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Preface

This preface describes the document accessibility features and conventions used in this guide—Developing WebLogic SCA Applications for Oracle WebLogic Server 12.1.3.


Audience

This document is intended for administrators who configure WebLogic Server to host applications and for application developers who develop WebLogic Spring SCA applications.





Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.





Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.












1 Introduction and Roadmap


WebLogic SCA provides support for creating and deploying WebLogic SCA applications. This book describes how to work with WebLogic SCA in Oracle WebLogic Server 12.1.3.

This chapter includes the following sections:

	
Document Scope and Audience


	
Guide to This Document


	
Related Documentation






Document Scope and Audience

The following sections describe the contents and organization of this guide—Developing WebLogic SCA Applications for Oracle WebLogic Server 12.1.3:

	
Document Scope and Audience


	
Guide to This Document


	
Related Documentation









Guide to This Document

	
This chapter, Chapter 1, "Introduction and Roadmap," describes the organization of this guide.


	
Chapter 2, "Overview," provides a brief overview of Oracle SCA.


	
Chapter 3, "Tools Support," describes the tools available for working with WebLogic SCA in Oracle WebLogic Server, Oracle SOA Suite, Oracle Enterprise Pack for Eclipse (OEPE), and Oracle JDeveloper.


	
Chapter 4, "Deploying WebLogic SCA Runtime to WebLogic Server," describes how to deploy WebLogic SCA Runtime to WebLogic Server as a shared application library.


	
Chapter 5, "WebLogic Spring SCA Application Overview," provides an overview of what is required to create and deploy a WebLogic Spring SCA application.


	
Chapter 6, "Configuring the Spring Application Context," tells how to configure the Spring application context to take advantage of WebLogic SCA features.


	
Chapter 7, "Configuring EJB Session Bean Bindings," tells how to configure EJB Session Bean bindings to expose services and references in WebLogic Spring SCA applications.


	
Chapter 8, "Configuring Web Service Bindings," tells how to configure Web Service bindings to expose services and references in WebLogic Spring SCA applications.


	
Chapter 9, "Deploying WebLogic Spring SCA Applications," describes how to deploy WebLogic Spring SCA applications to Oracle WebLogic Server.


	
Chapter 10, "Viewing WebLogic SCA Application Configurations," tells how to enable the WebLogic SCA console extension to view the services and references configured for a WebLogic Spring SCA application.


	
Appendix A, "WebLogic SCA Schemas," shows the schemas used for WebLogic Spring SCA applications.









Related Documentation

See the following documentation for related information:

	
For information about Oracle WebLogic Server, see Understanding Oracle WebLogic Server.


	
For information about Oracle SOA Suite, see the Oracle SOA Suite Documentation page at http://docs.oracle.com/docs/cd/E23943_01/soa.htm.


	
WebLogic SCA is based in part on the following specifications:

	
OASIS SCA Service Component Architecture Assembly Model Specification at http://www.oasis-opencsa.org/sca-assembly


	
OASIS SCA Service Component Architecture Spring Component Implementation Specification at http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc


	
OASIS SCA Service Component Architecture EJB Session Bean Binding specification at http://www.oasis-opencsa.org/sca-bindings





	
For information about the Spring Framework, see Spring Source Community at http://www.springsource.org/











2 Overview


This chapter describes WebLogic Service Component Architecture (SCA). SCA provides a model for building enterprise applications and systems as modular business services that can be integrated and reused. WebLogic SCA provides support for developing and deploying SCA applications using Plain Old Java Objects (POJOs) for WebLogic Server 12.1.3.

This chapter includes the following sections:

	
WebLogic Spring SCA Applications


	
WebLogic SCA Runtime


	
Limitations




WebLogic SCA is based on a subset of the OASIS Service Component Architecture Spring Component Implementation Specification at http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc. Features not supported are listed below, under Limitations



WebLogic Spring SCA Applications

In SCA, the implementation of a component and its communication are clearly separated. In WebLogic SCA, you can write Java applications using POJOs and, through different protocols, expose components as SCA services and access other components via references. You do this using SCA semantics configured in a Spring application context. In SCA terms, a WebLogic Spring SCA application is a collection of POJOs plus a Spring SCA context file that wires the classes together with SCA services and references.

WebLogic Spring SCA applications run seamlessly in WebLogic Server (via the WebLogic SCA Runtime) and can be used without modification, as components in Oracle SOA composites.






WebLogic SCA Runtime

In WebLogic Sever, WebLogic Spring SCA applications run in the WebLogic SCA Runtime. The runtime must be deployed to WebLogic Server as a shared Web application library before applications can be deployed to it. WebLogic SCA Runtime includes the following:

	
A Spring container with support for configuring SCA references and services using the WebLogic SCA schemas.




	
Note:

WebLogic SCA Runtime's Spring container is different from the WebLogic Server Spring support documented in Developing and Administering Spring Applications for Oracle WebLogic Server. However, any Spring application (including one built with the current Spring support in WebLogic Server) can also use the extensions in WebLogic SCA.








	
A message processor that routes incoming messages (only Java parameters supported) to the appropriate services.


	
SCA binding component implementations responsible for listening for requests, publishing services, and invoking references. Two binding component implementations are included in this release: Web Service and EJB session bean.




Figure 2-1 shows a representation of a deployed WebLogic Spring SCA application.


Figure 2-1 Deployed WebLogic Spring SCA Application

[image: Description of Figure 2-1 follows]










Limitations

WebLogic SCA does not support some features from the OASIS Service Component Architecture Spring Component Implementation Specification. The limitations are as follows:

	
For WebLogic SCA in standalone WebLogic Server, service and reference bindings are specified in the Spring context only, not in a separate SCDL (.composite) file. Using SCDL files to specify service and reference bindings is available only in Oracle SOA Suite.


	
SCA annotations are not supported in this release.


	
The <sca:property> element is not supported in this release.




The following are not supported for EJB session bean bindings in this release:

	
EJB policies


	
Stateful EJB bindings


	
EJB 2.x service bindings


	
<ejb-link> element


	
Local EJB service bindings




The following limitations apply to Web Service bindings in this release:

	
For SCA references, the type used must be a JAX-WS compatible interface generated from the external WSDL, using a JAX-WS compatible client generation tool such as the JAX-WS wsimport tool, the WebLogic clientgen Ant task, Oracle JDeveloper, or Oracle Enterprise Pack for Eclipse (OEPE).











3 Tools Support


This chapter describes tools that support WebLogic SCA: the WebLogic Server 12.1.3 Administration Console, Oracle SOA Suite, Oracle JDeveloper, and Oracle Enterprise Pack for Eclipse (OEPE).

This chapter includes the following sentences:

	
Standalone WebLogic Server


	
Oracle SOA Suite


	
Oracle JDeveloper


	
Oracle Enterprise Pack for Eclipse (OEPE)






Standalone WebLogic Server

In addition to all the other WebLogic Server features for developing, deploying, managing, and monitoring applications—including the WebLogic SCA Runtime—the WebLogic Server Administration Console provides runtime monitoring features for WebLogic Spring SCA applications. See Chapter 10, "Viewing WebLogic SCA Application Configurations."






Oracle SOA Suite

WebLogic Spring SCA applications can be used as components in SCA assembled as components of SCA composites in Oracle SOA. See Developing SOA Applications with Oracle SOA Suite.






Oracle JDeveloper

You can use Oracle JDeveloper to do the following:

	
Create Spring SCA context files using the sca:service, sca:reference, and binding elements


	
Define and generate WebLogic SCA service definitions


	
Add WebLogic SCA support to existing project types


	
Configure the project classpath and the weblogic.xml configuration file to have access to the WebLogic SCA shared library


	
Bundle WebLogic Spring SCA applications as part of any Java EE deployment unit, including EAR and WAR archives




For more information about Oracle JDeveloper, see Oracle JDeveloper and also see the online documentation included in JDeveloper.






Oracle Enterprise Pack for Eclipse (OEPE)

You can use Oracle Enterprise Pack for Eclipse to do the following:

	
Deploy the WebLogic SCA Runtime as a WebLogic Server shared library


	
Create Spring SCA context files using the sca:service, sca:reference, and binding elements


	
Define and generate WebLogic SCA service definitions


	
Add WebLogic SCA support to existing project types


	
Configure the project classpath and the weblogic.xml configuration file to have access to the WebLogic SCA shared library


	
Bundle WebLogic Spring SCA applications as part of any Java EE deployment unit, including EAR and WAR archives




For more information about WebLogic SCA support in Oracle Enterprise Pack for Eclipse, see "Oracle WebLogic Server Support: Configuring a Project to Use WebLogic SCA" at http://docs.oracle.com/docs/cd/E15315_02/help/oracle.eclipse.tools.weblogic.doc/html/sca.html.








4 Deploying WebLogic SCA Runtime to WebLogic Server


This chapter describes WebLogic SCA Runtime, which is installed by default with WebLogic Server 12.1.3 but must be deployed as a shared Web application library.




	
Note:

WebLogic SCA applications are expected to bundle spring.jar, so the Spring Framework does not have to be installed separately during WebLogic SCA Runtime deployment.







In WebLogic Server, you can deploy the library using the WebLogic Server Administration Console or the command-line weblogic.Deployer tool. For information about weblogic.Deployer, see "Deploying Applications and Modules with weblogic.Deployer" in Deploying Applications to Oracle WebLogic Server.

To deploy the library using the WebLogic Server Administration Console:

	
If you have not already done so, in the Change Center of the WebLogic Server Administration Console, click Lock & Edit.


	
In the left pane of the WebLogic Server Administration Console, click Deployments.


	
In the right pane, click Install.


	
In the Install Application Assistant, navigate to the library file:

WL_HOME/common/deployable-libraries/weblogic-sca-1.0.war


	
Select the file and click Next.


	
Select Install this deployment as a library.


	
Click Next.


	
Select the servers and/or clusters to which you want to deploy the application or module.


	
Click Next.


	
Optionally update additional deployment settings.


	
Click Next.


	
Review the configuration settings you have specified, and click Finish to complete the installation.


	
To activate these changes, in the Change Center of the WebLogic Server Administration Console, click Activate Changes.




For more information about deployment in WebLogic Server, see Deploying Applications to Oracle WebLogic Server.




	
Note:

The WebLogic SCA Runtime library can be deployed automatically by Oracle Enterprise Pack for Eclipse and by Oracle JDeveloper. For more on WebLogic SCA support in these tools, see Chapter 3, "Tools Support."












5 WebLogic Spring SCA Application Overview


This chapter describes the WebLogic Spring SCA applications that will be deployed to WebLogic Server 12.1.3. WebLogic Spring SCA applications can be run in a standalone instance of WebLogic Server 12.1.3 or can be assembled as components of SCA composites in Oracle SOA.




	
Note:

WebLogic SCA applications should bundle their own spring.jar, version 2.0.6 or higher. Oracle recommends Spring 2.5.6.







WebLogic Spring SCA applications have the following characteristics:

	
The Spring application context file contains SCA elements to configure SCA references, services, and their bindings. See Chapter 6, "Configuring the Spring Application Context," Chapter 7, "Configuring EJB Session Bean Bindings," and Chapter 8, "Configuring Web Service Bindings."


	
Deployment units are organized following guidelines described in Chapter 9, "Deploying WebLogic Spring SCA Applications."









6 Configuring the Spring Application Context


This chapter describes how SCA services and references are configured in the Spring application context for WebLogic Server 12.1.3. An SCA service is a piece of program code providing a business function that is offered for use by other components. Services can be invoked as SCA references by the other components.

This chapter includes the following sections:

	
Specifying References and Services


	
Sample Spring Application Context




For strict definitions of SCA services and references, see OASIS SCA Service Component Architecture Assembly Model Specification at http://www.oasis-opencsa.org/sca-assembly.



Specifying References and Services

WebLogic Spring SCA supports the following two elements to specify SCA references and bindings:

	
sca:reference Element


	
sca:service Element






sca:reference Element

The <sca:reference> element declares a Spring bean representing an SCA service external to the Spring application context. This element takes the following attributes:

	name
	
Required. The name of the reference.


	type
	
Required. The fully-qualified Java type of the interface or class representing the remote service. For example. if the external reference is to a Web Service, this would be the type of the client-side proxy to the Web Service.

For SCA references using a Web Service binding, the type used must be a JAX-WS compatible interface. The type used must be a JAX-WS compatible interface, generated from the external WSDL, using a JAX-WS compatible client generation tool such as the JAX-WS wsimport tool, the WebLogic clientgen Ant task, Oracle JDeveloper, or Oracle Enterprise Pack for Eclipse (OEPE).


	default
	
Optional. The target bean for the reference if none is specified. This will improve performance by wiring to a local service, ignoring associated bindings.









sca:service Element

The <sca:service> element declares a Spring bean that WebLogic SCA exposes as a service. This element takes the following attributes:

	name
	
Required. The name of the service.

If a name is not specified in the name attribute of a binding.ws subelement (see binding.ws Element Attributes), the name specified in the name attribute of the sca:service is published as the service name in the WSDL. However, if a binding.ws specifies a name, that name is published in the WSDL as the service name for that binding.


	type
	
Required. The fully-qualified Java type of the Java class to be exposed as an SCA service.


	target
	
Required. The bean to be exposed as a service.




See Appendix A, "WebLogic Spring SCA Schema (weblogic-sca.xsd)" for the WebLogic Spring SCA schema.





Binding Subelements

sca:reference elements and sca:service elements contain binding subelements to specify the binding(s) for the reference or service. An sca:reference element can have only one binding subelement. If more are specified, only the first one is used. An sca:service element can have none, one, or more binding subelements.

WebLogic Spring SCA supports the following binding elements:

	
<binding.ws> specifies that the binding is a Web Service binding.


	
<binding.ejb> specifies that the binding is an EJB session bean binding.


	
<binding.sca is the default. If binding.sca is specified or if no binding is specified, WebLogic SCA Runtime defaults to binding.ws.




For more information on the binding elements and the WebLogic SCA Runtime binding component implementations, see Chapter 7, "Configuring EJB Session Bean Bindings," and Chapter 8, "Configuring Web Service Bindings." For the binding element schemas, see Appendix A, "WebLogic SCA Schemas."








Sample Spring Application Context

A sample Spring application context is shown in Example 6-1. The context includes two Spring beans, beanX and beanY. The bean beanX is the entry point from WebLogic Spring SCA into the Spring application context and the bean beanY contains a reference to an external SCA service.


Example 6-1 Sample Spring Application Context


<beans xmlns="http://www.springframework.org/schema/beans"
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
      xmlns:wlsb="http://xmlns.oracle.com/weblogic/weblogic-sca-binding"
      xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
      xsi:schemaLocation="http://www.springframework.org/schema/beans 
      http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
      http://xmlns.oracle.com/weblogic/weblogic-sca 
      http://xmlns.oracle.com/weblogic/weblogic-sca/1.0/weblogic-sca.xsd
      http://xmlns.oracle.com/weblogic/weblogic-sca-binding 
      http://xmlns.oracle.com/weblogic/weblogic-sca-binding/1.0/weblogic-sca-binding.xsd">

  <!-- Expose the bean "X" as an SCA service named "SCAService"-->

  <sca:service name="SCAService" 
      type="org.xyz.someapp.SomeInterface"
      target="X">
      <wlsb:binding.ws uri="/testService"/>
   </sca:service> 
 
  <sca:reference name="SCAReference" type="org.xyz.someapp.SomeOtherInterface">
    <wlsb:binding.ws 
        location="http://localhost:7001/jscaliteapp/myrefsvcnameuri" 
        port="http://test.oracle.com#wsdl.endpoint(SCAService2/myrefportname)"/>
  </sca:reference> 
 
  <bean id="X" class="org.xyz.someapp.SomeClass">
    <property name="foo" ref="Y"/>
  </bean>
 
  <bean id="Y" class="org.xyz.someapp.SomeOtherClass">
    <property name="bar" ref="SCAReference"/>
  </bean>
</beans>  










7 Configuring EJB Session Bean Bindings


This chapter describes how to configure EJB session bean bindings for SCA services and SCA references in WebLogic Server 12.1.3.

This chapter includes the following sections:

	
binding.ejb Element Attributes


	
Binding to Services


	
Binding to References




The EJB session bean binding can be applied to both SCA services and SCA references. Configure EJB session bean bindings in the <binding.ejb> element in the Spring application context file for your application. For background information, see:

	
For general information about configuring the Spring application context configuration for a WebLogic Spring SCA application, see Chapter 6, "Configuring the Spring Application Context."


	
For the schema that defines the <binding.ejb> element, see Appendix A, "WebLogic SCA Binding Schema (weblogic-sca-binding.xsd)."







	
Note:

The EJB Binding Component implementation is based on the SCA EJB Session Bean Binding specification at http://www.oasis-opencsa.org/sca-bindings. However, in this release of WebLogic SCA, the following features are not supported:
	
Stateful session bean binding (conversations are not supported)


	
<ejb-link> elements


	
Local EJB service binding


	
Local EJB reference binding














binding.ejb Element Attributes

Attributes of the binding.ejb element are as follows:


name

Optional. Specifies the name of the binding.


uri

Required. For EJB bindings on references, uri specifies the JNDI name of the target EJB. For EJB bindings on services, the uri value is the JNDI name at which the EJB is bound.

Advanced CORBA name URIs are not supported. The following two simplified patterns are supported. Both result in the service implementation being bound to the JNDI name ejb/MyHome:

	
uri="corbaname:rir:#ejb/MyHome"


	
uri="ejb/MyHome"





dispatchPolicy

Optional. Used with service bindings. Specifies the name of a WorkManager to be used for incoming invocations.






Binding to Services

When binding.ejb is configured on an SCA service, an implementation of the service interface becomes available in JNDI when the application is deployed. That service can then be invoked using the EJB programming model. For example, this allows a client to look up and invoke the service as if the underlying service were a deployed EJB. This may be useful in a situation where you want to replace an existing EJB service with an SCA implementation, without requiring clients of the legacy EJB to be updated.

Only the EJB3 programming model is supported for EJB session bean service bindings.

Use the uri attribute of binding.ejb to specify the JNDI name. See binding.ejb Element Attributes..

All EJB service bindings are remote and can therefore be looked up and invoked remotely.

Remote service implementations are clusterable. You can configure a client timeout for service bindings. To specify a client timeout, edit the EJBServiceDelegateImplRTD.xml file located in the binding.ejb jar file.

EJB service bindings can optionally specify a dispatch policy. To configure a dispatch policy, set the dispatchPolicy attribute of <binding.ejb> to the name of the WorkManager to be used for incoming invocations. If the configured WorkManager is not found, a warning is issued at runtime and the default WorkManager is used.






Binding to References

When binding.ejb is configured on an SCA reference, the target EJB is resolved and invoked without any knowledge of the EJB programming model. (WebLogic SCA Runtime determines the programming model of the target EJB based on whether the object returned from the JNDI lookup implements javax.ejb.EJBHome.)

The target EJB is resolved lazily, that is, it is resolved at runtime as necessary to service an invocation.

This allows an SCA POJO implementation to invoke a deployed EJB in the same way it invokes any other SCA reference. WebLogic SCA Runtime looks up the target EJB from JNDI and delegates any method calls to the EJB. Using binding.ejb in this way provides the flexibility to replace an EJB service with a non-EJB service without having to update the dependent component implementation.

The EJB2 and EJB3 programming models are supported for reference bindings, as described below.


EJB2 Programming Model

If the target EJB uses an EJB 2.x client view, the binding implementation invokes the home.create() method to obtain the EJB's remote interface implementation. The binding implementation also translates reference interface method invocations to EJB remote interface invocations.

Methods of the reference interface are mapped to the remote interface according to the rules in Section 2.2., "Interface Mapping," in the SCA EJB Session Bean Binding specification at http://www.oasis-opencsa.org/sca-bindings.





EJB3 Programming Model

If the EJB3 programming model is used, the target EJB may implement the reference interface, but it is not required to so. If it does not implement the reference interface, the rules in Section 2.2 of the SCA EJB Session Bean Binding specification apply. The EJB binding code is responsible for translating reference interface method invocations to EJB business interface invocations.










8 Configuring Web Service Bindings


This chapter describes how to configure Web Service bindings for SCA services and SCA references in WebLogic Server 12.1.3.

This chapter includes the following sections:

	
binding.ws Element Attributes


	
binding.ws Subelements


	
Configuring Security


	
Configuring Databinding


	
Precedence of Configuration Settings


	
Deployment


	
Runtime




Configure Web Service bindings in the <binding.ws> element in the Spring application context file for your application. For background information, see the following:

	
For general information about configuring the Spring application context for a WebLogic Spring SCA application, see Chapter 6, "Configuring the Spring Application Context."


	
For the schema that defines the <binding.ws> element, see Appendix A, "WebLogic SCA Binding Schema (weblogic-sca-binding.xsd)."




The Web Service binding can be applied to SCA services and SCA references. It does the following:

	
Parses the <binding.ws> element and, for service bindings, generates a WSDL of the service to be published.


	
For service bindings, publishes the "Plain Old Java Object" (POJO) as a Java API for XML-Based Web Services (JAX-WS) Web Service.


	
Accepts requests for the published services and performs reference invocations to the Web Services.




An example of a Web Service binding on a service is shown in Example 8-1:


Example 8-1 Web Service Binding on a Service


<sca:service name="SCAService" 
      type="com.oracle.test.SayHello" 
      target="hello">
   <wlsb:binding.ws" 
         name="mysvcname" 
         port="myportname" 
         uri="/mysvcnameuri"/>
</sca:service>




An example of a Web Service binding on a reference is shown in Example 8-2:


Example 8-2 Web Service Binding on a Reference


<sca:reference name="SCAReference" type="com.oracle.test.SayHelloRef">
  <wlsb:binding.ws" 
      location="http://localhost:7001/wlscaapp/myrefsvcnameuri" 
      port="http://test.oracle.com#wsdl.endpoint(SCAService2/myrefportname)"/>
</sca:reference>




For reference bindings referring to services outside the current application, it is expected that the contract class used for the reference is generated from the WSDL using client tools such as the WebLogic clientgen Ant task or Oracle JDeveloper.




	
Caution:

If the contract class is not generated from JAX-WS compatible client tools, certain types of functionality may not work correctly.







The type specified in the type attribute of sca:reference must be a JAX-WS compatible interface, generated from the external WSDL using a JAX-WS compatible client generation tool such as the JAX-WS wsimport tool, the WebLogic clientgen Ant task, Oracle JDeveloper, or Oracle Enterprise Pack for Eclipse (OEPE).



binding.ws Element Attributes

Attributes of the <binding.ws> element are as follows:


databinding

Optional. Specifies the type of databinding to use for converting SOAP messages to and from Java. Valid values are:

	
toplink.jaxb (default)

Specifies that the databinding use TopLink/EclipseLink JAXB (JAXB2) from EclipseLink 2.0. For information on those technologies, see Oracle® Fusion Middleware Developer's Guide for Oracle TopLink and EclipseLink at http://www.eclipse.org/eclipselink/.


	
toplink.sdo - Toplink/EclipseLink SDO from EclipseLink 2.0

Specifies that the databinding use Toplink/EclipseLink Service Data Objects (SDO) from EclipseLink 2.0. See EclipseLink at http://www.eclipse.org/eclipselink/.

Depending on the type of databinding, you may also have to use the <property> subelement of binding.ws. See:

	
Configuring Custom Databinding.


	
Configuring TopLink/EclipseLink SDO Databinding.


	
Configuring Glassfish JAXB Databinding.





	
glassfish.jaxb

Specifies that the databinding use the Java Architecture for XML Binding 2.x (JAXB2) Reference Implementation (JAXB RI). For information about the JAXB RI, see Glassfish > Metro > JAXB at http://jaxb.java.net/.





location

Required for sca:reference bindings only. Specifies the location (that is, URL) where the external reference can be found. The WSDL must be made available by appending ?wsdl to this location.


name

Optional. Specifies the name of the binding.

For sca:service bindings, this name is published as the service name in the WSDL. It overrides the name specified in name attribute of the sca:service element.


port

Optional for sca:service bindings. Specifies the port name to use for the service endpoint.

Required for sca:reference bindings. Specifies the WSDL port that this reference points to in the external Web Service.

This should be of the form namespace uri#wsdl.endpoint(servicename/portname).


soapversion

Optional. Specifies the SOAP version of the Web Service. Valid values are 1.1 and 1.2. Defaults to 1.1.


uri

Required for sca:service bindings only. Specifies the location, relative to the context-root of the SCA application, where the Web Service must be published for this SCA service.






binding.ws Subelements

The <binding.ws> element can have the following subelements:

	
PolicyReference Element


	
property Element






PolicyReference Element

The <PolicyReference> subelement of <binding.ws> specifies a reference to the security policy to use. It has the following attributes:


uri

Specifies the location of the policy. Only built-in WebLogic Server security policies are supported in this release.


direction

Optional. Specifies whether the policy is inbound, outbound, or both. The default is both.

For more information about using the PolicyReference element to configure security policies, see Configuring Security..






property Element

The <property> subelement of <binding.ws> has a name attribute that accepts the following property names:

	
weblogic.sca.binding.ws.sdoSchemaFile

Specifies the location of the schema file for SDO bindings. See Configuring TopLink/EclipseLink SDO Databinding.


	
weblogic.sca.binding.ws.externalCustomizationFile

Specifies an external databinding customizing XML file. See Configuring Custom Databinding.


	
weblogic.sca.binding.ws.referenceWsdlCacheTimeoutMins

Configures WSDL caching when invoking references. To enable caching and to specify the caching timeout period, specify a positive number to indicate the number of minutes. To disable WSDL caching, specify zero or a negative value. If this property is not set, caching is enabled with a default timeout of 60 (minutes).











Configuring Security

Use the <PolicyReference> element to configure security policies for Web Services bindings. See also PolicyReference Element.

The following security mechanisms are supported:

	
Username token with message protection (WS-Security 1.1)


	
X509 certificate authentication with message protection (WS-Security 1.1)


	
Anonymous with message protection (WS-Security 1.1)


	
ID Propagation using SAML token (sender-vouches) with message protection (WS-Security 1.1)


	
Username token over SSL


	
SAML token (Sender Vouches) over SSL




An example of a security configuration for an SCA service is shown in Example 8-3


Example 8-3 Security Configuration Example


<sca:service 
      name="SCAServicePolicy" 
      type="com.oracle.test.SayHelloRefImpl" 
      target="hello2">
   <binding.ws 
         xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding" 
         name="mypolicysvcname"
         port="uri:myns#wsdl.endpoint(mypolicysvc/mypolicyport)" 
         uri="/mypolicyuri">
      <PolicyReference 
            xmlns="http://schemas.xmlsoap.org/ws/2004/09/policy"
            uri="policy:Wssp1.2-Https-UsernameToken-Plain.xml"
            direction="inbound" />
  </binding.ws>
</sca:service>




To specify that an SCA service or reference will use an Oracle Web Services Manager (OWSM) security policy, instead of a WebLogic security policy, set the optional weblogic.sca.binding.ws.usingOwsmPolicies property to true. Example 8-4 and Example 8-5 show OWSM policies specified for an SCA service and an SCA reference, respectively.


Example 8-4 Security Configuration for SCA Service Using an OWSM Policy


<sca:service name="SCAServicePolicy" 
      type="com.oracle.test.SayHelloRefImpl" 
      target="hello2">
   <binding.ws xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding" 
         name="mypolicysvcname"
         port="uri:myns#wsdl.endpoint(mypolicysvc/mypolicyport)" 
         uri="/mypolicyuri">
      <PolicyReference xmlns="http://schemas.xmlsoap.org/ws/2004/09/policy"
            uri="policy:oracle/wss_username_token_service_policy" />
      <property name="weblogic.sca.binding.ws.usingOwsmPolicies">true</property>
   </binding.ws>
</sca:service>





Example 8-5 Security Configuration for SCA Reference Using an OWSM Policy


<sca:reference name="SCAReferenceOwsmUNTPolicy" 
      type="com.oracle.test.SimpleSayHello">
   <binding.ws xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding" 
         location="http://adc2101232:7001/jscaowsm/myowsmuriunt12" 
         port="http://test.oracle.com#wsdl.endpoint(myowsmsvcname/myowsmport)" 
         soapVersion="1.2">
      <PolicyReference xmlns="http://schemas.xmlsoap.org/ws/2004/09/policy"
            uri="policy:oracle/wss_username_token_client_policy" />
      <property name="weblogic.sca.binding.ws.usingOwsmPolicies">true</property>
   </binding.ws>
</sca:reference>


For more information about OWSM policies, see "Using Oracle Web Services Manager Security Policies" in Securing WebLogic Web Services for Oracle WebLogic Server.








Configuring Databinding

Specify databinding as follows:

	
Specify the databinding type to use in the databinding attribute of <binding.ws>.


	
For SDO and customization files, specify additional details in the <property> subelement of <binding.ws>.




For information about configuring different kinds of databinding, see:

	
Configuring TopLink/EclipseLink JAXB Binding.


	
Configuring TopLink/EclipseLink SDO Databinding.


	
Configuring Glassfish JAXB Databinding.


	
Configuring Custom Databinding.




If a databinding type is not specified, toplink.jaxb is used.



Configuring TopLink/EclipseLink JAXB Binding

To configure TopLink/EclipseLink JAXB databinding enter toplink.jaxb as the value for the databinding attribute in the binding.ws element.




	
Note:

This is the default databinding type. If nothing is specified for the databinding attribute, toplink.jaxb is used.







An example of TopLink/EclipseLink JAXB databinding is shown in Example 8-7


Example 8-6 TopLink/EclipseLink JAXB Databinding


<sca:service 
    name="SCAComplexService" type="com.oracle.test.ComplexHello" 
    target="complexHello">
  <wlsb:binding.ws 
      name="mycomplexsvc" 
      port="mycomplexport" uri="/mycomplexsvcuri" 
      databinding="toplink.jaxb"/>
</sca:service>








Configuring TopLink/EclipseLink SDO Databinding

To configure databinding TopLink/EclipseLink SDO:

	
In the <binding.ws> element, enter toplink.sdo as the value for the databinding attribute.


	
In the <property> subelement of <binding.ws>:

	
Enter weblogic.sca.binding.ws.sdoSchemaFile as the value for the name attribute.


	
Enter the location of the schema file for the SDO bindings as the content of the element. The path must be relative to the application root, and the schema file must be bundled with the application.







An example of TopLink/EclipseLink SDO databinding is shown in Example 8-7


Example 8-7 TopLink/EclipseLink SDO Databinding


<sca:service name="SCASDOService" 
    type="com.oracle.test.sdo.HelloSDO" target="sdoHello">
  <wlsb:binding.ws
              name="mysdosvc" 
      port="mysdoport" uri="/mysdosvcuri" 
              databinding="toplink.sdo">
            <property name="weblogic.sca.binding.ws.sdoSchemaFile">
       MySDO.xsd
    </property>
          </wlsb:binding.ws>
</sca:service>








Configuring Glassfish JAXB Databinding

To configure Glassfish JAXB databinding, enter glassfish.jaxb as the value for the databinding attribute in the binding.ws element.

An example of GlassFish JAXB binding is shown in Example 8-8, "GlassFish JAXB Databinding".


Example 8-8 GlassFish JAXB Databinding


<sca:service 
    name="SCAComplexService" type="com.oracle.test.ComplexHello" 
    target="complexHello">
  <wlsb:binding.ws 
      name="mycomplexsvc" 
      port="mycomplexport" uri="/mycomplexsvcuri" 
      databinding="glassfish.jaxb"/>
</sca:service>








Configuring Custom Databinding

You can provide an external databinding customization XML file that provides additional information on the Web Service binding. This file provides mapping metadata to define the attributes of a Java Web Service endpoint. The external customization file can be used to customize both WSDL and schema.

One example scenario of the use of the customization file is when the contract class for an SCA service contains overloaded methods that you want to expose as Web Service operations. The customization file can be used to disambiguate operation names for the Web Service.

Another example scenario (schema customization) is to change the name or the order of elements in a generated complex type.


To Configure Custom Databinding

To configure custom databinding:

	
Create the customization file in the same location as the implementation class file. The schema for the customization file, weblogic-wsee-databinding.xsd, must also be bundled with the application. See WebLogic SCA Databindings Customization Descriptor Schema (weblogic-wsee-databinding.xsd) for the schema.

This schema defines three kinds of XML constructs:

	
Constructs that are analogous to those in JAX-WS and JSR 181 (Web Services Metadata for the Java Platform). These constructs (a) override or define attributes on the Service Endpoint Interface (SEI) and (b) override or specify information that would normally be part of Java Architecture for XML Binding (JAXB) annotations for the value types used in the interfaces of the SEI.


	
Additional mapping specifications not available using standard JAX-WS or JAXB annotations, primarily for use with the java.util.Collections API.


	
References to external JAXB mapping metadata from a Toplink Object-XML (OXM) file. This is only relevant for the toplink.jaxb databinding.




When a construct is the direct analog of a JAX-WS, JSR 181, or JAXB annotation, the schema includes a comment with notation such as:


Corresponding Java annotation javax.jws.WebParam.Mode


	
In the <property> subelement of <binding.ws>:

	
Enter weblogic.sca.binding.ws.externalCustomizationFile as the value for the name attribute.


	
Enter the name of the customization file as the content of the <property> element.











Custom Databinding Examples

An example of the <property> element configured to point to a customization file is shown below in Example 8-10.


Example 8-9 Customization File Reference


<sca:service name="SCAServiceOverloaded" 
    type="com.oracle.test.SayHelloOverloaded" target="overloadedHello">
  <wlsb:binding.ws" 
      name="myoverloadedsvcname" port="myoverloadedportname" 
      uri="/myoverloadedsvcnameuri">
    <property 
       name="weblogic.sca.binding.ws.externalCustomizationFile">overloading_mapping_file.xml
    </property>
     </wlsb:binding.ws>
  </sca:service>


An example of a customization file is shown below in Example 8-10. It shows how an overloaded sayHello() method in the POJO is to be supported. The methods are mapped to two operations in the WSDL called sayHello and sayHelloWithString.





Example 8-10 Databinding Customization File (1)


<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloOverloaded"
      xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
      xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
      databinding="toplink.jaxb">
  <java-methods>
  <java-method name="sayHello">
     <web-method operation-name="sayHello"/>
  </java-method>
  <java-method name="sayHello">
     <web-method operation-name="sayHelloWithString"/>
     <java-params>
         <java-param java-type="java.lang.String"/>
     </java-params>
  </java-method>
  </java-methods>
</java-wsdl-mapping>




The customization file shown below in Example 8-11 illustrates the use of an inline <toplink-oxm> element to customize the order of elements in the generated schema. This example specifies that the schema generated for the ShoppingCartItem object will contain the quantity, price, and id properties in the specified order instead of the default ordering.


Example 8-11 Databinding Customization File (2)


<java-wsdl-mapping name="com.oracle.test.GetPriceRemote"
      xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
      xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
      databinding="toplink.jaxb">
  <xml-schema-mapping>
    <toplink-oxm java-package="com.oracle.test">
      <oxm:xml-bindings>
        <oxm:xml-schema/>
        <oxm:java-types>
          <oxm:java-type name="com.oracle.test.ShoppingCartItem">
            <oxm:xml-type prop-order="quantity price id"/>
          </oxm:java-type>
        </oxm:java-types>
      </oxm:xml-bindings>
    </toplink-oxm>
  </xml-schema-mapping>
</java-wsdl-mapping>









Configuring Databinding for SOAP Attachments

Simple Object Access Protocol, (SOAP) attachments are supported when using TopLink/EclipseLink JAXB databinding. These types are supported:

	
SOAP Message Transmission Optimization Mechanism (MTOM)


	
SOAP Messages with Attachments (SwA)




To configure databinding for SOAP attachments:

	
Specify TopLink/EclipseLink JAXB databinding by entering toplink.jaxb as the value for the databinding attribute in the binding.ws element.




	
Note:

In practice, this step is not necessary, because toplink.jaxb is the default value for databinding. However, you cannot use any other value for databinding.








	
Configure for MTOM or SwA, as described in the following sections:

	
Configuring Attachments Using MTOM.


	
Configuring Attachments Using SwA.









Configuring Attachments Using MTOM

Enable MTOM in either of the following ways:

	
Put an @MTOM annotation on an SEI or contract class, as shown in Example 8-12. This enables MTOM for base64Binary types.


Example 8-12 @MOM Annotation Example


@MTOM
public class SayHelloMtom {
public HasArray modifyArray(String name, int b) {
    HasArray ha = new HasArray();
    ha.b = b;
    ha.arr = ("<?xml version='1.0' ?><z>" + name + "</z>").getBytes();
    return ha;
    }
}




	
Include a <mtom> element as an immediate child of the <java-wsdl-mapping> element in the external mapping file, as shown in Example 8-13. The attributes for the <mtom> element are optional. The default for enabled is true, and the default for threshold is 0.


Example 8-13 mtom Element in the External Mapping File


<java-wsdl-mapping name="com.hello.sei.MyServiceEndpointInterface"
  <web-service name="hello-ws" target-namespace="hello-ns"/>
  <mtom enabled="true" threshold="50"/>
  ...






The following examples illustrate using an external customization file to enable MTOM on an SCA POJO to be used as a Web Service endpoint:

	
Example 8-14 shows the Spring context, with a reference to the external customization file mtomCustomizationMapping.xml.


	
Example 8-15 shows the external customization file mtomCustomizationMapping.xml.


	
Example 8-16 shows the Java classes for the example.





Example 8-14 Spring Context


<sca:service name="SCAMtomService" type="com.oracle.test.SayHelloMtom" target="helloMtom">
  <binding.ws 
      xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding" 
      name="myMtomSvc" 
      port="myMtomPort" 
      uri="/myMtomSvcUri" 
      databinding="toplink.jaxb">
            <property 
        name="weblogic.sca.binding.ws.externalCustomizationFile">mtomCustomizationMapping.xml
    </property>
          </binding.ws>
</sca:service>





Example 8-15 External Customization File mtomCustomizationMapping.xml


<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloMtom"
    xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
    xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
    databinding="toplink.jaxb">
  <xml-schema-mapping>
    <toplink-oxm java-package="com.oracle.test">
              <xml-bindings xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm">
                <java-types>
          <java-type name="com.oracle.test.HasArray">
                <java-attributes>
              <xml-element java-attribute="arr" xml-mime-type="text/xml" />
            </java-attributes>
                  </java-type>
        </java-types>
            </xml-bindings>
    </toplink-oxm>
  </xml-schema-mapping>
  <mtom threshold="2"/>
</java-wsdl-mapping>





Example 8-16 Java Classes


//SayHelloMtom.java
public class SayHelloMtom {
            public HasArray modifyArray(String name, int b) {            
                        HasArray ha = new HasArray();
                          ha.b = b;
                          ha.arr = ("<?xml version='1.0' ?><z>" + name + "</z>").getBytes();
                          return ha;
            }
}
 
//HasArray.java
package com.oracle.test;
 
public class HasArray {
    public byte[] arr = "<?xml version='1.0' ?><xy/>".getBytes();
    public int b = 5;
}








Configuring Attachments Using SwA

The SwA attachment type SwaRef is supported in two ways:

	
Use the @XmlAttachmentRef annotation on a DataHandler type parameter and/or return type, as shown in Example 8-17.


Example 8-17 Annotations on a Parameter and a DataHandler


@XmlAttachmentRef
DataHandler echoDataHandler(@XmlAttachmentRef DataHandler dh);





	
Use the xml-attachment-ref attribute in the external customization file, as shown in Example 8-18. This example, along with Example 8-19 (the Spring context) and Example 8-20 (the Java classes) show SwA enabled on an SCA POJO to be used as a Web Service endpoint.)





Example 8-18 External Customization File swaCustomizationMapping.xml


<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloSwa"
           xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
           xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
           databinding="toplink.jaxb">
    <xml-schema-mapping>
      <toplink-oxm java-package="com.oracle.test">
            <xml-bindings xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm">
              <java-types>
                <java-type name="com.oracle.test.HasDataHandler">
                  <java-attributes>
                    <xml-element java-attribute="data" xml-attachment-ref="true" />
                  </java-attributes>
                </java-type>
              </java-types>
            </xml-bindings>
      </toplink-oxm>
    </xml-schema-mapping>
</java-wsdl-mapping>





Example 8-19 Spring Context with Reference to External Customization File


<sca:service name="SCAMtomService" type="com.oracle.test.SayHelloSwa" target="helloSwa">
  <binding.ws 
      xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding" 
      name="mySwaSvc" 
      port="mySwaPort" 
      uri="/mySwaSvcUri" 
      databinding="toplink.jaxb">
           <property 
        name="weblogic.sca.binding.ws.externalCustomizationFile">swaCustomizationMapping.xml
    </property>
          </binding.ws>
  </sca:service>





Example 8-20 Java Classes


//SayHelloSwa.java
package com.oracle.test;
 
public class SayHelloSwa {
        public HasDataHandler echoDataHandler(HasDataHandler dh) {
                return dh;
        }
}
 
//HasDataHandler.java
package com.oracle.test;
 
import javax.activation.DataHandler;
 
public class HasDataHandler {
        public DataHandler data;
}




An alternative to using a wrapper class like the HasDataHandler class shown in Example 8-20 is to use the DataHandler as a parameter to the Web Service directly. To do so, modify the customization file as shown in Example 8-21:


Example 8-21 Customization File Using a DataHandler as a Parameter to a Web Service


<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloSwa"
           xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
           xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
           databinding="toplink.jaxb">
   <java-methods>
   <java-method name="echoDataHandler">
      <java-params>
          <java-param>
             <oxm:xml-element xml-attachment-ref="true" xml-mime-type="text/xml"/>
          </java-param>
      </java-params>
   </java-method>
   </java-methods>
</java-wsdl-mapping>




The corresponding SayHelloSwa.java file is shown in Example 8-22.


Example 8-22 Java Class


//SayHelloSwa.java
package com.oracle.test;
 
import javax.activation.DataHandler;
import javax.mail.util.ByteArrayDataSource;
 
public class SayHelloSwa {
        public DataHandler echoDataHandler(DataHandler dh) {
                byte[] b = new byte[1024];
                try {
                        int len = dh.getInputStream().read(b);
                        String resp = "<swarefresponse>" + new String(b,0,len) + "</swarefresponse>"; 
                        return new DataHandler(new ByteArrayDataSource(resp.getBytes(), "text/xml"));
                } catch (Exception e) {
                        String err = "<err>An error occurred: " + e.getClass().getName() + " - " + e.getMessage() + "</err>";
                        return new DataHandler(new ByteArrayDataSource(err.getBytes(), "text/xml"));
                }
        }
}
s









Configuring Collection and Map Objects

Java Collection and Map objects are supported when using TopLink/EclipseLink JAXB databinding.




	
Note:

Built in Java subclasses of java.util.List and java.util.Map are supported. Multi-dimensional support (that is, Array of Arrays, Array of HashMaps, List of Lists, etc) will be supported in a future release







You can express the generics type argument of a Collection (or members of the Collection family) with either an annotation or an external mapping file. For example, the two methods in the interface shown in Example 8-23 are equivalent in their input types if the processItems2 method uses the external mapping file shown in Example 8-24.


Example 8-23 Methods in an Interface (1)


public interface CollectionProcessor {
      public String processItems1(Collection<ItemType> items);
      public String processItems2(Collection items);
}




Example 8-24 shows the fragment of the external mapping file for the processItems2 method shown in Example 8-23.


Example 8-24 External Mapping File for Configuring Collection Objects [1]


<java-method name="processItems2">
  <java-params>
    <java-param>
      <oxm:xml-element type="mypackage.ItemType"/>
    </java-param>
  </java-params>
</java-method>




Example 8-25 shows another example of an external mapping file for configuring Collection objects.


Example 8-25 External Mapping File for Configuring Collection Objects [2]


<java-method name="testListOfCustomer">
  <java-params>
    <java-param>
      <oxm:xml-element type="mypackage.Customer"/>
    </java-param>
  </java-params>
</java-method>







Externalizing Generic Type for Map

Currently, externalizing the generic types is not directly supported for java.util.Map types.

However, if it is not possible to specify the generic type for the Map directly in the Java class, it can be indirectly supported by using the Java XML type adapter feature of the toplink.jaxb binding. This involves writing custom serializers for the desired generic Map types and specifying the custom serializers in the external mapping file, as shown in Example 8-26, Example 8-27, and Example 8-28.


Example 8-26 POJO to be Exposed as a Web Service (Without Generic Types on the Map)


//Implementation class
public class CollectionMapExtTypeArgImpl {
  public Map testMapOfCustomAdapters(Map map) {
      //implementation goes here
  }
}





Example 8-27 Custom Adapter Classes


//Custom Adapter class for Map<String, Integer> (JAXB Xml Adapter)
public class MapStringIntegerAdapter extends XmlAdapter<MapStringInteger, HashMap> {
  public HashMap unmarshal(MapStringInteger m) throws Exception {
    HashMap map = new HashMap();
    for (StringIntegerEntry e: m.entry) map.put(e.key, e.value);
    return map;
  }
  public MapStringInteger marshal(HashMap m) throws Exception {
    MapStringInteger map = new MapStringInteger();
    map.entry = new ArrayList<StringIntegerEntry>();
    for (Object k: m.keySet()) {
      StringIntegerEntry e = new StringIntegerEntry();
      e.key = (String) k;
      e.value = (Integer) m.get(k);
      map.entry.add(e);
    }
    return map;
  }
}
 
//MapStringInteger.java
public class MapStringInteger {
  public static class StringIntegerEntry {
    @XmlAttribute
    public String key;   
    @XmlValue
    public Integer value;
  }  
  public List<StringIntegerEntry> entry;
}
 
//Similar implementation for MapStringCustomerAdapter would be needed





Example 8-28 Customization file fragment showing return type of Map<String, Integer> and parameter type of Map<String, Customer>


<java-method name="testMapOfCustomAdapters">
     <oxm:xml-element xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
       <oxm:xml-java-type-adapter value='com.oracle.test.MapStringIntegerAdapter'/>
     </oxm:xml-element>
     <java-params>
         <java-param>
            <oxm:xml-element xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
              <oxm:xml-java-type-adapter value='com.oracle.test.MapStringCustomerAdapter'/>
            </oxm:xml-element>
         </java-param>
     </java-params>
  </java-method>










Precedence of Configuration Settings

Several configuration settings can be specified in more than one place, including databinding mode, SOAP version, target namespace, service name, and port name. If one of those settings is specified in multiple places, they are evaluated in the following order of precedence:

	
If a configuration option is specified (and is not empty) in the Spring context in the binding.ws configuration, that setting is used. This setting takes precedence over all others.


	
If a configuration option is not specified in the Spring context in the binding.ws configuration, the value in the external customization file is used. This setting takes precedence over 3, below.


	
If a configuration option is not specified in the Spring context or the external customization file but is specified in annotations on the POJO, the annotations on the POJO are used.









Deployment

At deployment, WebLogic SCA Runtime:

	
Uses the service interface information to generate a WSDL.


	
Publishes the service at the specified URI (relative to the context root) as a JAX-WS endpoint.









Runtime

The runtime behavior of Web Service bindings is described below.


Service Requests

Requests to services are handled as follows:

	
The appropriate data binding converts the incoming SOAP message payload into Java objects.


	
Any policies are handled by the JAX-WS runtime.


	
The POJO implementing the service is invoked by the WebLogic SCA Runtime.





Reference Invocations

WebLogic SCA Runtime recognizes that a reference invocation is for an external reference. It acts as a JAX-WS client to the external Web Service, unmarshals the result to Java and returns it in a manner transparent to the calling Java code.








9 Deploying WebLogic Spring SCA Applications


This chapter describes how to deploy WebLogic Spring SCA applications to Oracle WebLogic Server 12.1.3.

This chapter includes the following sections:

	
Preparing Deployment Units


	
Configuring the Deployment Descriptor


	
Bundling Libraries


	
Deploying in a Cluster


	
Deploying WebLogic Spring SCA Applications Using Other Tools


	
Runtime







	
Note:

Support for using WebLogic Spring SCA applications as components in SCA composites is available as a Technical Preview in the current release of Oracle SOA Suite. However, documentation for that feature is not yet available in Oracle SOA Suite.









Preparing Deployment Units

WebLogic SCA Runtime supports Enterprise Archive (EAR) and Web Archive (WAR) formats as deployment units.

A typical WebLogic SCA application bundles the Spring application context file in the META-INF/jsca/ directory, along with the application's POJO classes.

The organization of a sample WebLogic Spring SCA application EAR archive is shown in Example 9-1:


Example 9-1 Sample WebLogic Spring SCA application EAR


META-INF/application.xml
META-INF/weblogic-application.xml
META-INF/jsca/spring-context.xml
MyEJBApp.jar
MyWebApp.war
APP-INF/lib/MyScaClasses.jar
            META-INF/jsca/spring-context.xml
APP-INF/classes/MyScaPojo.class





The organization of a sample WebLogic Spring SCA application WAR archive is shown in Example 9-2:


Example 9-2 Sample WebLogic Spring SCA application WAR


WEB-INF/web.xml
WEB-INF/weblogic.xml
WEB-INF/lib/MyScaClasses.jar
            META-INF/jsca/spring-context.xml
            MyScaPojo1.class
            MyScaPojo2.class











Configuring the Deployment Descriptor

You must add a <library-ref> element to the deployment descriptor for a application.

When referring to a shared Web application library, you can also add an optional <context-root> element to declare the context root of the library module. This ensures that the context root is set to the configured value and will not conflict with other WebLogic SCA applications deployed on the same server and referring to the same shared library.




	
Note:

Oracle recommends that you provide a unique <context-root> for each WebLogic Spring SCA application. When multiple applications are deployed into a single server or a cluster, each application has its own library reference to weblogic-sca-1.0.war. Not specifying different context roots for each application will result in a context root conflict, because every WebLogic SCA application uses the default context root specified in weblogic-sca-1.0.war.







Example 9-3 shows an example of <library-ref> and <context-root> in an EAR's weblogic-application.xml descriptor, and Example 9-4 shows an example of <library-ref> and <context-root> in a WAR's weblogic.xml descriptor.


Example 9-3 library-ref Element in weblogic-application.xml


<?xml version="1.0" encoding="UTF-8"?>
<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90">
  <library-ref>
  <library-name>weblogic-sca</library-name>
    <context-root>weblogic-sca-ctx-root1</context-root>
  </library-ref>
</weblogic-application>





Example 9-4 library-ref Element in weblogic.xml


<?xml version="1.0" encoding="UTF-8859-1"?>
<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90">
  <library-ref>
  <library-name>weblogic-sca</library-name>
    <context-root>weblogic-sca-ctx-root1</context-root>
  </library-ref>
</weblogic-application>








Bundling Libraries

WebLogic Spring SCA applications must bundle spring.jar under APP-INF/lib for EARs and under WEB-INF/lib for WARs). Spring has a dependency on commons-logging, therefore, that jar must also be bundled with the application.

WebLogic SCA supports Spring 2.0.6 or later. Spring 2.5.3 is recommended.






Deploying in a Cluster

A WebLogic Spring SCA application can be deployed in a homogenous clustered environment. Cluster deployment deploys the application to every node, and since most request processing is stateless (stateful ones use the database for storing their state), a load balancer or a plug-in can route the request to any node.






Deploying WebLogic Spring SCA Applications Using Other Tools

You can also deploy WebLogic Spring SCA applications in standalone WebLogic Server using Oracle Enterprise Pack for Eclipse (OEPE) and Oracle JDeveloper. See Chapter 3, "Tools Support," for more about WebLogic SCA support in those tools.






Runtime

When a WebLogic Spring SCA application is deployed, its services are exposed by the appropriate binding component implementations. For a service defined with binding.ws, the Web Service binding component implementation publishes a Web Services endpoint. For a service defined with binding.ejb, the EJB binding component makes the EJB available in JNDI.

If multiple Spring application context files are used during a deploy within the same application, WebLogic SCA Runtime wires the matching services and references, ignoring the bindings for internal wiring. This requires use of the optional default attribute in an sca:reference element. See sca:reference Element, for more information.




	
Note:

A WebLogic Spring SCA application with two or more Spring application context files can be nested into other composites only in Oracle SOA, since this requires an enclosing SCDL file.














10 Viewing WebLogic SCA Application Configurations


This chapter describes how you can view the configuration details of a WebLogic Spring SCA application in the WebLogic Server Administration Console for WebLogic Server 12.1.3. These configuration details can be viewed in the WebLogic Server Administration Console after the WebLogic SCA console extension is enabled, as described below.


Prerequisites

You must do the following before being able to view an application's configuration in the console extension:

	
Deploy the WebLogic SCA Runtime, if it is not already deployed. See Chapter 4, "Deploying WebLogic SCA Runtime to WebLogic Server."


	
Enable the weblogic-sca-console extension, as described below.


	
Deploy the application, if it is not already deployed. See Chapter 9, "Deploying WebLogic Spring SCA Applications."





To enable the extension

To enable the console extension, do the following:

	
Start the WebLogic Server Administration Console.


	
In the banner toolbar region at the top of the right pane of the Console, click Preferences.


	
Click the Extensions tab.


	
Select the checkbox next to weblogic-sca-console.


	
Click Enable.


	
Restart the Administration Server.





To view the configuration

To view details about configured services and references, do the following:

	
In the left pane of the Console, select Deployments.


	
In the Deployments table, click the name of the WebLogic Spring SCA application whose configuration you want to view.


	
On the Settings for application_name page, click the WebLogic SCA tab.


	
In the WebLogic SCA Artifacts table, click the name of the service or reference you want to view. For explanations of the fields, click Help in the banner toolbar region at the top of the Console.









A WebLogic SCA Schemas


This appendix describes the WebLogic SCA schemas for WebLogic Server 12.1.3.

WebLogic SCA uses the following schemas:

	
WebLogic Spring SCA Schema (weblogic-sca.xsd)


	
WebLogic SCA Binding Schema (weblogic-sca-binding.xsd)


	
Web Service Policy Schema (ws-policy.xsd)


	
WebLogic SCA Databindings Customization Descriptor Schema (weblogic-wsee-databinding.xsd)






WebLogic Spring SCA Schema (weblogic-sca.xsd)

WebLogic SCA provides extensions to the OASIS Spring SCA schema to support the sca:reference and sca:service elements used in Spring application contexts to configure WebLogic SCA applications. The schema is available at http://www.oracle.com/technology/weblogic/weblogic-sca/1.0/weblogic-sca.xsd.

For information about how this schema is used, see Chapter 6, "Configuring the Spring Application Context."




	
Note:

For the complete OASIS Spring SCA schema, see Appendix A of the SCA Spring Component Implementation Specification at http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc.












WebLogic SCA Binding Schema (weblogic-sca-binding.xsd)

The binding.ejb element and binding.ws elements are defined in the weblogic-sca-binding.xsd schema. The schema is available at http://xmlns.oracle.com/weblogic/weblogic-sca-binding/1.0/weblogic-sca-binding.xsd.

For information on how the binding.ejb element is used to configure EJB session bean bindings, see Chapter 7, "Configuring EJB Session Bean Bindings."

For information on how the binding.ws element is used to configure Web Service bindings, see Chapter 8, "Configuring Web Service Bindings."






Web Service Policy Schema (ws-policy.xsd)

Policies for Web Service bindings are based on the ws-policy.xsd schema, shown in Example A-1.

For information about how this schema is used, see Configuring Security.


Example A-1 ws-policy.xsd Schema


<schema targetNamespace="http://schemas.xmlsoap.org/ws/2004/09/policy"
          xmlns:tns="http://schemas.xmlsoap.org/ws/2004/09/policy"
        xmlns="http://www.w3.org/2001/XMLSchema">
 
    <element name="PolicyReference" >
        <complexType>
            <attribute name="URI" type="anyURI" use="required" />
            <attribute name="Digest" type="base64Binary" />
            <attribute name="DigestAlgorithm" 
                       type="anyURI" 
                       default="http://schemas.xmlsoap.org/ws/2004/09/policy/Sha1Exc"/>
        <anyAttribute namespace="##any" processContents="lax" />
        </complexType>
    </element>
</schema>








WebLogic SCA Databindings Customization Descriptor Schema (weblogic-wsee-databinding.xsd)

The schema for providing an external databinding customization XML file is available at http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding/1.2/weblogic-wsee-databinding.xsd.

The customization file provides mapping metadata for databinding. The data is used to define the attributes of a Java Web Service endpoint. For more information, see Configuring Custom Databinding.
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