of the post-deactivation script is fatal to the migration.

	
Allow Post-Migration Script To Run On a Different Machine—specifies whether or not the post-deactivation script is allowed to run on a different machine.

The pre-migration and post-migration scripts must be located in the ORACLE_HOME/user_projects/domains/mydomain/bin/service_migration directory, where mydomain is a domain-specific directory, with the same name as the domain. For your convenience, sample pre-migration and post-migration scripts are provided in this directory.

Optionally Specify In-Place Restart Options

Migratable targets provide restart-in-place options to attempt to deactivate and reactivate a failed service, instead of migrating the service. See In-Place Restarting of Failed Migratable Services.

Step 4: Configure and Target Custom Stores

As discussed in Custom Store Availability for JMS Services, JMS-related services require you to configure a custom persistent store that is also targeted to the same migratable targets as the JMS services. Ensure that the store is either:

	
Configured such that all the candidate server instances in a migratable target have access to the custom store.

	
Migrated by pre-migration and post-migration scripts. See Optionally Specify Pre/Post-Migration Scripts.

Step 5: Target the JMS Services

When using migratable targets, you must target your JMS service to the same migratable target used by the custom persistent store. In the event that no custom store is specified for a JMS service that uses a migratable target, then a validation message will be generated, followed by failed JMS server deployment and a WebLogic Server boot failure. For example, attempting to target a JMS server that is using the default file store to a migratable target, will generate the following message:

Since the JMS server is targeted to a migratable target, it cannot use the default store.

Similar messages are generated for a SAF agent or path service that is targeted to a migratable target and attempts to use the default store. In addition, if the custom store is not targeted to the same migratable target as the migratable service, then the following validation log message will be generated, followed by failed JMS server deployment and a WebLogic Server start failure.

The JMS server is not targeted to the same target as its persistent store.

Special Considerations When Targeting SAF Agents or Path Service

There are some special targeting choices to consider when targeting SAF agents and a path service to migratable targets. For more information, see Targeting Rules for SAF Agents and Targeting Rules for Path Service.

Step 6: Restart the Administration Server and Managed Servers With Modified Migration Policies

You must restart the Administration Server after configuring your JMS services for automatic service migration. You must also restart any Managed Servers whose migration policies were modified.

Step 7: Manually Migrate JMS Services Back to the Original Server

You may want to migrate a JMS service back to the original primary server instance once it is back online. Unlike the JTA Transaction Recovery Service, JMS services do not automatically migrate back to the primary server instance when it becomes available, so you need to manually migrate these services.

For instructions on manually migrating the JMS-related services using the WebLogic Server Administration Console, see "Manually migrate JMS-related services" in the Oracle WebLogic Server Administration Console Online Help.

For instructions on manually migrating the JMS-related services using WLST, see "WLST Command and Variable Reference" in WLST Command Reference for WebLogic Server.

Best Practices for Targeting JMS when Configuring Automatic Service Migration

	
In most cases, it is sufficient to use the default migratable target for a server instance. There is one default migratable target per server instance. An alternative is to configure one migratable target per server instance. See Step 3: Configure Migratable Targets.

	
Configure one custom store per migratable target and target the store to the migratable target. See Step 4: Configure and Target Custom Stores.

	
When configuring JMS services (JMS servers and SAF agents) for each migratable target, ensure that the services refer to the corresponding custom store. Then target the services to each migratable target. See Step 5: Target the JMS Services.

	
Use JMS system modules rather than deployment modules. The WebLogic Server Administration Console only provides the ability to configure system modules. See "JMS System Module Configuration" in Administering JMS Resources for Oracle WebLogic Server.

	
Create one system module per anticipated target set, and target the module to a single cluster. For example, if you plan to have one destination that spans a single JMS server and another destination that spans six JMS servers, create two modules and target both of them to the same cluster.

	
Configure one subdeployment per module and populate the subdeployment with a homogeneous set of either JMS server of JMS SAF agent targets. Do not include WebLogic Server or cluster names in the subdeployment.

	
Target connection factories to clusters for applications running on the same cluster. You can use default targeting to inherit the module target. Target connection factories to a subdeployment by using the Advanced Targeting choice on the WebLogic Server Administration Console for use by applications running remote to cluster.

	
For other JMS module resources, such as destinations, target using a subdeployment. Do not use default targeting. Subdeployment targeting is available through the Advanced Targeting choice on the WebLogic Server Administration Console.

	
As you add or remove JMS servers or SAF agents, remember to also add or remove JMS servers or SAF agents to your module subdeployment(s).

	
Do not target a SAF agent to a cluster as it will not be able to migrate. Configure multiple independent SAF agents and target each SAF agent to a migratable target. There is a default migratable target per every server instance. Similarly, configure a custom store per SAF agent and target each custom store to the migratable target that the SAF agent is using.

	
Custom connection factories are used to control client behavior, such as load balancing. They are targeted just like any other resource, but in the case of a connection factory, the target set has a special meaning. You can target a connection factory to a cluster, WebLogic Server, or to a JMS server or SAF agent (using a subdeployment). There is a performance advantage to targeting connection factories to the exact JMS servers or SAF agents that the client will use, as the target set for a connection factory determines the candidate set of host server instances for a client connection. Targeting to the exact JMS servers or SAF agents reduces the likelihood that client connections will connect to server instances that do not have a JMS server or SAF agent in cases where there is not a SAF agent on every clustered server instance. If no JMS server or SAF agent exists on a connection host, the client request must always double-hop the route from the client to the connection host server, then ultimately on to the JMS server or SAF agent.

See "Best Practices for JMS Beginners and Advanced Users" in Administering JMS Resources for Oracle WebLogic Server.

Roadmap for Configuring Manual Migration of JMS-related Services

WebLogic JMS leverages the migration framework by allowing an administrator to specify a migratable target for JMS-related services. Once properly configured, a JMS service can be manually migrated to another WebLogic Server within a cluster. This includes both scheduled migrations as well as manual migrations in response to a WebLogic Server failure within the cluster.

To configure JMS-related services for manual migration on a migratable target within a cluster, perform the following tasks:

	
Step 1: Configure Managed Servers

	
Step 2: Configure Migratable Targets

	
Step 3: Configure and Target Custom Stores

	
Step 4: Target the JMS Services

	
Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies

	
Step 6: Manually Migrating JMS Services

Step 1: Configure Managed Servers

Configure the Managed Servers in the cluster for migration, including assigning Managed Servers to a machine.

For step-by-step instructions for using the WebLogic Server Administration Console to complete these tasks, refer to the following topics in Oracle WebLogic Server Administration Console Online Help:

	
"Create Managed Servers"

	
Note:

You must set a unique Listen Address value for the Managed Server instance that will host a migrated the JMS server. Otherwise, the migration will fail.

	
"Create and configure machines"

Step 2: Configure Migratable Targets

You should perform this step before targeting any JMS-related services or enabling the JTA Transaction Recovery Service migration.

Configuring a Migratable Server As a Migratable Target

The Migratable Target Summary table in the WebLogic Server Administration Console displays the system-generated migratable targets of servername (migratable), which are automatically generated for each running server instance in a cluster. However, these are only generic templates and still need to be targeted and configured for migration.

Create a New Migratable Target

When creating a new migratable target, the WebLogic Server Administration Console provides a mechanism for creating, targeting, and selecting a migration policy.

Select a Preferred Server

When you create a new migratable target using the WebLogic Server Administration Console, you can initially choose a preferred server in the cluster on which to associate the target. The preferred server instance is the most appropriate server instance for hosting the migratable target.

Accept the Default Manual Service Migration Policy

The default migration policy for all migratable targets is Manual Service Migration Only, so no change is necessary.

Optionally Select Constrained Candidate Servers

When creating migratable targets you may also want to restrict the potential server instances to which you can migrate JMS-related services to only those that have access to a custom persistent store that is targeted to the same migratable target as the JMS-related services.

For the cluster's path service, however, the candidate server instances for the migratable target should be the entire cluster, which is the default setting.

On the migratable target Configuration > Migration page in the WebLogic Server Administration Console, the Constrained Candidate Servers Available box lists all of the Managed Servers that could possibly support the migratable target. The Managed Servers become valid Candidate Servers when you move them into the Chosen box.

Optionally Specify Pre/Post-Migration Scripts

After creating a migratable target, you may also want to specify whether you are providing any pre-migration and post-migration scripts to perform any unmounting and mounting of the shared custom store, as needed.

	
Pre-Migration Script Path—the path to the pre-migration script to run before a migratable target is actually activated.

	
Post-Migration Script Path—the path to the post-migration script to run after a migratable target is fully deactivated.

	
Post-Migration Script Failure Cancels Automatic Migration—specifies whether or not a failure during execution of the post-deactivation script is fatal to the migration.

	
Allow Post-Migration Script To Run On a Different Machine—specifies whether or not the post-deactivation script is allowed to run on a different machine.

The pre-migration and post-migration scripts must be located in the ORACLE_HOME/user_projects/domains/mydomain/bin/service_migration directory, where mydomain is a domain-specific directory, with the same name as the domain. Basic directions for creating pre-migration and post-migration scripts are provided in a readme.txt file in this directory.

Optionally Specify In-Place Restart Options

Migratable targets provide restart-in-place options to attempt to deactivate and reactivate a failed service, instead of migrating the service. See In-Place Restarting of Failed Migratable Services.

Step 3: Configure and Target Custom Stores

As discussed in Custom Store Availability for JMS Services, JMS-related services require you to configure a custom persistent store that is also targeted to the same migratable targets as the JMS services. Ensure that the store is either:

	
Configured such that all the candidate server instances in a migratable target have access to the custom store.

	
Migrated by pre-migration and post-migration scripts. See Optionally Specify Pre/Post-Migration Scripts.

Step 4: Target the JMS Services

When using migratable targets, you must target your JMS service to the same migratable target used by the custom persistent store. In the event that no custom store is specified for a JMS service that uses a migratable target, a validation message will be generated, followed by failed JMS server deployment and a WebLogic Server start failure. For example, attempting to target a JMS server that is using the default file store to a migratable target, will generate the following message:

Since the JMS server is targeted to a migratable target, it cannot use the default store.

Similar messages are generated for a SAF agent or path service that is targeted to a migratable target and attempts to use the default store.

In addition, if the custom store is not targeted to the same migratable target as the migratable service, then the following validation log message will be generated, followed by failed JMS server deployment and a WebLogic Server start failure.

The JMS server is not targeted to the same target as its persistent store.

Special Considerations When Targeting SAF Agents or Path Service

There are some special targeting choices to consider when targeting SAF agents and a path service to migratable targets. For more information, see Targeting Rules for SAF Agents and Targeting Rules for Path Service.

Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies

You must restart the Administration Server after configuring your JMS services for manual service migration.

You must also restart any Managed Servers whose migration policies were modified.

Step 6: Manually Migrating JMS Services

For instructions on manually migrating the JMS-related services using the WebLogic Server Administration Console, see "Manually migrate JMS-related services" in the Oracle WebLogic Server Administration Console Online Help.

For instructions on manually migrating the JMS-related services using WLST, see the WLST Command Reference for WebLogic Server.

	
Note:

You may want to migrate a JMS service back to the original primary server instance once it is back online. Unlike the JTA Transaction Recovery Service, JMS services do not automatically migrate back to the primary server instance when it becomes available, so you need to manually migrate these services.

Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service

The JTA Transaction Recovery Service is designed to gracefully handle transaction recovery after a crash. You can specify to have the Transaction Recovery Service automatically migrated from an unhealthy server instance to a healthy server instance, with the help of the server health monitoring services. This way, the backup server instance can complete transaction work for the failed server instance.

To configure automatic migration of the Transaction Recovery Service for a migratable target within a cluster, perform the following tasks:

	
Step 1: Configure Managed Servers and Node Manager

	
Step 2: Configure the Migration Basis

	
Step 3: Enable Automatic JTA Migration

	
Step 4: Configure the Default Persistent Store For Transaction Recovery Service Migration

	
Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies

	
Step 6: Automatic Failback of the Transaction Recovery Service Back to the Original Server

Step 1: Configure Managed Servers and Node Manager

Configure the Managed Servers in the cluster for migration, including assigning Managed Servers to a machine. Node Manager must also be running and configured to allow automatic server migration. Node Manager is required for health status information about the server instances involved.

For step-by-step instructions for using the WebLogic Server Administration Console to complete these tasks, refer to the following topics in Administration Console Online Help:

	
"Create Managed Servers"

	
Note:

For information on configuring a primary server instance to not start in Managed Server Independence (MSI) mode, which will prevent concurrent access to the transaction log with another backup server instance in recovery mode, see "Managed Server Independence" in Developing JTA Applications for Oracle WebLogic Server.

	
"Create and configure machines"

	
"Configure Node Manager"

	
Note:

For automatic service migration, Consensus leasing requires that you use Node Manager to control server instances within the cluster and that all migratable servers must have a Node Manager instance associated with them. For Database leasing, Node Manager is required only if pre-migration and post-migration scripts are defined. If pre-migration and post-migration scripts are not defined, then Node Manager is not required.

For general information on configuring Node Manager, see "Node Manager Overview" in Administering Node Manager for Oracle WebLogic Server.

Step 2: Configure the Migration Basis

On the Cluster > Configuration > Migration page in the WebLogic Server Administration Console, configure the cluster Migration Basis according to how your data persistence environment is configured, selecting either Database Leasing or Consensus Leasing. See Leasing for Migratable Services.

Step 3: Enable Automatic JTA Migration

In the JTA Migration Configuration section on the Server > Configuration > Migration page in the WebLogic Server Administration Console, configure the following options:

Select the Automatic JTA Migration Check Box

Configure the automatic migration of the JTA Transaction Recovery Service by selecting the Automatic JTA Migration Enabled checkbox.

Optionally Select Candidate Servers

You may also want to restrict the potential server instances to which you can migrate the Transaction Recovery Service to those that have access to the current server instance's transaction log files (stored in the default WebLogic store). If no candidate server instances are chosen, then any server instance within the cluster can be chosen as a candidate server instance.

From the Candidate Servers Available box, select the Managed Servers that can access the JTA log files. The Managed Servers become valid Candidate Servers when you move them into the Chosen box.

	
Note:

You must include the original server instance in the list of chosen server instances so that you can manually migrate the Transaction Recovery Service back to the original server instance, if need be. The WebLogic Server Administration Console enforces this rule.

Optionally Specify Pre/Post-Migration Scripts

You can specify whether you are providing any pre-migration and post-migration scripts to perform any unmounting and mounting of the shared storage, as needed.

	
Pre-Migration Script Path—the path to the pre-migration script to run before a migratable target is actually activated.

	
Post-Migration Script Path—the path to the post-migration script to run after a migratable target is fully deactivated.

	
Post-Migration Script Failure Cancels Automatic Migration—specifies whether or not a failure during execution of the post-deactivation script is fatal to the migration.

	
Allow Post-Migration Script To Run On a Different Machine—specifies whether or not the post-deactivation script is allowed to run on a different machine.

The pre-migration and post-migration scripts must be located in the ORACLE_HOME/user_projects/domains/mydomain/bin/service_migration directory, where mydomain is a domain-specific directory, with the same name as the domain. Basic directions for creating pre-migration and post-migration scripts are provided in a readme.txt file in this directory.

Step 4: Configure the Default Persistent Store For Transaction Recovery Service Migration

As discussed in Default File Store Availability for JTA, the Transaction Manager uses the default persistent store to store transaction log files. To enable migration of the Transaction Recovery Service, you must configure the default persistent store so that it stores its data files on a persistent storage solution that is available to other server instances in the cluster if the original server instance fails.

Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies

You must restart the Administration Server after configuring the JTA Transaction Recovery service for automatic service migration.

You must also restart any Managed Servers whose migration policies were modified.

Step 6: Automatic Failback of the Transaction Recovery Service Back to the Original Server

After completing transaction recovery for a failed server instance, a backup server instance releases ownership of the Transaction Recovery Service so that the original server instance can reclaim it when the server instance is restarted. If the backup server stops (crashes) for any reason before it completes transaction recovery, its lease will expire. This way when the primary server instance starts, it can reclaim successfully ownership.

There are two scenarios for automatic failback of the Transaction Recovery Service to the primary server instance:

	
Automatic failback after recovery is complete:

	
If the backup server instance finishes recovering the transaction log transactions before the primary server instance is restarted, it will initiate an implicit migration of the Transaction Recovery Service back to the primary server instance.

	
For both manual and automatic migration, the post-deactivation script will be executed automatically.

	
Automatic failback before recovery is complete:

	
If the backup server instance is still recovering the transaction log transactions when the primary server instance is started, during the Transaction Recovery Service initialization of the primary server startup, it will initiate an implicit migration of the Transaction Recovery Service from the backup server instance.

Manual Migration of the JTA Transaction Recovery Service

The JTA Transaction Recovery Service is designed to gracefully handle transaction recovery after a crash. You can manually migrate the Transaction Recovery Service from an unhealthy server instance to a healthy server instance, with the help of the server health monitoring services. In this manner, the backup server instance can complete transaction work for the failed server instance.

You can manually migrate the Transaction Recovery Service back to the original server instance by selecting the original server instance as the destination server instance. The backup server instance must not be running when you manually migrate the service back to the original server instance.

Note the following:

	
If a backup server instance fails before completing the transaction recovery actions, the primary server instance cannot reclaim ownership of the Transaction Recovery Service and recovery will not be re-attempted on the restarting server instance. Therefore, you must attempt to manually re-migrate the Transaction Recovery Service to another backup server instance.

	
If you restart the original server instance while the backup server instance is recovering transactions, the backup server instance will gracefully release ownership of the Transaction Recovery Service. You do not need to stop the backup server instance. For detailed information, see "Recovering Transactions For a Failed Clustered Server" in Developing JTA Applications for Oracle WebLogic Server.

	
For information on configuring a primary backup server instance to not start in Managed Server Independence (MSI) mode, which will prevent concurrent access to the transaction log with another backup server in recovery mode, see "Managed Server Independence" in Developing JTA Applications for Oracle WebLogic Server.

For instructions on manually migrating the Transaction Recovery Service using the WebLogic Server Administration Console, see "Manually migrate the Transaction Recovery Service" in Oracle WebLogic Server Administration Console Online Help.

Automatic Migration of User-Defined Singleton Services

Automatic singleton service migration allows the automatic health monitoring and migration of singleton services. A singleton service is a service operating within a cluster that is available on only one server instance at any given time. When a migratable service fails or become unavailable for any reason (for example, because of a bug in the service code, server failure, or network failure), it is deactivated at its current location and activated on a new server instance. The process of migrating these services to another server instance is handled using the singleton master. See Singleton Master.

WebLogic Server supports the automatic migration of user-defined singleton services.

	
Note:

Although the JTA Transaction Recovery Service is also a singleton service that is available on only one node of a cluster at any time, it is configured differently for automatic migration than user-defined singleton services. JMS and JTA services can also be manually migrated. See Understanding the Service Migration Framework.

Overview of Singleton Service Migration

This section provides an overview of how automatic singleton service is implemented in WebLogic Server.

Singleton Master

The singleton master is a lightweight singleton service that monitors other services that can be migrated automatically. The server instance that currently hosts the singleton master is responsible for starting and stopping the migration tasks associated with each migratable service.

	
Note:

Migratable services do not have to be hosted on the same server instance as the singleton master, but they must be hosted within the same cluster.

The singleton master functions similar to the cluster master in that it is maintained by lease competition and runs on only one server instance at a time. Each server instance in a cluster continuously attempts to register the singleton master lease. If the server instance currently hosting the singleton master fails, the next server instance in the queue will take over the lease and begin hosting the singleton master.

For more information on the cluster master, see Cluster Master Role in Whole Server Migration.

	
Note:

The singleton master and cluster master function independently and are not required to be hosted on the same server instance.

The server instance hosting the singleton master maintains a record of all migrations performed, including the target name, source server, destination server, and the timestamp.

Migration Failure

If the migration of a singleton service fails on every candidate server instance within the cluster, the service is left deactivated. You can configure the number of times the number of times the singleton master will iterate through the server instances in the cluster.

	
Note:

If you do not explicitly specify a list of candidate server instances, the singleton master will consider all of the cluster members as possible candidates for migration.

Implementing the Singleton Service Interface

A singleton service can be defined either as part of an application or as a standalone service. It is active only on one server instance at any time and so it can be used to perform tasks that you want to be executed on only one member of a cluster.

To create a singleton service, you must create a class that, in addition to any tasks you want the singleton service to perform, implements the weblogic.cluster.singleton.SingletonService interface.

The SingletonService interface contains the following methods, which are used in the process of migration.

	
public void activate()

This method should obtain any system resources and start any services required for the singleton service to begin processing requests. This method is called in the following cases:

	
When a newly deployed application is started

	
During server start

	
During the activation stage of service migration

	
public void deactivate()

This method is called during server shutdown and during the deactivation stage of singleton service migration. This method should release any resources obtained through the activate() method. Additionally, it should stop any services that should only be available from one member of a cluster.

Deploying a Singleton Service and Configuring the Migration Behavior

Depending on how you used the SingletonService interface to define a singleton service, you must perform the following steps to deploy it:

	
Package and deploy the singleton service within an application (application-scoped).

~ or ~

	
Deploy the singleton service as a standalone service within WebLogic Server (domain-wide).

	
Optionally, configure the migration behavior of the singleton service.

	
Note:

When you package and deploy an application-scoped singleton service, you cannot use the WebLogic Server Administration Console to control on which Managed Server the service will be hosted. However, when you deploy a domain-wide singleton service, you can specify the server name, class name, and preferred Managed Server in the WebLogic Server Administration Console.

The following sections outline these procedures in detail.

Packaging and Deploying a Singleton Service Within an Application

Singleton services that are packaged within an application should have their classes implement the SingletonService interface and placed within a JAR file, in APP-INF/lib or APP-INF/classes, or within an EAR-level lib directory. JNDI binding for application-scoped singleton services is done programmatically in the SingletonService interface. The life cycle of an application-scoped singleton service is tied with the life cycle of the application.

For standalone singleton services, their classes should be made available in the WebLogic Server system classpath.

Also, add the following entry to the weblogic-application.xml descriptor file:

<weblogic-application>
...
 <singleton-service>
 <class-name>mypackage.MySingletonServiceImpl</class-name>
 <name>Appscoped_Singleton_Service</name>
 </singleton-service>
...
</weblogic-application>

	
Note:

The <class-name> and <name> elements are required.

Deployment of an application-scoped singleton service occurs automatically as part of the application deployment. The candidate server instances for the singleton service will be the cluster members where the application is deployed.

Deploying a Singleton Service as a Standalone Service in WebLogic Server

After you have created a singleton service class using the SingletonService interface, you must define it as a singleton service within WebLogic Server. This singleton service object contains the following information:

	
The path to the class to load as the singleton service.

	
The preferred server instance and other candidate server instances for the singleton service.

The following excerpt from the <cluster> element of config.xml file shows how a singleton service is defined:

<singleton-service>
 <name>SingletonTestServiceName</name>
 <user-preferred-server>myManaged1</user-preferred-server>
 <class-name>mycompany.myprogram.subpackage.SingletonTestServiceImpl</class-name>
 <cluster>myCluster</cluster>
</singleton-service>

Configuring Singleton Service Migration

A singleton service is automatically configured to be an exactly-once service, which indicates that if at least one Managed Server in the candidate list is running, then the service will be active somewhere in the cluster. You can modify certain singleton service migration parameters using the following methods:

	
WebLogic Server Administration Console—allows you to create and configure singleton services. See "Configure a singleton service" in Oracle WebLogic Server Administration Console Online Help.

	
WebLogic Scripting Tool (WLST)—allows you to configure automatic service migration using the MigratableTargetManagementMBean. See "WLST Command and Variable Reference" in WLST Command Reference for WebLogic Server.

3 Communications In a Cluster

This chapter describes how WebLogic Server clusters communicate using IP sockets and IP unicast or multicast in WebLogic Server 12.1.3.

WebLogic Server instances in a cluster communicate with one another using two basic network technologies:

	
IP unicast or multicast, which server instances use to broadcast availability of services and heartbeats that indicate continued availability. See Considerations for Choosing Unicast or Multicast for information on selecting unicast or multicast.

	
IP sockets, which are the conduits for peer-to-peer communication between clustered server instances.

This chapter includes the following sections:

	
Choosing WebLogic Server Cluster Messaging Protocols

	
Peer-to-Peer Communication Using IP Sockets

	
Client Communication via Sockets

	
Cluster-Wide JNDI Naming Service

Choosing WebLogic Server Cluster Messaging Protocols

WebLogic Server supports two cluster messaging protocols:

	
Multicast: This protocol relies on UDP multicast and has been supported in WebLogic Server clusters since WebLogic Server 4.0.

	
Unicast: This protocol relies on point-to-point TCP/IP sockets and was added in WebLogic Server 10.0.

This section includes the following topics:

	
Using IP Multicast

	
One-to-Many Communication Using Unicast

	
Considerations for Choosing Unicast or Multicast

Using IP Multicast

Multicast is a simple broadcast technology that enables multiple applications to "subscribe" to a given IP address and port number and listen for messages.

	
Note:

A multicast address is an IP address in the range from 224.0.0.0 to 239.255.255.255. The default multicast value used by WebLogic Server is 239.192.0.0. You should not use any multicast address within the range x.0.0.1. Multicast ports have the normal UDP port ranges (0 to 65535), however certain UDP ports are reserved for specific purposes and should generally be avoided.

Multicast broadcasts messages to applications, but it does not guarantee that messages are actually received. If an application's local multicast buffer is full, new multicast messages cannot be written to the buffer and the application is not notified when messages are "dropped." Because of this limitation, WebLogic Server instances allow for the possibility that they may occasionally miss messages that were broadcast over multicast.

The WebLogic Server multicast implementation uses standard UDP multicast to broadcast the cluster messages to a group that is explicitly listening on the multicast address and port over which the message is sent. Since UDP is not a reliable protocol, WebLogic Server builds its own reliable messaging protocol into the messages it sends to detect and retransmit lost messages.

Most operating systems and switches support UDP multicast by default between machines in the same subnet. However, most routers do not support the propagation of UDP multicast messages between subnets by default. In environments that do support UDP multicast message propagation, UDP multicast has a time-to-live (TTL) mechanism built into the protocol. Each time the message reaches a router, the TTL is decremented by 1 before it routes the message. When the TTL reaches zero, the message will no longer be propagated between networks, making it an effective control for the range of a UDP multicast message. By default, WebLogic Server sets the TTL for its multicast cluster messages to 1, which restricts the message to the current subnet.

When using multicast, the cluster heartbeat mechanism will remove a server instance from the cluster if it misses three heartbeat messages in a row to account for the fact that UDP is not considered a reliable protocol. Since the default heartbeat frequency is one heartbeat every 10 seconds, this means it can take up to 30 seconds to detect that a server instance has left the cluster. Socket death detection or failed connection attempts can also accelerate this detection.

In summary, WebLogic Server multicast cluster messaging protocol:

	
Uses a very efficient and scalable peer-to-peer model where a server instance sends each message directly to the network once and the network makes sure that each cluster member receives the message directly from the network.

	
Works out of the box in most environments where the cluster members are in a single subnet.

	
Requires additional configuration in the router and WebLogic Server (for example multicast TTL) if the cluster members span more than one subnet.

	
Uses three consecutive missed heartbeats to remove a server instance from another server's cluster membership list.

To test an environment for its ability to support the WebLogic Server multicast messaging protocol, WebLogic Server provides a Java command-line utility known as MulticastTest.

WebLogic Server uses multicast for all one-to-many communications among server instances in a cluster. This communication includes:

	
Cluster-wide JNDI updates—Each WebLogic Server instance in a cluster uses multicast to announce the availability of clustered objects that are deployed or removed locally. Each server instance in the cluster monitors these announcements and updates its local JNDI tree to reflect current deployments of clustered objects. For more details, see Cluster-Wide JNDI Naming Service.

	
Cluster heartbeats—Each WebLogic Server instance in a cluster uses multicast to broadcast regular "heartbeat" messages that advertise its availability. By monitoring heartbeat messages, server instances in a cluster determine when a server instance has failed. (Clustered server instances also monitor IP sockets as a more immediate method of determining when a server instance has failed.)

	
Clusters with many nodes—Multicast communication is the option of choice for clusters with many nodes.

Multicast and Cluster Configuration

Because multicast communications control critical functions related to detecting failures and maintaining the cluster-wide JNDI tree (described in Cluster-Wide JNDI Naming Service) it is important that neither the cluster configuration nor the network topology interfere with multicast communications. The sections that follow provide guidelines for avoiding problems with multicast communication in a cluster.

If Your Cluster Spans Multiple Subnets In a WAN

In many deployments, clustered server instances reside within a single subnet, ensuring multicast messages are reliably transmitted. However, you may want to distribute a WebLogic Server cluster across multiple subnets in a Wide Area Network (WAN) to increase redundancy, or to distribute clustered server instances over a larger geographical area.

If you choose to distribute a cluster over a WAN (or across multiple subnets), plan and configure your network topology to ensure that multicast messages are reliably transmitted to all server instances in the cluster. Specifically, your network must meet the following requirements:

	
Full support of IP multicast packet propagation. In other words, all routers and other tunneling technologies must be configured to propagate multicast messages to clustered server instances.

	
Network latency low enough to ensure that most multicast messages reach their final destination in approximately 10 milliseconds.

	
Multicast Time-To-Live (TTL) value for the cluster high enough to ensure that routers do not discard multicast packets before they reach their final destination. For instructions on setting the Multicast TTL parameter, see Configure Multicast Time-To-Live (TTL).

	
Note:

Distributing a WebLogic Server cluster over a WAN may require network facilities in addition to the multicast requirements described above. For example, you may want to configure load balancing hardware to ensure that client requests are directed to server instances in the most efficient manner (to avoid unnecessary network hops).

Firewalls Can Break Multicast Communication

Although it may be possible to tunnel multicast traffic through a firewall, this practice is not recommended for WebLogic Server clusters. Treat each WebLogic Server cluster as a logical unit that provides one or more distinct services to clients of a Web application. Do not split this logical unit between different security zones. Furthermore, any technologies that potentially delay or interrupt IP traffic can disrupt a WebLogic Server cluster by generating false failures due to missed heartbeats.

Do Not Share the Cluster Multicast Address with Other Applications

Although multiple WebLogic Server clusters can share a single IP multicast address and port, other applications should not broadcast or subscribe to the multicast address and port used by your cluster or clusters. That is, if the machine or machines that host your cluster also host other applications that use multicast communications, make sure that those applications use a different multicast address and port than the cluster does.

Sharing the cluster multicast address with other applications forces clustered server instances to process unnecessary messages, introducing overhead. Sharing a multicast address may also overload the IP multicast buffer and delay transmission of WebLogic Server heartbeat messages. Such delays can result in a WebLogic Server instance being marked as failed, simply because its heartbeat messages were not received in a timely manner.

For these reasons, assign a dedicated multicast address for use by WebLogic Server clusters, and ensure that the address can support the broadcast traffic of all clusters that use the address.

If Multicast Storms Occur

If server instances in a cluster do not process incoming messages on a timely basis, increased network traffic, including negative acknowledgement (NAK) messages and heartbeat re-transmissions, can result. The repeated transmission of multicast packets on a network is referred to as a multicast storm, and can stress the network and attached stations, potentially causing end-stations to hang or fail. Increasing the size of the multicast buffers can improve the rate at which announcements are transmitted and received, and prevent multicast storms. See Configure Multicast Buffer Size.

One-to-Many Communication Using Unicast

The WebLogic Server unicast protocol uses standard TCP/IP sockets to send messages between cluster members. Since all networks and network devices support TCP/IP sockets, unicast simplifies out-of-the-box-cluster configuration. It typically requires no additional configuration, regardless of the network topology between cluster members. Additionally, unicast reduces potential network errors that can occur from multicast address conflicts. WebLogic Server uses unicast as its default cluster protocol.

WebLogic Server Unicast Groups

Since TCP/IP sockets are a point-to-point mechanism, all cluster members receive messages directly. To limit the number of sockets required as a cluster grows, WebLogic Server's unicast implementation uses a group leader mechanism. With this mechanism:

	
WebLogic Server divides the server instances in a cluster into a fixed number of groups.

	
Each group includes one server instance that also functions as the group leader. If the group leader fails, the group elects another group leader.

	
To send and receive cluster messages, each server instance in a group makes a TCP/IP socket connection only to the group leader. The group leader connects to all its group members and all other group leaders in the cluster.

	
When a group leader receives a cluster message from a server instance in its group, it retransmits the message to all other members in the group and also to every other group leader in the cluster. The other group leaders then retransmit the message to all their group members. This enables each server instance to receive every message in a cluster without requiring that server to establish a connection to every other server instance in the cluster.

When using unicast, server instances send heartbeats to advertise their availability, similar to multicast. By monitoring heartbeat messages, server instances determine when another server instance fails. However, with unicast, the cluster heartbeat mechanism removes a server instance from the cluster if it misses a single heartbeat message, since TCP/IP is a reliable protocol.

Unicast checks for missed heartbeats every 15 seconds, instead of every 10 seconds as in multicast. This extra five seconds allows sufficient time for the message to travel from the remote group's member to the remote group's leader, then to the local group's leader, and finally to the local group's member. Since the default heartbeat frequency is one heartbeat every 10 seconds, this means it should take no more than 15 seconds to detect if a server instance has left the cluster. Socket death detection or failed connection attempts can also accelerate this detection.

Assigning Server Instances to Groups

	
Note:

The algorithm used to assign server instances to groups has been changed from the algorithm used in WebLogic Server 12.1.2 and prior versions. The new algorithm is described in the following section. It has been optimized to provide more flexible scaling of running clusters, and to better support use cases where Managed Servers are added to WebLogic Server clusters while the clusters are running.

The WebLogic Server unicast implementation internally organizes a cluster's server instances into 10 groups. WebLogic Server assigns server instances to groups and sorts server instances within each group according to a server naming pattern. Since a group contains a dynamic number of server instances, asymmetric or empty groups might exist, depending on the number and names of your clustered server instances.

To assign server instances to groups, WebLogic Server separates each server name into two parts: a prefix and an integer. For example, a server instance named server1 separates into the prefix <server> and the integer <1>.

You can use any name for server instances. For configured servers, if the server name does not end with an integer, WebLogic Server calculates and assigns an initial value to the server instance. It then uses this value to determine the appropriate group to which it automatically assigns the server instance. For example, server instances serverA and serverB do not have integers in their names. WebLogic Server uses the entire names for the prefixes and calculates values to use for the integers, such as 728 for serverA and 729 for serverB.

Dynamic servers always follow this pattern, as a dynamic cluster uses its server template settings to automatically name dynamic servers using a prefix and a sequential integer number.

After associating an integer with each server name, WebLogic Server uses an algorithm to assign server instances to groups based on that integer. Within each group, server instances are first sorted alphabetically by prefix and then sorted by integer.

The first server instance in each group acts as the group leader. Under this allocation model, all server instances in the cluster, whether existing running servers or newly added servers, share a consistent view on group membership and group leader roles.

The following tables demonstrate the unicast naming pattern and how WebLogic Server assigns and sorts server instances into groups. This example uses 10 groups; the cluster contains 15 server instances named server1through server15 and five additional server instances named serverA through serverE.

Table 3-1 Separating Server Names into Prefixes and Integers

	Server Name	Prefix	Integer
	
server1

	
server

	
1

	
server2

	
server

	
2

	
server3

	
server

	
3

	
server4

	
server

	
4

	
server5

	
server

	
5

	
server6

	
server

	
6

	
server7

	
server

	
7

	
server8

	
server

	
8

	
server9

	
server

	
9

	
server10

	
server

	
10

	
server11

	
server

	
11

	
server12

	
server

	
12

	
server13

	
server

	
13

	
server14

	
server

	
14

	
server15

	
server

	
15

	
serverA

	
serverA

	
calculated result is 728

	
serverB

	
serverB

	
calculated result is 729

	
serverC

	
serverC

	
calculated result is 730

	
serverD

	
serverD

	
calculated result is 731

	
serverE

	
serverE

	
calculated result is 732

Table 3-2 Assigning Server Instances to Groups

	Group	Server Instances Within Group
	
group0

	
server10 (group leader), serverC

	
group1

	
server1 (group leader), server11, serverD

	
group2

	
server2 (group leader), server12, severE

	
group3

	
server3 (group leader), server13

	
group4

	
server4 (group leader), server14

	
group5

	
server5 (group leader), server15

	
group6

	
server6 (group leader)

	
group7

	
server7 (group leader)

	
group8

	
server8 (group leader), serverA

	
group9

	
server9 (group leader), serverB

If you add a new server instance named server16, WebLogic Server assigns it to group6, after server6:

group6: server6 (group leader), server 16

If you add a new server instance named server20, WebLogic Server assigns it to group0, after server10, but before serverC:

group0: server10 (group leader), server20, serverC

If you add a new server named clonedServer16, WebLogic Server assigns it to group6, before server6, as prefixes are sorted before integers. The group leader then changes to clonedServer16, as clonedServer16 is now the first server instance in the group:

group6: clonedServer16 (new group leader), server6, server16

Unicast Configuration

You configure unicast using ClusterMBean.setClusterMessagingMode MBean attribute. The default value of this parameter is unicast. Changes made to this MBean are not dynamic. You must restart your cluster for changes to take effect.

To define a specific unicast channel, you first define a custom network channel for unicast communications with either the cluster-broadcast or the cluster-broadcast-secure protocol. After defining this custom network channel, you can associate this channel with the cluster by specifying the channel name in the ClusterMBean.ClusterBroadcastChannel MBean attribute When unicast is enabled, servers attempt to use the value defined in this MBean attribute for communications between clusters. If the unicast channel is not explicitly defined, the default network channel is used.

	
Note:

The ClusterMBean.ClusterBroadcastChannel attribute is only supported for use with unicast.

When configuring WebLogic Server clusters for unicast communications, if the servers are running on different machines, you must explicitly specify their listen addresses or DNS names.

Considerations When Using Unicast

The following considerations apply when using unicast to handle cluster communications in WebLogic Server 12.1.3:

	
All members of a cluster must use the same message type. Mixing between multicast and unicast messaging is not allowed.

	
Individual cluster members cannot override the cluster messaging type.

	
The entire cluster must be shutdown and restarted to change message modes.

	
JMS topics configured for multicasting can access WebLogic clusters configured for unicast because a JMS topic publishes messages on its own multicast address that is independent of the cluster address. However, the following considerations apply:

	
The router hardware configurations that allow unicast clusters may not allow JMS multicast subscribers to work.

	
JMS multicast subscribers need to be in a network hardware configuration that allows multicast accessibility.

For more details, see "Using Multicasting with WebLogic JMS" in Developing JMS Applications for Oracle WebLogic Server.

Considerations for Choosing Unicast or Multicast

Unicast is the default protocol because it simplifies out of the box cluster configuration and because it is likely to meet the majority of user requirements. However, Oracle fully supports both protocols equally. Both protocols require that the cluster members get sufficient processing time to send and receive cluster messages in a timely fashion. This prevents unnecessary cluster membership changes and the inherent resynchronization costs associated with leaving and rejoining the cluster. It is recommended that you eliminate unnecessary cluster membership changes due to over-utilization of available resources.

When using unicast in particular, make sure that the group leaders are not resource constrained since they act as the message relay to deliver a cluster message to the rest of the cluster. Any slowness on their part can impact multiple cluster members and even result in the group electing a new group leader.

Contrast this with multicast, where a slow member can only really impact its own membership to the cluster. Multicast clusters are generally more efficient in terms of cluster message propagation, and therefore tend to be more resilient to oversubscription of resources. For these reasons, multicast may be a better option for very large clusters with high throughput requirements, provided the network environment supports WebLogic Server cluster UDP requirements.

Each protocol has its own benefits.Table 3-3 highlights some of the differences between multicast and unicast.

Table 3-3 Summary of Differences Between Multicast and Unicast

	Multicast	Unicast
	
Uses UDP multicast

	
Uses TCP/IP

	
Requires additional configuration to routers, TTL when clustering across multiple subnets

	
Requires no additional configuration to account for network topology

	
Requires configuring the multicast listen address and listen port. May need to specify the network interface to use on machines with multiple NICs

	
Only requires specifying the listen address. Supports using the default channel or a custom network channel for cluster communications

	
Each message delivered directly to and received directly from the network

	
Each message is delivered to a group leader, which retransmits the message to other group members (N - 1) and any other group leaders (M - 1), if they exist. The other group leaders then retransmit the message to their group members resulting in up to NxM network messages for every cluster message. Message delivery to each cluster member takes between one and three network hops.

	
Every server sees every other server

	
Group leaders act as a message relay point to retransmit messages to its group members and other group leaders

	
Cluster membership changes require three consecutive missed heartbeat messages to remove a member from the cluster list

	
Cluster membership changes require only a single missed heartbeat message to remove a member from the cluster

Peer-to-Peer Communication Using IP Sockets

IP sockets provide a simple, high-performance mechanism for transferring messages and data between two applications. Clustered WebLogic Server instances use IP sockets for:

	
Accessing non-clustered objects deployed to another clustered server instance on a different machine.

	
Replicating HTTP session states and stateful session EJB states between a primary and secondary server instance.

	
Accessing clustered objects that reside on a remote server instance. (This generally occurs only in a multi-tier cluster architecture, such as the one described in Recommended Multi-Tier Architecture.)

	
Note:

The use of IP sockets in WebLogic Server extends beyond the cluster scenario—all RMI communication takes place using sockets, for example, when a remote Java client application accesses a remote object.

Proper socket configuration is crucial to the performance of a WebLogic Server cluster. Two factors determine the efficiency of socket communications in WebLogic Server:

	
Whether the server instance host system uses a native or a pure-Java socket reader implementation.

	
For systems that use pure-Java socket readers, whether the server instance is configured to use enough socket reader threads.

Pure-Java Versus Native Socket Reader Implementations

Although the pure-Java implementation of socket reader threads is a reliable and portable method of peer-to-peer communication, it does not provide the optimal performance for heavy-duty socket usage in a WebLogic Server cluster. With pure-Java socket readers, threads must actively poll all opened sockets to determine if they contain data to read. In other words, socket reader threads are always "busy" polling sockets, even if the sockets have no data to read. This unnecessary overhead can reduce performance.

The performance issue is magnified when a server instance has more open sockets than it has socket reader threads—each reader thread must poll more than one open socket. When the socket reader encounters an inactive socket, it waits for a timeout before servicing another. During this timeout period, an active socket may go unread while the socket reader polls inactive sockets, as shown in Figure 3-1.

Figure 3-1 Pure-Java Socket Reader Threads Poll Inactive Sockets

[image: Description of Figure 3-1 follows]

For optimal socket performance, configure the WebLogic Server host machine to use the native socket reader implementation for your operating system, rather than the pure-Java implementation. Native socket readers use far more efficient techniques to determine if there is data to read on a socket. With a native socket reader implementation, reader threads do not need to poll inactive sockets—they service only active sockets, and they are immediately notified (via an interrupt) when a given socket becomes active.

	
Note:

Applets cannot use native socket reader implementations, and therefore have limited efficiency in socket communication.

For instructions on how to configure the WebLogic Server host machine to use the native socket reader implementation for your operating system, see Configure Native IP Sockets Readers on Machines that Host Server Instances.

Configuring Reader Threads for Java Socket Implementation

If you do use the pure-Java socket reader implementation, you can still improve the performance of socket communication by configuring the proper number of socket reader threads for each server instance. For optimal performance, the number of socket reader threads in WebLogic Server should equal the potential maximum number of opened sockets. This configuration avoids the situation in which a reader thread must service multiple sockets, and ensures that socket data is read immediately.

To determine the proper number of reader threads for server instances in your cluster, see the following section, Determining Potential Socket Usage.

For instructions on how to configure socket reader threads, see Set the Number of Reader Threads on Machines that Host Server Instances.

Determining Potential Socket Usage

Each WebLogic Server instance can potentially open a socket for every other server instance in the cluster. However, the actual maximum number of sockets used at a given time depends on the configuration of your cluster. In practice, clustered systems generally do not open a socket for every other server instance, because objects are deployed homogeneously—to each server instance in the cluster.

If your cluster uses in-memory HTTP session state replication, and you deploy objects homogeneously, each server instance potentially opens a maximum of only two sockets, as shown in Figure 3-2.

Figure 3-2 Homogeneous Deployment Minimizes Socket Requirements

[image: Description of Figure 3-2 follows]

The two sockets in this example are used to replicate HTTP session states between primary and secondary server instances. Sockets are not required for accessing clustered objects, due to the collocation optimizations that WebLogic Server uses to access those objects. (These optimizations are described in Optimization for Collocated Objects.) In this configuration, the default socket reader thread configuration is sufficient.

Deployment of "pinned" services—services that are active on only one server instance at a time—can increase socket usage, because server instances may need to open additional sockets to access the pinned object. (This potential can only be released if a remote server instance actually accesses the pinned object.) Figure 3-3 shows the potential effect of deploying a non-clustered RMI object to Server A.

Figure 3-3 Non-Clustered Objects Increase Potential Socket Requirements

[image: Description of Figure 3-3 follows]

In this example, each server instance can potentially open a maximum of three sockets at a given time, to accommodate HTTP session state replication and to access the pinned RMI object on Server A.

	
Note:

Additional sockets may also be required for servlet clusters in a multi-tier cluster architecture, as described in Configuration Notes for Multi-Tier Architecture.

Client Communication via Sockets

Clients of a cluster use the Java implementation of socket reader threads.

WebLogic Server allows you to configure server affinity load balancing algorithms that reduce the number of IP sockets opened by a Java client application. A client accessing multiple objects on a server instance will use a single socket. If an object fails, the client will failover to a server instance to which it already has an open socket, if possible. In older version of WebLogic Server, under some circumstances, a client might open a socket to each server instance in a cluster.

For optimal performance, configure enough socket reader threads in the Java Virtual Machine (JVM) that runs the client. For instructions, see Set the Number of Reader Threads on Client Machines.

Cluster-Wide JNDI Naming Service

Clients of a non-clustered WebLogic Server server instance access objects and services by using a JNDI-compliant naming service. The JNDI naming service contains a list of the public services that the server instance offers, organized in a tree structure. A WebLogic Server instance offers a new service by binding into the JNDI tree a name that represents the service. Clients obtain the service by connecting to the server instance and looking up the bound name of the service.

Server instances in a cluster utilize a cluster-wide JNDI tree. A cluster-wide JNDI tree is similar to a single server instance JNDI tree, insofar as the tree contains a list of available services. In addition to storing the names of local services, however, the cluster-wide JNDI tree stores the services offered by clustered objects (EJBs and RMI classes) from other server instances in the cluster.

Each WebLogic Server instance in a cluster creates and maintains a local copy of the logical cluster-wide JNDI tree. The follow sections describe how the cluster-wide JNDI tree is maintained, and how to avoid naming conflicts that can occur in a clustered environment.

	
Caution:

Do not use the cluster-wide JNDI tree as a persistence or caching mechanism for application data. Although WebLogic Server replicates a clustered server instance's JNDI entries to other server instances in the cluster, those entries are removed from the cluster if the original instance fails. Also, storing large objects within the JNDI tree can overload multicast or unicast traffic and interfere with the normal operation of a cluster.

How WebLogic Server Creates the Cluster-Wide JNDI Tree

Each WebLogic Server in a cluster builds and maintains its own local copy of the cluster-wide JNDI tree, which lists the services offered by all members of the cluster. Creation of a cluster-wide JNDI tree begins with the local JNDI tree bindings of each server instance. As a server instance boots (or as new services are dynamically deployed to a running server instance), the server instance first binds the implementations of those services to the local JNDI tree. The implementation is bound into the JNDI tree only if no other service of the same name exists.

	
Note:

When you start a Managed Server in a cluster, the server instance identifies other running server instances in the cluster by listening for heartbeats, after a warm-up period specified by the MemberWarmupTimeoutSeconds parameter in ClusterMBean. The default warm-up period is 30 seconds.

Once the server instance successfully binds a service into the local JNDI tree, additional steps are performed for clustered objects that use replica-aware stubs. After binding the clustered object's implementation into the local JNDI tree, the server instance sends the object's stub to other members of the cluster. Other members of the cluster monitor the multicast or unicast address to detect when remote server instances offer new services.

Figure 3-4 shows a snapshot of the JNDI binding process.

Figure 3-4 Server A Binds an Object in its JNDI Tree, then Unicasts Object Availability

[image: Description of Figure 3-4 follows]

In the previous figure, Server A has successfully bound an implementation of clustered Object X into its local JNDI tree. Because Object X is clustered, it offers this service to all other members of the cluster. Server C is still in the process of binding an implementation of Object X.

Other server instances in the cluster listening to the multicast or unicast address note that Server A offers a new service for clustered object, X. These server instances update their local JNDI trees to include the new service.

Updating the local JNDI bindings occurs in one of two ways:

	
If the clustered service is not yet bound in the local JNDI tree, the server instance binds a new replica-aware stub into the local tree that indicates the availability of Object X on Server A. Servers B and D would update their local JNDI trees in this manner, because the clustered object is not yet deployed on those server instances.

	
If the server instance already has a binding for the cluster-aware service, it updates its local JNDI tree to indicate that a replica of the service is also available on Server A. Server C would update its JNDI tree in this manner, because it will already have a binding for the clustered Object X.

In this manner, each server instance in the cluster creates its own copy of a cluster-wide JNDI tree. The same process would be used when Server C announces that Object X has been bound into its local JNDI tree. After all broadcast messages are received, each server instance in the cluster would have identical local JNDI trees that indicate the availability of the object on Servers A and C, as shown in Figure 3-5.

Figure 3-5 Each Server's JNDI Tree is the Same after Unicast Messages are Received

[image: Description of Figure 3-5 follows]

	
Note:

In an actual cluster, Object X would be deployed homogeneously, and an implementation which can invoke the object would be available on all four server instances.

How JNDI Naming Conflicts Occur

Simple JNDI naming conflicts occur when a server instance attempts to bind a non-clustered service that uses the same name as a non-clustered service already bound in the JNDI tree. Cluster-level JNDI conflicts occur when a server instance attempts to bind a clustered object that uses the name of a non-clustered object already bound in the JNDI tree.

WebLogic Server detects simple naming conflicts (of non-clustered services) when those services are bound to the local JNDI tree. Cluster-level JNDI conflicts may occur when new services are advertised over multicast or unicast. For example, if you deploy a pinned RMI object on one server instance in the cluster, you cannot deploy a replica-aware version of the same object on another server instance.

If two server instances in a cluster attempt to bind different clustered objects using the same name, both will succeed in binding the object locally. However, each server instance will refuse to bind the other server instance's replica-aware stub in to the JNDI tree, due to the JNDI naming conflict. A conflict of this type would remain until one of the two server instances was shut down, or until one of the server instances undeployed the clustered object. This same conflict could also occur if both server instances attempt to deploy a pinned object with the same name.

Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts

To avoid cluster-level JNDI conflicts, you must homogeneously deploy all replica-aware objects to all WebLogic Server instances in a cluster. Having unbalanced deployments across WebLogic Server instances increases the chance of JNDI naming conflicts during startup or redeployment. It can also lead to unbalanced processing loads in the cluster.

If you must pin specific RMI objects or EJBs to individual server instances, do not replicate the object's bindings across the cluster.

How WebLogic Server Updates the JNDI Tree

When a clustered object is removed (undeployed from a server instance), updates to the JNDI tree are handled similarly to the updates performed when new services are added. The server instance on which the service was undeployed broadcasts a message indicating that it no longer provides the service. Again, other server instances in the cluster that observe the multicast or unicast message update their local copies of the JNDI tree to indicate that the service is no longer available on the server instance that undeployed the object.

Once the client has obtained a replica-aware stub, the server instances in the cluster may continue adding and removing host servers for the clustered objects. As the information in the JNDI tree changes, the client's stub may also be updated. Subsequent RMI requests contain update information as necessary to ensure that the client stub remains up-to-date.

Client Interaction with the Cluster-Wide JNDI Tree

Clients that connect to a WebLogic Server cluster and look up a clustered object obtain a replica-aware stub for the object. This stub contains the list of available server instances that host implementations of the object. The stub also contains the load balancing logic for distributing the load among its host servers.

For more information about replica-aware stubs for EJBs and RMI classes, see Replication and Failover for EJBs and RMIs.

For a more detailed discussion of how WebLogic JNDI is implemented in a clustered environment and how to make your own objects available to JNDI clients, see "Using WebLogic JNDI in a Clustered Environment" in Developing JNDI Applications for Oracle WebLogic Server.

7 Whole Server Migration

This chapter describes the different migration mechanisms supported by WebLogic Server 12.1.3.

This chapter includes the following sections:

	
Understanding Server and Service Migration

	
Migration Terminology

	
Leasing

	
Automatic Whole Server Migration

	
Whole Server Migration with Dynamic and Mixed Clusters

These sections focus on whole server-level migration, where a migratable server instance, and all of its services, is migrated to a different physical machine upon failure. WebLogic Server also supports service-level migration, as well as replication and failover at the application level. For more information, see Chapter 8, "Service Migration" and Chapter 6, "Failover and Replication in a Cluster."

Understanding Server and Service Migration

In a WebLogic Server cluster, most services are deployed homogeneously on all server instances in the cluster, enabling transparent failover from one server instance to another. In contrast, "pinned services" such as JMS and the JTA transaction recovery system are targeted at individual server instances within a cluster—for these services, WebLogic Server supports failure recovery with migration, as opposed to failover.

Migration in WebLogic Server is the process of moving a clustered WebLogic Server instance or a component running on a clustered server instance elsewhere in the event of failure. In the case of whole server migration, the server instance is migrated to a different physical machine upon failure. In the case of service-level migration, the services are moved to a different server instance within the cluster. See Chapter 8, "Service Migration."

To make JMS and the JTA transaction system highly available, WebLogic Server provides migratable servers. Migratable servers provide for both automatic and manual migration at the server-level, rather than the service-level.

When a migratable server becomes unavailable for any reason—for example, if it hangs, loses network connectivity, or its host machine fails—migration is automatic. Upon failure, a migratable server is automatically restarted on the same machine, if possible. If the migratable server cannot be restarted on the machine where it failed, it is migrated to another machine. In addition, an administrator can manually initiate migration of a server instance.

Migration Terminology

The following terms apply to server and service migration:

	
Migratable server—a clustered server instance that migrates in its entirety, along with all the services it hosts. Migratable servers are intended to host pinned services, such as JMS servers and JTA transaction recovery servers, but migratable servers can also host clusterable services. All services that run on a migratable server are highly available.

	
Whole server migration— a WebLogic Server instance to be migrated to a different physical machine upon failure, either manually or automatically.

	
Service migration:

	
Manual Service Migration—the manual migration of pinned JTA and JMS-related services (for example, JMS server, SAF agent, path service, and custom store) after the host server instance fails. See Chapter 8, "Service Migration."

	
Automatic Service Migration—JMS-related services, singleton services, and the JTA Transaction Recovery Service can be configured to automatically migrate to another member server instance when a member server instance fails or is restarted. See Chapter 8, "Service Migration."

	
Cluster leader—one server instance in a cluster, elected by a majority of the server instances, that is responsible for maintaining the leasing information. See Non-database Consensus Leasing.

	
Cluster master—one server instance in a cluster that contains migratable servers acts as the cluster master and orchestrates the process of automatic server migration in the event of failure. Any Managed Server in a cluster can serve as the cluster master, whether it hosts pinned services or not. See Cluster Master Role in Whole Server Migration.

	
Singleton master—a lightweight singleton service that monitors other services that can be migrated automatically. The server instance that currently hosts the singleton master is responsible for starting and stopping the migration tasks associated with each migratable service. See Singleton Master.

	
Candidate machines—a user-defined list of machines within a cluster that can be a potential target for migration.

	
Target machines—a set of machines that are designated as allowable or preferred hosts for migratable servers.

	
Node Manager—a WebLogic Server utility used by the Administration Server or a standalone Node Manager client, to start and stop migratable servers. Node Manager is invoked by the cluster master to shut down and restart migratable servers, as necessary. For background information about Node Manager and how it fits into a WebLogic Server environment, see "Node Manager Overview" in Administering Node Manager for Oracle WebLogic Server.

	
Lease table—a database table in which migratable servers persist their state, and which the cluster master monitors to verify the health and liveness of migratable servers. For more information on leasing, see Leasing.

	
Administration Server—used to configure migratable servers and target machines, to obtain the run-time state of migratable servers, and to orchestrate the manual migration process.

	
Floating IP address—an IP address that follows a server instance from one physical machine to another after migration.

Leasing

Leasing is the process WebLogic Server uses to manage services that are required to run on only one member of a cluster at a time. Leasing ensures exclusive ownership of a cluster-wide entity. Within a cluster, there is a single owner of a lease. Additionally, leases can failover in case of server or cluster failure. This helps to avoid having a single point of failure.

Features That Use Leasing

The following WebLogic Server features use leasing:

	
Automatic Whole Server Migration—Uses leasing to elect a cluster master. The cluster master is responsible for monitoring other cluster members and for restarting failed members hosted on other physical machines.

Leasing ensures that the cluster master is always running, but is only running on one server instance at a time within a cluster. For information on the cluster master, see Cluster Master Role in Whole Server Migration.

	
Automatic Service Migration—JMS-related services, singleton services, and the JTA Transaction Recovery Service can be configured to automatically migrate from an unhealthy hosting server instance to a healthy active server instance with the help of the health monitoring subsystem. When the migratable target is migrated, the pinned service hosted by that target is also migrated. Migratable targets use leasing to accomplish automatic service migration. See Chapter 8, "Service Migration."

	
Singleton Services—A singleton service is a service running within a cluster that is available on only one member of the cluster at a time. Singleton services use leasing to accomplish this. See Singleton Master.

	
Job Scheduler—The Job Scheduler is a persistent timer that is used within a cluster. The Job Scheduler uses the timer master to load balance the timer across a cluster.

This feature requires an external database to maintain failover and replication information. However, you can use the non-database version, consensus leasing, with the Job Scheduler,

	
Note:

Beyond basic configuration, most leasing functionality is handled internally by WebLogic Server.

Types of Leasing

WebLogic Server provides two types of leasing functionality, depending on your requirements and your environment.

	
High-availability database leasing—This version of leasing requires a high-availability database to store leasing information. For information on general requirements and configuration, see High-availability Database Leasing.

	
Non-database consensus leasing—This version of leasing stores the leasing information in-memory within a cluster member. This version of leasing requires that all server instances in the cluster are started by Node Manager. For more information, see Non-database Consensus Leasing.

Within a WebLogic Server installation, you can use only one type of leasing. Although it is possible to implement multiple features that use leasing within your environment, each must use the same kind of leasing.

When switching from one leasing type to another, you must restart the entire cluster, not just the Administration Server. Changing the leasing type cannot be done dynamically.

Determining Which Type of Leasing To Use

The following considerations will help you determine which type of leasing is appropriate for your WebLogic Server environment:

	
High-availability database leasing

Database leasing basis is useful in environments that are already invested in a high-availability database, like Oracle RAC, for features like JMS store recovery. The high-availability database instance can also be configured to support leasing with minimal additional configuration. This is particularly useful if Node Manager is not running in the system.

	
Non-database consensus leasing

This type of leasing provides a leasing basis option (consensus) that does not require the use of a high-availability database. This has a direct benefit in automatic whole server migration. Without the high-availability database requirement, consensus leasing requires less configuration to enable automatic server migration.

Consensus leasing requires Node Manager to be configured and running. Automatic whole server migration also requires Node Manager for IP migration and server restart on another machine. Hence, consensus leasing works well since it does not impose additional requirements, but instead takes away an expensive one.

High-availability Database Leasing

In this version of leasing, lease information is maintained within a table in a high-availability database. A high-availability database is required to ensure that the leasing information is always available to the server instances. Each member of the cluster must be able to connect to the database in order to access leasing information, update, and renew their leases. server instances will fail if the database becomes unavailable and they are not able to renew their leases.

This method of leasing is useful for customers who already have a high-availability database within their clustered environment. This method allows you to use leasing functionality without requiring Node Manager to manage server instances within your environment.

The following procedures outline the steps required to configure your database for leasing.

	
Configure the database for server migration. The database stores leasing information that is used to determine whether or not a server instance is running or needs to be migrated.

Your database must be reliable. The server instances will only be as reliable as the database. For experimental purposes, a regular database will suffice. For a production environment, only high-availability databases are recommended. If the database goes down, all the migratable servers will shut themselves down.

Create the leasing table in the database. This is used to store the machine-server associations used to enable server migration. The schema for this table is located in WL_HOME/server/db/dbname/leasing.ddl, where dbname is the name of the database vendor.

	
Note:

The leasing table should be stored in a highly available database. Migratable servers are only as reliable as the database used to store the leasing table.

	
Set up and configure a data source. This data source should point to the database configured in the previous step.

	
Note:

XA data sources are not supported for server migration.

For more information on creating a JDBC data source, see "Configuring JDBC Data Sources" in Administering JDBC Data Sources for Oracle WebLogic Server.

Server Migration with Database Leasing on RAC Clusters

When using server migration with database leasing on RAC Clusters, Oracle recommends synchronizing all RAC nodes in the environment. If the nodes are not synchronized, it is possible that a Managed Server that is renewing a lease will evaluate that the value of the clock on the RAC node is greater than the timeout value of leasing table. If it is more than 30 seconds, the server instance will fail and restart with the following log message:

<Mar 29, 2013 2:39:09 PM EDT> <Error> <Cluster> <BEA-000150> <Server failed
to get a connection to the database in the past 60 seconds for lease renewal.
Server will shut itself down.>

See "Configuring Time Synchronization for the Cluster" in the Oracle Grid Infrastructure Installation Guide.

Non-database Consensus Leasing

	
Note:

Consensus leasing requires that you use Node Manager to control server instances within the cluster. Node Manager must be running on every machine hosting Managed Servers within the cluster, including any candidate machines for failed migratable servers. For more information, see "Using Node Manager to Control Servers" in Administering Node Manager for Oracle WebLogic Server.

In Consensus leasing, there is no highly available database required. The cluster leader maintains the leases in-memory. All of the server instances renew their leases by contacting the cluster leader, however, the leasing table is replicated to other nodes of the cluster to provide failover.

The cluster leader is elected by all of the running server instances in the cluster. A server instance becomes a cluster leader only when it has received acceptance from the majority of the server instances. If Node Manager reports a server instance as shut down, the cluster leader assumes that server instance has accepted it as leader when counting the majority number of server instances.

Consensus leasing requires a majority of server instances to continue functioning. Any time there is a network partition, the server instances in the majority partition will continue to run while those in the minority partition will voluntarily shut down since they cannot contact the cluster leader or elect a new cluster leader since they will not have the majority of server instances. If the partition results in an equal division of server instances, then the partition that contains the cluster leader will survive while the other one will fail. Consensus leasing depends on the ability to contact Node Manager to receive the status of the server instances it is managing in order to count them as part of the majority of reachable server instances. If Node Manager cannot be contacted, due to loss of network connectivity or a hardware failure, the server instances it manages are not counted as part of the majority, even if they are running.

	
Note:

If your cluster only contains two server instances, the cluster leader will be the majority partition if a network partition occurs. If the cluster leader fails, the surviving server instance will attempt to verify its status through Node Manager. If the surviving server instance is able to determine the status of the failed cluster leader, it assumes the role of cluster leader. If the surviving server instance cannot check the status of the cluster leader, due to machine failure or a network partition, it will voluntarily shut down as it cannot reliably determine if it is in the majority.
To avoid this scenario, Oracle recommends using a minimum of three server instances running on different machines.

If automatic server migration is enabled, server instances are required to contact the cluster leader and renew their leases periodically. Server instances will shut themselves down if they are unable to renew their leases. The failed server instances will then be automatically migrated to the machines in the majority partition.

Automatic Whole Server Migration

This section outlines the procedures for configuring automatic whole server migration and provides a general discussion of how whole server migration functions within a WebLogic Server environment.

The following topics are covered:

	
Preparing for Automatic Whole Server Migration

	
Configuring Automatic Whole Server Migration

	
Using High Availability Storage for State Data

	
Server Migration Processes and Communications

Preparing for Automatic Whole Server Migration

Before configuring automatic whole server migration, be aware of the following requirements:

	
Verify that whole server migration is supported on your platform. See "Support for Server Migration" in Oracle WebLogic Server, WebLogic Portal and WebLogic Integration 10gR3 (10.3).

	
Caution:

Support for automatic whole server migration on Solaris 10 systems using the Solaris Zones feature can be found in Note 3: Support For Sun Solaris 10 In Multi-Zone Operation at http://www.oracle.com/technetwork/middleware/ias/oracleas-supported-virtualization-089265.html.

	
Each Managed Server uses the same subnet mask. Unicast and multicast communication among server instances requires each server instance to use the same subnet. Server migration will not work without configuring multicast or unicast communication.

For information on using multicast, see Using IP Multicast. For information on using unicast, see One-to-Many Communication Using Unicast.

	
All server instances hosting migratable servers are time-synchronized. Although migration works when server instances are not time-synchronized, time-synchronized server instances are recommended in a clustered environment.

	
If you are using different operating system versions among migratable servers, ensure that all versions support identical functionality for ifconfig.

	
Automatic whole server migration requires Node Manager to be configured and running for IP migration and server restart on another machine.

	
The primary interface names used by migratable servers are the same. If your environment requires different interface names, then configure a local version of wlscontrol.sh for each migratable server.

For more information on wlscontrol.sh, see "Using Node Manager to Control Servers" in Administering Node Manager for Oracle WebLogic Server.

	
See "Databases Supporting WebLogic Server Features" in Oracle WebLogic Server, WebLogic Portal and WebLogic Integration 10gR3 (10.3) for a list of databases for which WebLogic Server supports automatic server migration.

	
There is no built-in mechanism for transferring files that a server instance depends on between machines. Using a disk that is accessible from all machines is the preferred way to ensure file availability. If you cannot share disks between server instances, you must ensure that the contents of domain_dir/bin are copied to each machine.

	
Ensure that the Node Manager security files are copied to each machine using the nmEnroll() WLST command. For more information, see "Using Node Manager to Control Servers" in Administering Node Manager for Oracle WebLogic Server.

	
Use high availability storage for state data. For highest reliability, use a shared storage solution that is itself highly available—for example, a storage area network (SAN). See Using High Availability Storage for State Data.

	
For capacity planning in a production environment, keep in mind that server startup during migration taxes CPU utilization. You cannot assume that because a machine can handle a certain number of server instances running concurrently that it also can handle that same number of server instances starting up on the same machine at the same time.

Configuring Automatic Whole Server Migration

Before configuring server migration, ensure that your environment meets the requirements outlined in Preparing for Automatic Whole Server Migration.

To configure server migration for a Managed Server within a cluster, perform the following tasks:

	
Obtain floating IP addresses for each Managed Server that will have migration enabled.

Each migratable server must be assigned a floating IP address which follows the server instance from one physical machine to another after migration. Any server instance that is assigned a floating IP address must also have AutoMigrationEnabled set to true.

	
Note:

The migratable IP address should not be present on the interface of any of the candidate machines before the migratable server is started.

	
Configure Node Manager. Node Manager must be running and configured to allow server migration.

The Java version of Node Manager can be used for server migration on Windows or UNIX. The script-based version of Node Manager can be used for server migration on UNIX only.

When using Java-based Node Manager, you must edit nodemanager.properties to add your environment Interface and NetMask values.

To determine the most appropriate Interface value for your environment, use the operating system utility to find the list of network interfaces available on the machine. On Unix platforms, this is typically the ifconfig command. On Windows platforms, this is typically the ipconfig command.

To determine NetMask, you can use the same NetMask value that may already be configured for addresses on that same interface to ensure that all traffic occurs on the same subnet. You can also specify a common NetMask value, and therefore specify a subnet for all WebLogic Server traffic.

The nodemanager.properties file is located in the directory specified in NodeManagerHome, typically ORACLE_HOME\user_projects\domains\domain_name\nodemanager or ORACLE_HOME\oracle_common\common\nodemanager. For information about nodemanager.properties, see "Reviewing nodemanager.properties" in Administering Node Manager for Oracle WebLogic Server.

If you are using the script-based version of Node Manager, edit wlscontrol.sh and set the Interface variable to the name of your network interface.

For general information on using Node Manager in server migration, see Node Manager Role in Whole Server Migration. For general information about Node Manager, see "Node Manager Overview" in Administering Node Manager for Oracle WebLogic Server.

	
If you are using a database to manage leasing information, configure the database for server migration according to the procedures outlined in High-availability Database Leasing. For general information on leasing, see Leasing.

	
If you are using database leasing within a test environment and you need to reset the leasing table, you should re-run the leasing.ddl script. This causes the correct tables to be dropped and re-created.

	
If you are using a database to store leasing information, set up and configure a data source according to the procedures outlined in High-availability Database Leasing.

You should set DataSourceForAutomaticMigration to this data source in each cluster configuration.

	
Note:

XA data sources are not supported for server migration.

For more information on creating a JDBC data source, see "Configuring JDBC Data Sources" in Administering JDBC Data Sources for Oracle WebLogic Server.

	
Grant superuser privileges to the wlsifconfig.sh script (on UNIX) or the wlsifconfig.cmd script (on Windows).

This script is used to transfer IP addresses from one machine to another during migration. It must be able to run ifconfig, which is generally only available to superusers. You can edit the script so that it is invoked using sudo.

Java-based Node Manager uses the wlsifconfig.cmd script, which uses the netsh utility.

The wlsifconfig scripts are available in the WL_HOME/common/bin or DOMAIN_HOME/bin/server_migration directory.

	
Ensure that the following commands are included in your machine PATH:

	
wlsifconfig.sh (UNIX) or wlsifconfig.cmd (Windows)

	
wlscontrol.sh (UNIX)

	
nodemanager.domains

The wlsifconfig.sh, wlsifconfig.cmd, and wlscontrol.sh files are located in WL_HOME/common/bin or DOMAIN_HOME/bin/server_migration. The nodemanager.domains file is located in the directory specified in NodeManagerHome. For Java-based Node Manager, NodeManagerHome is typically located in ORACLE_HOME\user_projects\domains\domain_name\nodemanager or ORACLE_HOME\oracle_common\common\nodemanager. For script-based Node Manager, this file's default NodeManagerHome location is WL_HOME/common/nodemanager, where WL_HOME is the location in which you installed WebLogic Server, for example, ORACLE_HOME/wlserver.

Depending on your default shell on UNIX, you may need to edit the first line of the .sh scripts.

	
This step applies only to the script-based version of Node Manager and UNIX. If you are using Windows, skip to step 9.

The machines that host migratable servers must trust each other. For server migration to occur, it must be possible to get to a shell prompt using 'ssh/rsh machine_A' from machine_B and vice versa without having to explicitly enter a username and password. Also, each machine must be able to connect to itself using SSH in the same way.

	
Note:

You should ensure that your login scripts (.cshrc, .profile, .login, and such) only echo messages from your shell profile if the shell is interactive. WebLogic Server uses an ssh command to login and echo the contents of the server.state file. Only the first line of this output is used to determine the server state.

	
Set the candidate machines for server migration. Each server instance can have a different set of candidate machines, or they can all have the same set.

	
Restart the Administration Server.

Using High Availability Storage for State Data

The server migration process migrates services, but not the state information associated with work in process at the time of failure.

To ensure high availability, it is critical that such state information remains available to the server instance and the services it hosts after migration. Otherwise, data about the work in process at the time of failure may be lost. State information maintained by a migratable server, such as the data contained in transaction logs, should be stored in a shared storage system that is accessible to any potential machine to which a failed migratable server might be migrated. For highest reliability, use a shared storage solution that is itself highly available—for example, a storage area network (SAN).

In addition, if you are using a database to store leasing information, the lease table, described in the following sections, should also be stored in a high availability database. The lease table tracks the health and liveness of migratable servers. For more information, see Leasing.

Server Migration Processes and Communications

The following sections describe key processes in a cluster that contains migratable servers:

	
Startup Process in a Cluster with Migratable Servers

	
Automatic Whole Server Migration Process

	
Manual Whole Server Migration Process

Startup Process in a Cluster with Migratable Servers

Figure 7-1 illustrates the process and communication that occurs during startup of a cluster that contains migratable servers.

The example cluster contains two Managed Servers, both of which are migratable. The Administration Server and the two Managed Servers each run on different machines. A fourth machine is available as a backup, in the event that one of the migratable servers fails. Node Manager is running on the backup machine and on each machine with a running migratable server.

Figure 7-1 Startup of Cluster with Migratable Servers

[image: Description of Figure 7-1 follows]

The following key steps occur during startup of the cluster, as illustrated in Figure 7-1:

	
The administrator starts the cluster.

	
The Administration Server invokes Node Manager on Machines B and C to start Managed Servers 1 and 2, respectively. See Administration Server Role in Whole Server Migration.

	
The Node Manager instance on each machine starts the Managed Server that runs on that machine. See Node Manager Role in Whole Server Migration.

	
Managed Servers 1 and 2 contact the Administration Server for their configuration. See Migratable Server Behavior in a Cluster.

	
Managed Servers 1 and 2 cache the configuration with which they started.

	
Managed Servers 1 and 2 each obtain a migratable server lease in the lease table. Because Managed Server 1 starts first, it also obtains a cluster master lease. See Cluster Master Role in Whole Server Migration.

	
Managed Server 1 and 2 periodically renew their leases in the lease table, proving their health and liveness.

Automatic Whole Server Migration Process

Figure 7-2 illustrates the automatic migration process after the failure of the machine hosting Managed Server 2.

Figure 7-2 Automatic Migration of a Failed Server

[image: Description of Figure 7-2 follows]

	
Machine C, which hosts Managed Server 2, fails.

	
Upon its next periodic review of the lease table, the cluster master detects that Managed Server 2's lease has expired. See Cluster Master Role in Whole Server Migration.

	
The cluster master tries to contact Node Manager on Machine C to restart Managed Server 2, but fails because Machine C is unreachable.

	
Note:

If the Managed Server 2 lease had expired because it was hung, and Machine C was reachable, the cluster master would use Node Manager to restart Managed Server 2 on Machine C.

	
The cluster master contacts Node Manager on Machine D, which is configured as an available host for migratable servers in the cluster.

	
Node Manager on Machine D starts Managed Server 2. See Node Manager Role in Whole Server Migration.

	
Managed Server 2 starts and contacts the Administration Server to obtain its configuration.

	
Managed Server 2 caches the configuration with which it started.

	
Managed Server 2 obtains a migratable server lease.

During migration, the clients of the Managed Server that is migrating may experience a brief interruption in service; it may be necessary to reconnect. On Solaris and Linux operating systems, this can be done using the ifconfig command. The clients of a migrated server do not need to know the particular machine to which they have migrated.

When a machine that previously hosted a server instance that was migrated becomes available again, the reversal of the migration process—migrating the server instance back to its original host machine—is known as failback. WebLogic Server does not automate the failback process. An administrator can accomplish failback by manually restoring the server instance to its original host.

The general procedures for restoring a server instance to its original host are as follows:

	
Gracefully shut down the new instance of the server.

	
After you have restarted the failed machine, restart Node Manager and the Managed Server.

The exact procedures you will follow depend on your server instance and network environment.

Manual Whole Server Migration Process

Figure 7-3 illustrates what happens when an administrator manually migrates a migratable server.

Figure 7-3 Manual Whole Server Migration

[image: Description of Figure 7-3 follows]

	
An administrator uses the WebLogic Server Administration Console to initiate the migration of Managed Server 2 from Machine C to Machine B.

	
The Administration Server contacts Node Manager on Machine C. See Administration Server Role in Whole Server Migration.

	
Node Manager on Machine C stops Managed Server 2.

	
Managed Server 2 removes its row from the lease table.

	
The Administration Server invokes Node Manager on Machine B.

	
Node Manager on Machine B starts Managed Server 2.

	
Managed Server 2 obtains its configuration from the Administration Server.

	
Managed Server 2 caches the configuration with which it started.

	
Managed Server 2 adds a row to the lease table.

Administration Server Role in Whole Server Migration

In a cluster that contains migratable servers, the Administration Server:

	
Invokes Node Manager on each machine that hosts cluster members to start the migratable servers. This is a prerequisite for server migratability—if a server instance was not initially started by Node Manager, it cannot be migrated.

	
Invokes Node Manager on each machine involved in a manual migration process to stop and start the migratable server.

	
Invokes Node Manager on each machine that hosts cluster members to stop server instances during a normal shutdown. This is a prerequisite for server migratability—if a server instance is shut down directly, without using Node Manager, when the cluster master detects that the server instance is not running, it will call Node Manager to restart it.

In addition, the Administration Server provides its regular domain management functionality, persisting configuration updates issued by an administrator, and providing a run-time view of the domain, including the migratable servers it contains.

Migratable Server Behavior in a Cluster

A migratable server is a clustered Managed Server that has been configured as migratable. A migratable server has the following key behaviors:

	
If you are using a database to manage leasing information, during startup and restart by Node Manager, a migratable server adds a row to the lease table. The row for a migratable server contains a timestamp and the machine where it is running.

For more information about leasing, see Leasing.

	
When using a database to manage leasing information, a migratable server adds a row to the database as a result of startup. It tries to take on the role of cluster master and succeeds if it is the first server instance to join the cluster.

	
Periodically, the server renews its lease by updating the timestamp in the lease table.

By default, a migratable server renews its lease every 30,000 milliseconds—the product of two configurable ServerMBean properties:

	
HealthCheckIntervalMillis, which by default is 10,000.

	
HealthCheckPeriodsUntilFencing, which by default is 3.

	
If a migratable server fails to reach the lease table and renew its lease before the lease expires, it terminates as quickly as possible using a Java System.exit—in this case, the lease table still contains a row for that server instance. For information about how this relates to automatic migration, see Cluster Master Role in Whole Server Migration.

	
During operation, a migratable server listens for heartbeats from the cluster master. When it detects that the cluster master is not sending heartbeats, it attempts to take over the role of cluster master and succeeds if no other server instance has claimed that role.

	
Note:

During server migration, keep in mind that server startup taxes CPU utilization. You cannot assume that because a machine can support a certain number of server instances running concurrently that they also can support that same number of server instances starting up on the same machine at the same time.

Node Manager Role in Whole Server Migration

The use of Node Manager is required for server migration—it must run on each machine that hosts or is intended to host.

Node Manager supports server migration in the following ways:

	
Node Manager must be used for initial startup of migratable servers.

When you initiate the startup of a Managed Server from the WebLogic Server Administration Console, the Administration Server uses Node Manager to start the server instance. You can also invoke Node Manager to start the server instance using the standalone Node Manager client; however, the Administration Server must be available so that the Managed Server can obtain its configuration.

	
Note:

Migration of a server instance that is not initially started with Node Manager will fail.

	
Node Manager must be used to suspend, shut down, or force shut down migratable servers.

	
Node Manager tries to restart a migratable server whose lease has expired on the machine where it was running at the time of failure.

Node Manager performs the steps in the server migration process by running customizable shell scripts that are provided with WebLogic Server. These scripts can start, restart and stop server instances, migrate IP addresses, and mount and unmount disks. The scripts are available for Solaris and Linux.

	
In an automatic migration, the cluster master invokes Node Manager to perform the migration.

	
In a manual migration, the Administration Server invokes Node Manager to perform the migration.

Cluster Master Role in Whole Server Migration

In a cluster that contains migratable servers, one server instance acts as the cluster master. Its role is to orchestrate the server migration process. Any server instance in the cluster can serve as the cluster master. When you start a cluster that contains migratable servers, the first server instance to join the cluster becomes the cluster master and starts the cluster manager service. If a cluster does not include at least one migratable server, it does not require a cluster master, and the cluster manager service does not start. In the absence of a cluster master, migratable servers can continue to operate, but server migration is not possible. The cluster master serves the following key functions:

	
Issues periodic heartbeats to the other server instances in the cluster.

	
Periodically reads the lease table to verify that each migratable server has a current lease. An expired lease indicates to the cluster master that the migratable server should be restarted.

	
Upon determining that a migratable server's lease is expired, the cluster master waits for a period specified by the FencingGracePeriodMillis on the ClusterMBean and then tries to invoke the Node Manager process on the machine that hosts the migratable server whose lease is expired, in order to restart the migratable server.

	
If unable to restart a migratable server whose lease has expired on its current machine, the cluster master selects a target machine in the following fashion:

	
If you have configured a list of preferred destination machines for the migratable server, the cluster master chooses a machine on that list, in the order the machines are listed.

	
Otherwise, the cluster master chooses a machine on the list of those configured as available for hosting migratable servers in the cluster.

A list of machines that can host migratable servers can be configured at two levels: for the cluster as a whole and for an individual migratable server. You can define a machine list at both levels. You must define a machine list on at least one level.

	
To accomplish the migration of a server instance to a new machine, the cluster master invokes the Node Manager process on the target machine to create a process for the server instance.

The time required to perform the migration depends on the server configuration and startup time.

	
The maximum time taken for the cluster master to restart the migratable server is (HealthCheckPeriodsUntilFencing * HealthCheckIntervalMillis) + FencingGracePeriodMillis.

	
The total time before the server instance becomes available for client requests depends on the server startup time and the application deployment time.

Whole Server Migration with Dynamic and Mixed Clusters

WebLogic Server supports whole server migration with dynamic and mixed clusters. When a dynamic server in a dynamic cluster fails, the server instance is migrated to a different physical machine upon failure the same way as a configured server in a configured or mixed cluster. While configuration differs depending on the cluster type, whole server migration behavior is the same for all clusters. For more information about dynamic and mixed clusters, see Chapter 11, "Dynamic Clusters."

Automatic whole server migration uses leasing to elect a cluster master, which is responsible for monitoring other cluster members and for restarting failed members hosted on other physical machines. You configure leasing in the cluster configuration. For more information, see Leasing.

Configuring Whole Server Migration with Dynamic Clusters

When configuring automatic whole server migration for configured clusters, you select the individual server instances you want to be able to migrate. You also choose a subset of available machines to which you want to migrate server instances upon failure.

For a dynamic cluster, you enable or disable automatic whole server migration in the server template. A dynamic cluster uses a single server template to define its configuration, and all dynamic server instances within the dynamic cluster inherit the template configuration. If you enable automatic whole server migration in the server template for a dynamic cluster, all dynamic server instances based on that server template are then enabled for automatic whole server migration. You cannot select individual dynamic server instances to migrate.

Additionally, you cannot choose the machines to which you want to migrate. After enabling automatic whole server migration in the server template for a dynamic cluster, all machines that are available to use for migration are automatically selected.

You cannot limit the list of candidate machines for migration that the dynamic cluster specifies, as the server template does not list candidate machines. The list of candidate machines for each dynamic server is calculated as follows:

ClusterMBean.CandidateMachinesForMigratableServers = { M1, M2, M3 }

dyn-server-1.CandidateMachines = { M1, M2, M3}
dyn-server-2.CandidateMachines = { M2, M3, M1 }
dyn-server-3.CandidateMachines = { M3, M1, M2 }
dyn-server-4.CandidateMachines = { M1, M2, M3 }

To enable automatic whole server migration for a dynamic cluster using the WebLogic Server Administration Console:

	
In the left pane of the WebLogic Server Administration Console, select Environment > Clusters > Server Templates.

	
In the Server Templates table, select the server template for your dynamic cluster.

	
Select Configuration > Migration.

	
Select the Automatic Server Migration Enabled attribute.

Configuring Whole Server Migration with Mixed Clusters

A mixed cluster contains both dynamic and configured servers. To enable automatic whole server migration for a mixed cluster:

	
Enable automatic whole server migration in the server template used by the dynamic server instances in the mixed cluster.

All of the dynamic server instances based on that server template are then enabled for automatic whole server migration.

	
Manually enable automatic whole server migration for any of the configured server instances in the cluster and choose the machines to which you want to migrate if a server instance fails.

Oracle® Fusion Middleware

Administering Clusters for Oracle WebLogic Server 12.1.3

12c (12.1.3)

E41944-07

June 2017

This document describes clusters and provides information for planning, implementing, and supporting a production environment that includes clusters in WebLogic Server 12.1.3.

Oracle Fusion Middleware Administering Clusters for Oracle WebLogic Server 12.1.3, 12c (12.1.3)

E41944-07

Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

14 Troubleshooting Common Problems

This chapter provides guidelines on how to prevent cluster problems or troubleshoot them if they do occur in WebLogic Server 12.1.3.

For information about troubleshooting IP multicast configuration problems, see Chapter 15, "Troubleshooting Multicast Configuration.".

This chapter includes the following sections:

	
Before You Start the Cluster

	
After You Start the Cluster

Before You Start the Cluster

You can do a number of things to help prevent problems before you boot the cluster.

Check the Server Version Numbers

All servers in the cluster should be at the same maintenance level (the same major and minor version number, the same Patch Set number, the same Patch Set Update number, and the same Interim/One-off Patches) during steady-state operation. Rolling upgrade (applying maintenance to servers sequentially within a cluster) is supported in WebLogic Server:

	
for applying Interim/One-off Patches

	
for applying Patch Set Updates (PSUs)

	
for applying WebLogic Server 10.3.x Patch Sets, for example, performing a rolling upgrade from WebLogic Server 10.3.5 to 10.3.6

The cluster's Administration Server is typically not configured as a cluster member, but it should generally run at the same maintenance level as the Managed Servers. There may be situations where the Administration Server is managing multiple clusters within a single domain, which may be at different maintenance levels. In this case, the Administration Server should be at the highest maintenance level of the Managed Servers within the domain.

Check the Multicast Address

A problem with the multicast address is one of the most common reasons a cluster does not start or a server fails to join a cluster.

A multicast address is required for each cluster. The multicast address can be an IP number between 224.0.0.0 and 239.255.255.255, or a host name with an IP address within that range.

You can check a cluster's multicast address and port on its Configuration > Multicast page in the WebLogic Server Administration Console.

For each cluster on a network, the combination of multicast address and port must be unique. If two clusters on a network use the same multicast address, they should use different ports. If the clusters use different multicast addresses, they can use the same port or accept the default port, 7001.

Before booting the cluster, make sure the cluster's multicast address and port are correct and do not conflict with the multicast address and port of any other clusters on the network.

The errors you are most likely to see if the multicast address is bad are:

Unable to create a multicast socket for clustering
Multicast socket send error
Multicast socket receive error

Check the CLASSPATH Value

Make sure the value of CLASSPATH is the same on all Managed Servers in the cluster. CLASSPATH is set by the setEnv script, which you run before you run startManagedWebLogic to start the Managed Servers.

By default, setEnv sets this value for CLASSPATH (as represented on Windows systems):

set WL_HOME=C:\bea\wlserver_10.00
set JAVA_HOME=C:\bea\jdk131
.
.
set CLASSPATH=%JAVA_HOME%\lib\tools.jar;
 %WL_HOME%\server\lib\weblogic_sp.jar;
 %WL_HOME%\server\lib\weblogic.jar;
 %CLASSPATH%

If you change the value of CLASSPATH on one Managed Server, or change how setEnv sets CLASSPATH, you must change it on all Managed Servers in the cluster.

After You Start the Cluster

After you start a cluster, do the following to troubleshoot problems.

Check Your Commands

If the cluster fails to start, or a server fails to join the cluster, the first step is to check any commands you have entered, such as startManagedWebLogic or a java interpreter command, for errors and misspellings.

Generate a Log File

Before contacting Oracle for help with cluster-related problems, collect diagnostic information. The most important information is a log file with multiple thread dumps from a Managed Server. The log file is especially important for diagnosing cluster freezes and deadlocks.

Remember: a log file that contains multiple thread dumps is a prerequisite for diagnosing your problem.

	
Stop the server.

	
Remove or back up any log files you currently have. You should create a new log file each time you boot a server, rather than appending to an existing log file.

	
Start the server with this command, which turns on verbose garbage collection and redirects both the standard error and standard output to a log file:

% java -ms64m -mx64m -verbose:gc -classpath $CLASSPATH
 -Dweblogic.domain=mydomain -Dweblogic.Name=clusterServer1
 -Djava.security.policy==$WL_HOME/lib/weblogic.policy
 -Dweblogic.admin.host=192.168.0.101:7001
 weblogic.Server >> logfile.txt

Redirecting both standard error and standard output places thread dump information in the proper context with server informational and error messages and provides a more useful log.

	
Continue running the cluster until you have reproduced the problem.

	
If a server hangs, use kill -3 or <Ctrl>-<Break> to create the necessary thread dumps to diagnose your problem. Make sure to do this several times on each server, spaced about 5-10 seconds apart, to help diagnose deadlocks.

	
Compress the log file using a UNIX utility:

% tar czf logfile.tar logfile.txt

- or zip it using a Windows utility.

	
Attach the compressed log file to an e-mail to your Oracle Support representative. Do not cut and paste the log file into the body of an e-mail.

Getting an Oracle HotSpot VM Thread Dump

If you use the Oracle HotSpot VM, use one of the following methods to generate a thread dump:

	
Use the WLST threadDUMP command.

	
Use the jstack utility.

	
If you are using the Oracle HotSpot VM under Linux, use Kill -3 PID, where PID is the root of the process tree.

To obtain the root PID, perform a:

ps -efHl | grep 'java' **. **

using a grep argument that is a string that will be found in the process stack that matches the server startup command. The first PID reported will be the root process, assuming that the ps command has not been piped to another routine.

Under Linux, each execute thread appears as a separate process under the Linux process stack. To use Kill -3 on Linux you supply must match PID of the main WebLogic execute thread, otherwise no thread dump will be produced.

	
If you are using the Oracle HotSpot VM under Windows, you can use the Ctrl-Break command on the application console to generate a thread dump.

Check Garbage Collection

If you are experiencing cluster problems, you should also check the garbage collection on the Managed Servers. If garbage collection is taking too long, the servers will not be able to make the frequent heartbeat signals that tell the other cluster members they are running and available.

If garbage collection (either first or second generation) is taking 10 or more seconds, you need to tune heap allocation (the msmx parameter) on your system.

Run utils.MulticastTest

You can verify that multicast is working by running utils.MulticastTest from one of the Managed Servers. See "Using the Oracle WebLogic Server Java Utilities" in Command Reference for Oracle WebLogic Server.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2013, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]

C Configuring F5 Load Balancers for MAN/WAN Failover

This appendix describes how to configure F5 hardware load balancers to work with WebLogic Server 12.1.3.

WebLogic Server provides failover within MAN and WAN networks. This feature provides more reliability by allowing failover to occur across a larger geographic area. It also provides failover across multiple WebLogic Server domains.

To provide failover within a MAN/WAN environment, you must use hardware load balancers. This document outlines the procedures for configuring F5 hardware load balancers to work with WebLogic Server.

For information on configuring WebLogic Server to use MAN/WAN, see Session State Replication Across Clusters in a MAN/WAN. For information on configuring F5 hardware load balancers, see http://www.f5.com.

This appendix includes the following sections:

	
Requirements

	
Configure Local Load Balancers

	
Configure the 3-DNS Global Hardware Load Balancer

	
Configuring WebLogic Server Components

Requirements

Before performing the procedures described in this appendix, you must have performed the following:

	
Installed and configured your WebLogic Server environment. This includes creating and configuring clusters and Managed Servers.

	
Installed and configured at least one F5 3-DNS global load balancer and at least two F5 BIG-IP local load balancers. This is the minimum hardware requirement for failover in a MAN/WAN environment

	
Ensured that your network and DNS are configured correctly

Once these requirements are met, perform the following procedures to configure your load balancers to work within a MAN/WAN environment.

Configure Local Load Balancers

This section describes the procedures for configuring F5 local load balancers to work with WebLogic Server in a MAN/WAN environment.

Virtual Server IPs and Pools

On each local load balancer you must configure two virtual server IPs as well as a multi-layer pool and a failover trigger pool. The diagram in Figure C-1 shows how these pools and virtual server IPs work within a MAN/WAN environment.

Figure C-1 Hardware Load Balancers in a MAN/WAN Environment

[image: Description of Figure C-1 follows]

In this diagram, multiple Managed Servers are distributed across separate physical locations. This diagram shows individual Managed Servers, but this could also represent a clustered configuration as well.

Each local load balancer contains a virtual server IP that references a multi-layer pool. The multi-layer pool references each of the local WebLogic Server IP addresses and host names and the virtual server of the failover trigger pool. The failover trigger is used to indicate that a site is down. This triggers failover to the other local load balancer.

The following sections describe how to configure multi-layer and failover trigger pools.

Create a Failover Trigger Virtual Server and Pool

Create a new BIG-IP pool on the local load balancer that references each of the local WebLogic Server host names and ports to be load-balanced. Then, create a new virtual server that specifies this pool. This virtual server will be utilized by the 3-DNS global load balancer for health monitoring and will later be embedded inside another local load balancer pool/virtual server.

	
In the BIG-IP navigation panel, click Pools.

	
Add a pool name

	
Add all the WebLogic Server host:port combinations to be load balanced

The default priority may used. Session persistence does not need to be configured.

	
In the BIG-IP navigation panel, click Virtual Servers.

	
Add a virtual server that references your new pool.

	
You should specify a port that by convention would be a failover-trigger port, for example 17001.

	
Specify an IP address for the Virtual Server, for example 10.254.34.151.

Create a Multi-layered Virtual Server and IP Pool

Using the F5 administration utility, create a new BIG-IP pool on the local load balancer that references the host and port of each local WebLogic Server instance and also the failover-trigger virtual server. The failover-trigger virtual server must be a lower priority than the WebLogic Servers. By assigning a lower priority, the failover-trigger virtual server will never receive client requests unless all the WebLogic Server instances have failed. Session persistence should be configured also.

	
In the BIG-IP navigation panel, click on Pools.

	
Add a pool name, for example multilayeredPool

	
Add all the WebLogic Server host:port combinations to be load balanced. All host:port combinations should be configured with priority=10

	
Add the failover-trigger virtual server with priority=1

	
Specify persistence attributes on the pool (active with insert mode)

	
In the BIG-IP navigation panel, click on Virtual Servers

	
Create a Virtual Server that references your new pool, for example: 10.254.34.151:7001

Configure the 3-DNS Global Hardware Load Balancer

A global load balancer type of network hardware that acts as an authoritative DNS server and can distribute Web requests across multiple BIG-IP virtual servers based on chosen criteria. Clients send http requests to the global load balancer, which uses built in health monitors to direct the Web requests to the optimal server based on the chosen method of load balancing.

The global load balancer must be an authoritative source of DNS because a regular DNS server is incapable of the monitoring that the global load balancer can perform. A regular DNS server would still send http requests to a server that was down if it were next in the default round-robin load balancing method. In order to compensate for the multiple shortcomings of a regular DNS server, many vendors (including F5) have created specialized hardware and software that is capable of performing not only DNS resolution but also intelligent routing of network traffic.

The primary steps of configuring an F5 3-DNS global load balancer are: defining its DNS name, configuring the BIG-IP hosts, configuring data centers, and configuring the 3-DNS distribution of work to the virtual servers (VIPs). These are covered in the following sections.

Configure DNS Zones

The global server load balancer must be configured to manage its own DNS zone. This is done by creating a new delegation on the local DNS management machine. The following procedures describe how to configure DNS zones.

	
On your DNS management machine, create a new delegation, for example: gslb

	
Specify the fully qualified name of your 3-DNS machine as a name server

	
Specify the IP address of your 3-DNS machine as a name server

Configure BIG-IP Addresses Managed by 3-DNS

The 3-DNS global balancer needs to be configured with the addresses of the BIG-IP local load balancers. The following procedures outline how to configure BIG-IP addresses:

	
In the 3-DNS navigation panel, click Servers, then BIG-IP.

	
Add BIG-IP

	
Specify a name for the BIG-IP box, and its IP address.

	
When you revisit the list of BIG-IP boxes, the 3-DNS device should display a column with a count of virtual servers available on each BIG-IP box. Click on this count of virtual servers.

	
Find your multi-layered virtual server, and click dependencies.

	
Specify the associated failover-trigger virtual server as a dependency.

Configure Data Centers

In most cases, global load balancers spread service requests to virtual servers in multiple physical sites. These sites are called data centers and you must create two of them. Data centers resolve to the two different subnets of BIG-IP local load balancers.

Configure Wide IPs

It is recommended that you configure the 3-DNS device so it will distribute requests evenly to servers in a VIP in one data center. If these servers fail, they should fail requests over to a VIP in the other data center. In order to do this, a wideip address must be created. This wideip address will be the target of client requests, and can be given a fully qualified domain name. The Wide IP defines how connections are distributed to local load balancer virtual servers.

The following procedures describe how to configure wide IPs:

	
In the 3-DNS navigation panel, click Wide IPs, and then Add Wide IP

	
Specify an available network address for the Wide IP, a port (e.g. 7001) for the Wide IP, and an associated fully qualified domain name (e.g. cs.gslb.bea.com).

	
Add a 3-DNS pool that should specify the virtual servers on the local load balancers. The 3-DNS global load balancer automatically identifies the virtual servers available on each local load balancer after the BIG-IP hosts are configured. Specify the multi-layered Virtual Servers.

	
Create two entries in the DNS database on your DNS nameserver that resolve to the wideip.

Configuring WebLogic Server Components

After you have configured your F5 devices, you must configure WebLogic Server to use MAN/WAN failover. For information on configuring WebLogic Server to use MAN/WAN, see Session State Replication Across Clusters in a MAN/WAN.

1 Introduction and Roadmap

This chapter describes the contents and organization of this guide—Administering Clusters for Oracle WebLogic Server 12.1.3.

This chapter includes the following sections:

	
Document Scope and Audience

	
Guide to this Document

	
Related Documentation

	
New and Changed Clustering Features in This Release

Document Scope and Audience

This document is written for application developers and administrators who are developing or deploying Web-based applications on one or more clusters. It also contains information that is useful for business analysts and system architects who are evaluating WebLogic Server or considering the use of WebLogic Server clusters for a particular application.

The topics in this document are primarily relevant to planning, implementing, and supporting a production environment that includes WebLogic Server clusters. Key guidelines for software engineers who design or develop applications that will run on a WebLogic Server cluster are also addressed.

It is assumed that the reader is familiar with Java EE, HTTP, HTML coding, and Java programming (servlets, JSP, or EJB development).

Guide to this Document

	
This chapter, Chapter 1, "Introduction and Roadmap," describes the organization of this guide.

	
Chapter 2, "Understanding WebLogic Server Clustering," provides a brief introduction to WebLogic Server clusters.

	
Chapter 3, "Communications In a Cluster," describes how WebLogic Server instances communicate to one another in a cluster and how they utilize a cluster-wide JNDI tree.

	
Chapter 4, "Understanding Cluster Configuration," explains how the information that defines the configuration of a cluster is stored and maintained, and identifies the methods you can use to accomplish cluster configuration tasks.

	
Chapter 5, "Load Balancing in a Cluster," describes the load balancing support that a WebLogic Server cluster provides for different types of objects, and provides planning and configuration considerations for architects and administrators.

	
Chapter 6, "Failover and Replication in a Cluster," describes how WebLogic Server detects failures in a cluster, and summarizes how failover is accomplished for different types of objects.

	
Chapter 7, "Whole Server Migration," describes the different migration mechanisms supported by WebLogic Server.

	
Chapter 8, "Service Migration," describes the service migration mechanisms supported by WebLogic Server:

	
Chapter 9, "Cluster Architectures," describes alternative architectures for a WebLogic Server cluster.

	
Chapter 10, "Setting up WebLogic Clusters," contains guidelines and instructions for configuring a WebLogic Server cluster.

	
Chapter 11, "Dynamic Clusters" introduces and describes dynamic clusters.

	
Chapter 12, "Configuring and Managing Coherence Clusters" describes how to configure and manage Coherence clusters.

	
Chapter 13, "Clustering Best Practices," provides recommendations for design and deployment practices that maximize the scalability, reliability, and performance of applications hosted by a WebLogic Server cluster.

	
Chapter 14, "Troubleshooting Common Problems," provides guidelines on how to prevent and troubleshoot common cluster problems.

	
Appendix A, "The WebLogic Cluster API," describes the WebLogic Cluster API.

	
Appendix B, "Configuring BIG-IP Hardware with Clusters," describes options for configuring an F5 BIG-IP controller to operate with a WebLogic Server cluster.

	
Appendix C, "Configuring F5 Load Balancers for MAN/WAN Failover," explains how to configure F5 hardware load balancers.

	
Appendix D, "Configuring Radware Load Balancers for MAN/WAN Failover," describes how to configure Radware hardware load balancers.

Related Documentation

	
"Understanding Enterprise JavaBeans" in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server

	
"Creating and Configuring Web Applications" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

New and Changed Clustering Features in This Release

This release of WebLogic Server adds support for whole server migration with dynamic and mixed clusters. Whole server migration behavior is the same for all clusters, but configuration differs depending on the cluster type. For more information, see Whole Server Migration with Dynamic and Mixed Clusters.

The algorithm used to assign server instances to groups has been changed from the algorithm used in WebLogic Server 12.1.2 and prior versions. The new algorithm has been optimized to provide more flexible scaling of running clusters, and to better support use cases where Managed Servers are added to WebLogic Server clusters while the clusters are running. For more information, see One-to-Many Communication Using Unicast.

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

B Configuring BIG-IP Hardware with Clusters

For detailed setup and administration instructions for configuring an F5 BIG-IP controller to operate with a cluster in WebLogic Server 12.1.3, refer to the F5 product documentation described at http://www.f5.com/.

For information about how WebLogic Server works with external load balancers, see Load Balancing HTTP Sessions with an External Load Balancer.

D Configuring Radware Load Balancers for MAN/WAN Failover

This appendix describes how to configure Radware hardware load balancers to work with WebLogic Server 12.1.3.

WebLogic Server provides failover within MAN and WAN networks. This feature provides more reliability by allowing failover to occur across a larger geographic area. It also provides failover across multiple WebLogic Server domains.

To provide failover within a MAN/WAN environment, you must use hardware load balancers. This document outlines the procedures for configuring Radware hardware load balancers to work with WebLogic Server.

For information on configuring WebLogic Server to use MAN/WAN, see Session State Replication Across Clusters in a MAN/WAN. For information on configuring Radware hardware load balancers, see http://www.radware.com.

This appendix includes the following sections:

	
Requirements

	
Step 1: Configure an Authoritative Delegation Zone

	
Step 2: Configure Farm Virtual IPs and Servers

	
Step 3: Configure Port Multiplexing

	
Step 4: Configure HTTP Redirects

	
Step 5: Configure Session ID Persistency

	
Step 6: Configure LRP

	
Step 7: Configure WebLogic Server Components

Requirements

Before performing the procedures described in this appendix, ensure that you have performed the following:

	
Installed and configured your WebLogic Server environment. This includes creating and configuring clusters and Managed Servers.

	
Installed and configured at least two Radware Web Server Director load balancers. This is the minimum hardware requirement for using Radware devices within a MAN/WAN environment. At least one of these must be configured as a global load balancer

	
Ensured that your network and DNS are configured correctly

Once these requirements are met, use the following procedures to configure your load balancers to work within a MAN/WAN environment.

Step 1: Configure an Authoritative Delegation Zone

The first step in configuring Web Server Director is to create an Authoritative Delegation Zone within the local DNS. To do this, perform the following using the Radware administration utility:

	
Click on the name of your local DNS.

	
Click New Delegation.

	
Enter a name for the new delegation zone

	
Add the IP address for each Radware device

Step 2: Configure Farm Virtual IPs and Servers

Web Server Director balances load among servers within a server farm. Clients access a server using a virtual IP address. Web Server Director directs traffic from this virtual IP address to the appropriate server. The following sections describe how to create and configure server farm virtual IPs.

Create a Farm IP

To create a farm IP, perform the following using the Radware administration utility:

	
Select WSD.

	
Select Farms.

	
Select Farm Table.

	
Click Create a Farm.

	
Enter an IP address and DNS alias for the farm.

	
Ensure that Admin Status is enabled.

	
Click Set.

Configure the Dispatch Method for the Server Farm

To configure the dispatch method for the server farm, perform the following procedures using the Radware configuration utility:

	
Select WSD.

	
Select Farms.

	
Select Farm Table.

	
Select the farm you want to configure

	
In the Farm Properties window, select the menu next to Dispatch Method.

	
Select the desired algorithm

	
Click Set.

Creating Farm Servers

To configure a farm server, perform the following procedures using the Radware administration utility:

	
Select WSD.

	
Select Servers.

	
Select Application Servers.

	
Select the Farm IP created above.

	
Add the server IP address.

	
Add the server name.

	
Ensure that Admin Status is enabled.

Step 3: Configure Port Multiplexing

Use the following procedures to configure port multiplexing:

	
Select WSD.

	
Select Farms.

	
Select Farm Table.

	
Select the farm you want to configure.

	
In the Properties window, enter a value in the Multiplexed Port field.

	
Select WSD.

	
Select Servers.

	
Select Application Servers.

	
For each local server, select the server from the table and enter the application port in the Multiplexed Server Port field.

	
Click Set.

Step 4: Configure HTTP Redirects

You must configure HTTP redirects in order to configure global load balancers to work within a MAN/WAN environment. HTTP redirects ensure proper distribution of traffic across Web Server Director devices.

To configure HTTP redirect, perform the following procedures using the Radware administration utility:

	
Select WSD.

	
Select Farms.

	
Select Farm Table.

	
Select the farm that you want to configure.

	
Select HTTP Redirection in the Redirection Mode section.

	
Select HTTP Redirection in the DNS Redirection Fallback section.

	
Click Set.

	
Select WSD.

	
Select Servers.

	
Select Application Servers.

	
Select the server in the farm that represents the distributed farm on the remote WSD

Step 5: Configure Session ID Persistency

Server persistence is based on HTTP session IDs. Web Server Director inspects incoming traffic to a farm, then selects the appropriate server based on session information in the HTTP header. To configure session ID persistency, perform the following procedures using the Radware administration utility:

	
Select WSD.

	
Select L7 Load Balancing.

	
Select Session Persistency.

	
Click Create.

	
Select the farm you want to configure.

	
Set the application port of your farm.

	
Set Persistency Identification to JESESSIONID.

	
Set Value Offset to 53.

	
Set Stop Chars to :!.

	
Set Inactivity Timeout to the value of your session time-out.

Step 6: Configure LRP

Configuring the LRP component ensures that traffic is correctly distributed to remote locations. To configure LRP, perform the following:

	
Select WSD.

	
Select Distributed Systems.

	
Select Report Configuration.

	
Click Create Distributed Farm Address.

	
Set Distributed Farm Address to the remote farm IP address.

	
Set Remote WSD Address to the IP address of the second Radware device.

	
Click Set.

Step 7: Configure WebLogic Server Components

After you have configured your Radware devices, you must configure WebLogic Server to use MAN/WAN failover. For information on configuring WebLogic Server to use MAN/WAN, see Session State Replication Across Clusters in a MAN/WAN.

11 Dynamic Clusters

This chapter introduces dynamic clusters and how to create, configure, and use dynamic clusters in WebLogic Server 12.1.3.

This chapter includes the following sections:

	
What Are Dynamic Clusters?

	
Why Do You Use Dynamic Clusters?

	
How Do Dynamic Clusters Work?

	
Limitations and Considerations When Using Dynamic Clusters

	
Dynamic Clusters Example

What Are Dynamic Clusters?

Dynamic clusters consist of server instances that can be dynamically scaled up to meet the resource needs of your application. A dynamic cluster uses a single server template to define configuration for a specified number of generated (dynamic) server instances. When you create a dynamic cluster, the dynamic servers are preconfigured and automatically generated for you, enabling you to easily scale up the number of server instances in your dynamic cluster when you need additional server capacity. You can simply start the dynamic servers without having to first manually configure and add them to the cluster.

If you need additional server instances on top of the number you originally specified, you can increase the maximum number of servers instances (dynamic) in the dynamic cluster configuration or manually add configured server instances to the dynamic cluster. A dynamic cluster that contains both dynamic and configured server instances is called a mixed cluster.

The following table defines terminology associated with dynamic clusters:

	Term	Definition
	dynamic cluster	A cluster that contains one or more generated (dynamic) server instances that are based on a single shared server template.
	configured cluster	A cluster in which you manually configure and add each server instance.
	dynamic server	A server instance that is generated by WebLogic Server when creating a dynamic cluster. Configuration is based on a shared server template.
	configured server	A server instance for which you manually configure attributes.
	mixed cluster	A cluster that contains both dynamic and configured server instances.
	server template	A prototype server definition that contains common, non-default settings and attributes that can be assigned to a set of server instances, which then inherit the template configuration. For dynamic clusters, the server template is used to generate the dynamic servers. See "Server Templates" in Understanding Domain Configuration for Oracle WebLogic Server.

You cannot configure dynamic servers individually; there are no server instance definitions in the config.xml file when using a dynamic cluster. Therefore, you cannot override the server template with server-specific attributes or target applications to an individual dynamic server instance. Example 11-1 shows an example config.xml file that includes a dynamic cluster.

Example 11-1 Example config.xml File Using a Dynamic Cluster

<server-template>
 <name>dynamic-cluster-server-template</name>
 <accept-backlog>2000</accept-backlog>
 <auto-restart>true</auto-restart>
 <restart-max>10</restart-max>
 <startup-timeout>600</startup-timeout>
</server-template>

<cluster>
 <name>dynamic-cluster</name>
 <dynamic-servers>
 <server-template>dynamic-cluster-server-template</server-template>
 <maximum-dynamic-server-count>10</maximum-dynamic-server-count>
 <calculated-machine-names>true</calculated-machine-names>
 <machine-name-match-expression>dyn-machine*</machine-name-match-expression>
 <server-name-prefix>dynamic-server-</server-name-prefix>
 </dynamic-servers>
</cluster>

Why Do You Use Dynamic Clusters?

With dynamic clusters, you can easily scale up your cluster when you need additional server capacity by simply starting one or more of the preconfigured dynamic server instances. You do not need to manually configure a new server instance and add it to the cluster or perform a system restart.

How Do Dynamic Clusters Work?

The following sections describe using dynamic clusters:

	
Creating and Configuring Dynamic Clusters

	
Using Server Templates

	
Calculating Server-Specific Attributes

	
Starting and Stopping Servers in Dynamic Clusters

	
Using Whole Server Migration with Dynamic Clusters

	
Expanding or Reducing Dynamic Clusters

	
Deploying Applications to Dynamic Clusters

	
Using WebLogic Web Server Plug-Ins with Dynamic Clusters

Creating and Configuring Dynamic Clusters

When you create a dynamic cluster, you perform the following actions:

	
specify the number of server instances you anticipate needing at peak load

	
create or select the server template upon which you want to base server configuration

	
define how WebLogic Server should calculate server-specific attributes

WebLogic Server then generates the specified number of dynamic server instances and applies the calculated attribute values to each dynamic server instance.

	
Note:

Ensure you have the performance capacity to handle the maximum number of server instances you specify in the dynamic cluster configuration. For information on design and deployment best practices when creating a cluster, see "Clustering Best Practices."

You create dynamic clusters using WebLogic Scripting Tool (WLST) or the WebLogic Server Administration Console. Example 11-2 demonstrates using WLST. For information about using the WebLogic Server Administration Console, see "Create dynamic clusters" in the Oracle WebLogic Server Administration Console Online Help. When creating a dynamic cluster in the WebLogic Server Administration Console, WebLogic Server creates the server template, dynamic cluster, and specified number of server instances for you. You do not have to specify them individually. You can configure dynamic clusters using any of the administration tools listed in "Summary of System Administration Tools and APIs" in Understanding Oracle WebLogic Server.

Using Server Templates

Server templates define common configuration attributes that a set of server instances share. Dynamic clusters use server templates for dynamic server configuration. For more information about server templates, see "Server Templates" in Understanding Domain Configuration for Oracle WebLogic Server.

Calculating Server-Specific Attributes

You cannot configure individual dynamic server instances or override values in the server template at the dynamic server level when using a dynamic cluster. Server-specific attributes, such as server name, machines, and listen ports, must be calculated using the information provided when creating the dynamic cluster.

WebLogic Server calculates and applies the following server-specific attributes using the instance ID of the dynamic server:

	
Server name

	
(Optional) Listen ports (clear text and SSL)

	
(Optional) Network access point listen ports

	
(Optional) Machines or virtual machines

Calculating Server Names

The calculated server name is controlled by the ServerNamePrefix attribute. Server names are the specified prefix followed by the index number. For example, if the prefix is set to dyn-server-, then the dynamic servers will have the names dyn-server-1, dyn-server-2, and so on for the number of server instances you specified.

Calculating Listen Ports

The settings in the dynamic cluster configuration or server template determine the listen ports for the server instances in your dynamic cluster. If you do not calculate listen ports when creating your dynamic cluster, WebLogic Server uses the value in the server template. If you do not define listen ports in the dynamic cluster configuration or server template, WebLogic Server uses the default value. Listen port settings are controlled by the CalculatedListenPorts attribute. For more information about these settings, see "Create dynamic clusters" in the Oracle WebLogic Server Administration Console Online Help.

If you explicitly define a listen port for your dynamic cluster in the server template or the dynamic cluster configuration, that value will be used for the first generated server instance and incremented by one for each additional server instance. If the default listen port is indicated, WebLogic Server increments the "hundreds" digit by one and continues from there. Table 11-1 shows examples of calculated listen port values.

Table 11-1 Calculating Listen Ports

	Listen Port Type	Configuration Setting in Server Template	Dynamic Server Listen Port Values
	
Server listen port

	
Listen port not set

	
dyn-server-1: 7101

dyn-server-2: 7102

...

	
Server listen port

	
Listen port set to 7300

	
dyn-server-1: 7301

dyn-server-2: 7302

...

	
Server SSL listen port

	
SSL listen port not set

	
dyn-server-1: 8101

dyn-server-2: 8102

...

	
Server SSL listen port

	
SSL listen port set to 8200

	
dyn-server-1: 8201

dyn-server-2: 8202

...

	
Server network access point listen port

	
Network access point listen port not set

	
dyn-server-1: 9101

dyn-server-2: 9102

...

	
Server network access point listen port

	
Network access point listen port set to 9200

	
dyn-server-1: 9201

dyn-server-2: 9202

...

	
Server replication ports

	
Replication ports set to 8100

	
dyn-server-1: 8100

dyn-server-2: 8101

...

	
Server replication ports

	
Replication ports set to 8100-8104

	
dyn-server-1: 8100-8104

dyn-server-2: 8105-8109

dyn-server-3: 8110-8114

...

You can override listen ports at server startup by using system properties. For example:

To override the listen port:

-Dweblogic.ListenPort=7305

To override the SSL listen port:

-Dweblogic.ssl.ListenPort=7403

To override the listen port of the network access point named mynap:

-Dweblogic.networkaccesspoint.mynap.ListenPort=8201

Calculating Machine Names

The dynamic cluster attributes CalculatedMachineNames and MachineNameMatchExpression control how server instances in a dynamic cluster are assigned to a machine. If the CalculatedMachineNames attribute is set to false, then the dynamic servers will not be assigned to a machine. If the CalculatedMachineNames attribute is set to true, then the MachineNameMatchExpression attribute is used to select the set of machines used for the dynamic servers. If the MachineNameMatchExpression attribute is not set, then all of the machines in the domain are selected. Assignments are made using a round robin algorithm. Table 11-2 shows examples of machine assignments in a dynamic cluster.

Table 11-2 Calculating Machine Names

	Machines in Domain	MachineNameMatchExpression Configuration	Dynamic Server Machine Assignments
	
M1, M2

	
Not set

	
dyn-server-1: M1

dyn-server-2: M2

dyn-server-3: M1

...

	
Ma1, Ma2, Mb1, Mb2

	
Ma1, Mb*

	
dyn-server-1: Ma1

dyn-server-2: Mb1

dyn-server-3: Mb2

dyn-server-4: Ma1

...

Starting and Stopping Servers in Dynamic Clusters

You can start and stop server instances in dynamic clusters using the same methods you use to start and stop server instances in configured clusters: the WebLogic Server Administration Console, WLST, Node Manager, or start scripts. You may have to follow several other procedures before you can start server instances, based on the startup method you choose and the tasks you have already performed. For more information, see "Starting and Stopping Servers" in Administering Server Startup and Shutdown for Oracle WebLogic Server 12.1.3.

	
Note:

Before you begin, ensure that WebLogic Server is installed on all hosts where you want to run your server instances. If you want to use Node Manager to start and stop your server instances, then you must also run Node Manager on these hosts.

Using Whole Server Migration with Dynamic Clusters

WebLogic Server supports whole server migration with dynamic and mixed clusters. While configuration differs depending on the cluster type, whole server migration behavior is the same for all clusters. For information on how to enable whole server migration for dynamic clusters, see "Whole Server Migration with Dynamic and Mixed Clusters."

Expanding or Reducing Dynamic Clusters

When you create a dynamic cluster, WebLogic Server generates the number of dynamic servers you specify. Before you decide upon the number of server instances, ensure you have the performance capacity to handle the desired number.

The dynamic server instances are based on the configuration you specified in the server template and calculated attributes. When you need to expand your cluster, start any number of the preconfigured dynamic servers. To shrink your dynamic cluster, shut down the excess number of dynamic servers.

If you need additional server capacity on top of the number of server instances you originally specified, you can increase the maximum number of dynamic servers in the dynamic cluster configuration. To reduce the number of server instances in the dynamic cluster, decrease the value of the maximum number of dynamic servers attribute. Before lowering this value, shut down the server instances you plan to remove.

Deploying Applications to Dynamic Clusters

When deploying applications to a dynamic cluster, you must target the application to the entire cluster. You cannot target an application to an individual server instance because dynamic clusters do not have individual dynamic server configuration. When you deploy an application to the dynamic cluster, all servers in the cluster, both dynamic and static, will deploy the application.

To deploy an application to a dynamic cluster, follow the same process as deploying to configured clusters. For more information, see "Deploy Applications" and "Application Deployment for Clustered Configurations."

For a broad discussion of deployment topics, see Deploying Applications to Oracle WebLogic Server.

Using WebLogic Web Server Plug-Ins with Dynamic Clusters

Dynamic clusters provide the same WebLogic Web server plug-in support as configured clusters. By default, a Web server plug-in uses the DynamicServerList parameter to receive information about cluster changes, such as new server instances in a configured or dynamic cluster. Upon recognizing a cluster membership change, the plug-in automatically updates its server list.

For general information about using Web server plug-ins with WebLogic Server, see Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3. For more information about the DynamicServerList parameter or the WebLogicCluster parameter (required when proxying to a WebLogic Server cluster), see "General Parameters for Web Server Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3.

Limitations and Considerations When Using Dynamic Clusters

When using dynamic clusters with WebLogic Server, note the following limitations and considerations:

	
You cannot override values in the server template at the individual dynamic server level because there are no individual server definitions in the config.xml file when using dynamic clusters.

	
You must ensure you have the performance capacity to handle the maximum number of server instances you specify in the dynamic cluster configuration.

	
Dynamic clusters do not support targeting to any individual dynamic server instance. Therefore, the following cannot be used with dynamic clusters:

	
Deployments that cannot target to a cluster, including migratable targets. Therefore, you cannot create a migratable target for a dynamic cluster.

	
Configuration attributes that refer to individual servers. This includes JTA migratable targets, constrained candidate servers, user preferred server, all candidate servers, and hosting server. Therefore, you cannot specify a dynamic server as the user preferred server for a migratable target.

	
Configuration attributes that are server specific. This includes replication groups, preferred secondary groups, and candidate machines (server level).

	
Constrained candidates for singleton services. You cannot limit a singleton service to dynamic servers.

	
For whole server migration with a dynamic cluster, you cannot limit the list of candidate machines that the dynamic cluster specifies, as the server template does not list candidate machines.

	
Dynamic clusters also have JMS limitations. For more information, see "Simplified JMS Cluster Configuration" in Administering JMS Resources for Oracle WebLogic Server.

Dynamic Clusters Example

Example 11-2 demonstrates using WLST to create a dynamic cluster. The example includes inline comments and describes how to:

	
Create a server template and specify the desired server attributes in the server template.

	
Create a dynamic cluster and specify the desired cluster attributes.

	
Set the server template for the dynamic cluster.

	
Set the maximum number of server instances you want in the dynamic cluster.

	
Start and stop the server instances in the dynamic cluster.

Example 11-2 Creating Dynamic Clusters with WLST

#
This example demonstrates the WLST commands needed to create a dynamic cluster
(dynamic-cluster). The dynamic cluster uses a server template
dynamic-cluster-server-template. To keep this example simple, error handling
was omitted.
#
connect()
edit()
startEdit()
#
Create the server template for the dynamic servers and set the attributes for
the dynamic servers. Setting the cluster is not required.
#
dynamicServerTemplate=cmo.createServerTemplate("dynamic-cluster-server-template")
dynamicServerTemplate.setAcceptBacklog(2000)
dynamicServerTemplate.setAutoRestart(true)
dynamicServerTemplate.setRestartMax(10)
dynamicServerTemplate.setStartupTimeout(600)
#
Create the dynamic cluster, set the number of dynamic servers, and designate the server template.
#
dynCluster=cmo.createCluster("dynamic-cluster")
dynServers=dynCluster.getDynamicServers()
dynServers.setMaximumDynamicServerCount(10)
dynServers.setServerTemplate(dynamicServerTemplate)
#
Dynamic server names will be dynamic-server-1, dynamic-server-2, ...,
dynamic-server-10.
#
dynServers.setServerNamePrefix("dynamic-server-")
#
Listen ports and machines assignments will be calculated. Using a round-robin
algorithm, servers will be assigned to machines with names that start with
dyn-machine.
#
dynServers.setCalculatedMachineNames(true)
dynServers.setMachineNameMatchExpression("dyn-machine*")
#
activate the changes
#
activate()

The resulting config.xml file is:

<server-template>
 <name>dynamic-cluster-server-template</name>
 <accept-backlog>2000</accept-backlog>
 <auto-restart>true</auto-restart>
 <restart-max>10</restart-max>
 <startup-timeout>600</startup-timeout>
</server-template>

<cluster>
 <name>dynamic-cluster</name>
 <dynamic-servers>
 <server-template>dynamic-cluster-server-template</server-template>
 <maximum-dynamic-server-count>10</maximum-dynamic-server-count>
 <calculated-machine-names>true</calculated-machine-names>
 <machine-name-match-expression>dyn-machine*</machine-name-match-expression>
 <server-name-prefix>dynamic-server-</server-name-prefix>
 </dynamic-servers>
</cluster>

Preface

This preface describes the document accessibility features and conventions used in this guide—Administering Clusters for Oracle WebLogic Server 12.1.3.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	Document Scope and Audience
	Guide to this Document
	Related Documentation
	New and Changed Clustering Features in This Release

2 Understanding WebLogic Server Clustering

	What Is a WebLogic Server Cluster?
	What Are Dynamic Clusters?
	How Does a Cluster Relate to a Domain?
	What Are the Benefits of Clustering?
	What Are the Key Capabilities of a Cluster?
	What Types of Objects Can Be Clustered?
	Servlets and JSPs
	EJBs and RMI Objects
	JMS and Clustering

	What Types of Objects Cannot Be Clustered?

3 Communications In a Cluster

	Choosing WebLogic Server Cluster Messaging Protocols
	Using IP Multicast
	Multicast and Cluster Configuration

	One-to-Many Communication Using Unicast
	WebLogic Server Unicast Groups
	Assigning Server Instances to Groups
	Unicast Configuration
	Considerations When Using Unicast

	Considerations for Choosing Unicast or Multicast

	Peer-to-Peer Communication Using IP Sockets
	Pure-Java Versus Native Socket Reader Implementations
	Configuring Reader Threads for Java Socket Implementation
	Determining Potential Socket Usage

	Client Communication via Sockets
	Cluster-Wide JNDI Naming Service
	How WebLogic Server Creates the Cluster-Wide JNDI Tree
	How JNDI Naming Conflicts Occur
	Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts

	How WebLogic Server Updates the JNDI Tree
	Client Interaction with the Cluster-Wide JNDI Tree

4 Understanding Cluster Configuration

	Cluster Configuration and config.xml
	Role of the Administration Server
	What Happens if the Administration Server Fails?

	How Dynamic Configuration Works
	Application Deployment for Clustered Configurations
	Deployment Methods
	Introduction to Two-Phase Deployment
	First Phase of Deployment
	Second Phase of Deployment

	Guidelines for Deploying to a Cluster
	WebLogic Server Supports "Relaxed Deployment" Rules

	Methods of Configuring Clusters

5 Load Balancing in a Cluster

	Load Balancing for Servlets and JSPs
	Load Balancing with a Proxy Plug-in
	How Session Connection and Failover Work with a Proxy Plug-in

	Load Balancing HTTP Sessions with an External Load Balancer
	Load Balancer Configuration Requirements
	Load Balancers and the WebLogic Session Cookie
	Related Programming Considerations
	How Session Connection and Failover Works with a Load Balancer

	Load Balancing for EJBs and RMI Objects
	Round-Robin Load Balancing
	Weight-Based Load Balancing
	Random Load Balancing
	Server Affinity Load Balancing Algorithms
	Server Affinity and Initial Context
	Server Affinity and IIOP Client Authentication Using CSIv2
	Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity

	Parameter-Based Routing for Clustered Objects
	Optimization for Collocated Objects
	Transactional Collocation

	XA Transaction Cluster Affinity

	Load Balancing for JMS
	Server Affinity for Distributed JMS Destinations
	Initial Context Affinity and Server Affinity for Client Connections

6 Failover and Replication in a Cluster

	How WebLogic Server Detects Failures
	Failure Detection Using IP Sockets
	The WebLogic Server "Heartbeat"

	Replication and Failover for Servlets and JSPs
	HTTP Session State Replication
	Requirements for HTTP Session State Replication
	Using Replication Groups

	Accessing Clustered Servlets and JSPs Using a Proxy
	Proxy Connection Procedure
	Proxy Failover Procedure

	Accessing Clustered Servlets and JSPs with Load Balancing Hardware
	Connection with Load Balancing Hardware
	Failover with Load Balancing Hardware

	Session State Replication Across Clusters in a MAN/WAN
	Network Requirements for Cross-cluster Replication
	Configuration Requirements for Cross-Cluster Replication
	Configuring Session State Replication Across Clusters
	Configuring a Replication Channel
	MAN HTTP Session State Replication
	WAN HTTP Session State Replication

	Replication and Failover for EJBs and RMIs
	Clustering Objects with Replica-Aware Stubs
	Clustering Support for Different Types of EJBs
	Clustered EJBHomes
	Clustered EJBObjects
	Entity EJBs

	Clustering Support for RMI Objects
	Object Deployment Requirements
	Other Failover Exceptions

7 Whole Server Migration

	Understanding Server and Service Migration
	Migration Terminology
	Leasing
	Features That Use Leasing
	Types of Leasing
	Determining Which Type of Leasing To Use
	High-availability Database Leasing
	Server Migration with Database Leasing on RAC Clusters

	Non-database Consensus Leasing

	Automatic Whole Server Migration
	Preparing for Automatic Whole Server Migration
	Configuring Automatic Whole Server Migration
	Using High Availability Storage for State Data
	Server Migration Processes and Communications
	Startup Process in a Cluster with Migratable Servers
	Automatic Whole Server Migration Process
	Manual Whole Server Migration Process
	Administration Server Role in Whole Server Migration
	Migratable Server Behavior in a Cluster
	Node Manager Role in Whole Server Migration
	Cluster Master Role in Whole Server Migration

	Whole Server Migration with Dynamic and Mixed Clusters
	Configuring Whole Server Migration with Dynamic Clusters
	Configuring Whole Server Migration with Mixed Clusters

8 Service Migration

	Understanding the Service Migration Framework
	Migratable Services
	JMS-related Services
	JTA Transaction Recovery Service
	User-defined Singleton Services

	Understanding Migratable Targets In a Cluster
	Policies for Manual and Automatic Service Migration
	Options For Attempting to Restart Failed Services Before Migrating
	User-Preferred Servers and Candidate Servers
	Example Migratable Targets In a Cluster
	Targeting Rules for JMS Servers
	Targeting Rules for SAF Agents
	Targeting Rules for Path Service
	Targeting Rules for Custom Stores
	Migratable Targets For the JTA Transaction Recovery Service

	Migration Processing Tools
	Administration Console
	WebLogic Scripting Tool

	Automatic Service Migration Infrastructure
	Leasing for Migratable Services
	Node Manager
	Administration Server Not Required When Migrating Services
	Service Health Monitoring

	In-Place Restarting of Failed Migratable Services
	Migrating a Service From an Unavailable Server
	JMS and JTA Automatic Service Migration Interaction

	Pre-Migration Requirements
	Custom Store Availability for JMS Services
	Default File Store Availability for JTA
	Server State and Manual Service Migration

	Roadmap for Configuring Automatic Migration of JMS-related Services
	Step 1: Configure Managed Servers and Node Manager
	Step 2: Configure the Migration Leasing Basis
	Step 3: Configure Migratable Targets
	Configuring a Migratable Server as an Automatically Migratable Target
	Create a New Migratable Target

	Step 4: Configure and Target Custom Stores
	Step 5: Target the JMS Services
	Special Considerations When Targeting SAF Agents or Path Service

	Step 6: Restart the Administration Server and Managed Servers With Modified Migration Policies
	Step 7: Manually Migrate JMS Services Back to the Original Server

	Best Practices for Targeting JMS when Configuring Automatic Service Migration
	Roadmap for Configuring Manual Migration of JMS-related Services
	Step 1: Configure Managed Servers
	Step 2: Configure Migratable Targets
	Configuring a Migratable Server As a Migratable Target
	Create a New Migratable Target

	Step 3: Configure and Target Custom Stores
	Step 4: Target the JMS Services
	Special Considerations When Targeting SAF Agents or Path Service

	Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies
	Step 6: Manually Migrating JMS Services

	Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service
	Step 1: Configure Managed Servers and Node Manager
	Step 2: Configure the Migration Basis
	Step 3: Enable Automatic JTA Migration
	Select the Automatic JTA Migration Check Box
	Optionally Select Candidate Servers
	Optionally Specify Pre/Post-Migration Scripts

	Step 4: Configure the Default Persistent Store For Transaction Recovery Service Migration
	Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies
	Step 6: Automatic Failback of the Transaction Recovery Service Back to the Original Server

	Manual Migration of the JTA Transaction Recovery Service
	Automatic Migration of User-Defined Singleton Services
	Overview of Singleton Service Migration
	Singleton Master
	Migration Failure

	Implementing the Singleton Service Interface
	Deploying a Singleton Service and Configuring the Migration Behavior
	Packaging and Deploying a Singleton Service Within an Application
	Deploying a Singleton Service as a Standalone Service in WebLogic Server
	Configuring Singleton Service Migration

9 Cluster Architectures

	Architectural and Cluster Terminology
	Architecture
	Web Application Tiers
	Combined Tier Architecture
	De-Militarized Zone (DMZ)
	Load Balancer
	Proxy Plug-In

	Recommended Basic Architecture
	When Not to Use a Combined Tier Architecture

	Recommended Multi-Tier Architecture
	Physical Hardware and Software Layers
	Web/Presentation Layer
	Object Layer

	Benefits of Multi-Tier Architecture
	Load Balancing Clustered Objects in a in Multi-Tier Architecture
	Configuration Considerations for Multi-Tier Architecture
	IP Socket Usage
	Hardware Load Balancers

	Limitations of Multi-Tier Architectures
	No Collocation Optimization
	Firewall Restrictions

	Recommended Proxy Architectures
	Two-Tier Proxy Architecture
	Physical Hardware and Software Layers

	Multi-Tier Proxy Architecture
	Proxy Architecture Benefits
	Proxy Architecture Limitations
	Proxy Plug-In Versus Load Balancer

	Security Options for Cluster Architectures
	Basic Firewall for Proxy Architectures
	Firewall Between Proxy Layer and Cluster
	DMZ with Basic Firewall Configurations
	Combining Firewall with Load Balancer
	Expanding the Firewall for Internal Clients

	Additional Security for Shared Databases
	DMZ with Two Firewall Configuration

10 Setting up WebLogic Clusters

	Before You Start
	Understand the Configuration Process
	Determine Your Cluster Architecture
	Consider Your Network and Security Topologies
	Choose Machines for the Cluster Installation
	WebLogic Server Instances on Multi-CPU Machines
	Check Host Machines' Socket Reader Implementation
	Setting Up a Cluster on a Disconnected Windows Machine

	Identify Names and Addresses
	Avoiding Listen Address Problems
	Assigning Names to WebLogic Server Resources
	Administration Server Address and Port
	Managed Server Addresses and Listen Ports
	Cluster Multicast Address and Port
	Cluster Address

	Cluster Implementation Procedures
	Configuration Roadmap
	Install WebLogic Server
	Create a Clustered Domain
	Starting a WebLogic Server Cluster

	Configure Node Manager
	Configure Load Balancing Method for EJBs and RMIs
	Specifying a Timeout Value For RMIs
	Configure Server Affinity for Distributed JMS Destinations
	Configuring Load Balancers that Support Passive Cookie Persistence
	Configure Proxy Plug-Ins
	Set Up the HttpClusterServlet

	Configure Replication Groups
	Configure Migratable Targets for Pinned Services
	Package Applications for Deployment
	Deploy Applications
	Deploying to a Single Server Instance (Pinned Deployment)
	Cancelling Cluster Deployments
	Viewing Deployed Applications
	Undeploying Deployed Applications

	Deploying, Activating, and Migrating Migratable Services
	Deploying JMS to a Migratable Target Server Instance
	Activating JTA as a Migratable Service
	Migrating a Pinned Service to a Target Server Instance

	Configure In-Memory HTTP Replication
	Additional Configuration Topics
	Configure IP Sockets
	Configure Multicast Time-To-Live (TTL)
	Configure Multicast Buffer Size
	Configure Multicast Data Encryption
	Configure Machine Names
	Configuration Notes for Multi-Tier Architecture
	Enable URL Rewriting

11 Dynamic Clusters

	What Are Dynamic Clusters?
	Why Do You Use Dynamic Clusters?
	How Do Dynamic Clusters Work?
	Creating and Configuring Dynamic Clusters
	Using Server Templates
	Calculating Server-Specific Attributes
	Calculating Server Names
	Calculating Listen Ports
	Calculating Machine Names

	Starting and Stopping Servers in Dynamic Clusters
	Using Whole Server Migration with Dynamic Clusters
	Expanding or Reducing Dynamic Clusters
	Deploying Applications to Dynamic Clusters
	Using WebLogic Web Server Plug-Ins with Dynamic Clusters

	Limitations and Considerations When Using Dynamic Clusters
	Dynamic Clusters Example

12 Configuring and Managing Coherence Clusters

	Overview of Coherence Clusters
	Setting Up a Coherence Cluster
	Define a Coherence Cluster Resource
	Create Standalone Managed Coherence Servers

	Creating Coherence Deployment Tiers
	Configuring and Managing a Coherence Data Tier
	Create a Coherence Data Tier
	Create Managed Coherence Servers for a Data Tier

	Configuring and Managing a Coherence Application Tier
	Create a Coherence Application Tier
	Create Managed Coherence Servers for an Application Tier

	Configuring and Managing a Coherence Proxy Tier
	Create a Coherence Proxy Tier
	Create Managed Coherence Servers for a Proxy Tier
	Configure Coherence Proxy Services

	Configuring a Coherence Cluster
	Adding and Removing Coherence Cluster Members
	Setting Advanced Cluster Configuration Options
	Configure Cluster Communication
	Changing the Coherence Cluster Mode
	Changing the Coherence Cluster Transport Protocol

	Overriding a Cache Configuration File
	Configuring Coherence Logging

	Configuring Managed Coherence Servers
	Configure Coherence Cluster Member Storage Settings
	Configure Coherence Cluster Member Unicast Settings
	Configure a Coherence Cluster Member as a Management Node
	Configure Coherence Cluster Member Identity Settings
	Configure Coherence Cluster Member Logging Levels

	Using a Single-Server Cluster
	Using WLST (Offline) for Coherence Cluster Setup

13 Clustering Best Practices

	General Design Considerations
	Strive for Simplicity
	Minimize Remote Calls
	Session Facades Reduce Remote Calls
	Transfer Objects Reduce Remote Calls
	Distributed Transactions Increase Remote Calls

	Web Application Design Considerations
	Configure In-Memory Replication
	Design for Idempotence
	Programming Considerations

	EJB Design Considerations
	Design Idempotent Methods
	Follow Usage and Configuration Guidelines
	Cluster-Related Configuration Options

	State Management in a Cluster
	Application Deployment Considerations
	Architecture Considerations
	Avoiding Problems
	Naming Considerations
	Administration Server Considerations
	Firewall Considerations
	Evaluate Cluster Capacity Prior to Production Use

14 Troubleshooting Common Problems

	Before You Start the Cluster
	Check the Server Version Numbers
	Check the Multicast Address
	Check the CLASSPATH Value

	After You Start the Cluster
	Check Your Commands
	Generate a Log File
	Getting an Oracle HotSpot VM Thread Dump

	Check Garbage Collection
	Run utils.MulticastTest

15 Troubleshooting Multicast Configuration

	Verifying Multicast Address and Port Configuration
	Possible Errors
	Checking the Multicast Address and Port

	Identifying Network Configuration Problems
	Physical Connections
	Address Conflicts
	nsswitch.conf Settings on UNIX Systems

	Using the MulticastTest Utility
	Tuning Multicast Features
	Multicast Timeouts
	Cluster Heartbeats
	Multicast Send Delay
	Operating System Parameters

	Multicast Storms
	Multicast and Multihomed Machines
	Multicast in Different Subnets

	Debugging Multicast
	Debugging Utilities
	MulticastMonitor
	MulticastTest

	Debugging Flags
	Setting Debug Flags on the Command Line
	Setting Debug Attributes Using WLST

	Miscellaneous Issues
	Multicast on AIX
	File Descriptor Problems

	Other Resources for Troubleshooting Multicast Configuration

A The WebLogic Cluster API

	How to Use the API
	Custom Call Routing and Collocation Optimization

B Configuring BIG-IP Hardware with Clusters

C Configuring F5 Load Balancers for MAN/WAN Failover

	Requirements
	Configure Local Load Balancers
	Virtual Server IPs and Pools
	Create a Failover Trigger Virtual Server and Pool
	Create a Multi-layered Virtual Server and IP Pool

	Configure the 3-DNS Global Hardware Load Balancer
	Configure DNS Zones
	Configure BIG-IP Addresses Managed by 3-DNS
	Configure Data Centers
	Configure Wide IPs

	Configuring WebLogic Server Components

D Configuring Radware Load Balancers for MAN/WAN Failover

	Requirements
	Step 1: Configure an Authoritative Delegation Zone
	Step 2: Configure Farm Virtual IPs and Servers
	Create a Farm IP
	Configure the Dispatch Method for the Server Farm
	Creating Farm Servers

	Step 3: Configure Port Multiplexing
	Step 4: Configure HTTP Redirects
	Step 5: Configure Session ID Persistency
	Step 6: Configure LRP
	Step 7: Configure WebLogic Server Components

10 Setting up WebLogic Clusters

This chapter contains guidelines and instructions for configuring a cluster in WebLogic Server 12.1.3.

This chapter includes the following sections:

	
Before You Start

	
Cluster Implementation Procedures

Before You Start

This section summarizes prerequisite tasks and information for setting up a WebLogic Server cluster.

Understand the Configuration Process

The information in this section will be most useful to you if you have a basic understanding of the cluster configuration process and how configuration tasks are accomplished.

For information about the configuration facilities available in WebLogic Server and the tasks they support, see Understanding Cluster Configuration.

Determine Your Cluster Architecture

Determine what cluster architecture best suits your needs. Key architectural decisions include:

	
Should you combine all application tiers in a single cluster or segment your application tiers in separate clusters?

	
How will you balance the load among server instances in your cluster? Will you:

	
Use basic WebLogic Server load balancing,

	
Implement a third-party load balancer, or

	
Deploy the Web tier of your application on one or more secondary HTTP servers, and proxy requests to it?

	
Should you define your Web applications De-Militarized Zone (DMZ) with one or more firewalls?

To guide these decisions, see Cluster Architectures, and Load Balancing in a Cluster.

The architecture you choose affects how you set up your cluster. The cluster architecture may also require that you install or configure other resources, such as load balancers, HTTP servers, and proxy plug-ins.

Consider Your Network and Security Topologies

Your security requirements form the basis for designing the appropriate security topology. For a discussion of several alternative architectures that provide varying levels of application security, see Security Options for Cluster Architectures.

	
Note:

Some network topologies can interfere with multicast communication. If you are deploying a cluster across a WAN, see If Your Cluster Spans Multiple Subnets In a WAN.
Avoid deploying server instances in a cluster across a firewall. For a discussion of the impact of tunneling multicast traffic through a firewall, see Firewalls Can Break Multicast Communication.

Choose Machines for the Cluster Installation

Identify the machine or machines where you plan to install WebLogic Server—throughout this section we refer to such machines as "hosts"—and ensure that they have the resources required. WebLogic Server allows you to set up a cluster on a single, non-multihomed machine. This new capability is useful for demonstration or development environments.

	
Note:

Do not install WebLogic Server on machines that have dynamically assigned IP addresses.

WebLogic Server Instances on Multi-CPU Machines

WebLogic Server has no built-in limit for the number of server instances that can reside in a cluster. Large, multi-processor servers such as Sun Microsystems, Inc. Sun Enterprise 10000 can host very large clusters or multiple clusters.

Oracle recommends that you start with one server per CPU and then scale up based on the expected behavior. However, as with all capacity planning, you should test the actual deployment with your target Web applications to determine the optimal number and distribution of server instances. See "Running Multiple Server Instances on Multi-Core Machines" in Tuning Performance of Oracle WebLogic Server for additional information.

Check Host Machines' Socket Reader Implementation

For best socket performance, configure the WebLogic Server host machine to use the native socket reader implementation for your operating system, rather than the pure-Java implementation. To understand why, and for instructions for configuring native sockets or optimizing pure-Java socket communications, see Peer-to-Peer Communication Using IP Sockets.

Setting Up a Cluster on a Disconnected Windows Machine

If you want to demonstrate a WebLogic Server cluster on a single, disconnected Windows machine, you must force Windows to load the TCP/IP stack. By default, Windows does not load the TCP/IP stack if it does not detect a physical network connection.

To force Windows to load the TCP/IP stack, disable the Windows media sensing feature using the instructions in How to Disable Media Sense for TCP/IP in Windows at http://support.microsoft.com/default.aspx?scid=kb;en-us;239924.

Identify Names and Addresses

During the cluster configuration process, you supply addressing information—IP addresses or DNS names, and port numbers—for the server instances in the cluster.

For information on intra-cluster communication, and how it enables load balancing and failover, see Choosing WebLogic Server Cluster Messaging Protocols.

When you set up your cluster, you must provide location information for:

	
Administration Server

	
Managed Servers

	
Multicast location

Read the sections that follow for an explanation of the information you must provide, and factors that influence the method you use to identify resources.

Avoiding Listen Address Problems

As you configure a cluster, you can specify address information using either IP addresses or DNS names.

DNS Names or IP Addresses?

Consider the purpose of the cluster when deciding whether to use DNS names or IP addresses. For production environments, the use of DNS names is generally recommended. The use of IP addresses can result in translation errors if:

	
Clients will connect to the cluster through a firewall, or

	
You have a firewall between the presentation and object tiers, for example, you have a servlet cluster and EJB cluster with a firewall in between, as described in the recommended multi-tier cluster.

You can avoid translation errors by binding the address of an individual server instance to a DNS name. Make sure that a server instance's DNS name is identical on each side of firewalls in your environment, and do not use a DNS name that is also the name of an NT system on your network.

For more information about using DNS names instead of IP addresses, see Firewall Considerations.

When Internal and External DNS Names Vary

If the internal and external DNS names of a WebLogic Server instance are not identical, use the ExternalDNSName attribute for the server instance to define the server's external DNS name. Outside the firewall the ExternalDNSName should translate to external IP address of the server. If clients are accessing WebLogic Server over the default channel and T3, do not set the ExternalDNSName attribute, even if the internal and external DNS names of a WebLogic Server instance are not identical.

Localhost Considerations

If you identify a server instance's listen address as localhost, non-local processes will not be able to connect to the server instance. Only processes on the machine that hosts the server instance will be able to connect to the server instance. If the server instance must be accessible as localhost (for instance, if you have administrative scripts that connect to localhost), and must also be accessible by remote processes, leave the listen address blank. The server instance will determine the address of the machine and listen on it.

Assigning Names to WebLogic Server Resources

Make sure that each configurable resource in your WebLogic Server environment has a unique name. Each, domain, server, machine, cluster, data source, virtual host, or other resource must have a unique name.

Administration Server Address and Port

Identify the DNS name or IP address and listen port of the Administration Server you will use for the cluster.

The Administration Server is the WebLogic Server instance used to configure and manage all the Managed Servers in its domain. When you start a Managed Server, you identify the host and port of its Administration Server.

Managed Server Addresses and Listen Ports

Identify the DNS name or IP address of each Managed Server planned for your cluster.

Each Managed Server in a cluster must have a unique combination of address and listen port number. Clustered server instances on a single non-multihomed machine can have the same address, but must use a different listen port.

Cluster Multicast Address and Port

Identify the address and port you will dedicate to multicast communications for your cluster. A multicast address is an IP address between 224.0.0.0 and 239.255.255.255.

	
Note:

The default multicast value used by WebLogic Server is 239.192.0.0. You should not use any multicast address with the value x.0.0.1.

Server instances in a cluster communicate with each other using multicast—they use multicast to announce their services, and to issue periodic heartbeats that indicate continued availability.

The multicast address for a cluster should not be used for any purpose other than cluster communications. If the machine where the cluster multicast address exists hosts or is accessed by cluster-external programs that use multicast communication, make sure that those multicast communications use a different port than the cluster multicast port.

Multicast and Multiple Clusters

Multiple clusters on a network may share a multicast address and multicast port combination if necessary.

Multicast and Multi-Tier Clusters

If you are setting up the Recommended Multi-Tier Architecture, described in Chapter 9, "Cluster Architectures," with a firewall between the clusters, you will need two dedicated multicast addresses: one for the presentation (servlet) cluster and one for the object cluster. Using two multicast addresses ensures that the firewall does not interfere with cluster communication.

Cluster Address

In WebLogic Server cluster, the cluster address is used in entity and stateless beans to construct the host name portion of request URLs.

You can explicitly define the cluster address when you configure the a cluster; otherwise, WebLogic Server dynamically generates the cluster address for each new request. Allowing WebLogic Server to dynamically generate the cluster address is simplest, in terms of system administration, and is suitable for both development and production environments.

Dynamic Cluster Address

If you do not explicitly define a cluster address when you configure a cluster, when a clustered server instance receives a remote request, WebLogic Server generates the cluster address, in the form:

listenaddress1:listenport1,listenaddress2:listenport2;listenaddress3:
listenport3

Each listen address:listen port combination in the cluster address corresponds to Managed Server and network channel that received the request.

	
If the request was received on the Managed Server's default channel, the listen address:listen port combinations in the cluster address reflect the ListenAddress and ListenPort values from the associated ServerMBean and SSLMBean instances. For more information, see "The Default Network Channel" in Administering Server Environments for Oracle WebLogic Server.

	
If the request was received on a custom network channel, the listen address:listen port in the cluster address reflect the ListenAddress and ListenPort values from NetworkAccessPointMBean that defines the channel. For more information about network channels in a cluster, see "Configuring Network Channels For a Cluster" in Administering Server Environments for Oracle WebLogic Server.

The number of ListenAddress:ListenPort combinations included in the cluster address is governed by the value of the NumberOfServersInClusterAddress attribute on the ClusterMBean, which is 3 by default.

You can modify the value of NumberOfServersInClusterAddress on the Environments > Clusters > ClusterName > Configuration > General page of the WebLogic Server Administration Console.

	
If there are fewer Managed Servers available in the cluster than the value of NumberOfServersInClusterAddress, the dynamically generated cluster address contains a ListenAddress:ListenPort combination for each of the running Managed Servers.

	
If there are more Managed Servers available in the cluster than the value of NumberOfServersInClusterAddress, WebLogic Server randomly selects a subset of the available instances—equal to the value of NumberOfServersInClusterAddress—and uses the ListenAddress:ListenPort combination for those instances to form the cluster address.

The order in which the ListenAddress:ListenPort combinations appear in the cluster address is random—from request to request, the order will vary.

Explicitly Defining Cluster Address for Production Environments

If you explicitly define a cluster address for a cluster in a production environment, specify the cluster address as a DNS name that maps to the IP addresses or DNS names of each WebLogic Server instance in the cluster.

If you define the cluster address as a DNS name, the listen ports for the cluster members are not specified in the cluster address—it is assumed that each Managed Server in the cluster has the same listen port number. Because each server instance in a cluster must have a unique combination of address and listen port, if a cluster address is a DNS name, each server instance in the cluster must have:

	
a unique address and

	
the same listen port number

When clients obtain an initial JNDI context by supplying the cluster DNS name, weblogic.jndi.WLInitialContextFactory obtains the list of all addresses that are mapped to the DNS name. This list is cached by WebLogic Server instances, and new initial context requests are fulfilled using addresses in the cached list with a round-robin algorithm. If a server instance in the cached list is unavailable, it is removed from the list. The address list is refreshed from the DNS service only if the server instance is unable to reach any address in its cache.

Using a cached list of addresses avoids certain problems with relying on DNS round-robin alone. For example, DNS round-robin continues using all addresses that have been mapped to the domain name, regardless of whether or not the addresses are reachable. By caching the address list, WebLogic Server can remove addresses that are unreachable, so that connection failures aren't repeated with new initial context requests.

	
Note:

The Administration Server should not participate in a cluster. Ensure that the Administration Server's IP address is not included in the cluster-wide DNS name. For more information, see Administration Server Considerations.

Explicitly Defining Cluster Address for Development and Test Environments

If you explicitly define a cluster address for use in development environments, you can use a cluster DNS name for the cluster address, as described in the previous section.

Alternatively, you can define the cluster address as a list that contains the DNS name (or IP address) and listen port of each Managed Server in the cluster, as shown in the examples below:

DNSName1:port1,DNSName1:port2,DNSName1:port3
IPaddress1:port1,IPaddress2:port2;IPaddress3:port3

Note that each cluster member has a unique address and port combination.

Explicitly Defining Cluster Address for Single, Multihomed Machine

If your cluster runs on a single, multihomed machine, and each server instance in the cluster uses a different IP address, define the cluster address using a DNS name that maps to the IP addresses of the server instances in the cluster. If you define the cluster address as a DNS name, specify the same listen port number for each of the Managed Servers in the cluster.

Cluster Implementation Procedures

This section describes how to get a clustered application up and running, from installation of WebLogic Server through initial deployment of application components.

Configuration Roadmap

This section lists typical cluster implementation tasks, and highlights key configuration considerations. The exact process you follow is driven by the unique characteristics of your environment and the nature of your application. These tasks are described:

	
Install WebLogic Server

	
Create a Clustered Domain

	
Configure Node Manager

	
Configure Load Balancing Method for EJBs and RMIs

	
Configure Server Affinity for Distributed JMS Destinations

	
Configuring Load Balancers that Support Passive Cookie Persistence

	
Configure Proxy Plug-Ins

	
Configure Replication Groups

	
Configure Migratable Targets for Pinned Services

	
Package Applications for Deployment

	
Deploy Applications

	
Deploying, Activating, and Migrating Migratable Services

	
Configure In-Memory HTTP Replication

	
Additional Configuration Topics

Not every step is required for every cluster implementation. Additional steps may be necessary in some cases.

Install WebLogic Server

If you have not already done so, install WebLogic Server. For instructions, see Installing and Configuring Oracle WebLogic Server and Coherence.

	
If the cluster will run on a single machine, do a single installation of WebLogic Server under the /Oracle directory to use for all clustered instances.

	
For remote, networked machines, install the same version of WebLogic Server on each machine. Each machine:

	
Must have permanently assigned, static IP addresses. You cannot use dynamically-assigned IP addresses in a clustering environment.

	
Must be accessible to clients. If the server instances are behind a firewall and the clients are in front of the firewall, each server instance must have a public IP address that can be reached by the clients.

	
Must be located on the same local area network (LAN) and must be reachable via IP multicast.

Create a Clustered Domain

The are multiple methods of creating a clustered domain. For a list, see Methods of Configuring Clusters.

For instructions to create a cluster using the:

	
Configuration Wizard, first see "Creating a WebLogic Domain" in Creating WebLogic Domains Using the Configuration Wizard for instructions on creating the domain, and then "Clusters" for instructions on configuring a cluster.

	
WebLogic Server Administration Console, see "Create and configure clusters" in Oracle WebLogic Server Administration Console Online Help.

Starting a WebLogic Server Cluster

There are multiple methods of starting a cluster—available options include the command-line interface, scripts that contain the necessary commands, and Node Manager.

	
Note:

Node Manager eases the process of starting servers, and restarting them after failure.
To use Node Manager, you must first configure a Node Manager process on each machine that hosts Managed Servers in the cluster. See Configure Node Manager.

Regardless of the method you use to start a cluster, start the Administration Server first, then start the Managed Servers in the cluster.

Follow the instructions below to start the cluster from a command shell. Note that each server instance is started in a separate command shell.

	
Open a command shell.

	
Change directory to the domain directory that you created with the Configuration Wizard.

	
Type this command to start the Administration Server:

StartWebLogic

	
Enter the user name for the domain at the "Enter username to boot WebLogic Server" prompt.

	
Enter the password for the domain at the "Enter password to boot WebLogic Server" prompt.

The command shell displays messages that report the status of the startup process.

	
Open another command shell so that you can start a Managed Server.

	
Change directory to the domain directory that you created with the Configuration Wizard.

	
Type this command

StartManagedWebLogic server_name address:port

where:

server_name is the name of the Managed Server you wish to start

address is the IP address or DNS name for the Administration Server for the domain

port is the listen port for the Administration Server for the domain

	
Enter the user name for the domain at the "Enter username to boot WebLogic Server" prompt.

	
Enter the password for the domain at the "Enter password to boot WebLogic Server" prompt.

The command shell displays messages that report the status of the startup process.

	
Note:

After you start a Managed Server, it listens for heartbeats from other running server instances in the cluster. The Managed Server builds its local copy of the cluster-wide JNDI tree, as described in How WebLogic Server Updates the JNDI Tree, and displays status messages when it has synchronized with each running Managed Server in the cluster. The synchronization process can take a minute or so.

	
To start another server instance in the cluster, return to step 6. Continue through step 10.

	
When you have started all Managed Servers in the cluster, the cluster startup process is complete.

Configure Node Manager

Node Manager is a standalone program provided with WebLogic Server that is useful for starting a Managed Server that resides on a different machine than its Administration Server. Node Manager also provides features that help increase the availability of Managed Servers in your cluster. For more information, and for instructions to configure and use Node Manager, see Administering Node Manager for Oracle WebLogic Server.

Configure Load Balancing Method for EJBs and RMIs

Follow the instructions in this section to select the load balancing algorithm for EJBs and RMI objects.

Unless you explicitly specify otherwise, WebLogic Server uses the round-robin algorithm as the default load balancing strategy for clustered object stubs. To understand alternative load balancing algorithms, see Load Balancing for EJBs and RMI Objects. To change the default load balancing algorithm:

	
Open the WebLogic Server Administration Console.

	
Select Environments > Clusters.

	
Select the name of your cluster in the table.

	
If you have not already done so, click Lock & Edit in the top left corner of the Console.

	
Enter the desired load balancing algorithm in the Default Load Algorithm field.

	
Select Advanced.

	
Enter the desired value in the Service Age Threshold field

	
Click Save to save your changes.

	
Click Activate Changes in the top left corner once you are ready to activate your changes.

Specifying a Timeout Value For RMIs

You can enable a timeout option when making calls to the ReplicationManager by setting the ReplicationTimeoutEnabled in the ClusterMBean to true.

The timeout value is equal to the multicast heartbeat timeout. Although you can customize the multicast timeout value, the ReplicationManager timeout cannot be changed. This restriction exists because the ReplicationManager timeout does not affect cluster membership. A missing multicast heartbeat causes the member to be removed from the cluster and the timed out ReplicationManager call will choose a new secondary server to connect to.

	
Note:

It is possible that a cluster member will continue to send multicast heartbeats, but will be unable to process replication requests. This could potentially cause an uneven distribution of secondary servers. When this situation occurs, a warning message is recorded in the server logs.

Configure Server Affinity for Distributed JMS Destinations

To understand the server affinity support provided by WebLogic Server for JMS, see Load Balancing for JMS.

Configuring Load Balancers that Support Passive Cookie Persistence

Load balancers that support passive cookie persistence can use information from the WebLogic Server session cookie to associate a client with the WebLogic Server instance that hosts the session. The session cookie contains a string that the load balancer uses to identify the primary server instance for the session.

For a discussion of external load balancers, session cookie persistence, and the WebLogic Server session cookie, see Load Balancing HTTP Sessions with an External Load Balancer.

To configure the load balancer to work with your cluster, use the facilities of the load balancer to define the offset and length of the string constant.

Assuming that the Session ID portion of the session cookie is the default length of 52 bytes, on the load balancer, set:

	
string offset to 53 bytes, the default Random Session ID length plus 1 byte for the delimiter character.

	
string length to 10 bytes

If your application or environmental requirements dictate that you change the length of the Random Session ID from its default value of 52 bytes, set the string offset on the load balancer accordingly. The string offset must equal the length of the Session ID plus 1 byte for the delimiter character.

	
Note:

For vendor-specific instructions for configuring Big-IP load balancers, see Appendix B, "Configuring BIG-IP Hardware with Clusters."

Configure Proxy Plug-Ins

Refer to the instructions in this section if you wish to load balance servlets and JSPs using a proxy plug-in. A proxy plug-in proxies requests from a Web server to WebLogic Server instances in a cluster, and provides load balancing and failover for the proxied HTTP requests.

For information about load balancing using proxy plug-ins, see Load Balancing with a Proxy Plug-in. For information about connection and failover using proxy plug-ins, see Replication and Failover for Servlets and JSPs, and Accessing Clustered Servlets and JSPs Using a Proxy.

	
If you use WebLogic Server as a Web server, set up HttpClusterServlet using the instructions in Set Up the HttpClusterServlet.

	
If you use a supported third-party Web server, set up a product-specific plug-in (for a list of supported Web servers, see Load Balancing with a Proxy Plug-in) follow the instructions in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3.

	
Note:

Each Web server that proxies requests to a cluster must have an identically configured plug-in.

Set Up the HttpClusterServlet

To use the HTTP cluster servlet, configure it as the default Web application on your proxy server machine, as described in the steps below. For an introduction to Web applications, see "Understanding Web Applications, Servlets, and JSPs" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

	
If you have not already done so, configure a separate, non-clustered Managed Server to host the HTTP Cluster Servlet.

	
Create the web.xml deployment descriptor file for the servlet. This file must reside in the \WEB-INF subdirectory of the Web application directory. A sample deployment descriptor for the proxy servlet is provided in Sample web.xml. For more information on web.xml, see "Understanding Web Applications, Servlets, and JSPs" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

	
Define the name and class for the servlet in the <servlet> element in web.xml. The servlet name is HttpClusterServlet. The servlet class is weblogic.servlet.proxy.HttpClusterServlet.

	
Identify the clustered server instances to which the proxy servlet will direct requests in the <servlet> element in web.xml, by defining the WebLogicCluster parameter.

	
Optionally, define the following <KeyStore> initialization parameters to use two-way SSL with your own identity certificate and key. If no <KeyStore> is specified in the deployment descriptor, the proxy will assume one-way SSL.

	
<KeyStore>—The key store location in your Web application.

	
<KeyStoreType>—The key store type. If it is not defined, the default type will be used instead.

	
<PrivateKeyAlias>—The private key alias.

	
<KeyStorePasswordProperties>—A property file in your Web application that defines encrypted passwords to access the key store and private key alias. The file contents looks like this:

KeyStorePassword={AES}yWv/i0qhfM4/IvzoghzjHj/xpJUkQPF8OWuSfh0f0Ss=
PrivateKeyPassword={AES}wr86u9Z5DHr+5p7WIbzTDSy4M/sl7EYnX/K5xzcarDQ=

You must use the weblogic.security.Encrypt command-line utility to encrypt the password. For more information on the Encrypt utility, as well as the CertGen, and der2pem utilities, see "Using the Oracle WebLogic Server Java Utilities" in the Command Reference for Oracle WebLogic Server.

	
Create <servlet-mapping> stanzas to specify the requests that the servlet will proxy to the cluster, using the <url-pattern> element to identify specific file extensions, for example *.jsp, or *.html. Define each pattern in a separate <servlet-mapping> stanza.

You can set the <url-pattern> to "/" to proxy any request that cannot be resolved by WebLogic Server to the remote server instance. If you do so, you must also specifically map the following extensions: *.jsp, *.html, and *.html, to proxy files ending with those extensions. For an example, see Sample web.xml.

	
You can enable the WLProxyPassThrough attribute to allow the header to be passed through a chain of proxies and the WLProxySSLPassThrough attribute so that the use of SSL is passed on to WebLogic Server. For a complete description of these attributes, see "General Parameters for Web Server Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3.

	
Define, as appropriate, any additional parameters. See Table 10-1 for a list of key parameters. See "Parameters for Web Server Plug-ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3 for a complete list. Follow the syntax instructions in Proxy Servlet Deployment Parameters.

	
Create the weblogic.xml deployment descriptor file for the servlet. This file must reside in the \WEB-INF subdirectory of the Web application directory.

Assign the proxy servlet as the default Web application for the Managed Server on the proxy machine by setting the <context-root> element to a forward slash character (/) in the <weblogic-web-app> stanza. For an example, see Sample weblogic.xml.

	
In the WebLogic Server Administration Console, deploy the servlet to the Managed Server on your proxy server machine. For instructions, see "Deploy applications and modules" in Oracle WebLogic Server Administration Console Online Help.

Sample web.xml

This section contains a sample deployment descriptor file (web.xml) for HttpClusterServlet.

web.xml defines parameters that specify the location and behavior of the proxy servlet: both versions of the servlet:

	
The DOCTYPE stanza specifies the DTD used by WebLogic Server to validate web.xml.

	
The servlet stanza:

	
Specifies the location of the proxy plug-in servlet class. The file is located in the weblogic.jar in your WL_HOME/server/lib directory. You do not have to specify the servlet's full directory path in web.xml because weblogic.jar is put in your CLASSPATH when you start WebLogic Server.

	
Identifies the host name (either DNS name or IP address) and listen port of each Managed Servers in the cluster, using the WebLogicCluster parameter.

	
Identifies the key store initialization parameters to use two-way SSL with your own identity certificate and key.

	
The three servlet-mapping stanzas specify that the servlet will proxy URLs that end in '/', 'htm', 'html', or 'jsp' to the cluster.

For parameter definitions see Proxy Servlet Deployment Parameters.

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd";>

<web-app>
<servlet>
 <servlet-name>HttpClusterServlet</servlet-name>
 <servlet-class>
 weblogic.servlet.proxy.HttpClusterServlet
 </servlet-class>
 <init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>hostname1:7736|hostname2:7736|hostname:7736</param-value>
 </init-param>
 <init-param>
 <param-name>KeyStore</param-name>
 <param-value>/mykeystore</param-value>
 </init-param>
 <init-param>
 <param-name>KeyStoreType</param-name>
 <param-value>jks</param-value>
 </init-param>
 <init-param>
 <param-name>PrivateKeyAlias</param-name>
 <param-value>passalias</param-value>
 </init-param>
 <init-param>
 <param-name>KeyStorePasswordProperties</param-name>
 <param-value>mykeystore.properties</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>*.jsp</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>
</web-app>

Sample weblogic.xml

This section contains a sample weblogic.xml file. The <context-root> deployment parameter is set to "/". This makes the proxy servlet the default Web application for the proxy server.

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 9.1//EN" "http://www.bea.com/servers/wls810/dtd/weblogic
810-web-jar.dtd">
 <weblogic-web-app>
 <context-root>/</context-root>
 </weblogic-web-app>

Proxy Servlet Deployment Parameters

Key parameters for configuring the behavior of the proxy servlet in web.xml are listed in Table 10-0.

The parameters for the proxy servlet are the same as those used to configure WebLogic Server plug-ins for Apache, Microsoft, and Netscape Web servers. For a complete list of parameters for configuring the proxy servlet and the plug-ins for third-part Web servers see "Parameters for Web Server Plug-ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3.

The syntax for specifying the parameters, and the file where they are specified, is different for the proxy servlet and for each of the plug-ins.

For the proxy servlet, specify the parameters in web.xml, each in its own <init-param> stanza within the <servlet> stanza of web.xml. For example:

<init-param>
 <param-name>ParameterName</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

Table 10-1 Proxy Servlet Deployment Parameter

	Parameter	Usage
	

WebLogicCluster

	

<init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>WLS1.com:port|WLS2.com:port
</param-value>

Where WLS1.com and WLS2.com are the host names of servers in the cluster, and port is a port where the host is listening for HTTP requests.

If you are using SSL between the plug-in and WebLogic Server, set the port number to the SSL listen port (see "Configuring the Listen Port") and set the SecureProxy parameter to ON.

	

SecureProxy

	

<init-param>
 <param-name>SecureProxy</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

Valid values are ON and OFF.

If you are using SSL between the plug-in and WebLogic Server, set the port number to the SSL listen port (see "Configuring the Listen Port") and set the SecureProxy parameter to ON.

	

DebugConfigInfo

	

<init-param>
 <param-name>DebugConfigInfo</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

Valid values are ON and OFF.

If set to ON, you can query the HttpClusterServlet for debugging information by adding a request parameter of ?__WebLogicBridgeConfig to any request. (Note: There are two underscore (_) characters after the ?.) For security reasons, it is recommended that you set the DebugConfigInfo parameter to OFF in a production environment.

	

ConnectRetrySecs

	
Interval in seconds that the servlet will sleep between attempts to connect to a server instance. Assign a value less than ConnectTimeoutSecs.

The number of connection attempts the servlet makes before returning an HTTP 503/Service Unavailable response to the client is ConnectTimeoutSecs divided by ConnectRetrySecs.

Syntax:

<init-param>
 <param-name>ConnectRetrySecs</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

	

ConnectTimeoutSecs

	
Maximum time in seconds that the servlet will attempt to connect to a server instance. Assign a value greater than ConnectRetrySecs.

If ConnectTimeoutSecs expires before a successful connection, an HTTP 503/Service Unavailable response is sent to the client.

Syntax:

<init-param>
<param-name>ConnectTimeoutSecs</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

	

PathTrim

	
String trimmed by the plug-in from the beginning of the original URL, before the request is forwarded to the cluster.

Syntax:

<init-param>
<param-name>PathTrim</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

Example:

If the URL

http://myWeb.server.com/weblogic/foo

is passed to the plug-in for parsing and if PathTrim has been set to

/weblogic

the URL forwarded to WebLogic Server is:

http://myWeb.server.com:7001/foo

	

TrimExt

	
The file extension to be trimmed from the end of the URL.

Syntax:

<init-param>
<param-name>TrimExt</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

	

clientCertProxy

	
Specifies to trust client certificates in the WL-Proxy-Client-Cert header.

Valid values are true and false. The default value is false.

This setting is useful if user authentication is performed on the proxy server—setting clientCertProxy to true causes the proxy server to pass on the certs to the cluster in a special header, WL-Proxy-Client-Cert.

The WL-Proxy-Client-Cert header can be used by any client with direct access to WebLogic Server. WebLogic Server takes the certificate information from that header, trusting that is came from a secure source (the plug-in) and uses that information to authenticate the user.

For this reason, if you set clientCertProxy to true, use a connection filter to ensure that WebLogic Server accepts connections only from the machine on which the plug-in is running. See "Using Network Connection Filters" in Developing Applications with the WebLogic Security Service.

	

PathPrepend

	
String that the servlet prepends to the original URL, after PathTrim is trimmed, before forwarding the URL to the cluster.

<init-param>
<param-name>PathPrepend</param-name>
 <param-value>ParameterValue</param-value>
</init-param>

	
RoutingHandlerClassName

	
Extends the proxy servlet to support Web service cluster routing. For more information, see "Managing Web Services in a Cluster" in Developing JAX-WS Web Services for Oracle WebLogic Server.

<init-param>
<param-name>RoutingHandlerClassName</param-name>
 <param-value>
 weblogic.wsee.jaxws.cluster.proxy.SOAPRoutingHandler
 </param-value>
</init-param>

Accessing Applications Via the Proxy Server

Ensure that applications clients will access via the proxy server are deployed to your cluster. Address client requests to the listen address and listen port of the proxy server.

If you have problems:

	
Make sure all servers instances have unique address/port combinations

Each of the server instances in the configuration must have a unique combination of listen address and listen port.

	
Make sure that the proxy servlet is the default application for the proxy server

If you get a page not found error when you try to your application, make sure that weblogic.xml is in \WEB-INF for the application and that it sets the context-root deployment parameter to "/".

	
When all else fails, restart

If you are having problems try rebooting all your servers, some of the changes you made while configuring your setup may not have been persisted to the configuration file.

	
Verify Your Configuration

To verify the configuration of the HttpClusterServlet:

	
Set the DebugConfigInfo parameter in web.xml to ON.

	
Use a Web browser to access the following URL:

http://myServer:port/placeholder.jsp?__WebLogicBridgeConfig

Where:

myServer is the Managed Server on the proxy machine where HttpClusterServlet runs, port is the port number on that server that is listening for HTTP requests, and placeholder.jsp is a file that does not exist on the server.

The plug-in gathers configuration information and run-time statistics and returns the information to the browser. For more information, see "Parameters for Web Server Plug-ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3.

Configure Replication Groups

To support automatic failover for servlets and JSPs, WebLogic Server replicates HTTP session states in memory. You can further control where secondary states are placed using replication groups. A replication group is a preferred list of clustered instances to be used for storing session state replicas.

If your cluster will host servlets or stateful session EJBs, you may want to create replication groups of WebLogic Server instances to host the session state replicas.

For instructions on how to determine which server instances should participate in each replication group, and to determ