
[image: Oracle Corporation]

Oracle® Fusion Middleware

Designing Business Rules with Oracle Business Process Management

12c (12.2.1)

E59333-02

April 2016

Documentation for developers and business users that provides information about using and developing applications involving facts, rules, and decision tables for Oracle Business Rules by using design-time tools, such as Oracle JDeveloper with Oracle SOA extension, and a runtime application such as Oracle SOA Composer.

Oracle Fusion Middleware Designing Business Rules with Oracle Business Process Management, 12c (12.2.1)

E59333-02

Copyright © 2005, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

What's New in This Guide

	New and Changed Features for 12c (12.2.1)

1 Overview of Oracle Business Rules

	1.1 Introduction to Oracle Business Rules
	1.1.1 Why Use Oracle Business Rules?
	1.1.2 Understanding Oracle Business Rules Terminology
	1.1.2.1 What Are Facts and Valuesets?
	1.1.2.2 What Are Rulesets?
	1.1.2.3 What Are Dictionaries?
	1.1.2.4 What Are Globals?
	1.1.2.5 What Are Decision Functions?
	1.1.2.6 What Are Decision Points?
	1.1.2.7 What Are Business Phrases?

	1.2 Understanding Oracle Business Rules Formats
	1.2.1 Rules
	1.2.1.1 What Are Rule Conditions?
	1.2.1.2 What Are Rule Actions?
	1.2.1.3 How are Verbal Rules Different from General Rules?

	1.2.2 Decision Tables

	1.3 Oracle Business Rules Runtime and Design Time Elements
	1.3.1 Decision Component (Business Rules) in a SOA Composite Application
	1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
	1.3.3 Oracle Business Rules RL Language
	1.3.4 Oracle Business Rules SDK
	1.3.5 Rules Designer
	1.3.6 Oracle SOA Composer Application
	1.3.7 Oracle Business Process Composer Application

	1.4 Oracle Business Rules Engine Architecture
	1.4.1 Declarative Rules
	1.4.2 The Rete Algorithm
	1.4.3 The Non-Rete Algorithm
	1.4.3.1 Configuring the Non-Rete Algorithm

	1.4.4 What Is Working Memory?
	1.4.5 Rule Firing and Rule Sessions

2 Working with Data Model Elements

	2.1 Introduction to Working with Data Model Elements
	2.2 Introduction to Dictionaries and Dictionary Links
	2.2.1 Working with Dictionaries and Dictionary Links
	2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
	2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
	2.2.4 How to View and Edit Dictionary Settings
	2.2.4.1 How to Change the Dictionary Alias
	2.2.4.2 How to Edit the Preferences tab
	2.2.4.3 How to Edit the Data Model tab

	2.2.5 How to Link to a Dictionary
	2.2.6 How to Update a Linked Dictionary
	2.2.7 What You Need to Know About Dictionary Linking
	2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies
	2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary
	2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL
	2.2.11 How to Compare or Merge Two or More Dictionaries
	2.2.11.1 How to See Differences Between Dictionaries
	2.2.11.2 How to Merge Dictionaries

	2.3 Working with Oracle Business Rules Globals
	2.3.1 How to Add Oracle Business Rules Globals
	2.3.2 How to Edit Oracle Business Rules Globals
	2.3.3 What You Need to Know About the Final and Constant Options

	2.4 Working with Decision Functions
	2.5 Introduction to Oracle Business Rules Functions
	2.5.1 How to Add an Oracle Business Rules Function

	2.6 Localizing Oracle Business Rule Resources
	2.6.1 How to Localize the Resources in Oracle Business Rules

3 Working with Facts and Value Sets

	3.1 Introduction to Working with Facts and Value Sets
	3.2 Working with XML Facts
	3.2.1 How to Create XML fact types
	3.2.2 How to Import the XML Schema and Add XML Facts
	3.2.3 How to Display and Edit XML Facts
	3.2.4 How to Reload XML Facts with Updated Schema
	3.2.5 What You Need to Know About XML Facts

	3.3 Working with Java Facts
	3.3.1 How to Import Java Classes and Define Java Facts
	3.3.2 How to Display and Edit Java Facts
	3.3.3 What You Need to Know About Java Facts

	3.4 Working with RL Facts
	3.4.1 How to Define RL Facts
	3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
	3.4.3 What You Need to Know About RL Facts

	3.5 Working with ADF Business Components Facts
	3.5.1 How to Import and Define ADF Business Components Facts
	3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
	3.5.3 What You Need to Know About ADF Business Components Circular References
	3.5.4 What You Need to Know About ADF Business Components Facts

	3.6 Working with Value Sets
	3.6.1 How to Define a List of Values Global Value Set
	3.6.2 How to Define a List of Ranges Global Value Set
	3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML Types
	3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java Types
	3.6.5 What You Need to Know About List of Values Value Sets
	3.6.6 What You Need to Know About Range Value Sets
	3.6.7 What You Need to Know About the Value Set Allowed in Actions Option
	3.6.8 What You Need to Know About Values

	3.7 Associating a Value Set with Business Terms
	3.7.1 How to Associate a Value Set with a Fact Property
	3.7.2 How to Associate a Value Set with Functions or Function Arguments
	3.7.2.1 How to Associate a Value Set with a Function Argument

	3.7.3 How to Associate a Value Set with a Global Value

4 Working with Rulesets and Rules

	4.1 Introduction to Working with Rulesets, Rules, and Business Phrases
	4.2 Working with Rulesets
	4.2.1 How to Create a Ruleset
	4.2.2 How to Set the Effective Date for a Rule Set
	4.2.3 How to Set the Effective Date for a Rule
	4.2.4 How to Use a Filter to Display Matching Rules in a Ruleset
	4.2.5 Using Auto Complete when Selecting Component Values from a List

	4.3 Working with Rules
	4.3.1 How to Add General Rules
	4.3.2 How to Add Verbal Rules
	4.3.3 How to Define a Test in a Rule
	4.3.4 How to Define a Test in a Verbal Rule
	4.3.5 What You Need to Know About Oracle Business Rules Test Variables
	4.3.6 How to Define Range Tests in Rules
	4.3.7 How to Define Set Tests in Rules
	4.3.8 How to Define an Action in a General Rule
	4.3.8.1 Basic Actions in a General Rule

	4.3.9 How to Define an Action in a Verbal Rule
	4.3.10 What You Need to Know About Rule Actions
	4.3.11 What You Need to Know About Oracle Business Rules Performance Tuning

	4.4 Introduction to Verbal Rules and Business Phrases
	4.4.1 Working with Business Phrases
	4.4.1.1 Business Phrases Tab
	4.4.1.2 Draft Business Phrases and Verbal Rules

	4.4.2 How to Create Business Phrases
	4.4.2.1 Example Business Phrase Creation Scenario
	4.4.2.2 Translating Business Phrases

	4.4.3 Choosing or Adding Business Phrases in Verbal Rules
	4.4.3.1 Instantiating New Business Phrases While Authoring a Verbal Rule
	4.4.3.2 Choosing Business Phrases While Creating a Verbal Rule
	4.4.3.3 Derived Business Phrases
	4.4.3.4 Choosing Which Business Phrases to See in the List

	4.5 Validating Dictionaries
	4.5.1 Understanding Data Model Validation
	4.5.2 Understanding Rule Validation
	4.5.3 Understanding Decision Table Validation
	4.5.4 How to Validate a Dictionary

	4.6 Using Advanced Settings with Rules and Decision Tables
	4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
	4.6.2 How to Select the Advanced Mode Option
	4.6.3 How to Select the Active Option
	4.6.4 How to Select the Logical Option
	4.6.5 How to Set a Priority for a Rule
	4.6.6 How to Specify Effective Dates

	4.7 Working with Nested Tests
	4.8 Working with Advanced Mode Rules
	4.8.1 How to Use Advanced Mode Pattern Matching Options
	4.8.2 How to Use Advanced Mode Matched Fact Naming
	4.8.3 How to Use Advanced Mode Action Forms
	4.8.3.1 Advanced Mode Action Options in Rule Designer

	4.8.4 How to Use Advanced Mode Aggregate Conditions
	4.8.4.1 Using Aggregate Functions

	4.8.5 What You Need to Know About Advanced Mode Rules
	4.8.5.1 How to Clear Advanced Mode Option

	4.9 Working with Extended Tests
	4.9.1 Extended Test Forms

	4.10 Working with Tree Mode Rules
	4.10.1 Sample Abbreviated PO XML Instance
	4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode)
	4.10.3 Understanding Advanced Tree Mode Rules
	4.10.4 How to Create Simple Tree Mode Rules
	4.10.5 How to Create Advanced Tree Mode Rules
	4.10.6 What You Need to Know About Tree Mode Rules

	4.11 Using Date Facts, Date Functions, and Specifying Effective Dates
	4.11.1 How to Use the Current Date Fact
	4.11.2 What You Need to Know About Effective Dates
	4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

	4.12 Introduction to Expression Builder
	4.12.1 How to Use the Expression Builder
	4.12.2 What You Need to Know About Working with Expressions

	4.13 Using Value Sets as Constraints for Options Values in Rules
	4.13.1 How to Use a List of Ranges Value Set as a Constraint for a Business Term
	4.13.2 How to Use a List of Values Value Set as a Constraint for a Fact Property
	4.13.3 How to Use Value Sets to Provide Options for Test Expressions

	4.14 Importing Runtime Rules Changes From Repository Into JDeveloper
	4.15 How to Model Rules When the Data Model is Deep

5 Working with Decision Tables

	5.1 Introduction to Working with Decision Tables
	5.1.1 What is a Decision Table?
	5.1.1.1 What You Need to Know About Decision Table Conditions
	5.1.1.2 What You Need to Know About Decision Table Actions
	5.1.1.3 What You Need to Know About Decision Table Rules

	5.1.2 Understanding Condition Cell Values
	5.1.3 Understanding Action Cell Values
	5.1.4 What You Need to Know About Decision Table Loops

	5.2 Creating Decision Tables
	5.2.1 How to Create a Decision Table
	5.2.2 How to Add Condition Rows to a Decision Table
	5.2.3 How to Use or Specify the Value Set for a Decision Table Condition
	5.2.4 How to Add Actions to a Decision Table
	5.2.4.1 How to Set Values for Action Cells in a Decision Table
	5.2.4.2 How to Deselect an Action Cell in a Decision Table

	5.2.5 How to Add a Rule to a Decision Table
	5.2.6 How to Define Tests in a Decision Table

	5.3 Introduction to Decision Table Operations
	5.3.1 Understanding Decision Table Split and Compact Operations
	5.3.1.1 Understanding Decision Table Move Operations
	5.3.1.2 Understanding Decision Table Gap Checking
	5.3.1.3 Understanding Decision Table Conflict Analysis

	5.3.2 How to Compact or Split a Decision Table
	5.3.3 How to Merge or Split Conditions in a Decision Table
	5.3.4 How to Use the Condition Cell Operations
	5.3.4.1 How to Merge Sibling Cells in a Condition in a Decision Table
	5.3.4.2 How to Split a Cell in a Condition in a Decision Table
	5.3.4.3 How to a "Do Not Care" Value for a Cell in a Condition in a Decision Table
	5.3.4.4 How to Select all Value Sets to Specify a "Do Not Care" Value for a Cell in a Condition:

	5.3.5 How to Perform Decision Table Gap Checking
	5.3.6 How to Perform Decision Table Manual Conflict Resolution
	5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy
	5.3.8 How to Set the Decision Table Ignore Conflicts Policy

	5.4 Creating and Running an Oracle Business Rules Decision Table Application
	5.4.1 How to Obtain the Source Files for the Order Approval Application
	5.4.2 How to Create an Application for Order Approval
	5.4.3 How to Create a Business Rule Service Component for Order Approval
	5.4.4 How to View Data Model Elements for Order Approval
	5.4.5 How to Add Value Sets to the Data Model for Order Approval
	5.4.5.1 How to Add CreditScore Value Set to the Data Model

	5.4.6 How to Associate Value Sets with Order and CreditScore Properties
	5.4.7 How to Add a Decision Table for Order Approval
	5.4.7.1 How to Create an action in a Decision Table
	5.4.7.2 Split the Cells in the Decision Table and Add Actions
	5.4.7.3 How to Add Actions for Each Rule in the Decision Table
	5.4.7.4 Compact the Decision Table
	5.4.7.5 Replace Several Specific Rules with One General Rule
	5.4.7.6 Add a General Rule
	5.4.7.7 How to Enable the Auto Override Conflict Resolution Policy

	5.4.8 How to Check the Business Rule Validation Log for Order Approval
	5.4.9 How to Deploy the Order Approval Application
	5.4.10 How to Test the Order Approval Application

	5.5 Editing Decision Tables in Microsoft Excel
	5.5.1 Understanding What is Exported
	5.5.2 How to Export Decision Tables
	5.5.3 How to Import Edited Decision Tables Back to the Dictionary
	5.5.4 How to Edit Decision Tables in Excel
	5.5.4.1 Adding or Deleting Rules and Merging or Splitting Cells
	5.5.4.2 Adding or Removing Value Sets
	5.5.4.3 Showing or Hiding Value Sets and Editing the Description
	5.5.4.4 Setting Preferences
	5.5.4.5 Using Simple or Advanced Mode
	5.5.4.6 Hiding or Showing the Readme Worksheet
	5.5.4.7 Editing Condition Cells
	5.5.4.8 Editing Actions
	5.5.4.9 Editing Expressions
	5.5.4.10 Editing Action Expression Parameters
	5.5.4.11 Editing Descriptions
	5.5.4.12 Using the Auto-Addition Feature
	5.5.4.13 Aliases of Values in the Value Sets Worksheet
	5.5.4.14 Syncing Value Sets and Conditions

6 Working with Decision Functions

	6.1 Introduction to Decision Functions
	6.2 Working with Decision Functions
	6.2.1 How to Edit an Existing Decision Function
	6.2.2 How to Change the Order of Inputs
	6.2.3 How to Change the Order of Outputs
	6.2.4 How to Edit a Decision Function

	6.3 What You Need to Know About Rule Firing Limit Option for Debugging Rules
	6.4 What You Need to Know to About Decision Function Arguments
	6.5 What You Need to Know About the Decision Function Stateless Option

7 Testing and Validating Business Rules

	7.1 Overview
	7.1.1 Components of the Test Feature

	7.2 Testing Rules in JDeveloper
	7.2.1 How to Create and Manage Test Suites and Cases
	7.2.2 How to Create Test Templates
	7.2.3 How to Run Test Suites or Cases
	7.2.4 How to Run Ad-hoc Tests from Test Templates
	7.2.5 How to Run Tests for a Specific Decision Function

	7.3 Testing Rules in Business Process Composer
	7.4 Testing Rules in SOA Composer
	7.4.1 How to Create and Manage Test Suites and Cases
	7.4.2 How to Create Test Templates
	7.4.3 How to Run Test Suites or Cases
	7.4.4 How to Run Ad-hoc Tests from Test Templates
	7.4.5 How to Run Tests for a Specific Decision Function

	7.5 Testing Decision Functions Using a Rules Function
	7.5.1 What You Need to Know About Testing Decision Functions

	7.6 Testing Decision Services in SOA Composites

8 Working with Rules in Standalone (Non SOA/BPM) Scenarios

	8.1 Loading a Dictionary from the Repository
	8.2 Executing a Rule Dictionary
	8.3 Introduction to the Rules SDK Decision Point API
	8.3.1 Working with Decision Point API
	8.3.2 How to Obtain the Car Rental Sample Application
	8.3.3 How to Open the Car Rental Sample Application and Project

	8.4 Creating a Dictionary for Use with a Decision Point
	8.4.1 How to Create Data Model Elements for Use with a Decision Point
	8.4.2 How to View a Decision Function to Call from the Decision Point
	8.4.3 How to Create Rules or Decision Tables for the Decision Function
	8.4.4 What You Need to Know About Using Car Rental Sample with a Decision Table

	8.5 Creating a Java Application Using Rules SDK Decision Point
	8.5.1 How to Add a Decision Point Using Decision Point Builder
	8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary
	8.5.3 How to Use Executor Service to Run Threads with Decision Point
	8.5.4 How to Create and Use Decision Point Instances
	8.5.4.1 Sample Code to Create a Decision Point Instance with getInstance()

	8.6 Running the Car Rental Sample
	8.6.1 Sample Output from Car Rental

	8.7 What You Need to Know About Using Decision Point in a Production Environment
	8.8 What You Need to Know About Decision Point and Decision Tracing
	8.8.1 Sample Usage of Decision Tracing

9 Creating a Rule-enabled Non-SOA Java EE Application

	9.1 Introduction to the Grades Sample Application
	9.2 Creating an Application and a Project for Grades Sample Application
	9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
	9.2.2 How to Develop Accessible ADF Faces Pages
	9.2.3 How to Create the Grades Project
	9.2.4 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
	9.2.4.1 How to generate JAXB 2.0 content model from grades schema

	9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project

	9.3 Creating Data Model Elements and Rules for the Grades Sample Application
	9.3.1 How to Create Value Sets for Grades Sample Application
	9.3.2 How to Associate a Value Set with a Fact Property
	9.3.3 How to Add a Decision Table for Grades Sample Application
	9.3.4 How to Add an Action to a Decision Table
	9.3.5 How to Add Rules in the Decision Table for Grades Sample Application
	9.3.6 How to Rename the Decision Function for Grades Sample Application

	9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
	9.4.1 How to Add a Servlet to the Grades Project

	9.5 Adding an HTML Test Page for Grades Sample Application
	9.6 Preparing the Grades Sample Application for Deployment
	9.6.1 How to Create the WAR File for the Grades Sample Application
	9.6.2 How to Add the Rules Library to the Grades Sample Application
	9.6.3 How to Add the MDS Deployment File to the Grades Sample Application
	9.6.4 How to Add the EAR File to the Grades Sample Application

	9.7 Deploying and Running the Grades Sample Application
	9.7.1 How to Deploy to Grades Sample Application
	9.7.2 How to Run the Grades Sample Application

10 Working with Oracle Business Rules and ADF Business Components

	10.1 Introduction to Using Business Rules with ADF Business Components
	10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
	10.1.2 Understanding Oracle Business Rules Decision Point Action Type
	10.1.2.1 Sample ActionType Implementation

	10.2 Using Decision Points with ADF Business Components Facts
	10.2.1 How to Call a Decision Point with ADF Business Components Facts
	10.2.1.1 Setting the Decision Point Transaction
	10.2.1.2 Setting Runtime Properties
	10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule
	10.2.1.4 What You Need to Know About Decision Point Invocation
	10.2.1.5 Sample to Invoke a Decision Point Using setinputs Method
	10.2.1.6 Sample to Invoke a Decision Point Using setViewObject Method

	10.2.2 How to Call a Decision Function with Java Decision Point Interface
	10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

	10.3 Creating a Business Rules Application with ADF Business Components Facts
	10.3.1 How to Create an Application That Uses ADF Business Components Facts
	10.3.2 How to Create ADF Business Components Application for Business Rules
	10.3.3 How to Update View Object Tuning for Business Rules Sample Application
	10.3.4 How to Create a Dictionary for Oracle Business Rules
	10.3.5 How to Add Decision Point Dictionary Links
	10.3.6 How to Import the ADF Business Components Facts
	10.3.6.1 How to Mark a Property as Non-visible
	10.3.6.2 How to Set Alias for DepartmentsView and EmployeesView

	10.3.7 How to Add and Run the Outside Manager Ruleset
	10.3.7.1 How to Add the Outside Manager Ruleset and Add a Decision Function
	10.3.7.2 How to Create the ActionType Java Implementation Class
	10.3.7.3 How to Import the Message Action Java Fact
	10.3.7.4 How to Add the Find Managers Rule
	10.3.7.5 How to Add the Outside Manager Finder Class
	10.3.7.6 How to Update ADF META INF for Local Dictionary Access
	10.3.7.7 How to Copy Definitions/Dictionary to MDS Accessible Location
	10.3.7.8 How to Build and Run the Project to Check the Outside Manager Finder

	10.3.8 How to Add and Run the Department Manager Ruleset
	10.3.8.1 How to Add the Department Manager Finder Ruleset
	10.3.8.2 How to Add the Find Rule in the Department Manager Finder Ruleset
	10.3.8.3 How to Add Retract Employees Ruleset
	10.3.8.4 How to Add the Find Department Managers Decision Function
	10.3.8.5 How to Add the Department Manager Finder Java Class
	10.3.8.6 How to Copy the Dictionary to an MDS Accessible Location
	10.3.8.7 How to Build and Run the Project to Check the Find Managers Rule

	10.3.9 How to Add and Run the Raises and Retract Employees Rulesets
	10.3.9.1 How to Add the Raises Ruleset
	10.3.9.2 How to Create the Raise ActionType Java Implementation Class
	10.3.9.3 How to Import the Raise Action Java Fact
	10.3.9.4 How to Add the 12 Year Raise Rule
	10.3.9.5 How to Add the Employee Raises Decision Function
	10.3.9.6 How to Add the Employee Raises Java Class
	10.3.9.7 How to Copy Dictionary to MDS Accessible Location
	10.3.9.8 How to Build and Run the Project to Check the Raises Rule

11 Working with Decision Components in SOA Applications

	11.1 Introduction to Decision Components
	11.2 Working with a Decision Component
	11.2.1 Working with Decision Component Metadata
	11.2.2 Working with Decision Components that Expose a Decision Function
	11.2.3 Using Stateful Interactions with a Decision Component
	11.2.4 What You Need to Know About Stateful Interactions with Decision Components

	11.3 Decision Service Architecture

12 Using Oracle SOA Composer with Oracle Business Rules at Runtime

	12.1 Introduction to Oracle SOA Composer
	12.1.1 Creating and Publishing Sessions
	12.1.1.1 Publishing Changes for an Oracle Business Rules Dictionary
	12.1.1.2 Creating a Bookmark
	12.1.1.3 Reviewing Dictionary Settings

	12.1.2 Using Oracle SOA Composer User Authentication
	12.1.3 What You Need to Know About SOA Composer Access Control and User Authentication

	12.2 Setting Accessibility Options
	12.2.1 How to Set Accessibility Features Before Logging In
	12.2.2 How to Set Accessibility Options After Logging In

	12.3 Opening and Viewing an Oracle Business Rules Dictionary
	12.3.1 How to View and Edit Rulesets
	12.3.1.1 How to Add Verbal Rules in SOA Composer

	12.3.2 How to View and Edit Value Sets
	12.3.3 How to View and Edit Globals
	12.3.4 How to View and Edit Business Phrases
	12.3.5 How to View and Edit Tests
	12.3.6 How to View Explorer
	12.3.7 How to View and Edit Facts
	12.3.8 How to View Decision Functions
	12.3.9 How to View Linked Dictionary Names
	12.3.10 How to Work With Dictionary Links in an Oracle Business Rules Dictionary
	12.3.11 How to View and Edit Translations

	12.4 Getting Started with Editing a Dictionary
	12.4.1 What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer
	12.4.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements
	12.4.3 How to Edit Globals in an Oracle Business Rules Dictionary
	12.4.4 How to Edit Value Sets in an Oracle Business Rules Dictionary
	12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary
	12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.5 Editing Rules in an Oracle Business Rules Dictionary
	12.5.1 Using the Rulesets Tab
	12.5.2 How to Edit Rules in an Oracle Business Rules Dictionary
	12.5.3 How to Add a Rule
	12.5.4 How to Delete a Rule
	12.5.5 How to Show and Edit Advanced Settings for Rules
	12.5.6 How to Add Rule Conditions
	12.5.7 How to Delete Rule Conditions
	12.5.8 How to Modify Rule Conditions
	12.5.9 How to Add Rule Actions
	12.5.10 How to Delete Rule Actions
	12.5.11 How to Modify Rule Actions
	12.5.12 How to Work with Advanced Mode Rules
	12.5.12.1 Working with Advanced Mode Options

	12.5.13 How to Work with Extended Tests
	12.5.14 How to Work with Tree Mode Rules
	12.5.15 What You May Need to Know About Oracle Business Rules Editor Declarative Component
	12.5.16 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.5.17 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.6 Using the Oracle SOA Composer Browser Windows
	12.6.1 Expression Builder
	12.6.2 Condition Browser
	12.6.3 Date Browser
	12.6.4 Right Operand Browser

	12.7 Editing Decision Tables in an Oracle Business Rules Dictionary
	12.7.1 Adding a Decision Table
	12.7.2 Adding Condition Rows to a Decision Table
	12.7.3 Adding Actions to a Decision Table
	12.7.4 Adding Rules to a Decision Table
	12.7.4.1 Editing Decision Table Cells
	12.7.4.2 Controlling the Order of Rules in a Decision Table

	12.7.5 Deleting Rules in a Decision Table
	12.7.6 Defining Tests in a Decision Table
	12.7.7 Splitting and Compacting a Decision Table
	12.7.8 Checking for Missing Rules in a Decision Table
	12.7.9 Performing Conflict Resolution in Decision Tables
	12.7.10 Switching From Rows to Columns
	12.7.11 Working with Advanced Mode Options in a Decision Table
	12.7.12 Deleting a Decision Table
	12.7.13 Editing Decision Tables in Microsoft Excel
	12.7.13.1 Understanding What is Exported
	12.7.13.2 How to Export Decision Tables
	12.7.13.3 How to Import Decision Tables to the Dictionary
	12.7.13.4 How to Edit Decision Tables in Excel

	12.7.14 What You Need to Know About Rule Test Variables

	12.8 Comparing and Merging Oracle Business Rules Dictionaries
	12.8.1 How to see Differences Between Dictionaries

	12.9 Localizing Names of Resources in Oracle Business Rules
	12.9.1 How to Localize the Alias of a Oracle Business Rules Component

	12.10 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates
	12.11 Validating and Diagnosing an Oracle Business Rules Dictionary
	12.11.1 Understanding the Validation Log Tab
	12.11.2 Understanding the Diagnostics Tab
	12.11.3 Understanding the History Center Tab
	12.11.4 Understanding the Save Log Tab

	12.12 Working with Tasks
	12.12.1 How to View Task Metadata
	12.12.2 How to Configure a Task or an AMX Rule Metadata
	12.12.2.1 Configuring Event-Driven Settings
	12.12.2.2 Configuring Data-Driven Settings (Rule or Condition)

Appendices

A Oracle Business Rules Files and Limitations

	A.1 Rules Designer Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Alias Naming
	A.1.4 XML Schema Target Package Naming

B Oracle Business Rules Built-in Classes and Functions

	B.1 String Classes
	B.2 List Classes
	B.3 Numeric Classes
	B.4 Time and Duration Classes
	B.5 Miscellaneous Classes
	B.6 Functions

C Oracle Business Rules Frequently Asked Questions

	C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?
	C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
	C.3 How Does a RuleSession Handle Concurrency and Synchronization?
	C.3.1 Sample RuleSession Shared Objects
	C.3.2 Sample RuleSession Producer Code
	C.3.3 Sample RuleSession Consumer Code

	C.4 How Do I Correctly Express a Self-Join?
	C.4.1 Sample Find All Combinations of Fact F
	C.4.2 Sample Finding Combinations of Fact F
	C.4.3 Sample Fast Complete Comparison

	C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
	C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?
	C.7 How Do I Put Java Code in a Rule?
	C.8 Can I Use Java Based Facts in a Decision Service with BPEL?
	C.9 How Do I Enable Debugging in a BPEL Decision Service?
	C.10 How Do I Support Versioning with Oracle Business Rules?
	C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?
	C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?
	C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?
	C.14 How Do I Use Rules SDK to Include a null in an Expression?
	C.15 Is WebDAV Supported as a Repository to Store a Dictionary?
	C.16 Using a Source Code Control System with Rules Designer

D Oracle Business Rules Troubleshooting

	D.1 Getter and Setter Methods are not Visible
	D.2 Java Class with Only a Property Setter
	D.3 Runtime NoClassDefFound Error
	D.4 RL Specific Keyword Naming Conflict Errors
	D.5 java.lang.IllegalAccessError from Business Rules Service Runtime
	D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
	D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?
	D.8 How Are Decision Service Input Output Element Types Restricted?
	D.9 How Are Decision Service Input Output Schema Restricted?
	D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?

E Working with Oracle Business Rules and JSR-94 Execution Sets

	E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
	E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets
	E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
	E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
	E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

	E.3 Using the JSR-94 Interface with Oracle Business Rules
	E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
	E.3.2 Creating a Rule Session with createRuleSession
	E.3.3 Working with JSR-94 Metadata
	E.3.4 Using Oracle Business Rules JSR-94 Extensions
	E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
	E.3.4.2 Invoking an RL Language Function in JSR-94

Preface

This guide describes how to design Oracle Business Rules.

Audience

Designing Business Rules with Oracle Business Process Management is intended for application programmers, system administrators, and other users who perform the following tasks:

	Create Oracle Business Rules programs

	Modify or customize existing Oracle Business Rules programs

	Create Java applications using rules programs

	Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language fundamentals.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documentation

For more information, see the following Oracle Resources:

	Rules Language Reference for
Oracle Business Process Management

	Managing and Monitoring Processes
with Oracle Business Process Management

	Developing SOA Applications
with Oracle SOA Suite

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface

	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	italic

	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	monospace

	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide

This section summarizes the new features and significant product changes for Oracle Business Rules in the Oracle Fusion Middleware Release 12c (12.2.1) release.

Screens shown in this guide may differ from your implementation, depending on the skin used. Any differences are cosmetic.

Follow the pointers into this guide to get more information about the features and how to use them. This document is the new edition of the formerly titled Oracle Fusion Middleware User's Guide for Oracle Business Rules.

For a list of known issues (release notes), see the “Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html

New and Changed Features for 12c (12.2.1)

Oracle Rules Language release 12c (12.2.1) includes the following new and changed features:

	Support for a new non-Rete Business Rules algorithm. See The Non-Rete Algorithm.

	Support for business phrases and verbal rules. Verbal rules work hand in hand with business phrases to provide a flexible way author rules using natural language statements to express rule logic in domain specific sentences that are similar to spoken language. See Introduction to Verbal Rules and Business Phrases.

	Support for a simpler way to test rules with complex input. The test feature enables both developers and business users to quickly check that a rule satisfies the expected behavior or, if modified, to see if a rule regresses existing functionality. See Testing and Validating Business Rules

	Support for comparing and merging two or more dictionaries. See How to Compare or Merge Two or More Dictionaries.

	Support for editing Decision Tables in Microsft Excel. Business users may find that editing Decision Tables is easier to do in Microsoft Excel. New functionality enables both developers and business users to export and edit Decision Tables in Excel and then import the Decision Tables back into the dictionary. See Editing Decision Tables in Microsoft Excel.

1 Overview of Oracle Business Rules

This chapter describes the concepts of business rules and provides an overview of the Oracle Business Rules runtime and design-time elements such as facts, valuesets, rulesets, decision tables, Oracle BP Composer and Oracle SOA Composer. It also describes the Oracle Business Rules engine architecture.

This chapter includes the following sections:

	Introduction to Oracle Business Rules

	Understanding Oracle Business Rules Formats

	Oracle Business Rules Runtime and Design Time Elements

	Oracle Business Rules Engine Architecture

For more information, see:

	Rules Language Reference for Oracle Business Process Management

	Oracle Fusion Middleware Java API Reference for Oracle Business Rules

	Developing SOA Applications with Oracle SOA Suite

1.1 Introduction to Oracle Business Rules

Oracle Business Rules makes processes and applications more flexible by enabling business analysts and non-developers to easily define and modify business logic without programming. By leveraging the unified JDeveloper design platform, and maintaining business rules outside of the related process or application, Oracle Business Rules provides faster, easier rule modifications and reduces subsequent redeployment costs.

Figure 1-1 Oracle Business Rules
[image: Description of Figure 1-1 follows]

Using Oracle Business Rules you can automate policies, computations, and reasoning while separating rule logic from underlying application code. This allows more agile rule maintenance and empowers business analysts to modify rule logic without programmer assistance and without interrupting business processes.

As a business analyst, a user can model a rule in Process Composer and further refine and complete the process in Process Studio.

An IT developer uses the BPM Studio and talk to its business catalogue with well known data types, services, and human tasks implementation. The developer, then, creates a project and publishes it into the business catalogue. Then a business analyst or a business user can go in Process Composer and check out the projects in business catalogue and make changes to the existing process models.

While some users want to model simple calculations with a handful of rules, others use rules for complex decision making and hence a need to have a methodology to approach the decision modeling problem.

Figure 1-2 Oracle Business Rules Components
[image: Description of Figure 1-2 follows]

The Oracle Business Rules includes the rule editor, rule browser, rules engine and rule repository for rule discovery, governance, versioning, traceability and availability across the enterprise. Business rules are defined using the Business Rules editor and stored and managed in a central Business Rules repository. You can reference pre-defined business process rules within the modeler. The Business Rules activity in the business process model gets converted to a decision service that in turn invokes the business rules engine in the executable business process. Business users can change these business policies on the fly via an intuitive web browser interface without having to redeploy or re-implement the business process.

1.1.1 Why Use Oracle Business Rules?

Oracle Business Rules is a high performance lightweight business rules product that addresses the requirements for agility, business control, and transparency.

Business rules are statements that describe business policies or describe key business decisions. For example, business rules can include:

	Business policies such as spending policies and approval matrices.

A financial institution could use a business rule such as:

[image: Description of GUID-5BADD87F-4542-4856-A912-AACB0A771AB1-default.gif follows]

	Constraints such as valid configurations or regulatory requirements.

For example, a car rental company might use the following business rule:

[image: Description of GUID-A6238A6C-8B76-4A4B-A116-296A60E8E94A-default.gif follows]

	Computations such as discounts or premiums.

	Reasoning capabilities such as offers based on customer value.

An airline might use a business rule such as the following:

[image: Description of GUID-C52BA752-9DEA-467E-BA9A-0F9F5D09EF27-default.gif follows]

These examples represent individual business rules. In practice, you can use Oracle Business Rules to combine many business rules or to use more complex tests.

For the car rental example, you can name the rule the Driver Age Rule. Traditionally, business rules such as the Driver Age Rule are buried in application code and might appear in a Java application as follows:

public boolean checkDriverAgeRule (Driver driver) {
 boolean declineRent = false;
 int age = driver.getAge();
 if(age < 21) {
 declineRent = true;
 }
 return declineRent;
}

This code may be difficult for nontechnical users to understand and modify. For example, suppose that the rental company changes its policy so that all drivers under 18 are declined using the Driver Age Rule. In many production environments the developer must modify the application, recompile, and then redeploy the application. This process is simplified because a business analyst can change policies that are expressed as business rules, with little or no assistance from a programmer. Applications using Oracle Business Rules support continuous change that allows the applications to adapt to new government regulations, improvements in internal company processes, or changes in relationships between customers and suppliers.

1.1.2 Understanding Oracle Business Rules Terminology

A business rule must contain:

	Rulesets: A set of conditions or actions that determines the outcome of the rule.

	Facts: Data objects used by the ruleset.

	Decision functions: Reference to the code that executes the rule.

Additionally, a business rule may contain:

	Functions: Functions that may be called in the ruleset. An example of this type of function is one that initializes a data object.

	Globals: Data objects that are used in the ruleset. May be constants.

	Valuesets: Lists or ranges of values used by the condition.

	Links: Links to other business rules dict.

The following sections provide additional details about these components.

1.1.2.1 What Are Facts and Valuesets?

In Oracle Business Rules, rules are written in terms of fact types. Each fact is an instance of a fact type. You must import or create one or more fact types before you can create rules, unless you use Verbal Rules, where you have the option of deferring fact type modeling until the executable rule is defined.

In Oracle Business Rules, a FactType is a type definition in the data model and a fact is an instance of that type. For example, rules are written in terms of fact types. The Oracle Business Rules runtime, or a developer writing in the RL Language, uses the RL Language assert function to add an instance of a fact to the Oracle Business Rules. In Rules Designer you can define a variety of fact types based on XML Schema, Java classes, Oracle RL definitions, and ADF Business Components view objects.

You can create valuesets to define a list of values or a range of values of a specified type. After you create a valueset you can associate the valueset with a fact property of matching type. Oracle Business Rules uses the valuesets that you define to specify constraints on the values associated with fact properties in rules or in Decision Tables. You can also use valuesets to specify constraints for variable initial values and function return values or function argument values.

For more information, see:

	Working with Facts and Value Sets

	Oracle Business Rules Engine Architecture

1.1.2.2 What Are Rulesets?

A ruleset is an Oracle Business Rules container for IF-THEN rules and Decision Tables. A ruleset provides a namespace, similar to a Java package, for rules and Decision Tables. In addition you can use rulesets to partially order rule firing.

For more information, see:

	Working with Rulesets and Rules

	"Ordering Rule Firing" in the Rules Language Reference for Oracle Business Process Management

1.1.2.3 What Are Dictionaries?

A dictionary is an Oracle Business Rules container for facts, business phrases, functions, globals, valuesets, links, decision functions, and rulesets. A dictionary is an XML file that stores the application's rulesets and the data model. Dictionaries can link to other dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary in a .rules file. You can create as many dictionaries as you need. A dictionary may contain any number of rulesets. For more information, see Introduction to Dictionaries and Dictionary Links.

1.1.2.4 What Are Globals?

Globals are any variables or constants that may be accessed anywhere in the business rule. When you create globals you ensure that a business user can alter the rule behavior without touching the rule logic.

1.1.2.5 What Are Decision Functions?

A decision function provides a contract for invoking rules from Java or SOA (from a SOA/BPM composite application or from components within the composite application). The contract includes input fact types, rulesets to run, and output fact types. For more information, see Working with Decision Tables.

1.1.2.6 What Are Decision Points?

Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications that access, create, modify, and execute rules in Oracle Business Rules dictionaries (and all the contents of a dictionary). The Rules SDK provides the Decision Point API to access and run rules or Decision Tables from a Java application. For more information, see Working with Rules in Standalone (Non SOA/BPM) Scenarios.

1.1.2.7 What Are Business Phrases?

Business phrases are vocabulary elements that are used to construct tests and actions for verbal rules. As you write a verbal rule, a set of business phrases, derived automatically from terms, facts, globals and other dictionary elements, is made available for inclusion in tests and actions. You can define your own business phrases.

Business phrases are not used in general rules.

1.2 Understanding Oracle Business Rules Formats

Oracle Business Rules provides multiple approaches to writing rules. Rules can be modeled in different ways - as IF/THEN rules, and as Decision Tables.

There are two approaches to writing IF/THEN rules (or just rules) - as general rules, and as verbal rules.

	General rules use a pseudo-code language to express rule logic

	Verbal rules use natural language statements to express rule logic

	Decision Tables are multiple related rules expressed in a spreadsheet-like format.

You write rules and Decision Tables in terms of fact types and properties. See Decision Tables. Fact types are often imported from the Java classes, XML schema, Oracle ADF Business Components view objects, or may be created in Rules Designer. Fact properties have a name, value, data type, and an optional valueset. A valueset splits the value space of the data type into values or ranges that can be used in Decision Tables, choice lists, and for design time validation (see What Are Facts and Valuesets?).

You can write verbal rule tests and actions using derived business phrases as well as user-defined business phrases. Derived business phrases are automatically created using facts, globals and other information in the dictionary while user-defined phrases can be explicitly authored to augment derived phrases. Further, user-defined phrases can either be pre-created or created as needed while composing the verbal rule.

Rules and Decision Tables are grouped in an Oracle Business Rules object called a ruleset (see What Are Rulesets?).

You group one or more rulesets and their facts and valuesets in an Oracle Business Rules object called a dictionary (see What Are Dictionaries?).

For more information, see Oracle Business Rules Runtime and Design Time Elements.

1.2.1 Rules

Rules are used to evaluate conditions and specify actions when the conditions are met (evaluate to true).

You can model rules using two different paradigms:

	General rules - use a pseudo-code language to express rule logic.

	Verbal rules - use natural language statements to express rule logic in domain specific sentences that are akin to spoken language. See How are Verbal Rules Different from General Rules?

Rules follow an if-then structure and consist of the following parts:

	IF part: a condition or pattern match (see What Are Rule Conditions?).

	THEN part: a list of actions (see What Are Rule Actions?).

1.2.1.1 What Are Rule Conditions?

The rule IF part is composed of conditional expressions that refer to fact types.

For example, for a general rule:

IF Rental_application.driver age < 21

The general rule conditional expression compares a business term (Rental_application.driver age) to the number 21 using a less than comparison.

And for a verbal rule:

IF rental car driver is an underage driver

The verbal rule condition is a business phrase that can specify one or more logical tests. (See What Are Business Phrases?).

The rule condition activates the rule whenever a combination of facts makes the conditional expression true. In some respects, the rule condition is like a query over the available facts in the Rules Engine, and for every row returned from the query the rule is activated.

For more information, see:

	Working with Facts and Value Sets

	Working with Rulesets and Rules

	"Rule Conditions" in the Rules Language Reference for Oracle Business Process Management

1.2.1.2 What Are Rule Actions?

The rule THEN part contains the actions that are executed when the rule is fired. A rule is fired after it is activated and selected among the other rule activations using conflict resolution mechanisms such as priority.

A rule might perform several kinds of actions. An action can add facts, modify facts, or remove facts. An action can execute a Java method or perform a function which may modify the status of facts or create facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of rule activations and thus can affect which rule fires next.

For more information, see:

	Rule Firing and Rule Sessions

	Working with Rulesets and Rules

	"Ordering Rule Firing" in the Rules Language Reference for Oracle Business Process Management

1.2.1.3 How are Verbal Rules Different from General Rules?

Verbal rules allow you to use pseudo-natural language statements to express rule logic. They provide a way to write rules using domain specific sentences that are similar to spoken language.

Verbal rules work closely with business phrases, which provide the vocabulary for you to compose natural language tests and actions. See What Are Business Phrases?.

For example, a general rule test as shown in the example below:

IF
all of the following are true
policy is a policy
policyScore.type == Score Type.Policy
policyScore.id == policy.id
car is a Car
carScore is a Score Tracker
carScore.type == Score Type.Car
carScore.id == car.id
customer is a Customer
customerScore is a Score Tracker
customerScore.type == Score Type.Customer
customerScore.id == customer.id
score of a car == carScore.score
score of customer == customerScore.score
score of policy = policyScore.score

THEN
assign new BigDecimal var = newBigDecimal((1+((2-((customerScore + carScore + policyScore)/150))/100))*(Lower Threshold))
assign new double premium = var.setScale(1,BigDecimal.ROUND_HALF_UP).doubleValue()

The verbal rule expression of this same test might be:

IF
ready to calculate premium
THEN
calculate premium base on score of customer, score of policy and score of car

Business phrases such as 'ready to calculate premium', 'score' and so on would detail the logic for the conditions.

You can write verbal rules in a way that suits your style, 'top down' or 'bottom up'.

For example, you can write a verbal rule using business phrases that are not yet defined. Once you have the a verbal rule that expresses the logic for your tests and actions, you can then define the specifics of the business phrases.

You can also compose verbal rules using system provided derived business phrases. These are business phrases that are automatically created based on the existing terms, facts, globals and other dictionary elements.

Alternatively, you can write verbal rules using a bottom up style, by defining all the business phrases you'll need first, and then using them in the tests and actions of your verbal rules.

For more information, see Working with Rulesets and Rules

1.2.2 Decision Tables

A Decision Table is an alternative business rule format that is more compact and intuitive when many rules are needed to analyze many combinations of property values. You can use a Decision Table to create a set of rules that covers all combinations or where no two combinations conflict.

Although a decision table is functionally equivalent to if-then rules, you will find decision tables are ideal for specific circumstances:

	Complexity

Decision tables simplify complex rules. When there are multiple rules, each of which have multiple conditions and actions, a decision table is much easier to work with.

	Conflict resolution

A decision table will indicate if any of the conditions are in conflict.

	Gap analysis

You can analyze a decision table to determine if some conditions are not being accommodated.

For more information, see Working with Decision Tables.

1.3 Oracle Business Rules Runtime and Design Time Elements

Oracle Business Rules provides support for using business rules as a Decision Component or as a library in a Java application. A Decision Component is a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes.

To create and use rules in the Oracle SOA Suite or Oracle BPM Suite, or to create rules and integrate these rules into your applications, Oracle Business Rules provides the following runtime and design time elements:

	Decision Component (Business Rules) in a SOA Composite Application

	Using Rules Engine with Oracle Business Rules in a Java EE Application

	Oracle Business Rules RL Language

	Oracle Business Rules SDK

	Rules Designer

	Oracle SOA Composer Application

	Using BP Composer

1.3.1 Decision Component (Business Rules) in a SOA Composite Application

Oracle SOA Suite provides support for Decision Components that support Oracle Business Rules. A Decision Component is a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is an SCA component that can be used within a composite and wired to a BPEL component. Apart from that, Decision Components are used for dynamic routing capability of Mediator and Advanced Routing Rules in Human Workflow.

Oracle Business Rules Rules Engine (Rules Engine) is available in a SOA composite application using the SOA Business Rule service engine that efficiently applies rules to facts and defines and processes rules.

For more information, see Oracle Business Rules Engine Architecture.

1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE Application

The Rules Engine is available as a library for use in a Java EE application (non-SOA). Rules Engine efficiently applies rules to facts and defines and processes rules. Rules Engine defines a Java-like production rule language called Oracle Business Rules RL Language (RL Language), provides a language processing engine (inference engine), and provides tools to support debugging.

Using Rules Designer you can specify business rules separately from application code which allows you to change business policies quickly with graphical tools. The Rules Engine evaluates the business rules and returns decisions or facts that are then used in the business process.

A rule-enabled Java application can load and run rules programs. The rule-enabled application passes facts and rules to the Rules Engine (facts are asserted in the form of Java objects or XML documents). The Rules Engine runs in the rule-enabled Java application and uses the Rete algorithm to efficiently fire rules that match the facts.

For more information, see Oracle Business Rules Engine Architecture and Oracle Business Rules SDK.

1.3.3 Oracle Business Rules RL Language

Oracle Business Rules supports a high-level Java-like language called Oracle Business Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle Business Rules programs. RL Language includes an intuitive Java-like syntax for defining rules that supports the power of Java semantics, providing an easy-to-use syntax for application developers. RL Language consists of a collection of text statements that can be generated dynamically or stored in a file.

Using RL Language application programs can assert Java objects as facts, and rules can reference object properties and invoke methods. Likewise, application programs can use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language both directly and as part of the Oracle Business Rules SDK (Rules SDK).

Business analysts can use Rules Designer to work with rules. In this case, the business analyst does not need to directly view or write RL Language programs. For more information, see Rules Designer.

For detailed information about RL Language, see Rules Language Reference for Oracle Business Process Management.

1.3.4 Oracle Business Rules SDK

Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule management features that a developer can use to write a rule-enabled program that accesses a dictionary, or to write customized rules programs that add rules or modify existing rules. Rules Designer uses Rules SDK to create, modify, and access rules and the data model using well-defined interfaces. Customer applications can use Rules SDK to access, display, create, and modify collections of rules and the data model.

You can use the Rules SDK APIs in a rule-enabled application to access rules or to create and modify rules. The rules and the associated data model could be initially created in a custom application or using Rules Designer.

This guide describes the Oracle Business Rules SDK Decision Point API. Using a Decision Point you can access a dictionary and run the rules in the dictionary. For complete Oracle Business Rules SDK API information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

For more information, see Working with Rules in Standalone (Non SOA/BPM) Scenarios.

1.3.5 Rules Designer

The Oracle Business Rules Designer (Rules Designer) extension to Oracle JDeveloper is an editor that enables you to create and edit rules.

Rules Designer provides a point-and-click interface for creating and editing General Rules and Decision Tables. Because you can work directly with business rules and a data model, you do not need to understand the RL Language to work with Rules Designer.

Rules Designer also provides Verbal Rules, with guided authoring (auto-suggest and filtering), and a keyboard based interface. For more information on using guided authoring and keyboard based interface, see How to Add Verbal Rules in SOA Composer.

Rules Designer supports several types of users, including the application developer and the business analyst. The application developer uses Rules Designer to define a data model and an initial set of rules. The business analyst uses Rules Designer either to work with the initial set of rules or to modify and customize the initial set of rules according to business needs. Using Rules Designer, a business analyst can create and customize rules with little or no assistance from a programmer.

Alternatively, in top-down modeling, a Business Analyst can descriptively define the rules which can be implemented by the developer later. These different modeling approaches require collaboration between the developer and the analyst.

In most cases, Rule modeling is done iteratively, with both of them contributing to the creation of a Domain Specific Language that can be used to define rules using less technical and more natural-language like sentences.

For more information about verbal rules, see Working with Rulesets and Rules .

1.3.6 Oracle SOA Composer Application

When a dictionary is deployed in a SOA composite application, Oracle Business Rules lets you view the dictionary or edit and save changes to the dictionary. You can use the SOA Composer application (SOA Composer) to work with a deployed dictionary that is part of a SOA composite application.

For more information, see Using Oracle SOA Composer with Oracle Business Rules at Runtime.

1.3.7 Oracle Business Process Composer Application

The Business Process Composer rules editor enables you to view and edit a rules dictionary. Rules dictionaries are displayed in a tabbed window similar to the process editor and data association editor.

For more information on using Rules in BP Composer, see Working with Oracle Business Process Composer Rules Editor in Oracle Fusion Middleware Developing Business Processes with Oracle Business Process Composer.

1.4 Oracle Business Rules Engine Architecture

A rule-based system using the Rete algorithm is the foundation of Oracle Business Rules.

A rule-based system consists of the following:

	The rule-base: Contains the appropriate business policies or other knowledge encoded into IF/THEN rules, verbal rules and Decision Tables.

	Working memory: Contains the information that has been added to the system. With Oracle Business Rules you add a set of facts to the system using assert calls.

	Inference Engine: The Rules Engine, which processes the rules, performs pattern-matching to determine which rules match the facts, for a given run through the set of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining system. The facts determine which rules can fire so when a rule fires that matches a set of facts, the rule may add facts and these facts are again run against the rules. This process repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a forward-chaining rule-based system, facts cause rules to fire and firing rules can create more facts, which in turn can fire more rules. This process is called an inference cycle.

A Non-Rete Algorithm is also available for use. For more information about both, see The Rete Algorithm and The Non-Rete Algorithm.

1.4.1 Declarative Rules

With Oracle Business Rules you can use declarative rules, where you create rules that make declarations based on facts rather than coding. Here is an example of declarative rules:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount

In declarative rules:

	Statements are declared without any control flow.

	Control flow is determined by the Rules Engine.

	Rules are easier to maintain than procedural code.

	Rules relate well to business user work methods.

When a rule adds facts and these facts run against the rules, this process is called an inference cycle. An inference cycle uses the initial facts to cause rules to fire and firing rules can create more facts, which in turn can fire more rules. For example, using the initial facts, Rules Engine runs and adds an additional fact, and an additional rule tests for conditions on this fact creating an inference cycle:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount
IF a Customer spends > 1000, make them Premium customer

The inference cycle that Oracle Business Rules provides enables powerful and modular declarative assertions.

1.4.2 The Rete Algorithm

The Rete algorithm was first developed by artificial intelligence researchers in the late 1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules uses the Rete algorithm to optimize the pattern matching process for rules and facts. The Rete algorithm stores partially matched results in a single network of nodes in working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when facts are deleted, added, or modified. To process facts and rules, the Rete algorithm creates and uses an input node for each fact definition and an output node for each rule.

Fact references flow from input to output nodes. In between input and output nodes are test nodes and join nodes. A test occurs when a rule condition has a Boolean expression. A join occurs when a rule condition ANDs two facts. A rule is activated when its output node contains fact references. Fact references are cached throughout the network to speed up recomputing activated rules. When a fact is added, removed, or changed, the Rete network updates the caches and the rule activations; this requires only an incremental amount of work.

The Rete algorithm provides the following benefits:

	Independence from rule order: Rules can be added and removed without affecting other rules.

	Optimization across multiple rules: Rules with common conditions share nodes in the Rete network.

	High performance inference cycles: Each rule firing typically changes just a few facts and the cost of updating the Rete network is proportional to the number of changed facts, not to the total number of facts or rules.

1.4.3 The Non-Rete Algorithm

The Non-Rete algorithm (NRE) is an alternative to the Rete algorithm that consumes less memory than the Rete algorithm. For many business rules use cases it will also result in improved performance. The core of NRE algorithm is a new rule condition evaluation approach. Key points about the new algorithm:

	Simpler internal rule representation.

	Byte code generated for rule tests, rule actions, and user defined functions.

	More efficient modify operation.

	Rule conditions not evaluated until the containing ruleset is on the top of the stack. After initial evaluation, re-evaluation occurs on fact operations as needed.

	Ability to avoid unnecessary re-evaluation when rulesets are only present on the ruleset stack once during rule execution.

	Preserves rule execution semantics.

The two main differences between the two algorithms are:

	Rule condition evaluation:

	In the Rete algorithm, rule conditions are evaluated when fact operations occur (assert, modify, retract).

	In the Non-Rete algorithm, rule conditions are evaluated for the first time when the ruleset is on the top of the stack, then on fact operations after that.

	Rule firing order. There are cases where the rule firing order is not defined, for example when a single fact activates multiple rules at the same time and the priorities are identical. In these cases, the order in which the rule activations fire may be different.

Note:
It is possible that an existing set of rules has an implicit dependency on the order in which the rules fire with the Rete algorithm even though that order may not be defined. The order may be different with the Non-Rete algorithm which may expose a latent bug in the rules as authored.

1.4.3.1 Configuring the Non-Rete Algorithm

In Rule Designer, the algorithm can be selected in the Dictionary Settings panel in the preferences tab. Algorithm selection is automatically handled for SOA and BPM composite applications. For JEE applications or other non-SOA/BPM applications, the algorithm selection will need to be specified when the RuleSession or RuleSessionPool is created.

For more information about RuleSessions, see Using a RuleSession in the Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

It is common that multiple rulesets are executed during a rule execution. It is also common that each ruleset is pushed onto the ruleset stack once and once rules in that ruleset have completed firing, it is not pushed onto the stack again during that rule execution. With the Non-Rete algorithm additional performance gain can be realized for these cases by specifying that the rulesets will only appear on the stack once. When the Non-Rete algorithm is selected, click the 'Rulesets Are On Stack Once' check box in a decision function definition to enable this feature.

For information about when to use the Rete or Non-Rete algorithms, see Rules Engine Algorithm in the Rules Language Reference for Oracle Business Process Management.

1.4.4 What Is Working Memory?

Oracle Business Rules uses working memory to contain facts. Facts do not exist outside of working memory. A RuleSession contains the Oracle Business Rules working memory.

1.4.5 Rule Firing and Rule Sessions

A Rule Session consists of rules, facts and an agenda. An assert or retract adds or removes fact instances from working memory.

When facts in working memory are changed:

	Conditions for rules are evaluated

	Matching rules are added to the agenda (Activated)

	Rules which no longer match are removed from agenda

	Rules Engine runs and executes actions (fires), for activated rules

Figure 1-3 shows these parts of Oracle Business Rules runtime.

Figure 1-3 Rules in Rule Session with Working Memory and Facts
[image: Description of Figure 1-3 follows]

A rule action may assert, modify, or retract facts and cause activations to be added or removed from the agenda. There is a possible loop if a rule's action causes it to fire again. Rules are fired sequentially, but in no pre-defined order. The rule session includes a ruleset stack. Activated rules are fired as follows:

	Rules within top-of-the-stack ruleset are fired

	Within a ruleset, firing is ordered by user-defined priority

	Within the same priority, the default is that the most recently activated rule is fired first. For more information, see the setStrategy function in the Rules Language Reference for Oracle Business Process Management.

For the Rete algorithm, only rules within rulesets on the stack are fired, but all rules in a rule session are matched and, if matched, activated. For the non-Rete algorithm, this is true for rules in the ruleset on the top of the stack. It is also true for rules in rulesets that have been popped from the ruleset stack unless "Rulesets Are On Stack Once" has been checked.

2 Working with Data Model Elements

This chapter describes the Oracle Business Rules data model comprising fact types, functions, globals, value sets, decision functions, and dictionary links.

The chapter includes the following sections:

	Introduction to Working with Data Model Elements

	Introduction to Dictionaries and Dictionary Links

	Working with Oracle Business Rules Globals

	Working with Decision Functions

	Introduction to Oracle Business Rules Functions

	Localizing Oracle Business Rule Resources

2.1 Introduction to Working with Data Model Elements

To implement the data model portion of an Oracle Business Rules application you create a dictionary and add data model elements. To complete the dictionary, you create one or more rulesets containing rules that use or depend upon these data model elements.

For more information, see:

	Working with Facts and Value Sets

	Working with Rulesets and Rules

	Working with Decision Tables

2.2 Introduction to Dictionaries and Dictionary Links

A dictionary is an Oracle Business Rules container for facts, functions, globals, valuesets, links, decision functions, and rulesets. A dictionary is an XML file that stores the rulesets and the data model for an application. Dictionaries can link to other dictionaries.

You can create as many dictionaries as you need. A dictionary may contain any number of rulesets and data model elements. A data model can be contained in one or more dictionaries. All the data model elements referenced by the rulesets must be available in the dictionary either directly or through links.

A dictionary is stored in a *.rules file.

2.2.1 Working with Dictionaries and Dictionary Links

When you create a dictionary, you give it a name and a package, similar to a Java class. You can create data model elements and rulesets inside this dictionary, and you can also reference the data models and rulesets of other dictionaries by creating a dictionary link and specifying the name and package of the target dictionary. Each dictionary logically contains the built-in dictionary. This dictionary includes standard functions and types that all Oracle Business Rules applications need. You cannot modify the built-in dictionary.

In addition to the main dictionary, you can create one or more application-specific dictionaries, such as PurchaseItems.rules. You can modify the properties of these dictionaries.

The complete data model defined by a dictionary and its linked dictionaries is called a combined data model. You can create multiple links to the same dictionary; in this case, all but the first link is ignored.

For more information, see What You Need to Know About Dictionary Linking.

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer

Oracle JDeveloper provides multiple ways to create dictionaries for Oracle Business Rules. You can create a dictionaries for use in a SOA applications. This section illustrates one way to create a dictionary in a SOA project.

A typical SOA composite design pattern provides each application with its own dictionaries. Each application is self-contained and can be deployed independently of other applications.

Sometimes multiple applications will require access to common parts of a common data model. In this case, use dictionary links to include a target application's dictionary in the source application. The source application copies the target application's dictionary and retains the contents of the copies linked to the source. When you use the linked elements, they are shown as local contents.

You can also create a dictionary in the business tier for use outside of a SOA application. For more information, see How to Create an Oracle Business Rules Dictionary in the Grades Project.

To create a dictionary in the SOA Tier using Rules Designer:

	In the Application Navigator, select a SOA application and select or create a SOA project.

	Click the down arrow, and select New, From Gallery from the list.

	In the New Gallery dialog, expand SOA Tier as shown in Figure 2-1.

Figure 2-1 Creating a Business Rules Dictionary for a SOA Project
[image: Description of Figure 2-1 follows]

	In the New Gallery window, select Business Rules.

	Click OK. This displays the Create Business Rules dialog.

	In the Create Business Rules dialog, enter fields as shown in Figure 2-2:

	In the Name field, enter the name of your dictionary. For example, enter PurchaseItems.

	In the Package field, enter the Java package to which your dictionary belongs. For example, com.example.

Figure 2-2 Create Business Rules Dialog
[image: Description of Figure 2-2 follows]

	To specify the inputs and outputs:

	Click the Add button and select Input to create an input or Output, to create an output.

	In the Type Chooser dialog, expand the appropriate XSD and select the appropriate type.

	Click OK to close the Type Chooser dialog.

You can later add inputs or outputs, or remove the inputs or outputs. For more information, see Working with Decision Functions .

	In the Create Business Rules dialog, click OK to create the Decision Component and the Oracle Business Rules dictionary.

Oracle JDeveloper creates the dictionary in a file with a .rules extension, and starts Rules Designer as shown in Figure 2-3. Note the screen shot shows some BPM functionality that you may not have access to in SOA if you do not have BPM installed.

Figure 2-3 Creating a New Oracle Business Rules Dictionary
[image: Description of Figure 2-3 follows]

	Oracle JDeveloper also creates a Decision Component in composite.xml. To view this component double-click the composite.xml file.

2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer

Use Rules Designer to create a rules dictionary for use in the business tier, outside of a SOA application. For information on using Oracle Business Rules without SOA, see Creating a Rule-enabled Non-SOA Java EE Application.

2.2.4 How to View and Edit Dictionary Settings

You can view and edit dictionary settings using the Settings tab. The Settings tab has three tabs: General, Preferences, and Data Model. Use the Preferences tab to select the execution algorithm and specify phrase suggestions that appear when you are using Verbal Rules. Use the Data Model tab to specify the global qualifier pattern, also for Verbal Rules. The pattern must contain two fragments: {member}, {fact}. For example, {member} of {fact}.

2.2.4.1 How to Change the Dictionary Alias

To change the Dictionary alias:

	In Oracle JDeveloper, open an Oracle Business Rules dictionary.
	In Rules Designer, click the Settings tab.
	In the Dictionary Settings dialog, in the Alias field, change the alias to the name you want to use. This field is shown in Figure 2-4.Figure 2-4 Dictionary Settings, General Tab
[image: Description of Figure 2-4 follows]

2.2.4.2 How to Edit the Preferences tab

To edit the Preferences tab:

	On the Settings tab, click the Preferences tab, shown in Figure 2-5.
	In the Rule Execution Algorithm field, choose RETE or Non-RETE.For more information about the RETE or Non-RETE algorithm, see Configuring the Non-Rete Algorithm.

	In the Phrase Suggestions field, choose All, Auto Suggestions, or Business Phrases. Phrase suggestions are for verbal rules. You can choose to see auto suggestions only, business phrases only, or both.For more information about business phrases, see Introduction to Verbal Rules and Business Phrases.

Figure 2-5 Dictionary Settings, Preferences Tab
[image: Description of Figure 2-5 follows]

2.2.4.3 How to Edit the Data Model tab

To edit the Data Model tab:

	In the Global Qualifier Pattern field, shown in Figure 2-6, click the Bundle Editor button to update the resource bundles for this translatable value.You can specify the global qualifier pattern here. This is used in verbal rules. The pattern must contain two fragments: {member} and {fact}. The fragments {member} as well as {fact} are mandatory.

	Click Close when done.Figure 2-6 Dictionary Settings, Data Model Tab
[image: Description of Figure 2-6 follows]

2.2.5 How to Link to a Dictionary

You can link to a dictionary in the same application using the Links navigation tab in Rules Designer. To link to another dictionary you need at least one other dictionary available.

To link to a dictionary using resource picker:

	In Rules Designer, click the Links navigation tab as shown in Figure 2-7.Figure 2-7 Rules Designer Links Tab
[image: Description of Figure 2-7 follows]

	In the Links area, click the Create button and from the list select Browse Existing Dictionaries. This displays the SOA Resource Browser dialog.
	In the SOA Resource Browser dialog navigate to select the dictionary you want to link to as shown in Figure 2-8.Figure 2-8 Resource Picker
[image: Description of Figure 2-8 follows]

	Click OK.

When you work with ADF Business Components Facts you should create a link to the Decision Point Dictionary. For more information, see Working with Oracle Business Rules and ADF Business Components .

In order to link the decision point dictionary, click the Links navigation tab in Rules Designer. In the Links area, click Create and from the list select Decision Point Dictionary. This operation takes awhile. You need to wait for the Decision Point Dictionary to load.

2.2.6 How to Update a Linked Dictionary

When you have a dictionary, for example, Project_rules1 that links to another dictionary, for example, Shared_rules you need to see changes made to either dictionaries in both. For example, you can modify the Shared_rules dictionary and see those modifications in Project_rules1 by updating the Project_rules1 dictionary, or by closing and reopening the Rules Designer. Note that you can only see the changes in the linked dictionary from the dictionary which defines the link and not vice versa.

To update a linked dictionary:

	Using these sample dictionary names click the Save button to save the Shared_rules dictionary.
	Select the Project_rules1 dictionary.
	Select the Links navigation tab.
	Click the Dictionary Cache... button.
	In the Dictionary Finder Cache dialog, select the appropriate linked dictionary.
	Click the Clear button.
	In the Dictionary Finder Cache dialog, click Close.
	Click the Validate button.

2.2.7 What You Need to Know About Dictionary Linking

Using a dictionary with links to another dictionary is useful in the following cases:

	Data Model Sharing, to share portions of a data model within a project. When you link to a dictionary in another project it is copied to the local project.

For example, consider a project where you would like to share some Oracle Business Rules Functions. You can create a dictionary that contains the functions, and name it DictCommon. Then, you can create two dictionaries, DictApp1 and DictApp2 that both link to DictCommon, and both can use the same Oracle Business Rules functions. When you want to change one of the functions, you only change the version in DictCommon. Then, both dictionaries use the updated function the next time RL Language is generated from either DictApp1 or DictApp2.

In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN and this consists of two components:

	Dictionary Package: The package name

	Dictionary Name: The dictionary name

A dictionary refers to a linked dictionary using its DictionaryFQN and an alias. Oracle Business Rules uses the DictionaryFQN to find a linked dictionary.

The following are the naming constraints for combined dictionaries:

	The full names of the dictionaries, including the package and name, must be distinct. In addition, the dictionary aliases must be distinct.

	The aliases of data model definitions of a particular kind, for example, function, Oracle RL class, or value set, must be unique within a dictionary.

	A definition may be qualified by the alias of its immediately containing dictionary. Definitions in the top and built-in dictionaries do not have to be qualified. Definitions in other dictionaries must be qualified and this qualification is controlled by the prefix linked names property of the dictionary link.

	Ruleset names must be unique within a dictionary. When RL Language for a ruleset is generated, the dictionary alias is not part of any generated name. For example, if the dictionary named dict1 links to dict2 to create a combined dictionary, and dict1 contains ruleset_1 with rule_1 and dict2 also contains ruleset_1 with rule_2, then in the combined dictionary both of these rules, rule_1 and rule_2 are in the same ruleset (ruleset_1).

	All rules and Decision Tables must have unique names within a ruleset.

For example, within a combined dictionary that includes dictionary d1 and dictionary d2, dictionary d1 may have a ruleset named Ruleset_1 with a rule rule_1. If dictionary d2 also has a ruleset named Ruleset_1 with a rule_2, then when Oracle Business Rules generates RL Language from the combined, linked dictionaries, both rules rule_1 and rule_2 are in the single ruleset named Ruleset_1. If you violate this naming convention and do not use distinct names for the rules within a ruleset in a combined dictionary, Rules Designer reports a validation warning similar to the following:

RUL-05920: Rule Set Ruleset_1 has two Rules with name rule_1

For more information, see Oracle Business Rules Files and Limitations.

2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies

When you create a dictionary link using the resource picker, the dictionary is copied to the source project (the project where the dictionary that you are linking from resides). Thus, this type of linking creates a local copy of the dictionary in the project. This is not a link to the original target, no matter where the target dictionary is. Thus, Rules Designer uses a copy operation for the link if you create a link with the resource picker.

Also note the following regarding linked dictionaries in SOA and non-SOA rule dictionaries:

	SOA Applications

	Only dictionaries from within the same project, system dictionaries seeded in soa/shared or dictionaries available in the classpath can be used as linked dictionaries.

	If the same linked dictionary needs to be used across rules in multiple composites, then the linked dictionary should be referenced via the classpath.

	Non_SOA Applications

	Linked dictionaries can be located in the same application, in a shared location within MDS or the classpath. Appropriate dictionary finders need to be provided to locate and resolve the dictionaries.

2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary

When you are using Rules Designer you can browse a deployed composite application and any associated Oracle Business Rules dictionaries in the MDS connection. However, you cannot create a dictionary link to a dictionary deployed to MDS.

2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL

Decision function inputs are available as variables to the initial actions of the decision function. When the inputs are facts, the facts are asserted into working memory and rules must match the facts based on type and property values and not on decision function input name. For example, if you have inputs of same type, input1 and input2, rules distinguish these inputs based on type or property values and not on the different names they have.When the inputs are not visible facts, for example String or int, then a wrapper type named <decision function name> is created, and rules must match this type.

2.2.11 How to Compare or Merge Two or More Dictionaries

The Diff Dictionary feature enables you to review any differences in the latest revision of a dictionary against any previous revision and be able to roll back any changes since then. The differences are viewed from the perspective of the latest revision.

The Merge Dictionary feature enables you to review any differences between the base version and up to 3 changed versions and be able to resolve or merge the differences among them. The differences are viewed from the perspective of the changed versions.

Both Diff Dictionary and Merge Dictionary allow you to view and resolve the differences, but the basic difference between the two features is that you can Merge more than one dictionaries but you can not Diff more than one dictionaries.

The Merge Dictionary and Diff Dictionary options are available in the Rules Designer toolbar, as shown in Figure 2-9.

Figure 2-9 Diff-Merge Dictionary Button
[image: Description of Figure 2-9 follows]

You can compare up to three different dictionaries and merge into a fourth at design-time in Oracle JDeveloper. At runtime, you can use SOA Composer to do limited comparisons. For more information, see Using Oracle SOA Composer with Oracle Business Rules at Runtime.

In Rules Designer, you can compare a base version (which you must be editing) with two independently changed versions (relative to the base), and then merge selected changes into the base version (which must be saved as a new version).

WARNING:
Before you decide to run either of these features, you must be ready resolve all changes because the dictionary becomes read-only when in diff or merge mode.

Merging dictionaries should be done with care. You must identify and manage the different versions involved (base, version 1, version 2, and the results).

2.2.11.1 How to See Differences Between Dictionaries

When you want to compare dictionaries, you open the newer dictionary first in the Rules Designer, then use the Diff Dictionary dialog to select the older dictionary to compare with. Anything missing from the newer dictionary is flagged as a deletion from the newer version.

To see the differences between dictionaries:

	In the Rules Designer, with the newer dictionary open, click Diff Dictionary.
	In the Diff Dictionary dialog, click Browse to open the Select Dictionary to Merge dialog and find the dictionary that you want to compare with.
	Click OK.
	Enter a short version name or number.
	Click OK when done.
	All differences between the two dictionaries will be flagged with change icons, as shown in Figure 2-10.Figure 2-10 Diff Changes Displayed
[image: Description of Figure 2-10 follows]

The change icons are shown for all tabs on the left, and for the specific artifacts within each tab.

	Click each tab and decide to Accept Diffs or Reject Diffs. Alternatively, you can choose to Accept All or Reject All in the toolbar.Diffs can be Accepted or Rejected at any level in the dictionary by clicking on the appropriate change icon. For example, to revert Rule1 to the older version but keep everything else in the newer dictionary, first drill down to Rule1 and choose Reject Diffs, then chose Accept All from the toolbar. Note that in 'Diff mode', Accept keeps the newer version and Reject reverts to the older version.

You can view the Diff Dictionaries option. This choice is available after you have compared dictionaries. The View Diff Dictionaries option, shown in Figure 2-10 lists information about the dictionaries being compared.

2.2.11.2 How to Merge Dictionaries

When you want to merge dictionaries, you open the older dictionary first in the Rules Designer, then use the Merge Dictionary dialog to select the newer dictionary to merge with. Anything missing from the old dictionary is flagged as an addition in the latest version.

This works with two or more dictionaries, so you should use oldest, then one or more newer, and finally save the result in newest.

Use care when merging dictionaries. Because general editing is disabled until all diffs are resolved, you may want to provisionally accept or reject conflicting values and then return to finish the editing after handling remaining diffs.

To merge dictionaries:

	In the Rules Designer, with the oldest dictionary open, click Merge Dictionary.
	In the Merge Dictionary dialog, click Browse to open the Select Dictionary to Merge dialog and find the dictionary that you want to compare with.
	Click OK.
	Enter a short version name or number.
	Click OK when done.
	All changes are flagged in Rules Designer, as shown in Figure 2-11. Use the Merge Differences dialog to Accept or Reject or take no action. You can also use the Accept Diffs or Reject Diffs in the tab. Alternatively, you can Accept All or Reject All from the toolbar. Figure 2-11 Merge Differences Dialog
[image: Description of Figure 2-11 follows]

2.3 Working with Oracle Business Rules Globals

You can use Rules Designer to add Oracle Business Rules globals.

In Oracle Business Rules a global is similar to a public static variable in Java. You can specify that a global is a constant or is modifiable.

You can use global definitions to share information among several rules and functions. For example, if a 10% discount is used in several rules you can create and use a global Gold Discount, so that the appropriate discount is applied to all the rules using the global.

Using global definitions can make programs modular and easier to maintain.

2.3.1 How to Add Oracle Business Rules Globals

You can use Rules Designer to add globals.

To add a global:

	In Rules Designer, select the Globals navigation tab.
	In the globals table, click the Create button. This adds a global and displays the Edit Global dialog, as shown in Figure 2-12.Figure 2-12 Adding a Global in Rules Designer
[image: Description of Figure 2-12 follows]

	In the Name field, enter a name or accept the default value.
	In the Type field, select the type from the list.
	Optionally, in the Value Set field, select a value from the list.
	In the Value field, enter a value, select a value from the list, or click the Expression Builder button to enter an expression. For more information, see Introduction to Expression Builder.

	If the global is a constant, then select the Constant check box. When selected, this option specifies that the global is a constant value. For more information, see What You Need to Know About the Final and Constant Options.

	If the global is a nonfinal, then clear the Final check box. When cleared, this option specifies that the global is modifiable, for instance, in an assign action.

2.3.2 How to Edit Oracle Business Rules Globals

You can use Rules Designer to edit globals.

To edit a Global:

	In Rules Designer, select the Globals navigation tab.
	Click the Edit button to open the Edit Global - Global Name window. In this window you can edit a global and change field values, including the Final field and the Constant field.

2.3.3 What You Need to Know About the Final and Constant Options

The Edit Global dialog shows the Constant and Final check boxes that you can select for a global.

Note the following when you use globals:

	When you clear Final, this specifies that the global is modifiable, for instance, in an assign action.

	When you select Final, this specifies that you can use the globals in a test in a rule (nonfinal globals cannot be used in a test in a rule).

	When you select Final, this specifies that the global is initialized one time at runtime and cannot be changed.

When you select the Constant option in the Edit Global dialog, this specifies the global is a constant. In Oracle Business Rules a constant is a string or numeric literal, a final global whose value is a constant, or a simple expression involving constants and +, -, *, and /.

Selecting the Constant option for a global has three effects:

	You do not have to surround string literals with double quotes.

	Only constants appear in the expression value choice list.

	The expression value must be a constant to be valid.

Selecting the Constant option is optional. Note that Value Set values, Value Set range endpoints, and ruleset filter values are always constant.

2.4 Working with Decision Functions

The data model includes decision functions.

For information on working with decision functions, see Introduction to Decision Functions.

2.5 Introduction to Oracle Business Rules Functions

Oracle Business Rules provides functions to hide complexity when you create rules. Oracle Business Rules lets you use built-in or user-defined functions in rule and Decision Table conditions and actions.

In Oracle Business Rules you define a function in a manner similar to a Java method, but an Oracle Business Rules function does not belong to a class. You can use Oracle Business Rules functions to extend a Java application object model so that users can perform operations in rules without modifying the original Java application code.

You can use an Oracle Business Rules function in a condition or in an action associated with a rule or a Decision Table.

You can also use an Oracle Business Rules function definition to share the same or a similar expression among several rules, and to return results to the application.

An Oracle Business Rules function includes the following:

	Name: The Oracle Business Rules function name.

	Return Type: A return type for the Oracle Business Rules function, or void if there is no return value.

	Value Set: The value set to associate with the Oracle Business Rules function. This is optional.

	Arguments: The function arguments. Each function argument includes a name and a type and an optional value set.

	Function Body: The function body includes predefined actions. Using predefined actions Rules Designer assures that an Oracle Business Rules function is well formed and can be validated.

You can also use functions to test rules from within Rules Designer. For more information, see Testing Decision Functions Using a Rules Function.

2.5.1 How to Add an Oracle Business Rules Function

You use Rules Designer to add an Oracle Business Rules function.

To add an Oracle Business Rules Function:

	In Rules Designer, select the Functions navigation tab.
	Select the Create... button.
	Enter the function name in the Name field, or use the default name.
	Select the return type from the Return Type list. For example, select void.
	Optionally, select a value set to associate with the function return type from the list in the Value Set field.
	Optionally, in the Description field enter a description.
	In the Arguments table, click Add to add one or more arguments for the function.
	For each argument in the Type field, select the type from the list.
	For each argument in the Value Set field, to limit the argument values as specified by a value set constraint, select a value set from the list.
	In the Body area, enter actions and arguments for the function body. You can add any required action ranging from assert, call, modify to even conditional actions such as if, else, elseif, while, for, if (advanced), and while (advanced). For example, see Figure 2-13.Figure 2-13 Adding an Oracle Business Rules Function
[image: Description of Figure 2-13 follows]

2.6 Localizing Oracle Business Rule Resources

You can localize the names, aliases and descriptions of rules resources. This enables better control of these resources in Workspace and SOA Composer. You can localize most of the resources like Value Sets, Globals, Rulesets, Rules and so on. With Verbal Rules, you can also localize the value of Business Phrases.

When you create these resources, you can add locale-specific information from the Translations tab. Each locale is stored in a separate resource bundle.

Note:
You should not manually edit the resource bundle to add or edit localized strings. You must edit the resource bundle using the Translation tab of the Rules Designer in JDeveloper, BP Composer, or SOA Composer.

2.6.1 How to Localize the Resources in Oracle Business Rules

You can use the Rules Designer of JDeveloper to localize the resources of a business rule.

To localize business rule resources:

	In Rules Designer, select the Translations tab.
	Click the Create Resource Bundle button.Create Resource Bundle screen appears.

	Select the Locale from the list, as shown in Figure 2-14.Each locale that you add appears as a column in the Resource Bundle Translations table. Each resource of the business rule appears as a row in this table. Each locale is stored as a separate resource bundle.

Figure 2-14 Adding New Locales
[image: Description of Figure 2-14 follows]

	Click the cell of the table corresponding to the resource and locale and enter the localized text.Note:
The translated value is validated only in the current locale. Validations are not done for translations in other locales that are not used.

	Select Populate Translations and a radio button to populate the translation of the new bundle from untranslated text or from another locale.
	Click OK.

3 Working with Facts and Value Sets

This chapter describes the Oracle Business Rules data model element called fact types, which are the objects that rules reason on. It also covers another element called value sets that define groupings of fact property values.

The chapter includes the following sections:

	Introduction to Working with Facts and Value Sets

	Working with XML Facts

	Working with Java Facts

	Working with RL Facts

	Working with ADF Business Components Facts

	Working with Value Sets

	Associating a Value Set with Business Terms

3.1 Introduction to Working with Facts and Value Sets

In Rules Designer, you make business objects and their methods known to Oracle Business Rules using fact types that are part of a data model. A fact type is a type definition in the data model. A fact is an instance of that fact type and is a data structure that rules can operate on.

For example, a fact type is a collection of related properties (business terms), and a fact is therefore a collection of related data bound to the business terms. A customer fact may include not only name, but address, history, credit rating, and so forth.

You can create fact types and value sets before you create rules.

In Rules Designer you can work with the following kinds of facts:

	XML Facts: XML Facts are imported from existing sources by specifying XML Schema. You can add aliases to imported XML Facts or use XML Facts with RL Facts to change the data model according to your business needs.

For more information, see Working with XML Facts.

	Java Facts: Java Facts are imported from existing sources. You can add aliases to Java Facts or use them with RL Facts to target the data model to business needs. Java Facts are also used to import supporting Java classes for use with the rules or Decision Tables that you create.

For more information, see Working with Java Facts.

	RL Facts: RL Facts are the only kind of facts that you can create directly and do not have an external source. All other types of Oracle Business Rules facts are imported. An RL Fact is similar to a relational database row or a JavaBean with properties. An RL Fact contains a set of named, typed properties. Property values can be primitives such as String, another structured fact, or a list. RL Facts are useful for rapid and independent development and testing of decision logic. Input data that will ultimately come from an imported fact type (for example, an XML Schema) can be modeled using RL Facts before the imported schema is available or stable. Intermediate decisions that should not be returned to the application (for example, sub-decisions that categorize a customer as GOOD or BAD). It is usually best to import the fact types that are used for the input and output data of a decision. You can use RL Facts to extend a Java application object model by providing virtual dynamic types.

For more information, see Working with RL Facts.

	ADF Business Components Facts: ADF Business Components Facts allow you to use ADF Business Components as Facts in rules and in Decision Tables. By using ADF Business Components Facts you can assert view object graphs representing the business objects upon which rules should be based, and let Oracle Business Rules deal with the complexities of managing the relationships between the various related view objects in the view object graph.

For more information, see Working with ADF Business Components Facts.

You typically use Java fact types and XML fact types to create rules that examine the business objects in a rule-enabled application, or to return results to the application. You use RL Language fact type definitions to create intermediate facts that can trigger other rules in the Rules Engine. ADF Business Components fact types enables you to use ADF Business Components as Facts in rules and in Decision Tables.

In Oracle Business Rules, facts that you can run against the rules are data objects that have been asserted. Each object instance corresponds to a single fact. If an object is re-asserted (whether it has been changed or not), the Rules Engine is updated to reflect the new state of the object. Re-asserting the object does not create a fact. To have multiple facts of a particular fact type, separate object instances must be asserted.

You can create value sets to define a list of values or a range of values of a specified type. After you create a value set, you can associate the value set with a business term of matching type. When a value set is associated with a business term, Oracle Business Rules uses the values or ranges that you define as constraints for the values for the business terms for the business terms in rules that are in the Decision Tables.

For more information, see:

	Working with Value Sets

	Associating a Value Set with Business Terms

3.2 Working with XML Facts

The XML fact type allows XML Schema types, elements, and attributes to be used when writing rules. Elements and types defined in XML Schema can be imported into the data model and can then be used to create IF/THEN rules and Decision Table rules, just as with Java fact types and RL Fact types. The mapping between the XML Schema definition and the XML Fact types uses the Java Architecture for XML Binding (JAXB).

By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and conventions in an XML Schema definition and the available types, allowed names and conventions in Java. For example, an element named order-id and of type xsd:integer is mapped to a Java Bean property named orderID of type BigInteger (and xsd:int type maps to Java int).

Thus, with Oracle Business Rules if you have an XML document that contains data associated with your application and you have the schema associated with the XML document then you can use Rules Designer to define rules based on elements that you specify from the XML Schema.Note:
When xsd has primitive or non primitive root elements of simple type, JAXB maps the simple type elements to a JAXBElement and generates only ObjectFactory class. You must create Facts of complex type to be used in business rules.

3.2.1 How to Create XML fact types

	Define or obtain an XML Schema.
	Use Rules Designer to import the XML Schema into a dictionary. This step uses the JAXB compiler to generate Java classes from the XML Schema. After you compile the XML Schema, you select the desired elements from the schema to add XML Facts in the data model and import the generated JAXB classes into the data model.

For more information on these steps, see How to Import the XML Schema and Add XML Facts.

	Write rules or create Decision Tables based on these XML Facts that you added to the data model. For more information, see Working with Rules and Creating Decision Tables.

Elements and types defined in the XML Schema can be imported into the data model so that instances of types can be created, asserted, modified, and retracted by rules. Most XML documents describe hierarchical information, where each element contains subelements. It is common for users to want to write individual rules based on multiple elements in this hierarchy, and the hierarchical relationship among the elements.

In Oracle Business Rules the default behavior when you assert a fact is to only assert the single fact instance, and none of the child objects it may reference in the hierarchy of subelements. When you create rules or a Decision Table it is often desirable to assert an entire hierarchy of elements based on a reference to a root element. Oracle Business Rules provides the assertTree action type that allows for a recursive assert for a hierarchy. For more information, see Working with Tree Mode Rules.

3.2.2 How to Import the XML Schema and Add XML Facts

Before you can use the XML Schema definitions in a data model you must import the XML schema. This step generates the JAXB classes and makes the generated classes and packages associated with the XML schema visible in Rules Designer.

To import XML schema and add XML facts:

	In Rules Designer, select the Facts navigation tab.
	Select the XML Facts tab on the Facts navigation tab, as shown in Figure 3-1.Figure 3-1 The XML Facts Tab in Rules Designer
[image: Description of Figure 3-1 follows]

	In the XML Facts tab, click Create.... This displays the Create XML Fact dialog.
	In the Create XML Fact dialog, in the Source Schemas area, click Add Source Schema... to open the Add Source Schema dialog.
	In the Add Source Schema dialog, 	Enter the location of the XML Schema you want to import, or click Browse to locate the XML schema in the Schema Location field. During the import the file is copied into the project.

Note:
Typically, the XML schema (xsd) file is located inside the xsd folder called Schemas, because any XML schema that is created needs to be stored inside the xsd folder under SOA.

	Accept the default path or enter the directory where you want Rules Designer to store the JAXB-generated Java source and class files in the JAXB Classes Directory field.

	Enter a target package name or leave this field empty in the Target Package field. If you leave this field empty the JAXB classes package name is generated from the XML target namespace of the XML schema using the default JAXB XML-to-Java mapping rule or explicitly defined package name using annotations, or "generated" if no namespace or annotation is defined. Using the schema namespace is preferred.

For example, the namespace http://www.oracle.com/as11/rules/demo is mapped to com.oracle.as11.rules.demo.

	Click OK.

Rules Designer processes the schema and compiles the JAXB, so depending on the size of the schema this step may take some time to complete. When this step completes Rules Designer displays the Create XML Fact dialog with the Target Classes area updated to include the JAXB classes.

	In the Create XML Fact dialog, in the Target Classes area, select the classes you want to import as XML fact types.
	Click OK.

3.2.3 How to Display and Edit XML Facts

To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.

To display and edit XML facts:

	In Rules Designer, select the Facts navigation tab.
	Select the XML Facts tab on the Facts navigation tab.
	In the XML Facts table, double-click the icon for the XML Fact you want to edit. This displays the Edit XML Fact dialog, as shown in Figure 3-2.Figure 3-2 Edit XML Fact Dialog
[image: Description of Figure 3-2 follows]

The Edit XML Fact dialog includes the fields shown in Table 3-1.

Table 3-1 XML Fact: Edit XML Fact Dialog Fields

	Field	Description
	Name

	Displays the XML Fact name. You cannot change the name of JAXB generated class.

	Alias

	Enter the XML Fact alias. You can change this value. This defaults to the unqualified name of the class.

	Qualifier Pattern

	This field is used for verbal rules.

If nothing is specified here, then the system uses the global qualifier. If a custom qualifier pattern should be specified for a fact, it has to contain two parts in the pattern: {member}, {fact}. Specify patterns as follows:

	{fact}'s {member}

	{member} in {fact}

	{member} of {fact} (This is the default).

For more information about using verbal rules, see Introduction to Verbal Rules and Business Phrases.

	Super Class

	Displays Java super class associated with this fact.

	XML Name

	Displays the XML name associated with the XML Fact.

	Generated From

	Displays the XML schema file that was the source for the XML Fact when it was copied into the business rules data model.

	Visible

	Select to show the XML Fact in lists in Rules Designer. XML Facts often reference other XML Facts, forming a tree. You should make all the XML fact types visible that contain properties that you reference in rules.

	Support XPath Assertion

	Select to enable XPath assertion for the fact. This feature is provided for backward compatibility only. Typically, this option is not used.

	Description

	Enter the XML Fact description.

	Attributes area

	Select the available constructors, properties, methods, or fields associated with the JAXB class for the XML Fact to display or edit.

	Fit Columns to Width

	Select this check box to adjust column width.

3.2.4 How to Reload XML Facts with Updated Schema

If an XML schema changes in a project, the schema must be reimported into the Oracle Business Rules dictionary. When you reimport the schema, Oracle Business Rules uses JAXB to recompile all source schemas for every XML fact type and updates the XML fact type definitions with the updated XML schema definitions. You should reimport facts if you changed the schema or classes and you want to use the changed schema or classes at runtime.

Note:
When the XML schema on which an XML fact is based changes, on reimporting the schema, the facts are updated and imported into the base dictionary. When working with facts in a linked dictionary, you need to reload the XML facts for the changed schema from the base dictionary instead of the linked dictionary.

To reimport XML facts:

	In Rules Designer, select the Facts navigation tab.
	Select the XML Facts tab on the Facts navigation tab.
	On the XML Facts page, click Reload Facts Based on Modified Schemas (Excluding Linked Facts) or Reload All Facts (Excluding Linked Facts).

After the reimport operation you need to correct any validation warnings that may be caused by incompatible changes (for example, the updated schema may include a change that removed a property that is referenced by a rule).

3.2.5 What You Need to Know About XML Facts

Keep the following points in mind when you work with XML Facts:

When XML Schema contain a restriction definition, this allows a user to restrict the types that are valid for use in an element. A common use of restriction is to define an enumeration of strings which can be used for an element, as shown in the XML Schema Restriction example below:

	<xs:simpleType name="status-type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="manual"/>
 <xs:enumeration value="approved"/>
 <xs:enumeration value="rejected"/>
 </xs:restriction>
</xs:simpleType>

Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules Designer to import either a Java enum type or an element with an XML restriction, the static final fields representing the enums are available for use in expressions. Additionally, Oracle Business Rules creates a value set for each enum containing all of the enum values and null. For more information on value sets, see Working with Value Sets.

	There is a default version of the JAXB binding compiler supplied with Oracle Application Server. You can use a different JAXB binding compiler. However, to use a different JAXB binding compiler you must manually perform the XML schema processing and then import the generated Java packages and classes into the data model as Java Facts.

For more information about JAXB, see

http://java.sun.com/webservices/jaxb/

	You should reimport facts if you changed the schema or classes and you want to use the changed schema or classes at runtime. You should correct any validation warnings that may be caused by incompatible changes (for example, removing a property that is referenced by a rule). For more information, see How to Reload XML Facts with Updated Schema.

	Most users should not need to use the ObjectFactory or import it. If you do need to import and use the ObjectFactory, then use a different package name for every XML Schema that you import; otherwise the different ObjectFactory classes conflict.

	The use of XML schema with elements that have minOccurs="0" and nillable="true" has special handling in JAXB. For more information, see Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?.

	The default element naming conventions for JAXB can cause XML schema containing the underscore character in XML-schema element names to fail to compile. For more information, see Why Does XML Schema with Underscores Fail JAXB Compilation?.

	There are certain restrictions on the types and names of inputs for the Decision Service. For more information, see How Are Decision Service Input Output Element Types Restricted?.

	The built-in dictionary includes support for the Java wrappers Integer, Long, Short, Float, Double, BigDecimal, and BigInteger. These types can appear in XML Fact Types.

3.3 Working with Java Facts

In Rules Designer, importing a Java Fact makes the Java classes and their methods become visible to Rules Designer. Rules Designer does not copy the Java code or bytecode into the data model or into the dictionary.

A Java fact type allows selected properties and methods of a Java class to be imported to the Rules Engine so that rules can access, create, modify, and delete instances of the Java class.

Importing a Java fact type allows the Rules Engine to access and use public attributes, public methods, and bean properties defined in a Java class (bean properties are preferable because they can be modified using the modify action).

3.3.1 How to Import Java Classes and Define Java Facts

Before you can use Java Facts in rules and in Decision Tables, you must make the classes and packages that contain the Java Facts available to Rules Designer. To do this you use Rules Designer to specify the classpath that contains the Java classes, and then you import the Java Facts.

Java fact types allow methods with and without side effects to be imported. Side effects refer to expensive operations such as I/O, Database Query or web service and so on. When using Java classes as facts, remember the following about side effects:

	Rule and Decision Table conditions do not use methods with side effects.

	Actions can use all methods. Though side effects are not recommended, are permissible.

To import and define Java Facts:

	In Rules Designer, select the Facts navigation tab.
	Select the Java Facts tab on the Facts navigation tab as shown in Figure 3-3.Figure 3-3 The Java Facts Table in the Facts Navigation Tab
[image: Description of Figure 3-3 follows]

	In the Java Facts tab, click Create... to open the Create Java Fact dialog.
	In the Create Java Fact dialog, if the classpath that contains the classes you want to import is not shown in the Classpath area, then click Add to Classpath. This displays the Choose Directory/Jar dialog.The default Rules Designer classpath includes three packages, java, javax, and org. These packages contain classes that Rules Designer lets you import from the Java runtime library (rt.jar). Rules Designer does not let you remove these classes from the Classes area (and the associated classpaths are not shown in the Classpaths area).

	In the Choose Directory/Jar dialog, browse to select the classpath or jar file to add. By default, the output directory for the project is on the import classpath and any Java classes in the project should appear in the Classes importer. If they do not appear, execute the Build action for the project.
	Click Open. This adds the classpath or jar file and updates the Classes area.
	In the Create Java Fact dialog, in the Classes area select the packages and classes to import.
	Click OK. This updates the Java Facts table in the Java Facts tab.

3.3.2 How to Display and Edit Java Facts

To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact dialog.

To display and edit Java facts:

	In Rules Designer, click the Facts navigation tab.
	Select the Java Facts tab in the Facts navigation tab.
	In the Java Facts table, double-click the Java Fact you want to edit. This displays the Edit Java Fact dialog as shown in Figure 3-4.Figure 3-4 Edit Java Fact Dialog
[image: Description of Figure 3-4 follows]

The Edit Java Fact dialog includes the fields shown in Table 3-2.

Table 3-2 Edit Java Fact Dialog Fields

	Field	Description
	Class

	Displays the Java Fact class for the source associated with the Java Fact.

	Alias

	Enter the Java Fact alias.

	Qualifier Pattern

	This field is used for verbal rules.

If nothing is specified here, then the system uses the global qualifier. If a custom qualifier pattern should be specified for a fact, it has to contain two parts in the pattern: {member}, {fact}. Specify patterns as follows:

	{fact}'s {member}

	{member} in {fact}

	{member} of {fact} (This is the default).

For more information about using verbal rules, see Introduction to Verbal Rules and Business Phrases.

	Super Class

	Displays Java super class associated with this fact.

	Visible

	Select to show the Java Fact in lists in Rules Designer.

	Description

	Enter the Java Fact description.

	Attributes area

	Select the available class properties, constructors, methods, or fields associated with the Java class for the Java Fact act to display or edit.

	Properties

	Some java objects have fields to help define that object. For example a Calendar has properties for defining the first day of the week, the time zone, and so on.

	Fit Columns to Width

	Select this check box to adjust column width.

	Attribute Description

	The Attribute Description is the description of the property.

3.3.3 What You Need to Know About Java Facts

When you define Java Facts you need to know the following:

	On Windows systems, you can use a backslash (\) or a slash (/) to specify the classpath in the Classpath area. Rules Designer accepts either path separator.

	Classes and interfaces that you use in Rules Designer must adhere to the following rules: If you are using a class or interface, only its superclass or one of its implemented interfaces may be made visible.

	When you specify the classpath you can specify a JAR file, a ZIP file, or a full path for a directory.

	When you specify a directory name for the classpath, the directory specifies the classpath that ends with the directory that contains the "root" package (the first package in the full package name). Thus, if the classpath specifies a directory, Rules Designer looks in that tree for directory names matching the package name structure.

For example, to import a class cool.example.Test1 located in c:\myprj\cool\example\Test1.class, specify the classpath value, c:\myprj.

	You should reimport facts if you change the classes. After the reimport operation you may see validation warnings due to class changes. You should correct any validation warnings that may be caused by incompatible changes (for example, removing a property that is referenced by a rule).

3.4 Working with RL Facts

RL Facts are the only kind of facts that you can create directly and that do not have an external source. All other types of Oracle Business Rules facts are imported. An RL Fact is similar to a relational database row or a JavaBean without methods. An RL Fact contains a list of properties of types available in the data model, either RL Fact, Java Fact, or primitive types.

You can use an RL Fact to extend a Java application object model by providing virtual dynamic types.

For example:

R1: if monthly spend = Customer.monthlySpend
then assert new Temp(three month spend: monthly spend[0] + monthly spend[1] + monthly spend[2])
R2: if Temp.three month spend > 500
then modify Temp(status: GOLD)
R3: if Temp.status == GOLD
then assert new Result(discount: 0.10).

For testing and prototyping with Rules Designer you can create RL Facts and use the RL Facts to write and test rules before you import a schema and switch to XML Facts (you might need to wait for an approved XML schema to be created or to be made available). Switching from RL Facts to corresponding XML Facts involves the following steps:

	Delete the RL Facts (this action shows validation warnings in the rules or Decision Tables you created that use these RL Facts).

	Import the XML Facts and give the facts and their properties aliases that match the names of the RL Facts and properties you deleted in step 1.

	This process should remove the validation warnings if the XML Fact and property aliases and types match those of the RL Facts that you remove.

3.4.1 How to Define RL Facts

You add RL Facts from the Facts navigation tab.

To define RL facts:

	In Rules Designer, select the Facts navigation tab.
	Select the RL Facts tab in the Facts navigation tab as shown in Figure 3-5.Figure 3-5 RL Facts Tab in Rules Designer
[image: Description of Figure 3-5 follows]

	In the RL Facts tab, click Create.
	In the RL Facts table, in the Name field, enter the name for the RL Fact or accept the default name.
	In the RL Facts table, in the Description field, enter a description or accept the default, no description.

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties

You add properties to RL Facts using the Edit RL Facts dialog.

To display and edit RL facts and add RL fact properties:

	In Rules Designer, select the Facts navigation tab.

	In the RL Facts tab, double-click the icon for the RL Fact to display or edit the fact. This displays the Edit RL Fact dialog, as shown in Figure 3-6.

Figure 3-6 Edit RL Fact Dialog
[image: Description of Figure 3-6 follows]

	To add RL Fact properties, on the Edit RL Fact dialog in the Properties area, click Create.

	In the Name field, enter the property name.

	In the Type field, select a type from the list or enter a property type.

	To associate a value set with the property, from the list in the Value Set field, select a value set.

	To associate an initial value with the property enter a value in the Initial Value field.

	Add additional properties by repeating these steps, as required.

	Click OK.

3.4.3 What You Need to Know About RL Facts

When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties area the Initial Value field provides a list of possible values as shown in Figure 3-7.

Figure 3-7 Setting RL Fact Property Initial Value
[image: Description of Figure 3-7 follows]

When you are working with some fields in Rules Designer, the initial values list or other lists may be empty. In this case the list is an empty box. Thus, when Rules Designer does not find options to assist you in entering values, you must supply a value directly in the text entry area or click the Expression Builder button to display the expression builder dialog.

3.5 Working with ADF Business Components Facts

ADF Business Components Facts enable you to use ADF Business Components as Facts in rules and in Decision Tables. By using ADF Business Components Facts you can assert view object graphs representing the business objects upon which rules should be based, and let Oracle Business Rules deal with the complexities of managing the relationships between the various related view objects in the view object graph.

For more information, see Working with Oracle Business Rules and ADF Business Components .

3.5.1 How to Import and Define ADF Business Components Facts

When an ADF Business Components view object is imported, an ADF Business Components fact type is created which has a property corresponding to each attribute of the view object.

To add ADF Business Components facts:

	Click the Facts navigation tab and select the ADF-BC Facts tab. This displays the ADF-BC Facts table, as shown in Figure 3-8.Figure 3-8 ADF Business Components Facts Tab
[image: Description of Figure 3-8 follows]

	Click Create.... This opens the Create ADF-BC Fact dialog.
	In the Connection field, from the list, select the connection which your ADF Business Components objects use. The Search Classpath area shows a list of classpaths. For more information, see What You Need to Know About ADF Business Components Fact Classpaths.
	In the View Definition field, select the name of the view object to import.
	Click OK. This displays the Facts navigation tab. Note that the imported fact includes a validation warning. For information on how to remove this validation warning, see What You Need to Know About ADF Business Components Circular References.

3.5.2 What You Need to Know About ADF Business Components Fact Classpaths

In the classpath list shown in the Search Classpath area in the Create ADF Business Components Fact dialog one of the listed classpaths allows you to see the view object definitions available in your project. In this dialog you only need to click Add to Classpath when you need to use a classpath that is not available to your project (this case should be very rare).

3.5.3 What You Need to Know About ADF Business Components Circular References

ADF Business Components Facts can include a circular reference. When this warning is shown in the Business Rule validation log you need to manually resolve the circular reference. To do this you must clear the Visible check box for one of the properties that is involved in the circular reference.

3.5.4 What You Need to Know About ADF Business Components Facts

Each ADF Business Components fact type contains a property named ViewRowImpl that references the oracle.jbo.Row instance that the fact instance represents and a property named key_values which points to an oracle.rules.sdk2.decisionpoint.KeyChain object that may be used to retrieve the set of key-values for this row and its parent rows.

When working with ADF Business Components Facts you should know the following:

	Relationships between view object definitions are determined by introspection of attributes on the View Definition, specifically, those attributes which are View Link Accessors.

The ADF Business Components fact type importer correctly determines which relationships are 1-to-1 and which are 1-to-many, and generates definitions in the dictionary accordingly. For 1-to-many relationships the type of the property generated is a List, which contains facts of the indicated type at runtime.

	It is not possible to use ADF Business Components fact types which have cyclic type dependencies. These cycles must be broken by the clearing the Visible check box for at least one property involved in the cycle.

	ADF Business Components fact types are not Java fact types and do not allow invoking methods on any explicitly created implementation classes for the view object.

If you need to call such methods then add the view object implementation to the dictionary as a Java fact type instead of as an ADF Business Components fact type. In this case, all getters and setters and other methods become available but the trade-off is that related view objects become inaccessible and, should related view object access be required, these relationships must be explicitly managed.

	Internally, ADF Business Components fact types are instances of RL fact types.

Thus, you cannot assert ADF Business Components view object instances directly to a Rule Session, but must instead use the helper methods provided in the MetadataHelper and ADFBCFactTypeHelper classes. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

3.6 Working with Value Sets

You can create a value set to define a list of values or a list of value ranges to limit the acceptable set of values for a fact or a property of a fact in Oracle Business Rules. You can define a value set as a Global Value Set that allows reuse, where a value set is named and stored in the data model, or as a Local Value Set that is specified when you define a Decision Table and only applies to one condition expression.

For more information on using a local value set, see How to Add Condition Rows to a Decision Table.

You can use value sets for the following:

	You can associate fact type properties with value sets. This allows you to limit the acceptable set of values for a property of a fact. For more information, see How to Associate a Value Set with a Fact Property.

	A value set defines a list of values or value ranges for some primitive value (number, string, date, boolean, or enumeration). A value set may be associated with a fact type property in order to provide a fixed set of choices for the value of that property, for example, male or female. A value set must be associated with a decision table condition to provide a fixed set of choices for the value of the condition's expression. These choices (values or value ranges) are entered into the condition cells of the decision table.

The value set values or ranges determine, for each condition expression in a Decision Table, that it has two or more possibilities. Using a value set, each possibility in a condition expression is divided into values or ranges where a cell specifies one value or range from the value set (or possibly multiple values or ranges per cell). For example, if a value set is defined for colors, then the values or ranges could include a list of strings: "blue", "red", and "orange". A value set that includes integers could have three ranges could have three ranges, less than 1, 1 to 10, and greater than 10. For more information, see How to Add Condition Rows to a Decision Table.

	You can associate globals, functions, and function arguments with value sets. Associating a value set with a global allows for design-time validation that an assigned value is limited to the values specified in the value set. Associating a value set with a function argument validates that the function is only called with values in the value set. Using value sets in this manner allows Rules Designer to report validation warnings for global values and function arguments that are assigned or passed a constant argument value that is not allowed. Associating a value set with a function automatically sets a Decision Table condition row to use that value set when the function is used as the expression for that condition row. Only constant expression values are validated. To ensure that global initial expression values and function parameter expression values are validated against the associated value set, check the 'constant' check box associated with the expression. No runtime checks are applied based on the globals or function arguments associated with value sets. For more information, see How to Associate a Value Set with Functions or Function Arguments.

	In addition to design-time validation you can use an LOV value set to provide options that are displayed in lists when entering expressions in IF/THEN rule tests and actions. For more information, see How to Use Value Sets to Provide Options for Test Expressions.

There are three forms for value sets:

	LOV: Defined by a list of values (see How to Define a List of Values Global Value Set).

	Range: Defined by a list of value ranges, defined by the range endpoints (see How to Define a List of Ranges Global Value Set).

	Enum: Defined by a list of enumerated types that is imported from either of:

	XML types (see How to Define an Enumerated Type (Enum) Value Set from XML Types).

	Java facts (see How to Define an Enumerated Type (Enum) Value Set from Java Types).

3.6.1 How to Define a List of Values Global Value Set

A list of values value set lets you specify the type and the list of values or ranges for the value set. For more information, see What You Need to Know About List of Values Value Sets.

To define a list of values (LOV) global value set:

	From Rules Designer select the Value Sets navigation tab.
	From the list next to the Create Value Set icon, select Value Set, as shown in Figure 3-9.Figure 3-9 Adding a List of Values Global Value Set
[image: Description of Figure 3-9 follows]

	Click the Edit button for the value set to display the Edit Value Set dialog.
	In the Edit Value Set dialog, enter the name in the Name column. Ensure that the value set name is not the same as any fact aliases. This will cause a validation error similar to the following:

RUL-05006: The fact type "Rating" has the same alias as an unrelated value set.

	In the Datatype column, select a data type from list.
	Enter a Description.
	Click the Edit button to add a value, as shown in Figure 3-10.Figure 3-10 Edit Value Set Dialog
[image: Description of Figure 3-10 follows]

	For each value that you add, do the following:	In the Value field, enter a value. Note that for String type values in an LOV value, you can select the entire string with three clicks. This allows you to enter the string. Rules Designer adds the same alias without quotation marks.

You can change the order of values in the list of Value set by editing the Value set dialog for a value set. Click the Move up or Move Down button to change the order.

	In the Alias field, enter an alias.

For more information on specifying aliases, see How to Define a List of Ranges Global Value Set.

	In the Allowed in Actions field, select this if the value is an allowable value.

For more information on the Allowed in Actions field and the Include Disallowed Values in Tests field, see What You Need to Know About the Value Set Allowed in Actions Option.

	In the Description field, enter a description.

	Add additional values by clicking the Create button as needed for the value set.
	On the Edit Value Set window, click OK.

You can control rule ordering in a Decision Table by changing the relative position of the values or ranges in an LOV value set associated with a condition expression in a Decision Table.

3.6.2 How to Define a List of Ranges Global Value Set

A list of ranges value set lets you specify the type and the endpoints for values or ranges in the value set. For more information, see What You Need to Know About Range Value Sets.

To define a list of ranges (range) global value set:

	From Rules Designer select the Value Sets navigation tab.
	From the list next to the Create Value Set button, select Range Value Set.
	Double-click in the Data Type field. This displays the Edit Value Set dialog, enter the values set name in the Name field.
	In the Data Type field, from the list, select the appropriate data type for the value set.
	Click the Create repeatedly to add the number of values or ranges that you need in the value set.In these steps you add three values. You start with the default values. After changing the defaults, they should have the following values:

	greater than 1000

	between 500 and 1000, inclusive

	less than 500

Rules Designer added the values with the default values of 50 and 0 and a negative Infinity (-Infinity) value.

	Starting at the first or top value, in the Endpoint field, double-click the default value and enter the top value endpoint, and press Enter.In this example, enter 1000 for the first value.

	In the Included Endpoint field, select the check box as appropriate to include or exclude the value endpoint.In this example, you can leave this check box checked to include the value endpoint.

	In the Allowed in Actions field select the check box as appropriate to include the value in the value set allowable values.For more information on the Allowed in Actions field and the Include Disallowed Values in Tests field, see What You Need to Know About the Value Set Allowed in Actions Option.

	Optionally, in the Alias field double-click the default value and enter the desired value alias, and press Enter.The alias appears in Decision Tables that use this value set. Use an alias to give a more meaningful name to the value than the default value (the range-based Range value).

Note that most names and aliases in Oracle Business Rules allow only letters, numbers, embedded single spaces, and the characters $, _, ', ., -, /, and :. However, value aliases allow additional characters, such as [0..1]. If an alias contains such additional characters, then you cannot refer to the value by the alias in the action cells in a Decision Table. In these cases, you can use the value name, which is also known as the value.

The Range field is read-only: it clearly identifies the actual range associated with the value regardless of the Alias value. For more information, see What You Need to Know About Range Value Sets).

	Moving down the list of values, for each subsequent vale, repeat from Step 6. For the second value, enter the endpoint value 500.
	In the Edit Value Set dialog, click OK.

3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML Types

When you import an XML schema, if the XSD contains enumeration values Rules Designer automatically creates an enumerated type value set for each enumeration. Although enumerated type value sets are read-only, you can change the order of values.

For more information, see What You Need to Know About XML Facts.

To define an enumerated type (enum) value set from XML types:

	Obtain an XSD with the desired enumerations.The following example shows the order.xsd schema file which contains the enumeration Status.

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
</schema>

	Open a dictionary in Rules Designer and create XML facts using the specified schema that contains the enumeration. For more information, see Working with XML Facts.
	Click the Value Sets navigation tab and select the Enum value to see the value set. Notice that the imported Status enumeration values are imported as values with the XSD-specified values.You can change the order of values in an Enumerated Value set by editing the Value set dialog for a value set. Click the Move up or Move Down button to change the order.

You can control rule ordering in a Decision Table by changing the relative position of the values in an enum value set associated with a condition expression in a Decision Table.

3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java Types

When you import a Java enum, Rules Designer automatically creates an enumerated type value set for each Java enum. Although enumerated type value sets are read-only, you can change the order of values.

To define an enumerated type (enum) valueset from Java facts:

	Create or obtain the Java class with the desired enumerations.The following code example shows the RejectPurchaseItem.java class which contains enumeration OrderSize.

package com.example;

public class Class1

{

 public enum OrderSize { SMALL, MEDIUM, LARGE };

 public Class1()

 {
 }
}

	In Rules Designer open a dictionary and create a Java Fact using the Java class. For more information, see Working with Java Facts.
	In Rules Designer click the Value Sets navigation tab and select the Enum value set.You can change the order of values or ranges in an enumerated type valueset by editing the Value set dialog for a value set. Click the Move up or Move Down button to change the order.

You can control rule ordering in a Decision Table by changing the relative position of the values or ranges in an enum value set associated with a condition expression in a Decision Table.

3.6.5 What You Need to Know About List of Values Value Sets

In a Decision Table, the order of the values in a value set associated with a condition expression determines the order of the condition cells, and thus the order of the rules. You can control rule ordering in a Decision Table by changing the relative position of the values in a list of values value set associated with a condition expression; however, you cannot reorder ranges.

Figure 3-11 shows a value set definition in Rules Designer for a value set named colors using a list of values.

Figure 3-11 Value Set Definition Using List of Values
[image: Description of Figure 3-11 follows]

As shown in Figure 3-11, by default with a List of Values value set there is a value otherwise included with the list of values (LOV). This value, otherwise, is distinct from all other values and matches all values of the type that have no other value or range. Thus, with otherwise in the list of values a condition expression that uses the value set can handle every value and provides a match for every value of the specified type, where a match is either a defined value or the otherwise value. The otherwise value cannot be removed from an LOV value set but it can be excluded by clearing the Allowed in Actions check box (when otherwise is excluded an attempt to assign any value that is not in the list of values in the value set causes a validation warning).

Table 3-3 shows the value set values that Rules Designer supports for LOV value sets.

Table 3-3 Supported Types for LOV Value Sets

	Type	Description
	Java primitive types

	This includes int, double, boolean, char, byte, short, long, and float

	String

	Contains String types

	Time, DateTime, and Date

	Contains Time, DateTime, and Date types in the current locale

Note
You are not required to specify an LOV value set when you use a boolean type in a Decision Table. For boolean types, Oracle Business Rules provides built-in values or ranges for the possible values (true and false).

3.6.6 What You Need to Know About Range Value Sets

When you add a value or range to a List of Ranges value set, the value is calculated based on the currently selected value and the next highest value. When you change the endpoint value the value is automatically sorted in the value set; thus, it does not matter where a new range is added. However, it is possible for Rules Designer to not have values between the current value set endpoint value and the endpoint value. In this case, Rules Designer shows a validation warning of the following form:

RUL-05849: Valueset has duplicate bucket value "4999"

To correct this problem you must modify value endpoints to remove the duplicate value.

Table 3-4 shows the types Rules Designer supports for Range values.

Table 3-4 Supported Types for Range Values

	Type	Description
	Selected primitive types

	This includes: int, double, short, long, and float

	Time, DateTime, and Date

	Contains Time, DateTime, and Date types in the current locale

Note the following conventions for the Range field:

	Logical operator: specifies a range with respect to positive or negative infinity. For example, ">=25" means "from 25 to positive infinity" and "<18" means from negative infinity up to but not including 18.

	Square bracket "[": specifies a range that includes this end point value. For example, "[18..25)" means "from 18 up to but not including 25".

	Round bracket ")": specifies a range that excludes this end point value. For example, "(18..25]" means "over 18, not including 18, up to and including 25".

3.6.7 What You Need to Know About the Value Set Allowed in Actions Option

When you define values or ranges in a value set you might define some ranges or values corresponding to non-permissible values. For example, in a value set for driver ages you would typically not allow a value that contains values less than 0. Thus, when a fact with driver data includes an age property associated with a driver ages value set, then you should not be able to create or modify a fact that has the age property set to a value such as -1. In a value set you select Allowed in Actions for valid values and clear this option for invalid values.

The value set option Include Disallowed Values in Tests allows you to include all the values, whether Allowed in Actions is selected or not, in Decision Table conditions and in rule tests. By including all values or ranges you can explicitly test for illegal values. Using the option Include Disallowed Values in Tests you can handle two possible cases:

	The input data for the Oracle Business Rules Engine is clean and does not contain invalid data (such as a negative age). In this case, you should clear the Include Disallowed Values in Tests. Note: the reason you do not want to make age < 0 an Allowed in Actions is this provides design time validation warnings if you try to create an action that uses an invalid value, such as the following: modify(driver, age: -1)). For more information, see Using Value Sets as Constraints for Options Values in Rules.

	You want to consider excluded values in rule tests and in Decision Tables. In this case, you should select Include Disallowed Values in Tests. This is useful when the input data for the Oracle Business Rules Engine may not be clean and may contain invalid data (for example an invalid negative age). A Decision Table that provides actions for all value sets could include cases for excluded values and provide an appropriate action, such as asserting an error fact. To handle this you could either select the Allowed in Actions field for every value in the value set, or, leave the Allowed in Actions field configured as is and select the Include Disallowed Values in Tests field. Using the Include Disallowed Values in Tests field is not only convenient, you do not need to reconfigure every value, it also preserves the configuration of Allowed in Actions so that you can easily reuse this value set to handle the first case (when you clear Include Disallowed Values in Tests).

3.6.8 What You Need to Know About Values

When you enter a value in a value set, the value you supply must be valid for the type specified for the value set. If the value you enter is not valid for the value set type, Rules Designer makes the value you supply a string by adding quotation marks. Adding quotation marks is the only way to make a legal literal when the user provided data is not appropriate for the specified type. For example, if you add an int type LOV value set, and then supply a value 2.2, Rules Designer shows a warning such as the following:

RUL-05833: Invalid characters "2.2" in value

To fix this problem either enter a valid value for the value, for example in this case the value 2, or change the type of the value set.

For an additional example, when you enter a value for a value, for example if you enter a value with value set with data type short and add a value with the value 999999, Rules Designer assigns this the value "999999". The maximum value for a short is 32767. In this case you see a warning related to the value, similar to the previous example, because a String is not a valid value for a value set with data type short. The solution to this is to enter appropriate values for all values (in this example, enter a value less than or equal to 32767).

3.7 Associating a Value Set with Business Terms

After you define a global value set, you can associate parts of the data model with the global value set (if their types are compatible). In this way, condition cells in the Conditions area can automatically be assigned a value set when you define a Decision Table. Also, when a value set is associated with a business term, Oracle Business Rules uses the values or ranges that you define as constraints for the values for expressions for the business terms in rules.

You can associate the following four kinds of business terms with a value set:

	Fact Property

	Function Result

	Function Argument

	Global Value

3.7.1 How to Associate a Value Set with a Fact Property

To prepare for creating Decision Tables, you can associate a global value set with fact properties in the data model.

To associate a value set with a fact property:

	From Rules Designer, select the Facts navigation tab.
	Select the fact type to edit and click the Edit button. This displays the appropriate Edit Fact dialog for the fact type you select.
	In the Properties table, under Value Set, select the cell for the appropriate fact property and from the list select the value set you want to associate with the property. For example, see Figure 3-12.Figure 3-12 Defining a Value Set for a Property
[image: Description of Figure 3-12 follows]

	On the Edit Fact page, click OK.

3.7.2 How to Associate a Value Set with Functions or Function Arguments

To prepare for creating Decision Tables you can associate a global value set with functions in the data model.

To associate a value set with a function return value:

	From Rules Designer, select the Functions tab.
	Select the function to edit. This shows the function arguments and the function body for the specified function.
	In the Functions table, under Value Set, select the cell and from the list select the value set you want to use. For example, see Figure 3-13.Figure 3-13 Defining a Value Set for a Function Return Value
[image: Description of Figure 3-13 follows]

3.7.2.1 How to Associate a Value Set with a Function Argument

To associate a value set with a Function argument:

	From Rules Designer, select the Functions navigation tab.
	Select the function to edit. This shows the function arguments and the function body for the specified function.
	In the Functions table, in the Arguments area select the appropriate argument.
	For the specified argument, under Value Set, select the cell and from the list select the value set you want to use.

3.7.3 How to Associate a Value Set with a Global Value

To prepare for creating Decision Tables, you can associate a global value set with global values in the data model.

To associate a value set with a global value:

	From Rules Designer, select the Globals navigation tab.
	Select the global value to edit.
	In the Globals table, under Value Set, select the cell for the appropriate global value, and from the list, select the value set that you want to associate with the global value. For example, see Figure 3-14.

Figure 3-14 Defining a Value Set for a Global Value
[image: Description of Figure 3-14 follows]

4 Working with Rulesets and Rules

This chapter describes the Oracle Business Rules data model element called a ruleset that you use to group one or more rules or Decision Tables. It also discusses how to work with dictionaries, nested tests, and simple and tree mode rules, and Expression Builder.

The chapter includes the following sections:

	Introduction to Working with Rulesets, Rules, and Business Phrases

	Working with Rulesets

	Working with Rules

	Introduction to Verbal Rules and Business Phrases

	Validating Dictionaries

	Using Advanced Settings with Rules and Decision Tables

	Working with Nested Tests

	Working with Advanced Mode Rules

	Working with Extended Tests

	Working with Tree Mode Rules

	Using Date Facts_ Date Functions_ and Specifying Effective Dates

	Introduction to Expression Builder

	Using Value Sets as Constraints for Options Values in Rules

	Importing Runtime Rules Changes From Repository Into JDeveloper

	How to Model Rules When the Data Model is Deep

For more information, see What Are Rulesets?.

4.1 Introduction to Working with Rulesets, Rules, and Business Phrases

Use business rules to define key decisions and policies for a business.

Some of these decisions and policies include:

	Business Policies: for example spending policies and approval matrices

	Constraints: for example valid configurations or regulatory requirements

	Computations: for example discounts, premiums, or scores

	Reasoning Capabilities: for example offers based on customer value

Oracle Business Rules provides multiple approaches to writing rules:

	IF/THEN rules - rules are expressed as IF/THEN statements. There are two ways of modeling IF/THEN rules. General rules use a pseudo-code language to express rule logic. Verbal rules use natural language statements to express rule logic.

	Decision Tables, which display multiple related rules in a single spreadsheet-style view.

Business phrases are used to provide a natural language vocabulary for the construction of verbal rules' tests and actions. They are not used in general rules.

This chapter includes details for working with IF/THEN rules. For information on working with Decision Tables, see Working with Decision Tables.

4.2 Working with Rulesets

A ruleset provides a unit of execution for rules and Decision Tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on and off the stack. In rulesets, rule priority specifies the order in which the rules should be fired.

Rulesets also include an effective date specification that controls when a ruleset is active. A ruleset can be:

	always active

	active during a time range

	active during a date range

	active during a time and date range

4.2.1 How to Create a Ruleset

All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and Decision Tables into a unit of execution.

To create a rule set:

	In Rules Designer, go to the Rule Sets tab.
	Click the Create rule set button. This displays the Create Rule Set dialog.
	Enter a name in the Name field.Note:
Names of business rules or rule sets or any other rule objects must not contain . “dot”.

	Enter a description in the Description field.
	Click OK.

4.2.2 How to Set the Effective Date for a Rule Set

Effective date support provides the ability to specify a start date and an end date for a ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date range in which the rules and Decision Tables within the ruleset are effective. For more information on effective dates, see Using Date Facts_ Date Functions_ and Specifying Effective Dates.

To set the effective date for a ruleset:

	Select the ruleset name from the Rule Sets tab.
	Click the navigation button next to the ruleset name to expand the ruleset information to show the ruleset Name, Description, and Effective Date fields, as shown in Figure 4-1.Figure 4-1 Ruleset Showing Effective Date Field
[image: Description of Figure 4-1 follows]

	Select the Effective Date entry. This displays the Set Effective Date dialog, as shown in Figure 4-2.Figure 4-2 Using the Set Effective Date Dialog
[image: Description of Figure 4-2 follows]

	Use the Set Effective Date dialog to specify the effective dates for the ruleset. Clicking the Set Date button displays a calendar to assist you in entering the From and To field data.

You can specify an effective start date and or an effective end date for a ruleset, a rule, or a Decision Table. For information on specifying the effective date for a ruleset, see How to Set the Effective Date for a Rule Set.

4.2.3 How to Set the Effective Date for a Rule

You can specify an effective start date and or an effective end date for a rule.

To set the effective date for a rule:

	Select the ruleset name from the Rulesets navigation tab.
	Select a rule within the ruleset.
	Next to the rule name click Show Advanced Settings.
	Select the Effective Date field. This displays the Set Effective Date dialog.
	Use the Set Effective Date dialog to specify the effective dates for the rule. Clicking the Set Date button displays a calendar to assist you in entering the From and To field data.
	In the Set Effective Date dialog, click OK.

4.2.4 How to Use a Filter to Display Matching Rules in a Ruleset

As the number of rules in a ruleset increases, it can be difficult to navigate the list of rules. You can instruct Rules Designer to filter the list of rules, to display only rules of interest. For example, you can display only active rules or only rules that have validation warnings.

For more information on creating rules, see Working with Rules.

To use a filter to display matching rules in a ruleset:

	In Rules Designer, select a ruleset from the Rulesets navigation tab.

	To show the rule filter settings, next to the ruleset name, click Show Filter Query as Figure 4-3 shows.

Figure 4-3 Showing or Hiding a Filter Query in a Rule Set
[image: Description of Figure 4-3 follows]

	In the Filter Query field, click <insert test> to insert a default test.

	Configure the default test.

In this case, as shown in Figure 4-4, when you click an <operand> you can choose from the rule-specific options shown in Table 4-1.

Table 4-1 Rule Filter Query Operands

	Operand	Description
	name

	Matches against the rule name.

	description

	Matches against the rule description.

	priority

	Matches against the rule priority. For more information, see How to Set a Priority for a Rule.

	start date

	Matches against the rule start date. For more information, see What You Need to Know About Effective Dates.

	end date

	Matches against the rule end date. For more information, see What You Need to Know About Effective Dates.

	minutes until start date

	Matches against a specified number of minutes until the rule start date. For more information, see What You Need to Know About Effective Dates.

	minutes until end date

	Matches against a specified number of minutes until the rule end date. For more information, see What You Need to Know About Effective Dates.

	days until start date

	Matches against a specified number of days until the rule start date. For more information, see What You Need to Know About Effective Dates

	days until end date

	Matches against a specified number of days until the rule end date. For more information, see What You Need to Know About Effective Dates

	years until start date

	Matches against a specified number of years until the rule start date. For more information, see What You Need to Know About Effective Dates

	years until end date

	Matches against a specified number of years until the rule end date. For more information, see What You Need to Know About Effective Dates

	is active

	Matches against whether the rule is active. For more information, see How to Select the Active Option.

	is valid

	Matches against whether the rule has validation warnings. For more information, see Understanding Rule Validation.

	referenced fact types

	Matches against one or more fact types.

Figure 4-4 Filter Query Operands
[image: Description of Figure 4-4 follows]

For more information, see How to Define a Test in a Verbal Rule.

	Select the operator to choose an operator for the comparison. For example, for the name you can select contains from the operand list.

	Enter a comparison operand for the right-hand-side of the filter test. For example, enter the string Policy.

	When the filter query is complete you can apply the filter to the rules in the ruleset:

	To apply the filter, select the Filter On check box.

Rules Designer displays only the rules that match the filter query as Figure 4-5 shows.

Figure 4-5 Enable Filter Query in a Rule Set
[image: Description of Figure 4-5 follows]

	To disable the filter query, clear the Filter On check box.

Rules Designer displays all the rules in the ruleset.

	To delete the filter query, select it and press Delete or click Clear Filter.

4.2.5 Using Auto Complete when Selecting Component Values from a List

The Rules Designer enables you to easily set values for the following components of a business rule:

	Expressions

	Conditions

	Operands

	Actions

You can edit these components by clicking them in the Rules Editor and selecting the desired value from a drop down list or tree. You can also enter the name of the desired value in the text area at the top of the list. When you begin entering text, the list of options are filtered as shown in Figure 4-6.

Figure 4-6 Using the Auto Complete Function
[image: Description of Figure 4-6 follows]

In this figure, only the options beginning with the text entered are displayed.

4.3 Working with Rules

You create business rules to process facts and to obtain intermediate conclusions that Oracle Business Rules can process. You create rules in a ruleset, so before working with rules you must create a ruleset (or use the default ruleset).

For more information on creating a ruleset, see Working with Rulesets.

You can test rules as you design them without having to deploy your application. For more information, see Testing Decision Functions Using a Rules Function.

Rules Designer rule validation can assist you when you work with rules by showing warnings for incorrect or incomplete rules. To show the validation log window, click the Validate button or select View>Log and select the Business Rule Validation tab. Note that you must correct all warnings before you can test or deploy rules. For more information on rule validation, see Understanding Rule Validation.

As the number of rules in a ruleset increases, you can configure Rules Designer to filter the list of rules to show only rules of interest. For more information, see How to Use a Filter to Display Matching Rules in a Ruleset.

4.3.1 How to Add General Rules

To create a general rule, first add the rule to a ruleset, and then insert tests and actions. Actions are associated with pattern matches. At runtime, when a test in the IF area of a rule matches, the Rules Engine activates the THEN action and prepares to run the actions associated with the rule.

By default, Rules Designer creates rules which fire for each matching fact. Select Advanced Mode to enable other options, such as a rule in which the same fact type matches more than once, or never. For more information on advanced mode and showing advanced settings, see Using Advanced Settings with Rules and Decision Tables.

To add a general rule to a ruleset:

	In Rules Designer, select the Rule Sets tab and click +.
	In the Overview tab, in the General Rules panel, click +. Alternatively, in the General Rules tab, click Create Rule or Create (+).For example, click Create Rule to add a rule named Rule_1, as shown in Figure 4-8.

Figure 4-7 Adding a Rule to a Rule Set
[image: Description of Figure 4-7 follows]

Note:
 Delete rules only from the rule editor region by clicking the delete button. Rules do not get deleted cleanly when you delete them from left tree navigation.

4.3.2 How to Add Verbal Rules

Verbal rules are created and executed in a similar fashion to general rules. However, there are some differences.

To create a verbal rule, first add the rule to a ruleset, and then insert tests and actions. As you define a verbal rule, you add business phrases which can either be automatically derived by the system, or defined by you. You can define business phrases before writing a rule, or after.

Verbal rules do not support Advanced Mode or Tree Mode.

To add a verbal rule to a ruleset:

	In Rules Designer, select the Rule Sets tab and click +.
	In the Overview tab, in the Verbal Rules panel, click +. Alternatively, in the Verbal Rules tab, click Create Verbal Rule or Create (+).For example, click Create Verbal Rule to add a rule named VerbalRule1, as shown in Figure 4-8.

Figure 4-8 Adding a Verbal Rule to a Rule Set
[image: Description of Figure 4-8 follows]

4.3.3 How to Define a Test in a Rule

To create a test in a rule you add conditions for facts. For example, with a sample CustomerOrder fact with an annual spending property, you can add a test to determine if a customer order is associated with a high value of spending, based on the annual spending for the customer. Note that you can use value sets to limit the values for tests and actions in rules. For more information, see Using Value Sets as Constraints for Options Values in Rules.

Figure 4-9 shows this sample rule.

Figure 4-9 Adding a Test to a Rule
[image: Description of Figure 4-9 follows]

At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts. For this sample rule, Rule_1, when a fact matches the Rules Engine modifies the fact and then modifies the value property to "High."

To define tests in rules:

	In Rules Designer, click + from the Rule Sets tab, add or select the rule you want to use, for example, select Rule_1.

	The IF area of the rule includes a left-hand-side <operand> and a right-hand-side <operand>, as shown in Figure 4-14.

Figure 4-10 Rule Test with Left-hand-side operand and Right-hand-side operand
[image: Description of Figure 4-10 follows]

	In the rule, click <insert test> and choose simple test, for example.

	In a test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and a list, as shown in Figure 4-15:

Figure 4-11 Configuring the Left-hand-side Operand of a Test in a Rule
[image: Description of Figure 4-11 follows]

	To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.

	To enter a literal value, type the value into the text entry area and press Enter.

The value you enter must agree with the type of the corresponding operand. For example, in the test IF CustomerOrder.annualSpending > <operand>, valid values for <operand> must agree with the type of CustomerOrder field annualSpending.

	In a test, you replace the operator with the desired logical operator or accept the default (==). To do this, select the default == operator. This displays a field and a list. The list may contain additional operators, depending on the datatype of the left operand. For example, to test strings, if you select a String operand on the left hand side, then additional String operators, such as startsWith and equalsIgnoreCase are available as shown in Figure 4-16.

Figure 4-12 Configuring String Operators in a Rule
[image: Description of Figure 4-12 follows]

Similarly, to test a logical condition between the left-hand and right-hand operands, select one of the logical operators: == (equality), != (not equal), > (greater than), >= (greater than or equal to), < (less than), <= (less than or equal to). For more information on the operators, see Oracle Business Rules Built-in Classes and Functions.

	In a test, you replace the right-hand-side operand with a value.

Configure the <operand> placeholder as you would for any operand.

For example, enter >25 into the text entry area and press Enter or Return, as shown in Figure 4-13.

Figure 4-13 Configuring the Right-hand-side Operand of a Test in a Rule
[image: Description of Figure 4-13 follows]

4.3.4 How to Define a Test in a Verbal Rule

To create a test in a verbal rule you select a derived or user-defined business phrase, or write a new user-defined business phrase, for which you supply details later.

As you enter text in a verbal rule test, the Rules Editor displays a drop down list of related business phrases.

To define tests in verbal rules:

	In Rules Designer, add a new verbal rule, or select the verbal rule you want to use.
	The IF area of the rule includes a placeholder <insert test>, as shown in Figure 4-14.Figure 4-14 Rule Test with Left-hand-side operand and Right-hand-side operand
[image: Description of Figure 4-14 follows]

	In the rule, click <insert test> and begin to type a test in text entry box that appears.
	As you type text (such as 'policy', for example), a list of related business phrases are displayed as shown in Figure 4-15. Select the one you want.Figure 4-15 Configuring a Test in a Verbal Rule
[image: Description of Figure 4-15 follows]

	You can refine the list if needed. To display more choices, select a business phrase and press the Tab key. The list is populated with business phrases related to the one you selected, as shown below.Figure 4-16 Refining Suggested Business Phrases in a Verbal Rule
[image: Description of Figure 4-16 follows]

	If there are parameters in your business rule, such as '{value}', click on them and specify their details.
	If you have written a new business phrase, the rule is put into draft mode. Define the business phrase in the Business Phrases tab. For more information, see How to Create Business Phrases.

4.3.5 What You Need to Know About Oracle Business Rules Test Variables

Oracle Business Rules test variables provide a way to shorten lengthy expressions that occur in rule and decision table conditions and actions. The variable and its value can be represented as an inline business term definition. The test variables are also called as inline aliases.

The option to insert test variables appears as a list next to <insert test> in the rules condition section. As part of the definition of rule condition, you can define a variable to represent a complex expression, a mathematical expression, or callouts to functions.

For example you have an XML fact called Song that has an attribute as composer having a function called size. When referring to the attribute, instead of using Song.composer.size() every time, you can just define a variable as the following:

lo = Song.composer.size()

Subsequently, in tests, you can use lo as part of your expressions. The expression can be anything from a simple to a complex expression. For example, in the body of a function, if you click <insert action>, you can see expression as a part of the available options.

Figure 4-17 displays a test variable.

Figure 4-17 Rules Test Variable
[image: Description of Figure 4-17 follows]

Once you define an inline alias, for subsequent test conditions, the inline alias is available in the list of the operands. The scope of an inline alias is restricted to the subsequent tests in a particular rule, in which the inline alias is defined. In case of a nested test, you can still use the inline alias, because the nested test is a part of the base test where you have defined the alias. This is true even for any test that you define even within the nested test. The scope of the inline alias is not just restricted to the test conditions of the base and its nested test, but also to the actions of that rule. If the inline alias is defined as a part of a nested test condition and not as a part of the main test condition, even then the alias will be available to all the subsequent test conditions and actions within or outside the main nested test.

However, if you define an inline alias inside a not nested test, then the scope of the inline alias is restricted only to the subsequent tests inside the not nested test and not to any tests that are outside the not nested test.

The inline aliases can be used both in If-Then rules as well as Decision Tables. In a Decision Table, in Advanced Mode, you can show or hide patterns as well as enter a pattern by clicking <insert pattern>. After you insert a pattern, you can insert tests. In normal mode, you can show or hide tests as well as enter a test by clicking <insert test>.

Note:
Advanced Mode capability has been maintained for backward compatibility only. We recommend that you use extended tests in simple mode to create any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode. Advanced mode rules can be converted to equivalent simple mode rules simply by clearing the Advanced Mode check box.

For more information, see Working with Extended Tests

4.3.6 How to Define Range Tests in Rules

To create a range test in a rule, you add conditions for facts. For example, with a sample CustomerOrder fact with an annual spending property, you can add a test to determine if the value of a customer order falls between an upper and lower range.

The following summarizes this sample rule:

IF
 CustomerOrder.annualSpending between 100 and 2000
THEN
 Modify CustomerOrder.value = "Normal"

At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts.

To define range tests in rules:

	In Rules Designer, select a ruleset from the Rulesets navigation tab.

	In the View field, select IF/THEN Rules (this is the Rules Designer default).

	Add or select the rule you want to use, for example, select Rule_1.

	In Rule_1, in the IF area, select <insert test>.

	The test in the IF area of a rule includes a left-hand side <operand> and a right-hand-side <operand>.

	In a range test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and a list, as shown in Figure 4-18:

Figure 4-18 Adding a Test Left hand-side Operand to a Rule
[image: Description of Figure 4-18 follows]

	To enter a value, use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.

	To enter a literal value, type the value into the text entry area and press Enter. The value you enter must agree with the type of the corresponding operand.

For example, in the test IF CustomerOrder.annualSpending > <operand>, valid values for <operand> must agree with the type of CustomerOrder field annualSpending.

	In a range test, you choose the between operator. To do this, select the default == operator. This displays a text entry area and a list. Select between as shown in Figure 4-19.

Figure 4-19 Configuring the Operator of a Range Test in a Rule
[image: Description of Figure 4-19 follows]

This adds two more <operand> placeholders.

	Configure the <operand> placeholders as you would for any operand.

For this example, the test is true when the left-most operand (CustomerOrder.annualSpending) is between the values 100 and 2000.

4.3.7 How to Define Set Tests in Rules

To create a set test in a rule, you add conditions for facts. For example, with a sample CustomerOrder fact with a line item property you can add a test to determine if the line item belongs to an arbitrary set of products.

The following summarizes this sample rule:

IF
 CustomerOrder.lineItem.sku in 12345, 43255, 76348
THEN
 Modify CustomerOrder.value = "High"

At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts.

To define set tests in rules:

	In Rules Designer, select a ruleset from the Rulesets navigation tab.

	In the View field, select IF/THEN Rules (this is the Rules Designer default).

	Add or select the rule you want to use, for example select Rule_1.

	In Rule_1, in the IF area select <insert test>.

	The test in the IF area of a rule includes a left-hand side <operand> and a right-hand-side <operand>.

	In a set test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and a list as shown in Figure 4-20:

Figure 4-20 Adding a Test Left-hand-side Operand to a Rule
[image: Description of Figure 4-20 follows]

	To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.

	To enter a literal value, type the value into the text entry area and press Enter.

	In a set test, you use the in operator. To do this, select the default == operator. This displays a text entry area and a list. Select in as shown in Figure 4-21.

Figure 4-21 Configuring the Operator of a Set Test in a Rule
[image: Description of Figure 4-21 follows]

This adds two more <operand> placeholders in a comma separated list and an <insert> placeholder as shown in Figure 4-22.

Figure 4-22 In Operator in a Set Test
[image: Description of Figure 4-22 follows]

To add another operand to the list, click <insert>.

To delete an operand from the list, right-click the operand and select Delete Test Expression.

	Configure the <operand> placeholders as you would for any operand as shown in Figure 4-23.

Figure 4-23 Configuring the Operands of a Set Test in a Rule
[image: Description of Figure 4-23 follows]

The test is true when the value of the left-most operand (CustomerOrder.lineItem.sku) is any of 12345, 43255, or 76348.

4.3.8 How to Define an Action in a General Rule

To create a rule you insert tests and you insert actions. The actions are associated with pattern matches. When a test in the IF area of a rule matches, the Rules Engine activates the THEN action and prepares to run the actions associated with the rule.

When you add an action, you use one of the forms of actions shown in Table 4-2. For each form shown in Table 4-2 the options that Rules Designer presents are context sensitive, so the lists and the number of items you work with may be different, depending on which action you add and the choices you make while you enter the action. Table 4-2 shows the basic actions; additional actions are available with Advanced Mode. For more information on advanced mode see Using Advanced Settings with Rules and Decision Tables.

To define actions in general rules:

	In Rules Designer, select a ruleset from the Rulesets navigation tab.
	In a general rule, in the THEN area, select <insert action>. This displays the add action list as shown in Figure 4-27.Figure 4-24 Adding a Modify Action to a Rule
[image: Description of Figure 4-24 follows]

	In the add action list, select the type of action you want to add. For example, select modify. You can also enter the name of the action in the text area. As you begin entering a name, the list of available choices is automatically filters. This is useful when there are a large number of options available.You can add any required action ranging from assert, call, modify to even conditional actions such as if, else, elseif, while, for, if (advanced), and while (advanced).

	In the THEN area, select <target> to display the option list. For example, select RequestedProduct as shown in Figure 4-25.Figure 4-25 Adding Modify Action to a Rule and Selecting the Target
[image: Description of Figure 4-25 follows]

	Select <edit property>. This displays the Properties dialog.
	In the Properties dialog, in the Value column, enter "High" (include the double quotation marks) and press Enter or Return as shown in Figure 4-26.Figure 4-26 Adding Modify Action Property and Value to a Rule
[image: Description of Figure 4-26 follows]

	In the Properties dialog, click Close. This displays the rule.

4.3.8.1 Basic Actions in a General Rule

Table 4-2 Rule Action Choices

	Action Form	Description
	assert New

	Assert a new fact.

	assign,

	Assert a new fact.

	call

	Call a function.

	modify

	Modify a data value associated with a matched fact.

	retract

	Retract a fact.

	assert

	Assert a fact.

	asset tree

	Asserts a tree of facts given the root.

	assign new

	Assign a new fact.

	expression

	Perform expression.

	return

	The return action returns from the action block of a function or a rule. A return action in a rule pops the ruleset stack, so that execution continues with the activations on the agenda that are from the ruleset that is currently at the top of the ruleset stack.

	RL

	Use an Oracle RL expression that you supply.

	synchronized

	The synchronized action is useful for synchronizing the actions of multiple threads. The synchronized action block lets you acquire the specified object's lock, then execute the action-block, then release the lock.

	throw

	Throw an exception, which must be a Java object that implements java.lang.Throwable. A thrown exception may be caught by a catch in a try action block.

	try

	The try, catch, and finally in Oracle RL is like Java both in syntax and in semantics. There must be at least one catch or finally clause.

	if, else, elseif, for, while

	Conditional actions.

4.3.9 How to Define an Action in a Verbal Rule

Like general rules, to create a verbal rule you insert tests and actions. Verbal rules tests and actions are composed primarily from business phrases.

To define actions in verbal rules:

	In Rules Designer, select a ruleset from the Rulesets navigation tab.
	In a verbal rule, in the THEN area, select <insert action>. This displays the add business phrase list as shown in Figure 4-27.Figure 4-27 Adding an Action to a Verbal Rule
[image: Description of Figure 4-27 follows]

	In the business phrases list, start to type the action you want to display a list of suggested business phrases.You can also type keywords if you aren't certain of how to phrase your action. For example, if you know you want to calculate a premium in a particular way, you might type 'calculate Premium' to see related business phrases.

Figure 4-28 Adding an Action to a Verbal Rule
[image: Description of Figure 4-28 follows]

	Select a business phrase if one is available that meets your needs.
	To refine the list of business phrases further, select one related to what you want to use and press the Tab key.The list is displayed with a refined set of business phrases. Select the phrase you want.

Figure 4-29 Adding an Action to a Verbal Rule
[image: Description of Figure 4-29 follows]

	If no business phrases in the list meet your needs, type a business phrase and select Add New Business Phrase to instantiate a new business phrase. Complete the definition of the business phrase in the Business Phrases tab.

4.3.10 What You Need to Know About Rule Actions

A rule loop occurs when the value for a condition is changed by an action. Loops can occur across rules in a single rule, spread over several Decision Tables, or spread over rules and Decision Tables in the same ruleset. You need to avoid creating rule actions that modify fact properties that are used in rule conditions. At runtime, such rules could cause an infinite loop.

4.3.11 What You Need to Know About Oracle Business Rules Performance Tuning

In most cases, writing of rules should not require a focus on performance. However, there are tips that can that help you to enhance and maximize rule performance.

For more information on Oracle Business Rules performance tuning, see Oracle Business Rules Performance Tuning in Tuning Performance.

4.4 Introduction to Verbal Rules and Business Phrases

Verbal rules work hand in hand with business phrases to provide a flexible way author rules using natural language statements to express rule logic in domain specific sentences that are similar to spoken language.

Business phrases provide the logic behind conditions that are used in the composition of the verbal rule.

You can write verbal rule tests and actions using derived business phrases as well as user-defined business phrases. Derived business phrases are automatically created using facts, globals and other information in the dictionary while user-defined phrases can be explicitly authored to augment derived phrases. Further, user-defined phrases can either be pre-created or created as needed while composing the verbal rule.

As you write a verbal rule, you can use suggested business phrases, or instantiate your own on the fly and provide their implementation details later. Alternatively, you can create the business phrases you need for your verbal rule first, and then complete the verbal rule.

4.4.1 Working with Business Phrases

You create business phrases in the Business Phrases tab of the Rules Designer.

Business phrases comprise three parts:

	Parameters - parameters defining the types of variables that can be passed to the business phrase

	Value - the business phrase expression, including placeholders for parameters if any

	Mapping - definitions of the logic defining the business phrase conditions

There are two types of business phrases:

	Test business phrases - define conditions. These provide the same types of logic as the IF part of a general rule. For more information, see How to Define a Test in a Rule.

	Action business phrases - define the actions to perform if the conditions defined by the test business phrases in a verbal rule are met. These provide the same types of logic as the THEN part of a general rule. For more information, see How to Define an Action in a Verbal Rule.

4.4.1.1 Business Phrases Tab

You create both test and action business phrases in the Business Phrases tab of the Rules Designer, as shown in Figure 4-30.

Figure 4-30 Business Phrases Tab
[image: Business Phrases tab]

The tab includes the following sections:

	Business Phrases list

	Parameters

	Value

	Mapping

Business Phrases list

The Business Phrases list displays the business phrases included in the dictionary.

Use the toolbar controls to filter the list by searching, to refresh the list, to add new test or action business phrases, and to delete the currently selected business phrase.

The list displays business phrases and their attributes: Value, Form and Draft.

Mark a business phrase as draft by checking the Draft check box directly in the list.

Business phrases containing validation errors are marked with a red squiggly underscore. Hover over them to see the error in a pop-up.

Parameters

Use the Parameters panel to view and edit parameters.

Click Insert to add a parameter to the value of the business phrase. Click Add and Delete to create and remove parameters.

The Form attribute defines the type of parameter. Choices include:

	Value - ad hoc value. When selected, the Type can be chosen from boolean, byte, char, double, float, int, long, short or String

	Variable - a variable which is already defined within the scope of the business phrase. When selected, the Type can be chosen from one of the defined fact types in the dictionary.

	Expression - enter an expression

Value

Edit the definition of the business phrase in the Value panel. The value is also used as the display name of the business phrase in the Business Phrases list, and in business phrases displayed in choice lists when authoring a verbal rule.

Mapping

Edit the logical definition of conditions for the business phrase in the Mapping panel. A business phrase mapping contains similar logical constructs to what you would see if the business phrase logic were authored as a general rule. See the discussions of tests and actions in Working with Rules for principles and procedures which also apply to the creation of business phrase mappings.

4.4.1.2 Draft Business Phrases and Verbal Rules

Business phrases can be marked as being in draft status.

You can set or override the draft status of a business phrase by checking or unchecking Draft in the Business Phrases list.

The draft status of a verbal rule is derived from the business phrases it references and can not be manipulated directly. If a verbal rule contains business phrases marked draft, the rule is also marked draft. The verbal rule description panel is changed to a solid blue color, and the word 'Draft' appears next to the rule name, as shown in Figure 4-31. When all business phrases referenced by the verbal rule are no longer marked draft, the verbal rule is taken out of draft status.

Figure 4-31 Verbal Rule Marked Draft
[image: Verbal Rule marked as Draft]

Draft business phrases and verbal rules are not validated and are not included in the dictionary for execution. This allows you to continue to use or test a dictionary as you refine your business phrases and verbal rules.

As you write a verbal rule you can compose business phrases that do not yet exist in the dictionary. These are automatically added to the list of business phrases and marked draft, and the verbal rule is marked draft as well.

4.4.2 How to Create Business Phrases

You create business phrases in the Business Phrases Tab. You can also specify a business phrase while writing a verbal rule and then complete its definition later in the Business Phrases tab.

Use the Business Phrases tab to add, modify, and delete business phrases.

To Create a New Business Phrase

	In Rules Designer, select the Business Phrases tab and click Create (+) to create a test business phrase. Select either Test Business Phrase or Action Business Phrase.A new business phrase is created.

	Enter the definition of the business phrase in the Value panel. Placeholders for parameters that have not yet been defined can be included by typing their name wrapped in curly braces. For example:{customer} is single

	Define parameters in the Parameters panel. Click Create (+) to add a new parameter. Double-click its name to edit it. Specify its Form, and Type. Optionally, specify a Value Set.
	To add a parameter to the business phrase value, click Insert.
	Define the mapping for the business phrase in the Mapping panel. Begin by clicking <insert test>. Select tests and specify operands. Add additional tests if needed.

4.4.2.1 Example Business Phrase Creation Scenario

For this example, assume you have an Insurance Quote project with most of the project definitions complete. Perhaps you want add a business phrase that tests to see if a customer is a minor, and to invalidate the policy.

You create a new test business phrase and provide the value {customer} is a minor.

Next, you define the parameter customer, and map it to your previously defined Customer fact.

Now you provide the mapping that specifies the condition. You click on <insert test> and select simple test. You click on the left <operand>, expand customer and select customer.age. You click on the right operand and specify the value 21.

The test business phrase looks like Figure 4-32 below.

Figure 4-32 Test Business Phrase Example
[image: Example of Test Business Phrase]

Now you create an action business phrase to set the deductible to a high value and give it the value Set High Deductible.

You create a variable called policy and map it to your previously defined Policy fact.

You click <insert test> in the Mapping panel and select Expression. You click <expression> and the Expression Editor displays. You navigate to policy.deductible, select it, and click Insert into Expression. You complete the expression with '= 2000' and click OK.

Your action business phrase looks like the Figure 4-33 below.

Figure 4-33 Action Business Phrase Example
[image: Description of Figure 4-33 follows]

4.4.2.2 Translating Business Phrases

The Value attribute of Business phrases that have been added to the dictionary can be translated, regardless of whether they originated as derived business phrases or as user-defined business phrases.

In the Business Phrases tab, select the business phrase to translate and click Edit Translation Bundles in the Value panel. Edit translations in the Bundle Editor dialog that appears.

4.4.3 Choosing or Adding Business Phrases in Verbal Rules

Verbal rules use business phrases to specify the IF and THEN tests and actions.

When defining a test or action in a verbal rule, you enter text which triggers a drop-down list of choices. From the list, you can select existing business phrases from the dictionary, automatically generated business phrases, or you can instantiate your a new business phrase based on what you typed, provide its implementation details later in the Business Phrases tab.

4.4.3.1 Instantiating New Business Phrases While Authoring a Verbal Rule

You can instantiate new business phrases while authoring a new verbal rule simply by typing them into a test or action instead of selecting one from the drop down list. These business phrases are marked draft, and the verbal rules which use them are also marked as draft.

In the example below, the desired business phrase Customer is low risk is entered as a test. The business phrase is not shown in the drop down list. It was not automatically generated, and has not previously been defined in the dictionary.

Figure 4-34 Adding a New Business Phrase to a Rule
[image: Description of Figure 4-34 follows]

The verbal rule is marked as a draft.

Figure 4-35 New Business Phrase Added and Rule is Marked Draft
[image: Description of Figure 4-35 follows]

The business phrase marked as a draft and is added to the Business Rules list. The parameters (if any) and mapping information must still be specified.

Figure 4-36 Business Phrases Added From Verbal Rule Marked Draft
[image: Description of Figure 4-36 follows]

4.4.3.2 Choosing Business Phrases While Creating a Verbal Rule

A robust list including both previously user-defined and auto-generated derived business phrases, sorted by relevancy, is automatically provided as you author a test or action.

User-defined and derived business phrases are not visually distinguished from one another in the drop down list

4.4.3.3 Derived Business Phrases

Derived business phrases are automatically created and are based on business objects and data model as defined in the dictionary based. These are created on the fly and based on what the system calculates you intend to author, based on your typed input. These are not persisted if they are not added to the verbal rule.

Derived business phrases, once added to a verbal rule, are just normal business phrases and support parameters and translation.

4.4.3.4 Choosing Which Business Phrases to See in the List

Use the Settings tab > Dictionary Settings > Phrase Suggestions > Value drop down to control the types of business phrases seen in the drop down pick lists shown while authoring verbal rules' tests and actions.

Choices include:

	All - display both user-defined business phrases in the dictionary, and derived business phrases

	Auto Suggestions - display only derived business phrases

	Business Phrases - display only user-defined business phrases from the dictionary

4.5 Validating Dictionaries

Rules Designer performs dictionary validation when you make any change to the dictionary. Rules Designer validation can assist you when you work with rules or Decision Tables.

To show the validation log window, click the Validate button or select View>Log and select the Business Rule Validation tab. This displays warnings for incorrect or incomplete rules. Note that you must correct all warnings before you can test or deploy rules.

When a dictionary is invalid, Rules Designer produces a list of warning messages and lists the associated dictionary objects. You can use the validation message information to locate the dictionary object and to correct problems. In addition, Rules Designer flags objects with validation warnings with a validation indicator (a red, wavy underline), as shown in Figure 4-37.

Figure 4-37 Validation Warnings Shown in Log and On Screen with Wavy Underline
[image: Description of Figure 4-37 follows]

If a dictionary is invalid, you can save the dictionary. However, you can only generate RL Language for a dictionary that is valid and does not display warnings in the Rules Designer validation log.

In the validation log, each validation message includes the following:

	Message: The message provides details on the Oracle Business Rules exception that describes the problem.

	Dictionary Object: This field displays a path that indicates details that should allow you to identify a component in the dictionary.

	Property: provides information on a property of the object associated with the warning message.

When you are viewing the validation log, if you select an item and then right-click and select from the list Select and Highlight Object in Editor, Rules Designer moves the cursor to select the dictionary object. Note that for some validation warnings this functionality is not possible.

4.5.1 Understanding Data Model Validation

Rules Designer performs dictionary validation when you make any change to the dictionary. When Rules Designer displays a warning message, the validation log includes a message that should assist you in locating the dictionary object that caused the validation warning. For example, the following string indicates that the warning originates from the data model object named RLFact_1. In addition, the problem is in the property named test_int:

CarRental/Data Model/RLFact_1/test_int/Expression

Table 4-3 specifies the parts of the dictionary object name specified in a validation message.

Table 4-3 Data Model Dictionary Property in Validation Log

	Name	Description
	CarRental

	Dictionary Name

	Data Model

	Data Model component in dictionary.

	RLFact_1

	Element name in data model

	test_int

	Property name in the specified element.

	Expression

	Expression part of property.

For more information, see:

	Understanding Rule Validation

	Understanding Decision Table Validation

	How to Validate a Dictionary

4.5.2 Understanding Rule Validation

When you click the Validate button Rules Designer displays the validation log. When you first add a rule you see validation warnings similar to those shown in Figure 4-38.

Figure 4-38 Business Rules - Log Validation Messages for a New Rule
[image: Description of Figure 4-38 follows]

The dictionary object name part of a validation message for a rule includes details that help you to identify the ruleset, the rule, and an area in the rule that is associated with the validation warning. For example, the following dictionary object specification indicates a problem:

OracleRules1/Ruleset_2/Rules_1/Pattern[1]

In validation messages, the dictionary object name for a rule uses indexes that start at 1. Thus, the first pattern is Pattern[1].

In addition to validating rules, you can also test them in Rules Designer as you are designing them. For more information, see Testing Decision Functions Using a Rules Function.

4.5.3 Understanding Decision Table Validation

When you click the Validate button Rules Designer displays the validation log. When you first add a Decision Table you see validation warnings similar to those shown for a new rule, as in Figure 4-38.

Figure 4-39 Business Rules - Log Validation Messages for a New Decision Table
[image: Description of Figure 4-39 follows]

The dictionary object name part of a validation message for a Decision Table includes details that help you to identify the area of the Decision Table that is associated with the validation warning. For example, the following dictionary object specification indicates a problem in the first action row, and the first action cell of the Decision Table:

OR1/Ruleset_1/DecisionTable_1/Action[1]/Action Cell[1]

In validation messages the dictionary object name for a Decision Table object uses indexes that start at 1. For example, to indicate the first condition cell in the first row in the Conditions area, the message is as follows:

OracleRules1/Ruleset_1/DecisionTable_2/Condition[1]/Condition Cell[1]

This specification indicates the condition cell for the rule with the label R1 in the first row of the Conditions area in a Decision Table.

4.5.4 How to Validate a Dictionary

Rules Designer performs dictionary validation when you make any change to the dictionary.

To validate a dictionary:

	In Rules Designer, click the Validate button (a checkmark).
	Select the Business Rules - Log from the messages area.
	When you are viewing the validation log, if you select an item and then right-click and select from the list Select and Highlight Object in Editor, Rules Designer moves the cursor to select the dictionary object. Note that for some validation warnings this functionality is not possible.

4.6 Using Advanced Settings with Rules and Decision Tables

Advanced settings for rules and Decision Tables allow you to work with features that provide advanced options that not all Oracle Business Rules users need.

Advanced settings features are shown in Figure 4-40:

Figure 4-40 Show/Hide Advanced Settings
[image: Show/Hide Advanced Settings]

These features include:

	Advanced Mode: allows additional pattern matching options and nested tests in rules. Only use Advanced Mode if you have used it before. We recommend that you use extended tests in simple mode to create any kind of condition that you need.

For more information, see:

	How to Show and Hide Advanced Settings in a Rule or Decision Table

	How to Select the Advanced Mode Option

	Working with Advanced Mode Rules

	Simple Mode: has been updated and should be used when building complex rules. Only use Advanced Mode if you have used it before. Advanced Mode capability has been maintained for backward compatibility only.

For more information, see Working with Extended Tests.

	Tree Mode: makes it easier to work with master detail hierarchy, nested elements that map to a parent child relationship. These parent child relationships among facts are common with XML and ADF Business Components fact types. You can use this option with the Advanced Mode option.

For more information, see How to Create Simple Tree Mode Rules.

	Rule Active: specifies that a rule or Decision Table is active or inactive. When Rule Active is cleared, Rules Designer does not validate the specified rule or Decision Table.

For more information, see How to Select the Active Option.

	Logical: allows you to enable or disable logical dependence between the facts that trigger a rule and the facts asserted by a rule.

For more information, see How to Select the Logical Option.

	Allow Gaps (available only with Decision Table advanced settings). This check box determines if validation messages are reported when gaps are detected in a Decision Table. The specific validation message is:

RUL-05852: Decision Table has gaps

For more information, see Understanding Decision Table Gap Checking and How to Perform Decision Table Gap Checking.

	Priority: specifies the priority for a rule or a Decision Table. Higher priority rules run before lower priority rules, within a ruleset.

For more information, see How to Set a Priority for a Rule.

	Conflict Policy: (available only with Decision Table advanced settings). Specifies the Decision Table conflict policy, one of the following:

	manual conflicts are resolved by manually specifying a conflict resolution for each conflicting rule.

	auto override conflicts are resolved automatically using an override conflict resolution when this is possible, using the automatic conflict resolution policies.

	ignore conflicts are ignored.

For more information, see Understanding Decision Table Conflict Analysis.

	Effective Date: specifies effective dates for a rule or a Decision Table.

For more information, see How to Specify Effective Dates.

4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision Table

In Rules Designer, next to each rule name and Decision Table name, the show or hide advanced settings button lets you show and hide advanced settings.

To show and hide advanced settings in a rule or decision table:

	Select the ruleset where you want to show advanced settings.

	In the View field, from the list, select either IF/THEN Rules or select a Decision Table.

		To show the advanced settings, next to the rule name click Show Advanced Settings, as shown in Figure 4-41 (there is a highlighted button shown next to the rule name).

Figure 4-41 Show or Hide Advance Settings
[image: Description of Figure 4-41 follows]

	To hide the advanced settings, next to the rule name click Hide Advanced Settings.

4.6.2 How to Select the Advanced Mode Option

Select Advanced Mode to use Rule or Decision Table features that provide additional pattern matching options and additional actions. For more information, see Working with Advanced Mode Rules.

To select the advanced mode option:

	Select the rule or Decision Table where you want to set Advanced Mode.
	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select the Advanced Mode.

Figure 4-42 and Figure 4-43 are examples of a rule displayed in Advanced versus Simple Mode.

The same forms look different in Advanced Mode and Simple Mode due to the presence and absence of "Patterns."

Figure 4-42 Advanced Mode Checked
[image: Description of Figure 4-42 follows]

Figure 4-43 shows the same rule with Advanced Mode cleared:

Figure 4-43 Advanced Mode Cleared
[image: Description of Figure 4-43 follows]

4.6.3 How to Select the Active Option

Oracle Business Rules includes the ability to specify that a rule or a Decision Table is active or inactive. The active option is set independent of the effective dates and may be set without changing or removing previously specified effective dates. When Rule Active is cleared, Rules Designer does not validate the rule.

To select the active option:

	Select the rule or Decision Table where you want to set the Rule Active option.
	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select Rule Active.

4.6.4 How to Select the Logical Option

A ruleset or Decision Table with the Logical option selected specifies that rules in the generated RL Language use the logical property. The logical property allows you to enable or disable logical dependence between the facts that trigger a rule and the facts asserted by a rule.

A rule with the logical property enabled makes all facts that are asserted by an action block in the rule dependent on facts matched in the rule condition. Anytime a fact referenced in the rule condition changes, such that the rule's conditions no longer apply, the facts asserted by the rule condition are automatically retracted. For more information on the logical property, see Rules Language Reference for Oracle Business Process Management.

Using the ruleset and Decision Table Logical option you can enable or disable the logical property for the generated RL Language associated with the rules in the ruleset or the Decision Table. By default, the Logical option is not selected.

To select the logical option:

	Select the rule or Decision Table where you want to set the Logical option.
	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select Logical.

4.6.5 How to Set a Priority for a Rule

You can set the priority for a rule or a Decision Table. You can select from a predefined named priority list as shown in Table 4-4, or enter a positive or negative integer to specify your own priority level. Higher priority rules run before lower priority rules, within a ruleset. The default priority is medium (with the integer value 0).

Table 4-4 Priority String Value Mapping

	Named Priority	Integer Value
	highest

	3000

	higher

	2000

	high

	1000

	medium (Default Priority)

	0

	low

	-1000

	lower

	-2000

	lowest

	-3000

To set a priority for a rule:

	Select the rule or Decision Table where you want to set the priority.

	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).

	In the Priority field, specify the priority value:

	To specify a named priority, select a named priority from the Priority list.

	To specify an integer priority, click in the Priority field and enter a positive or negative integer value and press Enter.

4.6.6 How to Specify Effective Dates

You can specify effective dates for a ruleset, a rule, or a Decision Table.

To specify effective dates:

	Select the rule or Decision Table where you want to set the effective date.
	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select the Effective Date field. This displays the Set Effective Date dialog.
	Use the Set Effective Date dialog to set the effective date.

For more information on using effective dates, see Using Date Facts_ Date Functions_ and Specifying Effective Dates and How to Set the Effective Date for a Rule Set.

4.7 Working with Nested Tests

In a rule or a Decision Table you can create more complicated tests using the nested tests feature.

To use nested tests:

	Select the rule where you want to use a nested test.
	In the IF area, click and select Nested Test.
	With a test selected right-click to display the list, as shown in Figure 4-44.Figure 4-44 Adding a Nested Test to a Rule
[image: Description of Figure 4-44 follows]

	Complete the test as necessary.

4.8 Working with Advanced Mode Rules

Oracle Business Rules provides features that allow you to create advanced rules that add support for the Oracle Business Rules feature.

Note:
Advanced Mode capability has been maintained for backward compatibility only. We recommend that you use extended tests in simple mode to create any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode. Advanced mode rules can be converted to equivalent simple mode rules simply by clearing the Advanced Mode check box.

For more information, see Working with Extended Tests.

Oracle Business Rules provides features that allow you to create advanced rules that add support for the following Oracle Business Rules features:

	Additional Pattern Match options (see How to Use Advanced Mode Pattern Matching Options)

	Additional Matched Fact Naming options (see How to Use Advanced Mode Matched Fact Naming)

	Additional Supported Action forms (see How to Use Advanced Mode Action Forms)

	Pattern Match Aggregate Function options (see How to Use Advanced Mode Aggregate Conditions)

For more information, see What You Need to Know About Advanced Mode Rules.

4.8.1 How to Use Advanced Mode Pattern Matching Options

The advanced mode pattern matching options specify when a rule should fire. Table 4-5 shows the available options.

Table 4-5 Advanced Mode Pattern Matching Options

	Option	Description
	for each case where

	This is the default pattern matching option. A rule should fire each time there is a match (for all matching cases).

	there is a case where

	This option selects one firing of the rule if there is at least one match.

	there is no case where

	The value specifies that the rule fires once if there are no such matches.

	aggregate

	This specifies an aggregate function is applied to all matches. For more information, see How to Use Advanced Mode Aggregate Conditions.

To use advanced mode pattern matching options:

	Select the rule or Decision Table where you want to use pattern matching options.
	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select Advanced Mode.
	Right-click a test pattern and select Surround With... as shown in Figure 4-45.Figure 4-45 Surrounding with an Option
[image: Description of Figure 4-45 follows]

Figure 4-46 Surrounding With Option
[image: Description of Figure 4-46 follows]

The Surround With dialog appears.

	Choose the Pattern Block option from the Surround With dialog and click OK.The pattern is surrounded by a nested pattern with the default (for each case where) as shown in Figure 4-47.

Figure 4-47 Default Pattern Matching Option: for each case where
[image: Description of Figure 4-47 follows]

	Select the default (for each case where) option and select the desired pattern matching option from the list as shown in Figure 4-48.Figure 4-48 Adding an Advanced Pattern Match Option
[image: Description of Figure 4-48 follows]

4.8.2 How to Use Advanced Mode Matched Fact Naming

The matched fact name field, pattern binding variable, in a rule or a Decision Table lets you test multiple instances of the same type in a single rule. The matched fact name lets you enter a temporary name for the matched fact to use in a test. For example, the rules shown in Figure 4-49 show the use of pattern binding variables in a rule that applies a discount on a shoe item when an order includes at least one "matching" hat item.

Figure 4-49 Rule Using a Pattern Binding Variable
[image: Description of Figure 4-49 follows]

For example, you can create the rule, as shown in Figure 4-50 to find duplicate items in a customer order. This example shows the use of matched in a rule.

Figure 4-50 Rule to Find Duplicate Items in an Order
[image: Description of Figure 4-50 follows]

To use advanced mode matched fact naming:

	Select the rule or Decision Table where you want to add a matched fact name.
	Click the Show Advanced Settings button next to the rule name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select Advanced Mode.
	Select the <fact type> and enter a fact type from the list.
	Select the supplied matched fact name and modify it as needed, as shown in Figure 4-51. For example, enter the matched fact name Order$LineItem1 and then press Enter.Figure 4-51 Adding a Matched Fact Variable Name
[image: Description of Figure 4-51 follows]

	Create the rule as Figure 4-52 shows. Note that you can choose a matched fact name as an operand. Choose the LineItem1 and LineItem2 operands as needed to create the rule.Figure 4-52 Choosing a Matched Fact Variable Name as an Operand
[image: Description of Figure 4-52 follows]

Note in Figure 4-52 that the test checking:

RL.get fact ID(Order$LineItem1) > RL.get fact ID(Order$LineItem2)

Prevents a single instance of an Order$LineItem from matching both patterns that match the Order$LineItem fact type. The ">" is required so that the rule does not fire for different permutations of different instances. For more information, see How Do I Correctly Express a Self-Join?.

4.8.3 How to Use Advanced Mode Action Forms

When you create a rule with Advanced Mode, Rules Designer presents a list with the available actions shown in Table 4-6. For each form shown in Table 4-6, the options that Rules Designer presents are context sensitive. Thus, the lists and the number of items you see when you work with the action types are context sensitive, depending on which action you add and the choices you make while you enter the action.

To use advanced mode action forms:

	In Rules Designer, select a ruleset from the Rulesets navigation tab.
	Select or add a rule or a Decision Table.
	In the rule or Decision Table click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select Advanced Mode.
	With the insertion areas showing, in a rule in the THEN area select <insert action>. This displays the action list, as shown in Figure 4-53.Figure 4-53 Adding an Action to a Rule in Advanced Mode
[image: Description of Figure 4-53 follows]

	In the list select the action you want to add. For example, select assign new.

	In the THEN area, select the context sensitive parameters for the action and enter appropriate values.

4.8.3.1 Advanced Mode Action Options in Rule Designer

Table 4-6 Advanced Mode Action Options

	Action Form	Description
	Assert

	Assert a fact

	Assert Tree

	Asserts a tree of facts given the root.

	Assert New

	Assert a new fact.

	Assign

	Assign a value to a variable.

	Assign New

	Assign a value to a new variable.

	Expression

	Perform expression.

	Call

	Call a function.

	For

	Oracle RL, like Java, has a for loop. A for loop includes a type with a variable and a collection. The type and variable defines the loop variable that holds the collection value used within the loop. Collection is an expression that evaluates to a collection of the correct type for the loop variable. You can use a for loop to iterate through any collection.

A return, throw, or halt may exit the action block.

	If

	Using the if else action, if the test is true, execute the first action block, and if the test is false, execute the optional else part, which may be another if action or an action block. Oracle RL, unlike Java, requires action blocks and does not allow a single semicolon terminated action.

	Modify

	Modify a data value associated with a matched fact.

	Retract

	Retract a fact.

	Return

	The return action returns from the action block of a function or a rule. A return action in a rule pops the ruleset stack, so that execution continues with the activations on the agenda that are from the ruleset that is currently at the top of the ruleset stack.

	rl

	Use an Oracle RL expression that you supply.

	synchronized

	As in Java, the synchronized action is useful for synchronizing the actions of multiple threads. The synchronized action block lets you acquire the specified object's lock, then execute the action-block, then release the lock.

	throw

	Throw an exception, which must be a Java object that implements java.lang.Throwable. A thrown exception may be caught by a catch in a try action block.

	try

	The try, catch, and finally in Oracle RL is like Java both in syntax and in semantics. There must be at least one catch or finally clause.

	while

	While the test is true, execute the action block. A return, throw, or halt may exit the action block.

4.8.4 How to Use Advanced Mode Aggregate Conditions

When you create a rule with Advanced Mode, Rules Designer supports the pattern matching aggregate option. When you write rule conditions that are based not only on one fact, but on many facts, you can use an aggregate. You use aggregate functions when the conditions have a view spanning multiple facts.

To use advanced mode aggregates:

	Select or create the rule or Decision Table where you want to use an aggregate function.
	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Select Advanced Mode and enter the fact type you want to work with.
	Select <insert pattern> to add a pattern and select the pattern.
	Right-click the pattern and select Surround With.... This displays the Surround With dialog.
	In the Surround With dialog select Pattern Block. Click OK.For more information, see How to Use Advanced Mode Pattern Matching Options.

	In the pattern select the first field. By default this field contains (for each case where), as shown in Figure 4-54.Figure 4-54 Adding an Advanced Pattern Match Option
[image: Description of Figure 4-54 follows]

	Select the aggregate option. This adds the context sensitive fields for an aggregate, as shown in Figure 4-55.Figure 4-55 Using Aggregate Functions in a Rule
[image: Description of Figure 4-55 follows]

	Click <function> and select a function from the list.

	In the condition, click <fact type> and select a fact type from the list.

	Click <expression> and select an expression from the list.

Rules Designer by default constructs variable names as you create the aggregate pattern. If needed for the rule you are constructing enter variable names to replace the default variable names. Figure 4-56 shows a completed rule using aggregate. In this example, for clarity the rule shows the variable names total_cost and item_x.

Figure 4-56 Completed Aggregate Function in a Rule
[image: Description of Figure 4-56 follows]

	Enter additional tests as required. For this example you enter the test for items with color "red", as Figure 4-57 shows.

Figure 4-57 Using Aggregate Functions with Rules Red Color Total Cost Rule
[image: Description of Figure 4-57 follows]

4.8.4.1 Using Aggregate Functions

Table 4-7 shows the available aggregate functions.

Table 4-7 Aggregate Functions for Advanced Mode Rules

	Function	Description
	count

	Count of matching facts.

	average

	Average of matching facts.

	maximum

	Maximum value of matching facts.

	minimum

	Minimum value of matching facts.

	sum

	Sum of matching facts.

	collection

	Builds a list of matching facts.

For example, to write a rule that specifies a special order as follows:

IF
 an order has more than 5 line items whose price is above a certain value
THEN
 the order requires manual approval

The five line items may span multiple facts. Thus, you can use the count aggregate function to write this sample special order rule.

When you use an aggregate function, do the following:

	Select aggregate for the pattern.

	Enter a function from the list shown in Table 4-7

	Enter or select values from the context sensitive menus:

	<variable> A name for the aggregate value.

	<expression> The value to aggregate, for example driver.age. When the aggregate function you select is the count function the <expression> is not used.

For example, you can compute the sum of the cost all the line items with color "red", as shown in Figure 4-58.

Figure 4-58 Using Aggregate Functions with Rules Red Color Total Cost Rule
[image: Description of Figure 4-58 follows]

4.8.5 What You Need to Know About Advanced Mode Rules

There are some special cases to keep in mind when you work with Advanced Mode rules, including the following:

	When you work with aggregates, in actions, you do not see pattern variables. The pattern variables are only shown for action lists when you use (foreach...) patterns. Thus, you cannot see pattern variables in aggregate, "there is a case", or "there is no case patterns".

	After you select Advanced Mode the Advanced Mode stays selected and inactive (gray), as long as your rule uses advanced options such as advanced pattern matching. To clear Advanced Mode you must remove or undo the advanced mode features (sometimes it is easier to start over by creating a non-advanced mode rule and then delete the advanced mode rule).

4.8.5.1 How to Clear Advanced Mode Option

	Select the rule or Decision Table where you want to clear Advanced Mode.
	Click the Show Advanced Settings button next to the rule or Decision Table name (see How to Show and Hide Advanced Settings in a Rule or Decision Table).
	Consider the state of the rule:	If you can simplify the rule to enable the Advanced Mode option (such that the Advanced Mode button changes from gray to enabled). Then simplify the rule and when Advanced Mode is enabled, clear Advanced Mode.

	If you can use Undo to undo the steps you used to create the Advanced Mode rule, to get to a state where the rule is no longer in Advanced Mode, then use this technique to simplify the rule.

	If you cannot simplify the rule, then delete the rule and re-create it.

4.9 Working with Extended Tests

Extended tests should be used when building complex rules. Extended tests, or Simple Mode, replaces Advanced Mode rules.

Note:
Advanced Mode capability has been maintained for backward compatibility only. For more information about Advanced Mode, see Working with Advanced Mode Rules.

Everything that can be done in Advanced Mode can now be done in Simple Mode. The UI has been streamlined and improved to enable you to more easily create complex rules and tests, as shown Figure 4-59.

Figure 4-59 List of Extended Tests
[image: Description of Figure 4-59 follows]

Advanced mode rules can be converted to the equivalent simple mode rules by clearing the Advanced Mode check box.

Extended tests are only applicable to general rules, decision tables, and while defining business phrases. They are not visible in verbal rules.

4.9.1 Extended Test Forms

In addition to the original four tests (shown first in Table 4-8) there are new forms:

Table 4-8 Extended Tests

	Forms	Description
	simple test

	This is the building block for conditions. Compares a value against another value, range or set.

For example: Emp.salary > 1000

	variable

	Initializes variables.

For example: age = Duration.years between(Emp.birthdate,RL.date.get current())

	nested test(...)

	Encapsulates tests in a containing block.

For example: (age > 50 or Emp.salary > 50000)

	negated test(...)

	Negates a test.

For example: not(age > 50 and Emp.salary > 50000)

	all of the following

	all of the following are true.

For example: (age > 50 and Emp.salary > 50000)

	any of the following

	some of the following are true.For example:

IF

 e is a Emp and there is no Emp where Emp.salary < e.salary <insert test> <insert test>THEN assign e.isLowestPaid = true

	is a

	Defines a fact.

For example: e is a Emp

	boolean expression

	Captures a boolean expression.

For example: isEligible(Emp)

	there is a case where

	This test has 1 or more child tests that are ANDed.

The child tests are all true for at least 1 case. A case is a binding of facts to contained is a tests.

Must have is a descendant.

Example:

There is a case where

e is a Emp and

d is a Dept and

e.salary > 1000000 and

d.name == "Marketing" and

d.employees contains e

	there is a <factType1>,...<factTypeN> where#*

This test has N or more child tests that are ANDed

	Hidden <factType> is a <factType> tests as first N children.

The child tests are all true for at least 1 case.

It is legal to have no visible child tests, in which case the where keyword should be suppressed.

Example:

IF
 there is a Emp, Dept where
 Emp.salary > 1000000 and
 Dept.name == "Marketing" and
 Dept.employees contains Emp
THEN
 call print "there is a highly paid marketer!"
IF
there is a Emp
THEN call print "somebody works here!"

	there is no case where

	This test has 1 or more child tests that are ANDed.

The child tests are true for no case (no binding of facts to contained is a tests satisfy all the other tests).

Must have is a descendant.

	there is no <factType1>,...,<factTypeN> where

	Hidden <factType> is a <factType> as first N children

The child tests are true for no case

	aggregation

	This test has 0 or more child tests that are ANDed.

Must have is a child (may be hidden).

v is the sum|average|minimum|maximum|count|collection of<expression> where

Where clause omitted when there are no visible child tests.

IF
 number of employees is the count of Emp
THEN
 call print "number of employees: " + number of employees

IF
 number of male employees is the count of Emp where
 Emp.gender == "M"
THEN
 call print "number of male employees: " + number of male employees

Note that in both rules above, the SDK will create a hidden nested is a test for Emp.

You can also use an explicit is a

IF
 number of male employees is the count of e where
 e is Emp and
 e.gender == "M"
THEN
 call print "number of male employees: " + number of male employees

Figure 4-60 is an example where "there is a case where" form is used:

Figure 4-60 Extended Test Example 1
[image: Description of Figure 4-60 follows]

Figure 4-61 is an example where "there is no case where" form is used:

Figure 4-61 Extended Test Example 2
[image: Description of Figure 4-61 follows]

For information about how to build complex rules, see Working with Rules.

4.10 Working with Tree Mode Rules

Tree Mode rules make it easier to work with a master detail hierarchy, where there are nested elements that map to a parent child relationship.

Consider the lifecycle of an application fragment that uses business processes and rules to process a retail purchase order (PO). The purchase order has a header with business terms that apply to the entire PO. The PO also contains a list of shipping destinations. Each destination has an address, a list of items to be shipped to the destination's address, and a list of shipments.

Consider the business rule: the status of a PO is "fully shipped" if the status of every item is either "shipped" or "canceled".

Figure 4-62 shows a sample XML schema representation for the PO example. The XML documents for the PO are tree structured. This allows a natural representation for the PO. For example, the PO itself is the top level document element and destinations are nested elements that contain item elements and shipment elements. Shipment elements also contain item elements that reference the ordered items. Status has a list of valid values.

Figure 4-62 PO Schema for Tree Mode Rules Sample
[image: Description of Figure 4-62 follows]

The following example of sample Purchase Order (PO) schema shows the sample purchase order XML schema as represented in Figure 4-62.

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="PO">
 <xsd:annotation>
 <xsd:documentation>A sample element</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="header">
 <xsd:complexType>
 <xsd:attribute name="status" type="Status"/>
 <xsd:attribute name="order-date" type="xsd:date"/>
 <xsd:attribute name="customer-value"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="billing">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="payment"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="destination" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="status"/>
 <xsd:attribute name="quantity" type="xsd:int"/>
 <xsd:attribute name="availability-date" type="xsd:date"/>
 <xsd:attribute name="qoh" type="xsd:int"/>
 <xsd:attribute name="price"
 type="xsd:decimal"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="shipment" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="quantity"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ship-date"/>
 <xsd:attribute name="method"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="status" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:simpleType name="Status">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="open"/>
 <xsd:enumeration value="partially shipped"/>
 <xsd:enumeration value="fully shipped"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

4.10.1 Sample Abbreviated PO XML Instance

Example 4-1 shows part of the XML for an instance of the PO schema. To use tree mode rules you can create a rule that tests one or more business terms and if the tests pass, one or more business terms are added or changed. Oracle Business Rules has special support to enable error-free authoring of rules on fact trees like the sample PO instance.

For example, consider creating a rule for an instance of the PO schema that states:

IF the time between the order date and the date for availability of an item is more than 30 days
THEN cancel the item

Example 4-1 Sample Abbreviated PO XML Instance
<PO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org ../../../../Temp/PO.xsd"
 xmlns="http://www.example.org">
 <header/>
 <billing>
 <address/>
 <payment/>
 </billing>
 <destination>
 <address/>
 <item ID="a01"/>
 <item ID="a02"/>
 <item ID="a03"/>
 <shipment>
 <item ID="a01"/>
 <item ID="a02"/>
 </shipment>
 </destination>
</PO>

4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode)

You use non-advanced tree mode, or simple tree mode, when the Advanced Mode option is not selected and Tree Mode is selected. With this mode Rules Designer shows ROOT: <fact type> where you enter the root fact type.

When you create rules with Tree Mode selected and Advanced Mode cleared, you can reference properties in the tree using qualified names, for example:

	PO/destination/item.quantity that is similar to item.quantity but only items that are a destination of PO are matched.

	PO$Destination$item.quantity that refers to a List<item>. This reference is unchanged from non-tree mode.

With Simple Tree Mode you can only choose terms that do not require many-to-many joins or aggregation.

For more information, see How to Create Simple Tree Mode Rules.

4.10.3 Understanding Advanced Tree Mode Rules

You use advanced tree mode when the Advanced Mode option is selected and the Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4-63. Rules Designer shows patterns for the tree structured facts but the simple tests that join the parent and child facts are hidden.

Figure 4-63 Advanced Tree Mode
[image: Description of Figure 4-63 follows]

In advanced tree mode the tree mode patterns, except for the root, display as:

<operator> <variable> is a <fact path>

Where the <fact path> is an XPath-like path through the 1-to-1 and 1-to-many relationships starting at the root. For example, each fact path has a name like PO/destination, where PO is the root fact type and the destination is a property of type List. A 1-to-many relationship in a fact path is indicated with a "/", as in PO/destination.

A 1-to-1 relationship in a fact path is indicated with "." This unchanged from non-tree mode. For example, item.availabilityDate.

Advanced mode exposes the concept of a pattern, the simplest of which is is a pattern. For example, p is a PO causes p to match, iterate over, all the PO facts, and d is a p/destination causes d to match all the destinations of p. The left side of is a is a variable, and the right side is a fact type or a fact path. By default, Oracle Business Rules sets the variable name equal to the fact type or path. For example, PO is a PO. A pattern can also be a pattern block. A pattern block has a logical quantifier, negation, or aggregation that applies to the patterns and tests nested inside the block.

For more information, see How to Create Advanced Tree Mode Rules.

When you work with advanced tree mode rules, Rules Designer expects you to use an aggregation pattern, including exists and not exists to combine terms from different child forests into the same rule while avoiding a Cartesian product.

4.10.4 How to Create Simple Tree Mode Rules

The following procedure creates the PO rule to cancel non 30-day availability items.

IF the time between the order date and the date for availability of an item is more than 30 days
THEN cancel the item

To create simple tree mode rules:

	Create an IF/THEN rule in your ruleset and view the advanced settings.For more information on adding general rules, see How to Add General Rules.

For more information on advanced settings, see How to Show and Hide Advanced Settings in a Rule or Decision Table.

	Select Tree Mode. Next to ROOT:, click the <fact type> placeholder and select from the list.Figure 4-64 Simple Tree Mode: Configuring the Root
[image: Description of Figure 4-64 follows]

	Select <insert test> and select from the list.

The IF statement now reads IF <operand> == <operand>.

	Select the left-hand <operand> and select an option from the list.

	Select the Expression Builder button, as shown in Figure 4-65.Figure 4-65 Adding a Simple Tree Mode Expression
[image: Description of Figure 4-65 follows]

	In the Expression Builder dialog, copy and delete the item shown in the Expression area.

	In the Expression Builder, select the Functions tab.

	In the navigator, expand Duration and double-click the daysbetween function.

	Remove the daysbetween argument templates.

	In the daysbetween function, paste the value you previously cut as the second argument.

	In the Expression Builder dialog, select the Variables tab.

	For the daysbetween function first argument, use the navigator to expand PO and expand header, and double-click orderDate.

	In the Expression Builder dialog, click OK.

For more information, see Introduction to Expression Builder.

	In the list, in the expression area and press Enter. Select the operator and enter >.
	Select the right-hand <operand> and enter the value 30 and press Enter, as shown in Figure 4-66.Figure 4-66 Simple Tree Mode: Right-Hand Operand with Value 30
[image: Description of Figure 4-66 follows]

	Click <insert action> and from the list select modify.

The THEN statement now reads: THEN modify <target>.

	Click <target> and from the list select PO/destination/item. The THEN statement now reads:

THEN modify PO/destination/item (<add property>)

	Click <add property>. This displays the properties dialog.

In the properties dialog for the status name, enter the value "canceled", as Figure 4-67 shows.

Figure 4-67 Simple Tree Mode: Action
[image: Description of Figure 4-67 follows]

	In the Properties dialog, click Close.This displays the finished rule, as shown in Figure 4-68.

Figure 4-68 Simple Tree Mode Rule Final Rule
[image: Description of Figure 4-68 follows]

Note that in the modify statement, PO/destination/item refers to the particular item instance member.

4.10.5 How to Create Advanced Tree Mode Rules

The following procedure creates a free shipping rule that can be summarized as:

IF the total cost of "free shipping eligible" items to a given destination is greater than $40
THEN shipping of those items is free

To create advanced tree mode rules:

	Create an IF/THEN rule in your ruleset.For more information, see How to Add General Rules.

	View advanced settings.For more information, see How to Show and Hide Advanced Settings in a Rule or Decision Table.

	Select Advanced Mode and select Tree Mode as Figure 4-69 shows.Figure 4-69 Advanced Tree Mode Rule for Free Shipping
[image: Description of Figure 4-69 follows]

	Select the <fact type> place holder and from the list, select PO.
	Complete the free shipping rule, as shown in Figure 4-70.

Figure 4-70 Advanced Tree Mode Free Shipping Rule
[image: Description of Figure 4-70 follows]

4.10.6 What You Need to Know About Tree Mode Rules

When you select Tree Mode and select a root fact type, the options lists show all available fact types (not just the children of the root fact type). This allows you to view all available fact types as well as the children of the root fact type. There is no option to limit the option list to only show the children of the selected root fact type.

4.11 Using Date Facts, Date Functions, and Specifying Effective Dates

Oracle Business Rules provides functions that make it easier for you to work with times and dates, and provides effective date features to let you determine when rules are effective, based on times and dates.

	The CurrentDate fact allows you to reason on a fact representing the current date.

	The Effective Date value lets you specify a start date and end date that defines a date or date and time range when all the rules and Decision Tables in a ruleset, an individual rule, or an individual Decision Table are effective.

Table 4-9 describes the available Effective Date options.

Table 4-9 Effective Date Possible Values

	Effective Date	Description
	Always Valid

	Specifies to set neither "From" nor "To" dates.

	From (without To date set)

	Valid from a certain date indefinitely into the future.

	To (without a From date set)

	Valid from now until a certain date.

	From Set and To set

	Valid only between two dates.

An effective date specification other than Always can be one of the following:

	Date only, with no time specification: In this case, an effective date assumes a time of midnight of that date in each time zone.

	Date, time zone, with no time specification: In this case, an effective date assumes a time of midnight as of the specified date in the specified time zone.

	Date, time zone, time specification: In this case, the date and time is fully specified.

	Time specification only, with no date and no time zone: applies for all days at the specified time.

	Time and time zone specified, with no date: applies for all days at the specified time.

4.11.1 How to Use the Current Date Fact

You can use the current date fact in a rule or a Decision Table.

To use the CurrentDate fact:

	Select a ruleset from the Rulesets navigation tab.
	Select a rule within the ruleset.
	In the IF area, add a condition that uses the CurrentDate fact and the date method of Calendar type, as shown in Figure 4-71.Figure 4-71 Rule with Condition Using CurrentDate Fact
[image: Description of Figure 4-71 follows]

4.11.2 What You Need to Know About Effective Dates

By default, the Oracle Business Rules Engine implicitly manages the clock associated with the CurrentDate fact and the effective date, setting each to the value of the system date. Using the RL Language functions setCurrentDate() and setEffectiveDate() you can explicitly set the current date and the effective date. For more information, see Rules Language Reference for Oracle Business Process Management.

An effective start date is defined as the first point in time at which a rule, Decision Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is effective it may fire if its condition is satisfied and if the rule is not effective, it does not fire whether the condition is satisfied or not.

An effective end date is the first moment in time at which the rule, Decision Table, or ruleset no longer actively participates in rule evaluations (not effective means the rule does not fire).

The effective start and end date can be set on a Decision Table, but these dates cannot be set individually for the rules within a Decision Table.

Rules and Decision Tables also include the Rule Active option. This option is set independent of the effective dates and makes dates effective without changing or removing the specified effective date. For more information on using the Rule Active option, see How to Select the Active Option.

The precedence of the effective date, when it is defined for both a ruleset and for the rules or Decision Tables within a ruleset, is as follows (with the top precedence being 1):

	If the ruleset Rule Active option is cleared, then RL Language is not generated for that entity.

	If one or both of the effective date properties are selected for a ruleset, then those effective start dates and effective end dates define the range of effective dates allowable for rules or Decision Tables that are defined within the ruleset (that is, if in the ruleset the From check box, the To check box, or both check boxes are selected in the Set Effective Date dialog).

Thus, the effective dates specified for rules or Decision Tables within a ruleset must not violate the boundaries established by the ruleset that contains the rules or Decision Tables. For example, a rule may not have an effective end date that is later than the effective end date specified for a ruleset.

	If any individual rule or Decision Table has Rule Active cleared, then RL Language is not generated for that rule or Decision Table.

	If the Set Effective Date dialog for a ruleset includes Time selected or this option is selected on a rule or a Decision Table in the ruleset, then all instances of rules or Decision Tables in the ruleset must have Time selected when effective dates are specified. In this case, if Both or Date is selected then Rules Designer shows a validation warning:

RUL-05742: Calendar form incompatibility detected with forms Time and DateTime.
If the calendar form is set to Time on a rule set or any of the rules or
decision tables within that ruleset then the calendar form for that entire
rule set is restricted to Time.

4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration extension methods in a rule or a Decision Table. For more information, see Oracle Business Rules Built-in Classes and Functions.

To use a Duration method:

	Select ruleset from the Rulesets navigation tab.
	Select a rule within the ruleset (you can also use Duration methods in a Decision Table).
	In the IF area, add a condition.
	Select an operand in the rule condition.
	From the list, select Expression Builder.... For more information, see Introduction to Expression Builder.
	In the Expression Builder, select the Functions tab.
	In the Expression Builder, in the Navigator, expand the Duration folder.
	Double-click to select and insert the appropriate method as needed for your duration test.
	Provide the appropriate arguments for the method. For example, see Figure 4-72.
	Click OK to review your rule.

Figure 4-72 Using Duration Methods in a Rule
[image: Description of Figure 4-72 follows]

4.12 Introduction to Expression Builder

You can access the expression builder from different parts of Rules Designer, including in the Edit Globals dialog, and in the conditions area when you work with conditions in Decision Tables, and when you enter rules and Decision Tables in advanced mode with free form expressions select

Use the expression builder to create and edit expressions for Oracle Business Rules.

Figure 4-73 shows the Rules Designer expression builder.

Figure 4-73 Rules Designer Expression Builder
[image: Description of Figure 4-73 follows]

4.12.1 How to Use the Expression Builder

In the expression builder when you double-click items in the Variables or Functions navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item into the expression in the Expression area. You can also create or edit expressions directly by entering text in the Expression area.

When you enter an expression, note that Variables are valid assignment targets and Constants are not valid assignment targets. Thus, you should use both tabs if you are unsure what type of item you want to add to the expression you are building.

Specify an argument for a selected function by placing the cursor inside the function in the Expression field and double-clicking the expression or function to insert. For example, place the cursor inside the parentheses of a function and select a variable. This inserts the variable in the expression at the cursor position.

4.12.2 What You Need to Know About Working with Expressions

XML fact types allow XML Schema types, elements, and attributes to be used when writing rules. Elements and types defined in XML Schema can be imported into the data model and can then be used to create rules and Decision Tables, just as with Java fact types and RL Fact types. The mapping between the XML Schema definition and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and conventions in an XML Schema definition and the available types, allowed names and conventions in Java. For example, an element named order-id and of type xsd:integer is mapped to a Java Bean property named orderID of type BigInteger (and xsd:int type maps to Java int).

You can use expressions in Oracle Business Rules. Expressions allow arithmetic using the operators *, +, /, %, and other supported operators on primitive numerics, for example double, int, and the numeric types Integer, Long, Short, Float, Double BigDecimal, and BigInteger that are available in the built-in dictionary. For more information on supported primitive numerics, see Rules Language Reference for Oracle Business Process Management.

Expressions allow casting between any two numeric types, for example, (short)((BigInteger)1 + (Long)2). The following code example shows a few additional sample expressions in actions with types and casting.

assign new double db = 3.3
assign new BigDecimal bd = 3.3 // no cast required
assign db = bd // no cast required
assign bd = (BigDecimal)db // cast is required

The expression processor uses the XPath/Xquery rules for type promotion (XML Path Language (XPath) 2.0). For example, BigDecimal is promoted to float/double; type promotion going the other direction requires a cast, except for literals such as 3.3.

4.13 Using Value Sets as Constraints for Options Values in Rules

You can use List of Values value set and List of Ranges value sets to specify constraints for business terms in rules. This enables you to use Rules Designer to produce validation warnings for possible errors where a value supplied is out of range, or not within a set of possible values as specified in a value set.

Oracle Business Rules also lets you use value sets to specify constraints for global initial values, function return values, or function argument values. For more information, see Working with Oracle Business Rules Globals and Associating a Value Set with Business Terms.

4.13.1 How to Use a List of Ranges Value Set as a Constraint for a Business Term

You can use a list of ranges value set as a constraint for any business term other than a function result.

For more information on using a list of values value set as a constraint, see How to Use a List of Values Value Set as a Constraint for a Fact Property.

To use a List of Ranges value set as a constraint for a fact property:

	In the Value Sets tab, double-click a value set to open the Edit Value Set dialog.
	Specify a value set that includes the ranges you want to include and select Allowed in Actions for all valid ranges. To include a range, clear Allowed in Actions for the top and bottom endpoints.
	Select Included Endpoint as needed for the application.
	Clear Include Disallowed Values in Tests. For example, for a value set that defines valid grades and that does not allow values greater than 100, or less than 0, define the value set endpoints.Figure 4-74 Valid Value Sets for a Fact Property
[image: Description of Figure 4-74 follows]

	Associate this value set with a business term. For this example, associate the value set with test_math1.

Now, if you define a rule with a test that uses the fact property you will receive a validation warning when a value is out of range. For example if you define a rule with an expression with the value -10, Rules Designer will show a validation warning.

4.13.2 How to Use a List of Values Value Set as a Constraint for a Fact Property

You can use a list of values value set as a constraint for a fact property.

For more information on using a list of ranges value set as a constraint, see How to Use a List of Ranges Value Set as a Constraint for a Business Term.

To use a List of Values value set as a constraint for a fact property:

	Specify an LOV value set that includes the values you want to include, and select Allowed in Actions for all valid values. For more information, see How to Define a List of Values Global Value Set.
	Clear Allowed in Actions for the otherwise value set.
	Clear Include Disallowed Values in Tests.
	Associate this value set with a fact property.

4.13.3 How to Use Value Sets to Provide Options for Test Expressions

You can use LOV value sets to provide options for expressions and actions.

To use value sets to provide options for rule expressions and actions:

	In Rules Designer, define an LOV value set of a type corresponding to a fact property. For more information, see How to Define a List of Values Global Value Set.
	Associate the value set with a fact property. For more information, see How to Associate a Value Set with a Fact Property.
	When you enter expressions, Rules Designer shows the values in the values options. For example, when you associate a fact property Driver.eye_test with an LOV value set named eyes, with values: pass, fail, and glasses_required, and then you use Driver.eye_test in a test expression, the values are limited.

4.14 Importing Runtime Rules Changes From Repository Into JDeveloper

This section discusses how to import changes to a rule implemented in SOA Composer into the JDeveloper.

When you make changes to a dictionary in SOA Composer, you must upload them to MDS repository as described in Publishing Changes for an Oracle Business Rules Dictionary. However, these changes do not get updated in JDeveloper. You need to import the changes from MDS repository into JDeveloper manually.

To import the changes into the JDeveloper,

	Select the rule in the application navigator for which changes were made.
	Click the Import From MDS button in Rule Editor as shown in Figure 4-75.Figure 4-75 Importing Changes from the MDS Repository
[image: Description of Figure 4-75 follows]

	Select the MDS Repository from the Import Dictionary dialog.
	Click OK.Changes are updated in JDeveloper and you can view the changes in the Rule Editor.

4.15 How to Model Rules When the Data Model is Deep

Use the following tips to avoid overly complex rules:

	Use rule test variables (inline aliases) to create a simple test.

	Any 1:1 prefix can be removed from the fact path.

Rule test variables:

Use rule test variables (inline aliases) to create a simple test that can help you model rules when there is a deep data model.

For example, a rule like this:

IF
task/payload/purchaseOrder/line.amount > 100
THEN
modify ...

Can be rewritten like this:

Root: task
IF
amount = task/payload/purchaseOrder/line.amount and
amount > 100.0
THEN
modify ...

(OR)

Root: task
IF
line = task/payload/purchaseOrder/line and line.amount > 100.0 and line.amount < 1000.0
THEN
modify ...

Remove 1:1 prefixes:

Note that any 1:1 prefix can be removed from the fact path (if not referenced in tests). For example, if you know that a task has at most 1 payload and a payload has at most one purchase order, and tests do not reference the task or the payload attributes, then you can use the shorter example as follows:

Root: PurchaseOrder
IF
line = PurchaseOrder/line and
line.amount > 100.0 and line.amount < 1000.0
THEN
...

You can also use the shorter path if the relationships are 1:many and you do not care about what task or payload contains which purchase order. You just want to process all the purchase orders.

5 Working with Decision Tables

This chapter describes how to use Decision Tables to create and use business rules in an easy to understand format that provides an alternative to the IF/THEN rule format. It also covers the various components of a Decision Table such as conditions, conflicts, actions, and discusses the various operations that you can perform on a Decision Table.

The chapter includes the following sections:

	Introduction to Working with Decision Tables

	Creating Decision Tables

	Introduction to Decision Table Operations

	Creating and Running an Oracle Business Rules Decision Table Application

	Editing Decision Tables in Microsoft Excel

5.1 Introduction to Working with Decision Tables

Businesses invest in software to automate their business processes. Historically, this automation focused on the collection, presentation, and manipulation of data to facilitate human decision-making about that data. Increasingly, however, software designers and developers are called upon to automate the decision making process by putting detailed rules about business processes into software architectures. In addition, many enterprises are experiencing increasing pressure to make software systems more responsive to business changes.

In some cases, the role of writing and testing business rules is no longer assigned to software engineers, but is passed to trained business users. Alternatively, some organizations attempt to separate changes in the business behavior of software from the traditional software development cycles, and tie changes to business driven imperatives like product or sales cycles.

A Decision Table provides a mechanism for describing data processing tasks, especially when that description is done by business analysts rather than computer programmers.

The Decision Table format is intuitive for business analysts who are familiar with spreadsheets. The formal structure that a Decision Table provides makes it easier to author, understand, and change multiple similar rules and lets software check for rule completeness and consistency.

Oracle Business Rules Decision Tables provide the following features:

	Powerful Visualization: Compact and structured presentation. This visualization matches the way real world business policies are expressed: with many tables, declarative, and organized into simple steps.

	Error Prevention: Avoids incompleteness and inconsistency. Because a Decision Table is well structured, automated tools can check for conflicts, redundancy, and incompleteness to speed development of valid, consistent business rules.

	Modular Knowledge Organization: Group rules into a single table. A spreadsheet metaphor puts groups of rules that work together onto a single viewable pane. For example, if there are six rules that check an applicant's eligibility, it is more convenient to see all the rules than to view the rules as individual but related rules.

	Optimization of Rules and Performance Benefits: Oracle Business Rules Decision Tables provide automated features that can reduce the number of required rules, as compared to the IF/THEN rules (this is called rule coalescing).

	Rule Validation and Verification: Provides capabilities for ensuring the logical consistency of rules before deployment. Automated tools for checking conflicts or incompleteness help speed development of valid, consistent business rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Working with Rulesets and Rules .

5.1.1 What is a Decision Table?

A Decision Table displays multiple related rules in a single spreadsheet-style view. In Rules Designer a Decision Table presents a collection of related business rules with condition rows, rules, and actions presented in a tabular form that is easy to understand. Business users can compare cells and their values at a glance and can use Decision Table rule analysis features by clicking buttons and selecting values in Rules Designer to help identify and correct conflicting or missing rules.

To help understand Decision Table concepts, consider a set of IF/THEN rules that determines if a driver is eligible for a license, and an equivalent Decision Table. Note if a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has_training then training = true
if driver.age < 20 and driver.has_training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 5-1 shows a Decision Table representation of these rules that includes areas for Decision Table Conditions and Actions.

Figure 5-1 Sample Decision Table with Conditions and Actions
[image: Description of Figure 5-1 follows]

5.1.1.1 What You Need to Know About Decision Table Conditions

The Conditions area in a Decision Table includes one or more condition rows. Each condition row has a condition expression and, for each rule, a condition cell. A condition expression is an expression that you build in Rules Designer. The condition expression is often a fact property or a function result, but it can be any expression that has a type that can be associated with a value set. Test expressions are often used, such as Driver.age<16. These expressions are associated with the built-in boolean value set, with values true and false. The value or the range for a given condition cell takes its value or its range from one or more values or ranges in the associated LOV or Ranges value set. For more information on value sets, see Working with Value Sets.

For example, Figure 5-1 shows the condition expression for a Driver fact with the Driver.age property. The corresponding row in the Decision Table shows condition cells including values for the ranges <20, and >=20. The values in the cells come from the global value set named driver_ages.

Figure 5-1 also shows a condition row for the Driver fact with the Driver.has_training property. This condition row shows condition cells with the values, true, false, and -. The hyphen (-) means "do not care" (that is, Driver.has_training could be true or false in this case). The values for these condition cells come from the default value set associated with boolean types (this consists of default values for the values true and false).

The '-' (don't care) value is useful to ensure that a decision table will not have gaps when new values are added to a value set. For example, if a valueset initially contains 1, 2, and otherwise, a rule matching otherwise will fire if the input is 3. But after 3 is explicitly added to the valueset, then otherwise no longer matches an input value of 3. If no rule contains a '-' for this input, then no rule will fire when the input value is 3 and the decision table is said to have a gap.

Use 'otherwise' when you explicitly want to match the 'otherwise' value in the valueset, and not any other value. 'Otherwise' is useful to avoid conflicts in a decision table. '-' is used to match any value, and will often cause conflicts. These conflicts can be automatically resolved using the 'auto override' conflict policy.

Decision Tables show rules in bucket order, and to change the order of rules you need to change the order of buckets in the value set. Thus, the order of the buckets in the value set associated with a condition row determines the order of the condition cells, and thus the order of the rules. You can control rule ordering in a Decision Table by changing the relative position of the buckets in an LOV value set associated with a condition row; however, you cannot reorder range buckets (values). For information on ordering buckets in a value set, see How to Define a List of Values Global Value Set.

5.1.1.2 What You Need to Know About Decision Table Actions

Actions are associated with rules in a Decision Table. At runtime, when facts match for condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 5-1 shows the types of actions you can choose in the Actions area. Thus, in an action you can call a function, assert a new fact, retract a fact, or modify a fact, and so on. In the Actions area the cells corresponding to an individual action for a rule are called action cells. For more information on advanced mode, see How to Select the Advanced Mode Option.

Table 5-1 Decision Table Actions for Action Cells

	Action	Description
	assert new

	Assert a new fact.

	assign

	Assign a value to a variable.

	call

	Call a function.

	modify

	Modify a data value associated with a matched fact.

	retract

	Retract a fact.

	assert

	Assert a fact.

	assert tree

	Asserts a tree of facts given the root.

	assign new

	Assign a value to a new variable.

	expression

	Perform expression.

	return

	The return action returns from the action block of a function or a rule. A return action in a rule pops the ruleset stack, so that execution continues with the activations on the agenda that are from the ruleset that is currently at the top of the ruleset stack.

	throw

	Throw an exception, which must be a Java object that implements java.lang.Throwable. A thrown exception may be caught by a catch in a try action block.

When you add multiple actions the actions that you add in the Actions area are ordered; actions appearing in the higher rows run before actions in the following rows.

The Decision Table actions such as modify can refer to facts matched in the condition cells. For example, given a Decision Table with condition rows on the Driver fact that includes condition rows for Driver.age and Driver.has_training, actions can modify the property Driver.eligible and you can specify a value for Driver.eligible for each action cell.

Certain types of actions in the Actions area include a Parameterized check box. This check box specifies that a property from the action can have its value set in the action cell associated with a rule in the Decision Table. When the parameterized check box is selected, the value you supply for the expression value in the action, in the Actions area, becomes the default value for the property if a value is not supplied in the action cell. For example, see Figure 5-2 where the value false is assigned as the default value for the action property eligible.

Figure 5-2 Action Editor Showing Parameterized Action with Default Value
[image: Description of Figure 5-2 follows]

5.1.1.3 What You Need to Know About Decision Table Rules

A ruleset contains a Decision Table; this provides a way to group the Decision Table along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset, the IF/THEN rules and the Decision Table rules all execute as a set of interrelated rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a Decision Table with labels, for example, R1, R2, and R3, these rule labels are not names for individual rules but are labels derived from the current ordering of the rules in the Decision Table. Thus, a rule with the label R1 could be moved to position 3 and then Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition cells. The condition cells in the first row span the cells of later condition rows. A parent cell in row i spans its children in row i+1.

Figure 5-3 shows rules in a Decision Table where each rule consists of one cell from each row in the Conditions area, and an associated action cell in the same column in the Actions area. Figure 5-3 shows the rule with the label R3 defined by the first cell from condition 1 (the Driver.age < 20 value), the second cell from condition 2 (the Driver.eye_test equals fail value), and the third cell from condition 3 (the Driver.has_training equals true value). Likewise for each of the other rules, R1 to R12, there is a unique path through the Decision Table.

Figure 5-3 Rules in a Decision Table
[image: Description of Figure 5-3 follows]

As shown in Figure 5-3, it is significant for a cell to be a parent of another cell and a parent cell spans lower cells. In the Conditions area, when condition cells have the same parent condition cell the cells are called siblings. Certain operations only apply for condition cells that are siblings. For example, Figure 5-4 shows two sibling cells that are selected; with these cells selected the Merge Selected Cells operation is valid. For these cells, the corresponding value set with the value fail for Driver.eye_test is also a sibling (as shown in the R3 and R4 columns in Figure 5-4). For more information, see How to Merge or Split Conditions in a Decision Table.

Figure 5-4 Sibling Condition Cells in a Decision Table
[image: Description of Figure 5-4 follows]

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move button. By reordering rows in the Conditions area you can perform operations on condition cells at the desired granularity. Thus, the move operations can assist you when you want to split, merge, or assign certain values that might only be appropriate at a particular level in the tree, depending on the location of a condition cell or depending on the location of the parent, children, or siblings of a condition cell.

5.1.2 Understanding Condition Cell Values

By default, when you create a condition row, Rules Designer creates a single condition cell and assigns the "?" value to the cell. A condition cell with the value "?" indicates that the value of the cell is undefined in the value set. For example, Figure 5-5 shows a "?" value for StrategyContext. Note that contiguous value ranges in a condition cell are combined. For example, if you select <20 and [20..40] it will display as <=40.

Figure 5-5 Sample Decision Table Showing Undefined in Condition Cell
[image: Description of Figure 5-5 follows]

5.1.3 Understanding Action Cell Values

In the Decision Table Actions area you can specify that an action cell "do nothing." In this case, clear the action cell. When the action cell check box is cleared, this means do not perform this action when the pattern matches for the specified condition values in the Decision Table. Thus, for each action cell you can specify whether the rule associated with the action cell should activate the action, or does not perform the action.

In a Decision Table, when a condition cell represents a value that has been removed from the value set, Rules Designer provides a validation warning such as the following:

RUL-05831: Decision table value reference not found

To fix this type of validation warning you can do one of the following:

	Define a value by double-clicking the condition cell and selecting one or more values from the list.

	Add the missing value to the value set or associate the condition with another value set that contains the missing value.

5.1.4 What You Need to Know About Decision Table Loops

A Decision Table loop occurs when the value for a condition row is changed by an action. Loops can occur across the rules in a single Decision Table or spread over several Decision Tables, or spread over rules and Decision Tables in the same ruleset. Try not to create Decision Table actions that modify fact properties that are used in Decision Table conditions. This could cause an infinite loop.

Note:
You can prevent infinite loops by using the rule firing limit on the containing decision function.

5.2 Creating Decision Tables

You add a Decision Table by performing several steps.

These steps include creating a Decision Table, creating value sets, and then adding conditions and actions to Decision Table, and using the Decision Table to operate to validate, correct, and modify the Decision Table.

5.2.1 How to Create a Decision Table

To work with a Decision Table, start by creating a Decision Table in a ruleset.

To create a decision table:

	From Rules Designer select an existing ruleset from the rulesets tab or create a ruleset by clicking Create Rule Set....
	Click Create from the Decision Tables area on the Overview tab, as shown in Figure 5-6. This creates a Decision Table.Figure 5-6 Adding a Decision Table
[image: Description of Figure 5-6 follows]

Note:
When you add a Decision Table the rules validation log displays validation warnings. The Decision Table is not complete and does not validate without warnings until you add conditions and actions to the Decision Table.

5.2.2 How to Add Condition Rows to a Decision Table

A Decision Table includes a Conditions area where you specify Decision Table condition rows. The condition rows determine the facts that the Oracle Rules Engine matches at runtime. To create a Decision Table you need to add one or more condition rows to the Decision Table.

To add condition rows to a decision table:

	From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add conditions.
	In the Decision Table area, from the list next to the Add button select Condition.
	In the Conditions area, double-click <edit-condition> to display the navigator to select or enter an expression as shown in Figure 5-7.Figure 5-7 Adding a Condition to a Decision Table
[image: Description of Figure 5-7 follows]

	Enter an expression by clicking in the navigator to select a variable or click the Expression Builder button to display the Expression Builder window. The Expression Builder lets you build expressions.
	Each condition row requires a value set from which to draw the values for each cell. When the value you select has an associated global value set, then by default the value set is associated with the condition row.
	Repeat Step 2 through Step 5, as required to add additional condition rows in the Decision Table.

5.2.3 How to Use or Specify the Value Set for a Decision Table Condition

	Each condition row requires a value set from which to draw the values for each cell. When the value you select has an associated global value set, then by default the value set is associated with the condition row.
	If there is no global value set associated with the value, then after you add a condition row to a Decision Table you need to specify either a Local List of Values or a Local List of Ranges value set to associate with the condition row, or specify an existing global value set. To add a value set for the condition, in the Conditions area select the condition and then select from the value set list to associate a value set, as shown in Figure 5-8. The value set list includes available global value sets of the appropriate type.Figure 5-8 Specifying a Value Set For a Condition Row in a Decision Table
[image: Description of Figure 5-8 follows]

	If you do not specify a global value set, then you can create and use a local value set by selecting either Local Value Set or Local Range Value Set to create and use the specified type of value set.
	Repeat Step 2 through Step 3, as required to define additional condition rows in the Decision Table.

For more information on creating value sets, see Working with Value Sets.

5.2.4 How to Add Actions to a Decision Table

A Decision Table includes an Actions area where you specify Decision Table actions. The actions determine actions for rules in a Decision Table. To create a valid Decision Table, add actions to a Decision Table. For each action cell, where specific values apply, set the values for the action cells. For each action cell, when the action does not apply to the rule, deselect the action cell. By default when you add an action to a Decision Table, actions for all the rules are unselected

To add actions to a decision table:

	From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add actions.
	From the list next to the Add button, select Action and select an available action from the list. Table 5-1 lists the available actions. For example, select Modify. Rules Designer displays the Action Editor dialog as shown in Figure 5-9.Figure 5-9 Adding an Action to a Decision Table
[image: Description of Figure 5-9 follows]

	In the Action Editor dialog select the action target in the Target area. This specifies the data model object the action applies to.
	For the specified target, as needed to make the action do what is required, modify the fields in the Arguments table. In the Action Editor dialog the Arguments table includes the fields shown in Table 5-2.
Table 5-2 Action Editor Dialog Arguments Fields

	Field	Description
	Property

	Displays the property names for the specified target.

	Type

	Displays the type for the property.

	Value

	Select the default value for the action from the list of available actions. The specified value applies to either the entire action, as the default value, or when a particular action cell is selected, the value specified applies for that particular action cell.

	Parameterized

	This specifies a parameterized value. A parameterized value displays in a Decision Table action cell. When you select parameterized value for a property, this generally means that each rule supplies a different parameter value.

	Constant

	Select to specify a constant value.

	In the Action Editor dialog, to select action cells for all the rules, select the Always Selected check box.
	Repeat Step 2 through Step 5, as required to define additional actions for the Decision Table.

5.2.4.1 How to Set Values for Action Cells in a Decision Table

To set values for action cells:

	From Rules Designer, select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to specify action cell values.
	In the Actions area, check that the appropriate action cells are selected. If the Always Selected check box is specified in the Action Editor dialog, then all action cells should be selected. If Always Selected is not selected, then select the appropriate action cells using the action cell check box.
	In the Actions area, enter the appropriate value for parameterized properties for each selected action cell. To do this select the action cell property cell, and either enter a value, select a value from the list, or click the Expression Builder button to use the Expression Builder dialog.For more information on referring to a value set from a Decision Table, see How to Define a List of Ranges Global Value Set.

5.2.4.2 How to Deselect an Action Cell in a Decision Table

To deselect an action cell:

	From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want deselect an action cell.
	In the Actions area, select the action cell and deselect the check box in the action cell. You are not allowed to deselect action cell values when Always Selected is selected for the action.

When you add actions, you may need to change the order of the actions. In Rules Designer you can use the Move Down button or Move Up button to change the order of actions.

5.2.5 How to Add a Rule to a Decision Table

You can add a rule to a Decision Table. Rules Designer adds a column for the rule to the left of the existing rules and each condition cell is initialized to "?", which actually means a validation error prompting you to populate the cell with relevant values.

To add a rule to a decision table:

	From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add the rule.
	From the list next to the Add button, select Rule.
	Enter values for the condition cells. Notice that the new rule is added as the first rule of the Decision Table on the left and the other rules have moved as required to keep the values in their defined order.
	Enter values for the action cells.

The Order Rules By Bucket check box under the Advanced Settings of a Decision Table is selected by default. In this case, the Decision Table layout changes automatically on adding new rules.

When you add a new rule to a Decision Table, the new rule is added as the first rule of the Decision Table and the other rules move as required to keep the values in their defined order. This is because Order Rules By Bucket is enabled, which means rule ordering in a Decision Table is set according to the relative position of values associated with a condition expression. If Order Rules By Bucket is not enabled when you add a rule, the new rule is added as the last rule of the Decision Table. In either case, the cells in the new rule column have "?" symbols, indicating the cells do not have values yet.

Note:
When Order Rules By Bucket is selected, the rules are ordered and duplicate rules (rules with exactly the same values) are combined. So, you cannot add two rules without any values to a Decision Table, because in that case, the rules are duplicates and would immediately be combined. When Order Rules By Bucket is cleared, then duplicate rules are allowed.

In addition, the Move buttons pertaining to a rule column are also enabled. You can use them to reposition rules. Use the Flip the Table Rows and Columns button to change the view of the Decision Table. This also affects the Move buttons: the move direction may be Up or Down, Left or Right. The Merge, Compact and Span options are also enabled. You can also cut, copy, or paste rules.

For more information, see Introduction to Decision Table Operations.

5.2.6 How to Define Tests in a Decision Table

You can define tests in a Decision Table. The tests must evaluate to true for any rule in the decision table to fire. For more information about defining tests and working with rule conditions, see Working with Rules.

You can use the Data Explorer tab to find fact types and value sets in the data model.

To add tests to a Decision Table:

	From Rules Designer, select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add the rule.
	Click the Show Patterns/Tests button (magnifying glass) left of the Decision Table name. If Advanced Mode is selected, clear the check box.
	Select any of the options according to your requirements, as shown in Figure 5-10. Note that variables without any tests are often used so that the variables can be used in the decision table conditions and actions.	simple test

	variable

	nested test

	negated test

	all of the following...

	any of the following...

	is a

	there is a fact where...

	there is a case where...

	there is no fact where...

	there is no case where...

	aggregation...

	boolean expression

Figure 5-10 Options List
[image: Description of Figure 5-10 follows]

	Click the left and the right <operand> to enter the operand values, and the operator list to select an operator, as in Figure 5-11:Figure 5-11 Value Options List
[image: Description of Figure 5-11 follows]

For more information about writing tests, see Testing and Validating Business Rules.

5.3 Introduction to Decision Table Operations

After you create a Decision Table you may want to modify the contents of the Decision Table to produce a Decision Table that includes a complete set of rules for all cases, or to produce a Decision Table that provides the least number of rules for the cases.

After you create a Decision Table there are operations that you may want to perform on the Decision Table, including the following:

	Compact or split cells in a Decision Table.

	Merge a condition or split a condition in a Decision Table.

	Finding and resolving conflicts between rules in a Decision Table.

	Find and fix gaps (missing rules) in a Decision Table.

5.3.1 Understanding Decision Table Split and Compact Operations

The split and compact operations enable you to manipulate the contents of the condition cells in a Decision Table.

The split table operation creates a rule for every combination of values across the conditions. For example, in a Decision Table with 3 boolean conditions, 2 x 2 x 2 = 8 rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules are created. Thus, you only use split table when the number of rules created is small enough that filling in the action cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision Table and create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row. Additionally, split may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create condition cells. Thus, using the split operation you can create rules in a Decision Table. Table 5-3 summarizes the split operation for a selected condition cell, condition row, or for a complete Decision Table.

Table 5-3 Summary of Split Operation

	Operator	Description
	Condition Cell

	Creates one sibling condition cell for each value represented by the cell.

If the condition cell value is "do not care", then the cell is split into one sibling cell for each value in the valueset that is not represented by a sibling condition cell, and "do not care" is no longer represented.

	Condition Row

	For each condition cell in the proceeding condition expression, create a sibling group which contains a cell for each value in the value set. The effect of this operation is the same as adding a "do not care" to each sibling group and calling split on each condition cell in each sibling group.

	Decision Table

	Same as calling split on each condition row in the Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells operations remove condition cells. The compact table operation can be applied to an entire Decision Table. Additionally, the merge operation may be performed on sibling cells or on an entire condition row. Thus, using compact table or merge you can remove rules from a Decision Table. Table 5-4 summarizes the compact table and merge operations.

Table 5-4 Summary of Merge Operation

	Operator	Description
	Condition Cell

	Merging two or more condition cells adds all values in the cells to a single cell, and removes all but one of the cells. If one of the cells represents "do not care", then the merged cell represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action cells, such as, RUL-05847: Duplicate decision table action parameter.

	Condition Row

	Combine all values in each sibling group into a single "do not care" cell for each condition cell in the proceeding condition expression. The effect of this is the same as calling merge on all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action cells, such as, RUL-05847: Duplicate decision table action parameter.

	Decision Table

	Compacts the Decision Table by merging conditions of rules with identical actions.

Split and merge are inverse operations when conflicting action cells are not associated with the operation. In this case, without conflicting action cells, a merge operation combines all the values from the siblings into one sibling, and discards the other sibling condition cells, and as a result of merging the condition cells, when a Decision Table contains action cells, the action cells are also merged. Thus, the merge operation combines multiple condition cells into a single condition cell and adds all values to the single cell.

When there are conflicting values for the action cells, a merge operation merges the action cells in a form that requires additional manual steps. Thus, if two action cells have conflicting parameters, after the merge the action cell contains multiple conflicting parameter values. These conflicting values are appended to the action cell and must be manually resolved by selecting and deleting the unwanted duplicate parameters. For example, see Figure 5-12 that shows conflicting values in an action cell.

An action cell that contains multiple values for a property is invalid. When you select the action cell Rules Designer shows a popup window with check boxes to allow you to select a single value for the action cell. As shown in the validation log in Figure 5-12, Rules Designer shows a validation warning until you select a single value.

Figure 5-12 Conflicting Properties to be Resolved for a Merged Action Cell
[image: Description of Figure 5-12 follows]

5.3.1.1 Understanding Decision Table Move Operations

You can move the conditions or actions in a Decision Table. The Move buttons let you reorder condition rows in the Conditions area and actions in the Actions area. Moving conditions up or down may reorder visual display of the rules, but these operations does not change the logic in any way. For example, if (x.a == 1 and x.b == 1) is logically the same as if (x.b == 1 and x.a == 1).

When you work with Decision Tables some operations only apply for condition cells that are siblings. Using the Move button you can reorder rows so that Decision Table operations apply to the tree at the desired granularity. For example, when you want to change the action of a condition cell for a single rule, then you need to move that condition cell to the last row in the Decision Table Conditions area. For example, consider the Decision Table shown in Figure 5-13.

Figure 5-13 Rules in a Decision Table
[image: Description of Figure 5-13 follows]

To view this table with granularity for the Driver.age, move the Driver.age condition from the first row to the third row, as shown in Figure 5-14.

Figure 5-14 Decision Table After Move Down with Age Condition Last
[image: Description of Figure 5-14 follows]

Now to make the Driver.age conditions "do not care" for the first two rules, where the driver passes the eyesight test and has had driver training is true, you can easily apply changes to these particular conditions when the Driver.age condition is in the last row. Thus, in this table, it is easier to view and modify age related rules when Driver.age is in the last row, with the finest granularity.In general, the move operations can assist you when you want to split, merge, or assign certain values that might only be appropriate at a particular level in the tree, depending on the location of a condition cell, or depending on the location of the parent, children, or siblings of a condition cell.

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the actions. Actions are ordered so that when multiple actions apply, the first action runs before subsequent actions. Thus, using the Move Up or Move Down operation on an action may be appropriate, depending on your application.

5.3.1.2 Understanding Decision Table Gap Checking

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a combination of values, one from each condition, that is not covered by an existing rule. Rules Designer provides Gap Checking to check for gaps. When you click the Gap Analysis button, Rules Designer finds gaps and presents a dialog to fix any gaps that are found.

You can choose to make existence of gaps a validation warning. When you clear Allow Gaps in the Advanced Settings area, the Decision Table reports a validation warning when a gap is found. For more information, see Using Advanced Settings with Rules and Decision Tables.

For example, using the Driver example if you create a gap by deleting the rule that covers the case for Driver.age < 20 and Driver.has_training false, and then you click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in Figure 5-15. Clicking OK with the check boxes selected adds either all rules or the selected rules to the Decision Table (this example only shows a single rule to add).

Figure 5-15 Checking Gaps
[image: Description of Figure 5-15 follows]

Gap checking generates different new rules for the following cases:

	Sibling rules: multiple missing sibling rules are added as a single new rule. For example, consider a rule with two conditions, Driver.age and Driver.hair. When there are two missing rules for different hair colors and the rules are siblings, that is, they have a common parent, then gap checking shows a single rule as shown in Figure 5-16.

	Non-sibling rules: multiple missing non-sibling rules are added as individual new rules. For example, when there are two different rules missing that do not have the same parent, then gap checking provides two rules, as shown in Figure 5-17.

Figure 5-16 Gap Checking with Missing Sibling Rules
[image: Description of Figure 5-16 follows]

Figure 5-17 Gap Checking with Missing Non-Sibling Rules
[image: Description of Figure 5-17 follows]

In both of these cases shown in Figure 5-16 and Figure 5-17 there are two missing values, but for sibling rules the multiple values are combined in a single new rule. Thus, in general gap checking suggests fewer more general rules in preference to many more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the values you want. Alternatively, you can use Find Gaps to add a rule and then split the cell with multiple values, and delete the rules you do not want to keep.

5.3.1.3 Understanding Decision Table Conflict Analysis

The rules in a Decision Table can conflict. Two rules conflict when they overlap and they have different actions. Two rules overlap when at least one of their condition cells has a value in common. Overlap is common when a Decision Table contains "do not care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict Resolution row in the Decision Table when you click Show Conflicts. How you handle and resolve conflicts depends on the specified conflict policy. You can choose a conflict policy or use the default manual conflict policy. When you set a conflict policy using the Conflict Policy option in the Advanced Settings area, Rules Designer sets the conflict policy for the Decision Table. The Conflict Policy specifies the Decision Table conflict policy and is one of the following:

	manual: Conflicts are resolved by manually specifying a conflict resolution for each conflicting rule.

	auto override: Conflicts are resolved automatically using an override conflict resolution when this is possible, using the Oracle Business Rules automatic conflict resolution policies.

	ignore: Conflicts are ignored.

For more information, see Using Advanced Settings with Rules and Decision Tables. For example, Figure 5-18 shows a Decision Table with conflicting rules that you resolve with the default manual conflict policy.

Figure 5-18 Decision Table Showing Conflicting Rules in the Conflicts Area
[image: Description of Figure 5-18 follows]

By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer lets you resolve conflicts between rules as follows:

	Override (Override and OverriddenBy): You override one rule with the other. Override specifies that one rule fires. Override is a combination of prioritization and mutual exclusion. Prioritization is transitive and not symmetric. Mutual exclusion is both transitive and symmetric. If A overrides C and B overrides C, then A or B runs before C but only one of A, B, or C runs.

	Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets the two rules fire in a prescribed order. Prioritization is transitive but not symmetric. That is, if A runs before B runs before C, then A runs before C but B does not run before A. This uses a Decision Table runBefore list specifying that the rule that runs before has a higher priority than rules in the list.

	Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary order. For example, consider the following conflicting rules in a decision table:

rule1: everybody gets a 10% raise (as specified with a do not care value in a decision table condition cell)
rule2: employee with Top Performer set to true gets a 5% raise

In these rules, if rule2 overrides rule1, then a top performer gets a 5% raise, and everyone else gets a 10% raise. However, in this case, you would like to have both rules fire. Because it does not matter which rule fires first, and there is no conflict, then a top performer gets a 15.5% raise either way. In this case, use the NoConflict list to remove the conflict. Note that no conflict is what you get with IF/THEN rules with equal priorities, only you are not warned of a conflict and you have to think carefully if you want one rule to override the other.

Figure 5-19 shows the Rules Designer Conflict Resolution dialog shown when you select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve conflicts between rules by selecting overrides, prioritization with RunBefore or RunAfter options, and a NoConflict option.

Figure 5-19 Using the Decision Table Conflict Resolution Dialog
[image: Description of Figure 5-19 follows]

You can use the Decision Table Advanced Settings Conflict Policy auto override option to specify that, where possible, conflicts are automatically resolved. The automatic override conflict resolution policy specifies that a special case overrides a more general case. For more information, see Using Advanced Settings with Rules and Decision Tables.

Thus, when there are conflicts in a Decision Table, you can do one or more of the following to resolve the conflicts:

	Use auto override conflict resolution by selecting the Conflict Policy and then auto override option in the Decision Table.

	Ignore conflicts by selecting the Conflict Policy and then ignore option in the Decision Table.

	Use manual conflict resolution by selecting the Conflict Policy and then manual option in the Decision Table and set Conflict Resolution for each conflicting rule in the dialog by selecting cells in the Conflict Resolution area with the Show Conflicts check box selected.

	Change the Decision Table to remove an overlap.

	Combine actions to remove conflicts.

5.3.2 How to Compact or Split a Decision Table

Use the Compact Table and Split Table buttons to compact or split cells in a Decision Table. For more information, see Understanding Decision Table Split and Compact Operations.

To compact or split cells in a decision table:

	In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview tab, select the Decision Table and click Edit.
	Click the Compact Table button to compact or the Split Table button to split the cells.

5.3.3 How to Merge or Split Conditions in a Decision Table

Use the merge condition and split condition operations to merge or split a condition in a Decision Table. For more information, see Understanding Decision Table Split and Compact Operations.

To merge or split a condition in a decision table:

	In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview tab, select the Decision Table where you want to merge or split a condition and click Edit.
	In the Conditions area, select the condition you want to merge or split.
	Right-click, and from the list select Merge Condition or Split Condition.

5.3.4 How to Use the Condition Cell Operations

Use the condition cell operations to split a condition cell, to merge sibling condition cells, or to specify a "do not care" value for a condition cell in a Decision Table. For more information, see Understanding Decision Table Split and Compact Operations.

5.3.4.1 How to Merge Sibling Cells in a Condition in a Decision Table

	In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview tab, and select the Decision Table where you want to merge condition cells and click Edit.
	Select the sibling condition cells to merge.
	Right-click, and from the list select Merge selected cells.

5.3.4.2 How to Split a Cell in a Condition in a Decision Table

	In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview tab, and select the Decision Table where you want to split a condition cell and click Edit.
	Select the cell to split.
	Right-click, and from the list select Split selected cell.

5.3.4.3 How to a "Do Not Care" Value for a Cell in a Condition in a Decision Table

	From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to set the "do not care" value.
	Select the appropriate condition cell.
	Right-click, and from the list select Do Not Care.

5.3.4.4 How to Select all Value Sets to Specify a "Do Not Care" Value for a Cell in a Condition:

	In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview tab, and select the Decision Table where you want to set the "do not care" value and click Edit.
	Select the appropriate condition cell.
	Double-click, and from the list select all the available check boxes for all possible values.

5.3.5 How to Perform Decision Table Gap Checking

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a combination of values, one from each condition, that is not covered by an existing rule. Rules Designer provides Gap Checking to check for gaps. When you use this operation Rules Designer presents a window to fix gaps. For more information, see Understanding Decision Table Gap Checking.

You can choose to make existence of gaps a validation warning. When you clear Allow Gaps in the Advanced Settings area, the Decision Table reports a validation warning when a gap is found. For more information, see Using Advanced Settings with Rules and Decision Tables.

To perform decision table gap checking:

	In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview tab, and select the Decision Table where you want to perform gap checking and click Edit.
	Click the Gap Analysis button.

5.3.6 How to Perform Decision Table Manual Conflict Resolution

The rules in a Decision Table can conflict. Two rules conflict when they overlap and they have different actions. Two rules overlap when at least one of their condition cells has a value in common. For more information, see Understanding Decision Table Conflict Analysis.

To perform manual decision table conflict resolution:

	In Rules Designer, select a rule set from the Rule Sets navigation tab. On the Overview tab, and select the Decision Table where you want to check conflicts and click Edit.
	Set the conflict policy to manual (this is the default conflict policy). For more information, see Understanding Decision Table Conflict Analysis.
	In the Conditions area, in the conflicts area, when conflicts exist for each rule with a conflict double-click the appropriate condition cell to display the Conflict Resolution dialog.
	In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field select a resolution from the list.

5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy

When you select the Advanced Settings option in a Decision Table, you can select that Decision Table conflicts are automatically resolved using the auto override conflict policy (this applies only when it is possible to resolve the conflict using the Oracle Business Rules automatic conflict resolution policies). The automatic override conflict resolution uses a policy where when there is a rule conflict a special case overrides a more general case. For more information, see Understanding Decision Table Conflict Analysis.

To select the auto override policy:

	Select the rule or Decision Table where you want to use ignore conflict policy.
	Click the Show Advanced Settings button next to the rule or Decision Table name.
	From the Conflict Policy option select auto override.

5.3.8 How to Set the Decision Table Ignore Conflicts Policy

When you select the Advanced Settings option in a Decision Table, you can select that the Decision Table conflicts are ignored using the ignore conflict policy. The ignore policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more information, see Understanding Decision Table Conflict Analysis.

To select the ignore conflict policy:

	Select the rule or Decision Table where you want to use the ignore conflicts policy.
	Click the Show Advanced Settings button next to the rule or Decision Table name.
	From the Conflict Policy option select ignore.

5.4 Creating and Running an Oracle Business Rules Decision Table Application

The Order Approval application demonstrates the integration of a SOA composite application with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

	Process rules from XML inputs including: a credit score and the annual spending of a customer, and the total cost of the incoming order.

	Provide output that determines if an order is approved, rejected, or requires manual processing.

To complete this procedure, you need to:

	Obtain the Source Files for the Order Approval Application

	Create an Application for Order Approval

	Create a Business Rule Service Component for Order Approval

	View Data Model Elements for Order Approval

	Add Value Sets to the Data Model for Order Approval

	Associate Value Sets with Order and CreditScore Properties

	Add a Decision Table for Order Approval

	Split the Cells in the Decision Table and Add Actions

	Compact the Decision Table

	Replace Several Specific Rules with One General Rule

	Add a General Rule

	Check Dictionary Business Rule Validation Log for Order Approval

	Deploy the Order Approval Application

	Test the Order Approval Application

5.4.1 How to Obtain the Source Files for the Order Approval Application

The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.

To work with the Order Approval application, you first need to obtain the order.xsd schema file either from the sample project that you obtain online or you can create the schema file and create all the application, project, and other files in Oracle JDeveloper. You can save the schema file provided in the following example locally to make it available to Oracle JDeveloper.

The following example shows the order.xsd schema file.

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
 </schema>

5.4.2 How to Create an Application for Order Approval

To work with Oracle Business Rules, you first create an application in Oracle JDeveloper.

To create an application for order approval:

	In the Application Navigator, click New Application.

	In the Name your application dialog, enter the name and location for the new application.

	In the Application Name field, enter an application name. For example, enter OrderApprovalApp.

	In the Directory field, specify a directory name or accept the default.

	In the Application Package Prefix field, enter an application package prefix, for example com.example.order.

The prefix, followed by a period, applies to objects created in the initial project of an application.

	For a SOA composite with Oracle Business Rules, in the Application Template area select SOA Application for the application template. For example, see Figure 5-20.

	Click Next.

Figure 5-20 Adding the Order Approval Application
[image: Description of Figure 5-20 follows]

	In the Name your project page enter the name and location for the project.

	In the Project Name field, enter a name. For example, enter OrderApproval.

	Enter or browse for a directory name, or accept the default.

	For an Oracle Business Rules project, in the Project Technologies area ensure that SOA, ADF Business Components, Java, and XML are in the Selected area on the Project Technologies tab, as shown in Figure 5-21. If an item is missing, select it in the Available pane and add it to the Selected pane using the Add button.

Figure 5-21 Adding a Project to an Application
[image: Description of Figure 5-21 follows]

	Click Finish.

5.4.3 How to Create a Business Rule Service Component for Order Approval

After creating a project in Oracle JDeveloper you need to create a Business Rule Service component within the project. When you add a business rule you can create input and output variables to provide input to the service component and to obtain results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

	Add a business rules service component

	Create input and output variables for the service component

	Create an Oracle Business Rules dictionary in the project

To create a business rule service component:

	In the Application Navigator, in the OrderApproval project expand SOA Content and double-click composite.xml to launch the SOA composite editor (this may already be open after you create the project).
	From the Component Palette, drag-and-drop a Business Rule from the Service Components area of the SOA menu to the Components lane of the composite.xml editor. Oracle JDeveloper displays a Create Business Rules page, as shown in Figure 5-22.

Figure 5-22 Adding a Business Rule Dictionary with the Create Business Rules Dialog
[image: Description of Figure 5-22 follows]

	To add an input, from the list next to the Add button select Input to enter input for the business rule.
	In the Type Chooser dialog, click the Import Schema File... button. This displays the Import Schema File dialog.
	In the Import Schema dialog click Browse Resources to choose the XML schema elements for the input variable of the process. This displays the SOA Resource Lookup dialog.
	In the SOA Resource Lookup dialog, navigate to find the order.xsd schema file and click OK.
	In the Import Schema File dialog, make sure Copy to Project is selected, as shown in Figure 5-23. Click OK.Figure 5-23 Importing the Order.xsd Schema File
[image: Description of Figure 5-23 follows]

	If the Localize Files dialog displays, click OK to copy the schema to the composite process directory.
	In the Type Chooser, navigate to the Project Schemas Files folder to select the input variable. For this example, select CustomerOrder as the input variable.

On the Type Chooser window, click OK. This displays the Create Business Rules dialog, as shown in Figure 5-24.

Figure 5-24 Create Business Rules Dialog with CustomerOrder Input
[image: Description of Figure 5-24 follows]

	In a similar manner, add the output fact type OrderApproval from the imported order.xsd.
	In the Create Business Rules dialog, select Expose as Composite Service, as shown in Figure 5-25.Figure 5-25 Create Business Rules Dialog with Input and OrderApproval Output
[image: Description of Figure 5-25 follows]

Click OK. This creates the Business Rule component and Oracle JDeveloper shows the Business Rule in the canvas workspace, as shown in Figure 5-26.

Figure 5-26 Business Rules Component in OrderApproval Composite
[image: Description of Figure 5-26 follows]

The business rule service component enables you to integrate your SOA composite application with a business rule. This creates a business rule dictionary and enables you to execute business rules and make business decisions based on the rules.

5.4.4 How to View Data Model Elements for Order Approval

Before adding rules you need to create the Oracle Business Rules data model. The data model contains the business data definitions (types) and definitions for facts that you use to create rules. For example, for this sample the data model includes the XML schema elements from order.xsd that you specify when you define inputs and outputs for the business rule activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you may need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

	Select the composite tab with the value composite.xml, and in the Components lane select the business rule (this surrounds the component, OracleRules1 with a dashed selection box).
	Double-click the selection box to launch Rules Designer.
	In Rules Designer select the Facts navigation tab.
	Select XML Facts tab in the Facts navigation tab as shown in Figure 5-27.Figure 5-27 Opening a Business Rules Dictionary with Rules Designer
[image: Description of Figure 5-27 follows]

5.4.5 How to Add Value Sets to the Data Model for Order Approval

To use a Decision Table you need to define value sets that specify how to draw values for each cell for the conditions that constitute the Decision Table. For this example the value sets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount value set to the data model:

	In Rules Designer, select the Value Sets navigation tab.
	From the drop down next to the Create Value Set... button, select Range Value Set.
	In the Name field, enter OrderAmount. Press Enter to accept the name.
	Double-click the OrderAmount value set icon to display the Edit Range Value Set dialog.
	Click Add Value to add a value.
	Click Add Value again to add another value.
	In the Range Values area, in the top Endpoint field enter 1000 for the endpoint value.
	In the Range Values area, for the middle bucket in the Endpoint field enter 500 for the endpoint value.
	In the Included Endpoint field for each value set ensure the check box is selected, as shown in Figure 5-28.Figure 5-28 Adding the OrderAmount Value Set
[image: Description of Figure 5-28 follows]

	Modify the Alias field for each value to High, Medium, and Low. Click OK.

5.4.5.1 How to Add CreditScore Value Set to the Data Model

To add CreditScore value set:

	In Rules Designer select the Value Sets navigation tab.
	From the drop down next to the Create Valueset... button, select List of Ranges.
	In the Name field, enter CreditScore.
	Double-click the CreditScore valueset icon to display the Edit Valueset dialog.
	Click Add Value to add a value.
	Click Add Value again to add another value.
	In the top valueset, in the Endpoint field enter 750.
	For the middle valueset, in the Endpoint field enter 400.
	In the Included Endpoint field for each valueset, ensure the check box is selected.
	Modify the Alias field for each endpoint value to solid for 750, avg for 400, and risky for -Infinity. Click OK.

5.4.6 How to Associate Value Sets with Order and CreditScore Properties

To prepare for creating Decision Tables you can associate a value set with fact properties in the data model. In this way condition cells in a Decision Table Conditions area can use the valuesets when you create a Decision Table.

Note that the OrderApproval.status property is associated with the Status value set when the OrderApproval fact type is imported from the XML schema. In the schema, Status is a restricted String type and is therefore represented as an enum valueset. Rules Designer creates the status value set. For more information, see What You Need to Know About XML Facts.

To associate value sets with Order and CreditScore properties:

	In Rules Designer select the Facts navigation tab.
	Select the XML Facts tab in the Facts navigation tab as shown in Figure 5-29.Figure 5-29 Opening a Business Rules Dictionary with Rules Designer
[image: Description of Figure 5-29 follows]

	Select the type you want to modify. For example in the XML Facts table double-click the icon next to the CustomerOrder entry. This displays the Edit XML Fact dialog.
	In the Edit XML Fact dialog, in the Properties table in the Value Set column select the cell for the appropriate property and from the list select the valueset you want to use. For example, for the property order select the OrderAmount valueset, as shown in Figure 5-30. Figure 5-30 Associating the OrderAmount Valueset with CustomerOrder.order
[image: Description of Figure 5-30 follows]

	In a similar manner, for the property creditScore select the CreditScore valueset.
	Click OK.

5.4.7 How to Add a Decision Table for Order Approval

You create a Decision Table to process input facts and to produce output facts, or to produce intermediate conclusions that Oracle Business Rules can further process using additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer to assist you. Rules Designer performs dictionary validation when you make any change to the dictionary. To show the validation log window, click the Validate button or select View>Log and select the Business Rule Validation tab. If you view the rules validation log you should see warning messages. You remove these warning messages as you create the Decision Table. For more information on rule validation see Understanding Rule Validation.

To use a Decision Table for rules in this sample application you work with facts representing a customer spending level and a customer credit risk for a particular customer and a particular order. Then, you use a Decision Table to create rules based on customer spending, the order amount, and the credit risk of the customer.

To add a Decision Table for order approval:

	In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.
	Click the Add button and from the list and select Create Decision Table.
	In the Decision Table, click the Add button and from the list select Condition.
	In the Decision Table, double-click <edit condition>. Then, in the navigator expand CustomerOrder and select creditScore. This enters the expression CustomerOrder.creditScore in the Conditions column.
	Again, in the Decision Table, click the Add button and from the list select Condition.
	In the Decision Table, in the Conditions area double-click the <edit condition>. Then, in the navigator expand CustomerOrder and select order. This enters the expression CustomerOrder.order.
	Again, in the Decision Table, click the Add button and from the list select Condition.
	In the Decision Table, double-click <edit condition>.
	In the navigator expand CustomerOrder and select annualSpending. In the text entry area, add >2000 as shown in Figure 5-31. Figure 5-31 Adding the Annual Spending Entry to a Decision Table
[image: Description of Figure 5-31 follows]

	Type Enter to accept the value, as shown in Figure 5-32. If you view the rules validation log you should see the warning messages as shown in Figure 5-32. You remove these warning messages as you modify the Decision Table in later steps.Figure 5-32 Adding Conditions to the CustomerOrder Decision Table
[image: Description of Figure 5-32 follows]

5.4.7.1 How to Create an action in a Decision Table

To create an action in a Decision Table:

	In the Decision Table click the Add button and from the list select Action > Assert New.
	In the Actions area, double-click assert new(. This displays the Action Editor dialog.
	In the Action Editor dialog, in the Facts area select OrderApproval.
	In the Action Editor dialog, in the Properties table for the property status select the Parameterized check box and the Constant check box. This specifies that each rule independently sets the status.
	In the Action Editor dialog, select the Always Selected check box as shown in Figure 5-33.Figure 5-33 Adding an Action to a Decision Table with the Action Editor Dialog
[image: Description of Figure 5-33 follows]

	In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

5.4.7.2 Split the Cells in the Decision Table and Add Actions

You can use the Decision Table split operation to create rules for the valuesets associated with the condition rows in the Decision Table. This creates one rule for every combination of condition valuesets. There are three order amount valuesets, three credit score valuesets, and two boolean valuesets for the annual spending amount for a total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:

	Select the Decision Table.
	In the Decision Table, click the Split Table button and from the list select Split Table. The split table operation eliminates the "do not care" cells from the table. The table now shows eighteen rules that cover all ranges as shown in Figure 5-34.

These steps produce validation warnings for action cells with missing expressions. You fix these in later steps.

Figure 5-34 Splitting a Decision Table Using Split Table Operation
[image: Description of Figure 5-34 follows]

5.4.7.3 How to Add Actions for Each Rule in the Decision Table

In the Decision Table you specify a value for the status property associated with OrderApproval for each action cell in the Actions area. The possible choices are: Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in a value for status for each of the 18 rules. The values you enter correspond to the conditions that form each rule in the Decision Table.

To add actions for each rule in the decision table:

	In the Actions area, double-click the action cell for the rule you want to work with, as shown in Figure 5-35.Figure 5-35 Adding Action Cell Values to a Decision Table
[image: Description of Figure 5-35 follows]

	In the list, select and enter a value for the action cell. For example, enter Status.MANUAL.
	For each action cell, enter the appropriate value as determined by the logic of your application. For this sample application use the values for the Decision Table actions as shown in Table 5-5.
	Select Save All from the File main menu to save your work.

Table 5-5 Values for Decision Table Actions

	Rule	C1 creditScore	C2 order	C3 annualSpending > 2000	A1 OrderApproval status
	R1

	risky

	Low

	true

	Status.MANUAL

	R2

	risky

	Low

	false

	Status.MANUAL

	R3

	risky

	Medium

	true

	Status.MANUAL

	R4

	risky

	Medium

	false

	Status.REJECTED

	R5

	risky

	High

	true

	Status.MANUAL

	R6

	risky

	High

	false

	Status.REJECTED

	R7

	avg

	Low

	true

	Status.APPROVED

	R8

	avg

	Low

	false

	Status.MANUAL

	R9

	avg

	Medium

	true

	Status.APPROVED

	R10

	avg

	Medium

	false

	Status.MANUAL

	R11

	avg

	High

	true

	Status.MANUAL

	R12

	avg

	High

	false

	Status.MANUAL

	R13

	solid

	Low

	true

	Status.APPROVED

	R14

	solid

	Low

	false

	Status.APPROVED

	R15

	solid

	Medium

	true

	Status.APPROVED

	R16

	solid

	Medium

	false

	Status.APPROVED

	R17

	solid

	High

	true

	Status.APPROVED

	R18

	solid

	High

	false

	Status.MANUAL

5.4.7.4 Compact the Decision Table

In this step you compact the rules to merge from eighteen rules to nine rules. This automatically eliminates the rules that are not needed and preserves the no gap, no conflict properties for the Decision Table.

To compact the decision table:

	Select the Decision Table.
	Click the Resize All Columns to Same Width button.
	Click the Compact Table button and from the list select Compact Table. The compact table operation eliminates rules from the Decision Table. The Decision Table now shows nine rules, as shown in Figure 5-36.

Figure 5-36 Compacting a Decision Table Using Compact Table
[image: Description of Figure 5-36 follows]

5.4.7.5 Replace Several Specific Rules with One General Rule

Notice that five of the nine remaining rules result in a manual order approval status. You can reduce the number of rules by deleting these five rules. Note it is often best practice to not do this (that is not replace several specific rules with one general rule). You need to compare the benefits of having fewer rules with the added complexity of managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:

	Select the Decision Table.
	In the Decision Table, select a rule with OrderApproval status action set to Status.MANUAL. To select a rule, click the column heading. For example, click rule R2 as shown in Figure 5-37.
	Click Delete to remove a rule in the Decision Table. Be careful to click the delete button in the Decision Table area to delete a rule in the decision table (there is also a delete button shown in the Ruleset area that deletes the complete Decision Table). Figure 5-37 Deleting Rules from a Decision Table
[image: Description of Figure 5-37 follows]

	Repeat these steps to delete all the rules with action set to Status.MANUAL. This should leave the Decision Table with four rules as shown in Figure 5-38.Figure 5-38 Decision Table After Manual Actions Removed
[image: Description of Figure 5-38 follows]

5.4.7.6 Add a General Rule

Now you can add a single rule to handle the manual case. After adding this rule you set the conflict policy with the option Conflict Policy auto override for conflict resolution.

To add a general rule:

	In the Decision Table, click the Add button and from the list select Rule.
	In the Conditions area, for the three conditions leave the "-" do not care value for each cell in the rule.
	In the Actions area, enter Status.MANUAL, as shown in Figure 5-39. Notice that the Business Rule Validation log includes the warning RUL-05851 for unresolved conflicts.Figure 5-39 Decision Table with Conflicting Rules
[image: Description of Figure 5-39 follows]

	Show the conflicting rules by clicking the Toggle Display of Conflict Resolution button, as shown in Figure 5-40.Figure 5-40 Adding a Rule to Handle Status Manual
[image: Description of Figure 5-40 follows]

5.4.7.7 How to Enable the Auto Override Conflict Resolution Policy

To enable the auto override conflict resolution policy:

	In the Decision Table click Show Advanced Settings (next to the Decision Table name).
	In the Conflict Policy list, select auto override. After adding the manual case rule and selecting auto override, notice that the conflicts are resolved and special cases override the general case, as shown in Figure 5-41.Figure 5-41 Adding a Rule to Handle Status Manual with Auto Override Conflict Policy
[image: Description of Figure 5-41 follows]

5.4.8 How to Check the Business Rule Validation Log for Order Approval

Before you can deploy the application you need to make sure the dictionary validates without warnings. If there are any validation warnings, you need to fix any associated problems. To validate the dictionary, in the Business Rule Validation Log, check for any validation warnings. If there are warnings, perform appropriate actions to correct the problems.

5.4.9 How to Deploy the Order Approval Application

Business rules created in a SOA application are deployed as part of the SOA composite when you create a deployment profile in Oracle JDeveloper. You deploy a SOA composite application to Oracle WebLogic Server.

To deploy and run the order approval application:

	If you have not started your application server instance, then start the Oracle WebLogic Server.
	In the Application Navigator, right-click the OrderApproval project and select Deploy > OrderApproval > to the appropriate server name.Then the SOA Deployment Configuration dialog displays. Select your Application connection which you either have created already or you can create it now. The connection contains the authorization and other connection information (server name, port, etc).

	Click Next.
	In Select Server select or create and then select your application connection.
	Click Next, Next and Finish.

5.4.10 How to Test the Order Approval Application

After deploying the application you can test the Decision Table in the SOA composite application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

	Open the composite application in Oracle Enterprise Manager Fusion Middleware Control Console, as shown in Figure 5-42.Figure 5-42 Testing the Order Approval Application
[image: Description of Figure 5-42 follows]

	Click Test.
	In the Input Arguments area, select XML View. Replace the XML with the contents of the sample input for testing Order Approval application example as shown below.<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/OracleRules1/OracleRules1_DecisionService_1">
 <ns1:callFunctionStateless name="OracleRules1_DecisionService_1">
 <ns1:parameterList xmlns:ns3="http://example.com/ns/customerorder">
 <ns3:CustomerOrder>
 <ns3:name>Gary</ns3:name>
 <ns3:creditScore>600</ns3:creditScore>
 <ns3:annualSpending>2001.0</ns3:annualSpending>
 <ns3:value>High</ns3:value>
 <ns3:order>100.0</ns3:order>
 </ns3:CustomerOrder>
 </ns1:parameterList>
 </ns1:callFunctionStateless>
 </soap:Body>
</soap:Envelope>

	Replace the values in the input shown in step 3 as desired for your test.
	Click Test Web Service.
	In the Response tab, view the results. For example, for this input:/OracleRules1_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
 <resultList>
 <OrderApproval:OrderApproval xmlns:OrderApproval="http://example.com/ns/customerorder"
xmlns="http://example.com/ns/customerorder">
 <status>approved</status>
 </OrderApproval:OrderApproval>
 </resultList>
 </callFunctionStatefulDecision>

5.5 Editing Decision Tables in Microsoft Excel

Business users may find that editing Decision Tables is easier to do in Microsoft Excel. New functionality enables both developers and business users to export and edit Decision Tables in Excel and then import the Decision Tables back into the dictionary.

You can export and edit Decision Tables at design-time in Oracle JDeveloper or Business Process Composer. At runtime, you can export and edit in SOA Composer. You can export one or more Decision Tables from a Rule dictionary to the same Excel workbook.

When you import back into the dictionary, you can create a new dictionary, overwrite the existing dictionary, or perform a Diff-Merge. The Diff-Merge enables you to compare dictionaries and accept (merge) or reject any differences.

For more information about comparing dictionaries, see How to Compare or Merge Two or More Dictionaries.

The Excel workbook structure consists of several worksheets: a Readme sheet, a Value Set sheet, and one sheet for each exported Decision Table, as shown in Figure 5-43. Only Rules and Value Sets can be edited in Excel. You can export to .xlsm (default) or .xls.

Figure 5-43 Microsoft Excel Workbook
[image: Description of Figure 5-43 follows]

When you open the Excel workbook, the macros are disabled by default. If you enable the macros, a new tab called Oracle Business Rules, appears. This tab enables you to add or delete rules, merge or split cells, and add or remove values from value sets. You can also disable or enable highlighting, use a simple or advanced mode and hide or show the Readme worksheet.

You can edit with the macros disabled, though you will not be able to:

	Choose values from drop lists for restricted cells.

	Edit free form cells.

	Copy and paste a range of cells to add a rule or Value Set.

	Delete a range of cells to delete a rule or Value Set.

	Split or merge cells.

	Create Value Sets automatically.

	Validate the structure of Decision Tables or Value Sets.

Using the predefined macros, you can:

	Add and delete rules.

	Split or merge cells.

	Add or delete Value Sets.

	Editable cells include:

	Description for Rules, Conditions, Actions.

	Condition and Action nodes.

	Action state.

	Parameterized options for Action parameters.

	Non-editable cells include:

	Condition expressions.

	Action expressions.

	Action parameters.

If you try to edit these cells, you will get an error message, as shown in Figure 5-44.

Figure 5-44 Non-Modifiable Cell
[image: Description of Figure 5-44 follows]

5.5.1 Understanding What is Exported

In the SDK, there are shared Value Sets that can be associated with multiple conditions across Decision Tables. However, in Excel there are no shared Value Sets--each condition has its own Value Set--so you can only export a Value Set if it is modifiable in Excel. The Value Sets that are non-modifiable include:

	Linked Dictionary Value Sets.

	Enums.

	Internal Value Sets, for example, boolean Value Sets.

In the worksheet, you can only select values from the drop down for the conditions associated with non-modifiable Value Sets. A highlighting mechanism informs you which conditions are associated with non-modifiable Value Sets.

5.5.2 How to Export Decision Tables

The export and import functionality is invoked using the toolbar button, as shown in Figure 5-45.

Figure 5-45 Export and Import Toolbar Button
[image: Description of Figure 5-45 follows]

To export Decision Table:

	In Rules Designer, click Export to Excel.
	In the Export to Excel dialog box, select the Format and browse to the folder where you want to save the workbook.
	Click Add and select the Decision Table(s) to export and click OK.
	Check the Read Only Value Set check box to make all of the value sets read-only in Excel. There will not be any Value Sets sheet in the Excel workbook. All conditions will have drop down menus from which values can be selected but no values can be added or removed.
	Click Export. You can now open the workbook and edit the Decision Table.

5.5.3 How to Import Edited Decision Tables Back to the Dictionary

The export and import functionality is invoked using the toolbar button, as shown in Figure 5-45. You can only import Excel workbooks that have been previously exported.

To import edited Decision tables:

	In Rules Designer, click Import from Excel.
	In the Import from Excel dialog box, select the File to browse to the folder where you saved the workbook.
	The Perform Diff-Merge on Import check box is selected by default. Browse to the Base Dictionary that you want to compare your file to. The base dictionary is required for a 3 way diff-merge.
	Clear the Perform Diff-Merge on Import check box and select Create New or Overwrite.
	Click Import. The decision table is imported into Rules Designer, where you can accept or reject changes, as shown in Figure 5-46. Each changed artifact is flagged with a change icon. Merging dictionaries should be done with caution.For more information about using the Diff-Merge, see How to Compare or Merge Two or More Dictionaries.

Figure 5-46 Perform Diff-Merge on Import
[image: Description of Figure 5-46 follows]

5.5.4 How to Edit Decision Tables in Excel

In Excel, enable the macros to view the Oracle Business Rules tab, which provides you with options to author rules, edit Value Sets, and set preferences.

5.5.4.1 Adding or Deleting Rules and Merging or Splitting Cells

For each Decision Table worksheet, you can add a rule, as shown in Figure 5-47, delete rules, and merge or split cells.

Figure 5-47 Oracle Business Rules tab in Excel
[image: Description of Figure 5-47 follows]

5.5.4.2 Adding or Removing Value Sets

In the ValueSets tab, you can add or remove Value Sets, as shown in Figure 5-48. Depending on the cell you click in, your options will vary: endpoints or values.

Figure 5-48 Value Sets Worksheet
[image: Description of Figure 5-48 follows]

5.5.4.3 Showing or Hiding Value Sets and Editing the Description

On the Value Sets worksheet, right click and select Show/Hide Values to toggle between viewing or hiding values as shown in Figure 5-49. You can also right click and select Edit Bucket Description to change the description.

Figure 5-49 Show/Hide Value Sets
[image: Description of Figure 5-49 follows]

5.5.4.4 Setting Preferences

In the Value Sets tab, click Enable Highlighting or Disable Highlighting, as shown in Figure 5-50.

Figure 5-50 Enabling Highlighting
[image: Description of Figure 5-50 follows]

5.5.4.5 Using Simple or Advanced Mode

In your worksheet, click Simple Mode or Advanced Mode to toggle between the two modes.

Simple mode displays only the descriptions of conditions and actions and not the actual expressions. Also, action parameters are displayed, but you cannot specify them as fixed or variable.

Advanced mode displays both the descriptions and expressions for conditions and actions, as shown in Figure 5-51. Also, you can specify the action parameter type from fixed and variable, which is equivalent to specifying "Parameterized/Constant" in the SDK.

Figure 5-51 Advanced Mode
[image: Description of Figure 5-51 follows]

5.5.4.6 Hiding or Showing the Readme Worksheet

Click Hide or Show ReadMe Sheet to toggle between the modes, as shown in Figure 5-52. The ReadMe worksheet provides helpful information about how to use the features on the Oracle Business Rules tab.

Figure 5-52 Show/Hide Readme
[image: Description of Figure 5-52 follows]

5.5.4.7 Editing Condition Cells

You can choose from the drop down or use auto-addition to add new values, shown in Figure 5-53. For some of the condition cells, you can only choose values from the drop down menu. These cells have been differentiated by using color code. Any conditions you change between a Value Set or Decision Table are automatically synced.

Figure 5-53 Editing Conditions
[image: Description of Figure 5-53 follows]

5.5.4.8 Editing Actions

You can select the action state (active/inactive) from the drop down, as shown in Figure 5-54.

Figure 5-54 Editing Action States
[image: Description of Figure 5-54 follows]

5.5.4.9 Editing Expressions

You can edit the values of action expression cells. Use care to maintain the validity of these cells when editing.

5.5.4.10 Editing Action Expression Parameters

You can make action parameters fixed or variable, as shown in Figure 5-55. If the action parameter is fixed, then all the rules will have the same value for that particular parameter. If the action parameter is variable, then different rules can have different values for that particular parameter.

Figure 5-55 Editing Action Expression Parameters
[image: Description of Figure 5-55 follows]

5.5.4.11 Editing Descriptions

You can edit descriptions for actions, conditions, and rules. If the description is not provided for any of the action or condition or rule then it will be defaulted to "A", "C" or "R" followed by a number which denotes its position in the decision table, respectively.

Figure 5-56 Editing Descriptions
[image: Description of Figure 5-56 follows]

5.5.4.12 Using the Auto-Addition Feature

You can add values in the value sets in two ways:

	Go to the specific value set in the value sets worksheet. In the Oracle Business Rules tab, click Add Bucket.
	Enter a value (in case of LOV valuesets) or end point (in case of Range valuesets) in the condition cell. This is called auto-addition as the value will be automatically added to the corresponding value set, as shown in Figure 5-57.Figure 5-57 Entering a Value in the Condition Cell
[image: Description of Figure 5-57 follows]

The value set above has three values: – 1) <18 , 2) [18..60) , and 3) >=60.

	To add a new value, for example, [18..30] and (30..60), type 30 in the cell as shown in Figure 5-58 and press Enter.Figure 5-58 Adding a New Value
[image: Description of Figure 5-58 follows]

	After you press enter, the value will be added to the value set and will be shown in the drop-down as shown in Figure 5-59.Figure 5-59 Value is Auto-Added
[image: Description of Figure 5-59 follows]

Various highlighting techniques are used to inform you about auto-added values in the value set, see the following examples. The comment and the highlighting of the value is removed after you select another value for any other rule for that condition or if a new value is added in the same value set.

The first is to highlight the newly added value in the value set sheet as shown in Figure 5-60.

Figure 5-60 Highlighted Value Set
[image: Description of Figure 5-60 follows]

The second is the addition of a comment in the condition cell, as shown in Figure 5-61.

Figure 5-61 Comments in Condition Cells
[image: Description of Figure 5-61 follows]

The third is to print a message box, shown in Figure 5-62. Note that the box is only shown the first time when the value is auto-added.

Figure 5-62 Message Dialog
[image: Description of Figure 5-62 follows]

5.5.4.13 Aliases of Values in the Value Sets Worksheet

In the value sets sheet, there are two rows for every value set. The first row denotes the value and the second one denotes the alias of the value. It is the alias of the value that is shown in the drop-down of condition cells.The aliases can be edited. Any change made in aliases will be immediately available in corresponding condition cells.

5.5.4.14 Syncing Value Sets and Conditions

The value sets and condition cells are always in sync. Any change made in value set is promptly synced with the condition cells whether it is an addition/deletion of any value, or any change in the alias. The sync is always maintained between value set and the corresponding condition cells.

6 Working with Decision Functions

This chapter describes how to use a decision function to call rules from a Java application, from a composite, or from a BPEL process.

The chapter includes the following sections:

	Introduction to Decision Functions

	Working with Decision Functions

	What You Need to Know About Rule Firing Limit Option for Debugging Rules

	What You Need to Know to About Decision Function Arguments

	What You Need to Know About the Decision Function Stateless Option

6.1 Introduction to Decision Functions

A decision function is a module of execution that can be invoked to reason on the inputs to arrive at outputs by applying a given ruleset or other decision functions.

A decision function contains the following declarations:

	Input facts.

	Rulesets and nested decision functions.

	Output facts.

A decision function performs the following operations:

	Asserts inputs as rule facts into the Oracle Business Rules Engine working memory.

	Runs rulesets configured in the current decision function and in nested decision functions in order.

	Returns output facts from the Oracle Business Rules Engine working memory.

You can create a decision function to simplify the use of Oracle Business Rules from a Java application or from a BPEL process. In a decision function the rules you want to use can be organized into several rulesets, and those rulesets can be executed in a prescribed order. Facts may flow to the first ruleset, and this ruleset may assert additional facts that flow to the second and subsequent rulesets until finally facts flow back to the decision function as decision function output.

6.2 Working with Decision Functions

You use Rules Designer to add a decision function.

To add a decision function:

	In Rules Designer, click the Decision Functions tab.
	In the Decision Functions area, click the Create button.A new Decision Function is created and an Edit Decision Function dialog is displayed, as shown in Figure 6-1.

Figure 6-1 Edit Decision Function Dialog
[image: Description of Figure 6-1 follows]

	Enter a name for the Decision Function in Name field and a description in the Description field.
	In the Rule Firing Limit field, select unlimited or an integer value. In some cases when you are debugging a decision function, you may want to enter a value for the rule firing limit. The Rule Firing Limit can also be used in primary rules processing when you want the execution to stop after a specified number of rules fire.For more information, see What You Need to Know About Rule Firing Limit Option for Debugging Rules.

	Select the appropriate decision function options:	Rule Firing Limit is Error: is used to indicate whether the rule firing limit is an error condition or not. Clear the check box if this is a scenario where you want rules processing to stop after n number of rules fire. When cleared, the rule firing limit is honored, but not reported as an error.

Select this check box if this is a scenario where you are using the rule firing limit as a way to, for example, prevent an infinite loop. The system throws an error when the firing limit is reached.

	Will be invoked as a Web Service: select whether the decision function will be invoked as a Web Service and provide the Web Service name.

	Check Rule Flow: Rule flow checking verifies the following to generate validation warnings:

	Types required by rules executed by the decision function are either inputs to the decision function or asserted by other rules.

	Types generated by rules executed by the decision function are either inputs to other rules or outputs to the decision function.

Rule flow checking might not identify rule flow issues spanning Java code that is used in rules. In such cases, the warnings can be ignored by turning off rule flow checking.

	Stateless: when selected, this option specifies that the decision function is stateless. For more information, see What You Need to Know About the Decision Function Stateless Option.

	In the Inputs tab, click Add to add inputs. For each input in the Inputs Table, select the appropriate options:	Name - enter an input name and press Enter or accept the default name.

	Fact Type - select the appropriate fact type from the list.

	Tree - When cleared, the input is asserted using the assert function. When selected, the input is asserted using the assertTree function. When selected, all objects referenced by the root object(s) are asserted. For more information, see Working with Tree Mode Rules.

	List - When unselected, the input must be a single object and the assertion applies only to that single input object. When selected, the input must be a List of objects and the assertion applies to each object in the input List (java.util.List).

	Description - Description of the input.

	In the Outputs tab, click Add to add outputs. For each output in the Outputs Table, select the appropriate options:	Name - enter an output name and press Enter or accept the default name.

	Fact Type - select the appropriate fact type from the list.

	Tree - When selected, this option sets a flag that enables certain design-time decision function argument checking. For an output argument, this option has no effect on runtime behavior. However, at design time in the case where several decision functions are called in a sequence, it is useful to notate explicitly that the output of one decision function is a tree. This implies that the input of another decision function in the sequence is expecting a tree as an input. For more information, see Working with Tree Mode Rules.

	List - When unselected the output is a single object. When selected the output is a group of objects. For more information on the behavior of the List option on an output argument, see What You Need to Know to About Decision Function Arguments.

	Description - Description of the output.

Note:
The visible attribute of a fact type controls whether a fact can be matched by a rule or can be asserted. Non-visible fact types are visible when they are part of a visible fact type, or a variable.

When inputs or outputs of a decision function are non-visible fact types, then a visible wrapper fact type is generated for the non-visible inputs named DF.in and a visible wrapper fact type for the non-visible outputs named DF.out.

For example, if i is an input of type int and o is a output of type int, then the following rule copies input to output: IF
 	DF.in != null
 THEN
 	assert new DF.out(o: DF.in.i)

If you do not reference DF.in or assert DF.out, a rule flow warning occurs.

	In the Initial Actions tab, you can add actions that could be used to change input facts before they are asserted, change the ruleset stack, set the effective date, or even assert output facts. These actions could be used instead of rules, or to "set up" the environment for running rules.Consider a situation where a decision function (DF1) calls another decision function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is called, Ruleset2 is also pushed. So when rules start running, rules from both rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in the initial actions, you are calling DF2), you can use initial actions in DF1 to clear the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling DF2.

You can add any required action ranging from assert, call, modify to even conditional actions such as if, else, elseif, while, for, if (advanced), and while (advanced) as shown in Figure 6-2.

Figure 6-2 Adding Initial Actions
[image: Description of Figure 6-2 follows]

Note:
If decision function DF1 contains DF2 in the Rulesets & Decision Functions tab, then DF2 may not have any initial actions.

The if (advanced) and while (advanced) conditional actions accept only boolean values. For each of the action conditions, you can add different test form types.

	In the Rulesets and Decision Functions area, use the shuttle to move items from the Available box to the Selected box.
	Select an item in the Selected box, and click Move Up or Move Down as appropriate to order the rulesets and the decision functions.

6.2.1 How to Edit an Existing Decision Function

To edit an existing decision function:

	In Rules Designer, click the Decision Functions tab.
	Select the decision function to edit and click the Edit button or double-click the decision function icon.
	Edit the appropriate decision function fields in the same manner as you would when you add a decision function.

6.2.2 How to Change the Order of Inputs

To change the order of inputs:

	In Rules Designer, click the Decision Functions tab.
	Select the decision function to edit and click the Edit button or double-click the decision function icon.
	Select the input argument you want to move. Click either Move Up or Move Down to reorder the input argument.

6.2.3 How to Change the Order of Outputs

To change the order of outputs:

	In Rules Designer, click the Decision Functions tab.
	Select the decision function to edit and click the Edit button or double-click the decision function icon.
	Select the output argument you want to move. Click either Move Up or Move Down to reorder the output argument.

6.2.4 How to Edit a Decision Function

To edit a Decision Function

	In Rules Designer, click the Decision Functions tab.
	Select the Decision Function you want to edit and click the Edit icon.The Edit Decision Function dialog is displayed.

	Make necessary changes using the process that you have used for adding a new Decision Function.

6.3 What You Need to Know About Rule Firing Limit Option for Debugging Rules

The Rule Firing Limit allows you to set the maximum number of steps (rule firings) that are allowed at runtime.

Using this option and specifying a value other than unlimited can help you debug certain rule design problems and in some cases might help prevent java.lang.OutOfMemoryError errors at runtime. This is can be useful when debugging infinitely recursive rule firings.

When you choose a value other than unlimited, and choose Rule Firing Limit is Error, the system throws an error once the limit is reached.

6.4 What You Need to Know to About Decision Function Arguments

Oracle Business Rules generates a corresponding RL Language function for each decision function.

The signature of a generated decision function is similar to:

function <name>(InputFactType1 input1, ... InputFactTypeN inputN) returns List

In a decision function, each parameter is generated depending on the List option, with the decision function input, as follows:

	Input argument, List option unselected: for FactTypei the input must be a single object and the assertion applies only to that single input object.

	Input List option selected: for List<FactTypei> the input must be a List of objects and the assertion applies to each object in the input List (java.util.List).

The generated RL Language function includes calls either to assert or assertTree for each argument, depending on the decision function Input option, Tree. When Tree is cleared, the input is asserted using the assert function. When Tree is selected, the input is asserted using the assertTree function. When selected, all objects referenced by the root object(s) are asserted.

For the decision function selected rulesets, as specified in the Rulesets and Decision Functions area Selected box, the generated RL Language function includes a call to run() with the selected rulesets in the selected ruleset stack order.

The generated RL Language function returns a list. The list has an element for each decision function output in order. If the output is declared to be a list, then the corresponding element is a list. However, if the output is not declared to be a list, then the corresponding element is the output fact or null (if there is no output fact of the declared type). If an output is not declared to be a list, and more than one output fact of the specified type is found in the working memory of Oracle Business Rules Engine, then an exception is thrown.

After you edit a decision function, for example, to change or add inputs and outputs, the changes are visible in BPEL for new Business Rule activities. However, the changes are not visible to existing Business Rule activities. For more information, see "Getting Started with Oracle Business Rules" in the Developing SOA Applications with Oracle SOA Suite.

6.5 What You Need to Know About the Decision Function Stateless Option

A decision function supports either stateful or stateless operation. The Stateless check box in the Edit Decision Function dialog provides support for these two modes of operation.

By default the Stateless check box is selected which indicates stateless operation. With stateless operation, at runtime, the rule session is released after each invocation of the decision function.

When Stateless is cleared, the underlying Oracle Business Rules object is kept in the memory of the Business Rules service engine, so that it is not given back to the Rule Session Pool when the operation is finished. A subsequent use of the decision function re-uses the cached RuleSession object, with all its state information from the previous invocation. Thus, when Stateless is cleared, the rule session is saved for a subsequent request and a sequence of decision function invocations from the same process should always end with a stateless invocation.

7 Testing and Validating Business Rules

This chapter describes how to test and validate the rules you have created or edited.

The chapter includes the following sections:

	Overview

	Testing Rules in JDeveloper

	Testing Rules in Business Process Composer

	Testing Rules in SOA Composer

	Testing Decision Functions Using a Rules Function

	Testing Decision Services in SOA Composites

7.1 Overview

The test feature enables both developers and business users to quickly check that a rule satisfies the expected behavior or, if modified, to see if a rule regresses existing functionality.

You can author and test rules at design-time in Oracle JDeveloper or Business Process Composer. At runtime, you can test rules in SOA Composer.

You can write tests declaratively, with no need for knowledge of XML or prior rules actions or programming languages such as Java. Additionally, tests support all types of facts (XML, Java, RL, and ADF-BC) and can be run on SOA or non-SOA use cases.

The test feature provides test reports with diagnostic comments and visual differences between the expected and actual values that can be used to correct the rules or fix the tests.

Figure 7-1 shows the UI in JDeveloper. For more information about using JDeveloper, see Introduction to Oracle JDeveloper in Oracle Fusion Middleware Developing Applications with Oracle JDeveloper.

Figure 7-1 Test Tab in JDeveloper
[image: Description of Figure 7-1 follows]

7.1.1 Components of the Test Feature

No matter which UI you use, the testing functionality behaves mostly the same way in JDeveloper, BP Composer, and SOA Composer.

Decision functions must have been already created before you begin--there is a one to one mapping between decision functions and tests. Once a decision function is associated with a test suite or test template, it cannot be changed later.

The components of the test feature are:

	Test Suites and Test Cases

You can create a test suite with one or more test cases. You can also create templates that serve as templates for creating other test cases.

	Test Templates

Test templates enable you to create similar test cases that differ only by the values of a few Fact properties. Templates also let you execute ad-hoc tests by specifying values for parameters. Ad-hoc tests enable you to perform sanity tests and try different value combinations for specific parameters before creating them as test cases in a test suite.

	Test Execution

Executing test suites or test cases invokes the decision function and executes the rulesets defined in the decision function and presents the results in a new tab, as shown in Figure 7-2. Tests are executed via RL generation.

Figure 7-2 Test Results Tab
[image: Description of Figure 7-2 follows]

Keep the following in mind:

	Tests can be executed either from the Test tab of the Dictionary or from the Decision Functions tab.

	Tests can be defined in the current dictionary for decision functions in linked dictionaries.

	Tests defined in linked dictionaries can be executed in the current dictionary. Tests from linked dictionaries are available as read-only for execution.

	If you modify the inputs/outputs in a decision function, the changes are automatically synced to the tests you have defined. Tests are synced to fact-types referenced in the tests. If you remove facts from a decision function, the test feature enables you to delete those facts from the input/output tree of the test.

	A Fact is an instance of a FactType that defines the Test Data and has property values corresponding to each of the FactType properties. If a Property value is a complex data type, it is defined using Fact instances as well.

7.2 Testing Rules in JDeveloper

You can test your rules as you design them in JDeveloper.

In the Test Case editor, you define the inputs and expected output values for a Test Case. The values here can be simple values or expressions that use globals, functions, and so on.

The input and output Fact trees are auto-initialized based on the inputs/outputs specified for the Decision Function.

The test input and output Fact trees are also auto-synchronized with any changes to the Decision Function (if you add, delete, modify inputs or outputs) or fact types (if you add, delete or modify properties). The auto-synchronization flags and highlights invalid Facts or Property values that were changed in a Decision Function or Fact type. These flags in the test input/output help you to identify and fix issues in your test definitions.

Testing Permission Related Cases
Before testing permission related cases, change the refresh time 10 seconds. This is an important prerequisite for reliable test results.

To change the refresh time to 10 seconds:

	Navigate to $MW_HOME/user_projects/domains/soainfra/config/fmwconfig.

	Open jps-config.xml.

	Set oracle.security.jps.ldap.policystore.refresh.interval to 10000.<serviceInstance name="pdp.service" provider="pdp.service.provider">
	<property name="oracle.security.jps.ldap.policystore.refresh.interval" value="10000"/>
</serviceInstance>

	Restart the server.

7.2.1 How to Create and Manage Test Suites and Cases

You can create a test suite with one or more test cases. Test suites can only be defined for specific decision functions.

For more information about decision functions, see Working with Decision Functions .

For detailed documentation of fields and other UI controls, click Help from within JDeveloper.

Figure 7-3 Test Tab in JDeveloper
[image: Description of Figure 7-3 follows]

To create a test suite:

	In Rules Designer, click the Test tab.
	Click the Test Component drop down and select a Test Model from the list.
	Click + to create a new test case for the test suite.
	Enter a name, choose a Decision Function, enter a Description.
	Click OK. The test suite is displayed.
	Click Edit to review the Input and Output documents for the test case. This is where you can edit values to specify the input and the expected output, as shown in Figure 7-4:Figure 7-4 Inputs and Outputs
[image: Description of Figure 7-4 follows]

	Check the Unfired Rules are Errors check box if unfired rules are treated as errors from the execution.
	Click the Draft Test check box to turn off the test validation.

When you have finished creating test suites and cases, you can run them. For more information, see How to Run Test Suites or Cases.

7.2.2 How to Create Test Templates

Test templates enable you to reuse input and output values to repeat tests on those fields and values.

For detailed documentation of fields and other UI controls, click Help from within JDeveloper.

To create a test template:

	In Rules Designer, click the Test tab.
	Click the Test Component drop down and select the Test Model/Templates from the list.
	Go to the Templates table and click + to create a new test template.
	Enter a name, choose a Decision Function, enter a Description.
	Click OK. The test template is displayed, where you can see the Input and Output documents. This is where you can edit values to specify the input and the expected output, as shown in Figure 7-5.Figure 7-5 Test Template
[image: Description of Figure 7-5 follows]

When you have finished setting up your test templates, you can run them. For more information, see How to Run Ad-hoc Tests from Test Templates.

7.2.3 How to Run Test Suites or Cases

When you run a test, a new tab is opened, and you can see the diagnostic comments, exceptions, and test results. Tests can be run either as a suite, multiple test cases, or as individual test cases.

For detailed documentation of fields and other UI controls, click Help from within JDeveloper.

To run a test suite or case:

	Select a Test Suite or Test Case to run, and click Execute.
	A new tab opens. A new tab Results opens. Click it to see the test results. For test suite execution, the tab shows a summary of the test results by default, but you can double-click each test case to see its test results. For test case execution, the tab shows the test results.

If a test fails, the test results will show diagnostic comments and output differences or exceptions depending on the cause of the failure.

The execute button is enabled only when a test suite or test case (or test template) is selected from the table and as long as there are no validation warnings in the current dictionary.

7.2.4 How to Run Ad-hoc Tests from Test Templates

This is where you can run ad-hoc tests from templates by editing the nodes in input and output trees. The inputs and outputs are from the decision function.

For detailed documentation of fields and other UI controls, click Help from within JDeveloper.

To run ad-hoc tests from test templates:

	Go to the Templates table and select a test template. The inputs and outputs fields are displayed, as shown in Figure 7-6.Figure 7-6 Template Inputs and Outputs
[image: Description of Figure 7-6 follows]

	Enter values for variable or parameter fields and click Run. The Ad-Hoc Test dialog is displayed.Select the appropriate options:

	Check the Unfired Rules Are Errors check box if unfired rules are treated as errors from the execution.

	Click List View or Tree View to toggle between the views.

	Check the Constant check box and select a constant from the list.

	Check the Mark as Parameter check box for variable fields of the test template. Values for variable fields are entered when the template is consumed like when the template is tested or used to create a test case.

	Click Execute Test to run the template.
	From the new Results tab, check the test results.

7.2.5 How to Run Tests for a Specific Decision Function

You can run tests from the Decision Function tab. This view only shows you the Test Suites and Test Cases for the specific Decision Function.

For detailed documentation of fields and other UI controls, click Help from within JDeveloper.

To run tests for a specific decision function:

	In Rules Designer, click the Decision Functions tab.
	Click to select a test case and click the Test button.
	The Decision Function Test Editor dialog appears. This dialog is just another view of the testing feature.

7.3 Testing Rules in Business Process Composer

You can test your rules as you design them in Business Process Composer.

For more information about using Business Process Composer, see Introduction to Oracle Business Process Composer in Oracle Fusion Middleware Developing Business Processes with Oracle Business Process Composer.

7.4 Testing Rules in SOA Composer

At runtime, you can use SOA Composer to regression test rules. This enables business users to quickly check if a modified rule changes the existing functionality. Figure 7-7 shows the Tests tab in SOA Composer. The Tests tab only appears if you have a deployed composite and are in a SOA Composer session. Click Create Session to open a session.

Figure 7-7 Tests Tab in SOA Composer
[image: Description of Figure 7-7 follows]

7.4.1 How to Create and Manage Test Suites and Cases

You can create a test suite with one or more test cases. Test suites can only be defined for specific decision functions.

For more information about decision functions, see Working with Decision Functions .

Figure 7-8 Test Suite Page
[image: Description of Figure 7-8 follows]

For detailed documentation of fields and other UI controls, click Help, Help for This Page from within SOA Composer.

To manage test suites and cases:

	In Rules Designer, click the Tests tab and click in a Test Suite row to enable the action buttons.Click the Draft Tests check box if you want to turn off test validation.

	Click + to create a new Test Suite.
	Enter a Name and Description, then choose a Decision Function.
	The test suite is displayed.
	After creating a test suite, if you want to create test cases, click the test suite in the Test Model tree and click + to create a Test Case or a Test Case from Templates.
	You can Save Changes in Current Tab to save data at any time or click Publish if you are done with changes.
	You can also click a test case in the Test Model tree to see the Input and Output documents for the test case. This is where you can edit values to specify the input and the expected output, as shown in Figure 7-9. Figure 7-9 Inputs and Outputs from Decision Functions
[image: Description of Figure 7-9 follows]

In the Test Case editor, you define the inputs and expected output values for a Test Case. The values here can be simple values or expressions that use globals, functions, and so on.

The test input and output Fact trees are auto-initialized based on the inputs and outputs specified for the Decision Function.

The input and output Fact trees are also auto-synchronized with any changes to the Decision Function (if you add, delete, modify inputs or outputs) or fact types (if you add, delete or modify properties). The auto-synchronization flags and highlights invalid Facts or Property values that were changed in a Decision Function or Fact type. These flags in the test input/output help you to identify and fix issues in your test definitions.

	Click Edit to make all of the nodes in the tree editable.
	If you edit a field in the tree, click Show Values to show only those values.
	Check the Flag Rules not Firing as Error check box if unfired rules are treated as errors from the execution.

When you have finished setting up your test suites and cases, you can run them. For more information, see How to Run Test Suites or Cases.

7.4.2 How to Create Test Templates

Test templates enable you to reuse input and output values to repeat tests on those fields and values.

For detailed documentation of fields and other UI controls, click Help, Help for This Page from within SOA Composer.

To create test templates:

	In Rules Designer, click the Tests tab.
	Click Test Model in the navigation tree. In the Test Templates region, click + to create a new test template.
	Enter a Name, Description, and choose a Decision Function.
	Click Save.

To run ad-hoc tests from test templates, see How to Run Ad-hoc Tests from Test Templates.

7.4.3 How to Run Test Suites or Cases

When you run a test, a new tab is opened, and you can see the diagnostic comments, exceptions and test results. Tests can be run either as a suite, multiple test cases or as individual test cases. Tests are executed via RL generation.

For detailed documentation of fields and other UI controls, click Help, Help for This Page from within SOA Composer.

To run test suites or cases:

	Select a Test Suite or Test Template to run, and click Execute.The execute button is enabled only when a test suite or test case (or test template) is selected from the table and as long as there are no validation warnings in the current dictionary.

	A new tab, Results appears. Click it to see the test results. For test suite execution, the tab shows a summary of the test results by default, but you can double-click each test case to see its test results. For test case execution, the tab shows the test results.

If a test fails, the test results will show diagnostic comments and output differences or exceptions depending on the cause of the failure.

Figure 7-10 Diagnostic Comments for a Test Suite
[image: Description of Figure 7-10 follows]

If you select a test suite from the Test Model tree and run it, you can see the Decision Trace tab, as shown in Figure 7-11.

Figure 7-11 Decision Trace UI
[image: Description of Figure 7-11 follows]

7.4.4 How to Run Ad-hoc Tests from Test Templates

The Input and Output trees are loaded with input and output facts from the associated Decision Function, as shown in Figure 7-12. If you modify facts in a Decision Function, those changes are automatically synced to the Input and Output facts.

Figure 7-12 Input and Output Facts
[image: Description of Figure 7-12 follows]

For detailed documentation of fields and other UI controls, click Help, Help for This Page from within SOA Composer.

To run ad-hoc tests from test templates:

	To see the Input and Output facts, click to choose a template from the Test Model tree.This is where you can edit values to compare the input with the expected output. You can add dynamic values here or check Mark as Parameter to be able to enter values when the rule is executed.

For more information about how to use the Expression Builder, see Working with Tree Mode Rules.

	Click the Execute Test Template button to run the template. A dialog box appears.
	Enter values for those variable or parameter fields and click Run from the dialog.
	From the new Results tab, check the test results. Click the Decision Trace tab to see the audit trail.

7.4.5 How to Run Tests for a Specific Decision Function

You can run tests for specific Decision Functions, as shown in Figure 7-13:

Figure 7-13 Decision Functions Tab
[image: Description of Figure 7-13 follows]

For detailed documentation of fields and other UI controls, click Help from within JDeveloper.

To run tests for a specific Decision Function:

	Click the Decision Functions tab and select the appropriate Decision Function from the list.
	In the Tests field, use the dropdown to select the appropriate test.
	The test is opened in the Tests tab. Click the test, and then click Execute to run your test.
	The results tab appears. Click the new tab to view test results.

7.5 Testing Decision Functions Using a Rules Function

You can test rulesets by creating a decision function and calling the decision function from Rules Designer with an Oracle Business Rules function. In the body of the Oracle Business Rules function you create input facts, call a decision function, and validate the facts output from the decision function. For more information, see Introduction to Decision Functions and Introduction to Oracle Business Rules Functions.

To test a decision function using an Oracle Business Rules function:

	Confirm that your dictionary is valid.For more information on dictionary validation, see How to Validate a Dictionary

	In Rules Designer, select the Functions navigation tab.
	In the Functions area click the Create... button.
	Enter the function name in the Name field, or use the default name.
	Select the return type from the Return Type list. For a test function, select boolean.

	In the Arguments table, confirm that there are no arguments. For a test function, you cannot specify any arguments.
	In the Body area, enter the test function body.In the body of the test function you can call a decision function using assign new to call and get the return value of the decision function (in the body of the test function you create input facts, call a decision function, and validate the facts output from the decision function).

A decision function call returns a List. Thus, to test a decision function in a test function you do the following:

	You create the input data as required for the decision function input arguments.

	You call the decision function with the arguments you create in the test function.

	You place results in a List, for example, in the following:

assign new List resultsList = DecisionFunction_1(testScore)

	Select the function and click the Test Function button.The function is executed. The output is shown in a Function Test Result dialog.

	Click OK to dismiss the Function Test Result dialog.

7.5.1 What You Need to Know About Testing Decision Functions

You can use Oracle Business Rules Functions to test decision functions from within Rules Designer. Keep the following points in mind when using a test function:

	The Test Function button is gray if the dictionary associated with the test Oracle Business Rules Function contains any validation warnings. The Test Function button is only shown when the dictionary validates without warnings.

	To enable logging you can call RL.watch.all(). For more information on RL Language functions, see Rules Language Reference for Oracle Business Process Management. In this guide, RL.watch.all() is an alias for the RL Language function watchAll().

	As an alternative to the example above, you can enter the function body that is shown in the example below:

call RL.watch.all()
assign new TestScore testScore = new TestScore()
modify (testScore, name: "Bill Reynolds", testName: "Math Test", testScore: 81)
assign new TestGrade testGrade = (TestGrade)DecisionFunction_1(testScore).get(0)
return testGrade.grade == Grade.B

For the testScore value 81, this function returns "Test Passed." For the testScore value 91, this returns "Test Failed."

This function runs and shows the RL.watch.all() output. The dialog shows "Test Passed" when the grade is in the B range. The dialog shows "Test Failed" when the grade asserted is not in the B range.

7.6 Testing Decision Services in SOA Composites

In a BPM or SOA application that uses Oracle Business Rules with a Decision Service, you can test rules at runtime with Oracle Enterprise Manager Fusion Middleware Control Console Test Web Service page, where you can create an instance of your composite for testing.

For more information about how to create a test instance of your composite after you have finished designing and deploying it, see Initiating a SOA Composite Application Test Instance in Oracle Fusion Middleware Administrating Oracle SOA Suite and Oracle Business Process Management Suite.

You can see the audit trail for the Decision Service execution. For more information, see Monitoring Business Rule Tracing in Oracle Fusion Middleware Administrating Oracle SOA Suite and Oracle Business Process Management Suite.

8 Working with Rules in Standalone (Non SOA/BPM) Scenarios

When using rules in standalone (non SOA or BPM) scenarios, you can create RuleSession rules, or you can use the Decision Point API.

For more information about using a RulesSession object, see Using a RuleSession in Rules Language Reference for Oracle Business Process Management.

For information about using the Decision Point API, see Introduction to the Rules SDK Decision Point API.

This chapter includes the following sections:

	Loading a Dictionary from the Repository

	Executing a Rule Dictionary

	Introduction to the Rules SDK Decision Point API

	Creating a Dictionary for Use with a Decision Point

	Creating a Java Application Using Rules SDK Decision Point

	Running the Car Rental Sample

	What You Need to Know About Using Decision Point in a Production Environment

	What You Need to Know About Decision Point and Decision Tracing

See also Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

8.1 Loading a Dictionary from the Repository

Non-SCA (SOA/BPM) applications typically package the rule dictionaries used by the application such that they are copied to the MDS repository when the application is deployed. In order to use the dictionaries at runtime, they will need to be retrieved from MDS. The basic access method is to use the RuleRepository API to access the dictionaries. A simple usage example is shown below.

RuleRepository rr = RepositoryManager.getMDSRuleRepository(null);
 // pkg and name are the dictionary package and name (Strings).
 // Alternatively you could construct a DictionaryFQN
 RuleDictionary rd = rr.load(pkg, name);
 // if this is an editing session, edit session occurs and
 // then save it when done.
 rr.save(rd);
 // when the RuleRepository will not be used again it must be closed.
 rr.close();

It is typical that an application will want to react when a dictionary has been modified, reload the dictionary and begin using the new rule definitions. Detecting when a dictionary must be reloaded is complicated when linked dictionaries are used since it may not be the root dictionary that was modified.

In this situation, the oracle.rules.sdk2.repository.DictionaryLoader class is the recommended mechanism for loading dictionaries for rule execution. DictionaryLoader tracks the dictionaries that are loaded including linked dictionaries and can determine when a dictionary it has loaded needs to be reloaded. DictionaryLoader uses DictionaryFinder instances to load all dictionaries. DictionaryFinders are added to a DictionaryLoader instance with the addFinder method in the order in which they will be invoked to find a dictionary. That is, the first finder added will be the first one to attempt to load a dictionary. When all the desired DictionaryFinders have been added to the DictionaryLoader, the loadDictionary() method is used to load a dictionary. The reloadNeeded method can be invoked to determine if a dictionary needs to be reloaded.

 //
 // A RuleRepository instance is needed for its built-in DictionaryFinder
 //
 RuleRepository rr = RepositoryManager.getMDSRuleRepository(null);
 DictionaryFinder rrf = rr.getDictionaryFinder();

 //
 // Create the dictionary loader
 //
 DictionaryLoader dloader = new DictionaryLoader();
 dloader.addFinder(rrf);
 //
 // If the DecisionPointDictionaryFinder is required, add it
 //
 dloader.addFinder(new DecisionPointDictionaryFinder());

 //
 // Load the dictionary
 //
 DictionaryFQN fqn = new DictionaryFQN("somepackage", "myDictionary");
 RuleDictionary rd = dloader.loadDictionary(fqn);

 //
 // Check if the dictionary needs to be reloaded
 //
 if (dloader.reloadNeeded(fqn))
 rd = dloader.loadDictionary(fqn);

 //
 // When usage is complete, the RuleRepository must be closed.
 //
 rr.close();

8.2 Executing a Rule Dictionary

There are two approaches to initializing the RuleSessionPool from the RuleDictionary: initiallizing the RuleSessioPool, and using the Decision Point API.

For information, see Introduction to the Rules SDK Decision Point API

When initializing for rule execution, once a RuleDictionary has been loaded a RuleSessionPool should be initialized with RL generated from the dictionary.

For more information, see How to Use a RuleSession Pool in the Rules Language Reference for Oracle Business Process Management.

If a single decision function will be invoked, then it is most efficient to load only the rule sets that are referenced by that decision function. Sample code to build the list of RL text which is passed to the RuleSessionPool constructor is shown below.

Note that error checking and exception handling not shown for brevity.

RuleDictionary rd; // previously loaded dictionary
 String dfAlias = "Alias for my Decision Function";
 DecisionFunction df =
 rd.getCombinedDataModel().getDecisionFunctionByAlias(dfAlias);
 List<String> rlList = new ArrayList<String>();
 //
 // Add the RL for the data model
 //
 rlList.add(rd.dataModelRL());
 //
 // Add the RL for each rule set referenced by the decision function
 //
 Collection<String> rsal = df.getRuleSets();
 for (String alias : rsal)
 {
 rlList.add(rd.ruleSetRL(alias));
 }

If multiple decision functions will be invoked from the same RuleSessionPool, then adding the RL for the rulesets referenced by each decision function will enable this. Care must be taken to avoid adding the same ruleset twice.

In other scenarios such as using rules to dynamically selecting other rule sets to execute at run time, it will be necessary to load all of the rule sets in the dictionary. Sample code to do this is shown below.

RuleDictionary rd; // previously loaded dictionary
 List<String> rlList = new ArrayList<String>();
 //
 // Add the RL for the data model
 //
 rlList.add(rd.dataModelRL());
 //
 // Add the RL for each rule set referenced by the decision function
 //
 Collection<String> rsal = rd.getRuleSetAliases(true);
 for (String alias : rsal)
 {
 rlList.add(rd.ruleSetRL(alias));
 }

8.3 Introduction to the Rules SDK Decision Point API

This section describes how to use Oracle Business Rules SDK (Rules SDK) to write applications that access, create, modify, and execute rules in Oracle Business Rules dictionaries (and work with the contents of a dictionary). It also provides a brief description of Rules SDK and shows how to work with the Rules SDK Decision Point API. The Rules SDK consists of four areas:

	Engine: provides for rules execution

	Storage: provides access to rule dictionaries and repositories

	Editing: provides a programatic way to create and modify dictionary components

	Decision Point: provides an interface to access a dictionary and execute a decision function

Other than for explanation purposes, there is not an explicit distinction between these areas in Rules SDK. For example, to edit rules you also need to use the storage area of Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help describe the different modes of usage, rather than to describe distinct Rules SDK APIs.

8.3.1 Working with Decision Point API

The Decision Point API provides a concise way to execute rules. Most users create Oracle Business Rules artifacts, including data model elements, rules, Decision Tables, and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus, most users do not need to work directly with the engine, storage, or editing parts of Rules SDK.

To work with the Rules SDK Decision Point package you need to understand three important classes:

	DecisionPoint: is a helper class that follows the factory design pattern to create instances of DecisionPointInstance. In most applications there should be one DecisionPoint object that is shared by all application threads. A caller uses the getInstance() method of DecisionPoint to get an instance of DecisionPointInstance which can be used to call the defined Decision Point.

	DecisionPointBuilder: follows the Builder design pattern to construct a Decision Point.

	DecisionPointInstance: users call invoke() in this class to assert facts and execute a decision function.

The DecisionPoint classes support a fluent interface model so that methods can be chained together. For more information, see

http://www.martinfowler.com/bliki/FluentInterface.html

A Decision Point manages several aspects of rule execution, including:

	Use of oracle.rules.rl.RuleSession objects

	Reloading of a dictionary when the dictionary is updated

To create a Decision Point in a Java application you need the following:

	Either the name of a dictionary to be loaded from an MDS repository or a pre-loaded oracle.rules.sdk2.dictionary.RuleDictionary instance.

	The name of a decision function stored in the specified dictionary.

8.3.2 How to Obtain the Car Rental Sample Application

This chapter shows a car rental application that demonstrates the use of Rules SDK and the Decision Point API. You can obtain the sample application in a ZIP file, CarRentalApplication.zip. This ZIP contains a complete JDeveloper application and project.

The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.

To work with the sample unzip CarRentalApplication.zip into an appropriate directory. The car rental application project contains a rules dictionary and several Java examples using Rules SDK.

For more examples, see Introduction to the Grades Sample Application

8.3.3 How to Open the Car Rental Sample Application and Project

The Car Rental sample application shows you how to work with the Rules SDK Decision Point API.

To open the car rental sample application:

	Start Oracle JDeveloper.
	Open the car rental application in the directory where you unzipped the sample. For example, from the File menu select Open... and in the Open dialog navigate to the CarRentalApplication folder.
	In the Open dialog select CarRentalApplication.jws and click Open.
	In the Application Navigator, expand the CarRentalApplication, expand Application Sources and Resources. This displays the Oracle Business Rules dictionary named CarRental.rules and several Java source files.

8.4 Creating a Dictionary for Use with a Decision Point

The car rental sample uses the Rules SDK Decision Point API with either a pre-loaded Oracle Business Rules dictionary or a repository stored in MDS. When you are working in a development environment you can use the Decision Point API with the pre-loaded dictionary signature. In a production environment you would typically use a Decision Point with the MDS repository signature.

The CarRental dictionary is pre-defined and is available in the car rental sample application.

To work with the Decision Point API you need to create a dictionary that contains a decision function (the car rental sample application comes with a predefined dictionary and decision function).

You perform the following steps to create a dictionary and a decision function:

	How to Create Data Model Elements for Use with a Decision Point

	How to View a Decision Function to Call from the Decision Point

	How to Create Rules or Decision Tables for the Decision Function

8.4.1 How to Create Data Model Elements for Use with a Decision Point

Note:
Note that the screen shots reflect a previous version, however, the content is applicable to the current release.

You need the following to add to a decision function when you create an application with a Decision Point.

	A dictionary containing data model elements that you use to create rules or Decision Tables and when working with ADF Business Components fact types, you need to add links for the Decision Point support dictionary. For more information, see Working with Data Model Elements . For more information, see Working with Oracle Business Rules and ADF Business Components .

	A dictionary containing fact definitions. For more information, see Working with Facts and Value Sets.

To view the data model in the sample application:

	In Rules Designer, click the Facts navigation tab.
	Select the Java Facts tab, as shown in Figure 8-1.The Java Facts tab shows four fact types imported, in addition to the fact types provided as built-in to the dictionary.

The Driver Java Fact is imported from the Driver Java class in the project.

The Denial Java Fact is imported from Denial Java class in the project.

The LicenseType and VehicleType facts are imported from the nested enum classes defined in the Driver class.

Figure 8-1 Defined Java Facts for the Car Rental Sample Application
[image: Description of Figure 8-1 follows]

When you use a Decision Point with Rules SDK, you call a decision function in a specified dictionary. The decision function that you call can contain one or more rulesets that are executed as part of the Decision Point.

Similarly, to view the ruleset in the supplied car rental sample application, expand the CarRentalApplication in Rules Designer. In the CarRentalApplication, expand Resources and double-click the CarRental.rules

8.4.2 How to View a Decision Function to Call from the Decision Point

When you work with the Decision Point API you use decision functions to expose an Oracle Business Rules dictionary. For more information on decision functions, see Working with Decision Functions .

To view the decision function in the car rental sample application:

	In Rules Designer, click the Decision Functions navigation tab. This displays the available decision functions in the CarRental dictionary, as shown in Figure 8-2.Figure 8-2 Car Rental Sample Decision Function
[image: Description of Figure 8-2 follows]

	Select the row with CarRentalDecisionFunction and double-click the decision function icon. This opens the Edit Decision Function dialog as shown in Figure 8-3.The decision function Inputs table includes a single argument for a Driver fact type.

The decision function Outputs table includes a single argument for a Denial fact type.

The decision function Rulesets and Decision Functions area shows Denial Rules:if-then in the Selected box.

Figure 8-3 Car Rental Decision Function for the Car Rental Sample Application
[image: Description of Figure 8-3 follows]

8.4.3 How to Create Rules or Decision Tables for the Decision Function

The car rental sample includes two rulesets, one with IF/THEN rules and another containing a Decision Table. You can use either IF/THEN rules or Decision Tables or both in your application if you are using a Decision Point.

To view the rules in the car rental sample application:

	In Rules Designer click the Denial Rules:if-then ruleset, as shown in Figure 8-4.Figure 8-4 Ruleset with IF/THEN Rules for the Car Rental Sample Application
[image: Description of Figure 8-4 follows]

The Denial Rules:if-then ruleset includes two rules:

	under age: this rule defines the minimum age of the driver. The rule compares the Driver instance age property to the global Minimum driver age. If the driver is under this age, then a new Denial fact is asserted. A call to the decision function collects this Denial fact, as defined in its output.

	too many accidents: this rule defines an upper threshold for the number of accidents a driver can have before a rental for the driver is denied. The rule also calls a user-defined function, audit, to provide some auditing output about why the Denial is created.

	To view the Decision Table in the car rental application, click the Denial Rules:decision table ruleset in the Rules Designer, as shown in Figure 8-5.Figure 8-5 Ruleset with Decision Table for the Car Rental Sample Application
[image: Description of Figure 8-5 follows]

8.4.4 What You Need to Know About Using Car Rental Sample with a Decision Table

The car rental sample application includes the Denial Rules: decision table ruleset. To switch to use a Decision Table in the supplied decision function sample, move the Denial Rules:if-then from the Selected area in the decision function and add the Denial Rules: decision table ruleset, which uses a Decision Table to define similar rules, as shown in Figure 8-6.

Figure 8-6 Decision Function for Car Rental Sample with Decision Table Ruleset
[image: Description of Figure 8-6 follows]

8.5 Creating a Java Application Using Rules SDK Decision Point

When you use Rules SDK in a development environment, you have the option of using Decision Point API with a pre-loaded dictionary. In a production environment you typically use the Decision Point API with the MDS repository signature and the dictionary is stored in MDS. For more information on using a Decision Point with, see What You Need to Know About Using Decision Point in a Production Environment.

The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.

The CarRentalProject project includes the com.example.rules.demo package that includes the car rental sample file, CarRentalWithDecisionPointUsingPreloadedDictionary.java. The project also includes several .java source files that support different variations for using Decision Point. Table 8-1 provides a summary of the different versions of the car rental sample.

For more information on working with the Rules SDK Decision Point API, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

Table 8-1 Java Files in the Decision Point Sample CarRentalProject

	Base Java Filename	Description
	CarRental

	This is the base class for all of the examples. It contains constant values for using the CarRental dictionary and a method createDrivers which creates instances of the Driver class.

	CarRentalWithDecisionPoint

	Contains a static attribute of type DecisionPoint and a method checkDriver() that invokes a Decision Point with a specified instance of the Driver class. This class includes these methods for the sample application so that both the MDS repository and pre-loaded dictionary examples can share the same checkDriver() implementation.

	CarRentalWithDecisionPointUsingMdsRepository

	Contains an example of creating a Decision Point that uses MDS to access and load the rule dictionary. In a production environment, most applications use the Decision Point API with MDS.

	CarRentalWithDecisionPointUsingPreloadedDictionary

	Contains an example of creating a Decision Point from an instance of the RuleDictionary class. This example also contains code for manually loading the dictionary to create a RuleDictionary instance.

	CarRentalWithRuleSession

	Contains an advanced usage of the Engine API that is documented further in the comments.

	CarRentalWithRuleSessionPool

	Contains an advanced usage of the Engine API that is documented further in the comments.

	Denial

	Contains the class that defines the Denial fact type used to create the rules and Decision Table.

	Driver

	Contains the class that defines the Driver fact type used to create the rules and Decision Table.

	DriverCheckerRunnable

	Contains the class which can be used as a thread for simulating concurrent users invoking the Decision Point.

8.5.1 How to Add a Decision Point Using Decision Point Builder

To use a Decision Point you create a DecisionPoint instance using DecisionPointBuilder, as shown in example below:

 static {
 try {
 // specifying the Decision Function and a pre-loaded
 // RuleDictionary instance
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(loadRuleDictionary())
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " + e.getMessage());
 e.printStackTrace();
 }
 }

The above example shows the DecisionPointBuilder supports a fluent interface pattern, so all methods can easily be chained together when you create a Decision Point. The three most common methods for configuring the Decision Point with DecisionPointBuilder are overloaded to have the name with(). Each with() method takes a single argument of type RuleDictionary, DictionaryFQN, or String. The DecisionPointBuilder also supports similar set and get methods: getDecisionFunction(), setDecisionFunction(), getDictionary(), setDictionary(), getDictionaryFQN(), setDictionaryFQN().

This chain shown in example above includes the following steps:

	The first step is to create a DecisionPointBuilder instance with code such as the following:new DecisionPointBuilder()

	The with() method using a String argument defines the name of the decision function that the Decision Point executes. Calling this method is mandatory..with(DF_NAME)

The DF_NAME specifies the name of the decision function you define for your application. For example for the sample car rental application DF_NAME is defined in CarRental.java as CarRentalDecisionFunction.

	Call only one of the other two with() methods. In this case the sample code uses a pre-loaded Rule Dictionary instance, containing the specified decision function. The loadDictionary() method loads an instance of RuleDictionary from a file. Example 8-1 shows the loadDictionary() method. For more information, see How to Use a Decision Point with a Pre-loaded Dictionary..with(loadRuleDictionary())

	Call the build() method to construct and return a DecisionPoint instance.

The DecisionPoint instance is shared among all instances of the application, which is why it is a static attribute and created in a static block. Another way of initializing the DecisionPoint would be to initialize the m_decisionPoint attribute with a static method that created and returned a DecisionPoint instance.

8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary

Example 8-1 shows the loadRuleDictionary() method that loads an instance of RuleDictionary from a file.

When reading or writing a dictionary directly from a file as shown in Example 8-1, ensure to set the encoding to UTF-8. If this is not done, Unicode characters used in the dictionary are corrupted. The UTF-8 option must be set explicitly in the FileInputStream or OutputStreamWriter constructor. Do not use Java classes such as FileReader and FileWriter, as these classes always use the platform default encoding which is usually an ASCII variant rather than a Unicode variant.

Example 8-1 Load Rule Dictionary Method
private static RuleDictionary loadRuleDictionary(){
 RuleDictionary dict = null;
 BufferedReader reader = null;
 try {
 reader = new BufferedReader(
 new InputStreamReader(
 new FileInputStream(
 new File(DICT_LOCATION)), "UTF-8"));
 dict = RuleDictionary.readDictionary(reader,
 new
DecisionPointDictionaryFinder(null));

 List<SDKWarning> warnings = new ArrayList<SDKWarning>();

 dict.update(warnings);
 if (warnings.size() > 0) {
 System.err.println("Validation warnings: " + warnings);
 }
 } catch (SDKException e){
 System.err.println(e);
 } catch (FileNotFoundException e){
 System.err.println(e);
 } catch (IOException e){
 System.err.println(e);
 } finally {
 if (reader != null) { try { reader.close(); } catch (IOException
ioe) {ioe.printStackTrace();}}
 }
 return dict;
 }

8.5.3 How to Use Executor Service to Run Threads with Decision Point

The car rental sample allows you to use Oracle Business Rules and simulate multiple concurrent users. The following code example shows use of the Java ExecutorService interface to execute multiple threads that invoke the Decision Point. The ExecutorService is not part of the Rules SDK Decision Point API.

 ExecutorService exec = Executors.newCachedThreadPool();
 List<Driver> drivers = createDrivers();

 for (int i = 0; i < NUM_CONCURRENT; i++) {
 Driver driver = drivers.get(i % drivers.size());
 exec.execute(new DriverCheckerRunnable(driver));
 }

The above example includes the following code for the sample application:

	Create the Executor Service:

ExecutorService exec = Executors.newCachedThreadPool();

	Call method createDrivers(), defined in CarRental.java, to create a list of Driver instances.

List<Driver> drivers = createDrivers();

	A loop through a list of Driver instances to fill the driver list with drivers.

	A loop to start multiple threads from DriverCheckerRunnable instances. These instances open a Decision Point and run the rules on each driver. For information on this code, see How to Create and Use Decision Point Instances.

The following code example shows the code that waits for the threads to complete.

 try {
 exec.awaitTermination(5, TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 exec.shutdown();
 }

8.5.4 How to Create and Use Decision Point Instances

The DriverCheckerRunnable instances call the checkDriver() method. Example 8-2 shows the checkDriver() method that is defined in CarRentalWithDecisionPoint. The checkDriver() method handles invoking Decision Point with a Driver instance.

Example 8-2 shows the following:

	Getting a DecisionPointInstance from the static DecisionPoint defined with the DecisionPointBuilder, with the following code.

 DecisionPointInstance instance = m_decisionPoint.getInstance();

	Add inputs according to the signature of the decision function associated with the Decision Point. This defines one argument of type List as the input. This List contains the Driver instances:

 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });

	Invoke the Decision Point and store the return value. The return type follows the same pattern as the decision function which is being called in the Decision Point.

 List<Object> outputs = instance.invoke();

In this case the invoke() returns a List of length one, containing a List of Denial instances.

	If the return is a List of any other size than one, then this is an error:

if (outputs.isEmpty())
 System.err.println("Oops, no results");

	The first entry that is returned from the Decision Point is cast to a List of type List<Denial>:

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);

	If the denials list is empty, then no Denial instances were asserted by the rules. This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons why the driver rental was rejected:

 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }

8.5.4.1 Sample Code to Create a Decision Point Instance with getInstance()

The DriverCheckerRunnable instances call the checkDriver() method. Example 8-2 shows the checkDriver() method that is defined in CarRentalWithDecisionPoint. The checkDriver() method handles invoking Decision Point with a Driver instance.

Example 8-2 Code to Create a Decision Point Instance with getInstance()
public class CarRentalWithDecisionPoint extends CarRental {

 protected static DecisionPoint m_decisionPoint;

 public static void checkDriver(final Driver driver) {
 try {
 DecisionPointInstance instance = m_decisionPoint.getInstance();
 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });
 List<Object> outputs = instance.invoke();

 if (outputs.isEmpty())
 System.err.println("Oops, no results");

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);
 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }
 } catch (RLException e) {
 e.printStackTrace();
 } catch (SDKException e) {
 e.printStackTrace();
 }
 }

}

8.6 Running the Car Rental Sample

In the car rental sample installed on your system, for the code shown in Example 8-1, modify the value of DICT_LOCATION to match the location of the dictionary on your system.

To run the car rental sample on your system:

	In the Application Navigator, select the dictionary and from the Edit menu select Copy Path.
	In the CarRental.java file, paste the path value into the DICT_LOCATION value.
	In the CarRentalProject select the CarRentalWithDecisionPointUsingPreloadedDictionary.java file.
	Right-click and in the list select Run.

8.6.1 Sample Output from Car Rental

Example 8-3 shows sample output from car rental application.

Example 8-3 Output from Car Rental Sample
Rental is allowed for Carol
Rental is allowed for Alice
Rental is allowed for Alice
Rental is allowed for Carol
Rental is denied for Bob because under age, age was 15, minimum age is 21
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license number d222
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license number d222
Rental is denied for Bob because under age, age was 15, minimum age is 21
Rental is allowed for Alice
Rental is allowed for Eve

8.7 What You Need to Know About Using Decision Point in a Production Environment

In a production environment you can use an MDS repository to store Oracle Business Rules dictionaries. When you use an MDS repository to store the dictionary, the steps shown in How to Add a Decision Point Using Decision Point Builder and How to Use a Decision Point with a Pre-loaded Dictionary change to access the dictionary. The CarRentalWithDecisionPointUsingMdsRepository shows sample code for using Decision Point with MDS.

To see a complete example with deployment steps showing the use of a Decision Point to access a dictionary in MDS, see Adding a Servlet with Rules SDK Calls for Grades Sample Application.

The following code example shows the use of DictionaryFQN with DecisionPointBuilder to access a dictionary in an MDS repository. The complete example is shown in the sample code in CarRentalWithDecisionPointUsingMdsRepository.

 static {
 try {
 // specifying the Decision Function and Dictionary FQN
 // loads the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());

Similar to the steps in section How to Add a Decision Point Using Decision Point Builder, the above example shows the following:

	The first step is to create a DecisionPointBuilder instance with.

new DecisionPointBuilder()

	The with() method using a String argument defines the name of the decision function that the Decision Point executes. Calling this method is mandatory.

.with(DF_NAME)

The DF_NAME specifies the name of the decision function you define for your application. For example for the car rental application this is defined in CarRental.java a CarRentalDecisionFunction.

	Call only one of the other two with() methods. In this case the sample code calls a DictionaryFQN to access an MDS repository. The code example in step 4 shows the routing that uses the dictionary package and the dictionary name to create the DictionaryFQN.

.with(DICT_FQN)

	Call the build() method to construct and return a DecisionPoint instance.

 protected static final String DICT_PKG = "com.example.rules.demo";
 protected static final String DICT_NAME = "CarRental";

 protected static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 protected static final String DF_NAME = "CarRentalDecisionFunction";

8.8 What You Need to Know About Decision Point and Decision Tracing

The Rules SDK API contains methods to assist with processing a decision trace. These methods process a decision trace to replace the RL names used in the trace with the aliases used in the associated dictionary. This makes the decision trace naming consistent with the naming used in the Oracle Business Rules dictionary.

The basic API for processing a decision trace requires a RuleDictionary object and a DecisionTrace object:

RuleDictionary dict = ...;
DecisionTrace trace = ...;
dict.processDecisionTrace(trace);

This code shows the processing call that converts the naming in the decision trace to use the same names, with aliases, as in the dictionary.

The Rules SDK Decision Point API contains methods that allow you configure decision tracing and retrieve the resulting trace when you invoke a decision point.

Table 8-2 shows the Decision Point API methods for setting decision trace options. For more information on these methods, see Rules Language Reference for Oracle Business Process Management.

Table 8-2 Decision Point Decision Tracing Methods

	Method	Description
	decisionTrace

	Get the decision trace produced from the call to invoke.

Returns DecisionTrace

	getDecisionTraceLevel

	Get the decision trace level to be used by the RuleSession. This value defaults to DECISION_TRACE_OFF, which means no trace information is gathered. Possible values are: DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT

DECISION_TRACE_PRODUCTION

Return Type: String

	getDecisionTraceLimit

	Get the decision trace limit, or maximum number of trace elements which are retrieved for the trace.

Return Type: int

	setDecisionTraceLevel

	Set the decision trace level to be used by the RuleSession. This parameter value is a String. Possible values are: DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT

DECISION_TRACE_PRODUCTION

	setDecisionTraceLimit

	Set the decision trace limit, or maximum number of trace elements which are retrieved for the trace.

8.8.1 Sample Usage of Decision Tracing

Example 8-4 shows sample usage of decision tracing with DecisionPoint API.

For more information on decision tracing, see Tracing Rule Execution in Fusion Middleware Control Console in Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Example 8-4 Using Decision Trace from Decision Point API
DecisionPoint dp = new DecisionPointBuilder()
 .with(new DictionaryFQN("com.foo", "Bar"))
 .with("MyDecisionFunction")
 .setDecisionTraceLevel(DecisionPointBuilder.DECISION_TRACE_DEVELOPMENT)
 .setDecisionTraceLimit(24000)
 .build();

...

DecisionPointInstance dpi = dp.getInstance();

dpi.invoke();

DecisionTrace trace = dpi.decisionTrace();

9 Creating a Rule-enabled Non-SOA Java EE Application

This chapter describes how to use Oracle JDeveloper to create a rule-enabled non-SOA Java Enterprise Edition (EE) application. It also shows a sample application, a Java Servlet, which runs as a Java EE application using Oracle Business Rules (this describes using Oracle Business Rules without a SOA composite).

The chapter includes the following sections:

	Introduction to the Grades Sample Application

	Creating an Application and a Project for Grades Sample Application

	Creating Data Model Elements and Rules for the Grades Sample Application

	Adding a Servlet with Rules SDK Calls for Grades Sample Application

	Adding an HTML Test Page for Grades Sample Application

	Preparing the Grades Sample Application for Deployment

	Deploying and Running the Grades Sample Application

The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.

9.1 Introduction to the Grades Sample Application

The Grades application provides a sample use of Oracle Business Rules in a Java Servlet. The servlet uses Rules SDK Decision Point API.

This sample demonstrates the following:

	Creating rules in an Oracle Business Rules dictionary using an XSD schema that defines the input and the output data, and the facts for the data model. In this case you provide the XSD schema in the file grades.xsd.

	Creating a servlet that uses Oracle Business Rules to determine a grade for each test score that is input.

	Creating a test page to supply input test scores and to submit the data to the grades servlet.

	Deploying the application, running it, submitting test values, and seeing the output.

There is another example--for more information, see How to Open the Car Rental Sample Application and Project.

9.2 Creating an Application and a Project for Grades Sample Application

You can create Grades sample application by following the steps below.

Note:
The screen shots reflect a previous version, however, the content is applicable to the current release.

To create the application and the project for the grades sample application, do the following:

	Create a Fusion Web Application (ADF)

	Create a project in the application

	Add the schema to define the inputs, outputs, and the objects for the data model

	Create an Oracle Business Rules dictionary in the project

9.2.1 How to Create a Fusion Web Application for the Grades Sample Application

To work with Oracle Business Rules and create a Java EE application, you first need to create the application in Oracle JDeveloper.

To create a fusion web application (ADF) for grades:

	Create an application. You can do this in the Application Navigator by selecting New Application..., or from the Application menu list by selecting New Application....

	In the Name your application dialog enter the application options, as shown in Figure 9-1:

	In the Application Template area, select Fusion Web Application.

	In the Application Name field, enter an application name. For example, enter GradeApp.

	In the Directory field, specify a directory name or accept the default.

	In the Application Package Prefix field, enter an application package prefix. For example, com.example.grades.

The prefix, followed by a period applies to objects created in the initial project of an application.

Figure 9-1 Adding GradeApp Application
[image: Description of Figure 9-1 follows]

	Click Finish. After creating the application Oracle JDeveloper displays the file summary, as shown in Figure 9-2.

Figure 9-2 New Grades Application Named GradeApp
[image: Description of Figure 9-2 follows]

9.2.2 How to Develop Accessible ADF Faces Pages

Oracle software implements the standards of the Web Content Accessibility Guidelines (WCAG) 1.0 Level AA using an interpretation of the standards at http://www.oracle.com/accessibility/standards.html

ADF Faces user interface components have built-in accessibility support for visually and physically impaired users. User agents such as a web browser rendering to nonvisual media such as a screen reader can read component text descriptions to provide useful information to impaired users. Access key support provides an alternative method to access components and links using only the keyboard. ADF Faces accessibility audit rules provide direction to create accessible images, tables, frames, forms, error messages and popup windows using accessible HTML markup.

For information on how to develop accessible ADF Faces pages, see Developing Accessible ADF Faces Pages in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

9.2.3 How to Create the Grades Project

In the Grades sample application you do not use the Model or ViewController projects. You create a project in the application for the grades sample project.

To create a grades project:

	In the GradeApp application, in the Application Navigator, from the Application Menu select New Project....

	In the New Gallery, in the Items area select Generic Project.

	Click OK.

	In the Name your project page enter the values as shown in Figure 9-3:

	In the Project Name field, enter a name. For example, enter Grades.

	Enter or browse for a directory name, or accept the default.

	Select the Project Technologies tab.

	In the Available area double-click ADF Business Components to move this item to the Selected area. This also adds Java to the Selected area as shown in Figure 9-3.

Figure 9-3 Adding Generic Project to the Grades Application
[image: Description of Figure 9-3 follows]

	Click Finish. This adds the Grades project.

9.2.4 How to Add the XML Schema and Generate JAXB Classes in the Grades Project

To create the Grades sample application you need to use the grades.xsd file, as shown in example grades.xsd schema below. You can create and store the schema file locally and then use Oracle JDeveloper to copy the file to your project.

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xs:schema targetNamespace="http://example.com/grades"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.com/grades"
 attributeFormDefault="qualified" elementFormDefault="qualified"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xs:element name="TestScore">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="testName" type="xs:string"/>
 <xs:element name="testScore" type="xs:double"/>
 <xs:element name="testCurve" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TestGrade">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="grade" type="tns:Grade"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="Grade">
 <xs:restriction base="xs:string">
 <xs:enumeration value="A"/>
 <xs:enumeration value="B"/>
 <xs:enumeration value="C"/>
 <xs:enumeration value="D"/>
 <xs:enumeration value="F"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

To add the XML schema to the grades project:

	Save the schema file as shown in example grades.xsd schema to a local file named grades.xsd.
	In the Application Navigator select the Grades project.
	Right-click and in the context menu select New....
	In the New Gallery select the All Technologies tab.
	In the Categories area, expand General and select XML.
	In the Items area, select XML Schema. Click OK.
	In the Create XML Schema dialog, in the File Name field enter grades.xsd.
	In the Create XML Schema dialog, in the Directory field add the xsd directory to the Grades project path name, as shown in Figure 9-4.Figure 9-4 Adding Schema to Grades Project in xsd Directory
[image: Description of Figure 9-4 follows]

Click OK.

	In the grades.xsd file, select the Source tab.
	Copy the schema shown in example above to the grades.xsd in the Grades project, as shown in Figure 9-5.Figure 9-5 Shows the Grades.xsd Schema File in the Grades Project
[image: Description of Figure 9-5 follows]

9.2.4.1 How to generate JAXB 2.0 content model from grades schema

To generate JAXB 2.0 content model from grades schema:

	In the Application Navigator, in the Grades project expand Resources and select grades.xsd.
	Right-click and in the context menu select Generate JAXB 2.0 Content Model.
	In the JAXB 2.0 Content Model from XML Schema dialog, click OK.

9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project

After creating a project in Oracle JDeveloper create business rules within the Grades project.

To use business rules with Oracle JDeveloper, you do the following:

	Add a business rule to the project and import grades.xsd schema

	Create input and output variables

	Create an Oracle Business Rules dictionary in the project

To create a business rules dictionary in the business tier:

	In the Application Navigator, select the Grades project.
	Right-click and in the context menu select New.... and select the All Technologies tab.
	In the New Gallery, in the Categories area, expand Business Tier and select Business Rules.
	In the New Gallery, in the Items area, select Business Rules. Click OK.Oracle JDeveloper displays the Create Business Rules dialog, as shown in Figure 9-6.

Figure 9-6 Adding a Business Rule to Grades with the Create Business Rules Dialog
[image: Description of Figure 9-6 follows]

	In the Name field, enter a name to name the dictionary. For example, enter GradingRules.
	To add an input, from the list next to the Add button select Input....
	In the Type Chooser, expand the Project Schemas Files folder and expand grades.xsd. Select the input TestScore, as shown in Figure 9-7.Figure 9-7 Shows the Type Chooser Dialog with TestScore Element
[image: Description of Figure 9-7 follows]

	On the Type Chooser window, click OK. This displays the Create Business Rules dialog.
	In the Create Business Rules dialog, in a similar manner to the input add the output by selecting Output... to add the output element TestGrade from the grades.xsd schema.The resulting Create Business Rules dialog is shown in Figure 9-8.

Figure 9-8 Create Business Rules Dialog with Grades Input and Output
[image: Description of Figure 9-8 follows]

Click OK. Oracle JDeveloper creates the GradingRules dictionary as shown in Figure 9-9.

	In the File menu, select Save All to save your work.

Figure 9-9 Shows the New Grading Rules Dictionary
[image: Description of Figure 9-9 follows]

Note that the business rule validation log area for the new dictionary shows several validation warnings. These validation warning messages are cleared as you modify the dictionary in later steps.

9.3 Creating Data Model Elements and Rules for the Grades Sample Application

Create data model elements and rules for the grades sample application by following the steps below.

To create the data model and the business rules for the Grades sample application, do the following:

	Create value sets for grades

	Create rules by adding a Decision Table for grades

	Split the Decision Table and add actions for rules

	Rename the default decision function

9.3.1 How to Create Value Sets for Grades Sample Application

In this example you associate a value set with a fact type. This supports using a Decision Table where you need value sets that specify how to draw values for each cell in the Decision Table (for the conditions in the Decision Table).

To create the value set for the grades sample application:

	In Rules Designer, select the Value Sets navigation tab.
	From the list next to the Create Value Set... button, select List of Ranges.
	For the value set, double-click in the Name field to select the default name.
	Enter Grade Scale, and press Enter to accept the value set name.
	In the Value Set table, double-click the icon for the Grade Scale value set to display the Edit Value Set dialog.
	In the Edit Value Set dialog, click Add to add a value and click Add three times to add three more values.
	In the Endpoint field, enter 90 for the top endpoint and press Enter to accept the new value.
	For the next value, in the Endpoint field enter 80 and press Enter to accept the new value. Similarly, for the next two values enter values in the Endpoint field, values 70 and 60.
	In the Included Endpoint field for each value select each check box.
	Modify the Alias field for each value to enter the values A, B, C, D, and F, for each corresponding range, (press Enter after you add each alias).

9.3.2 How to Associate a Value Set with a Fact Property

To prepare for creating Decision Tables you can associate a global value set with fact properties in the data model. In this way condition cells in a Decision Table Conditions area can use the value set when you create a Decision Table.

To associate a value set with a fact property:

	In Rules Designer, select the Facts navigation tab.
	In the Facts navigation tab select the XML Facts tab.
	Double-click the XML fact icon for the TestScore fact. This displays the Edit XML Fact dialog.
	In the Edit XML Fact dialog select the testScore property.
	In the Value Set field, from the list select Grade Scale.
	Click OK.

9.3.3 How to Add a Decision Table for Grades Sample Application

You create rules in a Decision Table to process input facts and to produce output facts, or to produce intermediate conclusions that Oracle Business Rules can further process using additional rules or in another Decision Table.

To use a Decision Table for rules in this application you work with facts representing a test score. Then, you use a Decision Table to create rules based on the test score to produce a grade.

To add a decision table for Grades application:

	In Rules Designer, select Ruleset_1 under the Rulesets list.
	In Ruleset_1, click Create from the Decision Table area on the Overview tab. This creates DecisionTable_1. You can ignore the warning messages shown in the Business Rule Validation log area. You remove these warning messages in later steps.
	In the Decision Table, DecisionTable_1, click the Add button and from the list select Condition.
	In the Decision Table, double-click <edit condition>. Then, in the variables navigator expand TestScore and select testScore. This enters the expression TestScore.testScore for condition C1.

If you view the rules validation log, you should see warning messages. You remove these warning messages as you modify the Decision Table in later steps.

9.3.4 How to Add an Action to a Decision Table

To add an action to a decision table:

You add an action to the Decision Table to assert a new Grade fact.

	In the Decision Table, click the Add button and from the list select Action and select Assert New.
	In the Actions area, double-click Assert New. This displays the Action Editor dialog.

	In the Action Editor dialog, in the Facts area select TestGrade.
	In the Action Editor dialog, in the Properties table for the property grade, select the Parameterized check box and the Constant check box. This specifies that each rule independently sets the grade.

	In the Action Editor dialog select the Always Selected check box.
	In the Action Editor dialog click OK.
	Select Save All from the File main menu to save your work.

Next you add rules to the Decision Table and specify an action for each rule.

9.3.5 How to Add Rules in the Decision Table for Grades Sample Application

You can use the Decision Table split operation to create rules for the value set associated with the conditions row in the Decision Table. This creates one rule for every value.

To split the decision table, from the Decision Table, click the Split Table button from the list select Split Table. The split operation eliminates the "do not care" cells from the table. The table now shows five rules that cover all ranges, as shown in Figure 9-10.

These steps produce validation warnings for action cells with missing expressions. You fix these problems in later steps when you define actions for each rule.

Figure 9-10 Splitting a Decision Table Using Split Table Operation for Grades
[image: Description of Figure 9-10 follows]

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the result, a grade property, associated with TestGrade for each action cell in the Actions area. The possible choices for each grade property are the valid grades. In this step you fill in a value for each of the rules. The values you enter correspond to the conditions that form each rule in the Decision Table.

	In the Actions area, double-click the action cell for rule R1 as shown in Figure 9-11.Figure 9-11 Adding Action Cell Values to Grades Decision Table
[image: Description of Figure 9-11 follows]

	In the list select the corresponding value for the action cell. For example, select Grade.F.
	For each of the remaining action cells select the appropriate value for TestScore: D, C, B, and A.

9.3.6 How to Rename the Decision Function for Grades Sample Application

The name you specify when you use a decision function with a Rules SDK Decision Point must match the name of a decision function in the dictionary. To make the name match, you can rename the decision function to any name you like. Thus, for this example you rename the default decision function to use the name GradesDecisionFunction.

To rename the decision function:

	In the Application Navigator, in the Grades project, expand the Resources folder and double-click the dictionary GradingRules.rules.
	Select the Decision Functions navigation tab.
	In the Name field in the Decision Functions table edit the decision function name to enter the value GradesDecisionFunction, and then press Enter, as shown in Figure 9-12.

Figure 9-12 Renaming Decision Function in Rules Designer
[image: Description of Figure 9-12 follows]

9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application

The Grades sample application includes a servlet that uses the Rules Engine.

To add this servlet with Oracle Business Rules you need to understand the important Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created with Rules Designer, you do the following:

	Create initialization steps that you perform one time in the servlet init routine.

	Create a servlet service routine using the Rules SDK Decision Point API.

	Perform steps to add the servlet code in the project.

For more information on Rules SDK Decision Point API, see Working with Rules in Standalone (Non SOA/BPM) Scenarios.

9.4.1 How to Add a Servlet to the Grades Project

You add a servlet to the grades project using the Create HTTP Servlet wizard.

To add a servlet to the Grades project with Oracle JDeveloper:

	In the Application Navigator, select the Grades project.
	Right-click the Grades project and in the context menu select New....
	In the New Gallery, select the All Technologies tab.
	In the New Gallery, in the Categories area expand Web Tier and select Servlets.
	In the New Gallery, in the Items area select HTTP Servlet. Click OK.Oracle JDeveloper displays the Create HTTP Servlet Welcome page.

	Click Next.This displays the Web Application page.

	Select Servlet 2.5\JSP 2.1 (Java EE 1.5) and click Next.This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.

	Enter values in Create HTTP Servlet - Step 1 of 3: Servlet Information page, as follows, and as shown in Figure 9-13.	Class: GradesServlet

	Package: com.example.grades

	Generate Content Type: HTML

	Generate Header Comments: unchecked

	Implement Methods: service() checked and all other check boxes unchecked

Figure 9-13 Create HTTP Servlet Wizard - Step 1 of 3: Servlet Information
[image: Description of Figure 9-13 follows]

Click Next.

This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as shown in Figure 9-14.

Figure 9-14 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information
[image: Description of Figure 9-14 follows]

	Configure this dialog as follows:	Name: GradesServlet

	URL Pattern: /gradesservlet

Click Finish when done.

JDeveloper adds a Web Content folder to the project and creates a GradesServlet.java file and opens the file in the editor as shown in Figure 9-15.

Figure 9-15 Generated GradesServlet.java
[image: Description of Figure 9-15 follows]

	Replace the generated servlet with the source as shown in the grades application example below.package com.example.grades;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class GradesServlet extends HttpServlet {

 private static final String CONTENT_TYPE = "text/html";
 private static final String DICT_PKG = "com.example.grades";
 private static final String DICT_NAME = "GradingRules";
 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 private static final String DF_NAME = "GradesDecisionFunction";

 private DecisionPoint m_decisionPoint = null; // init in init()

 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 try {

 // specifying the Decision Function and Dictionary FQN
 // load the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());
 throw new ServletException(e);
 }
 }

 public void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 // retrieve parameters
 String name = request.getParameter("name");
 String strScore = request.getParameter("testScore");

 // open output document
 StringBuilder doc = new StringBuilder();
 addHeader(doc);

 // create TestScore object to assert
 final TestScore testScore = new TestScore();
 testScore.setName(name);

 try {
 testScore.setTestScore(Integer.parseInt(strScore));
 } catch (NumberFormatException e){ /* use default val */ }

 // get DecisionPointInstance for invocation
 DecisionPointInstance point = m_decisionPoint.getInstance();

 // set input parameters
 point.setInputs(new ArrayList() {{ add(testScore); }});

 // invoke decision point and get result value
 TestGrade testGrade = null;
 try {

 // invoke the decision point with our inputs
 List<Object> result = point.invoke();
 if (result.size() != 1){
 error(doc, testScore.getName(), "bad result", null);
 }
 // decision function returns a single TestGrade object
 testGrade = (TestGrade)result.get(0);
 } catch (RLException e) {
 error(doc, testScore.getName(), "RLException occurred: ", e);
 } catch (SDKException e) {
 error(doc, testScore.getName(), "SDKException occurred", e);
 }

 if (testGrade != null){
 // create output table in document
 openTable(doc);
 addRow(doc, testScore.getName(), strScore, testGrade.getGrade());
 closeTable(doc);
 }

 addFooter(doc);

 // write document
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println(doc);
 out.close();
 }

 public static void addHeader(StringBuilder doc) {
 doc.append("<html>");
 doc.append("<head><title>GradesServlet</title></head>");
 doc.append("<body>");
 doc.append("<h1>Test Results</h1>");
 }

 public static void addFooter(StringBuilder doc) {
 doc.append("</body></html>");
 }

 public static void openTable(StringBuilder doc) {
 doc.append("<table border=\"1\"");
 doc.append("<tr>");
 doc.append("<th>Name</th>");
 doc.append("<th>Score</th>");
 doc.append("<th>Grade</th>");
 doc.append("</tr>");
 }

 public static void closeTable(StringBuilder doc) {
 doc.append("</table>");
 }

 public static void addRow(StringBuilder doc, String name, String score, Grade grade){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td>"+ score +"</td>");
 doc.append("<td>"+ grade.value() +"</td>");
 doc.append("</tr>");
 }

 public static void error(StringBuilder doc, String name, String msg, Throwable t){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td colspan=2>"+ msg + " " + t +"</td>");
 doc.append("</tr>");
 }
}

The above example includes a Oracle Business Rules Decision Point, that uses an MDS repository to access the dictionary. For more information, see What You Need to Know About Using Decision Point in a Production Environment.

When you add the Servlet as shown in the grades application example, note the following:

	In the init() method the servlet uses the Rules SDK Decision Point API for Oracle Business Rules. For more information on using the Decision Point API, see Working with Rules in Standalone (Non SOA/BPM) Scenarios.

	The DecisionPointBuilder() requires arguments including a decision function name and, in a production environment a dictionary FQN to access a dictionary in an MDS repository, as shown:

 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)

For more information on using the Decision Point API, see Working with Rules in Standalone (Non SOA/BPM) Scenarios.

9.5 Adding an HTML Test Page for Grades Sample Application

Add an HTML test page for the grades application by following the steps below.

The Grades sample application includes an HTML test page that you use to invoke the servlet you created in Adding a Servlet with Rules SDK Calls for Grades Sample Application.

To add an HTML page to the servlet you use the Create HTML File wizard.

To add an HTML test page:

	In the Application Navigator, in the Grades project select the Web Content folder.
	Right-click the Web Content folder project and in the context menu select New....
	In the New Gallery, select the All Technologies tab.
	In the New Gallery, in the Categories area expand Web Tier and select HTML.
	In the New Gallery, in the Items area select HTML Page. Click OK.Oracle JDeveloper displays the Create HTML File dialog.

	Configure this dialog as follows and as shown in Figure 9-16:	File Name: index.html

	Directory: C:\JDeveloper\mywork\GradeApp\Grades\public_html

Figure 9-16 Create HTML File Dialog
[image: Description of Figure 9-16 follows]

Click OK.

JDeveloper adds index.html to the Web Content folder and opens the editor.

	In the editor for index.html, select the Source tab.
	Copy and paste the HTML code from the HTML test page example below to replace the contents of the index.html file. Note that in the form element action attribute uses the URL Pattern you specified in Figure 9-14.<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"></meta>
 <title>Test Grade Example Servlet</title>
 </head>
 <body>
 <form name="names_and_scores"
 method="post"
 action="/grades/gradesservlet" >
 <p>Name: <input type="text" name="name" /></p>
 <p>Test Score: <input type="text" name="testScore"/></p>
 <input type="submit" value="Submit">
 </form>
 </body>
</html>

	Select Save All from the File main menu to save your work.

9.6 Preparing the Grades Sample Application for Deployment

Business rules are deployed as part of the application for which you create a deployment profile in Oracle JDeveloper.

You deploy the application to Oracle WebLogic Server.

9.6.1 How to Create the WAR File for the Grades Sample Application

You deploy the GradeApp sample application using JDeveloper with Oracle WebLogic Server.

To create the WAR file for the grades sample application:

	In the Application Navigator, select the Grades project.

	Right-click the Grades project and in the context menu select Project Properties.... This displays the Project Properties dialog for the project.

	In the Project Properties navigator, select the Deployment item as shown in Figure 9-17.

Figure 9-17 Project Properties - Deployment
[image: Description of Figure 9-17 follows]

	In the Project Properties dialog, click New....

This displays the Create Deployment Profile dialog.

	In the Create Deployment Profile dialog, in the Archive Type list, select WAR File.

	In the Create Deployment Profile dialog, in the Name field enter grades, as shown in Figure 9-18. Note the Name value uses the package value that you specified in the form element action attribute in step 8 of Adding an HTML Test Page for Grades Sample Application.

Figure 9-18 Create Deployment Profile Dialog for WAR File
[image: Description of Figure 9-18 follows]

	Click OK.

This displays the Edit WAR Deployment Profile Properties dialog.

	In the Edit War Deployment Profile Properties dialog, select General and configure the General page as follows, as shown in Figure 9-19:

	Set the WAR File: C:\JDeveloper\mywork\GradeApp\Grades\deploy\grades.war

	In the Web Application Context Root area, select Specify Java EE Web Context Root:

	In the Specify Java EE Web Context Root: text entry area, enter grades.

	In the Deployment Client Maximum Heap Size (in Megabytes): list select Auto

Figure 9-19 Edit WAR Deployment Properties - General
[image: Description of Figure 9-19 follows]

	In the Edit WAR Deployment Profile Properties dialog, click OK.

JDeveloper creates a deployment profile named grades (WAR File) as shown in Figure 9-20.

Figure 9-20 Project Properties - Deployment Profile Created
[image: Description of Figure 9-20 follows]

	In the Project Properties dialog, click OK.

9.6.2 How to Add the Rules Library to the Grades Sample Application

To add the rules library to the weblogic-application file:

	In the GradeApp application, in the Application Navigator expand Application Resources.
	Expand Descriptors and expand META-INF and double-click to open weblogic-application.xml.
	Add the oracle.rules library reference to the weblogic-application.xml file. Add the following lines, as shown in Figure 9-21.<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

Figure 9-21 Adding Oracle Rules Library Reference to WebLogic Descriptor
[image: Description of Figure 9-21 follows]

	Save the weblogic-application.xml file.

9.6.3 How to Add the MDS Deployment File to the Grades Sample Application

To add the MDS deployment file:

	In the Application Navigator, select the GradeApp application.
	Right-click the GradeApp application and in the context menu select Application Properties....This displays the Application Properties dialog.

	In the Application Properties navigator select the Deployment item, as shown in Figure 9-22.Figure 9-22 Application Properties - Deployment
[image: Description of Figure 9-22 follows]

	In the Application Properties dialog, click New....This displays the Create Deployment Profile dialog.

	Configure this dialog as follows, as shown in Figure 9-23:	Archive Type: MAR File

	Name: metadata1

Figure 9-23 Create Deployment Profile Dialog for MAR File
[image: Description of Figure 9-23 follows]

Click OK.

This displays the Edit MAR Deployment Properties dialog as shown in Figure 9-24.

Figure 9-24 Edit MAR Deployment Profile Properties - MAR Options
[image: Description of Figure 9-24 follows]

	Expand the Metadata File Groups item and select the User Metadata item and click Add.This displays the Add Contributor dialog.

	In the Add Contributor dialog, click the Browse button and navigate to the directory for the project that contains the GradingRules.rules dictionary file.In this example, navigate to C:\JDeveloper\mywork\GradeApp\Grades and click Select.

	In the Add Contributor dialog, click OK to close the dialog. This displays the Edit MAR Deployment Properties dialog as shown in Figure 9-25Figure 9-25 Edit MAR Deployment Profile Properties - User Metadata
[image: Description of Figure 9-25 follows]

	In the Edit MAR Deployment Profile Properties dialog, expand the Metadata File Groups and expand the User Metadata item and select Directories.This displays the Directories page as shown in Figure 9-26.

Figure 9-26 Edit MAR Deployment Profile Properties - Directories
[image: Description of Figure 9-26 follows]

	Select the oracle directory check box. This selects the GradingRules.rules dictionary to be included in the MAR.Click OK.

JDeveloper creates an application deployment profile named metadata1 (MAR File) as shown in Figure 9-27.

Figure 9-27 Application Properties - Deployment - MAR
[image: Description of Figure 9-27 follows]

Click OK in the Application Properties dialog.

9.6.4 How to Add the EAR File to the Grades Sample Application

Add an EAR file to the Grades sample application.

To add the ear file to the grades sample application:

	In the Application Navigator, select the GradeApp application.
	Right-click and in the context menu select Application Properties....
	In the Application Properties dialog, select Deployment and click New.... This displays the Create Deployment Profile dialog.
	Configure this dialog as follows, as shown in Figure 9-28.	Archive Type: EAR

	Name: grades

Figure 9-28 Create Deployment Profile Dialog for EAR File
[image: Description of Figure 9-28 follows]

	Click OK. This displays the Edit EAR Deployment Profile Properties dialog.
	In the Edit Ear Deployment Profile Properties dialog, in the navigator select Application Assembly as shown in Figure 9-29.Figure 9-29 Edit EAR Deployment Profile Properties - Application Assembly
[image: Description of Figure 9-29 follows]

	Configure this dialog as follows:	Select the metadata1 check box.

	Expand the Grades.jpr item and select the grades check box.

	In the Edit EAR Deployment Profile Properties dialog, click OK.JDeveloper creates an application deployment profile named grades(EAR File) as shown in Figure 9-30.

Figure 9-30 Application Properties - Deployment - EAR
[image: Description of Figure 9-30 follows]

	Click OK to close the Application Properties dialog.
	Select Save All from the File main menu to save your work.

9.7 Deploying and Running the Grades Sample Application

You can now deploy and run the grades sample application on Oracle WebLogic Server.

9.7.1 How to Deploy to Grades Sample Application

To deploy the grades sample application:

	In the Application Navigator, select the GradeApp application.
	Right-click the GradeApp application and in the context menu select Deploy > grades > to > and select either an existing connection or New Connection... to create a connection for the deployment. This starts the deployment to the specified Oracle WebLogic Server.
	As the deployment proceeds, Oracle JDeveloper shows the Deployment Configuration dialog.
	In the Deployment Configuration dialog enter the following values, as shown in Figure 9-28:	In the Repository Name field, from the list, select: mds-soa

	In the Partition Name field, enter grades

Figure 9-31 Deployment Configuration Dialog for MDS with Repository and Partition
[image: Description of Figure 9-31 follows]

	In the Deployment Configuration dialog, click Deploy.

9.7.2 How to Run the Grades Sample Application

After you deploy the grades sample application, you can run the application.

To run the grades sample application:

	Point a web browser at,http://yourServerName:port/grades/

This displays the test servlet as shown in Figure 9-32.

Figure 9-32 Grades Sample Application Servlet
[image: Description of Figure 9-32 follows]

	Enter a name and test score and click Submit. This returns results as shown in Figure 9-33.

The first time you run the servlet there may be a delay before any results are returned. The first time the servlet is invoked, during servlet initialization the runtime loads the dictionary and creates a rule session pool. Subsequent invocations do not perform these steps and should run much faster.

Figure 9-33 Grades Sample Application Servlet with Results
[image: Description of Figure 9-33 follows]

10 Working with Oracle Business Rules and ADF Business Components

This chapter describes how Oracle Business Rules enables you to use Oracle ADF Business Components view objects as facts. As with all fact types, trees of facts, representing master-detail data, can be asserted as a unit. Oracle Business Rules has built-in tests (RLcontains) and optional "tree mode" syntax (for example, master-detail) to support navigating one-to-many relationships.

The chapter includes the following sections:

	Introduction to Using Business Rules with ADF Business Components

	Using Decision Points with ADF Business Components Facts

	Creating a Business Rules Application with ADF Business Components Facts

10.1 Introduction to Using Business Rules with ADF Business Components

The ADF Business Components rule development process can be summarized as below.

Using ADF Business Components rule, you can:

	Create view object definitions.

	Create action types.

	Create rule dictionary.

	Register view object fact types.

	Register Java fact types for actions.

	If you are invoking from Java:

	If the view object is already instantiated at the Decision Point, code the Decision Point invocation passing the view object instance.

	If the view object is not instantiated at the Decision Point, code the Decision Point invocation passing the view object key values.

10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types

When an ADF Business Components view object is imported into an Oracle Business Rules data model, an ADF Business Components fact type is created which has a property corresponding to each attribute of the view object.

Additionally, the ADF Business Components fact type contains the following:

	A property named ViewRowImpl which points directly to the oracle.jbo.Row instance that each fact instance represents.

	A property named key_values which points to an oracle.rules.sdk2.decisionpoint.KeyChain object. You can use this property to retrieve the set of key-values for this row and its parent rows.

Note the following:

	Relationships between view object definitions are determined by introspection of attributes on the View Definition, specifically, those attributes which are View Link Accessors.

The ADF Business Components fact type importer correctly determines which relationships are 1-to-1 and which are 1-to-many and generates definitions in the dictionary accordingly. For 1-to-many relationships the type of the property generated is a List which contains facts of the indicated type at runtime.

	ADF Business Components fact types are not Java fact types and do not allow invoking methods on any explicitly created implementation classes for the view object.

If you need to call such methods then add the view object implementation to the dictionary as a Java fact type instead of as an ADF Business Components fact type. In this case, all getters and setters and other methods become available but the trade-off is that related view objects become inaccessible and, should related view object access be required, these relationships must be explicitly managed.

	Internally in Oracle Business Rules, when you use ADF Business Components fact types these fact types are created as instances of RL fact types. Thus, you cannot assert ADF Business Components view object instances directly to a Rule Session, but must instead use the helper methods provided in the MetadataHelper and ADFBCFactTypeHelper classes. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

10.1.2 Understanding Oracle Business Rules Decision Point Action Type

With Rules SDK, the primary way to update a view object within a Decision Point is with an action type. An action type is a Java class that you import into the rule dictionary data model in the same way you import a rule pattern fact type Java class. A new instance of this action type is then asserted in the action of a rule and then processed by the Postprocessing Ruleset in the DecisionPointDictionary.

A Java class to be used as an action type must conform to the following requirements:

	The Java fact type class must subclass oracle.rules.sdk2.decisionpoint.ActionType or oracle.rules.sdk2.decisionpoint.KeyedActionType.

By subclassing KeyedActionType the Java class inherits a standard oracle.rules.sdk2.decisionpoint.KeyChain attribute, which may be used to communicate the rule fact's primary keys and parent-keys to the ActionType instance.

	The class has a default constructor.

	The class implements abstract exec method for the ActionType. The exec method should contain the main action which you want to perform.

	The Java class must have properties which conform to the JavaBean interface (that is, each property must have a getter and setter method).

See Example 10-1 for a sample ActionType implementation.

Table 10-1 shows the methods in DecisionPointInstance that an application developer might need when implementing the ActionType exec.

Table 10-1 DecisionPointInstance Methods

	Method	Description
	getProperties

	Supplies a HashMap<String,Object> object containing any runtime-specified parameters that the action types may need.

If you intend to use the decision function from a Decision service, use only String values.

	getRuleSession

	Gives access to the Oracle Business Rules RuleSession object from which static configuration variables in the Rule Dictionary may be accessed.

	getActivationID

	If populated by the caller, supplies a String value to be used for Set Control indirection.

	getTransaction

	Provides a transaction object so that action types may make persistent changes in the back end.

	addResult

	Adds a named result to the list of output values in the form of a String key and Object value.

Output is assembled as a List of oracle.rules.sdk2.decisionpoint.DecisionPointInstance.NamedValue objects as would be the case in a pure map implementation. The NamedValue objects are simple data-bearing classes with a getter each for the name and value. Output values from one action types instance are never allowed to overwrite each other, and in this regard, the action type implementations should be considered completely independent of each other.

10.1.2.1 Sample ActionType Implementation

Example 10-1 shows a sample ActionType implementation and an oracle.rules.sdk2.decisionpoint.DecisionPointInstance as a parameter to the exec method.

Example 10-1 Implementing an ActionType
package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new boolean[]{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

 public double getRaisePercent() {
 return raisePercent;
 }
}

Using Rules Designer you can select parameters appropriate for the ActionType you are configuring.

10.2 Using Decision Points with ADF Business Components Facts

You can use a Decision Point to execute a decision function. There are certain Decision Point methods that only apply when working with ADF Business Components Fact types.

For more information on decision functions, see Working with Decision Functions .

10.2.1 How to Call a Decision Point with ADF Business Components Facts

When you use ADF Business Components fact types you invoke a decision function using the Rules SDK Decision Point interface.

To call a decision function using the Rules SDK Decision Point interface:

	Construct and configure the template DecisionPoint instance using the DecisionPointBuilder.For more information, see How to Add a Decision Point Using Decision Point Builder.

	Create a DecisionPointInstance using the DecisionPoint method getInstance.
	Add the fact objects you want to use to the DecisionPointInstance using DecisionPointInstance method addInput, setInputs, or setViewObject. These are either ViewObject or ViewObjectReference instances. These must be added in the same order as they are declared in the decision function input. For more information, see Calling the Invoke Method for an ADF Business Components Rule
	Set the transaction to be used by the DecisionPointInstance.For more information, see Setting the Decision Point Transaction.

	Set any runtime properties the consequent application actions may expect.For more information, see Setting Runtime Properties.

	Call the DecisionPointInstance method invoke.For more information, see:

	Calling the Invoke Method for an ADF Business Components Rule

	What You Need to Know About Decision Point Invocation

10.2.1.1 Setting the Decision Point Transaction

The Oracle Business Rules SDK framework requires an oracle.jbo.server.DBTransactionImpl2 instance to load a ViewObject and to provide ActionType instances within a transactional context. The class oracle.jbo.server.DBTransactionImpl2 is the default JBO transaction object returned by calling the ApplicationModule method getTransaction. Setting the transaction requires calling the DecisionPointInstance method setTransaction with the Transaction object as a parameter.

Should a DBTransaction instance not be available for some reason, the Oracle Business Rules SDK framework can bootstrap one using any of the three provided overrides of the setTransaction method.

These require one of:

	A JDBC URL, user name, and password.

	A JDBC connection object.

	A javax.sql.DataSource object and a flag to specify whether the DataSource represents a JTA transaction or a local transaction.

10.2.1.2 Setting Runtime Properties

Runtime properties may be provided with the setProperty method. These can then be retrieved by ActionType instances during their execution. If no runtime properties are needed, you may safely omit these calls.

10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule

The ViewObject to be used in a Decision Point invocation can be specified in one of two ways, as shown in Table 10-2.

Table 10-2 Setting the View Object for a Decision Point Invocation

	ViewObject Set Method	Description
	setViewObject

	The decision function is invoked once for each ViewObject row. This the preferred way to use view objects. Between each invocation of the decision function, the rule session is not reset so any asserted facts from previous invocations of the decision function are still in working memory. In most cases, users should write rules that retract the asserted facts before the decision function call completes. For example, you can have a cleanup ruleset that retracts the ViewObject row that runs before the Postprocessing decision function is called.

How to Add Retract Employees Ruleset shows this usage. To use setViewObject, the ViewObject must be the first entry in the decision function InputTable.

	addInput

setInputs

	The decision function is invoked once with all of the ViewObject rows loaded at the same time. This is generally not a scalable operation, since hundreds of thousands of rows can be loaded at the same time. There are some cases where there are a known small number of rows in a ViewObject that this method of calling the ViewObject can be useful.

10.2.1.4 What You Need to Know About Decision Point Invocation

Care must be taken when invoking Decision Points using a view object that loads large amounts of data, since the default behavior of the JBO classes is to load all data eagerly. If a view object with many rows and potentially very many child rows is loaded into memory, not only is there risk of memory-exhaustion, but DML actions taken based on such large data risk using all rollback segments.

10.2.1.5 Sample to Invoke a Decision Point Using setinputs Method

Example 10-2 shows how to invoke a Decision Point with a ViewObject instance using the setInputs method. For the complete example, see the example shown in How to Add the Outside Manager Finder Class.

Example 10-2 Invoking a Decision Point Using setInputs Method
public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();
 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {
 List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();

 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

10.2.1.6 Sample to Invoke a Decision Point Using setViewObject Method

Example 10-3 shows how to invoke a DecisionPoint using the setViewObject method to set the ViewObject.

Example 10-3 Invoking a Decision Point Using setViewObject Method
 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();

 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

10.2.2 How to Call a Decision Function with Java Decision Point Interface

To call a decision function with a ruleset using ADF Business Components fact types with the Oracle Business Rules SDK Decision Point interface you must configure the decision function with certain options. For more information on using decision functions, see Working with Decision Functions .

To define a decision function using the Java Decision Point interface:

	In the Decision Functions tab, select the appropriate Decision Function and click the Edit button. The Edit Decision Function dialog appears.
	In the Edit Decision Function dialog, configure the decision function:	Inputs: names the fact types to use in the configured business rules.

The inputs, when working with an application using ADF Business Components fact types, are the ADF Business Components view objects used in your rules.

When you use the setViewObject method with a Decision Point, the List attribute should be cleared. Each Input fact type should have the List attribute selected when you are using addInput or setInputs methods with the Decision Point. Optionally, depending on the usage of the view objects, select the Tree attribute:

List: defines that a list of ADF Business Components fact types are passed to the decision function.

Tree: defines that all objects in the master-detail hierarchy should be asserted, instead of only the top-level object.

For more information, see How to Call a Decision Point with ADF Business Components Facts.

	Initial Actions: click <insert action> to add actions that can be used to change input facts before they are asserted, change the ruleset stack, set the effective date, or even assert output facts. These actions can be used instead of rules, or to "set up" the environment for running rules.

For more information on using decision functions, see Working with Decision Functions .

	Output Fact Types: defines the fact types that the caller returns.

When calling a decision function using the Java Decision Point interface for a decision function that uses ActionTypes, two ways of returning output are available:

	Output fact types can be used, as with any decision function. These results are returned from DecisionPointInstance.invoke().

	The ActionType's exec method can be overridden to call dpi.addResult (see Example 10-1). These results are returned from DecisionPointInstance.getResults().

Using ActionTypes is optional. Typically ActionTypes would not be used unless the rules need to modify the ADF data. If ActionTypes are not used, then DecisionPointDictionary.Preprocessing and DecisionPointDictionary.Postprocessing are not needed.

For more information, see Understanding Oracle Business Rules Decision Point Action Type.

	RuleSets and Decision Functions: an ordered list of the rulesets and other decision functions that this decision function executes. The rulesets DecisionPointDictionary.Preprocessing and DecisionPointDictionary.Postprocessing from the DecisionPoint dictionary must be added so that they run before and after, respectively, the application-specific rulesets and decision functions.

10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

Both rulesets and decision functions may be included in the definition of a decision function. It is common for an application to require some rules or decision functions which act as "plumbing code". This plumbing code is only needed if you are using ActionType.

Such applications include components that perform transformations on the input data, assert auxiliary facts, or process output facts. The plumbing code may need to run before or after the rules that contain the core business rules of the application.

You can separate these application concerns and their associated rules from the application functional concerns using nested decision functions. Using nested decision functions, the inner decision function does not contain the administrative, plumbing-oriented concerns, and thus only presents those rules which define the core logic of the application. This design eliminates the need for the user to understand the administrative rules and prevents a user from inappropriately modifying these rules (and possibly rendering the system inoperable due to these changes).

To create a configuration using multiple rulesets and nested decision functions, create two decision functions and add one to the other. A good naming scheme is to suffix the nested inner decision function with the name Core. The user specified rulesets can be added to the inner Core decision function. For example, DecisionFunction_1 can be defined to run the DecisionPointDictionary.Preprocessing decision function, the DecisionFunction_1Core decision function, and the DecisionPointDictionary.Postprocessing decision function. For this example, DecisionFunction_1Core contains the core business logic rulesets.

It is also common for the input of a Decision Point to be an ADF Business Components fact type that is the root of a tree of ADF Business Components objects. However, the user might only write business rules that match on a subset of the types found in the tree. In this case, it is a good practice to define the inputs of the nested decision functions to be only the types which are actually matched in the contained rulesets. For example, consider a Decision Point calling a decision function whose input is an Employee fact type with the Tree option selected; if this decision function includes a nested decision function with rulesets that only matched on the Department fact type. In this case, the nested decision function could either have as its input specified as an Employee fact type with the Tree option selected, or a Department fact type with the List option selected. For this example, the Tree option causes the children of the Employee instances, including the Department instances to be asserted (due to the one-to-many relationship between these types). If Employee is an input to the outer decision function and the Tree option is selected, the then Department fact type instances are asserted, and you can identify the signature on the inner decision function as a list of Department instances (these are the exact types which are being matched on for this decision function).

10.3 Creating a Business Rules Application with ADF Business Components Facts

The ADF Business Components sample application shows the use of ADF Business Component fact types.

The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.

10.3.1 How to Create an Application That Uses ADF Business Components Facts

To work with Oracle Business Rules with ADF Business Components facts, you first need to create an application and a project in Oracle JDeveloper.

To create an application that uses ADF Business Components facts:

	Start Oracle JDeveloper. This displays the Oracle JDeveloper start page.

	In the Application Navigator, in the application menu click New Application....

	In the Name your application page enter the name and location for the new application:

	In the Application Name field, enter an application name. For example, enter Chapter10.

	In the Directory field, enter or browse for a directory name or accept the default.

	In the Application Package Prefix field, enter an application package prefix. For example, enter com.example.

This should be a globally unique prefix and is commonly a domain name owned by your company. The prefix, followed by a period, applies to objects created in the initial project of an application.

In this sample, use the prefix com.example, as shown in Figure 10-1

Figure 10-1 Step 1 of 6
[image: Description of Figure 10-1 follows]

Click Next.

	On the Name your project page:

	In the Project Name field, enter Chapter10.

	In the Directory field, enter or browse for a directory name or accept the default.

	In the Project Features area, select ADF Business Components as shown in Figure 10-2.

Figure 10-2 Step 2 of 6
[image: Description of Figure 10-2 follows]

Click Next.

	On the Configure Java settings page:

	In the Default Package field, enter com.example.

	In the Java Source Path field, enter or browse for a directory name or accept the default.

	In the Output Directory field, enter or browse for a directory name or accept the default as shown in Figure 10-3:

Figure 10-3 Step 3 of 6
[image: Description of Figure 10-3 follows]

Click Next.

	For Project 2, on the Name your project page:

	In the Project Name field, enter ViewController.

	In the Directory field, enter or browse for a directory name or accept the default.

	In the Project Features area, select ADF Faces as shown in Figure 10-4:

Figure 10-4 Step 4 of 6
[image: Description of Figure 10-4 follows]

Click Next.

	For Project 2, on the Configure Java settings page:

	In the Default Package field, enter com.example.view.

	In the Java Source Path field, enter or browse for a directory name or accept the default.

	In the Output Directory field, enter or browse for a directory name or accept the default, as shown in Figure 10-5:

Figure 10-5 Step 5 of 6
[image: Description of Figure 10-5 follows]

	Click Finish when done.

10.3.2 How to Create ADF Business Components Application for Business Rules

You need to add ADF Business Components from a database table. For this example we use the standard HR database tables.

To add ADF Business Components:

	In the Application Navigator, select the Chapter10 project.
	Right-click and from the menu select New....
	In the New Gallery, in the Categories area expand Business Tier and select ADF Business Components.
	In the Items area select Business Components from Tables and click OK.
	In the Initialize Business Components Project dialog, enter the required connection information to add a connection. Click OK. This displays the Create Business Components from Tables wizard.

	In the Entity Objects page, select the desired objects by moving objects from the Available box to the Selected box. You may need to click Query to see the complete list. For example, select DEPARTMENTS and EMPLOYEES.
	Click Next. This displays the Updatable View Objects page.
	In the Updatable View Objects page select Departments and Employees.
	Click Next. This displays the Entity based view object page.
	Click Next. This displays the Application Module page.
	Click Finish when done.

10.3.3 How to Update View Object Tuning for Business Rules Sample Application

You should tune the ViewObject to meet the performance requirements of your application.

To set tuning options for EmployeesView or DepartmentsView:

	In the Application Navigator, double-click EmployeesView to set tuning options for employees or DepartmentsView to set tuning options for departments.
	In the General navigation tab, expand Tuning.
	In the Tuning area, select All Rows.
	In the Tuning area, in the Batches of: field, enter 128.
	In the Tuning area, select All at Once.

10.3.4 How to Create a Dictionary for Oracle Business Rules

You use Oracle JDeveloper to create an Oracle Business Rules dictionary.

To create a dictionary:

	In the Application Navigator, select the Chapter10 project.
	Right-click, and from the list select New....
	In the New Gallery, select the All Technologies tab and in the Categories area expand Business Tier and select Business Rules.
	In the New Gallery, in the Items area select Business Rules.
	Click OK.
	In the Create Business Rules dialog enter the dictionary name and package.	For example, in the Name field enter Chapter10Rules.

	For example, in the Package field enter com.example.

	Click OK.JDeveloper creates the dictionary and opens the Chapter10Rules.rules file in Rules Designer.

10.3.5 How to Add Decision Point Dictionary Links

You need to add a dictionary links to the Oracle Business Rules supplied Decision Point Dictionary. This dictionary supports features for working with the Decision Point interface with ADF Business Components objects.

Add decision point dictionary links:

	In the Rules Designer, click the Links navigation tab.
	From the menu next to the Create button, select Decision Point Dictionary. This operation can take a while to complete. After waiting, Rules Designer adds a link to the Decision Point Dictionary.

10.3.6 How to Import the ADF Business Components Facts

You import ADF Business Components facts with Rules Designer to make these objects available when you create rules.

Import the ADF Business Components facts:

	In Rules Designer, select the Facts navigation tab.
	Select the ADF-BC Facts tab.
	Click the Create... button. This displays the ADF Business Components Fact page.
	In the Connection field, from the list select the connection which your ADF Business Components objects use. The Search Classpath area shows a list of classpaths.
	In the View Definition field, select the name of the view object to import. For example, select com.example.EmployeesView.
	Click OK. This displays the Facts navigation tab.

ADF Business Components Facts can include a circular reference, as indicated with the validation warning:

RUL-05037: A circular definition exists in the data model

When this warning is shown in the Business Rule validation log, you need to manually resolve the circular reference. To do this you clear the Visible check box for one of the properties that is involved in the circular reference.

10.3.6.1 How to Mark a Property as Non-visible

To mark a property as non-visible:

	Select the Facts navigation tab and select the ADF Business Components Facts tab.­
	Double-click the icon in the DepartmentsView row.
	In the Properties table, in the EmployeesView row clear the Visible check box.
	Click OK.

10.3.6.2 How to Set Alias for DepartmentsView and EmployeesView

To set alias for DepartmentsView and EmployeesView:

	Select the Facts navigation tab and select the ADF Business Components Facts tab.
	In the Alias column, replace EmployeesView with Employee.
	In the Alias column, replace DepartmentsView with Department.

10.3.7 How to Add and Run the Outside Manager Ruleset

The sample code that runs the outside manager ruleset invokes the Decision Point with the view object set using the setInputs method. This invokes the decision function once, with all of the view object rows loaded in a List. Note that invoking the Decision Point this way is not scalable, because all of the view object rows must be loaded into memory at the same time, which can lead to OutOfMemory exceptions. Only use this invocation style when there are a small and known number of view object rows. You can also use a Decision Point with setViewObject. For more information, see How to Call a Decision Point with ADF Business Components Facts.

10.3.7.1 How to Add the Outside Manager Ruleset and Add a Decision Function

After the view objects are imported as facts, you can rename the ruleset and create the decision function for the application.

To rename the ruleset, select the Ruleset_1 navigation tab in Rules Designer and then select the ruleset name and enter Outside Manager Ruleset to rename the ruleset.

To add a decision function:

	Click the Decision Functions navigation tab.
	In the Decision Functions area, click Create.... This displays the Edit Decision Function dialog.
	Edit the decision function fields as follows:	Enter Name value FindOutsideManagers.

	In the Inputs area, click the Add Input button and edit the input information as follows:

	Click the Fact Type field and select Employee from the list.

	Select the List check box.

In this decision function you do not define any outputs because you use the ActionType API for taking action rather than producing output. For more information, see Understanding Oracle Business Rules Decision Point Action Type.

	In the Rulesets & Decision Functions area move the following items from the Available area to the Selected area, in the specified order:

	DecisionPointDictionary.Preprocessing

	Outside Manager Ruleset

	DecisionPointDictionary.Postprocessing

	Ensure that the items in the Selected area are in this order: DecisionPointDictionary.Preprocessing, Outside Manager Ruleset, DecisionPointDictionary.PostProcessing. If they are not, select an item and use the Move Up and Move Down buttons to correct the order.

	Click OK.

Several warnings appear. These warnings are removed in later steps when you add rules to the ruleset.

10.3.7.2 How to Create the ActionType Java Implementation Class

To create the sample application and to modify the view object in a rule, you need to create a Java implementation class for abstract class oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of ActionType must implement the abstract exec method.

To create the ActionType Java implementation class:

	In Oracle JDeveloper, select the project named Chapter10.
	In the Application Navigator, select the Application Sources folder.
	Right-click and from the list select New....
	In the New Gallery, in the Categories area select General.
	In the New Gallery, in the Items area select Java Class.
	Click OK.
	In the Create Java Class dialog, configure the following properties:	Enter the Name value MessageAction.

	Enter the Package value com.example.

	Enter the Extends value oracle.rules.sdk2.decisionpoint.ActionType.

	Click OK.Oracle JDeveloper displays the Java Class.

	Replace this code with the code shown in the example below showing actiontype java implementation.package com.example;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class MessageAction extends ActionType {
 public MessageAction() {
 super();
 }

 public void exec(DecisionPointInstance decisionPointInstance) {
 System.out.println(message);
 }

 private String message = null;

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

	In the Application Navigator, right click the MessageAction.java and from the list select Make.

10.3.7.3 How to Import the Message Action Java Fact

You just created a new Java class and you need to add this class as a Java fact type in Rules Designer to use later when you create rules.

To create the Java fact type:

	In Rules Designer, click the Facts navigation tab.
	Select the Java Facts tab.
	Click Create....
	In the Create Java Fact dialog, in the Classes area navigate in the tree and expand com and example to display the MessageAction check box.
	Select the MessageAction check box.
	Click OK. This adds the fact to the table.

10.3.7.4 How to Add the Find Managers Rule

You add the rule to find the managers that are in a different departments than their employees.

To add the find managers in different departments rule:

	In Rules Designer, select the Outside Manager Ruleset tab.
	Click Add and from the list select Create Rule.
	Rename the rule by selecting the default rule name Rule_1. This displays a text entry area. You enter a name. For example, enter Find managers in different department. Press Enter to apply the name.
	Click Show Advanced Settings. For more information, see How to Show and Hide Advanced Settings in a Rule or Decision Table.
	In the rule select Advanced Mode.
	Enter the rule as shown in Figure 10-6. The action for the rule shown in the THEN area is too long to show in the figure. The complete action that you build includes the following items:IF Employee is EmployeeandManager is a Employee andManager.EmployeeId == Employee.ManagerId andManager.DepartmentId != Employee.DepartmentIDTHENassert new MessageAction(<add property> message: "Employee " + Employee.FirstName + " " + Employee.LastName + "(" + Employee.EmployeeId + ")"+ " in dept " + Employee.DepartmentId + " has manager outside of department, " + Manager.FirstName + " " + Manager.LastName + "(" + Manager.EmployeeId + ")" + " in dept " + Manager.DepartmentId)

Figure 10-6 Find Managers in Different Departments Rule
[image: Description of Figure 10-6 follows]

10.3.7.5 How to Add the Outside Manager Finder Class

Add the outside manager finder class. This uses the Decision Point to execute a decision function.

To add the Outside Manager Finder Class:

	Select the Chapter10 project.
	Right-click and select New....
	In the New Gallery, in the Categories area select General.
	In the New Gallery, in the Items area select Java Class. Click OK.
	In the Name field, enter OutsideManagerFinder. Click OK.
	Replace the contents of this class with the code shown in example below showing Outside Manager Finder java class.

package com.example;

import java.util.ArrayList;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {
 OutsideManagerFinder omf = new OutsideManagerFinder();
 omf.run();
 }

}

10.3.7.6 How to Update ADF META INF for Local Dictionary Access

You need to update the ADF-META-INF file with MDS information for accessing the dictionary. You can use a local file with MDS to access the Oracle Business Rules dictionary. However, this procedure is not the usual dictionary access method with Oracle Business Rules in a production environment. For information on using a Decision Point to access a dictionary with MDS in a production environment, see What You Need to Know About Using Decision Point in a Production Environment.

To update ADF-META-INF:

	In the Application Navigator, expand Application Resources.
	Expand Descriptors and ADF META-INF folders.
	Double-click adf-config.xml to open this file.
	Click the Source tab to view the adf-config.xml source.
	Add the MDS information to adf-config.xml, before the closing </adf-config> tag, as shown in the code example below: <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="mstore-usage_1" path="/"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mstore-usage_1">
 <metadata-store class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property name="metadata-path"
 value="C:\jdevinstance\mywork\Chapter10\.adf\"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>

	In the <property> element with the attribute metadata-path, change the path to match .adf directory in the application on your system.

10.3.7.7 How to Copy Definitions/Dictionary to MDS Accessible Location

To copy definitions/dictionary to MDS accessible location:

	In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10 application, and in the Chapter10 project, in the src folder select and copy the com folder. Or if you want to copy dictionary to MDS accessible location, copy the oracle directory that contains the Oracle Business Rules dictionary.
	In the application directory for Chapter10, above the Chapter10 project, navigate to the .adf directory.
	Copy the com folder to this directory. or copy the oracle folder to this directory.

10.3.7.8 How to Build and Run the Project to Check the Outside Manager Finder

You can build and test the project by running the find managers with employees in different departments rule.

Build the OutsideManagerFinder configuration:

	From the dropdown menu next to Run button, select Manage Run Configurations....
	In the Project Properties dialog, click New....
	In the Create Run Configuration dialog, enter a name. For example, enter OutsideManagerFinder.
	Click OK.
	With OutsideManagerFinder selected, click Edit....
	In the Default Run Target field, click Browse....
	Select OutsideManagerFinder.java from the src\com\example folder.
	Click Open.
	In the Edit Run Configuration dialog, click OK.
	In the Project Properties dialog, click OK.

To run the project, select OutsideManagerFinder in the dropdown menu next to the Run project button. Running this configuration generates output, as shown in example below:

Emp Shelley Higgins(205) in dept 110 manager outside of department, Neena Kochhar(101) in dept 90
Emp Hermann Baer(204) in dept 70 manager outside of department, Neena Kochhar(101) in dept 90
Emp Susan Mavris(203) in dept 40 manager outside of department, Neena Kochhar(101) in dept 90
Emp Michael Hartstein(201) in dept 20 manager outside of department, Steven King(100) in dept 90
Emp Jennifer Whalen(200) in dept 10 manager outside of department, Neena Kochhar(101) in dept 90
Emp Kimberely Grant(178) in dept null manager outside of department, Eleni Zlotkey(149) in dept 80
Emp Eleni Zlotkey(149) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Gerald Cambrault(148) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Alberto Errazuriz(147) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Karen Partners(146) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp John Russell(145) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Kevin Mourgos(124) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Shanta Vollman(123) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Payam Kaufling(122) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Adam Fripp(121) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Matthew Weiss(120) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Den Raphaely(114) in dept 30 manager outside of department, Steven King(100) in dept 90
Emp Nancy Greenberg(108) in dept 100 manager outside of department, Neena Kochhar(101) in dept 90
Emp Alexander Hunold(103) in dept 60 manager outside of department, Lex De Haan(102) in dept 90

10.3.8 How to Add and Run the Department Manager Ruleset

The sample code that runs the department manager ruleset invokes the Decision Point with the view object set using the setViewObject method. This invokes the decision function once for each row in the view object. All decision function calls occur in the same RuleSession. Between decision function calls, the RuleSession preserves all state from the previous decision function call. Thus, any objects asserted during the previous call remain in working memory for the next call unless they are explicitly retracted by rulesets that you supply. When the state is maintained, you can retract all facts or selectively retract facts between calls by running a ruleset with rules that use the retract action. This ruleset is run as part of the same decision function that you use with the Decision Point. The retract all employees ruleset demonstrates retracting these facts. For more information, see How to Call a Decision Point with ADF Business Components Facts.

10.3.8.1 How to Add the Department Manager Finder Ruleset

You now add the department manager finder ruleset.

To add the department manager finder ruleset:

	In Rules Designer, click Create Ruleset....
	In the Create Ruleset dialog, in the Name field enter Department Manager Finder Ruleset.
	Click OK.

10.3.8.2 How to Add the Find Rule in the Department Manager Finder Ruleset

Next you add the Find rule to find department managers. This rule demonstrates the use of Tree Mode rules with Oracle ADF Business Components fact types.

Add department manager finder rule:

	In Rules Designer select the Department Manager Finder Ruleset.
	In the dropdown menu next to the Add button, click Create Rule.
	Change the rule name by selecting the name Rule_1, and entering Find.
	Click Show Advanced Settings. For more information, see How to Show and Hide Advanced Settings in a Rule or Decision Table.
	In the rule, select Tree Mode.
	Enter the Find rule tests and actions. The following shows the complete text of this rule:ROOT: Employee
IF
Employee/DepartmentsView.ManagerID == Employee.EmployeeID
THEN
retract Employee
assert new MessageAction (<add property> message: Employee.FirstName + " " + Employee.LastName + " is the manager of dept "+ Employee/DepartmentsView.DepartmentName)

10.3.8.3 How to Add Retract Employees Ruleset

You add a ruleset to retract the employee fact type instances. This ensures that the Employee fact type is removed between invocations of the decision function.

To add the retract employee ruleset:

	Add the Retract Employees Ruleset.
	In the Retract Employees Ruleset, add a rule and name it Retract all employees.

10.3.8.4 How to Add the Find Department Managers Decision Function

Now you create the decision function for the department manager finder ruleset. You use this decision function to execute the ruleset from a Decision Point.

To add a decision function for department manager finder ruleset:

	Click the Decision Functions navigation tab.
	In the Decision Functions area, click Create.... This displays the Edit Decision Function dialog.
	Update the decision function fields as follows:	Enter Name value FindDepartmentManagers.

	In the Inputs area, click the Add Input and edit the input information as follows:

	Click the Fact Type field and select Employee from the list.

	Select the Tree check box.

In this decision function you do not define any outputs, because you use the ActionType API for taking action rather than producing output.

	In the Rulesets & Decision Functions area, move the following items from the Available area to the Selected area, in the specified order:

	DecisionPointDictionary.Preprocessing

	Department Manager Finder Ruleset

	Retract Employees

	DecisionPointDictionary.Postprocessing

	Ensure that the items in the Selected area are in this order: DecisionPointDictionary.Preprocessing, Department Manager Finder Ruleset, Retract Employees, and DecisionPointDicitonary.Postprocessing. If they are not, select an item and use the Move Up and Move Down buttons to correct the order.

	Click OK.

10.3.8.5 How to Add the Department Manager Finder Java Class

Add the department manager finder class. This class include the code with the Decision Point that executes the decision function.

Add the department manager finder class:

	In the Application Navigator, select the Chapter10 project.
	Right-click and select New....
	In the New Gallery, in the Categories area select General.
	In the New Gallery, in the Items area, select Java Class. Click OK.
	In the Name field, enter DeptManagerFinder. Click OK.
	Replace the contents of this class with the code example shown below:

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class DeptManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final String DF_NAME = "FindDepartmentManagers";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public DeptManagerFinder() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {
 new DeptManagerFinder().run();
 }
}

10.3.8.6 How to Copy the Dictionary to an MDS Accessible Location

Copy the updated dictionary to an MDS accessible location.

Copy dictionary to MDS accessible location:

	In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10 application, and project and copy the oracle directory that contains the dictionary.
	In the application directory for Chapter10, above the Chapter10 project, navigate to the .adf directory.
	Copy the oracle folder to this directory.

10.3.8.7 How to Build and Run the Project to Check the Find Managers Rule

You can build and test the project to execute the department manager finder ruleset.

Build the project:

	From the dropdown menu next to Run button, select Manage Run Configurations....
	In the Project Properties dialog, click New....
	In the Create Run Configuration dialog, enter the name. For example, enter DeptManagerFinder.
	In the Copy Settings From field, enter Default.
	Click OK.
	With DeptManagerFinder selected, click Edit....
	In the Default Run Target field, click Browse....
	Select DeptManagerFinder.java from the src\com\example directory and click Open.
	In the Edit Run Configuration dialog, click OK.
	In the Project Properties dialog, click OK.

To run the project, select DeptManager Finder in the menu, next to the Run project button. Running the decision point generates output, as shown in code example below:

Michael Hartstein is the manager of dept Marketing
John Russell is the manager of dept Sales
Adam Fripp is the manager of dept Shipping
Den Raphaely is the manager of dept Purchasing
Alexander Hunold is the manager of dept IT
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Steven King is the manager of dept Executive
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Alexander Hunold is the manager of dept IT
Alexander Hunold is the manager of dept IT
Nancy Greenberg is the manager of dept Finance
Den Raphaely is the manager of dept Purchasing
Adam Fripp is the manager of dept Shipping
John Russell is the manager of dept Sales
Jennifer Whalen is the manager of dept Administration
Michael Hartstein is the manager of dept Marketing
Susan Mavris is the manager of dept Human Resources
Hermann Baer is the manager of dept Public Relations
Shelley Higgins is the manager of dept Accounting

When you see duplicate entries in the output, when working with tree mode rules in this example, the duplicate entries are due to multiple rule firings on the same data in a different part of the view object graph.

10.3.9 How to Add and Run the Raises and Retract Employees Rulesets

The sample code that runs the raises ruleset invokes the Decision Point by specifying the view object using the setViewObject method. This invokes the decision function once for each row in the view object. The retract employees ruleset retracts all instances of Employee asserted for each call, so that they do not remain in working memory between calls to the decision function. The action type shown in How to Create the Raise ActionType Java Implementation Class shows how to change the ViewRowImpl attribute values with a ActionType.

For more information, see How to Call a Decision Point with ADF Business Components Facts.

10.3.9.1 How to Add the Raises Ruleset

You now add the raises ruleset.

To add the raises ruleset:

	In Rules Designer, click Create Ruleset....
	In the Create Ruleset dialog, in the Name field enter Raises Ruleset.
	Click OK.

10.3.9.2 How to Create the Raise ActionType Java Implementation Class

To create this part of the sample application and to modify the view object in the raises rule, you need to create a Java implementation class for the abstract class oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of ActionType must implement the abstract exec method.

To create the raise ActionType Java implementation class:

	In Oracle JDeveloper, select the project named Chapter10.
	In the Application Navigator, select the Application Sources folder.
	Right-click and from the list select New....
	In the New Gallery, in the Categories area select General.
	In the New Gallery, in the Items area select Java Class. Click OK.
	In the Create Java Class dialog, configure the following properties:	Enter the Name value RaiseAction.

	Enter the Package value com.example.

	Enter the Extends value oracle.rules.sdk2.decisionpoint.ActionType.

	Click OK.Oracle JDeveloper displays the Java Class.

	Replace this code with the code example showing actiontype java implementation as shown below:package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new boolean[]{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

 public double getRaisePercent() {
 return raisePercent;
 }
}

	In the Application Navigator, right click the RaiseAction.java and from the list select Make.

10.3.9.3 How to Import the Raise Action Java Fact

You just created a new Java class. You import this class as a Java fact type in Rules Designer to use later when you create rules.

To create the Java fact type:

	In Rules Designer, select the ManagerRules.rules dictionary.
	Click the Facts navigation tab and select the Java Facts tab.
	Click Create....
	In the Create Java Fact dialog, in the Classes area navigate in the tree and expand com and example to display the RaiseAction check box.
	Select the RaiseAction check box.
	Click OK.This adds the Raise Action fact type to the Java Facts table.

10.3.9.4 How to Add the 12 Year Raise Rule

This rule shows how to use action types to update database entries.

To add 12 year raise rule:

	In Rules Designer in the Raises Ruleset, click Create Rule.
	Change the rule name by selecting Rule_1 and entering the value: Longer than 12 years.
	Click Show Advanced Settings. For more information, see How to Show and Hide Advanced Settings in a Rule or Decision Table.
	Select Advanced Mode.
	Enter the 12 year raise rules, as shown in this example:IF
Employee is Employee
and
CurrentDate is a CurrentDate and
Duration.years between(Employee.HireDate, CurrentDate.date) >=12
THEN
assert new RaiseAction(<add property> raisePercent: .03, viewRowImple:Employee.ViewRowImpl)
retract Employee

10.3.9.5 How to Add the Employee Raises Decision Function

Now create the decision function for the employee raises and the retract all employees rulesets.

To add a decision function:

	Click the Decision Functions navigation tab.
	In the Decision Functions area, click Create.... This displays the Edit Decision Function dialog.
	Update the decision function fields as follows:	Enter Name value EmployeeRaises.

	In the Inputs area, click the Add Input and edit the input information as follows:

	Click the Fact Type field and select Employee from the list.

In this decision function you do not define any outputs, because you use the ActionType API for taking action rather than producing output.

	In the Rulesets & Decision Functions area, move the following items from the Available area to the Selected area, in the specified order.

	DecisionPointDictionary.Preprocessing

	Raises Ruleset

	Retract Employees Ruleset

	DecisionPointDictionary.Postprocessing

	Ensure that the items in the Selected area are in this order: DecisionPointDicitonary.Preprocessing, Raises Ruleset, Retract Employees Ruleset, DecisionPointDictionary.PostProcessing.If they are not, select an item and use the Move Up and Move Down buttons to correct the order.

	Click OK.

10.3.9.6 How to Add the Employee Raises Java Class

Add the employee raises class. This executes the decision function.

To add the employee raises class:

	Select the Chapter10 project.
	Right-click and select New....
	In the New Gallery, in the Categories area select General.
	In the New Gallery, in the Items area, select Java Class. Click OK.
	In the Name field, enter EmployeeRaises. Click OK.
	Replace the contents of this class with the deptmanagerfinder class code shown below:

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class EmployeeRaises {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";
 private static final String DF_NAME = "EmployeeRaises";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public EmployeeRaises() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }

 for (DecisionPoint.NamedValue result : point.getResults()){
 System.out.println(result.getName() + " " + result.getValue());
 }

 }

 public static void main(String[] args) {
 new EmployeeRaises().run();
 }
}

10.3.9.7 How to Copy Dictionary to MDS Accessible Location

Copy the updated dictionary to the MDS accessible location.

To copy dictionary to MDS accessible location:

	In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10 folder and the Chapter10 project and copy the oracle directory that contains the dictionary.
	In the application directory for Chapter10, above the Chapter10 project, navigate to the .adf directory.
	Copy the oracle folder to this directory.

10.3.9.8 How to Build and Run the Project to Check the Raises Rule

You can build and test the project by running employee raises ruleset.

To build the project:

	From the dropdown menu next to Run button, select Manage Run Configurations....
	In the Project Properties dialog, click New....
	In the Create Run Configuration dialog, enter the name. For example, enter EmployeeRaises.
	In the Copy Settings From field, enter Default. Click OK.
	With EmployeeRaises selected, click Edit....
	In the Default Run Target field, click Browse....
	Select EmployeeRaises.java from the src\com\example folder. Click Open.
	In the Edit Run Configuration dialog, click OK.
	In the Project Properties dialog, click OK.

To run the project, select EmployeeRaises in the menu, next to the Run project button. Oracle JDeveloper displays the output as shown in example below:

raise for 100 0.03=>81.7
raise for 101 0.03=>1872.46
raise for 102 0.03=>60596.78
raise for 103 0.03=>31146.26
raise for 104 0.03=>20159.43
raise for 108 0.03=>35822.68
raise for 109 0.03=>26084.5
raise for 114 0.03=>27500.92
raise for 115 0.03=>7524.5
raise for 120 0.03=>16262.34
raise for 121 0.03=>16183.41
raise for 122 0.03=>15591.35
raise for 131 0.03=>3671.33
raise for 133 0.03=>4567.98
raise for 137 0.03=>4838.1
raise for 141 0.03=>4703.71
raise for 142 0.03=>4044.79
raise for 145 0.03=>17734.79
raise for 146 0.03=>17101.39
raise for 147 0.03=>15201.23
raise for 150 0.03=>12667.7
raise for 151 0.03=>12034.32
raise for 156 0.03=>13047.73
raise for 157 0.03=>12395.35
raise for 158 0.03=>11400.93
raise for 159 0.03=>10134.16
raise for 168 0.03=>14567.86
raise for 174 0.03=>13934.48
raise for 175 0.03=>11147.58
raise for 184 0.03=>5480.03
raise for 185 0.03=>5193.76
raise for 192 0.03=>5219.1
raise for 193 0.03=>4940.41
raise for 200 0.03=>5740.99
raise for 201 0.03=>16962.05
raise for 203 0.03=>8481.03
raise for 204 0.03=>13047.73
raise for 205 0.03=>15657.27
raise for 206 0.03=>10829.62

11 Working with Decision Components in SOA Applications

This chapter discusses the Decision Components that support Oracle Business Rules. It also covers how to use a Decision Component as a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is an SCA component that can be used within a composite and wired to a BPEL component. Apart from that, Decision Components are used for the dynamic routing capability of Mediator and Advanced Routing Rules in Human Workflow.

This chapter includes the following sections:

	Introduction to Decision Components

	Working with a Decision Component

	Decision Service Architecture

11.1 Introduction to Decision Components

A Decision Component is a web service that wraps a rule session to the underlying decision function.

A Decision Component consists of the following:

	Rules or Decision Tables that are evaluated using the Rules Engine. These are defined using Rules Designer and stored in a business rules dictionary.

	Metadata that describes facts required for specific rules to be evaluated. Rulesets that contain rules or Decision Tables are exposed as a service with facts that are input and output. These facts must be exposed through XSD definitions.

For example, a credit rating ruleset may expect a customer ID and previous loan history as facts, but a pension payment ruleset may expect a value with the years of employee service, salary, and age as facts.

For more information, see Working with Decision Component Metadata.

	A web service wraps the input, output, and the call to the underlying rule engine.

This service lets business processes assert and retract facts as part of the process. In some cases, all facts can be asserted from the business process as one unit. In other cases, the business process can incrementally assert facts and eventually consult the rule engine for inferences. Therefore, the service has to support both stateless and stateful interactions.

You can create a variety of such business rules service components.

For more information, see Developing SOA Applications with Oracle SOA Suite.

11.2 Working with a Decision Component

Using Oracle JDeveloper with Rules Designer these tools automatically generate all required metadata and WSDL operations.

The Decision Component can be integrated into a SOA composite application in the following ways:

	Create a Decision Component as a standalone component in the SOA Composite Editor. In this scenario, the Decision Service is exposed on the composite level and thus can be invoked from any web service client.

For more information, see Getting Started with Oracle Business Rules in Developing SOA Applications with Oracle SOA Suite.

	Create a Decision Component in the SOA Composite Editor that you later associate with a BPEL process. In this scenario the Decision Service is not exposed on the composite level. However it can be wired to any other component within the composite, such as BPEL, Oracle Mediator, and Oracle Human Workflow.

For more information, see Getting Started with Oracle Business Rules in Developing SOA Applications with Oracle SOA Suite.

	Create a Decision Component within the Human Task editor of a human task component.

This integration provides the following benefits:

	Dynamic processing: provides for intelligent routing, validation of policies within a process, and constraint checks.

	Integration with ad hoc human tasks: provides policy-based task assignment, various escalation policies, and load balancing of tasks.

11.2.1 Working with Decision Component Metadata

A Decision Component is defined by the following files:

	Decision Service Metadata (.decs) File

	SCA Component Type (.componentType) File

	Decision Component Entry in composite.xml

Typically, Oracle JDeveloper generates and maintains these files.

	Decision Service Metadata (.decs) File

Every Decision Component within a composite comprises one business rule metadata file. The business rule metadata file provides information about the location of the component business rule dictionary and the Decision Services exposed by the Decision Component.

One Decision Component might expose one or more Decision Services. For example, a CreditRating Decision Component might expose two services, CheckEligibility and CalculateCreditRating.Oracle Fusion Middleware 11g Release 1 (11.1.1) onwards, the Decision Service metadata comprises of the decision function name that is exposed as a web service. For projects that are migrated from older releases of Oracle SOA Suite, the Decision Service metadata typically has more information depending on the interaction pattern used in 10.1.3.x.

The business rule metadata file (business_rule_name.decs) defines the contract between the components involved in the interaction of the business rule with the design time and back-end Oracle Rules Engine.

This file is in the SOA Content area of the Application Navigator in Oracle JDeveloper for your SOA composite application. Table 11-1 describes the top-level elements in the Decision service .decs file.

Table 11-1 Decision Metadata File (.decs) Top-level Elements

	Element	Description
	ruleEngineProvider

	The business_rule_name.decs file ruleEngineProvider element includes details about the rule dictionary to use:

<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
 <repository type="SCA-Archive">
 <path>AutoLoanComposite/oracle/rules/AutoLoanRules.rules</path>
 </repository>
</ruleEngineProvider>

The repository type is set to SCA-Archive for Decision Components. This indicates that the rule dictionary is located in the service component architecture archive. The path is relative and interpreted differently by the following:

	Design time — The path is prefixed with Oramds:/. Metadata service (MDS) APIs open the rule dictionary. Therefore, the full path to the dictionary is as follows:

Oramds:/AutoLoanComposite/oracle/rules/AutoLoanRules.rules

	Runtime (business rule service engine) — The business rule service engine uses the Oracle Business Rules SDK RuleRepository API to open the rule dictionary located in MDS. The composite name prefix, for example (AutoLoanComposite) is removed from the path and the metadata manager assumes the existence of oracle/rules/AutoLoanRules.rules relative to the composite home directory.

	decisionService

	A Decision service is a web service (or SOA) enabler of business rules. It is a service in the sense of a web service, thus opening the world of business rules to service-oriented architectures (SOA). In 12c (12.2.1), a Decision service consists of metadata and a WSDL contract for the service.

The business_rule_name.decs file decisionService element defines the metadata that describes business rules exposed as a web service.

In general, a Decision service includes the following elements:

	Target namespace

	Reference to the back-end Oracle Rules Engine (this is the link to the rule dictionary). Note that OracleRulesSDK is the reference name that matches the name of the Oracle Rules Engine provider in ruleEngineProvider element.

	Name (CreditRatingService in the following example)

	Additional information about the dictionary name and ruleset to use

	List of supported operations (patterns)

Apart from the operations (patterns), the parameter types (or fact types) of operations are specified (and validated later at runtime). Therefore, every Decision service exposes a strongly-typed contract.

	SCA Component Type (.componentType) File

An SCA business_rule_name.componentType file is included with each Decision Component. This file lists the services exposed by the business rules service component. In the following sample, two services are exposed: CreditRatingService and LoanAdvisorService.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [5/24/07 9:27 AM]. -->
<componentType xmlns="http://xmlns.oracle.com/sca/1.0">
 <service name="CreditRatingService">
 <interface.wsdl
interface="http://xmlns.oracle.com/creditrating/Rating#wsdl.interface(IDecisionSer
vice)"/>
 </service>
 <service name="LoanAdvisorService">
 <interface.wsdl
interface="http://xmlns.oracle.com/loanoffer/Advisor#wsdl.interface(IDecisionServi
ce)"/>
 </service>
</componentType>

	Decision Component Entry in composite.xml

An entry in composite.xml is created for a Decision Component. For example,

<component name="OracleRules1">
 <implementation.decision src="OracleRules1.decs"/>
</component>

The business rules service engine uses the information from this implementation type to process requests for the Service Engine. From an SCA perspective, a Decision Component is a new "implementation type".

11.2.2 Working with Decision Components that Expose a Decision Function

You can use a decision service to expose an Oracle Business Rules Decision Function as a service. A Decision Function is a function you use to call rules from a Java EE application or from another component.

The code example below shows a business_rule_name.decs file decisionServices element that defines the metadata for an Oracle Business Rules Decision Function exposed as a service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules" name="PurchaseItems">
 <ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
 <repository type="SCA-Archive">
 <path>PurchasingSampleProject/oracle/rules/com/example/PurchaseItems.rules</path>
 </repository>
 </ruleEngineProvider>
 <decisionService targetNamespace="http://xmlns.oracle.com/PurchaseItems/PurchaseItems_DecisionService_ValidatePurchasesDF"
ruleEngineProviderReference="OracleRulesSDK" name="PurchaseItems_DecisionService_ValidatePurchasesDF">
 <catalog>PurchaseItems</catalog>
 <pattern name="CallFunctionStateless">
 <arguments>
 <call>com.example.PurchaseItems.ValidatePurchasesDF</call>
 </arguments>
 </pattern>
 <pattern name="CallFunctionStateful">
 <arguments>
 <call>com.example.PurchaseItems.ValidatePurchasesDF</call>
 </arguments>
 </pattern>
 </decisionService>
</decisionServices>

In this case, the decision function ValidatePurchasesDF itself is specified entirely in the PurchaseItems.rules file.

For more information, see Working with Decision Functions .

11.2.3 Using Stateful Interactions with a Decision Component

To provide a stateful decision service you create a decision function and specify that the decision function is not stateless. To do so, clear the Stateless check box in a decision function.

Note the following details about stateful interactions with a Decision Component (also see Figure 11-2):

	Rule sessions from the cache and those from the pool are mutually exclusive:

	The rule session pool is for simple, stateless interactions only.

	The rule session cache keeps the state of a rule session across Decision service requests.

11.2.4 What You Need to Know About Stateful Interactions with Decision Components

A Decision Component running in a Business Rules service engine supports either stateful or stateless operation. The Reset Session (stateless) check box in the Create Business Rules dialog provides support for these two modes of operation.

When the Reset Session (stateless) check box selected, this indicates stateless operation.

When Reset Session (stateless) check box is cleared, the underlying Oracle Business Rules object is kept in memory of the Business Rules service engine at a separate location (so that it is not given back to the Rule Session Pool when the operation is finished). Only use stateful operation if you know you need this option (some errors can occur at runtime when using stateful operation and these errors could use a significant amount of service engine memory).

When Reset Session (stateless) check box is cleared, a subsequent use of the Decision Component reuses the cached RuleSession object, with all its state information from the callFunctionStateful invocation, and then releases it back to the Rule Session pool after the callFunctionStateless operation is finished.

11.3 Decision Service Architecture

A Decision service consists only of the service description. All other artifacts are shared within a Decision Component.

This is shown in Figure 11-1:

Figure 11-1 Decision Service Architecture
[image: Description of Figure 11-1 follows]

The heart of runtime is the decision service cache, which is organized in a tree structure. Every Decision Component owns a subtree of that cache (depending on the composite distinguished name (DN), component, and service name). In this regard, decision services of a Decision Component share the following data:

	Metadata of the Decision Component

	Fact type metadata.

	Function metadata.

	Ruleset metadata.

	Rule session pool

	One rule session pool is created per Decision Component.

	The rule sessions in the pool are pre-initialized with the data model Oracle RL and the ruleset Oracle RL already executed.

	New rule sessions are created on demand.

	Rule sessions can be reused for a configurable number of times.

	The initial size of the rule session pool is configurable.

	Stateful rule session cache

	A special cache is maintained for stateful rule sessions.

For more information, see Using Stateful Interactions with a Decision Component.

	Deployment artifacts

	Decision Component deployment can end up in class generation for JAXB fact types. The classes can be shared across the composite.

Figure 11-2 shows how both stateless and stateful rule sessions interact with the rule session pool and how stateful rule sessions interact with the stateful rule session cache during a decision service request.

Figure 11-2 Stateless and Stateful Rule Session Usage for a Decision Service Request
[image: Description of Figure 11-2 follows]

12 Using Oracle SOA Composer with Oracle Business Rules at Runtime

This chapter describes how to use the Oracle SOA Composer application to work with a deployed dictionary and tasks that are part of a SOA composite application.

The chapter includes the following sections:

	Introduction to Oracle SOA Composer

	Setting Accessibility Options

	Opening and Viewing an Oracle Business Rules Dictionary

	Getting Started with Editing a Dictionary

	Editing Rules in an Oracle Business Rules Dictionary

	Using the Oracle SOA Composer Browser Windows

	Editing Decision Tables in an Oracle Business Rules Dictionary

	Comparing and Merging Oracle Business Rules Dictionaries

	Localizing Names of Resources in Oracle Business Rules

	Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates

	Validating and Diagnosing an Oracle Business Rules Dictionary

	Working with Tasks

12.1 Introduction to Oracle SOA Composer

Oracle SOA Composer is a web-based application that enables you to work with Oracle Business Rules dictionaries and tasks for deployed applications. Oracle SOA Composer accesses a dictionary or a task in an MDS repository.

Oracle SOA Composer supports viewing and editing different types of metadata artifacts, such as DVM documents, SOA composites, and Oracle Business Rules dictionaries. You can view the different types of metadata by Types View or Deployment View, as shown in Figure 12-1.

The Deployment View is the default. Choose the Types View to see artifacts listed by type: Business Rules, Domain Value Maps, Human Tasks, or SOA Composites.

Figure 12-1 Oracle SOA Composer Types View
[image: Description of Figure 12-1 follows]

The Deployment View has two nodes: SOA-Infra and Shared. The default node is a SOA partition created and managed in Enterprise Manager. The Shared folder displays rules or DVMs created in JDeveloper and deployed as shared artifacts.

From either view, click artifacts in the navigation tree to open them in separate tabs.

In SOA Composer, the Verbal Rules and Business Phrases features do not appear if you have not installed BPM.

Use the search field just above the View drop down to quickly find and filter types by name, as shown in Figure 12-2. Click to open artifacts from this page.

Figure 12-2 Search and Filter
[image: Description of Figure 12-2 follows]

12.1.1 Creating and Publishing Sessions

Click an artifact to open it in read-only mode. If you plan to make changes to an artifact, click the Edit Session button. Most action buttons only become active if you are in a session. When you are done making changes, click Publish. All changes in a session are committed to the main repository, can be seen by others, and the server will begin executing. If you have validation errors, you cannot publish, though you can save rules with validation errors and work on them again in another session.

The Discard button enables you to cancel out of changes that you do not want to save. If, after making some changes in a session, you wanted to go back to the original state that you started from, click Exit Session. Click Edit Session again to see the last saved session information.

These icons and buttons provide more information:

Table 12-1 SOA Composer Buttons

	Button	Description
	[image: Graphic is described in surrounding text] Session Info

	Hover over this icon to see Session Details.

	[image: Graphic is described in surrounding text] Maximize

	Click to maximize the tabs section. This increases screen space when writing or editing rules. Click again to restore the view.

	[image: Graphic is described in surrounding text] Validate

	Click to validate your changes. The system validates when you save and you can save rules with validation errors, though you cannot publish. For more information about validating, see Validating and Diagnosing an Oracle Business Rules Dictionary.

	[image: Graphic is described in surrounding text] Bookmark

	Click the bookmark if you want to avoid the search/deployment view in a future session. For more information, see Creating a Bookmark.

	Save Changes in Current Tab or Save Changes in All Tabs

	Click to save as appropriate.

	Get Context Sensitive Help

	Click to view the online help file.

	Close All, Close Others

	Click the drop down and select to close tabs.

	[image: Graphic is described in surrounding text]

	The Actions drop down enables you to use the compare and merge dictionaries, work with Decision Tables in Microsoft Excel, and review dictionary settings.

Diff Merge enables you to compare the currently selected dictionary with the File System, the Published Version, or the Saved Version. If there are differences, you can choose to merge the dictionaries.

For more information about comparing or merging dictionaries, see Comparing and Merging Oracle Business Rules Dictionaries.

Import From Excel enables you to import decision tables from Excel.

Export To Excel enables you to export decision tables and edit them in Excel.

For more information about working with Excel, see Editing Decision Tables in Microsoft Excel.

Dictionary Settings enables you to set dictionary preferences.

For more information about reviewing dictionary settings, see Reviewing Dictionary Settings.

	Diagnostics, History Center, Save Log, Validation Log

	At the bottom of the SOA Composer page are four tabs: Diagnostics, History Center, Save Log, and Validation Log. Use these tabs to validate changes to rules and perform and resolve changes to artifacts.

For more information about these tabs, see Validating and Diagnosing an Oracle Business Rules Dictionary.

12.1.1.1 Publishing Changes for an Oracle Business Rules Dictionary

After you verify dictionary modifications, click Publish to commit those changes to the MDS repository.

To publish changes to an Oracle Business Rules dictionary:

	Click the Publish menu item.
	In the Confirm dialog, click Yes if you want to make the changes in the MDS repository. Click No if you do not want to make the changes in the MDS repository.Remember to update the runtime changes into Rule Editor ADF following the tasks described in Importing Runtime Rules Changes From Repository Into JDeveloper

	When you open the dictionary after saving the edit session and deploying the composites, SOA composer opens the last saved edit session. When multiple users are editing the same dictionary, Oracle SOA Composer shows a message that the dictionary is being edited by another user and asks for a confirmation. When multiple users work on a single dictionary, only the last publish is persisted.

To open the new dictionary click Discard, Clear all session edits and save changes button in the top menu.

Note:
A dictionary with validation errors can be saved, but it can be committed only after correcting the validation issues.

12.1.1.2 Creating a Bookmark

Create a bookmark to avoid the search or deployment view.

To open a dictionary using a known URL:

	In an open dictionary, click Bookmark in the toolbar of Oracle SOA Composer.
	Copy the URL and paste in a browser to launch SOA composer with the bookmarked artifact opened in a tab.Figure 12-3 Obtain the URL for an Open Dictionary
[image: Description of Figure 12-3 follows]

	In a browser, use the saved URL to directly access the dictionary.For example,

http://SERVER_NAME_OR_IP_ADDRESS/soa/composer?docPath=/deployed-composites/ default/BusinessRulesTest_rev1.0/oracle/rules/businessrulestest/OrderBooking.rules

According to the preceding example, composites are stored as per the following structure: deployed-composites/composite name_rev composite revision/oracle/rules/dictionary package path/dictionary name.rules

12.1.1.3 Reviewing Dictionary Settings

Click the Dictionary Setting button to set preferences.

Figure 12-4 Dictionary Settings Dialog
[image: Description of Figure 12-4 follows]

Table 12-2 Dictionary Settings

	Dialog Sections	Settings
	Execution section

	Rule Execution Algorithm: choose RETE or Non-RETE. For more information, see 1.3 Oracle Business Rules Engine Architecture. The Rete Algorithm and The Non-Rete Algorithm

	Choices section

	Phrase Suggestions: choose Business Phrases, Auto Suggestions, or All.

	Data Model section

	Global Qualifier Pattern: confirm {member} of {fact}.

Translations: click to translate {member} of {fact}.

Validate: click to validate {member} of {fact}.

12.1.2 Using Oracle SOA Composer User Authentication

Figure 12-5 shows the Oracle SOA Composer login page. This page allows Oracle SOA Composer to authenticate the specified user.

Figure 12-5 Oracle Oracle SOA Composer Login Page
[image: Description of Figure 12-5 follows]

To login to Oracle SOA Composer:

	Access Oracle SOA Composer using the following URL in your browser address bar:http://SERVER_NAME_OR_IP_ADDRESS/soa/composer

	In the Oracle SOA Composer login page, in the Username field, enter a user name.
	In the Password field, enter a password.
	Click Sign In.

For information about creating and managing users and groups, see Oracle WebLogic Server Administration Console Online Help.

12.1.3 What You Need to Know About SOA Composer Access Control and User Authentication

Oracle SOA Composer supports user and password access control and only authenticated users can use Oracle SOA Composer. However, Oracle SOA Composer does not provide finer grained access control. For example, Oracle SOA Composer does not support access control for individual rulesets or rules within a dictionary.

Oracle SOA Composer does support access control to metadata. Using Oracle SOA Composer, only users with the SOADesigner application role can access the metadata from Oracle SOA Composer. By default, all users with WLS Administrator privileges have this role.

If a user without the SOADesigner role logs into Oracle SOA Composer, a message appears, stating that the user is not authorized to modify the SOA metadata.

For more information about assigning the SOADesigner role to a nonadmin user who requires access to Oracle SOA Composer, see Managing Application Roles in Oracle Enterprise Manager Fusion Middleware Control Console in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

12.2 Setting Accessibility Options

Accessibility settings help you read all components of the application.

You can set accessibility options in SOA Composer for the current instance, or for all instances.

12.2.1 How to Set Accessibility Features Before Logging In

SOA Composer presents the Accessibility menu on the login page, so you can configure accessibility before you log in. These settings can be persisted for only the current session or for all sessions.

To set accessibility options for the current session only:

	Launch SOA Composer.
	On the login page, click Accessibility in the top right corner.The Edit Accessibility Settings page appears, as shown in Figure 12-6.

Figure 12-6 Edit Accessibility Settings Page
[image: Description of Figure 12-6 follows]

	Select any of the following options:	Use screen reader.

	Use high contrast colors.

	Use large fonts.

	To save the new settings only for this session, click Use for this session. To save the settings for all sessions, click Save as preference and use.

12.2.2 How to Set Accessibility Options After Logging In

Once you log in to SOA Composer, you can configure accessibility options from any page. This changes the user preferences, which are retained through all sessions until you change them again.

To set accessibility options after logging in:

	Launch SOA Composer and log in.
	From any page, select Preferences in the top right corner.The Preferences dialog appears.

	In the Preferences column, click Accessibility.The Accessibility Preferences appear, as shown in Figure 12-7.

Figure 12-7 Preferences Dialog
[image: Description of Figure 12-7 follows]

	In the Mode Settings field, select Enable screen reader mode if you use a screen reader. Select Disable screen reader mode if you do not use a screen reader.
	In the Contrast Settings field, select Use high contrast to increase the contrast between objects on the console; otherwise, select Use normal contrast.
	In the Font Settings field, select Use large fonts to increase the font size; otherwise, select Use normal fonts.
	Click OK.

12.3 Opening and Viewing an Oracle Business Rules Dictionary

When you open Oracle SOA Composer, it connects to MDS and displays the available composite applications that contain dictionaries. In addition, it lists the shared dictionaries, and these shared dictionaries can also be viewed and edited.

As shown in Figure 12-8, Oracle SOA Composer shows a navigation tree that displays a left-side panel with a list of metadata artifacts. Details for the selected item are shown on the right-hand side. Oracle SOA Composer includes the following tabs:

	Rulesets

	Value Sets

	Globals

	Business Phrases

	Tests

	Explorer

	Facts

	Decision Functions

	Links

	Translations

Figure 12-8 Rules Tabs
[image: Description of Figure 12-8 follows]

Note:
In SOA Composer, the Verbal Rules and Business Phrases features do not appear if you have not installed BPM.

12.3.1 How to View and Edit Rulesets

Oracle SOA Composer displays the rulesets in the dictionary, as shown in Figure 12-9. You can select a ruleset to display a detailed view of the ruleset. You can add and delete rulesets and rules.

Figure 12-9 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to View Rules
[image: Description of Figure 12-9 follows]

To use the ruleset tab:

For detailed documentation of fields and other UI controls, click Help, Help for This Page from within SOA Composer.

	In Oracle SOA Composer, open a Rules file.
	Click the Rulesets tab, and click the Create Session button. The action buttons are enabled.
	Click the down arrow next to ClaimRules, as shown in Figure 12-9, and choose a Ruleset. The ruleset is displayed and is editable. You can also add or delete rulesets from the toolbar.
	Click the Rules panel to add Decision Tables, Verbal Rules, or General Rules. You can also delete, cut, copy, or paste rules. For information on adding verbal rules in SOA Composer, see How to Add Verbal Rules in SOA Composer.

	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

For more information about Decision Tables, see Editing Decision Tables in an Oracle Business Rules Dictionary.

For more information about Verbal and General Rules, see Editing Rules in an Oracle Business Rules Dictionary

For more information about Rulesets, see Working with Rulesets and Rules .

12.3.1.1 How to Add Verbal Rules in SOA Composer

Verbal rules provide a flexible way to author rules using natural language statements to express rule logic in domain specific sentences.

To add verbal rules in SOA Composer:

	In Oracle SOA Composer, open a Rules file.

	Click the Rulesets tab, and click the Create Session button. The action buttons are enabled.

	Select the Ruleset from the drop down list.

	Click the Rules panel to add Decision Tables, Verbal Rules, or General Rules.

To add Decision Tables, see Adding a Decision Table.

To add Verbal Rules:

	Click the Add icon and select Verbal Rules.

The Verbal Rules window appears.

Figure 12-10 Verbal Rule window
[image: Description of Figure 12-10 follows]

	In the If field, add a test. Once done, add an action in the Then field.

Note that when you add a test or an action, the test or the action becomes editable. Type in a filter in the If field, for example, 'customer number', all related options are displayed in the drop down list.

	Use the up/down arrow keys to select and use the right arrow key on the selected option to get similar choices.

To get more choices in the list, scroll to the end of the drop down list and select the More option by using either keyboard or mouse.

	From the list, select existing business phrase or you can instantiate a new business phrase based on what you typed.

Once a choice is set, the text field is no longer editable and the existing parameters become links. The links when clicked becomes editable. To set the value, double-click the links.

Note:
Some of the important keyboard-based interface for Verbal Rules are:

	Copy: ctrl + c

	Paste: ctrl + v

	Cut: ctrl + x

	Move row up: ctrl + up

	Move selection up: up arrow

	Move row down: ctrl + down

	Move selection down: down arrow

	Delete row: ctrl + delete

	Add new row: ctrl + enter

	Edit row: enter

Important keyboard gestures for setting parameter values:

	Avoid having a selected row while specifying parameter values. Since 'enter' makes the selected row editable and you may be trying to set a parameter value.

	Using the Esc button within the parameter text field converts it back to a link without setting the value.

	Using tab or entering key values does not make the link editable when its in focus. You must use the mouse or use the enter key to activate the link.

	To set a parameter value, you can tab out of the parameter text field or press enter.

	When done, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

To add General Rules, see How to Add General Rules.

12.3.2 How to View and Edit Value Sets

When you open a dictionary and select the Value Sets tab, if the dictionary contains value sets, the table shows all available value sets. Value sets from linked dictionaries are also displayed. You can select a linked value set and click the Edit button to view the values. However, a linked value set is not editable even in the edit mode.

For information on the Oracle SOA Composer edit mode, see Getting Started with Editing a Dictionary.

To view value sets in Oracle SOA Composer:

For detailed documentation of fields and other UI controls, click Help, Help for This Page from within SOA Composer.

	In Oracle SOA Composer, open a Rules file.
	Click the Value Sets tab, and click the Create Session button. The action buttons are enabled, as shown in Figure 12-11.
	Click + and select Value Set to add a value set to the dictionary.
	Click + and select Range Value Set to create a range value set.Figure 12-11 Using the Oracle SOA Composer Rules Dictionary Value Sets Tab
[image: Description of Figure 12-11 follows]

	Click + to add values in the table. You can click in a row to make it editable. Selected rows can also be deleted or moved up or down.
	The Name, Description, and Data Type cannot be changed only for 'enum' type value sets. They are editable otherwise.
	The Include Disallowed Values in Tests controls whether cleared values from the Values list are included in tests.
	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.3.3 How to View and Edit Globals

When you open a dictionary Oracle SOA Composer displays the Globals tab. Globals can be final or not and can be edited in SOA Composer.

For the Value field, you can use the expression builder to set the value. To check for validity, you can click the Validate button.

To view globals in Oracle SOA Composer:

	In Oracle SOA Composer, open a Rules file.
	Click the Globals tab, and click the Create Session button, as shown in Figure 12-12.Figure 12-12 Using the Oracle SOA Composer Rules Dictionary Globals Tab
[image: Description of Figure 12-12 follows]

	Click + to add a Global. Enter a Name, Description, and Value.
	Choose a Value Set and Type from the drop down.
	Check the Final check box to indicate whether the global can be changed at runtime.
	Check the Constant check box to indicate if the global is a constant or can be modified.
	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.3.4 How to View and Edit Business Phrases

Use the Business Phrases tab to view and manage business phrases in your rules project.

Note:
In SOA Composer, Verbal Rules and Business Phrases features do not appear if you have not installed BPM.

To edit Business Phrase:

	In Oracle SOA Composer, open a Rules file.

	Click the Business Phrases tab, and click the Create Session button. The action buttons are enabled, as shown in Figure 12-13.

Figure 12-13 Using the Oracle SOA Composer Rules Dictionary Business Phrases Tab
[image: Description of Figure 12-13 follows]

	Click the action buttons to add, cut, copy or paste.

To add a Business Phrase, enter the following details:

	Phrase - A phrase can be a test or an action. It can be an English phrase, for example, "calculate premium as {threshold} of {percentage}". You can mark the phrase as a draft to edit later by selecting the Make Draft button.

	Parameters - You can edit, add, or delete the parameters in the parameters table. You can drag and drop parameters into the phrase field. You can also use the Insert parameter link to drop parameters into the phrase.

	Mapping - The mapping section is used to map the business phrase to the internal test/action.

	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

For more information about business phrases, see Introduction to Verbal Rules and Business Phrases.

12.3.5 How to View and Edit Tests

At runtime, you can use SOA Composer to regression test rules. This enables business users to quickly check if a modified rule changes the existing functionality. The Tests tab only appears if you have a deployed composite and are in a SOA Composer session.

To view and edit tests:

	In Oracle SOA Composer, open a Rules file.
	Click the Tests tab, and click the Create Session button. The action buttons are enabled, as shown in Figure 12-14.Figure 12-14 Using the Oracle SOA Composer Rules Dictionary Tests Tab
[image: Description of Figure 12-14 follows]

	You can create and run Test Suites and Test Templates.For more information about testing and validating rules at runtime, see Testing Rules in SOA Composer.

	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.3.6 How to View Explorer

To view the Explorer tab:

	In Oracle SOA Composer, open a Rules file.
	Click the Explorer tab, as shown in Figure 12-15. The Explorer tab is used to view the data, its type and description. You cannot make any changes in the Explorer table.

Figure 12-15 Using the Oracle SOA Composer Rules Dictionary Explorer Tab
[image: Description of Figure 12-15 follows]

12.3.7 How to View and Edit Facts

To view and edit facts:

	In Oracle SOA Composer, open a Rules file.
	Click the Facts tab, and click the Create Session button. The action buttons are enabled. Only RL facts can be created in SOA Composer, as shown in Figure 12-16.Figure 12-16 Using the Oracle SOA Composer Rules Dictionary Facts Tab
[image: Description of Figure 12-16 follows]

	Select a fact and click the Edit Facts button to open the Edit Facts dialog. You can edit RL and XML facts here, but Java and ADFBC facts are read-only.
	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.3.8 How to View Decision Functions

In Oracle SOA Composer, you can view the decision functions that are available to the current dictionary by using the Decision Functions tab. Currently, even in a session, you can only modify the following fields and options:

	Description

	Rule Firing Limit

	Check rule flow

	Make stateless

	Available Rulesets to fire

You cannot create any decision function, rename an existing decision function, or add or delete any input or output.

To view decision function names in Oracle SOA Composer:

	In Oracle SOA Composer, open a Rules file.
	Click the Decision Functions tab.
	You can view information on the following tabs: Inputs, Initial Actions, Outputs, and Rulesets Decision Functions as shown in Figure 12-17.

Figure 12-17 Viewing Decision Functions
[image: Description of Figure 12-17 follows]

12.3.9 How to View Linked Dictionary Names

In Oracle SOA Composer, you can view the names of the dictionaries to which the current dictionary is linked by using the Links tab as shown in Figure 12-18. Currently, even in a session, you can view the linked dictionary names, but you cannot link to a dictionary or delete an existing link to any dictionary.

To view linked dictionary names in Oracle SOA Composer:

	In Oracle SOA Composer, open a Rules file.
	Click the Links tab, as shown in Figure 12-18.Figure 12-18 Viewing the Linked Dictionary Name
[image: Description of Figure 12-18 follows]

	Select to Prefix Linked Names.
	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.3.10 How to Work With Dictionary Links in an Oracle Business Rules Dictionary

An Oracle Business Rules dictionary can be linked to other dictionaries. The complete data model defined by a dictionary and its linked dictionaries is called a combined dictionary. You can create multiple links to the same dictionary. However, in this case, all but the first link is ignored.

You cannot use Oracle SOA Composer to link dictionaries. However, if a deployed composite already has linked dictionaries, using Oracle SOA Composer, you can view the linked dictionary names and make use of the Globals, Value Sets, and Rulesets of the linked dictionaries across applications. For example, you have an application called App1 that contains a dictionary called Dict1. Dict1 is linked to another dictionary called Dict2. Because Dict1 is linked to Dict2, the objects of Dict2 will be available for use in App1.

For more information on viewing linked dictionary names, see How to View Linked Dictionary Names.

In Oracle SOA Composer, you can use the Prefix Linked Names check box in the Links table to either display or hide the linked dictionary name that is prefixed to the all the items in the dictionary such as Globals, Value Sets, and Rulesets. Selecting the check box prefixes facts from the linked dictionary with its dictionary name, and deselecting hides the linked dictionary facts prefix. By default, the Prefix Linked Names check box is in selected state as shown in Figure 12-19.

Figure 12-19 Using the Links Tab
[image: Description of Figure 12-19 follows]

For more information about linked dictionaries, see What You Need to Know About Dictionary Linking.

12.3.11 How to View and Edit Translations

Use the Translations tab to view the phrases included in the selected dictionary and their translated strings.

The translation table contains all translated strings in the current locale as well as earlier locales. For example, the current locale is Japanese and you edit some translations and save them. If you log out, and then log back in with a different locale, for example, English, then the translation table will contain columns for both English and Japanese.

To translate phrases:

	In Oracle SOA Composer, open a Rules file.
	Click the Translations tab, as shown in Figure 12-20.Figure 12-20 Using the Oracle SOA Composer Translations Tab
[image: Description of Figure 12-20 follows]

	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.4 Getting Started with Editing a Dictionary

When you select and open a dictionary, Oracle SOA Composer shows the dictionary in read-only mode. On each tab in read-only mode, use the Session buttons to make changes and then Save them to a work area. To apply the changes to the runtime version of the dictionary, click Publish.

For more information about how to use SOA Composer features, see Creating and Publishing Sessions.

12.4.1 What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer

In Oracle SOA Composer, number formatting changes based on the browser locale. For example, you are using Oracle SOA Composer with U.S. English as the browser language. You enter a floating-point data, such as 34533223.2345, as a value. If you wish to view the data in any other language, such as French, you need to:

	Modify the browser locale for the instance to French.

	Click the Refresh button of the browser to view the number formatting changes

In French, the value should display as 34533223,2345.

Note:
The grouping and decimal separators specified in Oracle SOA Composer overrides the locale-specific ones.

12.4.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements

You can cut/copy a value set or rule from one dictionary and open another dictionary in composer and paste it. However, cut/copy/paste works between different dictionaries within the same session.

Cutting/copying and pasting feature enables you to quickly create a new rule element based on an existing one, without having to create the new element from scratch.

The buttons in the Figure 12-21 help you with cut, copy and paste options.

Figure 12-21 Cut, Copy and Paste Buttons
[image: Description of Figure 12-21 follows]

Oracle SOA Composer enables you to cut/copy and paste the following elements of a rule:

	Rules

	Patterns

	Conditions

	Actions

	Value sets

Cut/copy/paste is not supported for the following:

	Globals

	Links

	Values

	Decision Functions

Note:
The Paste button is disabled if multiple conditions or actions are selected. The button is enabled only on single selected condition/action. When pasting, the copied/cut items are added at the end of the list.

12.4.3 How to Edit Globals in an Oracle Business Rules Dictionary

In Oracle SOA Composer, selecting the Globals tab shows you a table listing the globals in the dictionary, as shown in Figure 12-22. To edit a global, select the appropriate row, and the entire row becomes editable. Make necessary changes as required.

Figure 12-22 List of Globals in the DIctionary
[image: Description of Figure 12-22 follows]

To add a global, click the Add Global button on the top. A new empty row is added. Make necessary changes to Name, Description, Value, Value Set, Type, Final, Consent. For more information on adding globals, see Working with Oracle Business Rules Globals.

To delete a global, select a row and click the Delete button.

12.4.4 How to Edit Value Sets in an Oracle Business Rules Dictionary

In Oracle SOA Composer, selecting the Value Sets tab displays a master list on the left which displays the value sets in the dictionary, and a detail section with a table that display the values. To edit a value set, click the appropriate Value Set in the master list and then click the value in the detail section that you want to change.

You can create a Range Value Set by clicking the Add button and selecting a type. This adds a new value set in the master list. Adding a range value automatically adds an end point for a range and a value for an LOV based on the datatype. You can modify the newly added value end point or value. Note that the alias is modified when an end point or value is changed.

For more information on adding value sets, see Working with Value Sets and Associating a Value Set with Business Terms.

To cut or copy a value set, select a row and click Cut or Copy. To paste a copied value set, click Paste.

To delete a value set, select a row and click Delete.

To edit Value Sets:

	To edit either a Value Set or a Range Value Set, in Oracle SOA Composer select the Value Sets tab. This displays both master and detail sections for the value sets in the dictionary.
	Select the appropriate Value Set from the master list. This displays the detail table, as shown in Figure 12-23.Figure 12-23 Editing Value Sets
[image: Description of Figure 12-23 follows]

	Edit the appropriate fields in the table. You can click Add Value to add a value, and also select a row and click Delete Value to delete a value.
	To change the order of values in the value set, select a value and then click the up or down arrow to move the selected value.You can change the relative position of values in an LOV value set only; you cannot reorder values in a Range value set.

Only when a value has the Allowed in Actions field selected does the value set display in the condition cell drop down in a Decision Table.

	Click Save Changes in Current Tab to confirm the changes.Click Validate in the menu bar to validate the dictionary while making changes to a Value Set.

12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary

In Oracle SOA Composer, the Decision Functions tab displays a table listing the decision functions that are available to the dictionary, both parent and linked.

You can only modify the following fields and options:

	Description

	Rule Firing Limit

	Check rule flow

	Make stateless

	Initial Actions

	Rulesets and Decision Functions

To edit a decision function:

	To edit a decision function, in Oracle SOA Composer, select the Decision Functions tab. This displays a master list of decision functions on the left, and the detail panel on the right.
	Select the appropriate decision function on the left. This displays the Decision Function Editor dialog box as shown in Figure 12-24.Figure 12-24 Editing a Decision Function
[image: Description of Figure 12-24 follows]

	In the Description field, optionally enter a description.
	Enter the required number value from the Rule Firing Limit list. By default, the selected value is unlimited. However, you can enter an integer value for the rule firing limit and press the Tab key. The newly specified value gets added to the Rule Firing Limit list.
	Select the appropriate decision function options:	Check rule flow: When selected, this option specifies that the rule flow is checked

	Make stateless: When selected specifies the decision function is stateless.

You cannot edit the following:

	Name field

	Inputs tab

	Outputs tab

	In the Initial Actions tab, you can add actions that could be used to change input facts before they are asserted, change the ruleset stack, set the effective date, or even assert output facts. These actions could be used instead of rules, or to "set up" the environment for running rules. Initial Actions always run just before the inputs are asserted and the rules are run. The RL for the actions will be executed just before the inputs are asserted.Consider a situation where a decision function (DF1) calls another decision function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is called, Ruleset2 is also pushed. So when rules start running, rules from both rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in the initial actions, you are calling DF2), you can use initial actions in DF1 to clear the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling DF2.

You can add any required action ranging from assert, call, modify to even conditional actions such as if, else, elseif, while, for, if (advanced), and while (advanced).

The if (advanced) and while (advanced) structs accepts only boolean values. For each of the action conditions, you can add different test form types.

Note:
If decision function DF1 contains DF2 in the Rulesets & Decision Functions tab, then DF2 may not have any initial actions.

	In the Rulesets & Decision Functions tab, use the left and right arrow buttons to move items from the Available box to the Selected box.
	Select an item in the Selected box, and click up or down arrow buttons as appropriate to order the rulesets and the decision functions.
	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

For more information on decision functions, see Working with Decision Functions .

12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component

You can use the Oracle Business Rules Dictionary Editor declarative component to leverage the functionality of editing Rules Dictionaries in any ADF-based Web application. It enables you to edit business rules metadata artifacts, such as Globals, Value Sets, and Rulesets, by using the Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see "Using the Oracle Business Rules Dictionary Editor Declarative Component" in Developing SOA Applications with Oracle SOA Suite.

12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

Rules Dictionary Editor Task Flow, which is a wrapper around the Rules Dictionary Editor declarative component is used in ADF-based Web applications that require a task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor, see Using the Oracle Business Rules Dictionary Task Flow in Developing SOA Applications with Oracle SOA Suite.

12.5 Editing Rules in an Oracle Business Rules Dictionary

SOA Composer provides an interface to the dictionary that enables you to edit most dictionary components, though you can only create and edit some dictionary components at design-time using the Rules Designer extension to Oracle JDeveloper.

In SOA Composer, Verbal Rules and Business Phrases features do not appear if you have not installed BPM.

12.5.1 Using the Rulesets Tab

Use the Rulesets tab to view and edit Rulesets, and the General Rules, Verbal Rules and Decision Tables they contain, in the currently selected Business Rules dictionary, as shown in Figure 12-25.

Figure 12-25 Using Oracle SOA Composer to Edit a Ruleset in a Dictionary
[image: Description of Figure 12-25 follows]

Table 12-3 Rulesets tab

	Button	Description
	Rulesets drop down

	Click and select a ruleset from the list.

	[image: This button is described in the surrounding text]Advanced Property Editor

	Click to edit properties in the pop-up Advanced Property Editor.

	Add Ruleset

	Click to add a Ruleset.

	Delete Ruleset

	Click to delete a Ruleset.

In the Rules master list, you can enter an alias and search for rules. Click Clear to clear the Search by Alias field. You can also sort rules--click the Sort Ascending or Sort Descending arrows to sort the IF/THEN detail panel.

Table 12-4 Rules master list buttons

	Button	Description
	Add

	Click to add a new Decision Table, a Verbal Rule, or a General Rule.

	Delete

	Click to delete.

	Cut, Copy, Paste

	Click to Cut, Copy, or Paste.

	[image: This button is described in surrounding text]

	Click the Sort Ascending or Sort Descending arrows to sort the IF/THEN detail panel. Click By Type and choose an option to sort by any of these options: Type, Name, Active, Effective Start or End Date, Priority.

	Search by Alias

	Enter an alias name to search for rules by alias name.

	[image: This button is described in surrounding text] Clear

	Click Clear to clear search results.

12.5.2 How to Edit Rules in an Oracle Business Rules Dictionary

Oracle SOA Composer enables you to edit the rules in a dictionary.

To edit a rule with Oracle SOA Composer:

	In Oracle SOA Composer, with an Oracle Business Rules dictionary open, click the Rulesets tab.
	Select the appropriate ruleset from the drop down and choose a rule from the list. The rule appears in the detail panel.Use the Add, Delete, Cut, Copy, and Paste buttons in the Rules toolbar to modify the rule.

Note:
The Paste button is disabled if the selection is multiple. The button is enabled only on single selected condition/action. When pasting, the copied/cut items are added at the end of the list.

	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.5.3 How to Add a Rule

In Oracle SOA Composer you can add rules to a ruleset.

To add a rule in a ruleset:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area, click Add Rule and select to add either a Decision Table, Verbal Rule, or General Rule.
	In the IF area, enter search terms to get results and filter them further by pressing the right arrow to create the condition.
	In the THEN area for the rule, click Add Action to add the required action for this rule.
	When done, click Save Changes in Current Tab.
	If you are ready to apply the changes to the runtime version, click Publish.

12.5.4 How to Delete a Rule

In Oracle SOA Composer you can delete rules in a ruleset.

To delete a rule in a ruleset:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule detail area, locate the rule you want to delete and click Delete.
	When done, click Save Changes in Current Tab.
	If you are ready to apply the changes to the runtime version, click Publish.

12.5.5 How to Show and Edit Advanced Settings for Rules

In Oracle SOA Composer you can edit advanced settings for rules in a ruleset. For more information on advanced settings, see Using Advanced Settings with Rules and Decision Tables.

To show and edit advanced settings in a rule:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area and locate the rule you want to show or change advanced settings. Expand the rule first, if necessary.
	Click the Advanced Property Editor button next to the rule name. This displays the advanced settings dialog, as shown in Figure 12-26.Figure 12-26 Advanced Properties Editor Dialog
[image: Description of Figure 12-26 follows]

12.5.6 How to Add Rule Conditions

In Oracle SOA Composer you can add conditions to a rule in a ruleset. Conditions within a rule use a tree representation. Use the toolbar at the top of the conditions tree to add, delete, cut, copy and paste. Within the condition tree, you can select a parent node and perform similar actions.

For more information on working with rule conditions, see Working with Rules.

To add rule conditions:

If no condition is selected, the condition is added at the end. If a condition is selected, a sibling to the selected condition is added.

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area, locate the rule where you want to add a condition.
	Next to the existing rule condition, click the down arrow to display a list of options available for adding a condition as shown in Figure 12-27.Figure 12-27 Adding a Condition
[image: Description of Figure 12-27 follows]

If the rule where you want to add a condition does not contain any existing condition, then you need to click the Add Test down arrow to display a list of available options for adding a condition as shown in Figure 12-27.

The following are some of the available options for adding a condition:

	simple test: Adds a simple test condition

	variable: Adds a variable definition. The variable and its value can be represented as an inline business term definition.

	(...): Adds a new simple test within a nested parenthesis

	not(...): Adds a new simple test within a NOT nested parenthesis

Each nesting level provides a list with the preceding options to operate on a nested block.

For more information on tests, see How to Work with Extended Tests.

12.5.7 How to Delete Rule Conditions

In Oracle SOA Composer you can delete conditions for a rule in a ruleset. For more information on working with rule conditions, see Working with Rules.

To delete rule conditions:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area, locate the rule where you want to delete a condition.
	Next to the rule condition that you want to delete, click the down arrow, and then click Delete Test from the list.A separate list is available for each nesting level. So the delete operation can be performed on a single condition or a nested block.

12.5.8 How to Modify Rule Conditions

Using Oracle SOA Composer, you can edit conditions in a rule. You can select a rule condition for nesting or modify expression values within the condition. For more information on working with rule conditions, see Working with Rules.

To modify a condition in a rule:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area locate the rule where you want to modify conditions.
	In the IF area, use the controls, buttons, and selection boxes, including the Left Value expression button, list for an operator, and Right Value expression button to modify the condition.Filtering is supported for expressions. For example, when you type Employee, values are filtered and the values with Employee are displayed in the drop-down. Use mouse or arrow keys to select a value.

You can use the Expression Builder, Condition Browser, Date Browser, and Right Operand Browser to edit the left and right-side expressions.

In addition to modifying the values, you can also change the form type of a condition. For example, a simple test can be changed to variable definition and so on. To change the form type of a condition, you need to select the condition by using the adjacent check box and select the required form type from the Selected Tests list.

12.5.9 How to Add Rule Actions

In Oracle SOA Composer you can add actions to a rule. For more information on working with rule actions, see Working with Rules.

To add rule actions:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area locate the rule where you want to add an action.
	In the THEN area for the rule, next to the rule action click Add Action, as shown in Figure 12-28.Figure 12-28 Rule Actions in a Ruleset
[image: Description of Figure 12-28 follows]

If the rule to which you want to add an action does not contain any existing action, then you need to click the Add Action button in the THEN area.

12.5.10 How to Delete Rule Actions

In Oracle SOA Composer you can delete actions in a rule. For more information on working with rule actions, see Working with Rules.

To delete rule actions:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area, locate the rule where you want to delete an action.
	In the THEN area for the rule, select the action.Click Delete Action.

12.5.11 How to Modify Rule Actions

In Oracle SOA Composer you can modify actions in a rule. For more information on working with rule actions, see Working with Rules.

To modify rule actions:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area, locate the rule where you want to modify an action.
	In the THEN area for the rule you can do the following:	Add and delete actions using Add and Delete buttons on the top.

	Select the action and move it up and down using the respective arrow buttons.

	Cut, copy and paste using the Cut, Copy and Paste buttons on the top.

	Click the More link in the drop-down area to launch Select a Target popup and select a value.

	Click the Edit Properties button next to the rule action and modify properties.

The Properties dialog box is displayed where you can modify the property details.

For more information on number formatting in rules, see What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer.

12.5.12 How to Work with Advanced Mode Rules

In Oracle SOA Composer, you can work with advanced mode rules in a ruleset.

Note:
Advanced Mode capability has been maintained for backward compatibility only. We recommend that you use extended tests in simple mode to create any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode. Advanced mode rules can be converted to equivalent simple mode rules simply by clearing the Advanced Mode check box.

For more information, see How to Work with Extended Tests.

To show and modify advanced mode rules:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area, locate the rule where you want to show or modify advanced mode rules.
	Click Advanced Property Editor button to show advanced settings. For more information on showing advanced settings, see How to Show and Edit Advanced Settings for Rules.
	If the Advanced Mode check box is not selected, then select the Advanced Mode check box. This shows the advanced mode rule options, as shown in Figure 12-29.Figure 12-29 Showing Advanced Mode Rule Options
[image: Description of Figure 12-29 follows]

12.5.12.1 Working with Advanced Mode Options

The Advanced Mode rules options enables you to create, modify, and delete patterns, as well as add, modify, and delete conditions and actions within a pattern.

Using the Advanced Mode rule options, you can:

	Specify a pattern variable and select a fact type for the variable: You can directly enter the name of the pattern variable in the variable field. You can specify the fact type for the variable by using the fact type list as shown in Figure 12-30.

Figure 12-30 Specifying Pattern Variable and Fact Type
[image: Description of Figure 12-30 follows]

In the graphic example, CustomerOrder is a pattern variable of CustomerOrder fact type.

	Add a pattern: Click the Add Pattern button to create a pattern to the existing rule. Figure 12-31 displays an added pattern. The newly created pattern is blank.

Figure 12-31 Adding a Pattern
[image: Description of Figure 12-31 follows]

	Delete a pattern: Click the Delete Pattern button to delete a pattern from a rule.

	Specify connectives: Two or more patterns are joined by a connective, and or or. You can use the connective link to toggle between the connectives.

	Work with nested patterns: A nested pattern has patterns inside it. These are enclosed within curly braces ({}). The pattern operator list is followed by the open curly brace. You can create a nested pattern by clicking Surround pattern with parentheses button and you can remove the pattern nesting by clicking the Remove parentheses from pattern button as shown in Figure 12-32.

Figure 12-32 Adding and Removing Pattern Nesting
[image: Description of Figure 12-32 follows]

Inside the open curly brace, you can specify a pattern and then click the Add Test down arrow to add conditions to the nested pattern as well as add another pattern to the same pattern block.

A nested pattern block ends with a closing curly brace. You can have multiple levels of nested patterns, which means that inside a nested pattern, you can have another nested pattern. You can click the Delete Nested Pattern Block button to remove the entire nested pattern block.

When you nest a pattern, an operator list is displayed with (for each case where) selected as the default operator in the operator list. The other items are there is a case where, there is no case where, and aggregate and so on.

The user interface remains the same as (for each case where) when you select there is a case where or there is no case where as the operator. However, when you select aggregate, the user interface changes. For an aggregate operator, you must enter a variable in the available field and select a function from the function list. The function list displays the following:

	count

	average

	maximum

	minimum

	sum

	collection

Except for the count function, all the other functions require an expression. You can specify an expression in the available field or launch the Condition Browser window.

In the Advanced Mode of rules, in the THEN part, you can add any required action ranging from assert, call, modify to even conditional actions such as if, else, elseif, while, for, if (advanced), and while (advanced.

12.5.13 How to Work with Extended Tests

Extended tests should be used when building complex rules. Extended tests, or Simple Mode, replaces Advanced Mode rules.

Note:
Advanced Mode capability has been maintained for backward compatibility only.

Everything that can be done in Advanced Mode can now be done in Simple Mode. The UI has been streamlined and improved to enable you to more easily create complex rules and tests, as shown Figure 12-33

Figure 12-33 List of Extended Tests
[image: Description of Figure 12-33 follows]

Advanced mode rules can be converted to the equivalent simple mode rules by clearing the Advanced Mode check box in the Advanced Property Editor.

Extended tests are only applicable to general rules, decision tables, and while defining business phrases. They are not visible in verbal rules.

In addition to the original four tests (shown first in Table 12-5) there are new forms:

Table 12-5 Extended Tests

	Forms	Description
	simple test

	This is the building block for conditions. Compares a value against another value, range or set.

For example: Emp.salary > 1000

	variable

	Initializes variables.

For example: age = Duration.years between(Emp.birthdate,RL.date.get current())

	nested test

	Encapsulates tests in a containing block.

For example: (age > 50 or Emp.salary > 50000)

	negated test

	Negates a test.

For example: not(age > 50 and Emp.salary > 50000)

	all of the following

	all of the following are true.

For example: (age > 50 and Emp.salary > 50000)

	any of the following

	some of the following are true.For example:

IF

 e is a Emp and there is no Emp where Emp.salary < e.salary <insert test> <insert test>THEN assign e.isLowestPaid = true

	is a

	Defines a fact.

For example: e is a Emp

	there is a case where

	This test has 1 or more child tests that are ANDed.

The child tests are all true for at least 1 case. A case is a binding of facts to contained is a tests.

Must have is a descendant.

Example:

There is a case where
e is a Emp and
d is a Dept and
e.salary > 1000000 and
d.name == "Marketing" and
d.employees contains e

	there is a <factType1>,...<factTypeN> where#*

This test has N or more child tests that are ANDed

	Hidden <factType> is a <factType> tests as first N children.

The child tests are all true for at least 1 case.

It is legal to have no visible child tests, in which case the where keyword should be suppressed.

Example:

IF
 there is a Emp, Dept where
 Emp.salary > 1000000 and
 Dept.name == "Marketing" and
 Dept.employees contains Emp
THEN
 call print "there is a highly paid marketer!"
IF
 there is a Emp
THEN
 call print "somebody works here!"

	there is no case where

	This test has 1 or more child tests that are ANDed.

The child tests are true for no case (no binding of facts to contained is a tests satisfy all the other tests).

Must have is a descendant.

	there is no <factType1>,...,<factTypeN> where

	Hidden <factType> is a <factType> as first N children

The child tests are true for no case

	aggregation

	This test has 0 or more child tests that are ANDed.

Must have is a child (may be hidden).

v is the sum|average|minimum|maximum|count|collection of <expression> where

Where clause omitted when there are no visible child tests.

IF
 number of employees is the count of Emp
THEN
 call print "number of employees: " + number of employees

IF
 number of male employees is the count of Emp where
 Emp.gender == "M"
THEN
 call print "number of male employees: " + number of male employees

Note that in both rules above, the SDK will create a hidden nested is a test for Emp.

You can also use an explicit is a

IF
 number of male employees is the count of e where
 e is Emp and
 e.gender == "M"
THEN
 call print "number of male employees: " + number of male employees

	boolean expression

	Captures a boolean expression.

For example: isEligible(Emp)

Figure Figure 12-34 shows an example of "there is a case where" form:

Figure 12-34 Extended Test Example 1
[image: Description of Figure 12-34 follows]

Figure Figure 12-35 shows an example of "there is no case where" form:

Figure 12-35 Extended Test Example 2
[image: Description of Figure 12-35 follows]

For information about how to build complex rules, see How to Add Rule Conditions.

For more information about Advanced Mode, see How to Work with Advanced Mode Rules.

12.5.14 How to Work with Tree Mode Rules

In Oracle SOA Composer you can work with tree mode rules in a ruleset. For more information on working with tree mode rules, see Working with Tree Mode Rules.

To show and modify tree mode rules:

	In a session, the Ruleset tab, select a ruleset of interest.
	In the rule area locate the rule where you want to show or modify tree mode rules.
	Select Advanced Property Editor button to show advanced settings.
	If the Tree Mode check box is not selected, then select the Tree Mode check box. This shows the tree mode rule options, as shown in the ROOT area in Figure 12-36.Figure 12-36 Showing the Tree Mode Rule Area in a Rule
[image: Description of Figure 12-36 follows]

12.5.15 What You May Need to Know About Oracle Business Rules Editor Declarative Component

You can use the Oracle Business Rules Editor composite declarative component to leverage the functionality of editing business rules in any ADF-based Web application. It enables you to edit business rules available in rulesets by using the Rules SDK2 API.

For more information on Oracle Business Rules Editor, see Using the Oracle Business Rules Editor Declarative Component in Developing SOA Applications with Oracle SOA Suite.

12.5.16 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component

The Oracle Business Rules Dictionary Editor is a composite declarative component that can be embedded in any ADF-based web application. It enables you to edit business rules metadata artifacts, such as globals, value sets, and rulesets, by using the Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see Using the Oracle Business Rules Dictionary Editor Declarative Component in Developing SOA Applications with Oracle SOA Suite.

12.5.17 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules Dictionary Editor declarative component. The task flow is used in ADF-based web applications that require a task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor Task Flow, see Using the Oracle Business Rules Dictionary Editor Task Flow in Developing SOA Applications with Oracle SOA Suite.

12.6 Using the Oracle SOA Composer Browser Windows

Oracle SOA Composer provides browser windows that helps you to work with different types of expressions such as rule expressions, XPATH expressions, date expressions, and so on.

The different types of browsers provided by Oracle SOA Composer are:

	Expression Builder

	Condition Browser

	Date Browser

	Right Operand Browser

12.6.1 Expression Builder

Expression Builder is used to build different types of expressions such as XPATH expressions, rule expressions, and so on.

Expression Builder has a field where you can enter the expression directly. It has four tabs: Variables, Functions, Operators, and Constants. Each of these tabs display data in a tree structure. The Variables tab displays all the variables in the rules meta-data. The Functions tab displays all the functions in the rules meta-data. The Operators tab displays operators such as +, -, *, and so on. The Constants tab displays all the constants that exist in the rules meta-data.You can switch between the tabs, select an item in the tree, and click the Insert Into Expression button to insert the selected item at the cursor position in the expression field. When an item is selected in the tree, the Content Preview and the Description areas display more information about the selected item. Once you create the expression and click OK, the newly created expression appears in the field that is available to the left of the expression builder button.

Figure 12-37 displays the Expression Builder browser.

Figure 12-37 The Expression Builder Browser
[image: Description of Figure 12-37 follows]

12.6.2 Condition Browser

The Condition Browser has a field, a hierarchical tree, and an Expression Builder embedded inside it. You can enter the expression directly in the field, or select an item from the tree. Condition Browser supports filtering. For example, when you start entering customer the tree is narrowed down to items with customer.

When an item is selected in the tree, the new selection appears in the field immediately. You can also use the embedded Expression Builder to create an expression.

Once the Expression Builder is launched and an expression is created, the new expression appears in the Condition Browser field. Once you create an expression and click the OK button in the Condition Browser, the newly created expression appears in the field that is to the left of the Condition Browser button.

Figure 12-38 displays the Condition Browser.

Figure 12-38 The Condition Browser
[image: Description of Figure 12-38 follows]

12.6.3 Date Browser

The Date Browser is used to select a Literal Date or a Date Expression. The Date Browser has two options to switch between a Literal Date and a Date Expression. When one option is selected, the other one is disabled.

Select:

	Literal Date option to enter a date using a Calendar pop-up.

	Date Expression option to enter the expression directly in the Date Expression field or to launch the Condition Browser to select a date expression.

Figure 12-39 displays the Date Browser.

Figure 12-39 The Date Browser
[image: Description of Figure 12-39 follows]

12.6.4 Right Operand Browser

The Right Operand browser is used to select multiple right expressions. The browser displays operands in each row. You can enter an expression directly in the operand field or launch the Condition Browser to select an expression. The + button adds a row after the current one. The - button deletes the current row. These buttons are enabled and disabled based on the selected operator. For instance the in operator allows multiple right expressions. So in this case, the buttons are enabled.

Figure 12-40 displays a Right Operand browser.

Figure 12-40 The Right Operand Browser
[image: Description of Figure 12-40 follows]

Note:
Using Right Operand browsers, you can enter multiple values for the right-side expression. However, you can place a Date browser outside a Right Operand browser, and in which case, only one expression can be entered. For both these browsers, you cannot enter values directly in the right-side expression field. Once you have entered values using the browser and clicked OK, the values get added as comma-separated values on the Rules UI.

12.7 Editing Decision Tables in an Oracle Business Rules Dictionary

When Oracle SOA Composer is in a session, you can edit, add, and delete a Decision Table in a ruleset.

For more information on how to use sessions, see Creating and Publishing Sessions.

You can edit the description of a rule/condition or action within a decision table. If you hover over a condition, a right arrow is used to select the condition. If you click on the condition value, a pop-up appears where you can edit the description.

12.7.1 Adding a Decision Table

In Oracle SOA Composer, you can add a Decision Table to a ruleset. For more information on working with Decision Tables, see Introduction to Working with Decision Tables.

To add a Decision Table in a ruleset:

	In a session, select a ruleset of interest.
	In the ruleset area, click Add and then Add Decision Table, as shown in Figure 12-41. An empty Decision Table appears.Figure 12-41 Adding a Decision Table in a Ruleset
[image: Description of Figure 12-41 follows]

12.7.2 Adding Condition Rows to a Decision Table

Using Oracle SOA Composer, you can add condition rows to a Decision Table.

To add condition rows to a Decision Table:

	In the Decision Table toolbar, from the list next to the Add button, select Add Condition that displays the Condition Browser window where you can specify or select conditions.The selected or specified condition row and a Rules column with the header R1 is added to the table; the cell below R1 has a "?" symbol (Figure 12-42). The "?" symbol indicates that the cell does not have a value yet.

Figure 12-42 New Condition Row Added in a New Decision Table
[image: Description of Figure 12-42 follows]

If you are adding a condition to a table that has existing condition rows, similar to adding a condition to a blank Decision Table, Oracle SOA Composer prompts for specifying the condition details. Once the details are provided, the specified condition is added as the last condition row; the condition cells under each rule column in the new row also have "?" symbols.

Figure 12-43 New Condition Row Added As Last Row in a Decision Table
[image: Description of Figure 12-43 follows]

For information about all symbols that might be used in a decision table, see Editing Decision Table Cells.

	If you want to edit a specified condition, in the Conditions area, click the condition row, and then click the Edit Condition button on the toolbar. This displays the Condition Browser.
	Enter an expression by clicking in the Conditions Browser to select a variable, or click the Expression Builder button to display the Expression Builder. Expression Builder lets you build expressions.

	Each condition row requires a value set from which to draw the values for each cell. When the value you select has an associated global value set, then by default the value set is associated with the condition row.If there is no global value set associated with the value, then after you add a condition row to a Decision Table, you need to either specify an existing global value set or create a Local List of Values or a Local List of Ranges value set.

To associate a value set for the condition, perform either of the following:

	In the Conditions area, select the condition, and select an existing value set from the Select Value Set list.

	In the Conditions area, select the condition, and select either Local List of Values or Local List of Ranges (as relevant) from the Select Value Set list.

You can edit the value set for the selected condition by clicking the Edit Value Set button.

This displays the Value Set Editor where you can add, edit or delete values. If editing a Local List of Values value set, you can also reorder values in the value set.

For more information on number formatting in value sets, see What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer.

	Repeat Step 2 through Step 5, as required to add additional condition rows in the Decision Table.

For more information on adding condition rows, see How to Add Condition Rows to a Decision Table.

12.7.3 Adding Actions to a Decision Table

In Oracle SOA Composer, you can add actions to a Decision Table.

To add actions to Decision Table:

	From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add actions.
	From the list next to the Add button, select Add Action and select an available action from the list. For example, click Modify as shown in Figure 12-44. Figure 12-44 Adding Actions to a Decision Table
[image: Description of Figure 12-44 follows]

Table 5-1 in Working with Decision Tables, lists the available actions.

	In the Action Editor window, select the action target and then specify values for an action cell.For more information on number formatting in value sets, see What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer.

For more information on adding actions to Decision Tables, see How to Add Actions to a Decision Table.

12.7.4 Adding Rules to a Decision Table

Using Oracle SOA Composer, you can add a rule to a Decision Table.

To add a rule to a Decision Table:

	In a session, select a ruleset of interest, select the Decision Table where you want to add the rule.
	In the Rules master list, select the Decision Table where you want to add the rule. Next to the Add button in the detail section, select Add Rule.A new column for the added rule is displayed.

Notice that the new rule is added as the first rule of the Decision Table and the other rules have moved as required to keep the values in their defined order. This is because Order Rules By Bucket is enabled by default, which means rule ordering in a Decision Table is set according to the relative position of values associated with a condition expression. If Order Rules By Bucket is not enabled when you add a rule, the new rule is added as the last rule of the Decision Table. In either case, the cells in the new rule column have "?" symbols, indicating the cells do not have values yet.

For information about all symbols used in a table, see Editing Decision Table Cells. For additional information about rules ordering, see Controlling the Order of Rules in a Decision Table.

	Enter values for the condition cells by clicking the cells.
	Click an Action row to enter values for the action cells.

Note:
If because of the inadequate column width, you cannot view the complete contents of a cell in a Decision Table, you can roll your mouse pointer over the cell to view the contents. Also, click the Maximize tabs section button in the toolbar to increase the view.

12.7.4.1 Editing Decision Table Cells

Each rule in a Decision Table contains cells pertaining to three sections: Conditions, Conflicts, and Actions.

Working with Condition Cells

In view mode, a condition cell with a "?" symbol indicates that the cell does not have a condition value. If a cell has two or more values specified, a semicolon-separated list of values is displayed in the cell.

In the editable mode the condition cells display specified condition values in multichoice lists. When editing a new rule or when a condition value is unspecified, the condition cell is blank.

If you select All:

	When the particular condition cell is clicked, the cell displays "All"

	When the particular condition cell is not selected, the cell displays the "-" symbol

You can select any value that is available in the condition value list.

Note:
When you edit the condition cells, if Order Rules By Bucket is selected, the Decision Table is refreshed and the edited rule column may shift to the left or right depending on the selected condition cell value. Click the Tools drop down to select Order Rules By Bucket.

Note:
You can modify the value set associated with a a condition, by clicking the condition. This enables the value set list and the Edit Value Set button so that you can edit the associated value set.

Working with Action Cells

When you add an action, an action row is created with the specified action type. There are two types of action cells:

	The Action form cells contain check boxes. When a rule fires, only selected actions are executed. In Figure 12-45, R1 and R3 action check boxes are selected whereas the other action check boxes are cleared. In this case, if R1 fires, the action will be executed, but if R2 fires, then the action will not be executed.

Note:
The Edit Action button is enabled only if the action form cell row is selected. The Edit Action button invokes the Action Editor window.

	The Action parameter cells contain the parameters of the action form. You can directly enter the action parameter values in the respective field or you can invoke the Condition Browser window to select a value.

Figure 12-45 displays the Action Editor window where you can select the values for an action parameter cell. If you select the Always Selected check box, all the check boxes for the particular action form get selected. All the check boxes pertaining to the action form are also disabled, because the specified action "is always selected".

Figure 12-45 The Action Editor Window
[image: Description of Figure 12-45 follows]

Note:
You can delete all the condition cells and all the action cells of a Decision Table at one go. Clicking the Conditions or the Actions box selects all the conditions or actions in the Decision Table respectively.

You can then click the Delete button on the Decision Table toolbar to delete the conditions or actions.

12.7.4.2 Controlling the Order of Rules in a Decision Table

By default the Order Rules by Bucket check box is enabled in a Decision Table. This means the order of the values in the value set associated with a condition row determines the order of the condition cells, and thus the order of the rules. Click the Tools drop down to select Order Rules By Bucket.

To change the order of rules in a Decision Table, you need to change the order of values in the value set. For example, you can control rule ordering in a Decision Table by changing the relative position of the values in an LOV value set associated with a condition row. Note, however, that you cannot reorder range value sets.

When the Order Rules by Bucket check box is selected in a Decision Table and you add a rule, by default the new rule is added as the first rule column; the other rule columns move as required to keep the value set values in their defined order. When the Order Rules by Bucket check box is not enabled and you add a rule, the new rule is added as the last rule column. If you now select the Order Rules by Bucket check box, the newly added rule shifts to the first column.

12.7.5 Deleting Rules in a Decision Table

You can delete one or multiple rules in a Decision Table.

To delete rules in a Decision Table:

	Select the rules column that you want to delete.If you want to delete more than one rule, press the Ctrl key, and by keeping the key pressed, select the other rule columns

	Click the Delete button.

12.7.6 Defining Tests in a Decision Table

In Oracle SOA Composer, you can define tests in a Decision Table by adding conditions to facts. For more information about defining tests and working with rule conditions, see Working with Rules.

Note:
To add more complex conditions to facts, see How to Work with Extended Tests.

To add tests to a Decision Table:

	From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add a test.
	Click the Advanced Properties Editor button next to the Decision Table name. If Advanced Mode is selected, clear the check box.
	Click the Click to view tests and variables link under the Decision Table name.
	Click the down arrow next to the Add button and select any of the options according to your requirements.
	Use the field controls or Left Value and Right Value buttons, and the operator list to create the condition expression.Note:
If a Decision Table already contains test conditions, you can add new test conditions by clicking Add at the end of an existing condition and selecting the required test form type.

12.7.7 Splitting and Compacting a Decision Table

You can modify the contents of a Decision Table to create a table that includes a complete set of rules for all cases, or a table that provides the least number of rules for the cases. The split and compact operations enables you to manipulate the contents in a Decision Table.

The split table operation creates a rule for every combination of values across the conditions. For example, in a Decision Table with 2 boolean conditions, 2 x 2 = 4 rules are created. In a Decision Table with 20 boolean conditions, 2**20 ~ 1 million rules are created. So, you only use split table when the number of rules created is small enough that filling in the action cells is feasible.

Using Oracle SOA Composer, split can be applied to an entire Decision Table. However, you cannot perform split operation on an individual condition row or cell.

To split or compact a Decision Table:

	From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and select the Decision Table that you want to split or compact.
	Click the Split Table button or Compact Table button on the Tools drop down.

Using Oracle SOA Composer, you can compact a Decision Table by merging conditions of rules with identical actions. So, compacting a table enables you to remove conditions from a Decision Table. However, using Oracle SOA Composer, you cannot merge two or more condition cells.

For more information on splitting and compacting Decision Tables, see Introduction to Decision Table Operations.

12.7.8 Checking for Missing Rules in a Decision Table

In a Decision Table, a missing rule is also called a "gap." A gap in a Decision Table occurs when a rule does not cover some combinations of values, one from each condition.

Using Oracle SOA Composer, you can check for missing rules in Decision Tables.

To check for missing rules:

	From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and select the Decision Table in which you want to check for missing rules.
	Select Gap Analysis from the Tools drop down.The Gap Analysis window is displayed as shown in Figure 12-46. You can select the rules that need to be added to the Decision Table.

Figure 12-46 The Gap Analysis Window
[image: Description of Figure 12-46 follows]

For more information about checking for missing rules, see How to Perform Decision Table Gap Checking.

12.7.9 Performing Conflict Resolution in Decision Tables

Rules in a Decision Table can conflict when they overlap and have different actions. Two rules overlap when at least one of their condition cells has a value in common. However, overlap without conflict is common and harmless. For more information about conflicts in Decision Tables, see Understanding Decision Table Conflict Analysis.

Using Oracle SOA Composer, you can find and resolve conflicts in a Decision Table.

To perform conflict resolution in a Decision Table:

	From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and select the Decision Table on which you want to perform the Conflict Resolution.
	Ensure that the Show Conflicts button is selected on the Tools drop down.
	Click the Advanced Property Editor button next to the Decision Table name.
	Ensure that Conflict Policy is set to Manual in the Advanced Settings area. This is the default conflict policy.Note:
For more information on conflict policies, see Understanding Decision Table Conflict Analysis.

	Select the Conflict row and then click the rule that has a conflict to display the Conflict Resolution window.
	In the Conflict Resolution window, for each conflicting rule, in the Resolution field select a resolution from the list and click OK as shown in Figure 12-47.Figure 12-47 Conflict Resolution Dialog
[image: Description of Figure 12-47 follows]

For more information about the conflict resolution options in Decision Tables, see Understanding Decision Table Conflict Analysis.

12.7.10 Switching From Rows to Columns

In Oracle SOA Composer, you can turn the rows in a Decision Table to columns by clicking the Switch Rows to Columns link in the detail area. This enables the rules to be displayed as rows, and the conditions, actions, and conflicts to be displayed as the columns.

Switching rows to columns provides ease of navigation when a Decision Table has many rules because you can see all the rules together and you do not need to "page the columns" for viewing the rules.

Figure 12-48 displays a Decision Table before the switch operation.

Figure 12-48 A Sample Decision Table
[image: Description of Figure 12-48 follows]

Figure 12-49 displays the sample Decision Table after switching the rows to columns.

Figure 12-49 Switching Rows to Columns
[image: Description of Figure 12-49 follows]

12.7.11 Working with Advanced Mode Options in a Decision Table

In Oracle SOA Composer, you can use advanced mode rules in a Decision Table just like you can work with advanced mode rules in a ruleset. The Advanced Mode rules options enable you to create, modify, and delete patterns, as well as add, modify, and delete conditions and actions within a pattern.

Note:
Advanced Mode capability has been maintained for backward compatibility only. We recommend that you use extended tests in simple mode to create any kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode. Advanced mode rules can be converted to equivalent simple mode rules simply by clearing the Advanced Mode check box.

For more information, see How to Work with Extended Tests.

To show and use advanced mode options:

	From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and select the Decision Table on which you want to add more complex rules.
	Click the Advanced Property Editor button next to the Decision Table name.
	Select Advanced Mode.The advanced mode options in a Decision Table are similar to the advanced mode options in a ruleset. For more information, see Working with Advanced Mode Options.

12.7.12 Deleting a Decision Table

In Oracle SOA Composer, you can delete Decision Tables in a ruleset. For more information on working with Decision Tables, see Introduction to Working with Decision Tables.

To delete a decision table in a ruleset:

	In a session, select a ruleset of interest.
	In the Rules master list, click the Decision Table you want to delete.
	Click Delete.
	When done with changes, click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

12.7.13 Editing Decision Tables in Microsoft Excel

Business users may find that editing Decision Tables is easier to do in Microsoft Excel. New functionality enables both developers and business users to export and edit Decision Tables in Excel and then import the Decision Tables back into the dictionary.

When exporting Decision Tables in Microsoft Excel, only basic Action types such as Assert New, Modify, Assign, Retract, and Call are supported.

You can export and edit Decision Tables at design-time in Oracle JDeveloper or Business Process Composer. At runtime, you can export and edit in SOA Composer. You can export one or more Decision Tables from a Rule dictionary to the same Excel workbook.

When you import back into the dictionary, you can create a new dictionary, overwrite the existing dictionary, or perform a Diff-Merge. The Diff-Merge enables you to compare dictionaries.

For more information about comparing dictionaries, see Comparing and Merging Oracle Business Rules Dictionaries.

The Excel workbook structure consists of several worksheets: a Readme sheet, a Value Set sheet, and one sheet for each exported Decision Table, as shown in Figure 12-50. Only Rules and Value Sets can be edited in Excel. You can export to .xlsm (default) or .xls.

Figure 12-50 Excel Workbook
[image: Description of Figure 12-50 follows]

When you open the spreadsheet, the macros are disabled by default. If you enable the macros, a new tab called Oracle Business Rules, appears. This tab enables you to add or delete rules, merge or split cells, and add or remove values from value sets. You can also disable or enable highlighting, use a simple or advanced mode and hide or show the Readme sheet.

You can edit with the macros disabled, though you will not be able to:

	Choose values from drop lists for restricted cells.

	Edit free form cells.

	Copy and paste a range of cells to add a rule or Value Set.

	Delete a range of cells to delete a rule or Value Set.

	Split or merge cells.

	Create Value Sets automatically.

	Validate the structure of Decision Tables or Value Sets.

Using the predefined macros, you can:

	Add and delete rules.

	Split or merge cells.

	Add or delete Value Sets.

	Editable cells include:

	Description for Rules, Conditions, Actions.

	Condition and Action nodes.

	Action state.

	Parameterized options for Action parameters.

	Non-editable cells include:

	Condition expressions.

	Action expressions.

	Action parameters.

If you try to edit these cells, you will get an error message, as shown in Figure 12-51.

Figure 12-51 Non Modifiable Cell
[image: Description of Figure 12-51 follows]

12.7.13.1 Understanding What is Exported

In the SDK, there are shared Value Sets that can be associated with multiple conditions across Decision Tables. However, in Excel there are no shared Value Sets--each condition has its own Value Set--so you can only export a Value Set if it is modifiable in Excel. The Value Sets that are non-modifiable include:

	Linked Dictionary Value Sets.

	Enums.

	Internal Value Sets, for example, boolean Value Sets.

In the worksheet, you can only select values from the drop down for the conditions associated with non-modifiable Value Sets. A highlighting mechanism informs you which conditions are associated with non-modifiable Value Sets.

12.7.13.2 How to Export Decision Tables

The export functionality is invoked by using the Export to Excel button in the toolbar options, as shown in Figure 12-52.

Figure 12-52 Actions Toolbar
[image: Description of Figure 12-52 follows]

To export to Excel:

	In SOA Composer, in a session, click Actions, Export to Excel.
	In the Export Decision Tables dialog box, select the Format and browse to the folder where you want to save the worksheet.
	Select the Decision Table to export and click OK.
	Check the Read Only Value Set check box to make all of the value sets read-only in Excel. There will not be any Value Sets sheet in the Excel workbook. All conditions will have drop down menus from which values can be selected but no values can be added or removed.
	Click Export. You can now open the worksheet and edit the Decision Table.

12.7.13.3 How to Import Decision Tables to the Dictionary

You can only import Excel spreadsheets that have been previously exported.

To import edited Decision Tables back to the Dictionary:

	In Rules Designer, click Actions, Import from Excel.
	In the Import Decision Tables dialog box, click Browse to browse to the folder where you saved the worksheet.
	The Diff-Merge check box is selected by default. For more information about using the Diff-Merge, see Comparing and Merging Oracle Business Rules Dictionaries. Select Create New or Overwrite depending on your requirements.
	Click Import. The decision table is imported into Rules Designer, where you can accept or reject changes. Each changed artifact is flagged with a change icon.

Note:
Merges should be done with caution. See Comparing and Merging Oracle Business Rules Dictionaries

12.7.13.4 How to Edit Decision Tables in Excel

In Excel, enable the macros to view the Oracle Business Rules tab, which provides you with options to author rules, edit Value Sets, and set preferences.

For more information, see Editing Decision Tables in Microsoft Excel.

12.7.14 What You Need to Know About Rule Test Variables

Oracle SOA Composer enables you to define test variables that provide a way to shorten lengthy expressions that occur in rule and decision table conditions and actions. The variable and its value can be represented as an inline business term definition. The test variables are also called inline aliases.

So, instead of writing:

[image: Description of GUID-B6383836-B0F8-4EA6-AB19-1E5FFAB110D0-default.gif follows]

You can write:

[image: Description of GUID-DCEF0211-DBBA-4AD4-8D90-4397EAA53D6D-default.gif follows]

In subsequent test conditions, you can use foo as part of your expressions. The expression can be anything from a simple to a complex expression.

To define a variable, in the IF section of a rule, you need to click the down arrow adjacent to Add Test, and select variable from the list.

Apart from variables, you can also define other test form types, such as simple test, nested tests ((...)), and not nested tests (not (...)).

12.8 Comparing and Merging Oracle Business Rules Dictionaries

The Diff Merge feature enables you to review any differences in the latest revision of a dictionary against a previous revision and be able to save or roll back any changes since then. At runtime, in SOA Composer, you can use the Diff Merge feature to compare the File-System, Published Version, or the Saved Version to the dictionary that you have open.

SOA Composer only supports the compare of the edited version with one prior saved version and the ability to select items that have changed since the saved version and to revert them back to their saved values. The differences are viewed from the perspective of the latest revision.

The Merge feature enables you to review any differences between the two versions and be able to resolve or merge the differences among them. The differences are viewed from the perspective of the changed versions.

The Diff Dictionary option is available in the Rules Designer toolbar, as shown in Figure 12-53.

Figure 12-53 Actions Drop Down List
[image: Description of Figure 12-53 follows]

WARNING:
Before you decide to run this feature, you must be ready to resolve all changes because the dictionary becomes read-only when in diff or merge mode.

Merging dictionaries should be done with care.

12.8.1 How to see Differences Between Dictionaries

When you want to compare dictionaries, you have the newer dictionary opened and then use the Diff Merge to select the dictionary to compare with. Anything missing from the newer dictionary is flagged as a deletion from the newer version.

To see differences between dictionaries:

	In SOA Composer, with the newer dictionary open, click Actions, Diff Merge.The Dictionary version dialog appears, as shown in Figure 12-54.

Figure 12-54 Dictionary Version dialog
[image: Description of Figure 12-54 follows]

	In the Select Dictionary field, select one of the Dictionary version to compare.	File-System - File-system version give users an option to compare the rules file available on the local file system against the rules file of the composite deployed on the server.

	Published Version - Published version is the composite versions which changes when versions change.

	Saved Version - Saved version is the composite version which changes when versions change.

	Click OK to open the dictionary that you want to compare with.All differences between the two dictionaries are flagged with change icons.

The change icons are shown for all tabs and for the specific artifacts within each tab. An example is shown in Figure 12-55.

Figure 12-55 Merging or Reverting Changes
[image: Description of Figure 12-55 follows]

	Click Keep to retain the changes or select Revert to discard the changes made. You may click each tab and decide to keep or revert the changes.

	Alternatively, you can choose to Accept All or Reject All in the Actions drop down list to accept or reject all the changes on one click.Figure 12-56 Accept All or Reject All from the Actions Drop Down
[image: Description of Figure 12-56 follows]

The Diff Merge feature is more fully functional in JDeveloper Rules Designer. For more information, see How to Compare or Merge Two or More Dictionaries.

12.9 Localizing Names of Resources in Oracle Business Rules

Oracle BPM allows you to localize the names of some rules components.

Providing a translated version of these aliases enables users to view these aliases based on the local setting of their browser when using the following applications:

	Oracle SOA Composer

	Oracle Business Process Composer

	Oracle Process Workspace

Note:
Locale dictionaries are stored as resource bundles. You must create the resource bundle using Oracle JDeveloper. They must be deployed as part of the SOA composite application.

Resource bundles cannot be created using Oracle SOA Composer. However, you can use Oracle SOA Composer to edit the localized strings within a resource bundle.

Oracle SOA Composer enables you to localize the aliases of the following rules components.

	Values

	Value Sets

	Decision Functions

	Decision Function Facts

	Globals

	Links

	Rulesets

	Rules

	Patterns

12.9.1 How to Localize the Alias of a Oracle Business Rules Component

Using Oracle SOA Composer, in a session, you can add translated versions of the aliases and their descriptions used to identify rules components.

To localize the alias of a rules component:

	In Oracle SOA Composer, select the Translations tab. The Translations tab displays a table with multiple columns. By default, there are two columns one displaying the untranslated identifier of the rules component. The other displays the English locale.If you have defined other locales in your application, these also appear as columns in this table. See Localizing Oracle Business Rule Resources. for more information.

	In the column of the locale you want to edit, double-click in cell corresponding to the alias you want to translate.
	Enter the localized text for the alias.
	Repeat steps 2 and 3 to localize all the aliases required for the locale.

Note:
Offline editing of locale files is not supported. When a locale is added, the xml file generated does not contain all the keys by default. They are added when a value is added.

You can also localize from the editor. To localize from the editor click the Translations button.

The Translations Editor enables you to appears enter the Alias for the rule components and click OK.

12.10 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates

Oracle SOA Composer enables you to update rules dictionaries at runtime. However, the modifications made to the dictionaries through Oracle SOA Composer are not automatically reflected in Oracle JDeveloper. To synchronize the dictionary updates made in Oracle SOA Composer with the dictionaries available in Oracle JDeveloper, you must select the Export option in Oracle Enterprise Manager Fusion Middleware Control Console. This utility allows you to export the SOA composite application along with the dictionary.

To select the Export option in Fusion Middleware Control Console:

	In Fusion Middleware Control Console, select the composite that contains the dictionary to be exported.
	Click SOA Composite drop-down list on the right panel and select Export as shown in Figure 12-57.Figure 12-57 Selecting the Export Utility
[image: Description of Figure 12-57 follows]

	Select Option 1: Export with all post-deploy changes from the Export Composite page and click Export as shown in Figure 12-58. Figure 12-58 Exporting All Postdeployment Changes
[image: Description of Figure 12-58 follows]

12.11 Validating and Diagnosing an Oracle Business Rules Dictionary

In Oracle SOA Composer, in a session, you use the bottom tabs to check diagnostics and validate a dictionary for errors. The diagnostics tab is populated after you publish a session.

During the publish of the session, if another user has made any changes to the same artifact (like a dictionary) it will be listed in this section. You then have three options to handle any conflicts.

12.11.1 Understanding the Validation Log Tab

The Validation Log tab lists all the dictionary-level validation errors.

The Validation Log does not get updated automatically. The validation is only run if you click Validate and when you save any changes.

For example, when a new rule is added with errors, the Validation Log tab is not updated automatically. Click the Validate button on the toolbar to update the Validation Log with the new error entries.

12.11.2 Understanding the Diagnostics Tab

Use the Diagnostics tab see if other users are modifying the same artifacts and resolve those conflicts, as shown in Figure 12-59.

Figure 12-59 Diagnostics Tab
[image: Description of Figure 12-59 follows]

To resolve changes made by you or other users:

	For each item in the table, use the Resolution drop down to Ignore, Adopt, or Overwrite changes.
	Adopt will try to merge changes.
	Ignore means your changes will be discarded.
	Overwrite means that your changes will be made, other users changes will be discarded.
	Click Publish when done.

12.11.3 Understanding the History Center Tab

The History Center tab displays any pending changes that you or other users have made in a currently active session. You can discard changes from here, for example, if you want to quickly undo all changes you have made all at once.

12.11.4 Understanding the Save Log Tab

The Save Log tab is updated whenever you save. It adds an entry to the save log if it succeeds. It it fails it will show the error message here.

12.12 Working with Tasks

Using Oracle SOA Composer, you can view and edit tasks that may be or may not be associated to Approval Management Extensions (AMX) rules. AMX enables you to define complex task routing slips for human workflow by taking into account business documents and associated rules to determine the approval hierarchy for a work item.

Additionally, AMX lets you define multi-stage approvals with associated list builders based on supervisor or position hierarchies. At design time, you can define the approval task in the Human Task Editor of Oracle JDeveloper, and associate the task with a BPEL process. For more information about approval management and tasks, see Using Approval Management in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.

In Oracle SOA Composer, the Task Editor is embedded as a task flow so that you can view and perform all the task metadata lifecycle operations.

12.12.1 How to View Task Metadata

To view task metadata:

	In Oracle SOA Composer, to open a task or an AMX rules metadata artifact, from the Types View, expand the Human Tasks folder, and click an artifact to open it in a new tab, as shown in Figure 12-60.Figure 12-60 Opening a Task
[image: Description of Figure 12-60 follows]

	If you want to make changes, click Edit Session. When you are ready to apply the changes to the runtime version, click Publish.For more information about how to use the session buttons, see Creating and Publishing Sessions

You can differentiate between traditional rules and AMX rules depending on the naming convention.

For example, a composite may have the following artifacts:

	<AMX task name>.tsk

	<AMX rule name>Rules.rules

12.12.2 How to Configure a Task or an AMX Rule Metadata

Task Configuration enables business users and administrators to review the rules that were configured automatically by the workflow designer. These predefined rules can be changed for a specific customer based on the customer's applicable corporate policies.

In Oracle SOA Composer, Task Configuration enables you to edit the event-driven (only tasks) and data-driven rules (tasks with an associated AMX rules) associated with an approval flow at runtime.

Figure 12-61 Configuring Tasks
[image: Description of Figure 12-61 follows]

12.12.2.1 Configuring Event-Driven Settings

To configure event-driven settings:

	Log on to Oracle SOA Composer and open the required task.
	Click Edit Session on the Oracle SOA Composer menu bar to open the selected task for editing as shown in Figure 12-62.Figure 12-62 Opening a Task for Editing
[image: Description of Figure 12-62 follows]

	Make the relevant edits and click Save Changes in Current Tab When you are ready to apply the changes to the runtime version, click Publish.

You can configure the following options and settings:

	Task aggregation

	Error notification

	Assignment and routing policy

	Expiration and escalation policy

	Notification settings

	Task access settings

12.12.2.1.1 Setting Approval Aggregation Requirements

Task aggregation requirements can be any of the following:

	None

	Once per task

	Once per stage

12.12.2.1.2 Notifying Errors

You can specify the user and group names that need to be notified in case of an error in the task. You need to click the On Error Notify search button to display the Configure Error Assignees dialog box where you can specify the user or group names.

12.12.2.1.3 Setting Assignment and Routing Policy

You can set the assignment and routing policy by using the options available in Oracle SOA Composer. Click to select the available options for setting assignment and routing policy.

For more information about the assignment and routing options available in event-driven configuration, see Routing Policy Method in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

12.12.2.1.4 Setting Expiration and Escalation Policy

You can set the expiration and escalation policy for the task by using the available items in the Expiration and Escalation Policy list. The available list items are:

	Never Expire

	Expire After

	Escalate After

	Renew After

12.12.2.1.5 Configuring Notification Settings

You can configure notification settings for a task by using the options available in the Notification Settings section of Oracle SOA Composer.

INTERNAL XREF ERROR displays the different options available to configure notification settings for a task.

Figure 12-63 Specifying Notification Settings
[image: Description of Figure 12-63 follows]

12.12.2.1.6 Configuring Task Access Settings

You can set access-rule settings to control the actions a user can perform. You can also specify content and action permissions based on the logical role of a user, such as creator (initiator), owner, assignee, and reviewers.

In Oracle SOA Composer, you can set access settings by using the options available under Task Access area and tabs, as shown in **INTERNAL XREF ERROR** and **INTERNAL XREF ERROR**.

Figure 12-64 Specifying Task Access Settings
[image: Description of Figure 12-64 follows]

Figure 12-65 Specifying Task Actions Settings
[image: Description of Figure 12-65 follows]

For more information on configuring task access, see How to Define Security Access Rules in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.

12.12.2.2 Configuring Data-Driven Settings (Rule or Condition)

To configure data-driven settings:

	Log on to Oracle SOA Composer and open the required task.
	Click Edit Session on the Oracle SOA Composer menu bar to open the selected AMX rule-associated task for editing as shown in Figure 12-66.Figure 12-66 Editing a Rule-Associated Task
[image: Description of Figure 12-66 follows]

	Make the relevant edits and click Save Changes in Current Tab. If you are ready to apply the changes to the runtime version, click Publish.

You can perform the following actions:

	Adding, updating, and deleting a rule

	Changing rule assertions (which depend on the type of list builder for which the rule has been configured)

	Adding a variable

For more information about editing data-driven settings, see How to Edit Data-Driven Settings in Oracle Fusion Middleware User's Guide for Oracle Business Process Management.

Appendices

This part contain appendices that describe the Oracle Business Rules files and limitations, built-in classes and functions, and how to troubleshoot Oracle Business Rules.

This part contains the following appendices:

	Oracle Business Rules Built-in Classes and Functions

	Working with Oracle Business Rules and JSR-94 Execution Sets

	Oracle Business Rules Frequently Asked Questions

	Oracle Business Rules Files and Limitations

	Working with Oracle Business Rules and JSR-94 Execution Sets

A Oracle Business Rules Files and Limitations

This appendix lists known naming constraints for Rules Designer files and names, and certain Rules SDK limitations.

This appendix includes the following sections:

	Rules Designer Naming Conventions

A.1 Rules Designer Naming Conventions

This section covers Rules Designer naming conventions.

Some of the naming conventions are for ruleset, dictionary, alias, and, XML schema target packaging naming.

A.1.1 Ruleset Naming

Rules Designer enforces a limitation for ruleset names; a ruleset name must start with a letter and contain only letters, numbers, or the following characters: ".", "-", "_","", ":", "/", and single spaces. Letters include the characters (a to z and A to Z) and numbers (0 to 9).

A.1.2 Dictionary Naming

Rules Designer dictionary names can contain only the following characters, upper and lowercase letters (a to z and A to Z), numbers (0 to 9), and the underscore (_). Special characters are not valid in a dictionary name.

Rules Designer dictionary names are case preserving but case-insensitive. For example, the dictionary names Dictionary and DICT are both valid. If you create a dictionary named Test, then you can create another dictionary named TEST only if you first delete the dictionary named Test.

A.1.3 Alias Naming

Rules Designer alias names must begin with a letter and contain only letters, numbers, ".", "-", "_","", ":", "/", and single spaces.

A.1.4 XML Schema Target Package Naming

The Target Package Name that you specify for an XMLFact on the XML Schema Selector page is limited to ASCII characters, digits, and the underscore character.

B Oracle Business Rules Built-in Classes and Functions

This appendix discusses the extensive library of Oracle Business Rules (OBR) built-in classes, methods, and functions that help reasoning about data containing text strings, lists, numbers, dates, times, and so on.

In the following sections, there are multiple tables whose each row has a Kind column that is either Cl, Co, M, sM, P, or sP (Class, Constructor, Method, static Method, Property, or static Property (Java static final field) respectively). The first row in each table specifies the class. When the Java Name is the same as the OBR Name (the rule SDK terms it the Alias), a '-' is displayed. The Signature column provides type information for methods, functions, and properties. The signature of a property is actually the type, for example BigDecimal. The signature of a method or function is of the form return(arg1,arg2,...), where return is the return type and arg1,arg2,... are the argument types.

This appendix includes the following sections:

	String Classes

	List Classes

	Numeric Classes

	Time and Duration Classes

	Miscellaneous Classes

	Functions

B.1 String Classes

This section covers the String-related classes provided by Oracle Business Rules.

Table Table B-1 lists the String class.

Table B-1 Strings-related Classes provided by Oracle Business Rules

	OBR Name	Kind	Signature	Java Name	Description	Reference
	String

	Cl

	-

	java.lang.String

	Java immutable character strings. Beware, Java uses 0-based indexing for characters in strings, and XML uses 1-based indexing

	http://java.sun.com/javase/6/docs/api/java/lang/String.html

	charAt

	S

	char(int)

	-

	Returns the char value at 0-based index arg1. "Oracle".charAt(2)=='a'.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29

	compareTo

	M

	int(String)

	-

	Returns the value 0 if the argument string is equal to this string; a value less than 0 if this string is lexicographically less than the string argument; and a value greater than 0 if this string is lexicographically greater than the string argument. "a".compareTo("b")<0.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29

	contains

	M

	boolean(String)

	-

	Tests whether this string contains arg1. "Oracle".contains("rac")==true.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29

	endsWith

	M

	boolean(String)

	-

	Tests whether this string ends with arg1. "Oracle".endsWith("le")==true.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29

	equalsIgnoreCase

	M

	boolean(String)

	-

	Tests whether this string equals arg1, ignoring case consideration. "Oracle".equalsIgnoreCase("oRaClE")==true.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29

	indexOf

	M

	int(String,int)

	-

	Returns the 0-based index of the start of arg1 within this String, but not before the 0-based index arg2. "banana".indexOf("an",2)==3.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29

	lastIndexOf

	M

	int(String,int)

	-

	Returns the 0-based index within this string of the last occurrence of arg1, searching backward starting at the index arg2. "banana".lastIndexOf("an","banana".length())==3.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29

	length

	M

	int

	-

	Returns the length of this string. "Oracle".length()==6.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29

	matches

	M

	boolean(String)

	-

	Tests if this string matches the given regular expression. "banana".matches("^b.*a$")==true.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29

	replaceAll

	M

	String(String,String)

	-

	Replaces each substring of this string that matches arg1 (a regular expression) with arg2. "banana".replaceAll(".a","xo")=="xoxoxo".

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29

	replaceFirst

	M

	String(String,String)

	-

	Replaces first substring of this string that matches arg1 (a regular expression) with arg2. "banana".replaceFirst(".a","xo")=="xonana".

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29

	startsWith

	M

	boolean(String)

	-

	Tests whether this string starts with arg1. "Oracle".startsWith("Or")==true.

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29

	substring

	M

	String(int,int)

	-

	Returns the substring of this string, starting with the 0-based index arg1, and ending before the 0-based index arg2. "Oracle".substring(1,4)=="rac".

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29

	toLowerCase

	M

	String()

	-

	Converts this string to lower case. "Oracle".toLowerCase()=="oracle".

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29

	toUpperCase

	M

	String()

	-

	Converts this string to upper case. "Oracle".toUpperCase()=="ORACLE".

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29

	trim

	M

	String()

	-

	Removes leading and trailing whitespace. " Oracle ".trim()=="Oracle".

	http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29

Table B-2 lists the RL class strings methods.

Table B-2 RL class strings methods

	OBR Name	Kind	Signature	Java Name	Description	Reference
	RL

	Cl

	-

	oracle.rules.rl.extensions.RL

	Supplement standard Java classes with W3C RIF functionality.

	http://www.w3.org/TR/rif-dtb/

	string.join

	sM

	String(String...)

	stringJoin

	Concatenates first n-1 args using the last arg as a separator. RL.string.join("a","b","c","#")=="a#b#c".

	http://www.w3.org/TR/rif-dtb/#func:string-join

	string.substring

	sM

	String(String,int,int)

	substring

	Returns the substring of arg1, beginning at the 1-based index arg2, and continuing for arg3 characters. RL.string.substring("Oracle",2,3)=="rac".

	http://www.w3.org/TR/rif-dtb/#func:substring

	string.suffix

	sM

	String(String,int)

	substring

	Returns the suffix of arg1, beginning at the 1-based index arg2. RL.string.suffix("Oracle",5)=="le".

	http://www.w3.org/TR/rif-dtb/#func:substring

	string.substring before

	sM

	String(String,String)

	substringBefore

	Returns the substring of arg1 that occurs before arg2. RL.string.substring before("Oracle","ac")=="Or".

	http://www.w3.org/TR/rif-dtb/#func:substring-before

	string.substring after

	sM

	String(String,String)

	substringAfter

	Returns the substring of arg1 that occurs after arg2. RL.string.substring after("Oracle","ac")=="le".

	http://www.w3.org/TR/rif-dtb/#func:substring-after

	string.iri.encode path

	sM

	String(String)

	encodeForURI

	Encodes characters not permitted in an URI path. RL.string.iri encode path("Oracle Business Rules")=="Oracle%20Business%20Rules".

	http://www.w3.org/TR/rif-dtb/#func:encode-for-uri

	string.iri.to uri

	sM

	String(String)

	iriToUri

	Encodes some characters not permitted in a URI. RL.string.iri to uri("http://www.example.com/~bébé")=="http://www.example.com/~b%C3%A9b%C3%A9"

	http://www.w3.org/TR/rif-dtb/#func:iri-to-uri

	string.iri.to ascii

	sM

	String(String)

	escapeHtmlUri

	Encodes non-ascii characters. RL.string.iri to ascii("javascript:if (navigator.browserLanguage == 'fr') window.open('http://www.example.com/~bébé');")=="javascript:if (navigator.browserLanguage == 'fr') window.open('http://www.example.com/~b%C3%A9b%C3%A9');"

	http://www.w3.org/TR/rif-dtb/#func:escape-html-uri

	string.is normalized

	sM

	boolean(String)

	isNormalizedString

	A normalized string does not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. RL.string.is normalized(" Business Rules ")==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	string.is token

	sM

	boolean(String)

	isToken

	A token is a normalized string with no leading or trailing spaces, and no double spaces. RL.string.is token("Business Rules")==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	string.is language

	sM

	boolean(String)

	isLanguage

	A language identifier. RL.string.is language("en")==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	string.is Name

	sM

	boolean(String)

	isName

	A name is a token with no spaces (and some other constraints on its characters). RL.string.is Name("xs:Name")==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	string.is NCName

	sM

	boolean(String)

	isNCName

	A non-colonized name. RL.string.is NCName("xs:NCName")==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	string.is NMTOKEN

	sM

	boolean(String)

	isNMTOKEN

	An NMTOKEN is a Name with no restriction on the initial character. RL.string.is NMTOKEN("-Oracle")==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	string.compare

	sM

	int(String,String)

	compare

	Returns -1, 0, or 1 if arg1<arg2, arg1==arg2, or arg1>arg2, respectively. RL.string.compare("foo","bar")==1.

	http://www.w3.org/TR/rif-dtb/#func:compare_.28adapted_from_fn:compare.29

B.2 List Classes

This section covers the List classes provided by Oracle Business Rules.

Table Table B-3 lists the List class.

Table B-3 Table lists the List class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	List

	Cl

	-

	java.util.List

	Represents mutable and immutable lists. Lists use 0-based indexes. Attempts to modify an immutable list may result in UnsupportedOperationExceptions.

	http://java.sun.com/javase/6/docs/api/java/util/List.html

	append

	M

	void(Object)

	add

	Appends arg1 to this list. Modifies this list.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)

	add

	M

	void(int,Object)

	-

	Inserts arg2 into this list at position arg1. Modifies this list.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)

	appendAll

	M

	void(java.util.Collection)

	addAll

	Appends the contents of arg1 to this list. Modifies this list.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)

	addAll

	M

	void(int,java.util.Collection)

	-

	Inserts the contents of arg2 into this list at position arg1. Modifies this list.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)

	clear

	M

	void()

	-

	Removes the contents of this list. Modifies this list.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()

	contains

	M

	boolean(Object)

	-

	Tests whether this list contains arg1. RL.list.create(1,2,3).contains(2)==true.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)

	containsAll

	M

	boolean(java.util.Collection)

	-

	Tests whether this list contains every element in arg1. RL.list.create(1,2,3).containsAll(RL.list.create(3,2,1))==true.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)

	get

	M

	Object(int)

	-

	Get the element at position arg1. RL.list.create(1,2,3).get(1)==2.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)

	indexOf

	M

	int(Object)

	-

	Returns first index of arg1 in this list. RL.list.create(1,2,3).indexOf(2)==1.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)

	remove

	M

	boolean(Object)

	-

	Removes first occurrence of arg1 from this list. Returns whether this list was modified.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)

	remove by index

	M

	Object(int)

	remove

	Removes and return the element at position arg1. Modifies this list.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)

	removeAll

	M

	boolean(java.util.Collection)

	-

	Removes all elements from this list that are contained in arg1. Returns whether this list was modified.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)

	retainAll

	M

	boolean(java.util.Collection)

	-

	Removes all elements from this list that are *not* contained in arg1. Returns whether this list was modified.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)

	set

	M

	Object(int,Object)

	-

	Replaces the item in this list at position arg1 with arg2. Returns the replaced item. Modifies this list.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)

	size

	M

	int()

	-

	Returns the size of this list. RL.list.create(1,2,3).size()==3.

	http://java.sun.com/javase/6/docs/api/java/util/List.html#size()

	subList

	M

	List(int,int)

	-

	Returns a view of the portion of this list between arg1, inclusive, and arg2, exclusive. RL.list.create(1,2,3,4).subList(1,3)==RL.list.create(2,3).

	http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)

Table B-4 lists the RL class list methods.

Table B-4 Table lists the RL class list methods

	OBR Name	Kind	Signature	Java Name	Description	Reference
	RL

	Cl

	-

	oracle.rules.rl.extensions.RL

	-

	-

	list.append

	sM

	List(List,Object...)

	append

	Returns a new immutable list containing the contents of arg1, followed by arg2, arg3, ... RL.list.append(RL.list.create(1),2,3)==RL.list.create(1,2,3).

	http://www.w3.org/TR/rif-dtb/#func:append

	list.concatenate

	sM

	List(List...)

	concatenate

	Returns a new immutable list containing the concatenation of arg1, arg2, ... RL.list.concatenate(RL.list.create(1),RL.list.create(2))==RL.list.create(1,2).

	http://www.w3.org/TR/rif-dtb/#func:concatenate

	list.distinct values

	sM

	List(List)

	distinctValues

	Returns a new immutable list like arg1 but with duplicates removed. RL.list.distinct values(RL.list.create(2,2))==RL.list.create(2).

	http://www.w3.org/TR/rif-dtb/#func:distinct-values

	list.except

	sM

	List(List,List)

	except

	Returns a new immutable list containing elements from arg1 that are not in arg2. RL.list.except(RL.list.create(1,2,3,4),RL.list.create(1,3))==RL.list.create(2,4).

	http://www.w3.org/TR/rif-dtb/#func:except

	list.get

	sM

	Object(List,int)

	get

	Returns the element at position arg2 in arg1. If arg2<0, return the element at arg1.size()+arg2. RL.list.get(RL.list.create(1,2,3),-1)==3.

	http://www.w3.org/TR/rif-dtb/#func:get

	list.index of

	sM

	List<Integer>(List,Object)

	indexOf

	Returns a list of indexes where the arg2 occurs in arg1. RL.list.index of(RL.list.create(1,2,3,2),2)==RL.list.create(1,3).

	http://www.w3.org/TR/rif-dtb/#func:index-of

	list.insert before

	sM

	List(List,int,Object)

	insertBefore

	Returns a new immutable list containing arg1 with arg3 inserted before the item at position arg2. If arg2<0, arg3 is inserted before the element at arg1.size()+arg2. RL.list.insert before(RL.list.create(1,2,3),-1,99)==RL.list.create(1,2,99,3).

	http://www.w3.org/TR/rif-dtb/#func:insert-before

	list.intersect

	sM

	List(List,List)

	intersect

	Returns a new immutable list containing the intersection of arg1 and arg2. RL.list.intersect(RL.list.create(1,2,3),RL.list.create(3,1))==RL.list.create(1,3).

	http://www.w3.org/TR/rif-dtb/#func:intersect

	list.create

	sM

	List(Object...)

	list

	Returns a new immutable list containing the arguments.

	http://www.w3.org/TR/rif-dtb/#func:make-list

	list.remove

	sM

	List(List,int)

	remove

	Returns a new immutable list containing the elements of arg1, with the element at position arg2 removed. If arg2<0, the element at arg1.size()+arg2 is removed. RL.list.remove(RL.list.create(1,2,3),0)==RL.list.create(2,3).

	http://www.w3.org/TR/rif-dtb/#func:remove

	list.reverse

	sM

	List(List)

	reverse

	Returns a new immutable list containing the elements of arg1 in reverse order. RL.list.reverse(RL.list.create(1,2,3))==RL.list.create(3,2,1).

	http://www.w3.org/TR/rif-dtb/#func:reverse

	list.union

	sM

	List(List)

	union

	Returns a new immutable list containing the concatenation of the arguments with duplicates removed. RL.list.union(RL.list.create(1,2),RL.list.create(2,3))==RL.list.create(1,2,3).

	http://www.w3.org/TR/rif-dtb/#func:union

B.3 Numeric Classes

Oracle Business Rules support the primitive Java numeric types byte, short, int, long, float, and double.

OBR also supports the "boxed" versions: Short, Int, Long, Float, and Double. Unlimited precision integers and decimals are supported, using the Java classes BigInteger and BigDecimal. OBR supports arithmetic expressions (+, -, *, /, **) on all numeric types. For example, if *bd is BigDecimal, then you can add one to it by simply writing bd + 1. You do not have to write bd.add(BigDecimal.ONE).

Table Table B-5 lists the Integer class.

Table B-5 Table lists the Integer class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Integer

	Cl

	-

	java.lang.Integer

	An integer object. Unlike the primitive "int", an Integer can be null and can be in Lists.

	http://java.sun.com/javase/6/docs/api/java/lang/Integer.html

	Integer

	Co

	Integer(int|String)

	-

	Creates an Integer from an int or from its lexical representation as a String. new Integer(1)==new Integer("1").

	http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)

	MIN_VALUE

	sP

	int

	-

	Smallest primitive int value. Integer.MIN_VALUE<0.

	http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE

	MAX_VALUE

	sP

	int

	-

	Largest primitive int value. Integer.MAX_VALUE>0.

	http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

	intValue

	M

	int()

	-

	Converts this Integer to an int. new Integer(1).intValue()==1.

	http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()

	toString

	M

	String()

	-

	Converts this Integer to its lexical representation. new Integer(1).toString()=="1".

	http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()

Table B-6 lists the Long class.

Table B-6 Table lists the Long class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Long

	Cl

	-

	java.lang.Long

	A long integer object. Unlike the primitive "long", a Long can be null and can be in Lists.

	http://java.sun.com/javase/6/docs/api/java/lang/Long.html

	Long

	Co

	Long(long|String)

	-

	Creates a Long from a long or from its lexical representation as a String. new Long(1)==new Long("1").

	http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)

	MIN_VALUE

	sP

	long

	-

	Smallest primitive long value. Long.MIN_VALUE<0.

	http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE

	MAX_VALUE

	sP

	long

	-

	Largest primitive long value. Long.MAX_VALUE>0.

	http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE

	longValue

	M

	long()

	-

	Converts this Long to a long. new Long(1).longValue()==1.

	http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()

	toString

	M

	String()

	-

	Converts this Long to its lexical representation. new Long(1).toString()=="1".

	http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()

Table B-7 lists the Short class.

Table B-7 Table lists the Short class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Short

	Cl

	-

	java.lang.Short

	A short integer object. Unlike the primitive "short", a Short can be null and can be in Lists.

	http://java.sun.com/javase/6/docs/api/java/lang/Short.html

	Short

	Co

	Short(short|String)

	-

	Creates a Short from a short or from its lexical representation as a String. new Short(1)==new Short("1").

	http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)

	MIN_VALUE

	sP

	short

	-

	Smallest primitive short value. Short.MIN_VALUE<0.

	http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE

	MAX_VALUE

	sP

	short

	-

	Largest primitive short value. Short.MAX_VALUE>0.

	http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE

	shortValue

	M

	short()

	-

	Converts this Short to a short. new Short(-1).shortValue()==-1.

	http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()

	toString

	M

	String()

	-

	Converts this Short to its lexical representation. new Short(-1).toString()=="-1".

	http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()

Table B-8 lists the Float class.

Table B-8 Table lists the Float class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Float

	Cl

	-

	java.lang.Float

	A Float object. Unlike the primitive "float", a Float can be null and can be in Lists.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html

	Float

	Co

	Float(float|double|String)

	-

	Creates a Float from a float, a double, or from its lexical representation as a String. new Float(1.1)==new Float("1.1").

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)

	infinite

	P

	boolean

	-

	The value of this Float is infinity. new Float(Float.NEGATIVE_INFINITY).infinite==true.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()

	naN

	P

	boolean

	-

	The value of this Float is not a number. new Float(Float.NaN).naN==true.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()

	NaN

	sP

	float

	-

	Value representing "not a number".

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN

	NEGATIVE_INFINITY

	sP

	float

	-

	Value representing negative infinity.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY

	POSITIVE_INFINITY

	sP

	float

	-

	Value representing positive infinity.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY

	floatValue

	M

	float()

	-

	Converts this Float to a float. new Float(1.1f).floatValue()==1.1f.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()

	toString

	M

	String()

	-

	Converts this Float to its lexical representation. new Float(1.1f).toString()=="1.1".

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()

Table B-9 lists the Double class.

Table B-9 Table lists the Double class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Double

	Cl

	-

	java.lang.Double

	A Double object. Unlike the primitive "double", a Double can be null and can be in Lists.

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html

	Double

	Co

	Double(double|String)

	-

	Creates a Double from a double or from its lexical representation as a String. new Double(1.1)==new Double("1.1").

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)

	infinite

	P

	boolean

	-

	The value of this Double is infinity. new Float(Float.POSITIVE_INFINITY).infinite==true.

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()

	naN

	P

	boolean

	-

	The value of this Double is not a number. new Double(double.NaN).naN==true.

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()

	NaN

	sP

	double

	-

	Value representing "not a number".

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN

	NEGATIVE_INFINITY

	sP

	double

	-

	Value representing negative infinity.

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY

	POSITIVE_INFINITY

	sP

	double

	-

	Value representing positive infinity.

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY

	doubleValue

	M

	double()

	-

	Converts this Double to a double. new Double(1.1).doubleValue()==1.1.

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()

	toString

	M

	String()

	-

	Converts this Double to its lexical representation. new Double(1.1).toString()=="1.1".

	http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()

Table B-10 lists the BigInteger class.

Table B-10 Table lists the BigInteger class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	BigInteger

	Cl

	-

	java.math.BigInteger

	Immutable arbitrary-precision integers.

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html

	BigInteger

	Co

	BigInteger(String)

	-

	Creates a BigInteger from its lexical representation as a String. new BigInteger("1")==1.

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)

	doubleValue

	M

	double()

	-

	Converts this BigInteger to a double. May lose precision. new BigInteger("1").doubleValue()==1.0.

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()

	longValue

	M

	long()

	-

	Converts this BigInteger to a long. May lose precision. new BigInteger("1").longValue()==1L.

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()

	max

	M

	BigInteger(BigInteger)

	-

	Returns the greater of this or arg1. new BigInteger("1").max(2)==2.

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)

	min

	M

	BigInteger(BigInteger)

	-

	Returns the lesser of this or arg1. new BigInteger("1").min(2)==1.

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)

	toString

	M

	String()

	-

	Returns the lexical representation of this BigInteger. new BigInteger("123").toString()=="123".

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()

	valueOf

	sM

	BigInteger(long)

	-

	Converts arg1 (a long) to a BigInteger. BigInteger.valueOf(123).toString()=="123".

	http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)

Table B-11 lists the BigDecimal class.

Table B-11 Table lists the BigDecimal class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	BigDecimal

	Cl

	-

	java.math.BigDecimal

	Immutable, arbitrary-precision signed decimal numbers.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

	BigDecimal

	Co

	BigDecimal(long|double|String)

	-

	Creates a BigDecimal from a long, a double, or from its lexical representation as a String. new BigDecimal(1.1)==new BigDecimal("1.1").

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)

	BigDecimal

	Co

	BigDecimal(BigInteger,int)

	-

	Creates a BigDecimal from BigInteger arg1 and scale arg2. new BigDecimal(new BigInteger("123"),2)==1.23.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)

	doubleValue

	M

	double()

	-

	Converts this BigDecimal to a double. May lose precision. new BigDecimal("0.1").doubleValue()==0.1.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()

	longValue

	M

	long()

	-

	Converts this BigDecimal to a long. May lose precision. new BigDecimal("0.1").longValue()==0L.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()

	max

	M

	BigDecimal(BigDecimal)

	-

	Returns the greater of this BigDecimal or arg1. new BigDecimal("0.1").max(0.2)==0.2.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)

	min

	M

	BigDecimal(BigDecimal)

	-

	Returns the lesser of this BigDecimal or arg1. new BigDecimal("0.1").min(0.2)==0.1.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)

	scale

	M

	int()

	-

	Returns the scale--the number of digits to the right of the decimal point. new BigDecimal("1.00").scale()==2.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()

	setScale

	M

	BigDecimal(int)

	-

	Sets the scale, but don't change the value. new BigDecimal("1").setScale(2).toString()=="1.00".

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)

	toEngineeringString

	M

	String()

	-

	Returns the literal representation of this BigDecimal using engineering notation if an exponent is needed. new BigDecimal("123E2").toEngineeringString()=="12.3E+3".

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()

	toPlainString

	M

	String

	-

	Returns the literal representation of this BigDecimal without exponents. new BigDecimal("123E2").toPlainString()=="12300".

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()

	valueOf

	sM

	BigDecimal(long|double)

	-

	Converts arg1 (a long or double) to a BigDecimal. new BigDecimal(1.3)==BigDecimal.valueOf(1.3).

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)

	ROUND_UP

	sP

	int

	-

	Used with divide. new BigDecimal("11").divide(2,BigDecimal.ROUND_UP)==6.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP

	ROUND_DOWN

	sP

	int

	-

	Used with divide. new BigDecimal("11").divide(2,BigDecimal.ROUND_DOWN)==5.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN

	divide

	M

	BigDecimal(BigDecimal,int)

	-

	Returns this/arg1 with scale the same as this BigDecimal. If rounding must be performed to stay within the result scale, use the rounding mode given by arg2 (ROUND_UP or ROUND_DOWN). new BigDecimal("11").divide(2,BigDecimal.ROUND_UP)==6.

	http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)

Table B-12 lists the Number class.

Table B-12 Table lists the Number class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Number

	Cl

	-

	-

	Base class of all numerics (except primitives).

	http://java.sun.com/javase/6/docs/api/java/lang/Number.html

	doubleValue

	M

	double()

	-

	Converts this number to a double.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()

	floatValue

	M

	float()

	-

	Converts this number to a float.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()

	intValue

	M

	int()

	-

	Converts this number to a int.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()

	longValue

	M

	long()

	-

	Converts this number to a long.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()

	shortValue

	M

	short()

	-

	Converts this number to a short.

	http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()

Table B-13 lists the RL class number methods.

Table B-13 Table lists the RL class number methods

	OBR Name	Kind	Signature	Java Name	Description	Reference
	RL

	Cl

	-

	oracle.rules.rl.extensions.RL

	-

	-

	number.is byte

	sM

	boolean(Number)

	isByte

	arg1 is integral and -128<=arg1<=127. RL.numeric.is byte(200)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is short

	sM

	boolean(Number)

	isShort

	arg1 is integral and -32768<=arg1<=32767. RL.numeric.is short(0.1)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is int

	sM

	boolean(Number)

	isInt

	arg1 is integral and -2147483648<=arg1<=2147483647. RL.numeric.is int(-1000)==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is long

	sM

	boolean(Number)

	isLong

	arg1 is integral and -9223372036854775808<=arg1<=9223372036854775807. RL.numeric.is integer(new BigInteger("100")**100)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is integer

	sM

	boolean(Number)

	isInteger

	arg1 is integral. RL.numeric.is integer(new BigInteger("100")**100)==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is decimal

	sM

	boolean(Number)

	isDecimal

	arg1 is neither Double nor Float. RL.numeric.is decimal(1.1)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is non-negative integer

	sM

	boolean(Number)

	isNonNegativeInteger

	arg1 is integral and arg1>=0. RL.numeric.is non-negative integer(-1)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is negative integer

	sM

	boolean(Number)

	isNegativeInteger

	arg1 is integral and arg1<0. RL.numeric.is negative integer(-1)==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is non-positive integer

	sM

	boolean(Number)

	isNonPositiveInteger

	arg1 is integral and arg1<=0. RL.numeric.is non-positive integer(-1)==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is positive integer

	sM

	boolean(Number)

	isPositiveInteger

	arg1 is integral and arg1>0. RL.numeric.is positive integer(-1)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is unsigned byte

	sM

	boolean(Number)

	isUnsignedByte

	arg1 is integral and 0<=arg1<=255. RL.numeric.is unsigned byte(200)==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is unsigned short

	sM

	boolean(Number)

	isUnsignedShort

	arg1 is integral and 0<=arg1<=65535. RL.numeric.is unsigned short(0.1)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is unsigned int

	sM

	boolean(Number)

	isUnsignedInt

	arg1 is integral and 0<=arg1<=4294967295. RL.numeric.is unsigned int(-1000)==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	number.is unsigned long

	sM

	boolean(Number)

	isUnsignedLong

	arg1 is integral and 0<=arg1<=18446744073709551615.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

B.4 Time and Duration Classes

This section lists the time and duration classes provided by Oracle Business Rules.

Table Table B-14 lists the Calendar class.

Table B-14 Table lists the Calendar class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Calendar

	Cl

	-

	java.util.Calendar

	A Calendar represents a datetime and timezone. A calendar instance has a number of mutable int fields. The first argument to add, get, isSet, roll, and set is a field number. This class provides a number of static properties that should be used for the field numbers.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html

	ERA

	sP

	int

	-

	Field number for the Calendar era. 1 is for A.D. and 0 is for B.C. ((Calendar)"2010-02-01").get(Calendar.ERA)==1.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA

	YEAR

	sP

	int

	-

	Field number for the Calendar year. ((Calendar)"2010-02-01").get(Calendar.YEAR)==2010.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR

	MONTH

	sP

	int

	-

	Field number for the Calendar month. Months are 0-based. ((Calendar)"2010-02-01").get(Calendar.MONTH)==1.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH

	WEEK_OF_YEAR

	sP

	int

	-

	Field number for the Calendar week. ((Calendar)"2010-02-01").get(Calendar.WEEK_OF_YEAR)==6.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR

	DAY_OF_YEAR

	sP

	int

	-

	Field number for the Calendar day of year. ((Calendar)"2010-02-01").get(Calendar.DAY_OF_YEAR)==32.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR

	DAY_OF_MONTH

	sP

	int

	-

	Field number for the Calendar day of month. ((Calendar)"2010-02-01").get(Calendar.DAY_OF_MONTH)==1.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH

	DAY_OF_WEEK

	sP

	int

	-

	Field number for the Calendar day of the week. ((Calendar)"2010-02-01").get(Calendar.DAY_OF_WEEK)==2.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK

	HOUR

	sP

	int

	-

	Field number for the Calendar hour, 12 hour format. ((Calendar)"2010-02-01T20:15:10").get(Calendar.HOUR)==8.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR

	AM_PM

	sP

	int

	-

	Field number for the Calendar AM_PM flag. 0 is for AM and 1 is for PM. ((Calendar)"2010-02-01T20:15:10").get(Calendar.AM_PM)==1.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM

	HOUR_OF_DAY

	sP

	int

	-

	Field number for the Calendar hour, 24 hour format. ((Calendar)"20:15:10").get(Calendar.HOUR)==20.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY

	MINUTE

	sP

	int

	-

	Field number for the Calendar minutes. JavaDate.from time string("20:15:10").get(Calendar.MINUTE)==15.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE

	SECOND

	sP

	int

	-

	Field number for Calendar seconds. ((Calendar)"20:15:10").get(Calendar.SECOND)==10.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND

	ZONE_OFFSET

	sP

	int

	-

	Field number for timezone. Value is millsecond offset from GMT. ((Calendar)"20:15:10-05:30").get(Calendar.ZONE_OFFSET)==-(5*3600+30*60)*1000.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET

	add

	M

	void(int,int)

	add

	Adds the amount of time specified by arg2 to the calendar field specified by arg1. Modifies this Calendar.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)

	clear

	M

	void()

	clear

	Clears (unset all fields in) this Calendar. Modifies this Calendar.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()

	get

	M

	int(int)

	get

	Gets the value of the field specified by field number arg1. ((Calendar)"20:15:10").get(Calendar.SECOND)==10.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)

	getInstance

	sM

	Calendar()

	getInstance

	Gets a calendar initialized to the current time in the default time zone and locale.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()

	roll

	M

	void(int,int)

	roll

	Adds the amount of time specified by arg2 to the calendar field specified by arg1. Does not affect any other calendar field. Modifies this Calendar.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)

	set

	M

	void(int,int)

	set

	Sets the calendar field specified by arg1 to the value specified by arg2. Modifies this Calendar.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)

	time

	P

	java.util.Date

	time

	Returns a Date object representing this Calendar's time value. ((Calendar)"2010-02-01").time<((Calendar)"2010-02-02").time.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()

	timeInMillis

	P

	long

	timeInMillis

	Returns this Calendar's time value in milliseconds. ((Calendar)"2010-02-01").timeInMillis<((Calendar)"2010-02-02").timeInMillis.

	http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()

Table B-15 lists the JavaDate class.

Table B-15 Table lists the JavaDate class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	JavaDate

	Cl

	-

	oracle.rules. rl. extensions.JavaDate

	Helper class for working with Calendars as immutable objects. Treating Calendars as immutable objects can help prevent errors.

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html

	add years to

	sM

	Calendar(Calendar, int)

	addYearsTo

	Returns a new Calendar that is arg2 years later than arg1. JavaDate.add years to("2009-01-01",1)=="2010-01-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_

	add months to

	sM

	Calendar(Calendar, int)

	addMonthsTo

	Returns a new Calendar that is arg2 months later than arg1. JavaDate.add months to("2009-01-01",1)=="2009-02-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_

	add weeks to

	sM

	Calendar(Calendar,int)

	addWeeksTo

	Returns a new Calendar that is 7*arg2 days later than arg1. JavaDate.add weeks to("2009-01-01",1)=="2009-01-08".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_

	add days to

	sM

	Calendar(Calendar,int)

	addDaysTo

	Returns a new Calendar that is arg2 days later than arg1. JavaDate.add days to("2009-01-01",1)=="2009-01-02".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_

	add hours to

	sM

	Calendar(Calendar,int)

	addHoursTo

	Returns a new Calendar that is arg2 hours later than arg1. JavaDate.add hours to("01:01:01",1)=="02:01:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_

	add minutes to

	sM

	Calendar(Calendar,int)

	addMinutesTo

	Returns a new Calendar that is arg2 minutes later than arg1. JavaDate.add minutes to("01:01:01",1)=="01:02:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_

	add seconds to

	sM

	Calendar(Calendar,int)

	addSecondsTo

	Returns a new Calendar that is arg2 seconds later than arg1. JavaDate.add seconds to("01:01:01",61)=="01:02:02".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_

	add milliseconds to

	sM

	Calendar(Calendar,int)

	addMillisecondsTo

	Returns a new Calendar that is arg2 milliseconds later than arg1. JavaDate.add milliseconds to("01:01:01",61)=="01:01:01.061".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_

	add duration to

	sM

	Calendar(Calendar,XMLDuration)

	addDurationTo

	Returns a new Calendar that is later than arg1 by the duration arg2. JavaDate.add duration to("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="2010-01-01".

	http://www.w3.org/TR/rif-dtb/#func:add-day TimeDuration-to-dateTime_.28adapted_from_op: add-dayTimeDuration-to-dateTime.29

http://www.w3.org/TR/rif-dtb/#func: add-yearMonthDuration-to-dateTime_.28adapted_from_op: add-yearMonthDuration-to-dateTime.29

	from date string

	sM

	Calendar(String)

	fromDateString

	Creates a Calendar for the extended ISO 8601 date literal arg1. Extended to allow YYYY-MM-DD@TimeZoneId. JavaDate.from date string("2010-02-06@PST")=="2010-02-06-08:00".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_

	from datetime string

	sM

	Calendar(String)

	fromDateTimeString

	Creates a Calendar for the extended ISO 8601 datetime literal arg1. Extended to allow YYYY-MM-DDTHH:MM:SS@TimeZoneId. JavaDate.from datetime string("2010-02-06T14:15:00@PST")=="2010-02-06T14:15:00-08:00".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_

	from time string

	sM

	Calendar(String)

	fromTimeString

	Creates a Calendar for the extended ISO 8601 time literal arg1. Extended to allow HH:MM:SS@TimeZoneId. Warning: the date portion of the Calendar will be initialized to the current date. JavaDate.from time string("14:15:00@PST")=="14:15:00-08:00".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_

	subtract years from

	sM

	Calendar(Calendar,int)

	subtractYearsFrom

	Returns a new Calendar that is arg2 years earlier than arg1. JavaDate.subtract years from("2009-01-01",1)=="2008-01-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_

	subtract months from

	sM

	Calendar(Calendar,int)

	subtractMonthsFrom

	Returns a new Calendar that is arg2 months earlier than arg1. JavaDate.subtract months from("2009-01-01",1)=="2008-12-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_

	subtract weeks from

	sM

	Calendar(Calendar,int)

	subtractWeeksFrom

	Returns a new Calendar that is 7*arg2 days earlier than arg1. JavaDate.subtract weeks from("2009-01-01",1)=="2008-12-25".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_

	subtract days from

	sM

	Calendar(Calendar,int)

	subtractDaysFrom

	Returns a new Calendar that is arg2 days earlier than arg1. JavaDate.subtract days from("2009-01-01",1)=="2008-12-31".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_

	subtract hours from

	sM

	Calendar(Calendar,int)

	subtractHoursFrom

	Returns a new Calendar that is arg2 hours earlier than arg1. JavaDate.subtract hours from("01:01:01",1)=="00:01:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_

	subtract minutes from

	sM

	Calendar(Calendar,int)

	subtractMinutesFrom

	Returns a new Calendar that is arg2 minutes earlier than arg1. JavaDate.subtract minutes from("01:01:01",1)=="01:00:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_

	subtract seconds from

	sM

	Calendar(Calendar,int)

	subtractSecondsFrom

	Returns a new Calendar that is arg2 seconds earlier than arg1. JavaDate.subtract seconds from("01:01:01",61)=="01:00:00".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_

	subtract milliseconds from

	sM

	Calendar(Calendar,int)

	subtractMillisecondsFrom

	Returns a new Calendar that is arg2 milliseconds earlier than arg1. JavaDate.subtract milliseconds from("01:01:01",61)=="01:01:00.939".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_

	subtract duration from

	sM

	Calendar(Calendar,XMLDuration)

	subtractDurationFrom

	Returns a new Calendar that is earlier than arg1 by the duration arg2. JavaDate.subtract duration from("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="20009-12-29T23:58:00".

	http://www.w3.org/TR/rif-dtb/#func: add-dayTimeDuration-to-dateTime_.28adapted_from_op: subtract-dayTimeDuration-from-dateTime.29

http://www.w3.org/TR/rif-dtb/#func: subtract-yearMonthDuration-from-dateTime_.28adapted_from_op: add-yearMonthDuration-to-dateTime.29

	to date string

	sM

	String(Calendar)

	toDateString

	Returns the ISO 8601 lexical representation of arg1, ignoring time components. JavaDate.to date string("2010-07-04T12:30:00Z")=="2010-07-04Z"

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_

	to datetime string

	sM

	String(Calendar)

	toDateTimeString

	Returns the ISO 8601 lexical representation of arg1. JavaDate.to datetime string("2010-07-04T12:30:00Z")=="2010-07-04T12:30:00.000Z"

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_

	to time string

	sM

	String(Calendar)

	toTimeString

	Returns the ISO 8601 lexical representation of arg1, ignoring date components. JavaDate.to time string("2010-07-04T12:30:00Z")=="12:30:00.000Z"

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_

Table B-16 lists the XMLGregorianCalendar class.

Table B-16 Table lists the XMLGregorianCalendar class.

	OBR Name	Kind	Signature	Java Name	Description	Reference
	XMLGregorianCalendar

	Cl

	-

	javax.xml.datatype.XMLGregorianCalendar

	Representation for W3C XML Schema 1.0 date/time datatypes.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html

	normalize

	M

	XMLGregorianCalendar()

	-

	Normalizes this instance to UTC. XMLDate.from string("2000-03-04T23:00:00+03:00").normalize()==XMLDate.from string("2000-03-04T20:00:00Z")

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()

	toGregorianCalendar

	M

	java.util.GregorianCalendar()

	-

	Converts this XMLGregorianCalendar to a (superclass of) Calendar. XMLDate.from string("2010-02-03").toGregorianCalendar()==(Calendar)"2010-02-03".

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()

	year

	P

	int

	-

	The year of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31").year==2011.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()

	month

	P

	int

	-

	The month of this calendar, or Integer.MIN_VALUE if undefined. Months are 1-based, e.g. Jan is month 1. XMLDate.from string("2011-12-31").month==12.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()

	day

	P

	int

	-

	The day of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31").day==31.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()

	hour

	P

	int

	-

	The hour of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31").hour==Integer.MIN_VALUE.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()

	minute

	P

	int

	-

	The minute of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31T09:30:00").minute==30.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()

	second

	P

	int

	-

	The second of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("09:30:05Z").second==5.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()

	timezone

	P

	int

	-

	The timezone offset in minutes of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("09:30:00-09:00").timezone==-540.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()

Table B-17 lists the XMLDate class.

Table B-17 Table lists the XMLDate class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	XMLDate

	Cl

	-

	oracle.rules.rl.extensions.XMLDate

	Helper class for working with XMLGregorianCalendars as immutable objects. Treating calendars as immutable objects can help prevent errors.

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html

	add years to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addYearsTo

	Returns a new XMLGregorianCalendar that is arg2 years later than arg1. XMLDate.add years to("2009-01-01",1)=="2010-01-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add months to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addMonthsTo

	Returns a new XMLGregorianCalendar that is arg2 months later than arg1. XMLDate.add months to("2009-01-01",1)=="2009-02-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add weeks to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addWeeksTo

	Returns a new XMLGregorianCalendar that is 7*arg2 days later than arg1. XMLDate.add weeks to("2009-01-01",1)=="2009-01-08".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add days to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addDaysTo

	Returns a new XMLGregorianCalendar that is arg2 days later than arg1. XMLDate.add days to("2009-01-01",1)=="2009-01-02".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add hours to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addHoursTo

	Returns a new XMLGregorianCalendar that is arg2 hours later than arg1. XMLDate.add hours to("01:01:01",1)=="02:01:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add minutes to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addMinutesTo

	Returns a new XMLGregorianCalendar that is arg2 minutes later than arg1. XMLDate.add minutes to("01:01:01",1)=="01:02:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add seconds to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addSecondsTo

	Returns a new XMLGregorianCalendar that is arg2 seconds later than arg1. XMLDate.add seconds to("01:01:01",61)=="01:02:02".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add milliseconds to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	addMillisecondsTo

	Returns a new XMLGregorianCalendar that is arg2 milliseconds later than arg1. XMLDate.add milliseconds to("01:01:01",61)=="01:01:01.061".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_

	add duration to

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,XMLDuration)

	addDurationTo

	Returns a new XMLGregorianCalendar that is later than arg1 by the duration arg2. XMLDate.add duration to("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="2010-01-01".

	http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28 adapted_from_op:add-yearMonthDuration-to-dateTime.29

http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28 adapted_from_op:add-dayTimeDuration-to-dateTime.29

	from string

	sM

	XMLGregorianCalendar(String)

	fromString

	Creates an XMLGregorianCalendar for the ISO 8601 date literal arg1. XMLDate.from string("2010-02-06-08:00")=="2010-02-06-08:00".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #fromString_java_lang_String_

	subtract years from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractYearsFrom

	Returns a new XMLGregorianCalendar that is arg2 years earlier than arg1. XMLDate.subtract years from("2009-01-01",1)=="2008-01-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract months from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractMonthsFrom

	Returns a new XMLGregorianCalendar that is arg2 months earlier than arg1. XMLDate.subtract months from("2009-01-01",1)=="2008-12-01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract weeks from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractWeeksFrom

	Returns a new XMLGregorianCalendar that is 7*arg2 days earlier than arg1. XMLDate.subtract weeks from("2009-01-01",1)=="2008-12-25".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract days from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractDaysFrom

	Returns a new XMLGregorianCalendar that is arg2 days earlier than arg1. XMLDate.subtract days from("2009-01-01",1)=="2008-12-31".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract hours from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractHoursFrom

	Returns a new XMLGregorianCalendar that is arg2 hours earlier than arg1. XMLDate.subtract hours from("01:01:01",1)=="00:01:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract minutes from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractMinutesFrom

	Returns a new XMLGregorianCalendar that is arg2 minutes earlier than arg1. XMLDate.subtract minutes from("01:01:01",1)=="01:00:01".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract seconds from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractSecondsFrom

	Returns a new XMLGregorianCalendar that is arg2 seconds earlier than arg1. XMLDate.subtract seconds from("01:01:01",61)=="01:00:00".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract milliseconds from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,int)

	subtractMillisecondsFrom

	Returns a new XMLGregorianCalendar that is arg2 milliseconds earlier than arg1. XMLDate.subtract milliseconds from("01:01:01",61)=="01:01:00.939".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_

	subtract duration from

	sM

	XMLGregorianCalendar(XMLGregorianCalendar,XMLDuration)

	subtractDurationFrom

	Returns a new XMLGregorianCalendar that is earlier than arg1 by the duration arg2. XMLDate.subtract duration from("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="20009-12-29T23:58:00".

	http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28 adapted_from_op:subtract-yearMonthDuration-from-dateTime.29

http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28 adapted_from_op:subtract-dayTimeDuration-from-dateTime.29

	to string

	sM

	String(XMLGregorianCalendar)

	toString

	Returns the ISO 8601 lexical representation of arg1. XMLDate.to string("2010-04-15T11:00:00-09:00")=="2010-04-15T11:00:00-09:00".

	http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html #toString_javax_xml_datatype_XMLGregorianCalendar_

	is datetime

	sM

	boolean(XMLGregorianCalendar)

	isDateTime

	Checks if this calendar have both date and time fields. XMLDate.is datetime("2009-12-30T23:59:00")==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	is datetime stamp

	sM

	boolean(XMLGregorianCalendar)

	isDateTimeStamp

	Checks if this calendar have date, time, and timezone fields. XMLDate.is datetime stamp("2009-12-30T23:59:00")==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	is date

	sM

	boolean(XMLGregorianCalendar)

	isDate

	Checks if this calendar have date fields and no time fields. XMLDate.is date("2009-12-30")==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	is time

	sM

	boolean(XMLGregorianCalendar)

	isTime

	Checks if this calendar have time fields and no date fields. XMLDate.is time("2009-12-30T23:59:00")==false.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	get timezone

	sM

	XMLDuration(XMLGregorianCalendar)

	getTimezone

	Gets the timezone from the calendar as a duration. XMLDate.get timezone("11:00:00+05:30")==Duration.from string("PT5H30M").

	-

	get seconds

	sM

	BigDecimal(XMLGregorianCalendar)

	getSeconds

	Gets the seconds, including fractional part, from the calendar as a BigDecimal. XMLDate.get seconds("00:00:12.345")==12.345.

	-

Table B-18 lists the OracleDate class.

Table B-18 Table lists the OracleDate class

	OBR Name	Kind	Signature	Java Name	Description
	OracleDate

	Cl

	-

	oracle.rules.sdk2.extensions.OracleDate

	Helper class for working with oracle.jbo.domain.Timestamp. For examples of method use, see like-named XMLDate methods.

	add years to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addYearsTo

	Returns a new oracle.jbo.domain.Timestamp that is arg2 years later than arg1.

	add months to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addMonthsTo

	Returns a new oracle.jbo.domain.Timestamp that is arg2 months later than arg1.

	add weeks to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addWeeksTo

	Returns a new oracle.jbo.domain.Timestamp that is 7*arg2 days later than arg1.

	add days to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addDaysTo

	Returns a new oracle.jbo.domain.Timestamp that is arg2 days later than arg1.

	add hours to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addHoursTo

	Returns a new oracle.jbo.domain.Timestamp that is arg2 hours later than arg1.

	add minutes to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addMinutesTo

	Returns a new oracle.jbo.domain.Timestamp that is arg2 minutes later than arg1.

	add seconds to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addSecondsTo

	Returns a new oracle.jbo.domain.Timestamp that is arg2 seconds later than arg1.

	add milliseconds to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	addMillisecondsTo

	Returns a new oracle.jbo.domain.Timestamp that is arg2 milliseconds later than arg1.

	add duration to

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,XMLDuration)

	addDurationTo

	Returns a new oracle.jbo.domain.Timestamp that is later than arg1 by the duration arg2.

	from string

	sM

	oracle.jbo.domain.Timestamp(String)

	fromString

	Creates an oracle.jbo.domain.Timestamp for the ISO 8601 date literal arg1.

	subtract years from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractYearsFrom

	Returns a new oracle.jbo.domain.Timestamp that is arg2 years earlier than arg1.

	subtract months from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractMonthsFrom

	Returns a new oracle.jbo.domain.Timestamp that is arg2 months earlier than arg1.

	subtract weeks from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractWeeksFrom

	Returns a new oracle.jbo.domain.Timestamp that is 7*arg2 days earlier than arg1.

	subtract days from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractDaysFrom

	Returns a new oracle.jbo.domain.Timestamp that is arg2 days earlier than arg1.

	subtract hours from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractHoursFrom

	Returns a new oracle.jbo.domain.Timestamp that is arg2 hours earlier than arg1.

	subtract minutes from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractMinutesFrom

	Returns a new oracle.jbo.domain.Timestamp that is arg2 minutes earlier than arg1.

	subtract seconds from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractSecondsFrom

	Returns a new oracle.jbo.domain.Timestamp that is arg2 seconds earlier than arg1.

	subtract milliseconds from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int)

	subtractMillisecondsFrom

	Returns a new oracle.jbo.domain.Timestamp that is arg2 milliseconds earlier than arg1.

	subtract duration from

	sM

	oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,XMLDuration)

	subtractDurationFrom

	Returns a new oracle.jbo.domain.Timestamp that is earlier than arg1 by the duration arg2.

	to string

	sM

	String(oracle.jbo.domain.Timestamp)

	toString

	Returns the ISO 8601 lexical representation of arg1.

Table B-19 lists the Duration class.

Table B-19 Table lists the Duration class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Duration

	Cl

	-

	oracle.rules.sdk2.extensions.OracleDuration

	Helper class for comparing and subtracting dates. Can convert the difference of 2 dates into an XMLDuration. Can also create an XMLDuration from its literal (String) representation. Only day time and year month XMLDurations are supported.

	-

	compare

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	-

	Returns -1, 0, or 1 according to whether arg1<arg2, arg1==arg2, or arg1>arg2, respectively. Duration.compare("2010-01-01","2010-02-02")==-1

	http://www.w3.org/TR/rif-dtb/#pred:date Time-less-than_.28adapted_from_op:dateTime-less-than.29

	years between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	yearsBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.years between("2008-01-01", "2009-02-02")==1.

	-

	months between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	monthsBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.months between("2009-01-01","2008-02-02")==-10.

	-

	weeks between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	weeksBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.weeks between("2000-01-01","2000-02-04")==4.

	-

	days between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	daysBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.days between("2000-01-01","2000-02-04")==34.

	-

	hours between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	hoursBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.hours between("2000-01-04T03:30:00","2000-01-01T00:00:00")==-75

	-

	minutes between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	minutesBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.minutes between("03:30:00","04:45:00")==75.

	-

	seconds between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	secondsBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.seconds between("03:30:00","03:31:15")==75.

	-

	milliseconds between

	sM

	int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	millisecondsBetween

	Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.milliseconds between("03:30:00","03:31:15")==75000.

	

	between

	sM

	XMLDuration(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp)

	between

	Subtracts arg1 from arg2, where the args are some kind of date/time. Returns day-time Duration. Duration.between("2009-01-01T01:15:00","2009-02-02T11:30:00")==Duration.from string("P32DT10H15M").

	http://www.w3.org/TR/rif-dtb/#func:subtract-date Times_.28adapted_from_op:subtract-dateTimes.29

	from string

	sM

	XMLDuration(String)

	fromString

	Parses a duration from an ISO 8601 duration literal. "P1DT2H3M" is the duration of 1 day, 2 hours, and 3 minutes.

	http://www.w3.org/TR/xpath-functions/#duration-subtypes

	compare durations

	sM

	int(XMLDuration,XMLDuration)

	compareDurations

	Compares two durations. Both must be either day-time or year-month durations. Returns -1, 0, or 1 according to whether arg1<arg2, arg1==arg2, or arg1>arg2, respectively. Duration.compare(Duration.from string("P1Y"),Duration.from string("P13M"))==-1.

	http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28 adapted_from_op:dayTimeDuration-less-than.29

http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28 adapted_from_op:yearMonthDuration-less-than.29

	is day-time duration

	sM

	boolean(XMLDuration)

	isDayTimeDuration

	Checks if arg1 a day-time duration. Only day-time and year-month durations are supported. Duration.is day-time duration(Duration.from string("P2DT1S"))==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	is year-month duration

	sM

	boolean(XMLDuration)

	isYearMonthDuration

	Checks if arg1 a year-month duration. Only day-time and year-month durations are supported. Duration.is year-month duration(Duration.from string("P13M"))==true.

	http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

	get seconds

	sM

	BigDecimal(XMLDuration)

	getSeconds

	Gets the seconds field from the duration as a BigDecimal, including fractional seconds. Duration.get seconds(Duraton.from string("PT12.345S"))==12.345.

	http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28 adapted_from_fn:seconds-from-duration.29

	divide

	sM

	XMLDuration(XMLDuration,int|double)

	-

	Divides a duration by an integral or double divisor. Duration.divide(Duration.from string("P1Y"),4)==Duration.from string("P3M").

	http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28 adapted_from_op:divide-dayTimeDuration.29

http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28 adapted_from_op:divide-yearMonthDuration.29

	ratio

	sM

	BigDecimal(XMLDuration,XMLDuration)

	-

	Computes the ratio of 2 durations as a BigDecimal. Duration.ratio(Duration.from string("P1Y"),Duration.from string("P3M"))==4

	http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28 adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29

http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28 adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29

Table B-20 lists the XMLDuration class.

Table B-20 Table lists the XMLDuration class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	XMLDuration

	Cl

	-

	javax.xml.datatype.Duration

	Immutable representation of a time span as defined in the W3C XML Schema 1.0 specification. Only day-time and year-month XMLDurations are supported.

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html

http://www.w3.org/TR/xpath-functions/#duration-subtypes

	years

	P

	int

	-

	Years field of the duration. Duration.from string("P2Y3M").years==2.

	http://www.w3.org/TR/rif-dtb/#func: years-from-duration_.28adapted_from_fn:years-from-duration.29

	months

	P

	int

	-

	Months field of the duration. Duration.from string("P2Y3M").months==2.

	http://www.w3.org/TR/rif-dtb/#func: months-from-duration_.28adapted_from_fn:months-from-duration.29

	days

	P

	int

	-

	Days field of the duration. Duration.from string("P1DT2H3M4S").days==1.

	http://www.w3.org/TR/rif-dtb/#func: days-from-duration_.28adapted_from_fn:days-from-duration.29

	hours

	P

	int

	-

	Hours field of the duration. Duration.from string("P1DT2H3M4S").hours==2.

	http://www.w3.org/TR/rif-dtb/#func: hours-from-duration_.28adapted_from_fn:hours-from-duration.29

	minutes

	P

	int

	-

	Minutes field of the duration. Duration.from string("P1DT2H3M4S").minutes==3.

	http://www.w3.org/TR/rif-dtb/#func: minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29

	seconds

	P

	int

	-

	Seconds field of the duration. Duration.from string("P1DT2H3M4S").seconds==4.

	http://www.w3.org/TR/rif-dtb/#func: seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29

	sign

	P

	int

	-

	Returns the sign of this duration in -1,0, or 1. Duration.from string("-P1Y").sign==-1.

	-

	add

	M

	XMLDuration(XMLDuration)

	-

	Adds two durations. Duration.from string("P6M").add(Duration.from string("P6M"))==Duration.from string("P1Y").

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)

	subtract

	M

	XMLDuration(XMLDuration)

	-

	Subtracts two durations. Duration.from string("P6M").subtract(Duration.from string("P6M"))==Duration.from string("P0Y").

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)

	multiply

	M

	XMLDuration(BigDecimal|int)

	-

	Multiplies arg1 duration by arg2 factor. Duration.from string("P6M").multiply(2)==Duration.from string("P1Y").

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)

	negate

	M

	XMLDuration()

	-

	Durations can be negative, e.g. if you reverse the arguments to Duration.between(arg1,arg2). Duration.from string("P6M").negate()==Duration.from string("-P6M").

	http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()

	to string

	M

	String()

	toString

	Gets the ISO8601 literal representation for this duration. Duration.from string("P6M").to string()=="P6M".

	-

Table B-21 lists the CurrentDate class.

Table B-21 Table lists the CurrentDate class

	OBR Name	Kind	Signature	Java Name	Description
	CurrentDate

	Cl

	-

	oracle.rules.rl.extensions.CurrentDate

	Fact type of a holder for the current date. Can be used in rule patterns.

	date

	P

	Calendar

	-

	Returns the current date.

B.5 Miscellaneous Classes

This section covers the miscellaneous classes provided by Oracle Business Rules.

Table Table B-22 lists the JAXBElement class.

Table B-22 Table lists the JAXBElement class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	JAXBElement

	Cl

	-

	javax.xml.bind.JAXBElement

	Represents XML element information in XML Fact Types.

	http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html

	nil

	P

	boolean

	-

	A nil element is not the same thing (in XML) as an absent element.

	http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()

	value

	P

	Object

	-

	This is a reference to an XML Fact Type

	http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()

Table B-23 lists the Object class.

Table B-23 Table lists the Object class

	OBR Name	Kind	Signature	Java Name	Description	Reference
	Object

	Cl

	-

	java.lang.Object

	Base class of all Java objects.

	http://java.sun.com/javase/6/docs/api/java/lang/Object.html

B.6 Functions

This section lists the Oracle Business Rules functions.

Table Table B-24 lists the different functions provided by Oracle Business Rules.

Table B-24 Table lists the different functions provided by Oracle Business Rules

	OBR Name	Signature	RL Name	Description	Reference
	print

	void(Object)

	println

	Prints the string value of arg1.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.assert a tree of facts

	Object(Object)

	assertTree

	Asserts (insert into working memory) the tree of visible fact types with arg1 as the root. Returns arg1.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.assert

	Object(Object)

	assert

	Asserts arg1 (insert arg1 into working memory). Returns arg1.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.retract

	void(Object)

	retract

	Removes the fact associated with the object arg1 from working memory.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.get fact ID

	int(Object)

	id

	Returns the fact id associated with the object arg1. If arg1 is not associated with a fact, return -1.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.get fact by ID

	Object(int)

	object

	Returns the object associated with the given fact id. If there is no such fact id, returns null.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.get firing rule name

	String

	-

	Returns the name of the currently firing rule if it is invoked in a rule action. Returns null otherwise.

	-

	RL.contains

	boolean(List,Object)

	contains

	The contains() function is similar to the contains() method on Java Collection but includes the ability to handle the presence of JAXBElement in the collection.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.suppress rule test errors

	boolean(boolean)

	-

	Update if errors during rule test evaluation should be suppressed by the rules engine.

	-

	RL.are rule test errors suppressed

	boolean()

	-

	Query if errors during rule test evaluation are suppressed by the rules engine.

	-

	RL.ruleset stack.push

	void(String)

	pushRuleset

	Pushes arg1, the name of a ruleset, onto the ruleset stack.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.ruleset stack.pop

	String()

	popRuleset

	Pops and returns the top of the ruleset stack, the name of a ruleset.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.ruleset stack.get

	String[]()

	getRulesetStack

	Returns the ruleset stack as a String array.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.ruleset stack.set

	void(String[])

	setRulesetStack

	Sets the ruleset stack to arg1, a String array.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.ruleset stack.clear

	void()

	clearRulesetStack

	Pops all ruleset names off the ruleset stack.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.date.get current

	Calendar()

	getCurrentDate

	Returns the date associated with the CurrentDate fact.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.date.set current

	void(Calendar)

	setCurrentDate

	Sets the date for reasoning on an engine managed fact representing the "current" date (with the CurrentDate fact).

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.date.get effective

	Calendar()

	getEffectiveDate

	Returns the current value of the effective date.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.date.set effective

	void(Calendar)

	setEffectiveDate

	Updates the effective date in the rules engine.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.watch.rules

	void()

	watchRules

	Prints information about rule firings (execution of activations).

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.watch.activations

	void()

	watchActivations

	Prints information about addition or removal of activations from the agenda.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.watch.facts

	void()

	watchFacts

	Prints information about assertion, retraction, or modification of facts in working memory.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.watch.focus

	void()

	watchFocus

	Prints information about pushing and popping of the ruleset stack.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.watch.compilations

	void()

	watchCompilations

	Prints information about how the condition parts of a rule are shared with existing rules.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.watch.all

	void()

	watchAll

	Prints information about rules, facts, activations, focus, and compilations.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.stop watching.rules

	void()

	clearWatchRules

	Stops printing information about rule firings.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.stop watching.activations

	void()

	clearWatchActivations

	Stops printing information about addition or removal of activations from the agenda.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.stop watching.facts

	void()

	clearWatchFacts

	Stops printing information about assertion, retraction, or modification of facts in working memory.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.stop watching.focus

	void()

	clearWatchFocus

	Stops printing information about pushing and popping of the ruleset stack.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.stop watching.compilations

	void()

	clearWatchCompilations

	Stops printing information about how the condition parts of a rule are shared with existing rules.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.stop watching.all

	void()

	clearWatchAll

	Stops printing information about rules, facts, activations, focus, and compilations.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.show.facts

	void()

	showFacts

	Prints all facts in working memory.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	RL.show.activations

	void()

	showActivations

	Prints all activations on the agenda.

	Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

C Oracle Business Rules Frequently Asked Questions

This appendix contains frequently asked questions about Oracle Business Rules.

	Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?

	What are the Differences Between Oracle Business Rules RL Language and Java?

	How Does a RuleSession Handle Concurrency and Synchronization?

	How Do I Correctly Express a Self-Join?

	How Do I Use a Property Change Listener in Oracle Business Rules?

	What Are the Limitations on a Decision Service with Oracle Business Rules?

	How Do I Put Java Code in a Rule?

	Can I Use Java Based Facts in a Decision Service with BPEL?

	How Do I Enable Debugging in a BPEL Decision Service?

	How Do I Support Versioning with Oracle Business Rules?

	What is the Priority Order Using Priorities with Rules and Decision Tables?

	Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?

	Why Are Changes to My Java Classes Not Reflected in the Data Model?

	How Do I Use Rules SDK to Include a null in an Expression?

	Is WebDAV Supported as a Repository to Store a Dictionary?

	Using a Source Code Control System with Rules Designer

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?

When a Java object has been asserted and then the object is changed without using the modify action, the object must be re-asserted in the Rules Engine.

Therefore, if a rule associated with the changed Java object does not fire, this means that the Rules Engine did not reevaluate any rule conditions and did not activate any rules. Thus, when a Java object changes without using the modify action, the object must be re-asserted in the Rules Engine.

C.2 What are the Differences Between Oracle Business Rules RL Language and Java?

There are many differences between Oracle Business Rules RL Language and Java.

For more information on the differences between Oracle Business Rules RL Language and Java, see Appendix A in Rules Language Reference for Oracle Business Process Management.

C.3 How Does a RuleSession Handle Concurrency and Synchronization?

Method calls on an Oracle Business Rules RuleSession object are thread-safe such that calls by multiple threads do not cause exceptions at the RuleSession level. However, there are no exclusivity or transactional guarantees on the execution of methods. The lowest-level run method in the Rules Engine is synchronized, so two threads with a shared RuleSession cannot both simultaneously execute run. One call to run must wait for the other to finish.

Oracle Business Rules functions are not synchronized by default. Like Java methods, Oracle Business Rules functions can execute concurrently and it is the programmer's responsibility to use synchronized blocks to protect access to shared data (for instance, a HashMap containing results data).

Any set of actions that a user wants to be executed as in a transaction-like form must synchronize around the shared object. Users should not synchronize around a RuleSession object because exceptions thrown when calling RuleSession methods may require the RuleSession object to be discarded.

For most uses of a RuleSession object in Oracle Business Rules, each thread or servlet instance should create and use a local RuleSession object. This usage pattern is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared RuleSession object.

For the case where Thread-1 includes the following:

ruleSession.callFunctionWithArgument("assert", singleFact1);
ruleSession.callFunctionWithArgument("assert", singleFact2);

and Thread-2 includes the following:

ruleSession.callFunction("run");
ruleSession.callFunction("clear");

In this case, execution of the two threads might proceed as shown below in code example showing a shared rulesession object in Oracle Business Rules:

Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact1);
Thread-2: ruleSession.callFunction("run");
Thread-2: ruleSession.callFunction("clear");
Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact2);

In the example above, the two facts Thread-1 asserted are never both in the RuleSession during a call to run. Notice also that only one thread calls the run method. If you use a design where multiple threads can call run on a shared RuleSession, this can create extremely hard to find bugs and there is usually no gain in performance.

All accesses to a shared RuleSession object must be synchronized to ensure the intended behavior. However, a RuleSession instance may throw an exception and not be recoverable, so do not use this object as the synchronization object. Instead, use another shared object as the synchronization point.

One can envision a shared server process producer-consumer model for RuleSession use. In this model, multiple threads assert facts to a shared RuleSession and one thread periodically calls run, reads any results, and outputs them. This ensures that thread conflicts cannot occur, because the two code segments must be executed serially and cannot be intermingled. For example, the code with shared objects, producer code, and consumer code in Example C-1, Example C-2, and Example C-3.

C.3.1 Sample RuleSession Shared Objects

Example C-1 shows the code with shared objects.

Example C-1 RuleSession Shared Objects
RuleSession ruleSession;
Object ruleSessionLock = new Object();

C.3.2 Sample RuleSession Producer Code

Example C-2 shows the producer code.

Example C-2 RuleSession Producer Code
public String addFacts(FactTypeA fa, FactTypeB fb, FactTypeC fc){
 String status = "";
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunctionWithArgument("assert", fa);
 ruleSession.callFunctionWithArgument("assert", fb);
 status = "success";
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 status = "failure";
 }
 return status;
}

C.3.3 Sample RuleSession Consumer Code

Example C-3 shows the consumer code.

Example C-3 RuleSession Consumer Code
public List exec(){
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunction("run");
 List results = (List)ruleSession.callFunction("getResults");
 ruleSession.callFunction("clearResults");
 return results;
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 return null;
 }
 }
}

Note:
When multiple threads are sharing a RuleSession object, if more than one of the threads calls the run method, this can create extremely hard to find bugs and there is usually no gain in performance.

C.4 How Do I Correctly Express a Self-Join?

When working with facts, there are cases where the runtime behavior of Oracle RL may produce surprising results.

Consider the Oracle RL code in the following self-join example:

class F {int i; };
rule r1 {
 if (fact F f1 && fact F f2) {
 println("Results: " + f1.i + ", " + f2.i);
 }
}
assert(new F(i:1));
assert(new F(i:2));
run();

How many lines print in the above example output? The answer is 4 lines because the same fact instance can match for both f1 and f2.

Thus, the example gives the following output:

Results: 2, 2
Results: 2, 1
Results: 1, 2
Results: 1, 1

Using the same example with a third F, for example (assert(new F(i:3));) then nine lines are printed and if, at the same time, a third term && fact F F3 is added then 27 lines are printed.

C.4.1 Sample Find All Combinations of Fact F

If you are attempting to find all combinations and orders of distinct facts, you need an additional term to in the test, as shown in Example C-4.

Example C-4 Find All Combinations of Fact F
rule r1 {
 if (fact F F1 && fact F F2 && F1 != F2) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

The above code gives the following output:

Results: 2, 1
Results: 1, 2

C.4.2 Sample Finding Combinations of Fact F

The simplest, although not the fastest way to find all combinations of facts, regardless of their order, is to use the code shown in Example C-5.

Example C-5 Finding Combinations of Fact F
rule r1 {
 if (fact F F1 && fact F F2 && id(F1) < id(F2)) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

C.4.3 Sample Fast Complete Comparison

The function id() shown in Example C-5 takes longer to execute in a test pattern than a direct comparison, the fastest method is to test on a unique value in each object. For example, you could add an integer value property "oid" to your class that is assigned a unique value for each instance of the class.

Example C-6 shows the same rule using the oid value.

Example C-6 Fast Complete Comparison
rule r1 {
 if (fact F F1 && fact F F2 && F1.oid < F2.oid) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

This problem may also arise if you attempt to remove all duplicate facts from the Oracle Rules Engine, using a function as shown below:

rule rRemoveDups {
 if (fact F F1 && fact F F2 && F1.i == F2.i) {
 retract(F2);
 }
}

However, this rule removes all facts of type F, not just the duplicates because F1 and F2 may be the same fact instance. The following example shows the correct version of this rule:

rule rRemoveDups {
 if (fact F F1 && fact F F2 && F1 != F2 && F1.i == F2.i) {
 retract(F2);
 }
}

C.5 How Do I Use a Property Change Listener in Oracle Business Rules?

The Oracle Rules Engine supports the Java PropertyChangeListener design pattern. This allows an instance of a Java fact that uses the PropertyChangeSupport class to automatically notify the Oracle Rules Engine when property values have changed. Java facts are not required to implement this pattern to be used by Oracle Rules Engine.

Typically, changes made to values of a property of a Java object that has previously been asserted to the Oracle Rules Engine requires that the object be re-asserted in order for rules to be reevaluated with the new property value. For properties that fire PropertyChangeEvent, changing the value of those properties both changes the value and re-asserts the fact to the Oracle Rules Engine.

To implement the PropertyChangeListener design pattern in a class, do the following:

	Import this package in the class:

import java.beans.PropertyChangeSupport;

	Add a private member variable to the class:

private PropertyChangeSupport m_pcs = null;

	In the constructor, create a new PropertyChangeSupport object:

m_pcs = new PropertyChangeSupport(this);

	Then for each setter, add the call to firePropertyChange:

public void setName(String name){
 String oldVal = m_name;
 m_name = name;
 m_pcs.firePropertyChange("name", oldVal, m_name);
}

	Implement addPropertyChangeListener method (delegate to m_pcs):

public void addPropertyChangeListener(PropertyChangeListener pcl){
 m_pcs.addPropertyChangeListener(pcl);
}

	Implement removePropertyChangeListener method (delegate to m_pcs):

public removePropertyChangeListener(PropertyChangeListener pcl){
 m_pcs.removePropertyChangeListener(pcl);
}

When deciding whether to design your application to always explicitly re-assert modified objects or implement the PropertyChangeListener design pattern, consider the following:

	Explicitly re-asserting modified objects allows a user to group several property changes and making them visible to the rules all at once. This is most useful when a concurrent thread is executing rules, and the rules should see only a complete group of property changes.

	Explicit assert reduces the computational cost of rule re-evaluation when multiple properties are changed. If multiple properties are changed at the same time, this results in multiple re-evaluations of rule conditions that reference the fact type. This occurs because each property change event results in a re-assertion of the object. Using an explicit assert instead of the PropertyChangeListener pattern eliminates this extra computational cost.

	Explicit assert is required when a rule modifies a fact that is also tested in its condition, but the automatic reassert triggered by the PropertyChangeListener before a guard condition property is set would cause the rule to refire itself endlessly.

	Explicit assert must be used when modifying Oracle RL facts and XML facts, because these cannot be defined to support the PropertyChangeListener design pattern.

	PropertyChangeListener-enabled facts allow a Java application to communicate property changes to the rule engine without having to change the application to perform explicit asserts. This also means that code that modifies a property of an object does not need to have a reference to the RuleSession object in scope.

	PropertyChangeListener support prevents the common error of neglecting to re-assert a fact after changing its properties.

C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?

There are some limitations for using Business Rules with a BPEL process.

Some of the limitations include the following:

	Only visible XML fact types may be specified as the input for a decision service.

	Only visible XML fact types may be specified as the output of a decision service.

For an additional restriction, see How Are Decision Service Input Output Element Types Restricted?.

For information on setting XML fact type visible option, see Working with XML Facts.

C.7 How Do I Put Java Code in a Rule?

You do not actually put Java code in a rule.

However, you can invoke a Java method from a rule condition or action.

C.8 Can I Use Java Based Facts in a Decision Service with BPEL?

Oracle BPEL PM can invoke only decision functions exposed as a decision service, and this means that the decision function inputs and outputs must be XML fact types.

You can use an existing ruleset or decision function that uses Java fact types if you convert the input XML facts to Java facts. For example, you could create some rules in a ruleset, named convertFromXML, and put this ruleset before the Java ruleset in the decision function ruleflow. Similarly, you could create a ruleset to convert from Java facts to output XML facts and put this ruleset after the Java ruleset in the decision function ruleflow.

Alternatively, if your rules use only properties, and no methods or fields, from the Java fact types you can replace the Java fact types with XML fact types as follows:

	Delete the Java fact types (first making careful note of the aliases of the fact types and properties).

	Import similar XML fact types and edit the aliases of the fact types and properties to be the same as the deleted Java fact types and properties.

C.9 How Do I Enable Debugging in a BPEL Decision Service?

To enable debugging output during ruleset execution for a BPEL Decision Service, you enable the SOA rules logger. When the SOA rules logger is set to TRACE level then the output of watchAll is logged to the SOA diagnostic log. When you change the logging level using Fusion Middleware Control Console, you do not need to redeploy the application to use the specified level.

For information on using the SOA oracle.soa.service.rules and oracle.soa.services.rules.obrtrace loggers, see Administering Oracle SOA Suite and Oracle Business Process Management Suite.

C.10 How Do I Support Versioning with Oracle Business Rules?

Versioning is supported in Oracle Business Rules.

The two possible ways are:

	At design time, the dictionary is stored as an XML file in a JDeveloper project. The dictionary can be versioned in a source control system in the same way as any other source file.

	At runtime, the dictionary is stored in MDS. If MDS is database backed then versioning is supported using MDS.

Note: It is possible for a server application to respond to dictionary changes as they are made visible to the application in MDS. The rule service engine (decision service) does this automatically. For non-SCA application, this can be done using the RuleRepository interface. At this time, they way to support an "in-draft" version is by using the sandbox feature of MDS. The Oracle Business Rules RuleRepository interface supports this.

C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?

The priority for rules and decision tables is highest to lowest, with the higher priority rule or Decision Table executing first. For example, if you create rules with priorities 1-4, they would be executed in the execution priority order 4,3,2,1.

Using Rules Designer you can select a priority from a predefined named priority list or enter a positive or negative integer to specify your own priority level. The default priority is medium (with the integer value 0). For more information, see How to Set a Priority for a Rule.

Note, however, you should try to avoid priorities as much as possible since they break the purely declarative model of rules. If you find yourself using a lot of priorities, then generally it is best to try to restructure your rule patterns and tests to avoid conflicts, or divide the rules into multiple rulesets using ruleflow if they are intended to be run in a certain order. A conflict is a case when more than one rule in a ruleset is able to fire. For example, if a "gold customer" rule says to make a customer that spends over $1000 a gold customer, and a "silver customer" rule says to make a customer that spends over $500 a silver customer, then when a customer spends $1100 there is a conflict. Rather than prioritize the rules, it is more declarative to change the "silver customer" rule to test for customers that spend between $500 and $1000. This conflict analysis and conflict avoidance is particularly easy if you use Decision Tables. For more information on Decision Tables, see Working with Decision Tables.

You use ruleflow, that is the ruleset stack, to order rulesets. For information on working with the ruleset stack, see Rules Language Reference for Oracle Business Process Management.

C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?

According to the JAXB 2.0 spec, the default type mapping for elements that have minOccurs="0" and nillable="true" is JAXBElement<T>, where T is the default mapping of the type defined for the element. For example, xsd:string maps to JAXBElement<String>, xsd:int maps to JAXBElement<Integer>, and xsd:integer maps to JAXBElement<BigInteger>.

This is because nillable="true" means the user has defined a semantic difference between a element not being defined in a document, with minOccurs=0, it does not have to be defined, and an element being defined but having the attribute nil="true". This is a subtle difference and is often used to define the difference between an unknown value and a value known to be "no value".

To use the JAXBElement-typed property in a rule, the property must be first checked for non-null, and then the "value" property or getValue() method can be used retrieve a value of the underlying type:

fact FactType1 &&
 FactType1.prop1 != null &&
 FactType1.prop1.value == "abc"

Alternatively, you may want to define a customized JAXB binding so nillable elements are mapped to type T rather than JAXBElement<T>. However, this is a lossy conversion, as you no longer are able to determine the difference between a non-existent element and a nil one. This does make the nillable attribute less useful, but it does allow you to explicitly define an element as nil in your document, similarly to how in Java an Object-typed field is initialized to null by default or you can explicitly initialize it to null.

There are several ways to do this. In both cases, add these attributes to the top-level xsd:schema element start tag:

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0"

	To specify ALL properties to use the binding, add this immediately inside the xsd:schema opening tag:

<xsd:annotation>
 <xsd:appinfo>
 <jaxb:globalBindings generateElementProperty="false"/>
 </xsd:appinfo>
</xsd:annotation>

	To specify only specific properties use the binding, add an annotation like this to each desired element:

<xsd:element name="stringElement2" type="xsd:string" minOccurs="0" nillable="true">
 <xsd:annotation>
 <xsd:appinfo>
 <jaxb:property generateElementProperty="false" />
 </xsd:appinfo>
 </xsd:annotation>
</xsd:element>

	Add the definitions to an external customizations file and pass it as an argument when adding the schema to the datamodel. This can only be done when programmatically calling the SchemaBrowser class and is not exposed in Rule Designer.

C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?

Do not import classes that have been compiled into the "SCA-INF/classes" directory.

Classes in this directory cannot be reloaded into the data model when they change.

C.14 How Do I Use Rules SDK to Include a null in an Expression?

You can use Rules SDK code to include a null value.

You can use the following Rules SDK code:

SimpleTest test = pattern.getSimpleTestTable().add();

test.getLeft().setValue(attr);
test.setOperator(Util.TESTOP_NE);
test.getRight().setValue("null");

C.15 Is WebDAV Supported as a Repository to Store a Dictionary?

The Web Distributed Authoring and Versioning (WebDAV) repository is not supported to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1) Oracle Business Rules. Oracle Business Rules supports using an MDS (file backed or Database backed) repository for storing dictionaries.

C.16 Using a Source Code Control System with Rules Designer

There are special considerations when you use Rules Designer and a source control system, such as CVS or Subversion. When you use a source code control system with Rules Designer you need to specify that rule dictionary files in your project are recognized as "binary" files instead of "text" files. The rule dictionary files are XML documents and by default the source code control system treats these files as text files.

However, rule dictionary files cannot be merged because the files contain semantic structure. If a rule dictionary file is treated as a text file and then changed, the source control system attempts to merge the file with a "trivial" merge. Using a trivial merge creates a semantically invalid dictionary file which cannot be unmarshalled into a RuleDictionary object.

Thus, when you use a source code control system with rule dictionary files, .rules files, you need to make sure the source code control system treats the files as binary files. There are configuration options you need to set to specify that the system treats dictionary files as binary files. For example, in the Subversion source code control system you can set the MIME type with the svn:mime-type file property. For more information, see

http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-portability.html#svn.advanced.props.special.mime-type

When you set the source code control system options to specify the binary file type, this allows the source code control system, for example tortoiseSVN, to treat the rules dictionary files correctly, as binary files.

D Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter when using Oracle Business Rules.

This appendix includes the following sections:

	Getter and Setter Methods are not Visible

	Java Class with Only a Property Setter

	Runtime NoClassDefFound Error

	RL Specific Keyword Naming Conflict Errors

	java.lang.IllegalAccessError from Business Rules Service Runtime

	JAXB 1.0 Dictionaries and RL MultipleInheritanceException

	Why Does XML Schema with Underscores Fail JAXB Compilation?

	How Are Decision Service Input Output Element Types Restricted?

	How Are Decision Service Input Output Schema Restricted?

	How Do I Handle Java Reserved Names in an Imported Fact Type?

D.1 Getter and Setter Methods are not Visible

Rules Designer does not list the methods supporting a Java bean property in choice lists; only the bean properties are visible. For example, a Java bean with a property named Y must have at least a getter method getY() and may also have a setter method setY(y-type-param).

All of properties and methods (including getter and setter that compose the properties) are displayed when viewing the Java FactType. Only the properties of Java Classes (not the getter and setter methods) are displayed in choice lists. When attempting to control the visibility of the property it is best to use the properties visibility flag. Marking a getter or a setter method as not visible may not remove the properties from choice lists.

D.2 Java Class with Only a Property Setter

In Java the Java Bean introspector includes write-only properties. Oracle RL does not include such properties as Beans, because they cannot be reasoned on in a rule.

Thus, in order for Java fact type bean properties to be properly accessed in Oracle RL they must have both a getter and setter. Properties which have a setter but not a getter, that is write-only properties, are not allowed in the Oracle RL "new" syntax.

For example, if a bean Foo only has the method setProp1(int i), then you cannot use the following in Oracle RL:

Foo f = new Foo(prop1: 0)

D.3 Runtime NoClassDefFound Error

Sometimes when working with XML facts, you might receive an error.

You may receive an error of the form:

Exception in thread "main" java.lang.NoClassDefFoundError:

The java.lang.NoClassDefFoundError is very likely due to required classes not in classpath. Try checking the following:

	Add xml.jar to your classpath when executing.

	Add the directory where the generated and compiled JAXB classes are placed to the classpath.

D.4 RL Specific Keyword Naming Conflict Errors

Oracle Business Rules escapes RL specific keywords when generating RL from Rules Designer.

In most cases, RL specific keywords can be used without causing errors. One exception is using a keyword as the name of a class. This is unlikely for Java classes because by convention they start with an upper case letter and RL specific keywords are all lowercase. For more information, see Rules Language Reference for Oracle Business Process Management.

D.5 java.lang.IllegalAccessError from Business Rules Service Runtime

There may be errors

Problem: I receive an error such as the following:

java.lang.IllegalAccessError: tried to access class
com.sun.xml.bind.v2.runtime.reflect.opt.Const from class:...

Reason: This can be due to JAXB 2.1.6 issue 490, caused when unmarshalling incorrect, for example letter characters when float is expected, data as described at the following site,

http://java.net/jira/browse/JAXB-490

Workaround: the workaround for this problem is to assign a value to the appropriate element, as shown in Figure D-1 and Figure D-2 where approvalRequired is assigned a default value false().

Note that the screen shots reflect a previous version, however, the content is applicable to the current release.

Figure D-1 Adding an Expression to Initialize a Value for a Business Rules Service Input
[image: Description of Figure D-1 follows]

Figure D-2 Expression Assigned to Input Variable for Business Rules Service
[image: Description of Figure D-2 follows]

D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException

Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0, which is the default for Oracle Fusion Middleware 11g Release 1 (11.1.1) dictionaries. Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types. If your dictionary has Element types marked as visible, generated RL may throw MultipleInheritanceException.

The solution to this issue is to mark the Element fact types non-visible or remove them from the datamodel. Only the Type classes generated by JAXB should be used to write rules, so there is no functionality loss from deleting the Element types.

D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?

The defined behavior of JAXB is to fail when a name of the form '_' + number is found. In this case JAXB cannot generate an "obvious" Java class name from this string. The default behavior of JAXB for '_' + char is to treat it as a word boundary (underscoreBinding="asWordSeparator"), which means the underscore is stripped and the char is UpperCamelCased. For example, _fooBar is mapped to FooBar.

To fix this problem, you need to provide a schema customization to direct JAXB to generate the names differently. The default value for underscoreBinding is specified as "asWordSeparator", which does not allow an underscore to be used at the beginning of a name.

The global annotation underscoreBinding="asCharInWord" causes the '_' to be preserved in the classname and UpperCamelCase after the number:

<xsd:annotation><xsd:appinfo>
 <jaxb:globalBindings underscoreBinding="asCharInWord" />
</xsd:appinfo></xsd:annotation>

With this global annotation, the mapping for _1foo_bar_baz is _1Foo_Bar_Baz.

D.8 How Are Decision Service Input Output Element Types Restricted?

Using the Decision Service to run business rules with XML schema defining the input, for any given complexType "tFoo" in an XML-Schema file Foo.xsd there can only be one XML-Schema element "foo" of type "tFoo".

The Decision Service does not allow you to use two elements "foo" and "bar" of the same type "tFoo.

D.9 How Are Decision Service Input Output Schema Restricted?

When you use the Decision Service a schema must define a complexType or import another schema which defines a complexType.

You cannot use schemas which do not define complexType, such as the following:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="count" type="xsd:int"/>
</xsd:schema>

D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?

In Oracle Business Rules, when you import fact type properties which would have the same name as a Java language reserved word are excluded.

For a complete list of Java reserved words, see

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

A workaround is to rename the getter and setter method pair that produce the excluded property. If these methods names cannot be changed, the methods should be used in rules instead of the properties.

For example, if a property named continue is excluded, you can create rules that use getContinue() and setContinue() methods instead of using the property.You can do this by rewriting a pattern. For example, replace:

fact IncrCount ic && ic.continue == "foo"

with:

fact IncrCount ic && ic.getContinue() == "foo"

For another example, in an action, replace:

[assert new] IncrCount(continue:"bar")

with:

[assign new] IncrCount ic = new IncrCount()
[call] ic.setContinue("bar")
[assert] ic

E Working with Oracle Business Rules and JSR-94 Execution Sets

This appendix describes the Java Rule Engine API (JSR-94) specification that defines a standard Java runtime API to access a rule engine from a Java SE or Java EE client.

The appendix includes the following sections:

	Introduction to Oracle Business Rules and JSR-94 Execution Sets

	 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

	Using the JSR-94 Interface with Oracle Business Rules

For more information, see:

	http://jcp.org/en/jsr/detail?id=94

	http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets

Oracle Business Rules provides JSR-94 support. This allows you to create more portable rule-enabled applications.

You can create JSR-94 execution sets from Oracle Business Rules rulesets and you can create JSR-94 rule sessions from these execution sets. For more information, see Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets.

You can access Oracle Business Rules rulesets and execute them against the Oracle Business Rules Engine using the JSR-94 API. For more information, see Using the JSR-94 Interface with Oracle Business Rules.

Oracle Business Rules also provides extensions to the JSR-94 API that you may find useful. For more information, see Using Oracle Business Rules JSR-94 Extensions.

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94 rule execution set.

A JSR-94 rule execution set (rule execution set) is a collection of rules that are intended to be executed together. You also must register a rule execution set before running it. A registration associates a rule execution set with a URI; using the URI, you can create a JSR-94 rule session.

Note:
In Oracle Business Rules, a JSR-94 rule execution set registration is not persistent. Thus, you must register a rule execution set programmatically using a JSR-94 RuleExecutionSetProvider interface.

For more information, see Creating a Rule Execution Set with createRuleExecutionSet.

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text

You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL text is directly included in the rule execution set. For more information, see Using the Extended createRuleExecutionSet to Create a Rule Execution Set for information about JSR-94 extensions that assist you in including RL Language text.

To create a rule execution set from Oracle Business Rules Oracle RL language text:

	Specify the RL Language mapping information in an XML document. Table E-1 shows the mapping elements required to construct a rule execution set. The following code example shows a sample XML document for mapping RL Language text to a JSR-94 rule execution set.

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-text>
 ruleset DM {
 fact class carrental.Driver {
 hide property ableToDrive, driverLicNum, licIssueDate, licenceType,
 llicIssueDate, numPreAccidents, numPreConvictions,
 numYearsSinceLicIssued, vehicleType;
 };

 final String DeclineMessage = "Rental declined ";

 public class Decision supports xpath {
 public String driverName;
 public String type;
 public String message;
 }

 function assertXPath(String package,
 java.lang.Object element, String xpath) {
 //RL literal statement
 main.assertXPath(package, element, xpath);
 }

 function println(String message) {
 //RL literal statement
 main.println(message);
 }

 function showDecision(DM.Decision decision) {
 //RL literal statement
 DM.println("Rental decision is " + decision.type +
 " for driver " + decision.driverName +
 " for reason " + decision.message);
 }
 }
 </rl-text>
 </rule-source>
 <rule-source>
 <rl-text>
 ruleset vehicleRent {
 rule UnderAge {
 priority = 0;
 if ((fact carrental.Driver v0_Driver &&
 (v0_Driver.age < 19))) {
 DM.println("Rental declined: " + v0_Driver.name +
 " Under age, age is: " + v0_Driver.age);
 retract(v0_Driver);
 }
 }
 }
 </rl-text>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

	You then use the XML document with the JSR-94 administration APIs to create a rule execution set. The resulting rule execution set is registered with a JSR-94 runtime (using a RuleAdministration instance).

Table E-1 Oracle Business Rules Oracle RL Language Text XML Mapping Elements for JSR-94

	Element	Description
	<rule-source>

	Includes an <rl-text> tag containing explicit RL Language text containing an Oracle Business Rules ruleset. Multiple <rule-source> tags can be used to specify multiple rulesets (specified in the order in which they are interpreted).

	<ruleset-stack>

	Specifies a list of rulesets that form the initial ruleset stack. The order of the rulesets in the list is from the top of the stack to the bottom of the stack.

Note:
In the <rl-text> element the contents must escape XML predefined entities. This includes the characters '&', '>', '<', '"', and '\''.

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL

You can use JSR-94 with Oracle RL rulesets specified using a URL. For more information, see Using the Extended createRuleExecutionSet to Create a Rule Execution Set for information about JSR-94 extensions that assist you in specifying a URL.

To create a rule execution set from Oracle RL text specified in a URL:

	Specify the Oracle RL mapping information in an XML document. Table E-2 shows the mapping elements required to construct a rule execution set. The following code example shows a sample XML document for mapping Oracle RL text to a JSR-94 rule execution set.

<?xml version="1.0" encoding="UTF-8"?>
<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-url>
 file:rl/DM.r1
 </rl-url>
 </rule-source>
 <rule-source>
 <rl-url>
 file:r1/VehicleRent.r1
 </rl-url>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

	You then use the XML document with the JSR-94 administration APIs to create a rule execution set. The resulting rule execution set is registered with a JSR-94 runtime (using a RuleAdministration instance).

Table E-2 Oracle Business Rules Oracle RL URL XML Mapping Elements for JSR-94

	Element	Description
	<rule-source>

	Includes an <rl-url> tag containing a URL that specifies the location of RL Language text. Multiple <rule-source> tags can be used to specify multiple rulesets (in the order in which they are interpreted).

	<ruleset-stack>

	Specifies a list of rulesets that form the initial ruleset stack. The order of the rulesets in the list is from the top of the stack to the bottom of the stack.

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

A rule execution set may contain rules that are derived from multiple sources and the sources may be a mix of Rules Designer defined rulesets and RL Language rulesets. In this case, the XML element <rule-execution-set> set contains multiple <rule-source> elements, one for each source of rules. You must list each <rule-source> in the order in which they are to be interpreted in Rules Engine.

Note:
For this Oracle Business Rules release, a JSR-94 rule execution set can only reference one Rules Designer dictionary.

E.3 Using the JSR-94 Interface with Oracle Business Rules

This section describes the Oracle Business Rules specific details for JSR-94 interfaces.

This section contains the following sections:

	Creating a Rule Execution Set with createRuleExecutionSet

	Creating a Rule Session with createRuleSession

	Working with JSR-94 Metadata

	Using Oracle Business Rules JSR-94 Extensions

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet

The RuleExecutionSetProvider and LocalRuleExecutionSetProvider interfaces in javax.rules.admin include the createRuleExecutionSet to create a RuleExecutionSet object.

For the remaining createRuleExecutionSet methods, the first argument is interpreted as shown in Table E-3.

Table E-3 First Argument Types for createRuleExecutionSet Method

	Argument	Description
	org.w3c.dom.Element

	Specifies an instance of the <rule-execution-set> element from the configuration schema.

	java.lang.String

	Specifies a URL that specifies the location of an XML document that is an instance of the <rule-execution-set> element from the configuration schema.

	java.io.InputStream

	Specifies an input stream that is used to read an XML document that is an instance of the <rule-execution-set> element from the configuration schema.

	java.io.Reader

	Specifies a character reader that is used to read an XML document that is an instance of the <rule-execution-set> element from the configuration schema.

Note:
JSR-94 also includes createRuleExecutionSet methods that take a java.lang.Object argument, which is intended to be an abstract syntax tree for the rule execution set. In Oracle Business Rules for Oracle Fusion Middleware 11g Release 1 (11.1.1), using these methods with this argument is not supported. Invoking these methods with a java.lang.Object argument gives a RuleExecutionSetCreateException exception.

The second argument to the createRuleExecutionSet methods is a java.util.Map of vendor-specific properties.

E.3.2 Creating a Rule Session with createRuleSession

Clients create a JSR-94 rule session using the createRuleSession method in the RuleRuntime class. This method takes a java.util.Map argument of vendor-specific properties. This argument can be used to pass in any of the properties defined for the Oracle Business Rules oracle.rules.rl.RuleSession.

 If a rule execution set contains URL or repository rule sources, the rules from those sources are fetched on the creation of each new RuleSession.

E.3.3 Working with JSR-94 Metadata

JSR-94 allows for metadata for rule execution sets and rules within a rule execution set. The Oracle Business Rules implementation does not add any additional metadata beyond what is in the JSR-94 specification.

The rule execution set description is an optional item and thus may not be present. If it is not present, the empty string is returned. For rules, only the rule name is available and the description is initialized with an empty string.

E.3.4 Using Oracle Business Rules JSR-94 Extensions

This section covers the extensions provided in the JSR-94 implementation classes.

This section covers the following extensions:

	Using the Extended createRuleExecutionSet to Create a Rule Execution Set

	Invoking an RL Language Function in JSR-94

E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set

Oracle Business Rules provides a helper function to facilitate creating the XML control file required as input to create a RuleExecutionSet.

The helper method createRuleExecutionSet is available in the RLLocalRuleExecutionSetProvider class. The createRuleExecutionSet method has the following signature:

RuleExecutionSet createRuleExecutionSet(String name,
 String description,
 RuleSource[] sources,
 String[] rulesetStack,
 Map properties)

Table E-4 describes the createRuleExecutionSet arguments.

Table E-4 createRuleExecutionSet Arguments

	Argument	Description
	name

	Specifies the name of the rule execution set.

	description

	Specifies the description of the rule execution set.

	sources

	Specifies an array of specifications for the sources of rules. The RuleSource is an interface that the following classes implement:

	RLTextSource: RL Language text for RL Language text.

	RLUrlSource: RL Language URL for a URL to RL Language text.

For more information, see the oracle.rules.jsr94.admin package in Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

	rulesetstack

	Specifies the initial contents of the RL Language ruleset stack to be set before each time the rules are executed. The contents of the array should be ordered from the top of stack (0th element) to the bottom of stack (last element).

	properties

	Oracle specific properties.

E.3.4.2 Invoking an RL Language Function in JSR-94

In a stateful interaction with a JSR-94 rule session, a user may want the ability to invoke an arbitrary RL Language function. The class that implements the JSR-94 StatefulRuleSession interface provides access to the callFunction methods in the oracle.rules.rl.RuleSession class.

The following example shows how you can invoke an RL Language function with no arguments in a JSR-94 StatefulRuleSession.

import javax.rules.*;
...
StatefulRuleSession session;
...
((oracle.rules.jsr94.RLStatefulRuleSession) session).callFunction("myFunction");

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]
OEBPS/img/GUID-864FAE03-1BFB-42F8-B88A-740ECEEC1F78-default.png
) crone 0 ron W S o T

ADF Page ow technolgy extends avaServe Faces (SP), troducig adsnsl
Concestssueh e reusate ask fows 97 avanced naveton between actites
s nan ISF Page eferences

Jova.

e dava rograming angusge s o sl objctrrted nguage designed o
meet e chatenges of appicaton deveopment 1 h coder of hferogeneous,
etk i dateuted avronments.

Savaserver Faces (57) g

teb <ask o> e concel

OEBPS/img/GUID-405168E3-FD12-4599-81C7-E0DE22569916-default.png
@overview | P General Rules

[¥ Daneron *+R 2V BBBR

S ¥ mue1

Sermer description>

"
Customer drivingespe TS
Sinserties I

THEN -

-
<

betuen

OEBPS/img/GUID-BB225009-27BC-46EC-8999-01772E68B6CC-default.png
& msiese s

Susiness Prases Q e]

Value Form Draft

& (coveragevalue} of {policy}

& Very Hign risk customer with (rating) credit rating
& RejectPolicy Offer

& 5et High Deductble policy)

Test Business Phrase
Test Business Phrase

Action Business Phrase
Action Business Phrase

Parameters v X
Nane Form Tipe Ve st

vt

Custamer s owris 3]

Mapping

<inserttest>

OEBPS/img/GUID-6E7DD883-ADC9-4ED8-9CE3-FAB53403EA93-default.png
Home Insert Pagelayout Formuas Data

- FNEE

Add Delete Merge split
Rule Rule cell

Decision Table

+ X H

A B

Add Remove Enable Simple Hide ReadMe
Bucket Bucket | Highlighting Mode Sheet
Valueset Preferences

| c3 v fe| "New"
A 8 E— > E
1
"New Exceptional "Payment Processing
2 Conditions "New normal Claim" Claim’ Claim’
Claim.status ~ lew" "Processing Payment”
4 review detail. Claim.reviewDetails W -
Claim.policy.terms.cover M
claim is of REPAIR ages_en.contains("REPAI E
5 type" R") -
"general terms of the Claim.policy.terms.gener |gaview complete” -
3 claim" alTerms otherwise "Exception” -
7
8 Actions
9 Al modify Claim Active Active Active
10 Fixed claimDetails
11 Fixed claimid
12 Variable payment 0.00000000698 10.645 3000.0
13 Fixed policy
14 Fixed reviewDetails
15 Fixed status
16 A2 retract Claim InActive InActive InActive
17 A3 call print Active Active Active
"Review has been "Claim will be reviewed
18 Variable message completed” manually" "Claim has been paid"

M 4 » M| ReadMe ValueSets | Claim Table

CusomerTabe 43 AN

OEBPS/img/GUID-0DFEC3C6-FC4B-4659-97F5-0EC927472CCB-default.png
Oracle SOA Composer (=]

Sign1n

OEBPS/img/GUID-803B01F6-DA8A-4AF7-AE05-1CB75D70AC0C-default.gif
& Create Generic Project - Step 1 of 2

Name your project

6, Project Name. Broject Name: [Grades

Directory: [t 2Developerimywork|GradefpplGrades [srowse,

& Project Java Settings

avalable: Selected

ADF Faces
/ADF Library Web Appication Support
/ADF Page Flow
/ADF Swing
ant
Database (Offine)
=
L
Beans

Technology Descripton

ADF Desktop Integration with Microsolt Offce.

OEBPS/img/GUID-27FF85ED-0B44-495B-B8C3-1094EE0C1A4F-default.png
A B ey iy
Decision Table)
2_EURentRulesBase.Dri

10 verType.age <@ [21..60) >=60
11 Bucket Name T [21..60) >=60
2

Decision Table
2_Float.POSITIVE_INFIN

[10.8.20.0)

Ruleset2_Decision
Table
1_EURentRulesBase.Dri
verType.age <8

% Bucket Name Tas [18..30]

_Decision

1_EURentRulesBasED:
19 verType.firstName otherwise

"Carter”

OEBPS/img/GUID-B9EA4AC8-462E-4F77-99B0-A44A051B1EFF-default.gif
There s 1 missing rule inthe decision table,

the table header column.

Conditions
Driver.age <@
Driver.has_training fabse

7] Colurns To Widkh

Help oK

Vou can add the missing rle o the decison table by selectng the checkbax in

40

Cancel

OEBPS/img/GUID-2B9E8B3B-D0CA-467D-96D5-C9F2F9B164C2-default.png
5 Y VerbalRulel
<enter description>

[

SrETE |

[potcy = squaito vae

bolicy s greater than or equalto (valle)
policy is greater than (v}

policy is less than or equalto (value)
policy is less than (value)

policy is not equal to (value)

Select List tem to Insert Into TextField/Double Click List ltem to Accept Value

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Designing Business
Rules with Oracle Business Process
Management

OEBPS/img/GUID-CC69EB26-9F2C-4B67-8CB5-1105F354C3EA-default.png
@ overview | P General Rules "

* Olemeron +X a0 @@
Filter Query: ¢
name contans ([ERIEY <incer
Q, value options L
P
Claim Revie| .5 accigent
<enter descil g ReviewDetails
Repairvs P B0 ClimStaus
<enter desc
©Y vatidae P
<enter desct
% close clim
et
OistView © Ireeview
1 Consum Y

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-BBE2B57C-7E71-4B95-A85B-DD4D8E1CE4D9-default.png
Actions
assert new
EURentRulesBase.Drive

Active InActive

18 25
"FirstName" "FirstName"
null null

Variable licenseNumber "ABCD1234" "ABCD1234"

OEBPS/img/GUID-CDE26208-9050-4A49-B4A0-AED87204A7E9-default.png
TestRules.rules

LACRTASEE B 3 SR YOI]

® setungs
Dracrs

S Functions.

@) Clobas

5] vatuesets

D s

4 Deciion Functions
@) Transiatons

& e

(3 oma Explorer
Rutesas 4 X
£ Ciim Processing
@ Policy Enforcement
€ customer vaigaion
@ Risk Evaluation

B e o

et

Test Component: [Test Moge!

el

CorsnTens

Test suites:

+/R@ >

legative Tests
II Quote Tests

Description

Decizion Function

Rate Quote

[erecue

5]

Templates:

+/7x@ >

Name
T Quote Template

Description

OEBPS/img/GUID-443EC41F-5FE1-49DF-AFAD-1B5FA8363CCC-default.png
Verbal Rules

[
Customers lowrisk

THEN
<insert action>

OEBPS/img/GUID-01248B98-CE1E-47C3-BF8A-92EB0C3AA278-default.png
ApprovalRules.rules x DynamicRouting.ruies x HFvaBaen-

D [EJ value sets @ Globals & Business Phrases | B Tests Q Explorer I\ Facts 4} Decsion Functions | o Links | g3 Transations Actions ¥
) ApprovalMatrixRules ~ 57 o 3¢ A set of rules to execute
a7 By Type @) ApprovalMatrix 2 Determine approvals and discounts using decision table rules
Click to view tests and variables
¢ Va3 Local Range Value Set [~] &/ ‘Switch Rows to Columns
disco...more = 2 B D
‘ v ‘CustomerOrder.vipStatus PLATINUM GOLD; SILVER
H CustomerOrder.creditscore - Low Medum
CurrentDate.date - - Before Promo; After Pi _
© 93 overrde
B oty Resut v v v
discount:double 10 o 5 2

OEBPS/img/GUID-1F132C41-4426-427D-BD06-C15A881A151E-default.png
@ overview | P GeneralRules &7 Verbal Rules.

¥ Dlgieron R av BRRBO

52 ety

[Advancedtiod [JTreeMode (2] RueActve [Logica sriory: zaum]
Effective Date: Always Valid
"
R —
Applcaionis s Appicaton and
o theflloving e rue
a0¢ = appicaionage

monthy income = Application monthly income

pre-bureau risk category = Strategy pre-bureau risk category
nstallment unaffordable = Itrategy pre-bureau afordabily result

and
any of the following ar true
pre-bureau risk categary

RiskCategorles DECUNE
installment unaffordable

OEBPS/img/GUID-BAEEDAF3-2ED3-4454-A19B-3114AB9C5964-default.png
5% Notate Payments

"
Summary is a Credi Report Summary and
there iz no caze where

Detal s 3 Creadit ReportDetail <incert>
and
Detail Type

Paym et Type LATE_PAYMENT and
DersilManths > 1
THEN

modify Summary <ecit properties> Score: Summary.Score + 50)

OEBPS/img/GUID-8343B55E-C4B1-42D9-8104-C86266D64251-default.gif
radingRules.rules

v HE 0o

@raas
i Functions
(%) Globais
£ Buckersers
& Links
G Decision Functions
@, Transiations
Rulesers o X

 rulesect

¥ & DecisionTable 1 <entercescrpton>

XAV EHRREER

S Conditions

R R3

Re

RS

CL Testscore testscore

[c

[

A

- Actions

Grad)

9] o To vt

Desian

OEBPS/img/GUID-32CE1902-E5D0-447B-BC5E-90E69EC252B1-default.gif
iy Autolomnprocess.bpel | Elorderappravalapp jus

Components External References

Functonstat.
FunctionStat.

OEBPS/img/GUID-2EDC0909-2F2E-4E72-83F2-69298F893831-default.png
Edit Accessibility Settings
Any setting here can be changed after sign in via Preferences.

Use screen reader.
Use high contrast colors.
Use large fonts.

OEBPS/img/GUID-DAAC71E5-B943-45E9-9C89-20D16032B233-default.gif
Condition Browser

Customer Name.

L TteType
SupplierInfoType
PurchaseOrderType
Usiddress

Customer
= Rame)
03 addess

[——
Curentoate

@ Temperature,
asco

@ Ghbal 3

RL
BigDecimal
> [siginteger
Double

Constant (]

o |_concel |

OEBPS/img/GUID-2FB3C1CC-6F35-4394-ACAB-C91935F0CACC-default.png
Loanapproval rues

DA AR 2 S YOIE

® settings £ Functions
Facts
F Functions Functions:
@) clovals liame Return Type. Value set_ Description
P sigDecimal | T T————————————
2 unis £ prim void Print the string valueof rgi. o
L& rucontsn: baotean boolesn__The containg0 funcion i similsr t the continz0 method on ava Collection but incuez . =
< Decision Functions =
@ Transatons Arguments: +Rav
Name Trpe Value set
Bres @ rae sigDecimal Al
3 ataExplorer term sigDecimal
& business Phrases B amount BigDecimal ~|
Rule sets. L
&b strategy Logic return (amount * rate / 12) / (@igDecimall - (rate / 12 + 1) = ~(intterm)
9 Afforaabily Logie || <insert scior>
© Routing Logic
D rutezens
9 Brtendea Tests
Design]

Mode: EDIT. Locale: English (United States)

OEBPS/img/GUID-877AD1A7-0FC5-4B5D-8989-CAE3ECA72FD2-default.gif
=Y Rule 1
Senter description>
¥
Clstomarordar Trekem

Customerorder Inetem.sku

T @ value oprions
=@ CustomerOrder
©a inerem

coor
5l
desrton
= annustencing
a treitem
a Curentpate

Olist¥ien @ Tree view

[constort [Customigable

OEBPS/img/GUID-65005162-C02A-4377-AE97-BC1317118A61-default.png
¥ Oracle JDeveloper 12c Development Bulld - Insurance QUOteApp.JWs -

InsuranceQuotepp

InSUranceQUOEeProject.Jpr -

CarinsuranceO0EONly.rules -

vE D@ K l'\\O

g

Sprojets (@ @ V- B

nsuranceQuoteProject

E=T

@2 8PN Processes

3 Business Components

523 Business Rules

< CarnsurancepsLont

- Carlnsurance00EOn
S Cunaurancerues]

-, Actvity Guide

& Organization

@ B3 Resources

@ (3508

Testsample

[

P GeneralRutes | & Verbal Rutes

L3

Active

® setings @ overview
Facts

€ Rute et Properties
e Functions
e — Name: [Fremium Catcuaror
2] vatue sets Eective Date
& Links

Description

G2 Decsion Functions
@) Transttions

B

Data Explorer

& business Phrases
ieses R
| Premium Gatcutator

A General Rule

Application Resources

& customer score ca

@ General Rutes

define tests and actions ina
code-style view.

Generatrutes: b Z X @

is used o A Decision Table displays
multiple related rules in a

single spreadsheet-style view.

Decision Tables: T & X

& Verbat Rutes

e)||®

A Verbal Rule s used to define
tests and actions combining
Business Phrases,

+/7%x@

I Data Controls
I Recent Files

®YE-

£ suia s o]

eate Terms
{2 Connections « [o]5) & 1
3 Descriptors Mode: EDIT Locale:English (United sttes)
3 Ubraries =

Business Rules - Log

® Dictionary - CarlnsuranceO0BONly rules

=]

Message

Dictionary Object

Property

SDK Warnings: 0

Wessages | Exiension] dpusiness Rules =

Last Validation Time: 9:44:53 AM PST

OEBPS/img/GUID-6706D5A5-E2FB-4591-A892-B9923A424DE6-default.png
Verbal Rules R Iva BREH

[
Customers lowrisk

<inserttest>
THEN

e |
[

Start typing to get results and filter them further by pressing TAB

OEBPS/img/GUID-08C197A6-C122-4133-8813-F8D447F36537-default.png
@@ address

@@ age

@@ drivingExperience
& education

& id

@ name

RLYesNo
PurchaseOrder
P bnuctamar

Variables | Functions || Operators | Constants |

[Content Preview: Description:

OEBPS/img/GUID-451A219B-1EFD-488D-A6AC-9FB31F47A894-default.png
Bookmark for TestRules.rules

Paste this ink into emai or chat.
Or paste nto address bar in your browser and bookmark .

ttp://sico1ato.us.oracle.com:7001/s0a/composerfaces/home?path=/deployed-compostes/defauit/TestSample_rev1.0/orack/rules/sample/ TestRules. ukes

OEBPS/img/GUID-233D7E20-104B-4813-B1C6-DC4F1936DEC6-default.gif
Greate HTHL File.

Enter the name, and directary for the HTHL Fie,

Flle Name:

index.html

Drectory;

Ci\TDevelopermywork|GradeAppiGradesipublc_him

[o

[[] Create as K fie (*.<htm)

He

OEBPS/img/GUID-7F11B279-76C9-42E4-BD6F-3E5C8DEAAAFE-default.gif
o
c2
3

aL

]
Desin

Conditions
Customerorder.credscore
Customerorder.order
Customerorder.annualspending >2000

Actions
assert new Orderapproval(

)

[Business Rule Valdation - Lag

(&) Dictionary - OracleRules rules

RI
risky
Medum,Heh
fabe

Status REECTED

R R3 Re RS
avg sold s
LowMedum LowMedum High s
true = true =
Status.APPROVED | Status.APPROVED Status.APPROVED

©

[7]Dspley New Wrrings st

Message
&) RUL-058S1: The decision table has unresolved corficts,

Dictionary Object
OracleRules1Rulset_tDecisin Table(DecisinTable_t)

Property.

SDK Warnings: 1
BPEL | Feedback | Business Rule Validation

Messages

Last Valdation Tine: 4:03:23 PM PDT

DG

OEBPS/img/GUID-338ABC49-FC38-43E0-86BE-FDEAD66CD6DD-default.png
CarlnsuranceRules.rules

LASRTACEE B 2SR YORL] @
seings | e

racs
£20mstm Ao pat @/ XS
@ consc Toie Vet
) value sets
e
@ pecision Functions
@ Transiaions
Bre
Data Explorer
& susiness Phrases
neses %

© premium Calcustor

@ Customer score Ca.
€ carscore Catcuator
€ Polly Score Calc..
€ Demo Rule set

£ Rusers

| @oieacts | [Ewaras | B RLFaas | § ADF-5CFacts

OEBPS/img/GUID-653FB222-E52E-45CC-B0AC-B721B96BB935-default.png
@ overview | P General Rules

[+ Deneron +X av BBER

5 Y pue1
Zenter description>

"
soperangy, == copsrang>

THEN

OEBPS/img/GUID-07F6021B-70C4-4420-B30D-4A316275FF6F-default.gif
= A Rule 1
Senter description>

dvanced ode [Tree Hode

Rule active [Logial Brioty: [medum [v]

Effective Date: | Always Valid

¥
<variable> 1 & <120 AR,

dnsert test>

Advanced Pattern Test Made

insert pattem>
THEN

Insert Before »
Insert After »

insert action>

R Delte Patten

OEBPS/img/GUID-C7F7C200-DEF6-43F3-A0D0-7CD32426E20F-default.gif
Right Operand L
“Customer Regstered Date between”

perand 5ep 22, 2009 518555 A s KX and [£]=]
Operancz 5ep 0, w09 215,44 AM TR, [+~

vaicate | 0k | _cancel |

OEBPS/img/GUID-2AF37E82-00D1-487F-9F01-268032255BDE-default.gif
[@carRentatruies | E
vipay

& Facts

e Functions

Denial Rules: decision table Uiew: [Derisl DT

A O, DemalDT <erter cescrion
(23) @t [Jadvancedods []TreeMods [] Auto Conflct Resolution [7]Rule Active [] Logical 7] Alow Gaps
@ pucketsers Brorty: [medum [v] Effectve Date: | Always Vaid

& Links

FRiav §i-RREER

Q@ Decision Functions

-~ condtions T Y T)
@) Transiations cibveres s .49 0
Ruesers b R | [[c2 owerprevousacasents | - |« 1.9 s a 1.9 =5
PO C3_rver.vehiceType = R MOTOR..| - [ucsrorms seomn] -

& enialutes: -
4D Denial Rules: dec... | * Conflict Resolution

- Actions
AL assert new Demial(O | o O | o

vr:

reason:) "under a. “higher ri... "too ma., “higher ri... "too ma.,

Bt Coluns To Widkh

Desian

OEBPS/img/GUID-8DF73F93-70A6-475A-9D81-130EB355660E-default.png
CarinsuranceDSLONly.rules

vE 9@ R IRYONE]

@
— . Merge Dictionary. =
‘ A3 @3 it dictionary,
- Doy
e Syt @ /xa
@
(2] Value sets 5
D Links

DIff Dictionar

@) clobs noirs me Package Name e Linked Names
G Decsion Functions

@) Transiations

B

Data Explorer

& business phrases
Rute sets + %
€ Fremium Calcuistor

@ customer score ca
[O———
[5[S] 4

Mode: EDIT Locale: English (United States)

Desian)

OEBPS/img/GUID-1289435B-2C96-45B2-A057-A3FD102B16EB-default.png
Action Editor

Sorm: [modity
Description:

Value: oy SrstegyComext &

Targer

Strategy Context Pre-Report
lappication

Product
AtfordsbilyContext
RoutingContext

Arguments:
ropery Type Vi Faramewizsd | Consan
Iapplication iskcs.. Bigbecimal 0 [mE—
|Credit Report Type CreditRepontTypes o a
Reauirea Monthly . igDecimal 5] g
srmea Sumegyvaues a g
fre-hepon_ attorasbiyConte 5] g
Ay seectea
ok e

Help

OEBPS/img/GUID-DE435542-4790-4D02-99A6-0F873E76BF78-default.png
ApprovalMatrix &2 Determine approvals and discounts using decision table rules

Cick to view tests and variables

v /R Localrangevaeset[v] /| [Toos | v] [Switch Rows to Coumns

Add Rule
Add Condition

T —
.

CurrentDate.date oqp,

R1

R2 R3

PLATINUM GOLD; SILVER

- - Before Promo; After P)|

B retract
© 93 overrde —
’ assert tree
modify Result . v v
discount:double return 10 0 5

[»

OEBPS/img/GUID-0754CC7E-7DC9-4AA3-B621-9637D6184DE0-default.png
Loanapprovalrues

Yo 9@ Rk N@ %
®setings (BN DoAY O DS nera futes | & VeroalRues |
Htaas [Oaeron *+X A BBEO |

S Functions.

2 |®

Y Engiitiy
@ clobuis “enter ez

) vauesais 9% Pre-Repon Atfodabity

D tnks invake Affardability BKM by asserting a newAffordabilityContext and running the Affordabilty logic.

Q@ DecisionFunctons | ¥ pequired Monthty e
@ Transisions Sener gescrption>

e
) st Explorer
& business Phrases

Rule sets. + X
| & swategy Logic
$ Aftarasbity Logic
© Rauting Logic
© Ruesets
Y

Mode: EDIT Locale: English (Unied States)

Design

OEBPS/img/GUID-4967E469-2ED9-49E3-9D61-2F5F7E2EAF32-default.png
SmpleApprovalTask task c ApprovalRules.rules x

D [EJ value Sets @ Globals & Business Phrases | 3 Tests | Q Explorer I\ Facts » Actions v
) setupRuies v 55 o R ‘Setup such as determining customer status etc.
Rules A7 By Type @ N Consider some non platinum customers as -
PUSWE TreatAsPlatinum % 2ECT
IF
By Alas &
o - R TP R[-B
reatAsPlatinum
Gonsider some non patinuM Cu...more Customerorder isa Customerorder and
P 4 the folowing test is true
Initial
Initialzation Rule - Runs be...more E CustomerOrder.vipStatus & s
CustomerOrder.vipStatus is VipStatusType.SILVER
and

CustomerOrder.creditScore same or more than 750 and
4 the folowing test s true
CustomerOrder.annualSpending - same or more than 10000 and
CustomerOrder.totalamount s 4000

P P I

Diagnostics History Center SaveLog Vaidation Log

OEBPS/img/GUID-527EE80C-9B53-48BF-9666-A4E1F51150DC-default.gif
Verbal Rule 1

¥

Iﬁnnmdl terms to get resuts and fiter them frther by pressing Right Arron

Add Test

THEN
‘Add Acton

OEBPS/img/GUID-6A587DFF-D2D1-46AF-A801-EB77263C4CBA-default.png
TestRules.rules x CaseManagementBaseDictionary.rules ApprovaRuleDemo [1.0] x HeGBEB a8~

Rulesets Value Sets Giobals | & Business Phrases Explorer Facts Decision Functions Links | | o Actions ¥
- bad

Untransiated ¥ Engish
‘CaseManagementBaseDicti...
{member} of {fact}
TStateEnum

'ABORTED

ACTIVE

CLOSED

EXPIRED

'SUSPENDED

nul

TCaseLinkRelationship
DEPENDS_ON

RELATED_TO

HAS_SUBCASE

DUPLICATE
DEPENDS_ON_INVERSE
RELATED_TO_INVERSE

OEBPS/img/GUID-779026FC-4362-4E83-8200-1BC60FFB658E-default.png
ApprovalMatrix &2 Determine approvals and discounts using decision table rules

Click to view tests and variables

v /R | [localRangeVaueset[~] / | [[Toos %

N4

‘CustomerOrder.vipStatus ‘CustomerOrder.creditScore CurrentDate.date
RL PLATINUM - - ‘
R2 GOLD; SILVER Low - ‘
R3 Medium Before Promo; After Promo ‘
R4 Medium; High Promo Period ‘
RS High - ‘
R6 PLUTONIUM; nul - - ‘

ol m 5

OEBPS/img/GUID-D3E26D02-4E51-4C97-A3CC-36CA085C2352-default.gif
() [ElGradeipp.iws | Shorades.xsd
(@8- LX)

 Projects ER7-E- <ol version= 'L.0' encoding= 'UTF-5' 2>
= <xs:schema targetlianespace="hrtp: //exauple. con/grades”
5 Resources *ulnstxa="rep: / /. u3. org/200L /ML chena”
2 orades xsd *ulns: ths="http: //axanple. con/grades”
s atcribuceForaDefault="qualified” elenentFornbefault="alified”
S *ulnstiic="hetp: //3ava. sun. con/sul /ns,/ axb /X)"
*ulns:axh="http: //Iava. sun. con/xul /ns e’

Jaxb: extensionBindingPrefixes="xjc"
Jaxbiversion="2.0"

<xs:element name="Testicore™
<xs:complexType>
<xs:sequence>
<xs:element naus

Dom

mane” type=xs:string”/>
<xs:element name="testliane” type="s:string”/>
<xs:element testScore” type="xs:double"/>
<xs:element ‘testCurve" type="xs:double"/>
1 Applcaton Resources </xs:5equence>
» Data Controls </xs:complextype>
1 Recently Opened Fles </xs:element>
Design | source | Hstory. 0

OEBPS/img/GUID-9223F44B-06AE-49B2-9163-6B4916335346-default.gif
& Edit MAR Deployment Profile Properties

AR Options
55+ Metadata Fie Groups
& [
Directories
55+ HTHL Rook D for Gradss
Directories
55+ HTML Rook Di For Vewcor
Directories

User Metadata

Elle Group Narre: User Metadata

Target Directory i Archive:

Order of Contributors:

C:\JDeve Loper\nywork\Gradepp\Grades

add,
Remove
Wave L

Move Down

OEBPS/img/GUID-277B1ADF-745C-4C23-A6F6-A9682B69FECE-default.gif
E 2 Rule_t
<enter descrption>
[Tree Mode

Rule active []Logial Briorty: [medum

Effective Date: Always Valid

¥
(Order$Lineltem is a OrdersLineltem

Matched Fact Name (HI Enter Key To Save)
Orderftineltemt

OrderfLineltem s a OrdersLineltem and

OrderfLineltem.sku and

OrderfLineltem.colr and

OrderfLineltemt sku

OrderfLineltemcolo
RLget fact ID(OrderLineltemt) > RL.get fact ID(Orderéinelten?)

dnsert test>

insert pattem>
THEN

callprint(message : "Dupicate Iter; Do you wank to order two of the same item?")

insert action>

OEBPS/img/GUID-2FDAFA04-78A9-4CE6-ABDB-36F304964973-default.png
5 Y VerbalRulel
<enter description>

[

SrETE |

[l s cquao vluey

policy Add NewBusiness Phrase
policy is a (iype)

policy is between {value) and (value)
policy is in (value), (value}
More options for

Select List tem to Insert Into TextField/Double Click Listltem to Accept Value [l

OEBPS/img/GUID-A8C4B37E-501E-4AB8-AB6F-6A1439EFA5C7-default.png
simpleApprovalTask.task x ApprovalRules.ruies x
SimpleApprovalTask : Event Driven Configuration

Task Aggregation None =]
on Error Notfy @

| Alow al participants to invite other participants.
| Alow participants to edit future participants
| Alow initiator to add participants
‘Assignment and Routing Policy [Enable auto daim
[] Complete task when partidipant chooses
Enable early completion of paralel subtasks
Complete parent tasks of early completing subtasks

4 Expiration and Escalation Policy

Never Expire []

4 Notification Settings
& x
Diagnostics History Center SaveLog Vaidation Log

OEBPS/img/GUID-05218B8E-F0FB-47E6-8D9D-C55E842DE301-default.png
Rule Rl
_ Deiantable
w0
A o e
claim)
1 Table_Claimstatus _otherwise “New" *Closed"
2 Bucket Name “otherwise New" *Closed"
3
— ~ 5 < ~
Table_Claim.eviewDst
4 fails otherise “PursuantToTerms” "PolicyEffective” "Policyingffective”
5 [Bucket Name. “otherwise “PursuantToTerms "PolicyEffective” "Policyineffective”
6
— ~ - . -
Table_Claim.policy.ter
7 msgeneralTerms _otherwise “Exception” "Non-Exception”
5 BucketName “otherwise “Exception” "Non-Exception”

11 Bucket Name.

B
lmmmm,m)

mer.age as
“as
CustomerTable_custo

mer.drivingExperience <5
Bucket Name. s

CustomerTable_cartyp”
eyear <206
Bucket Name. “ans
CustomerTable_custo

mer.sex otherwise
Bucket Name otherwise

—l:x.lsm

1s.40]
>
>
>=2008

>=2005

a0..50)

“Female”
Eemale”

=
>0

OEBPS/img/GUID-94B58240-B975-45D7-BB4D-4B3051DFB5D1-default.png
-7 By Type @

OEBPS/img/GUID-87792712-1625-4A93-8854-334957CA2C8E-default.png
Expression Builder

Build an expression by yping directy into the Expression ield and/or insert fragments from the fragm ent editors belowthe

Expression feld

Beoression

@ R0

Stestegy.reuired monthly instalm ent)

new Affordabity risk category: Strateqy.pre-bureau risk category, monthly expenses: Application? monthiy.expenses, monthly
income: Appication2morthy Income, morthly repayments: Applcation?.morihiy repayments, required monthy instalment

A insertime Bepression

Suaeay

@8 Appicaion?

&0 #ppicuion
Requestedtroduct

@3 Arorcasiy
E =

2,

Variables | Functions | Operators | Constants

Content preview:

pescription

Ho Description Avallable

Hetp o

Cancel

OEBPS/img/GUID-A147D7BC-2A6E-413B-83E3-356B1B5442F7-default.png
SOA Composer

Search 5 Amxt2cksdSampleHumentasiRuies s x | Amcl2cXsdSampleHumantask task x
Deployment View =! =@ 7 B Amx12csdsampleHumantask : Event Driven Configuration
2 sonmmee Task Aggregaton. None
@ defoult On Error Notify

@ Amtzctsdsampe [1.0] — Allow all participants to invite other participants
& Amx12cKsdSampleHumantas " Alow partcpants to edt futre partcpans

[@ Amx12csdsamplerumantasiRule — Allow initiator to add particpants

Amx12cXsdSampleHumantaskule Assignment and Routing Policy . _ Enable auto daim

_Complete task nhen partidpant chooses
> of§ HelpDesiRequestComposite [1.0] __ Enable early completion of paralel subtasks

> of§ smpleapproval [1.0] __ Complete parent tasks of early completing subtasks
3 shared
CaseManagementBaseDictonary.rules Expiration and Escalation Policy
DynamicRouting.ruies

Never Expire

Notification Settings

& x

Taskstatus Recpient Notfiaton Header
sasen Assignees 7
Conplete nstr 7

‘ Sror Ourer 7

__Make nofiications secure (excude detak)

" Make nofiicaton actionable

" Send task attachments with emai notifications

—Donftsend multple notifications for the same human task event

No reminders

Task Access

Task Content | Task Actons

®

Task Content Individuals with read access Individuals with write access

OEBPS/img/GUID-0D8261C5-8182-4C30-AA3D-F32BF9C576B7-default.png
@ ouervien | P GeneralRules | &7 verbal Rules

& Dlgieron

Fiter Query:

T insertest

TS

2% Eiginitny

v

TR AV BBR
¢

<enter g

between
allof the folowil in

RLcontains
ppii

monthly income = Application.monthly.income.

>

OEBPS/img/GUID-B4F4E483-3CCC-4949-AE95-C5B022B9D730-default.png
¥ [Eieron +R AV BRDZ

= Affordabitiy

extci null guards to workaround unsupressed NPES I f actions.

[Advanced Mode [¥]Tree Mode (] Rule Active [] Logical ~ Priority: [Medim [~

Effective Dte: Ay Valid

ROOT: strategyContext
It

Disposable Income = Application monthly income - (Application monthly expenses + Application monthiy repayments) and
Credit Contingency Factor = AffordabiltyContext Credit Contingeney Factor and

Required Monthly Installment = Strategy Cortext Required Monthy Instalment and

Credit Contingency Factor 1= nulland

Strategy ContextApplicaton Risk Score
e Froduct
5o StrategyContext
-2 Application Risk Score
‘@ Credit Report Type
e Required Monhly Instaliment
a Strategy
e Pre-Report H
e Bigibilty
@-a Pre-Report Risk Category. > Affordabilhy :true)

> Reuired Monthy Instalment

OEBPS/img/GUID-F893B614-3BD8-4990-BF7E-4EE9B1362CB0-default.gif
TestRules.rules x

@ Rulesets | (] Vaue Sets | @ Gobls | > Business Phrases Q Explorer | I\ Facts | ¢ Dedsion Functions | o Links | 3 Translations

[Test Model

4 @8 TestMocel

4B cemevdlatontest i X 3 B T D>
[BasicTest

B EvalcaimTest

Test Suites

Name Desarpton
(B EvalCaimTest Off -
LB PoTes B @
5B NoRueFredTestc B rorests
[zerobiscountrest B Policy Update Tests
8 FvePercentDisco BY EvaluateCiamas Tests
@ 1nvaicPurchaseo Cl e
[MuitpleResuitsTes
[zeroDiscountrest g
4 B Poicy Update Tests
B wotcsoner T XX O D
[UpdateCustomerl Test Templates
BE EvaluateCiaimas Tes b ey
g :vd\:sﬁ ;;y::ym Flre=s e
o s T PoTenplate ocessPOD
& CutomericyTendd T CustomerpoicyTemplate UpdateCustomerlrPolcies

Sy R

Diagnostics History Center Savelog ValdationLog

OEBPS/img/GUID-E1C72291-4F74-41E1-88A4-BC454E50FF22-default.png
CarinsuranceDSLORly.rules

vE D@ B VO # €]

® settings
@ bicionary setings @
Facts
£ Functions
% i Rule Execution Algorithm: |RETE
@) Clobals
2] vatue sets Phrase Suggestions
& Links Value: |Business Phrases. ~

 Decision Functions

[auto Suggestions
@) Transiations usiness Phrases

B
) Dsta Explorer

& business phrases
Rute sets + %

@ premium Calcutor

@ customer score ca

General | Preferences | Data Model

Mode: EDIT Locale: English (United States)

Desian)

OEBPS/img/GUID-3340F48A-C36E-45CA-9FFE-4BA24DB13689-default.gif
& Edit MAR Deployment Profile Properties

55 Metadata Fle Groups
5 User Metadata
Directories

55+ HTHL Rook D for Gradss
Directories

MAR Options

MR File

Ci\Develaperimywork|Gradenppdeployimetadatal mar

Browse,

7] compress rcive

[Enablecustomizations fo ADF metaata

OEBPS/img/GUID-825B23F7-05BD-4157-8B7F-75A406A68880-default.png
@ overview | P GeneralRules | &7 VerbalRules | [Pre-Report Risk Category X
29, 63 me-epont Risk Category

[Advanced Mode

[JIreeMode [v]Rule Active []Logical []AllowGaps [v] Order Rules By Bucket
ity Confictpolcy: [Manual =] rectve Dates Aays alla
Descrption
conufam [~ (29 Loca range vaess_~]
- Conditions w
€1 Existng Customer

+xavl H-i-RRTRE-8
Re

5 & 77

3 Local Range vaiue se e

C2 Applcaion Rk core q- - <0 90.5% 150.110) >110
e Creste vaue e,
e create range vaue st

- Acions

AL may SrstegyContext

Pre-Repor isk Category . o weo Low et n weo Low

Mode: EDIT Locale: English (United Stat

OEBPS/img/GUID-65C61387-2267-421E-84D7-9830BD6D7DE3-default.png
EdIt RL Fact - ScoreTracker

e [scoreTracer

3

‘Qualifier Pattern: [(member i {fact)

3]

SwperCiass (o =)
pescrpion
propeis + %
Name Te Vawese Ve | Ui ComentT Gioba Alns

e double s zcore
= i
e st scoreType

 Cotumns Towian

Help ok Cancel

OEBPS/img/GUID-70F9AC59-A454-4DF3-B95D-729234019DCD-default.gif
2 Conditions R1 R2 R3 R4 RS

€L CustomerOrder creditscare risky avg solid B
€2 CustomerOrder.crder Medum,Hh LowMedum LowMedum Hgh B
€3 CustomerOrder annualspending >2000 false true B true B

o Conflict Resolution
Overrde.

- Actions
AL assert new Orderapproval(
statusiSttu)

StatusREECTED | StatusAPPROVED | Status.APPROVED | StafusAPPROVED | Status.MANLIAL

(] Columns To Wickh

OEBPS/img/GUID-0AFE3C17-DCA5-4E44-BED9-13A9E419EEDB-default.gif
2 Conditions R1 R2 R4 RS
€L CustomerOrder creditscare risky avg 5
€2 customerOrder order Medum,Hh LowMedum Hoh 5
€3 CustomerOrder annualspending >2000 fabse true true 5

X Conflict Resolution

- Actions

AL assert new Orderapproval(
statust =)

|91 cobanns To vt

Status REECTED

Status. APPROVED

Status. APPROVED

Status. APPROVED

OEBPS/img/GUID-6BDE1ECE-894E-485C-A969-43290268A40D-default.gif
=2 Rule 1
Senter description>

[Tree Mode Rule Active

Effective Date: Always Valid

¥
For sach case where)] {
<variable> I @ sfact ypen
dnsert test>
insert pattem>
b ainsert test>
insert pattern>
THEN

insert action>

[oges

priority:

medum

OEBPS/img/GUID-7C154517-3326-4251-8324-1C71EDAA0029-default.png

OEBPS/img/GUID-F9827B7D-15C2-49A3-875B-E0C0F28F36D7-default.png
CarinsuranceDSLONly.rules

19D @ 4 -

@ %

Settings
Facts

i Functions
@) Globais

2] vatue sets
& nks

G2 Decsion Functions
@) Transttions

B

Data Explorer

& business phrases
Rute sets + %
€ Fremium Calcuistor

@ customer score ca
[O——

@8

B vicionary setings

Global Qualifier Pattern

General | Preferences

Data Model

Mode: EDIT Locale: English (United States)

Design)

OEBPS/img/GUID-00A6593E-D4D2-4467-B7FA-EC65726DE09A-default.png
@ GeneralRules | &7 VerbalRules | 3 Pre-Report Risk Category X

¥ 9, 63 me-epont Risk Category

[Appiication i 3 Applcation and

Existing
strategyCol
Application
HICH = Ris
MED = sk

m jmerans
simple est

variable

nested test
negatedtest

alof the ollowing..
any of the folloving.

cation Risk Score and

Lowrm st 1
REIECT = B there s 3 factwhere.
here is 2 case e
ST there i no fact where.
e £ no e whire
agareation +-xav@O)E-H-RKERE-8
- boolean evpression I & = T
LT — e

C2 Application Risk Score 1100120

180.90)

1s0.110)

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-E24F9851-5978-4703-837E-701AC5C45D4E-default.png
CarInsuranceRules.rules x

@ rueses BT @ Gobss g businessvases | Q Exlorer I\ Facts | 4p DessonFunctons | P Lks | 3 Trandtions

Value Sets Name SareTipe L
LA ¥ 1 @
Cotegory Desaiption
RkClast..
DataTpe swmg [
Mertastatus
Incude Dalowed Vlues n Tests:
Gedtwatng
Values
String
+X ¢
SR = e o e =
otherwse othervie v
= e LDl -
“Customer” Cstomer

OEBPS/img/GUID-CA5565E6-BE9D-49F9-933A-C94888233690-default.gif
=l & Farm_base_domain

#Application Deployments

son

88 sosa (Adminserver)
of AutoloanComposte [2.
off soacompostet [1.0]
off soACompositet [4.0

£ webloge bomain

Metadata Repostaories

User Messaging serice

offf 50a Composite v Page Refreshed Mar 25, 2009 5:
Rurring rstances 0 | Totl 5 | Actve | Retie shutoown... || Test | | setngs.. - (@ @ |
Dashboard | Instances | Fauks snd Rejcted Messages | Unit Tests | Polies
ERecent Instances
Show Only Running Instances [Running 0 Totsl 3
Instance 10 Name Comversation > state StatTine
20000 1zamzsH0540 e 25, 2003 S08:24 it
20007 szamnzsarrass e 25, 2003 555,00 it
20006 1zaenzssss3s e 25, 2008 4:53:06 it
U] »showal

ERecent Faults and Rejected Messages

Shaw orly system Fauks

Ertor Message Recovery

o Fauks found

 showal

EComponent Metrics

Composte Instance

Fault Tie FautLocation <

Logs

st pmeoT 0

OEBPS/img/GUID-52744260-1B4A-415C-B7DF-A9F31A673874-default.png
CarinsuranceRules.rules

vE D B x ND I H @

® sevings £ runctons
Draas
| & functons Suncrions:
) clovuiz Name Return Type Valueser | Deserptan
Sims cacuntepercentpo._ doutie
S i i _Ij_
£ orn void Frin the sring value ofargl.
@ Decision Funcions
P Arguments: +X o
e Tioe Valueset
@ @ o1 siring
Os Explarer
& business rrases -
Rule sets LR
0 Premium Calcustor | assart new FraugAlert <ed propertes> fraudrue)
@ Customer score Ca. <insert action>
& carscore Calcuntor
9 Poly Score Cac
€ Demo Rule set
 Ruesent

OEBPS/img/GUID-891F8069-04BC-4502-8DCE-D7BA703A18F7-default.png
Late Payment 5P

¥
XD R

Summary isa Credit Report Summary and

4 there fs a case where
Detal fsa Credt Report Detail and
Detall.Type is "LATE_PAYMENT" and
DetallMonths more than 2

THEN

+

X OO M-

modfy ~ Summary

(Score:Summary.Score - 150) &

OEBPS/img/GUID-8FB31730-B036-4CBC-A528-159281E853EC-default.gif

OEBPS/img/GUID-38653950-DF70-461C-B147-42F28B1E6D3F-default.png
negated test

al of the folowing.
any of the folowing...
sa

there is a fact where...

there is a case where...

there is no fact where...
there is no case where...

aggregation...
boolean expression

&

ft Summary and

Detail and
YMENT" and
2

(Score:Summary.Score - 150) B2

OEBPS/img/GUID-D57A83B2-FA22-4912-AB40-70C8267C61DD-default.gif
® Create By

usiness Rules

Business Rule

O geae

Ditionary) Import Dictinary

Specifythe name and package for the dictionary that wil be created.

Neme:

GradingRules

Package:

com.example grades

Project

Ci\TDeveloper|mywork|GradeApplGrades!Grades.jr

InputsfOutputs:

Direction
rput
Output

[TestScore
TestGrade

{http:jexample.comjgrades} TestGrade:

OEBPS/img/GUID-8275D115-D984-401A-A971-605CCEA73AC0-default.png
T

Customerorder sa Customerorder [¥] and %x I RI-B-
X TO KRB
the folowing test is true

CustomerOrder.vipStatus s VipStatusType.GOLD or
CustomerOrder.vipStatus s VipStatusType.SILVER

and

CustomerOrder.creditScore same or more than 750 and

the folowing test is true
CustomerOrder.annualSpending - same or more than 10000 and
CustomerOrder.totalamount s 4000

and

sa Fl #XeOR@
X OO %@

Add Test

OEBPS/img/GUID-31A79B5C-5D14-4444-AFF1-10B373848C61-default.gif
Hvaaae

=
feormae 5
@ cceptal
Qrejectal
W@refresh oiffs
import From Excel
ot To sl
& Dictionary Settings

OEBPS/img/GUID-2A51A99E-0E53-438F-BF4C-80CE8ABBBF6D-default.gif
& Application Properties -

Appication Content

Resource Bundies
Run
W Polcy Store

:\JDeveloperimyworkiGradeApp\GradeApp. jws.

Deployment

(©)Use Custon Setings Custonigs Settings

(© se Applcation setings

Deployment Profes:

‘Auto Generate and Synchronize weblogi-jdbc.xnl Descrptors During Deployment

Securiy Deployment Options
Decide whether to overarie the following securiy obijects they were previously
deployed,
Applcation Polcies
Credentials

Decide whether to migrate the folowing securty objects.
Users and Groups

OEBPS/img/GUID-733A8BFA-3F81-4532-9965-D3F4847FDB9B-default.png
TestRules.rules

&P Rulesets | [E] value Sets

Test Model

+ @ Clim Evaluation

NoRuleFiredTe:
ZeroDiscount

MultpleResuts
ZeroDiscountT
« @ Ppoicy Update Tes

UpdateCustom

Test Model -

UpdateCustor_

@ Giobals & Business Phrases | B
TestCase BasicTest
Description

Flag Rules not Firing as Error

Tnputs

Q Explorer

o (@)

== SO

M\ Facts 4 Decision Functions = P Links »

@
@

Show values

Actions v

Edt 3¢

daim Caim
Gaimpetais) iing] "Acodent”
daimid long 9876

payment BigDecimal 0

poicy - Policy

endDate XMLGregorianCalendar
id int 1234

insured Customer

S ddence _Ctvinn | "MyGHast!

<« [

XML

[

camResuft Clam

caimDetals String "Accdent”

camid long 9876

payment BigDecimal 3000

poicy - Policy

8 endDate XMLGregorianCalendar XMLC
@ d int 1234

insured Customer

address String "MyStreet”

<« [»

[

OEBPS/img/GUID-5988EC3C-D7DD-4400-8227-507B05C9D46C-default.gif
1
SustomerQrder.neltemsku in soperandz, Sopgiandz, <insert>

dnsert test>
THEN
nsert action>

OEBPS/img/GUID-11676BDE-6238-4252-B455-44A6EEC6FBF3-default.gif
© 2 Rule 1
Senter description>
7] clvanced tiod= (] Tree Mode

Rule Active.
Effective Date: Always Valid
®
<varisbe> i the [FRRGEBRBIoF <2 :presson where {
<varisble> s » sfact e,
<nserttest>
<t pattern>
} <inserttest>

insert pattem>
THEN

<cinsert action>

[oges

priority:

medum

OEBPS/img/GUID-A605C290-1F87-46A9-BADF-DA92EA580586-default.png
Edit Decision Function

Hame: [pecde straregy)

Rule Eiring Limit: 10000 2]
9] Rule Ering Lt 5 Error
(4]0 B Invoked As A Websenice Serice Name: CoamApprova_Decidesraiany]

9] Check Rue Flow
¥ streess

Descripton:

oot | ot Actons | Outputs | Rl ses & Decson Funcrons |

I RLSUppress rufe est errors(value -7)
] Droperties> Application Risk Score 0)
assertnew
assian
aan
mody
i
while
asseniree
assignnew
expression
for
R
synehronized
throw
iy
if Gavanced)
while acvanced)

Help o Cancel

OEBPS/img/GUID-AF8672E5-1580-4003-A1B4-5FAAE9135152-default.png
CarinsuranceDSLOnly.rules

CE D@ EE s DY @ Accept Al @ Rejectall @)
PP AT
-) Diff Dictionar

@ Accept Al iffs

i runions & | 3 2o AR Qe (@ F X @ Accept0ifts @ Refect Difts
@cobus s @ Reresnoits Rewrn Type T Value 5¢ Desripion
(2] Value sets © viewDiff Dictionaries. oouole [|_______________________§
" e :
s I i o i E SR oL
e o
o a
@) Transiaions i sy XIS
ame Tooe Ve
@res e double H
@ omaEspiorer @l double
Prmmrass | B poie scor et
e sets x| o
ORI R | || SR T S S R R ST A
£ Customer score Ca.. 4 return 2-percent
Pa———

Mode: DIFF._Locale: English (United States)

Design,
Business Rules - Log o
® Dictionary - CarlnsuranceDSLONly rules

Message Dictionary Object Property
SDK Warnings: 0 Last Validation Time: 11:58:L7 AM PST.

| Extensions || < Business Rules - | -

OEBPS/img/GUID-57D529C8-AA04-4530-8F6E-06AFFA57B23E-default.gif
Type Chooser

L Type Explrer

Projec Schems s
5@ rades.nsd

& Testtrade

B coscore]

Type: [{httpi/jexample.com/orades}Testscore

[how Detaled et Information

OEBPS/img/GUID-9A89757E-5AF9-4415-932C-208456C361AA-default.png
Custom Authoring in
Workspace

@Foo

Foof...)

Java

RETE Rules Engine

| XML, ADF-BC, Java Facts

OEBPS/img/GUID-774DA0CA-52CA-4360-87D0-7D06187AEEA1-default.png
1D ot A0F foson Web Pppnion Sep2 S

e dava rograming angusge 8 sl objctrirted nguage designed o et
he chatenges of appicationdeveiopment 1 h coder of heterogeneous,
p e

o
Extensie lskup Language QUL)provides syt for descring nd stuctrng
at ndependent fom sppcaten G5k 470 Used Extensiely web-based
techmoges.

teb <ask o> e concel

OEBPS/img/GUID-26CB20E1-F83A-45B6-9103-00CD17099CF7-default.png
TestRules.rules

&P Rukesets [E]] value Sets) Globals & Business Phrases | |[E Q Explorer

Test Model | & Ciaim Evaluation tests x & Claim Evaluation tests x

Overview Comments :
o BasicTest

Test Results

Name Result ‘Comment
BasicTest o Passed

W\ Facts = 4 Decison Functions | o Links g Transtions

OEBPS/img/GUID-2540CE64-F800-4E39-9914-742D9FBC4619-default.png
Avalue must be specifed for the property to be used. You can speciy values for propertis by editing the table belowin the
Value'column.

Cllcca cel o edit the value and make sure you hit the Enter key In order to have your changes saved!

¢

Nine Type Vae Consare
igvecima a]
[productType ProductTypes o
sg0ecima 5]

]

[RequestedProduct amourt.negate0.
[RequestedProduct amount tongValueo
[RequestedProduct amount scale
[RequestedProduct amount.toEngineeringString lengthC
amount 1oPinSiring0.lengthe

16 cotamns Towatn

ok Cancel

OEBPS/img/GUID-1D9EAE6F-46A7-43ED-91F7-83BA693E8CD4-default.png
TestRulesrules x CaseManagementBaseDictionary.rules x ApprovaRuleDemo [1.0] x

P Rulesets [E]] value Sets 9 Globals | & Business Phrases | @ W\ Facts = 4 Decison Functions | o Links g Transtions Actions ¥
‘Show Hidden Items
Name Type Description
4 Boolean Boolean
equals bookean
4 toString String
equass ‘bookean
toString String
hashCode int
compareTo int Returns the value 0 ff the argument string is equal to this string; a value less than 0 f this string is lexicographically
indexof int Return the 0-based index of the start of arg1 within this String, but not before the 0-based index arg2. "banana”.
indexof nt
charat char Returns the char value at 0-based index argL.. "Orack".charAt(2):
codePointAt nt
codePointBefore int

codePointCount @@ it

OEBPS/img/GUID-022D5F3E-75FA-4547-8CB5-E9589C46CC38-default.gif
o
c2
3

a

Conditions
Driver.age
Driver.eye_test
Driver.has training

Actions
modfy Driver(
eligble:)

R1

true

true

Rz

fabe

fabe

R3

true

fabe

<
fal

Rt

fabe

fabe

RS

true

fabe

R7

true

R8s

true

R9

fabe

fal

Ri0
0

fabe

fabe

Rl

Riz

dlasses_requred

true

true

fabe

fabe

OEBPS/img/GUID-5012D53D-8578-4EDA-B9B2-FD8042B7A5CF-default.gif
& Create HTTP Servlet - Step 1,of 3: Serviet Information

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enterservet detals

Clss:

Package:

Generate Content Type:

] Generate Header Comments

Inplement Hethods

[JeoGet) [copost)
[Jdoputy [dovelete)

Gradesserviet

com.examplegrades

Browse,

HTL

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Designing Business
Rules with Oracle Business Process
Management

OEBPS/img/GUID-708D3688-F923-4D30-ACA1-4FE8C9F0E5D1-default.png
CarlnsuranceDSLONly.rules

vE DA Bk

- 1@ % @

@ sertings|

Facts

F Functions

@) Clobals

2] vatue sets

& nks

G2 Decsion Functions
@) Transttions
B

Data Explorer

& business phrases
Rute sets + %

@ premium Calcutor

@ customer score ca

Design)

B vicionary setings @

Name: [CarinsurancepsLonly]
Alias [CarinsurancebsLoniy (]
Package: [nsurancequoteprajeet]
yersion [21ts0]

Resource sundle: [CarnsuranceDSLOy Transiations]

Description: [(]

Schema Pah Root i/ scratchayneprojectsinranceQueteApp/InsuranceQuereProect/SOA7_|

Locale: [English United States)]

General | Preferences | Data Model

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-B5265121-06D8-447C-804A-CC0C03C05B0F-default.png
I S S L D, L E

“New Exceptional | "Payment Processing
Conditions Claim" Claim"
"status of the claim" _Claim.status "New" "New" "Processing Payment"

RGH|
7]
8|
s
10 Fixed claimDetails
11 Fixed claimid
12 Variable payment %.00000000698 "0.645 %3000.0

OEBPS/img/GUID-7BAAEA82-A4A2-4C84-B549-A41F11FB6E6C-default.gif
Ruleset_1

wew: [Deckiontable_t

MK A%

¥ & DecisionTable 1 <enier deseription=
ALRI

Conditions
€L CustomerOrder creditscare
€2 CustomerOrder.order

€3 CustomerOrder annualspending >2000

- Actions
AL asser o rcommayall
staus<1o1.)

B BB EEEEEE NN e e N

XRiav BB QITEQ
R10[R11 [R12 [R13 | R14 | RIS | R16 [R17 [R18
avg

low | Medum | tigh

RU Rz R3 R4 RS R6 R7 Rs R
risky sold

Low | Medum | Hgh low | Medum | High

true false | true |False true | fakie true false trus Fake true false | true |false | true | false | true false

OEBPS/img/GUID-20B2D14A-4858-4FD4-B656-A218248A2316-default.png
ApprovalMatrix &2 Determine approvals and discounts using decision table rules
Click to view tests and variables

v /X | [Loclrangevaueset[v] /

R1 R2

v CustomerOrder.vipStatus PLATINUM GOLD; SILVER
CustomerOrder.creditScore - Low

CurrentDate.date - -

Medum

Before Promo; After P)|

© 93 overrde

& oty Resut v v

discount:double 10 0

n

OEBPS/img/GUID-911ABCEF-E17A-43F7-8F1F-23C418A06826-default.png
OracleRulesL.rules

I Y] @ Acceptal @ Rescal @
_, " A(D © Dictionary serings @ Acceptoms @ Rejctoirs @)
fe Functions [y e

Name racieRules:
@ cionas e L
E] Value Sets Alias [RrAcIERTISL Property Merge Differences
g package opmproles || Obiect Dictomary properry: Name
e [Bries | |Rrernes
e Tvoe Vaiue Version Action
@ Transiaions Besourcesundle. [orscieRuiesiTransit | §) Confit Onceruess 30 O accept O peect @ Bone
e pesergton: | ||L& Oference [ondchuesz 20 O accept O efect © lone
3 oaraExplorer Schema pain Rot:fie/scratch/aizhor] x o gunee
P ousnessprases & || Locale [Enatisn @nied satesy ;
Rule Sets. + %
@ Rulesett A

(©) Generat | 4 references | Data Model

Mode: MERGE Locale: Engiish (United States)

Design

OEBPS/img/GUID-E2539E65-0575-4BDE-B6EE-984F19F4B138-default.gif
& Project Properties - C:\Developer\myworkiGradeApp\Grades\Grades. jpr

Deployment

Project Source Paths O Use Custom Settings

AOF Hodel (© LseProectSettings
A0F iew
o Oeployment rofes:

Business Components
Compier
Dependencies

EJB Mode.
Extension

Javadac

Java EE Applcation
35 Tag Lbraries

35 isual Edtor
Libraries and Classpath
Resource Bunde
RunjoebugiProfie
08

Technology Scope:

OEBPS/img/GUID-FE2CFC1A-091A-44BF-B53F-788117E9F3A5-default.png
¥ [Jiteron R AV BHRH

54 Engiitny
<emer description>

[Advanced Mode [|Tres Mode [v|Rule Active []Logical Priority: [Medium v

Effective Date:| Abaays Valid

"
ER
Apy

wd serbefore »

InsertAfter 3

ST .y ncome
- .

hange Test £orm
tegy pre-bureau risk category
 Hove Down

%
and & Sopy

any 3 Delete '1s A" Test

gy re-buresu sfordatily rezult

pre-bureau risk categary

RiskCategories DECUINE
installment unaffordable

OEBPS/img/GUID-D8088868-D256-449B-AFC7-4FB3B7F521FF-default.gif
 Edit Copy Operation

From

Type: [Expression

Expression @
false() |

Ve
= g Process
.
5[5 Scope - BusinessRule_t
i
- (x) com_example_globalcompany_ns_or:
e s
e s
<
(x) com_example_globalcompany_ns_or:
(x) dsIn
(x) dsout

7] show Detaed ode nfarmation
wah

/nsL:approve /nsL: approvalRequired

Lo Il]

OEBPS/img/GUID-E43090A2-411F-4F11-818D-E2757DCA6AD9-default.png
@ overview | P General Rules "
@ngmn *+XR A2V BHB
¢

© ¥ Policy Terms
enter cescription>

¥ Policy Efectivity
enter deseription>

5 Y Manual Review Guideline
<enter descriptian>

Caim iz » Claim and

Claim.ciamDetails

ol and

Claim ciaimetails contains ¢

heft')

THEN
modity Claim (<ecit properties> status - ClaimStatus Manual Review) J
madiy Claim polley.terms <cdlt propertes> generaTerms - Exception’ , notes :"AUTO FLAGGED") i

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-3DD44C3F-B52F-4B24-8F57-C311E5A3C441-default.gif
Greate XML Schema

Enter the detals of your new fe.

il Name:

rades.xsd

Drectory;

\IDevelopermywork|GradeApplGradesixsd

[o

el Gl |

Cancel

OEBPS/img/GUID-9F129B61-AF6F-4BA4-95B8-B3175278C25A-default.gif
& Create Deployment Profile

Clck OF to create your new deployment profl and immediately open I o see s configuration.

archive Type:
AR il

e
metscatal]

Description

Creates a profie for deploying a metadata MAR ie.

OEBPS/img/GUID-D511FD97-B346-41E9-862D-FF7E883E0073-default.gif
Edit Decision Function

e

Description

Rule Eving Lt [uriimied

7] vokad s A ebservice Soruce e | ke Do e ke

Check Rule Elow

Stateless

© Inputs

Moo
8 dwermp

Fact Type
Driver

Outputs

Name

B denids

Fact Type
Derial

) Rulesets & Decision Functions

avalable:

Selected

(G Derial Fues:decison bl

1€ Denia Fues: Fthen

OEBPS/img/GUID-75DA0D0B-769C-4329-AAEC-D90A7C758257-default.gif
S Conditions

£1 Custamerorder redtiore,

nding

Customerorder.annuafspending >2000

Q valie options
a Cstomerorder
Onderpprove
Curentoate
"
[e—
Sgbecnal
Colener
stis

RL

OEBPS/img/GUID-06C65161-7F86-4806-8439-F40B16BF0EF7-default.png
s

40,601
260

OEBPS/img/GUID-F62AB1F9-9B14-44B6-9682-558687F22D4C-default.png
A Task Access

Task Content Task Actions

@
Indviduals with write
Task Content Individuals with read access B
Payload Admin; Approvers; Reviewers (] Al
Attachments ‘Admin; Approvers = Al
Assignees Al (=) Al
Comments ‘Admin; Approvers = Al
Dates Al = Al
Flexfields ‘Admin; Approvers; Reviewers [w] Al
Hitory Al @ &
Reviewers A ® A

OEBPS/img/GUID-7FD4799D-B5FE-4872-B50E-1BBB040DEF83-default.png
MultiplePriceyItems &P Ifan Order has 5 or more line items priced more than approvalThreshold, require Manual approval

Root: OrderApproval [v]
CustomerOrder

IF
OrderltemType
num| Currentpate_Jw) count [7) where { o 3¢ b %[~ @l
OrderltemType isa OrdertemType [and & X > “‘v e‘v
-0 R-8-
OrderTtemType.price more than [x] ApprovalThreshoid
b ¥~ @~
numPricey same or more than 5
THEN
- X > %

[] modfy v Resut (¥] (status:StatusType.MANUAL) 55

29|

OEBPS/img/GUID-1D611F83-32C1-432A-9E80-CB1ACFEB3B64-default.png
CarlnsuranceRules.rules x

@ rulsers | [EJZIEETY] | @ Gobsls | P busnessphvases | Q Exlrer | I\ Facts | 4 Dedson Functons | o Liks | g Transitons

Value sets
% R
Vakeset

Range value set

MaritalStatusType

CreditRatingType

R Gender

@ Score Type

Category.
RiskClassif..
Martaistatus

Creditating

L

Name. Value Set 1 @

@
Description
ooaTpe m [
Incude Dalowed Vlues n Tests:

Range s
oo B &l
v [200..300) [200..300)
[100..200) [100..200)

OEBPS/img/GUID-EE5D61C4-63AE-430E-A592-4889F265CB84-default.gif
o
c2
3

Conditions
Customerorder.credscore
Customerorder.order
Customerorder.annualspending >2000

Actions
assert new Orderapproval(

statusi 1)

r1_ T Rs R¢ RS

- fobso | e | fabse

High

Status M,

R7

LowMedum

Status. .

RS
salid

true

Status.APP,

Ra
Hgh
fake
Status M,

OEBPS/img/GUID-142175D1-8302-45C6-8E6F-FF8E708C2CDD-default.png
@overview | P General Rules

[¥ Daneron

X 2 BBEO |

S ¥ mue1
Sermer description>

"
Customer drivingErpes

Customeranvi
T{ 4 vaue Optians
E'e Customer
©a address
B age
e drivingExperience
B education
i
e name
@ Terms
®e policy
B Car
@ Clim
Ba DMV Record
&2 Insurance History
e Past Claim Info
@ e quote
©-a CurrentDate

OListView @ Tree View

@

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-5B741F32-0EBD-4046-9910-1CB685A2E8DA-default.gif
o
c2
3

Conditions
Customerorder.credtscore
Customerorder.order
Customerorder.annualspending >2000

Actions
assert new Orderapproval(

statusi 1)

R
risky
Medum,Hh
fabe

Status REECTED

Rz
avg
LowMedum
true

Status. APPROVED

R3

R4

Low,Medum

Status. APPROVED

true

Status. APPROVED

OEBPS/img/GUID-BF7CD523-3944-4647-9EF3-CADDCE6749CD-default.gif
& Create Deployment Profile

Clck OF to create your new deployment profil and immediately open I o see s configuration

archive Type:
WiR Fe

Neme:
rades

Description

Creates a profle for deploying the Java EE web mads (WAR) to an application server, The WAR
consists o the web components (15Ps and servlets) and the corresponing deployment descrptors.

OEBPS/img/GUID-20D60E80-C7A7-4036-BC54-D7DB2BC92592-default.png
Expression Builder

Build an expression by yping directy into the Expression ield and/or insert fragments from the fragm ent editors belowthe
Expression feld

Expression: R0
Strategy Context fre-Report Risk Category

A insertinto Bxpression

&8 ouraion

Duration.days between(CalendarXMLGregorianCalendar|oracle joo domain Timestamp,Calendar|XMLGregorianCalend:
Duration. minutes between(CalendarXMLGregorianCalendarloracle joo.domain Timestamp, CalendarlXMLCregorlanCale

€
Variables | Functions | Operators | Constants

Contem preview:
[Duration between(Calendar|XMLGregorianCalendar|oracle bo.dam ain Tim estamp, Calendar|XHLGregorianCalendariracl jbo domaln]

pescription

Subtract argl from arg2, where the args are some kind of date/Ume. Returns day-time duration
Duration between('2008-01-01T01:100°2009-02-02T11:30.00") ==Duration from string('P320T10H15M),

Hetp o Cancel

OEBPS/img/GUID-EB975424-9D8C-40BA-BA97-A6CAC8DBE2C6-default.png
@ overview | P General Rules

2 [CJgiteron

Filter Query:

[Seesmiz, = ommangz,] <imsenttes>

Q vatue options
descrpton

orcrty

e

enc e

minutes unil start e
inues until e e
days il st cte
days i end ot
yesrs i st e
Jears i e

referenced fact ypes

OListView ® Tree View

+Riav EBRO
¢

tus Manual Review)
eralTerms - "Exception” , notes :"AUTO FLAGCED")

J

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-F81B432E-4233-46E4-A170-1E45F33173D0-default.gif
Edit Decision Function

e CorRentalDecksionFunction

Description

Rule Eving Lt [uriimied

Wi ovoked As A Webservie. et e

Check Rule Elow

Stateless

© Inputs

CarRental_Decisiongervice_CarRentalDecisionFunctian

Moo
8 dwermp

Fact Type
Driver

Outputs

Name

B denids

Fact Type
Derial

) Rulesets & Decision Functions

avalable:

Selected

(€ Deria Fues: Fthen

1€ Derial Fues:decison bl

OEBPS/img/GUID-D2E0B08D-436F-499D-A8A6-92C45719C94A-default.png
TestRules.rules | Search x

Search Appro
4 Deployment Search Results
O]
© soAfra
© shared
Name Type
Type off§ ApprovaRuleDemo [1.0] SOA Composite
ApprovalRules.rules Business Rules
SOA Compostes o Smpleapproval [1.0] SOA Compostte
Business Rules 4 & smpleapprovalTask.task Human Task

Domain Value Maps
Human Tasks

Diagnostics History Center Save Log Valdation Log

Hv@daea-

Found 4 items in 60 miliseconds

Deployment Path
Jdeployed-compostes/defaut/ApprovalRukeDemo_rev1.0/composite.xmi
Jdeployed-compostes/defautt/ApprovalRuleDemo_rev1.0/orack/rules/ord...
Jdeployed-compostes/defauit/SmpleApproval_rev1.0/composte.xmi
Jdeployed-compostes/defaut/SmpleApproval_rev1.0/SmpleApprovalTas...

OEBPS/img/GUID-1B29BD02-83C5-4CFC-A963-B2A42C995928-default.gif
& Create HTTP Servlet - Step 2 of 3: Mapping Information

Create HTTP Servlet - Step 2 of 3: Mapping Information

Enter serviet mapping.
While this s nct required to create a servlet, t s requed ta run a serviet.

Specify a ame and mapping for the serviet

Hiapping Detals

Neme: Gradesserviet

URL pattern: [jaradesserviet

EIrs

OEBPS/img/GUID-E5C7FBEF-BE53-4F67-881A-0F271E8B57FE-default.gif
@racs
i Functions
(%) Globals
£ Bucketsers
& Links

Q@ Decision runctions

@, Transttions
Rutesers o %
© rutesen

Decision Functions

Decision Functions:

®+s/x

Nome
B Comentabedsonruncion

Description

web Service

]

OEBPS/img/GUID-8DD53701-78DD-4919-BC00-D57596AC0E05-default.png
Edit Range Value Set

yone, [orderAmoun

pataType: [t

[Include Disallowed Values in Tests

Description

Range Vatues:

=) r\m\mnv

h_-z-

e

Help

OEBPS/img/GUID-E985E277-F081-4E4E-8266-8E797B95730B-default.gif
@ ract

i Funciions
(%) Globals
£ Bucketsers

& Links

Q@ pecision Functions

@, Transttions
Rutesers o %
© rutesen

Java Facts:

Qi+

Alias
Derial

Driver

LicenseType
VehickType
ActonType.

Keychain
KeyedactionType
DecisionPaint
DecisionPaintBuider
DecisionPaintinstance.
Object

string

Bialnteger

BigDecimal

Calendar

ML GregorianCalendar

(00RO aEEUUdQ

Class
oracle.middeware.rues.dema. carrental.Denial
oracle.middeware.rues.dema. carrental Driver
oracle.middieware.rues.dema.carrental DriverfLicense.
oracle.middeware.ules.dema. carrental Driver§iehice
oracle.ruls.sche decisionpoint. ActonType
oradle.rus sch2.decsionpaint KeyChain
oradle.ruls.sch.decisionpoint KeyedActionType.
oracle.ruls.sch.decisionpoint Decisionoint
oracle.ruls.sch2 decisionpoint. DecisionPointgulder
oradle.ruls.sch.decisionpoint. DecisionPointInstance.
Javalang.Object

Javalang String

JavamathBiginteger

JavamathBigDecinal

Javautl Calendar

Javaxl datatype XML GregorianCalendar

Description

T R

Design

OEBPS/img/GUID-22024C57-9CB4-48A8-AC6C-AD598F29228F-default.png
A4

Conditions

3 |"Age of Policy Holder" Customer.age

"Number of years
a licensed"

"Year in which Car was.

s made’
“Gender of policy
holder"

© o N

AL

10 Variable

11 Fixed

12 Variable

13 A
[Fred

15 Variable

16 Fixed

17 Fixed

18 Fixed

19 Fixed

20 Fixed

Customer.drivingExperie

nce

CarType.year
Customer.sex

Actions

‘assert new Terms

coverages_en

generalTerms

notes

assert new Policy.
Date

insured
start Date
terms

type
vehicles.

“Teen"

<1

InActive

0
Customer

Terms

CarType

"High Risk Senior"

>260

<2006
"Male"
Active

"Low"

"HIGH RISK"
Active

6
‘Customer

Terms

CarType

“Extremely High
seni

<2006
"Female”
Active
"VERY LOW"

"EXTREMELY HIGH
Active

7
Customer

Terms

CarType

isk

“Normal Risk Senior"

new value

>=2006

Active
"MEDIUM"

“NORMAL RISK"
Active

B
‘Customer

Terms

CarType

OEBPS/img/GUID-5F8C7EF2-2C4F-4D77-BB58-8028B28C09EB-default.gif
Y Rule 1
Senter description>

¥
Clstomarordar Trekem
nsert test>

THEN

insert action>

P
between

OEBPS/img/GUID-AEE0B502-CF43-4DFE-A331-EC5B1365E753-default.png
CarInsuranceRules.rules HFv @B aon-
€9 Rulesets | [5]] Value Sets | @) Gobals & Busiess Phrases | Q Explorer | I\ Facts & Lnks | g Transkations Actions

Decision Functions
Name CalculatePremium

L 3
Description
Rule Fiing Lmit 10000 =

[C] Check ruie flow
E [¥] Make stateless

Inputs | Inital Actions | Outputs | Rulesets Decision Functions |

Tests =]

Name Fact Type
customer &7 Customer
car & cr

polcy & Poicy

OEBPS/img/GUID-C1BF40FB-6F64-4720-923D-54F707C993B4-default.png
TestRules.rules

HeywBae

&P Rukesets [E]] value Sets) Globals & Business Phrases | B3 Tests Q Explorer I\ Facts |4

Decision Functions
{» EvaluateClaim
{ EvaluateClaimAS
{2 ProcessPODisctount
3

{2 Purchase Order AS

Name UpdateCustomerInPolicies
Description

Rule Firing Limit 10000 =
[¥] Check rule flow
[¥] Make stateless

Inputs | Intal Actions Outputs Rulesets Decision Functions

P Links g3, Translations Actions ¥

Tests =]
Name
poicies
customer

Tree List Description
e e
[E2]]

OEBPS/img/GUID-EC91024F-B648-46D9-A0F4-02FA5198A5EA-default.png
Name Payment Type Rule

Description

Priority Medium -
[¥] Advanced Mode

Effective Date Alays (¥

[¥] Active

Tree Mode

OEBPS/img/GUID-1C4243C8-956B-4B80-87F2-C943D6C3D07D-default.png
=¥ AssignPublisher AndComposer,
Zenter descriptian>

3

~ Songartistname == Artistname and

~ Artistgenre == nulland

~ lo = Song.composer.sizeq and

=

v sepsandz

<inserttest> v

THEN @ Value Options

call processsong(so| ® 10
Se Anist
<insert action>

Currentbate
R
BigDecimal
Biginteger
Dauble
Float
Integer
Long

e Short

O ListView () Tree View

OEBPS/img/GUID-28C181BA-35C7-40C2-A2AD-D5B56D0537DA-default.png
4 Notification Settings

G x

Mov Mov
up dow
A 7 Assgn [=] Assignees
a ¥ compete [¥] nitator
a v Ermor [=] owner

Task Status Recipient.

N m

No reminders []

[C] Make notifications secure (exclude detals)
Make notfication actionable
[] send task attachments with email notfications

[] Don't send multiple notifications for the same human
task event

OEBPS/img/GUID-66C8DA83-3576-4115-BD9A-B451DDCE21CC-default.gif
E 2 Rule_t
<enter description>
[7] cvenced e [Tree Mode (7] Rule Active

Effective Date: Always Valid
¥
Orderis 2 Order
dnsert test>
and
total_cast is the sum of kem_x.price where {
tem_xis a OrderfLineltem
dnsert test>
insert pattem>
} <inserttest>

insert pattem>
THEN

<insert action>

[oges

priority:

medum

OEBPS/img/GUID-248F8D08-0730-4298-A33D-B679D75D626C-default.gif
Draingrulesiiies | oradeRuiest s | [Boradeovs [[]Gradesservietiava S

(- DS L BUREE ARkl @ "
Backagelcon-exeny T raness) Show Selected Element Orly
aport
Spwblic class Gradssserviet extends Hecpserviet (
Drivate static final String COMINE TYPE = "text/htul; charsetsvindovs-1252%5
=] public void init{ServletConfig config) throws ServletException {
swer. intt (contig)
¥
public void service (HorpServiethaquest equest,
HecpServletResponse response] throws ServietException,
=] T0Exception {
cesponse. setContentType (CONTIT. T06E)
Printbriter out = response. getUricer (15
out.prinsin("<htai>"
out. printin"<head>< T tle> GradesServlete/ ciple< nead>") I
out.printin("<bods>")
out.printin("<psThe Serviet has reseived a BOST ox GET. This is the reply.c/ps"

Source | Design | History.

out.println("</body></htnl>") ;
out.close(];

OEBPS/img/GUID-FCD9C1A2-8E7A-474D-B6C9-0667908ACEE1-default.png
CarlnsuranceRules.rules

LA AGHE. B At Sh YORL)

® setings
Facts

F Functions

@) clobais

2] vatue sets

& nks

G2 Decsion Functions
@) Transttions
B

Data Explorer

& business Phrases
+ %

@ premium Calcutor

Rule Sets

€ Customer score Ca
© Car score Catcutor
€ Folicy score Calc
€ Demo Rule et

Design)

JroT——

Business Phrases:

Q search

®i+-x

Value

& tcustomer is amale
& (customen) s afemale
& tcustomer) s single

Form

& {customer) is between ages {agel} and {age2} and has driven for atleast {ye... Test Business Phrase

Test Business Phrase
Test Business Phrase
Test Business Phrase

Draft

]DDDDI
@

b . _ hd

Parameters: RAEEE
Name Form Type Value set

@ customer Variable Customer

value:

ficustomery s a minor

Mapping

<inserttest>

customer.age <= Minimum Driving Age

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-17022770-A742-4C68-B636-38580EF96A0A-default.gif
[(UTC-08:00) US Pacific Tme:

ok | cancel |

OEBPS/img/GUID-0A26CC30-4416-40ED-A0DD-BB0743CD2914-default.gif
pplcation Navigetor |) es | Blindexhinl | [BlGradesservietiava | (3] Gradesservietjova [weblogic-applicationasmi | (D))

Grodedpp ~[@ - @ X)) ~
= Projects AR 7-E- <oxml version = '1.0' encoding = 'windows-1252'2>
= - 5 <weblogic-application xulns:xsi="htep: //ww. u3. 0£g/2001 /XMLchena-instance” xsi
=-(0 Application Sources E <listemer>
5 com.example.grades <listener-class>oracle.nds. Lou. veblogic. ULLi fecyelelistenere /listener -class

Bl <istener>
8] radesserviet v e Lo att.snare mebtagie oFAgpLteattonttfecyen
listener -class>oracle. aif. share. veblogic. Listeners. ADFAppLicationlicecycle
ot repetes e i o ¥
(8] ObjectFactory java

- pa B Qirary-res>
package-info Java <library-name>adf.oracle. domain</library-name>
] TestGrade.java - v

Cimplenentation-version>LL.1.1. 1.0 /implenentat ion-version>
&l Testscore.java e
& B3 Resources
& rades.xsd
< GrodingRues.rles
53 Web Content
£ wee-F v
~ Application Resources. </weblogic-application>
23 Connections i
-E3 escrptors
& 03 M
% weblogic-appcaton i
(1 ADF META-IVE

63 ef-confin sl ~A
» Data Controls

1 Recently Opened Files

Library-name>oracle. rule:
Library-res:

Library-nane:

Source

OEBPS/img/GUID-B4D04977-5BFF-412A-8740-CDD2894463E3-default.gif
Edit MAR Deployment Profile Properties.
(8 o)| Dpirectories

AR Options
55 Metadata Fie Groups
5 User Metadata

[et | [peselect Al Customizations

55 HTHL Rook D for Gradss designer
Directories 1 E) GradingRules_graphics.xml

=) HTML Root Dir for ViewCor =[] 00 dlasses
Directories

&[]0 orade
(163 nes
=[]0 publec_himl

1D gadesd

Expand All Nodes Collapse All Hodes

OEBPS/img/GUID-5BEC53A2-ADB5-4B17-A075-4A295E4D303F-default.gif
Conditions RL__R2 __R3

R4 RS R6_R7 __R8__R9

R10_ Ril
€2 Diiver.eye_test

fal

R12

pass dlasses_requred pass fai dlasses_requred
€3 Driver.has_training tue | foke | tue | fase | tue | fabe tus | fake tne | fabe | tus | fake
X Conflict Resolution
- Actions
AL modfy Driver(

elgble:) tue | foke | fake | fase | te | fae tus | tue foke | fabe | tus | fake

OEBPS/img/GUID-18214228-B189-49E0-8EF7-56C777137240-default.gif
NE D

OEBPS/img/GUID-C92E20AA-8D89-418B-9A89-F470EA6079A8-default.png
EdIt RL Fact - ScoreTracker

e eoreTraceer T
‘Qualifier Pattern: [(member i {fact) 2
swpercass [oaem -
Deseripton

g

Broperties: + X
Name Trre Value set ~inital Value _ List Content T Global Alas

score doudle 50 score

@ i in

Type

E Columns To width

Hetp oK. Cancel

OEBPS/img/GUID-9495122B-D6F3-4BF3-8889-281A53F5D019-default.png
LoanApprovalv2 rules

R AGHE - SR YOI €]

® settings @ overview | @ GeneralRules | & versalRutes a

BIf=s Verbal Rules IR
Functions

£ = ¥ VerbalRulel

@) clobals <enter description>

() value sets "

D ks insarttasts

THEN
<insert action>

G2 Decsion Functions
@) Transttions

B

Data Explorer

& business phrases
Ruesas g R

@ us srateoy rutes

© us atford rutes v
D Rulesers

Mode: EDIT Locale: English (United States)

| Design

OEBPS/img/GUID-C0130ABF-4410-458E-8EED-996ABBCAEAD6-default.gif
& Deployment Configuration

Configure and custorize settings Far this deployment

DS
- Metadata Repository

Repository Name: [mdsrsoa

Repository Type;

Partition Name:

Path{INDI Info: jdbefmds{MDS_LocalTxDataSource.

- Shared Metadata Repositories

Namespace Repository Type Partiion Path{INDI Info

OEBPS/img/GUID-371D6FCE-6DA6-44CC-A888-174BBF74A1E0-default.png
TestRules.rules -

19 @ Bk O @

® seuas =
[
B = @
% Funcions 8 v | 68 s o Tems |
@ Globais Result o Passed
vaeses gt Conmens
2 ks [—
@ orcmontuncions Drrences I
@ ransions pE——
e
(@ asmia: o
3] vata Explorer payment
oty Pl
s % nivae
Claim Processing LR &)
® insured Customer
CmtE S
Customer Validation e
@ drivingExperience -
& Rsauaton st
s
cowten
e Terms
covrages: colusom
3 aeneralTerms. |

OEBPS/img/GUID-D2E832FD-365A-47DD-B21F-8B0F82B8A2C3-default.png
& s s

Susiness Prases Q e]

Value Form Draft
Edl

& {customer) is between ages {agel} and {age2} and has driven for atleast {ye... Test Business Phrase

DDDDI

B (cusiomer)is amale TestBusines Prase

2 (customen)is atemale TestBusines Prase

B (cusiomer) s single Test usiness Phrase U

Farameters S X
Name Form e Vaiwe st

value:

fcustomertis aminor)

Mapping

customer.age <= Minimum Driving Age
<inserttest>

OEBPS/img/GUID-47538DD6-3F2A-41A7-8D75-5F6A4DDDF557-default.gif
B Conditions RL Rz RS R¢ RS 3 R7 RS Ra

€L customerOrder creditscore risky avg salid
€2 CustomerOrder.order Low Medum,Hh LowMedum Hoh | LowMedum Hoh

€3 CustomerOrder annualspending >2000 - true fabse true fabse - 5 true fabe
- Actions

[8 | @ | 8 [8 | @ [@ | 8@ | @ | § |
" 3 W [status A | ot A7

Fit Columns To Width

OEBPS/img/GUID-96DB94D3-6EB0-4311-9000-4DE77D12B4E9-default.png
@ overview | P GeneraiRules & Verbal Rules

¥ [JEeron R AV BHRH

2 2 Eigiiny
<emer description>

[Advanced Mode [|Tres Mode [v|Rule Active []Logical Priority: [Medium v

Effective Date:| Abaays Valid

v

al of thefaloving are rue
age = Application age
monthly income = Application morshiy.ncome
pre-bureau risk categary = Strateoy pre-bureau isk category
nstallment unaffordab = Strateqy.pre-bureau ffordabily resut.

ans

any of the folloning are true.
pre-bureau risk category

= RiskCategories DECUNE
netallment unaffordable

OEBPS/img/GUID-A84DF225-E2AB-4A44-8854-D5C41A7B3835-default.png
Auto Additon of bucket has been done in ValueSets’theet-You can find more
nformation n condition cell comment.

OEBPS/img/GUID-84565433-4546-4BC5-A7F9-97363DD50F6C-default.gif
& Application Properties - C:\JDeveloperimywork\GradeApp\GradeApp. jws

(@ =)| Deployment

Applcatian Content O Use Custom Settings Customize Settings,

(© e Applcation setings
Rosource Bundes

e Deployment Profes:

W5 Polcy Store Gradedpp_applicationt (EAR Fi) (Defat) it

‘Auto Generate and Synchronize weblogi-jdbc.xnl Descrptors During Deployment

Securiy Deployment Options
Decide whether to overarie the following securiy obijects they were previously
deployed,
Applcation Polcies
Credentials

Decide whether to migrate the folowing securty objects.
Users and Groups

OEBPS/img/GUID-0670E65C-03CA-48B5-98EE-CE2296C9CB21-default.png
a

B <
Conditions Minor
EURentRulesBase.Drive

rType.age <as

EURentRulesBase.TCas
eEvent.milestoneEvent
.milestonetvent -
EURentRulesBase.Drive
Type.firstName "john"

OEBPS/img/GUID-32482BB5-1B3D-43A9-A61A-B2A6C11A8037-default.png
vOaEaR-

Rulesets Value Sets Globals Explorer | I\ Facts Decision Functions Links | g3, Transiations Actions ~
”»

TestRulesules x CarInsuranceRules.rules x

] =

+" e x" 4 Phrase ¥ Insert Parameter
¢ calculate premium as {percent}% of {threshold} (<)
> add{points} points from car's *
{score}
> add {points} points to =
customer's {score}
> add{points} points to policy’s 4 Parameters 3
Goored { #-x
) EEEERTET S Name Parameter Type Data Type
{percent} %o of {threshold} threshod @ Value double
calculate premium based on percent @ Value double
(o] Smomﬂ&xu)e) {policyScore}. al o] 5
© deduc (pint pont rom 4 Mapping]
| _ X ¥ <
¢ deduct {points} points from
~ | I b

customer's {score}

OEBPS/img/GUID-43EFEE37-322E-413A-991C-D81ECDB67A39-default.png
TestRulesrules x CaseManagementBaseDictionary.rules x ApprovaRuleDemo [1.0] x

vQaa008-

Business Phrases @ Explorer | I\ Facts 4} Decision Functions | | g #% Transations Actions v

&P Rulesets | [E] value Sets @ Globals | &

Alas Name Package Name Prefix Linked Names
DecisonPointDicti.. @ DecisonPointDicti... orack.rules.sdk2.d...

OEBPS/img/GUID-F116CBCD-2D50-495B-94AB-7100A932407E-default.gif
E 2 Rule 1
St descrption>
[Tree Mode

Rule Active,
Effective Date: Always Valid

¥
Orderis 2 Order

dnsert test>
and

For sach case where) {

(for each case where)

there i a case where.
there i no case where

insert pattem>
THEN

<insert sction>

[Cloges

priority:

medum

OEBPS/img/GUID-C312C936-1CEA-476D-80D7-CB8167B0DC69-default.png
LoanApproval rules

YR H@ |

[FIRAYOIE]

® setings

(S Faats

e Funcions

@) clobals

(5] Vatue sets

D uns

G Decsion Functons

@ Transistons

e

(3 osta Explorer

& susiness Phrases
wesas & X

0 Ataraabiy Logic

£ Routing Logic:

@ overview | Generautes | &2 verbalRules

Pre-ReportRisk Category X

> Rule set Properties

tiame: srategy Logic

L)

Stece D [Avys vala] 1 acive

Description

@ Generat utes

A General Rule is used 10 define tests and actions ina
code-styleview.

+/7%@

General Rutes:

A Decision Table displays multple related rules in a single
spreadsheet-style view.

+/x@

Decision Tables:

& Verbat s

A Verbal Rule Is used to define test and actions combining.

Business Phracez

+/7%@

@ Etigibitiy

@ Pre-Report Affordabitiey

invoke Affrdabily KM b assering anew
Afforasbilty Contec and runming he Afforcsbity
logic

[Credit Report Type.

B swaeoy
[Pre-Repor Risk Category
[Application Risk Score

& Reauired Worshly Instatiment

requires Application Risk Score nfialized 10 0

2>

Mode:EDIT. Locale: English (United Sates)

Design|

OEBPS/img/GUID-D9570A47-F47D-4427-AED9-A0B4393BBD7D-default.png
Y Rule_1
<enter description>

¥
CustomerOrder.annualspending > 2000

THEN

modfy Customerorder (value : 'High')

OEBPS/img/GUID-A6238A6C-8B76-4A4B-A116-296A60E8E94A-default.gif
= ¥ Driver Age Rule
Determine F driver i old enaugh to rent.

¥
Rental_application.driver age < 21

THEN

modfy Rental_application (status

OEBPS/img/GUID-6979E4C9-AC6C-4542-BC63-3368A53B66DE-default.png
TestRules.rules CarlnsuranceRules.ules x

&P Rulesets [E]] value Sets 9 Giobals | & Business Phrases

Draft Tests
+XEX@DD>

Test Suites

I Name
B8 caim Evaluation tests
B roTests

B8 Poicy Update Tests

Test Model ol
B caim Evaluation

NoRuleFiredTe:
ZeroDiscount

+XXED
Test Templates
Name
UpdateCustorr T[] camTemplate
UpdateCustor 1 PoTempate

w— T customerpoicyTemplte

Hey@BO0Q8-

W\ Facts = 4 Decison Functions o Links g Transitions

Dedision Function
8 Evaluatecaim
ProcessPODisctount
UpdateCustomerInPolicies

Decision Function
EvaluateCiaim
ProcessPODisctount
UpdateCustomerInPolces

‘Actions v
-1 |-
o B
=M=
=
=
5]

OEBPS/img/GUID-1009A216-45ED-41BD-B13F-E717F026A103-default.gif
- Conditions RL R2 R3
CL Driver.age <
€2 Driver.has_training - true fabe

X Conflct Resolution

- Actions
AL mostfy Driver(o] o] o]
eligblesboolcar)

Select the valuss you want to keep:

value Keep
true]
false]

OEBPS/img/GUID-E99D5240-0716-4D70-A196-7FFEF9ADB6F4-default.gif
Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nflunce the behavar of your business

(General | Advanced

reate Ditionary () Import Dictonary

Specify the name and package for the dictionary that wil be created.

Nome: [OracleRulest

Package: [orderapproval

Profect; | C:IDeveloperlmywork\OrderapprovalApp|OrderApprovallOrderApproval.jpr

Inputs/Outputs: X+ 8
Drection Name. Type
finput Customerorder bt oy customer.comjnsfcu,

[] Expose as Compaste Service

) =

OEBPS/img/GUID-C8E0BC82-2877-492C-9B85-88D70628F113-default.png
| @ Loanapprovalrutes

LA ACHE 5 SR YO @

® setins R
@ o &v\mumm- Y

e ety Locue: gt Wnieasmeo] 4 X #Unsaved Trartatons: 0 (52U s] 17 Qi Transition

esource Bundie Transiations:

UnransuedTex Engih e sttes) Freneh Grance)
D unks @ sePreRepontiskcategory i
Qoectonsuncions || @ Appheston ikcors Apphcation sk score
Shpeanonfnclon | | @ creaeportTyne
Create Resource Bundle
EI“*‘""“’“ @ Requirea Monthly Ins
Tes @ srmegy Locle
) Data Evplorer @ pre-repon [l poputae Transitions
® sy
S|S0 rom Unransied Tex
Riesas X (@D seoyalues O From Anather Lol
Strategy Logic @ reporr
@ strtegy Log @ raect Help ok Cancel
@ Atorasity Logic |) e
© Routing Logic ® vaueor
@ Rt & romue
@ Baendeatesss © eas 4
@ tosing
© msncoce

©
g
E

)

Mode: EDIT Locale: English (Unied States)

Design

OEBPS/img/GUID-78B2003A-4B9F-4ADC-8F2E-1C94891A8FDB-default.png
THEN

S |

oary

modity Score to have score as (valle), 1d as (value), type as (value)
modify Score Tracker 10 have score as (value), d a5 (value), type as (vzlue)

moity Customer to have address as (v2luz), age as {value), children as (value), creditRating as {v2]
moify Carto have category as (v, deprecatedValue as (valuz), make as {value), model as (val
moity Terms to have premium as (valli), remarks as (value) id as (value), carld as {vzlue), custo
modity Policy 1o have colisionCoverage as (valu), comprehensiveCoverage as (value), deductible
modifty Customer's drivingHistary to have DUICanvictions as (v-.i2), accidentsAtFault as fvaluc),
modify Customer's license to have issuedOn as (value), region as (vl , valid as (value)

More options for "modify’

Select List tem to Insert Into TextField/Double Click List ltem to Accept Value

OEBPS/img/GUID-1F956C32-C8F0-420F-A566-58F56E8E286F-default.png
R7

RL Ir2 R3

R4

RS

=4 Gonditions.

rue

190.110)

C1 Existing Customer
C2 Application Risk Score

1100.120)

eococo oo oo I

[speciy Vatue s Dont care (1) [

- Actions

A1 modlty SrategyContext
Pre-Report Risk Category:.

OEBPS/img/GUID-3E41B12A-1FB0-419D-9E5C-E858E87FA7CB-default.png
=Y pule2

Seter dezcription>

G
THEN
ey RequesteaProduct { <t properies)

RequestedProduct
Application
strategy
Affordability
Curreribare

OEBPS/img/GUID-D53157F7-73BB-4C95-8E23-07F408DE436D-default.gif
& Edit WAR Deployment Profile Properties

WAR Options

=5 e Groups

5 Web Files
Contributars
Fiters
) WEB-INFidasses
- Contributars
Fiters
5 WEBTNFib
Contributars
Fiters
Profile Dependencies

- Platform

Websphere 6.x

General

WAR Fie:

Ci\TDeveloper|mywork|GradeApplGradesideploy|gradss.wer

Browse,

Web Applctin's Conest Rook:
(O Use roject’s Jova EE Web Context Root

Gradefpp-Grades-context-root

5) Speciy Java EE Web Context Roat

arsces]

Deployment Clint Maximum Heap Size (in Megabytes) Auto

OEBPS/img/GUID-94AEA6A9-48BD-4D57-A9A3-C8E027C6B1C7-default.png
Tvalue " Alias TAllowedinActions | Description

® otherwise otherwise
@ bue' blue o]

| I R R
@ “orange” orange

OEBPS/img/GUID-7A34AD42-DF59-4B8C-A632-39A75089497D-default.png
TestRules.rules

LA ACHE B 5@ @
© sexings
@ Faas = 8 Test Gase > @
Funcions
& ane oo Terms 3|
(eers Decision gunction: [EvaluateClaim] [unfired Rutes Are Errors
[ElicEs Deseription:
Duins
@ Decision Functlons
@ Tansiions
Bres oo X @ oupus x@
oaaExpore oo [——
@ + % claimDetails : <entervalue> claimDetails enter value>]
Rt Sets. claimid: <enter value> claimid: <ent e —
A S g B
policy Foicy policy Folcs | @ Value Options
@ pofio torcemem A — nioue:| S man
€ Customer vaioaion @ <emervaue> <o g
fnsured Cosons s 2 e
£ Risk Evaluation. address: <entervalue> add @ tolowerCase.
age: <envervalues 3¢ e tolppercaze
drivingExperience : <enter value> driv, e
education: <enter value> edu o trm
e o] e Reviewoerais
name: <entervalue> nam @8 Clamstas
oA XMLOwe fram g 2015-01-05) suroue
fems Terms o]
- —— = |
ited)
oesion
© biconary - TestRulsules Ousview © Treevew
SoKwarings:o Somam — |aosmuror
@susiness Rutes + v -

OEBPS/img/GUID-CCD85108-AA35-4A1D-9A9B-C51E59C38220-default.png
Business Rules - Log
® Dictionary - LoanApprovaiV2 rules

Propeny

Message
&) RUL-05711: The expression cannot be blank.

) RUL-05712: The value "Value" of "expression” cannot be blank. Se...
& RUL-05711: The expression cannot be blank.

&) RUL-05712: The value "Target” of "Action" cannot be blank Select.

Dictionary Object
LoanApprovalv2,us strtegy rules/Test(1]/expression(1]
LoanApprovalv2 s strategy rules/Test(1l/expression(1]
LoanApprovalv2/us strategy rues/Test(Ll/expression(2]
LoanApprovalV2 [Rulesets Rule 1/Action[1]
La V2 RuleetS Rule L/Actioni Ll

Value

Target

o

atteast 1 set

SDK Warnings:

| Messages | Extensions | < business Rules « | GRSOA «|

LostValidation Time: 12:00:08 PM FDT.

OEBPS/img/GUID-A3AA5FA4-9BF6-411F-80BE-917D7DEECA00-default.png
[¥]Erom: | | B [12:38:22/3] [(GNT-08:00) Pitcairn Standard Time ~
B | & [38357) (cur-om 00 Prcam sndaroine 3
Obate OTme @gon

Help o Cancel

OEBPS/img/GUID-4F107A56-7FB2-42C4-B7B2-7B865F586B12-default.png
@ Home Insert Page Layout

Formulas Data Review View | Oracle Business Rules

NI NN

Add Delete Merge split
Rule Rule cell

x A B

Remove | Enable Simple Hide ReadMe
Bucket | Highlighting Mode ~sheet

Decision Table Valueset Preferences

E5 - £

A [

1 |Claim Table_Claim.status _otherwise
2 Bucket Name Yotherwise
3]
Claim
Table_Claim.reviewDetails _otherwise
5 |Bucket Name otherwise
~ dam 3
Table_Claim. policy.terms. ge
neralTerms otherwise
Bucket Name. otherwise

CustomerTable_Customer.ag}
e <18
Bucket Name. Yas

CustomerTable_Customer.drT}
vingExperience <
Bucket Name. Y
CustomerTable_CarType.yea’

' <2006
Bucket Name. <2006

CustomerTable_Customer.se™
x otherwise
Bucket Name. otherwise

[BRRBle 8|88 |88 |RIE|E Je|=|~

"Closed” "paid” "Processing Payment’ | "Pr
“Closed” "paid” "Processing Payment’ "Pr
"PursuantToTerms” "PolicyEffective”

"PursuantToTerms” "PolicyEffective” 1

>=2006
>22006
"Male" "Female”
"Male" "Female”

M 4 » » ReadMe A ValueSets ~ Claim Table ~ CustomerTable %2

OEBPS/img/GUID-571844D7-F654-49F8-B10A-5406DFECD9EB-default.gif
radngRules.res
viDEE B0
& Fas

i Functions

() Globais
2 buckersers B

& Links

Q2 Decision Functions

S Conditions
CL Testscore testScore

@, Transttions
Rulesets + X
© Ruteser

A

radeiro)

jonTable 1 <erter description>

X aviHHTRAQTER
RL R2 R3 Re RS
£ o < 5 A

TestGrade.grade.
Grades
Grade.
Grade.C
Grade.D
Grade.F

Design

OEBPS/img/GUID-9DC661E8-9345-42FB-B370-1E9ADD003313-default.png
e deg e

= Oracle Service Bus

Runtime audit rail

OEBPS/img/GUID-292E47C2-F73C-4DC4-A1C3-1D53A8B1A242-default.png
LA ACEE B 2 IR YORE.]

% Export To Excel,

® settings
[1mport From excel.

) Earre 1

OEBPS/img/GUID-750FDA2E-4C49-48D3-9037-55608B258859-default.png
OA Co!

TestRules.rules

&P Rulesets [E]] value Sets 9 Giobals | & Business Phrases

Test Model

Test Model B
B Ciaim Evaluation
BasicTest

EvalCaimTest,

EvalCalimTest! =

B PO Tests

NoRuleFiredTe
ZeroDiscountT—
FivePercentDis
Invaldpurchas
MultpleResults1
ZeroDiscountT
icy Update Tes~
<[»

,BEEEEE

Draft Tests
+RXEE@ DT>

Test Suites
Name

| Mfcaim Evaluation te

SRS LWl Publish | Discard | Exit Sesson

Hv@Bao8-

Q Explorer I\ Facts = 4 Decison Functions o Links g Transtions Actions ~

Description Decision Function

<

X HEET

Test Templates
Name
1 camTemplate

I v

Description Decision Function

EvaluateCaim v -

<

Diagnostics History Center Savelog Valdation Log

m v

OEBPS/img/GUID-DFEA41C0-CADD-4752-88FD-AB2537CDCD03-default.png
Edit XMLFact - com.oracle.xmins.bpm.bpmobject.demo.customerbo, CustomerBOType.

x

tome [com oraclesmins bom bpmobiect demo customerbo Customer0Type

A [Customed

Qe e e e

superciss: [object

UL el

XML Name: (115 complexType[@name="Customer&0Type']
Generstea rom: Sehems/Customerso a
] support Pt Assertion
Descrpion:
L=
Atributes
propertes <]
Aiss Vible Mame Type VeleSe UstComemType | Description | GlobalAlns
@ sgress [0 s swng N
n age @ e m
@ igen @ ceren
crediRat., [Z] crediiaing Credifat . reduRatingT. |
(41 B Columns To Widtn
Atrbute Descrpton
L=
ok cancel

Hetp

OEBPS/img/GUID-7D98D038-94BF-4270-8CA3-02D21213743E-default.png
CarinsuranceRules.rules

LA RS 5 3 SR YORL

© setings e
S nas
£ Functons P~
Q@ s i Descripiion
=) Value sets [string —[java lang Strn Immutable character stin
g BlgDecimal JavamaIhBGDECMa Immutable arbiray-precsion igned deciml numbers.
(& Piinteger _javamathBiginteger Immutabi arirary-preciion negers.
CCBITRTELD (& Double javalang.Double A Double objec. Unlikethe primiie “double,a Double can be null an can be i Liss.
@) Transtations & Fox JavalangFlost A Float objzct. Unlike the primitive float’, & Flozt can be null and can be in Lists
B (8 imeger javalanginteger Animeger objec, Unik th primithve ", an nege can be null an can be i Lists
(@ tong jwalnglong Along megerabjec, Unik th primitie long’, Long can be nulland ca be n st
(8 Short javalangshort A shortnteger obect. Unilke he primitiv shart’ a Short can be nulland ca be n ists,
& business Phrases (@ Mumber javalangNumber Base class of al numerics (except primitives).
muksas 4 % | || Coendar JaveuCaendar A Caendar represents a dateime and tmezone, A clendar instance hs 3 number of mutsbie i il
(8 XMLGrego.. javax.xmidatatype.. Representation for WAC XL Schema L0 dte/time dataypes
@ Premium CHROr || [uiouie e ruee e Helpar cla o working ot Clendas o st abjcts Teesing Calendars s i mutabi i
£ Customer score Ca. (3 XMLDate orace rulesexte.. Helper lass forworking vith XHLGregoranCaiendars as immutable objects, Treating calendars as |
@ Carscore Catcutor | || B OraceDateoracerules. sl Helper class forworking withoracle oo doman Tinestamp. For examples of method use e lfe-na
(8 LDt ava xmLdatatype.. I mutabi epresenation of & e 5pan as deined nthe WAC XML Schema 1.0 specfication. Only d
9 ol score Cac.. (50 Dursion oracie s sdkd . Hepercas or comparing nd suracing dates. Can convert hediference of 2 dtesinta 50
9 Demo Rute st (8 CurrenDate oracerules.exte.. Factpe of 3 holdarfr th curret dae. Can b used n rule patems.
@ s & Jveuritist Represents mutable snd immutabie 15, st use 0-based indexes. Atempts to modiy an mmurabl
(8 Oblect javalang.Object Base clas ofa jva objects.
(2 oracleus.iexte.. Suppiement standard jva casses wih WAC RIF functionaiy.
@ieacts | (Ewarars | B aLFaas | § ADF-BCFas

OEBPS/img/GUID-8240EACB-72E8-458D-8B6E-EB51CD358491-default.gif
52 Rule?
<enter description>

Rule active [Logial Briorty: [medum

Effective Date: Always Valid

ROOT:PO
¥

PO aFO

dnsert test>
and

POdestination s 3 POjdestination and

dnsert test>
and

POjdsstinationfitenis 3 POJdestinationjitem and
Durstion.days betwesn(PO header.orderDate, POjdestinstionjtem. avalabityDate) > 30

dnsert test>

insert pattem>
THEN

modfy POjdsstinationjiter (<add property» status : "canceled)

<insert action>

OEBPS/img/GUID-225A7957-0316-4216-BC1A-1BF3068A5F18-default.png
LA RCAGES B 3 NE YORL]

® setiings ¥ 2, 63 Pre-Report Risk Category
Draas
P Applcaioni s Appicaton and
e Existing Customer = Epplcation sxisingCustomefand
otz
® StrategyCortextiz 3 [spoication xistingCustomer | B
Value sets icaton Riskcscor|
Application RIEKSEr| Qe oprions H
2 unks HIGH = RSkCateaord) o Susagycontext
@ Dectsion Functions MED = RiskCategorie| 5 = Applicaion
= RiskCaregorie o emal
@ Transiaions LoW = RiskCarea b4
REECT = RiskCategol @ nane
Wres <inserttest> e age
() Dara xplorer o emomentn:
o existingCustomer. . o o .
& Business Prrases -0 mantalstatus + R av@l) iR «KIEE-S
x| P i ne " s I3

£ Routing Logic

4 swategy Logic
 Afforaaily Logic

€1 Existing Customer
c2 Application Risk scol

Product
AfforaabiltyContext
AL

RLFaci1

RoutingContext

O litview © Tree view
[constam

180.90)

1s0.110)

- Actigns

A1 modity StrategyContext

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-F03DE989-D105-419B-8067-AFC903E00713-default.png
Loanapprovalv2.rules

LA AGHE. B At Sh YORL) @
® settings @ overvien | & GeneralRules | & VerbalRules | {

[Faats ¥ []Eheron +XR Aav BREO

e Functions

= Rure 1
@) Clobals Zenter description>

() value sets "
2 s <inserttest>

Q@ Decision Functions ||| THEN

@) Transiations <insert sction>

B

Data Explorer

& business phrases
Ruesas g R
@ us stategy rutes
© us atford rutes

| ruesers

Mode: EDIT Locale: English (United States)

| Design

OEBPS/img/GUID-15BF19D7-2865-4E7F-8BF1-71AC60CBA53D-default.gif
Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behavior of your business

(General | Advanced

reste Ditionary () Iport Dictonary

Specify the name and package for the dictionary that wil be created.

Hame: | OracleRules1|

package: [orderapproval

Profect: | C:1Developerlmywork\OrderapprovalApp|OrderApprovallOrderApproval.jpr

InputsjOutputs: Xt

Direction Name Type

P T

OEBPS/img/GUID-195F879C-9375-4778-BA3D-083D49DD6DF1-default.gif
{@lapplication Navigator () [Eloradeapp.jws | 2 orades.xsd]

B V& [av e B o @
= Projcs @ @ Vv B s
2[5 Grades Ruleset_t ¥ [JEiteron tiew X BHBRAv
= {3 Resources. f« Functions
- grodes.xsd .
Mad? GradingRules.rules :l/ ;(msets To create a Rule or Decision Table, please click the plus sign above.
Viewcontroler D ks

[ecison Functons.
Rulesets dk %

% Ruleset_1

1 Applcaton Resources

1 Data Controls

1 Recently Opened Fes «
Desian

radingRules. s - | (2] Elpusiness Rule validetion - Log

Dictonary - GradngRules.ules isplay New Warrings First

+/% Message Dictionary Object o
RUL-0163: TheFacttype "TestScore” is not used n any et caled by... GradingRues{Data ModelDecison Function(Dec
he 4 feset caledlby.. GradngRuk el
) RUL-DS164: The Fact type "TestGrads" is referenced, but is not asserted ... GradingRules/Data ModeljDecision Function(Deci,

[Dictionary - GradingRules. rules.

Facts

Functions
Giobals

Bucketsets
Links
Decison Functions

[Rulesets SDK Warnings: 2 Last Valdation Tine: 10:15:47 AM PDT

Messages | Fesdback | Business Ruls Valdation @

OEBPS/img/GUID-0C988DCC-802C-40F8-9699-B1C04B4EE2B5-default.gif
SOA Resource B

(& Application

ProjectLinr
Projectzor

@ nemizeckare utes
- OracisRules1.rules

or

o e

OEBPS/img/GUID-2FD99695-2617-4A79-819C-67F3267BF9B1-default.png
No Late Payment 2

¥
XD R

Summary isa Credit Report Summary and

4 there is no case where
Detal fsa Credt Report Detail and
Detall.Type is "LATE_PAYMENT" and
DetallMonths more than 1

THEN

+

X OO M-

modfy ~ Summary

(Score:summary.Score + 50) B2

OEBPS/img/GUID-E8F15EFE-0990-48F5-9580-66936FB2E92B-default.png
¥ [JEiteron *R A2V BRHB

54 muer
Samer description>

[Advancedbode [2]reeMode [4]Rule Actve [Logical Eioiy: edum <]

Effective Date:| Abaays Valid

ROOT: <ract ype>
It

5 RLfaat
StraeayCornext

THEN | RautingContext

<inse| ArfordabiliyContext

Product
Application

CreditReport
Currenbare

OEBPS/img/GUID-78466D3C-DD75-47B4-B9AF-21317DECAF8B-default.png
@overview | P General Rules

‘ ¥ [JEieron

X 2 BBEO |

5% Ruex

Sermer description>

"

Customerage ==
<inserttest>
THEN
<insert action>

z

|-
Q vaue Options
e null
Customer
w
Terme
oy
ar
Clum
o Record
nsurance Hisory
Fas Cam Ino
Quore
Acdgant
Nextd
sapecimal
sgeger
Double
OListview © Tree view

[gonstam

-

68 88588

e

P

Mode: EDIT Locale: English (United States)

OEBPS/img/GUID-C52BA752-9DEA-467E-BA9A-0F9F5D09EF27-default.gif
= ¥ Frequent Fiyer Rule
Calclete mils status

¥
Frequent_Flyer.total_miles > 100000

THEN

modfy Frequent_Flyer (status : "GOLD")

OEBPS/img/GUID-BC74AE55-2954-4628-80FE-A2E362C7DEA0-default.png
Conditions
EURentRulesBase.Drive
rType.age <18
EURentRulesBase.TCas
eEvent.milestoneEvent
.milestoneEvent -

OEBPS/img/GUID-A84A7400-1357-4A44-B50F-F835A348069A-default.png
TestRules.rules x HEvaaaom-

&P Rukesets [E]] value Sets) Globals & Business Phrases | B3 Tests Q Explorer I\ Facts |4 o Links g3 Transiations Actions ¥
Decision Functions i
Name UpdateCustomerInPolicies
{» EvaluateClaim 'y
{ EvaluateClaimAS Description
2 ProcessPODisctount Rule Firing Lmtt 10000 =

i

Q2 Purchase Order AS 7] Make stateless
E Inputs Initial Actions ~ Outputs Rulesets Decision Functions
Tests Policy Update Tests % =
Name Fact Type Tree List Description’
policies &) Poicy]]
customer & customer 5]]

Diagnostics History Center ~ Savelog Vaidation Log

OEBPS/img/GUID-CA10FCE4-1A61-4BA2-8BAC-36F052A25006-default.png
ApprovalRules.rules x

@ Rlesets [vaueses [

+ X

|
a

Name.
@) Approvaihreshold1.
(x) Resuit
(%) Giobal 1

HvQHaorR

& BusnessPhvases [Tests @ Bxlorer I\ Facts @) Decson Functions o Links 3 Transations actons
Descrpton Valve Value et Type
50 Thveshoid Bove which approval ne I 1002 B & ol
Orcertpproval

Fesiteffues xression ok modried

Newvalue 1002
Oldvalue 1000

OEBPS/img/GUID-7BE7F1CE-E010-4484-AE45-C1037C67BB6C-default.png
Preferences
Preferences

Language

@)

Accessbity

@

Business Rules

Accessibility Preferences
Mode Settings No Preference =
Contrast Settings No Preference =

Font Settings No Preference [

OEBPS/img/GUID-AACF4BBD-93D3-4FC7-812F-48A7F96016A9-default.png
ApprovalRules.rules Hv@B o8-

Y [EJ Value Sets @@ Gobals | & Business Phrases B Tests | @ Explorer » [Actons !
b Setuprules ~ 55 o ¢ Setup such as determining custom T off verge
38 mport From Excel
Rules N 5 N | Export To Excel
7 ByType = TreatAsPlatinum 5 ms'fd“?‘ portTo
- R K- customers {55 pictonary Settings
¢
P TreatAsPlatinum - @
(©EI L2 SELTED AN AR ‘ CustomerOrder 5a CustomerOrder and
@ mitialize 1 the folowing test s true

Initialization Rule - Runs be...more CustomerOrder.vipStatus is VipStatusType.GOLD

CustomerOrder.vipStatus s VipStatusType.SILVER
and

Diagnostics History Center Savelog Validation Log

OEBPS/img/GUID-E1BA4578-7139-485E-9F14-4EBD17FF7777-default.png
¥ [JEieron +X v BRER |

=5 puer
e
[Advnceapase [Treevoe (7 RueAcwe [Logica erory: ieam fv]

Effective Date:| Abaays Valid

ROOT: RLFactl

"
[Corrembaedne == ez |

Curersose e o
| Q vatue opions

o st
28 CurrenDate

= tme
o tmeminis
@ explict

o SirategyContext
-2 RoutingContext
o AffordabiliyContext
e Product

-2 Application

e CreditReport U
Mode: EDIT Locale: English (United Sates)

Last Validation Time: 1:27:43 PM POT

O ListView () Tree View

OEBPS/img/GUID-EEB33097-C8BC-4F40-869D-B05D527B561A-default.png
I

CustomerOrder sa Customerorder[v] and o R - $ M|+ &~
B X OB
the following test is true

CustomerOrder.vipStatus s VipStatusType.GOLD or
CustomerOrder.vipStatus s VipStatusType.SILVER

and

CustomerOrder.creditScore same or more than 750 and

the folowing test is true
CustomerOrder.annualSpending - same or more than 10000 and
CustomerOrder.totalamount s 4000

and
sa Fl #XeOR@
RO R @

Add Test

OEBPS/img/GUID-C78E3E14-56AC-4657-828C-B5A3F8DA70D6-default.png
Conflict Resolution

Below are the rules that confict with rule RS and the confict resolution methods
to resolve possble confict occurrences. To change the resolution method, please

ciick the Resolution column and select the method you would ke to use to
resolve the conflit.

Rule: RS

Confictng Rl Resolution

R2 Confict =l
R4 override [¥]

No Confiict
Override
Overridden By
Run Before
Run After

[0k | Goneel |

OEBPS/img/GUID-0523BDF1-67AD-4524-A8F0-AD53729ED03B-default.png
CarinsuranceRules.rules

LASRTACEE B 2SR YORL] @

® settings
o (5] vaweses
£ Functions Value sets: n *F/ x|
@) Clobals Name. Datatype Form Description | () Value sn
S vatoe e) CaregoryType Caegory enum Bange value set
S5 miskcussificationType RiskClassification Enum
@ tins 5) variasatusType Wariastatus Enum
@ Decision Functions. 1) CreditRatingType Credithating Enum
@ Transnions) cencer sing Lov
o Z) score Type String Lov
R—
& Business Phrases
eses %

€ premium Calcutor
@ Customer score Ca.
€ carscore Catcuator
€ Polly Score Calc..
€ Demo Rule set

£ Rusers

OEBPS/img/GUID-FA8DFA27-30BA-4AC3-9729-EDD0EC9BF792-default.png
@ ouervien | P GeneralRules | &7 verbal Rules
X av BRRBE

¥ Dlgieron

5 % cigiitey
) Advancedtiods [JTreeMode (2] RuleActve [Logica 8iory: zaum]
Effective Date: Always Valid

3
Strateqy is a Strateqy

and

Application is 3 Applcation and
Al of the folowing are true
age = Application age
monthy income = Application monthly income
trategy pre-bureay risk category

pre-bureau risk categary
installment unaffordable = Iirategy pre-bureau afordabily resul

and
any of the following are true

OEBPS/img/GUID-5CA6A175-F829-4D06-9F09-628391D667D7-default.png
:j Home Insert Pagelajout Formuas Data Rev View

BEHEHE X A B

Add Delete Merge splt | Add Remove Enable Simple Hide ReadMe

Rule Rule Cell | Bucket Bucket | Highlighting Mode Sheet
Decision Table ValueSet Preferences
G3 -~ £e| <18
A [0 [c [o 3 [F [T—
1
“Extremely High Risk
2 Conditions "Teen" "High Risk Senior" " ""Normal Risk Senior" RS
e — - wose s :
"Number of years Customer.drivingExperie
a licensed” nce - - - - ?
"Year in which Car was
B made” CarType.year - <2006 <2006 »=2006 ?
"Gender of policy

6 holder" Customer.sex - "Male" "Female” - ?

7

8 Actions

9 Al asertnewTerms Inactive Active Active Active InActive
10 Variable coverages_en "Low" "VERY LOW" "MEDIUM"

11 Fixed generalTerms

12 Variable nnotes "HIGH RISK" "EXTREMELY HIGH ""NORMAL RISK"

13 n assert new Policy InActive Active Active Active InActive
14 Fixed end Date

15 Variable id o 6 7 8 o

16 Fixed insured Customer Customer Customer Customer Customer
17 Fixed start Date

18 Fixed terms Terms Terms Terms Terms Terms

19 Fixed type

20 |Fixed vehicles CarType CarType CarType CarType CarType
gy
Z
=]
Z
=)
25

M 4 » M| ReadMe -~ ValueSets - Claim Table | CustomerTable ~¥2 A7 ey

OEBPS/img/GUID-23CC8D4C-A3F3-417E-9529-4A77461F4F73-default.gif
Narme your application

B0101:
~oF application Name:
pplicationhiane) OrderApprovalApp.
potect ame
Directory:
Y GRS C:\IDeveloper|myworkiOrderapprovalipp. Browse.
Aoplcation Package Prei
com,exanple.crder
Applcaton Template
3ava Desktop Applction (ADF) f

Crestes a datbound rich client appication. The appication consiss of one project
for the clent (ADF Swing), and ancther project for the ADF Model (ADF Business
Components).

Java EE Web Application

Creates a databound web agplication, The application consists o one project for the.
view and controller components (15F), and another project for the data model (£38
session beans and JPA entites).

5] 508 applcation
Creses .50 (ervie-ariented archtactre)splcato, The apliation consts of
e SOA o o the SOR composte, companents, and scaptrs

OEBPS/img/GUID-A857E46A-1DD6-4472-ACC4-49B2F90AE229-default.png
EdIt RL Fact - ScoreTracker

e [Seore Tracher 3
‘Qualifier Pattern: [(member i {fact) 2
SwperCiass (o =)
Description
Broperties: + X
Name Trpe Valug Setinfia Value ~ List Contey Global Al
score doupte £ score
== —]
= o Swing ScoreType A
lRLrun)
Lot strateayotengino
R rum i nato
L ruteset stack papO tengtno
gt firng rule ran0 engtho
R IEID [BigDecimal ROUND_UP
fioDecimatrounD_oowN e e

Help

OEBPS/img/GUID-ADCDD831-7968-4C13-8A8F-059E1A0EB66C-default.png
- Conditions RL R2 R3 R4 RS RE LY
€1 Bristing Customer. true
C2 Appiication Risk Score <100 {100.120) >120 80.90) (50.110) >110

T A O S S R

- Actigns
A1 modty SrategyContext

Pre-Repor Risk Category # HcH e Low REECT H =3 Low

OEBPS/img/GUID-229B636C-6540-4CFD-961E-800F50427D3E-default.png
&P Rulesets [E] value sets | [§@) & Business Phrases @ Explorer I\ Facts | 4} Decison Functions = o Links g Transtions Actions ¥

Description Value Set Type
e —
500.00 double
Normal Threshold 1000.00 double
Higher Threshold 1500.00 double
(x) Today RL.date.get current() Calendar
(X) Median Customer Score 50.00 double
(X) Median Car score 50.00 double
(X) Median Policy Score 50.00 double

(x) Low RiskClassificationType.LOW RiskClassfficationType RiskClassffication

OEBPS/img/GUID-1327F115-259C-40A0-A39E-6C3F9AD02335-default.gif
[ElBusiness Rule Vali

idation - Log

Dictonary - OracleRulest rules

(8]

isplay New Warrings First

Message
RUL-0S164:
RUL-0S835:
RUL-0S835:
RUL-0S835:
RUL-0S838:
RUL-0S164:

L

The Fact type "OrderApproval’ i referenced, but i not asserted nor nput
Allrules have "da not care” set for condtian

LstomerOrder. credtScore”.

Allrules have "da not care” set for candition "CustomerOrder order'. Select.
Allruls have "da nat care” set o candition "CustomerOrder.annualspend.

The decisian table has no actions
The Fact type "OrderApproval’ i referenced, but i not asserted nor input

Dictonary Object
OracleRules1Data ModeljDecision
OracleRulestRuleset_tDecisonT.
OracleRulestRuleset_tDecisonT.
OracleRulestRulset_tDecisonT.
OracleRulestjRuleset_i[Decison T
OracleRulestData ModeljDecision

2

SDK Warnings: &
Messages | BPEL

N

Business Rule Validation

Last Valdation Tine: 3:19:17 PMPDT

[DDS)

OEBPS/img/GUID-CA800B72-B2B7-43E7-98A5-0E243B54A957-default.gif
ywork{Order#ppravalagplOrderapprovaladiorder xad | (4

Copy toProject

o =]

OEBPS/img/GUID-AD472854-CC54-49F2-A554-CE331705F038-default.png
Create Business Rules.

Business Rule
A business rule defines or constrains one aspect of your business that is intended to assert
business structure or influence the behavior of your business.

Advanced

@ Create Dictionary O Import Dictionary

Speciy the name and package for the dictionary that will be created.

Name: [OracieRuiesT]

Package: [msurancequoteproject]

ralect: [/ihayne/projects/InsuranceQuoteA pp)/ nsuranceQuatePraject/nsuranceQuoteFrajectjr|

Inputs/Outputs +-Rav
Direction Name Tyne

[0 Expose as Composite Service

Help o Cancel

OEBPS/img/GUID-5BADD87F-4542-4856-A912-AACB0A771AB1-default.gif
= ¥ Loan Income Rule
Loan minimum income

¥
‘Applcation_losn.income < 10000

THEN

modfy Applcation_loan (deny : trus)

OEBPS/img/GUID-1FD8951D-6372-4701-9E98-0DC8EBDA2D6D-default.png
PEIE XN Y SR YOIE @

D (x) Globals
Facts
i Functions. lobats: W+ R
|) Grovats Name Type Value Value et Descrption
@) Minimum DrivingAge int 1
Ofregs @) Lover Thresnola douie s0000
Dinis @) NormaiTreshold double 100000
@ Decision Functions @) Higher Threshold double 150000
&) Tods Catendar RLdate.get current).
@) Transiatons @) wedian Customer score doue s0.00
& Test @) Median Car Score double 50,00
D (@) Median Policy Scors _ doudle 5000
& business Phrases @) Maximum Medical Cover... double 10000000
Rueses 4 X @) Mavinum Usbity Cover. double 10000000

€ premium Calcuttor
@ Customer score Ca.
€ carscore Catcuator
€9 policy Score Calc
€ Demo Rule set

£ Rusers

OEBPS/img/GUID-F4763E90-9767-4DD2-B364-F5464E4E2B47-default.gif
52 free shipping

Senker description>
dvanced tode

Effective Date: | Always Valid

ROOT: <fact type>
¥

<varisble> s a gfact path
dnsert test>
insert patterm>
THEN

<nsert action>

Rule Active,

[Joges

priority:

medum

OEBPS/img/GUID-8083C6D8-2B7A-4AC8-883D-2AB200A8FD35-default.png
Edit java Fact - java.util.Calendar’

Chass: v,]
At [Cuenar 3
Quatte partern: 3

super sz [object]
Ot

Deseription
A Caltnar reprezent 3 dstatme and fmeone. & calandar inetance s & namber o mitabl i e T frst srument 1 30, 2
et 15561 rall an 56 1 e number. T i provides A number o StaC ropertes tht Soui b used fr th fild

umbers

Attributes
[roperties -
Rias Visible Name Type Valueset | List Content Tyj Description _ Global Alias
firsDayOtWeek [firstDsyOfeek int 4

tenient O tenient boolean boolean
minimaaysin.. [] minmaiDaysinfi,
time @ time java il Date Returns a Date
timelnbilis @ tmeinui jong Returns this C.
@ timezone O timezone java il TimeZ.
Et Columns To Width
Atiribute Description:
L=
tielp o Cancel

OEBPS/img/GUID-4B377654-D2E4-42B1-8A83-49D9CADB963A-default.gif
e comcustormer s customerorder CustomerOrder

alas: Customerorder
Super Class:[Object

Description

XL Name; x5 element{@name="CustomerOrder’]

Generated From: [order xsd

wisble

[support et Assetion

Attributes

Prperees

s Veble fiame Trpe Sudketset Lot Corkent Type
@ smustspendng anmudspending doutle
@ wedtscore aedeszore ks

OEBPS/img/GUID-3F6F897C-9BC3-454C-AF3A-B9ECDD602D30-default.gif
Conditions
Driver.age
Driver.eye_test
Driver.has_training

Actions
modfy Driver(
elgble:)

R1

dlasses_requred

true

true

pass

R2

fa

R4

fabe fabe

fabe

fabe

RS

true

true

[3

fake

fabe

R7

true

true

pass

RE

fabe

true

RIO
0
fal
tue | fae
fake | fale

RIL

RIZ

dlasses_requred

true

true

fake

fabe

OEBPS/img/GUID-5041F001-5282-446D-B490-C54D17ACE07C-default.png
AR B e YOIL] @

® settings 2
&

D vinks
Facts

{3 B Links. @/ x@|

@) clonis Aias Name Packae Name P Q Resource pcker
E) Value sets ® Sstandalone Dictionary.
oo | & Composie Dctomry Decsion Point Dictonary

D ks
Q2 Decision Functions
@) Transiations
B

Data Explorer

& business phrases
Rute sets + %
€ Fremium Calcuistor

@ customer score ca
IR
[5[S] 4

Mode: EDIT Locale: English (United States)

Design)

OEBPS/img/GUID-779DF8BC-A5A0-47CD-9461-9C44A0AE13FE-default.png
CarlnsuranceRules.rules

LA RS 5 3 SR YORL

® sevings
facs

f functons Breas YA
(D)Emrs e Super sz Oescription

) vaue sets) Fravaaten Object

) score Tracker Onyect

i
2 T Ty

@ Decision Functions
@) Transiatons
e
Dma Explrer
& business Phrases
Rule sets + %
€ premium Calcuttor
@ Customer score Ca.
€ carscore Catcuator
€ PolcyScore Cat
€ Demo Rule set
£ Rusers

C@oiras | Bwaras | [ks | B ADEICES

OEBPS/img/GUID-3206F83F-FB77-45D3-A25B-54838CDA2FCA-default.gif
Action Editor

Form: [Modity]

Valve: Modfy Result
Target: Customerorder

\currentpate
Name. [Type Constant__|]|
|
ldiscount double [m]
Arguments: [status StatusType o
surcharge double [m]

Aays Selected: [7]

ok cancel |

OEBPS/img/GUID-DA67F7C8-C171-4C77-9CA6-6E3387F9D36E-default.png
Q

Categories: Items:] Show Al Descriptions
OEPFIlES A
servie Bus ier BPEL 2.0 Subprocess
- services 2 BPEL Process
Interfaces
- Transformations P Business Rules
Securiy Opens the Create Business Rules dialog, which allows you to define a
Uiy dictionary of business rules based on the Oracle business rules engine. To
System enable ths option, you must select 2 project or ile wthin a project n the
Application Navigster.
5 -5S0A Tier
Fauts # Event Definiion
Imterfaces

€

Transformations Translations =
Web Tier
HTML
IsE
ISF/Facelets
e
Servlets
Alltems

Help

& Human Task
< Medistor
off 50 Composite

8 Spring Context

ok

Cancel

OEBPS/img/GUID-90CC167A-5A62-4D1A-9055-017DD866EA5B-default.png
B Y Rule1
<enter description>
"
the folowing tests are true
ane

he following tests are true

THEN

OEBPS/img/GUID-ED0B434D-00ED-4BAD-883A-0DF69C9AB7A1-default.gif
E 2 Rule 1
Senter description>
[7] cvenced e [Tree Mode (7] Rule Active

Effective Date: Always Valid
¥
o_order s a Order

and

total_cast is the sum of kem_x.price where {
tem_xis a OrderfLineltem
and
o1 is a Orderéineltem and

ot color

}and total_cost 1= o_order.total
THEN

modfy o_order tota : total_cost)

[oges

priority:

medum

OEBPS/img/GUID-0CFE1683-22B3-4C21-A7CE-FD547159704B-default.gif
& Application Properties - C:\JDeveloper\mywork\GradeApp\GradeApp. jws

=)| Deployment

Applcatian Content O Use Custom Settings Customize Settings,

(© e Applcation setings
Rosource Bundes

e Deployment Profes:

e Gradefpp,_applcationt (EAR Fie) (Defaul) et
[l metadatat (4R Fie)

‘Auto Generate and Synchronize weblogi-jdbc.xnl Descrptors During Deployment

Securiy Deployment Options
Decide whether to overarie the following securiy obijects they were previously
deployed,
Applcation Polcies
Credentials

Decide whether to migrate the folowing securty objects.
Users and Groups

OEBPS/img/GUID-C2CAA223-6710-4298-B69F-01FD9F3F3BBE-default.png
D) crome 0 rcon W e T

Your ne eoect strts it a defut pacdage, a scrceroo drectory, andan it
drecory.

DefaitPadge:

Nsumm:
QuptDrectony:
-\ evsope\mpork Chapte 10/Chapte 10 dasaes onge..

" >

o <ask o> e concel

OEBPS/img/GUID-AD4C7F39-0BF0-4A94-896B-D974CE3AED3E-default.gif
S Conditions R Rz R3 R4
€L Driver.has_training true fake

€2 Driver.age

X Conflict Resolution

- Actions
AL modfy Driver(“ o] o] o]

elgble: o0/ true true false true

9]t Cotumns To width

OEBPS/img/GUID-BB968C3C-2CE6-4957-BB07-25FED1C51C46-default.gif
Test Grade Example Serviet - Mozilla Firefox
Ele Edt Vew Hstory Bookmarks Ioos Help

@ . C Zar [L/ hitp:ffmyserver example.com:7001| sradesfindex.html 7~

0ot isted [Avin [Overvio (Ora ..) Account Reuest) v Tkes]y crade [ReworkReguest

v | Q) search ~ § AriaSearch - ¥ Bugld

Mame:

Test Score:

OEBPS/img/GUID-32D37C37-4610-486A-80C0-0C929C3F6762-default.png
Execution
Rule Execution Algorithm ~ RETE [

Choices
Phrase Suggestions
(© Business Phrases
© Auto Suggestions
Qn

Include Chained Expressons

Data Model
Global Quaifier Pattern {member} of {fact}

T

OEBPS/img/GUID-9776EDF7-08CD-4937-ABE2-6F25BA3AC3CE-default.gif
=Y Rule 1
Senter description>

¥

Customerorder inektem.sku in 12345 , 43255 , [FZEEEIT] <isert>

dnsert test>

el
WLl Q vaus options
<insart scin> & Customerorder
= Inekem
= snmustspending
Unetem sk

CurentDate. dete melnbils
RL

BigDecimal

Calendar

LstView (@) Tree view

[Constant] Customigable

OEBPS/img/GUID-A63936E5-A647-4B40-9664-3C01F35BDB73-default.png
CarinsuranceRules.rules

LN ACEE | e

SR YOI

® sering:
s

E"“
f functons Y VAT
6 Globais s TName. TEvisiie XML Name Cenerateafrom Description
(5] vatvesets @ ar com.oraciexmins, 715 compiexTypel . Schemas/Cart0 4
s @ cutegory comoracexmins o i smpleTypet@n...chemas/Carto xsa

(8) RiskClassifcaton <o oraciemins.. a i smpleTypet@n.. chemas/Carto xsa
CCBITRTELD Terms com orscexmine b @ 1 complexTypel... Schemss/Termsgo,
@ Transiaions @) poliey <om.oracie xmins.b, J/v5:complexType... Schemas/Policyb0.x.
e Customer comoraceaminsv /75 omplexTypel.. Schemas/Custoner.

@ waristas comoraciemingo, 5] i smpleTypel@n.. Schemas/Customer.

(LTEpT 19 CreditRating <omoracie xmins.b, [m) J/xs:simpleType[@n.. Schemas/Customer.

& business Phrases Ucense comorscexmins b @ /s complexTypel... Schemss/Customer.
uesas 4 X | Onvinghsoy comorace cnins 15 compiextypel.. Schemas/Custoner.

€ premium Calcutor
@ Customer score Ca.
€ carscore Catcuator
€ Polly Score Calc..
€ Demo Rule set

£ Rusers

ot Ewars | 8 R | B ADERCrs |

OEBPS/img/GUID-13C3FD1F-FD7A-45C1-B7BE-8D12A853DFD7-default.png
LoanApproval rules

2] vatue sets
& tinks
@ ecision Functions.
@ Transatons
@ren
Dua Expiorer
& business Phrases
Rule sets + X
© strateqy Logic
£ Affordability Logic

< @8

Design,

Business Rules - Log

R ASHE B A A YOI] €]
@hoveien | D Cenerapuies & verval Rules A
[¥ Dgeron *+X AV BB |
=Y Affordabitny H

@ Dictionary - LoanApproval rules

Exicit null gusrds to werkaround unsupreszed NPES in f actions.

ROOT: strategyCortext
I

Disposable Income = Application.morithiy ncome - (Application monthly. expenses + Application monthly repayments) and
Credit Contingency Factor = Affordability Cortext Credit Contingency Factor and
Required Morthly Installment = Strategy Contex! Required Horthy Installment and

Creait Contingency Factor 1= nulland

Required Morihiy Instaliment 1= null and

Mode: EDIT_Locale: English (United States)

Message Dictionary Object Property

RUL-05710: Tne value chosen,"SirategyContest, is not avald choice for “Type" of *Value Set. LoanApproval/Siategy Logic/Decision Table 1/Condition{1]/Value Set Tupe 4|
RUL-05846: The bucketset must have a primiive or Calendar data type. LoanAppraval/Strategy Logle/Decision Table 1/Candition{1] Value Set

RUL-0SB3L: Select one or more values for this conditon. LoanApproval/Siategy Logic/Decision Table 1/Conditionlz]/Contion Celf1]

RUL-05838: Tne decision table has no actions. LoanApproval/Siategy Logic/Decision Table(Decision Table 1)

RUL-05711: Tne expression cannot be blank. LoanAppraval/Affordabily Logic/Affordabily /Test{3)/expression2] N
RUL-05703: The rule or decision table must have atIeast one pattrn or test. Add a patern or .. LoanAppraval/Affordabiy Logic/RuleRule 1) SimpleTestTable 2|

SOKWarnings 7

Messages | Extensions | susiness autes - | (5OA | d

LestValldation Time: 103:40 M POT.

OEBPS/img/GUID-446EF35B-4DBC-4943-A952-458918CE8A8F-default.gif
GradesServlet - Mozilla Firefox.
Ele Edt View Hstory Bookmarks Ioos Help

@] G ([rewiiimyserver.sxample.com700u yadesforadesserviet 7 -

(0ot it [Avin [Overvio (Orac .. [Accoun Reuest) G Tkt (8] Grade] NevorkReguest

ORACLE' - v|i Q search - § ariaSearch - Bugld - % Prob)

) Gradesserviet

Test Results

[Name [Score [Grade
Pri [s4 [B

OEBPS/img/GUID-40C47DCC-87AD-4C1E-9043-635B55A289FA-default.png
Edit Decision Function

Hame: [pecde straregy)
Rule Eiring Limit: 10000 2]
7] Rl iring Limi I Error
[] Wil Be Invoked As A Webservice Seryice Name: [LoanApproval_DecideStrategy |
2] Check Rute Eow
V] stateless.

Descriptions

Iputsntis Acions | Outpuns | RuteSes & Decison Functions |

+X A
ame FaciType Tree st Oeseripton
-Z--:-

@] product Product
e ok Cancel

OEBPS/img/GUID-3CAA8C96-2466-42BE-90EB-B8A50F085372-default.gif
String O
o0 I

String

aoool

Bt Columns To Widkh

OEBPS/img/GUID-30C609C1-35B6-411D-BA33-D977A01C1635-default.gif
Conditions

R1 R2 R3
€2 Driver.has_training true fabe

X Conflct Resolution

Actions
AL modfy Driver(

elgble:)

true

fabe true

OEBPS/img/GUID-9E90678E-C802-4808-A36F-DBE8BF455BF1-default.gif

OEBPS/img/GUID-D6A34DC8-934F-4883-9712-337F94C4CF9B-default.png
e, [CreatReportypes

rom: [fnom

oo type: EreaReporypes

[include Disallowsd Values in Tests

pescription
Values: +XAw
Value Alas Character Code Allowed in Actions Description
CrediReponty... FULL Hot Applicable
CrediReportty... it Hot Applicable
CrediReportTy... NONE ot Appiicable
o i Hot Applicable
Help o Cancel

OEBPS/img/GUID-B2F65BE4-496B-4C5D-9407-92E7CC94A207-default.png
0 o A0F fon We ppbation St 1of o

OEBPS/img/GUID-18334696-633C-4EC4-8C11-6409901F1A48-default.png

OEBPS/img/GUID-BF57D74A-017D-4A78-BFD1-98050A22B748-default.png
TestRules.rules x HevQBa8-

&P Rukesets [E]] value Sets) Globals & Business Phrases | |[E Q Explorer I\ Facts 4 Decison Functions | o Links g Transations Actions ¥

Test Model @) Ciaim Evaluation tests x & Claim Evaluation tests x

Overview Expand the nodes to view the detais of the instance audit trail. Audt Level DEVELOPMENT® View Raw XML
T Cick a node to view the state of the service engine at the time that step occurred. ‘Show rule set stack states i audt trai []
“ @@ onMessage ~ Business Rules Engine State

i Invoked Decision Service [Mar 17, 2014 12:05:44 PM]
Asserted fact. "Customer [1] " E
Asserted fact "Terms [2] " i Facts in Working Memory
Asserted fact "Car [3] "
Asserted fact: "Policy [4] *
H Asserted fact. “Claim [5] " H
4 Activated rule: "ClaimRules.Review Rule"
Facts: "Claim [5]"
4 Activated rule: "PolicyRules.Policy Terms"
Facts: "Claim [5]"
+ i Fired rules in Ruleset "PolicyRules”
4 Fired rule: "PolicyRules.Policy Terms" v
Facts: "Claim [5]" o

o facts found]

General Dedision Trace

OEBPS/img/GUID-53E06F05-F419-4B41-8D3C-495698BE7B76-default.png
assign kIR

al tes contains "REPAIR”

retract

while
assert

assert tree

assign new

OEBPS/img/GUID-F0CA6EC9-80C0-4832-88EB-B3283F93CB90-default.png
5 ¥ ey

Senter dezcription>

G

THEN

sign
i
oaty
et
i
e
i
ssign new
Ceprezsion
or
i
Synchronizet
| rowr L
ok

if (advanced) I

ﬂ while (advanced)

OEBPS/img/GUID-DCDFC68B-2ECB-4659-961B-F5FDE5A0C3EB-default.gif
E 2 Rule_t
<enter description>
[JTreetode [7]Rue Active [Logical riorty: [medum

Effective Date: Always Valid
¥
OrderfLineltem is a OrderfLineltem
dnsert test>
and
OrderfLineltem2 s a OrderfLineltem and
OrderfLinelteml.sku == OrdergLineltem2.sku and
OrderfLineltemcolor == OrdergLineltem2.color and
RLget fact ID(OrderLineltemt) > RL.get fact ID(Orderéinelten?)
dnsert test>
insert pattem>
THEN
callprint(message : "Dupicate Iter; Do you wank to order two of the same item?")

<insert action>

OEBPS/img/GUID-9DC072DF-B8C5-45A3-A41F-9511E7CC4164-default.gif
=¥ Rule?
<enter description>

ROO"
¥

o

Date,PO[destination]tem avaisbityDate) > 30]

nsert test>

THEN

<insert action>

OEBPS/img/GUID-DC3682A9-0FA6-4AA3-A573-8385E45488EE-default.png
a

Conditions
EURentRulesBase.Drive
Type.age
EURentRulesBase. TCas
‘event.milestoneEvent
.milestoneEvent
EURentRulesBase.Drive
(Type.firstName

c

[New bucket of vaiue
[18..30] has been auto
<fadded in the
IRuleset2_Decison Table

1_EURentRulesBase.Drive|

|s.301

"John"

"Carter”

OEBPS/img/GUID-97520DE3-A99B-4AF3-8392-B0E1C8AA1F5E-default.gif
& Conditions RL | Rz | R3 | R4 RS R6 | R7 | R8 | R9 | RIO | RIl | R12
CL Driver.eye_test pass fai q\asses required
C2_Driver.has_training false false fabe

o mﬂmﬂmﬂmﬂmﬂmﬂ

X Conflict Resolution

- Actions
AL modfy Driver(
elgble:) tue | tne | fabe | tue | fake fabe fabe fake tne | tue | fase | fake

OEBPS/img/GUID-22489DB6-9C1C-4621-87D4-7E1FB212446A-default.png
> > .
e Dif Merge

a Import From Excel
E Export To Excel
4 Dictionary Settings

OEBPS/img/GUID-E9319E43-AF7B-4991-863A-9F5C7D58702A-default.png
TestRul

LR ACHE B

S JORL]

® seuings

D ras

e Functions

@) clobals

5] Vatue sets

2 tinke

G Decsion Functons

@) Transations

e

() osta Explorer
meses %

 Clam processing

£ Policy Enforcement

€ Customer vaioaion

 Risk Evaluation

& [Temptae

> @

Name: [auote Tempiate

3|

Oecison Eunction: fste Quate

|| [unfired Futes are Errors

Descripton:

)

Inputs:

Qutputs: X @

Insured Custon
address: *123 Hamilion Avenue”
age: 30
drvingExperience 15
education: “Doctorate
s 12345
name: “Dow jones"

Driving Record 011V fecord
Total Accidents | <enter value>
At-fault Accidents - <enter value>
DUIVioltions : <enter value>
Suspensions - <enter value>
Points: <enter value>

History Insurance History
Pastciaim Fact Clan Info Adg
Detals - (PARAMETER]

Quote st
Policy Policy
endDate - _[PARAVETER]
0
insured Custoner
address 123 Hamilton Avenue
age: 3
drivingExperience i 15
education: "Doctorate’
0 12345
name:“Dow Jone:
startDate: Current Date
terms Terms
coverages: [PARAMETER)
generalTerms : [PARAMETER]
notes - (PARAMETER]
ype: [PARAMETER]

Mode: EDIT Locale: English (United Sates)

Design|

OEBPS/img/GUID-33CFFA3E-81A7-426F-8A12-D5A0CA3678DB-default.gif
L Facts: Qi+
Alies Neme DEXML Name Generd
6] Customerorder com.customer.nis.customeror.[jxsielement{@name="C... orde.
6] com_customer_ns_customerr... com.customer s customeror. orde.
6] orderapproval com.customer.nis.customeror.. | [jxsiclement{@name=".. orde.
[l stetus com.customer.fis.customeror.. | [j<sisimpleType[@nate... orde.

oL Facts | 38VAFaRa AL Faga | ADFEC Fasal]

OEBPS/img/GUID-B79870D8-0577-4DC1-AC97-A24C6688C372-default.png
¥ [gieron

=¥ Report suategy
<enter dezcription>

+ X

A2v BB

3
There I some case where

finere s 2 case v | Imext <insert>

smple test

varible — .
Tested test IgioiityValues ELICBLE and

negated est
alofthe ollowing,
any of the folowing
there Is a fact where
there is 2 case where,
there iz no fact where
there is no case where.
aggregation

boolean expression

ve

CrediReportTypes MK

peries Strategy StrategyValues. REPORT)

OEBPS/dcommon/oracle.gif

OEBPS/img/GUID-C9586DDA-EDFA-45EB-9523-D5BCC3AA900E-default.png
ame: [Egmiaes)

fom: [Enum]

DaraType: [ElabiyValues]

[include Disallowsd Values n Tests

pescription

<

Values: +XaAw
Value Alias Character Code Allowed n A:l\anx Description
ElgibityValues. . INELIGIBLE o1 Applceble

INot Appiicable I

Not Applicable

Help o Cancel

OEBPS/img/GUID-DF70578E-2493-4617-B323-957CC245CA51-default.png
TestRulesrules x CaseManagementBaseDictionary.rules x ApprovaRuleDemo [1.0] x

&P Rulesets [E]] value Sets) Globals | & Business Phrases Q Explorer | fI\ 4 Decision Functions | f Links | g3 Transiations Actions ¥

‘Show Buit-in Data Model Elements

| Description Qualfier Pattern SuperCiass Kind Source Dictionary
Object JAVA fil:/ade_autofs/qd14_fmw/nfsdo_generic/PCBPE... CaseManage...

f . XML ooramds:/soa/shared/casemgmt/Case.xsd CaseManage.
TDocumentation [¢3] Object XML oramds:/soa/shared/casemgmt/CaseEvent.xsd CaseManage...
StakeHolderMember [XML ‘oramds:/s0a/shared/casemgmt/Case.xsd CaseManage...

Caseteader [0 XML ‘oramds:/soa/shared/casemgmt/Case.xsd CaseManage.
Category [XML ‘oramds:/s0a/shared/casemgmt/Case.xsd CaseManage...
TCompletedCaseA... [7] XML ‘oramds:/soa/shared/casemgmt/Case.xsd CaseManage...

TPermissionTag [)] XML ‘oramds:/soa/shared/casemgmt/Case.xsd CaseManage...
TActionsPermitted... [XML ‘oramds:/soa/shared/casemgmt/Case.xsd CaseManage...
0 m I »

OEBPS/img/GUID-811E5332-6A65-4FB5-99EB-AD9DD0667564-default.png
= A Find managers in different department
<enter description>

[/ Advned e [JTreeMode [VIRueActive [Logical riority: [medum

Effective Date: Always Vald

¥
Employee s a Employee

Sinsert test>

and

Manager s a Employee and

Manager Employeeld

Enmployee. Managerld and
Manager.Departmentld = Employee.Departmentid

<insert test>

<insert patter
THEN

‘assert new MessageAction (<add property> message : "Employee * + Employee. FirstName + " " + Employee. LastName +

<insert action>

+Er

OEBPS/img/GUID-86345B3D-09F2-413E-869A-B586EBE1C479-default.gif
Elaradesservietsavs _[DGradingRulessules

vipEy

@ Facts

i Functions
(%) Globals
£ Bucketsers
& Links

@2 Decision runctions|

@) Transttions
Rutesers o %
© rutesen

Decision Functions:

®+sR

Name Description

eb Service

I

Desion |

OEBPS/img/GUID-CC091D19-DE83-4CA6-8C62-BE5E53437D76-default.png
Business Rules - Log

@ Dictionary - LoanApproval.rules

Message
A RUL-05703: The rule or decision table must have atleast one pattern or test. Add a patt
) RUL-05837; Tne decision table has o condtions or rues.

&) RUL-05838: The decision table hs no actions.

Dictionary Object Property
Loanapproval/Strategy Logie/Decision Table(Decision Table 1) SimpleTestTable
LoanApproval/Strategy Logic/Decision Table(Decision Table 1)
Loanapproval/Strategy Logic/Decision Table(Decision Table 1)

SOk Warnings: 3

| Messages | Extensions «| @ business Rules « | GSOA |

Lost Validation Time: 12:05:06 PM FDT.

OEBPS/img/GUID-B4E33B42-9A06-40D7-AD9E-CCC53A04F65F-default.png
TestRules rules

D@ R

150 %

® seuings
D ras
e Functions.
@) Clobals
5] Vatue sets
2 uns
G Decsion Functons
@) Transations
e
() osta Explorer

Rute sets. + %
 Clam processing
£ Policy Enforcement
€ Customer vaioaion
 Risk Evaluation

& [Temptae

> @

tame: [Festrempiarer

3|

Oecison Eunction: [Evausteciam

|| [unfired Futes are Errors

oescripion:
Inputs: X W oupus x @
Jr—— chimResun Cisin
Ciamberas | FerEraes] Cambet: <entervalue>
i <em i <enter value>
pamen: <ot & pament: <errer value>
polley Foic/ | Q Value Options poly iy
encDute: endbare <ot value>
a: <en g g la: <emervalue>
nzured insurad o
e Accisent :
o &0 hcacent ddress” <ermervaue>
e £0 Ko e <enervaiues
an arvingExperence : <enter value>
et cducation . <entervalue>
“ | o <emervates
nan y rame: <entervalue>
e sarome: <entervatues
tems 7o tems 1o
con coveragez: <ertervaiues

Business Rules - Log

' Dictionary - TestRules.rules.
SOK Warnings: 0

P tusines fuies -

[Gonstam
Type: String

OListView ® Tree View

Mode: EDIT Locale: English (United Sates)

[tarcAs arameter

Last Validation Time: 250:22 PH POT.

OEBPS/img/GUID-B10271C7-FC8E-4982-8F1A-374917A22F02-default.gif
Name your project

‘Application Name.
Project Name
Profect Java Settings

Project SOA Settings

o
rojct Neme: [Orderipproval

Drectory: [C:ATDeveloperimyworkiOrderApprovalapplOrderpproval || Browse.
Projct Technologies

avaiable: Selected

5

115P and Serviets
115 For Business Companerts
bl

Struts

SwinajAWT

TopLink.

L

b Services

Technology Descripton

50L documents combine XML (Extensible Markup Language) and SQL (Structured
Query Lanauage)to provide a lanauage- and detabase-independent means for |

OEBPS/img/GUID-330D66CB-3F44-40CD-807A-B15B3657F995-default.png

OEBPS/img/GUID-ED33D567-EB9F-451F-B5BF-3F3BA3C2E7AF-default.png
8

9 Variable
10 |Fixed
11 |Fixed
12 Variable

Al

Conditions
EURentRulesBase.Drive
IType.age
EURentRulesBase.TCas
eEvent.milestoneEvent
.milestoneEvent
EURentRulesBase.Drive
rType.firstName

Actions

assert new
EURentRulesBase.Drive
Type

age

firstName

lastName
licenseNumber

“John"

Active

18
“FirstName"
null
"ABCD1234"

"Carter"

InActive

25
“FirstName"
null
"ABCD1234"

OEBPS/img/GUID-B4ED18E6-E7CF-421C-BD7A-16DCB9E3B16A-default.gif
T
T
ockl
= [5] viewController
=3 web Content
£ wes v
]
8 races-confgom
6] unidad-confgol
& webarl

{23 Page Fiows

Applcation Resources
Data Cantroks
. Recently Opened Fles

[@opication navigator |) Eersseronns

Shaw: Al Projects +

Overview The Java Fles category contains java dlasses and rterfaces

File Summary: Totsl: ¢ () a
JavaFies Getting started ~
Java Class

Java Interface

Cue Cards | Tutorals | Detaied Help

Page Flons Getting started ~

Overview Page Flows define an application's web pages
Enterprise JavaBeans 3.0 S0A Components ADF Binding Files Web Services | Offine Databases

Overview

ML Files

[C]
w®
Yot T

Getting 5

Overview The 4L Files category contains xi e

XML Fle

Cus Cards | Tutorals | Detaied Help

ieh Pages.

verview

Getting 5t

The Web Pages category con

OEBPS/img/GUID-525F27BD-576C-410B-A8A8-9B4BD004EA09-default.png
€ overview | < GeneralRules | & Verbal Rules

Verbal Rules R Iva BREH

5 Y VerbalRulel
<enter description>

"

e |
[

Start typing to get results and filter them further by pressing TAB

OEBPS/img/GUID-1DD0FDDF-E4B5-485A-82AF-60F05BDB327B-default.png
ApprovalMatrix &2 Determine approvals and discounts using decision table rules

Click to view tests and variables
v /R Localrangevaeset[v] /| [Toos | v] [Switch Rows to Coumns
R1 R2 R3
Y ‘CustomerOrder.vipStatus PLATINUM GOLD; SILVER.
‘CustomerOrder.creditScore - Low Medium
©) 93 override
B oty Resut v v v
discount:double 10 0 5

OEBPS/img/GUID-42A0CFFC-5DB4-4D2E-8139-D299BF08D56E-default.gif
Create Deployment Profile

Clck OK to create your new deployment profil and immediately open I o see s configuration

archive Type:
EAR il

Neme:

Description

Creates a profile for deploying the Java EE enterprise archive (EAR) fl to an appication server.
The EAR file consists of the appications assembled WAR, E18 JAR, and client JAR fies:

OEBPS/img/GUID-BC7EB373-7802-4F6D-BBAE-10C83C2FC3F0-default.png
Decision Table 1 5
Click to view tests and variables

q /R localrangevakeset[v] / [Took | ¥ EB Switch Rows to Columns

R1

V' customerorder.creditscore

@

OEBPS/img/GUID-94A33F38-AD55-46CA-A6DF-770D398E0342-default.png
+X 0GR B-

(¥ surround
(ks Desurround

OEBPS/img/GUID-2A0EC886-BA92-4B3D-92D1-3282F535D2CA-default.png
Variable
Fixed
Variable

Fixed
Variable
Fixed
Fixed
Fixed
Fixed
Fixed

Actions
‘assert new Terms
coverages_en
generalTerms
notes

‘assert new Policy
end Date

id

insured

start Date

terms.

type

vehicles.

Customer
Terms

CarType

"HIGH RISK"
Active

%

‘Customer
Terms

CarType

Active
"VERY LOW"

"EXTREMELY HIGH
Active

i

Customer
Terms

CarType

OEBPS/img/GUID-BB16B601-577C-4A88-925E-E4EE33DD83C4-default.gif
There are 2 issing rules i the decision tabl,

Please selct the ruls you want to add by selecting the checkboxes inthe table
header columns,

40

Conditions
Driver.age <@
Driver.hair brown black

7] Colurns To Widkh

Help oK Cancel

OEBPS/img/GUID-D71A7CB4-3ECB-42C4-83A4-645D463CAA1C-default.png
THEN

S |

[modtty score o rave core s (vlus), i 3 (alue), ype s lue]

modity Score to have score as (valle), 1d as (value), type as (value)
modity Score Tracker t0 have score as (value), d as (value), type as (vzlue)

Select List tem to Insert Into TextField/Double Click List ltem to Accept Value

OEBPS/img/GUID-98641A96-E7C0-4076-8393-09A58FEEEB93-default.png
[
Customers anewcustomer

OEBPS/img/GUID-0B7D283D-EC8A-4CC9-B41B-47CFB4E63D41-default.png
5 ¥ tate payment
<enter descriptions

3
Summary is 3 Credit Report Summary and
there is some case where

Detail s & Creadit Report Detail <inert
and

DetailType == Payment Type LATE PAYMENT and
Derailmonths > 2

THEN

modity Summary (<ecit properties> Score : Summary.Score - 50)

OEBPS/img/GUID-039FBBFF-D809-45DF-95A1-DC4F04BD410B-default.gif
& Create Fusion Web Application (ADF) - Step 1

Narme your application

2, Application Name
Project 1 Name
Project 1 Java Settings

S Project 2 ame

O Project 2 Java settings

‘applcation Name:

Gradespn

Drectory;

Ci\Developerimywork|Gradefpp Browse,

‘Applcation Package Prefi

comexample.grades]

Applcation Templae:

Generic Application
Creates an application which includes a single project. The project is not
preconfigured with Developer technologies, but can be customized to include any
technologies

Fusion Web Application (ADF)
Creates a databound ADF web appication. The appliction consiss o one project
for the view and controle components (ADF Faces and ADF Task Fions), and
another brofect For the dta mdel (ADF Business Camponents).

Java Desktop Appication
Creates an applcation carfigured for bulding a generic Java applcatian. The new
pplcaion wil nclude a project that s preconfiaured to use Javs, Swing, and

OEBPS/img/GUID-C5872C25-96F1-410E-8082-6590D0219927-default.gif
5 ¥ Rule_?
<enter description>
ROOT:PO
¥
Durstion.days betwesn(PO header.orderDate, POjdestinstionjtem. avalabityDate) > 30
dnsert test>

THEN

modfy POjdsstinationjiter (<add property» status : "canceled)

<insert action>

OEBPS/img/GUID-460B8815-C0DD-4495-9CD3-F8EE56214834-default.gif
Form: [Assert New

Value: [Assert New Orderpproval status:?)

Eacts:

£ Costomernder

Propertis:
Property. Type value Parameterized Constant
ftatus Status

Always Selected

OEBPS/img/GUID-B4BC0DD9-9CBF-4D18-9398-4827DB7D75F9-default.png
TestRulesrules x CarInsuranceRules.rules x

== SO

D [EJ value Sets @ Globals & Business Phrases Q@ Explorer | ||\ Facts 4} Decsion Functions = P Links =g Transations Actions ¥

&) Premium Calculator v 57 o 3¢

Rules A7 ByType @
L1 3 1R
E ¢

& create Terms

Create Terms %9 ad

I

ready to calculate score Goto Phrase

Add Test

THEN

calculate premium based on score of customer , score of poiicy and score of car Goto Phrase
createTerms withpremium aspremium ,remarks as"Manual Claim Review" ,id as4444 ,carld asid of car ,customerld ascustom)
remove customerScore

remove carScore

remove polcyScore

<1

[D

Diagnostics History Center SaveLog Valdation Log

OEBPS/img/GUID-74F72AD0-E191-4FE0-B70A-7448851B9FD9-default.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behaviar of your business

(@ Greate pictionary O Import Ditonary

Specifythe name and package for the dictionary that wil be created.

Nome: [OracleRulest

Package: |com.example.arades

Profect; [1Developerlmywork\GradeAppGradesirades.or

InputsfOutputs:
Direction

OEBPS/img/GUID-E306434B-3E95-458D-AD4F-D3F35A02666D-default.gif
E 2 Rule_t
<enter descrption>
dvanced ode [Tree Hode

Rule Active,
Effective Date: Always Valid
¥
CustomerOrder s a CustomerOrder

dnsert test>

insert pattem>
THEN

insert action>

assert
assert tree
assert new
fassign
assign new
expression
cal

for

¥

modfy
retract
retum

1
synchrorized
throw

try

whie

[oges

priority:

medum

OEBPS/img/GUID-98041365-C48B-4F0C-88D1-57A944DAF4F9-default.png

OEBPS/img/GUID-4E4A5771-AAA8-4590-8480-2E34CFEB2805-default.gif
& Project Properties - C:\Developer\myworkiGradeApp\Grades\Grades. jpr

Deployment

Project Source Paths O Use Custom Settings

AOF Hodel (©) LseProectSettings
A0F iew
o Oeployment rofes:

Business Components
Compier
Dependencies

EJ6 Mode.
Extension

Javadac

Java EE Applcation
35 Tag Lbraries

35 isual Edtor
Libraries and Classpath
Resource Bunde
RunjoebugiProfie
08

Technology Scope:

OEBPS/img/GUID-4BE657C7-62CC-4DD4-8E80-BBA426FD63DD-default.png
LB EI=E e & A L)
Add Delete Merge split |~ Add Remove Disable Simple

Rule Rule Cell || Bucket Bucket | Highlighting Mode N
Valueset Preferences

| simple mode

Decision Table Workbook Instructions

1
2
3
4 This Workbook represents a collection of one or more Decision Tables belonging to a Rule Dictionary authored using Oracle
i Business Rules. This sheet would provide you the instructions on how this Workbook is structured and how you can use

- the same to author Decision Table Rules.

8

9

1. Each of the Decision Tables contained by this workbook are represented by their own named Worksheets. To edit a
specific Decision Table, please select the corresponding Excel Worksheet.

15 2. The Valuesets used in each of the Decision Tables are available in a separate Worksheet named 'ValueSets'.

OEBPS/img/GUID-B47DDC11-C063-4516-B218-9B159BB6188A-default.gif
=¥ Rule1
<enter description>

¥
Orderis 2 Order

and
there s a case where {
OrderfLineltem is a OrderfLineltem and
OrderfLineltemt sku == "HATIZS"

¥

and

there s a case where {
OrderfLineltem2 s a OrderfLineltem and

OrderfLineltem.sku == "SHOE46"

THEN

modfy Order (dscount : 0.05)

OEBPS/img/GUID-A6DDB7B6-BF48-4F33-AE6A-BFD183D423BC-default.png
Enterprise Manager Fu: I ontrol 12¢

Logic Domain v == SOA Infrastructure v

Target Navigation & RestBpelService [1.0] ® Logged in as weblogicl [J sico1ghk.us.oracee.com
T o3 S0A Composite ~ Page Refreshed Apr 24, 2014 3:03:52 PM PDT

> (23 Appication Deployments
3 soa

Comj i Export Cancel | ~
22 soa-infra (Adminserver) Export posite L =
> @ consoleTests “This page provides diferent options for exporting a snapshot of a running composite. This i useful, for example, when you want to repicate the same deployment on a diferent deployment
@ consoeTests_withwhG target. This operation wil have no effect on your currently running composite.
@ defauc
o You have chosen to export the following composite revision.
offd RestClent [1.0] Composite Name RestBpelService
offd RestHdrMediatorClent [1.0] Compostte Revision 1.0
offd RestHdrMedatorserver [1.0] Current Deployment Target /Domain_soainfra/soainfra/AdminServer/defaut B
offd Restserver [1.0] i) 3
offd smpleApproval [1.0] © option 1: Export with all post-deploy changes
23 WebLogic Domain “This option wil generate a composite archive fie containing the original, design-time defintions of the composite; s wel as al post-deployment information isted in Option 2 and 3.
[l soainfra ~
5 ndminserver © option 2: Export with runtime/metadata changes only
23 Metadata Repost ‘The composte archive fie wil include the original compostte pius such post-deployment changes as task definitons, rue changes, etc..
> jata Repositories
> B Scheduing Services ©) option 3: Export with property changes only
> [User Messaging Service The composte archive fie wil include the original compostte pius any post-deployment property changes, such as binding properties or polcy settings.

© option 4: Export with no post-deploy changes
“This option wil generate a composite archive fie containing only the pre-deployment, design-time defintions of the composte. Any property settings you may have made on a running
‘composite, or any runtime metadata, wil be ignored in the export operation.

&

A composte archive (SAR) fie wil be aenerated with a standard name. shown below. Afternativelv. vou can speciv vour own name for the fie. The fil s first exported to the server where

SAR File

OEBPS/img/GUID-1AE9E890-EDBB-4647-960C-B1AFCB945BD6-default.png

OEBPS/img/GUID-F868B6F3-68F6-447D-BC44-E9377186060B-default.png
4 RestBpelService [1.0] ® Logged in as weblogicl [3] sco1ghk.us.orace.com

Page Refreshed Apr 24, 2014 2:58:24 PM PDT ()

Home »

Monitoring [Test +| | | settngs. & &l @ Reted Links ~
'SOA Deployment » pstances Unit Tests Polices
Test Service »

Component Type

SOA Infrastructure BPEL
'SOA Infrastructure Common Properties
Target Information

4 Services and References

Name Type Usage Total Messages Average Processing Time (sec)

@ RestService

REST Binding Service 7 0.093

OEBPS/img/GUID-DCEF0211-DBBA-4AD4-8D90-4397EAA53D6D-default.gif
I [foo = [some. very long.expression Q and
I ffoo Q [more than H[Q md -
I [foo Q [less than =l o Q -

OEBPS/img/GUID-18B25906-E9C6-4C31-8811-7EBC3E5DBC22-default.gif
Business Rule

@ create Dictionary

Advanced

Import Dictonary

Specify the name and package for the dictionary that wil be created.

Neme: [OrackeRulest
Package: [orderapproval

Profect: - [Ci\IDeveloperimyworkiOrderapprovalapplOrderapprovaliorderpproval

Inputs/Outputs; X+ 3
Drection Hame Type

nput Customerorder {Petpi e customer.comfnsfcustomeror der}CustomerOrder
output orderigproval et customer.comfn customeror der}OrderApproval

Expose 25 Composte Service

)

OEBPS/img/GUID-791E6577-4727-40DA-A6E4-241E7C9C7535-default.gif
S Conditions RU| Re | R3 | R | RS | Re | R7 | Re | R9 | Ri0 | Ril | RIz | R13 | RI4 | RIS | R16 | R17 | R18
€L CustomerOrder creditscore risky avg salid

€2 CustomerOrder.crder Low Medum Hgh Low Medum Hgh Low Medum Hoh
€3 CustomerOrder annualspending >2000

- Actions

AL assert new OrderApproyall
statusi=1 1)

G

il
Orderapproval.status

Status. APPROVED

Status REECTED

(9] s To vt

OEBPS/img/GUID-B6383836-B0F8-4EA6-AB19-1E5FFAB110D0-default.gif
I [some.very ong expression Q morethan =] [+ QA e -

I [same.very ong.expression Q [less then = [Q -

OEBPS/img/GUID-5759D17F-06BA-44C2-A898-E793CC6C6E10-default.gif
Below are the rules that conflct with rule R3 and the confiict resolution
methads to resolve possble corfict accurrances. To change the resalution
methad, please cick the Resalution column and select the methad you would
ke to use to resolve the conflct.

Rule: [23

Conflcting Rue Resolutian

e i —

INoConfict
loverrde
loverriddengy
[Rungefore.
[Runater

) o[concal]

OEBPS/img/GUID-0E6FF372-C00C-45B8-B3AE-5CD92774C0CB-default.png
opernin

opernis,

Bl

curr
Currentbate
CurrentDate.date

- | curremtpate dateime

1 R CurrentDate.date timelnnilis

) ListView O Tree View

[] Customizable

X Conflict Resolution

OEBPS/img/GUID-52EC6543-33FD-4173-9A4F-5361CE4B9058-default.png
(%) Globals

Globas:

W%

Name

Vaiue

Value set Final

S S

Edit Global - Variablel

Descrption

e, [T

e |

watuesex [o)
vae: [B3
[Constant
] Einal
Descrpton
2
Help ok cance

OEBPS/img/GUID-8830DCAC-06E1-4CBC-8469-856B4E970652-default.gif
Client

Assert

—

—>

Rule Firing

Rule Session

Rulesets
(RL) "

Matching

H —
Agenda

Fact
Fact

Fact

@

Activation
Activation
Activation

Activation

Working Memory

I Action }--

OEBPS/img/GUID-13E2429D-9D5F-466D-9363-A6EC73439A61-default.gif
(BstartPage | 0raceRulest.res [g S,OrderBookingRules xsd | (Za0racleRulest.rues | #BPELProcesst bpel (D) [

Assign.

/XS

From o
() variable () variable
inputiariable/payloadj/client:proce... com_example_globalcomparty_ns_c

® () Expression () variable

fake() cam_example_lobalcompany_ns._

<

BPEL_Header - [processsequence/scopessquence/assign(3]

racin [T

OEBPS/img/GUID-3B446A2D-5CA3-4FA0-A876-384FAFB9D085-default.png
A Task Access

Task Content Task Actions

@

Task Actions Individuals with access

Approve A (5]
Reject Al @
Acquire Al (O]
‘Adhoc Route Al =
Delegate Assignees @
Dekte A ®
Escalate Al =
Information Request Assignees @

Override routing sip Al

Purge Al =
Push Back Assignees ®
Reassign A @
Release Al =
Renew Al

I

OEBPS/img/GUID-1A9636F5-D7EF-4BAD-8F69-CD50D5A175D8-default.gif
= A Rule 1
Senter description>

[Tree Mode

Effective Date: Always Valid

¥

[orcachcose where] ¢

(for each case where)

there i a case where.
there i no case where
sagregate

insert patem>
THEN

insert action>

Rule Active,

[oges

priority:

medum

OEBPS/img/GUID-C512C81C-F047-458D-BD57-76318A591C75-default.png
Gap Analysis

There are 1 missing ruie(s) in the decision table. Please select the rules to add by cicking the checkboxes in the table header

columns.

CustomerOrder.vipStatus
CustomerOrder.creditScore
CurrentDate.date

PLATINUM
Low
Promo Period

OEBPS/img/GUID-8C925579-4AB4-43B2-A40D-99AFF4F6CA20-default.png
SOA Composer

Search TestRules.rules x He QO aon-
Types View | Dem’"?emm L [EJ value sets @ Globals & Business Phrases | B Tests Q Explorer I\ Facts 4} Decsion Functions | of Links = g3 Transition: Actions v
T View 5
3 Business R P e PEX
ApprovaR
Cartnsurar Rules 7 By Type @ Payment Type Rule P -
CaseMana R ¥
DynamicR & I
(& LinkedTest &r X 3

LoanApprc P Review Rule

[TestRulet «) payment Type Rule
(3 Domain Value -
[3 Human Tasks @ Enter Payment

[23 soA compost

I

Claim.status is ClaimStatus."Review Complete” and

Caim.reviewDetals s "PolicyEffective”

@ Close Claim

%

Claim.policy.terms.notes contains "REPAIR" -~
<[i »

< [> Diagnostics History Center Save Log Vaidation Log

OEBPS/img/GUID-95DB86EE-7340-480F-8F21-4ADD1DAD3DA3-default.png
D ot A0F fson Weppbation S

OEBPS/img/GUID-D14F3D87-0C25-4FE2-ADBE-DE7C366E431E-default.png
Conditions
EURentRulesBase.Drive
rType.age <8
EURentRulesBase.TCas
eEvent.milestoneEvent
.milestonegvent o
EURentRulesBase.Drive
Type.firstName "John"

Minor

OEBPS/img/GUID-5FA49D5F-4261-4F98-9211-5A3A2842E907-default.gif
<schema>

targetNamespace

ity dhwew. example.org

PO

L enumeration

open

heatler.

status.
type Status

order-date
type xstdate

customer-value

T (o>2)

destination

address

nayment

item

auantity
pe xstint

status.
type xstistring

enumeration

partially shipped

enumeration

fully shipped

ty

availabiliy-date

type xstdate
doh

type xstint

price
type xstdecimal

shipment

OEBPS/img/GUID-DD6DD2A4-073A-4779-9E0D-0653FFF18CAE-default.gif
D CarRentatrules

G]

vi9Ea

@

& Facts

i Functions

(%) Globals

£ Bucketsers

& Links

G Decision Functions

@) Transiations

Rulesets + X
© rulesen
$ Denial Rutes:

© Denialutes: dec

Denial Rules: if-then ¥ [|iter On View: [<) IF/THEN Rules

+-X BRBoAv

=¥ underage
Rentals should not be mads to crivers under 21 per Renting Guidslnes section 34.6

¥

Driver.age < inimum driver age
dnsert test>

THEN

assert new Derial (<l property> driver : Driver , reason : "under age, age was "

Driver.age + ", minifum age s " + Minimum driver age)
call audt rul : "under age" nfo : "iver age less then minimum threshold or icense number "+ Diver censehiumber)
insert action>

5 ¥ too many accidents
<enter description>
¥
Driver previousacadents > 5
dnsert test>

THEN

‘assert new Derial (<l propety > driver: Drive , reason : 'too many accidents

insert action>

Desian

OEBPS/img/GUID-2225A696-703A-45C8-8963-8601FEC98828-default.gif
There s 1 missing ule i the decision table,

the table header column.

Conditions
Driver.age 0
Driver.hair black, brown

7] Colurns To Widkh

Help oK

Vou can add the missing rle o the decison table by selectng the checkbax in

40

Cancel

OEBPS/img/GUID-E041D5E9-2560-43ED-87FE-5A86E7883C4D-default.png
CarInsuranceRules.rules x Hv@B8 0908

D [EJ value Sets @ Globals & Business Phrases Q@ Explorer | ||\ Facts 4} Decsion Functions = P Links =g Transations Actions ¥
q PR
&7 ByType & Create Terms o
L1 3 1R
Search By Al & "
eV ready to calculate score and Goto Phrase
? Create Terms
I Enter search terms to get results and fiter them further by pressing Right Arrow (->) I
‘ E Add Test
THEN
calculate premium based on score of customer , score of policy and score of car Goto Phrase

CreateTerms withpremium aspremium remarks as"Manual Claim Review” ,id as4444 ,carld asid of car ,customerld &
remove customerscore

remove carScore o
o m v

OEBPS/img/GUID-EE4B99D9-7CD0-4E96-9DFA-47371D2A4363-default.png
Verbal Rules

5 Y VerbalRulel
<enter description>

"

| s |

[Customer s lowrisk

Customer s lowrisk Add New Business Phrase
Customeris lowrisk s a (type)

Customer s lowrisk s equalto (value)
Customer < lowriskis between (value) and (value)
Customeris lowrisk s in fvalue), (value)

More options for "Customer is lowrisk

OEBPS/img/GUID-8EF615F4-D735-4099-B20E-38F64FE369C7-default.png
Amx12cXsdsampleHumantaskRules.rules x | A 120XsdSampleHumantask. tssk x Hy @Udao e
[Configure Task Approval Rules Global Rules | ~Select— v Addvariable

' '

Stage2 v Stage3

‘ ‘

% Pparticipantt ¥/ i Participantt ¥

OEBPS/img/GUID-5F5556E1-DFB5-4B30-AE09-F0806248CE14-default.png
TestRules.rules x CaseManagementBaseDictionary.rules x ApprovalRuleDemo [1.0] x HeBao

D [EJ value sets @ Globals & Business Phrases | B Tests Q Explorer I\ Facts 4} Decsion Functions | o Links | g3 Transations Actions ¥
RS 9 & X

ClimRules

PolicyRules Type = Payment Type Rule P =

Customer Rules

IF
PODiscountRules & -
UpdateCustomerInPolicyRules B X T O KR E

Caim.status s ClaimStatus."Review Complete” and
Ciaim.reviewDetals is "PoicyEffective”

@ Enter Payment E THEN

@ Close Claim %+

AR SRR I

(24

v X DK@
Claim.policy.terms.notes contains "REPAIR”
then

B i] v

OEBPS/img/GUID-0C31EA3E-9E13-4F5E-A5AA-EBBE650E06BA-default.gif
5 ¥ free shipping

ROOT:PO
¥

POk aFO
and
POdestination s 3 POjdestination and
and

free_ship_total isthe sum of POJdsstination/tem.price longHalue() where {

Pojdsstinationfitem s 3 POJdestinationjitem and

POdsstinationjitem.status

free-shipping:sigible’

}and free_ship_total >= 40

THEN

modfy POjdsstination (status : "free shipping")

OEBPS/img/GUID-4709DAF5-EBA5-4C27-ABF0-524B14186C02-default.png
BHE=E X B A0

Add Delete Merge splt | Add Remove Enable Simple Hide ReadMe

Rule Rule Cell | Bucket Bucket | Highlighting Mode Sheet
Decision Table Valueset
c2 - fe| "New"
A I 0
Bucket Name. otherwise
3
5 Bucket Name otherwise "PursuantToTer| 2y copy
8 Bucket Name Yotherwise "Exception”
s
11 Bucket Name Tas new value
2 Insert...
14 Bucket Name < >=5 s
D
17 Bucket Name <2006 >=2006 Clear Contents
18
Es] >
20 Bucket Name “otherwise “Male” =
2 sort >
2
= @ msert comment
2] & Format Cells...
2
= Pick From Drop-down List...
27 Name a Range...
2
» B, Hyperlink...
%’ ‘Show/Hide Bucket Values.
2

| ctsuceosapon [y |

OEBPS/img/GUID-BB59B1B1-778A-4491-92E6-39397EAE10E2-default.gif
Edit EAR Deployment Profile Properties

(8 o Application Assembly

Select the Java EE modules that you wouldlike to assemble nto your Java EE applicaton,

General

Java EE Modles:

AR Optons
Fie roups
5 Appcaion Descrors Grades.for
- Contrtutors 1 arsces
Fiters odelr
Plaform] Gradaion odel_scbcradeappt
Websphere 6.x VewCortroler
]] Gradepp_viewController_webappt

Path inEAR:

OEBPS/img/GUID-2E3BC049-B928-4A20-B979-20BDA96FACE9-default.png
Diagnostics History Center Savelog Valdation Log
Conficts

Identifier
‘TrainingRules.rules

Resolve |~

OEBPS/img/GUID-F88B4F28-5882-4713-AE21-57ABA44C619E-default.png
& s s

Business Phrases Q searcn R
Value Form Dratt

& calculate premium based on {customerscore), {policyScore} and {carScore} Action Business Phrase

& (coveragevalue)of polcy) Test Business Phrase

& Very High ik customer with {rating) credi ating Test Business Phrase

& reject rocy Orrer Acton gusiness Phrase

Parameters: winsert | R
Name Form Tyee Value et

@ poliey Variable Policy

Value

Set High Deductible (policy} e

Happing

policy.deductible = 2000

<insert action>

OEBPS/img/GUID-8CFDC732-223F-4596-94EE-4519C203CEC3-default.png
Payment Type Rule 57

I

+

simple test

variable

nested test

negated test

al of the folowing...
any of the folowing...
sa

there is a fact where...
there is a case where...
there is no fact where.

there is no case wher
aggregation...
boolean expression

TR D K[@

Effectiv

&

contain:

OEBPS/img/GUID-DCC8470D-3A7C-448A-8942-917782F6DEE5-default.png

OEBPS/img/GUID-6AADC72C-2B1D-476E-8233-08B7BF47512B-default.png
@ overview | P GeneralRules &7 Verbal Rules.

% [Jgiteron

+X v BBBR

© 2 Engiitny.

[Advancedtiod [JTreeMode (2] RueActve [Logica sriory: zaum]

Effective Date: Abays Valid

) S Pre-bureau afordabiiny

fordabity BKM by asserting a newAffardsbily cantext and runing the Affordabity rules.
ShowAduanced Senings F D b J J

© 3 Required monthly instaliment

&Y inialize strategy
150 averbal rule but this suppresses the rule flowwarning

OEBPS/img/GUID-CB874B57-FE94-48D7-922A-CA68EE80A686-default.png
@ overview | P GeneralRules &7 Verbal Rules.

& Dlgieron

Fiter Query:

e insertest

ETTTTES

Q vatu options

Y o descripton
o priorty
P e sundse
wi e endoae
& minutes untlstar date
& minutes until end date
& days unti stan care
a days until end date
o years unil st date
& years unil end date
o isactwe
ang e isvald

F referenced fact ypes

O List View (©) Tree View

&

R AV BRBO
¢

sk category
fordabily result

2]

e

Mode: EDIT Locale: English (United st

OEBPS/img/GUID-6371348D-3449-49E2-B18D-E4B2834EC508-default.gif
Decision Service 1

Decision Service 2

Decision Service 3

| Reuest-

| Reuest-

| Reuest-

Decision Service N

st

Fules
Engine

Decision Compaert
Metadata

Stateless Rule Session
Pool

Stateful Rule Session
Cache

Depoyment aritacts
(Generated
JAXB Classes)

OEBPS/img/GUID-036E80FC-569B-4F8D-9AD0-63AA02E323D0-default.png
@ OraciRuiesi.rues -

w

® sengs -G8 Overiew-—}- 4 Generates—| & B8 G Tabe X A
Bras A% % 63 Claim Table |

5 Functons .

) clobass +-RavR)u-i-RBERE-
- Condions w @ w w "

8 vaeses 4 ¢ clmsaus e e criswConpiee | ReviewConpie”

2t & c2 clam reveworisgs - - - - Potcrarecne Potcyeece

Q@ oecson uncrons || € CIum polky erms coverages.. - - - - e fase
ct i ,m. terms generatter oervise “Excestion”

[
Eren
@ owsEiorer Contict mesonion
eses %

| & computese .

@ cusamertues

- Actiam

AL modty Ciam = =
pamentsignecins oo0s0000sess 001111311000

2 reirac Caim O a 5] a

3 catprim a a
messageosect “Reviewhas been complt. *Clam il e reviewes ma._"Clam s been paig” “Processing th repars' _ “Prosssing the payment”

Mode MERGE. Local:Engish (Unted States)

Design,

OEBPS/img/GUID-947069EE-C124-4184-8A57-1950141FA809-default.png
CustomerOrder isa Customerorder
CustomerOrder

OrderApproval
OrderTtemType
the folowing test is true CurrentDate

CustomerOrder.vipStatus s VipStatusType.GOLD or
CustomerOrder.vipStatus s VipStatusType.SILVER
and

{

CustomerOrder.creditScore same or more than 750 and

the folowing test is true
CustomerOrder.annualSpending - same or more than 10000 and
CustomerOrder.totalamount s 4000

and

sa = *+REGOHR

Cuand R 03 R

- @

