
[image: Oracle Corporation]

Oracle® Fusion Middleware

Developing Applications for Oracle WebLogic Server 12.1.3

12c (12.1.3)

E41933-06

August 2015

This document describes building WebLogic Server 12.1.3 e-commerce applications using the Java Platform, Enterprise Edition 6.

Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server 12.1.3, 12c (12.1.3)

E41933-06

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Overview of WebLogic Server Application Development

	Document Scope and Audience
	WebLogic Server and the Java EE Platform
	Overview of Java EE Applications and Modules
	Web Application Modules
	Servlets
	JavaServer Pages
	More Information on Web Application Modules

	Enterprise JavaBean Modules
	EJB Documentation in WebLogic Server
	Additional EJB Information

	Connector Modules
	Enterprise Applications
	Java EE Programming Model
	Packaging and Deployment Overview

	WebLogic Web Services
	JMS and JDBC Modules
	WebLogic Diagnostic Framework Modules
	Using an External Diagnostics Descriptor
	Defining an External Diagnostics Descriptor

	Coherence Grid Archive (GAR) Modules
	Bean Validation
	XML Deployment Descriptors
	Automatically Generating Deployment Descriptors
	EJBGen
	Java-based Command-line Utilities
	Upgrading Deployment Descriptors From Previous Releases of Java EE

and WebLogic Server

	Deployment Plans
	Development Tools
	Java API Reference and the wls-api.jar File
	Using the wls-api.jar File
	Using the weblogic.jar File

	Apache Ant
	Using a Third-Party Version of Ant
	Changing the Ant Heap Size

	Source Code Editor or IDE
	Database System and JDBC Driver
	Web Browser
	Third-Party Software

	New and Changed Features in this Release

2 Using Ant Tasks to Configure and Use a WebLogic Server Domain

	Overview of Configuring and Starting Domains Using Ant Tasks
	Starting Servers and Creating Domains Using the wlserver Ant Task
	Basic Steps for Using wlserver
	Sample build.xml Files for wlserver
	wlserver Ant Task Reference

	Configuring a WebLogic Server Domain Using the wlconfig Ant Task
	What the wlconfig Ant Task Does
	Basic Steps for Using wlconfig
	wlconfig Ant Task Reference
	Main Attributes
	Nested Elements
	create
	delete
	set
	get
	query
	invoke

	Using the libclasspath Ant Task
	libclasspath Task Definition
	libclasspath Ant Task Reference
	Main libclasspath Attributes
	Nested libclasspath Elements
	librarydir
	library

	Example libclasspath Ant Task

3 Using the WebLogic Maven Plug-In

	Installing Maven
	Configuring the WebLogic Maven Plug-In
	How to use the WebLogic Maven Plug-in
	Basic Configuration POM File

	Maven Plug-In Goals
	appc
	create-domain
	deploy
	distribute-app
	help
	install
	list-apps
	purge-tasks
	redeploy
	remove-domain
	start-app
	start-server
	stop-app
	stop-server
	undeploy
	uninstall
	update-app
	wlst
	wlst-client
	ws-clientgen
	wsgen
	wsimport
	ws-wsdlc
	ws-jwsc

4 Creating a Split Development Directory Environment

	Overview of the Split Development Directory Environment
	Source and Build Directories
	Deploying from a Split Development Directory
	Split Development Directory Ant Tasks

	Using the Split Development Directory Structure: Main Steps
	Organizing Java EE Components in a Split Development Directory
	Source Directory Overview
	Enterprise Application Configuration
	Web Applications
	EJBs
	Important Notes Regarding EJB Descriptors

	Organizing Shared Classes in a Split Development Directory
	Shared Utility Classes
	Third-Party Libraries
	Class Loading for Shared Classes

	Generating a Basic build.xml File Using weblogic.BuildXMLGen
	weblogic.BuildXMLGen Syntax

	Developing Multiple-EAR Projects Using the Split Development Directory
	Organizing Libraries and Classes Shared by Multiple EARs
	Linking Multiple build.xml Files

	Best Practices for Developing WebLogic Server Applications

5 Building Applications in a Split Development Directory

	Compiling Applications Using wlcompile
	Using includes and excludes Properties
	wlcompile Ant Task Attributes
	Nested javac Options
	Setting the Classpath for Compiling Code
	Library Element for wlcompile and wlappc

	Building Modules and Applications Using wlappc
	wlappc Ant Task Attributes
	wlappc Ant Task Syntax
	Syntax Differences between appc and wlappc
	weblogic.appc Reference
	weblogic.appc Syntax
	weblogic.appc Options

6 Deploying and Packaging from a Split Development Directory

	Deploying Applications Using wldeploy
	Packaging Applications Using wlpackage
	Archive versus Exploded Archive Directory
	wlpackage Ant Task Example
	wlpackage Ant Task Attribute Reference

7 Developing Applications for Production Redeployment

	What is Production Redeployment?
	Supported and Unsupported Application Types
	Additional Application Support

	Programming Requirements and Conventions
	Applications Should Be Self-Contained
	Versioned Applications Access the Current Version JNDI Tree by Default
	Security Providers Must Be Compatible
	Applications Must Specify a Version Identifier
	Applications Can Access Name and Identifier
	Client Applications Use Same Version when Possible

	Assigning an Application Version
	Application Version Conventions

	Upgrading Applications to Use Production Redeployment
	Accessing Version Information

8 Using Java EE Annotations and Dependency Injection

	Annotation Processing
	Annotation Parsing
	Deployment View of Annotation Configuration
	Compiling Annotated Classes
	Dynamic Annotation Updates

	Dependency Injection of Resources
	Application Life Cycle Annotation Methods

	Standard JDK Annotations
	javax.annotation.PostConstruct
	javax.annotation.PreDestroy
	javax.annotation.Resource
	javax.annotation.Resources

	Standard Security-Related JDK Annotations
	javax.annotation.security.DeclareRoles
	javax.annotation.security.DenyAll
	javax.annotation.security.PermitAll
	javax.annotation.security.RolesAllowed
	javax.annotation.security.RunAs

9 Using Contexts and Dependency Injection for the Java EE Platform

	About CDI for the Java EE Platform
	Defining a Managed Bean
	Injecting a Bean
	Defining the Scope of a Bean
	Overriding the Scope of a Bean at the Point of Injection
	Using Qualifiers
	Defining Qualifiers for Implementations of a Bean Type
	Applying Qualifiers to a Bean
	Injecting a Qualified Bean

	Providing Alternative Implementations of a Bean Type
	Defining an Alternative Implementation of a Bean Type
	Selecting an Alternative Implementation of a Bean Type for an Application

	Applying a Scope and Qualifiers to a Session Bean
	Applying a Scope to a Session Bean
	Applying Qualifiers to a Session Bean

	Using Producer Methods, Disposer Methods, and Producer Fields
	Defining a Producer Method
	Defining a Disposer Method
	Defining a Producer Field

	Initializing and Preparing for the Destruction of a Managed Bean
	Initializing a Managed Bean
	Preparing for the Destruction of a Managed Bean

	Intercepting Method Invocations and Life Cycle Events of Bean Classes
	Defining an Interceptor Binding Type
	Defining an Interceptor Class
	Identifying Methods for Interception
	Enabling an Interceptor

	Decorating a Managed Bean Class
	Defining a Decorator Class
	Enabling a Decorator Class

	Assigning an EL Name to a CDI Bean Class
	Defining and Applying Stereotypes
	Defining a Stereotype
	Applying Stereotypes to a Bean

	Using Events for Communications Between Beans
	Defining an Event Type
	Sending an Event
	Handling an Event

	Injecting a Predefined Bean
	Injecting and Qualifying Resources
	Using CDI With JCA Technology
	Configuring a CDI Application
	Supporting Third-Party Portable Extensions

10 Java API for JSON Processing

	About JavaScript Object Notation (JSON)
	Object Model API
	Creating an Object Model from JSON Data
	Creating an Object Model from Application Code
	Navigating an Object Model
	Writing an Object Model to a Stream

	Streaming API
	Reading JSON Data Using a Parser
	Writing JSON Data Using a Generator

11 Understanding WebLogic Server Application Classloading

	Java Classloading
	Java Classloader Hierarchy
	Loading a Class
	prefer-web-inf-classes Element
	Changing Classes in a Running Program
	Configuring Class Caching

	WebLogic Server Application Classloading
	Overview of WebLogic Server Application Classloading
	Application Classloader Hierarchy
	Custom Module Classloader Hierarchies
	Declaring the Classloader Hierarchy
	User-Defined Classloader Restrictions
	Servlet Reloading Disabled
	Nesting Depth
	Module Types
	Duplicate Entries
	Interfaces
	Call-by-Value Semantics
	In-Flight Work
	Development Use Only

	Individual EJB Classloader for Implementation Classes
	Application Classloading and Pass-by-Value or Reference
	Using a Filtering ClassLoader
	What is a Filtering ClassLoader
	Configuring a Filtering ClassLoader
	Resource Loading Order

	Resolving Class References Between Modules and Applications
	About Resource Adapter Classes
	Packaging Shared Utility Classes
	Manifest Class-Path

	Using the Classloader Analysis Tool (CAT)
	Opening the CAT Interface
	How CAT Analyzes Classes
	Identifying Class References through Manifest Hierarchies

	Sharing Applications and Modules By Using Java EE Libraries
	Adding JARs to the Domain /lib Directory

12 Creating Shared Java EE Libraries and Optional Packages

	Overview of Shared Java EE Libraries and Optional Packages
	Optional Packages
	Library Directories
	Versioning Support for Libraries
	Shared Java EE Libraries and Optional Packages Compared
	Additional Information

	Creating Shared Java EE Libraries
	Assembling Shared Java EE Library Files
	Assembling Optional Package Class Files
	Editing Manifest Attributes for Shared Java EE Libraries
	Packaging Shared Java EE Libraries for Distribution and Deployment

	Referencing Shared Java EE Libraries in an Enterprise Application
	Overriding context-roots Within a Referenced Enterprise Library
	URIs for Shared Java EE Libraries Deployed As a Standalone Module

	Referencing Optional Packages from a Java EE Application or Module
	Using weblogic.appmerge to Merge Libraries
	Using weblogic.appmerge from the CLI
	Using weblogic.appmerge as an Ant Task

	Integrating Shared Java EE Libraries with the Split Development

Directory Environment
	Deploying Shared Java EE Libraries and Dependent Applications
	Web Application Shared Java EE Library Information
	Using WebApp Libraries With Web Applications
	Accessing Registered Shared Java EE Library Information

with LibraryRuntimeMBean
	Order of Precedence of Modules When Referencing Shared Java EE Libraries
	Best Practices for Using Shared Java EE Libraries

13 Programming Application Life Cycle Events

	Understanding Application Life Cycle Events
	Registering Events in weblogic-application.xml
	Programming Basic Life Cycle Listener Functionality
	Configuring a Role-Based Application Life Cycle Listener

	Examples of Configuring Life Cycle Events with and without the URI Parameter
	Understanding Application Life Cycle Event Behavior During Re-deployment
	Programming Application Version Life Cycle Events
	Understanding Application Version Life Cycle Event Behavior
	Types of Application Version Life Cycle Events
	Example of Production Deployment Sequence When Using Application Version

Life Cycle Events

14 Programming Context Propagation

	Understanding Context Propagation
	Programming Context Propagation: Main Steps
	Programming Context Propagation in a Client
	Programming Context Propagation in an Application

15 Programming JavaMail with WebLogic Server

	Overview of Using JavaMail with WebLogic Server Applications
	Understanding JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	Sending Messages with JavaMail
	Reading Messages with JavaMail

16 Threading and Clustering Topics

	Using Threads in WebLogic Server
	Using the Work Manager API for Lower-Level Threading
	Programming Applications for WebLogic Server Clusters

17 Developing OSGi Bundles for WebLogic Server Applications

	Understanding OSGi
	Features Provided in WebLogic Server OSGi Implementation
	Configuring the OSGi Framework
	Configuring OSGi Framework Instances
	Configuring OSGi Framework Instance From Administration Console
	Configuring OSGi Framework Instance From config.xml
	Configuring OSGi Framework Instance From WLST
	Configuring OSGi Framework Instance from a Java Program
	Parameter Required for Installing Bundles in the Framework

	Configuring OSGi Framework Persistence
	Using OSGi Services

	Creating OSGi Bundles
	Deploying OSGi Bundles
	Preparing to Deploy an OSGi Bundle on a Target System
	Preparing to Deploy Bundles as Enterprise Applications
	Preparing to Deploy Bundles as Web Applications
	Global Work Managers
	Global Data Sources

	Deploying OSGi Bundles in the osgi-lib Directory
	Setting the Start Level and Run Level for a Bundle

	Accessing Deployed Bundle Objects From JNDI
	Using OSGi Logging Via WebLogic Server
	Configuring a Filtering ClassLoader for OSGi Bundles
	OSGI Example

18 Using the WebSocket Protocol in WebLogic Server

	Understanding the WebSocket Protocol
	Limitations of the HTTP Request-Response Model
	WebSocket Endpoints
	Handshake Requests in the WebSocket Protocol
	Messaging and Data Transfer in the WebSocket Protocol

	Understanding the WebLogic Server WebSocket Implementation
	WebSocket Protocol Implementation
	WebLogic WebSocket Java API
	Protocol Fallback for WebSocket Messaging
	Sample WebSocket Applications

	Overview of Creating a WebSocket Application
	Creating an Endpoint
	Creating an Annotated Endpoint
	Creating a Programmatic Endpoint
	Specifying the Path Within an Application to a Programmatic Endpoint

	Handling Life Cycle Events for a WebSocket Connection
	Handling Life Cycle Events in an Annotated WebSocket Endpoint
	Handling a Connection Opened Event
	Handling a Message Received Event
	Handling an Error Event
	Handling a Connection Closed Event

	Handling Life Cycle Events in a Programmatic WebSocket Endpoint

	Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint
	Sending a Message
	Sending a Message to a Single Peer of an Endpoint
	Sending a Message to All Peers of an Endpoint
	Ensuring Thread Safety for WebSocket Endpoints

	Encoding and Decoding a WebSocket Message
	Encoding a Java Object as a WebSocket Message
	Decoding a WebSocket Message as a Java Object

	Specifying a Part of an Endpoint Deployment URI as an Application Parameter
	Maintaining Client State
	Configuring a Server Endpoint Programmatically
	Building Applications that Use the Java API for WebSocket
	Deploying a WebSocket Application
	Using WebSockets with Proxy Servers
	Writing a WebSocket Client
	Writing a Browser-Based WebSocket Client
	Writing a Java WebSocket Client
	Configuring a WebSocket Client Endpoint Programmatically
	Connecting a Java WebSocket Client to a Server Endpoint
	Setting the Maximum Number of Threads for Dispatching Messages

from a WebSocket Client

	Securing a WebSocket Application
	Applying Verified-Origin Policies
	Authenticating and Authorizing WebSocket Clients
	Authorizing WebSocket Clients

	Establishing Secure WebSocket Connections
	Avoiding Mixed Content
	Specifying Limits for a WebSocket Connection

	Enabling Protocol Fallback for WebSocket Messaging
	Using the JavaScript API for WebSocket Fallback in Client Applications
	Configuring WebSocket Fallback
	Creating a WebSocket Object
	Handling Life Cycle Events for a JavaScript WebSocket Client
	Sending a Message from a JavaScript WebSocket Client

	Packaging and Specifying the Location of the WebSocket Fallback Client

Library
	Enabling WebSocket Fallback

	Migrating an Application to the JSR 356 Java API for WebSocket

from the Deprecated API
	Comparison of the JSR 356 API and Proprietary WebLogic Server

WebSocket API
	Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356 API
	Replacing the /* Suffix in a Path Pattern String
	Replacing a /* Suffix that Represents Variable Path Parameters

in an Endpoint URI
	Replacing a /* Suffix that Represents Additional Data for an Endpoint

	Example of Converting a Proprietary WebSocket Server Endpoint to Use

the JSR 356 API

	Example of Using the Java API for WebSocket with WebLogic Server

A Enterprise Application Deployment Descriptor Elements

	weblogic-application.xml Deployment Descriptor Elements
	weblogic-application
	ejb
	entity-cache

	max-cache-size
	xml
	parser-factory
	entity-mapping

	jdbc-connection-pool
	connection-factory
	pool-params
	driver-params

	security
	application-param
	classloader-structure
	listener
	singleton-service
	startup
	shutdown
	work-manager
	session-descriptor
	library-ref
	library-context-root-override
	fast-swap

	weblogic-application.xml Schema
	application.xml Schema

B wldeploy Ant Task Reference

	Overview of the wldeploy Ant Task
	Basic Steps for Using wldeploy
	Sample build.xml Files for wldeploy
	wldeploy Ant Task Attribute Reference
	Main Attributes
	Nested <files> Child Element

Preface

This preface describes the document accessibility features and conventions used in this guide—Developing Applications for Oracle WebLogic Server 12.1.3.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Overview of WebLogic Server Application Development

This chapter provides an overview of WebLogic Server 12.1.3 applications and basic concepts.

This chapter includes the following sections:

	
Document Scope and Audience

	
WebLogic Server and the Java EE Platform

	
Overview of Java EE Applications and Modules

	
Web Application Modules

	
Enterprise JavaBean Modules

	
Connector Modules

	
Enterprise Applications

	
WebLogic Web Services

	
JMS and JDBC Modules

	
WebLogic Diagnostic Framework Modules

	
Coherence Grid Archive (GAR) Modules.

	
Bean Validation.

	
XML Deployment Descriptors

	
Deployment Plans

	
Development Tools

	
New and Changed Features in this Release

Document Scope and Audience

This document is written for application developers who want to build WebLogic Server e-commerce applications using the Java Platform, Enterprise Edition 6. It is assumed that readers know Web technologies, object-oriented programming techniques, and the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and application assemblers. Programmers and designers create modules that implement the business and presentation logic for the application. Application assemblers assemble the modules into applications that are ready to deploy on WebLogic Server.

WebLogic Server and the Java EE Platform

WebLogic Server implements Java Platform, Enterprise Edition (Java EE) Version 6.0 technologies (see http://www.oracle.com/technetwork/java/javaee/overview/index.html). Java EE is the standard platform for developing multi-tier enterprise applications based on the Java programming language. The technologies that make up Java EE were developed collaboratively by several software vendors.

An important aspect of the Java EE programming model is the introduction of metadata annotations. Annotations simplify the application development process by allowing a developer to specify within the Java class itself how the application component behaves in the container, requests for dependency injection, and so on. Annotations are an alternative to deployment descriptors that were required by older versions of enterprise applications (Java EE 1.4 and earlier).

Starting in Java EE 5 and continuing in Java EE 6, the focus has been ease of development. There is less code to write – much of the boilerplate code has been removed, defaults are used whenever possible, and annotations are used extensively to reduce the need for deployment descriptors.

	
EJB 3.1 provides simplified programming and packaging model changes. The mandatory use of Java interfaces from previous versions has been removed, allowing plain old Java objects to be annotated and used as EJB components. The simplification is further enhanced through the ability to place EJB modules directly inside of Web applications, removing the need to produce archives to store the Web and EJB components and combine them together in an EAR file.

	
Java EE 6 includes simplified Web services support and the latest Web services APIs, making it an ideal implementation platform for Service-Oriented Architectures (SOA).

	
Constructing Web applications is made easier with JavaServer Faces (JSF) technology and the JSP Standard Tag Library (JSTL). Java EE 6 supports rich thin-client technologies such as AJAX, for building applications for Web 2.0.

WebLogic Server Java EE applications are based on standardized, modular components. WebLogic Server provides a complete set of services for those modules and handles many details of application behavior automatically, without requiring programming. Java EE defines module behaviors and packaging in a generic, portable way, postponing run-time configuration until the module is actually deployed on an application server.

Java EE includes deployment specifications for Web applications, EJB modules, Web services, enterprise applications, client applications, and connectors. Java EE does not specify how an application is deployed on the target server—only how a standard module or application is packaged. For each module type, the specifications define the files required and their location in the directory structure.

Java is platform independent, so you can edit and compile code on any platform, and test your applications on development WebLogic Servers running on other platforms. For example, it is common to develop WebLogic Server applications on a PC running Windows or Linux, regardless of the platform where the application is ultimately deployed.

For more information, refer to the Java EE specification at: http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html.

Overview of Java EE Applications and Modules

A WebLogic Server Java EE application consists of one of the following modules or applications running on WebLogic Server:

	
Web application modules—HTML pages, servlets, JavaServer Pages, and related files. See Web Application Modules.

	
Enterprise JavaBeans (EJB) modules—entity beans, session beans, and message-driven beans. See Enterprise JavaBean Modules.

	
Connector modules—resource adapters. See Connector Modules.

	
Enterprise applications—Web application modules, EJB modules, resource adapters and Web services packaged into an application. See Enterprise Applications.

	
Web services—See WebLogic Web Services.

A WebLogic application can also include the following WebLogic-specific modules:

	
JDBC and JMS modules—See JMS and JDBC Modules.

	
WebLogic Diagnostic FrameWork (WLDF) modules—See WebLogic Diagnostic Framework Modules.

	
Coherence Grid Archive (GAR) Modules—See Coherence Grid Archive (GAR) Modules.

Web Application Modules

A Web application on WebLogic Server includes the following files:

	
At least one servlet or JSP, along with any helper classes.

	
Optionally, a web.xml deployment descriptor, a Java EE standard XML document that describes the contents of a WAR file.

	
Optionally, a weblogic.xml deployment descriptor, an XML document containing WebLogic Server-specific elements for Web applications.

	
A Web application can also include HTML and XML pages with supporting files such as images and multimedia files.

Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a client, process it, and optionally return a response to the client. An HttpServlet is most often used to generate dynamic Web pages in response to Web browser requests.

JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it possible to embed Java code in a Web page. JSPs can call custom Java classes, known as tag libraries, using HTML-like tags. The appc compiler compiles JSPs and translates them into servlets. WebLogic Server automatically compiles JSPs if the servlet class file is not present or is older than the JSP source file. See Building Modules and Applications Using wlappc.

You can also precompile JSPs and package the servlet class in a Web application (WAR) file to avoid compiling in the server. Servlets and JSPs may require additional helper classes that must also be deployed with the Web application.

More Information on Web Application Modules

See the following documentation:

	
Organizing Java EE Components in a Split Development Directory.

	
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

	
Developing JSP Tag Extensions for Oracle WebLogic Server

Enterprise JavaBean Modules

Enterprise JavaBeans (EJB) 3.1 technology is the server-side component architecture for the development and deployment of component-based business applications. EJB technology enables rapid and simplified development of distributed, transactional, secure, and portable applications based on Java EE 6 technology.

The EJB 3.1 specification provides simplified programming and packaging model changes. The mandatory use of Java interfaces from previous versions has been removed, allowing plain old Java objects to be annotated and used as EJB components. The simplification is further enhanced through the ability to place EJB modules directly inside of Web applications, removing the need to produce archives to store the Web and EJB components and combine them together in an EAR file.

EJB Documentation in WebLogic Server

For more information about using EJBs with WebLogic Server, see:

	
For information about all the new features in EJB 3.1, see "Enterprise Java Beans (EJBs)" in What's New in Oracle WebLogic Server.

	
For information about basic EJB concepts and components, see "Enterprise Java Beans (EJBs)" in Understanding Oracle WebLogic Server.

	
For instructions on how to program, package, and deploy 3.1 EJBs on WebLogic Server, see Developing Enterprise JavaBeans for Oracle WebLogic Server.

	
For instructions on how to organize and build WebLogic Server EJBs in a split directory environment, see Developing Applications for Oracle WebLogic Server 12.1.3.

	
For more information on how to program and package 2.x EJBs, see Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Additional EJB Information

To learn more about EJB concepts, such as the benefits of enterprise beans, the types of enterprise beans, and their life cycles, then visit the following Web sites:

	
Enterprise JavaBeans 3.1 Specification (JSR-318) at http://jcp.org/en/jsr/summary?id=318

	
The "Enterprise Beans" chapter of the Java EE 6 Tutorial at http://docs.oracle.com/javaee/6/tutorial/doc/bnblr.html

	
Introducing the Java EE 6 Platform: Part 3 (EJB Technology, Even Easier to Use) at http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part3-139660.html#ejbeasy

Connector Modules

Connectors (also known as resource adapters) contain the Java, and if necessary, the native modules required to interact with an Enterprise Information System (EIS). A resource adapter deployed to the WebLogic Server environment enables Java EE applications to access a remote EIS. WebLogic Server application developers can use HTTP servlets, JavaServer Pages (JSPs), Enterprise JavaBeans (EJBs), and other APIs to develop integrated applications that use the EIS data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure WebLogic Server-specific deployment descriptor, weblogic-ra.xml file, and add this to the deployment directory. Resource adapters can be deployed to WebLogic Server as standalone modules or as part of an enterprise application. See Enterprise Applications.

For more information on connectors, see Developing Resource Adapters for Oracle WebLogic Server.

Enterprise Applications

An enterprise application consists of one or more Web application modules, EJB modules, and resource adapters. It might also include a client application. An enterprise application can be optionally defined by an application.xml file, which was the standard Java EE deployment descriptor for enterprise applications.

Java EE Programming Model

An important aspect of the Java EE programming model is the introduction of metadata annotations. Annotations simplify the application development process by allowing a developer to specify within the Java class itself how the application behaves in the container, requests for dependency injection, and so on. Annotations are an alternative to deployment descriptors that were required by older versions of enterprise applications (1.4 and earlier).

With Java EE annotations, the standard application.xml and web.xml deployment descriptors are optional. The Java EE programming model uses the JDK annotations feature (see http://docs.oracle.com/javaee/6/api/) for Web containers, such as EJBs, servlets, Web applications, and JSPs. See Chapter 8, "Using Java EE Annotations and Dependency Injection."

If the application includes WebLogic Server-specific extensions, the application is further defined by a weblogic-application.xml file. Enterprise applications that include a client module will also have a client-application.xml deployment descriptor and a WebLogic run-time client application deployment descriptor. See Appendix A, "Enterprise Application Deployment Descriptor Elements."

Packaging and Deployment Overview

For both production and development purposes, Oracle recommends that you package and deploy even standalone Web applications, EJBs, and resource adapters as part of an enterprise application. Doing so allows you to take advantage of Oracle's split development directory structure, which greatly facilitates application development. See Chapter 4, "Creating a Split Development Directory Environment."

An enterprise application consists of Web application modules, EJB modules, and resource adapters. It can be packaged as follows:

	
For development purposes, Oracle recommends the WebLogic split development directory structure. Rather than having a single archived EAR file or an exploded EAR directory structure, the split development directory has two parallel directories that separate source files and output files. This directory structure is optimized for development on a single WebLogic Server instance. See Chapter 4, "Creating a Split Development Directory Environment." Oracle provides the wlpackage Ant task, which allows you to create an EAR without having to use the JAR utility; this is exclusively for the split development directory structure. See Packaging Applications Using wlpackage.

	
For development purposes, Oracle further recommends that you package standalone Web applications and Enterprise JavaBeans (EJBs) as part of an enterprise application, so that you can take advantage of the split development directory structure. See Organizing Java EE Components in a Split Development Directory.

	
For production purposes, Oracle recommends the exploded (unarchived) directory format. This format enables you to update files without having to redeploy the application. To update an archived file, you must unarchive the file, update it, then rearchive and redeploy it.

	
You can choose to package your application as a JAR archived file using the jar utility with an .ear extension. Archived files are easier to distribute and take up less space. An EAR file contains all of the JAR, WAR, and RAR module archive files for an application and an XML descriptor that describes the bundled modules. See Packaging Applications Using wlpackage.

The optional META-INF/application.xml deployment descriptor contains an element for each Web application, EJB, and connector module, as well as additional elements to describe security roles and application resources such as databases. If this descriptor is present the WebLogic deployer picks the list of modules from this descriptor. However if this descriptor is not present, the container guesses the modules from the annotations defined on the POJO (plain-old-Java-object) classes. See Appendix A, "Enterprise Application Deployment Descriptor Elements."

WebLogic Web Services

Web services can be shared by and used as modules of distributed Web-based applications. They commonly interface with existing back-end applications, such as customer relationship management systems, order-processing systems, and so on. Web services can reside on different computers and can be implemented by vastly different technologies, but they are packaged and transported using standard Web protocols, such as HTTP, thus making them easily accessible by any user on the Web.

A Web service consists of the following modules, at a minimum:

	
A Web service implementation hosted by a server on the Web. WebLogic Web services are hosted by WebLogic Server. A Web service module may include either Java classes or EJBs that implement the Web service. Web services are packaged either as Web application archives (WARs) or EJB modules (JARs), depending on the implementation.

	
A standard for transmitting data and Web service invocation calls between the Web service and the user of the Web service. WebLogic Web services use Simple Object Access Protocol (SOAP) 1.1 as the message format and HTTP as the connection protocol.

	
A standard for describing the Web service to clients so they can invoke it. WebLogic Web services use Web services Description Language (WSDL) 1.1, an XML-based specification, to describe themselves.

	
A standard for clients to invoke Web services—JAX-WS or JAX-RPC. See Developing JAX-WS Web Services for Oracle WebLogic Server or Developing JAX-RPC Web Services for Oracle WebLogic Server, respectively.

	
A standard for finding and registering the Web service (UDDI).

For more information about WebLogic Web services and the standards that are supported, see Understanding WebLogic Web Services for Oracle WebLogic Server.

JMS and JDBC Modules

JMS and JDBC configurations are stored as modules, defined by an XML file that conforms to the weblogic-jms.xsd and jdbc-data-source.xsd schema, respectively. These modules are similar to standard Java EE modules. An administrator can create and manage JMS and JDBC modules as global system resources, as modules packaged with a Java EE application (as a packaged resource), or as standalone modules that can be made globally available.

With modular deployment of JMS and JDBC resources, you can migrate your application and the required JMS or JDBC configuration from environment to environment, such as from a testing environment to a production environment, without opening an enterprise application file (such as an EAR file) or a JMS or JDBC standalone module, and without extensive manual JMS or JDBC reconfiguration.

Application developers create application modules in an enterprise-level IDE or another development tool that supports editing of XML files, then package the JMS or JDBC modules with an application and pass the application to a WebLogic administrator to deploy.

For more information, see:

	
"Configuring JMS Application Modules for Deployment"

	
"Configuring JDBC Application Modules for Deployment"

WebLogic Diagnostic Framework Modules

The WebLogic Diagnostic Framework (WLDF) provides features for generating, gathering, analyzing, and persisting diagnostic data from WebLogic Server instances and from applications deployed to server instances. For server-scoped diagnostics, some WLDF features are configured as part of the configuration for the domain. Other features are configured as system resource descriptors that can be targeted to servers (or clusters). For application-scoped diagnostics, diagnostic features are configured as resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic module, which is similar to a diagnostic system module. However, an application module is configured in an XML configuration file named weblogic-diagnostics.xml which is packaged with the application archive.

For detailed instructions for configuring instrumentation for applications, see "Configuring Application-Scoped Instrumentation".

Using an External Diagnostics Descriptor

WebLogic Server also supports the use of an external diagnostics descriptor so you can integrate diagnostic functionality into an application that has not imported diagnostic descriptors. This feature supports the deployment view and deployment of an application or a module, detecting the presence of an external diagnostics descriptor if the descriptor is defined in your deployment plan (plan.xml).

Defining an External Diagnostics Descriptor

First, define the diagnostic descriptor as external and configure its URI in the plan.xml file. For example:

<module-override>
 <module-name>reviewService.ear</module-name>
 <module-type>ear</module-type>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 ...
 ...
</module-override>
<config-root>D:\plan</config-root>

Then place the external diagnostic descriptor file under the URI. Using the example above, you would place the descriptor file under d:\plan\ META-INF.

Coherence Grid Archive (GAR) Modules

A Coherence GAR module provides distributed in-memory caching and data grid computing that allows applications to increase their availability, scalability, and performance. GAR modules are deployed as both standalone modules and packaged with Java EE applications (as a packaged resource). A GAR module may also be made globally available.

A GAR module is defined by the coherence-application.xml deployment descriptor and must conform to the coherence-application.xsd XML schema. The GAR contains the artifacts that comprise a Coherence application: Coherence configuration files, application classes (such as entry processors, aggregators, filters), and any dependencies that are required.

Bean Validation

The Bean Validation specification (JSR 316) defines a metadata model and API for validating data in JavaBeans components. It is supported on both the server and Java EE 6 client; therefore, instead of distributing validation of data over several layers, such as the browser and the server side, you can define the validation constraints in one place and share them across the different layers. Further, bean validation is not only for validating beans. In fact, it can also be used to validate any Java object.

Bean Validation and JNDI

Where required by the Java EE 6 specifications, the default Validator and ValidatorFactory are located using JNDI under the names java:comp/Validator and java:comp/ValidatorFactory. These two artifacts reflect the validation descriptor that is in scope.

Bean Validation Configuration

Bean validation can be configured by using XML descriptors or annotation.

	
Descriptors:

	
Descriptor elements override corresponding annotations.

	
Weblogic Server allows one descriptor per module. Therefore, an application can have several validation descriptors but only one is allowed per module scope.

	
Validation descriptors are named validation.xml and are packaged in the META-INF directory, except for Web modules, where the descriptor is packaged in the WEB-INF directory.

	
Annotations:

	
Injection of the default Validator and ValidatorFactory is requested using the @Resource annotation. However, not all source files are scanned for this annotation.

	
The WebLogic Connector uses bean validation internally to validate the connector descriptors.

Once bean validation is configured, the standard set of container managed classes for a given container will be scanned. For example, for EJBs, bean and interceptor classes are scanned. Web application classes and ManagedBeans also support the injection of Validator and ValidatorFactories.

For more information about the classes that support bean validation, please see the related component specifications for the list of classes that support dependency injection.

XML Deployment Descriptors

A deployment configuration refers to the process of defining the deployment descriptor values required to deploy an enterprise application to a particular WebLogic Server domain. The deployment configuration for an application or module is stored in three types of XML document: Java EE deployment descriptors, WebLogic Server descriptors, and WebLogic Server deployment plans. This section describes the Java EE and WebLogic-specific deployment descriptors. See Deployment Plans for information on deployment plans.

The Java EE programming model uses the JDK annotations feature for Web containers (see http://docs.oracle.com/javaee/6/api/), such as EJBs, servlets, Web applications, and JSPs. Annotations simplify the application development process by allowing a developer to specify within the Java class itself how the component behaves in the container, requests for dependency injection, and so on. Annotations are an alternative to deployment descriptors that were required by older versions of Web applications (2.4 and earlier), enterprise applications (1.4 and earlier), and Enterprise JavaBeans (2.x and earlier). See Chapter 8, "Using Java EE Annotations and Dependency Injection."

However, enterprise applications fully support the use of deployment descriptors, even though the standard Java EE ones are not required. For example, you may prefer to use the old EJB 2.x programming model, or might want to allow further customizing of the EJB at a later development or deployment stage; in these cases you can create the standard deployment descriptors in addition to, or instead of, the metadata annotations.

Modules and applications have deployment descriptors—XML documents—that describe the contents of the directory or JAR file. Deployment descriptors are text documents formatted with XML tags. The Java EE specifications define standard, portable deployment descriptors for Java EE modules and applications. Oracle defines additional WebLogic-specific deployment descriptors for deploying a module or application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their Java EE-standard and WebLogic-specific deployment descriptors.

	
Note:

The XML schemas for the WebLogic deployment descriptors listed in the following table include elements from the http://xmlns.oracle.com/weblogic/weblogic-javaee/1.4/weblogic-javaee.xsd schema, which describes common elements shared among all WebLogic-specific deployment descriptors.
For the most current schema information, see: http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html.

Table 1-1 Java EE and WebLogic Deployment Descriptors

	Module or Application	Scope	Deployment Descriptors
	
Web Application

	
Java EE

	
web.xml

See the Servlet 3.0 Schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_0.xsd

WEB-INF/beans.xml—required only if the classes in the WAR file are to participate in Contexts and Dependency Injection (CDI)

Schema: http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_0.xsd

See Chapter 9, "Using Contexts and Dependency Injection for the Java EE Platform."

	
	
WebLogic

	

weblogic.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-web-app/1.7/weblogic-web-app.xsd

See "weblogic.xml Deployment Descriptor Elements" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

	
Enterprise Bean 3.0

	
Java EE

	

ejb-jar.xml

See the EJB 3.1 Schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd

META-INF/beans.xml—required only if the classes in the EJB JAR file are to participate in CDI

Schema: http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_0.xsd

See Chapter 9, "Using Contexts and Dependency Injection for the Java EE Platform."

	
	
WebLogic

	

weblogic-ejb-jar.xml

Schema http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.5/weblogic-ejb-jar.xsd

weblogic-rdbms-jar.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd

persistence-configuration.xml

Schema: http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd

See Developing Enterprise JavaBeans for Oracle WebLogic Server.

	
Enterprise Bean 2.1

	
Java EE

	

ejb-jar.xml

See the EJB 2.1 Schema at http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd

	
	
WebLogic

	

weblogic-ejb-jar.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.5/weblogic-ejb-jar.xsd

See "The weblogic-ejb-jar.xml Deployment Descriptor" in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

weblogic-cmp-rdbms-jar.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd

See "The weblogic-cmp-rdbms-jar.xml Deployment Descriptor" in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

	
Web services

	
Java EE

	

webservices.xml

See the Web services 1.2 Schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_2.xsd

	
	
WebLogic

	

weblogic-webservices.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd

weblogic-wsee-clientHandlerChain.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd

weblogic-webservices-policy.xml

Schema: http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd

weblogic-wsee-standaloneclient.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd

See "WebLogic Web Service Deployment Descriptor Element Reference" in WebLogic Web Services Reference for Oracle WebLogic Server.

	
Resource Adapter

	
Java EE

	

ra.xml

See the Connector 1.6 Schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_6.xsd

META-INF/beans.xml—required only if the classes in the RAR file are to participate in CDI

Schema: http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_0.xsd

See Chapter 9, "Using Contexts and Dependency Injection for the Java EE Platform."

	
	
WebLogic

	

weblogic-ra.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

See "weblogic-ra.xml Schema" in Developing Resource Adapters for Oracle WebLogic Server.

	
Enterprise Application

	
Java EE

	

application.xml

See the Application 6 Schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_6.xsd

	
	
WebLogic

	

weblogic-application.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-application/1.6/weblogic-application.xsd

See weblogic-application.xml Deployment Descriptor Elements.

	
Client Application

	
Java EE

	

application-client.xml

See the Application Client 6 Schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_6.xsd

META-INF/beans.xml—required only if the classes in the application client JAR file are to participate in CDI

Schema: http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_0.xsd

See Chapter 9, "Using Contexts and Dependency Injection for the Java EE Platform."

	
	
WebLogic

	

application-client.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-application-client/1.4/weblogic-application-client.xsd

See "Developing a Java EE Application Client (Thin Client)" in Developing Stand-alone Clients for Oracle WebLogic Server.

	
HTTP Pub/Sub Application

	
WebLogic

	

weblogic-pubsub.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd

See "Using the HTTP Publish-Subscribe Server" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

	
JMS Module

	
WebLogic

	
FileName-jms.xml, where FileName can be anything you want.

Schema: http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd

See "Configuring JMS Application Modules for Deployment" in Administering JMS Resources for Oracle WebLogic Server.

	
JDBC Module

	
WebLogic

	
FileName-jdbc.xml, where FileName can be anything you want.

Schema: http://xmlns.oracle.com/weblogic/jdbc-data-source/1.4/jdbc-data-source.xsd

See "Configuring JDBC Application Modules for Deployment" in Administering JDBC Data Sources for Oracle WebLogic Server.

	
Deployment Plan

	
WebLogic

	

plan.xml

Schema: http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html

See "Understanding WebLogic Server Deployment" in Deploying Applications to Oracle WebLogic Server.

	
WLDF Module

	
WebLogic

	

weblogic-diagnostics.xml

Schema: http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

See "Deploying WLDF Application Modules" in Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

	
Coherence Modules

	
WebLogic

	
coherence-application.xml

Schema: http://xmlns.oracle.com/coherence/coherence-application/1.0/coherence-application.xsd

See Developing Oracle Coherence Applications for Oracle WebLogic Server.

When you package a module or application, you create a directory to hold the deployment descriptors—WEB-INF or META-INF—and then create the XML deployment descriptors in that directory.

Automatically Generating Deployment Descriptors

WebLogic Server provides a variety of tools for automatically generating deployment descriptors. These are discussed in the sections that follow.

EJBGen

EJBGen is an Enterprise JavaBeans 2.x code generator or command-line tool that uses Javadoc markup to generate EJB deployment descriptor files. You annotate your Bean class file with Javadoc tags and then use EJBGen to generate the Remote and Home classes and the deployment descriptor files for an EJB application, reducing to a single file you need to edit and maintain your EJB .java and descriptor files. See "EJBGen Reference" in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Java-based Command-line Utilities

WebLogic Server includes a set of Java-based command-line utilities that automatically generate both standard Java EE and WebLogic-specific deployment descriptors for Web applications and enterprise applications.

These command-line utilities examine the classes you have assembled in a staging directory and build the appropriate deployment descriptors based on the servlet classes, and so on. These utilities include:

	
java weblogic.marathon.ddinit.EarInit — automatically generates the deployment descriptors for enterprise applications.

	
java weblogic.marathon.ddinit.WebInit — automatically generates the deployment descriptors for Web applications.

For an example of DDInit, assume that you have created a directory called c:\stage that contains the JSP files and other objects that make up a Web application but you have not yet created the web.xml and weblogic.xml deployment descriptors. To automatically generate them, execute the following command:

 prompt> java weblogic.marathon.ddinit.WebInit c:\stage

The utility generates the web.xml and weblogic.xml deployment descriptors and places them in the WEB-INF directory, which DDInit will create if it does not already exist.

Upgrading Deployment Descriptors From Previous Releases of Java EE

and WebLogic Server

So that your applications can take advantage of the features in the current Java EE specification and release of WebLogic Server, Oracle recommends that you always upgrade deployment descriptors when you migrate applications to a new release of WebLogic Server.

To upgrade the deployment descriptors in your Java EE applications and modules, first use the weblogic.DDConverter tool to generate the upgraded descriptors into a temporary directory. Once you have inspected the upgraded deployment descriptors to ensure that they are correct, repackage your Java EE module archive or exploded directory with the new deployment descriptor files.

Invoke weblogic.DDConverter with the following command:

prompt> java weblogic.DDConverter [options] archive_file_or_directory

where archive_file_or_directory refers to the archive file (EAR, WAR, JAR, or RAR) or exploded directory of your enterprise application, Web application, EJB, or resource adapter.

The following table describes the weblogic.DDConverter command options.

	Option	Description
	-d <dir>	Specifies the directory to which descriptors are written.
	

-help

	Prints the standard usage message.
	

-quiet

	Turns off output messages except error messages.
	-verbose	Turns on additional output used for debugging.

The following example shows how to use the weblogic.DDConverter command to generate upgraded deployment descriptors for the my.ear enterprise application into the subdirectory tempdir in the current directory:

prompt> java weblogic.DDConverter -d tempdir my.ear

Deployment Plans

A deployment plan is an XML document that defines an application's WebLogic Server deployment configuration for a specific WebLogic Server environment. A deployment plan resides outside of an application's archive file, and can apply changes to deployment properties stored in the application's existing WebLogic Server deployment descriptors. Administrators use deployment plans to easily change an application's WebLogic Server configuration for a specific environment without modifying existing Java EE or WebLogic-specific deployment descriptors. Multiple deployment plans can be used to reconfigure a single application for deployment to multiple, differing WebLogic Server environments.

After programmers have finished programming an application, they export its deployment configuration to create a custom deployment plan that administrators later use for deploying the application into new WebLogic Server environments. Programmers distribute both the application deployment files and the custom deployment plan to deployers (for example, testing, staging, or production administrators) who use the deployment plan as a blueprint for configuring the application for their environment.

WebLogic Server provides the following tools to help programmers export an application's deployment configuration:

	
weblogic.PlanGenerator creates a template deployment plan with null variables for selected categories of WebLogic Server deployment descriptors. This tool is recommended if you are beginning the export process and you want to create a template deployment plan with null variables for an entire class of deployment descriptors.

	
The WebLogic Server Administration Console updates or creates new deployment plans as necessary when you change configuration properties for an installed application. You can use the WebLogic Server Administration Console to generate a new deployment plan or to add or override variables in an existing plan. The WebLogic Server Administration Console provides greater flexibility than weblogic.PlanGenerator, because it allows you to interactively add or edit individual deployment descriptor properties in the plan, rather than export entire categories of descriptor properties.

For complete and detailed information about creating and using deployment plans, see:

	
"Understanding WebLogic Server Deployment"

	
"Exporting an Application for Deployment to New Environments"

	
"Understanding WebLogic Server Deployment Plans"

Development Tools

This section describes required and optional tools for developing WebLogic Server applications.

Java API Reference and the wls-api.jar File

Oracle provides the Oracle Fusion Middleware Java API Reference for Oracle WebLogic Server, which defines all of the supported Java classes available for use when developing Java EE applications for WebLogic Server. See the Java API Reference for Oracle WebLogic Server.

In conjunction with the Java API Reference for Oracle WebLogic Server, Oracle recommends using the wls-api.jar file to develop and compile Java EE applications for your WebLogic Server environment. The wls-api.jar file is located in the wlserver/server/lib directory of your WebLogic Server distribution and offers the following benefits:

	
developing more performant code based on tested best practices

	
avoiding deprecated or unsupported code paths

Using the wls-api.jar File

Use the wls-api.jar file and the api.jar file to develop and compile your Java EE applications in Integrated Development Environments (IDEs), such as Oracle JDeveloper. IDEs provide an array of tools to simplify development of Java-based applications. The wls-api.jar file provides a clean and concise API jar to develop and run Java EE applications for WebLogic environments.

	
Note:

The wls-api.jar file does not reference any Java EE classes. Oracle provides the api.jar file with a manifest classpath that includes access to Java EE JARs.

You may need to include the weblogic.jar file in the classpath of your development environment to access tools such as WLST, the weblogic.Deployer utilty, and weblogic.appc.

Using the weblogic.jar File

You must continue to use the weblogic.jar file for runtime environments, as a client or to develop and compile legacy applications. However, use the wls-api.jar file to develop and compile Java EE applications for your WebLogic Server environment.

Apache Ant

The preferred Oracle method for building applications with WebLogic Server is Apache Ant. Ant is a Java-based build tool. One of the benefits of Ant is that is it is extended with Java classes, rather than shell-based commands. Oracle provides numerous Ant extension classes to help you compile, build, deploy, and package applications using the WebLogic Server split development directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts in eXtensible Markup Language (XML). XML tags define the targets to build, dependencies among targets, and tasks to execute in order to build the targets. Ant libraries are bundled with WebLogic Server to make it easier for our customers to build Java applications out of the box.

To use Ant, you must first set your environment by executing either the setExamplesEnv.cmd (Windows) or setExamplesEnv.sh (UNIX) commands located in the WL_SERVER\samples\domains\wl_server directory, where WL_SERVER is your WebLogic Server installation directory.

For a complete explanation of ant capabilities, see: http://jakarta.apache.org/ant/manual/index.html

	
Note:

The Apache Jakarta Web site publishes online documentation for only the most current version of Ant, which might be different from the version of Ant that is bundled with WebLogic Server. Use the following command, after setting your WebLogic environment, to determine the version of Ant bundled with WebLogic Server:

prompt> ant -version

To view the documentation for a specific version of Ant, such as the version included with WebLogic Server, download the Ant zip file from http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

For more information on using Ant to compile your cross-platform scripts or using cross-platform scripts to create XML scripts that can be processed by Ant, refer to any of the WebLogic Server examples, such as EXAMPLES_HOME/wl_server/examples/src/examples/ejb20/basic/beanManaged/build.xml, where EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are configured. For more information about the WebLogic Server code examples, see "Sample Applications and Code Examples" in Understanding Oracle WebLogic Server.

Also refer to the following WebLogic Server documentation on building examples using Ant: EXAMPLES_HOME/wl_server/examples/src/examples/examples.html.

Using a Third-Party Version of Ant

You can use your own version of Ant if the one bundled with WebLogic Server is not adequate for your purposes. To determine the version of Ant that is bundled with WebLogic Server, run the following command after setting your WebLogic environment:

prompt> ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in the WL_HOME\server\lib\ant directory with an updated version of the file (where WL_HOME refers to the main WebLogic installation directory, such as c:\Oracle\Middleware\Oracle_Home\wlserver) or add the new file to the front of your CLASSPATH.

Changing the Ant Heap Size

By default the environment script allocates a heap size of 128 megabytes to Ant. You can increase or decrease this value for your own projects by setting the -X option in your local ANT_OPTS environment variable. For example:

prompt> setenv ANT_OPTS=-Xmx128m

If you want to set the heap size permanently, add or update the MEM_ARGS variable in the scripts that set your environment, start WebLogic Server, and so on, as shown in the following snippet from a Windows command script that starts a WebLogic Server instance:

set MEM_ARGS=-Xms32m -Xmx200m

See the scripts and commands in WL_HOME/server/bin for examples of using the MEM_ARGS variable.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML pages, and JavaServer Pages. An editor that gracefully handles Windows and UNIX line-ending differences is preferred, but there are no other special requirements for your editor. You can edit HTML or XML pages and JavaServer Pages with a plain text editor, or use a Web page editor such as Dreamweaver. For XML pages, you can also use an enterprise-level IDE with DTD validation or another development tool that supports editing of XML files.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any DBMS that you can access with a standard JDBC driver, but services such as WebLogic Java Message Service (JMS) require a supported JDBC driver for Oracle, Sybase, Informix, Microsoft SQL Server, or IBM DB2. See the Oracle Fusion Middleware Supported System Configurations page on Oracle Technology Network to find out about supported database systems and JDBC drivers.

Web Browser

Most Java EE applications are designed to be executed by Web browser clients. WebLogic Server supports the HTTP 1.1 specification and is tested with current versions of the Firefox and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions you will support. In your test plans, include testing plans for each supported version. Be explicit about version numbers and browser configurations. Will your application support Secure Socket Layers (SSL) protocol? Test alternative security settings in the browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser configurations you want to support because of differences in the JVMs embedded in various browsers. One solution is to require users to install the Java plug-in so that everyone has the same Java run-time version.

Third-Party Software

You can use third-party software products to enhance your WebLogic Server development environment. "WebLogic Developer Tools Resources" provides developer tools information for products that support the application servers.

	
Note:

Check with the software vendor to verify software compatibility with your platform and WebLogic Server version.

New and Changed Features in this Release

This release of WebLogic Server introduces the following new application development features:

	
Java API for WebSocket (JSR 356)—Support for the Java API for WebSocket enables application developers to use the standard Java EE 7 WebSocket API for connections over the WebSocket protocol.

The proprietary WebLogic Server WebSocket API that was introduced in release 12.1.2 is deprecated but remains supported for backward compatibility. Although the JSR 356 Java API for WebSocket coexists with the proprietary WebLogic Server WebSocket API, an application cannot contain calls to both APIs. Only one of the APIs can be used in an application.

For more information, including code examples, see Chapter 18, "Using the WebSocket Protocol in WebLogic Server."

	
Protocol fallback for WebSocket messaging—Protocol fallback provides a mechanism for using an alternative transport for WebSocket messaging when the WebSocket protocol is not supported. Typically the WebSocket protocol is not supported either because the WebSocket object is not available or because WebSocket frames are blocked by a firewall. In this release, the only supported alternative transport is HTTP Long Polling.

Protocol fallback enables application developers to rely on standard programming APIs to perform WebSocket messaging regardless of whether or not the runtime environment supports the WebSocket protocol. For more information, see Enabling Protocol Fallback for WebSocket Messaging.

	
Maven support updates, including the following:

	
Maven plug-in installation and configuration enhancements.

	
Improvements in web services integration of ws-clientgen, ws-jwsc, and ws-wsdlc with the Maven life cycle.

	
Update to Apache Maven 3.0.5.

	
Support for a new wlst-client goal, which is a WLST wrapper for executing WLST online commands without requiring a local installation of WebLogic Server.

For more information about the updated Maven support, see Chapter 3, "Using the WebLogic Maven Plug-In."

	
Java API for JSON Processing 1.0 (JSR 353)—WebLogic Server includes the JSR 353 reference implementation for use with applications deployed on a WebLogic Server instance. JSON is a data exchange format widely used in web services and other connected applications. JSR 353 provides an API to parse, transform, and query JSON data using the object model or the streaming model.

For more information, including code examples, see Chapter 10, "Java API for JSON Processing".

	
Classloader Analysis Tool (CAT)— The CAT adds the ability to search through an application's or module's classpath to detect and display the underlying chained manifest references. For information, see Using the Classloader Analysis Tool (CAT).

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

2 Using Ant Tasks to Configure and Use a WebLogic Server Domain

This chapter describes how to start and stop WebLogic Server 12.1.3 instances and configure WebLogic Server domains using WebLogic Ant tasks in your development build scripts.

This chapter includes the following sections:

	
Overview of Configuring and Starting Domains Using Ant Tasks

	
Starting Servers and Creating Domains Using the wlserver Ant Task

	
Configuring a WebLogic Server Domain Using the wlconfig Ant Task

	
Using the libclasspath Ant Task

Overview of Configuring and Starting Domains Using Ant Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common configuration tasks in a development environment. The configuration tasks enable you to start and stop WebLogic Server instances as well as create and configure WebLogic Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts for demonstrating or testing your application with custom domains. For example, a single Ant build script can:

	
Compile your application using the wlcompile, wlappc, and Web services Ant tasks.

	
Create a new single-server domain and start the Administration Server using the wlserver Ant task.

	
Configure the new domain with required application resources using the wlconfig Ant task.

	
Deploy the application using the wldeploy Ant task.

	
Automatically start a compiled client application to demonstrate or test product features.

The sections that follow describe how to use the configuration Ant tasks, wlserver and wlconfig.

Starting Servers and Creating Domains Using the wlserver Ant Task

The wlserver Ant task enables you to start, reboot, shutdown, or connect to a WebLogic Server instance. The server instance may already exist in a configured WebLogic Server domain, or you can create a new single-server domain for development by using the generateconfig=true attribute.

When you use the wlserver task in an Ant script, the task does not return control until the specified server is available and listening for connections. If you start up a server instance using wlserver, the server process automatically terminates after the Ant VM terminates. If you only connect to a currently-running server using the wlserver task, the server process keeps running after Ant completes.

The wlserver WebLogic Server Ant task extends the standard java Ant task (org.apache.tools.ant.taskdefs.Java). This means that all the attributes of the java Ant task also apply to the wlserver Ant task. For example, you can use the output and error attributes to specify the name of the files to which output and standard errors of the wlserver Ant task is written, respectively. For full documentation about the attributes of the standard Java Ant task, see Java on the Apache Ant site (http://ant.apache.org/manual/Tasks/java.html).

Basic Steps for Using wlserver

To use the wlserver Ant task:

	
Set your environment.

On Windows, execute the setWLSEnv.cmd command, located in the directory WL_HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic Server installation.

On UNIX, execute the setWLSEnv.sh command, located in the directoryWL_HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic Server installation.

	
Note:

The wlserver task is predefined in the version of Ant shipped with WebLogic Server. If you want to use the task with your own Ant installation, add the following task definition in your build file:

<taskdef name="wlserver" classname="weblogic.ant.taskdefs.management.WLServer"/>

	
Note:

On UNIX operating systems, the setWLSEnv.sh command does not set the environment variables in all command shells. Oracle recommends that you execute this command using the Korn shell or bash shell.

	
Add a call to the wlserver task in the build script to start, shutdown, restart, or connect to a server. See wlserver Ant Task Reference for information about wlserver attributes and default behavior.

	
Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging directory, optionally passing the command a target argument:

prompt> ant

Use ant -verbose to obtain more detailed messages from the wlserver task.

Sample build.xml Files for wlserver

The following shows a minimal wlserver target that starts a server in the current directory using all default values:

<target name="wlserver-default">
 <wlserver/>
</target>

This target connects to an existing, running server using the indicated connection parameters and user name/password combination:

<target name="connect-server">
 <wlserver host="127.0.0.1" port="7001" username="weblogic" password="weblogic" action="connect"/>
</target>

This target starts a WebLogic Server instance configured in the config subdirectory:

<target name="start-server">
 <wlserver dir="./config" host="127.0.0.1" port="7001" action="start"/>
</target>

This target creates a new single-server domain in an empty directory, and starts the domain's server instance:

<target name="new-server">
 <delete dir="./tmp"/>
 <mkdir dir="./tmp"/>
 <wlserver dir="./tmp" host="127.0.0.1" port="7001"
 generateConfig="true" username="weblogic" password="weblogic" action="start"/>
</target>

wlserver Ant Task Reference

The following table describes the attributes of the wlserver Ant task.

Table 2-1 Attributes of the wlserver Ant Task

	Attribute	Description	Data Type	Required?
	
policy

	
The path to the security policy file for the WebLogic Server domain. This attribute is used only for starting server instances.

	
File

	
No

	
dir

	
The path that holds the domain configuration (for example, c:\Oracle\Middleware\user_projects\domains\mydomain). By default, wlserver uses the current directory.

	
File

	
No

	
beahome

	
The path to the Middleware Home directory (for example, c:\Oracle\Middleware).

	
File

	
No

	
weblogichome

	
The path to the WebLogic Server installation directory (for example, c:\Oracle\Middleware\wlserver_12.1).

	
File

	
No

	
servername

	
The name of the server to start, shutdown, reboot, or connect to.

A WebLogic Server instance is uniquely identified by its protocol, host, and port values, so if you use this set of attributes to specify the server you want to start, shutdown or reboot, you do not need to specify its actual name using the servername attribute. The only exception is when you want to shutdown the Administration server; in this case you must specify this attribute.

The default value for this attribute is myserver.

	
String

	
Required only when shutting down the Administration server.

	
domainname

	
The name of the WebLogic Server domain in which the server is configured.

	
String

	
No

	
adminserverurl

	
The URL to access the Administration Server in the domain. This attribute is required if you are starting up a Managed Server in the domain.

	
String

	
Required for starting Managed Servers.

	
username

	
The user name of an administrator account. If you omit both the username and password attributes, wlserver attempts to obtain the encrypted user name and password values from the boot.properties file. See "Boot Identity Files" in the Administering Server Startup and Shutdown for Oracle WebLogic Server for more information on boot.properties.

	
String

	
No

	
password

	
The password of an administrator account. If you omit both the username and password attributes, wlserver attempts to obtain the encrypted user name and password values from the boot.properties file. See "Boot Identity Files" in the Administering Server Startup and Shutdown for Oracle WebLogic Server for more information on boot.properties.

	
String

	
No

	
pkpassword

	
The private key password for decrypting the SSL private key file.

	
String

	
No

	
timeout

	
The maximum time, in milliseconds, that wlserver waits for a server to boot. This also specifies the maximum amount of time to wait when connecting to a running server.

The default value for this attribute is 0, which means the Ant task never times out.

	
long

	
No

	
timeoutSeconds

	
The maximum time, in seconds, that wlserver waits for a server to boot. This also specifies the maximum amount of time to wait when connecting to a running server.

The default value for this attribute is 0, which means the Ant task never times out.

	
long

	
No

	
productionmodeenabled

	
Specifies whether a server instance boots in development mode or in production mode.

Development mode enables a WebLogic Server instance to automatically deploy and update applications that are in the domain_name/autodeploy directory (where domain_name is the name of a WebLogic Server domain). In other words, development mode lets you use auto-deploy. Production mode disables the auto-deployment feature. See "Deploying Applications and Modules" for more information.

Valid values for this attribute are True and False. The default value is False (which means that by default a server instance boots in development mode.)

Note: If you boot the server in production mode by setting this attribute to True, you must reboot the server to set the mode back to development mode. Or in other words, you cannot reset the mode on a running server using other administrative tools, such as the WebLogic Server Scripting Tool (WLST).

	
Boolean

	
No

	
host

	
The DNS name or IP address on which the server instance is listening.

The default value for this attribute is localhost.

	
String

	
No

	
port

	
The TCP port number on which the server instance is listening.

The default value for this attribute is 7001.

	
int

	
No

	
generateconfig

	
Specifies whether or not wlserver creates a new domain for the specified server.

Valid values for this attribute are true and false. The default value is false.

	
Boolean

	
No

	
action

	
Specifies the action wlserver performs: start, shutdown, reboot, or connect.

The shutdown action can be used with the optional forceshutdown attribute perform a forced shutdown.

The default value for this attribute is start.

	
String

	
No

	
failonerror

	
This is a global attribute used by WebLogic Server Ant tasks. It specifies whether the task should fail if it encounters an error during the build.

Valid values for this attribute are true and false. The default value is false.

	
Boolean

	
No

	
forceshutdown

	
This optional attribute is used in conjunction with the action="shutdown" attribute to perform a forced shutdown. For example:

<wlserver
 host="${wls.host}"
 port="${port}"
 username="${wls.username}"
 password="${wls.password}"
 action="shutdown"
 forceshutdown="true"/>

Valid values for this attribute are true and false. The default value is false.

	
Boolean

	
No

	
noExit

	
(Optional) Leave the server process running after Ant exits. Valid values are true or false. The default value is false, which means the server process will shut down when Ant exits.

	
Boolean

	
No

	
protocol

	
Specifies the protocol that the wlserver Ant task uses to communicate with the WebLogic Server instance.

Valid values are t3, t3s, http, https, and iiop. The default value is t3.

	
String

	
No

	
forceImplicitUpgrade

	
Specifies whether the wlserver Ant task, if run against an 8.1 (or previous) domain, should implicitly upgrade it.

Valid values are true or false. The default value is false, which means that the Ant task does not implicitly upgrade the domain, but rather, will fail with an error indicating that the domain needs to be upgraded.

For more information about upgrading domains, see Upgrading Oracle WebLogic Server.

	
Boolean

	
No.

	
configFile

	
Specifies the configuration file for your domain.

The value of this attribute must be a valid XML file that conforms to the XML schema as defined in the WebLogic Server Domain Configuration Schema at http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd.

The XML file must exist in the Administration Server's root directory, which is either the current directory or the directory that you specify with the dir attribute.

If you do not specify this attribute, the default value is config.xml in the directory specified by the dir attribute. If you do not specify the dir attribute, then the default domain directory is the current directory.

	
String

	
No.

	
useBootProperties

	
Specifies whether to use the boot.properties file when starting a WebLogic Server instance. If this attribute is set to true, WebLogic Server uses the user name and encrypted password stored in the boot.properties file to start rather than any values set with the username and password attributes.

Note: The values of the username and password attributes are still used when shutting down or rebooting the WebLogic Server instance. The useBootProperties attribute applies only when starting the server. Valid values for this attribute are true and false. The default value is false.

	
Boolean

	
No

	
verbose

	
Specifies that the Ant task output additional information as it is performing its action.

Valid values for this attribute are true and false. The default value is false.

	
Boolean

	
No

Configuring a WebLogic Server Domain Using the wlconfig Ant Task

The following sections describe how to use the wlconfig Ant task to configure a WebLogic Server domain.

	
Note::

The wlconfig Ant task works only against MBeans that are compatible with the MBean server, which was deprecated as of version 9.0 of WebLogic Server. In particular, the wlconfig Ant task uses the deprecated proprietary API weblogic.management.MBeanHome to access WebLogic MBeans; therefore, wlconfig does not use the standard JMX interface (javax.management.MBeanServerConnection) to discover MBeans. This means that the only MBeans that you can access using wlconfig are those listed under the Deprecated MBeans category in the MBean Reference for Oracle WebLogic Server
For equivalent functionality, you should use the WebLogic Scripting Tool (WLST). See Understanding the WebLogic Scripting Tool.

What the wlconfig Ant Task Does

The wlconfig Ant task enables you to configure a WebLogic Server domain by creating, querying, or modifying configuration MBeans on a running Administration Server instance. Specifically, wlconfig enables you to:

	
Create new MBeans, optionally storing the new MBean Object Names in Ant properties.

	
Set attribute values on a named MBean available on the Administration Server.

	
Create MBeans and set their attributes in one step by nesting set attribute commands within create MBean commands.

	
Query MBeans, optionally storing the query results in an Ant property reference.

	
Query MBeans and set attribute values on all matching results.

	
Establish a parent/child relationship among MBeans by nesting create commands within other create commands.

Basic Steps for Using wlconfig

	
Set your environment in a command shell. See Basic Steps for Using wlserver for details.

	
Note:

The wlconfig task is predefined in the version of Ant shipped with WebLogic Server. If you want to use the task with your own Ant installation, add the following task definition in your build file:

<taskdef name="wlconfig" classname="weblogic.ant.taskdefs.management.WLConfig"/>

	
wlconfig is commonly used in combination with wlserver to configure a new WebLogic Server domain created in the context of an Ant task. If you will be using wlconfig to configure such a domain, first use wlserver attributes to create a new domain and start the WebLogic Server instance.

	
Add an initial call to the wlconfig task to connect to the Administration Server for a domain. For example:

<target name="doconfig">
 <wlconfig url="t3://localhost:7001" username="weblogic"
 password=password>
</target>

	
Add nested create, delete, get, set, and query elements to configure the domain.

	
Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging directory, optionally passing the command a target argument:

prompt> ant doconfig

Use ant -verbose to obtain more detailed messages from the wlconfig task.

	
Note:

Since WLST is the recommended tool for domain creation scripts, you should refer to the WLST offline sample scripts that are installed with the software. The offline scripts demonstrate how to create domains using the domain templates and are located in the following directory: WL_HOME\common\templates\scripts\wlst, where WL_HOME refers to the top-level installation directory for WebLogic Server. For example, the basicWLSDomain.py script creates a simple WebLogic domain, while sampleMedRecDomain.py creates a domain that defines resources similar to those used in the Avitek MedRec sample. See Understanding the WebLogic Scripting Tool.

wlconfig Ant Task Reference

The following sections describe the attributes and elements that can be used with wlconfig.

Main Attributes

The following table describes the main attributes of the wlconfig Ant task.

Table 2-2 Main Attributes of the wlconfig Ant Task

	Attribute	Description	Data Type	Required?
	
url

	
The URL of the domain's Administration Server.

	
String

	
Yes

	
username

	
The user name of an administrator account.

	
String

	
No

	
password

	
The password of an administrator account.

To avoid having the plain text password appear in the build file or in process utilities such as ps, first store a valid user name and encrypted password in a configuration file using the WebLogic Scripting Tool (WLST) storeUserConfig command. Then omit both the username and password attributes in your Ant build file. When the attributes are omitted, wlconfig attempts to login using values obtained from the default configuration file.

If you want to obtain a user name and password from a non-default configuration file and key file, use the userconfigfile and userkeyfile attributes with wlconfig.

See the command reference for storeUserConfig in the WLST Command Reference for WebLogic Server for more information on storing and encrypting passwords.

	
String

	
No

	
failonerror

	
This is a global attribute used by WebLogic Server Ant tasks. It specifies whether the task should fail if it encounters an error during the build. This attribute is set to true by default.

	
Boolean

	
No

	
userconfigfile

	
Specifies the location of a user configuration file to use for obtaining the administrative user name and password. Use this option, instead of the username and password attributes, in your build file when you do not want to have the plain text password shown in-line or in process-level utilities such as ps.

Before specifying the userconfigfile attribute, you must first generate the file using the WebLogic Scripting Tool (WLST) storeUserConfig command as described in the WLST Command Reference for WebLogic Server.

	
File

	
No

	
userkeyfile

	
Specifies the location of a user key file to use for encrypting and decrypting the user name and password information stored in a user configuration file (the userconfigfile attribute).

Before specifying the userkeyfile attribute, you must first generate the key file using the WebLogic Scripting Tool (WLST) storeUserConfig command as described in the WLST Command Reference for WebLogic Server.

	
File

	
No

Nested Elements

wlconfig also has several elements that can be nested to specify configuration options:

	
create

	
delete

	
set

	
get

	
query

	
invoke

create

The create element creates a new MBean in the WebLogic Server domain. The wlconfig task can have any number of create elements.

A create element can have any number of nested set elements, which set attributes on the newly-created MBean. A create element may also have additional, nested create elements that create child MBeans.

The create element has the following attributes.

Table 2-3 Attributes of the create Element

	Attribute	Description	Data Type	Required?
	
name

	
The name of the new MBean object to create.

	
String

	
No (wlconfig supplies a default name if none is specified.)

	
type

	
The MBean type.

	
String

	
Yes

	
property

	
The name of an optional Ant property that holds the object name of the newly-created MBean.

Note: If you nest a create element inside of another create element, you cannot specify the property attribute for the nested create element.

	
String

	
No

delete

The delete element removes an existing MBean from the WebLogic Server domain. delete takes a single attribute:

Table 2-4 Attribute of the delete Element

	Attribute	Description	Data Type	Required?
	
mbean

	
The object name of the MBean to delete.

	
String

	
Required when the delete element is a direct child of the wlconfig task. Not required when nested within a query element.

set

The set element sets MBean attributes on a named MBean, a newly-created MBean, or on MBeans retrieved as part of a query. You can include the set element as a direct child of the wlconfig task, or nested within a create or query element.

The set element has the following attributes:

Table 2-5 Attributes of the set Element

	Attribute	Description	Data Type	Required?
	
attribute

	
The name of the MBean attribute to set.

	
String

	
Yes

	
value

	
The value to set for the specified MBean attribute.

You can specify multiple object names (stored in Ant properties) as a value by delimiting the entire value list with quotes and separating the object names with a semicolon.

	
String

	
Yes

	
mbean

	
The object name of the MBean whose values are being set. This attribute is required only when the set element is included as a direct child of the main wlconfig task; it is not required when the set element is nested within the context of a create or query element.

	
String

	
Required only when the set element is a direct child of the wlconfig task.

	
domain

	
This attribute specifies the JMX domain name for Security MBeans and third-party SPI MBeans. It is not required for administration MBeans, as the domain corresponds to the WebLogic Server domain.

Note: You cannot use this attribute if the set element is nested inside of a create element.

	
String

	
No

get

The get element retrieves attribute values from an MBean in the WebLogic Server domain. The wlconfig task can have any number of get elements.

The get element has the following attributes.

Table 2-6 Attributes of the get Element

	Attribute	Description	Data Type	Required?
	
attribute

	
The name of the MBean attribute whose value you want to retrieve.

	
String

	
Yes

	
property

	
The name of an Ant property that will hold the retrieved MBean attribute value.

	
String

	
Yes

	
mbean

	
The object name of the MBean you want to retrieve attribute values from.

	
String

	
Yes

query

The query elements finds MBean that match a search pattern.

The query element supports the following nested child elements:

	
set—performs set operations on all MBeans in the result set.

	
get—performs get operations on all MBeans in the result set.

	
create—each MBean in the result set is used as a parent of a new MBean.

	
delete—performs delete operations on all MBeans in the result set.

	
invoke—invokes all matching MBeans in the result set.

wlconfig can have any number of nested query elements.

query has the following attributes:

Table 2-7 Attributes of the query Element

	Attribute	Description	Data Type	Required?
	
domain

	
The name of the WebLogic Server domain in which to search for MBeans.

	
String

	
No

	
type

	
The type of MBean to query.

	
String

	
No

	
name

	
The name of the MBean to query.

	
String

	
No

	
pattern

	
A JMX query pattern.

	
String

	
No

	
property

	
The name of an optional Ant property that will store the query results.

	
String

	
No

	
domain

	
This attribute specifies the JMX domain name for Security MBeans and third-party SPI MBeans. It is not required for administration MBeans, as the domain corresponds to the WebLogic Server domain.

	
String

	
No

invoke

The invoke element invokes a management operation for one or more MBeans. For WebLogic Server MBeans, you usually use this command to invoke operations other than the getAttribute and setAttribute that most WebLogic Server MBeans provide.

The invoke element has the following attributes.

Table 2-8 Attributes of the invoke Element

	Attribute	Description	Data Type	Required?
	
mbean

	
The object name of the MBean you want to invoke.

	
String

	
You must specify either the mbean or type attribute of the invoke element.

	
type

	
The type of MBean to invoke.

	
String

	
You must specify either the mbean or type attribute of the invoke element.

	
methodName

	
The method of the MBean to invoke.

	
String

	
Yes

	
arguments

	
The list of arguments (separated by spaces) to pass to the method specified by the methodName attribute.

	
String

	
No

Using the libclasspath Ant Task

Use the libclasspath Ant task to build applications that use libraries, such as application libraries and Web libraries.

	
libclasspath Task Definition

	
wlserver Ant Task Reference

	
Example libclasspath Ant Task

libclasspath Task Definition

To use the task with your own Ant installation, add the following task definition in your build file:

 <taskdef name="libclasspath" classname="weblogic.ant.taskdefs.build.LibClasspathTask"/>

libclasspath Ant Task Reference

The following sections describe the attributes and elements that can be used with the libclasspath Ant task.

	
Main libclasspath Attributes

	
Nested libclasspath Elements

Main libclasspath Attributes

The following table describes the main attributes of the libclasspath Ant task.

Table 2-9 Attributes of the libclasspath Ant Task

	Attribute	Description	Required
	

basedir

	
The root of .ear or .war file to extract from.

	
Either basedir or basewar is required.

	

basewar

	
The name of the .war file to extract from.

	
If basewar is specified, basedir is ignored and the library referenced in basewar is used as the .war file to extract classpath or resourcepath information from.

	

tmpdir

	
The fully qualified name of the directory to be used for extracting libraries.

	
Yes.

	

classpathproperty

	
Contains the classpath for the referenced libraries.

For example, if basedir points to a .war file that references Web application libraries in the weblogic.xml file, the classpathproperty contains the WEB-INF/classes and WEB-INF/lib directories of the Web application libraries.

Additionally, if basedir points to a .war file that has .war files under WEB-INF/bea-ext, the classpathproperty contains the WEB-INF/classes and WEB-INF/lib directories for the Oracle extensions.

	
At least one of the two attributes is required.

	

resourcepathproperty

	
Contains library resources that are not classes.

For example, if basedir points to a .war file that has .war files under WEB-INF/bea-ext, resourcepathproperty contains the roots of the exploded extensions.

	

Nested libclasspath Elements

libclasspath also has two elements that can be nested