ORACLE"

Oracle® Fusion Middleware
Developing ADF Skins

12¢ (12.2.1)

E52657-01

October 2015

Documentation for Oracle Application Development
Framework (Oracle ADF) developers and user interface
designers that describes how to create and apply skins to an
application.

Oracle Fusion Middleware Developing ADF Skins, 12¢ (12.2.1)
E52657-01

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.
Primary Author: Walter Egan

Contributing Authors: Laura Akel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ... vii
ATUAIEIICE ...ttt a e bbbt bt b e s b e st et e b et et e st e st eat e st e bt e ae e bt e bt be s bt et e benbe st entenee Vi
Documentation AcCeSSIDILILYcccvvvviimiiiiiiiiiiiii s Vi
Related DOCUIMENLES.coueiitiiiiiietirteierieieste ettt ettt ettt ettt et st et st et et st et ebe e ebe e ebensebenaenens Vil
COMVEINEIONS ... teetieeiieeite et estte et estteete e tbeeaeessteesbaessaeasseeassaesseessseasssasssesssaassseasseesssaasseessseensaassseessesnssennsennn Vi

What's NeW iN THIS GUITE..........c.ireeece sttt ix
New and Changed Features for 12¢ (12.2.1) ..c.cccciuiiiiiiiicceeeceeeeeieeee e nesenenes iX

1 About Skinning a Web Application

2

3

1.1 Introduction to Skinning a Web Applicationcccocevvrirvnninirnrnccrreeeeeeeeeeeeaes 11
1.2 Overview of Developing an ADF SKin.........cccccceviniiiiinnniinnnnnneneseeeeeeees 1-2
1.3 Taking a Look at an ADF SKiN ..o 1-4
1.4 Inheritance Relationship of the ADF Skins Provided by Oracle ADFccccccoviiiinnnes 1-6

Working with the Theme Editor

2.1 About the Theme Editor ..o 2-1
2.2 Setting Up and Starting the Theme Editor ... 2-2
22.1 How to Set Up the Theme Editor ... 2-3
2.2.2 How to Persist ADF Skins Created in the Theme Editor..........cocccccevviiinnniicnnnee. 2-3
2.2.3 How to Start the Theme Editor ... 2-4
2.3 Exporting an ADF Skin from the Theme EditOr..........ccooveiiiiiiiiiiiiicce, 2-4

Working with ADF Skin Selectors

3.1 About ADF SKin Selectorscccciiiiiiiiiiiiiiiiiiiccic e 3-1
3.1.1 ADF Skin Selectors and Pseudo-Elements...........ccccovciiiiiiiiiiininciiieccceeeeeene 3-3
3.1.2 ADF Skin Selectors and Icon Images...........cccoeiiiiiiiiiiiiiiiiccccccccccee 3-3
3.1.3 Grouped ADF SKin Selectors.........coiiiiiiiiiiiiiicces 3-5
3.1.4 Descendant ADF SKin Selectorsccoviuiininiiiiiiiniiiiiiiiciccrccec s 3-6

3.2 Pseudo-Classes in the ADF Skinning Framework..........cccoooiiieiiiiciciniiccecce 3-7

3.3 Properties in the ADF Skinning Frameworkcccccccceiviiiinnniiirccceeeeeeeeenes 3-10

34

Accessing Selector Information from Within JDeveloper............ccccooeiriiinicniicnicne 3-12

Working with ADF Skins in JDeveloper

4.1
4.2

4.3

44
4.5

About the Editors for ADF Skins in JDeveloper ... 4-1
Working with the ADF Skin Design Editorcccccociiiiiiiiiiiiiiceceecceceeeeeenennas 4-1
42.1 How to Change the Browser that Renders the Design Editor's Sample Pages............ 4-2
Working with the ADF Skin Selectors Editor ... 4-3
4.3.1 About the Selector TTee ... 4-5
4.3.2 Interactive Preview in the Selectors EditOr..........ccooviiiiiiiiii, 4-7
Working with the Properties WINdOw ... 4-8
Navigating ADF SKINS ... 4-10

Creating the Source Files for an ADF Skin

5.1
52

53
54

About Creating an ADF SKinNccccociiiiiiiiiiiiceceeeee e 5-1
Creating an ADF SKin File.........ccooiiii s 5-1
5.2.1 How to Create an ADF Skin in JDeveloper ..ot 5-2
5.2.2 What Happens When You Create an ADF SKincccccccooiiiiiiininiiicccceeeees 5-3
Importing One or More ADF Skins Into the Current ADF SKin.........cccccococeiiiiiccccccnnes 5-5
Adding ADF Skins from an ADF Library JAR........ccccccooiiiiiiiiiiiccceeccccas 5-5
5.4.1 How to Add an ADF Skin from an ADF Library JARcccooeiiii, 5-6
5.4.2 What Happens When You Import an ADF Skin from an ADF Library JAR............... 5-6

Working with Component-Specific Selectors

6.1
6.2
6.3
6.4

6.5

6.6

About Working with Component-Specific Selectors ..., 6-1
Changing ADF Faces Components' SEleCtOrs..........ccceueuiuiuiuiuiuiuieieieiieeeeeieeeereieneeenenenenes 6-3
Changing ADF Data Visualization Components' Selectorsccoovvvviviiieinicneeicnnen, 6-4
Changing a Component-Specific Selector ... 6-7
6.4.1 How to Change a Component-Specific Selector ..o, 6-8
6.4.2 What Happens When You Change a Component-Specific Selectorccccvuuune. 6-8
Configuring ADF Skin Properties to Apply to MeSSagescccocoeeueeeeecicccceceeeenenas 6-10
6.5.1 How to Configure an ADF Skin Property to Apply to a Message...........cccccccevevurnene. 6-11
6.5.2 What Happens When You Configure ADF Skin Properties to Apply to Messages 6-12
Configuring an ADF Skin for Accessibilityccccoeirieiiiniiiiiiiccc 6-12
6.6.1 How to Configure an ADF Skin for Accessibility.........ccccviiiiniiiiniiii, 6-13

Working with Images and Color in Your ADF Skin

7.1
7.2
7.3
7.4

About Working with Images and Color in Your ADF SKincccccccceveiiiiieineeececeenenas 7-1
Changing Images and Colors in the ADF Skin Design Editor............cccccocieiiiiiiiiiccnnas 7-3
Working with Anchor Colors in an ADF SKin ... 7-4
Changing an Image for a Component Selectorcooiiiiiiicicc e 7-8
74.1 How to Copy an Image into the Project...........coooeeiiiiiii, 7-9
742 What Happens When You Copy an Image into the Projectcccocevuvvvvvervnenne. 7-10

8

9

10

11

Working With Text in an ADF Skin

8.1 About Working with Text in an ADF SKinccccooeiiiiiic e 8-1
8.2 Using Text From Your Own Resource Bundle..........c.cccooriiiiiiiiiie 8-2
8.2.1 How to Specify an Additional Resource Bundle for an ADF Skincccccevuvurunencne. 8-2

8.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF
SKITU 1ottt 8-3

Working With Global Selector Aliases

9.1 About Global Selector AlIases............cccoviiiiiiiiiiiiiiiiiiiiic s 9-1
9.2 Creating a Global Selector ALAsccceeueuriririiiiiiiircereeee s 9-5
9.2.1 How to Create a Global Selector Aliasccooeereieiviiniiiniieecece, 9-5
9.2.2 What Happens When You Create a Global Selector Aliascccocoeeieicnininicnnnnne. 9-6
9.3 Modifying a Global Selector ALias...........ccccoiiueieieiiciciiicicte s 9-6
9.3.1 How to Modify a Global Selector Alias...........cccccoeviririminiciniiieicece s 9-7
9.4 Applying a Global Selector ALIASccccccurururiiiiiiiriririicereeeeee s 9-7
9.41 How to Apply a Global Selector ALLascccccoveeeierririininiicee e, 9-8
9.42 What Happens When You Apply a Global Selector Aliascccooeeieicniiinicnnnnn. 9-8
9.43 What You May Need to Know About Applying a Global Selector Alias.................... 9-9
9.5 Referencing a Property Value from Another Selector............c.cocoooriiirininncniiinice, 9-10
9.5.1 How to Reference a Property Value from Another Selector...........ccccoviiiininnnnnce. 9-10
9.5.2 What Happens When You Reference a Property Value from Another Selector....... 9-11

Working with Style Classes

10.1 AbOUL SEY1E CLASSESceuimimiiiiiiiiiiiic e 10-1
10.2 Creating @ Style Class.........coceueiiiuiieiiiccie ettt s 10-2
10.2.1 How to Create a Style Class...........coooeueueieiiiiiieiiccc e 10-2
10.2.2 What Happens When You Create a Style Class.........cccccceceueeuiccceeccnccceeeenenes 10-3
10.3 Modifying a Style Class ..o 10-3
10.3.1 How to Modify a Style Classccccciiiiiiiiiiiiiiiciicccccccecccceeee e 10-3
104 Configuring a Style Class for a Specific Instance of a Componentcccccceeeiiiiinnnes 10-3
10.4.1 How to Configure a Style Class for a Specific Instance of a Component................. 10-4

10.4.2 What Happens When You Configure a Style Class for a Specific Instance of a
COMPONENL ..ot 10-4

Working with At-Rules

11.1 About At-Rules in the ADF Skinning Framework............cccccoviiiiiiiiccc 11-1
11.2 Working with Server-Side At-Rules.............coooiii 11-2
11.3 Working with Client-Side At-RUIEScccociiiiiiiiiiiiicicececeeceeeeeee e 11-5
114 Creating At-Rules in an ADF SKinN ... 11-7
11.4.1 How to Create an At-RuUleccccoiiiiiiiiiiiiiiicccccee e 11-7
11.4.2 What Happens When You Create an At-Rule..............ccoooi 11-8

12

13

Vi

11.4.3 What Happens at Runtime: How the ADF Skinning Framework Applies At-Rules

... 11-9
Applying the Finished ADF Skin to Your Web Application

12.1 About Applying a Finalized ADF Skin to an Application...........ccccceoeeiiiiiiciiiiccnnnas 12-1
12.2 Testing Changes in Your ADF SKincccocoioiiiiiiiiiiic i 12-1
12.2.1 How to Set Parameters for Testing Your ADF SKin.........cccccocoovriiimniiiniicniiceicnns 12-4
12.2.2 What Happens When You Set Parameters for Testing Your ADF Skin................... 12-4

12.3 Packaging an ADF Skin into an ADF Library JARcccciiiiiiiicccceecenenes 12-4
12.3.1 How to Package an ADF Skin into an ADF Library JARcccccooeiiiiiiiiiinnns 12-5
12.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR.......... 12-5

124 Applying an ADF Skin to Your Web Applicationcccoeuoiiriiiiiiiiicccic 12-6
12.4.1 How to Apply an ADF Skin to an Application..........c.cccccoceecccccciccncceecccnenns 12-7
12.42 What Happens When You Apply an ADF Skin to an Application...........ccccccccueeee. 12-7

12.5 Applying an ADF Skin to a Running Web Application...........ccccooeiiiiiiiiiiiiiiicnnns 12-7
12.5.1 How to Configure your Web Application to Accept an Updated ADF Skin........... 12-7
12.5.2 How to Deploy an ADF Library JAR to an MBean Server............cccoocevvivinieieninnne. 12-8
12.5.3 What Happens When You Apply an ADF Skin to a Running Application........... 12-10

Advanced Topics

13.1 Referring to URLs in an ADF Skin's CSS File ... 13-1
13.2 Configuration Files for an ADF SKin ... 13-2
13.3 ADEF Skins Provided by Oracle ADF.............cccooiiiiiiiicce i 13-3
13.4 Versioning ADF SKiNS........cccoocuiiiiiiiiiiiicie ettt 13-3
13.4.1 How to Version an ADF SKiN ... 13-4
13.4.2 What Happens When You Version ADF SKins..........cccccccceiiiiiiiiiiinccccccnnes 13-4

Audience

Preface

Welcome to Developing ADF Skins.

This document is intended for application developers and user interface designers
who want to change the look and feel of their application by skinning ADF Faces Rich
Client components.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. conl pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documents:

* Developing Web User Interfaces with Oracle ADF Faces

e Tag Reference for Oracle ADF Faces

¢ Tag Reference for Oracle ADF Faces Skin Selectors

e Tag Reference for Oracle ADF Faces Data Visualization Tools

¢ Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors

Conventions

The following text conventions are used in this document:
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

viii

What's New Iin This Guide

The following section describes new and changed features that pertain to the creation
of ADF skins (also known as themes) in this release, and provides pointers to
additional sources of information.

New and Changed Features for 12¢ (12.2.1)

Release 12c (12.2.1) includes the following new and changed features for the creation
of ADF skins:

Revised About Skinning a Web Application to discuss the new Alta skin family
delivered as a part of the new Oracle Alta Ul system. For more information about
the Oracle Alta Ul system, see http://www.oracle.com/webfolder/ux/
middleware/alta/index.html.

Added Working with the Theme Editor to describe how you set up and use the
Theme Editor that was introduced in this release. The Theme Editor provides a
user-friendly interface to create themes that change the appearance of the most
frequently-styled elements of an application. Users do not require technical
knowledge of CSS or ADF Faces components to use the Theme Editor.

Revised Properties in the ADF Skinning Framework and Configuring a Style Class
for a Specific Instance of a Component to clarify that ADF skin properties (for
example, - t r - open- ani mat i on- dur at i on) customize the rendering of a
component throughout an application and cannot be used in style classes to change
the appearance of specific instances of a component.

Revised ADF Skins Provided by Oracle ADF to describe the Alta skin and remove
the deprecated Fusion and Fusion Simple families of ADF skin.

For other changes made to the Oracle Application Development Framework (Oracle
ADF) for this release, see the What's New page on the Oracle Technology Network at
http://ww. oracl e. com t echnet wor k/ devel oper -t ool s/ dev/

docunent ati on/i ndex. htni .

http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

1

About Skinning a Web Application

This chapter introduces you to developing an ADF skin. It provides an overview of the
process of developing an ADF skin, takes a look at some of the changes that an ADF
skin can implement, and describes the inheritance relationship of the ADF skins that
Oracle ADF provides for you to extend from.

This chapter includes the following sections:

¢ Introduction to Skinning a Web Application
* Overview of Developing an ADF Skin

e Taking a Look at an ADF Skin

® Inheritance Relationship of the ADF Skins Provided by Oracle ADF

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 Introduction to Skinning a Web Application

Skinning refers to the task of developing an ADF skin to apply to a web application
that uses ADF Faces and ADF Data Visualization components in the user interface.
An ADF skin uses the format, properties, and selectors of cascading style sheets (CSS)
to allow you to customize the appearance of these components. Instead of providing a
CSS file for each component, or inserting a style sheet on each page of the application,
you create one ADF skin for the web application. Every component that renders in the
user interface automatically uses the styles defined by the ADF skin. This means you
do not have to make design-time changes to individual pages to change their
appearance when you use an ADF skin.

Using an ADF skin also makes it easy for you to maintain a consistent appearance for
all the pages that the application renders. Changes to the appearance of your
application can easily be made should you decide to do so. You might decide, for
example, to change colors to make your application adhere to your company's
corporate brand. Additionally, you may want to define a style property for a
component to make your application more usable. For example, Figure 1-1 shows an
ADF Faces i nput Text component.

Figure 1-1 Writable inputText Component

Enter a value:

Figure 1-2 shows another ADF Faces i nput Text component where the background
color is grayed out by the ADF skin to indicate to the end user that the i nput Text
component is read only.

About Skinning a Web Application 1-1

Overview of Developing an ADF Skin

Figure 1-2 Read-Only inputText Component with Grayed-Out Background Color

Other benefits of skinning include the ability to easily change the default text labels
that ADF Faces components render at runtime. For example, the default text for the
di al og component's labels are OK and Cancel if you set the component's t ype
property to okCancel . You cannot modify the values of these labels by specifying
properties for the di al 0g component. Instead, if you want to change OK to Submit,
for example, you make changes in the ADF skin that references a resource bundle
with the alternative string value. For more information, see Working With Text in an
ADEF Skin.

The previous examples illustrate some of the use cases for ADF skins plus the benefits
of creating an ADF skin. Note that you do not have to define all the changes that you
want for your application in one ADF skin. You can create different ADF skins to
serve different purposes. For example, you might create ADF skins with different
color schemes to adhere to the corporate brand of different companies. In addition,
you can configure an application so that the skin changes dynamically (for example,
based on the role of the end user, or in response to a selection by the end user).

Oracle ADF provides a number of tools and resources to assist you in the task of
creating an ADF skin. Overview of Developing an ADF Skin briefly describes the tools
that you can use while ADF Skins Provided by Oracle ADF describes the ADF skins
that Oracle ADF provides as a starting point for your ADF skin creation project. A
new web application that you create in this release uses the Alta skin by default.
Migrated web applications continue to use their existing ADF skin. To get the full
benefit of the Oracle Alta Ul system, Oracle recommends that you go beyond simply
using the Alta skin and design your application around the Oracle Alta UI Design
Principles. Designing your application using these principles enables you to make use
of the layouts, responsive designs and components the Oracle Alta Ul system
incorporates to present content to your end users in a clean and uncluttered way. For
more information about the Oracle Alta Ul system and the Oracle Alta Ul Design
Principles, see http:/ /www.oracle.com/webfolder/ux/middleware/alta/index.html
and for information about Oracle Alta Ul Patterns, see http://www.oracle.com/
webfolder /ux/middleware/alta/patterns/index.html

Note that this guide makes the following assumptions:
® You are familiar with the ADF Faces and ADF Data Visualization components that
you can skin. The usage and functionality of these components is beyond the scope

of this guide. For more information about these components, see Developing Web
User Interfaces with Oracle ADF Faces.

* You are familiar with CSS. It is beyond the scope of this guide to explain CSS. For
extensive information about CSS, including the official specification, visit the
World Wide Web Consortium (W3C) web site at:

htt p: //ww. w3. or g/

1.2 Overview of Developing an ADF Skin

Developing an ADF skin is an iterative process. Before you proceed, familiarize
yourself with the concepts of CSS plus the ADF Faces and ADF Data Visualization
components.

Oracle ADF provides two tools to help you to develop an ADF skin: the Theme Editor
and JDeveloper’s editor for ADF skins. The Theme Editor is a web application where

1-2 Developing ADF Skins

http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html
http://www.w3.org/

Overview of Developing an ADF Skin

you can change the style properties of the most frequently-skinned ADF Faces
components. You can view the results of the changes you make immediately within a
preview pane of the same browser page where you make the style property changes.

The goal of the Theme Editor is to assist you accomplish the majority of your skinning
tasks. For those skinning tasks that you cannot accomplish using the Theme Editor, we
recommend that you export the ADF skin from the Theme Editor to an ADF Library
JAR once you complete the tasks that can be completed in the Theme Editor. Using the
exported ADF Library JAR, you can complete the remainder of your skinning project
by creating an ADF skin that extends from the exported Theme Editor’s ADF skin
using the editors for ADF skins in JDeveloper. Examples of tasks that require you to
use the editors for ADF skins in JDeveloper include styling DVT components, writing
alternative text strings for the default labels that ADF Faces components render, and
specifying at-rules in your ADF skin to determine the look and feel if the web
application page renders in a specific browser or on a device.

Note: You cannot import an ADF skin into the Theme Editor and the Theme
Editor user interface refers to an ADF skin as a “theme.”

The high level steps to develop a theme (ADF skin) in the Theme Editor are:
1. Create an ADF skin using the Theme Editor.

2. Modify the style properties for the ADF Faces components that the Theme Editor
enables you to customize using the provided controls.

3. Review your changes in the provided preview pages.

4. If satisfied or if you have completed all tasks that can be accomplished using the
Theme Editor, export your completed ADF skin to an ADF Library JAR.

For more information about these steps, see Working with the Theme Editor.
5. Choose the appropriate option:

e Import the ADF Library JAR into a JDeveloper project from where you can
extend the ADF skin to complete any remaining tasks you were unable to
complete using the Theme Editor. For more information, see Adding ADF
Skins from an ADF Library JAR.

¢ Distribute your completed ADF skin for use in the intended web applications.
For more information, see Applying an ADF Skin to Your Web Application.

The high level steps to develop an ADF skin in JDeveloper are:

1. Create an ADF skin in JDeveloper.

You create an ADF skin in JDeveloper where you write the declarations for the
selectors that the ADF skinning framework exposes. When creating an ADF skin
in JDeveloper, you must choose an existing ADF skin to extend from. If this ADF
skin is the first ADF skin that you create, you choose from one of the ADF skins
that Oracle ADF provides. For more information, see ADF Skins Provided by
Oracle ADF. For information about the inheritance relationship between these
ADF skins, see Inheritance Relationship of the ADF Skins Provided by Oracle
ADFEF . If you create subsequent ADF skins, you can choose to extend from an ADF
skin that you created previously.

For more information about creating an ADF skin, see Creating an ADF Skin File.

About Skinning a Web Application 1-3

Taking a Look at an ADF Skin

2. Write declarations for the selectors, rules, and pseudo-elements in the ADF skin
that you created.

The editor for ADF skins in JDeveloper provides a number of tabs that facilitate
this task.

Note:

The Design tab only appears if you extend your ADF skin from the Skyros
ADF skin. The Theme Editor (described previously) enables you to edit and
preview changes that you make to an Alta or Skyros skin in a browser page.
The selectors editor appears irrespective of the skin family that you extend
from. For more information, see Working with the ADF Skin Design Editor
and Working with the ADF Skin Selectors Editor.

For a description of the different categories of selectors, rules, and pseudo-
elements, see Working with ADF Skin Selectors.

3. Ifapplicable, import images that you want your ADF skin to reference at runtime
in the web application. For more information, see Working with Images and
Color in Your ADF Skin.

4. If applicable, override the default text labels defined for the ADF Faces and ADF
Data Visualization components by entering new values in a resource bundle. For
more information, see Working With Text in an ADF Skin.

5. Preview and test the changes that you made to the ADF skin to verify that the
results are what you want. Modify the ADF skin as necessary. The Design tab
described in Step 2 provides a number of sample pages where you can view your
changes within the editor for ADF skins in JDeveloper or within a browser by
clicking the Preview in Browser icon, as described in Working with the ADF Skin
Design Editor. For information about previewing and testing an ADF skin in a
running web application, see Testing Changes in Your ADF Skin .

6. Once you complete development of the ADF skin, you may want to package it for
distribution. For more information, see Packaging an ADF Skin into an ADF
Library JAR.

7. Having completed the ADF skin and distributed it, you configure your web
application so that it uses it. For more information, see Applying an ADF Skin to
Your Web Application.

1.3 Taking a Look at an ADF Skin

An ADF skin is a type of cascading style sheet. It differs from a cascading style sheet in
a number of ways. One way it differs is that you can specify properties for the
selectors that the ADF skinning framework exposes in the source file for the ADF skin.
A selector exposed by the ADF skinning framework is similar to a CSS selector in that
it identifies the ADF Faces and ADF Data Visualization components for which you
want to change the appearance and allows you to specify one or more style properties
for the component.

A selector exposed by the ADF skinning framework differs from a CSS selector in that
it allows you to set values both for CSS properties and ADF skin properties exposed
by the ADF skinning framework. CSS properties are interpreted directly by the end
user's browser. ADF skin properties are prefaced by the characters - t r - . Some of

1-4 Developing ADF Skins

Taking a Look at an ADF Skin

these ADF skin properties are read and interpreted by the web application. These
properties are also known as server-side properties. A component that renders in the
user interface may read these properties before it decides what to render. Other types
of ADF skin properties, for example-tr-rul e-ref or-tr-property-ref,
enhance the capabilities of the ADF skinning framework, as described in Properties in
the ADF Skinning Framework.

The following example shows the selector for the gauge component that sets values
for the ADF skin properties -t r - gr aphi c-anti al i asingand-tr-ani mati on-
i ndi cat or s, plus the CSS properties backgr ound- col or and font-family.

af | dvt - gauge

[** ADF skin properties */
-tr-graphic-antialiasing: false;
-tr-animation-indicators: none;
/** CSS properties */
font-famly: Geneva, Arial, Helvetica, sans-serif;
background- col or: rgh(243, 255, 185);

}

As the previous example demonstrates, you can set values for CSS properties and
ADF skin properties within the declaration of a selector exposed by the ADF skinning
framework. The ADF skinning framework exposes the ADF skin properties that you
can define. In addition to ADF skin properties, the ADF skinning framework defines a
number of pseudo classes and at-rules that you can specify in an ADF skin. Examples
of supported at-rules and pseudo classes include @l at f or m @gent,
@ccessibility-profile,:rtl,and @ ocal e. For more information, see
Working with ADF Skin Selectors.

At runtime, the web application creates a browser-specific CSS file from the ADF skin.
The application then references this browser-specific CSS file as it would any CSS file.

Figure 1-3 demonstrates the impact that an ADF skin can have on the appearance of an
application's page. The page on the left renders using the skyr os ADF skin. The page
on the right renders using the al t a skin. Each ADF skin defines different values for
colors and fonts.

About Skinning a Web Application 1-5

Inheritance Relationship of the ADF Skins Provided by Oracle ADF

Figure 1-3 File Explorer Application Using the Skyros ADF Skin and the Alta Skin
File Explorer ORACLE' File Explorer

File = Edit =

File v Editw View v Help v

Current Location: ETEEESgss =il

) @ Select Skin ¥
E Folders [Table
[y Files _ 4 T2 Folders e
[Foldero View _ B8 Table
3 Foldert MName 4 [My Files
[Folderz] File0.do [Z3 Folderd View w
[Faldera @ Fie0 i [£3 Folder1
= [Filen.pd Name
L Folders ' 3 Folder2)
[Folders [3€] File0.xds No File It
3 Folders 3 Folder3
older
[Falder? 3 Folderd
I;] Falders 3 Folders
IT] Foiders [C3 Folders
[1 Folder10 £ Folder?
[Folder11 older
Note:

An ADF skin can affect the time it takes a client to render the user interface.
The more styles that an ADF skin uses, the more the client has to load. This
can affect performance in low bandwidth or high latency environments.

1.4 Inheritance Relationship of the ADF Skins Provided by Oracle ADF

Oracle ADF provides a number of ADF skin families that you can use in your
application or extend when you create an ADF skin. The ADF skins provided by
Oracle ADF offer increasing levels of customization for the appearance rendered by
ADF Faces and ADF Data Visualization components at runtime.

Figure 1-4 shows the inheritance relationship between the different ADF skin families.
The skyr 0s-v1 and al t a- vl ADF skin families both extend from the si npl e ADF
skin.

All ADF Faces components use, at a minimum, styles defined in the si npl e ADF skin
as this is the skin from which the other ADF skins extend. The si npl e ADF skin
defines the minimum style properties that ADF Faces components require to render in
a web application. If you want to create an ADF skin with a minimal amount of
customization, you create an ADF skin that extends from the si npl e ADF skin.

1-6 Developing ADF Skins

Inheritance Relationship of the ADF Skins Provided by Oracle ADF

Figure 1-4 Inheritance Relationship of ADF Skin Families Provided by Oracle ADF

simple

! !

skyros-vl alta-vl

You can apply any of the ADF skins in Figure 1-4 or an ADF skin that you create
yourself to an application. For more information about applying an ADF skin to an
application, see Applying an ADF Skin to Your Web Application.

For a more detailed description of the ADF skins that Oracle ADF provides, see ADF
Skins Provided by Oracle ADF.

About Skinning a Web Application 1-7

Inheritance Relationship of the ADF Skins Provided by Oracle ADF

1-8 Developing ADF Skins

2

Working with the Theme Editor

This chapter provides information to help you to configure the environment required
to use the Theme Editor to create and modify ADF skins.

This chapter includes the following sections:
* About the Theme Editor
* Setting Up and Starting the Theme Editor

e Exporting a Theme from the Theme Editor

2.1 About the Theme Editor

The Theme Editor helps you to define the look and feel of your web application by
selecting the colors, fonts, and other style properties that you want ADF Faces
components to render at runtime. The end result of this process is the creation of an
ADF skin.

Note:

The Theme Editor's user interface refers to an ADF skin as a "theme".

Once you complete the creation of the theme, you can export it from the Theme Editor
as an ADF skin to an ADF Library JAR file. Use this file to apply the ADF skin that
you created in the Theme Editor to your web application. For more information, see
Applying the Finished ADF Skin to Your Web Application.

If you want to customize the ADF skin further and the Theme Editor does not provide
the Ul controls to achieve the result you want, import the ADF Library JAR into a
project in JDeveloper where you can use the design-time that JDeveloper provides or
JDeveloper's source editor for the CSS source file of an ADF skin to create an ADF skin
that extends from the ADF skin you created in the Theme Editor. For more
information, see Adding ADF Skins from an ADF Library JAR.

Working with the Theme Editor 2-1

Setting Up and Starting the Theme Editor

Figure 2-1 Theme Editor's Quick Start Page

Edit: MyFirstADFSkinInThemeEditor @ Undo | Redo Save and Close || Save || Cancel
(:) Quick Start | General Branding Area Buttons Links Tabs Headers Menus Boxes Accordions Form Controls
Modify the most frequently changed properties. Change the font properties, the background, and text colors in addition to the branding icon.
General Branding Area
Font "Helvetica Neue", Helvetica, Arial, Logo File ¥ /afrforacle_logo.png | Update..
A A A A Background Color FSFSF5
A AAA ’ i
e Text Color -
ORACLE Branding Area Title Branding Area Menu w Branding Area Link Branding Area Text
4 Accordion Header Selected Tab | Disabled Tab Unselected Tab
Default Link
. Header Level 0 (Top) L] Active | Hover
Info Text
Visited Link
Hover Link Text test Text Read-only value
) Accordion Header Text Option ¥ Text [Value
4 Accordion Header Text Text
Text Previewing Preview =1 ¥

2.2 Setting Up and Starting the Theme Editor

Oracle ADF delivers the Theme Editor as a web application in the following EAR file
in your JDeveloper installation:

\'j devel oper _install _dir\jdevel oper\skineditor\skin-editor-
webapp. ear

To use the Theme Editor, you create a new application in JDeveloper using the
Application from EAR File option in JDeveloper's New Gallery and deploy the
Theme Editor to the Integrated WebLogic Server. For more information, see How to
Set Up the Theme Editor.

Once you create the new application with the Theme Editor in JDeveloper, you
probably want to edit the application's web. xm file so that any ADF skins you create
in the Theme Editor persist beyond a stop and restart of the Integrated WebLogic
Server. For more information, see How to Persist ADF Skins Created in the Theme
Editor.

After you configure the Theme Editor to persist ADF skins, you can start it, as
described in How to Start the Theme Editor.

As the Theme Editor is packaged in an EAR file, you can deploy it to Integrated
WebLogic Server that is installed with JDeveloper. You can also deploy it using
Enterprise Manager, Oracle WebLogic Scripting Tool (WLST), or Oracle WebLogic
Server Administration Console. For more information about deployment options, see
the Deploying Fusion Web Applications chapter in Developing Fusion Web Applications
with Oracle Application Development Framework.

2-2 Developing ADF Skins

Setting Up and Starting the Theme Editor

2.2.1 How to Set Up the Theme Editor

You set up the Theme Editor by creating a new application in JDeveloper where you
import the Theme Editor from the ski n- edi t or - webapp. ear file in the
ski nedi t or directory of your JDeveloper installation.

How to set up the Theme Editor:
1. In the main menu, choose File and then Application > New.
2. Inthe New Gallery, in the Items list, double-click Application from EAR file.

3. Inthe Application from EAR File wizard, enter the location of the EAR file or
click Browse to navigate to the ski n- edi t or - webapp. ear file in the
ski nedi t or directory of your JDeveloper install directory.

For additional help with the wizard, click Help.

4. Click Finish.

2.2.2 How to Persist ADF Skins Created in the Theme Editor

The ready-to-use Theme Editor that Oracle ADF provides in the ski n- edi t or -
webapp. ear file in the ski nedi t or directory of your JDeveloper install directory
does not persist any ADF skins that you create if you stop and restart the Integrated
WebLogic Server where you deploy the Theme Editor. You specify a file directory
location in the web. xni file of the Theme Editor web application. The Theme Editor
then saves ADF skins you create (and their resources) to this location so that they will
be available after an Integrated WebLogic Server restart. You can view these resources
in the file directory you specify, but you must export the ADF skin, as described in
Exporting an ADF Skin from the Theme Editor, if you want to extend the ADF skin in
JDeveloper or distribute the ADF skin for use in a web application.

To persist ADF skins created in the Theme Editor:

1. Inthe Applications window, double-click the web.xml file in the ski n- edi t or
project.

2. In the source editor, add the following context initialization parameter entries:

<cont ext - par anp
<description>Set this context parameter to file so that themes get saved to a
temporary directory. Specify a directory location for
oracl e. adf . view.rich. SKIN_REPCSI TORY_FI LE_PATH to persist changes between server
restarts. </ description>
<par am nane>or acl e. adf . vi ew. ri ch. SKI N_REPCSI TORY</ par am nane>
<param val ue>fil e</ param val ue>
</ cont ext - par an»

<cont ext - par anp
<description>Set this context parameter to a directory location where
themes are saved. Use to persist changes between server restarts</description>
<par am nane>or acl e. adf . vi ew. ri ch. SKI N_REPCS| TORY_FI LE_PATH</ par am name>
<par am val ue>/ hore/ user/t hemes</ par am val ue>
</ cont ext - par an»

3. Save and close the web. xnml file.

Working with the Theme Editor 2-3

Exporting an ADF Skin from the Theme Editor

2.2.3 How to Start the Theme Editor

Start the Theme Editor by running the i ndex. ht ml page in the ski n- edi t or
project.

To start the Theme Editor:

¢ In the Applications window, expand skin-editor, right-click index.html and choose
Run.

The Create Default Domain dialog appears the first time you run an application
and start a new domain in Integrated WebLogic Server. Use the dialog to define an
administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

The i ndex. ht M page within the ski n- edi t or project is the run target. When
you run the page, JDeveloper starts a browser and displays the launch page of the
Theme Editor. Once the Theme Editor launch page appears, you can create new
ADF skins or edit existing ADF skins.

Note:

The Theme Editor's user interface refers to an ADF skin as a "theme".

2.3 Exporting an ADF Skin from the Theme Editor

Once you complete the creation of an ADF skin in the Theme Editor, you may want to
export it to an ADF Library JAR so that you can distribute it for use in a web
application. Alternatively, you may want to edit it further using the design-time tools
that JDeveloper provides for this purpose. This latter scenario may arise if you cannot
achieve the look and feel you want using the controls provided by the Theme Editor. If
you want to edit an ADF skin using JDeveloper's design-time tools, you import the
ADF skin into JDeveloper, as described in Adding ADF Skins from an ADF Library
JAR, and create a new ADF skin that extends from the ADF skin you exported from
the Theme Editor.

You select the theme (ADF skin) in the Theme Editor's launch page and choose Export
from the menu that appears when you click the Actions button, as shown in Figure
2-2. The Theme Editor exports the ADF skin to an ADF Library JAR. This ADF Library
JAR contains all required resources for the ADF skin, such as a . CSS file with entries
that reflect the changes you made in the Theme Editor, images that you imported to
the ADF skin, and at ri ni dad- ski ns. xm file that contains metadata describing the
ADF skin.

2-4 Developing ADF Skins

Exporting an ADF Skin from the Theme Editor

Figure 2-2 Exporting a Theme from the Theme Editor

Theme Editor

Test

Extends: alta

Alta

Built in theme,

Skyros

Built in theme.

Create Theme...

Mo description has been provided.

o

{E'V Edit s

Created: Mon, Mar 2 2015, 10:17 Header Ley
Last Modified: Mon, Mar 2 2015, 10:19 ﬂuﬁj]icate... R

Extend as New Theme...
¥ Delete
Export Header Leve

™ Activate

Working with the Theme Editor 2-5

Exporting an ADF Skin from the Theme Editor

2-6 Developing ADF Skins

3

Working with ADF Skin Selectors

This chapter describes the ADF skin selectors. These selectors along with pseudo-
elements, pseudo-classes, ADF skin properties and ADF skinning framework rules
allow you to customize the appearance of ADF Faces and ADF Data Visualization
components.

This chapter includes the following sections:

* About ADF Skin Selectors

¢ Pseudo-Classes in the ADF Skinning Framework
e Properties in the ADF Skinning Framework

® Accessing Selector Information from Within JDeveloper

3.1 About ADF Skin Selectors

CSS uses selectors to determine the elements in a HTML page you that you define
rules for. For example, in CSS the following selector defines a rule that determines the
appearance of the content that renders in a <p> tag:

p{ color: red }

Likewise, the ADF skinning framework defines selectors that allow you to specify
rules with the style properties to render at runtime when the rule encounters the
specified tag. The ADF skinning framework provides two types of selector: global
selectors and component-specific selectors. A global selector defines style properties
that you apply to one or more selectors. A component-specific selector defines style
properties that apply to one component.

The ADF skins provided by Oracle ADF define many global selectors (Global Selector
Aliases in the user interface of the selectors editor) that many ADF Faces components
inherit. For example, many ADF Faces components use

the . AFDef aul t Font Fami | y: al i as global selector to specify the font family. If you
create an ADF skin that overrides this selector by specifying a different font family,
that change affects all the components that have included

the . AFDef aul t Font Fani | y: al i as selector in their selector definition.

Figure 3-1 shows two instances of the same page. The instance of the page in the lower
part of Figure 3-1 renders using the default values specified for

the . AFDef aul t Font Fani | y: al i as global selector in the skyr os skin. The
instance of the page in the upper part of Figure 3-1 renders using an ADF skin that
modifies the . AFDef aul t Font Fani | y: al i as and . AFDef aul t Font global
selectors as follows:

. AFDef aul t Font Fani | y:alias {font-family: Ceorgia,}
. AFDef aul t Font : al i as {font-size: 12pt;}

Working with ADF Skin Selectors 3-1

About ADF Skin Selectors

The components on the page that render text (for example, af : showDet ai | I t em
renders Welcome and an af : | i nk component renders Login) do so using the font
family specified by the . AFDef aul t Font Fani | y: al i as global selector in the ADF
skin that the application uses.

Figure 3-1 Global Selector

Login Register as Emploves Register as Customer
Welcome

Login Register as Employee Register as Customer

Welcome

An ADF skin that you create inherits the global selector aliases defined in the ADF
skin that it extends from. You can also create new global selector aliases in your ADF
skin files. For more information, see Working With Global Selector Aliases.

Component-specific selectors are selectors that the ADF skinning framework exposes
that allow you to identify the corresponding ADF Faces and ADF Data Visualization
components for which you can define style properties. For example, Figure 3-2 shows
the selector for the ADF Faces but t on component in the source editor and selectors
editor. The value of the property that determines the color of the font to appear in the
button has been changed to Red in the Properties window.

Figure 3-2 Button Component's Skin Selector

@ i ces . afloutton - Properies
=
] [£3 Extended Skins ~ @ Q Find
Q - 4 o x Default (Mo) Theme Dark Theme L — Comnon
@03 Style Classes @(ﬂ 4 M é % Background Calor: kransparent
-3 clobal Selector Aliases - -
g Ab-Rules af|button 4 Background Image: |I|near-gral:llent(topJ #CCEZFE
& Faces Companent Selectors Regular Button Content: |
...o>° BreadCrumbs ; o Color: F‘Ed
@ Button)
D Height: |auto
(3 Pseudo-Elements width: |auto
~[7 Descendant Seleckor: &, Popup Button | - -
Biorder: |n0ne medium currentColor
[&] calendar
O Carouse! &F|buttan:battom Border Colar: |currentCOIor currentColor cur
L
'Lk Carousel Them Regular Button Margin: |Dpx Op Opx Opx
- [w#] Checkbox
I S I [T IO =S R PR ¥ nicahled Ritton 4 Padding: |D|3x
Design | Selectors| Source History |:| -tr-rule-ref -kr-inhibit = -tr-enable-themes = -tr-child
Q- (Find m
fcharset "UTF-3"; Walue

S¥*RDFFaces_35kin File / DO NOT REMOVE**/
dnamespace af "http:/ wmlns.oracle.com/adf/faces/ric
dnamespace dvt "httpe dSunmlns, oracle. confdssSadf fface

= af [button {
color: Red;
i
B &M@ B

= Font /Text
@ Calar: Eed
Frnk: nnrmAl nnrmal normal o

3-2 Developing ADF Skins

About ADF Skin Selectors

For more information about the component-specific selectors, see Working with
Component-Specific Selectors . For more information about global selector aliases, see
Working With Global Selector Aliases.

3.1.1 ADF Skin Selectors and Pseudo-Elements

Many ADEF skin selectors expose pseudo-elements. A pseudo-element denotes a
specific area of a component for which you can define style properties. Pseudo-
elements are denoted by a double colon followed by the portion of the component the
selector represents. For example, Figure 3-3 shows how the week- header - r ow
pseudo-element exposed by the af | chooseDat e selector allows you to configure
style properties for the appearance of the calendar grid. In Figure 3-3, the

backgr ound- col or property of the week- header - r owpseudo-element has been
set to G ay.

Figure 3-3 Pseudo-Elements for the Choose Date Component

I | [5 Extended Skins ~

Q ? - # o x Default (Mo) Theme Dark Theme Mediur
[+ Faces Component Selectars Elﬂ ‘+ - é X
2-[E] choose Date
- Pseudo-Elements af|chooseDate: iweek-header-row

------ week-header-row

q December ¥ 2012 5 b

[SUN. MON TUE WED THU FRI SAT
25 26 27 28 29 30 1
2 3 1 5 [7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 8 29

30 31 1 2 3 4

Design | Selectors | Source History
=R

Q- Find

dcharsek "UTF-5":

SF*ADFFaces_Skin File / D0 NOT REMOVE®*/

dnamespace af "http: //xnlns.oracle. com/adf/faces/rich™;
dnamespace dyt "http: //unlns, oracle. con/dssfadffaces";

[Bilaf |chooseDate: :week-header-row |

ground-color: Gray:

3.1.2 ADF Skin Selectors and Icon Images

ADF Faces components that render icons do so using a set of base icon images. No
CSS code entries appear in the source file of the ADF skin for these icon images in
contrast to, for example, the CSS code entries that appear in a source file when you
specify an image as a value for the CSS backgr ound- i mage property. Instead, the
ADF skinning framework registers the icon image for use with the renderer.

ADF skin selectors use two naming conventions for pseudo-elements that identify icon
images that render in a component. The names of these pseudo-elements end in -

i conorin-icon-styl e. Figure 3-4 shows the example of the Panel Accordion
selector's pseudo-elements. Pseudo-elements that end in - i con- st yl e specify a
background image, as shown in Figure 3-4. In contrast, pseudo-elements that end in -

i con do not specify a background image, but can reference IMG elements or text, as in
the following examples:

Working with ADF Skin Selectors 3-3

About ADF Skin Selectors

af | panel Accordi on: : undi scl osed-icon {content "X'}
af | panel Accordi on: : undi scl osed-icon {content: url("http:server:port/inmg/ing.png")}

Figure 3-4 Panel Accordion Pseudo-Elements for Icon Images

al.css

aflpaneldccordion::undizclosed-icon-style - Properties

L
=
[Extended Skins ~ @ Q, Find
’? - EF - x Default (Mo} Theme Dark Theme Med. .. L4 = Common
- Faces Component Selectors G‘ﬂ + M é % > Background Color: kransparent
- Panel Accordion ,] e :
EB Pseudo-Elements af|panelaccordion: undisclosed-icon-style @ Background Image: |ur|(fafrjskyros-v1 disclosecollapsed_ff_ena.png’)
[undiselosed-icon) Eirst Pane Torlimr il Conkent: |
------ [l ndisclosed-icon-style Body 1 o Calor: Fed
[Panel Tabhed
» Second Pane 4 Height: |20
> Third Pane 9 Width: [t2
> Fourth Pane Border: |none medium currentColar
> Fifth Pane Border Colar: |currentCOI0r currentColor currentColor currentCole
Marnin: Irree e A NP

In Figure 3-4, the undi scl osed- i con- st yl e pseudo-element styles the icon used
for the undisclosed icon in the panel Accor di on component. This pseudo-element
specifies the icon as a background image. Use the : hover and : acti ve pseudo-
classes to customize the appearance. For example, write the following syntax to make
the background red if the end user hovers the mouse over the icon:

af | panel Accor di on: : undi scl osed-i con-styl e: hover {
background- col or: Red,;

}
Tip:

Many browsers do not render background images when in accessibility mode.
The following example demonstrates how you can work around this behavior
if you want your application to display an image when in accessibility mode.

If you want to use your own image rather than the icon specified as a background
image, you need to first prevent the background image from rendering. Do this by
specifying the - t r - i nhi bi t ADF skin property for the component's selector pseudo-
element as follows:

af | panel Accor di on: : undi scl osed-i con-styl e

{

-tr-inhibit: background-inage;

}

Next you specify the text or image that you want to render as a value for the cont ent
property of the undi scl osed- i con selector. For example, write syntax similar to the
following to specify an alternative image:

af | panel Accor di on: : undi scl osed-i con

{
content: url ("i mages/ undi scl osed. png");
wi dth: 10px;
hei ght: 10px;

}

The ADF skinning framework also defines a number of global selector aliases that
specific icon images to use in different scenarios. These global selector aliases appear
under the Icons node in the Selector Tree of the selectors editor, as shown in Figure
3-5. The . AFChangedl con: al i as shown in Figure 3-5 enables you to globally set the
changed icon for all components using that icon.

3-4 Developing ADF Skins

About ADF Skin Selectors

Figure 3-5 Global Selector Aliases for Icons

@ skin3.css o AFChangedicon:alias - Properties
=
0] | [Extended Skins ~ @ Q
Q F - 4 < % Default (Mo) Theme r = Commion
-3 Style Classes G | dk - ¢ 3 | viewas: Checkbox(..= Background Colar: kransparent
(& Global Selector Aliases)
23 Color af|selectManyCheckbox: ichanged-icon Background Image: |"'°“e
-3 Component Group: Butkon @ Checkbox label: | coffee 4 Conkent: |ur|(.l’afr.l'skyros-vl,l’updatedvalue_status.png)
-3 Campanent Graup: Farm Controls || tea Colar: |
-3 Camponent Group: Link || milk)
-3 Companent Graup: Menu Height: |auto |‘
[0 Campanent Group: PanelBax and Region widkh: |aut0 |‘
-3 Component Group: PanelHeader " I
®-3 Font Border: |n0ne medium currentColor
2-[Teons EBorder Color: |currentCoIor currentCalor currentColor currentColc
foe .AFChangedIcon: alias Margin: |Dp>< Qe Opt Opt
[.AFConfirmationlcon: alias
(] .AFErroricon:alias Padding: |UDX Op: Opix Opx
[. AFFatallcon:lias teeriileoraf | okreinkibit | -br-enahle-themes | -brechildeen-theene

These icons can also be viewed and changed using the Replace Icons dialog that you
invoke from the design editor, as described in Changing Images and Colors in the
ADF Skin Design Editor, if your ADF skin extends from the Skyros ADF skin. Figure
3-6 shows the dialog that appears for an ADF skin that extends from the Skyros ADF
skin. Using the dialog, you can export or import multiple icons or replace an
individual icons by double-clicking in the New Icon Source field.

Figure 3-6 Design Editor's Replace Icons Dialog for Status Icons

Default Text Colors Default Font Accent Color Images
Main: #333333 [} |Tah0ma, Verdana, Helvetica, sans-serf || Primary: #FLCDYE [Jd @ status Icons. .

e

Replace Icons fgl

Select Export to export all the icons you can change in ane archive. You can import a bateh of changed icans, or selectively replace individual icons below.
| Export (%) Import | Reset bo DeFadlt

Component Icons | Status Icons — Animations

Description width Height Current Mew Mew Icon Source -
Indexed ? ?
Required 7 7

InFo 16 16 @
Confirmation 16 16 &
Error 16 16 D
Warning 16 16 N
Help Cancel

For more information, see Working with Images and Color in Your ADF Skin.

3.1.3 Grouped ADF Skin Selectors

You can group ADF skin selectors and global selector aliases to minimize the number
of entries in the source file of the ADF skin. The selectors that you group render under
the Grouped Selectors node in the Selector Tree of the selectors editor, as shown in
Figure 3-7. The View as list in the Preview Pane displays all the selectors that you
grouped.

As the selectors editor does not provide a way to specify grouped selectors, you use
the source editor to specify the selectors and/or global selector aliases that you want
to put in a grouped selector. Separate each selector by a comma (,) to include in the
grouped selector.

Working with ADF Skin Selectors 3-5

About ADF Skin Selectors

Figure 3-7 Grouped Selectors in the Selector Tree

0 | [Extended Skins ~ ®

Q ? - EF - x Defaulk (Mo} Theme r
#-C3 Style Classes W gk @ 3| view as: | Panel@ccordion -

[Global Selector Aliases] Panel Accordion

Eh-[= Grouped Selectors aflpanelAccordion Panel Box k

- D af |panelBox, af|panelaccordion = First Pane Toolbar 1

-3 At-Rules

Eh-[£= Faces Component Selectors
i}-a3a BreadCrumbs

-2 Button > Third Pane

t-[E Calendar > Fourth Pane

-0 Carousel -
Ok Carousel Item > Fifth Pane

3--- Checkbox
| Checkbox (Select Many)

Body 1
» Second Pane

Chiice

Choice {Select Manw)
0@ choose Color
-[E Choose Date

oL A% mada Edibae

£
A
£
£
B
£
£
A
£
£
E
i

Design | Selectors | Source History

Q- Find
Bcharsek "UTF-5";
F¥EADFFaces Skin File / DO NOT REMOVE®*/
framespace af "http://xnlns. oracle. condadf/faces/rich™;
framespace dvt "http: /fxnlns.oracle. com/dss/fadf/faces™;

[Blaf [panelBox, af |panelficcordion |

3.1.4 Descendant ADF Skin Selectors

A descendant selector defines style properties for one ADF skin selector (the
descendant selector) to render when the selector's component is a descendant of
another component in the page that renders the components. For example, assume
that you want the content area of an i nput Text component to render using a
background color of G een when the component renders inside a t abl € component.
In this scenario, you specify the descendant selector shown in the following example.

af | table af|input Text::content {
background-col or: Green;

}

af | input Text::content {
background- col or: Red;

}

At runtime, when the i nput Text component renders in a t abl e component, the
background color of the content area is G- een. The appearance of other i nput Text
components that render outside of t abl e components is determined by the style
properties defined elsewhere in the ADF skin (for example, Red).

A descendant selector is made up of two or more selectors separated by white space.
When you configure a descendant selector, the selectors editor displays a Descendant
Selectors node under the selector included in the descendant selector, as shown in
Figure 3-8.

3-6 Developing ADF Skins

Pseudo-Classes in the ADF Skinning Framework

Figure 3-8 Descendant Selectors in the Selector Tree

@ skinl.css . afftable afinputText: content - Propetties

=
0 [£9 Extended Skins - @ Q Find
Q ? > .* - x Default (Mo} Theme Dark Theme Medium Th... L4 = Common
[=h-[z= Faces Component Selectars Gﬂ 4 é X - o Background Color: Ereen
=3 Input Tesxt)
(= Descendant Selectors af|table af |inputText: :conkent Background Image: none
D I | - Content

Border Color: I@

Design | Selectors | Source Hiskory |] Margin: Op: Ope Opx Opex
Qr(Find = Padding: Op: Ope Ope Opex
fcharset "UTF-8"; -kr-inhibit -tr-rule-ref | -kr-children-theme -tr

A*FADFFaces dkin File / DO NOT FEMOVE®*/
fnamespace af "http://xmlns.oracle. confadf/faces/rich™;
Eramespace dvt "http: //xnlns.oracle.con/dss/adf /faces™; Value

[af [table af|inputText::content|
background-color: Green;

}

As the selectors editor does not provide a way to specify descendant selectors, you use
the source editor to specify the selectors and/or global selector aliases that you want
to specify in a descendant selector. Separate each selector by a white space.

3.2 Pseudo-Classes in the ADF Skinning Framework

The CSS specification defines pseudo-classes, such as : hover and : acti ve, which
are used to define style properties for when a selector is in a particular state. You can
apply these pseudo-classes to almost every ADF Faces component. In addition, the
ADF skinning framework provides additional pseudo-classes for specialized
functions. Examples include pseudo-classes to apply when a browser's locale is a
right-left language (: rt |) or for drag and drop operations (: dr ag-t ar get

and : dr ag- sour ce). The syntax that appears in the source file of an ADF skin to
denote a pseudo-class uses the following format(s):

adf ski nsel ect or: pseudo- cl ass
adf ski nsel ect or: : pseudo- el enent : pseudo- cl ass

Figure 3-9 shows the syntax that you write (af | panel Li st: : i nk: hover

{col or: O ange; }) in the source file of an ADF skin for the : hover pseudo-class
so that a panel Li st component's link renders orange when the end user hovers a
cursor over the link in Figure 3-9.

Working with ADF Skin Selectors 3-7

Pseudo-Classes in the ADF Skinning Framework

Figure 3-9 Pseudo-Class Syntax and Runtime Behavior for a Panel List Link

0] | [Extended Skins = myCompanyLogo
Q - ide-¥K |09 4 Login
e
[3... Output Text (Label) Choose a Skin - test v
E}--D Panel Accordion af|
SD ::Z: Ez;der tayout Welcome to Our Site
E}--IEI Panel Collection * Home
E}-- Panel Dashboard o Fallaw this link to find yourself back home.
E}--i£ Panel Drawer .
[+ Panel Form Layout o l‘Ils}_rluments the skin seleckors that are
et Panel Grid Layout ‘| available to be styled,
[=4 Panel Group Layaut e + Skin Demonstration
¥ Panel Headsr o Demonstrates how to skin ADF
-85 Panel Label And Message Eompanents.
[=+-3= Panel List
o[aflpanelList
(5 Pseudo-Elements
L
E}--lIl Pangl Splitter

Design | Selectors | Source Hiskory

2R
Q- Find

dcharset "UTF-4";
A*FADFFaces_Skin File / DO NOT EE|
framespace af "http://xmlns.oracl
framespace dvt "http: //xnlns.orac

fagent (touchicreeninone) {

af [panellist::link:hover {
color: Drange;

Some components make more use of pseudo-classes than other components. The
panel Box component's selector, for example, makes extensive use of pseudo-classes
to define its appearance when it is in various states (for example, active, disabled, or
busy). Figure 3-10 shows the list of available pseudo-classes that renders when you
select the panel Box component's selector in the Selector Tree of the selectors editor
and click the Add Pseudo-Class icon to display the list of available pseudo-classes in
an ADF skin that extends from the Skyros ADF skin.

Figure 3-10 Pseudo-classes for the panelBox Component's Selector

00 | [5 Extended Skins ~
Q ? - # o % Default (Mo) Theme Dark Theme Medi
E}--% Messages @[ﬂ @ = 4/ X
E}--@ Mavigation Ikem active
G-t Navigation Pane loa active-inline-editable-container
- [E] Note Window Pand busy
) Output Text disabled %
E}--A Qutput Text (Ackive) 4 4
E}--% Oukput Text (Formatted) Par ragrready
-T2 Output Text {Label) drag-source
E}--D Panel Accordion Pan drop-target
EJJ Panel Border Layout Focus
=[] Panel Box hover
[Pand howver-target
(3 Pseudo-Elements inline-editable
(1 Descendant Selectors inline-selectable

E}-- Panel Collection inline-selected
[Panel Dashboard no-update
2 Panel Form Layout no-update-badge
E}-- Panel Grid Layouk #flna

Design | Seleckors | Source History
LR

3-8 Developing ADF Skins

Pseudo-Classes in the ADF Skinning Framework

Ps

eudo-classes can also be applied to pseudo-elements that selectors expose. The

panel Box component selector's pseudo elements are a good example. Figure 3-11, of
the Selector Tree in the selectors editor, shows the list of pseudo-classes that the
cent er pseudo-element exposed by the panel Box component selector accepts. Many

of

these pseudo-classes allow you to define the appearance for the panel Box

component depending on the value that the application developer sets for its
attributes. For example, the cor e and hi ghl i ght pseudo-classes define the
corresponding appearance when the application developer sets the panel Box
component's r anp attribute to cor e or hi ghl i ght.

Figure 3-11 Pseudo-classes for the center Pseudo-element

l

[Extended Skins ~

Q

? = .;F = % Default {Mo) Theme Dark Theme Medium The

% Output Text (Formatted) Qﬂ % ' é/ % -
Output Text {Labely fl active

[Panel Accordion arlpa
A Panel Border Layouk Pang busy

=[] Panel Box
[2flpanl m
L[af|panelBox bar dark

EJB Pseudo-Elements

active-inline-editable-container

..... 0 default
..... D content Fan disabled
----- [disclosed-icon drag-ghost
----- D disclosed-icon-style drag-ready
----- [diselosure-link Pang drag-source t
----- [dynamic-help-ican drop-target
----- [dynamic-help-ican-style focus
----- [header-glement highlight
----- [header-text havwer
..... [icon-style hiower-target
----- D insktruckion-text #flpa inline-editable
----- [undisclosed-icon Pang inline-selectable
----- D undisclosed-icon-style inline-selected
-3 Descendant Selectors light

] Parel Callection

}" mnedium
}-- Panel Dashboard
-

no-update

¥ Panel Drawer
-[E8] Panel Farm Layaut

[W e B B

no-update-badge

The following are common pseudo-classes used by ADF Faces selectors.

Drag and drop: The two pseudo-classes available are : dr ag- sour ce applied to
the component initiating the drag and removed once the drag is over, and : dr op-
t ar get applied to a component willing to accept the drop of the current drag.

Standard: In CSS, pseudo-classes like : hover, :active,and: f ocus are
considered states of the component. This same concept is used in applying skins to
components. Components can have states like r ead- onl y or di sabl ed. When
states are combined in the same selector, the selector applies only when all states
are satisfied.

Right-to-left: Use this pseudo-class to set a style or icon definition when the
browser is in a right-to-left language. Another typical use case is asymmetrical
images. You will want the image to be flipped when setting skin selectors that use
the image in a right-to-left reading direction. Be sure to append the : rt| pseudo-
class to the very end of the selector and point it to a flipped image file. The skin
editor's preview pane does not render changes that you make to a flipped image
file. The following example from the Skyros skin shows the image that the

cal endar component'st ool bar - day- hover - i con pseudo-element references
when it renders in a browser that uses a right-to-left language:

af | cal endar: : t ool bar - day- hover-icon:rtl {
content: url(/afr/cal _day ovr_rtl.png);

Working with ADF Skin Selectors 3-9

Properties in the ADF Skinning Framework

wi dth: 16px;
hei ght: 16px;
}

Youcanalsouse: rtl toapply to skin icons. For more information, see Working
with Images and Color in Your ADF Skin.

Inline editing: This pseudo-class is applied when the application activates a
component subtree for editing in the browser. For example, : i nl i ne- sel ect ed
is a pseudo-class applied to currently selected components in the active inline-
editable subtree.

Message: This pseudo-class is used to set component-level message styles using
CSS pseudo-classes of : fatal ,: error,: warning,:confirmation,and:info.
For more information, see Configuring ADF Skin Properties to Apply to Messages .

Note:

The global selector aliases that appear in the Selector Tree are a special type of
pseudo-class (: al i as). For more information, see Working With Global
Selector Aliases.

3.3 Properties in the ADF Skinning Framework

The ADF skinning framework defines a number of ADF skin properties. The web
application, rather than the user's browser, interprets ADF skin properties. When
configured, ADF skin properties enable you to do the following;:

Reference styles from other selectors with the -t r - r ul e- r ef property.

Create your own global selector alias and combine it with other selectors using the
-tr-rul e-ref property. For more information, see Creating a Global Selector
Alias, Modifying a Global Selector Alias, and Applying a Global Selector Alias .

Suppress styles defined in an ADF skin with the - t r - i nhi bi t skin property.

Suppress or reset CSS properties inherited from a base skin with the -t r - i nhi bi t
skin property. For example, the - t r - i nhi bi t : paddi ng property removes any
inherited padding. Remove (clear) all inherited properties with the -t r -

i nhi bit:all property. The suppressed property name must be matched exactly
with the property name in the base skin.

Reference the value of a property defined in another selector using the -t r -
property-ref property.

For more information, see Referencing a Property Value from Another Selector.
Configure a theme for child components with the -t r - chi | dren-t hene
property.

The Alta skin (and skins that extend from the Alta skin) do not use themes.
ADF skin selectors with style properties.

Skin style properties allow you to customize the rendering of a component
throughout the application. A CSS property is stored with a value in the Ski n
object and is available when the component is being rendered. For example, in af |
breadCrunbs{-tr-showlast-item false},theskinproperty-tr-show

3-10 Developing ADF Skins

Properties in the ADF Skinning Framework

| ast - it emis set to hide the last item in the br eadCr urrbs component's
navigation path.

As already noted, ADF skin properties allow you to customize the rendering of the
component throughout the application. This means that you cannot use ADF skin
properties to customize specific instances of a component in your application by, for
example, configuring an ADF skin property in a style class that an instance of a
component then references using its st yl eCl ass attribute.

The ADF skinning framework also provides the + and - operators that allow you to
set a selector's color or font properties relative to the value that you specify for the
color or font properties of another selector. This is useful if you want to apply a range
of colors to selectors or maintain a relative size between fonts.

Example 3-1 demonstrates the syntax that you write to make use of this feature for a
color property. A global selector alias defines the background color that another global
selector alias (. f ooBackgr oundCol or Test) applies using the - operator. Example
3-1 also demonstrates the syntax that you write to make use of this feature for a font
property. A global selector alias (. Font Si zeTest : al i as) defines the font size

and . f ooFont Test | ncr ease increases this font size by using the + operator.

Figure 3-12 shows how the style classes defined in Example 3-1 effect the runtime
appearance of instances of the af : out put Label components to which you apply the
f ooFont Test | ncr ease and f ooBackgr oundCol or Test style classes by
specifying these style classes as values for the component's st yl eCl ass attribute, as
illustrated in the following example.

<af : out put Label val ue="Increase font-size" id="ol 2"
styl ed ass="fooFont Test | ncrease"/ >

Figure 3-12 Using Operators to Apply Color and Change Font Size

For more information about style classes, see Working with Style Classes.

Example 3-1 Using Operators to Apply Color and Change Font Size

. Font Si zeTest: alias {
font-size: 30px;
}

. BaseBackgroundCol or: alias {
background- col or: #0099ff;
}

. fooFont Test | ncrease {
-tr-rule-ref: selector(".FontSizeTest:alias");
font-size: +20px;

}

. fooBackgroundCol or Test {
-tr-rule-ref: selector(".BaseBackgroundCol or:alias");
background-col or: -#333333;

Working with ADF Skin Selectors 3-11

Accessing Selector Information from Within JDeveloper

}

af | out put Label {
-tr-rule-ref: selector(".BaseBackgroundCol or:alias");
-tr-rule-ref: selector(".FontSizeTest:alias");
col or: Red;

}

3.4 Accessing Selector Information from Within JDeveloper

You can access reference information for the ADF skin selectors and CSS properties
that you configure in your ADF skin in a number of ways within the editor for ADF
skins in JDeveloper. The reference information that you can access includes the
following reference documents for ADF skin selectors:

e Tag Reference for Oracle ADF Faces Skin Selectors

o Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors

You can access these reference documents in the documentation library or in a Help
Center window if you click the link in the information text that appears when you
hover over a selector in the Selector Tree of the selectors editor, as shown in Figure
3-13.

Figure 3-13 Reference Documentation for ADF Skin Selectors

o= Q V- X
F-C3 Style Classes

EI Global Selector Aliases

D Ab-Rules

E}B Faces Component Selectors

. [-=2e BreadCrumbs

af |breadCrumbs

Skyles the root dom element of the component.

Skinning key Reference For af :breadCrumbs

[0 =srausel
T Carousel Tkem
|E| Checkbo::

. fe#l rRackhes (Salack Manot

In addition to referencing information for the ADF skin selectors, you can access
information for CSS selectors. You do this from the Source tab of the editor by
selecting the CSS property and pressing Control + D or choosing Show Quick
Reference from the context menu that appears when you right-click the selector, as
illustrated in Figure 3-14.

3-12 Developing ADF Skins

Accessing Selector Information from Within JDeveloper

Figure 3-14 Quick Reference Documentation for CSS Properties

= af |[button: : dropdovm-icon
i
c:ontlant,: open—guote ;

Property content reference:

W3AC specification for content is available here: hitpihwesnn w3 orgbwikilC S S/Properiesicontent

For complete information on all C85 properties see W3C specification here:
hitp w3 oo/ Style/C S Srcurrent-wark. en.hirml

Working with ADF Skin Selectors 3-13

Accessing Selector Information from Within JDeveloper

3-14 Developing ADF Skins

A

Working with ADF Skins in JDeveloper

This chapter describes the editors for ADF skins that JDeveloper provides to create
ADF skins. Key features of these editors, such as the Selector Tree that you use to
browse the selectors that you can configure in an ADF skin, the Properties window
that you use to set properties, and how you navigate to an ADF skin that you extend,
are also described.

This chapter includes the following sections:

e About the Editors for ADF Skins in JDeveloper
* Working with the ADF Skin Design Editor

e Working with the ADF Skin Selectors Editor

* Working with the Properties Window

* Navigating ADF Skins

4.1 About the Editors for ADF Skins in JDeveloper

The editor for ADF skins in JDeveloper is a tool that creates ADF skins for applications
built using Oracle ADF. It provides a number of visual and source editors where you
edit the selectors exposed by the ADF skinning framework, preview your changes,
and package the final ADF skin into an ADF Library JAR.

Key features of the editors for ADF skins in JDeveloper include the:

e ADF Skin Design Editor (design editor) where you can declaratively modify an
ADF skin that extends from the Skyros ADF skin using the provided controls.

® ADF Skin Selector Editor (selectors editor) where you can view all of the selectors
exposed by the ADF skinning framework in the Selector Tree.

¢ Properties window where you can modify the properties of the selectors that you
choose in the Selector Tree.

4.2 Working with the ADF Skin Design Editor

By default, the design editor opens when you create an ADF skin that extends from
the Skyros ADF skin, as described in Creating an ADF Skin File. This editor provides a
variety of controls to change the most commonly styled parts of applications.

The lower part of the design editor displays a number of sample pages that render a
wide variety of the commonly used ADF Faces components, such as buttons, links,
and panel accordions. These sample pages refresh to reflect the changes that you make
using the various controls in the upper part of the editor. A Preview in Browser icon
renders the sample page in a browser when clicked. In Figure 4-1, for example,
clicking this icon renders the sample page in Internet Explorer. You can choose to

Working with ADF Skins in JDeveloper 4-1

Working with the ADF Skin Design Editor

render the sample page in another browser, as described in How to Change the
Browser that Renders the Design Editor's Sample Pages.

The upper part of the design editor displays a variety of tabs that group together
controls to modify the selectors for various areas of an application page, such as the
branding area, the global area, buttons, links, and menus. Within each tab, user
interface controls such as color pickers, input text components and links to invoke
dialogs appear. Figure 4-1 shows the General tab in the design editor that appears
when you extend an ADF skin from the Skyros ADF skin. This tab renders color
pickers that you can invoke when you click the dropdown arrows beside the fields
that display the current color values, dropdown lists where you can select different
fonts and font size and links to invoke dialogs where you can replace the images that
the ADF skin references for status icons, animations and components.

Figure 4-1 ADF Skin Design Editor that Appears for a Skyros-Extended ADF Skin

General Branding Area Global Area Buttons Links Tabs | Headers Menus | Boxes Accordions

Content Area Theme Default Text Colors Default Fant Accent Calor Images

Background 1: J Main: |Tahuma, Yerdana, Helvetica, sans-serif || Primary: i @ status Teons...
Background 2: [Primary: i |:| |D>< " Secondary: il [E] snimations. .

What is this? | T e

Secondary;
Header:

d43aa

Sample Pages: n 2 | @&

Branding Area Title Branding Area Menu Branding Area Link Branding Area Text G0
Global Area Link Global Area Menu Text

Accordion Header

Selected Tab Unselected Tab
Defautt Link Header Level 0 (Top) Defaul || "Achve | Disabled | Hover
Active Link
* Text Text Read-only value
Visited Link Text Test [value

Hover Link
> Accordion Header

Text

Accordion Header

Header Level 1

Acions = View = Ep 52 petach
Colurnn Column Column

0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004

Any changes that you make using the controls in the design editor result in the
generation of CSS syntax that appears in the source file of the ADF skin. The design
editor is useful for changing the commonly styled parts of an application. For
example, one click in the Branding Area tab invokes a dialog where you can select a
new image to render as the logo in the branding area of your application's page.
Consider using the selectors editor, described in Working with the ADF Skin Selectors
Editor, when you need to go beyond changing the most commonly styled parts.

For more information about how you can use the design editor to change colors and
images, see Changing Images and Colors in the ADF Skin Design Editor.

4.2.1 How to Change the Browser that Renders the Design Editor's Sample Pages

You can change the browser that renders the design editor's sample pages when you
click the Preview in Browser icon.

To change the browser that renders the design editor's sample pages:

1. From the main menu, choose Tools > Preferences.

4-2 Developing ADF Skins

Working with the ADF Skin Selectors Editor

2. In the Preferences dialog, select the Web Browser and Proxy page.

3. Choose the browser that you want to use in the Web Browsers list.

4. Click OK.

4.3 Working with the ADF Skin Selectors Editor

Figure 4-2 shows the selectors editor. Each label number corresponds to a description
in the list that follows Figure 4-2. The selectors editor opens by default if the ADF skin
that you create extends from the Alta skin family. If your ADF skin extends from the
Skyros skin family, you can access the selectors editor by clicking the Selectors tab.

Figure 4-2 ADF Skin Selectors Editor
sations A skinl . i M aflpanelBox header-text - F
‘estipp > = | B Extended Skins Q Find
jects & @ E- Q header * - @ x efau\tll\ro) Tlleme Dark Theme hedlum Thel'l'lB = Common
i Et:r?'hect < -3 Style Classes Eﬁ *-g K e o Background Color: Lime
"] Application Sources @3 Global Selector Allases —
- fu'nresourlces . @-C3 At-Rules af |panelBox::header-text Background Image: g
L wﬁ%lm:::nimdfe.pmpatm - Fi:es Component Selectors PanelBox with icon Content:
e (-{E Calendar Color:
=2 shins &l chedibu B Header text L
=) skin1 &-E Choose Date Panel Box Content Heighit: auto
=[] images w5 [
= .) Column Width: auto
= .AFDynamicHelplconStylective & Command Link Pancl Box No-Header Content —
[E5] helptopics_sm_dwn.png B Dislog Border: none
1. ' @ skin.css =3 f Go Link | 3 Border Colar: curre
& (1) wEB-INF &g Link @ Panel Box Stretched Content (width:500px; height: 100px) . —
i3] trinidad-config.xmi &, Menu Margin: Opx
E trinidad-skins. xml @&, Menu Bar # Padding: Opx
et Navigation Pane “tr-rule-ref -tr-inhibit -t
lication Resources BB E Panel Accordion
ent Files = m Panel Box
& =& Pseudo-Elements Value
55 - Structure = -)
= Design | Selectors | Source History 1]
a- - A 2
Qr(Find -
3 Selectors
L Jaf | panelBox: :header-text 8charset "UTF-8";
€ *.AFDynamicHelpleonstylenctive: akias '#*ADFFaces_Skin_File / DO NOT REMOVE®*/
8namespace af "http://xunlns.oracle.com/adf/faces/rich™;
@namespace dvt "http://xnlns.oracle.con/dss/adf/faces”; m A Od E ﬁ
[Sllaf [panelBox: : header-text { £l Font/Text
background-color: Lime:
Color:
}
Fonk:
= . AFDynamicHelpIconStylefctive:alias | Font Family:
background-inage: url{"images/.AFDynanicHelpIconStyledctive/]
} Fonk Feature Settings:

The Projects node in the Applications window displays the source files for the

ADF skins that you create. It also displays associated configuration and image
files. By default, JDeveloper saves an ADF skin to a directory named skins. You
can specify an alternative directory name to store the source files. For more
information about creating ADF skins, see Creating the Source Files for an ADF

Skin.

The Structure window lists the selectors, global selector aliases, style classes, and
at-rules that you added to the ADF skin file.

Click the Hide/Show Divider icon to hide or show the Selector Tree.

Working with ADF Skins in JDeveloper 4-3

Working with the ADF Skin Selectors Editor

10.

11.

12.

Filter the selectors that appear in the Selector Tree.

You can enter text in the input text field to filter the list of selectors that appear in
the Selector Tree or you can use the filter icon to display:

* Available Selectors: all selectors in the Selector Tree.
* Updated Selectors: only those selectors that you modified in the ADF skin.
* Selectors with At-Rules: only those selectors that have an associated at-rule.

The Extended Skins list displays the list of ADF skins from which the current ADF
skin extends. It also identifies imported ADF skins.

For more information, see Navigating ADF Skins.

Use the Add icon to create a new style class, alias selector, or at-rule.

For information about creating a new style class, see Working with Style Classes.
For information about creating an alias selector, see Working With Global Selector
Aliases. For information about creating an at-rule, see Working with At-Rules.

Use the Delete icon to remove a selector that you added to the ADF skin.

Click the Refresh icon to update the Preview Pane after you make changes to the
properties of a selector in the Properties window.

Click the Add Pseudo-Class icon to apply a pseudo-class to the item that you
selected in the Selector Tree.

For more information about pseudo-classes, see Pseudo-Classes in the ADF
Skinning Framework.

Click the Clear Property Settings icon to undo any change that you made to the
item selected in the Selector Tree.

Click the Delete Pseudo-Class from Skin File icon to delete any pseudo-classes
that you specified in the ADF Skin.

The View as list allows you to preview how changes you make to a global selector
alias in the Selector Tree affect the components that reference the global selector
alias. The View as list displays all components that reference the global selector
alias. The View as list also allows you to preview how changes you make to the
properties of one component-specific selector impact all sub-types of that
component. For example, Figure 4-3 shows the ADF Data Visualization
component selector for the gr aph component (af | dvt - gr aph) that exposes a
single set of component-specific selectors that apply changes to all graph types.
Use the View as list to preview a change that you make to a selector in one of the
other types of graph (for example, Bar, Funnel, Pareto, and so on).

4-4 Developing ADF Skins

Working with the ADF Skin Selectors Editor

13.

14.

15.

16.

17.

Figure 4-3 View as List for a Component

01 | [Extended Skins =

Q T- 4 X

L] ACHORES
I':I Faces Component Seleckars

(2 Data Yisualizations Component Selectors
-5 Gantt

- &) Gauge

=-&fg Graph

----- D af |dve-graph

-3 Pseudo-Elements (af |dvt-graph)
----- [af|dvt-annotation

----- D af |dvt-graphFootnote

----- D af |dvt-graphPlotArea

----- [af|dvt-graphPieFrame

----- D af |dvt-graphsubtitle

----- D af |dvt-graphTitle

----- [afldvt-legendarea

-3 Pseudo-Elements (af |dvt-legend
----- [aFldvt-legendText

----- [af|dvt-legendTitle

----- [af|dvt-markerText

----- [afldvt-o1axis

----- [afldvt-o1MajorTick

8 SBlAb ~ a4 Ticl oknl

Default (Mo} Theme

@K

Dark Theme

Wiew as: ~dvkibarGraph

Medium Theme

Light The

af |dvt-graph

Title Subtitle
G0

50

40

y1Title

30

20

Group &

Footnote

dvt:areaGraph
dt:barGraph
dvt:bubbleGraph
dvt:comboGraph

dvt:lineGraph
dvt:paretoGraph
dt:pieraph
dvt:radarcraph
vt :scatterGraph
dt:skockiaraph

ol Title

dt:horizonkalBarGrapl

Group B

For more information about global selector aliases, Working With Global Selector

Aliases.

The Selector Tree displays the list of selectors, global selector aliases, style classes,

and at-rules that you can configure values for in an ADF skin.

For more information, see Working with the ADF Skin Selectors Editor.

The Preview Pane renders a preview of the changes that you make to a selector in
an ADF skin after you click the Refresh icon (8).

You can also view the source of an ADF skin file.

Tip:

Select Split Document from a context menu that you can invoke from the
Preview Pane to render the source and design views of an ADF skin side by

side.

The Properties window identifies properties that you can configure for the ADF

skin.

For more information, see Working with the Properties Window.

The tabs for themes allow you to preview changes that you make for supported

themes.

The Alta skin (and skins that extend from the Alta skin) do not use themes.

4.3.1 About the Selector Tree

The Selector Tree displays a list of the style classes, global selector aliases, and
selectors for which you can configure properties to change the appearance of ADF
Faces and ADF Data Visualization components.

Figure 4-4 shows the nodes that the Selector Tree in the selectors editor exposes:

¢ Style Classes

Working with ADF Skins in JDeveloper 4-5

Working with the ADF Skin Selectors Editor

A style class defines one or more style properties that you can apply to specific
instances of a component. The selectors editor categorizes the inherited style classes
into style classes defined for general usage, note windows, and popups. For more
information, see Working with Style Classes.

e Global Selector Aliases

A global selector alias defines style properties that you apply to one or more
selectors. The selectors editor categorizes the inherited global selector aliases into
selector aliases defined for general usage, icons, and messages. For more
information, see Working With Global Selector Aliases.

* Grouped Selectors

Identifies style properties grouped into one declaration to apply to more than one
selector. For example, Figure 4-4 shows a grouped selector for the but t on and
I i nk component's selectors.

e At-Rules

At-rules are a way to define style properties for when an application's page renders
in a particular environment such as, for example, when using a specific browser.
For more information, see Working with At-Rules.

* Faces Component Selector

Selectors identify the ADF Faces components for which you can configure
properties. The selectors editor displays subcategories for pseudo-elements,
component selector aliases, and descendant selectors. For brevity, the ADF Faces
components node is not expanded. For more information, see Working with
Component-Specific Selectors .

¢ Data Visualizations Component Selectors

Selectors identify the ADF Data Visualization components for which you can
configure properties. The selectors editor displays subcategories for pseudo-
elements, component selector aliases, and descendant selectors. For more
information, see Working with Component-Specific Selectors .

4-6 Developing ADF Skins

Working with the ADF Skin Selectors Editor

Figure 4-4 Selector Tree

i [Extended Skins =

AR AR

[=Rr=get, se5

#-(21 Miscellaneous
t--(21 Note Window
t-(23 Popup

#-C0 Text

=[5 Global Selectar Aliases
#-C7 Color

=
=
E
£

-0 Fant

-3 Irons

t--C1 Message

t--(21 Miscellaneous
=[5 Grouped Selectars
[aflink, af[button
03 At-Rules

£1--[T5] Gantt
&) Gauge
% Graph
% Hierarchy Yiewer

E

(23 Compaonent Group:
-3 Component Group:
-3 Component Group:
-3 Companent Group:
-3 Component Group:
-3 Component Group:
[E
[E
[E
[

Eutton

Form Controls

Link.

Menu

PanelBox and Regid
PanelHeader

(23 Faces Component Selectors
(=[5 Data Visualizations Component Selectars

4.3.2 Interactive Preview in the Selectors Editor

The preview pane in the selectors editor displays an interactive preview of the
component that is currently selected in the Selector Tree. Hover your mouse over this
preview to view text that identifies the specific pseudo-element that you need to
customize to change the appearance of the component. Clicking on parts of this
preview navigates you to the location where you can configure properties to change
the appearance of what you have just clicked on. You can also right-click a pseudo-
element to invoke a context menu that displays a hierarchical list of the selector
pseudo-elements that the current pseudo-element contains, as shown in Figure 4-5.

Working with ADF Skins in JDeveloper 4-7

Working with the Properties Window

Figure 4-5 Interactive Preview for the Calendar Component

00} | [Extended Skins =

- o efault (o) Theme ark Theme edium Theme Light Theme
Q T Default (Mo) Th Dark. The IMedium Th Light Th
I':I Style Classes G e @ 3| viewas: Calendar -
#-[3 Global Selector Aliases
3 At-Rules 10 11 12 13
(5 Faces Component Selectors 12:00 AM time 36 ends at 25/03/13 00:00 BST spans full week
E-are BDfeadCfUmbs 6:00 PM time 35 en. 12:00 AM time 35 10:00 AM time 120
----- af|breadCrumbs
-3 Pseudo-Elements 17 18 19 20
&-(3 Descendant Selectors 4 time 36 ands at 25/03/13 00:00 BST spans full week
[Bukkan +1 more +13 more +13 more +14 more
Calendar
26 27
B3 Pseudo-Elements e eI gl 9:00 AM time 85 B:00 AM time 8
B3 Component Selector Aliases +3 more +2 more 3:00 PM time 46 rec 3:00 PM time 47 rec
-3 Descendant Selectors
[} 108 Carousel 31 1 2 3
EJ'"E Carousel Item 4:30 PM time 50 rec 8:00 AM time 10 9:00 AM time 87
[Checkbox 10:00 AM time 124
EJ---IZ‘ Checkbiox (Select Many)
-] Choice
(15 Choice (Select Many) af|calendar:drop-target
(-l Choose Color "
-[E] Choose Date ER=1E R 2 LR, af |button: :kext
" 5 Mon ed
D"'E.» Code Editor un = = af [butkon::link =
- B Column af |button
time 37
[Camrmand Bukkan . af|toolbar:sitem ime 37 e
G- Command Imags Link o toalbar: body
- Command Link af toalbar
-3 Command Toaolbar Button 3 4 &
af |koolbo: last-cell
E}--E Context Info
K af |koolbo: last-row
-} Decorative Box Fltoolbos: hod
E}" Dizlog af |toolba: :body
EJ'-- Document 10 1 4f |toolbox
(-3 Go Button 12:00 AM time 36 e/l beidac
P . P ——

Clicking an entry in the context menu that appears or clicking a part of the cal endar
component that uses properties defined in the pseudo-element of another component
selector navigates you to that pseudo-element in the Selector Tree. For example, if you
click af I button::link in the context menu in Figure 4-5, the component preview
navigates you to the location for the but t on component selector's pseudo-element in
the Selector Tree of the selectors editor, as shown in Figure 4-6.

Figure 4-6 Button Component's link Pseudo-Element

? - + = X Default (Mo) Theme Dark Then

TS O TS IC JSETTon B¢ X

-are BreadCrumbs

jD Button af |button: link
L[] af|butkan
—-[= Pseudo-Elements
L[access-key 3 Disabled Button
[dropdown-cell
[dropdowriicon
[dropdown-icon-style &, Popup Button |+
0

[text af |button:batkom: link

Begular Button

4.4 Working with the Properties Window

The Properties window serves a number of functions apart from its primary role of
allowing you to set values for CSS properties and ADF skin properties for the selectors
that the ADF skinning framework exposes. These functions are the ability to:

* Copy an image into the project where you develop the ADF skin.

For more information, see Working with Images and Color in Your ADF Skin.

4-8 Developing ADF Skins

Working with the Properties Window

Identify the properties that inherit their values from an extended ADF (blue icon)
skin and identify the properties that you configured (green icon) in the ADF skin,
as shown in Figure 4-7.

Identify the properties that are associated with at-rules, as shown in Figure 4-7.

For more information about at-rules, see Working with At-Rules.

Present ADF skin properties that you can configure for a selector.

For more information, see Properties in the ADF Skinning Framework.

Navigate to the selector in an extended ADF skin that defines an inherited property
in your ADF skin (Go to Declaration).

For more information, see Navigating ADF Skins.

Invoke a dialog where you can define the colors for properties that support color
value.

Figure 4-7 presents an overview of the various controls that the Properties window
exposes when you edit an ADF skin.

Figure 4-7 Controls in the Properties Window for ADF Skins

Blue icon
indicates this
property
inherits its
value.

Icon indicates
this property is
associated with

an at-rule.

N

Green icon
indicates the
property has

been modified.

Properties
prefaced by
—tr-
are ADF skin
properties, not
Css
properties.

Click this
dropdown
list to view a
list of
predefined
values.
affoutton - Properties
Q Find @
= Common
4 Background Color: :#hacsdc -
% Background Image: 'Ilnear-grad\ent(top. #CCE2F6 0%, #B1D2F2 100%)
T This icon appears when you
Content: L move your mouse over the
@ Color: l#333333 [w areas beside the property
R k - - fields. Click the icon to
@Height: |auto ™ display menus that allow
Width: [auto | = vou to edit properties or go
E . to a location where a
Border: [pone medium currentColor property value is defined
* o Border Color: [red ({Go to Declaration).
Margin: .Dpx Opx Opx Opx F o
Padding: 'Onx
-tr-rule-ref -tr-inhibit -tr-enable-themes -tr-children-theme
@ X

Yalue

Hover your mouse over the icons that indicate a property associated with an at-rule or
a property that inherits its value in order to display an information tip, as shown in
Figure 4-8. Clicking the link in this information tip navigates you to the source file of
the ADF skin where the at-rule or inherited property value is defined.

Working with ADF Skins in JDeveloper 4-9

Navigating ADF Skins

Figure 4-8 Information Tip Showing Link to Navigate to Source Declaration
skinl.css @ skinZ.css . afloreadCrumbs - Properties
0 25 Extended Skins ~ @ = Q, Find
Q ? - # - X Default (Mo} Theme Dark Theme Medium Theme Light Theme = Common

-3 Style Classes

® P X

-

Background Caolar:

(-3 Glabal Selector Aliases
I':I Ab-Pules

E}B Faces Component Selectors
: é}---wo BreadCrumbs
RN = |2 Crumbs
-3 Pseudo-Elements
L3 Descendant Selectars

4.5 Navigating ADF Skins

af |breadCrumbs

..7item 2 >item 3 > tem4 > item 5 > tem 6 = [ilem 7

Background Image:

Content:

k(:olor:

Inherited from: af| breadCrumbs in skinl .css

Click on any selector link to go to ks declaration.

Erwdne Calae

When you create an ADF skin, as described in Creating an ADF Skin File, you choose
an ADF skin from which to extend. The ADF skin that you choose to extend from
defines properties that your newly created ADF skin inherits. When you create your
first ADF skin, you must choose one of the ADF skins that Oracle ADF provides.

Subsequent ADF skins that you create can extend an ADF skin that you created or one
of the ADF skins provided by Oracle ADF. For example, you create your first ADF
skin named ski nA that extends the si npl e ADF skin provided by Oracle ADF. You
then create a second ADF skin named ski nB. When creating ski nB, you have the
choice of extending from ski nA or from any of the ADF skins provided by Oracle
ADF. If you choose to extend ski nB from ski nA, the inheritance relationship
between the ADF skins is illustrated in Figure 4-9.

For more information about the ADF skins that Oracle ADF provides, see Inheritance
Relationship of the ADF Skins Provided by Oracle ADF, and ADF Skins Provided by

Oracle ADF.

Figure 4-9 Example Inheritance Relationship Between ADF Skins

simple —-| skinA

—{ skinB

The Extended Skins list in the selectors editor displays the list of ADF skins that the
current ADF skin extends. The list also identifies if any of the ADF skins that your skin
extends include imported skins. Figure 4-10 shows the list of ADF skins that appears if
you implement the inheritance relationship described in Figure 4-9. You open an
extended ADF skin that you want to view by clicking it in the Extended Skins list.

Figure 4-10 Extended Skins List

@ skinB.css

I [Extended Skins ~

skind . desktop] i .

ol ~ | Default (Mo) Theme

Dark

simple-daskrop.css

richcomponents-simple-desktop.css
dvt-simple, css

| [ere BreadCrumbs

Imported Skins

4-10 Developing ADF Skins

™

Navigating ADF Skins

Note:

You cannot edit the properties of the selectors in the ADF skins provided by
Oracle ADF. You can only edit the properties of selectors in extended ADF
skins that you created.

Using the Go to Declaration menu that the Properties window exposes, you can
navigate to the location in an extended ADF skin where the extended ADF skin
declares style properties inherited by other ADF skins. For example, assume that the
ski nA ADF skin defines a background color of Red for the af | but t on selector's
access- key pseudo-element, as shown in Navigating ADF Skins.

Figure 4-11 Declaration of a Property Value

F‘l]‘] skind.css | aflutton:access-key - Propetties
0] | [Extended Skins = @ = Q Find
Q T~ 9p- 3% Defaulk (Moj Theme Dark Theme Med... r = Common
&5 Faces Component Selectors WX - = Background Color: Eed
'"°>° BreadCrumbs af|button:: access-key Background Image: E
e ton Beouia utr T —
E}B Pseudo-Elements ¥ Disabled Button Color: I:
R = B Height: IE
[dropdown-cel
[dropdown-icon & Popup Butten |+ Width: IE
[dropdown-icon-sty Border: @
% ltI:tt Border Color: currentCalor
e[Calendar Margin: [opx 0P Gpx

The ski nB ADF skin that extends from ski nA ADF skin inherits the property values
that are defined in the ski nA ADF skin. Navigating ADF Skins shows the ski nB ADF
skin in the selectors editor with a value of Red for the backgr ound- col or property.

Figure 4-12 Inheriting a Property Value from an Extended Skin

skind.css F."ﬁ skinB.css . aflutton:access-key - Propetties
=

0] | [Extended Skins = @ Q Find
Q T~ 4 o X Default (Mo} Theme — Dark Theme k = Common

3 Style Classes W - XK kBackground Color: Eed

23 Global Selector Aliases | i, P Fo v —
-3 At-Rules af [button:: access-ke
E—J[E' Faces Component Selectors Begular Button Inherited from: af| bukton:access-key in sking,css

(=3 BreadCrumbs

t 3 Disabled Buf Clickon any selector link ko go to its declaration.

E}D Button e i —
[ffbutton == = Height: auto
E}B Pseudo-Elements a Popup Button |+ Width: E

" . Border: none medium cu
[dropdown-cel
[dropdown-ican Border Calor: currentCalar cur
% fr;pdown—lcon-style Margin: Opx Op Opx Op:
i
D kexk Padding: Op: Opx Opx Op:

-[E Calendar

-tr-inhibit * -tr-enable-themes | -tr-chil

To go to the declaration of a property:

1. Identify a property in your ADF skin that inherits its values from an extended ADF
skin. A blue upward-pointing arrow, as shown in Figure 4-12, identifies these
properties.

2. Click the icon that appears when you hover over the property field to invoke a
context menu where you select Go to Declaration, as shown in Figure 4-13.

Working with ADF Skins in JDeveloper 4-11

Navigating ADF Skins

Figure 4-13 Go to Declaration Context Menu

| aflutton:access-key - Propetties

Q. Find @
I=| Common
4 Background Color: Fed |V|

Background I Background Color

Edit...

ontent: Go to Declaration

Colar: Reset ta Default

Height: [= Property Help

Width: This property sets the |

LI R Y PO S RS

The extended ADF skin opens in the source view, as shown in Figure 4-14. If the
extended ADEF skin is one that you created, you can modify the property values
defined in it. The ADF skins provided by Oracle ADF, described inADF Skins
Provided by Oracle ADF, are read-only.

Figure 4-14 Property Value Defined in Extended ADF Skin

sking.css @ skinA, css
Q- Find
f*FADFFaces_Skin File J DO NOT REMOVE®®/

fnamespace af "http://wmlns.oracle.consa
fnamespace dyt "http: /Swnlns. oracle. coms

= af |[button: :access-key

i
background-color: Red;

}

4-12 Developing ADF Skins

5

Creating the Source Files for an ADF Skin

This chapter describes how to create the source files for an ADF skin in JDeveloper.
Information on how to import an ADF skin from an ADF Library JAR file is also
provided.

This chapter includes the following sections:

* About Creating an ADF Skin

* Creating an ADF Skin File

e Importing One or More ADF Skins Into the Current ADF Skin
* Adding ADF Skins from an ADF Library JAR

5.1 About Creating an ADF Skin

An ADF skin defines the properties for the selectors that ADF Faces and ADF Data
Visualization components expose. Using the editor in JDeveloper, you can create a
source file for an ADF skin. As a source file for an ADF skin is a type of CSS file, you
could create it without using an editor. However, when you use the editor, associated
configuration files get created (the first time that you create an ADF skin) or modified
(when you create subsequent ADF skins). For more information about these
configuration files, see Configuration Files for an ADF Skin.

5.2 Creating an ADF Skin File

You can create an ADF skin file in JDeveloper that defines how ADF Faces and ADF
Data Visualization components render at runtime. The ADF skin that you create must
extend either one of the ADF skins that Oracle ADF provides or from an existing ADF
skin that you created. The ADF skins that Oracle ADF provides vary in the level of
customization that they define for ADF Faces and ADF Data Visualization
components. For information about the inheritance relationship between the ADF
skins that Oracle ADF provides, see Inheritance Relationship of the ADF Skins
Provided by Oracle ADF . For information about the levels of customization in the
ADF skins provided by Oracle ADF and for a recommendation about the ADF skin to
extend, see ADF Skins Provided by Oracle ADF.

By default, the editors in JDeveloper create ADF skins for the

or g. apache. nyfaces. tri ni dad. deskt op render kit. A render kit defines how
ADF Faces components map to component tags that are appropriate for a particular
client.

After you create an ADF skin, you can use the design editor and the other provided
editors to modify the values for the selectors that the ADF Faces and ADF Data
Visualization components expose. Otherwise, the ADF skin that you create defines the
same appearance as the ADF skin from which it extends. For more information, see
Working with Component-Specific Selectors .

Creating the Source Files for an ADF Skin 5-1

Creating an ADF Skin File

If you create an ADF skin that extends from the Skyros ADF skin, you enable the
design editor. This tab provides an overview pane where you can use controls to set
properties for many frequently-used selectors. For more information about using the
design editor, see Working with the ADF Skin Design Editor.

5.2.1 How to Create an ADF Skin in JDeveloper

You can create an ADF skin in JDeveloper.

To create an ADF skin in JDeveloper:

1.

In the Applications window, right-click the project that contains the code for the
user interface and choose New.

In the New Gallery, expand Web Tier, select JSF/Facelets and then ADF Skin, and
click OK.

In the Skin File page of the Create ADF Skin dialog, enter the following;:

File Name: Enter a file name for the new ADF skin.

Directory: Enter the path to the directory where you store the CSS source file for
the ADF skin or accept the default directory proposed by the editor.

Family: Enter a value for the family name of your skin.

You can enter a new name or specify an existing family name. If you specify an
existing value, you may need to version ADF skins, as described in Versioning
ADF Skins, to distinguish between ADF skins that have the same value for
family.

The value you enter is set as the value for the <f ani | y> element in the
trini dad- ski ns. xm where you register the ADF skin that you create. At
runtime, the <ski n- f ami | y> element in an application's t r i ni dad-

confi g. xm file uses this value to identify the ADF skin that an application
uses. For more information, see Applying an ADF Skin to Your Web
Application.

Use as the default skin family for this project: Deselect this checkbox if you do
not want to make the ADF skin the default for your project immediately. If you
select the checkbox, the t ri ni dad- confi g. xm file is updated, as described
in What Happens When You Create an ADF Skin.

In the Base Skin page of the Create ADF Skin dialog, specify the following:

Show Latest Versions Only: Clear this checkbox to show all available versions
of ADF skins.

Available Skins: Select the ADF skin that you want to extend. ADF Faces
provides a number of ADF skins that you can extend. The list also includes any
ADF skins that you created previously in this project. For more information and
a recommendation on the ADF skin to extend, see ADF Skins Provided by
Oracle ADF.

Skin Id: A read-only field that displays a concatenation of the value you enter
in File Name and the ID of the render kit (deskt op) for which you create your
ADF skin. You select this value from the Extends list if you want to create
another ADF skin that extends from this one.

5-2 Developing ADF Skins

Creating an ADF Skin File

JDeveloper writes the value to the <i d> element in the t ri ni dad- ski ns. xm

file.

5. Click Finish.

5.2.2 What Happens When You Create an ADF Skin

If you accepted the default value proposed for the Directory field, a file with the
extension . €SS is generated in a subdirectory of the ski ns directory in your project.

An ADF skin that extends the Alta skin opens in the selectors editor, as illustrated in
Figure 5-1. This selectors editor is also available if you create an ADF skin that extends

from the Skyros ADF skin.

Figure 5-1 Newly-Created ADF Skin that Extends from Alta in the Selectors Editor

Applications

SkinningApp
=l Projects
odel
=[] viewControlier
-1 Application Sources
: E| i view
Poh] skinBundle. properties
=3 META N
o] E adf-settings. xml
-3 Web Content
I‘:';! [skins
E 7 extalta
@ extAlta.css
2~ extSkyros
‘... [extSkyros.css
-2 WEB-INF
i L'_‘[;‘ adfc-config. xml
B faces-config.xml
[##] triniclad-config. xml
E trinidad-skins. xml
+| Application Resources
+| Data Controls
+ Recent Files

extAlta cas - Structure
=@

- (8 Selectors

Bl ®- V-

[ﬁ extAlta.css
0] | [Extended Skins +

a 7-

+- X

-3 Style Classes

-3 Global Selector Alizses
E-C3 At-Rules

[=H-[2 Faces Companent Selectors
£--+»% BreadCrumbs

(@ Button

[calendar

-10 Carousel

O Carousel Ttem

JIZ‘ Checkbox

JIZ‘ Checkbox (Select Many)

=

Choice
Choice (Select Many)
o[Choose Color
- [E Choose Date
-1 » Code Editor
e & Column
(@ Command Button
J§ Command Image Link
J¢§ Command Link.
(@ Command Toolbar Button
JE Context Info
i@ Conveyor Belt
i [B Deck
Jlj Decorative Box
- Dialog
a3 Document

i@ Go Button

SR> [P S PN

Default (Mo) Theme — Dark Theme = Medi

@ - K

An ADF skin that extends the Skyros ADF skin opens in the design editor, as

illustrated in Figure 5-2.

Creating the Source Files for an ADF Skin 5-3

Creating an ADF Skin File

Figure 5-2 Newly-Created ADF Skin that Extends from Skryos in the Design Tab

'_% skinZ2.css

General Branding Area Global Area | Butbons Links Tabs ~ Headers Menus Boxes | Accordions

Content Area Theme Defaulk Text Colors Default F

Background 1: ! Main: = [Tahoma
. Background 2: 0l Primary: [E
Secondary: =
Header: [|

Sample Pages: z e

Branding Area Title

Global Area Link Global Area Menu

Accordion Header

Selected Tab Unselected Tab

Default Link Header Level 0 (Top)
Active Link

* Teat Text Read-
v et Tert (@ va
Hover Link _
> Accordion Header Text

Text

Accordion Header

Header Level 1

Actions = View » [Detach

Column Column Column
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004

The t ri ni dad- ski ns. xm file is modified to include metadata for the ADF skin that
you create, as illustrated in Example 5-1, which shows entries for an ADF skin that
extends from the Skyros family of ADF skins. Example 5-1 also contains values that
specify the render kit and the resource bundle associated with this ADF skin. For
more information about resource bundles, see Working With Text in an ADF Skin.

If you select the Use as the default skin family for this project check box in the Create
ADF Skin dialog, the t ri ni dad- confi g. xm file is modified to make the new ADF
skin the default skin for your application. This means that if you run the application
from JDeveloper, the application uses the newly-created ADF skin. For more
information, see Applying an ADF Skin to Your Web Application. The following
example shows atrini dad-confi g. xm file that makes the ADF skin in Example
5-1 the default for an application.

<?xm version="1.0" encodi ng="wi ndows- 1252" ?>

<trinidad-config xm ns="http://nyfaces. apache.org/trinidad/config">
<ski n-fam | y>ski n2</ skin-fam | y>

</trinidad-config>

The source file for the ADF skin contains a comment and namespace references, as
illustrated in the following example. These entries in the source file for the ADF skin
distinguish the file from non-ADF skin files with the . css file extension. A source file
for an ADF skin requires these entries in order to open in the design or selectors
editors for the ADF skin.

5-4 Developing ADF Skins

Importing One or More ADF Skins Into the Current ADF Skin

[** ADFFaces_Skin_File / DO NOT REMOVE**/
@anespace af "http://xm ns. oracle.con adf/faces/rich";
@anespace dvt "http://xmns.oracle.com dss/adf/faces";

The first time that you create an ADF skin in your project, a resource bundle file
(ski nBundl e. properti es) is generated, as illustrated in Figure 5-1. For more
information about using resource bundles, see Working With Text in an ADF Skin.

Example 5-1 trinidad-skins.xml File

<?xm version="1.0" encodi ng="wi ndows- 1252" ?>
<skins xm ns="http://myfaces. apache. org/trini dad/ skin">
<ski n>
<i d>ski n2. deskt op</i d>
<fam | y>ski n2</fam | y>
<ext ends>skyr os-v1. deskt op</ ext ends>
<render-Kkit-id>org. apache. nyfaces. trini dad. deskt op</render-kit-id>
<styl e- sheet - nanme>ski ns/ ski n2/ ski n2. css</ styl e- sheet - name>
<bundl e- name>r esour ces. ski nBundl e</ bundl e- name>
</ skin>
</ ski ns>

5.3 Importing One or More ADF Skins Into the Current ADF Skin

You can import another ADF skin that is in your JDeveloper project into your ADF
skin using the @ nport rule. This makes the style properties defined in the latter ADF
skin available to your ADF skin. The following examples demonstrate the valid syntax
to import an ADF skin (ski nA) into the current ADF skin:

[** Use the following syntax if skinA.css is in the same directory **/
@nport "skinA css";
@nmport url ("skinA css");

[** Use the following syntax if skinA css is in another directory **/
@nmport "../skinA skinA css";
@nmport url ("../skinAlskinA css");

The @ nport rule(s) must follow all @har set rules and precede all other at-rules

and rule sets in an ADF skin, as shown in the following example that imports two
ADF skins into the current ADF skin:

@harset "UTF-8";

@nmport url ("../skinA/skinA css");
@nmport url ("../skinB/skinB.css");

[** ADFFaces_Skin_File / DO NOT REMOVE**/
@anespace af "http://xm ns. oracle.con adf/faces/rich";
@anespace dvt "http://xmns.oracle.com dss/adf/faces";

af | i nput Text {

background-col or: Green;

}

5.4 Adding ADF Skins from an ADF Library JAR

You can add ADF skins that have been packaged in a JAR file into your JDeveloper
project. When you add an ADF skin from a JAR file into your project, the imported

Creating the Source Files for an ADF Skin 5-5

Adding ADF Skins from an ADF Library JAR

ADF skin is available to extend from when you create a new ADF skin, as described in
Creating an ADF Skin File.

The recommended type of JAR file to use to package an ADF skin is an ADF Library
JAR file. For information about how to package an ADF skin into this type of JAR file,
see Packaging an ADF Skin into an ADF Library JAR.

5.4.1 How to Add an ADF Skin from an ADF Library JAR

You can add ADF skins into your project that have been packaged in a JAR file.
To add an ADF skin from an ADF Library JAR:

1. From the main menu, choose Application > Project Properties.

2. In the Project Properties dialog, select the Libraries and Classpath page and click
Add JAR/Directory.

3. In the Add Archive or Directory dialog, navigate to the JAR file that contains the
ADF skin you want to add and click Select.

The JAR file appears in the Classpath Entries list.
4. When finished, click OK.

5.4.2 What Happens When You Import an ADF Skin from an ADF Library JAR

The ADF skin(s) that you add from the JAR file appear in the Extends list when you
create a new ADF skin, as described in Creating an ADF Skin File. After you create a
new ADF skin by extending an ADF skin that you added from a JAR file, the Extended
Skins list in the selectors editor's Preview Pane displays the name of the ADF skin that
you added. For example, in Figure 5-3 the ski n2. css ADF skin has been created by
extending the ADF skin, j ar r edski n. css, that was added into the project from a
JAR file.

Figure 5-3 Imported ADF Skin in the Extended Skins List

@ skinZ.css
I [Extended Skins +

3 i P | Default (Mo) Theme Dark The
skyros-v1-desktop.css

skyros-v1-theme-addition.css

t skyros-v1-touchScreen-deskbop.css
E}B Fares Component Seleckors dvt-skyros-v1-desktop.css

| [#he3e BreadCrumbs T

Properties that have been defined in the ADF skin that you added appear with a blue
upward pointing arrow in the Properties window. An information tip about the
inheritance relationship displays when you hover the mouse over the property, as
illustrated in Figure 5-4.

Figure 5-4 Property Inherited from an Imported ADF Skin

‘ ‘ %Color: E333344
S

.

Inherited From: af| button in jarredskiness 5
Click on any selector link to go toits declaration. = mediom currer

0 rvdar malowe e wrenkralae Foreern

5-6 Developing ADF Skins

6

Working with Component-Specific
Selectors

This chapter describes how to change the appearance of ADF Faces and ADF Data
Visualization components by specifying properties for the selectors that the ADF
skinning framework exposes for these components. Features such as the ability to
configure ADF skin properties to apply to messages, themes that you can apply to
ADF Faces components, and how to configure an ADF skin for accessibility are also
described.

This chapter includes the following sections:

* About Working with Component-Specific Selectors

¢ Changing ADF Faces Components' Selectors

¢ Changing ADF Data Visualization Components' Selectors
¢ Changing a Component-Specific Selector

¢ Configuring ADF Skin Properties to Apply to Messages

¢ Configuring an ADF Skin for Accessibility

6.1 About Working with Component-Specific Selectors

You customize the appearance of ADF Faces or ADF Data Visualization components
by defining style properties for the selectors that the components expose. To achieve
the appearance you want, you need to become familiar with the component-specific
selectors that the ADF Faces and ADF Data Visualization components expose, plus the
global selector aliases and descendant selectors that a component-specific selector may
reference. The ADF skins that you extend from when you create an ADF skin define
many global selector aliases and descendant selectors. You also need to become
familiar with the component itself and how it relates to other components. For
example, customizing the appearance of the ADF Faces t abl e component shown in
Figure 6-1 requires you to define style properties for the r ow- header - cel | and
colum-filter-cell selectors exposed by the af : col urm component in addition
to selectors exposed by the ADF Faces t abl e component. You may also need to
modify the style properties for one or more of the icon or message global selector
aliases that the ADF skin you extend defines.

Working with Component-Specific Selectors 6-1

About Working with Component-Specific Selectors

Note:

Consider using the design editor, as described in Working with the ADF Skin
Design Editor, if you want to change the properties of some of the most
frequently used selectors in an ADF skin that extends from the Skyros ADF
skin. This editor appears by default if your ADF skin extends from the Skyros
ADF skin. The design editor provides a variety of controls to quickly change
your ADF skin.

Figure 6-1 Selectors for an ADF Faces table Component

af|column: :row-header-cell

af|column: : coluan-filter-cell

Cefaulk (Mo} Theme — Dark Theme Medium Theme Light Theme

af|kable
F:?:I Mame Size Mo Date Modified Col5
0 b I 0B 0 07122004
0 D ﬁb 0B 0 07/12/2004
0 oD af |column: :banded-data-cell | 0B 0 07/12/2004
0 D 0B 0 07/12/2004
0 b I 0B 0 07122004
0 D 0B 0 07/12/2004
0 b I 0B 0 07122004
0 D 0B 0 07/12/2004
0 D . 0B 0 07/12/2004
0 D 0B 0 07/12/2004
0 D . 0B 0 07/12/2004
0 D 0B 0 07/12/2004
[= 0B 0 07/12/2004
n I (1] n 07272004

af [table:drop-target

Use the tools that the selectors editor for ADF skins provides to customize the
appearance of the ADF Faces components and ADF Data Visualization components.
For more information, see Working with ADF Skins in JDeveloper.

Other sources of information that may help you as you change the selectors of ADF
Faces and ADF Data Visualization components include the following;:

¢ Images: An ADF skin can reference images that render icons and logos, for
example, in a page. For more information about how to work with images in an
ADF skin, see Working with Images and Color in Your ADF Skin.

6-2 Developing ADF Skins

Changing ADF Faces Components' Selectors

* Text: An ADF skin does not include text strings that render in your page. However,
you can specify a resource bundle that defines the text strings you want to appear
in the page. For more information, see Working With Text in an ADF Skin.

¢ Global selector aliases: A global selector alias specifies style properties that you can
apply to multiple ADF Faces components simultaneously. For more information
about global selector aliases, see Working With Global Selector Aliases.

e Style Classes: A style class in an ADF skin specifies a number of style properties
that an ADF Faces component can reference as a value if it exposes a style-related
attribute (st yl eCl ass and i nl i neSt yl e). For more information about style
classes, see Working with Style Classes.

® ADF Faces Rich Client Components Hosted Demo: The Oracle Technology
Network (OTN) web site provides a link to an application that demonstrates how
ADF skins change the appearance of ADF Faces and ADF Data Visualization
components. For more information, navigate to ht t p: / / www. or acl e. coml
t echnet wor k/ devel oper -t ool s/ adf/ overvi ew i ndex. ht m

6.2 Changing ADF Faces Components' Selectors

ADF Faces components render user interface controls, such as buttons, links and check
boxes in your web application. ADF Faces components also include components that
render calendars, panels to arrange other user interface controls and tables in your
web application. For more information about ADF Faces components and the
functionality that they provide, see Developing Web User Interfaces with Oracle ADF
Faces.

You can change the runtime appearance of ADF Faces components by editing the
properties that each ADF Faces skin selector exposes. The number of selectors that an
ADF Faces component exposes varies by component. For example, the ADF Faces
components, af : i mage and af : popup, expose one selector each. In contrast, the
ADF Faces component, af : panel Header, exposes a variety of selectors that enable
you to change the appearance of different parts of the user interface of that
component. There are, for example, selectors that allow you to change the

af : panel Header component's instruction text, help icons, and titles.

The process to follow to change the runtime appearance of an ADF Faces component
is the same for each component; the only difference is the number of selectors that
each ADF Faces component exposes. Figure 6-2 and Figure 6-3 take the but t on
component as an example and illustrate how you can customize the appearance of this
component using pseudo-elements and the component's selector. Figure 6-2 shows the
application of the skyr 0s skin on the but t on component and the component icon.

Figure 6-2 Button Component Default Appearance with Skyros ADF Skin

4 Button |«

Figure 6-3 shows the appearance of the component in the selectors editor after you set
values for the following pseudo-elements on the component's selector:

¢ access-key: The Color property is set to r ed

* dropdown-icon-style: The Border property is set to 2px sol i d bl ack

Working with Component-Specific Selectors 6-3

http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html

Changing ADF Data Visualization Components' Selectors

Figure 6-3 Button Component with Modified Selectors

Q V- &

E-20 Style Classes

EI Global Selector Aliases
-3 At-Rules

B[Faces Component Selectors
[i}-929 BreadCrumbs

[af |button

[Pseudo-Elements
e[accesskey
[dropdown-cell
[dropdown-ican

dropdown-icon-style

Default (Mo) Theme Dark Theme Medium

W@ X 5

af|button: :dropdown-icon-style
Eegular Button
x Disabled Button

8 Popup Button E

af |button:depressed: :dropdown-icon-style

Regular Button

x Disabled Button

Design | Selectors | Source Hiskary

Qr(Find

f#charset "UTF-5";

J¥FRDFFaces_Skin File / DO HNOT REMOVE®®/

Enamespace af "http: //xnlns.oracle. con/adf /faces/rich™;
fnamespace dyt "http://xmlns. oracle.con/dsssadf/faces™;

= af [button: :access-key |
color: Red;

[=iaf (button: :dropdown-icon-style |

border: Zpx solid black:

Reference information about the selectors that ADF Faces components expose can be
found in the Tag Reference for Oracle ADF Faces Skin Selectors.

6.3 Changing ADF Data Visualization Components' Selectors

The ADF Data Visualization components are a set of components that provide
functionality to represent data in graphical and tabular formats. Examples of the ADF
Data Visualization components include the following: graph, gantt, pivot table, and
hierarchy viewer. For more information about ADF Data Visualization components
and the functionality that they provide, see Developing Web User Interfaces with Oracle
ADF Faces.

You can change the runtime appearance of ADF Data Visualization components by

editing the properties that each ADF Data Visualization component selector exposes.
The number of selectors exposed by an ADF Data Visualization component varies by

component.

Figure 6-4 shows an ADF skin in the selectors editor with the nodes expanded to show
the selectors that you can customize for the ADF Data Visualization gauge
component.

6-4 Developing ADF Skins

Changing ADF Data Visualization Components' Selectors

Figure 6-4 ADF Data Visualization Component Selectors

Q, ? - ;ﬂ. o % Default (Mo) Theme — Dark Theme Medium Theme Light 1
@03 Style Classes W b @ 3 viewas: Gauge =
-3 Global Selectar Aliases
[:l at-Rules af |dvk-gaugeBackground
[:l Faces Component Selectors Column 1
[=h-[z= Data Visualizations Component Selectors

-5 Gantt

(= E2) mauge , 40 ?
----- [af|dvt-gauge 20 20
[#-1 Pseudo-Elements {af |dvt-gauge;

----- [af|dvt-bottomLabel

lllll 0 Row 1 63
----- D af |dvt-gaugeSetBackground Legend Title

----- D af|dvt-indicator
----- [af|dvt-indicatorBar

5 CElA b i die ok me D m

a 100

W < 30% 30% - G0% = 60%

You customize the appearance of ADF Data Visualization components by defining
style properties for the selectors that each ADF Data Visualization component exposes.
Using the tools provided by JDeveloper's selectors editor for ADF skins, you
customize the appearance of the ADF Data Visualization components. For more
information, see Working with ADF Skins in JDeveloper.

To achieve the appearance you want, you need to become familiar with the selectors
that the ADF Data Visualization component exposes, the global selector aliases that
the component may reference and which are defined in the ADF skin that you extend
when you create an ADF skin. You also need to become familiar with the component
itself and how it relates to other components. For example, customizing the
appearance of the ADF Data Visualization pi vot Tabl e component shown in Figure
6-5 requires you to define style properties for this selector's pseudo-elements. You may
also need to modify the style properties for one or more of the global selector aliases
that the ADF skin you extend defines.

Figure 6-5 ADF Data Visualization pivotTable Component

Cales Units
All Channels &l Channels
wWorld Boston Waorld Boston
2007 Tents 20,000 S00 200 a0

Canoes 15,000 1,500 7o a
2006 Tents 10,000 230 100 23
Canoes 7,200 7ol 40 4
2005 Tents 5,000 125 50 15
Canoes 3,750 75 20 2

Many ADF Data Visualization component selectors, such as the selectors for the

gr aph and hi er ar chyVi ewer components, expose pseudo-elements for which you
configure ADF skin properties. These ADF skin properties modify the appearance of
the area specified by the pseudo-element. The characters - t r - preface the names of
ADF skin properties. For example, Figure 6-6 shows the properties of the hierarchy
viewer's | at er al - navi gat i on- but t on selector, all of which are prefaced by -tr - .

Working with Component-Specific Selectors 6-5

Changing ADF Data Visualization Components' Selectors

Figure 6-6 Properties for the hierarchyViewer Component lateral-navigation-button Pseudo-Element

@ skyros1l.css

(=) af|dwt-hierarchyievver: lateral-navigation-button - Properties
=
0] | (2 Extended Skins = @ Q Find
i 3
Q ? = 4 = x Default (Mo) Theme — Dark Theme Medium Theme o -tr-horder-colar: Fuchsia
3 Style Classes DR A 4 M o -tr-color: Fuchsia
3 Global Selector Aliases

3 At-Rules

(23 Faces Component Selectors

B[Data Visualizations Component Selectors

; Ganitt

Gauge

+ % Graph

B2 Hierarchy Viswer

[af|dvt-hierarchyViewer

-25 Pseudo-Elements (af | dvt-hierarch
; igation-butkan

- lateral-navigation-ine
----- [afldvt-controlPanel

----- [af|dvt-link

----- [af|dvt-node

-3 Pseudo-Elements (af|dvt-node)
----- D af |dvt-panelCard

t-(C3 Pseudo-Elements (af | dvt-panelCa
i (21 Component Stvle Classes
¢[00 Component Selector Aliases
t--(21 Descendant Selectors
- () Map

[#-EH Map Toolbar

1-fER] Pivot Filter Bar

[E

£

[E

£
E
£
E

b3 Pivat Table
}@ Sunburst
- W Thematic Map

af | dwt-hierarchyiewer::later al-navigation-button

Sample
Head
Pand Card
L]
He
=]
[+]] :
|
H H
Sample text Sample
Header Head
Panel Card Content Panel Card {
- L3 -
[E=] Hm

=FlAuk_hise serbustlicise sl sbar slonauin skioncbobban sebios

4 -tr-background-color: |#CCE2F6
oid

o -tr-fill-type:

In contrast, the gant t component's sunmar y-t ask-1 ef t selector, shown in Figure
6-7, exposes only four ADF skin properties (-tr-rul e-ref, -tr-inhibit-,-tr-
enabl e-t henes, and - tr - chi | dr en- t hene) as the majority of the properties that
you configure for this selector are CSS properties.

For more information about ADF skin properties, see Properties in the ADF Skinning
Framework.

Figure 6-7 Properties for the gantt Component summary-task-left Pseudo-Element

@ skinl.css

afldvt-gantt:: summary-task-left - Properties

[0
—
0] | [Extended Skins = @ Q, Find
Q ? o 4 < x Default (Mo) Theme Dark Theme Mediu... 4 = Common
== Data Yisualizations Cormponent Selsctors 6 e @ 3 1 viewas: dvtiprojectGantts Background Color; b:ransparent
=[] Gantt o :
50> Peudo-Elements af | dvb-gantt::summary-task-left 4 Background Image: |ur|(bifimagesjgantkfsummarystart.png’)
[Task = Edit - / % E Content: |
Color: |
o Height: 12
#{task.taskName #{task.resource} 4 whvidth: |3
#{task.taskName #{task.resource} Baorder: |n0ne mediurn currentCalar
#{task.taskName | #{task.resource} Border Color: |currentC0|0r currentCalor currentColor currentCo
#{task.taskName #{task.resource} Iargin: |Dpx Opz Opx Opx
li Padding: |D|3x Opa Opx Opx
= Baseline 1 summary Progress | |
L -tr-rule-ref -tr-inhibit -tr-enable-themes | -tr-children-theme
I Task Progress @Crrtlcal Task 5
I | Actual Critical Task Baseline Milestone
Walue

Reference information about the selectors, pseudo-elements, and pseudo-classes that
ADF Data Visualization components expose can be found in the Tag Reference for
Oracle ADF Data Visualization Tools Skin Selectors.

6-6 Developing ADF Skins

Changing a Component-Specific Selector

6.4 Changing a Component-Specific Selector

The process to change a component-specific selector is the same for both the ADF
Faces and ADF Data Visualization components. In the Selector Tree of the selectors
editor, you expand the Faces Components Selectors or Data Visualization Selectors
node to select the selector of the component you want to modify. You then set values
for this selector using the Properties window. You can also set properties for any
pseudo-elements, component style classes, component selector aliases, or descendant
selectors that the selector you select references. In addition, you can add pseudo-
classes that the component-specific supports. For more information about pseudo-
classes, see Pseudo-Classes in the ADF Skinning Framework. Figure 6-8 shows a view
of the skin selector for the ADF Faces t abl e component in the Selector Tree of the
selectors editor with the different pseudo-elements that you can configure for this skin
selector.

Figure 6-8 Selector for the table Component

E skinz.css
0 [Extended skins ~

Q F- ok % Default (Ma) Theme Dark Theme Medium Theme Light Ther
(-4 Region WP X M
: Q Reset Button
-y Rich Text Editor aftable
[#-== Separator &
j -~ [Show Detail Row :
[&h-*7] Show Detail Header No e e
<[] Show Detail Tkem 0 (= 0B
¥ shuttle 0 D . UE
] Shuttle (Ordered) 0 I - 0B
0 D . 0B
) [8 08
= Table - @ - on
| 0 @ - on
-3 Pseudo-Elements 0 Q. e
----- D column-resize-indicatar 0 = oF
----- D daka-row g Q. or
----- [detail-area-cel 0 Q. o3
----- [disclosed-icon g = L
----- D disclosed-icon-style 0 D . 08
----- [navbar n ™ nE
..... 0 navbar-c.urrent-pa.ge o |table:drop-target
----- D navbar-first-page-icon
----- D navbar-first-page-icon-style &
----- [navbar-gap-page Row T Size
----- D navbar-last-page-icon No
----- D navbar-last-page-icon-skyle 0 - 0B
----- [navbar-next-page-icon 0 - ol
..... [navbar-nest-page-icon-styl 1] = 0B
----- D navbar-page-container 1] I Wiz
----- [navbar-page-link 0 o I 0B
----- D navbar-previous-page-icon 0 i 0B
----- [navbar-previous-page-icon- 0 . DB
----- D navbar-row-range-text [i] i 0B
----- D navbar-separator 0 i 0B
----- [record-range-footer 0 i 0B
----- [status-message 0
----- D undisclosed-icon ¢ o o
----- [undisclosed-icon-style 0 = ™
B I T T S, 0 = - e

Figure 6-9 shows a runtime view of an ADF Faces t abl e component that renders data
using the style properties provided by the ADF Faces si npl e skin.

Working with Component-Specific Selectors 6-7

Changing a Component-Specific Selector

Figure 6-9 ADF Faces table Component Rendered By the simple Skin

Personld 25 |PrincipalMame Title FirstMarne LastMarme
108 NGREENBE Mancy Greenbery
1049 DF AWIET] Daniel Faviet
110 WCHEN John Chen

111 ISCIARRA, |zmael Sciarra
112 U URRAN Jose Manuel Urrmarn
113 LFOFP Luis Popp

114 DRAFHEAL Cer Raphaely
115 AKHOO Alexander Khoo

116 SBAIDA Shelli Baida

117 STOBIAS Sigal Tobias

6.4.1 How to Change a Component-Specific Selector

You change a component-specific selector by selecting the selector in the Selector Tree
and setting values for the selector, its pseudo-elements, or descendant selectors in the
Properties window. In addition, you can add a pseudo-class if the component-specific
selector supports one.

To change a component-specific selector:

1. In the Selector Tree of the selectors editor, choose the appropriate option:

¢ Expand the Faces Component Selectors node if you want change a selector for
an ADF Faces component.

¢ Expand the Data Visualization Selectors node if you want to change a selector
for an ADF Data Visualization component.

For example, expand the Faces Component Selectors node, the Column node, the
Pseudo-Elements node, and select the column-header-cell selector.

2. In the Properties window, specify values for the properties that the selector you
selected in Step 1 supports.

For example, in the Common section of the Properties window, specify values for
the following attributes:

¢ Background Color: Specify the background color that you want to appear in the
header row of the table.

* Color: Specify the color that you want to apply to text that appears in the header
row of the table's column.

3. In the Preview Pane, click the Add Pseudo-Class icon to choose a supported
pseudo-class from the displayed list of supported pseudo-classes that appears.

6.4.2 What Happens When You Change a Component-Specific Selector

The selectors editor displays the changes that you make to the selector after you click
the Refresh icon in the Preview Pane. If you add a pseudo-class to the selector, the
Preview Pane also displays an entry for the selector with the added pseudo-class. For
example, Figure 6-10 shows an entry for a selector with the : hover pseudo-class
added.

6-8 Developing ADF Skins

Changing a Component-Specific Selector

Note:

The Preview Pane for the af | docunent selector only displays one entry even
if you add a pseudo-class to this selector.

Figure 6-10 Preview Pane with a Component Specific Selector and a Pseudo-Class

Default {Ma) Theme Dark Theme Medium Theme Light Theme

@ e K Vlewas:

af |eolumn: :column-header-cell

0 || 0B o 07)12/2004 07/12/z004 06
0 || . 0B o 07)12/2004 . 07/ 122004 06
0 |[ED .)] 1) 07)12/2004 0 07/ 122004 06
= il o] orpizizon4 . 07/12/2004 0B
= il 0| orjizizon4 . 0712/2004 0B
= Y] M . 07/ 12{2004 0B
= 0E 0| orpizfzons) 07/12f2004 0B
= nE 0| orpizfzons) 0712{2004 0B
= 0E 0| orpizfzons) 0712f2004 0B
= nE 0| orjizfzons) 0712f2004 0B
Takal:

af|column: :column-header-cell:hover

o7/12/2004
[o ornzfzog

. 07j12/2004
. |v7i1272004 lve

The selectors editor also writes the values that you specify for the selectors in the
Properties window to the source file for the ADF skin. The following example shows
the changes that appear in the source file after making some of the changes described
in How to Change a Component-Specific Selector.

af | col um: : col umm- header - cel |

{

col or: Bl ack;
background-col or: Qive;
font-wei ght: bol d;

}

When a web application uses an ADF skin that contains the values shown in the
previous example, header rows in the columns of a table rendered by the ADF Faces

t abl e component appear as illustrated by Figure 6-11 where the table uses a skin that
extends the si npl e skin.

Figure 6-11 ADF Faces table with a Header Row Skinned

105 NGREENBE Mancy Greenben
109 DFAYIET] Dariigl Faviet|
10 JCHEM| Johr Chen

111 ISCIARRA Ismael Sciarral
112 UMURNARN Jose Manuel| [Urman|
113 LPOPP| Luis Po

114 DRAPHEAL Den Raphaely|
115 AKHOO| Alexander Khon

116 SBAIDA| Shelli Baida|
17 STOBIAS] Sigal Tobias]

Working with Component-Specific Selectors 6-9

Configuring ADF Skin Properties to Apply to Messages

6.5 Configuring ADF Skin Properties to Apply to Messages

You can apply styles to ADF Faces input components based on whether or not the
input components have certain types of message associated with them. When a
message of a particular type is added to a component, the styles of that component are
automatically modified to reflect the new status. If you do not define styles for the
type of message in question, the component uses the default styles defined in the ADF
skin.

The types of message property are:
e :fatal

e error

e :warning

e :confirmation

e :info

Figure 6-12 shows an i nput Text component rendered using the si npl e ADF skin.
In Figure 6-12, the si npl e ADF skin defines style values for the : war ni ng message
property to apply to the i nput Text component when an end user enters values that
generate a warning.

Figure 6-12 inputText Component Displaying Style for :warning Message Property

A Warning: Warning message SUMMARY text
(Detail text null).
Warning message SUMMARY text (Detail text
null)

firmation | info [Input displays warning

Figure 6-13 shows the same i nput Text component as in Figure 6-12. In Figure 6-13,
the end user entered a value that generated an error. As a result, the i nput Text
component renders using the style properties configured for the : er r or message

property.

Figure 6-13 inputText Component Displaying Style for :error Message Property

& Error: Error message SUMMARY text.
Error message DETAIL text

error | |error |

The ADF skinning framework defines a number of global selector aliases that define
style properties to apply to messages. Figure 6-14 shows a list of global selector aliases
under the Message node in the Selector Tree of the selectors editor. The Preview Pane,
on the right of Figure 6-14, shows how the style properties defined for the global
selector alias currently selected in the Selector Tree render the component selected
from the View as list.

6-10 Developing ADF Skins

Configuring ADF Skin Properties to Apply to Messages

Figure 6-14 Global Selector Aliases for Messages

Q T .# B x Default (Mo) Theme
-3 Style Classes W) Il @ 3¢ | view as: [Input Text -
-2 Global Selector Aliases Checkbox B
&3 Coler af |input Text: fatal:: content hoice
-3 Component Group: Button Name: | halle Choice (Select Many)
-3 Component Group: Form Controls Choose Date
-3 Component Group: Link Code Editor
(3 Component Group: Menu Input Color
-3 Component Group: PanelBox and Region [nput D.ate
-3 Component Group: PaneHaader Input F.|Ie
Input Lisk OF values
[Font —— — -
Input Lisk of values {Combobox)
-3 Ieons Input Mumber Spinbos:
BB Message Input Text
[.AFErrorBackground:alias Listhios:
AFFatalBackground: alias Listbeie (Select Mary)
JAFFormComponentOutlineError: alias Radio Group
JAFFormComponentOutlineFatal: alias Rich Text Editor
AFFarmCamponent Outlinetyarning: alias Shuttle
AFWarningBackground: alias Shuttle (Ordered)

-3 Miscellaneous

You can customize the global selector aliases that the ADF skinning framework
provides for messages by defining style properties in your ADF skin. The style
properties that you define for the global selector alias affect all ADF Faces components
that reference the global selector alias. For example, if you change the border color for
the global selector alias shown in Figure 6-14 to green, all the ADF Faces components
shown in the View as list render with a border that is green. For more information
about global selector aliases, see Working With Global Selector Aliases.

The af | message and af | mtessages selectors also expose pseudo-elements that
enable you to change the icons that appear in the message dialogs at runtime. In
addition, these selectors define resource strings that determine the text to appear in
tool tips when an end user hovers over a message dialog. You can override these
resource strings by specifying alternative values in a resource bundle, as described in
Working With Text in an ADF Skin. For more information about configuring messages
for ADF Faces components, see the "Displaying Tips, Messages, and Help" chapter in
Developing Web User Interfaces with Oracle ADF Faces.

6.5.1 How to Configure an ADF Skin Property to Apply to a Message

You add a pseudo-class to the component's selector for the message type that you
want to configure. You then define style properties for the pseudo-class using the
Properties window.

To configure an ADF skin property to apply to a message:

1. In the Selector Tree of the selectors editor, expand the Faces Component Selectors
section and select the selector for the ADF Faces component for which you want to
configure the style properties to apply to a message.

For example, select the af | inputText selector to configure the style properties to
apply to the ADF Faces i nput Text component.

2. Click the Add Pseudo- Class icon to display a list of the available pseudo-classes
for the selector that you selected in Step 1.

3. Select the pseudo-class that corresponds to the message for which you want to
configure style properties. The following pseudo-classes are available for the ADF
Faces components:

e fatal

Working with Component-Specific Selectors 6-11

Configuring an ADF Skin for Accessibility

e error
e warni ng

e confirmation
e info

4. Configure the style properties that you want to apply to the component at runtime
when the application displays a message with the component.

6.5.2 What Happens When You Configure ADF Skin Properties to Apply to Messages

The selectors editor writes the values that you specify for the selector's pseudo-class in
the Properties window to the source file for the ADF skin. For example, assume that
you set the value of the Border property to or ange for the cont ent pseudo-element
of the af | i nput Text selector's er r or pseudo-class. Figure 6-15 shows the syntax
entries that appear in the source file of the ADF skin and the change in the Preview
Pane of the selectors editor.

Figure 6-15 Style Properties for an inputText Component's Error Message

] (25 Extended Skins -

Q ? - @ o x Default (Ma) Theme Dark Theme Medium Theme |
-4 Decorative BOx W g ¢ X =
E}--- Dialog
& pocument Mame: | hello
- Go Button
D"'(ﬁ Go Image Link af linputText: disabled, AFFieldTextMarker :content
E}"'Cﬁ Go Link Mame: | helo
-3 tmage
L] Inline Frame af linputText: disabled. AFPhoneFieldTextMarker ::content
E}"E Input Colar Mame: |hello
G- Input Date
G- Input File af |inputText: disabled. AFPostalCodeFieldTextMarker : iconke
E}-- Input List OF Yalues o
E}--- Input List of Yalues {Combobox) Name: | helio
i} Input Mumber Spinbox af |inputText: disabled: :content
=-g2 Inpuk Text

..... D f |input Text Name: | helo
[z Pseudo-Elements
I D access-key af |inputTesxt:error iconkent
[changed-icon
. D Name: hello
Cesign | Selectors| Source History
Q- Find

fScharset "UTF-3";

A*FADFFaces_Skin File / DO NOT REMOVE®®/

Snamespace af "http://unlns. oracle, com/adf/faces/ /rich™;:
framespace dyt "http://xmlns. oracle, con/dssadffacez™;

=l af [inputText:error: :content |
border: 1Zpx solid Orange;
i

6.6 Configuring an ADF Skin for Accessibility

Oracle ADF provides application accessibility support to make applications developed
using ADF Faces components usable for persons with disabilities. You can define style
properties in your ADF skin specifically for persons with disabilities as part of efforts
to make your application accessible. You preface these style properties with the
@ccessibility-profilerule.

6-12 Developing ADF Skins

Configuring an ADF Skin for Accessibility

The @ccessi bility-profileruleallows you to define style properties for the

hi gh-contrast and | ar ge- f ont s accessibility profile settings that you can specify
inthetrini dad- confi g. xm file. For more information about the t ri ni dad-
config. xm file, see Configuration Files for an ADF Skin.

Define style properties for the hi gh- cont r ast accessibility profile where you want
background and foreground colors to contrast highly with each other. Define style
properties for the | ar ge- f ont s accessibility profile for cases where the user must be
allowed to increase or decrease the text scaling setting in the web browser. Defining
large-fonts does not mean that the fonts are large, but rather that they are scalable
fonts or dimensions instead of fixed pixel sizes.

Example 6-1 shows style properties that get applied to the af | col um: : sort -
ascendi ng- i con pseudo-element when an application renders using the hi gh-
cont r ast accessibility profile.

For more information about developing accessible ADF Faces pages and accessibility
profiles, see the "Developing Accessible ADF Faces Pages" chapter in Developing Web
User Interfaces with Oracle ADF Faces.

Example 6-1 Style Properties Defined Using the @accessibility-profile

@ccessibility-profile high-contrast {
af | cal endar: : cal endar-i con-reni nder-styl e,
af | cal endar: : cal endar-icon-recurring-style,
af | cal endar: : cal endar-i con-recurring-change-style {
-tr-inhibit: all;
1
}

6.6.1 How to Configure an ADF Skin for Accessibility

You define style properties for the selector or selectofs pseudo-elements that you want
to configure and preface these style properties with the @ccessibility-profile
rule.

To configure an ADF skin for accessibility:

1. Define style properties for the selectors and selectors' pseudo-elements that you
want to configure, as described in Changing a Component-Specific Selector.

2. In the source file for the ADF skin, preface the skinning keys that you configured
with the @ccessi bi | i ty-profil e rule, asillustrated in Example 6-1.

Working with Component-Specific Selectors 6-13

Configuring an ADF Skin for Accessibility

6-14 Developing ADF Skins

v

Working with Images and Color in Your
ADF Skin

This chapter describes how to work with images and color in an ADF skin. Features,
such as how you change images using the provided editors, are described in addition
to how to work with the color categories in a Skyros-extended skin to quickly change
the color palette that your ADF skin defines.

This chapter includes the following sections:

About Working with Images and Color in Your ADF Skin

Changing Images and Colors in the ADF Skin Design Editor

e Working with Anchor Colors in an ADF Skin

Changing an Image for a Component Selector

7.1 About Working with Images and Color in Your ADF Skin

Apart from the si npl e skin which contains only minimal formatting, the ADF skins
provided by Oracle ADF define color schemes and reference images to provide a
colorful look and feel for applications. Changing these colors and the images that your
ADF skin references is a task that will make a significant difference to the appearance
of the application that uses your ADF skin. Figure 7-1 illustrates this point by showing
the same page from an application that renders using two different ADF skins

(skyr os and si npl e). The skyr os skin defines the look and feel of the application
page in the upper part of Figure 7-1. It uses more color and images than the
application page in the lower part that uses the si npl e skin.

Working with Images and Color in Your ADF Skin 7-1

About Working with Images and Color in Your ADF Skin

Figure 7-1 ADF Skin Using Images and Color

Branding Bar

N demonstrated in the branding b:

Sample Title

Logo Here Branding Bar

View Source~ Skin- Javascript Optimization = Settings
Feature Demos = Layout Basics = Branding Bar

Layout Basics Simple Demos Branding Bar Form Layoy

This can also he seen demonstrated in the branding bar =
Logo Here Sample Title

Among the selectors in the ADF skins provided by Oracle ADF that reference images
are those in the following list. A short description of the role that the referenced
images performs in skinning the web application also appears.

e af | docunent:: spl ash-screen-icon

This component-specific selector specifies the icon that appears within a splash
screen when a web applications loads in a browser.

e af| col um:: sorted-descendi ng-i con-style

This component-specific selector specifies the icon that renders for the sorted
descending indicator in a column.

e . AFFatal lcon:alias
This global selector alias specifies the icon to appear if a fatal error occurs on a page

One example of color that the ADF skins provided by Oracle ADF define is

the . AFHover Pri mar yCol or: al i as global selector alias. This global selector alias
defines the background color when, for example, a user hovers a cursor over a

but t on component. Another example is the . AFBackgr oundCol or : al i as global
selector alias that defines the background color used for the main content area of your

page.
The editor for ADF skins in JDeveloper provides features to help change the colors

and images that your ADF skin uses. The availability of some or all of these features
depends on the ADF skin that you extend, as described in the following list:

e If your ADF skin extends the Skyros skin

JDeveloper enables the design editor where you can use various color pickers and
other controls to change some of the more frequently used colors and images in an
ADF skin. For more information, see Changing Images and Colors in the ADF Skin
Design Editor.

¢ If your ADF Skin extends from the Alta skin

7-2 Developing ADF Skins

Changing Images and Colors in the ADF Skin Design Editor

Use the selectors editor to change images, as described in Changing an Image for a
Component Selector.

Note:

Alternatively, use the Theme Editor described in Working with the Theme
Editor, to change the colors and images in an ADF skin that extends from the
Alta or Skyros skins.

7.2 Changing Images and Colors in the ADF Skin Design Editor

The design editor appears when you create an ADF skin that extends from the Skyros
ADF skin. You access it by clicking the Design tab of the open ADF skin. For an
overview of the design editor, see Working with the ADF Skin Design Editor.

Examples of tasks that you can carry out using this editor include the following:

Change the default text color in ADF skins that extend from Skyros

Change the background color that appears to highlight when you hover over
components such as the but t on component

Replace icons

You can change all or individual icons for components, status, and animation icons
using the Replace Icons dialog that you invoke when you click one of the Status
Icon, Animations, or Component buttons in the Images area of the General tab.
For more information, click Help on the Replace Icons dialog.

Figure 7-2 shows an ADF skin that extends from the Skyros ADF skin where the
following changes have been made:

In the General tab

Note:

Red rectangles in Figure 7-2 identify the controls used to make the changes in
the General tab. Red arrows point to a corresponding result in the sample

page.

— Change the main default text color to Fuchsi a

This changes the color value of the AFText Col or global selector alias which is
an anchor color. This change also affects the global selector aliases (for example,
AFText Pri mar yCol or and AFText Secondar yCol or) that set color
properties which derive their hue value from the AFText Col or global selector
alias. For more information about this relationship, see Working with Anchor
Colors in an ADF Skin.

— Change the primary accent color to Bl ack

This changes the color that renders when a cursor hovers over a component
such as a but t on component. The global selector aliases that sets this color
property are AFHover Pri mar yCol or and

AFBut t onGr adi ent St ar t Hover Col or . Other global selector aliases use the
AFBut t onGr adi ent St art Hover Col or global selector alias to derive the hue

Working with Images and Color in Your ADF Skin 7-3

Working with Anchor Colors in an ADF Skin

value of the color properties that they set. Examples of global selector aliases
that derive their color property from the

AFBut t onGr adi ent St ar t Hover Col or global selector alias include

AFBut t onBor der Bot t onHover Col or and AFBut t onBor der Hover Col or.
For more information about this relationship, see Working with Anchor Colors
in an ADF Skin.

— Change one of the animated icons that indicate connection status

In this example, the animation icon referenced by the af |
statusl ndi cator::idle-iconwaschanged.

¢ In the Branding Area tab

— Change the color property that determines the background color for the
branding area (AFBr andi ngBackgr oundCol or global selector alias) to
transparent.

— Change the image file that is used to render the logo in the branding area.

Figure 7-2 Changing Colors and Icons in ADF Skin Design Editor

General Erandirg Area Hoha drea Butkors Links Tans Headers Menus Boxes Accordions

Conkent &rca Theme D=faulk Text Calors DizFaulk Font [Acoent Color] Images
|

fachground L: [#FFFFFF L—\‘ Main: Fuchsia F‘ ’Tahoma, Vierdana, Helvetica, sans-cerif Primnary: Black F' @ Stahus [Cors...
Bachground 2: [#ECFEFT | [] Primary: [#900000 | [[e Secondary: [#FFEERE | [Animations. .
]
& i Hhic 4@ Components,,
Seeondary: [#FF3FF | [What s this?
L1 i 1
Sample Pages: 2 e 4
ORACLE
[=SF — =
Global Avea Link Global Area Menu » \ 1 |+
Accordion Header Selected Tab | Disavked Tab | Unselected Ta &
Defaut Link Header Level 0 [Top) Defaul Disabled
pefet L | []
vea = Taxt ext Read-only value
VisiEd Link Tew [Opton w ENt Value
Hover Link _ et
> Accordion Header
Accordion Header p
Header Level 1

7.3 Working with Anchor Colors in an ADF Skin

An ADF skin that extends from the Alta or Skyros families of ADF skin defines global
selector aliases that group colors into one of three categories, as illustrated in Figure
7-3. Changing the value of col or properties for global selector aliases categorized as
anchor colors can help you to quickly change the color palette that your ADF skin
defines.

7-4 Developing ADF Skins

Working with Anchor Colors in an ADF Skin

Figure 7-3 Color Categories Skyros's Global Selector Aliases

@ skyros_extend.css
I [Extended Skins ~

Q V- ld- X
-3 Styls Classes

{25 Global Selectar Aliases

 o=Em

@23 Anchor Colar

~[Z3 Derivative Colar

-1 Specialty Color

3 Component Group: Butkon

l:l Component Group: Form Controls

* Anchor Color: These global selector aliases define the base colors for your ADF
skin. For example, the AFBut t onG adi ent St ar t Col or global selector alias
defines the start gradient color for a button.

® Derivative Color: These global selector aliases derive the hue value for their color
properties from anchor colors. The global selector aliases in Example 7-1 all derive
their hue value from the AFBut t onG adi ent St art Act i veCol or global selector
alias. JDeveloper propagates any change that you make to the anchor color to the
derivative color. The derivative colors inherit any change that you make to an
anchor color using the editor for ADF skins in JDeveloper.

* Speciality Color: These global selector aliases define color properties that do not
derive their hue value from anchor colors and are not anchor colors for other
colors. For example, the AFCar ousel FocusBor der Col or global selector alias
that defines the border color when the car ousel component has focus.

Figure 7-4 shows the result of changing the default value of the
AFBut t onGr adi ent St art Acti veCol or global selector alias. The editor for ADF

skins in JDeveloper also updates the values of the derivative colors that derive their
hue value from the anchor color.

Working with Images and Color in Your ADF Skin 7-5

Working with Anchor Colors in an ADF Skin

Figure 7-4 Modified Anchor Color and Effect on Derivative Colors

skyros_skin33.css . AFButtonGradientStartctiveColor alias -
=

[0 | [Extended Skins ~ @ Q Find

Q AFBUttonGradisntStartact x - g~ $ | Defaul (o) Theme * || Ecommon

= Global Selector Aliases Em GF é x View as: Button = Background Color: Eransparent

E}---gugo';ncmr Color af |toolbar af|button:selected Background Image: |none
_ Content:
_ Height: auto
Wwidth: ato
_ Border: nione mediom curre
af |toolbar af|button:selected: active Border Color: I@
_ Margin: Opz Opx Opx Opx
_ -tr-rule-ref -tr-inhibit -kr-enable-theme
FETepip B |

i

Walue
af |toolbar af |butbon kext-only:selected
M misabied Button
Design | Selectors | Source History |:|
Q- (Find m
fcharsel "UTF-5": % 2 D E % E]
#**ADFFaces_Skin File / DO NOT REMOVE®**/ [l Font,/ Text
fnamespace af "http://«mlns.oracle.con/adf/facessrich™;
fnamespace dvt "http://xnlns.oracle.con/dss/adf/faces”; o Color: Eed
=}, iFBut tonGradientStartictiveColor:alias | Font: narmal non
: Red; Fonkt Family:
. Fant Feature Settings: IE
Bl . AFButtonBorderfictiveColor:alias { Forit Kerning: éuto
color: #ESL515;)
y Font Language Owerride: Eormal
Fant Size: mediunm
= . AFButtonGradientEndictiveColor: alias {
color: #FD5353: Font Size Adjust: one
} Font Stretch: Eormal
B . AFBut tonBorderTopActiveColor:alias { Fonk: Style: E ormal
color: #B81913; Fant Synthesis: wisight styl
}
Fank \ariant: [

If you change the color property of a derivative color and later make a change to the
associated anchor color, the editor for ADF skins in JDeveloper displays a Confirm
Derivative Color Modification dialog to warn you that the change you make to the
anchor color will override the change that you made to the derivative color, as
illustrated in Figure 7-5. Click OK to make the change to the anchor color and to
override the already-defined value for the derivative color.

7-6 Developing ADF Skins

Working with Anchor Colors in an ADF Skin

Figure 7-5 Overriding a Derivative Color

@ skyros_skin33.css

= AFButtonGradientStartActiveColor:alias - Properti

=
[0 | [Extended Skins ~ @ Q Find
Q ? . @ - x Default (Mo) Theme ’ = Common
== Global Selector Aliases E‘ﬂ 4 & x View as: Button - Background Color: Eransparent
[EH-(= Color

EIB Anchor Calar

RN - FEuttoncradientsta
-2 Derivative Colar

L[] AFButtonBorderActiveColor:dlias

[.AFBUttonBorder TopActiveColor:alias

x Disabled Button

]

8 Disabled Button

af|toolbar af |button:selected

I

af|koolbar af|button:selected: active

Confirm Derivative Color Modification

The color property of the Following Derivative Color Aliasies)

will be modified:

AFButtonGradientEndactiveColor alias

QK

Background Image: [none

@ Color: e

Content:

Height: auto
Width: auto
Border: nione mediurn currentColor

currentColor currentColor ¢

Border Color:

Margin: Ope Opex Ope Opx
Padding: Op:x Opx Opx Opx

-tr-rule-ref -te-inhibit - -tr-enable-themes -tr-ck

Design | Selectors | Source History

Q- { Find

Acharset "UTF-5":

S*FADFFaces_Gkin File / DO NOT REMOVE®*/

[=]. AFButtonGradientStartictiveColor:alias
color: Red:

fnamespace af "http://wwlns.oracle.con/adf/faces/rich™;
fnamespace dvt "http: //xnlns. oracle.con/dss/adf/faces™;

Yalue
=]
B AHO®mEE
[= Font,/Text
o Color: Eed
Fonit: niormal normal norm
Font Family:

Font Feature Settings: [normal

Example 7-1 shows entries from the Skyros ADF skin (skyr os- v1- deskt op. css)
that define the default values for the AFBut t onG adi ent St art Act i veCol or
global selector alias and its associated derivative colors. These global selector aliases
share the same hue value (209) but specify different values for the saturation and

lightness values.

Example 7-2 shows the same global selector aliases referenced in Example 7-1. In
Example 7-2, an ADF skin extends from Skyros and changes the value of the col or
property of the AFBut t onG adi ent St art Acti veCol or global selector alias to
#6CD5AL. The editor for ADF skins in JDeveloper modifies the color properties of the
global selector aliases that derive their color value from the anchor color.

Example 7-1 Global Selector Aliases with Anchor and Derivative Colors in Skyros

[* Anchor, hsl (209, 56% 63%, #6AALD5 */
. AFBut t onGr adi ent Start ActiveCol or:alias {

col or: #6AA1D5;
}

/* Derivative of AFButtonGradientStartActiveColor, hsl (209, 32% 54%,

#648BAF */

. AFBut t onBor der TopAct i veCol or: alias {

col or: #648BAF;
}

/* Derivative of AFButtonGradientStartActiveColor, hsl (209, 39% 62%,

#789FC4 */

. AFBut t onBor der Acti veCol or: alias {

Working with Images and Color in Your ADF Skin 7-7

Changing an Image for a Component Selector

col or: #789FC4;
}

/* Derivative of AFButtonGradientStartActiveColor, hsl (209, 54% 79%,
#ACCAE6 */

. AFBut t onGr adi ent EndActi veCol or: alias {

col or: #ACCAES;

}

Example 7-2 Modified Anchor and Derivative Colors

. AFBut t onGr adi ent Start ActiveCol or:alias {
col or: #6CDbAL,;

}

. AFBut t onBor der TopAct i veCol or: alias {
col or: #64AF8A;

}

. AFBut t onGr adi ent EndActi veCol or: alias {
col or: #ADEGCA;

}

. AFBut t onBor der Acti veCol or: alias {
col or: #79C39E;

}

7.4 Changing an Image for a Component Selector

Many ADF Faces and ADF Data Visualization components reference images using
selectors. These images display in the background of the component or render as icons
or controls on the component. When you create an ADF skin, the ADF skin that you
extend from provides the values for these selectors, such as the relative path to an
image and the sizes for height and width.

Figure 7-6 shows a runtime view of the t abl e component rendering a control that
sorts the data in a table column in ascending order. The image that renders this control
is referenced by the ADF Faces col umrm component's sor t - ascendi ng-i con-

st yl e selector.

Figure 7-6 Image Referenced by the sort-ascending-icon-style Selector

Basic table
Export Al Rowes to Excel | Export Selected Rows to Excel Print Splitter Content

Murnber Narne 7 Size of the file in Kilo Nurnber Date Modified
0 . ‘ 0oe u} 07/12/2004
15 . 0B 1 07/12/2004
2 [admin jar 1KB z 05/11/2004
3 0 applib OB 3 07f12{2004

Figure 7-7 shows a design-time view where an ADF skin inherits values for the

col umm component's sort - descendi ng-i con- st yl e selector from the extended
ADF skin. The values inherited include the file name for the image used as an icon
(col Sort _asc_ena. png), the height, and the width for the image.

7-8 Developing ADF Skins

Changing an Image for a Component Selector

Figure 7-7 Inherited Values for the sort-descending-icon-style Selector

@ Skart Page [skinl.css

| aflcolumn::sort-descending-icon-style - Properties

] (53 Extended Skins = @ = Q Find

Q, sort-des = F- Ei o % Defaulk (Moj Theme — Dark Theme Medium Theme . L4 =l Common

-3 At-Rules DVRIE R 4 ~ Background Calor; M
?...guFéceCsolcu?:onent Selectors #Background Imags: @

== Pseudo-Elements

®-£3 Data

Inherited from: af| column::sort-descending-icon-style in skyros-v1-deskiop.css —

Click om any selector link ko go to ks declaration. —

4 width: 14

Other examples of ADF Faces and ADF Data Visualization components that expose
selectors which reference images associated with the component include the

following;:

e ADF Faces pr ogr essl ndi cat or component exposes the det er mi nat e- enpt y-

i con- styl e selector.

¢ ADF Faces panel Accor di on component exposes the di scl osed-i con-styl e

selector.

e ADF Data Visualization mapTool bar component exposes the zooni n- enabl e-

i con selector.

If you decide that you want to modify the image that is associated with a component
selector, you need to modify the selector in your ADF skin and copy the image into the
project for your ADF skin. You can copy images individually using the procedure in
How to Copy an Image into the Project.

After you import an image into your project, the selector that references the image
uses a URL in the source file of the ADF skin to refer to this image. Note that this URL
is updated when you deploy your ADF skin (and associated files) in an ADF Library
JAR, as described in Packaging an ADF Skin into an ADF Library JAR.

Tip:

Associate an image with a global selector alias. If multiple component
selectors reference the global selector alias, you only need to make one change
if you want to use a different image at a later time (change the image
associated with the global selector alias). For more information about global
selector aliases, see Creating a Global Selector Alias.

If your ADF skin extends the Skyros ADF skin, you can change some of the more
frequently used images in the design editor, as described in Changing Images and
Colors in the ADF Skin Design Editor.

7.4.1 How to Copy an Image into the Project

You use a context menu to copy an image that an extended ADF skin references into a
directory of the project for your ADF skin. You then make the changes that you want

to the image.

To copy an ADF skin image into your project:

1. In the Selector Tree of the selectors editor, select the selector that references the
image you want to change.

Working with Images and Color in Your ADF Skin 7-9

Changing an Image for a Component Selector

For example, select the ADF Faces col unm component's sort-descending-icon-
style selector to change the sort ascending icon, as shown in Figure 7-8.

Figure 7-8 Column Component's sort-descending-icon-style Selector

Q Tl XK
=[5 Faces Component Selectors
=B column
(23 Pseuda-Elements
- sort-descending-icon-style

2. In the Properties window, expand the Common section and select Copy Image
from the Background Image list, as shown in Figure 7-9.

Figure 7-9 Copy Image Menu to Import an Image into a JDeveloper Project

af|column:: sort-descending-icon-style:haver - Propetties
Q, Find @

= Common

Background Color: F:ransparent |v|

4 Background Image: |:r.l’skyros-v1,l’colSort_des_ow.png")|

Background Image
Go to Declaration

Content:

Colar:

Height: Reset to Default
width: [ElProperky Help
, This property sets the

Barder: background imagels) of an

Border Calor: element, Images are drawn with
the first specified one on top

Margin: (closest to the user) and each

k., ki bobicd bh,
Padding:

-tr-gnable-themes -tr-children-theme

-tr-riile-raf ~tr-imhihit

This copies the image into the project for your ADF skin.

7.4.2 What Happens When You Copy an Image into the Project

The image is copied into a subdirectory that is generated in the project of your ADF
skin. For example, if you decided to copy the image that the ADF Faces col umm
component's sort - ascendi ng-i con- st yl e selector references, the

col Sort _asc_ena. png file is copied to the following directory:

[public_htm/skins/skinl/imges/af_col um
where af _col umm refers to the ADF Faces col urm component.

The relative URL value of the property in the Properties window is modified to
reference the new location of the image. Figure 7-10 shows an example.

In addition, the Properties window indicates that the selector no longer inherits the
image from the extended ADF skin by displaying a green icon to the left of the
property label. Figure 7-10 shows the Properties window after importing the

col Sort _asc_ena. png file into the project for the ADF skin. Note that the ADF skin
still inherits the values for the Height and Width properties from the extended ADF
skin.

7-10 Developing ADF Skins

Changing an Image for a Component Selector

Figure 7-10 Properties Window After Importing an Image into an ADF Skin

affcolumn:: sort-descending-icon-style - Properties

Q

@

= Common

Background Color: Fransparent |V|

o Background Irnage: |Dlumn.l’coISDrt_des_ena.png")|

Caonkent: | |

Color: | |v|
4 Height: [14 R
@ width: |14 ||l -
Border: |n0ne mediurn currentColor |

Finally, CSS syntax appears in the source file of your ADF skin. Example 7-3 shows the
CSS syntax that corresponds to the values shown in Figure 7-10.

Example 7-3 CSS Syntax in Source File of ADF Skin After Importing an Image

af | col umm: : sort ed- ascendi ng-i con-styl e

{

background-i mage: url ("imges/af_col um/ col Sort _des_ena. png");

}

Working with Images and Color in Your ADF Skin 7-11

Changing an Image for a Component Selector

7-12 Developing ADF Skins

8

Working With Text in an ADF Skin

This chapter describes how to work with text in an ADF skin. Key concepts, such as
how the resource strings that ADF Faces components render at runtime are stored in
resource bundles, are described in addition to how you can specify additional resource
bundles with different resource strings.

This chapter includes the following sections:

e About Working with Text in an ADF Skin

* Using Text From Your Own Resource Bundle

8.1 About Working with Text in an ADF Skin

The source file for an ADF skin does not store any text that ADF Faces components
render in the user interface of your application. Applications that render ADF Faces
components abstract the text that these components render as resource strings and
store the resource strings in a resource bundle. For example, Figure 8-1 shows an ADF
Faces di al og component that renders buttons with OK and Cancel labels.

Figure 8-1 ADF Faces dialog Component

Test Dialog x

NLTHD'I\G‘IEY Marne Murnber Cols [
u} - u} &S

I v I 1 . r

2) admin,jar 2 adrmin, jar C

3) applib k] applibs C

4) applications 4 applications C

5 | config 5 config r

[}) connectaors [} connectars C

7) database 7 database r

=]) default-web-.. & default-web-app C

a] iiopjar a fiop.jar r

10) iiop_gen_kin.... 10 iiop_gen_kin.jar C

11) liap_rmic. jar 11 iiop_rmic.jar C
12 I jamn 1z jazn =

) >

K, Cancel

The text that appears as the labels for these buttons (OK and Cancel) is defined in a
resource bundle and referenced by a resource string. If you want to change the text
that appears in the button labels, you create a resource bundle where you define the
values that you want to appear by specifying alternative text for the following
resource strings:

e af dial og. LABEL_K

e af _di al og. LABEL_CANCEL

Working With Text in an ADF Skin 8-1

Using Text From Your Own Resource Bundle

Note:

By default, a resource bundle (ski nBundl e. properti es) is created in your
project when you create a new ADF skin, as described in Creating an ADF
Skin File.

In addition to the resource strings that define the text to appear in the user interface
for specific components, there are a range of resource strings that define text to appear
that is not specific to any particular component. These resource strings are referred to
as global resource strings. For more information about the resource strings for ADF
Faces components and global resource strings, see the Tag Reference for Oracle ADF
Faces Skin Selectors.

ADF Faces components provide automatic translation. The resource bundle used for
the ADF Faces components' skin is translated into 28 languages. If, for example, an
end user sets the browser to use the German (Germany) language, any text contained
within the components automatically displays in German. For this reason, if you
create a resource bundle for a new ADF skin, you must also create localized versions
of that resource bundle for any other languages your web application supports.

For more information about creating resource bundles, resource strings, and localizing
ADF Faces components, see the "Internationalizing and Localizing Pages" chapter in
Developing Web User Interfaces with Oracle ADF Faces.

8.2 Using Text From Your Own Resource Bundle

If you enter alternative text in a resource bundle to override the default text values
that render in the user interface of the ADF Faces components in your application, you
need to specify this resource bundle for your application. At runtime, the application
renders the alternative text in your resource bundle for the resource strings that you
override. For resource strings that you do not override, the application renders the text
defined in the base resource bundle. For example, Figure 8-4 shows an ADF Faces
dialog component where the application developer overrides the default value for the
af _di al og. LABEL_OK resource string from OK to Yay while the default value for the
af _di al og. LABEL_CANCEL resource string remains unchanged. That is, the
application developer did not define a value for the af _di al og. LABEL_ CANCEL
resource string in a resource bundle; the application references the base resource
bundle for this resource string's value.

Figure 8-2 Overridden and Default Values Resource Strings

x

ﬂl Cancel |

For more information about how to create a resource bundle and how to define string
key values, see the "Internationalizing and Localizing Pages" chapter in Developing Web
User Interfaces with Oracle ADF Faces.

Enter your
name:

8.2.1 How to Specify an Additional Resource Bundle for an ADF Skin

You specify a resource bundle for your ADF skin by adding its name and location as a
value to the bundl e- name property in the t ri ni dad- ski ns. xm file.

To specify an additional resource bundle for an ADF skin:

8-2 Developing ADF Skins

Using Text From Your Own Resource Bundle

1. In the Applications window, double-click the trinidad-skins.xml file for your
application. By default, this is under the Web Content/WEB-INF node.

2. In the Structure window, right-click the skin node for which you want to add an
additional resource bundle and choose Insert inside skin > bundle-name.

3. In the Properties window, specify the name and location for your resource bundle
as a value for the bundl e- name property.

For example, the resource bundle that is created by default after you create the first
ADF skin in your project, as illustrated in Figure 8-3, specifies the following value
for the <bundl| e- nane> element:

<bundl| e- nane>r esour ces. ski nBundl e</ bundl e- nanme>

Figure 8-3 Default Resource Bundle for an ADF Skin

pEnicatons {7 skini.css skinBundle. properties
Application2 v |- Q~(Find
= Projects B ®~ V-
E= Model
E!--- ViewController
IE!D Application Sources
B@ view
[skinBundle. properties
¢ - mETA-INF
ion[e3] adf-settings. xml
E-+{Z]) Web Content
IE!B skins
7 skin1

af di cg.L.’-‘,BEL:CAN:EL = Go Back

[P skind.css
=[] WEB-INF

'3 adfc-config.xml
(B3 faces-config. xml
[e2] trinidad-config.xml
[e2] trinidad-skins. xmi

E‘lw web.xml

8.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin

The t ri ni dad- ski ns. xm file references the resource bundle that you specified as a
value for the bundl e- nane property, as shown in the following example.

<ski n>
<i d>ski nl. desktop</id>
<fami | y>ski nl</fam|y>
<ext ends>skyr os-v1l. deskt op</ ext ends>
<render-Kki t-id>org. apache. nyfaces. trini dad. deskt op</render-kit-id>
<styl e- sheet - name>ski ns/ ski n1/ ski nl. css</ styl e- sheet - name>
<bundl e- name>r esour ces. ski nBundl e</ bundl e- name>
</ ski n>

At runtime, the application renders text values that you specified in your resource

bundle to override the default text values. For example, assume that you defined a
resource bundle where you specified Yeah as the value for the

af _di al og. LABEL_OK resource sting and Qops as the value for the

af _di al og. LABEL_CANCEL. Figure 8-4 shows a di al 0og component that renders
labels using these values.

Working With Text in an ADF Skin 8-3

Using Text From Your Own Resource Bundle

Figure 8-4 Dialog Rendering Labels Defined in a Custom Resource Bundle

Test Dialog *
* Required

Yeah | Oops

8-4 Developing ADF Skins

9

Working With Global Selector Aliases

This chapter describes how to work with global selector aliases. Information on how to
create, modify, and apply a global selector alias is provided in addition to describing
how to reference a property value from another selector.

This chapter includes the following sections:
* About Global Selector Aliases

¢ Creating a Global Selector Alias

e Modifying a Global Selector Alias

¢ Applying a Global Selector Alias

e Referencing a Property Value from Another Selector

9.1 About Global Selector Aliases

A global selector alias defines style properties in one location in the ADF skin that you
can apply to multiple ADF Faces and ADF Data Visualization components. A global
selector alias may also be referred to as a selector alias, or simply a selector. The ADF
skins provided by Oracle ADF, described in Inheritance Relationship of the ADF Skins
Provided by Oracle ADF and ADF Skins Provided by Oracle ADF make extensive use
of global selector aliases to define common style properties for text, messages, icons,
colors and different groups of components. Many component-specific selectors inherit
the styles defined for these global selector aliases. For example,

the. AFDef aul t Font Fami | y: al i as global selector alias defines a default font
family for all ADF Faces components in your application that display text. Any ADF
skin that you create by extending from one of the ADF skins provided by Oracle ADF
inherits the properties defined in the . AFDef aul t Font Fami | y: al i as global
selector alias. Figure 9-1 shows how the selectors editor displays that the af | but t on
selector inherits the value for font family from the. AFDef aul t Font Fami | y: al i as
global selector alias.

Working With Global Selector Aliases 9-1

About Global Selector Aliases

Figure 9-1 Component Selector Inheriting Value from Global Selector Alias

ﬁ skind,. css] affbutton - Properties

0] | [Exterded Skins = @ = Q Find

Q ’? . .% - % Default (Mo) Theme Dark Theme = Common

(3 Style Classes @[ﬂ ‘+ - é’ % M Background Color: E
L‘—JB Global Selector Aliases aflbutton 4 Background Image: i

-3 Color

£3 Component Group: Butkon Reguiar Button Content: |:
(3 Component Group: Form Contrals . 4 Color: E
(3 Component Group: Link u Desiing)
3 Component Group: Menu = = Height: E
(3 Component Group: PanelBox and Re a o - width: E
i ' Wl e ! Border: E
== Fork
[.AFDefaultBoldFont:alias &f|button:battom Border Color: E
[.AFDefaultFont: alias || Requlr Riutinn Margin: @
<[AFDefaultFontFamily:alias
[.AFLargeHeaderFont:alias & Disabled Buttan Padding: @
<[] .AFMediumHeaderFort :alias = = trrue-ref -trinhibit |
N [.AFsmalHeaderFont:alias P = =
T Teors &, Popup Button
-0 Message Selectors T
w3 Miscellaneous af |button:focus
-3 At-Rules Regular Button

== Faces Component Selectors

-a38 BreadCrumbs

=@ Button
0
et =i

a Popup Button

-[Z1 Descendant Selectors B & 0 8

- calendar af |button:hover (@agent (touchScreen:none))
[-@* Carousel Regular Button (= Font,/Text
[T Carousel Them & Color:
EJ"'E Checkbox 3 Disabled Button olor:
- [#] Checkbo: (Select Many) = — ' Font:
&[5} Chaice = = ont Farrily:
E}-- Chaice {Select Many) 2, Popup Button t\%)
(-l Choose Color "ot Enste Sating
- [E Choose Date af |button:selected Inherited from: .AFDefaultFontFamily:alias
(- €® Code Editor
@ 8 colrm Begular Button Declaration Details

@ d Btk Diis. 0
& ommans Button . u @] af | commandToolbarButton,
D"'§ Command Image Link EEE af|butkon in richcomponents-simple-deskkop,css, delegates ko
[@ Command Link

o Butt @] .AFButtonForeground: alias,
et IE" Cormmand Toolbar Button i Popup n \AFButtonForegroundHover alias,
-] Context Info . AFBUttonForegroundDepressed:alias in richcomponents-simple-
E}--Ij Decarative Box af |button:selected: active
E}" Dislog AFDefaultFont:alias in base-deskiop.css, delegates to
- = Document \AFDefaultFontFarnily:alias in skyros-w1-deskiop.css
Dm; 0 Button N \ Click on any selector link to go to its declaration.
[@ Go Image Linl

Figure 9-1 also shows the different categories of global selector aliases. Each category
groups global selector aliases according to their purpose:

¢ Color: Defines colors used by the ADF skins provided by Oracle ADF. Many global
selector aliases that you may want to override appear in this category because they
determine most of the colors that appear in a web application. Changes that you
make to these global selector aliases have the most effect if you extend the Alta or
Skyros ADF skins described in ADF Skin Selectors and Icon Images. You can
change the color palette of an ADF skin that extends from these ADF skins
relatively quickly by changing the global selector aliases that are categorized as
anchor colors. For more information, see Working with Anchor Colors in an ADF
Skin.

9-2 Developing ADF Skins

About Global Selector Aliases

Tip:
As with other global selector aliases, you can view which component-specific

selectors inherit the values defined in a specific global selector using the View
as list.

¢ Component Group: Button: Defines style properties inherited by selectors for
many of the ADF Faces components that render buttons. For example,
the . AFBut t onAccessKeySt yl e: al i as global selector alias defines style
properties for the access key rendered by the ADF Faces button and dialog
components among others.

¢ Component Group: Form Controls: Defines style properties for form controls.

¢ Component Group: Link: Defines style properties for many of the components
that render links.

¢ Component Group: Menu: Defines style properties for many of the components
that render menus.

¢ Component Group: PanelBox and Region: Defines style properties for the
panel Box and r egi on components.

¢ Component Group: PanelHeader: Defines style properties for the panel Header
components.

e Font: Defines style properties for fonts. For example,
the . AFDef aul t Font Fani | y: al i as global selector alias defines the style
properties inherited by many of the ADF Faces component selectors.

* Icons: Defines the style properties that apply to icons that render in multiple
components.

* Message Selectors: Defines style properties for messages that ADF Faces input
components display when they render different types of messages. For more
information, see Configuring ADF Skin Properties to Apply to Messages .

* Miscellaneous: Defines global selector aliases that do not fit in the other categories.
For example, the . AFDynani cHel pl conSt yl e: al i as global selector alias
defines the style to use for the dynamic help icon.

For detailed descriptions of the global selector aliases, see the Tag Reference for Oracle
ADF Faces Skin Selectors. Global selector aliases that you define appear under the
Global Selector Aliases node, as shown by the entry for the . User Def i ned: al i as in
Figure 9-1.

The View as list displays the list of components that reference a global selector alias
when you select a global selector alias in the Selector Tree. In Figure 9-2, the user
selected Panel Window from the list because the panel W ndow component references
the global selector alias.

Working With Global Selector Aliases 9-3

About Global Selector Aliases

Note:

Sometimes components appear in the View as list for which the style
properties defined in the global selector alias do not render in the component.
This may be because the component initially referenced the global selector
alias in an extended ADF skin and your ADF skin overrides the global selector
alias for that component. Alternatively, it may be because the component itself
overrides the global selector alias using one of its style-related attributes
(styleC assorinlineStyle).

In Figure 9-2, the user has changed the inherited value for

the . AFDef aul t Font Fami | y: al i as global selector alias and viewed the resulting
change as it applies to the panel W ndow component. All selectors that inherit the
value of the . AFDef aul t Font Fani | y: al i as global selector alias will render at
runtime using the font family defined in the ADF skin. For example, both the di al og
and panel W ndow components render using this font family.

Figure 9-2 ADF Skin Changing a Global Selector Alias

@ skind,. css it AFDefaultFontFamily:slias - Propetties
=
0 (-5 Extended skins = (2 Q, Find
Q, ? = .# - x Default (Mo} Theme L4
- - Yalue
E| Style Classes Gﬂ 4 é’ X View as: Panel Window -
- Global Selector aliases
B-63 Color af |panelindow: kitle
D Companent Group: Button |5 panelWindow With panel FormLayout
-3 Component Group: Form Controls
EI Component Group: Link label 1
tl Component Group: Menu
-3 Component Group: PanelBo: and Re grouped 1
; , N e I R =
[#-(3 Companent Group: PanelHsader grouped 2
[Fark grouped 3 [= Font, Text
[.AFDefaultBoldFont: dlias
D AFDefaultFont: alias Show Another Window Color: |
D AFDefaultFontFamily: alias Farik: |norma| niarmal normal medium)not
[.AFLargeHeaderFont:alias) T -
D AFMediumHeaderFont :alias %Font Fanmily: |Ar|a, Helwetica, sans-seri
D AFsmallHeaderFont: alias Saok Baobure Sakkings: |n0rma|
(3 Teans o Property has been modified |auto
-3 Message Selectors
-3 Miscellaneous | ‘ Fonk Canguage Cverride: hormal
w3 At-Rules Font Size: [medium

In addition to the global selector aliases already described, a number of component
selectors define selector aliases that are specific to these components only. These
selector aliases appear under the nodes for the component selectors in the Selector
Tree. Figure 9-3 shows examples from a number of the component selectors that
expose these types of selector aliases.

9-4 Developing ADF Skins

Creating a Global Selector Alias

Figure 9-3 Component Selector Aliases

a T- - K
[=h-[z= Faces Component Selectors
& [E Calendar
B Component Selector Aliases
[AFCalendaractiveDayHeaderBackground: alias
D AFCalendarlightBackground: alias
D AFCalendarTodayBackground: alias
[D AFCalendarTodayHeaderBackground: alias
[Fh- 0 Carousel
EIB Component Selector Aliases
L[] AFCarouselltemBorder: alias
=@ Query
=-[2= Component Selector Aliases
[D AFBetwesnIeparatorlcon:alias
=B Table
B[22 Camponent Selectar Aliases
[.AFTableCelBandedBackground: slias
[=h--ma Train
B[22 Component Seleckor Aliases

------ [.AFTrainDefault:alias

9.2 Creating a Global Selector Alias

You can create a global selector alias to define in one location the style properties that
you want a number of selectors to reference. You enter the name of the new global
selector alias in the Create Alias Selector dialog. The editor for ADF skins in
JDeveloper appends the keyword : al i as and prepends . to the name that you enter
in the dialog. For example, if you enter myd obal Sel ect or as the name in the
dialog, the resulting name that appears in the user interface and in the source file of
the ADF skin is:

. myd obal Sel ector:alias

The keyword : al i as identifies your global selector alias as a CSS pseudo-class and
serves as a syntax aid to organize the CSS code in the source file of your ADF skin.

After you create a global selector alias, you modify it to define the style properties that
you want it to contain. For more information, see Modifying a Global Selector Alias.

9.2.1 How to Create a Global Selector Alias

You can create a global selector alias that defines the style properties that you want a
number of user interface components to use.

To create a global selector alias:

1. In the Selector Tree of the selectors editor, select New Alias Selector from the
dropdown list, as illustrated in Figure 9-4.

Figure 9-4 New Alias Selector Option in the Selector Tree

?. @. x | Default (Mo) Theme

Mew Style Class...

Mew Alias Seleckar, .. k

Mew Selector with At-Rule.
Tr=orrererewe

The Create Alias Selector dialog opens.

2. Enter a name for the global selector alias in the Alias Selector Name field.

Working With Global Selector Aliases 9-5

Modifying a Global Selector Alias

Tip:
Enter a name for the global selector alias that indicates the purpose it serves.

For example, MyLi nkHover Col or for a global selector alias that is to change
the color of a link when an end user hovers over the link.

3. Click OK.

4. In the Properties window, set values for the properties that you want to configure
in the global selector alias.

9.2.2 What Happens When You Create a Global Selector Alias

The global selector alias appears under the Global Selector Aliases node in the Selector
Tree and a visual representation as it applies to a component appears in the Preview
Pane, as illustrated in Figure 9-5.

Figure 9-5 Newly-Created Global Selector Alias

Q ? - * > x Default (Mo) Theme
-3 Style Classes VR RE“ b 4 -
- Global Selector liases) _

----- [MR. 1LinkHoverCalor:alias MylinkHoverColor:ahas

-3 Colar SampleText
(23 Component Group: Butkan
(23 Component Group: Farm Controls
#-23 Component Group: Link
(23 Component Group: Menu
-3 Companent Group: PanelBox and Region
#-(23 Component Group: PanelHeader

-3 Fork

-3 Ieons

(1 Message Selectors

(23 Miscellaneous

-3 At-Rules

-3 Faces Component Selectors

23 Data Yisualizations Component Selectors

CSS syntax for the global selector alias that you create appears in the source file of the
ADF skin. The following example shows the entries that appear in the source file of
the ADF skin in Figure 9-5.

. MyLi nkHover Col or: al i as{
}

9.3 Modifying a Global Selector Alias

You can modify any of the categories of global selector alias described in About Global
Selector Aliases. Modifying a global selector alias that appears under the Global
Selector Aliases node in the Selector Tree when you first create the ADF skin means
that you override the inherited style properties defined in the parent ADF skin of your
ADF skin. The parent ADF skin is the ADF skin from which your ADF skin extends.
You chose the ADF skin from which to extend when you created an ADF skin, as
described in Creating an ADF Skin File. After you modify a global selector alias, the
component-specific selectors that inherit the style properties defined in the global
selector alias use the modified values.

Modifying a global selector alias that you create in your ADF skin does not override
any style properties inherited from the parent ADF skin.

9-6 Developing ADF Skins

Applying a Global Selector Alias

9.3.1 How to Modify a Global Selector Alias

You modify a global selector alias by setting values for it in the Properties window.
You then verify that the changes you make apply to the component-specific selectors
as you intend.

To modify a global selector alias:

1.

In the Selector Tree of the selectors editor, select the global selector alias that you
want to modify.

For example, if you want to modify the global selector alias that defines the default
font family, select it as illustrated in Figure 9-6.

Figure 9-6 Modifying a Global Selector Alias

Q ? - .+ > % Default (No) Theme
(-3 Style Classes @ k- @ 3¢ | viewas: BreadCrumbs -
B[22 Global Selector Aliases

#-C1 Color af|breadCrumbs

£

(23 Component Group: Button item 1 > item 2 > item 3 > item 4 > item 5 > fem 6 > [J) item 7

(23 Component Group: Farm Contraols

(3 Component Graup: Link

(03 Component Group: Menu

-3 Component Group: PanelBox and Regid

(23 Component Group: PanelHeader

(-2 Farl:
AFDef aultBoldFont: lias

AFDefaultFont: alias
. AFDef aultFontFamily: alias

.AFLargeHeaderFont:alias
\AFMediurmHe aderFont: alias

\AFSmalHeaderFont: alias
-3 Irons

(03 Message Selectors

[0 Miscellaneous

-3 At-Rules

In the Properties window, set values for the properties that you want to modify.

In the selectors editor, click the View as list to select a component-specific selector
that inherits the property values defined in the global selector alias that you have
just modified.

In the selectors editor, verify that the changes render for the component-specific
selector as you intend. Repeat Steps 1 to 3 until you achieve the changes you want
for the component-specific selectors that inherit from the global selector alias.

9.4 Applying a Global Selector Alias

After you create a global selector alias in your ADF skin, you need to specify the ADF
Faces and ADF Data Visualization components that you want to render at runtime
using the style properties that you defined in the global selector alias.

Applying a global selector alias to an ADF Faces or ADF Data Visualization
component requires you to:

Select the selector, pseudo-element, or pseudo-class for each component that you
want to apply the style properties defined in the global selector alias. If you want to
apply the style properties defined in your global selector alias to another global
selector alias, select the target global selector alias.

Working With Global Selector Aliases 9-7

Applying a Global Selector Alias

¢ Set the global selector alias as a value for the - t r - r ul e-r ef - ADF skin property.

9.4.1 How to Apply a Global Selector Alias

You apply a global selector alias by specifying it as a value for the -t r-rul e-ref -
ADF skin property.

To apply a global selector alias:

1. In the Selector Tree of the selectors editor, select the item to which you want to
apply the global selector alias.

For example, select the i nput Text component's content pseudo-element if you
want to apply the style properties defined in your global selector alias to the label
for that component, as shown in Figure 9-7.

2. In the Properties window, expand the Common section and then click the Add icon
next to the -tr-rule-ref- field.

3. Enter the name of the global selector alias. Enter the name between quotes that you
preface with the sel ect or keyword in the Value field.

For example, if the name of the global selector alias
is . MyBackgr oundCol or: al i as, enter
sel ector (". MyBackgroundCol or: al i as"), as illustrated in Figure 9-7.

Figure 9-7 inputText Component's content Pseudo-Element

@ skind.css = aflinputText::contert - Properties
| s |
0 [Extended skins @ Q, Find
Q ? - |+ o x Default {Mo) Therne Dark Theme Med... L o il
4 Border Color: IE
E}B Global Selector Aliases @[ﬂ 4 2 é X -
L[] MyBackgroundColor:alias : 4 Margin: 1px
E}B Faces Component Selectors aflinputText: content # Padding: 1pe 2P 1p 3pe
-2 Input Text nare: |

&[22 Pseudo-Elements -tr-rule-ref -tr-inhibit -tr-enable-themes
e conkent af [input Texk: :conkent:-moz-placeholder

vame: [value

selectar(”, MyBackgroundColor:alias™)

af linputText: icontent:busy

vame: [

4. Click the Refresh icon in the Preview Pane to view the changes.

9.4.2 What Happens When You Apply a Global Selector Alias

The selector to which you applied the global selector alias inherits the style properties
defined in the global selector alias. Figure 9-8 shows the cont ent pseudo-element for
the i nput Text component's selector that inherits the style properties defined in

the . MyBackgr oundCol or: al i as global selector alias. The properties that inherit
their values from a global selector alias when you specify the global selector alias as a
value for the -tr-rule-ref ADF skin property update to use the inheritance icon, as
shown for the Background Color and Color fields in Figure 9-8.

At runtime, the i nput Text component's content area renders using the style
properties defined in the global selector alias.

9-8 Developing ADF Skins

Applying a Global Selector Alias

Figure 9-8 Global Selector Alias Applied to inputText Component

F‘.{] skind.css d aflinputText: contert - Properties
=
0 [Extended Skins = (3) Q, Find
ot — b
Q ? = 4 = x Defaulk {Mo) Theme Dark Pleme Med... L4 = Common \
EIB Global Selector Aliases @[ﬂ + h # % ~ kBackground Color: Ereen |
[- D MyBackgroundCalor: alias 1 —

af |inputText: :content

([Faces Component Selectors Irherited from: .MyBackgroundColor:alias

-3 Input Texk Name:
-5 Pseudo-Elements Declaration Details -
w af [inputText: conkent:-moz-glac

af|inputText: icontent in sking, css, delegates to
Idame:

MyBackgroundCalor:alias in sking.css

af |inputText: :conkent:busy

Click on any selector link ko go to its declaration. plid #DEE4E,
Name:

i sl o
af |inputText: click-to-edit: :content 4 Margin: 1px
Mame: | hello 4 Padding: 1px 2px 1pe 3p

af [inputText: dick-to-edit:Focus-target:: content “tr-rule-ref -tr-inhibit | -tr-enable-themes

MName: | hello

Yalue

af |inputText: click-to-edit:Focus-target:hover-tafge selectar (" MyBackgroundColor:alias™)

Name: | hello ®

9.4.3 What You May Need to Know About Applying a Global Selector Alias

If you override a global selector alias in an extended ADF skin, component selectors
that used the —t r - r ul e- r ef ADF skin property to determine the value of a style
property in the parent ADF skin use the overridden value of the global selector alias.
The following example shows ADF skin B that extends ADF skin A. At runtime, the
top of a decor at i veBox component renders red for the backgr ound- col or CSS
property because the global selector alias in ADF skin B overrides ADF skin A.

[** Skin A **/

/** __________________________________

. MyBackCol or: al i as
{

background- col or: bl ue

}

af | decorati veBox: : top

{

-tr-rule-ref: selector(".MBackCol or:alias");

}

[** Skin B **/

/** __________________________________
. MyBackCol or: al i as

{
background- col or: Red

}

If you specify a style property value in an extended ADF skin where the parent ADF
skin also specifies a value for the style property, the ADF skinning framework applies
the value in the extended ADF skin. Example 9-1 shows ADF skin C where

the . myd ass style class specifies Red as the value for the backgr ound- col or CSS
property. If an application uses ADF skin D (that extends ADF skin C), components
that apply the . myC ass style class apply Li e for the backgr ound- col or CSS
property. This is because the ADF skinning framework calculates the values of

Working With Global Selector Aliases 9-9

Referencing a Property Value from Another Selector

statements that include values in an ADF skin (like —t r - r ul e- r ef) first. The ADF
skinning framework then calculates specific properties (for example, backgr ound-
col or) next. As a result, the value for the backgr ound- col or CSS property in ADF
skin D (Li nme) overrides the value for the —t r - r ul e-r ef ADF skin property (Bl ue)
or inherited values from ADF skin C (Red).

Note:

If you subsequently override the . myCl ass style class as follows in ADF skin
D, the value that the ADF skinning framework applies for the backgr ound-
col or CSS property is Bl ue:

.mydass {-tr-rule-ref: selector(".MWBlueColor:alias")}

Consider using tools, such as Firebug for the Mozilla Firefox browser (or similar for
your browser), when you run your application to determine what style property value
the ADF skinning framework applies to a component selector at runtime. For more
information, see Testing Changes in Your ADF Skin .

Example 9-1 Overriding a Local Global Selector Alias

[** ADF skin C **/

/** __________________________________ **/
.myd ass {
background- col or: Red
}
[** ADF skin D **/
/** __________________________________ **/

. MyBackCol or: alias {
background- col or: Bl ue;

}
.mydass {

background- col or: Lineg;

-tr-rule-ref: selector(".MBackCol or:alias")
}

9.5 Referencing a Property Value from Another Selector

Rather than set a specific style property for each selector to which you want to apply
the style property, you can reference the value of a property using the -t r -
property-ref ADF skin property. You can configure this ADF skin property for
global selector aliases and component-specific selectors. For example, you could define
a value for the backgr ound- col or property in a global selector alias and reference
this value from multiple other selectors. If you decide at a later time to change the
value of the backgr ound- col or property, you change the value in the global
selector alias. All selectors that reference the backgr ound- col or property using the
-tr-property-ref ADF skin property update to use the change you make. The -
tr-property-ref ADF skin property can also be used with compact CSS properties
like, for example, bor der .

9.5.1 How to Reference a Property Value from Another Selector

You reference the property value that you want to use for a selector using the -t r -
property-ref ADF skin property.

9-10 Developing ADF Skins

Referencing a Property Value from Another Selector

To reference a property value from another selector:

1. In the Selector Tree of the selectors editor, select the selector that you want to
reference a property value from another selector.

For example, if you want the content area of the panel W ndow component to
reference a style property defined in another selector, select content under the
Pseudo-Elements node of the panel W ndow component, as illustrated in Figure
9-9.

Figure 9-9 Panel Window Component's content Pseudo-Element

? - .* - % Default (o) Theme Dark Theme Medium Theme Light Theme
= R e - -
m Panel Tabbe B #oX
=[] Panel window af|panelwindow: :content
> ----- D af |paneltindow
-2 Pseudo-Elements |Z) panelWindow With panel FormLayout
----- [close-icon -
----- [close-icon-region Aizil label 3 | Submit
----- [close-icon-style label 4 gption 1
i) grouped 1 .
----- D close-icon-style-region option 2
..... D grouped 2 opticn 3
----- [corkent-center grouped 3 coption 4
----- D conkent-end
..... D rcontent-start Show Ancther Wind ow
----- [dynamic-help-icon
----- [dynamic-help-icon-style
M e .

2. In the Properties window, specify the property value that you want to reference as
a value for the selector's property using the -t r - pr opert y-r ef ADF skin

property.
For example, assume that you created the following global selector alias:

.MColor:alias {
col or: rgb(255, 181, 99);
font-wei ght: bol d;
}

and that you want to reference the col or property from this global selector alias
for the backgr ound- col or property of the cont ent pseudo-element that you
selected in Step 1. In this scenario, enter the following value for the backgr ound-
col or property of the cont ent pseudo-element,

-tr-property-ref(".MColor:alias","color");
If you want to use the -t r - pr opert y-r ef in compact values, enter syntax similar
to the following:

border: 10px solid -tr-property-ref(".AFDefaul tColor:alias", "color");

9.5.2 What Happens When You Reference a Property Value from Another Selector

The Properties window shows that the property for which you set a value using the -
tr-property-ref ADF skin property to reference a value from another selector
inherits its value, as illustrated in Figure 9-10.

Working With Global Selector Aliases 9-11

Referencing a Property Value from Another Selector

Figure 9-10 Selector Property Referencing a Property Value from Another Selector

@ Skark Page @ skinl.css . aflpaneiindow:: cortent - Propetties
(=

[0 1 [Extended skins ~ e Q Find

Q v - 4 o x Default (Mo) Theme Dark Theme Medium Theme 4 = Common

; -

------ [.AFDefaulColoralias I

E}B Global Selector Aliases @ﬂ EF - é X A ﬁackground Color: [gb(255,181J99)

H " af | paneltindow: :content
""" [1 MyCalar:alias IP Inherited from: .MyColor:alias

E}B’ Farces Component Selectors
E}--- Panel Window
[Pseudo-Elements

"D

Q) paneWindow With panelFormL: Declaration Details

label 1 af|panelindow: icontent in skinl,css, delegates ko

e MyColor:alias and 'color' property inskind.css

grouped 2

grouped 3 optiol | Border color: currentCalar currentColar
Margin: Opc: Ope Ope Opx
Padding: Op: Opx Opx Opx

-tr-rule-ref -tr-inhibit | -tr-enable-themes -kr-o

Click on any selector link ba gao to its declaration. <olid Red

Show Another Window

af|panelwindow: :content:Focus

Yalue
|C5) panelWindow With panel FormLayout
label 1 label 3 | Sul
ahal 4 -

Design | Selectors | Source History [|
Q- { Find m

fcharset "UTF-3"; % Q 2] E ﬂ; E’

f**aDFFaces_3Skin File / DO NOT EEMOVE**/ [= Font,/ Text

framespace af "http://xmlns.oracle.con/adf /faces/rich™;

framespace dvt "http://xnlns.oracle.con/dsssadf/faces”; Colar:

= .MyColor:alias ! Fonit: riormal normal nor
color: rgh(255, 181, 923); . Font Family: I:

font-weight: bold;

} Font Feature Settings: [normal

Font Kerning: uka
= . AFDefaultColor:alias |

color: Red; Font Language Cwverride: Eormal

= af IpanelWindow: : content | Font Size Adjust: one
background-color: -tr-property-ref(”.MyColor:alias™, "color™); Fart Strekch: Eormal

border: 10px solid -tr-property-ref(".AFDefaultColor:alias™, "color™

) Fant: Style: Eormal

Syntax similar to the following example appears in the source file of the ADF skin.

@harset "UTF-8";

[**ADFFaces_Skin_File / DO NOT REMOVE**/

@anespace af "http://xm ns. oracle.con adf/faces/rich";
@anespace dvt "http://xmns.oracle. com dss/adf/faces";

.MColor:alias {
color: rgh(255, 181, 99);
font-wei ght: bold;

. AFDef aul t Col or: al i as {
col or: Red;

af | panel Wndow: : content {
background-col or: -tr-property-ref(". MColor:alias", "color");
border: 10px solid -tr-property-ref(".AFDefaul tColor:alias", "color");}

9-12 Developing ADF Skins

10

Working with Style Classes

This chapter describes how to work with style classes. Information on how to create,
modify, and apply a style class is provided in addition to describing how to configure
a style class for a specific instance of a component.

This chapter includes the following sections:
* About Style Classes

* Creating a Style Class

* Modifying a Style Class

¢ Configuring a Style Class for a Specific Instance of a Component

10.1 About Style Classes

A style class allows you to specify a number of style properties in one location in an
ADF skin that you want to apply to specific instances of ADF Faces or ADF Data
Visualization components. The style properties that you define for a style class take
precedence over the style properties that you define for the component's selectors.
Application developers can specify a style class as a value for the st yl eCl ass and
i nl i neStyl e attributes that many ADF Faces components expose. At runtime, the
style properties that you defined in the style class get applied to the ADF Faces
component rather than other style properties defined in the ADF skin. Style classes
differ from the global selector aliases, described in Working With Global Selector
Aliases, which enable you to define style properties that you want to apply to multiple
ADF Faces components.

Figure 10-1 shows an ADF skin with the nodes expanded for the different categories of
style classes.

Figure 10-1 Categories of Style Class

I (25 Extended skins -

Q - EF = x Default (Mo) Theme Dark Theme
[Style Classes W ¢ X

b D UserDefined

-3 Miscellaneous UserDefined

[:l Mote Window Selectors SampleText

(23 Popup Selectors

[:l Texk

[Global Seleckor Aliases
-3 At-Rules

(3 Faces Compaonent Selectors
3

t-[C1 Data Visualizations Component Seleckors

Each category of style class serves a purpose:

Working with Style Classes 10-1

Creating a Style Class

* Miscellaneous: Miscellaneous style classes inherited from the extended ADF skins.
For example, this category includes the . AFBr andi ngBar style class that can be
used for a branding bar containers.

* Note Window Selectors: Style classes inherited from the extended ADF skins that
affect the not eW ndow component.

* Popup: Style classes inherited from the extended ADF skins that affect the popup
component.

® Text: Style classes inherited from the extended ADF skins that determine the
appearance of various types of text (for example, address fields and instruction
text).

Style classes that you or other users define appear under the Style Classes node as
shown by the entry for the . User Def i ned style class in Figure 10-1. For detailed
descriptions of the style classes in the ADF skins that Oracle ADF provides, see the Tag
Reference for Oracle ADF Faces Skin Selectors.

10.2 Creating a Style Class

You can create a new style class in your ADF skin or override a style class that your
ADF skin inherits from the ADF skin that it extends.

After you create a style class, you modify it to define the style properties that you
want it to contain. For more information, see Modifying a Style Class.

10.2.1 How to Create a Style Class

You can create a style class that defines the style properties you want an application
developer to apply to an ADF Faces or ADF Data Visualization component using the
component's st yl ed ass ori nl i neStyl e attribute.

To create a style class:

1. In the Selector Tree of the selectors editor, select New Style Class from the
dropdown list, as shown in Figure 10-2.

Figure 10-2 New Style Class Option in the Selector Tree

I [Extended Skins ~

Q ? - 4 = % Default (Mo) Theme Dar
@23 Style Classes ass

[:I Global Selector Aliases
D At-Rules Mew Selector with At-Rule...

5.5 Earac Famnenant Salackore

The Create Style Class dialog opens.
2. Choose the appropriate option:

¢ Enter a new name if you want to create a new style class that does not inherit
style properties from an ADF skin that your ADF skin extends.

Tip:
Enter a name for the style class that indicates the purpose it serves.

* Enter the name of a style class that inherits style properties from an ADF skin
that your ADF skin extends and for which you want to override style properties
in your ADF skin.

10-2 Developing ADF Skins

Modifying a Style Class

3. Click OK.

10.2.2 What Happens When You Create a Style Class

The style class appears under the Style Classes node in the Selector Tree and a visual
representation as it applies to a component appears in the Preview Pane, as shown in
Figure 10-3.

Figure 10-3 Newly-Created Style Class

Q SRR B ¢ Default (Moj Theme Dark1
BB Style Classes G@ 4 é/ X

.OrderOverdue

-3 Miscellaneaus (Crderverdue

D Moke Window Selectors SampleText
-3 Popup Selectors

© B3 Text

-3 Global Selector Aliases
[:I At-Rules

CSS syntax for the style class that you create appears in the source file of the ADF skin.
The following example shows the entries that appear in the source file for the ADF
skin in Figure 10-3.

. Order Over due

{
}

10.3 Modifying a Style Class

The process to modify a style class is the same for the different categories of style class
that appear in the selectors editor. You select the style class in the Selector Tree and
use the menus in the Preview Pane to add or remove pseudo-classes to the style class
or use the Properties window to set or override style properties for the style class.

10.3.1 How to Modify a Style Class

You select the style class under the Style Classes node in the Selector Tree and modify
its properties using the Properties window.

To modify a style class:

1. In the Selector Tree, navigate to the style class that you want to modify.

2. In the Properties window, make changes to the properties that you want to
configure for the style class.

3. Click the Refresh icon to update the Preview Pane after you make changes to the
style class.

10.4 Configuring a Style Class for a Specific Instance of a Component

You can define a style class where you define style properties to apply to a specific
instance of a component. Consider, for example, a panel Box component that
application developers use to show or hide content on a page. One page can render
multiple instances of a panel Box component. You decide to make fuchsia the default
background color for the header text that panel Box components render, as shown in
Figure 10-4.

Working with Style Classes 10-3

Configuring a Style Class for a Specific Instance of a Component

Figure 10-4 Setting Background Color for a panelBox Component

@ skind.css

aflpanelBoxheader-text - Propetties
]

=
0 (23 Extended skins = @ Q, Find
Q | ? - # o x Default (Mo) Theme Dark Theme Medium Theme Li... L4 = Common
4 Pamel Border Layout @Iﬂ ‘# T é’ % g o Background Color: Euchsia

G af |panelBosx: sheader-text Backgraund Image: |nane

[D af|panelBox

[=-[£5 Pseudo-Elements PanelBox with icon Content:
""" B oo Header st —
----- [content a

" . Panel Box Content Height: auto
----- D disclosed-icon
----- [disclosed-icon-style Wwidth: auto

..... D disclosure-link Panel Box No-Header Content "
Biorder: nione mediom ¢

----- D dynamic-help-icon

..... [dynamic-help-icon-style & - Border Color: currentCalor o

_____ D header-element Panel Box Stretched Content (width: 500px; height: 100px) Margin: 0p: Opx Opx O

4 Padding: Op 2ps Opx 2|

However, you decide that you want to render one or more instances of the panel Box
component without the disclosure link control that allows end users to show and hide
the content in the component. Additionally, you decide that you want the header text
of these instances of the panel Box component to render with the background color
set to red. To achieve this, you define style properties for a style class in the ADF skin.
You then specify the style class as the value for the st yl el ass attribute for each
instance of the panel Box component that you want to render using these style
properties. The following example shows the syntax that appears in the source file of
the ADF skin to achieve the outcome just described.

. panel BoxI nst anced ass af | panel Box: : di scl osure- i nk{di spl ay: none;}
. panel BoxI nstanceC ass af | panel Box: : header -t ext {background-col or: Red;}

Note: You cannot configure ADF skin properties in the style classes that you
create for specific instances of a component. ADF skin properties allow you to
customize the rendering of a component throughout the application, not
specific instances of a component. For more information about ADF skin
properties, see Properties in the ADF Skinning Framework.

10.4.1 How to Configure a Style Class for a Specific Instance of a Component

You specify the style class as the value for the st yl el ass attribute for each instance
of a component that you want to render using the style class.

To configure a style class for a specific instance of a component:
1. Create a style class, as described in Creating a Style Class.

2. In]JDeveloper, set the component's st yl eCl ass attribute to the name of the style
class you created in step 1.

For more information about setting the component's st yl eCl ass attribute, see
Developing Web User Interfaces with Oracle ADF Faces.

10.4.2 What Happens When You Configure a Style Class for a Specific Instance of a

Component

At runtime, instances of the component for which you do not specify instance-specific
style properties using a style class render using the style properties defined in the
component-specific selectors and global selector aliases. In Figure 10-5, this is the

10-4 Developing ADF Skins

Configuring a Style Class for a Specific Instance of a Component

panel Box component labeled First Panel Box. Instances of the component for which
you specify a style class as a value for the st yl eCl ass attribute render using the
style properties defined in this style class. In Figure 10-5, this is the panel Box
component labeled Second Panel Box.

Figure 10-5 Component Rendering with Style Properties Defined in Style Class

Working with Style Classes 10-5

Configuring a Style Class for a Specific Instance of a Component

10-6 Developing ADF Skins

11

Working with At-Rules

This chapter describes how to work with at-rules. Information on how to create,
modify, and apply an at-rule is provided in addition to describing the various types of
at-rule that the ADF skinning framework supports.

This chapter includes the following sections:

* About At-Rules in the ADF Skinning Framework
¢ Working with Server-Side At-Rules

e Working with Client-Side At-Rules

* Creating At-Rules in an ADF Skin

11.1 About At-Rules in the ADF Skinning Framework

CSS at-rules (at-rules) are a way to define style properties for when an application's
page renders in a particular environment such as, for example, a browser, platform,
locale or device. The ADF skinning framework supports a number of at-rules that
allow you to define properties for selectors that you want to apply to a particular
environment. For example, you may need to add some padding in Internet Explorer
that you do not need on any other browser or perhaps you want to increase the size of
icons if a page renders on a touch device. To style a selector for these scenarios, put the
style properties inside an at-rule.

The ADF skinning framework divides the at-rules that it supports into two categories.
It categorizes any at-rules that it passes directly to the user agent to interpret as a
client-side at-rule and any at-rules that the ADF skinning framework itself interprets
as a server-side at-rule. For more information about these categories, see Working
with Server-Side At-Rules and Working with Client-Side At-Rules.

You can use the selectors editor in JDeveloper to create at-rules in your ADF skin, as
described in Creating At-Rules in an ADF Skin. At-rules that your ADF skin inherits
or at-rules that you define in your ADF skin appear in the Selector Tree under the At-
Rules node, as illustrated in Figure 11-5.

Working with At-Rules 11-1

Working with Server-Side At-Rules

Figure 11-1 At-Rules in the Selector Tree

F‘E skinS.css
I [~ Extended Skins =

Q MK A
#-C3 Style Classes

EI Global Selectar Aliases

- at-Rules

D @accessibility-profile high-contrast
E maccessibility-profile large-fonts

-3 @agent (touchScreen)

-3 @agenk (touchScreen:none)

EI i@agent (fouchScreen:single)

#-£3 @agent email

EI @agent geckn

-3 @agent geckn and (max-version: 1,9,0)
-1 @agent gecko and (masx-version: 1.9.2)
Itl @agent gecko and (touchScreen:none)

Apart from the at-rules described in this chapter, you can also use the @ nport at-rule
to import another ADF skin into your ADF skin. For more information, see Importing
One or More ADF Skins Into the Current ADF Skin.

11.2 Working with Server-Side At-Rules

Table 11-1 lists a number of the server-side at-rules that the ADF skinning framework
supports. The ADF skinning framework interprets these rules and determines the style
properties to render, as described in What Happens at Runtime: How the ADF
Skinning Framework Applies At-Rules.

Table 11-1 Server-Side At-Rules Supported by the ADF Skinning Framework

Name Description
@ccessibility- Defines styles for hi gh- cont r ast and | ar ge- f ont s accessibility profile
profile settings when enabled in the t ri ni dad- confi g. xm file.

For more information about the @ccessi bi | i ty-profil e rule, see
Configuring an ADF Skin for Accessibility.

@ocal e Specify a locale to define styles only for a particular language and country. You
can specify either only the language or both the language and the country.

Note that the ADF skinning framework does not support the : | ang pseudo class.

@rode Defines styles for when a page renders in a particular mode. This at-rule supports
the following values:

e quirks
e standards

11-2 Developing ADF Skins

Working with Server-Side At-Rules

Name

Description

@l atform

Define platform styles. Supported values are:
e android

e bl ackberry

e genericpda

e iphone
e |inux
* Macos

e nokia_s60

e ppc (Pocket PC)
e solaris

e unix

e w ndows

Apart from the rules listed in Table 11-1, one of the most frequently used server-side
at-rules is @gent . The @gent at-rule enables you to define styles to apply to one or
more user agents. Table 11-2 describes the supported values to set an agent-specific
style using the @igent at-rule.

Table 11-2 Supported Values for the @agent At-Rule

bl ackberry googl ebot noki a_s60

enmai | ie oper a

gecko konquer or oracl e_ses

generi cDeskt op nmozilla unknown

generi cpda nmsnbot webki t (maps to Safari and Google
Chrome)

Using the @gent at-rule, you can:

® Specity styles for any version of Internet Explorer:
@gent ie

¢ Optionally, specify a specific version of the agent using the and keyword. For
example, to specify version 9 of Internet Explorer:

@gent ie and (version: 9)

* Use comma-separated rules to specify styles for a number of agents. For example,
use the following rule to specify styles for Versions 15 and 17 of Mozilla Firefox
and for Internet Explorer 9.x:

@gent nozilla and (version: 15.*), nozilla and (version:
17.*), ie and (version: 9.%)

¢ Note that the following two syntax examples specify the same rule:
@gent ie and (version: 9.%)
@gent ie and (version: 9)

To specify a rule for styles to apply only to Internet Explorer 9.0.x, write the
following:

@gent ie and (version: 9.0.%)

Working with At-Rules 11-3

Working with Server-Side At-Rules

¢ Use the max- ver si on and mi n- ver si on keywords to specify a range of versions.
For example, you can rewrite the following rule:

@ugent ie and (version: 9), ie and (version: 10)

as:

@ugent ie and (min-version: 9) and (nax-version: 10)

to apply styles that you define to all versions of Internet Explorer 9 and 10.

You can also use the @gent rule to determine styles to apply to agents that are touch
devices. The following examples show the syntax that you write in an ADF skin file to
configure this capability.

@gent (touchScreen) {
/* Touchscreen specific styles for all touch devices: both single and multiple
touch. */

}

@gent (touchScreen:single) {
/* Styles specific for a touch device with single touch. */
}

@gent (touchScreen:nmultiple) {
/* Styles specific for a touch device with nultiple touch. */
}

Use the @gent ('t ouchScr een: none) at-rule to specify styles that you do not
want to render on a touch device. For example, the Alta skin applies this at-rule to
selectors configured to use the : hover pseudo class. This is because the : hover
pseudo-class is not appropriate for use on a touch device. The @gent
(touchScreen: none) at-rule wraps selectors that use the : hover pseudo-class, as
in the following example:

@gent (touchScreen: none){
. AFBr andi ngBar af || i nk: hover,
. AFBr andi ngBar af | goLi nk: hover,

. AFBr andi ngBar af | commandLi nk: hover,

Figure 11-2 shows how the Selector Tree displays selectors to which the @gent
(touchScreen: none) at-rule is applied.

11-4 Developing ADF Skins

Working with Client-Side At-Rules

Figure 11-2 @agent (touchScreen:none) at-rule in the Selector Tree

skinl.css
0 (25 Extended Skins ~
Q f = 4 — x Default (Mo) Theme — Dark Theme

#[3 Style Classes
@[3 Global Selector sliases
= [= At-Rules

[3 @agent (touchScreen)

(3 @accessibility-profile high-contrast
3 @accessibility-profile large-fonts

[@agent (touchScreen:none)

Q@+

af |button:haver
Regular Button

¥ Disabled Butto

X

5

< :active-inkine-editable-container :hover-target
[af|breadCrumbs: :overflow-indicatorhover
~[7 af|breadCrumbs: :step:haver

3 Popup Button ~

Q- [button:hover

@-C3 Style Classes

skinl.css
0] | [Extended Skins =
Q Y - 4 - y Default (No) Theme Dark Theme Medium Theme

@ P-oX v

&0 Global Selector Aliases
B3 At-Rules af |button:hover (@agent (touchScreen:none))
(=} =+ Faces Component Selectors Reguiar Button
[-#»s BreadCrumbs
=@ Button x Disabled Button
Sl button D = =

+-[Pseudo-Elements

+[1 Descendant Selectors

i & Popup Button | w
w50 ralandar

For more information about creating applications to render in touch devices, see the
"Creating Web Applications for Touch Devices Using ADF Faces" appendix in
Developing Web User Interfaces with Oracle ADF Faces.

For information about how to create an at-rule in an ADF skin, see Creating At-Rules
in an ADF Skin.

11.3 Working with Client-Side At-Rules

The ADF skinning framework does not evaluate the following list of at-rules:
* @harset

e @locunent

e @ont-face

e @ nport

o @eyframes

e @redia

e @age

e @upports

Instead, it passes the at-rule, and the style properties within the at-rule, directly to the
user agent. The user agent evaluates the at-rule and applies the style properties within
the at-rule if the condition that the at-rule specifies is satisfied.

Working with At-Rules 11-5

Working with Client-Side At-Rules

Because the style properties inside client-side at-rules get passed directly to the user
agent, you cannot use ADF skin properties or global selector aliases inside client-side
at-rules. The ADF skinning framework needs to evaluate these items to determine
their runtime values. Example 11-1 demonstrates a number of valid usages of client-
side at-rules in an ADF skin. In Example 11-1, the @redi a at-rule specifies the style
properties to render for an af : but t on component when a screen has a maximum
width of 1680px. The example also specifies style properties to apply for the

af : but t on component when this condition is not met.

Note:

Do not insert ADF skin properties or global selector aliases inside a client-side
at-rule. Unexpected behavior may result when you render a page using the
ADF skin. The name of an ADF skin property is prefaced by -t r - and a
global selector alias appends : al i as. For more information, see Properties in
the ADF Skinning Framework and About Global Selector Aliases.

Figure 11-3 shows instances of the af : but t on component that render using the
appropriate style properties defined in Example 11-1 based on the maximum width of
the screen where the components display.

Figure 11-3 Client-Side At-Rule Applied to a Button Component

Screen width = 1920p= S creen width = 16900k
ERtan that renders using defaul properties in ADF skin ul
Ftkon that references a style class defined in ADF skin Rthon that references a style dass defined in ADF skin

Client-side at-rules can nest within server-side at-rules. Server-side at-rules can nest
within client-side at-rules. Example 11-2 demonstrates instances where client-side and
server-side at-rules nest within each other.

The @age and @ ont - f ace client-side at-rules are exceptions. These client-side at-
rules cannot contain a server-side at-rule because they contain CSS properties whereas
other client-side at-rules contain complete styles.

Example 11-1 Client-Side At-Rules in an ADF Skin

.myStyled ass {
background-col or: Yel | ow;

}

af | button {
-tr-inhibit: background-imge;
color: Red;

}

af | button::access-key {
background- col or: Bl ue;
color: Yellow

}

@redi a screen and (max-w dt h: 1680px) {
.myStyled ass {
background- col or: Red,;
}

11-6 Developing ADF Skins

Creating At-Rules in an ADF Skin

af | button {
color: Lime;

af | button::access-key {
background-col or: Wite;
color: Purple;

Example 11-2 Nested Client-Side and Server-Side At-Rules

@gent gecko {
@age :first {
margin: 2in;

}

@eyframes nymove {
@gent gecko {
0%{ top: 0; left: 0; }
30%{ top: 50px; }
68% 72%{ left: 50px; }
100%{ top: 100px; left: 100% }
1

@gent ie {
0%{ top: 1; left: 1; }
30%{ top: 100px; }
100%{ top: 200px; left: 100% }
1
}

11.4 Creating At-Rules in an ADF Skin

You can create a new at-rule in your ADF skin or override an at-rule that your ADF
skin inherits from the ADF skin that it extends. After you create an at-rule, you modify

it to define the style properties that you want it to contain.

11.4.1 How to Create an At-Rule

You can create an at-rule to specify that style properties for one or more selectors
render in a particular way when a condition specified by the at-rule is met.

To create an at-rule:

1. In the Selector Tree of the selectors editor, select New Selector with At-Rule from

the dropdown list, as illustrated in Figure 11-4.

Tip:

If you know the name of the selector for which you want to configure an at-
rule, right-click it in the Selector Tree and, from the context menu, choose New
Selector with At-Rule. This populates the Selector field in the Create At-Rule
Declaration dialog with the name of the selector that you right-clicked.

Working with At-Rules 11-7

Creating At-Rules in an ADF Skin

Figure 11-4 New Selector with At-Rule Menu in the Selector Tree
- %

Mew Skyle Class. ..

Mew Alias Selectar...

elector with At-Rule. .,

2. In the Create At-Rule Declaration dialog, select the at-rule that you want to
configure from the Rule dropdown list.

For more information about the at-rules that the ADF skinning framework
supports, see Working with Server-Side At-Rules and Working with Client-Side
At-Rules.

3. Click OK.

4. In the Selector Tree, select the newly-created at-rule and, in the Properties window,
configure the properties that you want this at-rule to apply.

11.4.2 What Happens When You Create an At-Rule

The at-rule appears under the At-Rules node in the Selector Tree and a visual
representation as it applies to a component appears in the Preview Pane, as shown in
Figure 11-5. CSS syntax for the at-rule that you create and any properties that you
modified also appear in the source file of the ADF skin, as shown in Figure 11-5.

Figure 11-5 At-Rule in the Selector Tree and Source Editor

@ Start Page @ skin3.css
0] | [Extended Skins ~

Q ? = .;F = x Default (Ma) There Dark Theme
=& Ab-Rules @ - ¢ X
- @accessibility-profile large-Fonts
H. D =F| btk af |button: ikext

Begular Bution

3 Disabled Button

a Popup Button |«

Design | Selectors | Source History

=R
Q- Find

Acharset "UTF-57;

A*FADFFaces_Skin File / DO NOT REMOVE*®/

fnamespace af "http://xnlns. oracle. confadf/faces/rich™;
fnamespace dvt "http: //xwlns.oracle.con/dsssadE/faces™;

faccessibiliky-profile large-fonts |

af [button; :text |

color: Blue;

In the Properties window for the selector property on which you set an at-rule, an icon
appears to indicate that an at-rule is set, as illustrated in Figure 11-6.

11-8 Developing ADF Skins

Creating At-Rules in an ADF Skin

Figure 11-6 Properties Window with an At-Rule set on a Property

@ skinl.css o aflutton:text - Properies

0 (5 Extended Skins = @ = Q, Find

Q T + = X Default (No) Theme Dark Theme Medium, .. L2 = Common

-3 Style Classes @ g X i Background Calar: @

(23 Global Selector Aliases .
23 ab-Rules af |button: ikext Background Image: [none

E—J[Bv Faces Component Selectors Reguiar Button Content:
[-e2@ BreadCrumbs Calor: @
=D Buttan [Disabled Button “% N
- Mkt .
- af|button = = | = 1
(23 Pseudo-Elements — — — This selector property is also set in the following At-Rules:
E [access-key &, Popup Button | v

@accessibility-profile large-fonts
color: Blue

[dropdown-cel
[dropdown-icon
[dropdown-icon-style Reguiar Button

R Disabled Butto

af |button:bottom: kext
Click on any at-rule link to go to its declaration.

11.4.3 What Happens at Runtime: How the ADF Skinning Framework Applies At-Rules

At runtime, the ADF skinning framework picks the styles with at-rules based on the
HTTP request information, such as agent and platform, and merges them with the
styles without rules. Those style properties that match the rules get merged with those
outside of any rules. The most specific rules that match a user's environment take
precedence.

g

Padding: Op: Opx Opx 0

-tr-rule-ref -tr-inkibit | -kr-enable-the

-

]
b=
a
Il =
2B
g
2
z
g
b
I |

m BE A

Example 11-3 shows several selectors in the source file of an ADF skin that will be
merged together to provide the final style.

Example 11-3 Merging of Style Selectors in an ADF Skin

[** For |E and Gecko on Wndows, Linux and Solaris, make the color pink. **/
@l at form wi ndows, | i nux, sol ari s{
@gent ie, gecko
{
af | i nput Text:: content {background-col or: pi nk}
1
}

[** Define default properties for the af|panel Fornmiayout selector. **/
af | panel For mLayout {

color: red;
wi dth: 10px;
paddi ng: 4px

}
/** Define at-rule for af|panel FornLayout on Internet Explorer (1E). W need
to increase the width, so we override the width. W still want the col or
and padding; this gets nerged in. W want to add height in IE */
@gent ie{

af | panel FormLayout {wi dth: 25px; height: 10px}
}

[** For |E 9 and 10, we al so need sone margins.*/
@agent ie(version:9)and(version: 10){

af | panel For mLayout {margin: 5px;}
}

[** For Firefox 10 (Gecko 10) use a snaller margin.*/
@gent gecko(version: 10){
af | panel FornLayout {margin: 4px;}

Working with At-Rules 11-9

Creating At-Rules in an ADF Skin

11-10 Developing ADF Skins

12

Applying the Finished ADF Skin to Your
Web Application

This chapter describes how to complete tasks that you need to do once you finish your
ADF skin. Information is provided on how to test your ADF skin, package the
completed ADF skin in an ADF Library JAR, and configure a web application so that it
uses the completed ADF skin.

This chapter includes the following sections:

* About Applying a Finalized ADF Skin to an Application
¢ Testing Changes in Your ADF Skin

® Packaging an ADF Skin into an ADF Library JAR

* Applying an ADF Skin to Your Web Application

* Applying an ADF Skin to a Running Web Application

12.1 About Applying a Finalized ADF Skin to an Application

After you create an ADF skin where you define style properties for one or more ADF
skin selectors, you may want to test the changes that you make in the ADF skin. Once
you complete testing the changes in your ADF skin and are satisfied with the final
ADF skin, you can package the ADF skin and associated files (resource bundle,
images, and configuration files) into an ADF Library JAR to distribute for inclusion to
the application projects that use the final ADF skin. Once you have distributed the
final ADF skin, you configure the application to apply the ADF skin to it.

12.2 Testing Changes in Your ADF Skin

Once you have created an ADF skin and defined style properties that you want for
one or more selectors, you may want to test how these style properties render at
runtime in a browser. To do this, you apply the ADF skin to your application and run
a page that renders the ADF Faces component which exposed the selector.

Consider using tools, such as Firebug for the Mozilla Firefox browser (or similar for
your particular browser), when you run your application. These tools provide useful
information that can help you as you iteratively develop your ADF skin. For example,
in addition to inspecting changes that you have already made, these tools can help you
identify the ADF skin selectors that correspond to a particular DOM element.

You can also configure context initialization parameters in the web. xnl file of your
application that allow you to:

¢ View changes in an ADF skin without having to restart the application

Set the value of the following context initialization parameter to t r ue:

Applying the Finished ADF Skin to Your Web Application 12-1

Testing Changes in Your ADF Skin

or g. apache. nyfaces. trini dad. CHECK_FI LE_MODI FI CATI ON

¢ Display the full uncompressed CSS style class name at runtime
Set the value of the following context initialization parameter to t r ue:

or g. apache. nyfaces. tri ni dad. DI SABLE_CONTENT _COVPRESSI ON

Note that not all changes that you make to an ADF skin in your web application
appear immediately if you set the CHECK_FI LE_MCDI FI CATI ONto t r ue. You must
restart the web application to view changes that you make to icon and ADF skin
properties.

For more information about context initialization parameters, see the "ADF Faces
Configuration" appendix in Developing Web User Interfaces with Oracle ADF Faces.

Figure 12-1 demonstrates how the name of a component selector (for the ADF Faces
but t on component) is suppressed. In Figure 12-1, the style class

(f ndG obal Sear chCat egor y) that is defined in an ADF skin is applied to the
but t on component using the component's st yl el ass attribute.

Figure 12-1 Compressed CSS from an ADF Skin

* Personld 100
* PrincipalMame | SKIMG
Title
Firsthlame | Stewven

LastMame | King

First Previous Mexk Last

Subrnit

Create a new record

Fiv#bs. p_AFHoverTarget.fndalobalSearchCategory. xg3.p_AFTextOnly 119pxx21px|

: - T P oy
| |2 Elements | | Resources @ Metwark 29 Scripts @T\meﬁna IC Frafiles gAudﬂs » Q |

e cellpadding="@" cellspacing="@" border="@" summary # | » Computed Style [Show inherited 4
="width: auto": [¥ Styles + IR g
J:iif‘tr‘) element.style {
a4
“td class="zdw" colspan="1"% ¥
¥<table cellpadding="@" cellspacing="@" border="@" width= Matched CES Rules
"1e@" summary .xg2, .xg3 { skin2-desktop-2fwszp-1tr-safari-535.
¥ <thodyx display: inlime-block;
b atroangftre F padding: @px;
¥otrs cursor: default;
<tdzostds white-space: nowrap;
¥<otd class="x51"> min-height: 19px;
¥codiv 1d="pgll" class="xla"> border-color: transparent;
pcdivoasfdive border-top-color: #ESESEE;
pcdivoaefdive border-left -color: #ESESEE;
v edive _ | kborder-style: solid;

¥

border-width: 1lpx;

border-right -color: l#55S;

border-bottom-color: [l#sss;

background-color: #BACEDC;

background-position: top center;

background-repeat: repeat-x;

background-image: -webkit-linear-gradient{top, #FFFF..
font -family: Tahoma,verdana,arial,Helvetica,Freesans..

Yy

</thody> font -weight: normal;
<ftable> @ font-size: 1lpx;
<<f'td> ks color: MMe133354;
i
O > Q.. thody tr td | table | thody tr | td]

Figure 12-2 shows how the browser renders the full uncompressed name of the ADF
Faces component when you set the DI SABLE_CONTENT_COVPRESS| ON parameter to
t r ue. In Figure 12-2, the uncompressed style class af _but t on corresponds to the

af | but t on selector documented in the Tag Reference for Oracle ADF Faces Skin
Selectors.

The uncompressed style classes that correspond to the pseudo-elements that an ADF
skin selector exposes can also be identified. For example, the t ab- end pseudo-

12-2 Developing ADF Skins

Testing Changes in Your ADF Skin

element exposed by the af | panel Tabbed selector (af | panel Tabbed: : t ab- end)
translates to the uncompressed af _panel Tabbed_t ab- end style class at runtime.

Similarly, changes that you make to the appearance of a component when it is in a
specific state can also be identified or inspected using browser tools. For example, the
following entry in the source file of an ADF skin allows you to define the style for the
ADF Faces panel Tabbed component when a user selects the right-hand side of the
component:

af | panel Tabbed: : t ab: sel ect ed af | panel Tabbed: : t ab- end
At runtime, the uncompressed style class name translates to the following:
. af _panel Tabbed_t ab. p_AFSel ect ed . af _panel Tabbed_t ab- end

Note that : sel ect ed translates to p_AFSel ect ed although sometimes the generated
CSS does not have a p_AFSel ect ed equivalent because some browsers have built-in
support for that particular state, as is the case for other pseudo-classes like : hover .

It is recommended that you only customize the ADF skin selectors, pseudo-elements,
and pseudo-classes documented in the Tag Reference for Oracle ADF Faces Skin Selectors
and the Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors. Customizing
other ADF skin selectors may result in unexpected or inconsistent behavior for your
application.

Figure 12-2 Uncompressed CSS from an ADF Skin

€« C | @ 127.0.0.1:7101/applicationz-viewControler-context-rootfacespage 1.jsf7_adf ctrl-state=y8rvgeww?_3 Sl |

* Parsonld 100
* Principaltlame | SKING
Title

Firsthame | Skeven

LaskMarne | King

First Previous Mext Lask

Submit:

divi#nh.p_fFHoverTarget.fnddlobalSearchCategory. af_putton. p_AFTextOnly 118px=2lpx |

—= = &=
| (<3 eemerts | @ |Resouces (@ retworc g scrpts (Frineine (proties Qawts » (Q |

;<tr> | » Computed Style [show inherited
¥<td class="af_panelFormLayout_column" colspan="1"> ¥ Styles + ik -
¥ctable cellpadding="@" cellspacing="@" border="@"
"l@e%k" summary:
¥<thodys

element.style {

B Ctr. e ¥
¥ ot Matched CS5 Rules
stdzeftds skin?-desktop-2fwszp-1tr-safari-535.
¥<td class="af_panelFornlavout_content -cell"> vaf_commandToolbarButton:hover, .af_button:hover,
¥eodiv id="pgll" class="af_panelGrouplayout"s .af_commandButton:hover, .af_resetButton:hover,
B cdivo. <idive .af_goButton:hover, .af_dialog_footer-button:hover,

.af_query_button:hover, .AFMoteWindowdllButton:hower,
.af_commandButton:focus thover,
.af_resetButton:focus:hover, .af_goButton:focus:hover,
.af_dialog_footer-button:focus:hover,
caf_gquery_button:focus:hover,
.AFNoteWindowtllButton:focus:haver,
.af_trainButtonBar_back-buttaon: howver,

b cdive., cidive
¥ odive
> <

only" _afrgrp=

<fdive

<fdive ~ | .af_trainButtonBar_next -button: hover {
<ftdx font -Family: Tahoma,vVerdana,#rial,Helvetica,FreeSans.
<itre font -weight: normal;
</thody> font-size: 1llpx;
<ftables colaor: .black;
<ftds border-calaor: transparent;
<jitrz border-top-color: D#E@BlFﬁ;
<fthody: border-right -color: D&SGBlF&;
<itables 3 border-botton-color: [#6@B1FA;
o — border-left -color: D#EBBlFP.,'
< | > horder-width: 1psx;
B3 >= Q.. tr td table thody fr td | #poll | div

Applying the Finished ADF Skin to Your Web Application 12-3

Packaging an ADF Skin into an ADF Library JAR

12.2.1 How to Set Parameters for Testing Your ADF Skin

You set the CHECK_FI LE_MCDI FI CATI ONand DI SABLE_CONTENT_COMPRESSI ON
context initialization parameters to t r ue in the web. xm file of your application.

To set parameters for testing your ADF skin:

1. In the Applications window, double-click the web.xml file.

2. In the source editor, add the following context initialization parameter entries and
settotrue:

e org. apache. nyfaces. trini dad. CHECK_FI LE_MODI FI CATI ON
e org.apache. nyfaces. trinidad. DI SABLE_CONTENT_COVPRESSI ON

3. Save and close the web. xnl file.

12.2.2 What Happens When You Set Parameters for Testing Your ADF Skin

Entries appear in the web. xm file for your application, as illustrated in the following
example.

<cont ext - par am
<par am nane>or g. apache. nyf aces. trini dad. CHECK_FI LE_MODI FI CATI ON</ par am name>
<param val ue>true</ param val ue>

</ cont ext - par an»

<cont ext - par an
<par am nanme>or g. apache. nyf aces. trini dad. DI SABLE_CONTENT_COMPRESSI ON</ par am name>
<param val ue>true</ param val ue>

</ cont ext - par an»

Changes that you make to a selector for an ADF Faces component (other than changes
to icon and skin properties) render immediately when you refresh a web application's
page that renders the ADF Faces component. Using Firebug if your browser is Mozilla
Firefox or Google Chrome's developer tools, you can see the uncompressed style class
names that render at runtime and establish what ADF skin selector it corresponds to.
Remember that setting

or g. apache. nyfaces. trini dad. DI SABLE_CONTENT_COWVPRESSI ONtot rue
incurs a performance cost for your web application so set it to f al se when you finish
testing your changes.

12.3 Packaging an ADF Skin into an ADF Library JAR

You can deploy an ADF skin and associated files (for example, image files,
configuration files, and resource bundles) in an ADF Library JAR. This enables you to
package files required to apply an ADF skin to an application. The benefits of
packaging ADF skins into an ADF Library JAR as compared to bundling them into the
application are the following:

® An ADF skin can be deployed and developed separately from the application. This
also helps to reduce the number of files to be checked in case some changes must
be applied to the ADF skin.

* The source files for an ADF skin and images can be separated into their own ADF
Library JARs. Therefore, you can partition the image base into separate ADF
Library JARs, so that not all files have to be deployed with all applications.

12-4 Developing ADF Skins

Packaging an ADF Skin into an ADF Library JAR

® An ADF skin in an ADF Library JAR can be applied to an application that is
running without requiring a restart, as described in Applying an ADF Skin to a
Running Web Application .

12.3.1 How to Package an ADF Skin into an ADF Library JAR

Create an ADF Library JAR file deployment profile to package the ADF skin into an
ADF Library JAR.

To create an ADF Library JAR file deployment profile:

1. Inthe Applications window, right-click the project that contains the ADF skins
and choose Deploy > New Deployment Profile.

2. In the Create Deployment Profile dialog, choose ADF Library JAR File in the
Profile Type dropdown list.

3. Enter a name for the deployment profile in the Deployment Profile Name input
field and click OK.

4. Review the options in the Edit ADF Library JAR Deployment Profile Properties
dialog that appears. For more information at any time, click Help.

5. Click OK.
To package an ADF skin into an ADF Library JAR:
1. In the Applications window, right-click the project that contains the ADF skin and

choose Deploy > deployment, where deployment is the name of the ADF Library
JAR file deployment profile.

2. In the Deploy dialog Deployment Action page, click Deploy to ADF Library JAR
file, click Next and then click Finish.

12.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

An ADF Library JAR file is written to the directory specified by the deployment
profile. This ADF Library JAR contains the source file for the ADF skin, the

trini dad- ski ns. xm file, image files, and any resource bundles that you created to
define resource strings or to override the default strings defined for ADF Faces
components. The ADF Library JAR file also contains other files from the ADF skin's
project not related to skinning.

Example 12-1 shows the directory structure for a project that contains the following
items for an ADF skin:

e Thetrini dad-skins.xm file
* Animage file (sort _des_ena. png) copied into the JDeveloper project
e The source file for an ADF skin (ski nl. css)

e An .sva file (or acl e. adf . conmon. servi ces. Resour ceSer vi ce. sva) that is
used to inspect the content of the ADF Library JAR when you import it into a
project, as described in Adding ADF Skins from an ADF Library JAR.

* A resource bundle (ski nBundl e. properti es) that contains string values to
override strings from the default resource bundle

Applying the Finished ADF Skin to Your Web Application 12-5

Applying an ADF Skin to Your Web Application

For information about how to specify resource bundles that contain string values
you define, see How to Specify an Additional Resource Bundle for an ADF Skin.

The directory paths for images in the ADF skin that appear in the ADF Library JAR
are modified to include the directory path from the JDeveloper project. Example 12-2
demonstrates an example of the changes that occur:

Example 12-1 Directory Structure for an ADF Library JAR Containing an ADF Skin

ADFLi braryJARRoot Di rectory

META- | NF

| MANI FEST. M-
oracl e. adf . common. servi ces. Resour ceServi ce. sva
trini dad- ski ns. xni

|

|

|

+- - - adf

| \---skins
| \---skinl

| \---imges

| \---af _colum

| col Sort _des_ena. png
|

\

oo -
|
|
|
|
|
|
|
|
|
|
|
| --skins
| \---skinl
| skinl.css
|
\---resources
ski nBundl e. properties

Example 12-2 Modified Directory Path for Images in a Deployed ADF Skin

/] Reference to an image in an ADF skin prior to deploynent to an ADF Library JAR
af | col umm: : sort ed- descendi ng-i con-styl e

{

background-i mage: url ("i mages/af _col um/ col Sort _des_ena. png");

}

/] Reference to an image in an ADF skin after deploynent to an ADF Library JAR
af | col umm: : sort ed- descendi ng-i con-styl e

{

background-i mage: url ("/adf/skins/skinl/inmages/af _col um/col Sort _des_ena. png");

}

12.4 Applying an ADF Skin to Your Web Application

You configure an application to use an ADF skin by specifying values in the
application's t ri ni dad- confi g. xm file. You specify a value for the <ski n-

fam | y> element that identifies the ADF skin family the application uses at runtime.
If you created more than one ADF skin in the ADF skin family, you can version these
ADF skins. If you versioned multiple ADF skins in the same ADF skin family, use the
<ski n-ver si on>elementin the t ri ni dad- confi g. xnl file to identify the specific
version that you want the application to use.

If you do not identify a specific ADF skin from an ADF skin family by entering a value
for the <ski n- ver si on> element in the t ri ni dad- confi g. xm file or using the
<def aul t >t r ue</ def aul t > elementin thet ri ni dad- ski ns. xm file, the
application uses the last skin defined in the t ri ni dad- ski ns. xni file. For more
information about versioning ADF skins and how this can determine the ADF skin
that your application chooses, see Versioning ADF Skins.

12-6 Developing ADF Skins

Applying an ADF Skin to a Running Web Application

Note that you can configure an application page for your end users to dynamically
select the ADF skin that they want the application to use. For more information, see
Developing Web User Interfaces with Oracle ADF Faces.

12.4.1 How to Apply an ADF Skin to an Application

You apply an ADF skin to an application by modifying the application'st ri ni dad-
confi g. xnl file. You do this by editing the application's t r i ni dad- confi g. xm

file to specify the ADF skin family to use. Alternatively, you can select the ADF skin
family from a list in the ADF View options of JDeveloper's Project Properties dialog.

To apply an ADF skin to an application:

1. In the Applications window, double-click the trinidad-config.xml file. By default,
this file is in the Web Content/WEB-INF node.

2. In the source editor, write entries to specify the value of the <ski n-fam | y>
element and, optionally, the <ski n- ver si on> element as shown in Example 12-3.

12.4.2 What Happens When You Apply an ADF Skin to an Application

The values that you specify for the <ski n- f ani | y> element and, optionally, the
<ski n-ver si on> elementin thetri ni dad- confi g. xm file determine the ADF
skin that the web application uses at runtime, as shown in Example 12-3.

Example 12-3 trinidad-config.xml File

<?xm version="1.0" encodi ng="w ndows- 1252" ?>
<trinidad-config xm ns="http://nyfaces. apache. org/trinidad/config">
<ski n-fam | y>skyros</skin-fam|y>
<ski n-ver si on>v1</ ski n-ver si on>
</trinidad-config>

12.5 Applying an ADF Skin to a Running Web Application

Using Java Management Extensions (JMX), you can apply an ADF skin that is
packaged in an ADF Library JAR to a web application without having to restart the
application. To do this, you must configure the web application's source files, as
described in How to Configure your Web Application to Accept an Updated ADF
Skin. You then use JDeveloper to connect to the MBean server and deploy the ADF
Library JAR containing the ADF skin(s). For more information, see How to Deploy an
ADF Library JAR to an MBean Server. This makes all ADF skins contained in the ADF
Library JAR available to the web application.

12.5.1 How to Configure your Web Application to Accept an Updated ADF Skin

You make the following changes to the web application's ViewController project in
JDeveloper so that the application can apply a new ADF skin deployed by a MBean
server without requiring a restart of the web application:

¢ Select the Enable Runtime Skin Updates checkbox in the ADF View page of the
application's ViewController project

* Add ADF Faces JMX Runtime 11 to the application's classpath

¢ (Optional) Add a context initialization parameter to the application's web. xm file

The context initialization parameter enables you to specify a user friendly name to
identify the web application rather than use the application's context root.

Applying the Finished ADF Skin to Your Web Application 12-7

Applying an ADF Skin to a Running Web Application

Note:

The web application must be deployed in an exploded format, as is the case
when you run the application in the Integrated WebLogic Server.

To configure your web application to accept an updated ADF skin:

[EY

. InJDeveloper's Applications window, select the ViewController project.
2. From the main menu, choose Application > Project Properties.

3. In the Project Properties dialog, select the ADF View page and then select the
Enable Runtime Skin Updates checkbox.

4. Select the Libraries and Classpath page and verify that ADF Faces JMX Runtime 11
appears in the Classpath Entries list. If it is not, click Add Library.

5. In the Add Library dialog, select ADF Faces JMX Runtime 11 and click OK.
6. Click OK.

7. Optionally, in the Applications window, double-click the web.xml file located in
the WEB-INF directory and add a context initialization parameter where you can
specify an easy to remember name for your application. Otherwise, the default
behavior is to use the context root of the application.

In the overview editor, click the Application navigation tab and then click the Add
icon next to the Context Initialization Parameters table to add an entry for the
oracl e. adf . vi ew. ri ch. SKI NNI NG_VMBEAN_NAME parameter and set its value
to a name that you will use to identify the web application to the MBean server.

12.5.2 How to Deploy an ADF Library JAR to an MBean Server

You deploy the ADF Library JAR that packages the ADF skin(s) to the MBean server.
For information about how to create an ADF Library JAR file deployment profile to
package the ADF skin(s), see How to Package an ADF Skin into an ADF Library JAR.

To deploy an ADF Library JAR to an MBean Server:

1. Inthe Applications window, right-click the project that contains the ADF skin(s)
and choose Deploy > deployment, where deployment is the name of the ADF
Library JAR file deployment profile.

2. In the Deployment Action page, select Deploy to ADF Skin Managed Bean and
then click Next.

3. In the Skin Connection page, choose the appropriate option:
¢ C(lick Add to create a new connection to the MBean server and go to Step 4.

¢ Choose an existing connection from the Connection dropdown list and go to
Step 5.

4. In the Create JMX Connection dialog, complete the fields to connect to the MBean
server:

12-8 Developing ADF Skins

Applying an ADF Skin to a Running Web Application

* Connection Name: Enter a name for the connection. The connection name
must be a valid Java identifier, and as the name and connection are global
across your installation, choose an appropriate and unique name.

* Server Type: The default of Weblogic Server is preselected for connections
where you deploy to an ADF Skin Managed Bean.

e Username: Enter the user name to be authorized for access to the MBean
server.

¢ Password: Enter the password to be associated with the specified user name.
An asterisk (*) appears for each character you type in this field.

¢ Protocol: JDeveloper uses the t 3 protocol to communicate with the MBean
server.

* Hostname: Enter a value to identify the machine running the MBean server.
Use an IP address or a host name that can be resolved by TCP/IP, for example
if the MBean server is on the local machine, use | ocal host,or 127. 0. 0. 1.

¢ Port: Enter the listen port for the MBean server. The default is whatever the
default port number of the Integrated Weblogic Server is (often 7101).

¢ URL Provider Path: Enter the absolute JNDI name of the MBean server. It
must start with /jndi/ and be followed by one of:

— webl ogi c. mranagenent . nbeanser vers. donai nrunti ne
— webl ogi c. managenent . nheanservers. runti e
— webl ogi c. ranagenent . nbeanservers. edi t

* Server Install Location: Displays the server install location.

¢ Test Connection: Click to test the connection.

* Status: A Success! message indicates that JDeveloper has been able to
connect to the MBean server. Any other message indicates that the connection
has failed. Amongst the things you should check before trying Test Connection
again are:

— Whether the network is working correctly when the MBean server is not
local.

— The values entered in this dialog.

In the Application Name field, select the name of the web application that you
want to deploy the ADF Library JAR containing the ADF skin(s) to. Click Find
Running Applications to retrieve the list of available applications and to make
sure that the application is running.

The name of the application's root context appears unless you specified the name
of the application to be the value that you entered for the

oracl e. adf . vi ew. ri ch. SKI NNl NG_MBEAN_NAMNE parameter, as described in
How to Configure your Web Application to Accept an Updated ADF Skin.

Click Next and then click Finish.

Applying the Finished ADF Skin to Your Web Application 12-9

Applying an ADF Skin to a Running Web Application

12.5.3 What Happens When You Apply an ADF Skin to a Running Application

JDeveloper deploys the ADF Library JAR containing the ADF skin(s) to the web
application. This ADF Library JAR contains the ADF skin and other associated files
(for example, any images that the ADF skin requires). For more information about the
contents of the ADF Library JAR, see What Happens When You Package an ADF Skin
into an ADF Library JAR. The ADF skins are installed in the root directory of the web
application. The t ri ni dad- ski ns. xni file of the web application is updated to
reference the newly-added ADF skins.

To make the web application use the newly-available ADF skin, you need to update
the value that the t ri ni dad- confi g. xm file's <ski n- f am | y> element
references. You can do this manually, as described in How to Apply an ADF Skin to
an Application, or you can specify an EL expression for the element that updates the
value programmatically. For more information about this latter option, see the
"Customizing the Appearance Using Styles and Skins" chapter in Developing Web User
Interfaces with Oracle ADF Faces.

12-10 Developing ADF Skins

13

Advanced Topics

This chapter provides information to help you if you make changes in the source file
of an ADF skin or in the configuration files that control the usage of ADF skins. The
chapter also lists and describes the ADF skins provided by Oracle ADF.

This chapter includes the following sections:

Referring to URLs in an ADF Skin's CSS File
Configuration Files for an ADF Skin
ADF Skins Provided by Oracle ADF

Versioning ADF Skins

13.1 Referring to URLs in an ADF Skin's CSS File

An ADF skin's CSS file typically uses a URL to refer to a resource that is external to the
file. For example, an image that an application uses to render with an error message.
You can refer to a URL from an ADF skin's CSS file in a number of different formats.
The supported formats are:

Absolute

You specify the complete URL to the resource. For example, a URL in the following
format:

htt p: // ww. myconpany. coni WebApp/ Ski n/ ski nl/ing/errorlcon.gif

Relative

You can specify a relative URL if the URL does not start with / and no protocol is
present. A relative URL is based on the location of the ADF skin's CSS file. For
example, if the ADF skin's CSS file directory is WebApp/ Ski n/ ski nl/ and the
specified URL isi ng/ error | con. gi f, the final URL is / WebApp/ Ski n/

nmySki n/ing/errorlcon.gif

Context relative

This format of URL is resolved relative to the context root of your web application.
You start a context relative root with / . For example, if the context relative root of a
web application is:

/ \ebApp

and the specified URL is:
/imglerrorlcon.gif

the resulting URL is:

/ WebApp/inmg/errorlcon.gif

Advanced Topics 13-1

Configuration Files for an ADF Skin

Server relative

A server relative URL is resolved relative to the web server. This differs to the
context relative URL in that it allows you reference a resource located in another
application on the same web server. You specify the start of the URL using / / . For
example, write a URL in the following format:

/1 \WebApp/ Ski n/ mySki n/inmg/errorlcon.gif

The format of URL that you use may be important if you create a Java Archive (JAR)
file to package and distribute your ADF skin and its associated files. For more
information, see Packaging an ADF Skin into an ADF Library JAR.

13.2 Configuration Files for an ADF Skin

The following list describes the configuration files associated with the project for an
ADF skin. You modify values in these files while you develop your ADF skin or when
you finish development and want to apply the finished ADF skin to an application.

trini dad- ski ns. xni

This file registers the ADF skins that you create, as described in Creating an ADF
Skin File. The following example demonstrates how to register a number of ADF
skins that extends from a sample of the ADF skins described in Table 13-1.

<I-- Use the following values in the trinidad-skins.xml file if you want to
extend the alta-vl skin. -->
<ski n>

<i d>your Ski n. deskt op</i d>

<fam | y>your Ski nFami | y</fam | y>

<extends>al t a- v1. deskt op</ ext ends>

</ ski n>

<I-- Use the following values in the trinidad-skins.xml file if you want to
extend the skyros-vl skin. -->
<ski n>

<i d>your Ski n. deskt op</i d>

<fam | y>your Ski nFani | y</fani | y>

<ext ends>skyros-v1. deskt op</ ext ends>

</ ski n>

For more information about this file, see the "Configuration in trinidad-skins.xml"
section in Developing Web User Interfaces with Oracle ADF Faces.

trini dad-config. xn

You configure the <ski n-f ami | y> element in this configuration file to tell the
application what ADF skin to use, as described in Applying an ADF Skin to Your
Web Application. The following example demonstrates how to configure your web
application to use some of the ADF skins listed in Table 13-1.

<I-- Use the following value in the trinidad-config.xm file if you want your
application to use the Alta skin. -->
<skin-fam | y>al ta</skin-fam | y>

<ski n-ver si on>v1<ski n-ver si on>

<I-- Use the following value in the trinidad-config.xm file if you want your
application to use the skyros skin. -->

13-2 Developing ADF Skins

ADF Skins Provided by Oracle ADF

<ski n-fam | y>skyros</ skin-fam|y>
<ski n-versi on>vi<ski n-versi on>

For more information about this file, see the "Configuration in trinidad-config.xml"
section in Developing Web User Interfaces with Oracle ADF Faces.

e web. xni

You can configure context initialization parameters in this file to facilitate the
development and testing of your ADF skin, as described in Testing Changes in
Your ADF Skin . You can also configure a context initialization parameter

(org. apache. nyfaces. trini dad. ski n. MAX_SKI NS_CACHED) to specify the
maximum number of unique ADF skins for which you store information in
memory about the generated CSS files. Using this context initialization parameter
can help maintain the performance of your application if you use many different
skins.

For more information about the web. xm file and context initialization parameters,
see the "Configuration in web.xml" section in Developing Web User Interfaces with
Oracle ADF Faces Developing Web User Interfaces with Oracle ADF Faces.

13.3 ADF Skins Provided by Oracle ADF

Oracle ADF provides a number of ADF skins from which you can extend when you
create a new ADF skin. Table 13-1 describes the differences between each of these ADF
skins.

The Base Skin page of the Create ADF Skin dialog that appears when you create an
ADF skin, as described in Creating an ADF Skin File, recommends the appropriate
ADF skin to extend from.

You can apply any of the ADF skins listed in Table 13-1 to your web application. For
more information, see Configuration Files for an ADF Skin. For a diagram that
illustrates the inheritance relationship between the ADF skins, see Inheritance
Relationship of the ADF Skins Provided by Oracle ADF .

Table 13-1 ADF Skins Provided by Oracle ADF

ADF Skin Description

sinpl e Contains only minimal formatting.

skyros-vl Extends the si npl e skin. It provides a colorful look and feel to applications that use
it.

alta-vl The al t a- v1 skin is the skin that permits web applications to take advantage of the

Oracle Alta Ul system. Use this skin or extend from it if you want your web
application to take advantage of the enhancements introduced in the Oracle Alta UI
system. The al t a- v1 skin is the default skin for web applications that you create
using this release.

For more information about the Oracle Alta Ul system, see http://
www.oracle.com/webfolder/ux/middleware/alta/index.html.

13.4 Versioning ADF Skins

You can specify version numbers for your ADF skins in the t ri ni dad- ski ns. xmi
file using the <ver si on> element. Use this optional capability if you want to
distinguish between ADF skins that have the same value for the <f am | y> element in
the t ri ni dad- ski ns. xnl file. Note that when you configure an application to use a

Advanced Topics 13-3

http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/index.html

Versioning ADF Skins

particular ADF skin, you do so by specifying values in the t ri ni dad- confi g. xm
file, as described in section Applying an ADF Skin to Your Web Application.

13.4.1 How to Version an ADF Skin

You specify a version for your ADF skin by entering a value for the <ver si on>
element in the t ri ni dad- ski ns. xni file.

To version an ADF skin:

1. In the Applications window, double-click the t ri ni dad- ski ns. xm file. By
default, this is in the Web Content/WEB-INF node.

2. In the Structure window, right-click the skin node for the ADF skin that you want
to version and choose Insert inside skin > version.

3. In the Insert version dialog, select true from the default list if you want your
application to use this version of the ADF skin when no value is specified in the
<ski n-ver si on> element of thet ri ni dad- confi g. xnl file, as described in
Applying an ADF Skin to Your Web Application.

4. Enter a value in the name field. For example, enter v1 if this is the first version of
the ADF skin.

5. Click OK.

13.4.2 What Happens When You Version ADF Skins

Example 13-1 shows an example t ri ni dad- ski ns. xii that references three ADF
skins (ski n1. deskt op, ski n2. deskt op, and ski n3. deskt op). Each of these ADF
skins have the same value for the <f ami | y> element (t est). The values for the child
elements of the <ver si on> elements distinguish between each of these ADF skins. At
runtime, an application that specifies t est as the value for the <ski n-fami | y>
element in the application's t ri ni dad- confi g. xm file uses ski nl. deskt op
because this ADF skin is configured as the default skin in the t ri ni dad- ski ns. xm
file (<def aul t >t r ue</ def aul t >). You can override this behavior by specifying a
value for the <ski n-ver si on> element in the t ri ni dad- confi g. xnl file, as
described in Applying an ADF Skin to Your Web Application. For example, if you
specify v2 as a value for the <ski n- ver si on> element in the t ri ni dad-

confi g. xn file, the application uses ski n2. deskt op instead of ski nl1. deskt op
that is defined as the default in the t r i ni dad- ski ns. xmi file.

If you do not specify the skin version to pick (using the <ski n- ver si on> element in
the tri ni dad- confi g. xnl file), then the application uses the skin that is defined as
the default using the <def aul t >t r ue</ def aul t > element in the t r i ni dad-

ski ns. xm file. If you do not specify a default skin, the application uses the last ADF
skin defined in the t r i ni dad- ski ns. xm file. In Example 13-1, the last ADF skin to
be defined is ski n3. deskt op.

Example 13-1 trinidad-skins.xml File with Versioned ADF Skin Files

<?xm version="1.0" encodi ng="wi ndows- 1252" ?>
<skins xm ns="http://myfaces. apache. org/trini dad/ skin">
<ski n>
<i d>ski nl. desktop</id>
<fam ly>test</famly>
<ext ends>skyr os-v1. deskt op</ ext ends>
<render-Kkit-id>org. apache. nyfaces. trini dad. deskt op</render-kit-id>
<styl e- sheet - nanme>ski ns/ ski n1/ ski nl. css</ styl e- sheet - name>

13-4 Developing ADF Skins

Versioning ADF Skins

<versi on>
<def aul t >t rue</ def aul t >
<nane>v1</ nane>
</ version>
</ skin>
<ski n>
<i d>ski n2. deskt op</i d>
<fam ly>test</famly>
<ext ends>ski nl. deskt op</ ext ends>
<render-Kkit-id>org. apache. nyfaces. trini dad. deskt op</render-kit-id>
<styl e- sheet - name>ski ns/ ski n2/ ski n2. css</ styl e- sheet - nane>
<ver si on>
<nane>v2</ nane>
</ version>
</ skin>
<ski n>
<i d>ski n3. deskt op</i d>
<fam ly>test</famly>
<ext ends>ski n2. deskt op</ ext ends>
<render-Kkit-id>org. apache. nyfaces. trini dad. deskt op</render-kit-id>
<styl e- sheet - name>ski ns/ ski n3/ ski n3. css</ styl e- sheet - nane>
<versi on>
<nane>v3</ nane>
</ version>
</ skin>
</ ski ns>

Advanced Topics 13-5

Versioning ADF Skins

13-6 Developing ADF Skins

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1)

	1 About Skinning a Web Application
	1.1 Introduction to Skinning a Web Application
	1.2 Overview of Developing an ADF Skin
	1.3 Taking a Look at an ADF Skin
	1.4 Inheritance Relationship of the ADF Skins Provided by Oracle ADF

	2 Working with the Theme Editor
	2.1 About the Theme Editor
	2.2 Setting Up and Starting the Theme Editor
	2.2.1 How to Set Up the Theme Editor
	2.2.2 How to Persist ADF Skins Created in the Theme Editor
	2.2.3 How to Start the Theme Editor

	2.3 Exporting an ADF Skin from the Theme Editor

	3 Working with ADF Skin Selectors
	3.1 About ADF Skin Selectors
	3.1.1 ADF Skin Selectors and Pseudo-Elements
	3.1.2 ADF Skin Selectors and Icon Images
	3.1.3 Grouped ADF Skin Selectors
	3.1.4 Descendant ADF Skin Selectors

	3.2 Pseudo-Classes in the ADF Skinning Framework
	3.3 Properties in the ADF Skinning Framework
	3.4 Accessing Selector Information from Within JDeveloper

	4 Working with ADF Skins in JDeveloper
	4.1 About the Editors for ADF Skins in JDeveloper
	4.2 Working with the ADF Skin Design Editor
	4.2.1 How to Change the Browser that Renders the Design Editor's Sample Pages

	4.3 Working with the ADF Skin Selectors Editor
	4.3.1 About the Selector Tree
	4.3.2 Interactive Preview in the Selectors Editor

	4.4 Working with the Properties Window
	4.5 Navigating ADF Skins

	5 Creating the Source Files for an ADF Skin
	5.1 About Creating an ADF Skin
	5.2 Creating an ADF Skin File
	5.2.1 How to Create an ADF Skin in JDeveloper
	5.2.2 What Happens When You Create an ADF Skin

	5.3 Importing One or More ADF Skins Into the Current ADF Skin
	5.4 Adding ADF Skins from an ADF Library JAR
	5.4.1 How to Add an ADF Skin from an ADF Library JAR
	5.4.2 What Happens When You Import an ADF Skin from an ADF Library JAR

	6 Working with Component-Specific Selectors
	6.1 About Working with Component-Specific Selectors
	6.2 Changing ADF Faces Components' Selectors
	6.3 Changing ADF Data Visualization Components' Selectors
	6.4 Changing a Component-Specific Selector
	6.4.1 How to Change a Component-Specific Selector
	6.4.2 What Happens When You Change a Component-Specific Selector

	6.5 Configuring ADF Skin Properties to Apply to Messages
	6.5.1 How to Configure an ADF Skin Property to Apply to a Message
	6.5.2 What Happens When You Configure ADF Skin Properties to Apply to Messages

	6.6 Configuring an ADF Skin for Accessibility
	6.6.1 How to Configure an ADF Skin for Accessibility

	7 Working with Images and Color in Your ADF Skin
	7.1 About Working with Images and Color in Your ADF Skin
	7.2 Changing Images and Colors in the ADF Skin Design Editor
	7.3 Working with Anchor Colors in an ADF Skin
	7.4 Changing an Image for a Component Selector
	7.4.1 How to Copy an Image into the Project
	7.4.2 What Happens When You Copy an Image into the Project

	8 Working With Text in an ADF Skin
	8.1 About Working with Text in an ADF Skin
	8.2 Using Text From Your Own Resource Bundle
	8.2.1 How to Specify an Additional Resource Bundle for an ADF Skin
	8.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin

	9 Working With Global Selector Aliases
	9.1 About Global Selector Aliases
	9.2 Creating a Global Selector Alias
	9.2.1 How to Create a Global Selector Alias
	9.2.2 What Happens When You Create a Global Selector Alias

	9.3 Modifying a Global Selector Alias
	9.3.1 How to Modify a Global Selector Alias

	9.4 Applying a Global Selector Alias
	9.4.1 How to Apply a Global Selector Alias
	9.4.2 What Happens When You Apply a Global Selector Alias
	9.4.3 What You May Need to Know About Applying a Global Selector Alias

	9.5 Referencing a Property Value from Another Selector
	9.5.1 How to Reference a Property Value from Another Selector
	9.5.2 What Happens When You Reference a Property Value from Another Selector

	10 Working with Style Classes
	10.1 About Style Classes
	10.2 Creating a Style Class
	10.2.1 How to Create a Style Class
	10.2.2 What Happens When You Create a Style Class

	10.3 Modifying a Style Class
	10.3.1 How to Modify a Style Class

	10.4 Configuring a Style Class for a Specific Instance of a Component
	10.4.1 How to Configure a Style Class for a Specific Instance of a Component
	10.4.2 What Happens When You Configure a Style Class for a Specific Instance of a Component

	11 Working with At-Rules
	11.1 About At-Rules in the ADF Skinning Framework
	11.2 Working with Server-Side At-Rules
	11.3 Working with Client-Side At-Rules
	11.4 Creating At-Rules in an ADF Skin
	11.4.1 How to Create an At-Rule
	11.4.2 What Happens When You Create an At-Rule
	11.4.3 What Happens at Runtime: How the ADF Skinning Framework Applies At-Rules

	12 Applying the Finished ADF Skin to Your Web Application
	12.1 About Applying a Finalized ADF Skin to an Application
	12.2 Testing Changes in Your ADF Skin
	12.2.1 How to Set Parameters for Testing Your ADF Skin
	12.2.2 What Happens When You Set Parameters for Testing Your ADF Skin

	12.3 Packaging an ADF Skin into an ADF Library JAR
	12.3.1 How to Package an ADF Skin into an ADF Library JAR
	12.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

	12.4 Applying an ADF Skin to Your Web Application
	12.4.1 How to Apply an ADF Skin to an Application
	12.4.2 What Happens When You Apply an ADF Skin to an Application

	12.5 Applying an ADF Skin to a Running Web Application
	12.5.1 How to Configure your Web Application to Accept an Updated ADF Skin
	12.5.2 How to Deploy an ADF Library JAR to an MBean Server
	12.5.3 What Happens When You Apply an ADF Skin to a Running Application

	13 Advanced Topics
	13.1 Referring to URLs in an ADF Skin's CSS File
	13.2 Configuration Files for an ADF Skin
	13.3 ADF Skins Provided by Oracle ADF
	13.4 Versioning ADF Skins
	13.4.1 How to Version an ADF Skin
	13.4.2 What Happens When You Version ADF Skins

