ORACLE"

Oracle® Fusion Middleware

Designing Business Rules with Oracle Business Process
Management

12c(12.2.1)

E59333-03

November 2016

Documentation for developers and business users that
provides information about using and developing applications
involving facts, rules, and decision tables for Oracle Business
Rules by using design-time tools, such as Oracle JDeveloper
with Oracle SOA extension, and a runtime application such as
Oracle SOA Composer.

Oracle Fusion Middleware Designing Business Rules with Oracle Business Process Management, 12c (12.2.1)
E59333-03

Copyright © 2005, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ...t XV
BN o 1T Ve < ISR PR RRRRRRRRN XV
Documentation AcCeSSIDILILYcccvvvviimiiiiiiiiiiiii s XV
Related DOCUIMENTATIONooouviieviieeeieteecteeete ettt ettt e e e eaeeeae e e teeeseeenteeeseseeseeenseesesenseesesenseenseean XV
(@03 0 M7= 110) 1= J0UTRT RO ORRRRRR XVi

What's NEW IN THIS GUITE..........ooeoeeeeeeeeeeeeeeeeeeeeeeeee et XVii
New and Changed Features for 12¢ (12.2.1) c...ccovieiririeiirrireeeeeeeeeereeeeeeeeeeeeeeeeee e Xvil

1 Overview of Oracle Business Rules

1.1 Introduction to Oracle Business RUIES ... 11
1.1.1 Why Use Oracle Business RUIES?cccccciuiuiiiiiiiiiiiiiccccccecceceeeennes 1-2
1.1.2 Understanding Oracle Business Rules Terminologycccccccceeeiiiiiiiiiiiiiiennnes 1-4

1.2 Understanding Oracle Business Rules Formats..........cccoooiriiiiiiciciiccccc 1-5
121 RULES ettt 1-6
1.2.2 Decision Tables ... s 1-8

1.3 Oracle Business Rules Runtime and Design Time Elements..........ccccccoovoiiiniiriniicicenns 1-8
1.3.1 Decision Component (Business Rules) in a SOA Composite Application................... 1-9
1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE Application 1-9
1.3.3 Oracle Business Rules RL Languageccccoeueueuiuiiiieieiiiiiiieieeceeeeseeseee e 1-9
1.3.4 Oracle Business Rules SDK........ccccooiiiiiiiiiini s 1-10
1.3.5 RUIES DESIZNETovmiiiiiiiiiiiiiiie e 1-10
1.3.6 Oracle SOA Composer Application...........cocoeeieiiiiieiniiiiie e 1-11
1.3.7 Oracle Business Process Composer Applicationcccoueveiiiiiiiiinciicce 1-11

1.4 Oracle Business Rules Engine ArchiteCture...........cococeiiiiiiiiicieiicceceeceeeeeeenenenes 1-11
141 Declarative RUIES.........cccouiuiiiiiiiiiiiiice s 1-11
1.4.2 The Rete AIOTItRIMc.cciiiiiiiiiiiic e 1-12
1.4.3 The Non-Rete AIGOrithim.........cooooiiiiiiii e 1-13
144 What Is Working MemoOry?..........ccooiirieiiiiiicieccie i 1-14
1.4.5 Rule Firing and Rule SESSIONScccceuiuiiiiiiiiicciicceeeecceeeeeee e enenenenes 1-14

2 Working with Data Model Elements

3

2.1
2.2

2.3

24
25

2.6

Introduction to Working with Data Model Elementsc.ccoooeiioiiiiiniiiiiccee 2-1
Introduction to Dictionaries and Dictionary Links..........ccocooiiiiiiiiicce 2-1
2.2.1 Working with Dictionaries and Dictionary LInkscccoiiiiiiiinienne. 2-2
2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designercccc........ 2-2
2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer 2-5
2.2.4 How to View and Edit Dictionary Settingscccccoeeeereiniiiinieiiiccecce, 2-5
2.2.5 How to Link to @ DictiONaryc.coveeieiiiiieieicc e 2-8
2.2.6 How to Update a Linked DicCtiONaryccccociiiiiiiiiiiiiiiicccccccccccceeens 2-9
2.2.7 What You Need to Know About Dictionary Linkingcccceeiiiinnnnnnnnnnn. 2-10
2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies 2-11
229 What You Need to Know About Dictionary Linking to a Deployed Dictionary...... 2-11
2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL. 2-11
2211 How to Compare or Merge Two or More Dictionariescccccooevveviniiiiiininicnnnne. 2-12
Working with Oracle Business Rules Globalsc.cocooiiiiiiiiccce 2-15
2.3.1 How to Add Oracle Business Rules Globalsccccccoviiiiiiinne, 2-15
2.3.2 How to Edit Oracle Business Rules Globals.............cccccooviviiiiine, 2-16
2.3.3 What You Need to Know About the Final and Constant Options.........c.ccccccveuuenee. 2-17
Working with Decision FUNCHONS...........ccooiiiiiiiiiiiicccccccceccceeeecennes 2-17
Introduction to Oracle Business Rules FUNCHONSccccceiiiiiiiiiiiiiiiiicccas 2-17
2.5.1 How to Add an Oracle Business Rules Function............cccccoooiiiinnnn, 2-18
Localizing Oracle Business Rule ReSOUICES...........c.cceueiiiiiiciiiiiici 2-19
2.6.1 How to Localize the Resources in Oracle Business Rulesc.ccccouriiiiiinnnnnns 2-19

Working with Facts and Value Sets

3.1
3.2

3.3

34

3.5

Introduction to Working with Facts and Value Sets ... 3-1
Working With XIML Facts........c.cooiiiiiiiiiiiiiiccccee e 3-2
3.2.1 How to Create XML fact tyPesccccviiiiiiiiiiiiiiccce 3-3
3.2.2 How to Import the XML Schema and Add XML Factsccccceoiiiiiiiiiiciiie, 3-3
3.2.3 How to Display and Edit XML Facts.......ccccooiiiiiiiiccc, 3-5
3.24 How to Reload XML Facts with Updated Schema............ccccccoeiiiiiiiniinnciiinne. 3-6
3.2.5 What You Need to Know About XML Facts.........ccccccoiiiiiiiiiiiiiiiiccces 3-7
Working with Java Facts ..o 3-8
3.3.1 How to Import Java Classes and Define Java Facts.........ccccccoivvvnininiinnienn, 3-8
3.3.2 How to Display and Edit Java Factscccccccevviiiiiiniiiiii, 3-9
3.3.3 What You Need to Know About Java Factsccecuevvriririrerieeeeeieeeeeeee e 3-11
Working With RL FACESc.ccoiiiiiiiiiiiiiiiice e 3-11
3.4.1 How to Define RL FaCts.......cccooiiiiiiiiiiiiicc s 3-12
3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties............c.ccccoerurunnnes 3-13
3.43 What You Need to Know About RL Facts.........cccccoviiiviviiiiiiiicinns 3-13
Working with ADF Business Components Facts............cccccoooeiiiiiiiiiiiiiicccccccnes 3-14
3.5.1 How to Import and Define ADF Business Components Factsccccooovivirennnes 3-14

3.5.2 What You Need to Know About ADF Business Components Fact Classpaths........ 3-15
3.5.3 What You Need to Know About ADF Business Components Circular References. 3-15

3.54 What You Need to Know About ADF Business Components Facts 3-15
3.6 Working with Value Sets ..o 3-16
3.6.1 How to Define a List of Values Global Value Set...........cccccoooinnnn, 3-17
3.6.2 How to Define a List of Ranges Global Value Setc.cccccooooeiiiiiiiciine, 3-19
3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML Types 3-20
3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java Types................. 3-21
3.6.5 What You Need to Know About List of Values Value Setsccccooviiiiininnnen. 3-22
3.6.6 What You Need to Know About Range Value Setscccoooiiiiiiic 3-23
3.6.7 What You Need to Know About the Value Set Allowed in Actions Option............. 3-23
3.6.8 What You Need to Know About Values.........c.cccoouriiiviiiiiniicicn 3-24
3.7 Associating a Value Set with Business Termsccococoeeereriiiniieiniicnecee s 3-25
3.7.1 How to Associate a Value Set with a Fact Propertycccocoooiii 3-25
3.7.2 How to Associate a Value Set with Functions or Function Arguments..................... 3-26
3.7.3 How to Associate a Value Set with a Global Value..........ccccccccouiiviiiiiininns 3-26

4 Working with Rulesets and Rules

4.1 Introduction to Working with Rulesets, Rules, and Business Phrases...........c.cccceeeeiininuace. 4-1
4.2 Working with RULESELS.........ccocoiiiiiiiiiiic e 4-2
421 How to Create @ RULESEt.......cvoouiiiiiiciiceeeeeteeeeeeet ettt et e ere e 4-2
4.2.2 How to Set the Effective Date for a RUle Setcccoecveeiieiiiiieiieeeieceee e 4-3
4.2.3 How to Set the Effective Date for a RUle..........cccccoeieiiiiiinieniiieeiceeeeeeeeeeeee e 4-3
424 How to Use a Filter to Display Matching Rules in a Ruleset..........cccoooiieiiiiinnnace. 4-4
425 Using Auto Complete when Selecting Component Values from a List....................... 4-7
4.3 Working with RULES.........cccooiiiiiiiiiiiii s 4-8
4.3.1 How to Add General RULES.........cccocuieiiiiiiicieiieieieeteeetete et e e e e nesaeens 4-8
4.3.2 How to Add Verbal RUIES........coccueviiiiiieiecieecteeeteeeteie et saeens 4-9
4.3.3 How to Define a Test in @ RUle......cccueieieieieiiieieieeeeeeeeeeee et 4-10
4.3.4 How to Define a Test in a Verbal Rule..........cccocoeirininininiineeeeeeeeeeee e 4-12
4.3.5 What You Need to Know About Oracle Business Rules Test Variables.................... 4-14
4.3.6 How to Define Range Tests in Rulesccoooiiiiiiiiii 4-16
4.3.7 How to Define Set Tests in RULEScc.ccueieieieiiieiieeeieseeeet et 4-17
4.3.8 How to Define an Action in a General Rule...........ccccoevvviriinieniinienieieieeeeeeee e 4-19
4.3.9 How to Define an Action in a Verbal Ruleccooveoviiieiieieciiiceeeeeeeee e 4-22
4.3.10 What You Need to Know About Rule ACHONScceeceruiriirieriiieieieeeeeeeeeee e 4-23
4.3.11 What You Need to Know About Oracle Business Rules Performance Tuning....... 4-23
4.4 Introduction to Verbal Rules and Business Phrasesccccecvevvevievieieieieieieieeeeeeeeeeenens 4-24
441 Working with Business Phrases ..o 4-24
442 How to Create Business PRIaSesccocveviieiiiiieieiieeieeeeteereeveere et eve e 4-26
443 Choosing or Adding Business Phrases in Verbal Rulesccccccooviiiiiiiinnn, 4-28
4.5 Validating DictiONariesccoceuiiiiieieiiicie it 4-30
45.1 Understanding Data Model Validation ... 4-31

Vi

4.5.2 Understanding Rule Validationcccceoiiiiiiiiiiiicce 4-32

45.3 Understanding Decision Table Validationccccceoiiiiiiinininniiccceeene. 4-32
454 How to Validate @ DIiCtONATIYccooiiiiiiiiiiiiiccccc e 4-33
4.6 Using Advanced Settings with Rules and Decision Tables...........ccccccooovvirininiiiiiinicnnnn, 4-33
4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision Table................... 4-35
4.6.2 How to Select the Advanced Mode Option.........ccccoeiiiiiiiinnie, 4-35
4.6.3 How to Select the Active OPtion........ccccciiiiiiiiiiiiiiccc e 4-36
4.6.4 How to Select the Logical Optioncccoeuviieiiiniiiiiiicceece e 4-36
4.6.5 How to Set a Priority for a Rule ..o 4-37
4.6.6 How to Specify Effective Datesccooooiioiiiiiiii 4-38
4.7 Working with Nested Tests..........ccooiiiiiiiiiii 4-38
4.8 Working with Advanced Mode Rules...........ccooiiiiiniiii e 4-38
4.8.1 How to Use Advanced Mode Pattern Matching Optionscccccoevviereriiicrennnnnes 4-39
4.8.2 How to Use Advanced Mode Matched Fact Naming............cccoocoeueininiiciniiiiicciennes 4-41
4.8.3 How to Use Advanced Mode Action FOrms.........cccooovviiiviiinnnne, 4-44
484 How to Use Advanced Mode Aggregate Conditionsccccovvevvvviniiiniinincnininnns 4-46
4.8.5 What You Need to Know About Advanced Mode Rulescccccovirnniiiinennnnns 4-49
4.9 Working with Extended Tests.........ccoooiiiiiiiiiiniiiiii e 4-50
49.1 Extended Test FOIMS ... 4-50
410 Working with Tree Mode RUlesccoooiiiiii 4-54
410.1 Sample Abbreviated PO XML INStance..........ccccccoeveeeiiiiniiiiniiiceeceeceeeeenene 4-56
4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode)..........ccccceeiiiniiiininnnce. 4-57
4.10.3 Understanding Advanced Tree Mode Rules..........cc.ccooeriiiiiiiiiiniice 4-57
410.4 How to Create Simple Tree Mode Rules.............cccoooeiiiiiiiiiiiiic 4-58
410.5 How to Create Advanced Tree Mode Rules...........ccccooviiiiiiin, 4-61
4.10.6 What You Need to Know About Tree Mode Rules..........c.ccccovviiivininiiiiiincinnns 4-62
411 Using Date Facts, Date Functions, and Specifying Effective Dates...........ccccccouvriiinnnnnce. 4-62
411.1 How to Use the Current Date Fact...........cccoiiiiiiiiiiiiiccce, 4-63
4.11.2 What You Need to Know About Effective Datescccccovuvvnnninnnnnnne, 4-63
4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods 4-64
412 Introduction to Expression Builder ..., 4-65
412.1 How to Use the Expression Builder............ccoooivoiiiiiiiniiic 4-66
412.2 What You Need to Know About Working with Expressions...........c.ccoceeveiininnnne. 4-66
413 Using Value Sets as Constraints for Options Values in Rules..............cccooooiiiiinn, 4-67
4.13.1 How to Use a List of Ranges Value Set as a Constraint for a Business Term........... 4-67
4.13.2 How to Use a List of Values Value Set as a Constraint for a Fact Property............. 4-68
4.13.3 How to Use Value Sets to Provide Options for Test Expressions.............cccceeeuevnnnes 4-68
414 Importing Runtime Rules Changes From Repository Into JDeveloper.............ccccccoeeucne... 4-69
415 How to Model Rules When the Data Model is Deepccccceuoiiiiiiiiiiiiccce, 4-69

Working with Decision Tables

5.1 Introduction to Working with Decision Tables............cccocooiiiiiiiiiiiii, 5-1
5.1.1 Whatis a Decision Table?.........ccccccoviiiiiiiiiiiiii s 5-2

6

52

53

54

5.5

6.1
6.2

5.1.2 Understanding Condition Cell Values.........c.cccccooiiiiiiiiiiiniiiic, 5-6

5.1.3 Understanding Action Cell Values.........cccccoooiiiiiiiiiiiiiiiciireccceeccceeeeeene 5-7
5.1.4 What You Need to Know About Decision Table LoOPS........cccccouviiiiiiiiiiiinnne. 5-7
Creating Decision Tablescciiiiiii e 5-7
52.1 How to Create a Decision Table............cccoooiiiiiiiiii 5-8
52.2 How to Add Condition Rows to a Decision Table............ccccccoviininn. 5-8
5.2.3 How to Use or Specify the Value Set for a Decision Table Condition............cccccc...... 5-9
52.4 How to Add Actions to a Decision Tableccccooiiiiiniiiiiiiie, 5-10
52.5 How to Add a Rule to a Decision Table...........cccccouviiiiiiiiiiiie, 5-12
52.6 How to Define Tests in a Decision Table.............cccccoviiie, 5-13
Introduction to Decision Table Operations...........ccccceeiiiiiiiiiiiiicccccceennes 5-14
5.3.1 Understanding Decision Table Split and Compact Operationsccecevevvreennce. 5-15
5.3.2 How to Compact or Split a Decision Table............cccccoeuivviiriiiiniieiiceecce 5-21
5.3.3 How to Merge or Split Conditions in a Decision Table...........ccccccoviiviiinniniinnnnne. 5-22
5.3.4 How to Use the Condition Cell Operations...........cccccoeueueiiurieieiiiicieieciccieccie e 5-22
5.3.5 How to Perform Decision Table Gap Checking...........cccccocvvviviviiininiiiiinininns 5-23
5.3.6 How to Perform Decision Table Manual Conflict Resolutionccccccoevvivinrinennnes 5-23
5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy................ 5-24
5.3.8 How to Set the Decision Table Ignore Conflicts POLCYcccoovrmeieieiiiiiiiiicic 5-24
Creating and Running an Oracle Business Rules Decision Table Application..................... 5-24
5.4.1 How to Obtain the Source Files for the Order Approval Application 5-25
5.4.2 How to Create an Application for Order Approval..........ccccceoiiiinininininnninininieene. 5-26
5.4.3 How to Create a Business Rule Service Component for Order Approval................. 5-27
5.4.4 How to View Data Model Elements for Order Approval ... 5-30
54.5 How to Add Value Sets to the Data Model for Order Approvalccccoovvrnrinnen. 5-31
5.4.6 How to Associate Value Sets with Order and CreditScore Properties....................... 5-32
5.4.7 How to Add a Decision Table for Order Approval..........cccccoiiiniininiinininnniiniennn. 5-34
5.4.8 How to Check the Business Rule Validation Log for Order Approval...................... 5-41
5.49 How to Deploy the Order Approval Applicationccccooevoiieiiieiiiiiiciice 5-42
5.4.10 How to Test the Order Approval Application..........cccccovviiiinnnnnnne, 5-42
Editing Decision Tables in Microsoft EXCel...........cccccoiiiiiiiiiiiiiiiicecccccceeeeenenas 5-44
5.5.1 Understanding What is EXported ..., 5-46
5.5.2 How to Export Decision Tables...........cccooiiiiiiiiiiiiiiiiiiccccnes 5-46
5.5.3 How to Import Edited Decision Tables Back to the Dictionaryccccccccooreinnn 5-47
5.5.4 How to Edit Decision Tables in EXCel.........cccccooiiiie, 5-47

Working with Decision Functions

Introduction to Decision FUNCHONS.........ccciiiiieiiieiceciccteeet ettt se et sre s 6-1
Working with Decision FUNCHONS.........cccoiiiiiiiiiiiiiccccccccceeceeeceeee e 6-1
6.2.1 How to Edit an Existing Decision FUNCHONccccovuviiiiiiiiiiiiiiiiiiincne 6-5
6.2.2 How to Change the Order of INpUtS.........cccooviiiiiiii e, 6-6
6.2.3 How to Change the Order of Outputs.........ccocooeiiiriiniiiic 6-6
6.2.4 How to Edit a DeciSion FUNCHONc.ccveiieieiieieeeteie e 6-6

Vii

7

8

viii

6.3 What You Need to Know About Rule Firing Limit Option for Debugging Rules................. 6-6
6.4 What You Need to Know to About Decision Function Arguments...........cccccccevvrrrrreneene. 6-6
6.5 What You Need to Know About the Decision Function Stateless Option...........cccccccevuvuenee. 6-7

Testing and Validating Business Rules

7.1 OVEIVIEW ..ottt 7-1
7.1.1 Components of the Test Featurecccovvvvniiniininiiiic, 7-2
7.2 Testing Rules in JD@VEIOPETc.oviuiiiiiiiiic s 7-3
721 How to Create and Manage Test Suites and Cases.............ccoeeueueiviicieieiniiicicie, 7-4
7.2.2 How to Create Test TEmMPIatescccoovviiirriiriiiircccreeceereeee s 7-5
7.2.3 How to Run Test Suites Or Cases ... 7-6
7.2.4 How to Run Ad-hoc Tests from Test Templatescccccooeeiriiiiiiiinicc, 7-6
7.2.5 How to Run Tests for a Specific Decision FUNCtionccccooevoiininininiiicncs 7-7
7.3 Testing Rules in Business Process COMPOSETcccociuvviivimimiiniiiiniininiiesicsescsesnssenns 7-8
7.4 Testing Rules in SOA COMPOSETcovoviiiriririiiiirireeerersis s seeaes 7-8
741 How to Create and Manage Test Suites and Casescccccoeeueivicenieiniccinincccnnnn, 7-8
742 How to Create Test Templatescccoooomriiiiiiiiiiiccc e 7-10
74.3 How to Run Test Suites or Casescccccovviiiiiiiiiiiiiiiiiiiicccs 7-11
744 How to Run Ad-hoc Tests from Test Templates........cccccoeuveruvverinnrnrirrrcceene 7-12
7.4.5 How to Run Tests for a Specific Decision FUNCHONcccoeuviiiiivriiniiiiiircicee, 7-13
7.5 Testing Decision Functions Using a Rules FUnction ..., 7-13
7.5.1 What You Need to Know About Testing Decision Functions.............cccccccoeueieinennnan. 7-14
7.6 Testing Decision Services in SOA COmMPOSIteS.........cocurveiiiuricieiiincie i 7-15

Working with Rules in Standalone (Non SOA/BPM) Scenarios

8.1 Loading a Dictionary from the RepoSitoryccccoveueiiiiiiiniiiicccccc e 8-1
8.2 Executing a Rule DIiCtiONaryccccceuviiiriiiiiiiririiicirrccceeeeeeee s 8-2
8.3 Introduction to the Rules SDK Decision Point APIcccccccoviivnnininnnniiiirncccerene 8-3
8.3.1 Working with Decision Point APIcccccovvinnniiis 8-4
8.3.2 How to Obtain the Car Rental Sample Application...........cccoooeueieiiiicieieiiiiciiece, 8-4
8.3.3 How to Open the Car Rental Sample Application and Projectccccceevvviinnnnnnn 8-5
8.4 Creating a Dictionary for Use with a Decision Pointccccceevvvviiinnnnninncccerene 8-5
8.4.1 How to Create Data Model Elements for Use with a Decision Pointccccccoceuce. 8-5
8.4.2 How to View a Decision Function to Call from the Decision Point..............ccccceeuvenne. 8-7
8.4.3 How to Create Rules or Decision Tables for the Decision Function.............ccccceeuevun. 8-8
8.4.4 What You Need to Know About Using Car Rental Sample with a Decision Table. 8-10
8.5 Creating a Java Application Using Rules SDK Decision Pointccccceevueirivrrvccnnennnes 8-11
8.5.1 How to Add a Decision Point Using Decision Point Builderc.c.ccccoornnnnnn. 8-12
8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary...........cccoeevevrieiiiinnnnn. 8-13
8.5.3 How to Use Executor Service to Run Threads with Decision Pointccccc.c...... 8-14
8.5.4 How to Create and Use Decision Point INStancesccccevuvevueurrvvenvrvnreeeeeene 8-15
8.6 Running the Car Rental Sampleccccocciiiiiiiiiiiiicccreeee s 8-16
8.6.1 Sample Output from Car Rentalcccocoviiiiiiiiiiiiiiiis 8-17

10

8.7 What You Need to Know About Using Decision Point in a Production Environment
8.8 What You Need to Know About Decision Point and Decision Tracing..........ccccccceeveueueunene.
8.8.1 Sample Usage of Decision Tracingcccccovvvrviriiiniininriniicrncecceeeeeeeees

Creating a Rule-enabled Non-SOA Java EE Application

9.1 Introduction to the Grades Sample Applicationccccccevvviiiiirinnniiiinricnrccene
9.2 Creating an Application and a Project for Grades Sample Application..........c.cccceceuerriencen.
9.21 How to Create a Fusion Web Application for the Grades Sample Application
9.2.2 How to Develop Accessible ADF Faces Pages...........cccooceuiiiinieiiiiciciciccice,
9.2.3 How to Create the Grades Project.........ccccoiiiiiiiiiiiiiiiciccccccceecccc e
9.24 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project
9.3 Creating Data Model Elements and Rules for the Grades Sample Application.....................
9.3.1 How to Create Value Sets for Grades Sample Application..........cccccevivvvivininiiinnnes
9.3.2 How to Associate a Value Set with a Fact Propertycccoonnninnnnninnne,
9.3.3 How to Add a Decision Table for Grades Sample Application...........ccccocevvvvvrrernnnnes
9.3.4 How to Add an Action to a Decision Table............cccccoouoiiriiiiiii
9.3.5 How to Add Rules in the Decision Table for Grades Sample Application................
9.3.6 How to Rename the Decision Function for Grades Sample Application...................
9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Applicationccccceeueueeee.
9.41 How to Add a Servlet to the Grades Projectccoooviriiiniiciiiniccc
9.5 Adding an HTML Test Page for Grades Sample Applicationccccceeveerriiiiiincienennne.
9.6 Preparing the Grades Sample Application for Deploymentccccccoeeeiiiiininiiicinieinnn.
9.6.1 How to Create the WAR File for the Grades Sample Application.........c.ccccceevrueucce.
9.6.2 How to Add the Rules Library to the Grades Sample Application.........c.cccccceuuueeee.
9.6.3 How to Add the MDS Deployment File to the Grades Sample Application.............
9.6.4 How to Add the EAR File to the Grades Sample Applicationcccccevivireiennnes
9.7 Deploying and Running the Grades Sample Application............cccccevvveviriiiineiiineennne,
9.7.1 How to Deploy to Grades Sample Application ..o,
9.7.2 How to Run the Grades Sample Application..........ccccoviviiiiiiinininiiniiicccccne,

Working with Oracle Business Rules and ADF Business Components

10.1 Introduction to Using Business Rules with ADF Business Components..............ccccceevu...
10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types.....
10.1.2 Understanding Oracle Business Rules Decision Point Action Type........cccccccouec..

10.2 Using Decision Points with ADF Business Components Facts..........c.ccccooeviiiiiiinininns
10.2.1 How to Call a Decision Point with ADF Business Components Facts.....................
10.2.2 How to Call a Decision Function with Java Decision Point Interface
10.2.3 What You Need to Know About Decision Function Configuration with ADF

Business COMPONENLScciiviiiiiiiiiiiiii e

10.3 Creating a Business Rules Application with ADF Business Components Facts................
10.3.1 How to Create an Application That Uses ADF Business Components Facts..........
10.3.2 How to Create ADF Business Components Application for Business Rules.........

11

12

10.3.3 How to Update View Object Tuning for Business Rules Sample Application 10-13

10.3.4 How to Create a Dictionary for Oracle Business Rulesccccccoccciiiiiiinncnns 10-13
10.3.5 How to Add Decision Point Dictionary Linkscccccccoeiiiiiiiiiiicniciicnns 10-14
10.3.6 How to Import the ADF Business Components Facts ..o 10-14
10.3.7 How to Add and Run the Outside Manager Ruleset.............ccccooooiriirinnnne. 10-15
10.3.8 How to Add and Run the Department Manager Ruleset..............cccooeveiririrnennnnne. 10-22
10.3.9 How to Add and Run the Raises and Retract Employees Rulesets........................ 10-26
Working with Decision Components in SOA Applications
11.1 Introduction to Decision COMPONENLScciuiimiuimimiiiiiiiiieeieeeeeee e nenenenenes 11-1
11.2 Working with a Decision COmMPONENtcciiiiiiiiiiiiiiiiciccccceeceeieeeennes 11-2
11.2.1 Working with Decision Component Metadata............ccooeueueiiriiiiiinnice 11-2
11.2.2 Working with Decision Components that Expose a Decision Function 11-5
11.2.3 Using Stateful Interactions with a Decision Componentcccccovvvviviiniinninnnnn 11-5
11.2.4 What You Need to Know About Stateful Interactions with Decision Components
... 11-5
11.3 Decision Service ArchiteCture ..o 11-6
Using Oracle SOA Composer with Oracle Business Rules at Runtime
12.1 Introduction to Oracle SOA COMPOSETceimimimirimimirimiiiiriiieieeeseesesee s 121
12.1.1 Creating and Publishing SeSSions............cccocociiiiiiiiiiiciecccceecceeee e 12-2
12.1.2 Using Oracle SOA Composer User Authenticationccccccceeciuiiiiccciccnnas 12-5
12.1.3 What You Need to Know About SOA Composer Access Control and User
AUhentiCatioN..........cooviiiiiii s 12-6
12.2 Setting Accessibility OPtionsccciiiiiiiiiiiiiiiccccc e 12-6
12.2.1 How to Set Accessibility Features Before Logging In...........cccccccoeiiiiiiiiiiiiiinnnas 12-7
12.2.2 How to Set Accessibility Options After Logging In............cooooriiiiiiiiccee 12-7
12.3 Opening and Viewing an Oracle Business Rules Dictionaryc.cooeoeueveiiriciiiinciennnns 12-8
12.3.1 How to View and Edit RUIESEtScccccevvvimiiiiiiiiiiiicces 12-9
12.3.2 How to View and Edit Value Sets...........ccccoeiiiiiiiiiiiiiiiicccccccceenes 12-12
12.3.3 How to View and Edit Globals.........cccccccoiiiiiiiiiiiiniiiiiiiiicccceereececees 12-13
12.3.4 How to View and Edit Business Phrasescccccoiiiiiiiiiiiiiiiicinns 12-14
12.3.5 How to View and Edit Tests ... 12-15
12.3.6 HOW t0 VIEW EXPLOTETcoouimimiiiiiiiiiiiiiiiccccccccecceccc e 12-16
12.3.7 How to View and Edit Factsccccceeviieiiiniiiiiincccecceecceeceeeeeenen 12-17
12.3.8 How to View Decision FUNCHONS..........ccoceviiiiiiiiiiiiiicccc 12-17
12.3.9 How to View Linked Dictionary Namesccccocovoiirieiiiiiiiiiicccce 12-18
12.3.10 How to Work With Dictionary Links in an Oracle Business Rules Dictionary... 12-18
12.3.11 How to View and Edit Translationscccccocveeeiviinniniciccceees 12-19
124 Getting Started with Editing a Dictionary ... 12-20
12.4.1 What You May Need to Know About Localized Number Formatting Support in
Oracle SOA COMPOSETccouuuueiririeiieieieieieieieeee ettt nenees 12-20

12.42 What You May Need to Know About Cutting/Copying and Pasting Rule

ELEIMENES ...ttt ettt
12.4.3 How to Edit Globals in an Oracle Business Rules Dictionaryc.cccococeueunennee.
12.44 How to Edit Value Sets in an Oracle Business Rules Dictionarycccccueuec.
12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary.............
12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor

Declarative COMPONENLtc.ooiiiiiiiiicieectee e s
12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor

TASK FLOW ..ttt

12.5 Editing Rules in an Oracle Business Rules Dictionarycccoovoeciiieiiiiicciniciccee
12.5.1 Using the Rulesets Tabccooooiiiiii
12.5.2 How to Edit Rules in an Oracle Business Rules Dictionarycccccocococecceennns
12.5.3 How to Add @ RuUle ..o
12.54 How to Delete a RUle ..ot
12.5.5 How to Show and Edit Advanced Settings for Rulesccccocoooriiin.
12.5.6 How to Add Rule Conditions..........cccceiiiiiiiiiimiiiiiicccccccccncsenes
12.5.7 How to Delete Rule Conditionscccccoviuiiviiiiiniiiiiiciiiccenes
12.5.8 How to Modify Rule Conditions............ccccceueuiiiiiiiiiiiiiiiiicceeiccceeceennes
12.5.9 How to Add Rule ACHONS......cccoruimiuiiiiiciiiiiictciirie et
12.5.10 How to Delete Rule ACtONS..........cccoiuiiiiiiiiiiiiiiiiiiccccene
12.5.11 How to Modify Rule ACtONS.........ccooriiiriiiiiiiie e
12.5.12 How to Work with Advanced Mode Rules.........c.cccccoooviviininiiiiiiccne,
12.5.13 How to Work with Extended Tests..........cccccccoeiiiiiiiiiiiiiiicccccccecnes
12.5.14 How to Work with Tree Mode Rules ...
12.5.15 What You May Need to Know About Oracle Business Rules Editor Declarative

COMPONENT ...t

12.5.16 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative COMPONENLccceviviviiiiiiiiiieiciiciecc s
12.5.17 What You May Need to Know About Oracle Business Rules Dictionary Editor
TASK FLOW .ottt

12.6 Using the Oracle SOA Composer Browser Windowscccooeiiiiiiiiiiciciiicce
12.6.1 EXPression BUILAETcccioiiiiiiiiiiiiccccecccecicececeee e
12.6.2 Condition BrOWSETccciviiiiiiieiiiicc s
12.6.3 Date BrOWSETcciiiiiiiiiiiccc s
12.6.4 Right Operand Browser ...t

12.7 Editing Decision Tables in an Oracle Business Rules Dictionaryccccococuoivirieiennnne.
12.7.1 Adding a Decision Table..........cccccoiiiiiiiiiiiicceccceeeeeeeeese e
12.7.2 Adding Condition Rows to a Decision Table..........c.ccccooeiniiiiiiiiiiicccne,
12.7.3 Adding Actions to a Decision Table ...
12.7.4 Adding Rules to a Decision Table............cccoooiiiiiiiiiiii
12.7.5 Deleting Rules in a Decision Tableccccoouoiiiiiiiii
12.7.6 Defining Tests in a Decision Table............ccccccoiiiiiiiiiiiiiiicecccecceeenes
12.7.7 Splitting and Compacting a Decision Table............ccccccceoiiiiiiiiiiiiiiiiiicnes

Xi

12.7.8 Checking for Missing Rules in a Decision Table...........cccccoeviriiiniiininicinicincne, 12-49

12.7.9 Performing Conflict Resolution in Decision Tablesc.cccccoeececiicccccncncnns 12-50
12.7.10 Switching From RoOws to COIUMNSccccciuiiiiiiiiiiiiiciccccccccccecceennes 12-51
12.7.11 Working with Advanced Mode Options in a Decision Table.............ccccccceurunise. 12-52
12.7.12 Deleting a Decision Table............c.cccooeuiiiiiiiiiiiic e 12-52
12.7.13 Editing Decision Tables in Microsoft EXcelccccoveiviiiiiiiiiniiiiiiicce 12-53
12.7.14 What You Need to Know About Rule Test Variables.........cccccccccoevvviiiniinnnnne. 12-57
12.8 Comparing and Merging Oracle Business Rules Dictionaries.........c.c.cccocoeeveviivirerennincnen. 12-57
12.8.1 How to see Differences Between Dictionaries ... 12-58
12.9 Localizing Names of Resources in Oracle Business Rules.............ccocouniiiiiiiiiniene. 12-59
12.9.1 How to Localize the Alias of a Oracle Business Rules Component........................ 12-60
12.10 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary
UPAAES ... 12-61
12.11 Validating and Diagnosing an Oracle Business Rules Dictionary.........ccccccccoovrueuennnnee. 12-62
12.11.1 Understanding the Validation Log Tabcccccccoeiiiiiiiiiiniciiccccceenenes 12-62
12.11.2 Understanding the Diagnostics Tab ... 12-62
12.11.3 Understanding the History Center Tabccccooiiiiiiiiiiiiiiiicciccns 12-63
12.11.4 Understanding the Save Log Tab...........cccccoiiiiii 12-63
12,12 Working with Taskscooiurieiiiiii e 12-63
12.12.1 How to View Task Metadatacccccooevviiiiiiiiniiiccces 12-63
12.12.2 How to Configure a Task or an AMX Rule Metadata..........cccccocooevrnniiineennnen. 12-64
Appendices

Xii

A Oracle Business Rules Files and Limitations

A1 Rules Designer Naming CONVENtiONS..........ccoviiiiiiiiiiiiiiiiiiecccccecceceeens A-1

B Oracle Business Rules Built-in Classes and Functions

Bl SHANG CLASSES......euiuiiiiiiiiiiiiiciciciicccic e B-1
B.2 LISt CLASSES ..cutieuiitieiieteete et ettt ettt et e et e v e e teebeereeaeeasebeeabesbeessebeessebeenteeseenseereenseenes B-8
B.3 INUMETIC ClaASSES...uicueiiieeieiieiieeteeteeteete ettt ettt et te et e et esbe e b e teessesbeessesseenseereensessnessessnas B-11
B.4 Time and Duration Classes.........c.cccevuieieriiiieriieieieeeeieeteseeres e esesreesesreeseseeessessnessesseas B-22
B.5 MiSCEllaneous ClaSSESccecevuiriiriirierieieieiesieteeeseeseeresressessessessessessessessessessessessesessessenses B-50
B.6 FUNCHIONS ...ttt ettt et ettt et e b et e bt et e st e st e sseensesneensesanensesnnan B-51

C Oracle Business Rules Frequently Asked Questions
C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then

Changed Without Using the Modify Action?..........cccooeieiiiniiiniinicccc e, C-1
C.2 What are the Differences Between Oracle Business Rules RL Language and Java?..... C-2
C.3 How Does a RuleSession Handle Concurrency and Synchronization? C-2
C.4 How Do I Correctly Express a Self-Join?.........ccccoiiiiiiiiiiiiiiiiicccces C-4
C.5 How Do I Use a Property Change Listener in Oracle Business Rules? C-5
C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?............. C-6

C.7 How Do IPutJava Code in a RULE?ccooiiiiiiiiiiiiinisieieieseeeteteteeee e C-7

C.8 Canl Use Java Based Facts in a Decision Service with BPEL?.........cccccccevvvvininveninrenenn. C-7
C.9 How Do I Enable Debugging in a BPEL Decision Service?...........ccccoouiiiiiiniinnnnnn. C-7
C.10 How Do I Support Versioning with Oracle Business Rules?cccooviiiiinnnne. C-7
C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?............ C-8
C.12 Why do XML Schema with xsd:string Typed Elements Import as Type

JAXBEIEINENT? ..ottt ettt ettt ettt e bt e b e b et e st eneenee st eneeseeseeseeseesessessensan C-8
C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?................... C-9
C.14 How Do I Use Rules SDK to Include a null in an Expression?.........c.cccccoeceueiiirununan. C-9
C.15 Is WebDAYV Supported as a Repository to Store a Dictionary?..........cccoeeveeceevencnce C-9
C.16 Using a Source Code Control System with Rules Designercccccccececciccenns C-10

Oracle Business Rules Troubleshooting

D.1 Getter and Setter Methods are not Visible............ccooooeveiiiiiniiiiic, D-1
D.2 Java Class with Only a Property Setterccccooviiiiiiiiiiiicc, D-1
D.3 Runtime NoClassDefFound Error ... D-2
D.4 RL Specific Keyword Naming Conflict Erors..........cocooviueiciiiciniiinieccceee D-2
D.5 java.lang.lllegalAccessError from Business Rules Service Runtime.............cccccccvvueeee. D-2
D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException...........cccccceoiiiiiiinnnace. D-3
D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?cccovueueee. D-4
D.8 How Are Decision Service Input Output Element Types Restricted?.................c.......... D-4
D.9 How Are Decision Service Input Output Schema Restricted?ccooviiiiinnnnn. D-4
D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?.........ccccccuuueee. D-4

Working with Oracle Business Rules and JSR-94 Execution Sets

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets........ccccocvvvvrcvrenrennene. E-1
E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets................... E-1
E.3 Using the JSR-94 Interface with Oracle Business Rules............cccooiiiiiiiinnnn. E-4

Xiii

Xiv

Preface

This guide describes how to design Oracle Business Rules.

Audience

Designing Business Rules with Oracle Business Process Management is intended for
application programmers, system administrators, and other users who perform the
following tasks:

® Create Oracle Business Rules programs
¢ Modify or customize existing Oracle Business Rules programs
® Create Java applications using rules programs

® Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language
fundamentals.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. coml pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documentation

For more information, see the following Oracle Resources:

® Rules Language Reference forOracle Business Process Management

* Managing and Monitoring Processeswith Oracle Business Process Management
* Developing SOA Applications with Oracle SOA Suite

e Java API Reference for Oracle Business Rules

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

XVi

Conventions

The following text conventions are used in this document:

Convention

Meaning

boldface

italic

nonospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New Iin This Guide

This section summarizes the new features and significant product changes for Oracle
Business Rules in the Oracle Fusion Middleware Release 12¢ (12.2.1) release.

Screens shown in this guide may differ from your implementation, depending on the
skin used. Any differences are cosmetic.

Follow the pointers into this guide to get more information about the features and
how to use them. This document is the new edition of the formerly titled Oracle
Fusion Middleware User's Guide for Oracle Business Rules.

For a list of known issues (release notes), seeht t p: / / www. or acl e. cont
t echnet wor k/ m ddl ewar e/ soasui t e/ docunent at i on/
soaknown- 2644661. ht m

New and Changed Features for 12c (12.2.1)

Oracle Rules Language release 12c (12.2.1) includes the following new and changed
features:

e Support for a new non-Rete Business Rules algorithm. See The Non-Rete
Algorithm.

* Support for business phrases and verbal rules. Verbal rules work hand in hand
with business phrases to provide a flexible way author rules using natural
language statements to express rule logic in domain specific sentences that are
similar to spoken language. See Introduction to Verbal Rules and Business Phrases.

* Support for a simpler way to test rules with complex input. The test feature enables
both developers and business users to quickly check that a rule satisfies the
expected behavior or, if modified, to see if a rule regresses existing functionality.
See Testing and Validating Business Rules.

* Support for comparing and merging two or more dictionaries. See How to
Compare or Merge Two or More Dictionaries.

* Support for editing Decision Tables in Microsft Excel. Business users may find that
editing Decision Tables is easier to do in Microsoft Excel. New functionality enables
both developers and business users to export and edit Decision Tables in Excel and
then import the Decision Tables back into the dictionary. See Editing Decision
Tables in Microsoft Excel.

XVii

http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknown-2644661.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknown-2644661.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/soaknown-2644661.html

1

Overview of Oracle Business Rules

This chapter describes the concepts of business rules and provides an overview of the
Oracle Business Rules runtime and design-time elements such as facts, valuesets,
rulesets, decision tables, Oracle BP Composer and Oracle SOA Composer. It also
describes the Oracle Business Rules engine architecture.

This chapter includes the following sections:

¢ Introduction to Oracle Business Rules

¢ Understanding Oracle Business Rules Formats

® Oracle Business Rules Runtime and Design Time Elements

® Oracle Business Rules Engine Architecture

For more information on any references to Rules Language and Rules API in this book,
see the Related Documentation section of this book.

1.1 Introduction to Oracle Business Rules

Oracle Business Rules makes processes and applications more flexible by enabling
business analysts and non-developers to easily define and modify business logic
without programming. By leveraging the unified JDeveloper design platform, and
maintaining business rules outside of the related process or application, Oracle
Business Rules provides faster, easier rule modifications and reduces subsequent
redeployment costs.

Figure 1-1 Oracle Business Rules

Web based customization

— ik : —— 1 run time, design time

—rerr——— HE———————]
publish, deploy NMDS publish, deploy, I
commit —_—-

Rules Designer

use Rules Composer

Business S—
BD' BI' T w'* mﬁl S e
H"""--/ et

Unified Runtime —
Common JCA-based connectivity infrastructure Faolicy Manaper

‘Optimized

bheding Oracle Service Bus

Runtime audit trail

Using Oracle Business Rules you can automate policies, computations, and reasoning
while separating rule logic from underlying application code. This allows more agile

Overview of Oracle Business Rules 1-1

Introduction to Oracle Business Rules

rule maintenance and empowers business analysts to modify rule logic without
programmer assistance and without interrupting business processes.

As a business analyst, a user can model a rule in Process Composer and further refine
and complete the process in Process Studio.

An IT developer uses the BPM Studio and talk to its business catalogue with well
known data types, services, and human tasks implementation. The developer, then,
creates a project and publishes it into the business catalogue. Then a business analyst
or a business user can go in Process Composer and check out the projects in business
catalogue and make changes to the existing process models.

While some users want to model simple calculations with a handful of rules, others
use rules for complex decision making and hence a need to have a methodology to
approach the decision modeling problem.

Figure 1-2 Oracle Business Rules Components

Do ———
| - i
. . | Rules Designer Rules Composer i
Custom Authoring in | 9 P ! Custom Authoring in
applications ! : Workspace

! | Rules SDK | :
E i Dickanary 1 E
i Riihe Set & i
: If .. Then .. H
| - IF... Then ... :
] - .., Then ... 1
! Fule Set B H
: ; Ditonary 2 H
Rules Dictionary i

: = i i {@Foo =/

— | = _ M =% method Fool....)

BPMN & BPEL |E8 == |£| 3|

and ' | g § | XML, ADF-BC, JavaFacts | 2 & | -

. -— | |g® g2 — o

Web services i RETE Rules Engine | Application

The Oracle Business Rules includes the rule editor, rule browser, rules engine and rule
repository for rule discovery, governance, versioning, traceability and availability
across the enterprise. Business rules are defined using the Business Rules editor and
stored and managed in a central Business Rules repository. You can reference pre-
defined business process rules within the modeler. The Business Rules activity in the
business process model gets converted to a decision service that in turn invokes the
business rules engine in the executable business process. Business users can change
these business policies on the fly via an intuitive web browser interface without
having to redeploy or re-implement the business process.

1.1.1 Why Use Oracle Business Rules?

Oracle Business Rules is a high performance lightweight business rules product that
addresses the requirements for agility, business control, and transparency.

Business rules are statements that describe business policies or describe key business
decisions. For example, business rules can include:

* Business policies such as spending policies and approval matrices.

A financial institution could use a business rule such as:

1-2 Designing Business Rules with Oracle Business Process Management

Introduction to Oracle Business Rules

=l ¥ Loan Income Rule
Loan minimurm incorme

IF
Application_loan.income < 10000
THEN

modify Application_loan { deny @ true)

¢ Constraints such as valid configurations or regulatory requirements.

For example, a car rental company might use the following business rule:

=I ¥ Driver Age Rule
Determine if driver is old enough ko rent.

IF
Rental_application.driver age < 21
THEN

modify Rental_spplication { status : "DECLINED")

¢ Computations such as discounts or premiums.

* Reasoning capabilities such as offers based on customer value.

An airline might use a business rule such as the following;:

=l ¥ Frequent Flyer Rule
Calculate miles status

IF
Frequent_Flyer.botal_miles = 100000
THEN

modify Frequent_Flyer { status @ "GOLD")

These examples represent individual business rules. In practice, you can use Oracle
Business Rules to combine many business rules or to use more complex tests.

For the car rental example, you can name the rule the Driver Age Rule. Traditionally,
business rules such as the Driver Age Rule are buried in application code and might
appear in a Java application as follows:
public bool ean checkDriverAgeRul e (Driver driver) {

bool ean declineRent = fal se;

int age = driver.getAge();

if(age <21) {

declineRent = true;
}

return declineRent;

}

This code may be difficult for nontechnical users to understand and modify. For
example, suppose that the rental company changes its policy so that all drivers under
18 are declined using the Driver Age Rule. In many production environments the
developer must modify the application, recompile, and then redeploy the application.
This process is simplified because a business analyst can change policies that are
expressed as business rules, with little or no assistance from a programmer.
Applications using Oracle Business Rules support continuous change that allows the
applications to adapt to new government regulations, improvements in internal
company processes, or changes in relationships between customers and suppliers.

Overview of Oracle Business Rules 1-3

Introduction to Oracle Business Rules

1.1.2 Understanding Oracle Business Rules Terminology

A business rule must contain:
e Rulesets: A set of conditions or actions that determines the outcome of the rule.
¢ Facts: Data objects used by the ruleset.

e Decision functions: Reference to the code that executes the rule.

Additionally, a business rule may contain:

¢ Functions: Functions that may be called in the ruleset. An example of this type of
function is one that initializes a data object.

* Globals: Data objects that are used in the ruleset. May be constants.
¢ Valuesets: Lists or ranges of values used by the condition.

e Links: Links to other business rules dict.

The following sections provide additional details about these components.

1.1.2.1 What Are Facts and Valuesets?

In Oracle Business Rules, rules are written in terms of fact types. Each fact is an
instance of a fact type. You must import or create one or more fact types before you
can create rules, unless you use Verbal Rules, where you have the option of deferring
fact type modeling until the executable rule is defined.

In Oracle Business Rules, a FactType is a type definition in the data model and a fact is
an instance of that type. For example, rules are written in terms of fact types. The
Oracle Business Rules runtime, or a developer writing in the RL Language, uses the
RL Language assert function to add an instance of a fact to the Oracle Business
Rules. In Rules Designer you can define a variety of fact types based on XML Schema,
Java classes, Oracle RL definitions, and ADF Business Components view objects.

You can create valuesets to define a list of values or a range of values of a specified
type. After you create a valueset you can associate the valueset with a fact property of
matching type. Oracle Business Rules uses the valuesets that you define to specify
constraints on the values associated with fact properties in rules or in Decision Tables.
You can also use valuesets to specify constraints for variable initial values and
function return values or function argument values.

For more information, see:
e Working with Facts and Value Sets
* Oracle Business Rules Engine Architecture

1.1.2.2 What Are Rulesets?

A ruleset is an Oracle Business Rules container for IF-THEN rules and Decision Tables.
A ruleset provides a namespace, similar to a Java package, for rules and Decision
Tables. In addition you can use rulesets to partially order rule firing.

For more information, see:

* Working with Rulesets and Rules

1-4 Designing Business Rules with Oracle Business Process Management

Understanding Oracle Business Rules Formats

* Ordering Rule Firing in the Rules Language Reference for Oracle Business Process
Management

1.1.2.3 What Are Dictionaries?

A dictionary is an Oracle Business Rules container for facts, business phrases,
functions, globals, valuesets, links, decision functions, and rulesets. A dictionary is an
XML file that stores the application's rulesets and the data model. Dictionaries can link
to other dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary in
a . rul es file. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets. For more information, see Introduction to Dictionaries
and Dictionary Links.

1.1.2.4 What Are Globals?

Globals are any variables or constants that may be accessed anywhere in the business
rule. When you create globals you ensure that a business user can alter the rule
behavior without touching the rule logic.

1.1.2.5 What Are Decision Functions?

A decision function provides a contract for invoking rules from Java or SOA (from a
SOA /BPM composite application or from components within the composite
application). The contract includes input fact types, rulesets to run, and output fact
types. For more information, see Working with Decision Tables.

1.1.2.6 What Are Decision Points?

Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications
that access, create, modify, and execute rules in Oracle Business Rules dictionaries
(and all the contents of a dictionary). The Rules SDK provides the Decision Point API
to access and run rules or Decision Tables from a Java application. For more
information, see Working with Rules in Standalone (Non SOA /BPM) Scenarios.

1.1.2.7 What Are Business Phrases?

Business phrases are vocabulary elements that are used to construct tests and actions
for verbal rules. As you write a verbal rule, a set of business phrases, derived
automatically from terms, facts, globals and other dictionary elements, is made
available for inclusion in tests and actions. You can define your own business phrases.

Business phrases are not used in general rules.

1.2 Understanding Oracle Business Rules Formats

Oracle Business Rules provides multiple approaches to writing rules. Rules can be
modeled in different ways - as IF/THEN rules, and as Decision Tables.

There are two approaches to writing IF/THEN rules (or just rules) - as general rules,
and as verbal rules.

* General rules use a pseudo-code language to express rule logic
¢ Verbal rules use natural language statements to express rule logic

* Decision Tables are multiple related rules expressed in a spreadsheet-like format.

You write rules and Decision Tables in terms of fact types and properties. See Decision
Tables. Fact types are often imported from the Java classes, XML schema, Oracle ADF
Business Components view objects, or may be created in Rules Designer. Fact

Overview of Oracle Business Rules 1-5

Understanding Oracle Business Rules Formats

1.2.1 Rules

properties have a name, value, data type, and an optional valueset. A valueset splits
the value space of the data type into values or ranges that can be used in Decision
Tables, choice lists, and for design time validation (see What Are Facts and
Valuesets?).

You can write verbal rule tests and actions using derived business phrases as well as
user-defined business phrases. Derived business phrases are automatically created
using facts, globals and other information in the dictionary while user-defined phrases
can be explicitly authored to augment derived phrases. Further, user-defined phrases
can either be pre-created or created as needed while composing the verbal rule.

Rules and Decision Tables are grouped in an Oracle Business Rules object called a
ruleset (see What Are Rulesets?).

You group one or more rulesets and their facts and valuesets in an Oracle Business
Rules object called a dictionary (see What Are Dictionaries?).

For more information, see Oracle Business Rules Runtime and Design Time Elements.

Rules are used to evaluate conditions and specify actions when the conditions are met
(evaluate to true).

You can model rules using two different paradigms:
® General rules - use a pseudo-code language to express rule logic.

¢ Verbal rules - use natural language statements to express rule logic in domain
specific sentences that are akin to spoken language. See How are Verbal Rules
Different from General Rules?

Rules follow an if-then structure and consist of the following parts:
o [F part: a condition or pattern match (see What Are Rule Conditions?).

¢ THEN part: a list of actions (see What Are Rule Actions?).

1.2.1.1 What Are Rule Conditions?

The rule IF part is composed of conditional expressions that refer to fact types.
For example, for a general rule:

IF Rental_application.driver age < 21

The general rule conditional expression compares a business term
(Rental_application.driver age) to the number 21 using a less than comparison.

And for a verbal rule:
IF rental car driver is an underage driver

The verbal rule condition is a business phrase that can specify one or more logical
tests. (See What Are Business Phrases?).

The rule condition activates the rule whenever a combination of facts makes the
conditional expression true. In some respects, the rule condition is like a query over
the available facts in the Rules Engine, and for every row returned from the query the
rule is activated.

For more information, see:

1-6 Designing Business Rules with Oracle Business Process Management

Understanding Oracle Business Rules Formats

* Working with Facts and Value Sets
¢ Working with Rulesets and Rules

* Rule Conditions in the Rules Language Reference for Oracle Business Process
Management guide.

1.2.1.2 What Are Rule Actions?

The rule THEN part contains the actions that are executed when the rule is fired. A
rule is fired after it is activated and selected among the other rule activations using
conflict resolution mechanisms such as priority.

A rule might perform several kinds of actions. An action can add facts, modify facts,
or remove facts. An action can execute a Java method or perform a function which
may modify the status of facts or create facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of
rule activations and thus can affect which rule fires next.

For more information, see:
* Rule Firing and Rule Sessions
¢ Working with Rulesets and Rules

® Ordering Rule Firing in the Rules Language Reference for Oracle Business Process
Management guide

1.2.1.3 How are Verbal Rules Different from General Rules?

Verbal rules allow you to use pseudo-natural language statements to express rule
logic. They provide a way to write rules using domain specific sentences that are
similar to spoken language.

Verbal rules work closely with business phrases, which provide the vocabulary for
you to compose natural language tests and actions. See What Are Business Phrases?.

For example, a general rule test as shown in the example below:

I F

all of the following are true

policy is a policy

policyScore.type == Score Type. Policy
policyScore.id == policy.id

car is a Car

carScore is a Score Tracker

car Score.type == Score Type. Car
carScore.id == car.id

customer is a Customer

customerScore is a Score Tracker

cust oner Score. type == Score Type. Cust omer
customer Score.id == custonmer.id

score of a car == carScore.score

score of custonmer == custonerScore. score
score of policy = policyScore.score

THEN

assi gn new BigDeci mal var = newBi gDeci mal ((1+((2-((custonerScore + carScore +

pol i cyScore)/150))/100))*(Lower Threshol d))

assi gn new doubl e premi um = var. set Scal e(1, Bi gDeci mal . ROUND_HALF_UP) . doubl eVal ue()

Overview of Oracle Business Rules 1-7

Oracle Business Rules Runtime and Design Time Elements

The verbal rule expression of this same test might be:

I F

ready to cal cul ate premium

THEN

cal cul ate prem umbase on score of custoner, score of policy and score of car

Business phrases such as 'ready to calculate premium’, 'score' and so on would detail
the logic for the conditions.

You can write verbal rules in a way that suits your style, 'top down' or 'bottom up'.

For example, you can write a verbal rule using business phrases that are not yet
defined. Once you have the a verbal rule that expresses the logic for your tests and
actions, you can then define the specifics of the business phrases.

You can also compose verbal rules using system provided derived business phrases.
These are business phrases that are automatically created based on the existing terms,
facts, globals and other dictionary elements.

Alternatively, you can write verbal rules using a bottom up style, by defining all the
business phrases you'll need first, and then using them in the tests and actions of your
verbal rules.

For more information, see Working with Rulesets and Rules

1.2.2 Decision Tables

A Decision Table is an alternative business rule format that is more compact and
intuitive when many rules are needed to analyze many combinations of property
values. You can use a Decision Table to create a set of rules that covers all
combinations or where no two combinations conflict.

Although a decision table is functionally equivalent to if-then rules, you will find
decision tables are ideal for specific circumstances:

e Complexity

Decision tables simplify complex rules. When there are multiple rules, each of
which have multiple conditions and actions, a decision table is much easier to work
with.

¢ Conflict resolution
A decision table will indicate if any of the conditions are in conflict.
e Gap analysis

You can analyze a decision table to determine if some conditions are not being
accommodated.

For more information, see Working with Decision Tables.

1.3 Oracle Business Rules Runtime and Design Time Elements

Oracle Business Rules provides support for using business rules as a Decision
Component or as a library in a Java application. A Decision Component is a
mechanism for publishing rules and rulesets as a reusable service that can be invoked
from multiple business processes.

1-8 Designing Business Rules with Oracle Business Process Management

Oracle Business Rules Runtime and Design Time Elements

To create and use rules in the Oracle SOA Suite or Oracle BPM Suite, or to create rules
and integrate these rules into your applications, Oracle Business Rules provides the
following runtime and design time elements:

¢ Decision Component (Business Rules) in a SOA Composite Application
¢ Using Rules Engine with Oracle Business Rules in a Java EE Application
¢ Oracle Business Rules RL Language

¢ Oracle Business Rules SDK

* Rules Designer

¢ Oracle SOA Composer Application

¢ Using BP Composer

1.3.1 Decision Component (Business Rules) in a SOA Composite Application

Oracle SOA Suite provides support for Decision Components that support Oracle
Business Rules. A Decision Component is a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is an SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision Components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

Oracle Business Rules Rules Engine (Rules Engine) is available in a SOA composite
application using the SOA Business Rule service engine that efficiently applies rules to
facts and defines and processes rules.

For more information, see Oracle Business Rules Engine Architecture.

1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE Application

The Rules Engine is available as a library for use in a Java EE application (non-SOA).
Rules Engine efficiently applies rules to facts and defines and processes rules. Rules
Engine defines a Java-like production rule language called Oracle Business Rules RL
Language (RL Language), provides a language processing engine (inference engine),
and provides tools to support debugging.

Using Rules Designer you can specify business rules separately from application code
which allows you to change business policies quickly with graphical tools. The Rules
Engine evaluates the business rules and returns decisions or facts that are then used in
the business process.

A rule-enabled Java application can load and run rules programs. The rule-enabled
application passes facts and rules to the Rules Engine (facts are asserted in the form of
Java objects or XML documents). The Rules Engine runs in the rule-enabled Java
application and uses the Rete algorithm to efficiently fire rules that match the facts.

For more information, see Oracle Business Rules Engine Architecture and Oracle
Business Rules SDK.

1.3.3 Oracle Business Rules RL Language

Oracle Business Rules supports a high-level Java-like language called Oracle Business
Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle

Overview of Oracle Business Rules 1-9

Oracle Business Rules Runtime and Design Time Elements

Business Rules programs. RL Language includes an intuitive Java-like syntax for
defining rules that supports the power of Java semantics, providing an easy-to-use
syntax for application developers. RL Language consists of a collection of text
statements that can be generated dynamically or stored in a file.

Using RL Language application programs can assert Java objects as facts, and rules
can reference object properties and invoke methods. Likewise, application programs
can use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language
both directly and as part of the Oracle Business Rules SDK (Rules SDK).

Business analysts can use Rules Designer to work with rules. In this case, the business
analyst does not need to directly view or write RL Language programs. For more
information, see Rules Designer.

1.3.4 Oracle Business Rules SDK

Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule
management features that a developer can use to write a rule-enabled program that
accesses a dictionary, or to write customized rules programs that add rules or modify
existing rules. Rules Designer uses Rules SDK to create, modify, and access rules and
the data model using well-defined interfaces. Customer applications can use Rules
SDK to access, display, create, and modify collections of rules and the data model.

You can use the Rules SDK APIs in a rule-enabled application to access rules or to
create and modify rules. The rules and the associated data model could be initially
created in a custom application or using Rules Designer.

This guide describes the Oracle Business Rules SDK Decision Point API. Using a
Decision Point you can access a dictionary and run the rules in the dictionary.

For more information, see Working with Rules in Standalone (Non SOA /BPM)
Scenarios.

1.3.5 Rules Designer

The Oracle Business Rules Designer (Rules Designer) extension to Oracle JDeveloper is
an editor that enables you to create and edit rules.

Rules Designer provides a point-and-click interface for creating and editing General
Rules and Decision Tables. Because you can work directly with business rules and a
data model, you do not need to understand the RL Language to work with Rules
Designer.

Rules Designer also provides Verbal Rules, with guided authoring (auto-suggest and
filtering), and a keyboard based interface. For more information on using guided
authoring and keyboard based interface, see How to Add Verbal Rules in SOA
Composer.

Rules Designer supports several types of users, including the application developer
and the business analyst. The application developer uses Rules Designer to define a
data model and an initial set of rules. The business analyst uses Rules Designer either
to work with the initial set of rules or to modify and customize the initial set of rules
according to business needs. Using Rules Designer, a business analyst can create and
customize rules with little or no assistance from a programmer.

Alternatively, in top-down modeling, a Business Analyst can descriptively define the
rules which can be implemented by the developer later. These different modeling
approaches require collaboration between the developer and the analyst.

1-10 Designing Business Rules with Oracle Business Process Management

Oracle Business Rules Engine Architecture

In most cases, Rule modeling is done iteratively, with both of them contributing to the
creation of a Domain Specific Language that can be used to define rules using less
technical and more natural-language like sentences.

For more information about verbal rules, see Working with Rulesets and Rules.

1.3.6 Oracle SOA Composer Application

When a dictionary is deployed in a SOA composite application, Oracle Business Rules
lets you view the dictionary or edit and save changes to the dictionary. You can use
the SOA Composer application (SOA Composer) to work with a deployed dictionary
that is part of a SOA composite application.

For more information, see Using Oracle SOA Composer with Oracle Business Rules at
Runtime.

1.3.7 Oracle Business Process Composer Application

The Business Process Composer rules editor enables you to view and edit a rules
dictionary. Rules dictionaries are displayed in a tabbed window similar to the process
editor and data association editor.

For more information on using Rules in BP Composer, see Working with Oracle
Business Process Composer Rules Editor in Oracle Fusion Middleware Developing
Business Processes with Oracle Business Process Composer.

1.4 Oracle Business Rules Engine Architecture

A rule-based system using the Rete algorithm is the foundation of Oracle Business
Rules.

A rule-based system consists of the following:

¢ The rule-base: Contains the appropriate business policies or other knowledge
encoded into IF/THEN rules, verbal rules and Decision Tables.

e Working memory: Contains the information that has been added to the system.
With Oracle Business Rules you add a set of facts to the system using assert calls.

¢ Inference Engine: The Rules Engine, which processes the rules, performs pattern-
matching to determine which rules match the facts, for a given run through the set
of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining
system. The facts determine which rules can fire so when a rule fires that matches a set
of facts, the rule may add facts and these facts are again run against the rules. This
process repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a
forward-chaining rule-based system, facts cause rules to fire and firing rules can create
more facts, which in turn can fire more rules. This process is called an inference cycle.

A Non-Rete Algorithm is also available for use. For more information about both, see
The Rete Algorithm and The Non-Rete Algorithm.
1.4.1 Declarative Rules

With Oracle Business Rules you can use declarative rules, where you create rules that
make declarations based on facts rather than coding. Here is an example of declarative
rules:

Overview of Oracle Business Rules 1-11

Oracle Business Rules Engine Architecture

I F a Custoner is a Premumcustoner, offer them 10% di scount
IF a Custoner is a Gold custoner, offer them 5% di scount

In declarative rules:

* Statements are declared without any control flow.
¢ Control flow is determined by the Rules Engine.

¢ Rules are easier to maintain than procedural code.

e Rules relate well to business user work methods.

When a rule adds facts and these facts run against the rules, this process is called an
inference cycle. An inference cycle uses the initial facts to cause rules to fire and
firing rules can create more facts, which in turn can fire more rules. For example, using
the initial facts, Rules Engine runs and adds an additional fact, and an additional rule
tests for conditions on this fact creating an inference cycle:

IF a Custoner is a Premumcustoner, offer them 10% di scount
IF a Custoner is a Gold custoner, offer them 5% di scount
|F a Customer spends > 1000, nake them Prem um cust oner

The inference cycle that Oracle Business Rules provides enables powerful and
modular declarative assertions.

1.4.2 The Rete Algorithm

The Rete algorithm was first developed by artificial intelligence researchers in the late
1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules
uses the Rete algorithm to optimize the pattern matching process for rules and facts.
The Rete algorithm stores partially matched results in a single network of nodes in
working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when
facts are deleted, added, or modified. To process facts and rules, the Rete algorithm
creates and uses an input node for each fact definition and an output node for each

rule.

Fact references flow from input to output nodes. In between input and output nodes
are test nodes and join nodes. A test occurs when a rule condition has a Boolean
expression. A join occurs when a rule condition ANDs two facts. A rule is activated
when its output node contains fact references. Fact references are cached throughout
the network to speed up recomputing activated rules. When a fact is added, removed,
or changed, the Rete network updates the caches and the rule activations; this requires
only an incremental amount of work.

The Rete algorithm provides the following benefits:

¢ Independence from rule order: Rules can be added and removed without affecting
other rules.

* Optimization across multiple rules: Rules with common conditions share nodes in
the Rete network.

¢ High performance inference cycles: Each rule firing typically changes just a few
facts and the cost of updating the Rete network is proportional to the number of
changed facts, not to the total number of facts or rules.

1-12 Designing Business Rules with Oracle Business Process Management

Oracle Business Rules Engine Architecture

1.4.3 The Non-Rete Algorithm

The Non-Rete algorithm (NRE) is an alternative to the Rete algorithm that consumes
less memory than the Rete algorithm. For many business rules use cases it will also
result in improved performance. The core of NRE algorithm is a new rule condition
evaluation approach. Key points about the new algorithm:

* Simpler internal rule representation.
* Byte code generated for rule tests, rule actions, and user defined functions.
* More efficient modify operation.

¢ Rule conditions not evaluated until the containing ruleset is on the top of the stack.
After initial evaluation, re-evaluation occurs on fact operations as needed.

* Ability to avoid unnecessary re-evaluation when rulesets are only present on the
ruleset stack once during rule execution.

® Preserves rule execution semantics.
The two main differences between the two algorithms are:

e Rule condition evaluation:

— In the Rete algorithm, rule conditions are evaluated when fact operations occur
(assert, modify, retract).

— In the Non-Rete algorithm, rule conditions are evaluated for the first time when
the ruleset is on the top of the stack, then on fact operations after that.

* Rule firing order. There are cases where the rule firing order is not defined, for
example when a single fact activates multiple rules at the same time and the
priorities are identical. In these cases, the order in which the rule activations fire
may be different.

Note:

It is possible that an existing set of rules has an implicit dependency on the
order in which the rules fire with the Rete algorithm even though that order
may not be defined. The order may be different with the Non-Rete algorithm
which may expose a latent bug in the rules as authored.

1.4.3.1 Configuring the Non-Rete Algorithm

In Rule Designer, the algorithm can be selected in the Dictionary Settings panel in the
preferences tab. Algorithm selection is automatically handled for SOA and BPM
composite applications. For JEE applications or other non-SOA /BPM applications, the
algorithm selection will need to be specified when the RuleSession or RuleSessionPool
is created.

For more information about RuleSessions, see Using a RuleSession in the Oracle Fusion
Middleware Language Reference Guide for Oracle Business Rules.

It is common that multiple rulesets are executed during a rule execution. It is also
common that each ruleset is pushed onto the ruleset stack once and once rules in that
ruleset have completed firing, it is not pushed onto the stack again during that rule

Overview of Oracle Business Rules 1-13

Oracle Business Rules Engine Architecture

execution. With the Non-Rete algorithm additional performance gain can be realized
for these cases by specifying that the rulesets will only appear on the stack once. When
the Non-Rete algorithm is selected, click the Rulesets Are On Stack Once' check box in
a decision function definition to enable this feature.

For information about when to use the Rete or Non-Rete algorithms, see Rules Engine
Algorithm in the Rules Language Reference for Oracle Business Process Management.

1.4.4 What Is Working Memory?

Oracle Business Rules uses working memory to contain facts. Facts do not exist outside
of working memory. A RuleSession contains the Oracle Business Rules working
memory.

1.4.5 Rule Firing and Rule Sessions

A Rule Session consists of rules, facts and an agenda. An assert or retract adds or
removes fact instances from working memory.

When facts in working memory are changed:

¢ Conditions for rules are evaluated

® Matching rules are added to the agenda (Activated)

¢ Rules which no longer match are removed from agenda

* Rules Engine runs and executes actions (fires), for activated rules

Figure 1-3 shows these parts of Oracle Business Rules runtime.

Figure 1-3 Rules in Rule Session with Working Memory and Facts

Client Rule Session
Rulesets

Matchin
O ‘ Agenda
i Fact Activation

Java —
Objects —» Fact Activation
Activation
Fact
—||l= Activation
r'y
XML i .
Data Working Memorny

A rule action may assert, modify, or retract facts and cause activations to be added or
removed from the agenda. There is a possible loop if a rule's action causes it to fire

1-14 Designing Business Rules with Oracle Business Process Management

Oracle Business Rules Engine Architecture

again. Rules are fired sequentially, but in no pre-defined order. The rule session
includes a ruleset stack. Activated rules are fired as follows:

¢ Rules within top-of-the-stack ruleset are fired
e Within a ruleset, firing is ordered by user-defined priority

¢ Within the same priority, the default is that the most recently activated rule is fired
first. For more information, see the setStrategy function in the Rules Language
Reference for Oracle Business Process Management.

For the Rete algorithm, only rules within rulesets on the stack are fired, but all rules in
a rule session are matched and, if matched, activated. For the non-Rete algorithm, this
is true for rules in the ruleset on the top of the stack. It is also true for rules in rulesets
that have been popped from the ruleset stack unless "Rulesets Are On Stack Once" has
been checked.

Overview of Oracle Business Rules 1-15

Oracle Business Rules Engine Architecture

1-16 Designing Business Rules with Oracle Business Process Management

2

Working with Data Model Elements

This chapter describes the Oracle Business Rules data model comprising fact types,
functions, globals, value sets, decision functions, and dictionary links.

The chapter includes the following sections:

¢ Introduction to Working with Data Model Elements
® Introduction to Dictionaries and Dictionary Links

e Working with Oracle Business Rules Globals

¢ Working with Decision Functions

¢ Introduction to Oracle Business Rules Functions

¢ Localizing Oracle Business Rule Resources

2.1 Introduction to Working with Data Model Elements

To implement the data model portion of an Oracle Business Rules application you
create a dictionary and add data model elements. To complete the dictionary, you
create one or more rulesets containing rules that use or depend upon these data model
elements.

For more information, see:
¢ Working with Facts and Value Sets
¢ Working with Rulesets and Rules

¢ Working with Decision Tables

2.2 Introduction to Dictionaries and Dictionary Links

A dictionary is an Oracle Business Rules container for facts, functions, globals,
valuesets, links, decision functions, and rulesets. A dictionary is an XML file that
stores the rulesets and the data model for an application. Dictionaries can link to other
dictionaries.

You can create as many dictionaries as you need. A dictionary may contain any
number of rulesets and data model elements. A data model can be contained in one or
more dictionaries. All the data model elements referenced by the rulesets must be
available in the dictionary either directly or through links.

A dictionary is stored in a *. r ul es file.

Working with Data Model Elements 2-1

Introduction to Dictionaries and Dictionary Links

2.2.1 Working with Dictionaries and Dictionary Links

When you create a dictionary, you give it a name and a package, similar to a Java
class. You can create data model elements and rulesets inside this dictionary, and you
can also reference the data models and rulesets of other dictionaries by creating a
dictionary link and specifying the name and package of the target dictionary. Each
dictionary logically contains the built-in dictionary. This dictionary includes standard
functions and types that all Oracle Business Rules applications need. You cannot
modify the built-in dictionary.

In addition to the main dictionary, you can create one or more application-specific
dictionaries, such as Pur chasel t ens. r ul es. You can modify the properties of these
dictionaries.

The complete data model defined by a dictionary and its linked dictionaries is called a
combined data model. You can create multiple links to the same dictionary; in this
case, all but the first link is ignored.

For more information, see What You Need to Know About Dictionary Linking.

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer

Oracle JDeveloper provides multiple ways to create dictionaries for Oracle Business
Rules. You can create a dictionaries for use in a SOA applications. This section
illustrates one way to create a dictionary in a SOA project.

A typical SOA composite design pattern provides each application with its own
dictionaries. Each application is self-contained and can be deployed independently of
other applications.

Sometimes multiple applications will require access to common parts of a common
data model. In this case, use dictionary links to include a target application's
dictionary in the source application. The source application copies the target
application's dictionary and retains the contents of the copies linked to the source.
When you use the linked elements, they are shown as local contents.

You can also create a dictionary in the business tier for use outside of a SOA
application. For more information, see How to Create an Oracle Business Rules
Dictionary in the Grades Project.

To create a dictionary in the SOA Tier using Rules Designer:

1. Inthe Application Navigator, select a SOA application and select or create a SOA
project.

2. Click the down arrow, and select New, From Gallery from the list.

3. Inthe New Gallery dialog, expand SOA Tier as shown in Figure 2-1.

2-2 Designing Business Rules with Oracle Business Process Management

Introduction to Dictionaries and Dictionary Links

Figure 2-1 Creating a Business Rules Dictionary for a SOA Project

x|

New Gallery
Categories: Items: |:| Show All Descriptions
“OERFiles & BPEL 2.0 5ub
: .0 Subprocess
[=}--Service Bus Tier .
----- Services &% BPEL Process
----- Interfaces
----- Transformations < Business Rules
----- Security Opens the Create Business Rules dialog, which allows you to define a
..... Utility dictionary of business rules based onthe Oracle business rules engine. To
enable this option, you must select a project or a file within a project in the
----- System L X
Application Mavigator.
[=}-SOA Tier
..... Faults ; Event Definition

-Interfaces
& Human Task

rvice Components

‘Tests & Mediator
----- Transformations/Translations =)
- Web Tier off oA Composite

&, Spring Context

Help Ok Cancel

In the New Gallery window, select Business Rules.
Click OK. This displays the Create Business Rules dialog.
In the Create Business Rules dialog, enter fields as shown in Figure 2-2:

¢ In the Name field, enter the name of your dictionary. For example, enter
Pur chasel t ens.

* In the Package field, enter the Java package to which your dictionary belongs.
For example, com exanpl e.

Working with Data Model Elements 2-3

Introduction to Dictionaries and Dictionary Links

Figure 2-2 Create Business Rules Dialog
"f. Create Business Rules x|

Business Rule
A business rule defines or constrains one aspect of your business that is intended to assert
business structure or influence the behavior of your business.

General Advanced

() Create Dictionary () Import Dictionary

Specify the name and package for the dictionary that will be created.

Mame: |OracIeRuIesl |

Package: |insurancequoteproject |

Project: |h,.flhayne,.’projects,.’InsuranceQuoteApp,’lnsuranceQuoteProject,."lnsuranceQuoteProject.jpr|

Inputs/Outputs: +- X a v
Direction MName Type
Help [5]8 Cancel

7. To specify the inputs and outputs:

a. Click the Add button and select Input to create an input or Output, to create
an output.

b. In the Type Chooser dialog, expand the appropriate XSD and select the
appropriate type.

c. Click OK to close the Type Chooser dialog.

You can later add inputs or outputs, or remove the inputs or outputs. For more
information, see Working with Decision Functions.

8. In the Create Business Rules dialog, click OK to create the Decision Component
and the Oracle Business Rules dictionary.

Oracle JDeveloper creates the dictionary in a file with a . r ul es extension, and
starts Rules Designer as shown in Figure 2-3. Note the screen shot shows some
BPM functionality that you may not have access to in SOA if you do not have
BPM installed.

2-4 Designing Business Rules with Oracle Business Process Management

Introduction to Dictionaries and Dictionary Links

Figure 2-3 Creating a New Oracle Business Rules Dictionary

¥y Oracle JDeveloper 12c Development Build - InsuranceQuoteApp. jws : InsuranceQuoteProject.jpr : /scratch/lhayne/projects/in = |2 |[¥|
File Edit View Application Refactor Search Navigate EBuild Run Team JTools Window Help

CHE 9@ @ O~ o) = ol [3 Q(Search
Applications - CarlnsuranceDSLOnly.rules @ Carlnsurance0OBOnly.rules

e
4 InsuranceQuoteApp - & @) 15 @ M e (k% @ o @
8| Jprojects [F 8- T E-

E E

= — @ settings i &

s g] InsuranceQuateroject Q4 Overview \) General Rules &~ Verbal Rules
P -] BPm =) Facts .

E (72 BPMMN Processes £ Functians P Rule Set Properties

= +[@ Business Components @) Clobals Mame ‘Pr’em\um Calculator i)
= &1 [Z3 Business Rules
o H =
°] H \) CarlnsuranceDSLOnNI =_| Value Sets Effective Date: Always Valid Active
E \) CarlnsuranceQQBON N
& Links -
£ . CarlnsuranceRules ri L Description,
| -, Activity Cuide i Decision Functions [

& -y Organization @ Transfations

= [Resources

= 3 s0a B Test

TestSample 3 Data Explorer
® < General Rules [@ Decision Tables &7 Verbal Rules
&7 Business Phrases
+ x A Ceneral Rule is used to A Decision Table displays AWerbal Rule is used to define
Rule Sets define tests and actions ina multiple related rules in a tests and actions combining

@ Premium Calculator code-style view, single spreadsheet-style view. Business Phrases,
=l Application Resourees &b Customer Score Ca.. General Rules: + 7R Decision Tables: + /R + /KA
g ?:I,Lizgf,zns = P e Cmmen s Ié]!é] | ‘ ‘ & create Terms
$ {0 Descriptars Mode: EDIT Locale: English (United States)
- Libraries

Design
Business Rules - Log

% Dictionary - Carlnsurance DOEOnly rules

Message Dictionary Object Property ‘
+| Data Contrals = -
El BYE SDK Warnings: 0 Last Validation Time: 9:44:53 AM PST
=+ Recent Files

Messages Extensions \)Business Rules

@= Breakpoints =] Live Issues: CarlnsuranceQOBOnly.rules - Issues

9. Oracle JDeveloper also creates a Decision Component in composite.xml. To view
this component double-click the conposi t e. xni file.

2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer

Use Rules Designer to create a rules dictionary for use in the business tier, outside of a
SOA application. For information on using Oracle Business Rules without SOA, see
Creating a Rule-enabled Non-SOA Java EE Application.

2.2.4 How to View and Edit Dictionary Settings

You can view and edit dictionary settings using the Settings tab. The Settings tab has
three tabs: General, Preferences, and Data Model. Use the Preferences tab to select
the execution algorithm and specify phrase suggestions that appear when you are
using Verbal Rules. Use the Data Model tab to specify the global qualifier pattern, also
for Verbal Rules. The pattern must contain two fragments: {member}, {fact}. For
example, {member} of {fact}.

2.2.4.1 How to Change the Dictionary Alias

To change the Dictionary alias:

1. In Oracle JDeveloper, open an Oracle Business Rules dictionary.

2. In Rules Designer, click the Settings tab.

3. In the Dictionary Settings dialog, in the Alias field, change the alias to the name
you want to use. This field is shown in Figure 2-4.

Working with Data Model Elements 2-5

Introduction to Dictionaries and Dictionary Links

Figure 2-4 Dictionary Settings, General Tab

\) CarlnsuranceDSLOnly. rules \) CarlnsuranceQOEOnly.rules [25]
vE 9@ B & O @
@ Settings
% Dictionary Settings @é}
'__] Facts
'f': Functions Mame: |Car|nsuranceDSLOnIy |
Global
m obals Alias: |Car|nsuranceDSLOnIy @
E_] Walue Sets
Package: |insurancequoteproject
D Links
Version: 111100

& Decision Functions

Resource Bundle: |CarlnsuranceDSLOnIyTransIations
%Translations |

Description:
a Test

T Data Explorer

Schema Path Root: |fi|e:jscratch,flhayne,fprojects,.flnsuranceQuoteApp,"lnsuranceQuoteProject,fSOA,f

|
|
|
(3
|
|

Locale: |Eng|ish {United States)
m@ Business Phrases
Rule Sets 3 %
&P Premium Calculator
@ Customer Score Ca...
P e C e Caledntoan
e ot GCeneral Preferences Data Model
e 2=

Mode: EDIT Locale: English (United States)
Design

=

2.2.4.2 How to Edit the Preferences tab

To edit the Preferences tab:

1. On the Settings tab, click the Preferences tab, shown in Figure 2-5.
2. In the Rule Execution Algorithm field, choose RETE or Non-RETE.

For more information about the RETE or Non-RETE algorithm, see Configuring the
Non-Rete Algorithm.

3. In the Phrase Suggestions field, choose All, Auto Suggestions, or Business
Phrases. Phrase suggestions are for verbal rules. You can choose to see auto
suggestions only, business phrases only, or both.

For more information about business phrases, see Introduction to Verbal Rules and
Business Phrases.

2-6 Designing Business Rules with Oracle Business Process Management

Introduction to Dictionaries and Dictionary Links

Figure 2-5 Dictionary Settings, Preferences Tab

\) CarlnsuranceD5LOnly. rules \) CarlnsuranceQOBOnly.rules

CE D@ B m ND 8 @
E Settings
& Dictionary Settings @E‘}
:] Facts
F= Functions _ .
Rule Execution Algorithm: |RETE '|
() Clobals
E_] Value Sets Phrase Suggestions
2D Links Value: |Bu5iness Phrases '|
Q Decision Functions
A uto Suggestions

%Translatlons Business Phrases
a Test
il Data Explorer
G'@ Business Phrases

Rule Sets g
@} Premium Calculator
&P Customer Score Ca...
P e fearn Calenlatar

o otend General Preferences Data Model
e ®

Mode: EDIT Locale: English (United States)
Design
Bkl LU

2.2.4.3 How to Edit the Data Model tab

To edit the Data Model tab:

1. In the Global Qualifier Pattern field, shown in Figure 2-6, click the Bundle Editor
button to update the resource bundles for this translatable value.

You can specify the global qualifier pattern here. This is used in verbal rules. The
pattern must contain two fragments: {member} and {fact}. The fragments {member}
as well as {fact} are mandatory.

2. Click Close when done.

Working with Data Model Elements 2-7

Introduction to Dictionaries and Dictionary Links

Figure 2-6 Dictionary Settings, Data Model Tab

\) CarlnsuranceDSLOnly. rules \) CarlnsuranceDOBOnly. rules

L9 Bk VD 4 L,
Q Settings Q Dictionary Settings @E‘}
'__] Facts
_f, Functions Global Qualifier Pattern:

m Clobals jmr:mbr:r} of {fact} ‘z.'_.J|
E_] Walue Sets
2D Links

Q Decision Functions

%Translations

a Test

T Data Explorer

G@ Business Phrases
Rule Sets g %

@ Premium Calculator

&P Customer Score Ca...

I s General Preferences Data Model
e =
Mode: EDIT Locale: English (United States)
Design
=

2.2.5 How to Link to a Dictionary

You can link to a dictionary in the same application using the Links navigation tab in
Rules Designer. To link to another dictionary you need at least one other dictionary
available.

To link to a dictionary using resource picker:

1. In Rules Designer, click the Links navigation tab as shown in Figure 2-7.

Figure 2-7 Rules Designer Links Tab

\) CarlnsuranceDSLOnly.rules \) CarlnsuranceOOEOnly.rules

L]
CE D@ Bk D @

@ settings

Links

'__] Facts €9

£ Functions Links: @E} + - / KRG |

(x) Globals Alias MName Package Mame Pre|Q§ Resource Picker...

E_l Value Sets @ Standalone Dictionary...

J \) Composite Dictionary... Decision Point Dictionary

Links

Decision Functions
‘E_'—_J Translations
a Test
T Data Explorer
m@ Business Phrases
Rule Sets 3= B
@ Premium Calculator

@ Customer Score Ca...

B o Croen Calenlator

< =E

Mode: EDIT Locale: English (United States)
Design
Bl L}

2-8 Designing Business Rules with Oracle Business Process Management

Introduction to Dictionaries and Dictionary Links

2. In the Links area, click the Create button and from the list select Browse Existing
Dictionaries. This displays the SOA Resource Browser dialog.

3. In the SOA Resource Browser dialog navigate to select the dictionary you want to
link to as shown in Figure 2-8.

Figure 2-8 Resource Picker

|"|'

| Application v|

Projectl jpr
E!--- Project2.jpr

----- O ltemizedFare.rules

------ Q OracleRulesl.rules

| Help | | Cancel

4. Click OK.

When you work with ADF Business Components Facts you should create a link to the
Decision Point Dictionary. For more information, see Working with Oracle Business
Rules and ADF Business Components.

In order to link the decision point dictionary, click the Links navigation tab in Rules
Designer. In the Links area, click Create and from the list select Decision Point
Dictionary. This operation takes awhile. You need to wait for the Decision Point
Dictionary to load.

2.2.6 How to Update a Linked Dictionary

When you have a dictionary, for example, Project_rules] that links to another
dictionary, for example, Shared_rules you need to see changes made to either
dictionaries in both. For example, you can modify the Shared_rules dictionary and see
those modifications in Project_rulesl by updating the Project_rules1 dictionary, or by
closing and reopening the Rules Designer. Note that you can only see the changes in
the linked dictionary from the dictionary which defines the link and not vice versa.

To update a linked dictionary:

1. Using these sample dictionary names click the Save button to save the
Shared_rules dictionary.

2. Select the Project_rules1 dictionary.

3. Select the Links navigation tab.

Working with Data Model Elements 2-9

Introduction to Dictionaries and Dictionary Links

4. Click the Dictionary Cache... button.

5. In the Dictionary Finder Cache dialog, select the appropriate linked dictionary.
6. Click the Clear button.

7. In the Dictionary Finder Cache dialog, click Close.

8. Click the Validate button.

2.2.7 What You Need to Know About Dictionary Linking

Using a dictionary with links to another dictionary is useful in the following cases:

e Data Model Sharing, to share portions of a data model within a project. When you
link to a dictionary in another project it is copied to the local project.

For example, consider a project where you would like to share some Oracle
Business Rules Functions. You can create a dictionary that contains the functions,
and name it Di ct Conmon. Then, you can create two dictionaries, Di ct Appl and
Di ct App2 that both link to Di ct Conmon, and both can use the same Oracle
Business Rules functions. When you want to change one of the functions, you only
change the version in Di ¢t Conmon. Then, both dictionaries use the updated
function the next time RL Language is generated from either Di ct App1l or

Di ct App2.

In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN
and this consists of two components:

* Dictionary Package: The package name

* Dictionary Name: The dictionary name

A dictionary refers to a linked dictionary using its DictionaryFQN and an alias. Oracle
Business Rules uses the DictionaryFQN to find a linked dictionary.

The following are the naming constraints for combined dictionaries:

¢ The full names of the dictionaries, including the package and name, must be
distinct. In addition, the dictionary aliases must be distinct.

® The aliases of data model definitions of a particular kind, for example, function,
Oracle RL class, or value set, must be unique within a dictionary.

¢ A definition may be qualified by the alias of its immediately containing dictionary.
Definitions in the top and built-in dictionaries do not have to be qualified.
Definitions in other dictionaries must be qualified and this qualification is
controlled by the prefix linked names property of the dictionary link.

* Ruleset names must be unique within a dictionary. When RL Language for a
ruleset is generated, the dictionary alias is not part of any generated name. For
example, if the dictionary named dict1 links to dict2 to create a combined
dictionary, and dictl contains ruleset_1 with rule_1 and dict2 also contains
ruleset_1 with rule_2, then in the combined dictionary both of these rules, rule_1
and rule_2 are in the same ruleset (ruleset_1).

* All rules and Decision Tables must have unique names within a ruleset.

For example, within a combined dictionary that includes dictionary d1 and
dictionary d2, dictionary d1 may have a ruleset named Rul eset _1 with a rule

2-10 Designing Business Rules with Oracle Business Process Management

Introduction to Dictionaries and Dictionary Links

rule_1. If dictionary d2 also has a ruleset named Rul eset _1 with a rule_2, then
when Oracle Business Rules generates RL Language from the combined, linked
dictionaries, both rules rule_1 and rule_2 are in the single ruleset named

Rul eset _1. If you violate this naming convention and do not use distinct names
for the rules within a ruleset in a combined dictionary, Rules Designer reports a
validation warning similar to the following;:

RUL- 05920: Rule Set Ruleset_1 has two Rules with nane rule_1

For more information, see Oracle Business Rules Files and Limitations.

2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies

When you create a dictionary link using the resource picker, the dictionary is copied to
the source project (the project where the dictionary that you are linking from resides).
Thus, this type of linking creates a local copy of the dictionary in the project. This is
not a link to the original target, no matter where the target dictionary is. Thus, Rules
Designer uses a copy operation for the link if you create a link with the resource
picker.

Also note the following regarding linked dictionaries in SOA and non-SOA rule
dictionaries:

* SOA Applications

1. Only dictionaries from within the same project, system dictionaries seeded in
soa/shared or dictionaries available in the classpath can be used as linked
dictionaries.

2. If the same linked dictionary needs to be used across rules in multiple
composites, then the linked dictionary should be referenced via the classpath.

¢ Non_SOA Applications

1. Linked dictionaries can be located in the same application, in a shared location
within MDS or the classpath. Appropriate dictionary finders need to be
provided to locate and resolve the dictionaries.

2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary

When you are using Rules Designer you can browse a deployed composite application
and any associated Oracle Business Rules dictionaries in the MDS connection.
However, you cannot create a dictionary link to a dictionary deployed to MDS.

2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL

Decision function inputs are available as variables to the initial actions of the decision
function. When the inputs are facts, the facts are asserted into working memory and
rules must match the facts based on type and property values and not on decision
function input name. For example, if you have inputs of same type, inputl and input2,
rules distinguish these inputs based on type or property values and not on the
different names they have.When the inputs are not visible facts, for example String or
int, then a wrapper type named <decision function name> is created, and rules must
match this type.

Working with Data Model Elements 2-11

Introduction to Dictionaries and Dictionary Links

2.2.11 How to Compare or Merge Two or More Dictionaries

The Diff Dictionary feature enables you to review any differences in the latest revision
of a dictionary against any previous revision and be able to roll back any changes since
then. The differences are viewed from the perspective of the latest revision.

The Merge Dictionary feature enables you to review any differences between the base
version and up to 3 changed versions and be able to resolve or merge the differences
among them. The differences are viewed from the perspective of the changed versions.

Both Diff Dictionary and Merge Dictionary allow you to view and resolve the
differences, but the basic difference between the two features is that you can Merge
more than one dictionaries but you can not Diff more than one dictionaries.

The Merge Dictionary and Diff Dictionary options are available in the Rules Designer
toolbar, as shown in Figure 2-9.

Figure 2-9 Diff-Merge Dictionary Button

\) CarlnsuranceDSLOnly.rules \) CarlnsuranceQ0BCnly.rules

@D B|E G HSD ©)

% Settings ﬁn Merge Dictionary...
I Diff Dictionary...

"_] Facts

_ o _
F= Functions 7 I A o=
(x) Globals o me Package Name Prefix Linked Mames
E_] Walue Sets =
<D Links

Q Decision Functions

% Translations

a Test

3] Data Explorer

a'@ Business Phrases
Rule Sets 3= 8

&P Premium Calculator

&P Customer Score Ca...

BB o Crorn Calenlator

= O]

Mode: EDIT Locale: English (United States)
Design

You can compare up to three different dictionaries and merge into a fourth at design-
time in Oracle JDeveloper. At runtime, you can use SOA Composer to do limited
comparisons. For more information, see Using Oracle SOA Composer with Oracle
Business Rules at Runtime.

In Rules Designer, you can compare a base version (which you must be editing) with
two independently changed versions (relative to the base), and then merge selected
changes into the base version (which must be saved as a new version).

2-12 Designing Business Rules with Oracle Business Process Management

Introduction to Dictionaries and Dictionary Links

Warning:

Before you decide to run either of these features, you must be ready resolve all
changes because the dictionary becomes read-only when in diff or merge
mode.

Merging dictionaries should be done with care. You must identify and
manage the different versions involved (base, version 1, version 2, and the
results).

2.2.11.1 How to See Differences Between Dictionaries

When you want to compare dictionaries, you open the newer dictionary first in the
Rules Designer, then use the Diff Dictionary dialog to select the older dictionary to

compare with. Anything missing from the newer dictionary is flagged as a deletion
from the newer version.

To see the differences between dictionaries:

1. In the Rules Designer, with the newer dictionary open, click Diff Dictionary.

2. In the Diff Dictionary dialog, click Browse to open the Select Dictionary to Merge
dialog and find the dictionary that you want to compare with.

3. Click OK.
4. Enter a short version name or number.
5. Click OK when done.

6. All differences between the two dictionaries will be flagged with change icons, as
shown in Figure 2-10.

Working with Data Model Elements 2-13

Introduction to Dictionaries and Dictionary Links

Figure 2-10 Diff Changes Displayed

\) CarlnsuranceD5LOnly.rules \) CarlnsuranceDOBOnly. rules

L—
B @ R s @D @ Accept All) Rejectan (3
B Settings /A 1}3
;] Facts p
- - @ Accept All Diffs -
_f, Functions @ Reject All Diffs +f @ﬂ Gﬂl X @ Accept Diffs @ Reject Diffs
(x) Globals & EH) refresn Diffs Return Type Value Se Description
&) Value Sets © viewDitf Dictionaries.. HCTLL I I I —
.;0 Links 3 [J& O T T [
.ﬁa print void Print the string value of argl.
Q Decision Functions R SRR
. Arguments: ca- ® o v
%Translatlons
Name Type Value Set
a Test
fL) customer score double
T Data Explorer £t louble
57 Business Phrases [poli re louble
e el
Rule Sets o 3¢ | Bodw
@ Premium Calculator /4 assigh new double percent = {Customer score + car scare + policy score)/f150
&P Customer Score Ca... /4 return Z-percent
@A v Crnen Calenlatar A <inzert action
e W=

Mode: DIFF Locale: English (United States)
Design

Business Rules - Log

% Dictionary - CarlnsuranceDSLOnly.rules

Message Dictionary Object Property
SDE Warnings: 0 Last Validation Time: 11:58:17 AM PST
Messages Extensions \)Business Rules s

The change icons are shown for all tabs on the left, and for the specific artifacts
within each tab.

7. Click each tab and decide to Accept Diffs or Reject Diffs. Alternatively, you can
choose to Accept All or Reject All in the toolbar.

Diffs can be Accepted or Rejected at any level in the dictionary by clicking on the
appropriate change icon. For example, to revert Rulel to the older version but keep
everything else in the newer dictionary, first drill down to Rulel and choose Reject
Diffs, then chose Accept All from the toolbar. Note that in 'Diff mode', Accept
keeps the newer version and Reject reverts to the older version.

You can view the Diff Dictionaries option. This choice is available after you have
compared dictionaries. The View Diff Dictionaries option, shown in Figure 2-10 lists
information about the dictionaries being compared.

2.2.11.2 How to Merge Dictionaries

When you want to merge dictionaries, you open the older dictionary first in the Rules
Designer, then use the Merge Dictionary dialog to select the newer dictionary to merge
with. Anything missing from the old dictionary is flagged as an addition in the latest
version.

This works with two or more dictionaries, so you should use oldest, then one or more
newer, and finally save the result in newest.

Use care when merging dictionaries. Because general editing is disabled until all diffs
are resolved, you may want to provisionally accept or reject conflicting values and
then return to finish the editing after handling remaining diffs.

2-14 Designing Business Rules with Oracle Business Process Management

Working with Oracle Business Rules Globals

To merge dictionaries:

1. In the Rules Designer, with the oldest dictionary open, click Merge Dictionary.

2. In the Merge Dictionary dialog, click Browse to open the Select Dictionary to
Merge dialog and find the dictionary that you want to compare with.

3. Click OK.

4. Enter a short version name or number.

5. Click OK when done.

6. All changes are flagged in Rules Designer, as shown in Figure 2-11. Use the Merge
Differences dialog to Accept or Reject or take no action. You can also use the
Accept Diffs or Reject Diffs in the tab. Alternatively, you can Accept All or Reject
All from the toolbar.

Figure 2-11 Merge Differences Dialog

@ OracleRulesl rules

L L

=
=) Facts £
£ Functions [\

x) Ciobals

E] Value Sets

& Links

<R Decision Functions

@ Translations

B Test

4l pata Explorer

& Business Phrases £,
Rule Sets 4+ K

o Rulesetl /y

e

Design

S @ 4

@ Dictionary Settings

MName
Alias:

Package:

Version.
Resource Bundle:

Description:

OracleRulesl

bpm project

121100

@ AcceptAll @ RejectAl @)

@ Accepr Diffs € Reject Diffs GH

D)

Property Merge Differences

Object; Dictionary Property; Name

Differences:

OracleRules1Translz [}]

Schema Path Root: [file:/scratch/qizhan

Locale

1) General

English (United States)

Preferences

Data Model

Type
Conflict
Difference

Walue Version
OracleRules3 30
OracleRules2 2.0

2.3 Working with Oracle Business Rules Globals

You can use Rules Designer to add Oracle Business Rules globals.

Action
) Accept () Reject (3) None
accept () Beject (3) None

oK Cancel

Mode: MERGE Locale: English (United States)

In Oracle Business Rules a global is similar to a public static variable in Java. You can
specify that a global is a constant or is modifiable.

You can use global definitions to share information among several rules and functions.
For example, if a 10% discount is used in several rules you can create and use a global
Gold Discount, so that the appropriate discount is applied to all the rules using the

global.

Using global definitions can make programs modular and easier to maintain.

2.3.1 How to Add Oracle Business Rules Globals

You can use Rules Designer to add globals.

Working with Data Model Elements 2-15

Working with Oracle Business Rules Globals

To add a global:

1. In Rules Designer, select the Globals navigation tab.

2. In the globals table, click the Create button. This adds a global and displays the

Edit Global dialog, as shown in Figure 2-12.

Figure 2-12 Adding a Global in Rules Designer

() Globals
Globals: W7 R
Mame Type Walue Value Set Final Description
R S) A E R
Fy Edit Global - Variablel 5|
Mame; |Variable 1 |
Tyee 7
WValue Set: '|
Yalue: v] [
] Constant
I¥] Einal
Description:
Help (s]8 Cancel

3. In the Name field, enter a name or accept the default value.

4. In the Type field, select the type from the list.

5. Optionally, in the Value Set field, select a value from the list.

6. In the Value field, enter a value, select a value from the list, or click the Expression

Builder button to enter an expression.

For more information, see Introduction to Expression Builder.

7. If the global is a constant, then select the Constant check box. When selected, this

option specifies that the global is a constant value.

For more information, see What You Need to Know About the Final and Constant

Options.

8. If the global is a nonfinal, then clear the Final check box. When cleared, this option

specifies that the global is modifiable, for instance, in an assign action.

2.3.2 How to Edit Oracle Business Rules Globals

You can use Rules Designer to edit globals.

To edit a Global:

1. In Rules Designer, select the Globals navigation tab.

2. Click the Edit button to open the Edit Global - Global Name window. In this
window you can edit a global and change field values, including the Final field

and the Constant field.

2-16 Designing Business Rules with Oracle Business Process Management

Working with Decision Functions

2.3.3 What You Need to Know About the Final and Constant Options

The Edit Global dialog shows the Constant and Final check boxes that you can select
for a global.

Note the following when you use globals:

* When you clear Final, this specifies that the global is modifiable, for instance, in an
assign action.

* When you select Final, this specifies that you can use the globals in a test in a rule
(nonfinal globals cannot be used in a test in a rule).

¢ When you select Final, this specifies that the global is initialized one time at
runtime and cannot be changed.

When you select the Constant option in the Edit Global dialog, this specifies the global
is a constant. In Oracle Business Rules a constant is a string or numeric literal, a final
global whose value is a constant, or a simple expression involving constants and +, -,
* and/ .

Selecting the Constant option for a global has three effects:
* You do not have to surround string literals with double quotes.
* Only constants appear in the expression value choice list.

¢ The expression value must be a constant to be valid.

Selecting the Constant option is optional. Note that Value Set values, Value Set range
endpoints, and ruleset filter values are always constant.

2.4 Working with Decision Functions

The data model includes decision functions.

For information on working with decision functions, see Introduction to Decision
Functions.

2.5 Introduction to Oracle Business Rules Functions

Oracle Business Rules provides functions to hide complexity when you create rules.
Oracle Business Rules lets you use built-in or user-defined functions in rule and
Decision Table conditions and actions.

In Oracle Business Rules you define a function in a manner similar to a Java method,
but an Oracle Business Rules function does not belong to a class. You can use Oracle
Business Rules functions to extend a Java application object model so that users can
perform operations in rules without modifying the original Java application code.

You can use an Oracle Business Rules function in a condition or in an action associated
with a rule or a Decision Table.

You can also use an Oracle Business Rules function definition to share the same or a
similar expression among several rules, and to return results to the application.

An Oracle Business Rules function includes the following:

e Name: The Oracle Business Rules function name.

Working with Data Model Elements 2-17

Introduction to Oracle Business Rules Functions

¢ Return Type: A return type for the Oracle Business Rules function, or void if there
is no return value.

e Value Set: The value set to associate with the Oracle Business Rules function. This
is optional.

¢ Arguments: The function arguments. Each function argument includes a name and
a type and an optional value set.

¢ Function Body: The function body includes predefined actions. Using predefined
actions Rules Designer assures that an Oracle Business Rules function is well
formed and can be validated.

You can also use functions to test rules from within Rules Designer. For more
information, see Testing Decision Functions Using a Rules Function.

2.5.1 How to Add an Oracle Business Rules Function

You use Rules Designer to add an Oracle Business Rules function.

To add an Oracle Business Rules Function:

1. In Rules Designer, select the Functions navigation tab.

2. Select the Create... button.

3. Enter the function name in the Name field, or use the default name.

4. Select the return type from the Return Type list. For example, select voi d.

5. Optionally, select a value set to associate with the function return type from the list
in the Value Set field.

6. Optionally, in the Description field enter a description.
7. In the Arguments table, click Add to add one or more arguments for the function.
8. For each argument in the Type field, select the type from the list.

9. For each argument in the Value Set field, to limit the argument values as specified
by a value set constraint, select a value set from the list.

10. In the Body area, enter actions and arguments for the function body. You can add
any required action ranging from assert,cal |, nodi f y to even conditional
actionssuch asi f,el se,el seif,while,for,if (advanced),andwhil e
(advanced) . For example, see Figure 2-13.

2-18 Designing Business Rules with Oracle Business Process Management

Localizing Oracle Business Rule Resources

Figure 2-13 Adding an Oracle Business Rules Function

@ LoanApprovalV2 rules & LoanApproval rules

S0 HA B x (D E @
Settings
e B F Functions
o Faas
i Functions Funetions: L? [CURIE 4
{x) Globals Name Return Type Walue Set Description
B vana sers I A [T
£s print aid Print the string value of argl
D Link:
s £s PLcontaing boolean baalean The contains(function is similar to the contains(method on Java Collection but includes
< Decision Functions T +
Arguments. R » =
G Translations o
Name Type Value Set
B Test
rate BigDecimal
] Data Explorer [l term BigDecimal
&7 Business Phrases (3 amount BigDecimal
Rule Sets g 3¢ | Bodw

& strategy Logic return (amount * rate [12) / ((Bigbecimall - frate / 12 + 13** ~{intjterm)
£ Affordability Logic <insert action>

4% Routing Logic

&b Rulesets

¥ Extended Tests

Mode; EDIT Locale: English (United States)

Desian,

2.6 Localizing Oracle Business Rule Resources

You can localize the names, aliases and descriptions of rules resources. This enables
better control of these resources in Workspace and SOA Composer. You can localize
most of the resources like Value Sets, Globals, Rulesets, Rules and so on. With Verbal
Rules, you can also localize the value of Business Phrases.

When you create these resources, you can add locale-specific information from the
Translations tab. Each locale is stored in a separate resource bundle.

Note:

You should not manually edit the resource bundle to add or edit localized
strings. You must edit the resource bundle using the Translation tab of the
Rules Designer in JDeveloper, BP Composer, or SOA Composer.

2.6.1 How to Localize the Resources in Oracle Business Rules

You can use the Rules Designer of JDeveloper to localize the resources of a business
rule.

To localize business rule resources:

1. In Rules Designer, select the Translations tab.
2. Click the Create Resource Bundle button.
Create Resource Bundle screen appears.
3. Select the Locale from the list, as shown in Figure 2-14.

Each locale that you add appears as a column in the Resource Bundle Translations
table. Each resource of the business rule appears as a row in this table. Each locale
is stored as a separate resource bundle.

Working with Data Model Elements 2-19

Localizing Oracle Business Rule Resources

Figure 2-14 Adding New Locales

\) LoanApprovalV2 rules & LoanApproval rules g
LA AR R S SR YO IL] @
B settings
= racts % Trans lations]
£ Functions Dictionary Locale: [English (United States) ¥ 9¢ 38 # Unsaved Translations: 0 [7] Turn ff Translation
(x) Globals
= Resource Bundle Translations:
£ Value sers Untranslated Text + English (United States) French (France)
<D Links (@) getPreReportRisiCategory
b Decision Functions @) Application Risk Score Application Risk Score
Credit Report Type c
§ reate Resource Bundle
B Transtaxions @ Required Monthly Inst
B Test @ strategy Locale: [Albanian -
3 Pre-Report .
3 Data Explorer D Fre-Repo] Populate Translations
2 business o Eligibility
usiness Fhrases Pre-Report Risk Categ
Rule Sets 4 ® @ strategyvalues
(@ reroRT
Strategy Logic)
@ 90 ked D REECT Help. [s]3 Cancel
& Affordability Logic alue
£ Routing Logic (@ valuzof
& Rulesers "3 fromvalue
\ name
&P Extended Tests P cquais
tastring

(@ hashCode
(@) compareTo

e
Mode; EDIT Locale: English (United States)

Desian,

4. Click the cell of the table corresponding to the resource and locale and enter the
localized text.

Note:

The translated value is validated only in the current locale. Validations are not
done for translations in other locales that are not used.

5. Select Populate Translations and a radio button to populate the translation of the
new bundle from untranslated text or from another locale.

6. Click OK.

2-20 Designing Business Rules with Oracle Business Process Management

3

Working with Facts and Value Sets

This chapter describes the Oracle Business Rules data model element called fact types,
which are the objects that rules reason on. It also covers another element called value
sets that define groupings of fact property values.

The chapter includes the following sections:

e Introduction to Working with Facts and Value Sets
¢ Working with XML Facts

¢ Working with Java Facts

¢ Working with RL Facts

¢ Working with ADF Business Components Facts

¢ Working with Value Sets

® Associating a Value Set with Business Terms

3.1 Introduction to Working with Facts and Value Sets
In Rules Designer, you make business objects and their methods known to Oracle
Business Rules using fact types that are part of a data model. A fact type is a type
definition in the data model. A fact is an instance of that fact type and is a data
structure that rules can operate on.

For example, a fact type is a collection of related properties (business terms), and a fact
is therefore a collection of related data bound to the business terms. A customer fact
may include not only name, but address, history, credit rating, and so forth.

You can create fact types and value sets before you create rules.

In Rules Designer you can work with the following kinds of facts:

e XML Facts: XML Facts are imported from existing sources by specifying XML
Schema. You can add aliases to imported XML Facts or use XML Facts with RL
Facts to change the data model according to your business needs.

For more information, see Working with XML Facts.

® Java Facts: Java Facts are imported from existing sources. You can add aliases to
Java Facts or use them with RL Facts to target the data model to business needs.
Java Facts are also used to import supporting Java classes for use with the rules or
Decision Tables that you create.

For more information, see Working with Java Facts.

* RL Facts: RL Facts are the only kind of facts that you can create directly and do not
have an external source. All other types of Oracle Business Rules facts are

Working with Facts and Value Sets 3-1

Working with XML Facts

imported. An RL Fact is similar to a relational database row or a JavaBean with
properties. An RL Fact contains a set of named, typed properties. Property values
can be primitives such as String, another structured fact, or a list. RL Facts are
useful for rapid and independent development and testing of decision logic. Input
data that will ultimately come from an imported fact type (for example, an XML
Schema) can be modeled using RL Facts before the imported schema is available or
stable. Intermediate decisions that should not be returned to the application (for
example, sub-decisions that categorize a customer as GOOD or BAD). It is usually
best to import the fact types that are used for the input and output data of a
decision. You can use RL Facts to extend a Java application object model by
providing virtual dynamic types.

For more information, see Working with RL Facts.

* ADF Business Components Facts: ADF Business Components Facts allow you to
use ADF Business Components as Facts in rules and in Decision Tables. By using
ADF Business Components Facts you can assert view object graphs representing
the business objects upon which rules should be based, and let Oracle Business
Rules deal with the complexities of managing the relationships between the various
related view objects in the view object graph.

For more information, see Working with ADF Business Components Facts.

You typically use Java fact types and XML fact types to create rules that examine the
business objects in a rule-enabled application, or to return results to the application.
You use RL Language fact type definitions to create intermediate facts that can trigger
other rules in the Rules Engine. ADF Business Components fact types enables you to
use ADF Business Components as Facts in rules and in Decision Tables.

In Oracle Business Rules, facts that you can run against the rules are data objects that
have been asserted. Each object instance corresponds to a single fact. If an object is re-
asserted (whether it has been changed or not), the Rules Engine is updated to reflect
the new state of the object. Re-asserting the object does not create a fact. To have
multiple facts of a particular fact type, separate object instances must be asserted.

You can create value sets to define a list of values or a range of values of a specified
type. After you create a value set, you can associate the value set with a business term
of matching type. When a value set is associated with a business term, Oracle Business
Rules uses the values or ranges that you define as constraints for the values for the
business terms for the business terms in rules that are in the Decision Tables.

For more information, see:
e Working with Value Sets

® Associating a Value Set with Business Terms

3.2 Working with XML Facts

The XML fact type allows XML Schema types, elements, and attributes to be used
when writing rules. Elements and types defined in XML Schema can be imported into
the data model and can then be used to create IF/THEN rules and Decision Table
rules, just as with Java fact types and RL Fact types. The mapping between the XML
Schema definition and the XML Fact types uses the Java Architecture for XML Binding
(JAXB).

By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle
Application Server. JAXB as defined in JSR-222 provides a mapping between the
types, names, and conventions in an XML Schema definition and the available types,
allowed names and conventions in Java. For example, an element named or der-i d

3-2 Designing Business Rules with Oracle Business Process Management

Working with XML Facts

and of type xsd: i nt eger is mapped to a Java Bean property named or der | D of
type Bi gl nt eger (and xsd: i nt type maps to Javai nt).

Thus, with Oracle Business Rules if you have an XML document that contains data
associated with your application and you have the schema associated with the XML
document then you can use Rules Designer to define rules based on elements that you
specify from the XML Schema.

Note: When xsd has primitive or non primitive root elements of simple type,
JAXB maps the simple type elements to a JAXBElement and generates only
ObjectFactory class. You must create Facts of complex type to be used in
business rules.

3.2.1 How to Create XML fact types

1. Define or obtain an XML Schema.
2. Use Rules Designer to import the XML Schema into a dictionary.

This step uses the JAXB compiler to generate Java classes from the XML Schema.
After you compile the XML Schema, you select the desired elements from the
schema to add XML Facts in the data model and import the generated JAXB classes
into the data model.

For more information on these steps, see How to Import the XML Schema and Add
XML Facts.

3. Write rules or create Decision Tables based on these XML Facts that you added to
the data model.

For more information, see Working with Rules and Creating Decision Tables.

Elements and types defined in the XML Schema can be imported into the data model
so that instances of types can be created, asserted, modified, and retracted by rules.
Most XML documents describe hierarchical information, where each element contains
subelements. It is common for users to want to write individual rules based on
multiple elements in this hierarchy, and the hierarchical relationship among the
elements.

In Oracle Business Rules the default behavior when you assert a fact is to only assert
the single fact instance, and none of the child objects it may reference in the hierarchy
of subelements. When you create rules or a Decision Table it is often desirable to assert
an entire hierarchy of elements based on a reference to a root element. Oracle Business
Rules provides the assert Tr ee action type that allows for a recursive assert for a
hierarchy. For more information, see Working with Tree Mode Rules.

3.2.2 How to Import the XML Schema and Add XML Facts

Before you can use the XML Schema definitions in a data model you must import the
XML schema. This step generates the JAXB classes and makes the generated classes
and packages associated with the XML schema visible in Rules Designer.

To import XML schema and add XML facts:

1. In Rules Designer, select the Facts navigation tab.

Working with Facts and Value Sets 3-3

Working with XML Facts

2. Select the XML Facts tab on the Facts navigation tab, as shown in Figure 3-1.

Figure 3-1 The XML Facts Tab in Rules Designer

@ CarinsuranceRules.rules

=i ACHE AR YO L @
& settings
| Facts

] Facts

£ Functions AL Facts [P
€ Clobals Alias Name] visible HML Name Cenerated From Description |
E| Value Sets) car com.oracle.xmins.b. v my . Schemas/CarfO.xs

<& Links @ category B

A @ RiskClassification O

<t Decision Functions @ Terms @

@) Translations 2] Policy 1in, v

B et @) Customer 15 ¥

) MaritalStatus ins O

3l oara explarer < CreditRating) O

&7 Business Phrases) License nins vl
Rule Sets + R @) DrivingHistory com oracle.xmins.b. v|

&P Premium Calcutator

&P Customer Score Ca.

&P Car Score Caleulator

&P Policy Score Calc..

&P Demo Rule Set

&P Ruleset1

] XML Facts) Java Facts RL) AL Facts & ADE-BC Facts

e

3. Inthe XML Facts tab, click Create.... This displays the Create XML Fact dialog.

4. In the Create XML Fact dialog, in the Source Schemas area, click Add Source
Schema... to open the Add Source Schema dialog.

5. In the Add Source Schema dialog,

* Enter the location of the XML Schema you want to import, or click Browse to
locate the XML schema in the Schema Location field. During the import the file
is copied into the project.

Note:

Typically, the XML schema (xsd) file is located inside the xsd folder called
Schemas, because any XML schema that is created needs to be stored inside
the xsd folder under SOA.

® Accept the default path or enter the directory where you want Rules Designer to
store the JAXB-generated Java source and class files in the JAXB Classes
Directory field.

¢ Enter a target package name or leave this field empty in the Target Package
field. If you leave this field empty the JAXB classes package name is generated
from the XML target namespace of the XML schema using the default JAXB
XML-to-Java mapping rule or explicitly defined package name using
annotations, or "gener at ed" if no namespace or annotation is defined. Using
the schema namespace is preferred.

For example, the namespace ht t p: / / www. or acl e. conf as11/rul es/ deno
is mapped to com or acl e. as11. rul es. deno.

e (lick OK.

Rules Designer processes the schema and compiles the JAXB, so depending on
the size of the schema this step may take some time to complete. When this step

3-4 Designing Business Rules with Oracle Business Process Management

Working with XML Facts

completes Rules Designer displays the Create XML Fact dialog with the Target
Classes area updated to include the JAXB classes.

6. In the Create XML Fact dialog, in the Target Classes area, select the classes you
want to import as XML fact types.

7. Click OK.

3.2.3 How to Display and Edit XML Facts
To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.

To display and edit XML facts:

1. In Rules Designer, select the Facts navigation tab.
2. Select the XML Facts tab on the Facts navigation tab.

3. In the XML Facts table, double-click the icon for the XML Fact you want to edit.
This displays the Edit XML Fact dialog, as shown in Figure 3-2.

Figure 3-2 Edit XML Fact Dialog

e Edit XMLFact - com.oracle.xmins.bpm.bpmobject.demo.customerbo.CustomerBOType

Name: \com oraclexmins bpm. bpmobject.demo.customerbo. CustomerB0Type |
Alias: Customer| @_.|
Qualifier Pattern; [{fact)'s {member} %|
Super Class: |Object |
XML Nam & [xsicomplexType[@name="'Customer§0Type'] |

|

Generated From: |Schemas/Customer80,xsd
Iv] ¥islble

|| Suppert XPath Assertion

Description:
L3
Attributes
Properties -
.Alias Visible Mame .Type Value Set List Content Type Description Clobal Alias
address [w] addrass string
[age [¥] age int
8 children [¥] children int
EE creditRati... creditRating CreditRat.. CreditRatingT..,

|| Eit Columns To Width

Help ok Cancel

The Edit XML Fact dialog includes the fields shown in Table 3-1.

Table 3-1 XML Fact: Edit XML Fact Dialog Fields
|

Field Description
Name Displays the XML Fact name. You cannot change the name of
JAXB generated class.

Working with Facts and Value Sets 3-5

Working with XML Facts

Table 3-1 (Cont.) XML Fact: Edit XML Fact Dialog Fields
-]

Field Description

Alias Enter the XML Fact alias. You can change this value. This
defaults to the unqualified name of the class.

Qualifier Pattern This field is used for verbal rules.

If nothing is specified here, then the system uses the global
qualifier. If a custom qualifier pattern should be specified for a
fact, it has to contain two parts in the pattern: {member}, {fact}.
Specify patterns as follows:

e ({fact}'s {member}

¢ {member} in {fact}

e {member} of {fact} (This is the default).

For more information about using verbal rules, see Introduction
to Verbal Rules and Business Phrases.

Super Class Displays Java super class associated with this fact.
XML Name Displays the XML name associated with the XML Fact.
Generated From Displays the XML schema file that was the source for the XML

Fact when it was copied into the business rules data model.

Visible Select to show the XML Fact in lists in Rules Designer. XML
Facts often reference other XML Facts, forming a tree. You
should make all the XML fact types visible that contain
properties that you reference in rules.

Support XPath Assertion Select to enable XPath assertion for the fact. This feature is
provided for backward compatibility only. Typically, this
option is not used.

Description Enter the XML Fact description.

Attributes area Select the available constructors, properties, methods, or fields
associated with the JAXB class for the XML Fact to display or
edit.

Fit Columns to Width Select this check box to adjust column width.

3.2.4 How to Reload XML Facts with Updated Schema

If an XML schema changes in a project, the schema must be reimported into the Oracle
Business Rules dictionary. When you reimport the schema, Oracle Business Rules uses
JAXB to recompile all source schemas for every XML fact type and updates the XML
fact type definitions with the updated XML schema definitions. You should reimport
facts if you changed the schema or classes and you want to use the changed schema or
classes at runtime.

3-6 Designing Business Rules with Oracle Business Process Management

Working with XML Facts

Note:

When the XML schema on which an XML fact is based changes, on
reimporting the schema, the facts are updated and imported into the base
dictionary. When working with facts in a linked dictionary, you need to reload
the XML facts for the changed schema from the base dictionary instead of the
linked dictionary.

To reimport XML facts:

1. In Rules Designer, select the Facts navigation tab.
2. Select the XML Facts tab on the Facts navigation tab.

3. On the XML Facts page, click Reload Facts Based on Modified Schemas
(Excluding Linked Facts) or Reload All Facts (Excluding Linked Facts).

After the reimport operation you need to correct any validation warnings that may be
caused by incompatible changes (for example, the updated schema may include a
change that removed a property that is referenced by a rule).

3.2.5 What You Need to Know About XML Facts

Keep the following points in mind when you work with XML Facts:

When XML Schema contain a r est ri ct i on definition, this allows a user to restrict
the types that are valid for use in an element. A common use of restriction is to define
an enumeration of strings which can be used for an element, as shown in the XML
Schema Restriction example below:

e <xs:sinpleType nane="st at us-type">
<xs:restriction base="xs:string">
<xs:enuneration val ue="nanual "/ >
<xs:enuneration val ue="approved"/>
<xs:enuneration val ue="rejected"/>
</ xs:restriction>
</ xs: si npl eType>

Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules
Designer to import either a Java enum type or an element with an XML restriction,
the static final fields representing the enums are available for use in expressions.
Additionally, Oracle Business Rules creates a value set for each enum containing all
of the enum values and null. For more information on value sets, see Working with
Value Sets.

® There is a default version of the JAXB binding compiler supplied with Oracle
Application Server. You can use a different JAXB binding compiler. However, to
use a different JAXB binding compiler you must manually perform the XML
schema processing and then import the generated Java packages and classes into
the data model as Java Facts.

For more information about JAXB, see

http://]ava. sun. com webservi ces/ | axb/

* You should reimport facts if you changed the schema or classes and you want to
use the changed schema or classes at runtime. You should correct any validation
warnings that may be caused by incompatible changes (for example, removing a

Working with Facts and Value Sets 3-7

http://java.sun.com/webservices/jaxb/

Working with Java Facts

property that is referenced by a rule). For more information, see How to Reload
XML Facts with Updated Schema.

* Most users should not need to use the ObjectFactory or import it. If you do need to
import and use the ObjectFactory, then use a different package name for every
XML Schema that you import; otherwise the different ObjectFactory classes
conflict.

e The use of XML schema with elements that have nmi nCccur s="0" and
ni I [abl e="true" has special handling in JAXB. For more information, see Why
do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?.

* The default element naming conventions for JAXB can cause XML schema
containing the underscore character in XML-schema element names to fail to
compile. For more information, see Why Does XML Schema with Underscores Fail
JAXB Compilation?.

® There are certain restrictions on the types and names of inputs for the Decision
Service. For more information, see How Are Decision Service Input Output
Element Types Restricted?.

¢ The built-in dictionary includes support for the Java wrappers | nt eger, Long,
Short, Fl oat , Doubl e, Bi gDeci nal , and Bi gl nt eger . These types can appear
in XML Fact Types.

3.3 Working with Java Facts
In Rules Designer, importing a Java Fact makes the Java classes and their methods
become visible to Rules Designer. Rules Designer does not copy the Java code or
bytecode into the data model or into the dictionary.

A Java fact type allows selected properties and methods of a Java class to be imported
to the Rules Engine so that rules can access, create, modify, and delete instances of the
Java class.

Importing a Java fact type allows the Rules Engine to access and use public attributes,
public methods, and bean properties defined in a Java class (bean properties are
preferable because they can be modified using the modify action).

3.3.1 How to Import Java Classes and Define Java Facts

Before you can use Java Facts in rules and in Decision Tables, you must make the
classes and packages that contain the Java Facts available to Rules Designer. To do this
you use Rules Designer to specify the classpath that contains the Java classes, and then
you import the Java Facts.

Java fact types allow methods with and without side effects to be imported. Side
effects refer to expensive operations such as 1/0, Database Query or web service and
so on. When using Java classes as facts, remember the following about side effects:

e Rule and Decision Table conditions do not use methods with side effects.

® Actions can use all methods. Though side effects are not recommended, are
permissible.

To import and define Java Facts:

1. In Rules Designer, select the Facts navigation tab.

3-8 Designing Business Rules with Oracle Business Process Management

Working with Java Facts

2. Select the Java Facts tab on the Facts navigation tab as shown in Figure 3-3.

Figure 3-3 The Java Facts Table in the Facts Navigation Tab

“@ CarlnsuranceRules.rules e
SR AR S AR YORE. @

® settings

) roct '_J Facts
. Functions e TIEYEE]

) Globals Alias Class Description
] Value Sets | B [string [javalang String

& Links [Zd sigDecimal javamathBigDecima Immuta
BigIntage amath Biginteger Immuta
Doub AD

4} Decision Functions

@) Translations

B Test

T Data Explorer

&7 Business Phrases
Rule Sets + %

&P Premium Calculator

£ Customer Score Ca..

&P Car Score Caleulator

&b Policy Score Calc...

& Demo Rule Set

&P Ruleset1

for the current date. Can be used in rui

utable lists, Lists use O-based indexes. Attem pts to mo

(LRl ol el

.. 54 1ent standard Java classes with W3C RIF functionalit

<3 XML Facts) Java Facts U RLFacts | & ADF-BC Facts

(E3

3

3. In the Java Facts tab, click Create... to open the Create Java Fact dialog.

4. In the Create Java Fact dialog, if the classpath that contains the classes you want to
import is not shown in the Classpath area, then click Add to Classpath. This
displays the Choose Directory/Jar dialog.

The default Rules Designer classpath includes three packages, j ava, j avax, and
or g. These packages contain classes that Rules Designer lets you import from the
Java runtime library (rt.jar). Rules Designer does not let you remove these classes
from the Classes area (and the associated classpaths are not shown in the
Classpaths area).

5. In the Choose Directory/]Jar dialog, browse to select the classpath or jar file to add.
By default, the output directory for the project is on the import classpath and any
Java classes in the project should appear in the Classes importer. If they do not
appear, execute the Build action for the project.

6. Click Open. This adds the classpath or jar file and updates the Classes area.

7. In the Create Java Fact dialog, in the Classes area select the packages and classes to
import.

8. Click OK. This updates the Java Facts table in the Java Facts tab.

3.3.2 How to Display and Edit Java Facts

To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact
dialog.

To display and edit Java facts:

1. In Rules Designer, click the Facts navigation tab.
2. Select the Java Facts tab in the Facts navigation tab.

3. In the Java Facts table, double-click the Java Fact you want to edit. This displays the
Edit Java Fact dialog as shown in Figure 3-4.

Working with Facts and Value Sets 3-9

Working with Java Facts

Figure 3-4 Edit Java Fact Dialog

iy Edit Java Fact - java.util.Calendar x|

Class: |
Alias: |Calendar ‘.i'_|
Qualifier Pattern; | [
Super Class: |Object |
Description:

A Calendar represents a datetime and timezone, A calendar instance has a number of mutable int fields, The first argument to add, !
get, isSet, roll, and set is a fleld number. This class provides a number of static properties that should be used for the Tield

numbers,
Attributes

Properties -

Alias Visible Name Type Value Set List Content Ty) Description GClobal Alias

fir: Neel L] firstDayOfWeel nt

eniant] leniert hoaolean hoalean

minimalDaysin... | | minimalDaysinFi... int

time [¥] time Java util Date Returns a Date

tim elnMillis] timelnMillis ang Returns this

timeZone | timeZone Javautil. TimeZ
[»] Eit Columns To Width

[
Help Cancel
A

The Edit Java Fact dialog includes the fields shown in Table 3-2.

Table 3-2 Edit Java Fact Dialog Fields

Field Description

Class Displays the Java Fact class for the source associated with the
Java Fact.

Alias Enter the Java Fact alias.

Qualifier Pattern This field is used for verbal rules.

If nothing is specified here, then the system uses the global
qualifier. If a custom qualifier pattern should be specified for a
fact, it has to contain two parts in the pattern: {member}, {fact}.
Specify patterns as follows:

e ({fact}'s {member}

¢ {member} in {fact}

e {member} of {fact} (This is the default).

For more information about using verbal rules, see Introduction
to Verbal Rules and Business Phrases.

Super Class Displays Java super class associated with this fact.

Visible Select to show the Java Fact in lists in Rules Designer.

3-10 Designing Business Rules with Oracle Business Process Management

Working with RL Facts

Table 3-2 (Cont.) Edit Java Fact Dialog Fields
|

Field Description

Description Enter the Java Fact description.

Attributes area Select the available class properties, constructors, methods, or
fields associated with the Java class for the Java Fact act to
display or edit.

Properties Some java objects have fields to help define that object. For

example a Calendar has properties for defining the first day of
the week, the time zone, and so on.

Fit Columns to Width Select this check box to adjust column width.

Attribute Description The Attribute Description is the description of the property.

3.3.3 What You Need to Know About Java Facts

When you define Java Facts you need to know the following:

* On Windows systems, you can use a backslash (\) or a slash (/) to specify the
classpath in the Classpath area. Rules Designer accepts either path separator.

¢ (lasses and interfaces that you use in Rules Designer must adhere to the following
rules: If you are using a class or interface, only its superclass or one of its
implemented interfaces may be made visible.

* When you specify the classpath you can specify a JAR file, a ZIP file, or a full path
for a directory.

¢ When you specify a directory name for the classpath, the directory specifies the
classpath that ends with the directory that contains the "root" package (the first
package in the full package name). Thus, if the classpath specifies a directory, Rules
Designer looks in that tree for directory names matching the package name
structure.

For example, to import a class cool . exanpl e. Test 1 located in c: \ myprj \ cool
\ exanpl e\ Test 1. cl ass, specify the classpath value, c: \ myprj .

* You should reimport facts if you change the classes. After the reimport operation
you may see validation warnings due to class changes. You should correct any
validation warnings that may be caused by incompatible changes (for example,
removing a property that is referenced by a rule).

3.4 Working with RL Facts

RL Facts are the only kind of facts that you can create directly and that do not have an
external source. All other types of Oracle Business Rules facts are imported. An RL
Fact is similar to a relational database row or a JavaBean without methods. An RL Fact
contains a list of properties of types available in the data model, either RL Fact, Java
Fact, or primitive types.

You can use an RL Fact to extend a Java application object model by providing virtual
dynamic types.

Working with Facts and Value Sets 3-11

Working with RL Facts

For example:

RLl: if nonthly spend = Customer. nonthlySpend

then assert new Tenp(three nonth spend: monthly spend[0] + monthly spend[1] +
mont hly spend[2])

R2: if Tenp.three nonth spend > 500

then nodi fy Tenp(status: GOLD)

R3: if Tenp.status == GOLD

then assert new Result(discount: 0.10).

For testing and prototyping with Rules Designer you can create RL Facts and use the
RL Facts to write and test rules before you import a schema and switch to XML Facts
(you might need to wait for an approved XML schema to be created or to be made
available). Switching from RL Facts to corresponding XML Facts involves the
following steps:

1. Delete the RL Facts (this action shows validation warnings in the rules or Decision
Tables you created that use these RL Facts).

2. Import the XML Facts and give the facts and their properties aliases that match
the names of the RL Facts and properties you deleted in step 1.

3. This process should remove the validation warnings if the XML Fact and property
aliases and types match those of the RL Facts that you remove.

3.4.1 How to Define RL Facts

You add RL Facts from the Facts navigation tab.

To define RL facts:
1. In Rules Designer, select the Facts navigation tab.
2. Select the RL Facts tab in the Facts navigation tab as shown in Figure 3-5.

Figure 3-5 RL Facts Tab in Rules Designer

@ CarlnsuranceRules rules |

LA ECRE - B SAFSEENORE] @
@ settings =
) racs
=] Facts
£ Functions RLFacts 0o R
@) Clobais Name Super Class Description |
=] value Sets U Frauddlen Object
& Links L Score Tracker Object
T T
iz Decision Functions
@) Transiations
BB Test
T Data Explorer
A7 gusiness Phrases
Rule Sets + ¥

G Premium Calculator
%P Customer Scare Ca...
&P car score Calculator
&P Policy Score Calc

4 Demo Rule Set

£ Rulesery

@) xMLFacts | (Z)Javafacts | FUPRLFacts G ADF-BC Facts

3. In the RL Facts tab, click Create.

4. In the RL Facts table, in the Name field, enter the name for the RL Fact or accept the
default name.

3-12 Designing Business Rules with Oracle Business Process Management

Working with RL Facts

5. In the RL Facts table, in the Description field, enter a description or accept the
default, no description.

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
You add properties to RL Facts using the Edit RL Facts dialog.

To display and edit RL facts and add RL fact properties:
1. In Rules Designer, select the Facts navigation tab.

2. Inthe RL Facts tab, double-click the icon for the RL Fact to display or edit the fact.
This displays the Edit RL Fact dialog, as shown in Figure 3-6.

Figure 3-6 Edit RL Fact Dialog

0 Edit RL Fact - ScoreTracker. x|
Hame: Score Tracker El
Qualifier Pattern: {member}in {fact} @—'l
Super Class: Object VI
Description:

@IJ
Properties: + xR
Mame Type Value Set Initial Value List Content T Global Alias
score double 50 score
id irt
wpe String Score Type
[w] Eit Columns To Width
Help ok Cancel

3. Toadd RL Fact properties, on the Edit RL Fact dialog in the Properties area, click
Create.

a. Inthe Name field, enter the property name.
b. Inthe Type field, select a type from the list or enter a property type.

c. To associate a value set with the property, from the list in the Value Set field,
select a value set.

d. To associate an initial value with the property enter a value in the Initial
Value field.

4. Add additional properties by repeating these steps, as required.

5. Click OK.

3.4.3 What You Need to Know About RL Facts

When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties
area the Initial Value field provides a list of possible values as shown in Figure 3-7.

Working with Facts and Value Sets 3-13

Working with ADF Business Components Facts

Figure 3-7 Setting RL Fact Property Initial Value

iy EdIit RL Fact - ScoreTracker 3]
Hame: Score Tracker E|
Qualifier Patwern: |{member} in {fact} a
Super Class: | Object v]
Description:

&
Properties: ‘+ x
MName Type Walue Set Initial Value List Conten' Clobal Alias
score double S0 sCOre
EAC I
type String Score Type
RL.rung
RL.get strateay().length(
RL.rumn until haltQ
RLruleset stack.popd.length(
— RL.get firing rule nam ed.length
/] Eit Columns To Width BigDecimal. ROUND_UP
Help BigDecimal ROUND_DOWN Cancel

When you are working with some fields in Rules Designer, the initial values list or
other lists may be empty. In this case the list is an empty box. Thus, when Rules
Designer does not find options to assist you in entering values, you must supply a
value directly in the text entry area or click the Expression Builder button to display
the expression builder dialog.

3.5 Working with ADF Business Components Facts

ADF Business Components Facts enable you to use ADF Business Components as
Facts in rules and in Decision Tables. By using ADF Business Components Facts you
can assert view object graphs representing the business objects upon which rules
should be based, and let Oracle Business Rules deal with the complexities of managing
the relationships between the various related view objects in the view object graph.

For more information, see Working with Oracle Business Rules and ADF Business
Components .

3.5.1 How to Import and Define ADF Business Components Facts

When an ADF Business Components view object is imported, an ADF Business
Components fact type is created which has a property corresponding to each attribute
of the view object.

To add ADF Business Components facts:

1. Click the Facts navigation tab and select the ADF-BC Facts tab. This displays the
ADF-BC Facts table, as shown in Figure 3-8.

3-14 Designing Business Rules with Oracle Business Process Management

Working with ADF Business Components Facts

Figure 3-8 ADF Business Components Facts Tab

@ CarinsuranceRules.rules
P A S RPN I @
@ Settings :
=] raas
=) Facs
Euncti ~
Jx Functions ADF-8C Facts: R

{x) Globals

Alias View Definition
=] Value Sets

& Links

it Decision Functions

@) Transiations

B Test

{ pata Explorer

& Business Phrases
Rule Sets + 8

@Pr’em\um Calculator

&P Customer Score Ca...

&P Car Score Caleulator

&b Policy Score Calc...

&b Demo Rule Set

&P Ruleset1

) XML Facts Z) Java Facts RL) AL Facts 4 ADE-BC Facts
&

2. Click Create.... This opens the Create ADF-BC Fact dialog.

3. In the Connection field, from the list, select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths. For more information, see What You Need to Know About ADF
Business Components Fact Classpaths.

4. In the View Definition field, select the name of the view object to import.

5. Click OK. This displays the Facts navigation tab. Note that the imported fact
includes a validation warning. For information on how to remove this validation
warning, see What You Need to Know About ADF Business Components Circular
References.

3.5.2 What You Need to Know About ADF Business Components Fact Classpaths

In the classpath list shown in the Search Classpath area in the Create ADF Business
Components Fact dialog one of the listed classpaths allows you to see the view object
definitions available in your project. In this dialog you only need to click Add to
Classpath when you need to use a classpath that is not available to your project (this
case should be very rare).

3.5.3 What You Need to Know About ADF Business Components Circular References

ADF Business Components Facts can include a circular reference. When this warning
is shown in the Business Rule validation log you need to manually resolve the circular
reference. To do this you must clear the Visible check box for one of the properties
that is involved in the circular reference.

3.5.4 What You Need to Know About ADF Business Components Facts

Each ADF Business Components fact type contains a property named Vi ewRowl npl
that references the or acl e. j bo. Rowinstance that the fact instance represents and a
property named key_val ues which points to an

oracl e. rul es. sdk2. deci si onpoi nt. KeyChai n object that may be used to
retrieve the set of key-values for this row and its parent rows.

When working with ADF Business Components Facts you should know the following:

Working with Facts and Value Sets 3-15

Working with Value Sets

¢ Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View Link
Accessors.

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many, and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a Li st , which contains facts of the indicated type at runtime.

¢ Itis not possible to use ADF Business Components fact types which have cyclic
type dependencies. These cycles must be broken by the clearing the Visible check
box for at least one property involved in the cycle.

e ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the
trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

¢ Internally, ADF Business Components fact types are instances of RL fact types.

Thus, you cannot assert ADF Business Components view object instances directly
to a Rule Session, but must instead use the helper methods provided in the

Met adat aHel per and ADFBCFact TypeHel per classes. For more information,
see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

3.6 Working with Value Sets

You can create a value set to define a list of values or a list of value ranges to limit the
acceptable set of values for a fact or a property of a fact in Oracle Business Rules. You
can define a value set as a Global Value Set that allows reuse, where a value set is
named and stored in the data model, or as a Local Value Set that is specified when
you define a Decision Table and only applies to one condition expression.

For more information on using a local value set, see How to Add Condition Rows to a
Decision Table.

You can use value sets for the following:

* You can associate fact type properties with value sets. This allows you to limit the
acceptable set of values for a property of a fact. For more information, see How to
Associate a Value Set with a Fact Property.

¢ A value set defines a list of values or value ranges for some primitive value
(number, string, date, boolean, or enumeration). A value set may be associated
with a fact type property in order to provide a fixed set of choices for the value of
that property, for example, male or female. A value set must be associated with a
decision table condition to provide a fixed set of choices for the value of the
condition's expression. These choices (values or value ranges) are entered into the
condition cells of the decision table.

The value set values or ranges determine, for each condition expression in a
Decision Table, that it has two or more possibilities. Using a value set, each
possibility in a condition expression is divided into values or ranges where a cell
specifies one value or range from the value set (or possibly multiple values or
ranges per cell). For example, if a value set is defined for colors, then the values or

3-16 Designing Business Rules with Oracle Business Process Management

Working with Value Sets

ranges could include a list of strings: "blue", "red", and "orange". A value set that
includes integers could have three ranges could have three ranges, less than 1, 1 to
10, and greater than 10. For more information, see How to Add Condition Rows to
a Decision Table.

* You can associate globals, functions, and function arguments with value sets.
Associating a value set with a global allows for design-time validation that an
assigned value is limited to the values specified in the value set. Associating a
value set with a function argument validates that the function is only called with
values in the value set. Using value sets in this manner allows Rules Designer to
report validation warnings for global values and function arguments that are
assigned or passed a constant argument value that is not allowed. Associating a
value set with a function automatically sets a Decision Table condition row to use
that value set when the function is used as the expression for that condition row.
Only constant expression values are validated. To ensure that global initial
expression values and function parameter expression values are validated against
the associated value set, check the 'constant' check box associated with the
expression. No runtime checks are applied based on the globals or function
arguments associated with value sets. For more information, see How to Associate
a Value Set with Functions or Function Arguments.

¢ In addition to design-time validation you can use an LOV value set to provide
options that are displayed in lists when entering expressions in IF/THEN rule tests
and actions. For more information, see How to Use Value Sets to Provide Options
for Test Expressions.

There are three forms for value sets:

¢ LOV: Defined by a list of values (see How to Define a List of Values Global Value
Set).

e Range: Defined by a list of value ranges, defined by the range endpoints (see How
to Define a List of Ranges Global Value Set).

* Enum: Defined by a list of enumerated types that is imported from either of:

- XML types (see How to Define an Enumerated Type (Enum) Value Set from
XML Types).

— Java facts (see How to Define an Enumerated Type (Enum) Value Set from Java
Types).

3.6.1 How to Define a List of Values Global Value Set

A list of values value set lets you specify the type and the list of values or ranges for
the value set. For more information, see What You Need to Know About List of Values
Value Sets.

To define a list of values (LOV) global value set:

1. From Rules Designer select the Value Sets navigation tab.

2. From the list next to the Create Value Set icon, select Value Set, as shown in
Figure 3-9.

Working with Facts and Value Sets 3-17

Working with Value Sets

Figure 3-9 Adding a List of Values Global Value Set

@ CarinsuranceRules.rules -
s AR AP AR YORL @
R Settings =
) Facs |22 | value sets
Fe Functions Value Sets: @ +|:,‘f/ ®
) Globals Name Datatype Form Description Value Set

Z) value sets Z] CategoryType Categon Erum 3 Range Value Sat
[£] RiskClassificationType Ris tion Enum

2 Links =] mMariaistatusType Maritalstatus Enum

<t Decision Functions [E) CreditratingType CreditRating Enum

@ Trancuons 5 Ganaer swira ©
=] Score Type string LoV

B Test

{ pata Explorer

& Business Phrases
Rule Sets + R

&p Premium Calculator

&P Customer Score Ca...

&P Car Score Caleulator

&P Policy Score Calc...

&P Demo Rule Set

&P Ruleset1

3. Click the Edit button for the value set to display the Edit Value Set dialog.
4. In the Edit Value Set dialog, enter the name in the Name column.

Ensure that the value set name is not the same as any fact aliases. This will cause a
validation error similar to the following;:

RUL- 05006: The fact type "Rating" has the same alias as an unrelated val ue set.
5. In the Datatype column, select a data type from list.
6. Enter a Description.
7. Click the Edit button to add a value, as shown in Figure 3-10.

Figure 3-10 Edit Value Set Dialog

% Edtvauese [
Mame: [ElgibilityValues =
Form; [Enum i
Data Type: |EligibilityValues 5

[Include Disallowed Values in Tests
Description:
+Rav

Alias Character Code Allowed in Actions Description

ityValues.... INELIGIBLE A [+
=

ELICIBLE|Rd FLICIBLE
Mat Applicable

2 [HligibilityValues. FLIGIBLE
[EligibilityValues.|NELICIBLE

nuil

Help ok Cancel

8. For each value that you add, do the following:

® In the Value field, enter a value. Note that for String type values in an LOV
value, you can select the entire string with three clicks. This allows you to enter
the string. Rules Designer adds the same alias without quotation marks.

3-18 Designing Business Rules with Oracle Business Process Management

Working with Value Sets

9.

You can change the order of values in the list of Value set by editing the Value
set dialog for a value set. Click the Move up or Move Down button to change
the order.

e In the Alias field, enter an alias.

For more information on specifying aliases, see How to Define a List of Ranges
Global Value Set.

¢ In the Allowed in Actions field, select this if the value is an allowable value.

For more information on the Allowed in Actions field and the Include
Disallowed Values in Tests field, see What You Need to Know About the
Value Set Allowed in Actions Option.

¢ In the Description field, enter a description.

Add additional values by clicking the Create button as needed for the value set.

10. On the Edit Value Set window, click OK.

You can control rule ordering in a Decision Table by changing the relative position of
the values or ranges in an LOV value set associated with a condition expression in a
Decision Table.

3.6.2 How to Define a List of Ranges Global Value Set

A list of ranges value set lets you specify the type and the endpoints for values or
ranges in the value set. For more information, see What You Need to Know About
Range Value Sets.

To define a list of ranges (range) global value set:

1.

2.

From Rules Designer select the Value Sets navigation tab.
From the list next to the Create Value Set button, select Range Value Set.

Double-click in the Data Type field. This displays the Edit Value Set dialog, enter
the values set name in the Name field.

In the Data Type field, from the list, select the appropriate data type for the value
set.

Click the Create repeatedly to add the number of values or ranges that you need in
the value set.

In these steps you add three values. You start with the default values. After
changing the defaults, they should have the following values:

* greater than 1000
® between 500 and 1000, inclusive

e Jess than 500

Rules Designer added the values with the default values of 50 and 0 and a negative
Infinity (-Infinity) value.

Starting at the first or top value, in the Endpoint field, double-click the default
value and enter the top value endpoint, and press Enter.

Working with Facts and Value Sets 3-19

Working with Value Sets

In this example, enter 1000 for the first value.

In the Included Endpoint field, select the check box as appropriate to include or
exclude the value endpoint.

In this example, you can leave this check box checked to include the value
endpoint.

In the Allowed in Actions field select the check box as appropriate to include the
value in the value set allowable values.

For more information on the Allowed in Actions field and the Include Disallowed
Values in Tests field, see What You Need to Know About the Value Set Allowed in
Actions Option.

Optionally, in the Alias field double-click the default value and enter the desired
value alias, and press Enter.

The alias appears in Decision Tables that use this value set. Use an alias to give a
more meaningful name to the value than the default value (the range-based Range
value).

Note that most names and aliases in Oracle Business Rules allow only letters,
numbers, embedded single spaces, and the characters $, _, ', ., -, /, and :. However,
value aliases allow additional characters, such as [0..1]. If an alias contains such
additional characters, then you cannot refer to the value by the alias in the action
cells in a Decision Table. In these cases, you can use the value name, which is also
known as the value.

The Range field is read-only: it clearly identifies the actual range associated with
the value regardless of the Alias value. For more information, see What You Need
to Know About Range Value Sets).

10. Moving down the list of values, for each subsequent vale, repeat from Step 6. For

the second value, enter the endpoint value 500.

11.In the Edit Value Set dialog, click OK.

3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML Types

When you import an XML schema, if the XSD contains enumeration values Rules
Designer automatically creates an enumerated type value set for each enumeration.
Although enumerated type value sets are read-only, you can change the order of
values.

For more information, see What You Need to Know About XML Facts.

To define an enumerated type (enum) value set from XML types:

1.

Obtain an XSD with the desired enumerations.

The following example shows the or der . xsd schema file which contains the
enumeration St at us.

<?xm version="1.0" ?>
<schema attribut eFornDef aul t ="qual i fied" el ement For nDef aul t ="qual i fi ed"
tar get Nanespace="http://exanpl e. com ns/ cust orer or der "
xm ns:tns="http://exanpl e. com ns/ cust oner or der"
xm ns="htt p: // www. w3. or g/ 2001/ XM_.Schema" >
<el ement name="Cust omer Or der ">
<conpl exType>

3-20 Designing Business Rules with Oracle Business Process Management

Working with Value Sets

<sequence>
<el enent nane="nane" type="string" />
<el enent nane="creditScore" type="int" />
<el enent nane="annual Spendi ng" type="doubl e" />
<el enent nane="val ue" type="string" />
<el enent nane="order" type="double" />
</ sequence>
</ conpl exType>
</ el ement >
<el enent nane="0Or der Approval ">
<conpl exType>
<sequence>
<el enent nane="status" type="tns: Status"/>
</ sequence>
</ conpl exType>
</ el ement >
<si npl eType nanme="Stat us">
<restriction base="string">
<enumeration val ue="manual "/ >
<enuneration val ue="approved"/>
<enuneration val ue="rejected"/>
</restriction>
</ si npl eType>
</ schema>

2. Open a dictionary in Rules Designer and create XML facts using the specified
schema that contains the enumeration. For more information, see Working with
XML Facts.

3. Click the Value Sets navigation tab and select the Enum value to see the value set.
Notice that the imported St at us enumeration values are imported as values with
the XSD-specified values.

You can change the order of values in an Enumerated Value set by editing the
Value set dialog for a value set. Click the Move up or Move Down button to
change the order.

You can control rule ordering in a Decision Table by changing the relative position of
the values in an enum value set associated with a condition expression in a Decision
Table.

3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java Types

When you import a Java enum, Rules Designer automatically creates an enumerated
type value set for each Java enum. Although enumerated type value sets are read-
only, you can change the order of values.

To define an enumerated type (enum) valueset from Java facts:

1. Create or obtain the Java class with the desired enumerations.

The following code example shows the Rej ect Pur chasel t em j ava class which
contains enumeration Or der Si ze.

package com exanpl e;

public class O assl

{

public enum OrderSize { SMALL, MEDIUM LARGE };

Working with Facts and Value Sets 3-21

Working with Value Sets

public O assi()

{
}
}

2. In Rules Designer open a dictionary and create a Java Fact using the Java class. For
more information, see Working with Java Facts.

3. In Rules Designer click the Value Sets navigation tab and select the Enum value
set.

You can change the order of values or ranges in an enumerated type valueset by
editing the Value set dialog for a value set. Click the Move up or Move Down
button to change the order.

You can control rule ordering in a Decision Table by changing the relative position of
the values or ranges in an enum value set associated with a condition expression in a
Decision Table.

3.6.5 What You Need to Know About List of Values Value Sets

In a Decision Table, the order of the values in a value set associated with a condition
expression determines the order of the condition cells, and thus the order of the rules.
You can control rule ordering in a Decision Table by changing the relative position of
the values in a list of values value set associated with a condition expression; however,
you cannot reorder ranges.

Figure 3-11 shows a value set definition in Rules Designer for a value set named colors
using a list of values.

Figure 3-11 Value Set Definition Using List of Values

‘Yalue alias Allowed in Actions Description
B gtherwise atherwise [v]
= "blue" blue [w
| fes Jed [& [
@ “orange" orange [¥]

As shown in Figure 3-11, by default with a List of Values value set there is a value

ot her wi se included with the list of values (LOV). This value, ot her wi se, is distinct
from all other values and matches all values of the type that have no other value or
range. Thus, with ot her wi se in the list of values a condition expression that uses the
value set can handle every value and provides a match for every value of the specified
type, where a match is either a defined value or the ot her wi se value. The

ot her wi se value cannot be removed from an LOV value set but it can be excluded by
clearing the Allowed in Actions check box (when ot her wi se is excluded an attempt
to assign any value that is not in the list of values in the value set causes a validation
warning).

Table 3-3 shows the value set values that Rules Designer supports for LOV value sets.

Table 3-3 Supported Types for LOV Value Sets

Type Description

Java primitive types This includes i nt , doubl e, bool ean, char, byt e, short,
| ong, and f | oat

3-22 Designing Business Rules with Oracle Business Process Management

Working with Value Sets

Table 3-3 (Cont.) Supported Types for LOV Value Sets

Type Description
String Contains St ri ng types
Tinme, DateTine, and Contains Ti me, DateTi ne, and Dat e types in the current
Dat e locale
Note:

You are not required to specify an LOV value set when you use a boolean type
in a Decision Table. For boolean types, Oracle Business Rules provides built-in
values or ranges for the possible values (t r ue and f al se).

3.6.6 What You Need to Know About Range Value Sets

When you add a value or range to a List of Ranges value set, the value is calculated
based on the currently selected value and the next highest value. When you change
the endpoint value the value is automatically sorted in the value set; thus, it does not
matter where a new range is added. However, it is possible for Rules Designer to not
have values between the current value set endpoint value and the endpoint value. In
this case, Rules Designer shows a validation warning of the following form:

RUL- 05849: Val ueset has duplicate bucket val ue "4999"

To correct this problem you must modify value endpoints to remove the duplicate
value.

Table 3-4 shows the types Rules Designer supports for Range values.

Table 3-4 Supported Types for Range Values

Type Description

Selected primitive types This includes: i nt, doubl e,short,l ong, and f | oat

Tinme, DateTine, and Contains Ti me, DateTi me, and Dat e types in the current
Dat e locale

Note the following conventions for the Range field:

* Logical operator: specifies a range with respect to positive or negative infinity. For
example, ">=25" means "from 25 to positive infinity" and " <18" means from
negative infinity up to but not including 18.

e Square bracket "[": specifies a range that includes this end point value. For
example, " [18. . 25) " means "from 18 up to but not including 25".

* Round bracket ")": specifies a range that excludes this end point value. For
example, " (18. . 25] " means "over 18, not including 18, up to and including 25".

3.6.7 What You Need to Know About the Value Set Allowed in Actions Option

When you define values or ranges in a value set you might define some ranges or
values corresponding to non-permissible values. For example, in a value set for driver

Working with Facts and Value Sets 3-23

Working with Value Sets

ages you would typically not allow a value that contains values less than 0. Thus,
when a fact with driver data includes an age property associated with a driver ages
value set, then you should not be able to create or modify a fact that has the age
property set to a value such as -1. In a value set you select Allowed in Actions for
valid values and clear this option for invalid values.

The value set option Include Disallowed Values in Tests allows you to include all the
values, whether Allowed in Actions is selected or not, in Decision Table conditions
and in rule tests. By including all values or ranges you can explicitly test for illegal
values. Using the option Include Disallowed Values in Tests you can handle two
possible cases:

1. The input data for the Oracle Business Rules Engine is clean and does not contain
invalid data (such as a negative age). In this case, you should clear the Include
Disallowed Values in Tests. Note: the reason you do not want to make age < 0
an Allowed in Actions is this provides design time validation warnings if you try
to create an action that uses an invalid value, such as the following:
modi fy(driver, age: -1)).For more information, see Using Value Sets as
Constraints for Options Values in Rules.

2. You want to consider excluded values in rule tests and in Decision Tables. In this
case, you should select Include Disallowed Values in Tests. This is useful when
the input data for the Oracle Business Rules Engine may not be clean and may
contain invalid data (for example an invalid negative age). A Decision Table that
provides actions for all value sets could include cases for excluded values and
provide an appropriate action, such as asserting an error fact. To handle this you
could either select the Allowed in Actions field for every value in the value set,
or, leave the Allowed in Actions field configured as is and select the Include
Disallowed Values in Tests field. Using the Include Disallowed Values in Tests
field is not only convenient, you do not need to reconfigure every value, it also
preserves the configuration of Allowed in Actions so that you can easily reuse
this value set to handle the first case (when you clear Include Disallowed Values
in Tests).

3.6.8 What You Need to Know About Values

When you enter a value in a value set, the value you supply must be valid for the type
specified for the value set. If the value you enter is not valid for the value set type,
Rules Designer makes the value you supply a string by adding quotation marks.
Adding quotation marks is the only way to make a legal literal when the user
provided data is not appropriate for the specified type. For example, if you add an int
type LOV value set, and then supply a value 2.2, Rules Designer shows a warning
such as the following;:

RUL-05833: Invalid characters "2.2" in value

To fix this problem either enter a valid value for the value, for example in this case the
value 2, or change the type of the value set.

For an additional example, when you enter a value for a value, for example if you
enter a value with value set with data type short and add a value with the value
999999, Rules Designer assigns this the value "999999". The maximum value for a short
is 32767. In this case you see a warning related to the value, similar to the previous
example, because a String is not a valid value for a value set with data type short. The
solution to this is to enter appropriate values for all values (in this example, enter a
value less than or equal to 32767).

3-24 Designing Business Rules with Oracle Business Process Management

Associating a Value Set with Business Terms

3.7 Associating a Value Set with Business Terms

After you define a global value set, you can associate parts of the data model with the
global value set (if their types are compatible). In this way, condition cells in the
Conditions area can automatically be assigned a value set when you define a Decision
Table. Also, when a value set is associated with a business term, Oracle Business Rules
uses the values or ranges that you define as constraints for the values for expressions
for the business terms in rules.

You can associate the following four kinds of business terms with a value set:

Fact

Property

Function Result
Function Argument

Global Value

3.7.1 How to Associate a Value Set with a Fact Property

To prep

are for creating Decision Tables, you can associate a global value set with fact

properties in the data model.

To associate a value set with a fact property:

1. From Rules Designer, select the Facts navigation tab.

2. Select the fact type to edit and click the Edit button. This displays the appropriate

Edit Fact dialog for the fact type you select.

In the Properties table, under Value Set, select the cell for the appropriate fact
property and from the list select the value set you want to associate with the
property. For example, see Figure 3-12.

Figure 3-12 Defining a Value Set for a Property

(7 Edit RL Fact - ScoreTracker |
Hame: Score Tracker %J—L|
Qualifier Pattern: {member}in{fact} QJ|
Super Class: _.Object ']
Description:

@
rties: + ®

[w] Eit

He

Prope

i

Value Set Initial Value List Cortent T Global Alias

=]

[Type
double

MName

score score

id int

Gender
Score Type

Columns To Width

Ip oK Cancel

4. On the Edit Fact page, click OK.

Working with Facts and Value Sets 3-25

Associating a Value Set with Business Terms

3.7.2 How to Associate a Value Set with Functions or Function Arguments

To prepare for creating Decision Tables you can associate a global value set with
functions in the data model.

To associate a value set with a function return value:

1. From Rules Designer, select the Functions tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, under Value Set, select the cell and from the list select the
value set you want to use. For example, see Figure 3-13.

Figure 3-13 Defining a Value Set for a Function Return Value

“@ CarlnsuranceRules.rules]

CASRE-RERE B RS NO R @
.
@ Serings £ Functions
Z) Facts
S Functions Functions: W@+ R
() Globals Mame Return Type Value Set | Description
] Value sets Fe calculate percent po... double

<2 Links
4} Decision Functions
@) Translations

B Test

Arguments:
[Name Type
[fdl arg_1 String

TValue set

+ %

Initiate fraud alert _Juoid ______| ~
E orint Print the string valug of argl

@

F pata Explorer
& Business Phrases
Rule Sets db 3¢ Body
&P Premium Calculator
£ Customer Score Ca..
&P Car Score Caleulator
&b Policy Score Calc...
¥ Demo Rule Set

&P Rulesetl

assert new FraudAlert { <edit propertiess fraud true)

<insert action >

3.7.2.1 How to Associate a Value Set with a Function Argument

To associate a value set with a Function argument:

1. From Rules Designer, select the Functions navigation tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, in the Arguments area select the appropriate argument.

4. For the specified argument, under Value Set, select the cell and from the list select

the value set you want to use.

3.7.3 How to Associate a Value Set with a Global Value

To prepare for creating Decision Tables, you can associate a global value set with
global values in the data model.

3-26 Designing Business Rules with Oracle Business Process Management

Associating a Value Set with Business Terms

To associate a value set with a global value:
1. From Rules Designer, select the Globals navigation tab.
2. Select the global value to edit.

3. In the Globals table, under Value Set, select the cell for the appropriate global
value, and from the list, select the value set that you want to associate with the
global value. For example, see Figure 3-14.

Figure 3-14 Defining a Value Set for a Global Value

P CarlnsuranceRules.rules -
SEIHE B (s O M @
Settings
e & (X) Globals
I Facts
72 Bt Clobals: h+7R
() Globals Name Type Value Value Set Final Description
= () Minimum Driving Age int 16 =]
EJ Value Sets (¥) Lower Threshold double 500.00 =]
<D Links () Normal Threshold double 1000.00 =]
@ Decision Functions () Higher Threshald double 1500.00 v
() Today Calendar RL date get current() =
& Transiations (¥) Median CustomerScore double 50.00 =
B Test () Median Car Scare double 50.00 v
@ oata Explorer () Median Policy Scare double 50.00 vl
| JHigh [RiskClassificaiion [RiskClassificationType H.

& business Phrases (x) Maximum Medical Cover... double 100000.00
Rule Sets + ® {(¥) Maximum Liability Cover... double 100000.00
&p Premium Calculator

&P Customer Score Ca...

&P Car Score Calculator

&P Policy Score Calc...

&P Demo Rule Set

P Ruleset1

Working with Facts and Value Sets 3-27

Associating a Value Set with Business Terms

3-28 Designing Business Rules with Oracle Business Process Management

A

Working with Rulesets and Rules

This chapter describes the Oracle Business Rules data model element called a ruleset
that you use to group one or more rules or Decision Tables. It also discusses how to
work with dictionaries, nested tests, and simple and tree mode rules, and Expression
Builder.

The chapter includes the following sections:

Introduction to Working with Rulesets, Rules, and Business Phrases
Working with Rulesets

Working with Rules

Introduction to Verbal Rules and Business Phrases

Validating Dictionaries

Using Advanced Settings with Rules and Decision Tables

Working with Nested Tests

Working with Advanced Mode Rules

Working with Extended Tests

Working with Tree Mode Rules

Using Date Facts_ Date Functions_ and Specifying Effective Dates
Introduction to Expression Builder

Using Value Sets as Constraints for Options Values in Rules
Importing Runtime Rules Changes From Repository Into JDeveloper

How to Model Rules When the Data Model is Deep

For more information, see What Are Rulesets?.

4.1 Introduction to Working with Rulesets, Rules, and Business Phrases

Use business rules to define key decisions and policies for a business.

Some of these decisions and policies include:

Business Policies: for example spending policies and approval matrices
Constraints: for example valid configurations or regulatory requirements

Computations: for example discounts, premiums, or scores

Working with Rulesets and Rules 4-1

Working with Rulesets

¢ Reasoning Capabilities: for example offers based on customer value

Oracle Business Rules provides multiple approaches to writing rules:

¢ IF/THEN rules - rules are expressed as IF/THEN statements. There are two ways
of modeling IF/THEN rules. General rules use a pseudo-code language to express
rule logic. Verbal rules use natural language statements to express rule logic.

¢ Decision Tables, which display multiple related rules in a single spreadsheet-style
view.

Business phrases are used to provide a natural language vocabulary for the
construction of verbal rules' tests and actions. They are not used in general rules.

This chapter includes details for working with IF/THEN rules. For information on
working with Decision Tables, see Working with Decision Tables.

4.2 Working with Rulesets

A ruleset provides a unit of execution for rules and Decision Tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on and
off the stack. In rulesets, rule priority specifies the order in which the rules should be
fired.

Rulesets also include an effective date specification that controls when a ruleset is
active. A ruleset can be:

* always active
¢ active during a time range
® active during a date range

® active during a time and date range

4.2.1 How to Create a Ruleset

All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and
Decision Tables into a unit of execution.

To create arule set:

1. In Rules Designer, go to the Rule Sets tab.
2. Click the Create rule set button. This displays the Create Rule Set dialog.

3. Enter a name in the Name field.

Note: The names of ruleset and ruleset alias, business rules, and any other
rule objects must begin with a letter and can contain only letters and numbers.
They must not contain spaces or special characters like . ,-, _,:,,,""

4. Enter a description in the Description field.

5. Click OK.

4-2 Designing Business Rules with Oracle Business Process Management

Working with Rulesets

4.2.2 How to Set the Effective Date for a Rule Set

Effective date support provides the ability to specify a start date and an end date for a
ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date
range in which the rules and Decision Tables within the ruleset are effective. For more
information on effective dates, see Using Date Facts_ Date Functions_ and Specifying
Effective Dates.

To set the effective date for a ruleset:

1. Select the ruleset name from the Rule Sets tab.

2. Click the navigation button next to the ruleset name to expand the ruleset
information to show the ruleset Name, Description, and Effective Date fields, as
shown in Figure 4-1.

Figure 4-1 Ruleset Showing Effective Date Field

©d overview | < Ceneral Rules & Verbal Rules

¥ [Eiter On +R v BHB K

= 2 Eligibility

<enter descriptions
[advanced Mode [| TreeMode [¥|Rule Active [Logical Priority: [Medium |+

Effective Date: Ahways Valid

F

all of the following are true
age = Application age
monthly income = Application.monthly.income
pre-bureau risk categary = Strategy pre-bureau risk category
instaliment unaffordable = Strategy pre-bureau affordabilivy.result
<inser test

and

any of the following are true
pre-bureau risk category == RiskCategories DECLINE

instalim ent unaffordable

3. Select the Effective Date entry. This displays the Set Effective Date dialog, as
shown in Figure 4-2.

Figure 4-2 Using the Set Effective Date Dialog

fa Set Effective Date

[v] Erom: [E [12:38:22/%] (GMT-08:00) Pitcairn Standard Time '|

[¥] Te: | | |12!38:25::-] (GMT-08:00) Pitcairn Standard Time '|

(") Date () Time (=) Both

Help ok Cancel

4. Use the Set Effective Date dialog to specify the effective dates for the ruleset.
Clicking the Set Date button displays a calendar to assist you in entering the From
and To field data.

You can specify an effective start date and or an effective end date for a ruleset, a rule,

or a Decision Table. For information on specifying the effective date for a ruleset, see
How to Set the Effective Date for a Rule Set.

4.2.3 How to Set the Effective Date for a Rule

You can specify an effective start date and or an effective end date for a rule.

Working with Rulesets and Rules 4-3

Working with Rulesets

To set the effective date for a rule:

1. Select the ruleset name from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. Next to the rule name click Show Advanced Settings.

4. Select the Effective Date field. This displays the Set Effective Date dialog.

5. Use the Set Effective Date dialog to specify the effective dates for the rule. Clicking
the Set Date button displays a calendar to assist you in entering the From and To
field data.

6. In the Set Effective Date dialog, click OK.

4.2.4 How to Use a Filter to Display Matching Rules in a Ruleset

As the number of rules in a ruleset increases, it can be difficult to navigate the list of
rules. You can instruct Rules Designer to filter the list of rules, to display only rules of
interest. For example, you can display only active rules or only rules that have
validation warnings.

For more information on creating rules, see Working with Rules.

To use afilter to display matching rules in a ruleset:
1. InRules Designer, select a ruleset from the Rulesets navigation tab.

2. To show the rule filter settings, next to the ruleset name, click Show Filter Query
as Figure 4-3 shows.

Figure 4-3 Showing or Hiding a Filter Query in a Rule Set

i overview P General Rules
kb.‘[jgilteron PR Av I BEHD M

 Hide Filter Query &

15ert fests

& ¥ Policy Terms

<enter descriptions

= ¥ Policy Effectivity
Center description:
Manual Review Guideline
<enter description:
IF

Claim iz & Claim and

Claim.claimDetails = null and

Claim.claimDetails contains {"Theft"}

<Rt te st
THEN

modify Claim { <edit propertiess statws @ Claim Status.Manual Revieor)

modify Claim.policyterms { <edi properiies> generalTerms @ "Exception” , notes : "AUTO FLAGGED")

Mode: EDIT Locale: English (United States)

3. In the Filter Query field, click <insert test> to insert a default test.

4. Configure the default test.

4-4 Designing Business Rules with Oracle Business Process Management

Working with Rulesets

In this case, as shown in Figure 4-4, when you click an <operand> you can choose
from the rule-specific options shown in Table 4-1.

Table 4-1 Rule Filter Query Operands
. __|

Operand

Description

namne

Matches against the rule name.

description

Matches against the rule description.

priority

Matches against the rule priority. For more information, see
How to Set a Priority for a Rule.

start date

Matches against the rule start date. For more information,
see What You Need to Know About Effective Dates.

end date

Matches against the rule end date. For more information,
see What You Need to Know About Effective Dates.

m nutes until start
date

Matches against a specified number of minutes until the
rule start date. For more information, see What You Need
to Know About Effective Dates.

m nutes until end
date

Matches against a specified number of minutes until the
rule end date. For more information, see What You Need to
Know About Effective Dates.

days until start
dat e

Matches against a specified number of days until the rule
start date. For more information, see What You Need to
Know About Effective Dates

days until end date

Matches against a specified number of days until the rule
end date. For more information, see What You Need to
Know About Effective Dates

years until start
date

Matches against a specified number of years until the rule
start date. For more information, see What You Need to
Know About Effective Dates

years until end date

Matches against a specified number of years until the rule
end date. For more information, see What You Need to
Know About Effective Dates

is active Matches against whether the rule is active. For more
information, see How to Select the Active Option.
is valid Matches against whether the rule has validation warnings.

For more information, see Understanding Rule Validation.

referenced fact
types

Matches against one or more fact types.

Working with Rulesets and Rules 4-5

Working with Rulesets

Figure 4-4 Filter Query Operands

A Overview P General Rules

& []filter on F+ R av BEHDM
Filter Query: 4’
[zopsrendz, == soperangz, | sinsenttes

-

Q Walue Options

& name
] - description
@ priariy
@ @ start date
@ end date
@ minutes until start date
& @ minutes until end date
~-@ days until start date
1| days untll end date
@ years until start date
<@ years until end date
- 1% acthie
o iswalid
@

referenced fact types

() List View (2) Tree View Rtus. Manual Review)

- peralTerms :"Exception” , notes :"AUTO FLAGCED")

Mode: EDIT Locale: English (United States)
For more information, see How to Define a Test in a Verbal Rule.

5. Select the operator to choose an operator for the comparison. For example, for the
name you can select contains from the operand list.

6. Enter a comparison operand for the right-hand-side of the filter test. For example,
enter the string Pol i cy.

7. When the filter query is complete you can apply the filter to the rules in the
ruleset:

a. To apply the filter, select the Filter On check box.

Rules Designer displays only the rules that match the filter query as Figure
4-5 shows.

4-6 Designing Business Rules with Oracle Business Process Management

Working with Rulesets

Figure 4-5 Enable Filter Query in a Rule Set

4 overview P Ceneral Rules

2 []Eilter On

Filter Query:

name contains (fpolicy]y <insert test:

1 L{; Walue Options
iea null
Accident

center descr

¥ wvalidate Pay

<enter descr

& ¥ Close Claim

<enter descrl

() List View (2) Tree View

[v] Constant

&

Mode: EDIT Locale; English (Unite

b. To disable the filter query, clear the Filter On check box.

Rules Designer displays all the rules in the ruleset.

c. To delete the filter query, select it and press Delete or click Clear Filter.

4.2.5 Using Auto Complete when Selecting Component Values from a List

The Rules Designer enables you to easily set values for the following components of a

business rule:
¢ Expressions
e Conditions
* Operands

e Actions

You can edit these components by clicking them in the Rules Editor and selecting the
desired value from a drop down list or tree. You can also enter the name of the desired
value in the text area at the top of the list. When you begin entering text, the list of

options are filtered as shown in Figure 4-6.

Figure 4-6 Using the Auto Complete Function

¥ 2, 69 DecisionTablel

<operand> == =operand:>
= lcurr E}

CurrentDate

CurrentDate date
A CurrentDate datetime
a g CurrentDate date timelnMillis

5) List view () Tree View

[Customizable

* Conflict Resolution

Working with Rulesets and Rules 4-7

Working with Rules

In this figure, only the options beginning with the text entered are displayed.

4.3 Working with Rules

You create business rules to process facts and to obtain intermediate conclusions that
Oracle Business Rules can process. You create rules in a ruleset, so before working
with rules you must create a ruleset (or use the default ruleset).

For more information on creating a ruleset, see Working with Rulesets.

You can test rules as you design them without having to deploy your application. For
more information, see Testing Decision Functions Using a Rules Function.

Rules Designer rule validation can assist you when you work with rules by showing
warnings for incorrect or incomplete rules. To show the validation log window, click
the Validate button or select View>Log and select the Business Rule Validation tab.
Note that you must correct all warnings before you can test or deploy rules. For more
information on rule validation, see Understanding Rule Validation.

As the number of rules in a ruleset increases, you can configure Rules Designer to
filter the list of rules to show only rules of interest. For more information, see How to
Use a Filter to Display Matching Rules in a Ruleset.

4.3.1 How to Add General Rules

To create a general rule, first add the rule to a ruleset, and then insert tests and actions.
Actions are associated with pattern matches. At runtime, when a test in the IF area of a
rule matches, the Rules Engine activates the THEN action and prepares to run the
actions associated with the rule.

By default, Rules Designer creates rules which fire for each matching fact. Select
Advanced Mode to enable other options, such as a rule in which the same fact type
matches more than once, or never. For more information on advanced mode and
showing advanced settings, see Using Advanced Settings with Rules and Decision
Tables.

To add a general rule to a ruleset:

1. In Rules Designer, select the Rule Sets tab and click +.

2. In the Overview tab, in the General Rules panel, click +. Alternatively, in the
General Rules tab, click Create Rule or Create (+).

For example, click Create Rule to add a rule named Rul e_1, as shown in Figure
4-8.

4-8 Designing Business Rules with Oracle Business Process Management

Working with Rules

Figure 4-7 Adding a Rule to a Rule Set

@ Start Page \) LoanApprovalV2 rules

R E R (@ @
@ settings L4 Overview < General Rules &2 verbal Rules
= Facis ¥ [|Eilter On TR o v B e
F= Functions
" = v Neyte 1
m Clobals =enter description
_E_i\-'alue Sets IF
._—,9 Links “insert test

Q Decision Functions THEN
‘E_:'JTranslations <inzert action
a Test

) Data Explorer

D“C' Business Phrases
Rule Sets 3+ R

@} us strategy rules

8} us afford rules

&P Rulesets

[}

Mode: EDIT Locale: English (United States)
Design

Note: Delete rules only from the rule editor region by clicking the delete
button. Rules do not get deleted cleanly when you delete them from left tree
navigation.

4.3.2 How to Add Verbal Rules

Verbal rules are created and executed in a similar fashion to general rules. However,
there are some differences.

To create a verbal rule, first add the rule to a ruleset, and then insert tests and actions.
As you define a verbal rule, you add business phrases which can either be
automatically derived by the system, or defined by you. You can define business
phrases before writing a rule, or after.

Verbal rules do not support Advanced Mode or Tree Mode.

To add a verbal rule to aruleset:

1. In Rules Designer, select the Rule Sets tab and click +.

2. In the Overview tab, in the Verbal Rules panel, click +. Alternatively, in the Verbal
Rules tab, click Create Verbal Rule or Create (+).

For example, click Create Verbal Rule to add a rule named Ver bal Rul el, as
shown in Figure 4-8.

Working with Rulesets and Rules 4-9

Working with Rules

Figure 4-8 Adding a Verbal Rule to a Rule Set

@ Start Page \) Loan&pprovalvz.rules \) LoanApproval.rules

I ECEE - B AR YOIL @
@ settings 4 Overview < General Rules 52 verbal Rules
= Facs Werbal Rules + ¥ v & 1HE e
% Functions
= ¥ VerbalRulel
(x) Globals <enter descriptionz
E] WValue Sets IF
J Links <inzert test=

THEN

<inzert actionz>

Q Decision Functions

%Translations

a Test

F] Data Explorer

D'C‘ Business Phrases
Rule Sets a9 3%

@} us strategy rules

@} us afford rules

P Rulesets

=

Mode: EDIT Locale: English (United States)
Design

4.3.3 How to Define a Test in a Rule

To create a test in a rule you add conditions for facts. For example, with a sample
Cust omer Or der fact with an annual spending property, you can add a test to
determine if a customer order is associated with a high value of spending, based on
the annual spending for the customer. Note that you can use value sets to limit the
values for tests and actions in rules. For more information, see Using Value Sets as
Constraints for Options Values in Rules.

Figure 4-9 shows this sample rule.

Figure 4-9 Adding a Test to a Rule

= ¥ Rule_1
<enter descripkion>
IF
CustomerOrder, annualspending = 2000
THEN

rodify CustomerOrder { value @ "High")

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts. For this sample rule, Rul e_1,
when a fact matches the Rules Engine modifies the fact and then modifies the value
property to "High."

To define tests in rules:

1. In Rules Designer, click + from the Rule Sets tab, add or select the rule you want
to use, for example, select Rule_1.

2. TheIF area of the rule includes a left-hand-side <oper and> and a right-hand-side
<oper and>, as shown in Figure 4-14.

4-10 Designing Business Rules with Oracle Business Process Management

Working with Rules

Figure 4-10 Rule Test with Left-hand-side operand and Right-hand-side
operand

© overview | P General Rules
|¥|:|Eilttr0n 4% — E%%“
E ¥ Rule1
<enter description=
IF
SRpsrands == Zoperand:
<INSerttest
THEN
<insert action

In the rule, click <insert test> and choose simple test, for example.

In a test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list, as shown in Figure 4-15:

Figure 4-11 Configuring the Left-hand-side Operand of a Test in a Rule

1S4 Overview < General Rules

¥ [Eilter On R A v R e
= ¥ Rulei
<emter description=
IF
[Customer.arivingExperience == operand- |

Customer.drivingExperience |_-,fx
T 4, Value Options
e Customer
@ address
F-a age
[#-@ drivingExperience
[# @ education
[#-@ name
[#-a Terms
#-a Policy
[#-@ Car
[#-a Claim
@ DMV Record
[#-a Insurance History
[#-a Past Claim Info
[# @ Quote
[#-@ CurrentDate
List Wiew (2) Tree View

Mode: EDIT Locale: English (United States)

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

The value you enter must agree with the type of the corresponding operand.
For example, in the test IF Cust oner Or der . annual Spendi ng >
<operand>, valid values for <operand> must agree with the type of

Cust onmer Or der field annual Spendi ng.

In a test, you replace the operator with the desired logical operator or accept the
default (==). To do this, select the default == operator. This displays a field and a
list. The list may contain additional operators, depending on the datatype of the
left operand. For example, to test strings, if you select a String operand on the left

Working with Rulesets and Rules 4-11

Working with Rules

hand side, then additional String operators, such as startsWith and
equalslgnoreCase are available as shown in Figure 4-16.

Figure 4-12 Configuring String Operators in a Rule

184 Qverview @ .General Rules
¥ [Eilter On + R aw E%%“
= ¥ Rule1

<enter description:

IF

Custom er.drivingExperience == <onerand:
Pt i A

<inger tests |
THEN

Finsert actions

AYY
I

<=
bietaen

Similarly, to test a logical condition between the left-hand and right-hand
operands, select one of the logical operators: == (equality), ! = (not equal), >
(greater than), >= (greater than or equal to), < (less than), <= (less than or equal
to). For more information on the operators, see Oracle Business Rules Built-in
Classes and Functions.

6. Ina test, you replace the right-hand-side operand with a value.
Configure the <operand> placeholder as you would for any operand.

For example, enter >25 into the text entry area and press Enter or Return, as
shown in Figure 4-13.

Figure 4-13 Configuring the Right-hand-side Operand of a Test in a Rule

& Overview @ .Ceneral Rules
¥ [Eilter On +R av BHEHN
= ¥ Rule1

<enter description:
IF

Customerage == 25

<insert 1es E t_r‘l'
THEN G, value Gptions

<inzert action> el
Customer

Terms

Policy

Car

Claim

Dbl Record
Insurance History
Pazt Claim Info
Cuote
foccldent
MextlD
BigDecimal

SN O O = O O O O O B

Biglreger

-

Daouble

() ListView () Tree View

[[] constam Mode: EDIT Locale: English (Unitad States)

4.3.4 How to Define a Test in a Verbal Rule

To create a test in a verbal rule you select a derived or user-defined business phrase, or
write a new user-defined business phrase, for which you supply details later.

4-12 Designing Business Rules with Oracle Business Process Management

Working with Rules

As you enter text in a verbal rule test, the Rules Editor displays a drop down list of

related business phrases.

To define tests in verbal rules:

1. In Rules Designer, add a new verbal rule, or select the verbal rule you want to use.
2. The IF area of the rule includes a placeholder <i nsert test >, as shown in Figure
4-14.
Figure 4-14 Rule Test with Left-hand-side operand and Right-hand-side operand
@ Qverview \) General Rules ‘erbal Rules
Verbal Rules + X v a e |
= ¥ werbalRulel
<enter descriptions
IF
Einzeritest]
i
I
Start typing to get results and filter them further by pressing TAE
3. Inthe rule, click <insert test> and begin to type a test in text entry box that
appears.
4.

displayed as shown in Figure 4-15. Select the one you want.

Figure 4-15 Configuring a Test in a Verbal Rule

= ¥ werbalRulel
<enter descriptions

IF

| inser‘ttest;l

As you type text (such as "policy’, for example), a list of related business phrases are

|po|icy is equal to {value}

policy Add Mew Business Phrase

policy is a{typel

policy is equal to {value}

policy is between {value} and {value}
policy is in {value}, {value}
More aptions for "policy”...

Select List ltem to Insert Into TextField /Double Click List ltem to Accept Value

ted Stat

5. You can refine the list if needed. To display more choices, select a business phrase
and press the Tab key. The list is populated with business phrases related to the

one you selected, as shown below.

Working with Rulesets and Rules 4-13

Working with Rules

Figure 4-16 Refining Suggested Business Phrases in a Verbal Rule

= ¥ VerbalRulel
<enter descriptions

IF

| inser‘ttest;l

|po|icy is equal to {\ralue}{

policy is greater than or equal to {value}
policy is greater than {value}

policy is less than or equal to {value}
policy is less than {value}

policy is not equal to {value}

ted Stat
Select List ltem to Insert Into TextField /Double Click List ltem to Accept Value

6. If there are parameters in your business rule, such as '{value}’, click on them and
specify their details.

7. If you have written a new business phrase, the rule is put into draft mode. Define
the business phrase in the Business Phrases tab. For more information, see How to
Create Business Phrases.

4.3.5 What You Need to Know About Oracle Business Rules Test Variables

Oracle Business Rules test variables provide a way to shorten lengthy expressions that
occur in rule and decision table conditions and actions. The variable and its value can
be represented as an inline business term definition. The test variables are also called
as inline aliases.

The option to insert test variables appears as a list next to <insert test> in the rules
condition section. As part of the definition of rule condition, you can define a variable
to represent a complex expression, a mathematical expression, or callouts to functions.

For example you have an XML fact called Song that has an attribute as conposer
having a function called si ze. When referring to the attribute, instead of using
Song. conposer . si ze() every time, you can just define a variable as the following:

I o = Song. conposer. si ze()

Subsequently, in tests, you can use | 0 as part of your expressions. The expression can
be anything from a simple to a complex expression. For example, in the body of a
function, if you click <insert action>, you can see expression as a part of the available
options.

Figure 4-17 displays a test variable.

4-14 Designing Business Rules with Oracle Business Process Management

Working with Rules

Figure 4-17 Rules Test Variable

= ¥ AssignPublisherAnd Composer

“enter description=
IF
 Song.artist.name == Artist.name and
- Artist.genre == null and
- |o = Song.composer.sized and

v soperands == '<onerand;|

<inzerttest> ¥ B

[UHEN Q Walue Options

call processsong{so| |

<insert action>

---n recordlabel
@ Song
[H-3 CurrentDate
@ RL
[#-@ BigDecimal
[#-@ Biglnteger
[#-3 Double
[+-a Float
@ Integer
@ Long
5

¢-m Short
() List Wiew () Tree Wiew

Once you define an inline alias, for subsequent test conditions, the inline alias is
available in the list of the operands. The scope of an inline alias is restricted to the
subsequent tests in a particular rule, in which the inline alias is defined. In case of a
nested test, you can still use the inline alias, because the nested test is a part of the base
test where you have defined the alias. This is true even for any test that you define
even within the nested test. The scope of the inline alias is not just restricted to the test
conditions of the base and its nested test, but also to the actions of that rule. If the
inline alias is defined as a part of a nested test condition and not as a part of the main
test condition, even then the alias will be available to all the subsequent test conditions
and actions within or outside the main nested test.

However, if you define an inline alias inside a not nested test, then the scope of the
inline alias is restricted only to the subsequent tests inside the not nested test and not
to any tests that are outside the not nested test.

The inline aliases can be used both in If-Then rules as well as Decision Tables. In a
Decision Table, in Advanced Mode, you can show or hide patterns as well as enter a
pattern by clicking <insert pattern>. After you insert a pattern, you can insert tests. In
normal mode, you can show or hide tests as well as enter a test by clicking <insert
test>.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create any
kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules
simply by clearing the Advanced Mode check box.

For more information, see Working with Extended Tests

Working with Rulesets and Rules 4-15

Working with Rules

4.3.6 How to Define Range Tests in Rules

To create a range test in a rule, you add conditions for facts. For example, with a
sample Cust ormer Or der fact with an annual spending property, you can add a test to
determine if the value of a customer order falls between an upper and lower range.

The following summarizes this sample rule:

IF

Cust oner Or der . annual Spendi ng between 100 and 2000
THEN

Modi fy Custoner Order. val ue = "Normal "

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define range tests in rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Inthe View field, select IFF/THEN Rules (this is the Rules Designer default).
3. Add or select the rule you want to use, for example, select Rule_1.

4. InRule_1, in the IF area, select <insert test>.

5. The test in the IF area of a rule includes a left-hand side <operand> and a right-
hand-side <operand>.

6. Inarange test, you replace the left-hand-side operand with a value.
To do this, select the left-hand-side <operand>. This displays a text entry area and

a list, as shown in Figure 4-18:

Figure 4-18 Adding a Test Left hand-side Operand to a Rule

4 Overview @ General Rules &7 verbal Rules
[Eiter On R av i teEE e

Filter Query: é

[zoperandz == =zoperange | <inserttest

Y, value Options

P name
description
priority
start date
end date
minutes until start date
minutes until end date
days until start date
days until end date
years until start date
years until end date
Iz acthve
iz valid
referenced fact types

=23 0

F

ally [

isk category

frordability_result

any
[LINE

) ListWiew (2 Tree View
— — Mode: EDIT Locale: English (United Sta

a. To enter a value, use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

4-16 Designing Business Rules with Oracle Business Process Management

Working with Rules

b. To enter a literal value, type the value into the text entry area and press Enter.
The value you enter must agree with the type of the corresponding operand.

For example, in the test IF Cust onmer Or der . annual Spendi ng >
<operand>, valid values for <operand> must agree with the type of
Cust omer Or der field annual Spendi ng.

In a range test, you choose the bet ween operator. To do this, select the default ==
operator. This displays a text entry area and a list. Select between as shown in

Figure 4-19.

Figure 4-19 Configuring the Operator of a Range Test in a Rule

4 Overview @ General Rules &7 verbal Rules

& [JEiteron

Filter Query:

= ¥ Eligibility :
<enter del <
=
between
all of the followil in
.| RLcontains
age = Applig

monthly income = Application.manthly.income

F

This adds two more <operand> placeholders.

Configure the <operand> placeholders as you would for any operand.

For this example, the test is true when the left-most operand
(Cust oner Or der . annual Spendi ng) is between the values 100 and 2000.

4.3.7 How to Define Set Tests in Rules

To create a set test in a rule, you add conditions for facts. For example, with a sample
Cust omer Or der fact with a line item property you can add a test to determine if the

line
The
I F

THEN

item belongs to an arbitrary set of products.

following summarizes this sample rule:

CustonerOrder. lineltemsku in 12345, 43255, 76348

Modi fy Custoner Order. val ue = "High"

At runtime, when this rule is processed the Rules Engine checks the facts against rule

pattern tests that you define to find matching facts.

To define set tests in rules:

1.

2.

In Rules Designer, select a ruleset from the Rulesets navigation tab.

In the View field, select IF/THEN Rules (this is the Rules Designer default).

Add or select the rule you want to use, for example select Rule_1.

In Rule_1, in the IF area select <insert test>.

The test in the IF area of a rule includes a left-hand side <operand> and a right-

hand-side <operand>.

Working with Rulesets and Rules 4-17

Working with Rules

In a set test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a list as shown in Figure 4-20:

Figure 4-20 Adding a Test Left-hand-side Operand to a Rule

= ¥ Rule 1
<enter description >

IF

l_CustomerOrder.Iineitem.sku == <0perand> |
CustomerOrder lineitemn, sk Ej‘l

T Q, value Options
Eh-m CustomerOrder

i Bea lineikem

@ annualspending
[#-a Lineltem

[-@ CurrentDate

() List Wiew (3 Tree Yiew

[Customizable

a. To enter a value use the list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

In a set test, you use the i n operator. To do this, select the default == operator.
This displays a text entry area and a list. Select in as shown in Figure 4-21.

Figure 4-21 Configuring the Operator of a Set Test in a Rule

= ¥ Rule 1
<enter description

IF

| CustomerOrder lineitem, sky == <op.e-rand> |
<insert test >
THEN ==
1=
<insert action = =
==
<
o=
between
in

This adds two more <oper and> placeholders in a comma separated list and an
<i nsert > placeholder as shown in Figure 4-22.
Figure 4-22 In Operator in a Set Test

IF
CustomerCrder ineltem.sky in <operand= , =operand= <insert=

<insert tesk
THEN
<insert action

To add another operand to the list, click <insert>.

4-18 Designing Business Rules with Oracle Business Process Management

Working with Rules

To delete an operand from the list, right-click the operand and select Delete Test
Expression.

8. Configure the <oper and> placeholders as you would for any operand as shown
in Figure 4-23.

Figure 4-23 Configuring the Operands of a Set Test in a Rule

= ¥ Rule_1
<enter description >
IF
CustomerOrder, lineitem.sku in 12345, 43255,'<0Derana;| <insert>

<insert test> 734 i
THEN), Yalue Optians
CustomerOrder

<insert ackion = 5

@ lineitem

----- @ annualspending
Linelkem. sku

@ CurrentDate, date. timeIntillis
[-a Bighecimal

@ Calendar

() Lisk Wiew (3) Tree View

[[] Constant [Custamizable

The test is true when the value of the left-most operand
(Cust omer Order . | i nel t em sku) is any of 12345, 43255, or 76348.

4.3.8 How to Define an Action in a General Rule

To create a rule you insert tests and you insert actions. The actions are associated with
pattern matches. When a test in the IF area of a rule matches, the Rules Engine
activates the THEN action and prepares to run the actions associated with the rule.

When you add an action, you use one of the forms of actions shown in Table 4-2. For
each form shown in Table 4-2 the options that Rules Designer presents are context
sensitive, so the lists and the number of items you work with may be different,
depending on which action you add and the choices you make while you enter the
action. Table 4-2 shows the basic actions; additional actions are available with
Advanced Mode. For more information on advanced mode see Using Advanced
Settings with Rules and Decision Tables.

To define actions in general rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Ina general rule, in the THEN area, select <insert action>. This displays the add
action list as shown in Figure 4-27.

Working with Rulesets and Rules 4-19

Working with Rules

Figure 4-24 Adding a Modify Action to a Rule

= ¥ Me,;

center description

azsert new
assign
call

modify
retract
if
while
assert
ASTErT tree
assign new
expression
far
return
RL
synchronized
throw

aky Y

if (advanced)

. while (advanced)

3. In the add action list, select the type of action you want to add. For example, select
modify. You can also enter the name of the action in the text area. As you begin
entering a name, the list of available choices is automatically filters. This is useful
when there are a large number of options available.

You can add any required action ranging from assert, cal | , nodi fy to even
conditional actions such asi f, el se, el sei f,while,for,if (advanced), and
whi | e (advanced).

4. In the THEN area, select <target> to display the option list. For example, select
Request edPr oduct as shown in Figure 4-25.
Figure 4-25 Adding Modify Action to a Rule and Selecting the Target

=Y Rule2

center description:

[modify RequestedProduct { <edit oroperiies> §

cinsert
RequestedProduct
Application
Strateqy
Affardability
CurrentDate

5. Select <edit property>. This displays the Properties dialog.

6. In the Properties dialog, in the Value column, enter " H gh" (include the double
quotation marks) and press Enter or Return as shown in Figure 4-26.

4-20 Designing Business Rules with Oracle Business Process Management

Working with Rules

Figure 4-26 Adding Modify Action Property and Value to a Rule

i f'p Properties

Awalue must be specified for the property to be used. You can specify walues for properties by editing the table belowin the
Walue' column.

Click a cell to edit the value and make sure you hit the Enter key In arder to have your changes savee!

Name Type Value Constant
amoumnt EigDecima |
productType ProductTypes]
rate BigDecimal]

[¥] Eit Columns To Width

rull

RegquestedProduct.amount

RequestedProduct. amount.negatei)
RequestedProductamount longvalued
ReguestedProduct.amount.scale)
ReguestedProduct.amount.toEngineeringString . length
ReguestedProduct.amount.ioPlainstring . lengthd

OK Cancel

7. In the Properties dialog, click Close. This displays the rule.

4.3.8.1 Basic Actions in a General Rule

Table 4-2 Rule Action Choices
- - - -

Action Form Description

assert New Assert a new fact.

assi gn, Assert a new fact.

cal | Call a function.

nodi fy Modify a data value associated with a matched fact.
retract Retract a fact.

assert Assert a fact.

asset tree

Asserts a tree of facts given the root.

assi gn new

Assign a new fact.

expressi on

Perform expression.

return The return action returns from the action block of a function or
a rule. A return action in a rule pops the ruleset stack, so that
execution continues with the activations on the agenda that are
from the ruleset that is currently at the top of the ruleset stack.
RL Use an Oracle RL expression that you supply.

synchroni zed

The synchronized action is useful for synchronizing the actions
of multiple threads. The synchronized action block lets you
acquire the specified object's lock, then execute the action-block,
then release the lock.

t hr ow

Throw an exception, which must be a Java object that
implements java.lang. Throwable. A thrown exception may be
caught by a catch in a try action block.

Working with Rulesets and Rules 4-21

Working with Rules

Table 4-2 (Cont.) Rule Action Choices

Action Form Description

try The try, catch, and finally in Oracle RL is like Java both in

syntax and in semantics. There must be at least one catch or
finally clause.

if,else elseif,for, Conditional actions.
whil e

4.3.9 How to Define an Action in a Verbal Rule

Like general rules, to create a verbal rule you insert tests and actions. Verbal rules tests
and actions are composed primarily from business phrases.

To define actions in verbal rules:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Inaverbal rule, in the THEN area, select <insert action>. This displays the add
business phrase list as shown in Figure 4-27.

Figure 4-27 Adding an Action to a Verbal Rule

Verbal Rules

PR Iwva e

IF

Customer iz low risk
<inzert test>

THEN

inzert action;|

Start typing to get results and filter them further by pressing TAE

3. In the business phrases list, start to type the action you want to display a list of
suggested business phrases.

You can also type keywords if you aren't certain of how to phrase your action. For

example, if you know you want to calculate a premium in a particular way, you
might type 'calculate Premium' to see related business phrases.

4-22 Designing Business Rules with Oracle Business Process Management

Working with Rules

Figure 4-28 Adding an Action to a Verbal Rule

THEN

inzert action>]

modify |

modify score to have score as {value}, id as {value}, type as {value}

modify Score Tracker to have score as {walue}, id as {value}, type as {value}

modify Customerto have address as {value}, age as {walue}, children as {value}, creditRating as {va
modify Carto have category as {value}, deprecatedWalue as {value}, make as {value}, model as {val

modify Terms to have premium as {value}, remarks as {value}, id as {value}, carld as {value}, custo

modify Policy to have collizionCoverage as {value}, comprehensiveCoverage as {walue}, deductible
modify Custamer's drivingHistory to have DUIConvictions as {value}, accidentsAtFault as {value}, a
maodify Customer's license to have issuedOn as {value}, region as {value}, valid as {value}
Maore aptions for "modify"...

Select List ltem to Insert Into TextField/Double Click List [tem to Accept Value

4. Select a business phrase if one is available that meets your needs.

5. To refine the list of business phrases further, select one related to what you want to
use and press the Tab key.

The list is displayed with a refined set of business phrases. Select the phrase you
want.

Figure 4-29 Adding an Action to a Verbal Rule

THEN

Eirzen action;|

|modify score to have score as {value}, id as {value}, type as {\ralueH

modify score to have score as {value}, id as {value}, type as {value}
modify Score Tracker to have score as {value}, id as {value}, type as {value}

Select List ltem to Insert Into TextField/Double Click List [tem to Accept Value

6. If no business phrases in the list meet your needs, type a business phrase and select
Add New Business Phrase to instantiate a new business phrase. Complete the
definition of the business phrase in the Business Phrases tab.

4.3.10 What You Need to Know About Rule Actions

A rule loop occurs when the value for a condition is changed by an action. Loops can
occur across rules in a single rule, spread over several Decision Tables, or spread over
rules and Decision Tables in the same ruleset. You need to avoid creating rule actions
that modify fact properties that are used in rule conditions. At runtime, such rules
could cause an infinite loop.

4.3.11 What You Need to Know About Oracle Business Rules Performance Tuning

In most cases, writing of rules should not require a focus on performance. However,
there are tips that can that help you to enhance and maximize rule performance.

For more information on Oracle Business Rules performance tuning, see Oracle
Business Rules Performance Tuning in Tuning Performance.

Working with Rulesets and Rules 4-23

Introduction to Verbal Rules and Business Phrases

4.4 Introduction to Verbal Rules and Business Phrases

Verbal rules work hand in hand with business phrases to provide a flexible way
author rules using natural language statements to express rule logic in domain specific
sentences that are similar to spoken language.

Business phrases provide the logic behind conditions that are used in the composition
of the verbal rule.

You can write verbal rule tests and actions using derived business phrases as well as
user-defined business phrases. Derived business phrases are automatically created
using facts, globals and other information in the dictionary while user-defined phrases
can be explicitly authored to augment derived phrases. Further, user-defined phrases
can either be pre-created or created as needed while composing the verbal rule.

As you write a verbal rule, you can use suggested business phrases, or instantiate your
own on the fly and provide their implementation details later. Alternatively, you can
create the business phrases you need for your verbal rule first, and then complete the
verbal rule.

4.4.1 Working with Business Phrases
You create business phrases in the Business Phrases tab of the Rules Designer.

Business phrases comprise three parts:

® Parameters - parameters defining the types of variables that can be passed to the
business phrase

¢ Value - the business phrase expression, including placeholders for parameters if
any

* Mapping - definitions of the logic defining the business phrase conditions

There are two types of business phrases:

® Test business phrases - define conditions. These provide the same types of logic as
the IF part of a general rule. For more information, see How to Define a Test in a
Rule.

* Action business phrases - define the actions to perform if the conditions defined by
the test business phrases in a verbal rule are met. These provide the same types of
logic as the THEN part of a general rule. For more information, see How to Define
an Action in a Verbal Rule.

4.4.1.1 Business Phrases Tab

You create both test and action business phrases in the Business Phrases tab of the
Rules Designer, as shown in Figure 4-30.

4-24 Designing Business Rules with Oracle Business Process Management

Introduction to Verbal Rules and Business Phrases

Figure 4-30 Business Phrases Tab

\) CarlnsuranceRules.rules

[
B IH@ B [% 1O G @
@ Settings P
= N Business Phrases
=) Facts (i
_f,: Functions
mclcbals Business Phrases: Q search EE} * - x
E_l 03 G Farm Draft
‘50 Links { ween ages {agel} and{age2} and has driven for at least {ye... Test Business Phrase |:|
Q Decision Functions {c mertis amale Test Business Phrase O
@ Translations n {c mer}is afemale Test Business Phrase O
- { mertis single Test Business Phrase O
aTest ol : : Boetice D Dl —
PROODON W i PRODOODY
3 Data Explarer Parameters: hd + ¥
Business Fhrases Mame Form Type Value Set
Rule Sets + ® customer WVariable Customer
@ Premium Calculator
@ Customer Score Ca...
@ Car Score Calculator Value:
@ Policy Score Calc... fcustomer}is a minor @
@ Demo Rule Set Mapping:
customer.age <= Minimum Driving Age
<inzert test>

Design

Mode: EDIT Locale: English (United States)

The tab includes the following sections:

e Business Phrases list

e Parameters

e Value

* Mapping
Business Phrases list
The Business Phrases list displays the business phrases included in the dictionary.

Use the toolbar controls to filter the list by searching, to refresh the list, to add new test
or action business phrases, and to delete the currently selected business phrase.

The list displays business phrases and their attributes: Value, Form and Draft.
Mark a business phrase as draft by checking the Draft check box directly in the list.

Business phrases containing validation errors are marked with a red squiggly
underscore. Hover over them to see the error in a pop-up.

Parameters
Use the Parameters panel to view and edit parameters.

Click Insert to add a parameter to the value of the business phrase. Click Add and
Delete to create and remove parameters.

The Form attribute defines the type of parameter. Choices include:

® Value - ad hoc value. When selected, the Type can be chosen from boolean, byte,
char, double, float, int, long, short or String

Working with Rulesets and Rules 4-25

Introduction to Verbal Rules and Business Phrases

® Variable - a variable which is already defined within the scope of the business
phrase. When selected, the Type can be chosen from one of the defined fact types in
the dictionary.

* Expression - enter an expression
Value

Edit the definition of the business phrase in the Value panel. The value is also used as
the display name of the business phrase in the Business Phrases list, and in business
phrases displayed in choice lists when authoring a verbal rule.

Mapping

Edit the logical definition of conditions for the business phrase in the Mapping panel.
A business phrase mapping contains similar logical constructs to what you would see
if the business phrase logic were authored as a general rule. See the discussions of tests
and actions in Working with Rules for principles and procedures which also apply to
the creation of business phrase mappings.

4.4.1.2 Draft Business Phrases and Verbal Rules
Business phrases can be marked as being in draft status.

You can set or override the draft status of a business phrase by checking or
unchecking Draft in the Business Phrases list.

The draft status of a verbal rule is derived from the business phrases it references and
can not be manipulated directly. If a verbal rule contains business phrases marked
draft, the rule is also marked draft. The verbal rule description panel is changed to a
solid blue color, and the word 'Draft' appears next to the rule name, as shown in
Figure 4-31. When all business phrases referenced by the verbal rule are no longer
marked draft, the verbal rule is taken out of draft status.

Figure 4-31 Verbal Rule Marked Draft

IF
Customer is a new custamer

<insert test

Draft business phrases and verbal rules are not validated and are not included in the
dictionary for execution. This allows you to continue to use or test a dictionary as you
refine your business phrases and verbal rules.

As you write a verbal rule you can compose business phrases that do not yet exist in
the dictionary. These are automatically added to the list of business phrases and
marked draft, and the verbal rule is marked draft as well.

4.4.2 How to Create Business Phrases

You create business phrases in the Business Phrases Tab. You can also specify a
business phrase while writing a verbal rule and then complete its definition later in the
Business Phrases tab.

Use the Business Phrases tab to add, modify, and delete business phrases.

To Create a New Business Phrase

1. In Rules Designer, select the Business Phrases tab and click Create (+) to create a
test business phrase. Select either Test Business Phrase or Action Business Phrase.

4-26 Designing Business Rules with Oracle Business Process Management

Introduction to Verbal Rules and Business Phrases

A new business phrase is created.

2. Enter the definition of the business phrase in the Value panel. Placeholders for
parameters that have not yet been defined can be included by typing their name
wrapped in curly braces. For example:

{customer} is single

3. Define parameters in the Parameters panel. Click Create (+) to add a new
parameter. Double-click its name to edit it. Specify its Form, and Type. Optionally,
specify a Value Set.

4. To add a parameter to the business phrase value, click Insert.

5. Define the mapping for the business phrase in the Mapping panel. Begin by
clicking <insert test>. Select tests and specify operands. Add additional tests if
needed.

4.4.2.1 Example Business Phrase Creation Scenario

For this example, assume you have an Insurance Quote project with most of the
project definitions complete. Perhaps you want add a business phrase that tests to see
if a customer is a minor, and to invalidate the policy.

You create a new test business phrase and provide the value {customer} is a minor.

Next, you define the parameter customer, and map it to your previously defined
Customer fact.

Now you provide the mapping that specifies the condition. You click on <insert test>
and select simple test. You click on the left <operand>, expand customer and select
customer.age. You click on the right operand and specify the value 21.

The test business phrase looks like Figure 4-32 below.
Figure 4-32 Test Business Phrase Example

siness Phrases
o Bu: Phi

Business Phrases: Q, Search @é} =ﬂ'v ®
Draft

55 Phrase

ner}is between ages {agel} and{age2}and has driven for at least {ye... Test Business Phrase

ner}is amale Test Business Phrase

nertis afemale Test Business Phrase

DDDDI

%%

customer}is single Test Business Phrase

Param eters: i + ¥

Mame Farm Type Value Set
customer Wariable | customer -

Value:

{customer}is a minor @

Mapping:

customer.age <= Minimum Driving Age
<inzert test>

Now you create an action business phrase to set the deductible to a high value and
give it the value Set High Deductible.

Working with Rulesets and Rules 4-27

Introduction to Verbal Rules and Business Phrases

You create a variable called policy and map it to your previously defined Policy fact.

You click <insert test> in the Mapping panel and select Expression. You click
<expression> and the Expression Editor displays. You navigate to policy.deductible,
select it, and click Insert into Expression. You complete the expression with '=2000'
and click OK.

Your action business phrase looks like the Figure 4-33 below.

Figure 4-33 Action Business Phrase Example

Business Phrases

i
Business Phrases: Q, search @[ﬂ Eﬂ- L
Value Form Draft
ﬂ'@ [e premium based on {customerScore}, {policyScore} and {carScore} Action Business Phrase |:|
& i
& O
&
Ld
Parameters: i + ¥
Mame Form Type Value Set
policy Variable Palicy
Value:
Set High Deductible {policy} [
Mapping:

policy.deductible = 2000

<inzert action>

4.4.2.2 Translating Business Phrases

The Value attribute of Business phrases that have been added to the dictionary can be
translated, regardless of whether they originated as derived business phrases or as
user-defined business phrases.

In the Business Phrases tab, select the business phrase to translate and click Edit
Translation Bundles in the Value panel. Edit translations in the Bundle Editor dialog
that appears.

4.4.3 Choosing or Adding Business Phrases in Verbal Rules

Verbal rules use business phrases to specify the IF and THEN tests and actions.

When defining a test or action in a verbal rule, you enter text which triggers a drop-
down list of choices. From the list, you can select existing business phrases from the
dictionary, automatically generated business phrases, or you can instantiate your a
new business phrase based on what you typed, provide its implementation details
later in the Business Phrases tab.

4.4.3.1 Instantiating New Business Phrases While Authoring a Verbal Rule

You can instantiate new business phrases while authoring a new verbal rule simply by
typing them into a test or action instead of selecting one from the drop down list.
These business phrases are marked draft, and the verbal rules which use them are also
marked as draft.

4-28 Designing Business Rules with Oracle Business Process Management

Introduction to Verbal Rules and Business Phrases

In the example below, the desired business phrase Customer is low risk is entered as
a test. The business phrase is not shown in the drop down list. It was not automatically
generated, and has not previously been defined in the dictionary.

Figure 4-34 Adding a New Business Phrase to a Rule

|Verbal Rules

= ¥ ‘erbalRulel
<enter descriptions

IF
Eirzen test;|

|Custom eris lowrisk

Customer iz lowrizsk Add New Business Fhrase
Customer iz lowriskis a {type}

Customer iz lowrizkis equal to {value}

Customer iz low rizk is between {value} and {value}
Customer is low riskis in {value}, {value}

More options for "Customer is low risk...

The verbal rule is marked as a draft.
Figure 4-35 New Business Phrase Added and Rule is Marked Draft

Verbal Rules

IF
Customer iz lowrizk
=inzert test
THEN

<inzert action=

The business phrase marked as a draft and is added to the Business Rules list. The
parameters (if any) and mapping information must still be specified.

Figure 4-36 Business Phrases Added From Verbal Rule Marked Draft

Business Phrases

Business Phrases: Q search Eﬁ - R
WValue Form Draft

{coverageValue} of {policy} Test Business Phrase

Wery High risk customer with {rating} credit rating Test Business Phrase |:|

Reject Policy Offer Action Business Phrase

Set High Deductible {policy} ion Business Phrase

>

Parameters: v + ¥
Mame Form Type Value Set

Value:

Customer is lowrisk

(3

Mapping:

<inzert test>

Working with Rulesets and Rules 4-29

Validating Dictionaries

4.4.3.2 Choosing Business Phrases While Creating a Verbal Rule

A robust list including both previously user-defined and auto-generated derived
business phrases, sorted by relevancy, is automatically provided as you author a test
or action.

User-defined and derived business phrases are not visually distinguished from one
another in the drop down list

4.4.3.3 Derived Business Phrases

Derived business phrases are automatically created and are based on business objects
and data model as defined in the dictionary based. These are created on the fly and
based on what the system calculates you intend to author, based on your typed input.
These are not persisted if they are not added to the verbal rule.

Derived business phrases, once added to a verbal rule, are just normal business
phrases and support parameters and translation.

4.4.3.4 Choosing Which Business Phrases to See in the List

Use the Settings tab > Dictionary Settings > Phrase Suggestions > Value drop down to
control the types of business phrases seen in the drop down pick lists shown while
authoring verbal rules' tests and actions.

Choices include:

e All - display both user-defined business phrases in the dictionary, and derived
business phrases

¢ Auto Suggestions - display only derived business phrases

* Business Phrases - display only user-defined business phrases from the dictionary

4.5 Validating Dictionaries

Rules Designer performs dictionary validation when you make any change to the
dictionary. Rules Designer validation can assist you when you work with rules or
Decision Tables.

To show the validation log window, click the Validate button or select View>Log and
select the Business Rule Validation tab. This displays warnings for incorrect or
incomplete rules. Note that you must correct all warnings before you can test or
deploy rules.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects. You can use the validation message information
to locate the dictionary object and to correct problems. In addition, Rules Designer
flags objects with validation warnings with a validation indicator (a red, wavy
underline), as shown in Figure 4-37.

4-30 Designing Business Rules with Oracle Business Process Management

Validating Dictionaries

Figure 4-37 Validation Warnings Shown in Log and On Screen with Wavy Underline

& LoanApproval rules

AR AR R A MR YOIL €]
E] Value Sets Q) Qverview @ GaneralPules &7 Verbal Rules
& Links % [|Fier on PR ov BRERD®

< Decision Functions
@) Translations exlicit null quards to workaround unsupressed NPES in if actions
B Test ROGT: StrategyContext
4l Data Explorer "

Disposable Income = Application.monthiy.income - (4pplication.manthly expenses + Application.monthly.re payments) and

&7 Business Pnrases
Rule Sets 3+ R

& strategy Legic

P Affordability Logic

= B[S

Credit Contingency Factor = Affordability Cortext Credit Cantingency Factor and
Required Morthly Installment = Strateay Context Required Monthly Installment and
Credit Cantingency Factor = null and
Required Monthly Installment 1= null and
Stratemuantext Bnnlicatinn Risk Seare == <nnarar
Mode: EDIT Locale: English (United States)

| Design

Business Rules - Log Breakpoints | Simulations | Documentation |

@ Dictionary - LoanApproval.rules

Message Dictionary Object Property

&y RUL-05710: The valug chosen, "StrategyContext", is not a valid choice for *Type® of “Valus Set', LoanApproval/Strategy Logic/Decision Table 1/Condition[1]/Value St Type

4 RUL-05846: The buckeiset must have a primitive or Calendar data type. LoanApproval/Strategy Logic/Decision Table 1/Condition[1]/Value Set

£y RUL-0SB3L: Select one or more values for this condition. LoanApprovaljStrategy Logic/Decision Table 1/Candition[1]/Condition Cell[1]

&y RUL-D5838: The decision table has no actions, LoanApproval/Strategy Logic/Decision Table(Decision Tabla 1)

% RUL-05711 The expression cannot be blank. LoanApproval/Affordability Logic /Affordability /Test[9]/ expression|2]

% RUL-05703: The rule or decision table must have at least one pattern ortest. Add a pattern or a .. LoanApproval/Affardability Lagic/Rule(Rule 1) SimpleTestTable
SDK Warnings: 7 Last Validation Time: 1:03:40 PM FOT
Messages | Extensions » | <Business Rules | (504 -

If a dictionary is invalid, you can save the dictionary. However, you can only generate
RL Language for a dictionary that is valid and does not display warnings in the Rules
Designer validation log.

In the validation log, each validation message includes the following:

® Message: The message provides details on the Oracle Business Rules exception that
describes the problem.

* Dictionary Object: This field displays a path that indicates details that should allow
you to identify a component in the dictionary.

e Property: provides information on a property of the object associated with the
warning message.

When you are viewing the validation log, if you select an item and then right-click and
select from the list Select and Highlight Object in Editor, Rules Designer moves the
cursor to select the dictionary object. Note that for some validation warnings this
functionality is not possible.

4.5.1 Understanding Data Model Validation

Rules Designer performs dictionary validation when you make any change to the
dictionary. When Rules Designer displays a warning message, the validation log
includes a message that should assist you in locating the dictionary object that caused
the validation warning. For example, the following string indicates that the warning
originates from the data model object named RLFact _1. In addition, the problem is in
the property named t est _i nt :

CarRent al / Data Model / RLFact _1/test _int/Expression

Table 4-3 specifies the parts of the dictionary object name specified in a validation
message.

Table 4-3 Data Model Dictionary Property in Validation Log
- - -]

Name Description

Car Rent al Dictionary Name

Working with Rulesets and Rules 4-31

Validating Dictionaries

Table 4-3 (Cont.) Data Model Dictionary Property in Validation Log

Name Description

Dat a Model Data Model component in dictionary.
RLFact _1 Element name in data model
test_int Property name in the specified element.
Expressi on Expression part of property.

For more information, see:
¢ Understanding Rule Validation
¢ Understanding Decision Table Validation

¢ How to Validate a Dictionary

4.5.2 Understanding Rule Validation

When you click the Validate button Rules Designer displays the validation log. When
you first add a rule you see validation warnings similar to those shown in Figure 4-38.

Figure 4-38 Business Rules - Log Validation Messages for a New Rule

Business Rules - Log Breakpoints | Sir | D

® Dictionary - LoanApprovalv2 rules

Message Dictionary Object Froperty

24 RUL-05711: The expression cannet be blank. LoanApprovalV2/us strategy rules/Test[1]/expression]1]
&% RUL-05712: The value "Value" of "expression” cannot be blank, Se... LoanApprovalV2/us strategy rules/Test[1]/expression[1] Value
(% RUL-05711: The expression cannot be blank LoanApprovalvz, us strategy rules;Test|1]/expression|2]
A% RUL-05712: The value 'Target’ of "Action’ cannot be blank, Select... LoanApprovalv2/RulesetS /Rule L/Action[1] Target

% RUL-05810: The action "modify” requires at least one property set. LoanAnorovalV2 /RulesetS fRule 1 fActionl1]

SDK Warhings: 9 Last Valigation Time: 12:00.08 PM POT

Messages | Extensions P Business Rules « [Fsoa -

The dictionary object name part of a validation message for a rule includes details that
help you to identify the ruleset, the rule, and an area in the rule that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem:

O acl eRul es1/ Rul eset _2/ Rul es_1/Pattern[1]

In validation messages, the dictionary object name for a rule uses indexes that start at
1. Thus, the first patternis Pat t ern[1] .

In addition to validating rules, you can also test them in Rules Designer as you are
designing them. For more information, see Testing Decision Functions Using a Rules
Function.

4.5.3 Understanding Decision Table Validation

When you click the Validate button Rules Designer displays the validation log. When
you first add a Decision Table you see validation warnings similar to those shown for
a new rule, as in Figure 4-38.

4-32 Designing Business Rules with Oracle Business Process Management

Using Advanced Settings with Rules and Decision Tables

Figure 4-39 Business Rules - Log Validation Messages for a New Decision Table

Business Rules - Log Breakpoints | Si i | D

© Dicticnary - LoanApproval.rules

Message Dictionary Object Property
&4 RUL-05703: The rule or decision table must have at least one pattern or test. Add a patt... LoanApproval/Strategy Logic /Decision Table(Decision Table 1) Sim pleTestTable
&% RUL-05837; The decision table has no conditions or rules, LoanApproval/Strategy Logic/Decision Table(Decision Table 1)
2% RUL-05838: The decision table has no actions LoanApprovalfStrategy Logic/Decision Table(Decision Table 1)
SDK Warnings: 3 Last Validation Time: 12:05.06 M POT

Messages | Extensions - | @ business Rules -« (504 -

The dictionary object name part of a validation message for a Decision Table includes
details that help you to identify the area of the Decision Table that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem in the first action row, and the first action cell of the Decision
Table:

OR1/ Rul eset _1/ Deci si onTabl e_1/ Action[1]/Action Cel I[1]

In validation messages the dictionary object name for a Decision Table object uses
indexes that start at 1. For example, to indicate the first condition cell in the first row in
the Conditions area, the message is as follows:

O acl eRul es1/ Rul eset _1/Deci si onTabl e_2/ Condi tion[1]/Condition CelI[1]

This specification indicates the condition cell for the rule with the label R1 in the first
row of the Conditions area in a Decision Table.

4.5.4 How to Validate a Dictionary

Rules Designer performs dictionary validation when you make any change to the
dictionary.

To validate a dictionary:

1. In Rules Designer, click the Validate button (a checkmark).
2. Select the Business Rules - Log from the messages area.

3. When you are viewing the validation log, if you select an item and then right-click
and select from the list Select and Highlight Object in Editor, Rules Designer
moves the cursor to select the dictionary object. Note that for some validation
warnings this functionality is not possible.

4.6 Using Advanced Settings with Rules and Decision Tables

Advanced settings for rules and Decision Tables allow you to work with features that
provide advanced options that not all Oracle Business Rules users need.

Advanced settings features are shown in Figure 4-40:

Figure 4-40 Show/Hide Advanced Settings

@4 Overview | < GeneralRules 57 verbal Rules
v []gieron +R av BHhEBe

¥ 2 Eligibility
ent

er description
[| Advanced Mode | | TreeMode [¢|RuleActive | | Logical Priority: [Medium ':|

Effective Date: Always Valid

* 3H Pre-bureau affordability

relmulate Liacatlon of Affardablity BM by asserting a newAffordability context and running the Affordabllty rules.
Show Advanced Settings

¥ Required monthly instaliment
<enter description

¥ initialize strategy
also averbal rule, but this suppresses the rule flowwarning

These features include:

Working with Rulesets and Rules 4-33

Using Advanced Settings with Rules and Decision Tables

* Advanced Mode: allows additional pattern matching options and nested tests in
rules. Only use Advanced Mode if you have used it before. We recommend that
you use extended tests in simple mode to create any kind of condition that you
need.

For more information, see:

- How to Show and Hide Advanced Settings in a Rule or Decision Table
— How to Select the Advanced Mode Option

- Working with Advanced Mode Rules

¢ Simple Mode: has been updated and should be used when building complex rules.
Only use Advanced Mode if you have used it before. Advanced Mode capability
has been maintained for backward compatibility only.

For more information, see Working with Extended Tests.

* Tree Mode: makes it easier to work with master detail hierarchy, nested elements
that map to a parent child relationship. These parent child relationships among
facts are common with XML and ADF Business Components fact types. You can
use this option with the Advanced Mode option.

For more information, see How to Create Simple Tree Mode Rules.

* Rule Active: specifies that a rule or Decision Table is active or inactive. When Rule
Active is cleared, Rules Designer does not validate the specified rule or Decision
Table.

For more information, see How to Select the Active Option.

¢ Logical: allows you to enable or disable logical dependence between the facts that
trigger a rule and the facts asserted by a rule.

For more information, see How to Select the Logical Option.

¢ Allow Gaps (available only with Decision Table advanced settings). This check box
determines if validation messages are reported when gaps are detected in a
Decision Table. The specific validation message is:

RUL- 05852: Deci sion Tabl e has gaps

For more information, see Understanding Decision Table Gap Checking and How
to Perform Decision Table Gap Checking.

® Priority: specifies the priority for a rule or a Decision Table. Higher priority rules
run before lower priority rules, within a ruleset.

For more information, see How to Set a Priority for a Rule.

¢ Conflict Policy: (available only with Decision Table advanced settings). Specifies
the Decision Table conflict policy, one of the following:

— manual conflicts are resolved by manually specifying a conflict resolution for
each conflicting rule.

— auto override conflicts are resolved automatically using an override conflict
resolution when this is possible, using the automatic conflict resolution policies.

— ignore conflicts are ignored.

4-34 Designing Business Rules with Oracle Business Process Management

Using Advanced Settings with Rules and Decision Tables

For more information, see Understanding Decision Table Conflict Analysis.

¢ Effective Date: specifies effective dates for a rule or a Decision Table.

For more information, see How to Specify Effective Dates.

4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
In Rules Designer, next to each rule name and Decision Table name, the show or hide
advanced settings button lets you show and hide advanced settings.
To show and hide advanced settings in a rule or decision table:

1. Select the ruleset where you want to show advanced settings.

2. In the View field, from the list, select either IF/THEN Rules or select a Decision
Table.

3. a. Toshow the advanced settings, next to the rule name click Show Advanced
Settings, as shown in Figure 4-41 (there is a highlighted button shown next to
the rule name).

Figure 4-41 Show or Hide Advance Settings

04, overview @ General Rules & verbal Rules

B S e

%
&

¥ Clgheron +

® & Eligibility

<enter description=
| | Advanced Mode | |Tree Mode [v|Rule Active | | Logical Prierity: [Medium -:|

Effective Date: Always Valic

% ﬂ‘_ Pre-bureau affordability

Hmm.aﬂ.mmmn.nl.?ﬂoruablmy BEM by asserting a newAffordability context and running the Affordabliy rules,
Show Advanced Seftings

® ¥ Required monthly installiment
<enter description:

+ ¥ initialize strategy
also averbal rule, but this suppresses the rule flomonarming

b. To hide the advanced settings, next to the rule name click Hide Advanced
Settings.
4.6.2 How to Select the Advanced Mode Option

Select Advanced Mode to use Rule or Decision Table features that provide additional
pattern matching options and additional actions. For more information, see Working
with Advanced Mode Rules.

To select the advanced mode option:

1. Select the rule or Decision Table where you want to set Advanced Mode.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

3. Select the Advanced Mode.

Figure 4-42 and Figure 4-43 are examples of a rule displayed in Advanced versus
Simple Mode.

The same forms look different in Advanced Mode and Simple Mode due to the
presence and absence of "Patterns."

Working with Rulesets and Rules 4-35

Using Advanced Settings with Rules and Decision Tables

Figure 4-42 Advanced Mode Checked

@4, Overview @ General Rules &7 verbal Rules

IR

®

¥ [IEier on +

22 g

<enter descriptions
[#] Advanced Mode [| TresMode [v]Rule Active [Logical Eriority: [Medium |=|

Effective Date: Always Valid

IF

Strategy is a Strategy
<insert test
and
Application is a Application and
all of the follawing are trug
age = Application.age
menthly income = Application.monthly.income
pre-bureau risk category = Strategy.pre-bureau risk category
installment unaffordable = IStrategy pre-bureau affordability result
inser test>
and
any of the following are true

Figure 4-43 shows the same rule with Advanced Mode cleared:

Figure 4-43 Advanced Mode Cleared

G4 Overview | GeneralRules &7 Verbal Rules

¥ []Filter on PRI av BEHER

Fi

= 2 Eligibility
semter description

[) Advanced Mode [] Iree Mode [v] Rule Active [Logical Eriority: [Medium |+

Effective Date: Always Valid

IF

Strategy is a Strategy and

Application is 3 Application and

all of the Following are true
age = Application.age
monthity income = Application.manthly.income
pre-bureau risk category = Strategy pre-bursau risk category
installment unaffordable = IStrategy pre-bureau affardability. result

insert test>

and

any of the following are true
pre-bureau risk category == RiskCategories. DECLINE

installm ent unaffordable

4.6.3 How to Select the Active Option

Oracle Business Rules includes the ability to specify that a rule or a Decision Table is

active or inactive. The active option is set independent of the effective dates and may
be set without changing or removing previously specified effective dates. When Rule
Active is cleared, Rules Designer does not validate the rule.

To select the active option:

1. Select the rule or Decision Table where you want to set the Rule Active option.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

3. Select Rule Active.

4.6.4 How to Select the Logical Option

A ruleset or Decision Table with the Logical option selected specifies that rules in the
generated RL Language use the logical property. The logical property allows you to
enable or disable logical dependence between the facts that trigger a rule and the facts
asserted by a rule.

A rule with the logical property enabled makes all facts that are asserted by an action
block in the rule dependent on facts matched in the rule condition. Anytime a fact

4-36 Designing Business Rules with Oracle Business Process Management

Using Advanced Settings with Rules and Decision Tables

referenced in the rule condition changes, such that the rule's conditions no longer
apply, the facts asserted by the rule condition are automatically retracted. For more
information, see Rule Definitions in the Rules Language Reference forOracle Business
Process Management.

Using the ruleset and Decision Table Logical option you can enable or disable the
logical property for the generated RL Language associated with the rules in the ruleset
or the Decision Table. By default, the Logical option is not selected.

To select the logical option:

1. Select the rule or Decision Table where you want to set the Logical option.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

3. Select Logical.

4.6.5 How to Set a Priority for a Rule

You can set the priority for a rule or a Decision Table. You can select from a
predefined named priority list as shown in Table 4-4, or enter a positive or negative
integer to specify your own priority level. Higher priority rules run before lower
priority rules, within a ruleset. The default priority is medi um(with the integer value
0).

Table 4-4 Priority String Value Mapping

Named Priority Integer Value
highest 3000

higher 2000

high 1000

medium (Default Priority) 0

low -1000

lower -2000

lowest -3000

To set a priority for a rule:
1. Select the rule or Decision Table where you want to set the priority.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

3. Inthe Priority field, specify the priority value:
a. To specify a named priority, select a named priority from the Priority list.

b. To specify an integer priority, click in the Priority field and enter a positive or
negative integer value and press Enter.

Working with Rulesets and Rules 4-37

Working with Nested Tests

4.6.6 How to Specify Effective Dates

You can specify effective dates for a ruleset, a rule, or a Decision Table.

To specify effective dates:

1. Select the rule or Decision Table where you want to set the effective date.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

3. Select the Effective Date field. This displays the Set Effective Date dialog.

4. Use the Set Effective Date dialog to set the effective date.

For more information on using effective dates, see Using Date Facts_ Date Functions_
and Specifying Effective Dates and How to Set the Effective Date for a Rule Set.

4.7 Working with Nested Tests

In a rule or a Decision Table you can create more complicated tests using the nested
tests feature.

To use nested tests:

1. Select the rule where you want to use a nested test.
2. In the IF area, click and select Nested Test.
3. With a test selected right-click to display the list, as shown in Figure 4-44.

Figure 4-44 Adding a Nested Test to a Rule

= ¥ Rule 1

=enter description:=
IF

the following tests are true
CiNSert test s
and

the followdng 1ests are true

AP g e
<insert tests

THEN

4. Complete the test as necessary.

4.8 Working with Advanced Mode Rules

Oracle Business Rules provides features that allow you to create advanced rules that
add support for the Oracle Business Rules feature.

4-38 Designing Business Rules with Oracle Business Process Management

Working with Advanced Mode Rules

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create any
kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules
simply by clearing the Advanced Mode check box.

For more information, see Working with Extended Tests.

Oracle Business Rules provides features that allow you to create advanced rules that
add support for the following Oracle Business Rules features:

* Additional Pattern Match options (see How to Use Advanced Mode Pattern
Matching Options)

¢ Additional Matched Fact Naming options (see How to Use Advanced Mode
Matched Fact Naming)

¢ Additional Supported Action forms (see How to Use Advanced Mode Action
Forms)

e Pattern Match Aggregate Function options (see How to Use Advanced Mode
Aggregate Conditions)

For more information, see What You Need to Know About Advanced Mode Rules.

4.8.1 How to Use Advanced Mode Pattern Matching Options

The advanced mode pattern matching options specify when a rule should fire. Table
4-5 shows the available options.

Table 4-5 Advanced Mode Pattern Matching Options

Option Description

for each case where This is the default pattern matching option. A rule should fire
each time there is a match (for all matching cases).

there is a case This option selects one firing of the rule if there is at least one
wher e match.

there is no case The value specifies that the rule fires once if there are no such
wher e matches.

aggregate This specifies an aggregate function is applied to all matches.

For more information, see How to Use Advanced Mode
Aggregate Conditions.

To use advanced mode pattern matching options:

1. Select the rule or Decision Table where you want to use pattern matching options.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

Working with Rulesets and Rules 4-39

Working with Advanced Mode Rules

3. Select Advanced Mode.
4. Right-click a test pattern and select Surround With... as shown in Figure 4-45.

Figure 4-45 Surrounding with an Option
|¥Dsiim-on TR v BHE

= 2 Eligibility

<enter descriptions

[] Advanced Mode [| Tree Mode [w|Rule Active [| Logical £rioriw:
Effective Date: Always Valid
IF

S atam b bl
& Validate Test
Apg

Insert Before]
Insert After »

L suroundviin - [JSA
Change Test Eorm...

tegy pre-bureau risk category

all ¢

% Move Down
x Cut
and @ Copy
any| #€ Delete ‘s A’ Test

tegy. pre=-bureau affordability result

pre-bureau risk category == RiskCategaories DECLINE

installment unaffordable

Figure 4-46 Surrounding With Option

= & Rule_1
<enter description:=

Advanced Mode [] Tree Made Fule Active [| Logical Priarity: | mediom |:|
Effective Date: | Always valid
IF
<wariable is a <fact bype s

<insert test=

W validate Pattern

Advanced Pattern Test Mode
=insert patbern=

THEN Insert Before »
Insert After »

<insert action>

SUFFaUnE

W ocur
Copy

3 Delete Pattern

The Surround With dialog appears.
5. Choose the Pattern Block option from the Surround With dialog and click OK.

The pattern is surrounded by a nested pattern with the default (for each case
where) as shown in Figure 4-47.

4-40 Designing Business Rules with Oracle Business Process Management

Working with Advanced Mode Rules

Figure 4-47 Default Pattern Matching Option: for each case where

= % Rule 1
<enter description:=

[]Tree Mode [¥]Rule Active [| Logical Priority: | medium |:|

Effective Date: | Always Yalid

IF
for each case where)| {
<variable is a <fact bype s
<insert test>
<inserk pattern
b <insert test=
=inserk patkernz
THEN

<insert action=

6. Select the default (for each case where) option and select the desired pattern
matching option from the list as shown in Figure 4-48.

Figure 4-48 Adding an Advanced Pattern Match Option

= % Rule 1
<enter description =

[]Tree Mode [w]Rule Active [| Logical Priority: | mediurn |:|

Effective Date: | Always valid

IF

rFor each case where)] {

(for each case where)

(for each case where)
there is a case where
there is no case where
aggregate

<insert patbern:=
THEN

<insert action

4.8.2 How to Use Advanced Mode Matched Fact Naming

The matched fact name field, pattern binding variable, in a rule or a Decision Table
lets you test multiple instances of the same type in a single rule. The matched fact
name lets you enter a temporary name for the matched fact to use in a test. For
example, the rules shown in Figure 4-49 show the use of pattern binding variables in a
rule that applies a discount on a shoe item when an order includes at least one
"matching" hat item.

Working with Rulesets and Rules 4-41

Working with Advanced Mode Rules

Figure 4-49 Rule Using a Pattern Binding Variable

= ¥ Rule_1
<enter description

IF

Order is a Order
and

there is a case where {
Order$linelteml is a Orderflineltem and

Crder$lineltemi.sku == "HAT123"

t

and

there is a case where {

Orderflineltemz is a Orderflineltem and

Orderglineltemz. sk == "SHOE456"
F

THEN

modify Order { discount : 0,05)

For example, you can create the rule, as shown in Figure 4-50 to find duplicate items in
a customer order. This example shows the use of matched in a rule.

Figure 4-50 Rule to Find Duplicate Items in an Order

= % Rule_1
<enter description =

[]IreeMode [¥]Rule Active [| Logical Priority: [medium |:

Effective Date: | Always Yalid

IF
Orderglinelteml is a Orderflineltem

<insert best
and

Orderglineltemz is a Orderglineltern and

Order$linelteml.sku == Order$lineltemz . sku and
Order$linelteml.color == Orderjlineltem?, color and
RL.get Fact ID{Orderflinelteml) > RL.get Fact ID{Order$lineltemz)

<insert best>

<inserk pakkern =
THEN

call prinki message : "Duplicate Item: Do you want to order two of the same item?")

<insert ackion

To use advanced mode matched fact naming:

1. Select the rule or Decision Table where you want to add a matched fact name.

2. Click the Show Advanced Settings button next to the rule name (see How to Show
and Hide Advanced Settings in a Rule or Decision Table).

3. Select Advanced Mode.

4. Select the <fact type> and enter a fact type from the list.

4-42 Designing Business Rules with Oracle Business Process Management

Working with Advanced Mode Rules

5. Select the supplied matched fact name and modify it as needed, as shown in Figure
4-51. For example, enter the matched fact name Or der $Li nel t enll and then press
Enter.

Figure 4-51 Adding a Matched Fact Variable Name

=l % Rule_1
<enter description=

[]Tree Made [#|Rule Active [|Logical Priority: |medium |:|

Effective Date: | Always Valid

IF

Crder$lineltemi is a CrderflineItem

Matched Fack Mame (Hit Enter Key To Save)

Orderglinelternl

Crder$lineltem? is a Orderflinelten and

COrder$linelteml.sku == Orderflineltemz. sku and
Orderflinelteml.color == Ordar$lineltemz. color and
RL.get Fact ID{Order$Linelterml) = RL.get Fact ID(Orderflineltemz)

=insert test >
<insert pattern >
THEN
call print{ message : "Duplicate Ikern: Do you want ta arder bwo of the same item?")

<insert action=

6. Create the rule as Figure 4-52 shows. Note that you can choose a matched fact
name as an operand. Choose the Lineltem1 and Lineltem2 operands as needed to
create the rule.

Figure 4-52 Choosing a Matched Fact Variable Name as an Operand

=l % Rule_1
<enter descripkion >

[]IreeMode [¥]Rule Active [| Logical Priority: [medium |:|
Effective Date: | Always Valid
IF
Orderflinelteml is a Orderflineltem

<insert test >
and

Orderglineltemz is a Orderglinelterm and

Order$linelteml.sku == Orderflineltemz.sku and
Order$linelteml,color == Orderflineltemz, color and
RL.get Fact ID{Orderflinelteml) > RL.get Fact ID{Orderflineltemz)

<insert test >

<insert pattern=
THEN

call prink{ message : "Duplicate Item: Do wou want to order bwo of the same item?")

<insert action >

Note in Figure 4-52 that the test checking:
RL.get fact ID(Order$Lineltenl) >RL.get fact |D(O der$Li neltenR)

Prevents a single instance of an Or der $Li nel t emfrom matching both patterns that
match the Or der $Li nel t emfact type. The ">" is required so that the rule does not
fire for different permutations of different instances. For more information, see How
Do I Correctly Express a Self-Join?.

Working with Rulesets and Rules 4-43

Working with Advanced Mode Rules

4.8.3 How to Use Advanced Mode Action Forms

When you create a rule with Advanced Mode, Rules Designer presents a list with the
available actions shown in Table 4-6. For each form shown in Table 4-6, the options
that Rules Designer presents are context sensitive. Thus, the lists and the number of
items you see when you work with the action types are context sensitive, depending
on which action you add and the choices you make while you enter the action.

To use advanced mode action forms:

1. In Rules Designer, select a ruleset from the Rulesets navigation tab.
2. Select or add a rule or a Decision Table.

3. In the rule or Decision Table click the Show Advanced Settings button next to the
rule or Decision Table name (see How to Show and Hide Advanced Settings in a
Rule or Decision Table).

4. Select Advanced Mode.

5. With the insertion areas showing, in a rule in the THEN area select <insert action>.
This displays the action list, as shown in Figure 4-53.

Figure 4-53 Adding an Action to a Rule in Advanced Mode

= % Rule_1
<enter description >

[¥] Advanced Mode [] Tree Maode [v] Rule Active [|Logical Priarity: | medium |:|

Effective Date: | Always valid

IF
CuskomerOrder is a CustomerOrder

<insert test>

<inserkt pattern =
THEN

<insert action I

asserk
assert tree
assert new
assign
assign new
expressian
call

for

if

modify
retract
return

tl
synchronized
thraw

kry

while

6. In the list select the action you want to add.
For example, select assign new.

7. In the THEN area, select the context sensitive parameters for the action and enter
appropriate values.

4-44 Designing Business Rules with Oracle Business Process Management

Working with Advanced Mode Rules

4.8.3.1 Advanced Mode Action Options in Rule Designer

Table 4-6 Advanced Mode Action Options

Action Form

Description

Assert

Assert a fact

Assert Tree

Asserts a tree of facts given the root.

Assert New Assert a new fact.

Assi gn Assign a value to a variable.

Assi gn New Assign a value to a new variable.

Expr essi on Perform expression.

Cal | Call a function.

For Oracle RL, like Java, has a for loop. A for loop includes a type with a
variable and a collection. The type and variable defines the loop variable
that holds the collection value used within the loop. Collection is an
expression that evaluates to a collection of the correct type for the loop
variable. You can use a for loop to iterate through any collection.

A return, throw, or halt may exit the action block.

| f Using the if else action, if the test is true, execute the first action block, and
if the test is false, execute the optional else part, which may be another if
action or an action block. Oracle RL, unlike Java, requires action blocks
and does not allow a single semicolon terminated action.

Modi fy Modify a data value associated with a matched fact.

Ret r act Retract a fact.

Ret urn The return action returns from the action block of a function or a rule. A

return action in a rule pops the ruleset stack, so that execution continues
with the activations on the agenda that are from the ruleset that is
currently at the top of the ruleset stack.

rl

Use an Oracle RL expression that you supply.

synchroni zed

As in Java, the synchronized action is useful for synchronizing the actions
of multiple threads. The synchronized action block lets you acquire the
specified object's lock, then execute the action-block, then release the lock.

t hr ow Throw an exception, which must be a Java object that implements
java.lang.Throwable. A thrown exception may be caught by a catch in a try
action block.

try The try, catch, and finally in Oracle RL is like Java both in syntax and in
semantics. There must be at least one catch or finally clause.

whi | e While the test is true, execute the action block. A return, throw, or halt

may exit the action block.

Working with Rulesets and Rules 4-45

Working with Advanced Mode Rules

4.8.4 How to Use Advanced Mode Aggregate Conditions

When you create a rule with Advanced Mode, Rules Designer supports the pattern
matching aggregate option. When you write rule conditions that are based not only on
one fact, but on many facts, you can use an aggregate. You use aggregate functions
when the conditions have a view spanning multiple facts.

To use advanced mode aggregates:

1. Select or create the rule or Decision Table where you want to use an aggregate
function.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

3. Select Advanced Mode and enter the fact type you want to work with.

4. Select <insert pattern> to add a pattern and select the pattern.

o,

Right-click the pattern and select Surround With.... This displays the Surround
With dialog.

6. In the Surround With dialog select Pattern Block. Click OK.
For more information, see How to Use Advanced Mode Pattern Matching Options.

7. In the pattern select the first field. By default this field contains (for each case
where), as shown in Figure 4-54.

Figure 4-54 Adding an Advanced Pattern Match Option

= % Rule 1

<enker descripkion >
[] Tree Mode Rule Active [|Logical Priavity: | mediom |v|
Effective Date: | Always valid
IF
Order is a Order

<insert test>
and

for each case where) {

[For each case where)

(for each case where)
there is a case where
there is no case where
aggregate

=inserk patkern =
THEN

<insert action>

8. Select the aggregate option. This adds the context sensitive fields for an aggregate,
as shown in Figure 4-55.

4-46 Designing Business Rules with Oracle Business Process Management

Working with Advanced Mode Rules

Figure 4-55 Using Aggregate Functions in a Rule

= % Rule 1

<enter descripkion
[]IreeMode [¥]Rule Active [| Logical — Priority: | medium |V|

Effective Date: | Always valid

IF
zvariable= is the of <expressionz where {
=vatiable = is & zfack bvpes

<insert testz
<insert pattern=
b <insert kest=

<insert pattern=
THEN

<insert action

* Click <function> and select a function from the list.
¢ In the condition, click <fact type> and select a fact type from the list.

¢ Click <expression> and select an expression from the list.

Rules Designer by default constructs variable names as you create the aggregate
pattern. If needed for the rule you are constructing enter variable names to replace
the default variable names. Figure 4-56 shows a completed rule using aggregate. In
this example, for clarity the rule shows the variable names t ot al _cost and

item Xx.
Figure 4-56 Completed Aggregate Function in a Rule

= % Rule_1
<enker descripkion

[IreeMode [¥]Rule Active [| Logical Priority: | medium |:|
Effective Date: | Always Yalid
IF
Order is a Order

<insert test>
and

total_cost is the sum of item_x. price where {
item_x is a Order$Lineltem
<insert test>
=inserk patkern =
b <insert kest=

<insert patkern=
THEN

<insert ackion =

9. Enter additional tests as required. For this example you enter the test for items with
color "red", as Figure 4-57 shows.

Working with Rulesets and Rules 4-47

Working with Advanced Mode Rules

Figure 4-57 Using Aggregate Functions with Rules Red Color Total Cost Rule

= % Rule_1
<enter description

[]IreeMode [¥]Rule Active [| Logical Priority: | medium |:|

Effective Date: | Always valid

IF

o_order is a Order
and
total_cost is the sum of item_x. price where §
item _x is a OrderfLineltem
and

ol is a Orderflinelterm and

ol.color == "red"

+and total_cost '= o_order.botal
THEN

modify o_order { total : tokal_cost)

4.8.4.1 Using Aggregate Functions

Table 4-7 shows the available aggregate functions.

Table 4-7 Aggregate Functions for Advanced Mode Rules

Function Description

count Count of matching facts.

aver age Average of matching facts.

mexi mum Maximum value of matching facts.
m ni mum Minimum value of matching facts.
sum Sum of matching facts.

col I ection Builds a list of matching facts.

For example, to write a rule that specifies a special order as follows:

I F

an order has nmore than 5 line itens whose price is above a certain value
THEN

the order requires manual approval

The five line items may span multiple facts. Thus, you can use the count aggregate
function to write this sample special order rule.

When you use an aggregate function, do the following;:

* Select aggr egat e for the pattern.

e Enter a function from the list shown in Table 4-7

e Enter or select values from the context sensitive menus:

- <vari abl e> A name for the aggregate value.

4-48 Designing Business Rules with Oracle Business Process Management

Working with Advanced Mode Rules

— <expr essi on> The value to aggregate, for example dr i ver . age. When the
aggregate function you select is the count function the <expr essi on> is not
used.

For example, you can compute the sum of the cost all the line items with color "red", as
shown in Figure 4-58.

Figure 4-58 Using Aggregate Functions with Rules Red Color Total Cost Rule

= % Rule 1
<entet description

[]TreeMode [¥]Rule Active [|Logical Pricrity: |medium |:|

Effective Date: | Always valid
IF
o_order is a Order

and

total_cost is the sum of item_x.price where §
item_x is a Order$Lineltem

and
ol is a Orderglinelterm and

ol.color == "red"

+and total_cost 1= o_order.botal

THEN

rodify o_order { katal @ bokal_cost)

4.8.5 What You Need to Know About Advanced Mode Rules

There are some special cases to keep in mind when you work with Advanced Mode
rules, including the following:

¢ When you work with aggregates, in actions, you do not see pattern variables. The
pattern variables are only shown for action lists when you use (foreach...) patterns.
Thus, you cannot see pattern variables in aggregate, "there is a case", or "there is no
case patterns".

¢ After you select Advanced Mode the Advanced Mode stays selected and inactive
(gray), as long as your rule uses advanced options such as advanced pattern
matching. To clear Advanced Mode you must remove or undo the advanced mode
features (sometimes it is easier to start over by creating a non-advanced mode rule
and then delete the advanced mode rule).

4.8.5.1 How to Clear Advanced Mode Option

1. Select the rule or Decision Table where you want to clear Advanced Mode.

2. Click the Show Advanced Settings button next to the rule or Decision Table name
(see How to Show and Hide Advanced Settings in a Rule or Decision Table).

3. Consider the state of the rule:
¢ If you can simplify the rule to enable the Advanced Mode option (such that the

Advanced Mode button changes from gray to enabled). Then simplify the rule
and when Advanced Mode is enabled, clear Advanced Mode.

Working with Rulesets and Rules 4-49

Working with Extended Tests

e If you can use Undo to undo the steps you used to create the Advanced Mode
rule, to get to a state where the rule is no longer in Advanced Mode, then use
this technique to simplify the rule.

¢ If you cannot simplify the rule, then delete the rule and re-create it.

4.9 Working with Extended Tests

Extended tests should be used when building complex rules. Extended tests, or Simple
Mode, replaces Advanced Mode rules.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. For more information about Advanced Mode, see Working with
Advanced Mode Rules.

Everything that can be done in Advanced Mode can now be done in Simple Mode.
The UI has been streamlined and improved to enable you to more easily create
complex rules and tests, as shown Figure 4-59.

Figure 4-59 List of Extended Tests
| ¥ Dleieron R 2v BHEP

=l ¥ Report Strategy

center description?

IF

there is some case where

here s a case where, .. mtext <inzeri>
simple test
wariable
nested test
negated test rpe == CreditReportTypes hINI
all of the following...
any of the following...
isa

there s afact where...
thereis a case where,,

ligibilityalues ELICIELE and

there is no fact where... hoeriess Strategy : Strategyvalues REPORT)
there is no case where..

aggregation...
baoolean exprezsion

Advanced mode rules can be converted to the equivalent simple mode rules by
clearing the Advanced Mode check box.

Extended tests are only applicable to general rules, decision tables, and while defining
business phrases. They are not visible in verbal rules.

4.9.1 Extended Test Forms

In addition to the original four tests (shown first in Table 4-8) there are new forms:

Table 4-8 Extended Tests
- - - -]

Forms Description

simple test This is the building block for conditions. Compares a value
against another value, range or set.

For example: Emp.salary > 1000

4-50 Designing Business Rules with Oracle Business Process Management

Working with Extended Tests

Table 4-8 (Cont.) Extended Tests
___|

Forms Description

variable Initializes variables.

For example: age = Duration.years
between(Emp.birthdate,RL.date.get current())

nested test(...) Encapsulates tests in a containing block.
For example: (age > 50 or Emp.salary > 50000)

negated test(...) Negates a test.
For example: not(age > 50 and Emp.salary > 50000)

all of the following all of the following are true.

For example: (age > 50 and Emp.salary > 50000)

any of the following some of the following are true.For example:

I F

eis a Emp and there is no Emp where Enp.sal ary
< e.salary <insert test> <insert test>THEN assign
e.isLowestPaid = true

isa Defines a fact.

For example: e is a Emp

boolean expression Captures a boolean expression.

For example: isEligible(Emp)

there is a case where This test has 1 or more child tests that are ANDed.

The child tests are all true for at least 1 case. A case is a binding
of facts to contained is a tests.

Must have is a descendant.
Example:

There is a case where

e is a Enp and

d is a Dept and

e.salary > 1000000 and

d. namre == "Marketing" and
d. enpl oyees contains e

Working with Rulesets and Rules 4-51

Working with Extended Tests

Table 4-8 (Cont.) Extended Tests
___|

Forms Description
thereis a Hidden <factType> is a <factType> tests as first N children.
<factTypel>,...<factTypeN The child tests are all true for at least 1 case.

*
> where# It is legal to have no visible child tests, in which case the where

This test has N or more keyword should be suppressed.

child tests that are ANDed
Example:

IF
there is a Enp, Dept where
Enp. sal ary > 1000000 and
Dept. nane == "Marketing" and
Dept . enpl oyees contai ns Enp
THEN
call print "there is a highly paid marketer!"
I F
there is a Enp
THEN call print "somebody works here!"

there is no case where This test has 1 or more child tests that are ANDed.

The child tests are true for no case (no binding of facts to
contained is a tests satisfy all the other tests).

Must have is a descendant.

there is no Hidden <factType> is a <factType> as first N children
<factTypel>,...,<factTypeN
> where

The child tests are true for no case

4-52 Designing Business Rules with Oracle Business Process Management

Working with Extended Tests

Table 4-8 (Cont.) Extended Tests
___|

Forms Description

aggregation This test has 0 or more child tests that are ANDed.
Must have is a child (may be hidden).

v is the sum | average | minimum | maximum | count | collection
of<expression> where

Where clause omitted when there are no visible child tests.

| F
nunber of enpl oyees is the count of Enp
THEN
call print "nunber of enployees: " + nunber of
enpl oyees
| F

nunber of nale enployees is the count of Enp where
Enp. gender == "M
THEN
call print "nunber of male enployees: " + nunber of
mal e enpl oyees

Note that in both rules above, the SDK will create a hidden
nested is a test for Emp.

You can also use an explicit is a

I F
nunber of nale enployees is the count of e where
e is Enp and
e.gender == "M
THEN
call print "nunber of male enployees: " + nunber of
mal e enpl oyees

Figure 4-60 is an example where "there is a case where" form is used:

Figure 4-60 Extended Test Example 1

= ¥ late Payment

<enter description >
IF
Summary is a Credit Report Summary and
there is some case where
Detail is a Creadit Report Detail <inzers
and
Detail Type == Payment Type LATE_PATMENT and
Detall Months = 2
<insert test
=inser tasts
THEN
modify Summary { <cdit propertics> Score @ Summary Score - 50)

Zinzert action>

Figure 4-61 is an example where "there is no case where" form is used:

Working with Rulesets and Rules 4-53

Working with Tree Mode Rules

Figure 4-61 Extended Test Example 2

= ¥ No Late Payments

center descriptions
IF
Summary is a Credit Report Summary and
there is no case where
Detail is a2 Creadit Report Detail <insert:
and
Detail Type == Payment Type LATE_PAYMENT and
Detail. Months > 1
SinsErt tests
<insertiest>
THEN
modify Summary { <edit properties= Score D Summary Score 4+ 50)

For information about how to build complex rules, see Working with Rules.

4.10 Working with Tree Mode Rules

Tree Mode rules make it easier to work with a master detail hierarchy, where there are
nested elements that map to a parent child relationship.

Consider the lifecycle of an application fragment that uses business processes and
rules to process a retail purchase order (PO). The purchase order has a header with
business terms that apply to the entire PO. The PO also contains a list of shipping
destinations. Each destination has an address, a list of items to be shipped to the
destination's address, and a list of shipments.

Consider the business rule: the status of a PO is "fully shipped" if the status of every
item is either "shipped" or "canceled".

Figure 4-62 shows a sample XML schema representation for the PO example. The XML
documents for the PO are tree structured. This allows a natural representation for the
PO. For example, the PO itself is the top level document element and destinations are
nested elements that contain item elements and shipment elements. Shipment
elements also contain item elements that reference the ordered items. Status has a list
of valid values.

4-54 Designing Business Rules with Oracle Business Process Management

Working with Tree Mode Rules

Figure 4-62 PO Schema for Tree Mode Rules Sample

Ly
<schema>

targettamespace | hitphaassw. example.org

header

status
type Status

order-date
type xsd.date

customer-value

address

biling =EEETYY

payment

em
r
:
:
1y

LR (000)

it

r]

@ guantity

type wsdint

@ gvailabilite-date
ne xsd:date

gqoh

! type xsdint

@ price

type xsd.decimal

' shipment

ship-date

destination

1iea

— enumeration [open
enumeration [partially shipped
enumeration | fully shipped

The following example of sample Purchase Order (PO) schema shows the sample
purchase order XML schema as represented in Figure 4-62.

<?xm version='1.0" encoding="'UTF-8 ?>
<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_.Schema" xm ns="http:// ww. exanpl e. org"
tar get Nanespace="htt p: // www. exanpl e. org"
el ement For mDef aul t ="qual i fied" >
<xsd: el ement name="PO'>
<xsd: annot at i on>
<xsd: docunent ati on>A sanpl e el enent </ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="header" >
<xsd: conpl exType>
<xsd:attribute name="status" type="Status"/>
<xsd:attribute name="order-date" type="xsd:date"/>
<xsd:attribute name="customer-val ue"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="billing">
<xsd: conpl exType>

Working with Rulesets and Rules 4-55

Working with Tree Mode Rules

<xsd: sequence>
<xsd: el ement nanme="address"/>
<xsd: el enent nanme="paynent"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="destination" maxCccurs="unbounded">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="address"/>
<xsd: el ement nanme="itenf maxCccurs="unbounded" >
<xsd: conpl exType>
<xsd:attribute nane="1D"/>
<xsd:attribute nane="status"/>
<xsd:attribute name="quantity" type="xsd:int"/>
<xsd:attribute name="avail ability-date" type="xsd:date"/>
<xsd:attribute name="qoh" type="xsd:int"/>
<xsd:attribute name="price"
type="xsd: deci mal "/ >
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nanme="shi pnent" m nCccurs="0" maxQccur s="unbounded" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="itenf maxCccurs="unbounded" >
<xsd: conpl exType>
<xsd:attribute nanme="1D"/>
<xsd:attribute nane="quantity"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute name="ship-date"/>
<xsd: attribute nane="nethod"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="status" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: si npl eType name="Stat us">
<xsd:restriction base="xsd:string">
<xsd: enurer ation val ue="open"/>
<xsd: enuneration value="partially shipped"/>
<xsd: enuneration value="fully shipped"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>

4.10.1 Sample Abbreviated PO XML Instance

Example 4-1 shows part of the XML for an instance of the PO schema. To use tree
mode rules you can create a rule that tests one or more business terms and if the tests
pass, one or more business terms are added or changed. Oracle Business Rules has
special support to enable error-free authoring of rules on fact trees like the sample PO
instance.

For example, consider creating a rule for an instance of the PO schema that states:

4-56 Designing Business Rules with Oracle Business Process Management

Working with Tree Mode Rules

IF the tinme between the order date and the date for availability of an itemis nore
than 30 days
THEN cancel the item

Example 4-1 Sample Abbreviated PO XML Instance

<PO xm ns: xsi ="htt p: // wwmv. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocation="http://ww. exanple.org ../../../../Tenp/ PO xsd"
xm ns="http://ww. exanpl e. org">
<header/ >
<billing>
<address/ >
<paynent/>
</billing>
<destination>
<address/ >
<item|D="a01"/>
<item|D="a02"/>
<item | D="a03"/>
<shi pment >
<item | D="a01"/>
<item | D="a02"/>
</ shi pment >
</ destination>
</ PO>

4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode)

You use non-advanced tree mode, or simple tree mode, when the Advanced Mode
option is not selected and Tree Mode is selected. With this mode Rules Designer
shows ROOT: <fact type> where you enter the root fact type.

When you create rules with Tree Mode selected and Advanced Mode cleared, you can
reference properties in the tree using qualified names, for example:

e PO destination/item quantity thatissimilartoitem quantity butonly
items that are a dest i nat i on of PO are matched.

e PCHDestination$item quantity thatreferstoa Li st <it enp. This reference
is unchanged from non-tree mode.

With Simple Tree Mode you can only choose terms that do not require many-to-many
joins or aggregation.

For more information, see How to Create Simple Tree Mode Rules.

4.10.3 Understanding Advanced Tree Mode Rules

You use advanced tree mode when the Advanced Mode option is selected and the
Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact
type> where you enter the root fact type, as shown in Figure 4-63. Rules Designer
shows patterns for the tree structured facts but the simple tests that join the parent and
child facts are hidden.

Working with Rulesets and Rules 4-57

Working with Tree Mode Rules

Figure 4-63 Advanced Tree Mode

=l % Rule_2
<enter descripkion

Advanced Mode Tree Mode Rule Active [|Logical Priority: | medium |V|
Effective Date: | Always valid
ROODT: P2
IF
POisaPO
<insert test>
and
POfdestination is a PO/destination and
<insert best
and
POdestination/item is a PO/destinationfitern and
Duration.days between({PO . header, orderDate, PO/ destinationfitern. av ailabilityDate) > 30
<insert test=
<insert pattern
THEN
modify POJdestinationfitem { <add property > status : "canceled”)

<insert action=

In advanced tree mode the tree mode patterns, except for the root, display as:
<operator> <variable> is a <fact path>

Where the <f act pat h>is an XPath-like path through the 1-to-1 and 1-to-many
relationships starting at the root. For example, each fact path has a name like PQY
desti nat i on, where POis the root fact type and the destination is a property of type
Li st. A 1-to-many relationship in a fact path is indicated witha "/ ", as in PQY

desti nati on.

A 1-to-1 relationship in a fact path is indicated with ". " This unchanged from non-tree
mode. For example, i t em avai | abi | i t yDat e.

Advanced mode exposes the concept of a pattern, the simplest of which is is a pattern.
For example, p i s a POcauses p to match, iterate over, all the POfacts,andd is a
p/ dest i nati on causes d to match all the destinations of p. The left side of isais a
variable, and the right side is a fact type or a fact path. By default, Oracle Business
Rules sets the variable name equal to the fact type or path. For example, PO is a PO. A
pattern can also be a pattern block. A pattern block has a logical quantifier, negation,
or aggregation that applies to the patterns and tests nested inside the block.

For more information, see How to Create Advanced Tree Mode Rules.

When you work with advanced tree mode rules, Rules Designer expects you to use an
aggregation pattern, including exists and not exists to combine terms from different
child forests into the same rule while avoiding a Cartesian product.

4.10.4 How to Create Simple Tree Mode Rules
The following procedure creates the PO rule to cancel non 30-day availability items.

IF the time between the order date and the date for availability of an itemis nore
than 30 days
THEN cancel the item

4-58 Designing Business Rules with Oracle Business Process Management

Working with Tree Mode Rules

To create simple tree mode rules:

1. Create an IF/THEN rule in your ruleset and view the advanced settings.

For more information on adding general rules, see How to Add General Rules.

For more information on advanced settings, see How to Show and Hide Advanced
Settings in a Rule or Decision Table.

2. Select Tree Mode. Next to ROOT:, click the <fact type> placeholder and select from
the list.

Figure 4-64 Simple Tree Mode: Configuring the Root

% []Eilter On R AavI e e

E 2 Rule1
ok
<enter descriptions

| | Advanced Mode || Tree Mode [v|Rule Active | |Logical Priority: |Medium |w

Effective Date: Ahnays Valid

ROOT: <fart iypes

S0 RLFactl
StrategyContext
RoutingContext
AffordabilityContext

Product
Application
CreditReport
CurrentDate

® Select <insert test> and select from the list.

The IF statement now reads | F <oper and> == <oper and>.
¢ Select the left-hand <operand> and select an option from the list.
3. Select the Expression Builder button, as shown in Figure 4-65.
Figure 4-65 Adding a Simple Tree Mode Expression

|¥D£i[t:r0n TR Aav BEHED M

= A Affordability
exlicit null guards to workaround unsupressed NPES in if actions
|] Advanced Mode [«|Tree Mode |v|Rule Active [|Logical Priority: [Medium =
Effective Date: Ahaays Valicd

ROOT: StrategyContext
IF

Disposable Income = Application.monthly income = {Application. monthly. expenses + Application.m onthly repayments) and

Credit Contingency Factor = Affordability Context Credit Contingency Factor and

Required Monthly Installment = Strategy Context. Required Monthly Installment and

Credit Contingency Factor s null and

Strategy Context Application Risk Score Ef‘,',
[48 Froduct and, I
=@ StrategyContext
T | #-% Application Risk Score
| Lea Credit Report Type
Required Monthly Installment
Strategy
Fre-Report
Eligibility
Pre-Report Risk Category = Affordabilivy :true)

| Launch Expression Bullder...

= Required Monthly Installment

* In the Expression Builder dialog, copy and delete the item shown in the
Expression area.

¢ In the Expression Builder, select the Functions tab.

Working with Rulesets and Rules 4-59

Working with Tree Mode Rules

In the navigator, expand Duration and double-click the daysbetween function.
Remove the daysbetween argument templates.

In the daysbetween function, paste the value you previously cut as the second
argument.

In the Expression Builder dialog, select the Variables tab.

For the daysbetween function first argument, use the navigator to expand PO
and expand header, and double-click orderDate.

In the Expression Builder dialog, click OK.

For more information, see Introduction to Expression Builder.

In the list, in the expression area and press Enter. Select the operator and enter >.

Select the right-hand <operand> and enter the value 30 and press Enter, as shown

in Figure 4-66.

Figure 4-66 Simple Tree Mode: Right-Hand Operand with Value 30
= ¥ Rule_2
<enter descripkion>
ROOT: PO

IF

Duration.days between({PO . header, orderDate, PO/ destinationfitern, availabilityDate) > 30

<

nsert best>

THEN

<

4-60 Designing Business

nsett ackion

Click <insert action> and from the list select modify.

The THEN statement now reads: THEN nodi fy <t ar get >.

Click <target> and from the list select PO/destination/item. The THEN
statement now reads:

THEN rodi fy PO/ destination/item (<add property>)
Click <add property>. This displays the properties dialog.

In the properties dialog for the status name, enter the value "canceled", as Figure
4-67 shows.

Figure 4-67 Simple Tree Mode: Action

Mame Type Conskant

i} String B
availabilityDate MLGregorianCalendar _“
qoh java.lang.Integer B
quankity jawa.lang.Integer |:|
status Shring “canceled” B

[#] Bit Calumns Ta tWidth

Rules with Oracle Business Process Management

Working with Tree Mode Rules

6. In the Properties dialog, click Close.
This displays the finished rule, as shown in Figure 4-68.

Figure 4-68 Simple Tree Mode Rule Final Rule

= ¥ Rule_2
<enter descripkion >

ROOT: PO
IF

Duration.days between{PO.header.orderDate, PO/ destination/item. availabilityDate) = 30

<insert best
THEN
modify PO/destinationfiter { <add property= status @ "canceled”)

<insert action =

Note that in the modi f y statement, PO dest i nat i on/ i t emrefers to the particular
i t eminstance member.

4.10.5 How to Create Advanced Tree Mode Rules

The following procedure creates a free shipping rule that can be summarized as:

IF the total cost of "free shipping eligible" items to a given destination is
greater than $40
THEN shi pping of those itenms is free

To create advanced tree mode rules:

1. Create an IF/THEN rule in your ruleset.
For more information, see How to Add General Rules.
2. View advanced settings.

For more information, see How to Show and Hide Advanced Settings in a Rule or
Decision Table.

3. Select Advanced Mode and select Tree Mode as Figure 4-69 shows.

Figure 4-69 Advanced Tree Mode Rule for Free Shipping

= % free shipping

<enter descripkion>
Advanced Mode Tree Mode Rule Active [|Logical Priarity: | mediom |v
Effective Date: | Always Valid

ROOT: <fact type >
IF

<vatiable> is a <fact path=

<insert test>

<inserkt pattern =
THEN

<insert action

4. Select the <fact type> place holder and from the list, select PO.

5. Complete the free shipping rule, as shown in Figure 4-70.

Working with Rulesets and Rules 4-61

Using Date Facts, Date Functions, and Specifying Effective Dates

Figure 4-70 Advanced Tree Mode Free Shipping Rule

=l ¥ free shipping
<enter descripkion

ROOT: PO
IF

POisa PO
and
POfdestination is a PO/destination and
and
free_ship_total is the sum of PO/destination/item. price. longvalue() where {

POfdestinationfitem is a PO/destinationfitem and

POfdestinationfitern. status == "free-shipping-eligible”

+and free_ship_total == 40
THEN

modify POJdestinakion { status : "free shipping")

4.10.6 What You Need to Know About Tree Mode Rules

When you select Tree Mode and select a root fact type, the options lists show all
available fact types (not just the children of the root fact type). This allows you to view
all available fact types as well as the children of the root fact type. There is no option to
limit the option list to only show the children of the selected root fact type.

4.11 Using Date Facts, Date Functions, and Specifying Effective Dates

Oracle Business Rules provides functions that make it easier for you to work with

times and dates, and provides effective date features to let you determine when rules
are effective, based on times and dates.

¢ The CurrentDate fact allows you to reason on a fact representing the current date.

* The Effective Date value lets you specify a start date and end date that defines a
date or date and time range when all the rules and Decision Tables in a ruleset, an
individual rule, or an individual Decision Table are effective.

Table 4-9 describes the available Effective Date options.

Table 4-9 Effective Date Possible Values

Effective Date Description

Always Valid Specifies to set neither "From" nor "To" dates.

From (without To date set) ~ Valid from a certain date indefinitely into the future.

To (without a From date Valid from now until a certain date.
set)
From Set and To set Valid only between two dates.

An effective date specification other than Always can be one of the following;:

¢ Date only, with no time specification: In this case, an effective date assumes a time
of midnight of that date in each time zone.

4-62 Designing Business Rules with Oracle Business Process Management

Using Date Facts, Date Functions, and Specifying Effective Dates

* Date, time zone, with no time specification: In this case, an effective date assumes a
time of midnight as of the specified date in the specified time zone.

¢ Date, time zone, time specification: In this case, the date and time is fully specified.

* Time specification only, with no date and no time zone: applies for all days at the
specified time.

¢ Time and time zone specified, with no date: applies for all days at the specified
time.

4.11.1 How to Use the Current Date Fact

You can use the current date fact in a rule or a Decision Table.

To use the CurrentDate fact:

1. Select a ruleset from the Rulesets navigation tab.
2. Select a rule within the ruleset.

3. In the IF area, add a condition that uses the CurrentDate fact and the date method
of Cal endar type, as shown in Figure 4-71.

Figure 4-71 Rule with Condition Using CurrentDate Fact

.vljgnm-on TR v BHEE M

= % Rule 1
bt

<enter descriptions

| | Advanced Mode || Tree Mode [v|Rule Active | |Logical Priority: [Medium T

Effective Date: Ahaays Valid

ROOT: RLFactl
IF

pene |

LCUFI’EnL’DalE.Ga.I& == <Qperand=

CurrenmtDate date tfl;

m % Value Options

i-@ PLFactl

=-a CurrentDate
S
i bea time

—ea timelnMillis
Loa explicit
StrategyContext
Routing Context
AffardabilityContext
Product
Application
CreditReport

oy By Iy B O) O
& 8 B & B @

Mode: EDIT Locale: English (United States)

() List View (2] Tree View
al.ry - -

Last Validation Time: 1:27:43 PM PDT

4.11.2 What You Need to Know About Effective Dates

By default, the Oracle Business Rules Engine implicitly manages the clock associated
with the CurrentDate fact and the effective date, setting each to the value of the system
date. Using the RL Language functions set Cur r ent Dat e() and

set Ef f ecti veDat e() you can explicitly set the current date and the effective date.
For more information, see Built-in Functions in the Rules Language Reference for Oracle
Business Process Managementguide.

Working with Rulesets and Rules 4-63

Using Date Facts, Date Functions, and Specifying Effective Dates

An effective start date is defined as the first point in time at which a rule, Decision
Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is
effective it may fire if its condition is satisfied and if the rule is not effective, it does not
fire whether the condition is satisfied or not.

An effective end date is the first moment in time at which the rule, Decision Table, or
ruleset no longer actively participates in rule evaluations (not effective means the rule
does not fire).

The effective start and end date can be set on a Decision Table, but these dates cannot
be set individually for the rules within a Decision Table.

Rules and Decision Tables also include the Rule Active option. This option is set
independent of the effective dates and makes dates effective without changing or
removing the specified effective date. For more information on using the Rule Active
option, see How to Select the Active Option.

The precedence of the effective date, when it is defined for both a ruleset and for the
rules or Decision Tables within a ruleset, is as follows (with the top precedence being
1):

1. If the ruleset Rule Active option is cleared, then RL Language is not generated for
that entity.

2. If one or both of the effective date properties are selected for a ruleset, then those
effective start dates and effective end dates define the range of effective dates
allowable for rules or Decision Tables that are defined within the ruleset (that is, if
in the ruleset the From check box, the To check box, or both check boxes are
selected in the Set Effective Date dialog).

Thus, the effective dates specified for rules or Decision Tables within a ruleset
must not violate the boundaries established by the ruleset that contains the rules
or Decision Tables. For example, a rule may not have an effective end date that is
later than the effective end date specified for a ruleset.

3. If any individual rule or Decision Table has Rule Active cleared, then RL
Language is not generated for that rule or Decision Table.

4. If the Set Effective Date dialog for a ruleset includes Time selected or this option is
selected on a rule or a Decision Table in the ruleset, then all instances of rules or
Decision Tables in the ruleset must have Time selected when effective dates are
specified. In this case, if Both or Date is selected then Rules Designer shows a
validation warning:

RUL- 05742: Cal endar forminconpatibility detected with forms Tine and DateTine.
If the calendar formis set to Time on a rule set or any of the rules or
decision tables within that rul eset then the calendar formfor that entire
rule set is restricted to Tine.

4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration
extension methods in a rule or a Decision Table. For more information, see Oracle
Business Rules Built-in Classes and Functions.

To use a Duration method:

1. Select ruleset from the Rulesets navigation tab.

4-64 Designing Business Rules with Oracle Business Process Management

Introduction to Expression Builder

2. Select a rule within the ruleset (you can also use Duration methods in a Decision
Table).

3. In the IF area, add a condition.
4. Select an operand in the rule condition.

5. From the list, select Expression Builder.... For more information, see Introduction
to Expression Builder.

6. In the Expression Builder, select the Functions tab.
7. In the Expression Builder, in the Navigator, expand the Duration folder.

8. Double-click to select and insert the appropriate method as needed for your
duration test.

9. Provide the appropriate arguments for the method. For example, see Figure 4-72.

10. Click OK to review your rule.

Figure 4-72 Using Duration Methods in a Rule

0 Expression Builder x|

Build an expression by typing directly into the Expression field and/or insart fraaments from the fragm ent editors belowthe
Expression field.

(o

Expression:
StrategyContext Pre-Report Risk Category

s Insert Inte Expression

=-C3 Duration

Duratian.betweeng LGregorianCalendar| oracle jbo domain Tim estam p, Calendar [XMLGregorian Calendar| or4
Duration.compare{Calend ar¥MLCregorianCalendar|oracle jbo. domain, Time stamp, Calendar]xMLCregorianCalendar|or
Duration.day s betwzen{Calendar| XMLCregorianCalendarioracle jbo.domain Timestamp, Calendar| MLGregorianCalend:
Duration.minutes betng en(Calendar] XMLGreaorianCalendar|oracle jbo.domain Timestamp, Calendar] xMLGregorianCale

Nuiratinn wears hatupsand alandarl®M| Creanrianalendarlaracle ihn damain Tim ectamn CalendarlM Crenarvianalene

Variables = Functions Operaters Constants
Content Preview
|Durat|cn .between{Calendar| XMLGregorianCalendar| oracle jbo.dom ain Tim estam p, Calendar| XMLGregorianCalendar| oracle [bo.dom aln

Description:

Subtract argl from arg2, where the args are som ¢ kind of date/time. Returns day-time duration.
Duration.between('2009-01-01LTOL:15:00%,"2009-02-02T11:30:00"==0uration from string("P3Z0DTLI0H1SM").

Help oK Caneel

4.12 Introduction to Expression Builder

You can access the expression builder from different parts of Rules Designer,
including in the Edit Globals dialog, and in the conditions area when you work with
conditions in Decision Tables, and when you enter rules and Decision Tables in
advanced mode with free form expressions select

Use the expression builder to create and edit expressions for Oracle Business Rules.

Figure 4-73 shows the Rules Designer expression builder.

Working with Rulesets and Rules 4-65

Introduction to Expression Builder

Figure 4-73 Rules Designer Expression Builder

-fl- Expression Builder

Build an expression by typing directly into the Expression field and/or insart fragments from the fragm ent editors belowthe
Expression field.

Expresszion: SN N

new Affordability(risk category: Strategy.pre-bureau risk category, menthly expenses: Application2.menthly.expenses, monthly
income: Application2.m onthly.incom &, monthly repayments: Application2.m enthly.repayments, required monthly installment:
Strategy.required monthly installm ent)

&, options

&-C3 strategy

®-[3 applicationz
@[3 application
@03 RequestedProduct
®-B3 affordabilit,

[T e T VT O

Wariables Functions = Operaters Constants

Content Preview

Description:

Mo Description Available

Help oK Caneel

4.12.1 How to Use the Expression Builder

In the expression builder when you double-click items in the Variables or Functions
navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item
into the expression in the Expression area. You can also create or edit expressions
directly by entering text in the Expression area.

When you enter an expression, note that Variables are valid assignment targets and
Constants are not valid assignment targets. Thus, you should use both tabs if you are
unsure what type of item you want to add to the expression you are building.

Specify an argument for a selected function by placing the cursor inside the function in
the Expression field and double-clicking the expression or function to insert. For
example, place the cursor inside the parentheses of a function and select a variable.
This inserts the variable in the expression at the cursor position.

4.12.2 What You Need to Know About Working with Expressions

XML fact types allow XML Schema types, elements, and attributes to be used when
writing rules. Elements and types defined in XML Schema can be imported into the
data model and can then be used to create rules and Decision Tables, just as with Java
fact types and RL Fact types. The mapping between the XML Schema definition and
the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default,
Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server.
JAXB as defined in JSR-222 provides a mapping between the types, names, and
conventions in an XML Schema definition and the available types, allowed names and
conventions in Java. For example, an element named or der - i d and of type

xsd: i nt eger is mapped to a Java Bean property named or der | D of type

Bi gl nt eger (and xsd: i nt type maps to Javai nt).

4-66 Designing Business Rules with Oracle Business Process Management

Using Value Sets as Constraints for Options Values in Rules

You can use expressions in Oracle Business Rules. Expressions allow arithmetic using
the operators *, +,/ , % and other supported operators on primitive numerics, for
example doubl e, i nt, and the numeric types | nt eger, Long, Short, Fl oat,

Doubl e Bi gDeci mal , and Bi gl nt eger that are available in the built-in dictionary.

Expressions allow casting between any two numeric types, for example, (short)
((Biglnteger)l + (Long)2).The following code example shows a few
additional sample expressions in actions with types and casting.

assign new double db = 3.3

assign new BigDecimal bd = 3.3 // no cast required
assign db = bd // no cast required

assign bd = (BigDecimal)db // cast is required

The expression processor uses the XPath/Xquery rules for type promotion (XML Path
Language (XPath) 2.0). For example, Bi gDeci mal is promoted to f | oat /doubl e;
type promotion going the other direction requires a cast, except for literals such as 3.3.

4.13 Using Value Sets as Constraints for Options Values in Rules

You can use List of Values value set and List of Ranges value sets to specify
constraints for business terms in rules. This enables you to use Rules Designer to
produce validation warnings for possible errors where a value supplied is out of
range, or not within a set of possible values as specified in a value set.

Oracle Business Rules also lets you use value sets to specify constraints for global
initial values, function return values, or function argument values. For more
information, see Working with Oracle Business Rules Globals and Associating a Value
Set with Business Terms.

4.13.1 How to Use a List of Ranges Value Set as a Constraint for a Business Term

You can use a list of ranges value set as a constraint for any business term other than a
function result.

For more information on using a list of values value set as a constraint, see How to Use
a List of Values Value Set as a Constraint for a Fact Property.

To use a List of Ranges value set as a constraint for a fact property:

1. Inthe Value Sets tab, double-click a value set to open the Edit Value Set dialog.

2. Specify a value set that includes the ranges you want to include and select Allowed
in Actions for all valid ranges. To include a range, clear Allowed in Actions for the
top and bottom endpoints.

3. Select Included Endpoint as needed for the application.

4. Clear Include Disallowed Values in Tests. For example, for a value set that
defines valid grades and that does not allow values greater than 100, or less than 0,
define the value set endpoints.

Working with Rulesets and Rules 4-67

Using Value Sets as Constraints for Options Values in Rules

Figure 4-74 Valid Value Sets for a Fact Property

0 Edit Value Set x|
e |CreaI1ReponT\rpes %'_,l
Form: |Enum |
Data Type: |CredIlReportT\fpes 'l

|: Include Disallowad Values in Tests
Description:
Walues: + R A
Value Alias Character Code Allowed in Actions Description

== CreditfeportTy... FULL ile v

=5 CreditReportTy_.. MINI abile ¥

= CreditReportTy.., NONE alble ¥

= null il ble O

Help ok Cancel

5. Associate this value set with a business term. For this example, associate the value
set with test_mathl.

Now, if you define a rule with a test that uses the fact property you will receive a
validation warning when a value is out of range. For example if you define a rule with
an expression with the value -10, Rules Designer will show a validation warning.

4.13.2 How to Use a List of Values Value Set as a Constraint for a Fact Property

You can use a list of values value set as a constraint for a fact property.

For more information on using a list of ranges value set as a constraint, see How to
Use a List of Ranges Value Set as a Constraint for a Business Term.

To use a List of Values value set as a constraint for a fact property:

1. Specify an LOV value set that includes the values you want to include, and select
Allowed in Actions for all valid values. For more information, see How to Define a
List of Values Global Value Set.

2. Clear Allowed in Actions for the otherwise value set.
3. Clear Include Disallowed Values in Tests.

4. Associate this value set with a fact property.

4.13.3 How to Use Value Sets to Provide Options for Test Expressions

You can use LOV value sets to provide options for expressions and actions.

To use value sets to provide options for rule expressions and actions:
1. In Rules Designer, define an LOV value set of a type corresponding to a fact

property. For more information, see How to Define a List of Values Global Value
Set.

4-68 Designing Business Rules with Oracle Business Process Management

Importing Runtime Rules Changes From Repository Into JDeveloper

2. Associate the value set with a fact property. For more information, see How to
Associate a Value Set with a Fact Property.

3. When you enter expressions, Rules Designer shows the values in the values
options. For example, when you associate a fact property Dri ver . eye_t est with
an LOV value set named eyes, with values: pass, fai | , and
gl asses_r equi r ed, and then you use Dr i ver. eye_t est in a test expression,
the values are limited.

4.14 Importing Runtime Rules Changes From Repository Into JDeveloper

This section discusses how to import changes to a rule implemented in SOA
Composer into the JDeveloper.

When you make changes to a dictionary in SOA Composer, you must upload them to
MDS repository as described in Publishing Changes for an Oracle Business Rules
Dictionary. However, these changes do not get updated in JDeveloper. You need to
import the changes from MDS repository into JDeveloper manually.

To import the changes into the JDeveloper,

1. Select the rule in the application navigator for which changes were made.

2. Click the Import From MDS button in Rule Editor as shown in Figure 4-75.

Figure 4-75 Importing Changes from the MDS Repository

¢ LoanApprovalVa rules & LoanApproval rules =

I N TSP SaENON @

Import Dictionary from MDS... neral Rules &7 Verbal Rules

¥ []Eitteron PR AR

@ settings
) Facs

Fe Functions
() clobals

¥ Eligibility
—enter descripn

=] Value Seis
g = ¥ Pre-Repon Affordabiliny
<D Links invake Affordability BEM by asserting & new Affordability Context and running the Affordability Iegic

g Decision Functions # ¥ Required Morthly Installment
@ Transiations <ener descriptions
B Teat
4] bata Explorer
& Business Phrases
Rule Sets + B
4P Strategy Logic
&p Affordability Logic
& Routing Logic

&P Rulesets

e
Mode: EDIT Locale: English (United Statas)

Desian,

3. Select the MDS Repository from the Import Dictionary dialog.

4. Click OK.

Changes are updated in JDeveloper and you can view the changes in the Rule
Editor.

4.15 How to Model Rules When the Data Model is Deep
Use the following tips to avoid overly complex rules:

® Use rule test variables (inline aliases) to create a simple test.

¢ Any 1:1 prefix can be removed from the fact path.

Working with Rulesets and Rules 4-69

How to Model Rules When the Data Model is Deep

Rule test variables:

Use rule test variables (inline aliases) to create a simple test that can help you model
rules when there is a deep data model.

For example, a rule like this:

I F

t ask/ payl oad/ pur chaseQrder/ i ne. amount > 100
THEN

modi fy ...

Can be rewritten like this:

Root: task

I F

anount = task/ payl oad/ purchaseOrder/line.amount and
amount > 100.0

THEN

modi fy ...

(R

Root: task

I F

Iine = task/ payl oad/ purchaseOrder/line and |ine.anmount > 100.0 and |ine.amount <
1000. 0

THEN

modi fy ...

Remove 1:1 prefixes:

Note that any 1:1 prefix can be removed from the fact path (if not referenced in tests).
For example, if you know that a task has at most 1 payload and a payload has at most
one purchase order, and tests do not reference the task or the payload attributes, then
you can use the shorter example as follows:

Root: PurchaseOr der

| F

l'ine = PurchaseOrder/line and

|'ine.amount > 100.0 and |ine.anmount < 1000.0
THEN

You can also use the shorter path if the relationships are 1:many and you do not care
about what task or payload contains which purchase order. You just want to process
all the purchase orders.

4-70 Designing Business Rules with Oracle Business Process Management

5

Working with Decision Tables

This chapter describes how to use Decision Tables to create and use business rules in
an easy to understand format that provides an alternative to the IF/THEN rule format.
It also covers the various components of a Decision Table such as conditions, conflicts,
actions, and discusses the various operations that you can perform on a Decision
Table.

The chapter includes the following sections:

¢ Introduction to Working with Decision Tables

¢ Creating Decision Tables

¢ Introduction to Decision Table Operations

¢ Creating and Running an Oracle Business Rules Decision Table Application

¢ Editing Decision Tables in Microsoft Excel

5.1 Introduction to Working with Decision Tables

Businesses invest in software to automate their business processes. Historically, this
automation focused on the collection, presentation, and manipulation of data to
facilitate human decision-making about that data. Increasingly, however, software
designers and developers are called upon to automate the decision making process by
putting detailed rules about business processes into software architectures. In
addition, many enterprises are experiencing increasing pressure to make software
systems more responsive to business changes.

In some cases, the role of writing and testing business rules is no longer assigned to
software engineers, but is passed to trained business users. Alternatively, some
organizations attempt to separate changes in the business behavior of software from
the traditional software development cycles, and tie changes to business driven
imperatives like product or sales cycles.

A Decision Table provides a mechanism for describing data processing tasks,
especially when that description is done by business analysts rather than computer
programmers.

The Decision Table format is intuitive for business analysts who are familiar with
spreadsheets. The formal structure that a Decision Table provides makes it easier to
author, understand, and change multiple similar rules and lets software check for rule
completeness and consistency.

Oracle Business Rules Decision Tables provide the following features:

* Powerful Visualization: Compact and structured presentation. This visualization
matches the way real world business policies are expressed: with many tables,
declarative, and organized into simple steps.

Working with Decision Tables 5-1

Introduction to Working with Decision Tables

* Error Prevention: Avoids incompleteness and inconsistency. Because a Decision
Table is well structured, automated tools can check for conflicts, redundancy, and
incompleteness to speed development of valid, consistent business rules.

* Modular Knowledge Organization: Group rules into a single table. A spreadsheet
metaphor puts groups of rules that work together onto a single viewable pane. For
example, if there are six rules that check an applicant's eligibility, it is more
convenient to see all the rules than to view the rules as individual but related rules.

* Optimization of Rules and Performance Benefits: Oracle Business Rules Decision
Tables provide automated features that can reduce the number of required rules, as
compared to the IF/THEN rules (this is called rule coalescing).

* Rule Validation and Verification: Provides capabilities for ensuring the logical
consistency of rules before deployment. Automated tools for checking conflicts or
incompleteness help speed development of valid, consistent business rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Working with Rulesets and Rules.

5.1.1 What is a Decision Table?

A Decision Table displays multiple related rules in a single spreadsheet-style view. In
Rules Designer a Decision Table presents a collection of related business rules with
condition rows, rules, and actions presented in a tabular form that is easy to
understand. Business users can compare cells and their values at a glance and can use
Decision Table rule analysis features by clicking buttons and selecting values in Rules
Designer to help identify and correct conflicting or missing rules.

To help understand Decision Table concepts, consider a set of IF/THEN rules that
determines if a driver is eligible for a license, and an equivalent Decision Table. Note if
a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has_training then training = true
if driver.age < 20 and driver.has_training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 5-1 shows a Decision Table representation of these rules that includes areas for
Decision Table Conditions and Actions.

5-2 Designing Business Rules with Oracle Business Process Management

Introduction to Working with Decision Tables

Figure 5-1 Sample Decision Table with Conditions and Actions

- Conditions R1 R2 R3
C2 Driver.has_training true false -
X Conflict Resolution
= Actions
L1 modify Driver|
eligible:)} true falsa true

5.1.1.1 What You Need to Know About Decision Table Conditions

The Conditions area in a Decision Table includes one or more condition rows. Each
condition row has a condition expression and, for each rule, a condition cell. A
condition expression is an expression that you build in Rules Designer. The condition
expression is often a fact property or a function result, but it can be any expression
that has a type that can be associated with a value set. Test expressions are often used,
such as Dri ver. age<16. These expressions are associated with the built-in boolean
value set, with values t r ue and f al se. The value or the range for a given condition
cell takes its value or its range from one or more values or ranges in the associated
LOV or Ranges value set. For more information on value sets, see Working with Value
Sets.

For example, Figure 5-1 shows the condition expression for a Dri ver fact with the
Dri ver . age property. The corresponding row in the Decision Table shows condition
cells including values for the ranges <20, and >=20. The values in the cells come from
the global value set named dr i ver _ages.

Figure 5-1 also shows a condition row for the Dr i ver fact with the

Dri ver. has_trai ni ng property. This condition row shows condition cells with the
values, true, false, and -. The hyphen (-) means "do not care" (that is,

Driver. has_trainingcouldbetrue orfal sein this case). The values for these
condition cells come from the default value set associated with boolean types (this
consists of default values for the values t r ue and f al se).

The '-' (don't care) value is useful to ensure that a decision table will not have gaps
when new values are added to a value set. For example, if a valueset initially contains
1,2, and otherwise, a rule matching otherwise will fire if the input is 3. But after 3 is
explicitly added to the valueset, then otherwise no longer matches an input value of 3.
If no rule contains a '-' for this input, then no rule will fire when the input value is 3
and the decision table is said to have a gap.

Use 'otherwise' when you explicitly want to match the 'otherwise' value in the
valueset, and not any other value. 'Otherwise’ is useful to avoid conflicts in a decision
table. -' is used to match any value, and will often cause conflicts. These conflicts can
be automatically resolved using the 'auto override' conflict policy.

Decision Tables show rules in bucket order, and to change the order of rules you need
to change the order of buckets in the value set. Thus, the order of the buckets in the
value set associated with a condition row determines the order of the condition cells,

Working with Decision Tables 5-3

Introduction to Working with Decision Tables

and thus the order of the rules. You can control rule ordering in a Decision Table by
changing the relative position of the buckets in an LOV value set associated with a
condition row; however, you cannot reorder range buckets (values). For information
on ordering buckets in a value set, see How to Define a List of Values Global Value
Set.

5.1.1.2 What You Need to Know About Decision Table Actions

Actions are associated with rules in a Decision Table. At runtime, when facts match for
condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 5-1 shows the types of actions you can choose in the Actions area. Thus, in an
action you can call a function, assert a new fact, retract a fact, or modify a fact, and so
on. In the Actions area the cells corresponding to an individual action for a rule are
called action cells. For more information on advanced mode, see How to Select the
Advanced Mode Option.

Table 5-1 Decision Table Actions for Action Cells
- - - - - - -

Action Description

assert new Assert a new fact.

assign Assign a value to a variable.

cal | Call a function.

nodi fy Modify a data value associated with a matched fact.
retract Retract a fact.

assert Assert a fact.

assert tree Asserts a tree of facts given the root.

assi gn new Assign a value to a new variable.

expression Perform expression.

return The return action returns from the action block of a function or

a rule. A return action in a rule pops the ruleset stack, so that
execution continues with the activations on the agenda that are
from the ruleset that is currently at the top of the ruleset stack.

t hr ow Throw an exception, which must be a Java object that
implements java.lang. Throwable. A thrown exception may be
caught by a catch in a try action block.

When you add multiple actions the actions that you add in the Actions area are
ordered; actions appearing in the higher rows run before actions in the following
rows.

The Decision Table actions such as nodi f y can refer to facts matched in the condition
cells. For example, given a Decision Table with condition rows on the Dr i ver fact that
includes condition rows for Dri ver. age and Dri ver . has_t r ai ni ng, actions can
modify the property Dri ver. el i gi bl e and you can specify a value for

Driver. el i gi bl e for each action cell.

Certain types of actions in the Actions area include a Parameterized check box. This
check box specifies that a property from the action can have its value set in the action

5-4 Designing Business Rules with Oracle Business Process Management

Introduction to Working with Decision Tables

cell associated with a rule in the Decision Table. When the parameterized check box is
selected, the value you supply for the expression value in the action, in the Actions
area, becomes the default value for the property if a value is not supplied in the action
cell. For example, see Figure 5-2 where the value f al se is assigned as the default
value for the action property el i gi bl e.

Figure 5-2 Action Editor Showing Parameterized Action with Default Value

7 Action Editor x|
Form: |modify -
Description:

a4

Value: |m adify StrategyContext §

Target:

'
Strategy Context Pre-Report

Application

Product

AffordabilityContext

FoutingContext

Argum ents:
Praperty Type Value Parameterized Constant

Application Risk 5. BigDecima 3] [3]

t B eportTypes

|

0 0
Sirate | 3] | 3]
]]

Fre-Repon AffardabilityConte..

W] Always Selected

Help OK Cancel

5.1.1.3 What You Need to Know About Decision Table Rules

A ruleset contains a Decision Table; this provides a way to group the Decision Table
along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset,
the IF/THEN rules and the Decision Table rules all execute as a set of interrelated
rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a
Decision Table with labels, for example, R1, R2, and R3, these rule labels are not names
for individual rules but are labels derived from the current ordering of the rules in the
Decision Table. Thus, a rule with the label R1 could be moved to position 3 and then
Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition cells.
The condition cells in the first row span the cells of later condition rows. A parent cell
in row i spans its children in row i+1.

Figure 5-3 shows rules in a Decision Table where each rule consists of one cell from
each row in the Conditions area, and an associated action cell in the same column in
the Actions area. Figure 5-3 shows the rule with the label R3 defined by the first cell
from condition 1 (the Dri ver . age < 20 value), the second cell from condition 2 (the
Driver. eye_test equalsfail value), and the third cell from condition 3 (the
Driver. has_trai ni ng equals t r ue value). Likewise for each of the other rules, R1
to R12, there is a unique path through the Decision Table.

Working with Decision Tables 5-5

Introduction to Working with Decision Tables

Figure 5-3 Rules in a Decision Table

- Conditions Ri rz BEE R4 RS RE 7 RS R R0 | R1L | RiZ
Cl1 Driver.age »=Z0
CZ Driver.eve_test pass glasses_required pass fail glasses_required
C3 Driver.has_training true false False true false krue false true False true false
< Actions
Al modify Driver(
eligible:] true false false False true false true true false False true false

As shown in Figure 5-3, it is significant for a cell to be a parent of another cell and a
parent cell spans lower cells. In the Conditions area, when condition cells have the
same parent condition cell the cells are called siblings. Certain operations only apply
for condition cells that are siblings. For example, Figure 5-4 shows two sibling cells
that are selected; with these cells selected the Merge Selected Cells operation is valid.
For these cells, the corresponding value set with the value f ai | for

Driver. eye_t est is also a sibling (as shown in the R3 and R4 columns in Figure
5-4). For more information, see How to Merge or Split Conditions in a Decision Table.

Figure 5-4 Sibling Condition Cells in a Decision Table

= Conditions R1 Rz R3 R4 R5 R& R7 R RS R10 R11 R1Z
Cl Driver.age <20 =20
C2 Driver.eyve_test pass Fail Fail glasses_required

false true false

C3 Driver.has_training true false true false true

< Actions
41 modify Driver
eligible: 3] true false False falsa true False true true False false true falsa

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move
button. By reordering rows in the Conditions area you can perform operations on
condition cells at the desired granularity. Thus, the move operations can assist you
when you want to split, merge, or assign certain values that might only be appropriate
at a particular level in the tree, depending on the location of a condition cell or
depending on the location of the parent, children, or siblings of a condition cell.

5.1.2 Understanding Condition Cell Values

By default, when you create a condition row, Rules Designer creates a single condition
cell and assigns the "?" value to the cell. A condition cell with the value "?" indicates
that the value of the cell is undefined in the value set. For example, Figure 5-5 shows a
"?" value for St r at egyCont ext . Note that contiguous value ranges in a condition
cell are combined. For example, if you select <20 and [20..40] it will display as <=40.

5-6 Designing Business Rules with Oracle Business Process Management

Creating Decision Tables

Figure 5-5 Sample Decision Table Showing Undefined in Condition Cell

A Conditions R1 R2 R3 R4 RS RE R7
C1 Existing Customer e false
C2 Application Risk Score <100 [100.120) >120 <80 [80..90) [90.110) >110

E Actions
AL modify Strategy Context
Pre-Report Risk Category:F HIGH MED Low REJECT HIGH MED LOW

5.1.3 Understanding Action Cell Values

In the Decision Table Actions area you can specify that an action cell "do nothing." In
this case, clear the action cell. When the action cell check box is cleared, this means do
not perform this action when the pattern matches for the specified condition values in
the Decision Table. Thus, for each action cell you can specify whether the rule
associated with the action cell should activate the action, or does not perform the
action.

In a Decision Table, when a condition cell represents a value that has been removed
from the value set, Rules Designer provides a validation warning such as the
following:

RUL- 05831: Decision table value reference not found
To fix this type of validation warning you can do one of the following:

¢ Define a value by double-clicking the condition cell and selecting one or more
values from the list.

* Add the missing value to the value set or associate the condition with another
value set that contains the missing value.

5.1.4 What You Need to Know About Decision Table Loops

A Decision Table loop occurs when the value for a condition row is changed by an
action. Loops can occur across the rules in a single Decision Table or spread over
several Decision Tables, or spread over rules and Decision Tables in the same ruleset.
Try not to create Decision Table actions that modify fact properties that are used in
Decision Table conditions. This could cause an infinite loop.

Note:

You can prevent infinite loops by using the rule firing limit on the containing
decision function.

5.2 Creating Decision Tables

You add a Decision Table by performing several steps.

These steps include creating a Decision Table, creating value sets, and then adding
conditions and actions to Decision Table, and using the Decision Table to operate to
validate, correct, and modify the Decision Table.

Working with Decision Tables 5-7

Creating Decision Tables

5.2.1 How to Create a Decision Table

To work with a Decision Table, start by creating a Decision Table in a ruleset.

To create a decision table:

1. From Rules Designer select an existing ruleset from the rulesets tab or create a
ruleset by clicking Create Rule Set....

2. Click Create from the Decision Tables area on the Overview tab, as shown in
Figure 5-6. This creates a Decision Table.

Figure 5-6 Adding a Decision Table

¥ LoanApproval rules
<8

@ settings

) Faas

F- Functions

{x) Clobals

£ Value Sets

@ Links

< Decislon Functions

@ Translations

B Test

(4 Dara Explorer

&7 Business Phrases
Rule Sets 4 ®

P Strategy Logic

&P Affordability Logic

&P Routing Logic

5

| Design)

AR

7 1% @ 4

@) Overview < CeneralRules 57 Verbal Rules

&P Rule Set Properties

8 Pre-Report Risk Category X

MName: |Stratagy Logic

&l

Effective Date: | Abways Valid [#] Active

Description

5

 General Rules

A General Rule is used to define tests and actions in a
code-style view.

Ceneral Rules: + /XA
< Eligibility
& Pre-Report Affordability

invoke Affordability BEM by asserting a new
AffordabilityCantext and running the Affordability
logic.

& Required Monthly Instaliment

Decision Tables

A Decision Table displays multiple related rules in a single
spreadshest-style view

Decision Tables: +/RWA
Credit Report Type

[strategy

[Pre-Report Risk Category

Application Risk Score

requires Application Risk Score initialized 1o 0

&7 verbal Rules

A Verbal Rule is used to define tests and actions combining
Business Phrases.

+ /K@

Mode: EDIT Locale: English (United States)

Note:

When you add a Decision Table the rules validation log displays validation
warnings. The Decision Table is not complete and does not validate without
warnings until you add conditions and actions to the Decision Table.

5.2.2 How to Add Condition Rows to a Decision Table

A Decision Table includes a Conditions area where you specify Decision Table
condition rows. The condition rows determine the facts that the Oracle Rules Engine

matches at runtime. To create a Decision Table you need to add one or more condition
rows to the Decision Table.

To add condition rows to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add conditions.

2. In the Decision Table area, from the list next to the Add button select Condition.

3. In the Conditions area, double-click <edit-condition> to display the navigator to
select or enter an expression as shown in Figure 5-7.

5-8 Designing Business Rules with Oracle Business Process Management

Creating Decision Tables

Figure 5-7 Adding a Condition to a Decision Table

- Conditions RL RZ R3 R4 RE RS R7
C1 Existing Customer true false

€2 Application Risk Score [100.120] >120 <80 [80..903 [90.110] >110

<80,(80..50),[90..100)
[specify Value as Don't Care [#] [}
@] <o

[v] [80.90)
[¥] 190..100)
[11oo.110]
= [a10.1200
bt Actigra) [>120
AL modify StrategyContext
Pre-Report Risk Category. Low REJECT HIGH MED Low

OK Cancel

4. Enter an expression by clicking in the navigator to select a variable or click the
Expression Builder button to display the Expression Builder window. The
Expression Builder lets you build expressions.

5. Each condition row requires a value set from which to draw the values for each
cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

6. Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

5.2.3 How to Use or Specify the Value Set for a Decision Table Condition

1. Each condition row requires a value set from which to draw the values for each
cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

2. If there is no global value set associated with the value, then after you add a
condition row to a Decision Table you need to specify either a Local List of Values
or a Local List of Ranges value set to associate with the condition row, or specify an
existing global value set. To add a value set for the condition, in the Conditions
area select the condition and then select from the value set list to associate a value
set, as shown in Figure 5-8. The value set list includes available global value sets of
the appropriate type.

Figure 5-8 Specifying a Value Set For a Condition Row in a Decision Table

G4 overview P General Rules &7 verbal Rules & Pre-Report Risk Category X

% . &4 Pre-Report Risk Category

| Advanced Mode [| TreeMode [#]RuleActive [|Loglcal [| AllowGaps [v] Order Rules By Bucket
Priority: \I'Imlum ‘\ Conflict Policy |I-|anua| '| Effective Date: Always Valid
Description:
€2 R1:[<100 [+][£3) Local Range value ser | R ol W-t-B 0B HE-B
= Conditions RL B Local Value Set [RS R R7
C1 Existing Customer 3 Local Range Value Set false
€2 Application Risk Score | <0 | <80 [80.90) [90.110] >110
- Actions
A1 modify StrategyContext
Pre-Report Risk Category:F HICH MED Low REIECT HICH MED LOW

Mode: EDIT Locale: English (United Stat

3. If you do not specify a global value set, then you can create and use a local value
set by selecting either Local Value Set or Local Range Value Set to create and use
the specified type of value set.

Working with Decision Tables 5-9

Creating Decision Tables

4. Repeat Step 2 through Step 3, as required to define additional condition rows in
the Decision Table.

For more information on creating value sets, see Working with Value Sets.

5.2.4 How to Add Actions to a Decision Table

A Decision Table includes an Actions area where you specify Decision Table actions.
The actions determine actions for rules in a Decision Table. To create a valid Decision
Table, add actions to a Decision Table. For each action cell, where specific values
apply, set the values for the action cells. For each action cell, when the action does not
apply to the rule, deselect the action cell. By default when you add an action to a
Decision Table, actions for all the rules are unselected

To add actions to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add actions.

2. From the list next to the Add button, select Action and select an available action
from the list. Table 5-1 lists the available actions. For example, select Modify. Rules
Designer displays the Action Editor dialog as shown in Figure 5-9.

Figure 5-9 Adding an Action to a Decision Table

7 Action Editor i3
Form: |modify -
Description:

a4

Value: |m odify StrategyContext §

Target:

'
Strategy Context.Pre-Report

Application

Product

AffordabilivyConrext

RoutingContaxt

Argum ents:

Praperty Type Value Parameterized Constant
Application Risk 5. BigDecima O (|

Credit Report Type CreditReponTypes 1 3]
Required Monthly .. BigDecima O [T
Strategy StrategyValues [l]
Pre-Report AffordabilityCante.. (] O

W] Always Selected

Help 0K Cancel

3. In the Action Editor dialog select the action target in the Target area. This specifies
the data model object the action applies to.

4. For the specified target, as needed to make the action do what is required, modify
the fields in the Arguments table. In the Action Editor dialog the Arguments table
includes the fields shown in Table 5-2.

5-10 Designing Business Rules with Oracle Business Process Management

Creating Decision Tables

Table 5-2 Action Editor Dialog Arguments Fields

Field Description

Property Displays the property names for the
specified target.

Type Displays the type for the property.

Value Select the default value for the action from

the list of available actions. The specified
value applies to either the entire action, as
the default value, or when a particular
action cell is selected, the value specified
applies for that particular action cell.

Parameterized This specifies a parameterized value. A
parameterized value displays in a Decision
Table action cell. When you select
parameterized value for a property, this
generally means that each rule supplies a
different parameter value.

Constant Select to specify a constant value.

5. In the Action Editor dialog, to select action cells for all the rules, select the Always
Selected check box.

6. Repeat Step 2 through Step 5, as required to define additional actions for the
Decision Table.

5.2.4.1 How to Set Values for Action Cells in a Decision Table

To set values for action cells:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to specify action cell values.

2. In the Actions area, check that the appropriate action cells are selected. If the
Always Selected check box is specified in the Action Editor dialog, then all action
cells should be selected. If Always Selected is not selected, then select the
appropriate action cells using the action cell check box.

3. Inthe Actions area, enter the appropriate value for parameterized properties for
each selected action cell. To do this select the action cell property cell, and either
enter a value, select a value from the list, or click the Expression Builder button to
use the Expression Builder dialog.

For more information on referring to a value set from a Decision Table, see How to
Define a List of Ranges Global Value Set.

5.2.4.2 How to Deselect an Action Cell in a Decision Table

To deselect an action cell:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want deselect an action cell.

Working with Decision Tables 5-11

Creating Decision Tables

2. In the Actions area, select the action cell and deselect the check box in the action
cell. You are not allowed to deselect action cell values when Always Selected is
selected for the action.

When you add actions, you may need to change the order of the actions. In Rules
Designer you can use the Move Down button or Move Up button to change the order
of actions.

5.2.5 How to Add a Rule to a Decision Table

You can add a rule to a Decision Table. Rules Designer adds a column for the rule to
the left of the existing rules and each condition cell is initialized to "?", which actually
means a validation error prompting you to populate the cell with relevant values.

To add arule to a decision table:

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. From the list next to the Add button, select Rule.

3. Enter values for the condition cells. Notice that the new rule is added as the first
rule of the Decision Table on the left and the other rules have moved as required to
keep the values in their defined order.

4. Enter values for the action cells.

The Order Rules By Bucket check box under the Advanced Settings of a Decision
Table is selected by default. In this case, the Decision Table layout changes
automatically on adding new rules.

When you add a new rule to a Decision Table, the new rule is added as the first rule of
the Decision Table and the other rules move as required to keep the values in their
defined order. This is because Order Rules By Bucket is enabled, which means rule
ordering in a Decision Table is set according to the relative position of values
associated with a condition expression. If Order Rules By Bucket is not enabled when
you add a rule, the new rule is added as the last rule of the Decision Table. In either
case, the cells in the new rule column have "?" symbols, indicating the cells do not
have values yet.

Note:

When Order Rules By Bucket is selected, the rules are ordered and duplicate
rules (rules with exactly the same values) are combined. So, you cannot add
two rules without any values to a Decision Table, because in that case, the
rules are duplicates and would immediately be combined. When Order Rules
By Bucket is cleared, then duplicate rules are allowed.

In addition, the Move buttons pertaining to a rule column are also enabled. You can
use them to reposition rules. Use the Flip the Table Rows and Columns button to
change the view of the Decision Table. This also affects the Move buttons: the move
direction may be Up or Down, Left or Right. The Merge, Compact and Span options
are also enabled. You can also cut, copy, or paste rules.

For more information, see Introduction to Decision Table Operations.

5-12 Designing Business Rules with Oracle Business Process Management

Creating Decision Tables

5.2.6 How to Define Tests in a Decision Table

You can define tests in a Decision Table. The tests must evaluate to true for any rule in
the decision table to fire. For more information about defining tests and working with
rule conditions, see Working with Rules.

You can use the Data Explorer tab to find fact types and value sets in the data model.

To add tests to a Decision Table:

1. From Rules Designer, select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to add the rule.

2. Click the Show Patterns/Tests button (magnifying glass) left of the Decision Table
name. If Advanced Mode is selected, clear the check box.

3. Select any of the options according to your requirements, as shown in Figure 5-10.
Note that variables without any tests are often used so that the variables can be
used in the decision table conditions and actions.

* simple test

e variable

® nested test

* negated test

¢ all of the following...

® any of the following...
® isa

e there is a fact where...
e there is a case where...
e there is no fact where...
e there is no case where...
* aggregation...

* boolean expression

Working with Decision Tables 5-13

Introduction to Decision Table Operations

Figure 5-10 Options List

G4 Overview @ GeneraiRules | 57 verbal Rules @ Pre-Report Risk Category X

¥ =, éd FPre-Repont Risk Category

Application is 2 Application and

Existing Cu| (B mer and

StrategyCol simple test

Application| "2riable cation Risk Score and
nested test

HIGH = Rish negated test

MED = Risk| 3l 0fthe following...
any of the following...
LOW = Risk (oo

REJECT = Ri there is a fact where. ..
cipeeps ee| thereis & case where
there is no Tact where..,
there is no case where.

aggregation... PR 2 V' E' EE-& “E]E'Q
boalean expression -)

- P Rr2 R3 R4 3 RE R7

€1 Existing Customer true false

€2 Application Risk Score <100 [100.120] >120 <80 [30.90) [90.110] 110

- Actigns

Mode: EDIT Locale: English (United States)

4. Click the left and the right <operand> to enter the operand values, and the
operator list to select an operator, as in Figure 5-11:

Figure 5-11 Value Options List

@ LoanApprovalrules

¢ D@ e D @
B settings ¥ T, 64 Pre-Report Risk Category
=) raas
. Application is 2 &pplication and

Fe Functions

Existing Customer = [ipplication existingCustomerjand
{x) Clobals StrateayContext is & 4 -
8 rategyContextis a2 (upolication.exlistingCustomer [
£) Value Sets Application Risk Scor|

PP Value Options
& Links HIGH = RiskCategoris g 5 StrategyContext
& Declsion Functions MED = RiskCategorie; .= Application
@, Transia LOW = RiskCategorie e email
& Translations

REJECT = RiskCategol [#-a name
e o a0e
3 Dara Explorer - m;‘f:’y'r;mfmus

@ existingCustomer + [*Y > -
: . A - B - 3~
& Business Phrases s maritalStatus *-x z .~; EMEAL TEE-&
- it 5 7
Ruste Sets 3+ x Conditior & manthly RS R4 R RE R
C1 Existing CUstomer | o o product faise
&P Strategy Logic C2 Application Risk Sco| @-a AtfordabliityContext »120 <80 [80..90) [90.110] >110
&P Affordability Logic - AL
@ RLFactl

& Routing Logic e RoutingContext

T Cradiannn
) List View (%) Tree View

[[] constant
-~ Actigns
AL modify Strategy Context
= Pra-Rennrt Rick Catanan: R HiCH uMEn Lo BRIFCT HICH

wEn Lo
Mode: EDIT Locale: English (United States)

For more information about writing tests, see Testing and Validating Business Rules.

5.3 Introduction to Decision Table Operations

After you create a Decision Table you may want to modify the contents of the Decision
Table to produce a Decision Table that includes a complete set of rules for all cases, or
to produce a Decision Table that provides the least number of rules for the cases.

After you create a Decision Table there are operations that you may want to perform
on the Decision Table, including the following:

* Compact or split cells in a Decision Table.
* Merge a condition or split a condition in a Decision Table.
¢ Finding and resolving conflicts between rules in a Decision Table.

¢ Find and fix gaps (missing rules) in a Decision Table.

5-14 Designing Business Rules with Oracle Business Process Management

Introduction to Decision Table Operations

5.3.1 Understanding Decision Table Split and Compact Operations

The split and compact operations enable you to manipulate the contents of the
condition cells in a Decision Table.

The split table operation creates a rule for every combination of values across the
conditions. For example, in a Decision Table with 3 boolean conditions, 2x2x2 =8
rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules
are created. Thus, you only use split table when the number of rules created is small
enough that filling in the action cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision
Table and create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row.
Additionally, split may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create
condition cells. Thus, using the split operation you can create rules in a Decision Table.
Table 5-3 summarizes the split operation for a selected condition cell, condition row,
or for a complete Decision Table.

Table 5-3 Summary of Split Operation
L ___|

Operator Description

Condition Cell Creates one sibling condition cell for each value represented by the cell.

If the condition cell value is "do not care”, then the cell is split into one
sibling cell for each value in the valueset that is not represented by a
sibling condition cell, and "do not care" is no longer represented.

Condition Row For each condition cell in the proceeding condition expression, create a
sibling group which contains a cell for each value in the value set. The
effect of this operation is the same as adding a "do not care" to each
sibling group and calling split on each condition cell in each sibling

group.

Decision Table Same as calling split on each condition row in the Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells
operations remove condition cells. The compact table operation can be applied to an
entire Decision Table. Additionally, the merge operation may be performed on sibling
cells or on an entire condition row. Thus, using compact table or merge you can
remove rules from a Decision Table. Table 5-4 summarizes the compact table and
merge operations.

Table 5-4 Summary of Merge Operation
. __|

Operator

Description

Condition Cell

Merging two or more condition cells adds all values in the cells to a single cell, and
removes all but one of the cells. If one of the cells represents "do not care", then the merged
cell represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL- 05847: Duplicate decision table action paraneter.

Working with Decision Tables 5-15

Introduction to Decision Table Operations

Table 5-4 (Cont.) Summary of Merge Operation
. ___|

Operator Description

Condition Row Combine all values in each sibling group into a single "do not care" cell for each condition
cell in the proceeding condition expression. The effect of this is the same as calling merge
on all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL- 05847: Duplicate decision table action paraneter.

Decision Table Compacts the Decision Table by merging conditions of rules with identical actions.

Split and merge are inverse operations when conflicting action cells are not associated
with the operation. In this case, without conflicting action cells, a merge operation
combines all the values from the siblings into one sibling, and discards the other
sibling condition cells, and as a result of merging the condition cells, when a Decision
Table contains action cells, the action cells are also merged. Thus, the merge operation
combines multiple condition cells into a single condition cell and adds all values to the
single cell.

When there are conflicting values for the action cells, a merge operation merges the
action cells in a form that requires additional manual steps. Thus, if two action cells
have conflicting parameters, after the merge the action cell contains multiple
conflicting parameter values. These conflicting values are appended to the action cell
and must be manually resolved by selecting and deleting the unwanted duplicate
parameters. For example, see Figure 5-12 that shows conflicting values in an action
cell.

An action cell that contains multiple values for a property is invalid. When you select
the action cell Rules Designer shows a popup window with check boxes to allow you
to select a single value for the action cell. As shown in the validation log in Figure 5-12,
Rules Designer shows a validation warning until you select a single value.

Figure 5-12 Conflicting Properties to be Resolved for a Merged Action Cell

- Conditions R1 RZ R3
Cl Driver.age <20 =20
C2 Driver.has_training o true false
* Conflict Resolution
- Actions
A1 modify Driver([v]
eligible: il true true
Select the values yvou want to keep:
Walue Keep %
true
false

5.3.1.1 Understanding Decision Table Move Operations

You can move the conditions or actions in a Decision Table. The Move buttons let you
reorder condition rows in the Conditions area and actions in the Actions area. Moving
conditions up or down may reorder visual display of the rules, but these operations

5-16 Designing Business Rules with Oracle Business Process Management

Introduction to Decision Table Operations

does not change the logic in any way. For example, if (x. @ == land x. b == 1)is
logically the same asif (x. b == landx.a == 1).

When you work with Decision Tables some operations only apply for condition cells
that are siblings. Using the Move button you can reorder rows so that Decision Table
operations apply to the tree at the desired granularity. For example, when you want to
change the action of a condition cell for a single rule, then you need to move that
condition cell to the last row in the Decision Table Conditions area. For example,
consider the Decision Table shown in Figure 5-13.

Figure 5-13 Rules in a Decision Table

£ Conditions R1 RZ R3 R4 RS RB R7 R R9 R10 R11 R12
Driver.age I -

CZ Driver.eye_test pass Fail glasses_required pass Fail glasses_required

C3 Driver.has_training true False true False true false true false true false true false

X Conflict Resolution

5 Actions

Al modify Driver]

eligible:] true False False False true False true true false false true false

To view this table with granularity for the Dr i ver . age, move the Dri ver. age
condition from the first row to the third row, as shown in Figure 5-14.

Figure 5-14 Decision Table After Move Down with Age Condition Last

i Conditions Rl R2 R3 R4 RS RE R7 RE R9 R10 R11 R12
C1l Driver.eyve_test pass Fail glasses_required
C2 Driver.has_training true false true false true False

C3 Driver.age

x Conflict Resolution

o Actions
41 moadify Driver

eligible: 3] true true False true false False false false true true false false

Now to make the Dri ver . age conditions "do not care" for the first two rules, where
the driver passes the eyesight test and has had driver training is true, you can easily
apply changes to these particular conditions when the Dri ver . age condition is in the
last row. Thus, in this table, it is easier to view and modify age related rules when

Dri ver . age is in the last row, with the finest granularity.In general, the move
operations can assist you when you want to split, merge, or assign certain values that
might only be appropriate at a particular level in the tree, depending on the location of
a condition cell, or depending on the location of the parent, children, or siblings of a
condition cell.

Working with Decision Tables 5-17

Introduction to Decision Table Operations

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the
actions. Actions are ordered so that when multiple actions apply, the first action runs
before subsequent actions. Thus, using the Move Up or Move Down operation on an
action may be appropriate, depending on your application.

5.3.1.2 Understanding Decision Table Gap Checking

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of values, one from each condition, that is not covered by an existing rule.
Rules Designer provides Gap Checking to check for gaps. When you click the Gap
Analysis button, Rules Designer finds gaps and presents a dialog to fix any gaps that
are found.

You can choose to make existence of gaps a validation warning. When you clear
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Using Advanced Settings
with Rules and Decision Tables.

For example, using the Driver example if you create a gap by deleting the rule that
covers the case for Dri ver. age <20 and Dri ver. has_trai ni ngfal se, and then
you click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in
Figure 5-15. Clicking OK with the check boxes selected adds either all rules or the
selected rules to the Decision Table (this example only shows a single rule to add).

Figure 5-15 Checking Gaps

There is 1 missing rule in the decision table.

4
‘fou can add the missing rule to the decision table by selecting the checkbox in
the table header column.

=
Conditions [l
Driver.age <20
Driver.has_training false
Fit Columns To Width
| Help | | [al4 || Cancel |

Gap checking generates different new rules for the following cases:

* Sibling rules: multiple missing sibling rules are added as a single new rule. For
example, consider a rule with two conditions, Dri ver. age and Dri ver. hair.
When there are two missing rules for different hair colors and the rules are siblings,
that is, they have a common parent, then gap checking shows a single rule as
shown in Figure 5-16.

¢ Non-sibling rules: multiple missing non-sibling rules are added as individual new
rules. For example, when there are two different rules missing that do not have the
same parent, then gap checking provides two rules, as shown in Figure 5-17.

5-18 Designing Business Rules with Oracle Business Process Management

Introduction to Decision Table Operations

Figure 5-16 Gap Checking with Missing Sibling Rules

There is 1 missing rule in the decision table.

‘ou can add the missing rule to the decision table by selecting the checkbox in
the table header column,

U
Conditions (|
Drriver.age F=20
Driver . hair black, brown
Fit Columns Ta Width
| Help | | oK | | Cancel |

Figure 5-17 Gap Checking with Missing Non-Sibling Rules

There are Z missing rules in the decision table,

Flease select the rules vou want to add by selecting the checkboxes in the table
header colurnns,

0
Conditions (| (|
Driver.age =20 »>=20
Driver. hair brown black.
Fit Columns Ta Width
| Help | | [s]'4 | | Cancel |

In both of these cases shown in Figure 5-16 and Figure 5-17 there are two missing
values, but for sibling rules the multiple values are combined in a single new rule.
Thus, in general gap checking suggests fewer more general rules in preference to
many more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the values you
want. Alternatively, you can use Find Gaps to add a rule and then split the cell with
multiple values, and delete the rules you do not want to keep.

5.3.1.3 Understanding Decision Table Conflict Analysis

The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a value in common. Overlap is common when a Decision Table contains "do not
care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict Resolution
row in the Decision Table when you click Show Conflicts. How you handle and
resolve conflicts depends on the specified conflict policy. You can choose a conflict
policy or use the default manual conflict policy. When you set a conflict policy using
the Conflict Policy option in the Advanced Settings area, Rules Designer sets the
conflict policy for the Decision Table. The Conflict Policy specifies the Decision Table
conflict policy and is one of the following:

¢ manual: Conflicts are resolved by manually specifying a conflict resolution for each
conflicting rule.

* auto override: Conflicts are resolved automatically using an override conflict
resolution when this is possible, using the Oracle Business Rules automatic conflict
resolution policies.

Working with Decision Tables 5-19

Introduction to Decision Table Operations

¢ ignore: Conflicts are ignored.

For more information, see Using Advanced Settings with Rules and Decision Tables.
For example, Figure 5-18 shows a Decision Table with conflicting rules that you
resolve with the default manual conflict policy.

Figure 5-18 Decision Table Showing Conflicting Rules in the Conflicts Area

- Conditions Rl Rz R3 R4
Cl Driver.has_training true false
C2 Driver.age <20 ==20 <20 -]
» Conflict Resolution
2 Conflict R4 R3
- Actions
A1 modify Driver(
eligible:)] true true false true

Fit Columns Ta Width

By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer
lets you resolve conflicts between rules as follows:

* Override (Override and OverriddenBy): You override one rule with the other.
Override specifies that one rule fires. Override is a combination of prioritization
and mutual exclusion. Prioritization is transitive and not symmetric. Mutual
exclusion is both transitive and symmetric. If A overrides C and B overrides C, then
A or B runs before C but only one of A, B, or C runs.

* Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets the
two rules fire in a prescribed order. Prioritization is transitive but not symmetric.
That is, if A runs before B runs before C, then A runs before C but B does not run
before A. This uses a Decision Table runBefore list specifying that the rule that runs
before has a higher priority than rules in the list.

¢ Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary
order. For example, consider the following conflicting rules in a decision table:

rul el: everybody gets a 10%raise (as specified with a do not care value in a decision
table condition cell)
rul e2: enployee with Top Performer set to true gets a 5%raise

In these rules, if rule? overrides rulel, then a top performer gets a 5% raise, and
everyone else gets a 10% raise. However, in this case, you would like to have both
rules fire. Because it does not matter which rule fires first, and there is no conflict,
then a top performer gets a 15.5% raise either way. In this case, use the NoConflict
list to remove the conflict. Note that no conflict is what you get with IF/THEN
rules with equal priorities, only you are not warned of a conflict and you have to
think carefully if you want one rule to override the other.

Figure 5-19 shows the Rules Designer Conflict Resolution dialog shown when you
select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve

5-20 Designing Business Rules with Oracle Business Process Management

Introduction to Decision Table Operations

conflicts between rules by selecting overrides, prioritization with RunBefore or
RunAfter options, and a NoConflict option.

Figure 5-19 Using the Decision Table Conflict Resolution Dialog

Below are the rules that conflict with rule R3 and the conflict resolution
methods ko resolve possible conflict occurrances, To change the resolution
method, please dick the Resolution column and select the method you would
like ko use o resalve the conflict,

Rule: [R3 |

Conflicting Rule Resolution

| Canflict - |

roConflict
Override
(COrverriddenty
RunBefore
Funidfter

| Help | | oK || Cancel |

You can use the Decision Table Advanced Settings Conflict Policy auto override
option to specify that, where possible, conflicts are automatically resolved. The
automatic override conflict resolution policy specifies that a special case overrides a
more general case. For more information, see Using Advanced Settings with Rules and
Decision Tables.

Thus, when there are conflicts in a Decision Table, you can do one or more of the
following to resolve the conflicts:

* Use auto override conflict resolution by selecting the Conflict Policy and then auto
override option in the Decision Table.

¢ Ignore conflicts by selecting the Conflict Policy and then ignore option in the
Decision Table.

¢ Use manual conflict resolution by selecting the Conflict Policy and then manual
option in the Decision Table and set Conflict Resolution for each conflicting rule in
the dialog by selecting cells in the Conflict Resolution area with the Show
Conflicts check box selected.

¢ Change the Decision Table to remove an overlap.

e Combine actions to remove conflicts.

5.3.2 How to Compact or Split a Decision Table

Use the Compact Table and Split Table buttons to compact or split cells in a Decision
Table. For more information, see Understanding Decision Table Split and Compact
Operations.

To compact or split cells in a decision table:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, select the Decision Table and click Edit.

2. Click the Compact Table button to compact or the Split Table button to split the
cells.

Working with Decision Tables 5-21

Introduction to Decision Table Operations

5.3.3 How to Merge or Split Conditions in a Decision Table

Use the merge condition and split condition operations to merge or split a condition in
a Decision Table. For more information, see Understanding Decision Table Split and
Compact Operations.

To merge or split a condition in a decision table:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, select the Decision Table where you want to merge or split a
condition and click Edit.

2. In the Conditions area, select the condition you want to merge or split.

3. Right-click, and from the list select Merge Condition or Split Condition.

5.3.4 How to Use the Condition Cell Operations

Use the condition cell operations to split a condition cell, to merge sibling condition
cells, or to specify a "do not care" value for a condition cell in a Decision Table. For
more information, see Understanding Decision Table Split and Compact Operations.

5.3.4.1 How to Merge Sibling Cells in a Condition in a Decision Table

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to merge condition
cells and click Edit.

2. Select the sibling condition cells to merge.

3. Right-click, and from the list select Merge selected cells.

5.3.4.2 How to Split a Cell in a Condition in a Decision Table

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to split a condition
cell and click Edit.

2. Select the cell to split.

3. Right-click, and from the list select Split selected cell.

5.3.4.3 How to a "Do Not Care" Value for a Cell in a Condition in a Decision Table

1. From Rules Designer select a ruleset from the Rulesets navigation tab and select
the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Right-click, and from the list select Do Not Care.

5-22 Designing Business Rules with Oracle Business Process Management

Introduction to Decision Table Operations

5.3.4.4 How to Select all Value Sets to Specify a "Do Not Care" Value for a Cellina
Condition:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to set the "do not
care" value and click Edit.

2. Select the appropriate condition cell.

3. Double-click, and from the list select all the available check boxes for all possible
values.

5.3.5 How to Perform Decision Table Gap Checking

A gap is a "missing” rule in a Decision Table. A Decision Table has a gap if there is a
combination of values, one from each condition, that is not covered by an existing rule.
Rules Designer provides Gap Checking to check for gaps. When you use this operation
Rules Designer presents a window to fix gaps. For more information, see
Understanding Decision Table Gap Checking.

You can choose to make existence of gaps a validation warning. When you clear
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Using Advanced Settings
with Rules and Decision Tables.

To perform decision table gap checking:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to perform gap
checking and click Edit.

2. Click the Gap Analysis button.

5.3.6 How to Perform Decision Table Manual Conflict Resolution

The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a value in common. For more information, see Understanding Decision Table
Contflict Analysis.

To perform manual decision table conflict resolution:

1. In Rules Designer, select a rule set from the Rule Sets navigation tab. On the
Overview tab, and select the Decision Table where you want to check conflicts and
click Edit.

2. Set the conflict policy to manual (this is the default conflict policy). For more
information, see Understanding Decision Table Conflict Analysis.

3. In the Conditions area, in the conflicts area, when conflicts exist for each rule with
a conflict double-click the appropriate condition cell to display the Conflict
Resolution dialog.

4. In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field
select a resolution from the list.

Working with Decision Tables 5-23

Creating and Running an Oracle Business Rules Decision Table Application

5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy

When you select the Advanced Settings option in a Decision Table, you can select that
Decision Table conflicts are automatically resolved using the auto override conflict
policy (this applies only when it is possible to resolve the conflict using the Oracle
Business Rules automatic conflict resolution policies). The automatic override conflict
resolution uses a policy where when there is a rule conflict a special case overrides a
more general case. For more information, see Understanding Decision Table Conflict
Analysis.

To select the auto override policy:

1. Select the rule or Decision Table where you want to use ignore conflict policy.
2. Click the Show Advanced Settings button next to the rule or Decision Table name.

3. From the Conflict Policy option select auto override.

5.3.8 How to Set the Decision Table Ignore Conflicts Policy

When you select the Advanced Settings option in a Decision Table, you can select that
the Decision Table conflicts are ignored using the ignore conflict policy. The ignore
policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more
information, see Understanding Decision Table Conflict Analysis.

To select the ignore conflict policy:

1. Select the rule or Decision Table where you want to use the ignore conflicts policy.
2. Click the Show Advanced Settings button next to the rule or Decision Table name.

3. From the Conflict Policy option select ignore.

5.4 Creating and Running an Oracle Business Rules Decision Table
Application

The Order Approval application demonstrates the integration of a SOA composite
application with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

e Process rules from XML inputs including: a credit score and the annual spending of
a customer, and the total cost of the incoming order.

* Provide output that determines if an order is approved, rejected, or requires
manual processing.

To complete this procedure, you need to:

¢ Obtain the Source Files for the Order Approval Application

¢ Create an Application for Order Approval

¢ Create a Business Rule Service Component for Order Approval

¢ View Data Model Elements for Order Approval

5-24 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

¢ Add Value Sets to the Data Model for Order Approval
® Associate Value Sets with Order and CreditScore Properties
¢ Add a Decision Table for Order Approval
— Split the Cells in the Decision Table and Add Actions
— Compact the Decision Table
— Replace Several Specific Rules with One General Rule
— Add a General Rule
¢ Check Dictionary Business Rule Validation Log for Order Approval
* Deploy the Order Approval Application

¢ Test the Order Approval Application

5.4.1 How to Obtain the Source Files for the Order Approval Application

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

To work with the Order Approval application, you first need to obtain the

or der . xsd schema file either from the sample project that you obtain online or you
can create the schema file and create all the application, project, and other files in
Oracle JDeveloper. You can save the schema file provided in the following example
locally to make it available to Oracle JDeveloper.

The following example shows the or der . xsd schema file.

<?xnml version="1.0" ?>
<schema attribut eFornDefaul t="qual i fied" el ement FornDefaul t ="qualified"
t ar get Nanespace="ht t p: / / exanpl e. conl ns/ cust oner or der "
xm ns:tns="http://exanpl e. conf ns/ cust oner or der"
xm ns="ht t p: / / www. w3. or g/ 2001/ XM_Schena" >
<el enent nane="Cust oner Or der " >
<conpl exType>
<sequence>
<el ement name="name" type="string" />
<el ement name="creditScore" type="int" />
<el ement name="annual Spendi ng" type="double" />
<el ement name="val ue" type="string" />
<el ement name="order" type="double" />
</ sequence>
</ conpl exType>
</ el enent >
<el ement name="0Or der Approval ">
<conpl exType>
<sequence>
<el ement name="status" type="tns:Status"/>
</ sequence>
</ conpl exType>
</ el enent >
<si npl eType name="St at us" >
<restriction base="string">
<enuneration val ue="nmanual "/ >
<enumer ation val ue="approved"/ >
<enunmeration val ue="rejected"/>
</restriction>
</'si npl eType>
</ schema>

Working with Decision Tables 5-25

Creating and Running an Oracle Business Rules Decision Table Application

5.4.2 How to Create an Application for Order Approval

To work with Oracle Business Rules, you first create an application in Oracle
JDeveloper.

To create an application for order approval:
1. Inthe Application Navigator, click New Application.

2. Inthe Name your application dialog, enter the name and location for the new
application.

a. Inthe Application Name field, enter an application name. For example, enter
O der Appr oval App.

b. In the Directory field, specify a directory name or accept the default.

c. Inthe Application Package Prefix field, enter an application package prefix,
for example com exanpl e.or der.

The prefix, followed by a period, applies to objects created in the initial
project of an application.

d. For aSOA composite with Oracle Business Rules, in the Application Template
area select SOA Application for the application template. For example, see
Figure 5-20.

e. Click Next.
Figure 5-20 Adding the Order Approval Application

Name your application

Application Mame:

=) Application Mame

| | Orderdpprovaldpp |
R Project Marme
| Direckory:

|C:'l,JDeveIoper'l,mywork‘l,OrderP.pprovaIApp || Browse. .. |

Application Package Prefix:

|c0m.example.order |

Application Template:

Java Deskbop Application {ADF)
Creates a databound rich client application. The application consists of one project
Far the client (ADF Swing), and another project Far the ADF Model (ADF Business
Components),

Java EE Web Application
Creates a databound web application. The application consists of one project For the
vievs and controller components (J3F), and another projeck For the data model (EJB
session beans and JPG enkities),

S0A Application
Creates a SOA (service-oriented architecture) application. The application consists of
one S04 project For the SOA composite, components, and adapters,

| Help | | Mext > _J| Finishy || Cancel |

3. In the Name your project page enter the name and location for the project.
a. In the Project Name field, enter a name. For example, enter Or der Appr oval .

b. Enter or browse for a directory name, or accept the default.

5-26 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

c. For an Oracle Business Rules project, in the Project Technologies area ensure
that SOA, ADF Business Components, Java, and XML are in the Selected area
on the Project Technologies tab, as shown in Figure 5-21. If an item is missing,
select it in the Available pane and add it to the Selected pane using the Add
button.

Figure 5-21 Adding a Project to an Application

Name your project

application Mame Project Mame: |Ordernppr0val |

4 Project Name Directory: |C:'l,JDeveIoper'l,mywork'l,OrderApprovaIApp'l,Ordernpproval || Browse, .. |

¥ Broject Java Settings rProject Technologies r Generated Components r Associated Libraries |
: Available: Selected:

[Javabeans

J5F

J5F and Servlets

ADF Business Components
Jawa

J5P For Business Components ML
Mobile 3
Struts |—|
Swaing AT €
Toplink

L
‘Web Services

%30L Documents

Technology Description:

%301 documents combine XML (Extensible Markup Language) and SOL (Structured
Query Language) to provide a language- and database-independent means For

| Help | | < Back " Mext > _H Finish || Cancel |

4. Click Finish.

5.4.3 How to Create a Business Rule Service Component for Order Approval

After creating a project in Oracle JDeveloper you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:
* Add a business rules service component
* Create input and output variables for the service component

* Create an Oracle Business Rules dictionary in the project

To create a business rule service component:

1. In the Application Navigator, in the OrderApproval project expand SOA Content
and double-click conposi t e. xm to launch the SOA composite editor (this may
already be open after you create the project).

2. From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the
conposi t e. xm editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in Figure 5-22.

Working with Decision Tables 5-27

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-22 Adding a Business Rule Dictionary with the Create Business Rules
Dialog

Business Rule
A business rule defines or constrains one aspect of your business that is intended to assert business
structure or influence the behavior of your business,

General | Advanced |
(#) Create Dictionary () Import Dictionary

Specify the name and package for the dictionary that will be created.

Mame: | OracleRules1| |

Package: | orderappraval |

Project: |C:'I,JDeveIoper'l,m\,fwork'I,OrderP.pproval.ﬂ.pp'l,OrderApproval'I,Order.ﬁ.pproval.jpr |

InputsfOutputs: “i" X+ 3
Direckion Mame Type
| Help | | [s]4 || Cancel |

3. Toadd an input, from the list next to the Add button select Input to enter input for
the business rule.

4. In the Type Chooser dialog, click the Import Schema File... button. This displays
the Import Schema File dialog.

5. In the Import Schema dialog click Browse Resources to choose the XML schema
elements for the input variable of the process. This displays the SOA Resource
Lookup dialog.

6. In the SOA Resource Lookup dialog, navigate to find the or der . xsd schema file
and click OK.

7. In the Import Schema File dialog, make sure Copy to Project is selected, as shown
in Figure 5-23. Click OK.

Figure 5-23 Importing the Order.xsd Schema File

URL: |yworkfOrderApproval.C\pp,l’OrderApprovaI,l’xsd,l’Order.xsd | Qﬁ

Copy ko Project
|£| | OK | | Canicel |

8. If the Localize Files dialog displays, click OK to copy the schema to the composite
process directory.

9. In the Type Chooser, navigate to the Project Schemas Files folder to select the input
variable.

For this example, select Cust onmer Or der as the input variable.

On the Type Chooser window, click OK. This displays the Create Business Rules
dialog, as shown in Figure 5-24.

5-28 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-24 Create Business Rules Dialog with CustomerOrder Input

Business Rule
A business rule defines or constrains one aspeck of your business that is intended to assert business
structure or influence the behavior of your business.

General | Advanced |
(@) Create Dictionary () Import Dictionary

Specify the name and package for the dictionary that will be created.

Marne! | COracleRules1 |

Package: | orderapproval |

Project: |C:'l,JDeveIoper'l,mywork'l,OrderApprovalnpp'l,OrdernpprovaI'I,OrderApproval.jpr |

Inputs/OutpuEs: +‘ X+ 3
Direction Mame Type
Input CuskomerOrder {http: e cuskomer, comfnsfou. .

|:| Expose as Composite Service

| Help | | [0]4 “ Cancel |

10. In a similar manner, add the output fact type Or der Appr oval from the imported
order. xsd.

11.In the Create Business Rules dialog, select Expose as Composite Service, as shown
in Figure 5-25.

Figure 5-25 Create Business Rules Dialog with Input and OrderApproval Output

Business Rule
A business rule defines or constrains one aspect of your business that is intended to assert business
structure or influence the behavior of your business,

General | Advanced

() Create Dickionary () Import Dictionary

Specify the name and package for the dictionary that will be created.

Mame: | CracleRules1 |

Package: | arderapproval |

Project: | Ci IDeveloperimywork) Order&pprovaldpphOr derdpproval, Orderdpproval jpr
| KiCrd | d Il Ordh |

Inputsfoutputs: +-X & 3
Direction Mame Type

Input CustormerOrder Jhktpe f s, customer cornns/ custarmerorder MCustomerOrder
Oukput Crderapproval {hktp: f fv, customer comfnsfcustomerorder FOrderApproval

Expose as Composite Service

Help | Ok i Cancel |

Click OK. This creates the Business Rule component and Oracle JDeveloper shows
the Business Rule in the canvas workspace, as shown in Figure 5-26.

Working with Decision Tables 5-29

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-26 Business Rules Component in OrderApproval Composite

& dutoLoanProcess, bpel | | Orderapprovalapp. jws D{Ecomposite.xml E]
FLWEGZXD BHBFD Composite: SOACompositel
Exposed Senvices Components External References
; = @ ® OracleRules1
OracleRules1_...
O perations:

callFunctionStat. ..
callFunctionStat. ..

Design | Source | History

The business rule service component enables you to integrate your SOA composite
application with a business rule. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

5.4.4 How to View Data Model Elements for Order Approval

Before adding rules you need to create the Oracle Business Rules data model. The data
model contains the business data definitions (types) and definitions for facts that you
use to create rules. For example, for this sample the data model includes the XML
schema elements from or der . xsd that you specify when you define inputs and
outputs for the business rule activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you
may need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

1. Select the composite tab with the value composite.xml, and in the Components
lane select the business rule (this surrounds the component, OracleRules1 with a
dashed selection box).

2. Double-click the selection box to launch Rules Designer.
3. In Rules Designer select the Facts navigation tab.

4. Select XML Facts tab in the Facts navigation tab as shown in Figure 5-27.

5-30 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-27 Opening a Business Rules Dictionary with Rules Designer

ML Facts: (00~ S
Alias lame D XML Marne Gener:
CustomerOrder Com, CUskomer NS, cuskameror. ., Hzsielement[@name="C... orde...
corm_cuskormer_ns_customeror,.. com.cuskomer.ns, customerar.. . orde. ..
Orderfpproval ComLCUskomer . ns, cuskamerar, . . Jlxsielement[@name=".. oarde...
Status COM. CUSkomer . ns, cuskomeror, . . JlxsisimpleType[@name... orde...

%ML Facts || Jawa Facts || RLFacks || ADF-BC Facts |

5.4.5 How to Add Value Sets to the Data Model for Order Approval

To use a Decision Table you need to define value sets that specify how to draw values
for each cell for the conditions that constitute the Decision Table. For this example the
value sets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount value set to the data model:

1. In Rules Designer, select the Value Sets navigation tab.
2. From the drop down next to the Create Value Set... button, select Range Value Set.
3. In the Name field, enter Or der Ambunt . Press Enter to accept the name.

4. Double-click the OrderAmount value set icon to display the Edit Range Value Set
dialog.

5. Click Add Value to add a value.
6. Click Add Value again to add another value.

7. In the Range Values area, in the top Endpoint field enter 1000 for the endpoint
value.

8. In the Range Values area, for the middle bucket in the Endpoint field enter 500 for
the endpoint value.

9. In the Included Endpoint field for each value set ensure the check box is selected,
as shown in Figure 5-28.

Working with Decision Tables 5-31

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-28 Adding the OrderAmount Value Set

[Fe Edit Range Value Set £
Name: |DrderAmounl Ql
Data Type: [i”l -l

|| Include Disallowed Values in Tests
Description:
Range Values: + R
Endpaoint Included Endpoint Allowed in Actions Range Alias Description |
E3 500 [l [v] [S00..1000) [500..1000)
E3 -Infinity [+l [#] <500 <500
Help Ok Cancel

10. Modify the Alias field for each value to High, Medium, and Low. Click OK.

5.4.5.1 How to Add CreditScore Value Set to the Data Model

To add CreditScore value set:

1.

8.

9.

In Rules Designer select the Value Sets navigation tab.

From the drop down next to the Create Valueset... button, select List of Ranges.
In the Name field, enter Cr edi t Scor e.

Double-click the CreditScore valueset icon to display the Edit Valueset dialog.
Click Add Value to add a value.

Click Add Value again to add another value.

In the top valueset, in the Endpoint field enter 750.

For the middle valueset, in the Endpoint field enter 400.

In the Included Endpoint field for each valueset, ensure the check box is selected.

10. Modify the Alias field for each endpoint value to solid for 750, avg for 400, and

risky for -Infinity. Click OK.

5.4.6 How to Associate Value Sets with Order and CreditScore Properties

To prepare for creating Decision Tables you can associate a value set with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the valuesets when you create a Decision Table.

Note that the Or der Appr oval . st at us property is associated with the St at us
value set when the Or der Appr oval fact type is imported from the XML schema. In
the schema, St at us is a restricted St ri ng type and is therefore represented as an

5-32 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

enum valueset. Rules Designer creates the status value set. For more information, see
What You Need to Know About XML Facts.

To associate value sets with Order and CreditScore properties:

1. In Rules Designer select the Facts navigation tab.
2. Select the XML Facts tab in the Facts navigation tab as shown in Figure 5-29.

Figure 5-29 Opening a Business Rules Dictionary with Rules Designer

ML Facks: W+ KS
Alias Mame D ®ML Name Gener;
CustormerOrder ComLCUskomer . ns, cuskamerar, . . st element[@name="C... arde...
cor_cuskomer_ns_customeror ... com.customer.ns. customerar.. . orde. ..
Crderdpproval COMLCUSkOmer NS, cuskomeror, , Hlxsiglement[@name=",,, orde...
Status com.cuskomer.ns, customerar .. lxsisimpleType[@name... orde...

8MLFacts || Jawa Facts | RLFacks || ADF-BC Facts |

3. Select the type you want to modify. For example in the XML Facts table double-
click the icon next to the CustomerOrder entry. This displays the Edit XML Fact
dialog.

4. In the Edit XML Fact dialog, in the Properties table in the Value Set column select
the cell for the appropriate property and from the list select the valueset you want
to use. For example, for the property order select the OrderAmount valueset, as
shown in Figure 5-30.

Figure 5-30 Associating the OrderAmount Valueset with CustomerOrder.order

Mamne: |com.customer.ns.customerorder.CustomerOrder |
Alias: CustormerOrder

Super Class: |Object |
Diescription:

WML Mame: |,l',l'xs:element[@name='CustomerOrder'] |

Generated From: |0rder.xsd |
Wisible
[Support %Path Assertion

Aktributes
|Pr0perties -
Alias ‘isible Mame Type Bucketset List Content Type
.‘ annualspending annual3pending double
D crediscore creditScore ink
D name name String
T I T TR o~ |
@ vax vobe g .
oy s

Working with Decision Tables 5-33

Creating and Running an Oracle Business Rules Decision Table Application

5. In a similar manner, for the property creditScore select the CreditScore valueset.

6. Click OK.

5.4.7 How to Add a Decision Table for Order Approval

You create a Decision Table to process input facts and to produce output facts, or to
produce intermediate conclusions that Oracle Business Rules can further process using
additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer
to assist you. Rules Designer performs dictionary validation when you make any
change to the dictionary. To show the validation log window, click the Validate
button or select View>Log and select the Business Rule Validation tab. If you view
the rules validation log you should see warning messages. You remove these warning
messages as you create the Decision Table. For more information on rule validation
see Understanding Rule Validation.

To use a Decision Table for rules in this sample application you work with facts
representing a customer spending level and a customer credit risk for a particular
customer and a particular order. Then, you use a Decision Table to create rules based
on customer spending, the order amount, and the credit risk of the customer.

To add a Decision Table for order approval:

1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.
2. Click the Add button and from the list and select Create Decision Table.
3. In the Decision Table, click the Add button and from the list select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the navigator expand
CustomerOrder and select creditScore. This enters the expression
Cust oner Or der . credi t Scor e in the Conditions column.

5. Again, in the Decision Table, click the Add button and from the list select
Condition.

6. In the Decision Table, in the Conditions area double-click the <edit condition>.
Then, in the navigator expand CustomerOrder and select order. This enters the
expression Cust ormer Or der . or der.

7. Again, in the Decision Table, click the Add button and from the list select
Condition.

8. In the Decision Table, double-click <edit condition>.

9. In the navigator expand CustomerOrder and select annualSpending. In the text
entry area, add >2000 as shown in Figure 5-31.

5-34 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-31 Adding the Annual Spending Entry to a Decision Table

- Conditions R1

Cl CustomerQrder creditcore,

CustomerOrder, annualSpending =2000 Ef';_r

Q ‘alue Options
@ CustomerOrder

OrderApproval
CurrentDate
RL

BigInkeger
BigDecimal
Calendar

-8 Skatus

10. Type Enter to accept the value, as shown in Figure 5-32. If you view the rules
validation log you should see the warning messages as shown in Figure 5-32. You
remove these warning messages as you modify the Decision Table in later steps.

Figure 5-32 Adding Conditions to the CustomerOrder Decision Table

[ElBusiness Rule Yalidation - Log E]

[E2]) Dictionary - OraceRules1.rules [¥] Display Mew farnings First

Message Dictionary Object Pr
Yy RUL-05164: The fact type "Crderapproval” is referenced, but is not asserted nor input. OracleRules1/Data Model{Decision ...
Ay RUL-05835: Al rules have "do not care” set For condition "CustomerQrder . creditScore”. ... OracleRules1/Ruleset_1fDecisionT. ..
Ay RUL-05835: Al rules have "do not care” set For condition "CustomerOrderorder”, Select.., OracleRules1Ruleset_1fDecisionT. ..
Ay RUL-05835: Al rules have "do not care" set For condition "Custamerrder. annualSpendi... OracleRulesiRuleset_1)DecisionT. ..
1 RUL-05833: The decision table has no actions. OracleRules1/Ruleset_1§Decision T...
Y RUL-05164: The Fact bype "Orderdpproval” is referenced, but is not asserted nor input, OracleRules Data Model/Decision ...

SDK Warnings: & Last Yalidation Time: 3:19:17 PM PDT

Messages BFEL Feedback Business Rule Walidation [E] b E]

5.4.7.1 How to Create an action in a Decision Table

To create an action in a Decision Table:

1. In the Decision Table click the Add button and from the list select Action > Assert
New.

2. Inthe Actions area, double-click assert new(. This displays the Action Editor
dialog.

3. In the Action Editor dialog, in the Facts area select OrderApproval.

4. In the Action Editor dialog, in the Properties table for the property st at us select
the Parameterized check box and the Constant check box. This specifies that each
rule independently sets the status.

5. Inthe Action Editor dialog, select the Always Selected check box as shown in
Figure 5-33.

Working with Decision Tables 5-35

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-33 Adding an Action to a Decision Table with the Action Editor Dialog

Farm: | Assert Mew - |

Yalue: |Assert Mews Orderdpproval (status:#) |

Facts:

fie CustomerOrder

Properties:
Property Type Value Parameterized Conskant
status Status

Always Selected

6. In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

5.4.7.2 Split the Cells in the Decision Table and Add Actions

You can use the Decision Table split operation to create rules for the valuesets
associated with the condition rows in the Decision Table. This creates one rule for
every combination of condition valuesets. There are three order amount valuesets,
three credit score valuesets, and two boolean valuesets for the annual spending
amount for a total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:

1. Select the Decision Table.

2. In the Decision Table, click the Split Table button and from the list select Split
Table. The split table operation eliminates the "do not care" cells from the table.
The table now shows eighteen rules that cover all ranges as shown in Figure 5-34.

These steps produce validation warnings for action cells with missing expressions.
You fix these in later steps.

5-36 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-34 Splitting a Decision Table Using Split Table Operation

® Ruleset 1

J+-%

view: | [DedisionTable_t

CL
Cz
C3

Al

v @

ALRL:

DecisionTable 1 <enter description=

PR A B R0 B EHR
Conditions Rl RZ R3 R4 RS R6& R7 RS R9 RID RIl R1Z RI3 R14 RIS R16 RI7 RIS
CustomerQrder creditsrore risky avg salid
CustomerCrder.order Loy Mediurn High Low Medium High Low Medium High

CustomerOrder . annualSpending >2000 true |False true False | trus False true False trus False true false true False | true False | trus | False

Actions
asspEnen. Qrderdenrorall.

status: 3

B B HEHEEDEEEBDENDEDEEDEED D@ @]

5.4.7.3 How to Add Actions for Each Rule in the Decision Table

In the Decision Table you specify a value for the status property associated with
OrderApproval for each action cell in the Actions area. The possible choices are:

St at us. MANUAL, St at us. REJECTED, or St at us. ACCEPTED. In this step you fill in
a value for status for each of the 18 rules. The values you enter correspond to the
conditions that form each rule in the Decision Table.

To add actions for each rule in the decision table:

1.

In the Actions area, double-click the action cell for the rule you want to work with,
as shown in Figure 5-35.

Figure 5-35 Adding Action Cell Values to a Decision Table

R1 RZ R3 R4
risky

Medium

RS R& R7 R8 R3 | RIO

avg
Medium

R11 RiZ R13 R14 | RIS @ RI&

salid

= Conditions R17 RIiE
CL
Cz

)

CustomerOrder. creditScore
High High Medium High

true | false | true | false trus False | brue | false | true | Falss | true false true | false | true | false | true Fake

CustomerOrder . order Loy Loy Low

CustomerOrder, annualSpending >2000

- Actions
asserb ey Qrderdnnraral,

status:]

il
OrderApproval status
Status.MAMUAL
Status. APPROVED
Status. REJECTED

Fit Columns To Width

In the list, select and enter a value for the action cell. For example, enter
St at us. MANUAL.

For each action cell, enter the appropriate value as determined by the logic of your
application. For this sample application use the values for the Decision Table
actions as shown in Table 5-5.

Select Save All from the File main menu to save your work.

Working with Decision Tables 5-37

Creating and Running an Oracle Business Rules Decision Table Application

Table 5-5 Values for Decision Table Actions
-]

Rule Cl1 creditScore C2order C3annualSpending >2000 Al OrderApproval status

R1 risky Low true St at us. MANUAL
R2 risky Low false St at us. MANUAL
R3 risky Medium true St at us. MANUAL
R4 risky Medium false St at us. REJECTED
R5 risky High true St at us. MANUAL
R6 risky High false St at us. REJECTED
R7 avg Low true St at us. APPROVED
R8 avg Low false St at us. MANUAL
R9 avg Medium true St at us. APPROVED
R10 avg Medium false St at us. MANUAL
R11 avg High true St at us. MANUAL
R12 avg High false St at us. MANUAL
R13 solid Low true St at us. APPROVED
R14 solid Low false St at us. APPROVED
R15 solid Medium true St at us. APPROVED
R16 solid Medium false St at us. APPROVED
R17 solid High true St at us. APPROVED
R18 solid High false St at us. MANUAL

5.4.7.4 Compact the Decision Table

In this step you compact the rules to merge from eighteen rules to nine rules. This
automatically eliminates the rules that are not needed and preserves the no gap, no
conflict properties for the Decision Table.

To compact the decision table:

1. Select the Decision Table.
2. Click the Resize All Columns to Same Width button.

3. Click the Compact Table button and from the list select Compact Table. The
compact table operation eliminates rules from the Decision Table. The Decision
Table now shows nine rules, as shown in Figure 5-36.

5-38 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-36 Compacting a Decision Table Using Compact Table

i Conditions R1 R2 R3 R4 RS R& R7 RE R9
C1 CustomerCrder, creditScore risky avg solid

CZ CustomerOrder.order Low Medium,High Low, Medium High Lowy, Medium High

03 CustomerOrder, annualSpending »2000 - trus false true false true false

- Actions

yvealf

[#] Eit Columns To Width

5.4.7.5 Replace Several Specific Rules with One General Rule

Notice that five of the nine remaining rules result in a manual order approval status.
You can reduce the number of rules by deleting these five rules. Note it is often best
practice to not do this (that is not replace several specific rules with one general rule).
You need to compare the benefits of having fewer rules with the added complexity of

managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:

1. Select the Decision Table.

2. In the Decision Table, select a rule with OrderApproval status action set

to

St at us. MANUAL. To select a rule, click the column heading. For example, click

rule R2 as shown in Figure 5-37.

3. Click Delete to remove a rule in the Decision Table. Be careful to click the delete
button in the Decision Table area to delete a rule in the decision table (there is also
a delete button shown in the Ruleset area that deletes the complete Decision

Table).

Figure 5-37 Deleting Rules from a Decision Table

R4 RS R7

- Conditions
C1 CustomerOrder.crediSoore

C2 CustomerCrder.order Lo, Medium High Low, Mediur
C3 CustomerCrder.annualSpending =2000 S False true False -
i Actions
A1 assert new Crderdpproval(
skatus: b Status.MA. .. EERICH W Status, RED.. . | Status AP... Status.MA. .. | Status.MA... Status AP...

[] Fit Columns To Width

R3 RO
salid

High
brue False

Status APP... Status.MA...

4. Repeat these steps to delete all the rules with action set to St at us. MANUAL. This

should leave the Decision Table with four rules as shown in Figure 5-38.

Working with Decision

Tables 5-39

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-38 Decision Table After Manual Actions Removed

Cl
cz
[c]

Conditions
CustomerOrder, creditScore
CustomerOrder, order
CustomerOrder. annualSpending »2000

R1 RZ2
risky avg
Medium, High Laws, Medium
False: true

= Actions
Al assert new OrderApprovall
skatus:)

[v] Eit: Calumns To Width

5.4.7.6 Add a General Rule

Skabus REJECTED

Skatus. APPROVED

R3 R4
true

Stabus. APPROVED Skatus. APPROYED

Now you can add a single rule to handle the manual case. After adding this rule you
set the conflict policy with the option Conflict Policy auto override for conflict

resolution.

To add a general rule:

1. In the Decision Table, click the Add button and from the list select Rule.

2. In the Conditions area, for the three conditions leave the "-" do not care value for

each cell in the rule.

3. In the Actions area, enter St at us. MANUAL, as shown in Figure 5-39. Notice that
the Business Rule Validation log includes the warning RUL- 05851 for unresolved

conflicts.

Figure 5-39 Decision Table with Conflicting Rules

- Conditions R1
Cl CustomerOrder. creditScore risky
C2 CustomerOrdsr.order Medium,High

C:

@

CustomerCOrdsr. annualSpending 2000 false

R2 R3
avg salid
Low, Medium Low, Medium

true

R4 RS

High
true

i Actions
Al assert new OrderApproval]
status)] Status, REJECTED Status, APPROVED Status, APPROVED Status. APPROVED
1
Design

=lBusiness Rule Validation - Lag

[E3) Dictionary - OraceRulest rules

(5]

[¥] Display Mew Warnings First

Message
% RUL-U5E51: The decision table has unresobved conflicts.

Dictionary Object

OracleRulest fRuleset_1 {Detision Table{DecisionTable_1}

Froperty

SDK Warnings: 1

Messages BPEL Feedback Business Rule Yalidation

Last ¥alidation Time: 4:03:23 PM PDT

(0]

button, as shown in Figure 5-40.

5-40 Designing Business Rules with Oracle Business Process Management

Show the conflicting rules by clicking the Toggle Display of Conflict Resolution

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-40 Adding a Rule to Handle Status Manual

- Conditions

Cl CustomerOrder.creditScore

C2 CustomerOrder.order

C3 CustomerCrder.annualSpending =2000

x Conflict Resolution
1) Conflict

= Actions
Al assert new Orderfpproval

status: 3

| [¥] Fit Calurnns To Width

R1
rigky
Medium, High
False:

RS

Status REJECTED

RZ
avg
Laowe, Medium

true

RS

Status. APPROYVED

R3
salid

Low,Medium

RS

Status. APPROVED

Status, APPROVED

R4 RS
High
true
RS R1, B2, R3, R4

Status . MANLAL

5.4.7.7 How to Enable the Auto Override Conflict Resolution Policy

To enable the auto override conflict resolution policy:

1. In the Decision Table click Show Advanced Settings (next to the Decision Table

name).

2. In the Conflict Policy list, select auto override. After adding the manual case rule
and selecting auto override, notice that the conflicts are resolved and special cases

override the general case, as shown in Figure 5-41.

Figure 5-41 Adding a Rule to Handle Status Manual with Auto Override Conflict

Policy

& Conditions Rl
Cl CustomerOrder.creditScore risky

C2 CustomerOrder.order IMediurn, High
C3 CustomerQrder.annualSpending =2000 false

x Conflict Resolution

08 Override RS

2 Actions

A1 assert new Orderdpproval

skakus: 1 Stakus REJECTED

|[¥] Eit Columns To Width

RZ
avg

Lo, Medium

true

RS

Status. APPROYED

R3

Lo, Medium

RS

Status. APPROVED

R4 RS

solid

High
true

RS

Status. APPROVED Status. MAMUIAL

5.4.8 How to Check the Business Rule Validation Log for Order Approval

Before you can deploy the application you need to make sure the dictionary validates
without warnings. If there are any validation warnings, you need to fix any associated
problems. To validate the dictionary, in the Business Rule Validation Log, check for

Working with Decision Tables 5-41

Creating and Running an Oracle Business Rules Decision Table Application

any validation warnings. If there are warnings, perform appropriate actions to correct
the problems.

5.4.9 How to Deploy the Order Approval Application

Business rules created in a SOA application are deployed as part of the SOA composite
when you create a deployment profile in Oracle JDeveloper. You deploy a SOA
composite application to Oracle WebLogic Server.

To deploy and run the order approval application:

1. If you have not started your application server instance, then start the Oracle
WebLogic Server.

2. In the Application Navigator, right-click the OrderApproval project and select
Deploy > OrderApproval > to the appropriate server name.

Then the SOA Deployment Configuration dialog displays. Select your Application
connection which you either have created already or you can create it now. The
connection contains the authorization and other connection information (server
name, port, etc).

3. Click Next.
4. In Select Server select or create and then select your application connection.

5. Click Next, Next and Finish.

5.4.10 How to Test the Order Approval Application

After deploying the application you can test the Decision Table in the SOA composite
application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

1. Open the composite application in Oracle Enterprise Manager Fusion Middleware
Control Console, as shown in Figure 5-42.

5-42 Designing Business Rules with Oracle Business Process Management

Creating and Running an Oracle Business Rules Decision Table Application

Figure 5-42 Testing the Order Approval Application

I 52 Farm_base_domain ol 504 Compasite - Page Refreshed Mar 25, 2009 5:11:51 PM PDT 2
3 application Deplovments
B [504 Runming Instances O | Total 3 | Active | Retire ... shuk Diown. .. Test Settings... - %: E
g E% soa-infra (AdminServer) Dashboard | Instances = Faults and Rejected Messages | Unit Tests | Policies
o AutoloanComposite [2.0 |
off soacomposie1 [1.0] | @ ~
n{tg SDACompositel [4.0 ERecent Instances
&3 weblogic Domau.'n . Show Only Running Instances [Running 0 Total 3
3 Metadata Repositories
B User Messaging Service Instance ID Mame Conversation ID Etate Start Time:
20005 1238025540540 5 - Mar 25, 2009 S:04:24 PM
20007 1238025277455 7 - Mar 25, 2009 4:55:00 FM
20006 1238024335533 7o Mar 25, 2009 4:53:06 PM
W | & Show all

EIRecent Faults and Rejected Messages

Shiow only system Faulks

Etror Message Recovery Fault Time Fault Location IC[?mDOSIte WD Logs

Mo Faulks Found

@ show all

EComponent Metrics

2. Click Test.

3. In the Input Arguments area, select XML View. Replace the XML with the contents
of the sample input for testing Order Approval application example as shown
below.

<soap: Envel ope xm ns:soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body xm ns:nsl="http://xm ns.oracle.con Oracl eRul esl/
Oracl eRul es1_Deci sionService 1">
<nsl:cal | FunctionStat el ess nane="Oracl eRul esl Deci si onService 1">
<nsl: paraneterList xmns:ns3="http://exanple.con ns/
cust oner or der" >
<ns3: Cust oner O der >
<ns3: nanme>Gar y</ ns3: name>
<ns3: credit Scor e>600</ ns3: credi t Scor e>
<ns3: annual Spendi ng>2001. 0</
ns3: annual Spendi ng>
<ns3: val ue>H gh</ns3: val ue>
<ns3: or der >100. 0</ ns3: or der >
</ ns3: Cust oner O der >
</ nsl: paranet erLi st >
</nsl:cal | FunctionStatel ess>
</ soap: Body>
</ soap: Envel ope>

4. Replace the values in the input shown in step 3 as desired for your test.
5. Click Test Web Service.
6. In the Response tab, view the results. For example, for this input:

/ Oracl eRul es1_Deci sionService_1" xm ns:ns2="http://xn ns. oracl e. con bpel ">
<resul tList>

Working with Decision Tables 5-43

Editing Decision Tables in Microsoft Excel

<Or der Approval : Or der Appr oval
exanpl e. com ns/ cust omer or der "
xm ns="http://exanpl e. coni ns/ cust oner or der " >
<st at us>approved</ st at us>
</ Or der Approval : Or der Appr oval >
</resul tList>
</ cal | FunctionSt at ef ul Deci si on>

5.5 Editing Decision Tables in Microsoft Excel

xm ns: Or der Approval ="http://

Business users may find that editing Decision Tables is easier to do in Microsoft Excel.
New functionality enables both developers and business users to export and edit
Decision Tables in Excel and then import the Decision Tables back into the dictionary.

You can export and edit Decision Tables at design-time in Oracle JDeveloper or
Business Process Composer. At runtime, you can export and edit in SOA Composer.
You can export one or more Decision Tables from a Rule dictionary to the same Excel

workbook.

When you import back into the dictionary, you can create a new dictionary, overwrite
the existing dictionary, or perform a Diff-Merge. The Diff-Merge enables you to

compare dictionaries and accept (merge) or reject any differences.

For more information about comparing dictionaries, see How to Compare or Merge

Two or More Dictionaries.

The Excel workbook structure consists of several worksheets: a Readme sheet, a Value
Set sheet, and one sheet for each exported Decision Table, as shown in Figure 5-43.
Only Rules and Value Sets can be edited in Excel. You can export to .xIsm (default)

or .xls.

Figure 5-43 Microsoft Excel Workbook

_,J J
~~/ Home Insert View Oracle Business Rules

L

Page Layout Formulas Data Review

e testxlsm |
N R Jiestsm S Miciosoft Excel

Add Delete Merge Split Add Remove Enable Simple Hide ReadMe
Rule Rule Cell Bucket Bucket | Highlighting Mode Sheet
Decision Table WalueSet Preferences
| 3 - £e| "New"
A B C D E
1
"New Exceptional "Payment Processing
2 Conditions "New normal Claim" Claim™ Claim™
3 "status of the claim" Claim.status I"New“ = lew" "Processing Payment”
4 "review details" Claim.reviewDetails otherwise i
Claim.policy.terms.cover |"Closed"
"if claim is of REPAIR ages en.contains("REPAI |./2d" . =
" Processing Payment’ =
5 type R") "Processing Repair"
“general terms of the Claim.policy.terms.gener ::::\:::: Es\rrrlw;“l.:;e" =
6 claim" alTerms otherwise "Exception”
7
8 Actions
9 Al modify Claim Active Active Active
10 | Fixed claimDetails
11 |Fixed claimid
12 Variable payment 0.00000000698 10.645 3000.0
13 Fixed policy
14 | Fixed reviewDetails
15 | Fixed status
16 A2 retract Claim InActive InActive InActive
17 A3 call print Active Active Active
"Review has been "Claim will be reviewed
18 Variable message completed" manually” "Claim has been paid"
4 4 » M| ReadMe - ValueSets | Claim Table < CustomerTable %3 | -

5-44 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in Microsoft Excel

When you open the Excel workbook, the macros are disabled by default. If you enable
the macros, a new tab called Oracle Business Rules, appears. This tab enables you to
add or delete rules, merge or split cells, and add or remove values from value sets.
You can also disable or enable highlighting, use a simple or advanced mode and hide
or show the Readme worksheet.

You can edit with the macros disabled, though you will not be able to:
¢ Choose values from drop lists for restricted cells.

¢ Edit free form cells.

¢ Copy and paste a range of cells to add a rule or Value Set.

® Delete a range of cells to delete a rule or Value Set.

¢ Split or merge cells.

* Create Value Sets automatically.

e Validate the structure of Decision Tables or Value Sets.

Using the predefined macros, you can:
¢ Add and delete rules.
¢ Split or merge cells.
e Add or delete Value Sets.
e Editable cells include:
— Description for Rules, Conditions, Actions.
— Condition and Action nodes.
— Action state.
— Parameterized options for Action parameters.
¢ Non-editable cells include:
- Condition expressions.
— Action expressions.

— Action parameters.

If you try to edit these cells, you will get an error message, as shown in Figure 5-44.

Working with Decision Tables 5-45

Editing Decision Tables in Microsoft Excel

Figure 5-44 Non-Modifiable Cell

A B C D E
1
"Mew Exceptional = "Payment Processing

2 Conditions "New normal Claim" Claim" Claim"
3 | "status of the claim" Claim.status "New" "New" "Processing Payment"”
4 "review details” |change el -

. L Claim.policy.terms.covel Non—ModiﬁabIeEIl‘

if claim is of REPAIR ages_en.contains{"REP;
5 type" IR") _

“general terms of the | Claim.policy.terms.genal '6. Condition Cells are Non-Modifiable
1] claim" alTerms -«
7 1
2 e | Retry | l Cancel] [Help
9 Al modify Claim
10 | Fixed claimDetails
11 Fixed claimid
12 |Variahle payment '0.00000000638 "10.645 "3000.0

5.5.1 Understanding What is Exported

In the SDK, there are shared Value Sets that can be associated with multiple conditions
across Decision Tables. However, in Excel there are no shared Value Sets--each
condition has its own Value Set--so you can only export a Value Set if it is modifiable
in Excel. The Value Sets that are non-modifiable include:

* Linked Dictionary Value Sets.
¢ Enums.

* Internal Value Sets, for example, boolean Value Sets.

In the worksheet, you can only select values from the drop down for the conditions
associated with non-modifiable Value Sets. A highlighting mechanism informs you
which conditions are associated with non-modifiable Value Sets.

5.5.2 How to Export Decision Tables

The export and import functionality is invoked using the toolbar button, as shown in
Figure 5-45.

Figure 5-45 Export and Import Toolbar Button

S HE g %O 4
@ Export To Excel...
E‘i Import From Excel...

® Settings

=l Farts

To export Decision Table:

1. In Rules Designer, click Export to Excel.

2. In the Export to Excel dialog box, select the Format and browse to the folder where
you want to save the workbook.

3. Click Add and select the Decision Table(s) to export and click OK.

4. Check the Read Only Value Set check box to make all of the value sets read-only
in Excel. There will not be any Value Sets sheet in the Excel workbook. All
conditions will have drop down menus from which values can be selected but no
values can be added or removed.

5-46 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in Microsoft Excel

5. Click Export. You can now open the workbook and edit the Decision Table.

5.5.3 How to Import Edited Decision Tables Back to the Dictionary

The export and import functionality is invoked using the toolbar button, as shown in
Figure 5-45. You can only import Excel workbooks that have been previously
exported.

To import edited Decision tables:

1. In Rules Designer, click Import from Excel.

2. In the Import from Excel dialog box, select the File to browse to the folder where
you saved the workbook.

3. The Perform Diff-Merge on Import check box is selected by default. Browse to the
Base Dictionary that you want to compare your file to. The base dictionary is
required for a 3 way diff-merge.

4. Clear the Perform Diff-Merge on Import check box and select Create New or
Overwrite.

5. Click Import. The decision table is imported into Rules Designer, where you can
accept or reject changes, as shown in Figure 5-46. Each changed artifact is flagged
with a change icon. Merging dictionaries should be done with caution.

For more information about using the Diff-Merge, see How to Compare or Merge
Two or More Dictionaries.

Figure 5-46 Perform Diff-Merge on Import

(2) start Page & OracleRules1 rules
@ B | & G = Yy (1) | oM @ Accepranl) Rejectan (@)

Ly 4G4 Overview # Ceneral Rules T3 Claim Table

4% B éd Chim Table

& CustomerRules

0.00000000698 10645 30000 0.00 1000111111.1000 0.00

*Review has been complet. . "Claim will be reviewed ma_. "Claim has been paid" “Paid "Processing the repairs' | “Proessing the paym ent"

Mode: MERGE Locale: Englizh (United States)

5.5.4 How to Edit Decision Tables in Excel

In Excel, enable the macros to view the Oracle Business Rules tab, which provides you
with options to author rules, edit Value Sets, and set preferences.

5.5.4.1 Adding or Deleting Rules and Merging or Splitting Cells

For each Decision Table worksheet, you can add a rule, as shown in Figure 5-47, delete
rules, and merge or split cells.

Working with Decision Tables 5-47

Editing Decision Tables in Microsoft Excel

Figure 5-47 Oracle Business Rules tab in Excel

Home Insert Page Layout Formulas Data Review View Oracle Business Rules
HHEE =+ X B oA QU
I
Add Delete Merge Split Add Remove Enable Simple Hide ReadMe
Rule Rule Cell Bucket Bucket | Highlighting Made Sheet
Decision Table ValueSet Preferences
G3 - £ <18
A B C D E F G
1
"Extremely High Risk
2 Conditions "Teen" "High Risk Senior" Senior” "Normal Risk Senior" R5
3 | "Age of Policy Holder" Customer.age <18 »=60 (40..60) new value <18 Lll
"Number of years Customer.drivingExperie
4 licensed" nce - - - - ?
"Year in which Car was
5 made" CarType.year - <2006 <2006 =>=2006 ?
"Gender of policy
6 holder" Customer.sex - "Male" "Female" - ?
7
8 Actions
9 Al assert new Terms InActive Active Active Active InActive
10 Variable Coverages_en "Low" "WERY LOW" "MEDIUM"
11 Fixed generalTerms
12 Variable notes "HIGH RISK"” "EXTREMELY HIGH "NORMAL RISK"
13 A2 assert new Policy InActive Active Active Active InActive
14 | Fixed end Date
15 Variable id] 6 7 8]
16 Fixed insured Customer Customer Customer Customer Customer
17 |Fixed start Date
18 Fixed terms Terms Terms Terms Terms Terms
15 Fixed type
20 Fixed vehicles CarType CarType CarType CarType CarType
21
22
23
24
25
26

M 4 » ¥ | ReadMe ValueSets < Clam Table | CustomerTable #3

5.5.4.2 Adding or Removing Value Sets

In the ValueSets tab, you can add or remove Value Sets, as shown in Figure 5-48.
Depending on the cell you click in, your options will vary: endpoints or values.

5-48 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in Microsoft Excel

Figure 5-48 Value Sets Worksheet

L S S estobsm SMiaosot el I
- Home Insert Page Layout Formulas Data Review View | Oracle Business Rules ‘
SREN=REEN AT
£
Add Delete Merge Split Add |Remaove Enable Simple Hide ReadMe
Rule Rule Cell Bucket | Bucket | Highlighting Mode Sheet
Decision Table valueSet Preferences
£ -Q %
A B c D J% F
bl b Al b
1 Claim Table_Claim.status otherwise "New" "Closed” "Paid" "Processing Payment” |"Pr
2 Bucket Name Y ptharwise "New" "Closed"” "Paid" "Processing Payment” "Pr
3
~ ~ ~ ~
Claim
4 Table_Claim.reviewDetails otherwise "PursuaniToTerms" "PolicyEffective”
zl Bucket Name Y otherwise "PursuantToTerms” "PolicyEffective” I _l
6
Claim h b —
7 | neralTerms otherwise "Exception”
8 Bucket Name Y otharwise "Exception” Enter Bucket Value “
9
CustomerTable_Customer.ag' | Cancel
10 |e <18 [18..40]
11 |Bucket Name Yas new value
12
CustomerTable_Customer.dr? h
13 |vingExperience <5 »=5
14 Bucket Name <5 »=5
15
CustomerTable_CarType.yea" 3 b
16 |r <2006 »>=2006
17 Bucket Name Y <2006 >=2006
18
CustomerTable_Customer.se™ b b 3
19 x otherwise "Male" "Female"
20 Bucket Name Y otherwise "Male" "Female”
21
22
23

4 4 » ¥ [ReadMe | ValueSets ~ Claim Table - CustomerTable ¥ 4

5.5.4.3 Showing or Hiding Value Sets and Editing the Description

On the Value Sets worksheet, right click and select Show/Hide Values to toggle
between viewing or hiding values as shown in Figure 5-49. You can also right click
and select Edit Bucket Description to change the description.

Working with Decision Tables 5-49

Editing Decision Tables in Microsoft Excel

Figure 5-49 Show/Hide Value Sets

EEINEE =R S G EIEAT Tl

Add Delete Merge Split Add Remove Enable Simple Hide ReadMe
Rule Rule Cell Bucket Bucket | Highlighting Mode Sheet
Decision Table ValueSet Preferd calibri - 11 - A A S -% » F L
c2 v fi| "New" -
A B C F T =
2 |Bucket Name Y otherwise |"New" Temt——ue I
3 & | Cut
5 Bucket Name Y otherwise "PursuantToTer, B3 copy
6
8 |Bucket Name ¥ otherwise "Exception” e
2
11 Bucket Name Ye18 new value
12 Insert...
b —
14 |Bucket Name <5 »>=5 Delete...
15
17 Bucket Name <2006 »=2006 Clear Contents
18 .
Filt >
20 |Bucket Name Y otherwise "Male" Ly
21 Sort »
22
23 d Insert Comment
Z &' Format Cells..
25
26 Pick From Drop-down List...
27 Mame a Range..
28 _
29 2 Hyperlink...
23 Show/Hide Bucket Values
32 Edit Bucket Description [}

5.5.4.4 Setting Preferences

In the Value Sets tab, click Enable Highlighting or Disable Highlighting, as shown in
Figure 5-50.

5-50 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in Microsoft Excel

Figure 5-50 Enabling Highlighting
Ex = R B SR EUAT

Add Delete Merge Spiit Add Remaove Disable Simple Hide ReadMe
Rule Rule Cefl Bucket Bucket | Highlighting Mode Sheet
Dzeiion Table Valueset Prefeiencas
c10 . fic | [18..40]
A B c D E
) g) | N
Claim
1 |Table_Claim.status otherwise "New" "Closed” “Paid"
)
2 Bucket Name otherwise "New" "Closed” “Paid"
3
) - L) v
Claim

Table_Claim.reviewDet

4 |ails otherwise "PursuantToTerms” "PolicyEffective” "PolicyinEffective”
5 |Bucket Name " otherwise "PursuantToTerms" "palicyEffective” "PolicyinEffective”
]
. - g ~
Claim

Table_Claim.policy.ter

7 |ms.generalTerms otherwise "Exception” "Mon-Exception”
& |Bucket Name " otherwise "Exception” "Mon-Exception”
9
. 3 <
CustomerTable_Custo
10 mer.age <18 18..40 I[-w..soj >=60
11 Bucket Name Ya1g [12..40] (40..60) =60
12
. - ‘
CustomerTable_Custo
13 mer.drivingExperience <35 »=5
14 |Bucket Name p >=5
15
¥ - 1
CustomerTable_CarTyp
16 |e.year <2006 >=2006
17 |Bucket Name " <2006 >=2006
18
x - - “
CustomerTable_Custo
15 mer.sex otherwise "Male" "Female”
20 |Bucket Name " otherwise "Male" "Female”

5.5.4.5 Using Simple or Advanced Mode

In your worksheet, click Simple Mode or Advanced Mode to toggle between the two
modes.

Simple mode displays only the descriptions of conditions and actions and not the
actual expressions. Also, action parameters are displayed, but you cannot specify them
as fixed or variable.

Advanced mode displays both the descriptions and expressions for conditions and
actions, as shown in Figure 5-51. Also, you can specify the action parameter type from
fixed and variable, which is equivalent to specifying "Parameterized /Constant" in the
SDK.

Working with Decision Tables 5-51

Editing Decision Tables in Microsoft Excel

Figure 5-51 Advanced Mode

| Al4 - | Fixed
A B C D E F
1
"Extremely High Risk
2 Conditions "Teen" "High Risk Senior" Senior" "Normal Risk Senior"
3 |"Age of Policy Holder" Customer.age <18 ==60 (40..60) new value
"Number of years Customer.drivingExperie
4 licensed” nce
"Year in which Car was
) made" CarType.year <2006 <2006 ==2006
"Gender of policy
6 holder" Customer.sex "Male" "Female”
7
8 Actions
El Al assert new Terms InActive Active Active Active
10 Variable COVerages en "Low" "VERY LOW" "MEDIUM"
11 Fixed generalTerms
12 |Variable notes "HIGH RISK" "EXTREMELY HIGH "NORMAL RISK"
13 A2 assert new Policy InActive Active Active Active
14 [Fixed L d Date
15 Variable |J} 0 6 7 2
16 |Fixed insured Customer Customer Customer Customer
17 Fixed start Date
18 Fixed terms Terms Terms Terms Terms
19 Fixed type
20 |Fixed vehicles CarType CarType CarType CarType

5.5.4.6 Hiding or Showing the Readme Worksheet

Click Hide or Show ReadMe Sheet to toggle between the modes, as shown in Figure
5-52. The ReadMe worksheet provides helpful information about how to use the
features on the Oracle Business Rules tab.

Figure 5-52 Show/Hide Readme

B = X =5 oA

Add Delete Merge Split add Remove Disable Simple |Hide ReadMe
Rule Rule Cell Bucket Bucket || Highlighting Maode Sheet b
Decision Table ValueSet Preferences
| AB4 -)‘;:| Simple mode
A B 5 D E F G H J K L M
1
2 Decision Table Workbook Instructions
3
1 This Workbook represents a collection of one or more Decision Tables belonging to a Rule Dictionary authored using Oracle
. Business Rules. This sheet would provide you the instructions on how this Workbook is structured and how you can use
- the same to author Decision Table Rules.
8
z 1. Each of the Decision Tables contained by this workbook are represented by their own named Worksheets. To edit a
iz specific Decision Table, please select the corresponding Excel Worksheet.
12 2. The Valuesets used in each of the Decision Tables are available in a separate Worksheet named 'ValueSets'.

5.5.4.7 Editing Condition Cells

You can choose from the drop down or use auto-addition to add new values, shown in
Figure 5-53. For some of the condition cells, you can only choose values from the drop
down menu. These cells have been differentiated by using color code. Any conditions
you change between a Value Set or Decision Table are automatically synced.

5-52 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in Microsoft Excel

Figure 5-53 Editing Conditions

g
N High Risk Senior"
1

==60 ¥

<16
(40,801 !g
»=B0

5.5.4.8 Editing Actions

You can select the action state (active/inactive) from the drop down, as shown in
Figure 5-54.

Figure 5-54 Editing Action States

8 Actions

9 Al assert new Terms |InAc1i\re * Active Active

10 Variable coverages_en bljw“ "VERY LOW"

11 |Fixed generalTerms

12 |Variahle notes "HIGH RISK" "EXTREMELY HIGH
13 A2 assert new Policy InActive Active Active

14 |Fixed end Date

15 |variable id (] s 7 |
16 | Fixed insured Customer Customer Customer

17 |Fixed start Date

18 | Fixed terms Terms Terms Terms

19 |Fixed type

20 |Fixed vehicles CarType CarType CarType

5.5.4.9 Editing Expressions

You can edit the values of action expression cells. Use care to maintain the validity of
these cells when editing.

5.5.4.10 Editing Action Expression Parameters

You can make action parameters fixed or variable, as shown in Figure 5-55. If the
action parameter is fixed, then all the rules will have the same value for that particular
parameter. If the action parameter is variable, then different rules can have different
values for that particular parameter.

Figure 5-55 Editing Action Expression Parameters

Actions

assert new

EURentRulesBase.Drive

Al rType Active InActive
Variable [+ 18 25
tName "FirstName" "FirstName"
xed astName null null

Variable licenseNumber "ABCD1234" "ABCD1234"

5.5.4.11 Editing Descriptions

You can edit descriptions for actions, conditions, and rules. If the description is not
provided for any of the action or condition or rule then it will be defaulted to "A", "C"
or "R" followed by a number which denotes its position in the decision table,
respectively.

Working with Decision Tables 5-53

Editing Decision Tables in Microsoft Excel

Figure 5-56
A

1

2

3 C1

4 c2

5 Cc3

6

7

8 Al

9 Variable

10 Fixed

11 Fixed

12 Variable

Editing Descriptions

B C

Conditions [« Minor >

]

EURentRulesBase.Drive

rType.age <18

R2

~3..60)

EURentRulesBase.TCas
eEvent.milestoneEvent
.milestoneEvent -
EURentRulesBase.Drive
rType.firstName "John"
Actions

assert new
EURentRulesBase.Drive
rmype

age

firstName

Active

18
"FirstName"
null
"ABCD1234"

lastName
licenseNumber

5.5.4.12 Using the Auto-Addition Feature

You can add values in the value sets in two ways:

"Carter"

InActive

25
"FirstName"
null
"ABCD1234"

1. Go to the specific value set in the value sets worksheet. In the Oracle Business
Rules tab, click Add Bucket.

2. Enter a value (in case of LOV valuesets) or end point (in case of Range valuesets) in
the condition cell. This is called auto-addition as the value will be automatically
added to the corresponding value set, as shown in Figure 5-57.

Figure 5-57
1
2
3 c1
a4

5

Entering a Value in the Condition Cell

Conditions Minor p—.7 R3
EURentRulesBase.Drive e \

Type.age <18 [18..60) ~ 60
EURentRulesBase.TCas s ‘
eEvent.milestoneEvent 18..60

.milestoneEvent 2=60

EURentRulesBase.Drive

mype.firstName "John" "Carter" -

The value set above has three values: — 1) <18, 2) [18..60) , and 3) >=60.

3. To add a new value, for example, [18..30] and (30..60), type 30 in the cell as shown
in Figure 5-58 and press Enter.

Figure 5-58
A

1

2

3 Cc1

4 c2

Adding a New Value

B C D E
Conditions Minor —R2 R3
EURentRulesBase.Drive
rType.age <18 30 ¥ 60

EURentRulesBase.TCas
eEvent.milestoneEvent

.milestoneEvent - -

4. After you press enter, the value will be added to the value set and will be shown in
the drop-down as shown in Figure 5-59.

5-54 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in Microsoft Excel

Figure 5-59 Value is Auto-Added

A B i D E
1
2 Conditions Minor R3
EURentRulesBase.Drive |
3 C1 rType.age <18

EURentRulesBase.TCas
eEvent.milestoneEvent

4 2 .milestoneEvent
EURentRulesBase.Drive

5 c3 mype.firstName "John"

Various highlighting techniques are used to inform you about auto-added values in
the value set, see the following examples. The comment and the highlighting of the

value is removed after you select another value for any other rule for that condition
or if a new value is added in the same value set.

The first is to highlight the newly added value in the value set sheet as shown in
Figure 5-60.

Figure 5-60 Highlighted Value Set
A B C D

. b b | |
Decision Table

2_EURentRulesBase.Dri

10 \verType.age <21 [21..60) =60
11 Bucket Name Yo [21..60) ==60
12
b - b b

Decision Table

2_Float.POSITIVE_INFIN
13 |ITY
14

<10.8 [10.8..20.0)
[10.8..20.0)

Ruleset2_Decision
Table

1 EURentRulesBase.Dri
verType.age <18 [18..30] (30..60)

bl

% Bucket Name <18 [18..30] (30..60)

Rul&set? Decision
Table
1 _EURentRulesBase D
verType.firstName otherwise

i " "Carter"

o

The second is the addition of a comment in the condition cell, as shown in Figure
5-61.

Figure 5-61 Comments in Condition Cells

A B C D

z Conditions New bL: El::et of value R2

EURentRulesBase.Drive | [[18..30] has been auto

3 cl rType.age <jadded in the 13..30]
EURentRulesh TC Ruleset2_Decision Table

e 1_EURentRulesBase.Drive

eEvent.milestoneEvent

4 c2 .milestoneEvent
EURentRulesBase.Drive
5 Cc3 rType.firstName "John" "Carter"

The third is to print a message box, shown in Figure 5-62. Note that the box is only
shown the first time when the value is auto-added.

Working with Decision Tables 5-55

Editing Decision Tables in Microsoft Excel

Figure 5-62 Message Dialog
"Microsoft Excel

Auto Addition of bucket has been done in "ValueSets' sheet.You can find more
information in condition cell comment.

5.5.4.13 Aliases of Values in the Value Sets Worksheet

In the value sets sheet, there are two rows for every value set. The first row denotes
the value and the second one denotes the alias of the value. It is the alias of the value
that is shown in the drop-down of condition cells.The aliases can be edited. Any
change made in aliases will be immediately available in corresponding condition cells.

5.5.4.14 Syncing Value Sets and Conditions

The value sets and condition cells are always in sync. Any change made in value set is
promptly synced with the condition cells whether it is an addition/deletion of any
value, or any change in the alias. The sync is always maintained between value set and
the corresponding condition cells.

5-56 Designing Business Rules with Oracle Business Process Management

6

Working with Decision Functions

This chapter describes how to use a decision function to call rules from a Java
application, from a composite, or from a BPEL process.

The chapter includes the following sections:

® Introduction to Decision Functions

¢ Working with Decision Functions

¢ What You Need to Know About Rule Firing Limit Option for Debugging Rules
* What You Need to Know to About Decision Function Arguments

¢ What You Need to Know About the Decision Function Stateless Option

6.1 Introduction to Decision Functions

A decision function is a module of execution that can be invoked to reason on the
inputs to arrive at outputs by applying a given ruleset or other decision functions.

A decision function contains the following declarations:

¢ Input facts.

* Rulesets and nested decision functions.

* OQutput facts.

A decision function performs the following operations:

® Asserts inputs as rule facts into the Oracle Business Rules Engine working memory.

* Runs rulesets configured in the current decision function and in nested decision
functions in order.

¢ Returns output facts from the Oracle Business Rules Engine working memory.

You can create a decision function to simplify the use of Oracle Business Rules from a
Java application or from a BPEL process. In a decision function the rules you want to
use can be organized into several rulesets, and those rulesets can be executed in a
prescribed order. Facts may flow to the first ruleset, and this ruleset may assert
additional facts that flow to the second and subsequent rulesets until finally facts flow
back to the decision function as decision function output.

6.2 Working with Decision Functions

You use Rules Designer to add a decision function.

Working with Decision Functions 6-1

Working with Decision Functions

To add a decision function:

1. In Rules Designer, click the Decision Functions tab.
2. In the Decision Functions area, click the Create button.

A new Decision Function is created and an Edit Decision Function dialog is
displayed, as shown in Figure 6-1.

Figure 6-1 Edit Decision Function Dialog

0 Edit Decision Function x|
Mame: |Declde Strategy @
Rule Eiring Limit: |1E|000 |v

[¥] Rule Firing Limit 15 Error
|w| Will Be Invoked As A Webservice Service Name: |Loantdpproval_DecidaStratagy
Check Rule Flow
[¥] Srateless
Description;
L]
Inputs Initial Actions =~ Outputs Rule Sets & Decision Functions
+ X o w
h Mame Fact Type Tree List Description
ppicaion ————— lapicain | @ W
@] product Product [w] O
Help ak Cancel

3. Enter a name for the Decision Function in Name field and a description in the
Description field.

4. In the Rule Firing Limit field, select unlimited or an integer value. In some cases
when you are debugging a decision function, you may want to enter a value for the
rule firing limit. The Rule Firing Limit can also be used in primary rules
processing when you want the execution to stop after a specified number of rules
fire.

For more information, see What You Need to Know About Rule Firing Limit
Option for Debugging Rules.

5. Select the appropriate decision function options:

* Rule Firing Limit is Error: is used to indicate whether the rule firing limit is an
error condition or not. Clear the check box if this is a scenario where you want
rules processing to stop after n number of rules fire. When cleared, the rule
firing limit is honored, but not reported as an error.

Select this check box if this is a scenario where you are using the rule firing limit
as a way to, for example, prevent an infinite loop. The system throws an error
when the firing limit is reached.

6-2 Designing Business Rules with Oracle Business Process Management

Working with Decision Functions

Will be invoked as a Web Service: select whether the decision function will be
invoked as a Web Service and provide the Web Service name.

Check Rule Flow: Rule flow checking verifies the following to generate
validation warnings:

— Types required by rules executed by the decision function are either inputs
to the decision function or asserted by other rules.

- Types generated by rules executed by the decision function are either inputs
to other rules or outputs to the decision function.

Rule flow checking might not identify rule flow issues spanning Java code
that is used in rules. In such cases, the warnings can be ignored by turning
off rule flow checking.

Stateless: when selected, this option specifies that the decision function is
stateless. For more information, see What You Need to Know About the
Decision Function Stateless Option.

. In the Inputs tab, click Add to add inputs. For each input in the Inputs Table, select
the appropriate options:

Name - enter an input name and press Enter or accept the default name.
Fact Type - select the appropriate fact type from the list.

Tree - When cleared, the input is asserted using the assert function. When
selected, the input is asserted using the asser t Tr ee function. When selected,
all objects referenced by the root object(s) are asserted. For more information,
see Working with Tree Mode Rules.

List - When unselected, the input must be a single object and the assertion
applies only to that single input object. When selected, the input must be a Li st
of objects and the assertion applies to each object in the input Li st

(java. util . List).

Description - Description of the input.

. In the Outputs tab, click Add to add outputs. For each output in the Outputs Table,
select the appropriate options:

Name - enter an output name and press Enter or accept the default name.
Fact Type - select the appropriate fact type from the list.

Tree - When selected, this option sets a flag that enables certain design-time
decision function argument checking. For an output argument, this option has
no effect on runtime behavior. However, at design time in the case where
several decision functions are called in a sequence, it is useful to notate
explicitly that the output of one decision function is a tree. This implies that the
input of another decision function in the sequence is expecting a tree as an
input. For more information, see Working with Tree Mode Rules.

List - When unselected the output is a single object. When selected the output is
a group of objects. For more information on the behavior of the List option on
an output argument, see What You Need to Know to About Decision Function
Arguments.

Working with Decision Functions 6-3

Working with Decision Functions

e Description - Description of the output.

Note:

The visible attribute of a fact type controls whether a fact can be matched by a
rule or can be asserted. Non-visible fact types are visible when they are part of
a visible fact type, or a variable.

When inputs or outputs of a decision function are non-visible fact types, then
a visible wrapper fact type is generated for the non-visible inputs named
DF.in and a visible wrapper fact type for the non-visible outputs named
DF.out.

For example, if i is an input of type int and o is a output of type int, then the
following rule copies input to output:

IF
DF.in !'= null
THEN
assert new DF.out(o: DF.in.i)

If you do not reference DF.in or assert DF.out, a rule flow warning occurs.

8. In the Initial Actions tab, you can add actions that could be used to change input
facts before they are asserted, change the ruleset stack, set the effective date, or
even assert output facts. These actions could be used instead of rules, or to "set up"
the environment for running rules.

Consider a situation where a decision function (DF1) calls another decision
function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to
the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial
actions are executed, Rulesetl is pushed to the ruleset stack. Then, when DF2 is
called, Ruleset? is also pushed. So when rules start running, rules from both
rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in
the initial actions, you are calling DF2), you can use initial actions in DF1 to clear
the ruleset stack before calling DF2, and push Ruleset] on the stack after calling
DF2.

You can add any required action ranging from assert, cal | , nodi fy to even
conditional actions such asi f, el se, el sei f,while,for,if (advanced), and
whi | e (advanced) as shown in Figure 6-2.

6-4 Designing Business Rules with Oracle Business Process Management

Working with Decision Functions

Figure 6-2 Adding Initial Actions

[Edit Decision Function x|
Hame: |Declde Strategy @,_I
Rule Firing Limit:|10000 |v

[¥] Rule Eiring Limit Is Error
|| Will B2 Invoked As A Webservice Seryice Name: |Loanspproval_DecideStratagy
Check Rule Flow
[¥] Stateless
Description; -
@

Inputs Initial Actions Qutputs

Eall AL suppress rule 1est errors{value : true j|

call

ATTErT MEu
assign

call

modify
retract

1§

while

assert
assertiree
assign new
expression
for

RL
synchranized
throw

try

if (advanced)
while {achvanced)

Help

Rule Sets & Decision Functions

- Application Risk Score 10)

oK Cancel

Note:

If decision function DF1 contains DF2 in the Rulesets & Decision Functions
tab, then DF2 may not have any initial actions.

Thei f (advanced) and whi | e (advanced) conditional actions accept only
bool ean values. For each of the action conditions, you can add different test form

types.

9. In the Rulesets and Decision Functions area, use the shuttle to move items from
the Available box to the Selected box.

10. Select an item in the Selected box, and click Move Up or Move Down as
appropriate to order the rulesets and the decision functions.

6.2.1 How to Edit an Existing Decision Function

To edit an existing decision function:

1.

2.

In Rules Designer, click the Decision Functions tab.

Select the decision function to edit and click the Edit button or double-click the

decision function icon.

Edit the appropriate decision function fields in the same manner as you would
when you add a decision function.

Working with Decision Functions 6-5

What You Need to Know About Rule Firing Limit Option for Debugging Rules

6.2.2 How to Change the Order of Inputs

To change the order of inputs:
1. In Rules Designer, click the Decision Functions tab.

2. Select the decision function to edit and click the Edit button or double-click the
decision function icon.

3. Select the input argument you want to move. Click either Move Up or Move Down
to reorder the input argument.

6.2.3 How to Change the Order of Outputs

To change the order of outputs:
1. In Rules Designer, click the Decision Functions tab.

2. Select the decision function to edit and click the Edit button or double-click the
decision function icon.

3. Select the output argument you want to move. Click either Move Up or Move
Down to reorder the output argument.

6.2.4 How to Edit a Decision Function

To edit a Decision Function

1. In Rules Designer, click the Decision Functions tab.

2. Select the Decision Function you want to edit and click the Edit icon.
The Edit Decision Function dialog is displayed.

3. Make necessary changes using the process that you have used for adding a new
Decision Function.

6.3 What You Need to Know About Rule Firing Limit Option for Debugging
Rules

The Rule Firing Limit allows you to set the maximum number of steps (rule firings)
that are allowed at runtime.

Using this option and specifying a value other than unlimited can help you debug
certain rule design problems and in some cases might help prevent

java. |l ang. Qut OF Menor yEr r or errors at runtime. This is can be useful when
debugging infinitely recursive rule firings.

When you choose a value other than unlimited, and choose Rule Firing Limit is Error,
the system throws an error once the limit is reached.

6.4 What You Need to Know to About Decision Function Arguments

Oracle Business Rules generates a corresponding RL Language function for each
decision function.

The signature of a generated decision function is similar to:

6-6 Designing Business Rules with Oracle Business Process Management

What You Need to Know About the Decision Function Stateless Option

function <name>(Input Fact Typel inputl, ... InputFactTypeN inputN) returns List

In a decision function, each parameter is generated depending on the List option, with
the decision function input, as follows:

¢ Input argument, List option unselected: for FactTypei the input must be a single
object and the assertion applies only to that single input object.

* Input List option selected: for List<FactTypei> the input must be a Li st of objects
and the assertion applies to each object in the input Li st (j ava. util . Li st).

The generated RL Language function includes calls either to assert or assert Tr ee
for each argument, depending on the decision function Input option, Tree. When Tree
is cleared, the input is asserted using the assert function. When Tree is selected, the
input is asserted using the assert Tr ee function. When selected, all objects
referenced by the root object(s) are asserted.

For the decision function selected rulesets, as specified in the Rulesets and Decision
Functions area Selected box, the generated RL Language function includes a call to
run() with the selected rulesets in the selected ruleset stack order.

The generated RL Language function returns a list. The list has an element for each
decision function output in order. If the output is declared to be a list, then the
corresponding element is a list. However, if the output is not declared to be a list, then
the corresponding element is the output fact or null (if there is no output fact of the
declared type). If an output is not declared to be a list, and more than one output fact
of the specified type is found in the working memory of Oracle Business Rules Engine,
then an exception is thrown.

After you edit a decision function, for example, to change or add inputs and outputs,
the changes are visible in BPEL for new Business Rule activities. However, the changes
are not visible to existing Business Rule activities. For more information, see "Getting
Started with Oracle Business Rules" in the Developing SOA Applications with Oracle SOA
Suite.

6.5 What You Need to Know About the Decision Function Stateless

Option

A decision function supports either stateful or stateless operation. The Stateless check
box in the Edit Decision Function dialog provides support for these two modes of
operation.

By default the Stateless check box is selected which indicates stateless operation. With
stateless operation, at runtime, the rule session is released after each invocation of the
decision function.

When Stateless is cleared, the underlying Oracle Business Rules object is kept in the
memory of the Business Rules service engine, so that it is not given back to the Rule
Session Pool when the operation is finished. A subsequent use of the decision function
re-uses the cached RuleSession object, with all its state information from the previous
invocation. Thus, when Stateless is cleared, the rule session is saved for a subsequent
request and a sequence of decision function invocations from the same process should
always end with a stateless invocation.

Working with Decision Functions 6-7

What You Need to Know About the Decision Function Stateless Option

6-8 Designing Business Rules with Oracle Business Process Management

v

Testing and Validating Business Rules

This chapter describes how to test and validate the rules you have created or edited.

The chapter includes the following sections:

* Overview

* Testing Rules in JDeveloper

® Testing Rules in Business Process Composer

¢ Testing Rules in SOA Composer

e Testing Decision Functions Using a Rules Function

¢ Testing Decision Services in SOA Composites

7.1 Overview

The test feature enables both developers and business users to quickly check that a
rule satisfies the expected behavior or, if modified, to see if a rule regresses existing
functionality.

You can author and test rules at design-time in Oracle JDeveloper or Business Process
Composer. At runtime, you can test rules in SOA Composer.

You can write tests declaratively, with no need for knowledge of XML or prior rules
actions or programming languages such as Java. Additionally, tests support all types
of facts (XML, Java, RL, and ADF-BC) and can be run on SOA or non-SOA use cases.

The test feature provides test reports with diagnostic comments and visual differences
between the expected and actual values that can be used to correct the rules or fix the
tests.

Figure 7-1 shows the Ul in JDeveloper. For more information about using JDeveloper,
see Introduction to Oracle JDeveloper in Oracle Fusion Middleware Developing
Applications with Oracle [Developer.

Testing and Validating Business Rules 7-1

Overview

Figure 7-1 Test Tab in JDeveloper

P TestRules.rules

vEIHA IR w D@8 @
E Settings
; BB Test moaer 7]
=] Facts
#e Functions BB Test
) Globals Test Component: Test Model ‘i
= 3
=] Value Sets -
Draft Tests
<@ Links =
i Decision Functions Test Suites: /XA > |
l‘:‘__l T e Mame Description Decision Function Execute
& Test BE Negative Tests EvaluateClaim [v]

3 Data Explorer BI quote Tests Bate Quote o
Rule Sets &+ ¥
@}Claim Processing
&P Policy Enforcement Templates: /XK@ > |

&P Customer Validation Name Description
T quote Template

&P Risk Evaluation

7.1.1 Components of the Test Feature

No matter which Ul you use, the testing functionality behaves mostly the same way in
JDeveloper, BP Composer, and SOA Composer.

Decision functions must have been already created before you begin--there is a one to
one mapping between decision functions and tests. Once a decision function is
associated with a test suite or test template, it cannot be changed later.

The components of the test feature are:

e Test Suites and Test Cases

You can create a test suite with one or more test cases. You can also create
templates that serve as templates for creating other test cases.

e Test Templates

Test templates enable you to create similar test cases that differ only by the values
of a few Fact properties. Templates also let you execute ad-hoc tests by specifying
values for parameters. Ad-hoc tests enable you to perform sanity tests and try
different value combinations for specific parameters before creating them as test
cases in a test suite.

e Test Execution

Executing test suites or test cases invokes the decision function and executes the
rulesets defined in the decision function and presents the results in a new tab, as
shown in Figure 7-2. Tests are executed via RL generation.

7-2 Designing Business Rules with Oracle Business Process Management

Testing Rules in JDeveloper

Figure 7-2 Test Results Tab
@ TestRules.rules
vE D Rk @ 4

@ settings
_] u Test Model
| Facts

% Functions BB Test | [T Results - Policy Terms x

() Globais Resull: o Passed
E_J Value Sets Dizgnostic Comments:

&2 Links L —

\’;} Decision Functions Differences Exceptions

@& Transiations claimResult Claim
B et claimDetails :
® claimld: 0

3 pata Explorer payment :

olicy Folic
Rule See + X ’ ys:ndDatzz:
id: 0
insured Customer
&P Palicy Enforcement address
age:
drivingExperience :
@ Risk Evaluation education ;
id: 0
name:
stariDate ©
terms Terms
coverages: "COLLISION"
& aeneralTerms :

&P Claim Processing

& Customer Validation

Keep the following in mind:

— Tests can be executed either from the Test tab of the Dictionary or from the
Decision Functions tab.

— Tests can be defined in the current dictionary for decision functions in linked
dictionaries.

— Tests defined in linked dictionaries can be executed in the current dictionary.
Tests from linked dictionaries are available as read-only for execution.

— If you modify the inputs/outputs in a decision function, the changes are
automatically synced to the tests you have defined. Tests are synced to fact-
types referenced in the tests. If you remove facts from a decision function, the
test feature enables you to delete those facts from the input/output tree of the
test.

— A Fact is an instance of a FactType that defines the Test Data and has property
values corresponding to each of the FactType properties. If a Property value is a
complex data type, it is defined using Fact instances as well.

7.2 Testing Rules in JDeveloper

You can test your rules as you design them in JDeveloper.

In the Test Case editor, you define the inputs and expected output values for a Test
Case. The values here can be simple values or expressions that use globals, functions,
and so on.

The input and output Fact trees are auto-initialized based on the inputs/outputs
specified for the Decision Function.

The test input and output Fact trees are also auto-synchronized with any changes to
the Decision Function (if you add, delete, modify inputs or outputs) or fact types (if
you add, delete or modify properties). The auto-synchronization flags and highlights
invalid Facts or Property values that were changed in a Decision Function or Fact type.
These flags in the test input/output help you to identify and fix issues in your test
definitions.

Testing and Validating Business Rules 7-3

Testing Rules in JDeveloper

Testing Permission Related Cases

Before testing permission related cases, change the refresh time 10 seconds. This is an
important prerequisite for reliable test results.

To change the refresh time to 10 seconds:

1. Navigate to $MWV HOVE/ user _pr oj ect s/ donai ns/ soai nfra/ confi g/
f maconfi g.

2. Openjps-config.xm.

3. Setoracle.security.jps.ldap.policystore.refresh.interval to
10000.

<servi cel nstance name="pdp. servi ce" provi der="pdp. service. provi der">
<property name="oracl e.security.jps.|dap.policystore.refresh.interval™”

val ue="10000"/>

</ servi cel nstance>

4. Restart the server.

7.2.1 How to Create and Manage Test Suites and Cases

You can create a test suite with one or more test cases. Test suites can only be defined
for specific decision functions.

For more information about decision functions, see Working with Decision Functions.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

Figure 7-3 Test Tab in JDeveloper

@ TestRules.rules

vE D e B[k 1@ W @
2 Sentings
B Test Model]
=) Facts
S Functions B Test
{x) Globals Test Component: (Test Model -
= d
=] value Sets
[Draft Tests
< Links -
< Decision Functions II“““““ FZ/RA >
@ Transiations Name Descripti 1 [4] Execute
ali
B e B Negative Tests E——— E
3l pata Explorer BE quote Tests Rate Quote vl

Rule Sets + %
& Claim Processing L
9 Policy Enforcemen t |Iemp|ms- =/ RE >

&P Customer Validation | Name Description
te T lat
£ Risk Evaluation |3 quote Tempiate

To create a test suite:

1. In Rules Designer, click the Test tab.

2. Click the Test Component drop down and select a Test Model from the list.
3. Click + to create a new test case for the test suite.

4. Enter a name, choose a Decision Function, enter a Description.

5. Click OK. The test suite is displayed.

7-4 Designing Business Rules with Oracle Business Process Management

Testing Rules in JDeveloper

6. Click Edit to review the Input and Output documents for the test case. This is
where you can edit values to specify the input and the expected output, as shown
in Figure 7-4:

Figure 7-4 Inputs and Outputs

@ TestRules.rules (=}

SE DA Y[k O I8 [€)
® Sentings
ER-
& Facs [E8) Test Case > @
F Functions &
Hame [Policy Terms @
() clobals
Decision Eunction: |EvaluateClaim | [unfired Rutes Are Errors
E] value sets Description:
< Links {_
< Decision Functions
G Transtations
B Test Inputs: X @ Quiputs: X @
) ata Explorer = claim Clan claimResult Clzlin
claimDetails: <entervalue> claimDerails ; [enter values
Rule Sets +x claimid: <enter valugs claimld: <ent =
£ Claim Processing payment: <entervalue> payment: <ef i
policy Folic policy Folic G, Walue Options
&P Palicy Enforcem emt endDate : <enter value> endDate:| | g py|l
@Cusmm:rvmlum\nn id: <entervalue> id: <enl moa R
insured Customer insured O oo accident
4 Risk Evaluation address: <entervalues dd o toLowerCase
age: <enter value> age i
drivingExperience © <entervaluss driv (e telpperCase
education: <entervalues 2au | tim
id: <entervalue> ig; | e ReE
name: <enter valuz> nam 8 Camstae
startDate : XMLDate from string('2013-01-09") startDate
terms Terms terms Tel
= coverages: "COLLISION" cov
dnited States)
Design
Business Rules - Log Simulations | Documentation |
@ Dictionary = TestRules.rules O List View () Tree View
SDE Warnings: 0 [Constam 13:06 PM POT
Messages | Extensions « | @ Business Rules Type: String -

7. Check the Unfired Rules are Errors check box if unfired rules are treated as errors
from the execution.

8. Click the Draft Test check box to turn off the test validation.

When you have finished creating test suites and cases, you can run them. For more
information, see How to Run Test Suites or Cases.

7.2.2 How to Create Test Templates

Test templates enable you to reuse input and output values to repeat tests on those
fields and values.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

To create a test template:

1. In Rules Designer, click the Test tab.

2. Click the Test Component drop down and select the Test Model/Templates from
the list.

3. Go to the Templates table and click + to create a new test template.
4. Enter a name, choose a Decision Function, enter a Description.

5. Click OK. The test template is displayed, where you can see the Input and Output
documents. This is where you can edit values to specify the input and the expected
output, as shown in Figure 7-5.

Testing and Validating Business Rules 7-5

Testing Rules in JDeveloper

Figure 7-5 Test Template

“@ TestRules.rules (=}

LB 9@ B G @ ¥ @
® senings
= T Template
I Facts Cl Temp > @
Fe Functions Hame: |Quote Template [N
) Giobals Decision Eunction: [Rate Quate | [unfired Rutes Are Errors
E] Value se1s Description,
<D Links [
< Decision Functions
& Transtations
® @ ® @
B Test Inputs Outputs
4 pata Explorer Insured Custoncr Quote Ducte
address: *123 Hamilton Avenue® Palicy #olic
Rule Sets + % age: 30 endDate : [PARAMETER]
drivingExperience = 15 id
Claim Processin
@ 2 education: ‘“Doctorate” insured Cuctome
&P Palicy Enforcement id: 12345 address: "123 Hamilton Avenue"
nams: "Dow Jones* tgas Ll
9 Customer Validation drivingExperience: 15
4 Risk Evalustion Driving Record DY Fecord education: "Doctorate"
Total Accidents | <enter value> id: 12345
At-fault Accidents : <enter value> name: “Dow Jones
DUIViolations : <enter value> startDate | Current Date
Suspenslons : <enter value> terms Terms
Paints | <enter values Coverages: [PARAMETER]
ITerms: [PARAMETER
History [nsurance Histor N CITEWIGS 1 = S
Past claim Past Claim Info Add otes: IPARAMETER|
= Detalls © [PARAMETER] e EARSKETER

Mode: EDIT Locals: English (United States)

Design

When you have finished setting up your test templates, you can run them. For more
information, see How to Run Ad-hoc Tests from Test Templates.

7.2.3 How to Run Test Suites or Cases

When you run a test, a new tab is opened, and you can see the diagnostic comments,
exceptions, and test results. Tests can be run either as a suite, multiple test cases, or as
individual test cases.

For detailed documentation of fields and other Ul controls, click Help from within
JDeveloper.

To run atest suite or case:

1. Select a Test Suite or Test Case to run, and click Execute.
2. A new tab opens. A new tab Results opens. Click it to see the test results.

For test suite execution, the tab shows a summary of the test results by default, but
you can double-click each test case to see its test results. For test case execution, the
tab shows the test results.

If a test fails, the test results will show diagnostic comments and output differences
or exceptions depending on the cause of the failure.

The execute button is enabled only when a test suite or test case (or test template) is
selected from the table and as long as there are no validation warnings in the current
dictionary.

7.2.4 How to Run Ad-hoc Tests from Test Templates

This is where you can run ad-hoc tests from templates by editing the nodes in input
and output trees. The inputs and outputs are from the decision function.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

7-6 Designing Business Rules with Oracle Business Process Management

Testing Rules in JDeveloper

To run ad-hoc tests from test templates:

1. Go to the Templates table and select a test template. The inputs and outputs fields
are displayed, as shown in Figure 7-6.

Figure 7-6 Template Inputs and Outputs

P TestRules.rules

LA R AR B A NORE] @
2 settings
= [] Template
) Facts U P > @
Fe Funstions Hame [TestTemplater [
() Clobals Decision Eunction: [EvaluateClaim | [unfired Rules Are Errors
&) Value Sets Description:
@ Links @.
<& Decision Functions
@) Transiatians
. ® @ : %@
i Test Inputs: Qutputs:
3 Data Explorer claim Clair claimResult Clai
claimDerails : [€enter value>] claimDetalls - <enter value>
Rule Scts + % claimld : <ent o claimid: <enter value>
B
r:o< - ;o <enter value>
& Claim Processing CEUAC e payment erter value
policy Folic @, value Options policy Fol
&P Palicy Enforcement endDate:| o pull endDate: <enter values>
id: <en moa p ld: <entervalue>
&P Customer Validation N 1 o
insured 0 &0 accidem insured Custon
£ Risk Evaluztion add - address . <enter value>
e age: <entervalue>
@@ Claimstatus .
driv] drivingExperience ; <entervalue>
edu education : <enter value>
id: 4 id: <entervalue>
nam b name: <eniervalue>
stanDate startDate : <entervalue>
terms Te(terms Terms
= covy coverages: <enter value>
Mode: EDIT Locale: English (United States)
Design
Business Rules - Log Simulations | Decumentation |
B Dictionary - TestRules.rules (I ListView (3 Tree View
SDK Warnings: 0 [Jconstam [] Mark As Parameter Last Validation Time: 2:50:22 PM PDT
Messages || Extensions » || @ Business Rules Type: String
|

2. Enter values for variable or parameter fields and click Run. The Ad-Hoc Test
dialog is displayed.

Select the appropriate options:

Check the Unfired Rules Are Errors check box if unfired rules are treated as
errors from the execution.

Click List View or Tree View to toggle between the views.
Check the Constant check box and select a constant from the list.

Check the Mark as Parameter check box for variable fields of the test template.
Values for variable fields are entered when the template is consumed like when
the template is tested or used to create a test case.

3. Click Execute Test to run the template.

4. From the new Results tab, check the test results.

7.2.5 How to Run Tests for a Specific Decision Function

You can run tests from the Decision Function tab. This view only shows you the Test
Suites and Test Cases for the specific Decision Function.

For detailed documentation of fields and other UI controls, click Help from within
JDeveloper.

To run tests for a specific decision function:

1. In Rules Designer, click the Decision Functions tab.

Testing and Validating Business Rules 7-7

Testing Rules in Business Process Composer

2. Click to select a test case and click the Test button.

3. The Decision Function Test Editor dialog appears. This dialog is just another view
of the testing feature.

7.3 Testing Rules in Business Process Composer

You can test your rules as you design them in Business Process Composer.

For more information about using Business Process Composer, see Introduction to
Oracle Business Process Composer in Oracle Fusion Middleware Developing Business
Processes with Oracle Business Process Composer.

7.4 Testing Rules in SOA Composer

At runtime, you can use SOA Composer to regression test rules. This enables business
users to quickly check if a modified rule changes the existing functionality. Figure 7-7
shows the Tests tab in SOA Composer. The Tests tab only appears if you have a
deployed composite and are in a SOA Composer session. Click Create Session to open
a session.

Figure 7-7 Tests Tab in SOA Composer

SOA COH’]pOSEF Links ¥ Preferences Help v~ weblogic v o

| & |
R T —

TestRules.rules dﬁ L cﬁ E Q 'é) 8-

&P Rulesets E} Value Sets @ Globals | &~ Business Phrases (B Q Explorer I\ Facts 4} Deciion Functions &P Links = g Transations Actions =

[T8) Test Model

v
@ Test Model i Draft Tests

B2 cam Evaluation t 4 ® 3@ E el 2

[E8 BasicTest

Test Suites
o)
% EvalCaimTest - Name Description Decision Function
i BB evacaimTest;= Ciaim Evaluation tests g g - -
B roTests — - -
@ NoRuleFiredTer
[zeroDiscountT— -
[E8 FvePercentDis X i
28| InvalidPurch
% ;VI:I‘ Rurc ;51 Test Templates
LY* ultpieResults
- P Name Description Dedision Function
[E8 zeroDiscountT r
] ClaimTemplate - =

a‘ﬂ Policy Update Tes+
< " D 4 m 2

Diagnostics History Center SaveLog Valdation Log

7.4.1 How to Create and Manage Test Suites and Cases

You can create a test suite with one or more test cases. Test suites can only be defined
for specific decision functions.

For more information about decision functions, see Working with Decision Functions.

7-8 Designing Business Rules with Oracle Business Process Management

Testing Rules in SOA Composer

Figure 7-8 Test Suite Page

TestRules.rules »

G Ruiesets | [E]] Value Sets | ¥ Globals | &7 Business Phrases | | Bl Q, Explorer |\ Facts 4 Dedsion Functions | o Links | 3 Translations
[EE] Test Model
& TestModel [#oraft Tests
B2 CaimEvalatontest o 3¢ & & b
BB BasicTest Test Suites
[E8 EvalCalimTest —
MName Description Dedision Function
8 EvalcalimTest-Dif . .
B @

BY roTests
NoRuleFiredTestC B PoTests

ZeroDiscountTest. BE Policy Update Tests

FivePercentDiscol B EvaluateClaimAS Tests

=
=
=
[mmvaidPurchase0 BY Purchase Order AS Tests
=
=

4] [4][«][«

MultpleResultsTes
ZeroDiscountTest 4

Policy Update Tests
B *XXED
[8 updateCustomerl -~

[updateCustomerl yest Templates

EvaluateClaimAS Tes
Purchase Order AS T

[h
B
[clamTemplate
O
a

Mame Description Decision Function
D ClaimTemplate E hd
T PoTemplate
T1 CustomerPolicyTemplate

POTemplate
CustomerPolicyTempl

Diagnostics History Center Savelog Validation Log

For detailed documentation of fields and other Ul controls, click Help, Help for This
Page from within SOA Composer.

To manage test suites and cases:

1. In Rules Designer, click the Tests tab and click in a Test Suite row to enable the
action buttons.

Click the Draft Tests check box if you want to turn off test validation.
2. Click + to create a new Test Suite.
3. Enter a Name and Description, then choose a Decision Function.
4. The test suite is displayed.

5. After creating a test suite, if you want to create test cases, click the test suite in the
Test Model tree and click + to create a Test Case or a Test Case from Templates.

6. You can Save Changes in Current Tab to save data at any time or click Publish if
you are done with changes.

7. You can also click a test case in the Test Model tree to see the Input and Output
documents for the test case. This is where you can edit values to specify the input
and the expected output, as shown in Figure 7-9.

Testing and Validating Business Rules 7-9

Testing Rules in SOA Composer

Figure 7-9 Inputs and Outputs from Decision Functions

TestRules.rules » dﬁv@aa@é)-

Q Rulesets D Value Sets | @ Globals “ ' Business Phrases @ Q Explorer = I\ Facts @ Decision Functions 00 Links » Actions «

(T8 Test Model

[@8] Test Model s TestCase BasicTest @
iﬂ Claim Evaluation § Description Q‘
[E8 BasicTest

B8 EvalCaimTest Flag Rules not Firing as Error 0

B8 EvalcaimTest|

Inputs "Show values | Edit | Outputs Show values Edit
Bl roTests = * g
il A
E8 NoRuleFredTe: B3 dam Caim ~ [damResut Caim -
24| ZeroDiscountT i - = " " @ cdaimDetals Stri "Accident”
28| FivePercentDis - Details ‘Accident 3 8 cambetals g cocen =
o3 B 8 cdaimld long 9876 0
B8 mvaldrurchas @ chmid long |3876
= = ment BigDedmal 0 E3 payment BigDecimal 3000
9 MultpleResults] = par o g) policy Policy
[ol
B8 ZzeroDiscountT polcy - Policy @8 endDate XMLGregorianCalendar XMLL
B Polcy Update Tes @8 endDate XMLGregorianCalendar XMLI @@ id int 1234
w3 - -
% UpdateCustorr @ d int 1234 [insured Customer
- QP?aﬁﬁcusF?’[v [) insured Customer @8 address String "MyStreet”
P I b 8 aAdrnre Cisinn "MuStrast! T S ann Tmbnnae AT T
« 1 r d LI} D

In the Test Case editor, you define the inputs and expected output values for a Test
Case. The values here can be simple values or expressions that use globals,
functions, and so on.

The test input and output Fact trees are auto-initialized based on the inputs and
outputs specified for the Decision Function.

The input and output Fact trees are also auto-synchronized with any changes to the
Decision Function (if you add, delete, modify inputs or outputs) or fact types (if
you add, delete or modify properties). The auto-synchronization flags and
highlights invalid Facts or Property values that were changed in a Decision
Function or Fact type. These flags in the test input/output help you to identify and
fix issues in your test definitions.

8. Click Edit to make all of the nodes in the tree editable.
9. If you edit a field in the tree, click Show Values to show only those values.

10. Check the Flag Rules not Firing as Error check box if unfired rules are treated as
errors from the execution.

When you have finished setting up your test suites and cases, you can run them. For
more information, see How to Run Test Suites or Cases.

7.4.2 How to Create Test Templates

Test templates enable you to reuse input and output values to repeat tests on those
fields and values.

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

To create test templates:

1. In Rules Designer, click the Tests tab.

2. Click Test Model in the navigation tree. In the Test Templates region, click + to
create a new test template.

7-10 Designing Business Rules with Oracle Business Process Management

Testing Rules in SOA Composer

3. Enter a Name, Description, and choose a Decision Function.

4. Click Save.

To run ad-hoc tests from test templates, see How to Run Ad-hoc Tests from Test
Templates.

7.4.3 How to Run Test Suites or Cases

When you run a test, a new tab is opened, and you can see the diagnostic comments,
exceptions and test results. Tests can be run either as a suite, multiple test cases or as
individual test cases. Tests are executed via RL generation.

For detailed documentation of fields and other Ul controls, click Help, Help for This
Page from within SOA Composer.

To run test suites or cases:

1. Select a Test Suite or Test Template to run, and click Execute.

The execute button is enabled only when a test suite or test case (or test template) is
selected from the table and as long as there are no validation warnings in the
current dictionary.

2. A new tab, Results appears. Click it to see the test results.

For test suite execution, the tab shows a summary of the test results by default, but
you can double-click each test case to see its test results. For test case execution, the
tab shows the test results.

If a test fails, the test results will show diagnostic comments and output differences
or exceptions depending on the cause of the failure.

Figure 7-10 Diagnostic Comments for a Test Suite

TestRules.rules x gdv@E8008-

&) Rulesets Value Sets @ Globals & Business Phrases Expiorer I\ Facts Decision Functions Links &% Translations Actions v
[~} -

[28] Test Model & Clim Evaluation tests x =~ % Claim Evaluation tests x

Overview Comments :
o BasicTest
4
Test Results
Name Result Comment
BasicTest o Passed

If you select a test suite from the Test Model tree and run it, you can see the Decision
Trace tab, as shown in Figure 7-11.

Testing and Validating Business Rules 7-11

Testing Rules in SOA Composer

Figure 7-11 Decision Trace Ul

TestRules.rules 5

HesQEHIO8 -

Rulesets Value Sets & Globals ®~ Business Phrases Explorer I\ Facts Decision Functions Links &% Translations Actions
[P L

[Z5) Test Model @) Cam Evaluation tests x & Claim Evaluation tests x

Qverview Expand the nodes to view the detais of the instance audit trail. Audit Level DEVELOPMENT@ View Raw XML
« BasicTest Click a node to view the state of the service engine at the time that step occurred. Show rule set stack states in audit trail []
4% onMessage

° ~ Business Rules Engine State
=4 Invoked Dedision Service [Mar 17, 2014 12:05:44 PM]

Asserted fact: "Customer [1] " =

Asserted fact:

Asserted fact: "

Asserted fact: "Policy [4] "

Asserted fact: "Claim [5] "

Activated rule: "ClaimRules.Review Rule”
Facts: "Claim [5]"

Activated rule: "PolicyRules. Policy Terms”
Facts: "Claim [5]"

{2 Fired rules in Ruleset "PolicyRules”

Facts in Working Memory

Fired rule: "PolicyRules.Policy Terms"

Facts: "Claim [5]" - ¥
General ~ Dedision Trace
7.4.4 How to Run Ad-hoc Tests from Test Templates
The Input and Output trees are loaded with input and output facts from the associated
Decision Function, as shown in Figure 7-12. If you modify facts in a Decision Function,
those changes are automatically synced to the Input and Output facts.
Figure 7-12 Input and Output Facts
TestRules.rules 5 HeQE v
&P Rulesets [E]] value Sets | (@ Globals &~ Business Phrases | B3 Q, Explorer [I\ Facts 4 Decsion Functions o Links » Actions ~
(23] Test Model
[@8 Test Model - TestCase BasicTest)
iﬂ Claim Evaluation T 8
B Basicrest Description @..I

BB EvalcaimTest Flag Rules not Firing as Error [

[E8 EvalCaimTest:

B P Tess _| Tnputs Showvales N EditY 9¢ Outputs Show values Edit 3¢
B8 norukeFiredTe [0 caim Cam - [claimResuft Claim 2
5] Z.EVOD\SCUUMIT q @@ [dambDetais] "Accident” L 8 caimDetals String “Accident”
[E8 FivePercentDi 1 @ caimld long 9876 -
& caimid long 9876 cemid fong
B mvaidpPurcha 9 ,
- _ B &8 payment BigDecimal 3000 T
[E8 MultpleResultsT @ payment BigDecimal O [poley Policy
[E8 zeroDiscountT [policy Policy T i
ag - . T @@ endDate XMLGregorianCalendar XMLC
Policy Update Tes 8 endDate XMLGregorianCalendar @ id int 1234
% UpdateCustor @ id int 1234 [insured Customer
o l‘JD?Et_PT(?US_t?’T, |) insured Customer &8 address String "MyStreet”
a |T S #_nAdenare C#eina "MuStrest! - — @Em_ann Tndanoae AT R
ra 1l ’ | 11 L

For detailed documentation of fields and other Ul controls, click Help, Help for This
Page from within SOA Composer.

To run ad-hoc tests from test templates:

1. To see the Input and Output facts, click to choose a template from the Test Model
tree.

This is where you can edit values to compare the input with the expected output.

You can add dynamic values here or check Mark as Parameter to be able to enter
values when the rule is executed.

7-12 Designing Business Rules with Oracle Business Process Management

Testing Decision Functions Using a Rules Function

For more information about how to use the Expression Builder, see Working with
Tree Mode Rules.

2. Click the Execute Test Template button to run the template. A dialog box appears.
3. Enter values for those variable or parameter fields and click Run from the dialog.

4. From the new Results tab, check the test results. Click the Decision Trace tab to see
the audit trail.

7.4.5 How to Run Tests for a Specific Decision Function

You can run tests for specific Decision Functions, as shown in Figure 7-13:

Figure 7-13 Decision Functions Tab

TestRules.rules Heaaon
&P Ruksets [Efj value sets & Giobals & Business Phrases Tests Q Explorer [\ Facts &% & Unks & Transiations Actions ~
Decision Functions

Name UpdateCustomerInPolicies
-\,\x EvaluateClaim %
<} EvaluateClaimAS Description

H i
(i ProcessPODisctount Rule Firing Limit 10000 =l
_f\x. UpdateCustomerInPolicies | Check rule flow

<p purchase Order AS /| Make stateless

Inputs Initial Actions Outputs Rulesets Decision Functions

Tests Policy Update Tests b E\
Name Fact Type Tree List Description
policies o:] Policy
customer n:] Customer

Diagnostics History Center Save log Validation Log
For detailed documentation of fields and other UI controls, click Help from within

JDeveloper.

To run tests for a specific Decision Function:

1. Click the Decision Functions tab and select the appropriate Decision Function
from the list.

2. In the Tests field, use the dropdown to select the appropriate test.

3. The test is opened in the Tests tab. Click the test, and then click Execute to run
your test.

4. The results tab appears. Click the new tab to view test results.

7.5 Testing Decision Functions Using a Rules Function

You can test rulesets by creating a decision function and calling the decision function
from Rules Designer with an Oracle Business Rules function. In the body of the Oracle
Business Rules function you create input facts, call a decision function, and validate
the facts output from the decision function. For more information, see Introduction to
Decision Functions and Introduction to Oracle Business Rules Functions.

Testing and Validating Business Rules 7-13

1

Testing Decision Functions Using a Rules Function

To test a decision function using an Oracle Business Rules function:

1.

Confirm that your dictionary is valid.

For more information on dictionary validation, see How to Validate a Dictionary
In Rules Designer, select the Functions navigation tab.

In the Functions area click the Create... button.

Enter the function name in the Name field, or use the default name.

Select the return type from the Return Type list.

For a test function, select bool ean.

In the Arguments table, confirm that there are no arguments. For a test function,
you cannot specify any arguments.

In the Body area, enter the test function body.

In the body of the test function you can call a decision function using assi gn new
to call and get the return value of the decision function (in the body of the test
function you create input facts, call a decision function, and validate the facts
output from the decision function).

A decision function call returns a Li st . Thus, to test a decision function in a test
function you do the following:

* You create the input data as required for the decision function input arguments.

* You call the decision function with the arguments you create in the test
function.

* You place results in a Li st , for example, in the following:

assign new List resultsList = DecisionFunction_1(testScore)
Select the function and click the Test Function button.
The function is executed. The output is shown in a Function Test Result dialog.

Click OK to dismiss the Function Test Result dialog.

7.5.1 What You Need to Know About Testing Decision Functions

You can use Oracle Business Rules Functions to test decision functions from within
Rules Designer. Keep the following points in mind when using a test function:

The Test Function button is gray if the dictionary associated with the test Oracle
Business Rules Function contains any validation warnings. The Test Function
button is only shown when the dictionary validates without warnings.

To enable logging you can call RL. wat ch. al | () . For more information on RL
Language functions, see Rules Language Reference for Oracle Business Process
Management. In this guide, RL. wat ch. al | () is an alias for the RL Language
function wat chAl | ().

As an alternative to the example above, you can enter the function body that is
shown in the example below:

7-14 Designing Business Rules with Oracle Business Process Management

Testing Decision Services in SOA Composites

call RL.watch.all()

assign new TestScore testScore = new Test Score()

modi fy (testScore, name: "Bill Reynolds", testName: "Math Test", testScore: 81)
assign new Test Grade test Grade = (Test Grade) Deci si onFunction_1(testScore). get(0)
return testGade.grade == Grade.B

For the t est Scor e value 81, this function returns "Test Passed.”" For the
t est Scor e value 91, this returns "Test Failed."

This function runs and shows the RL. wat ch. al | () output. The dialog shows
"Test Passed" when the grade is in the B range. The dialog shows "Test Failed"
when the grade asserted is not in the B range.

7.6 Testing Decision Services in SOA Composites

In a BPM or SOA application that uses Oracle Business Rules with a Decision Service,
you can test rules at runtime with Oracle Enterprise Manager Fusion Middleware
Control Console Test Web Service page, where you can create an instance of your
composite for testing.

For more information about how to create a test instance of your composite after you
have finished designing and deploying it, see Initiating a SOA Composite Application
Test Instance in Oracle Fusion Middleware Administrating Oracle SOA Suite and Oracle
Business Process Management Suite.

You can see the audit trail for the Decision Service execution. For more information,
see Monitoring Business Rule Tracing in Oracle Fusion Middleware Administrating Oracle
SOA Suite and Oracle Business Process Management Suite.

Testing and Validating Business Rules 7-15

Testing Decision Services in SOA Composites

7-16 Designing Business Rules with Oracle Business Process Management

8

Working with Rules in Standalone (Non
SOA/BPM) Scenarios

When using rules in standalone (non SOA or BPM) scenarios, you can create
RuleSession rules, or you can use the Decision Point APL

For more information about using a RulesSession object, see Using a RuleSession in
Rules Language Reference for Oracle Business Process Management.

For information about using the Decision Point AP], see Introduction to the Rules SDK
Decision Point APT.

This chapter includes the following sections:

¢ Loading a Dictionary from the Repository

¢ Executing a Rule Dictionary

® Introduction to the Rules SDK Decision Point API

¢ Creating a Dictionary for Use with a Decision Point

* Creating a Java Application Using Rules SDK Decision Point

* Running the Car Rental Sample

e What You Need to Know About Using Decision Point in a Production Environment

¢ What You Need to Know About Decision Point and Decision Tracing

For more information on APIs that are referred to in this chapter, see Java API Reference
for Oracle Business Rules.

8.1 Loading a Dictionary from the Repository

Non-SCA (SOA/BPM) applications typically package the rule dictionaries used by the
application such that they are copied to the MDS repository when the application is
deployed. In order to use the dictionaries at runtime, they will need to be retrieved
from MDS. The basic access method is to use the RuleRepository API to access the
dictionaries. A simple usage example is shown below.

Rul eRepository rr = RepositoryManager. get MOSRul eRepository(null);

Il pkg and nanme are the dictionary package and name (Strings).

/1 Aternatively you could construct a DictionaryFQN

Rul eDictionary rd = rr.load(pkg, name);

[/ if thisis an editing session, edit session occurs and

Il then save it when done.

rr.save(rd);

/1 when the Rul eRepository will not be used again it nust be closed.
rr.close();

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-1

Executing a Rule Dictionary

It is typical that an application will want to react when a dictionary has been modified,
reload the dictionary and begin using the new rule definitions. Detecting when a
dictionary must be reloaded is complicated when linked dictionaries are used since it
may not be the root dictionary that was modified.

In this situation, the oracle.rules.sdk2.repository.DictionaryLoader class is the
recommended mechanism for loading dictionaries for rule execution.
DictionaryLoader tracks the dictionaries that are loaded including linked dictionaries
and can determine when a dictionary it has loaded needs to be reloaded.
DictionaryLoader uses DictionaryFinder instances to load all dictionaries.
DictionaryFinders are added to a DictionaryLoader instance with the addFinder
method in the order in which they will be invoked to find a dictionary. That is, the
first finder added will be the first one to attempt to load a dictionary. When all the
desired DictionaryFinders have been added to the DictionaryLoader, the
loadDictionary() method is used to load a dictionary. The reloadNeeded method can
be invoked to determine if a dictionary needs to be reloaded.

1

/1 A Rul eRepository instance is needed for its built-in DictionaryFinder
I

Rul eRepository rr = RepositoryManager. get MDSRul eReposi tory(null);
DictionaryFinder rrf = rr.getDictionaryFinder();

H Create the dictionary | oader

/D'/cti onaryLoader dl oader = new Di ctionaryLoader();

dl oader . addFi nder (rrf);

H [f the DecisionPointDictionaryFinder is required, add it
élf oader . addFi nder (new Deci si onPoi nt Di cti onaryFi nder());

11
Il Load the dictionary
11

Di ctionaryFQN fgn
Rul eDi ctionary rd

new Di ctionaryFQ\("sonepackage", "nyDictionary");
dl oader . | oadDi ctionary(fan);

I
I/ Check if the dictionary needs to be rel oaded
I
i f (dl oader.rel oadNeeded(fqn))
rd = dl oader. | oadDi ctionary(fqgn);

I

/1 When usage is conplete, the Rul eRepository nust be cl osed.
I

rr.close();

8.2 Executing a Rule Dictionary

There are two approaches to initializing the RuleSessionPool from the RuleDictionary:
initiallizing the RuleSessioPool, and using the Decision Point API.

For information, see Introduction to the Rules SDK Decision Point API

When initializing for rule execution, once a RuleDictionary has been loaded a
RuleSessionPool should be initialized with RL generated from the dictionary.

8-2 Designing Business Rules with Oracle Business Process Management

Introduction to the Rules SDK Decision Point API

For more information, see How to Use a RuleSession Pool in the Rules Language
Reference for Oracle Business Process Management.

If a single decision function will be invoked, then it is most efficient to load only the
rule sets that are referenced by that decision function. Sample code to build the list of
RL text which is passed to the RuleSessionPool constructor is shown below.

Note that error checking and exception handling not shown for brevity.

Rul eDictionary rd; // previously |oaded dictionary
String df Alias = "Alias for ny Decision Function";
Deci si onFunction df =
rd. get Conbi nedDat aMbdel (). get Deci si onFuncti onByAl i as(df Al i as);
List<String> rlList = new ArrayList<String>();
11
/1 Add the RL for the data nodel
/1
rlList.add(rd.dataMdel RL());
/1
/1 Add the RL for each rule set referenced by the decision function
/1
Col l ection<String> rsal = df.getRul eSets();
for (String alias : rsal)

{
}

riList.add(rd.ruleSetRL(alias));

If multiple decision functions will be invoked from the same RuleSessionPool, then
adding the RL for the rulesets referenced by each decision function will enable this.
Care must be taken to avoid adding the same ruleset twice.

In other scenarios such as using rules to dynamically selecting other rule sets to
execute at run time, it will be necessary to load all of the rule sets in the dictionary.
Sample code to do this is shown below.

Rul eDictionary rd; // previously |oaded dictionary
List<String> rlList = new ArrayList<String>();
/1
/1 Add the RL for the data nodel
/1
rlList.add(rd.dataMdel RL());
/1
/1 Add the RL for each rule set referenced by the decision function
/1
Col l ection<String> rsal = rd.getRul eSet Aliases(true);
for (String alias : rsal)

{
}

8.3 Introduction to the Rules SDK Decision Point API

This section describes how to use Oracle Business Rules SDK (Rules SDK) to write
applications that access, create, modify, and execute rules in Oracle Business Rules
dictionaries (and work with the contents of a dictionary). It also provides a brief
description of Rules SDK and shows how to work with the Rules SDK Decision Point
API The Rules SDK consists of four areas:

riList.add(rd.ruleSetRL(alias));

¢ Engine: provides for rules execution

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-3

Introduction to the Rules SDK Decision Point API

® Storage: provides access to rule dictionaries and repositories
e Editing: provides a programatic way to create and modify dictionary components

¢ Decision Point: provides an interface to access a dictionary and execute a decision
function

Other than for explanation purposes, there is not an explicit distinction between these
areas in Rules SDK. For example, to edit rules you also need to use the storage area of
Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help

describe the different modes of usage, rather than to describe distinct Rules SDK APIs.

8.3.1 Working with Decision Point API

The Decision Point API provides a concise way to execute rules. Most users create
Oracle Business Rules artifacts, including data model elements, rules, Decision Tables,
and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus, most
users do not need to work directly with the engine, storage, or editing parts of Rules
SDK.

To work with the Rules SDK Decision Point package you need to understand three
important classes:

e Deci si onPoi nt : is a helper class that follows the factory design pattern to create
instances of Deci si onPoi nt | nst ance. In most applications there should be one
Deci si onPoi nt object that is shared by all application threads. A caller uses the
get | nst ance() method of Deci si onPoi nt to get an instance of
Deci si onPoi nt | nst ance which can be used to call the defined Decision Point.

* Deci si onPoi nt Bui | der : follows the Builder design pattern to construct a
Decision Point.

e Deci si onPoi nt | nst ance: users call i nvoke() in this class to assert facts and
execute a decision function.

The Deci si onPoi nt classes support a fluent interface model so that methods can be
chained together. For more information, see

http://ww. martinfow er.com bliki/Fluentlnterface. htm
A Decision Point manages several aspects of rule execution, including:

e Useoforacle.rules.rl.Rul eSessi on objects

¢ Reloading of a dictionary when the dictionary is updated

To create a Decision Point in a Java application you need the following:

¢ Either the name of a dictionary to be loaded from an MDS repository or a pre-
loaded or acl e. rul es. sdk2. di cti onary. Rul eDi cti onary instance.

® The name of a decision function stored in the specified dictionary.

8.3.2 How to Obtain the Car Rental Sample Application

This chapter shows a car rental application that demonstrates the use of Rules SDK
and the Decision Point API. You can obtain the sample application in a ZIP file,

Car Rent al Appl i cati on. zi p. This ZIP contains a complete JDeveloper application
and project.

8-4 Designing Business Rules with Oracle Business Process Management

http://www.martinfowler.com/bliki/FluentInterface.html

Creating a Dictionary for Use with a Decision Point

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

To work with the sample unzip Car Rent al Appl i cati on. zi p into an appropriate
directory. The car rental application project contains a rules dictionary and several
Java examples using Rules SDK.

For more examples, see Introduction to the Grades Sample Application

8.3.3 How to Open the Car Rental Sample Application and Project

The Car Rental sample application shows you how to work with the Rules SDK
Decision Point APT.

To open the car rental sample application:

1. Start Oracle JDeveloper.

2. Open the car rental application in the directory where you unzipped the sample.
For example, from the File menu select Open... and in the Open dialog navigate to
the CarRental Application folder.

3. In the Open dialog select CarRental Application.jws and click Open.

4. Inthe Application Navigator, expand the CarRental Application, expand
Application Sources and Resources. This displays the Oracle Business Rules
dictionary named Car Rent al . r ul es and several Java source files.

8.4 Creating a Dictionary for Use with a Decision Point

The car rental sample uses the Rules SDK Decision Point API with either a pre-loaded
Oracle Business Rules dictionary or a repository stored in MDS. When you are
working in a development environment you can use the Decision Point API with the
pre-loaded dictionary signature. In a production environment you would typically use
a Decision Point with the MDS repository signature.

The CarRental dictionary is pre-defined and is available in the car rental sample
application.

To work with the Decision Point API you need to create a dictionary that contains a
decision function (the car rental sample application comes with a predefined
dictionary and decision function).

You perform the following steps to create a dictionary and a decision function:
e How to Create Data Model Elements for Use with a Decision Point
e How to View a Decision Function to Call from the Decision Point

e How to Create Rules or Decision Tables for the Decision Function

8.4.1 How to Create Data Model Elements for Use with a Decision Point

Note:

Note that the screen shots reflect a previous version, however, the content is
applicable to the current release.

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-5

Creating a Dictionary for Use with a Decision Point

You need the following to add to a decision function when you create an application
with a Decision Point.

¢ A dictionary containing data model elements that you use to create rules or
Decision Tables and when working with ADF Business Components fact types, you
need to add links for the Decision Point support dictionary. For more information,
see Working with Data Model Elements. For more information, see Working with
Oracle Business Rules and ADF Business Components.

* A dictionary containing fact definitions. For more information, see Working with
Facts and Value Sets.

To view the data model in the sample application:

1. In Rules Designer, click the Facts navigation tab.
2. Select the Java Facts tab, as shown in Figure 8-1.

The Java Facts tab shows four fact types imported, in addition to the fact types
provided as built-in to the dictionary.

The Dri ver Java Fact is imported from the Dr i ver Java class in the project.
The Deni al Java Fact is imported from Deni al Java class in the project.

The Li censeType and Vehi cl eType facts are imported from the nested enum
classes defined in the Dr i ver class.

Figure 8-1 Defined Java Facts for the Car Rental Sample Application

OfarRentaJ.mJes =

EE - R (! @
“J Facts
F= Functions Java Facts: @+ RS
{x) Globals Alias Class Description
. = Denial oracle middleware rules, dema, carrental, Denial
o B = Driver oracle, middleware rules,dema, carrental Driver
D Links = LlicenseType oracle.middleware rules.demo.carrent al. Driverflicense. .
Q Eiadicisn Bz i VehicleType oracle,middleware. rules,demo, carrent al, Driver gy ehicle. .
4 . &g ActionType oracle. rules, sdkz2, decisionpoint, Action Type
3 %Translaﬂons & KevChain oracle.rules, sdkz2, decisionpaint. KeyChain
Rulesets “H‘ b4 @ KevedActionType oracle.rules, sdkz2, decisionpoint. KeyedactionType
@ Rulesetl @ DecisionPoint oracle, rules, sdkz2, decisionpoint, DecisionPoint
i@y DecsionPointBuilder oracle.rules . sdkZ2, decisionpoint. DecisionPaint Builder
@y DecdsionPointinstance orache.rules, sdkZ, decisionpoint, DecisionPoint Instance
@ Cbject java lang, Object
Ey String java.lang.Skring
&y Biglnteger java, math,Biglntegar
@y Bigecimal java. math, BigDecimal
& Calendar java,ukil. Calendar
& “MLGregorianCalendar javaxml.datatvpe, ¥MLGregorianC alendar

WML Facts | JavaFacts | RLFacts || ADF-BCFacts

=

Design

When you use a Decision Point with Rules SDK, you call a decision function in a
specified dictionary. The decision function that you call can contain one or more
rulesets that are executed as part of the Decision Point.

Similarly, to view the ruleset in the supplied car rental sample application, expand the
CarRentalApplication in Rules Designer. In the CarRental Application, expand
Resources and double-click the CarRental.rules

8-6 Designing Business Rules with Oracle Business Process Management

Creating a Dictionary for Use with a Decision Point

8.4.2 How to View a Decision Function to Call from the Decision Point

When you work with the Decision Point API you use decision functions to expose an
Oracle Business Rules dictionary. For more information on decision functions, see
Working with Decision Functions.

To view the decision function in the car rental sample application:

1. In Rules Designer, click the Decision Functions navigation tab. This displays the
available decision functions in the CarRental dictionary, as shown in Figure 8-2.

Figure 8-2 Car Rental Sample Decision Function

QEarRental.rules]
Gv &3 20 ®

Facts
< Decision Functions

F« Functions
(x) Clobals Diecision Functions: TR A §

\ff Bucketsets Mame Description Wb Service
& Link B carrentaDecisionFunction 1)
inks

Q Decision Functions

‘E_"JTranslations
Rulesets 4‘ R
@} Rulesetl

=

Design

2. Select the row with CarRentalDecisionFunction and double-click the decision
function icon. This opens the Edit Decision Function dialog as shown in Figure 8-3.

The decision function Inputs table includes a single argument for a Driver fact
type.

The decision function Outputs table includes a single argument for a Denial fact
type.

The decision function Rulesets and Decision Functions area shows Denial
Rules:if-then in the Selected box.

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-7

Creating a Dictionary for Use with a Decision Point

Figure 8-3 Car Rental Decision Function for the Car Rental Sample Application

& Edit Decision Function

Marne: I_arRentalDecisio chic |
Description: | |
Fuule Firing Linnit: |un|imited H
[will Be Invoked As & Webservice
Check Rule Flow
Stateless
= Inputs “F X Aaw
Mame Fact Type Tree List
& driverinput Driver O O
= Outputs +XaAav
Mame Fack Type Tree List
[denials Deniial El

= Rulesets & Decision Functions

Available: Selected: Lo 4
59 Denial Rules: decisian table 5P Derial Rules: if-then

O

8.4.3 How to Create Rules or Decision Tables for the Decision Function

The car rental sample includes two rulesets, one with IF/THEN rules and another
containing a Decision Table. You can use either IF/THEN rules or Decision Tables or
both in your application if you are using a Decision Point.

To view the rules in the car rental sample application:

1. In Rules Designer click the Denial Rules:if-then ruleset, as shown in Figure 8-4.

8-8 Designing Business Rules with Oracle Business Process Management

Creating a Dictionary for Use with a Decision Point

Figure 8-4 Ruleset with IF/THEN Rules for the Car Rental Sample Application

QfarRantaJ.rules

& Facts

F« Functions

(x) Clobals

7 Bucketsets

D Links

Decision Functions

{L".‘_'g Translations
Rulesets o ¥

@ Rulesetl

@ Denial Rules; if-

@ Denial Rules: dec...

=

Qv 9e5 2O

@

+ Denial Rules:if-then ¥ [|Filter On Yiew: |OIF."THEN Rules v| 4 - o Bh) &8 A v

=l ¥ under age
Rentals should not be made to drivers under 21 per Renting Guidelines section 34.6

IF
Driver.age < Minimum driver age

<insert test>
THEN
assert new Denial { <add property = driver : Driver , reason @ "under age, age was " + Driver.age + ", minimum age is " + Minimum driver age)
call audit(rule @ "under age” , info : "driver age less than minimurn threshold for license number " + Driver JicenseMumber)
<insert ackionz

=l ¥ too many accidents
<enter description =

IF
Driver.previousfccidents = 5
<insert tests

THEN
assert new Denial { <add property = driver : Driver , reason @ "too many accidents”)

<insert ackionz

Design

2.

The Denial Rules:if-then ruleset includes two rules:

¢ under age: this rule defines the minimum age of the driver. The rule compares
the Dri ver instance age property to the global M ni num dri ver age. If the
driver is under this age, then a new Deni al fact is asserted. A call to the
decision function collects this Deni al fact, as defined in its output.

* too many accidents: this rule defines an upper threshold for the number of
accidents a driver can have before a rental for the driver is denied. The rule also
calls a user-defined function, audi t , to provide some auditing output about
why the Deni al is created.

To view the Decision Table in the car rental application, click the Denial
Rules:decision table ruleset in the Rules Designer, as shown in Figure 8-5.

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-9

Creating a Dictionary for Use with a Decision Point

Figure 8-5 Ruleset with Decision Table for the Car Rental Sample Application

OEarRental.rules =

Bv 90 DO ®

& Facts + Denial Rules: decision table Yiew: | Dienial DT v| 9 - %

F« Functions

n W Denial DT <enter description:=

X) Clobal

(X) Clobals []AdvancedMode [| Tree Mode [] Auto Conflict Resolution [W] Rule Active [| Logical — [w] Allow Gaps

e _

m/AULCKELSELS Pricrity: | medium |V| Effective Date: | Always valid

2D Links -

- mr g
< +Xiav & i-BBEDA

<f\, Decision Functions

= i Conditions R1 Rz R3 R4 RS R& R7 R RS
%] Translations Cl Driver.age <18 [18..40) =40
Rulesets 3 ¥ C2 DCriver.previousAccidents = <1 [1..5) ==5 =1 1.5 ==5

i i - - - - TRUCK, SPORTS, SEDAN
£ Rulesetl C3 Driver.vehicleType TRUCEK,... MOTOR...

&P Denial Rules: if-
&P Denial Rules: dec... | * Conflict Resolution

- Actions
A1 assert new Deniall i) | B i)
driver:
reason:)] "under a... "higher ri... "too ma... "higher ri... "too ma...
e Eit Colurns To Width

Design

8.4.4 What You Need to Know About Using Car Rental Sample with a Decision Table

The car rental sample application includes the Denial Rules: decision table ruleset. To
switch to use a Decision Table in the supplied decision function sample, move the
Denial Rules:if-then from the Selected area in the decision function and add the
Denial Rules: decision table ruleset, which uses a Decision Table to define similar
rules, as shown in Figure 8-6.

8-10 Designing Business Rules with Oracle Business Process Management

Creating a Java Application Using Rules SDK Decision Point

Figure 8-6 Decision Function for Car Rental Sample with Decision Table Ruleset

& Edit Decision Function

Marne: | CarRentalDecisionFunction |
Diescription: | |
Rule Firing Lirnit: |unlimited |v|

[] will Be Invoked As & Webservice

Check Rule Flaw
[¥] Gtateless
= Inputs X Aaw
Mame Fact Type Tree List
& driverInput Driver El El
= DOutputs + X Aawvw
Mame Fack Type Tree List
[denials Denial El

= Rulesets & Decision Functions

Available: Selecked: nw
@ Denial Rules: if-then @} Denial Rules: dedision table
2
L® |
<
L&
| Help | | Ok || Cancel |

8.5 Creating a Java Application Using Rules SDK Decision Point

When you use Rules SDK in a development environment, you have the option of
using Decision Point API with a pre-loaded dictionary. In a production environment
you typically use the Decision Point API with the MDS repository signature and the
dictionary is stored in MDS. For more information on using a Decision Point with, see
What You Need to Know About Using Decision Point in a Production Environment.

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

The CarRentalProject project includes the com exanpl e. r ul es. deno package that
includes the car rental sample file,

Car Rent al Wt hDeci si onPoi nt Usi ngPr el oadedDi cti onary.java. The
project also includes several . j ava source files that support different variations for
using Decision Point. Table 8-1 provides a summary of the different versions of the car
rental sample.

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-11

Creating a Java Application Using Rules SDK Decision Point

Table 8-1 Java Files in the Decision Point Sample CarRentalProject

Base Java Filename

Description

Car Rent al

This is the base class for all of the examples. It contains constant values
for using the CarRental dictionary and a method cr eat eDri vers
which creates instances of the Dri ver class.

Car Rent al Wt hDeci si onPoi nt

Contains a static attribute of type Deci si onPoi nt and a method
checkDri ver () thatinvokes a Decision Point with a specified
instance of the Dri ver class. This class includes these methods for the
sample application so that both the MDS repository and pre-loaded
dictionary examples can share the same checkDri ver ()
implementation.

Car Rent al Wt hDeci si onPoi nt Usi
ngMisReposi tory

Contains an example of creating a Decision Point that uses MDS to
access and load the rule dictionary. In a production environment, most
applications use the Decision Point API with MDS.

Car Rent al Wt hDeci si onPoi nt Usi
ngPr el oadedDi cti onary

Contains an example of creating a Decision Point from an instance of
the Rul eDi cti onary class. This example also contains code for
manually loading the dictionary to create a Rul eDi ct i onary instance.

Car Rent al Wt hRul eSessi on

Contains an advanced usage of the Engine API that is documented
further in the comments.

Car Rent al Wt hRul eSessi onPool

Contains an advanced usage of the Engine API that is documented
further in the comments.

Deni al

Contains the class that defines the Deni al fact type used to create the
rules and Decision Table.

Driver

Contains the class that defines the Dr i ver fact type used to create the
rules and Decision Table.

Dri ver Checker Runnabl e

Contains the class which can be used as a thread for simulating
concurrent users invoking the Decision Point.

8.5.1 How to Add a Decision Point Using Decision Point Builder

To use a Decision Point you create a Deci si onPoi nt instance using
Deci si onPoi nt Bui | der, as shown in example below:

static {
try {

/'l specifying the Decision Function and a pre-|oaded
/1 RuleDictionary instance

m deci si onPoint =

new Deci si onPoi nt Bui | der ()
. Wi t h(DF_NAME)
.wi th(l oadRul eDi ctionary())
cbuild();

} catch (SDKException e) {

Systemerr.printIn("Failed to build Decision Point: "

+ e. get Message());

e.printStackTrace();

}

The above example shows the Deci si onPoi nt Bui | der supports a fluent interface
pattern, so all methods can easily be chained together when you create a Decision

8-12 Designing Business Rules with Oracle Business Process Management

Creating a Java Application Using Rules SDK Decision Point

Point. The three most common methods for configuring the Decision Point with
Deci si onPoi nt Bui | der are overloaded to have the name wi t h() . Eachwi t h()
method takes a single argument of type Rul eDi cti onary, Di cti onar yFQN, or
St ri ng. The Deci si onPoi nt Bui | der also supports similar set and get methods:
get Deci si onFunction(), set Deci si onFunction(),getDictionary(),
setDictionary(),getDictionaryFQN(),setDi ctionaryFQ\().

This chain shown in example above includes the following steps:

1. The first step is to create a Deci si onPoi nt Bui | der instance with code such as
the following:

new Deci si onPoi nt Bui | der ()

2. Thew t h() method using a St ri ng argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.vi t h(DF_NAME)

The DF_NANE specifies the name of the decision function you define for your
application. For example for the sample car rental application DF_NAME is defined
in Car Rent al . j ava as Car Rent al Deci si onFuncti on.

3. Call only one of the other two wi t h() methods. In this case the sample code uses a
pre-loaded Rule Dictionary instance, containing the specified decision function.
The | oadDi cti onar y() method loads an instance of Rul eDi cti onary from a
file. Example 8-1 shows the | oadDi cti onar y() method. For more information,
see How to Use a Decision Point with a Pre-loaded Dictionary.

.wi th(l oadRul eDi ctionary())

4. Call the bui | d() method to construct and return a Deci si onPoi nt instance.

The Deci si onPoi nt instance is shared among all instances of the application, which
is why it is a static attribute and created in a static block. Another way of initializing
the Deci si onPoi nt would be to initialize the m deci si onPoi nt attribute with a
static method that created and returned a Deci si onPoi nt instance.

8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary

Example 8-1 shows the | oadRul eDi cti onar y() method that loads an instance of
RuleDictionary from a file.

When reading or writing a dictionary directly from a file as shown in Example 8-1,
ensure to set the encoding to UTF- 8. If this is not done, Unicode characters used in the
dictionary are corrupted. The UTF- 8 option must be set explicitly in the

Fi | el nput St reamor Qut put StreamW i t er constructor. Do not use Java classes
such as Fi | eReader and Fi | eW i t er, as these classes always use the platform
default encoding which is usually an ASCII variant rather than a Unicode variant.

Example 8-1 Load Rule Dictionary Method

private static RuleDictionary |oadRul eDictionary(){

Rul eDictionary dict = null;

Buf f er edReader reader = null;
try {

reader = new Buff er edReader (
new | nput St r eanReader (
new Fi | el nput St ream
new File(Dl CT_LOCATION)), "UTF-8"));

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-13

Creating a Java Application Using Rules SDK Decision Point

dict = RuleDictionary.readDictionary(reader,
new
Deci si onPoi nt Di cti onaryFi nder (null));

Li st <SDKWar ni ng> war ni ngs = new ArrayLi st <SDKWar ni ng>();

di ct. updat e(war ni ngs) ;
if (warnings.size() > 0) {
Systemerr.printIn("Validation warnings: " + warnings);

} catch (SDKException e){
Systemerr.println(e);

} catch (FileNot FoundException e){
Systemerr.printlin(e);

} catch (I CException e){
Systemerr.printin(e);

} finally {
if (reader !'=null) { try { reader.close(); } catch (I CException

ioe) {ioe.printStackTrace();}}
}

return dict;

}

8.5.3 How to Use Executor Service to Run Threads with Decision Point

The car rental sample allows you to use Oracle Business Rules and simulate multiple
concurrent users. The following code example shows use of the Java

Execut or Ser vi ce interface to execute multiple threads that invoke the Decision
Point. The Execut or Ser vi ce is not part of the Rules SDK Decision Point API.

Execut or Servi ce exec
Li st<Driver> drivers

Execut or s. newCachedThr eadPool () ;
createDrivers();

for (int i =0; i < NUM CONCURRENT; i++) {
Driver driver = drivers.get(i %drivers.size());
exec. execut e(new Dri ver Checker Runnabl e(driver));

}
The above example includes the following code for the sample application:

e (Create the Executor Service:

Execut or Servi ce exec = Execut ors. newCachedThr eadPool ();

e (Call method creat eDri vers(), defined in Car Rent al . j ava, to create a list of
Dri ver instances.

List<Driver> drivers = createDrivers();
* A loop through a list of Dr i ver instances to fill the driver list with drivers.

* A loop to start multiple threads from Dr i ver Checker Runnabl e instances. These
instances open a Decision Point and run the rules on each driver. For information
on this code, see How to Create and Use Decision Point Instances.

The following code example shows the code that waits for the threads to complete.

try {
exec. awai t Terni nation(5, TinmeUnit.SECONDS);

} catch (InterruptedException e) {
e.printStackTrace();

}

8-14 Designing Business Rules with Oracle Business Process Management

Creating a Java Application Using Rules SDK Decision Point

exec. shut down();

}

8.5.4 How to Create and Use Decision Point Instances

The Dri ver Checker Runnabl e instances call the checkDr i ver () method. Example
8-2 shows the checkDri ver () method that is defined in

Car Rent al W t hDeci si onPoi nt . The checkDr i ver () method handles invoking
Decision Point with a Dri ver instance.

Example 8-2 shows the following:

Getting a Deci si onPoi nt | nst ance from the static Deci si onPoi nt defined
with the Deci si onPoi nt Bui | der , with the following code.

Deci si onPoi nt I nstance i nstance = mdeci si onPoi nt. getlnstance();

Add inputs according to the signature of the decision function associated with the
Decision Point. This defines one argument of type Li st as the input. This Li st
contains the Dri ver instances:

i nstance. set | nputs(new ArrayList<Cbject>() {

{

}
1),

Invoke the Decision Point and store the return value. The return type follows the
same pattern as the decision function which is being called in the Decision Point.

add(driver);

Li st <Ohj ect> outputs = instance.invoke();

In this case the i nvoke() returns a Li st of length one, containing a Li st of
Deni al instances.

If the returnis a Li st of any other size than one, then this is an error:

if (outputs.isEnpty())
Systemerr.printIn("COops, no results");

The first entry that is returned from the Decision Point is cast to a List of type
Li st <Deni al >:

java.util.List<Denial> denials =
(java.util.List<Denial>)outputs.get(0);

If the denials list is empty, then no Deni al instances were asserted by the rules.
This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons
why the driver rental was rejected:

if (denials.isEnpty()) {
Systemout.printIn("Rental is allowed for " +
driver.getNanme());
} else {
for (Denial denial : denials) {
Systemout.printIn("Rental is denied for " +
deni al . getDriver().getName() +
' because " + denial.getReason());

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-15

Running the Car Rental Sample

8.5.4.1 Sample Code to Create a Decision Point Instance with getinstance()

The Dri ver Checker Runnabl e instances call the checkDr i ver () method. Example
8-2 shows the checkDr i ver () method that is defined in

Car Rent al Wt hDeci si onPoi nt . The checkDri ver () method handles invoking
Decision Point with a Dri ver instance.

Example 8-2 Code to Create a Decision Point Instance with getinstance()

public class CarRental WthDecisi onPoi nt extends CarRental {
protected static DecisionPoint mdecisionPoint;

public static void checkDriver(final Driver driver) {
try {
Deci si onPoi nt I nstance instance = m deci si onPoi nt. getlnstance();
i nstance. set | nputs(new ArrayList<Cbject>() {

{

}
1

Li st<Chj ect > out puts = instance.invoke();

add(driver);

if (outputs.isEnpty())
Systemerr.println("Oops, no results");

java.util.List<Denial> denials =
(java.util.List<Denial>)outputs.get(0);
if (denials.isEnmpty()) {
Systemout.printIn("Rental is allowed for " +
driver.getNane());
} else {
for (Denial denial : denials) {
Systemout.printIn("Rental is denied for " +
deni al . getDriver().getNanme() +
" because " + denial.getReason());

}
} catch (RLException e) {
e.printStackTrace();

} catch (SDKException e) {
e.printStackTrace();
}

}

8.6 Running the Car Rental Sample

In the car rental sample installed on your system, for the code shown in Example 8-1,
modify the value of DI CT_LOCATI ON to match the location of the dictionary on your
system.

To run the car rental sample on your system:

1. In the Application Navigator, select the dictionary and from the Edit menu select
Copy Path.

2. Inthe Car Rent al . j ava file, paste the path value into the DI CT_LOCATI ONvalue.

8-16 Designing Business Rules with Oracle Business Process Management

What You Need to Know About Using Decision Point in a Production Environment

3. In the CarRentalProject select the
CarRentalWithDecisionPointUsingPreloadedDictionary.java file.

4. Right-click and in the list select Run.

8.6.1 Sample Output from Car Rental
Example 8-3 shows sample output from car rental application.
Example 8-3 Output from Car Rental Sample

Rental is allowed for Carol

Rental is allowed for Alice

Rental is allowed for Alice

Rental is allowed for Carol

Rental is denied for Bob because under age, age was 15, mninumage is 21

Mar 13, 2009 11:18:00 AMoracle.rules.rl.exceptions.LogWiter flush

INFO Fired: under age because driver age |ess than mininmmthreshold for |icense
nunber d222

Mar 13, 2009 11:18:00 AMoracle.rules.rl.exceptions.LogWiter flush

INFO Fired: under age because driver age |ess than mininmmthreshold for |icense
nunber d222

Rental is denied for Bob because under age, age was 15, mninumage is 21

Rental is allowed for Alice

Rental is allowed for Eve

8.7 What You Need to Know About Using Decision Point in a Production
Environment

In a production environment you can use an MDS repository to store Oracle Business
Rules dictionaries. When you use an MDS repository to store the dictionary, the steps
shown in How to Add a Decision Point Using Decision Point Builder and How to Use
a Decision Point with a Pre-loaded Dictionary change to access the dictionary. The
Car Rent al Wt hDeci si onPoi nt Usi ngMisReposi t or y shows sample code for
using Decision Point with MDS.

To see a complete example with deployment steps showing the use of a Decision Point
to access a dictionary in MDS, see Adding a Servlet with Rules SDK Calls for Grades
Sample Application.

The following code example shows the use of Di ct i onar y FON with

Deci si onPoi nt Bui | der to access a dictionary in an MDS repository. The complete
example is shown in the sample code in

Car Rent al Wt hDeci si onPoi nt Usi ngMisReposi tory.

static {
try {
/'l specifying the Decision Function and Dictionary FQN
/1 loads the rules fromthe MDS repository.
m deci si onPoi nt = new Deci si onPoi nt Bui | der ()
. Wi t h(DF_NAVE)
Wi th(DI CT_FQN)
cbuild();
} catch (SDKException e) {
Systemerr.printIn("Failed to build Decision Point: " +
e. get Message());

Similar to the steps in section How to Add a Decision Point Using Decision Point
Builder, the above example shows the following:

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-17

What You Need to Know About Decision Point and Decision Tracing

1. The first step is to create a Deci si onPoi nt Bui | der instance with.

new Deci si onPoi nt Bui | der ()

2. Thewi t h() method using a St r i ng argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.wi t h(DF_NAVE)
The DF_NANE specifies the name of the decision function you define for your

application. For example for the car rental application this is defined in
Car Rent al . j ava a Car Rent al Deci si onFuncti on.

3. Call only one of the other two wi t h() methods. In this case the sample code calls
aDi cti onar yFQNto access an MDS repository. The code example in step 4
shows the routing that uses the dictionary package and the dictionary name to
create the Di cti onar yFQN.

.wi th(DI CT_FQN)
4. Call the bui | d() method to construct and return a Deci si onPoi nt instance.

protected static final String DI CT_PKG = "com exanpl e. rul es. denp";
protected static final String DI CT_NAME = "CarRental ";

protected static final DictionaryFQN DI CT_FQN =
new Di ctionaryFQN(DI CT_PKG, DI CT_NAME);
protected static final String DF_NAME = "CarRental Deci si onFunction";

8.8 What You Need to Know About Decision Point and Decision Tracing

The Rules SDK API contains methods to assist with processing a decision trace. These
methods process a decision trace to replace the RL names used in the trace with the
aliases used in the associated dictionary. This makes the decision trace naming
consistent with the naming used in the Oracle Business Rules dictionary.

The basic API for processing a decision trace requires a Rul eDi ct i onary object and
a Deci si onTr ace object:

Rul eDictionary dict = ...;
Deci sionTrace trace = ...;
di ct. processDeci si onTrace(trace);

This code shows the processing call that converts the naming in the decision trace to
use the same names, with aliases, as in the dictionary.

The Rules SDK Decision Point API contains methods that allow you configure
decision tracing and retrieve the resulting trace when you invoke a decision point.

Table 8-2 shows the Decision Point API methods for setting decision trace options.

Table 8-2 Decision Point Decision Tracing Methods

Method Description

deci si onTrace Get the decision trace produced from the call to invoke.
Returns Deci si onTr ace

8-18 Designing Business Rules with Oracle Business Process Management

What You Need to Know About Decision Point and Decision Tracing

Table 8-2 (Cont.) Decision Point Decision Tracing Methods

Method

Description

get Deci si onTr acelLevel

Get the decision trace level to be used by the RuleSession.
This value defaults to DECI SI ON_TRACE_OFF, which
means no trace information is gathered. Possible values
are: DECI SI ON_TRACE_OFF

DECI S| ON_TRACE_DEVEL OPMENT
DECI S| ON_TRACE_PRODUCTI ON
Return Type: String

get Deci si onTraceLi m t

Get the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

Return Type: int

set Deci si onTracelevel

Set the decision trace level to be used by the RuleSession.
This parameter value is a String. Possible values are:
DECI SI ON_TRACE_OFF

DEC! S| ON_TRACE_DEVEL OPNVENT
DECI S| ON_TRACE_PRODUCTI ON

set Deci si onTraceLim t

Set the decision trace limit, or maximum number of trace
elements which are retrieved for the trace.

8.8.1 Sample Usage of Decision Tracing

Example 8-4 shows sample usage of decision tracing with DecisionPoint APL

For more information on decision tracing, see Tracing Rule Execution in Fusion
Middleware Control Console in Administering Oracle SOA Suite and Oracle Business

Process Management Suite.

Example 8-4 Using Decision Trace from Decision Point API

Deci si onPoint dp = new Deci si onPoi nt Bui | der ()
Wi th(new Di ctionaryFQ\("com foo", "Bar"))

Wit h("MyDeci si onFunction")

. set Deci si onTraceLevel (Deci si onPoi nt Bui | der. DECI S| ON_TRACE_DEVEL OPMENT)

. set Deci si onTraceLi m t (24000)

Lbuild():

Deci si onPoi nt I nstance dpi = dp. getlnstance();

dpi . invoke();

Deci sionTrace trace = dpi.decisionTrace();

Working with Rules in Standalone (Non SOA/BPM) Scenarios 8-19

What You Need to Know About Decision Point and Decision Tracing

8-20 Designing Business Rules with Oracle Business Process Management

9

Creating a Rule-enabled Non-SOA Java EE
Application

This chapter describes how to use Oracle JDeveloper to create a rule-enabled non-SOA
Java Enterprise Edition (EE) application. It also shows a sample application, a Java
Servlet, which runs as a Java EE application using Oracle Business Rules (this
describes using Oracle Business Rules without a SOA composite).

The chapter includes the following sections:

¢ Introduction to the Grades Sample Application

* Creating an Application and a Project for Grades Sample Application

¢ Creating Data Model Elements and Rules for the Grades Sample Application
* Adding a Servlet with Rules SDK Calls for Grades Sample Application

* Adding an HTML Test Page for Grades Sample Application

® Preparing the Grades Sample Application for Deployment

¢ Deploying and Running the Grades Sample Application

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

9.1 Introduction to the Grades Sample Application

The Grades application provides a sample use of Oracle Business Rules in a Java
Servlet. The servlet uses Rules SDK Decision Point API.

This sample demonstrates the following;:

* Creating rules in an Oracle Business Rules dictionary using an XSD schema that
defines the input and the output data, and the facts for the data model. In this case
you provide the XSD schema in the file gr ades. xsd.

* Creating a servlet that uses Oracle Business Rules to determine a grade for each test
score that is input.

* Creating a test page to supply input test scores and to submit the data to the grades
servlet.

¢ Deploying the application, running it, submitting test values, and seeing the
output.

There is another example--for more information, see How to Open the Car Rental
Sample Application and Project.

Creating a Rule-enabled Non-SOA Java EE Application 9-1

Creating an Application and a Project for Grades Sample Application

9.2 Creating an Application and a Project for Grades Sample Application

You can create Grades sample application by following the steps below.

Note:

The screen shots reflect a previous version, however, the content is applicable
to the current release.

To create the application and the project for the grades sample application, do the
following:

* Create a Fusion Web Application (ADF)
¢ Create a project in the application
® Add the schema to define the inputs, outputs, and the objects for the data model

* Create an Oracle Business Rules dictionary in the project

9.2.1 How to Create a Fusion Web Application for the Grades Sample Application

To work with Oracle Business Rules and create a Java EE application, you first need to
create the application in Oracle JDeveloper.

To create a fusion web application (ADF) for grades:

1. Create an application. You can do this in the Application Navigator by selecting
New Application..., or from the Application menu list by selecting New
Application....

2. In the Name your application dialog enter the application options, as shown in
Figure 9-1:

a. Inthe Application Template area, select Fusion Web Application.

b. Inthe Application Name field, enter an application name. For example, enter
G adeApp.

c. In the Directory field, specify a directory name or accept the default.

d. Inthe Application Package Prefix field, enter an application package prefix.
For example, com exanpl e. gr ades.

The prefix, followed by a period applies to objects created in the initial project
of an application.

9-2 Designing Business Rules with Oracle Business Process Management

Creating an Application and a Project for Grades Sample Application

Figure 9-1 Adding GradeApp Application

& Create Fusion Web Application (ADF) - Step 1 of 5

Name your application

Application Mame:

i) Application Name |Gradenpp

Project 1 Mame
)T\ Direckory:

] |C:'l,JDeveIoper'l,mywork‘l,Gradenpp

|| Browse. .. |

Application Package Prefix:

/!\

| com.example.grades|

Application Template:

Generic Application

Creates an application which includes a single project, The project is not
preconfigured with JDeveloper bechnologies, but can be customized to include any
technaologies.

Fusion Web Application {ADF)
Creates a databound ADF web application. The application consists of one project
for the view and controller components (ADF Faces and ADF Task Flows), and
another project For the data model (ADF Business Compaonents),

Java Desktop Application
Creates an application configured For building a generic Java application, The new
application will include a project that is preconfigured ko use Java, Swing, and
B " -

| teb |

| Next>J| Einish || Cancel |

3.
summary, as shown in Figure 9-2.

Figure 9-2 New Grades Application Named GradeApp

Application Mavigator E] Gradenpp.jws
. Gradedpp - -

= Praojects Bl & V&=
Model

Shaw: Al Projects -

@

File Summary: Total: 4

. YiewController Java Files Getting Starked* Mew~- o O
=-{_7 weh Caonkent N
ED \WEB-INF Overview The Java Files category contains java classes and interfaces
[Java Class
f5 fadfc-
E faces-config.xml Jawa Interface

trinidad-config. xml

-7 Page Flows

Cue Cards | Tutorials | Detailed Help

Page Flows Getting Skarted = Mew = =

Application Resources
|+ Data Conkrols
I+ Recently Opened Files

Overview Page Flows define an application's web pages

Enterprise JavaBeans 3.0 S04 Components | ADF Binding Files | Web Services

Crverview

9.2.2 How to Develop Accessible ADF Faces Pages

Click Finish. After creating the application Oracle JDeveloper displays the file

=
@

WPoks P

HML Files Getting 5

Overview The xML Files category contains =ml fils
#ML File:

Cue Cards | Tutorials | Detailed Help

Web Pages Getking St
Overview

Cffline Databases

The Web Pages category con

Oracle software implements the standards of the Web Content Accessibility
Guidelines (WCAG) 1.0 Level AA using an interpretation of the standards at htt p: //
www. or acl e. conl accessi bi | ity/standards. htm

ADF Faces user interface components have built-in accessibility support for visually
and physically impaired users. User agents such as a web browser rendering to
nonvisual media such as a screen reader can read component text descriptions to

Creating a Rule-enabled Non-SOA Java EE Application 9-3

http://www.oracle.com/accessibility/standards.html
http://www.oracle.com/accessibility/standards.html

Creating an Application and a Project for Grades Sample Application

provide useful information to impaired users. Access key support provides an
alternative method to access components and links using only the keyboard. ADF
Faces accessibility audit rules provide direction to create accessible images, tables,

frames, forms, error messages and popup windows using accessible HTML markup.

For information on how to develop accessible ADF Faces pages, see Developing

Accessible ADF Faces Pages in Oracle Fusion Middleware Web User Interface Developer’s
Guide for Oracle Application Development Framework.

9.2.3 How to Create the Grades Project

In the Grades sample application you do not use the Model or ViewController
projects. You create a project in the application for the grades sample project.

To create a grades project:

1. Inthe GradeApp application, in the Application Navigator, from the Application

Menu select New Project....

2. Inthe New Gallery, in the Items area select Generic Project.

3. Click OK.

4. In the Name your project page enter the values as shown in Figure 9-3:

a.

b.

9-4 Designing Business Rules with Oracle Business Process Management

In the Project Name field, enter a name. For example, enter G ades.

Enter or browse for a directory name, or accept the default.

Select the Project Technologies tab.

In the Available area double-click ADF Business Components to move this
item to the Selected area. This also adds Java to the Selected area as shown in

Figure 9-3.

Figure 9-3 Adding Generic Project to the Grades Application

Name your project

& Create Generic Project - Step 1 of 2

) Project Name

w Project Java Settings

Project Marne: | Grades

Directory:

| Ci\IDeveloperimyworklGradeappGrades

|| Browse. .. |

r Project Technologies r Generated Components r Associated Libraries |

Available:

Inkegrakion
ADF Faces
ADF Library Wweb Application Suppork
ADF Page Flow
ADF Swing
Ant
Database (Offline)
EJE
HTML
JavaBean

Selected:
ADF Business Components

Technology Description:

ADF Deskkop Integration with Microsoft OFfice.

Help

| mext>_” Finish || Cancel

Creating an Application and a Project for Grades Sample Application

5. Click Finish. This adds the Grades project.

9.2.4 How to Add the XML Schema and Generate JAXB Classes in the Grades Project

To create the Grades sample application you need to use the gr ades. xsd file, as
shown in example gr ades. xsd schema below. You can create and store the schema
file locally and then use Oracle JDeveloper to copy the file to your project.

<?xm version="'1.0" encoding="'UTF-8 ?>
<xs:schema target Nanespace="http://exanpl e. com grades"
xm ns: xs="http://wwmv. w3. or g/ 2001/ XM_Schena"
xm ns:tns="http://exanpl e. com grades"
attribut eFornDef aul t="qual i fied" el ement FornDefaul t ="qualified"
xm ns: xjc="http://java.sun. com xn / ns/j axb/ xj c"
xm ns: jaxb="http://java. sun. con xm / ns/j axb"
j axb: ext ensi onBi ndi ngPr ef i xes="xj c"
jaxb:version="2.0">

<xs: el ement nanme="Test Score">
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="name" type="xs:string"/>
<xs: el ement name="t est Name" type="xs:string"/>
<xs: el ement name="t est Score" type="xs:doubl e"/>
<xs: el ement name="t est Curve" type="xs:double"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Test G ade" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement nanme="grade" type="tns: G ade"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement>
<xs: si npl eType nane="Gr ade">
<xs:restriction base="xs:string">
<xs:enuneration val ue="A"/>
<xs:enuneration val ue="B"/>
<xs:enuneration val ue="C'/ >
<xs:enuneration val ue="D'/>
<xs:enuneration val ue="F"/>
</xs:restriction>
</ xs: si npl eType>
</ xs: schema>

To add the XML schema to the grades project:

1. Save the schema file as shown in example gr ades. xsd schema to a local file
named gr ades. xsd.

2. In the Application Navigator select the Grades project.
3. Right-click and in the context menu select New....

4. In the New Gallery select the All Technologies tab.

5. In the Categories area, expand General and select XML.

6. In the Items area, select XML Schema. Click OK.

Creating a Rule-enabled Non-SOA Java EE Application 9-5

Creating an Application and a Project for Grades Sample Application

7. In the Create XML Schema dialog, in the File Name field enter gr ades. xsd.

8. In the Create XML Schema dialog, in the Directory field add the xsd directory to
the Grades project path name, as shown in Figure 9-4.

Figure 9-4 Adding Schema to Grades Project in xsd Directory

X

|grades.xsd |

Create XML Schema

Enter the details of vour new file.

File Mame:

Directary:

||,JDeveloper'l,mywork'l,GradeP.pp'l,Grades'l,xsd|| Browse. .. |

| Help | | O J | Cancel |

Click OK.
9. In the gr ades. xsd file, select the Source tab.

10. Copy the schema shown in example above to the gr ades. xsd in the Grades
project, as shown in Figure 9-5.

Figure 9-5 Shows the Grades.xsd Schema File in the Grades Project

npplication Navigator E] “olGradedpp. jws ﬁ%grades.xsd E]
. Gradedpp - - '“ T @ ﬁ' ey
~ Projects Q@ W& <zyml wersion= 'l.0' encoding= 'UTF-§' 2>
m [l <xs:schema targetMNamespace="http:// exanple.con/grades”
[Resaurces ®ulns:xs="http: fwww. wi. org 200150 chena”
b % grades.xsd xmlns: tns="http: / /exanple. con/grades"™
Model attributeFormbefault="malified” elementForwbefault="mqualified"”
ViewController xmlns:xjc="http: //Java. sun. con/xnl /ns/Jaxb xjc™
xmlns: jaxb="http: //java. sun. con/xnl ma/jaxb™
jaxb:extensionBindingPrefixes="xjc"
jaxb:version="2.0">=
=] <xs:element name="Testicore™s
= <xs: complexType>
= XS : SeqUence’:
<x=z:element nawe="nawe” type="xs:string” />
<¥s:element name="testName” Cype="®s:5tring” />
<x=z:element nawe="test3core” type="wxs:double” /=
<¥s:element name="testliurve” tCype="xs:double™/>
I» Application Resources < /%8 : Sequence’
|+ Data Controls < /%5 : complexType:
I» Recently Cpened Files < /%= relement
Design | Source | History [l

9.2.4.1 How to generate JAXB 2.0 content model from grades schema

To generate JAXB 2.0 content model from grades schema:

1. Inthe Application Navigator, in the Grades project expand Resources and select
grades.xsd.

2. Right-click and in the context menu select Generate JAXB 2.0 Content Model.

3. In the JAXB 2.0 Content Model from XML Schema dialog, click OK.

9-6 Designing Business Rules with Oracle Business Process Management

Creating an Application and a Project for Grades Sample Application

9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project

After creating a project in Oracle JDeveloper create business rules within the Grades
project.

To use business rules with Oracle JDeveloper, you do the following:
* Add a business rule to the project and import gr ades. xsd schema
¢ Create input and output variables

* Create an Oracle Business Rules dictionary in the project

To create a business rules dictionary in the business tier:

1. In the Application Navigator, select the Grades project.

2. Right-click and in the context menu select New.... and select the All Technologies
tab.

3. In the New Gallery, in the Categories area, expand Business Tier and select
Business Rules.

4. In the New Gallery, in the Items area, select Business Rules. Click OK.

Oracle JDeveloper displays the Create Business Rules dialog, as shown in Figure

9-6.
Figure 9-6 Adding a Business Rule to Grades with the Create Business Rules
Dialog
& Create Business Rules E|
Business Rule
A business rule defines or constrains one aspect of wour business that is intended to assert business @

structure or influence the behavior of vour business,

General | Adwanced

(5) Create Dictionary () Impart Dictionary

Specify the nare and package For the dictionary that will be created.

Mame: | CracleRules1 |

Package: | com.example.grades |

Project: |C:'l,JDeveloper'l,mywork'l,GradeApp'l,Grades'l,Grades.jpr |

InputsCutputs: X aw
Direction Mame Tvpe
Lecd |

5. In the Name field, enter a name to name the dictionary. For example, enter
Gr adi ngRul es.

6. To add an input, from the list next to the Add button select Input....

Creating a Rule-enabled Non-SOA Java EE Application 9-7

Creating an Application and a Project for Grades Sample Application

7. In the Type Chooser, expand the Project Schemas Files folder and expand
gr ades. xsd. Select the input TestScore, as shown in Figure 9-7.

Figure 9-7 Shows the Type Chooser Dialog with TestScore Element

) Type Chooser

X

=

Ck Twpe Explorer

BB Project Schema Files
B2 grades.xsd

-y TestGrade

B34 TestScore

Type: |{http:,l',l'example.com,l'grades}TestScore

[] Show Detailed Made Information

8. On the Type Chooser window, click OK. This displays the Create Business Rules

dialog.

9. In the Create Business Rules dialog, in a similar manner to the input add the output
by selecting Output... to add the output element Test Gr ade from the

gr ades. xsd schema.

The resulting Create Business Rules dialog is shown in Figure 9-8.

Figure 9-8 Create Business Rules Dialog with Grades Input and Output

Create Business Rules

Business Rule

influence the behavior of your business.,

& business rule defines or constrains one aspect of your business that is intended to assert business struckure or @

3

General | Advanced

(%) Create Dictionary () Impart Dictionary

Specify the name and package for the dictionary that wil be created.

Mame: | GradingRules

Package: |c0m.example.grades

Project: |C:'I,JDeve\oper'l,mywork'l,Gradenpp'l,Grades'l,Grades.jpr

Inputs/Outputs:

Direction Name

Cutput TeskGrade {http:fiexample.com/grades} TestGrade

core

9-8 Designing Business Rules with Oracle Business Process Management

Creating Data Model Elements and Rules for the Grades Sample Application

Click OK. Oracle JDeveloper creates the GradingRules dictionary as shown in
Figure 9-9.

10. In the File menu, select Save All to save your work.

Figure 9-9 Shows the New Grading Rules Dictionary

Application Mavigator E] | Gradedpp. jus a‘-'a,grades.xsd [QGradingRules.rules | E]
(&l cradespp ~EH-| A 5 @) 5O @
~ Projects [@) @) W r =

— i Facts A ;i
= [0 Grades # Ruleset 1 ¥ [Akeron Yew |[QIFT. | dp~ 38 T@EH&a v

£ Resources Fe Functions

[--Y grachlas.xsd (%) Globals
Q GradingRules.rules To create a Rule or Decision Table, please click the plus sign above.

adel 7 Bucketsets
ViewController D Links
@ Drecision Functions

Rulesets a3 ¥
P Ruleset_1

|- Application Resources
|+ Data Controls

I+ Recently Opened Files &

Dresign
= GradingRules.rules -, E]i [ElBusiness Rule validation - Log 5]
f [E2] Dictionary - GradingRules.rules Display Mew Warnings Firsk

?@ﬂ c'&, j ® Message Dictionaty Object Pr

Y RUL-0S163; The Fact type "TestScore” is not used in any ruleset called by, GradingRules/Data ModeliDecision FunctiondDeci, ..
Y RUL-05164: The Fact bvpe "TeshGrade" is referenced, but is not asserted ... GradingRules/Data Model/Decision FunckioniDeci, ..

(] Decision Functions
-7 Rulesets SDEK WWarnings: 2
Messages Feedback | Business Rule validation A=

Last Validation Time: 10:15:47 AM PDT

Note that the business rule validation log area for the new dictionary shows several
validation warnings. These validation warning messages are cleared as you modify
the dictionary in later steps.

9.3 Creating Data Model Elements and Rules for the Grades Sample
Application

Create data model elements and rules for the grades sample application by following
the steps below.

To create the data model and the business rules for the Grades sample application, do
the following:

¢ Create value sets for grades
* Create rules by adding a Decision Table for grades
e Split the Decision Table and add actions for rules

e Rename the default decision function

Creating a Rule-enabled Non-SOA Java EE Application 9-9

Creating Data Model Elements and Rules for the Grades Sample Application

9.3.1 How to Create Value Sets for Grades Sample Application

In this example you associate a value set with a fact type. This supports using a
Decision Table where you need value sets that specify how to draw values for each
cell in the Decision Table (for the conditions in the Decision Table).

To create the value set for the grades sample application:

1.

9.

In Rules Designer, select the Value Sets navigation tab.

From the list next to the Create Value Set... button, select List of Ranges.
For the value set, double-click in the Name field to select the default name.
Enter G ade Scal e, and press Enter to accept the value set name.

In the Value Set table, double-click the icon for the Grade Scale value set to display
the Edit Value Set dialog.

In the Edit Value Set dialog, click Add to add a value and click Add three times to
add three more values.

In the Endpoint field, enter 90 for the top endpoint and press Enter to accept the
new value.

For the next value, in the Endpoint field enter 80 and press Enter to accept the new
value. Similarly, for the next two values enter values in the Endpoint field, values
70 and 60.

In the Included Endpoint field for each value select each check box.

10. Modify the Alias field for each value to enter the values A, B, C, D, and F, for each

corresponding range, (press Enter after you add each alias).

9.3.2 How to Associate a Value Set with a Fact Property

To prepare for creating Decision Tables you can associate a global value set with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the value set when you create a Decision Table.

To associate a value set with a fact property:

1.

2.

In Rules Designer, select the Facts navigation tab.
In the Facts navigation tab select the XML Facts tab.

Double-click the XML fact icon for the TestScore fact. This displays the Edit XML
Fact dialog.

In the Edit XML Fact dialog select the testScore property.
In the Value Set field, from the list select Grade Scale.

Click OK.

9-10 Designing Business Rules with Oracle Business Process Management

Creating Data Model Elements and Rules for the Grades Sample Application

9.3.3 How to Add a Decision Table for Grades Sample Application

You create rules in a Decision Table to process input facts and to produce output facts,
or to produce intermediate conclusions that Oracle Business Rules can further process
using additional rules or in another Decision Table.

To use a Decision Table for rules in this application you work with facts representing a
test score. Then, you use a Decision Table to create rules based on the test score to
produce a grade.

To add a decision table for Grades application:

1. In Rules Designer, select Ruleset_1 under the Rulesets list.

2. In Ruleset_1, click Create from the Decision Table area on the Overview tab. This
creates DecisionTable_1. You can ignore the warning messages shown in the
Business Rule Validation log area. You remove these warning messages in later
steps.

3. In the Decision Table, DecisionTable_1, click the Add button and from the list
select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the variables
navigator expand TestScore and select t est Scor e. This enters the expression
Test Scor e. t est Scor e for condition C1.

If you view the rules validation log, you should see warning messages. You remove
these warning messages as you modify the Decision Table in later steps.

9.3.4 How to Add an Action to a Decision Table

To add an action to a decision table:

You add an action to the Decision Table to assert a new Grade fact.

1. In the Decision Table, click the Add button and from the list select Action and
select Assert New.

2. In the Actions area, double-click Assert New.
This displays the Action Editor dialog.
3. Inthe Action Editor dialog, in the Facts area select TestGrade.

4. In the Action Editor dialog, in the Properties table for the property grade, select the
Parameterized check box and the Constant check box.

This specifies that each rule independently sets the grade.
5. Inthe Action Editor dialog select the Always Selected check box.
6. In the Action Editor dialog click OK.

7. Select Save All from the File main menu to save your work.

Next you add rules to the Decision Table and specify an action for each rule.

Creating a Rule-enabled Non-SOA Java EE Application 9-11

Creating Data Model Elements and Rules for the Grades Sample Application

9.3.5 How to Add Rules in the Decision Table for Grades Sample Application

You can use the Decision Table split operation to create rules for the value set
associated with the conditions row in the Decision Table. This creates one rule for
every value.

To split the decision table, from the Decision Table, click the Split Table button from
the list select Split Table. The split operation eliminates the "do not care" cells from
the table. The table now shows five rules that cover all ranges, as shown in Figure 9-10.

These steps produce validation warnings for action cells with missing expressions.
You fix these problems in later steps when you define actions for each rule.

Figure 9-10 Splitting a Decision Table Using Split Table Operation for Grades

OGradingRules.rules | E]
Qv PEY @O @
&) Facts P p——
+ Ruleset 1 liew: | Decision Table_1 v| 4 - R
Fx Functions
¥ = DecisionTable 1 =enter description =
(x) Clobals RS
%, - - i B
7 Bucketsets TR IAav B H-RIGQEER
oD Links - Conditions Rl Rz R3 R4 RS
Cl TestScoretestScore F 8] C B A
& Decision Functions
g_'j Translations
Rulesets + x
&P Ruleset1
< Actions
Al assertnew TestGradel,
grade:]
c [¥] Fit: Columns To Width
Design

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the result, a grade property, associated
with TestGrade for each action cell in the Actions area. The possible choices for each
grade property are the valid grades. In this step you fill in a value for each of the rules.
The values you enter correspond to the conditions that form each rule in the Decision
Table.

1. Inthe Actions area, double-click the action cell for rule R1 as shown in Figure 9-11.

9-12 Designing Business Rules with Oracle Business Process Management

Creating Data Model Elements and Rules for the Grades Sample Application

Figure 9-11 Adding Action Cell Values to Grades Decision Table

QGradingRules.rules E]
B 3 @ 0 @
-4 Fact 5 —
& Facts Ruleset 1 Wi | DecisionTable_1 v| 4‘ - R
F= Functions
¥ = DecisionTable 1 =enter description =
(x) Globals AR
; o A o o 3
7 Bucketsets ALRL: X Aav BRI QITED
& Links - Conditions Rl Rz R3 R4 RS
C1 TestScore.bestScore F o] C B A
Q Decision Functions
% Translations
Rulesets + R
&P Rulesetl
- Actions
AL gssertnew TestGradel,
grade:)]
| E
rll
Testrade.grade
Grade. &
Grade.B
Grade,
Grade.D
Grade.F
e Fit Colurns To Width
Design

2. In the list select the corresponding value for the action cell. For example, select
Grade.F.

3. For each of the remaining action cells select the appropriate value for TestScore: D,
C,B,and A.

9.3.6 How to Rename the Decision Function for Grades Sample Application

The name you specify when you use a decision function with a Rules SDK Decision
Point must match the name of a decision function in the dictionary. To make the name
match, you can rename the decision function to any name you like. Thus, for this
example you rename the default decision function to use the name

G adesDeci si onFuncti on.

To rename the decision function:

1. In the Application Navigator, in the Grades project, expand the Resources folder
and double-click the dictionary GradingRules.rules.

2. Select the Decision Functions navigation tab.

3. In the Name field in the Decision Functions table edit the decision function name
to enter the value G- adesDeci si onFunct i on, and then press Enter, as shown in
Figure 9-12.

Creating a Rule-enabled Non-SOA Java EE Application 9-13

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-12 Renaming Decision Function in Rules Designer

Q] Gradesservlet, java QGradingRules.rules | E]
By D& YO @
&3 Facts Decision Functions
F« Functions
tﬂ Clobals Drecision Functions: @E} “i‘ / R
{;7 Bucketsets Description ‘Web Service
= Links

Q Decision Functions
‘E;"J Translations

Rulesets 4‘ 2@
@) Rulesetl

=

Design

9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application

The Grades sample application includes a servlet that uses the Rules Engine.

To add this servlet with Oracle Business Rules you need to understand the important
Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created
with Rules Designer, you do the following;:

* Create initialization steps that you perform one time in the servleti ni t routine.
¢ Create a servlet ser vi ce routine using the Rules SDK Decision Point APL

® Perform steps to add the servlet code in the project.

For more information on Rules SDK Decision Point API, see Working with Rules in
Standalone (Non SOA /BPM) Scenarios.

9.4.1 How to Add a Servlet to the Grades Project
You add a servlet to the grades project using the Create HTTP Servlet wizard.

To add a servlet to the Grades project with Oracle JDeveloper:

=

In the Application Navigator, select the Grades project.
2. Right-click the Grades project and in the context menu select New....
3. In the New Gallery, select the All Technologies tab.
4. In the New Gallery, in the Categories area expand Web Tier and select Servlets.
5. In the New Gallery, in the Items area select HTTP Servlet. Click OK.
Oracle JDeveloper displays the Create HTTP Servlet Welcome page.
6. Click Next.
This displays the Web Application page.
7. Select Servlet 2.5\JSP 2.1 (Java EE 1.5) and click Next.

This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.

9-14 Designing Business Rules with Oracle Business Process Management

Adding a Servlet with Rules SDK Calls for Grades Sample Application

. Enter values in Create HTTP Servlet - Step 1 of 3: Servlet Information page, as
follows, and as shown in Figure 9-13.

¢ Class: G adesSer vl et

e Package: com exanpl e. gr ades

¢ Generate Content Type: HTM.

* Generate Header Comments: unchecked

¢ Implement Methods: service() checked and all other check boxes unchecked

Figure 9-13 Create HTTP Servlet Wizard - Step 1 of 3: Servlet Information

& Create HTTP Serviet - Step 1 of 3: Servlet Information

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enter servlet details

Class: | GradasServlet |
Package: |com.example.grades |V| | Erowse...
Generate Content Type: |HTML - |

[] Generate Header Comments

Irnplement Methods

service()

| Help | < Back. " Iext = J Cancel

Click Next.

This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as
shown in Figure 9-14.

Creating a Rule-enabled Non-SOA Java EE Application 9-15

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-14 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information

® Create HTTP Servlet - Step 2 of 3: Mapping Information

Create HTTP Servlet - Step 2 of 3: Mapping Information

Enter servlet mapping,
‘hile this is not required to create a servlet, it is required to run a serviet.

Specify a name and mapping for the serviet,

Mapping Details

Mame! |GradesServIet |

URL Pattern: | loradesservlet |

| Help | < Back. " Mext = || Finish || Cancel

9. Configure this dialog as follows:
e Name: G adesSer vl et
e URL Pattern: / gr adesser vl et

Click Finish when done.

JDeveloper adds a Web Content folder to the project and creates a
G adesSer vl et . j ava file and opens the file in the editor as shown in Figure
9-15.

9-16 Designing Business Rules with Oracle Business Process Management

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Figure 9-15 Generated GradesServlet.java

\\>GradingRuIes.ruIes |\>OracIeRuIesl.rules ||§]Grade.java @GradesServlet.iava E]
“\ it]
(8- 252 BUIRBEE ARkl u

package con.example.grades:

[Show Selected Element Orily |

import ...;

Elpublic class Grades3ervlet extends HttpServlet {
private static final 3triny CONTENT T¥PE = "text/htul: charset=windows-1252":

El public woid init(ServletConfig config) throws ServletException |
super.init{config);

}

public woid service (HotpSerwletRedquest redquest,
HtcpfervletResponse response) throws ServletException,
=] IDException !
response. setContentType | CONTENT TYPE) ;
PrintWriter out = response.getWriter();
out.println("<html>="):
out.println{"<head=<title>GradesServlets/titles< head=") ;
out.println(<body="):
out.println{”<p=The servlet has received a POST or GET. This iz the reply.</ p>"
out.printin(”</bodyx<htmls=") ;
out.close();

Source | Design | History

10. Replace the generated servlet with the source as shown in the grades application
example below.

package com exanpl e. grades;

inmport java.io.lOException;
inmport java.io.PrintWiter;

inmport java.util.ArraylList;
inport java.util.List;

import javax.servlet.ServletConfig;

inmport javax.servlet.ServletException;

inmport javax.servlet.http. HtpServlet;

inmport javax.servlet.http.HtpServletRequest;
import javax.servlet.http. HtpServletResponse;

inmport oracle.rules.rl.exceptions. RLExcepti on;

import oracle.rul es. sdk2. deci si onpoi nt. Deci si onPoi nt ;

import oracle.rul es.sdk2. deci si onpoi nt. Deci si onPoi nt Bui | der;
i mport oracle.rul es.sdk2. deci si onpoi nt . Deci si onPoi nt | nst ance;
inmport oracle.rul es.sdk2. exception. SDKExcepti on;

inmport oracle.rul es.sdk2.repository.DictionaryFQN,

public class GadesServlet extends HttpServlet {

private static final String CONTENT_TYPE = "text/htm";
private static final String DI CT_PKG = "com exanpl e. grades";
private static final String DI CT_NAME = "G adi ngRul es";
private static final DictionaryFQN DI CT_FON =

new Di ctionaryFQN(DI CT_PKG, DI CT_NAME);
private static final String DF_NAME = "G adesDeci si onFunction";

private DecisionPoint mdecisionPoint = null; // init ininit()

Creating a Rule-enabled Non-SOA Java EE Application 9-17

Adding a Servlet with Rules SDK Calls for Grades Sample Application

public void init(ServletConfig config) throws ServletException {
super.init(config);

try {

/'l specifying the Decision Function and Dictionary FQN
/1 1oad the rules fromthe MDS repository.
m deci si onPoi nt = new Deci si onPoi nt Bui | der ()

. Wi t h(DF_NAVE)
.wi th(DI CT_FQN)
cbuild();
} catch (SDKException e) {
Systemerr.printIn("Failed to build Decision Point: " +

e. get Message());
throw new Servl et Exception(e);

}

public void service(HttpServletRequest request,
Ht t pSer vl et Response response) throws ServletException,
| OException {
Il retrieve paraneters
String name = request.get Paraneter("nanme");
String strScore = request.getParaneter("testScore");

/'l open output docunment
StringBuil der doc = new StringBuilder();
addHeader (doc) ;

Il create TestScore object to assert
final TestScore testScore = new TestScore();
t est Scor e. set Nane(nane) ;

try {
test Score. set Test Scor e(| nt eger. parsel nt(strScore));

} catch (Nunber For mat Exception e){ /* use default val */ }

/'l get DecisionPointlnstance for invocation
Deci si onPoi nt I nstance point = m deci sionPoi nt. getlnstance();

/1 set input paraneters
poi nt.setlnputs(new ArrayList() {{ add(testScore); }});

/'l invoke decision point and get result value
Test Grade testGade = nul | ;

try {

/'l invoke the decision point with our inputs

Li st<Cbj ect> result = point.invoke();

if (result.size() !=1){

error(doc, testScore.getNane(), "bad result", null);

}

/1 decision function returns a single TestG ade object

testGade = (TestGade)result.get(0);
} catch (RLException e) {

error(doc, testScore.getNanme(), "RLException occurred: ", e);
} catch (SDKException e) {

error(doc, testScore.getNanme(), "SDKException occurred", e);

}

if (testGade != null){
/1 create output table in document
openTabl e(doc);
addRow(doc, testScore.getNanme(), strScore, testGade.getGade());
cl oseTabl e(doc) ;

}

addFoot er (doc) ;

9-18 Designing Business Rules with Oracle Business Process Management

Adding a Servlet with Rules SDK Calls for Grades Sample Application

/1 write docunent

response. set Cont ent Type(CONTENT_TYPE) ;
PrintWiter out = response.getWiter();
out.println(doc);

out.close();

public static void addHeader (StringBuilder doc) {
doc. append("<htm >");
doc. append(“<head><title>G adesServl et</title></head>");
doc. append(" <body>");
doc. append(“<h1>Test Results</h1>");
}

public static void addFooter(StringBuilder doc) {
doc. append(" </ body></htm >");

}

public static void openTabl e(StringBuilder doc) {
doc. append(“<tabl e border=\"1\"");
doc. append(“<tr>");
doc. append(" <t h>Name</t h>");

doc. append("<t h>Score</th>");

doc. append(" <t h>G ade</th>");

doc. append("</tr>");

}

public static void closeTabl e(StringBuilder doc) {
doc. append("</tabl e>");

}

public static void addRow(StringBuilder doc, String name, String score, Gade grade){
doc. append("<tr>");
doc. append("<td>"+ nanme +"</td>");
doc. append("<td>"+ score +"'</td>");
doc. append("<td>"+ grade.val ue() +"</td>");
doc. append("</tr>");

("
("
("
("
}

public static void error(StringBuilder doc, String nane, String msg, Throwable t){
doc. append(“<tr>");
doc. append("<td>"+ name +'</td>");
doc. append("<td col span=2>"+ nsg + " " +t +'</td>");
doc. append("</tr>");

}

The above example includes a Oracle Business Rules Decision Point, that uses an MDS
repository to access the dictionary. For more information, see What You Need to
Know About Using Decision Point in a Production Environment.

When you add the Servlet as shown in the grades application example, note the
following:

e Inthei nit () method the servlet uses the Rules SDK Decision Point API for
Oracle Business Rules. For more information on using the Decision Point API, see
Working with Rules in Standalone (Non SOA /BPM) Scenarios.

* The Deci si onPoi nt Bui | der () requires arguments including a decision
function name and, in a production environment a dictionary FQN to access a
dictionary in an MDS repository, as shown:

m deci si onPoi nt = new Deci si onPoi nt Bui | der ()

Wi t h(DF_NAVE)
.wi th(DI CT_FQN)

Creating a Rule-enabled Non-SOA Java EE Application 9-19

Adding an HTML Test Page for Grades Sample Application

For more information on using the Decision Point API, see Working with Rules in
Standalone (Non SOA /BPM) Scenarios.

9.5 Adding an HTML Test Page for Grades Sample Application

Add an HTML test page for the grades application by following the steps below.

The Grades sample application includes an HTML test page that you use to invoke the
servlet you created in Adding a Servlet with Rules SDK Calls for Grades Sample
Application.

To add an HTML page to the servlet you use the Create HTML File wizard.

To add an HTML test page:

1. In the Application Navigator, in the Grades project select the Web Content folder.
2. Right-click the Web Content folder project and in the context menu select New....
3. In the New Gallery, select the All Technologies tab.
4. Inthe New Gallery, in the Categories area expand Web Tier and select HTML.
5. In the New Gallery, in the Items area select HTML Page. Click OK.
Oracle JDeveloper displays the Create HTML File dialog.
6. Configure this dialog as follows and as shown in Figure 9-16:
¢ File Name: i ndex. ht m
¢ Directory: C: \ JDevel oper\ nywor k\ G adeApp\ G ades\ publ i c_ht ni
Figure 9-16 Create HTML File Dialog
Create HTML File |

Enter the name, and directory for the HTML File,

File Name:
| indez. html |

Directary:

|C:'l,JDeveIoper'l,mywork'l,GradeApp'l,Grades'l,public_html | | Browse. .. |
[create as =ML file {* xhtml)

| Help | | (o] 4 | | Cancel |

Click OK.
JDeveloper adds i ndex. ht M to the Web Content folder and opens the editor.

7. In the editor for i ndex. ht nl , select the Source tab.

8. Copy and paste the HTML code from the HTML test page example below to
replace the contents of the i ndex. ht m file. Note that in the form element action
attribute uses the URL Pattern you specified in Figure 9-14.

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.01 Transitional //EN'" "http://www. w3.org/ TR htn 4/
| oose. dtd">
<htm >
<head>
<nmeta http-equi v="Content-Type" content="text/htnl; charset=w ndows-1252"></ et a>

9-20 Designing Business Rules with Oracle Business Process Management

Preparing the Grades Sample Application for Deployment

<title>Test Grade Exanple Servlet</title>

</ head>
<body>
<f orm nane="names_and_scores"
met hod="post "

action="/grades/ gradesservlet" >
<p>Name: <input type="text" name="nanme" /></p>
<p>Test Score: <input type="text" name="testScore"/></p>
<input type="submt" value="Submit">
</form
</ body>
</htm >

9. Select Save All from the File main menu to save your work.

9.6 Preparing the Grades Sample Application for Deployment

Business rules are deployed as part of the application for which you create a
deployment profile in Oracle JDeveloper.

You deploy the application to Oracle WebLogic Server.

9.6.1 How to Create the WAR File for the Grades Sample Application

You deploy the GradeApp sample application using JDeveloper with Oracle
WebLogic Server.

To create the WAR file for the grades sample application:
1. Inthe Application Navigator, select the Grades project.

2. Right-click the Grades project and in the context menu select Project Properties....
This displays the Project Properties dialog for the project.

3. In the Project Properties navigator, select the Deployment item as shown in
Figure 9-17.

Figure 9-17 Project Properties - Deployment

3 Project Properties - C:\JDeveloper\imywork\GradeApp\Grades¥Grades. jpr

(@@)| Deployment

[#- Project Source Paths () Use Custom Settings
[#-- ADF Model

----- ADF Wigw
- Ant Dieployment Profiles:

(2 Use Project Settings

[#-- Business Components
[Compiler
----- Dependencies

----- Extension

[Javadoc

----- Java EE Application

----- J5P Tag Libraries

----- J5P Visual Editar

----- Libraries and Classpath
----- Resaurce Bundle

----- RunyDebug/Prafile

----- Technology Scope

W| oK | | Cancel

Creating a Rule-enabled Non-SOA Java EE Application 9-21

Preparing the Grades Sample Application for Deployment

4. In the Project Properties dialog, click New....
This displays the Create Deployment Profile dialog.

5. In the Create Deployment Profile dialog, in the Archive Type list, select WAR
File.

6. Inthe Create Deployment Profile dialog, in the Name field enter gr ades, as
shown in Figure 9-18. Note the Name value uses the package value that you
specified in the f or melement act i on attribute in step 8 of Adding an HTML Test
Page for Grades Sample Application.

Figure 9-18 Create Deployment Profile Dialog for WAR File

& Create Deployment Profile §|

Click OK to create your new deployment profile and immediately open it to see its configuration,

Archive Type:
|'war File - |

Marme:

| grades |

Diescriphion:

Creates a profile for deploving the Java EE web module (WAR) to an application server. The WAR
consisks of the web components {J5Ps and servlets) and the corresponding deployvment descriptors,

| Help | OF, J | Cancel

7. Click OK.
This displays the Edit WAR Deployment Profile Properties dialog.

8. In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 9-19:

a. Setthe WAR File: C: \ JDevel oper\ mywor k\ Gr adeApp\ Gr ades\ depl oy
\ grades. war

b. Inthe Web Application Context Root area, select Specify Java EE Web
Context Root:

c. Inthe Specify Java EE Web Context Root: text entry area, enter gr ades.

d. Inthe Deployment Client Maximum Heap Size (in Megabytes): list select
Auto

9-22 Designing Business Rules with Oracle Business Process Management

Preparing the Grades Sample Application for Deployment

Figure 9-19 Edit WAR Deployment Properties - General

& Edit WAR Deployment Profile Properties

)| General
ral WAR File:
AR Opti
' prions |C:'l,JDe\rel0per'l,mywork'l,GradeP.pp'l,Grades'l,deploy'l,grades.war | [Browse... l
[=}- File Groups
E} Web Files ‘Web Application's Context Root:
H Contributars () Use Project's Java EE Web Context Root
Filters | GradeApp-Grades-context-root |
=5 WEB-INFIcIasses () Specify Java EE Web Context Raat:
¢ e Contributors
grades| |
Filters
[} WEB-INF{lib rs Deployment Client Maximum Heap Size (in Megabytes):| Auto +
L Contributors
Filters A 4
----- Profile Dependencies
=} Platfarm

. WebSphere 6.

=

9. In the Edit WAR Deployment Profile Properties dialog, click OK.

JDeveloper creates a deployment profile named gr ades (WAR Fi | e) as shown
in Figure 9-20.

Figure 9-20 Project Properties - Deployment Profile Created

& Project Properties - C:\JDeveloperimywork\GradeApp\GradesiGrades. jpr

Deployment

[Praject Source Paths) Use Custom Settings
[+ ADF Model
----- ADF Wi
[Ant

[#}-- Business Components | Edit... |

[Compiler] . | Mew...

----- Dependencies
| Delete |

Use Project Settings

Deployment Profiles:

----- EJE Module
----- Extension
[Javadoc

----- Java EE Application

----- J5P Taqg Libraries

----- J5P visual Editar

----- Libraries and Classpath
----- Resource Bundle

----- FunDebug/Profile

----- Technology Scope

| Help | (o4 | | Cancel

10. In the Project Properties dialog, click OK.

Creating a Rule-enabled Non-SOA Java EE Application 9-23

Preparing the Grades Sample Application for Deployment

9.6.2 How to Add the Rules Library to the Grades Sample Application

To add the rules library to the weblogic-application file:

1.

In the GradeApp application, in the Application Navigator expand Application
Resources.

Expand Descriptors and expand META-INF and double-click to open weblogic-
application.xml.

Add the or acl e. r ul es library reference to the webl ogi c-appl i cati on. xmi
fil e. Add the following lines, as shown in Figure 9-21.

<library-ref>
<l'i brary-name>oracl e. rul es</library-name>
</library-ref>

Figure 9-21 Adding Oracle Rules Library Reference to WebLogic Descriptor

Application Mavigatar

=7 Resources

=[] Web Conkent
-] WEB-INF
= Application Resources
= D Connections
E1-77) Descriptors
=3 META-INF

|+ Data Controls
I Recently Opened Files

4.

Gradedpp - > '“ - @ ﬁ\'
= Projects Bl F-rE=- <ruml wersion = 'l.0' encoding = 'windows-1252' >
=[5 Grades El <seblogic-application xmlns:xsi="http://wmr. w3, org/ 2001/ XML 3chena-instance” xsi
E1-27) Application Saurces Bl <listener:
EJ-1i{l com.example.grades <listener-class>oracle.nds. lcn.weblogic. WhLifecyclelistener< /listener-class
</listener:>

-[&] Grade.java

-|&] GradesServiet.java
jaxb.properties

@ ObjectFactory java
@ package-info.java
@ TestGrade java

B grades. xsd
------ Q GradingRules. rules

1 = l% weblogic-application. xml
=17 abF META-TNF
ifeal adfF-ronfin.seml

) s |[@findexchtml [[3] Gradesserdet java

| i“i GradesServlet.java [%wehlogic—application.xml @@E]
5]

B «<listemerz
<listener-class:oracle.adf.share.weblogic.listeners. ADFApplicationLlifecycle
</listener:-
E <library-ref:
<lihrary-name>-adf,oracle.donain< /library-name:-
<implementation-version-11.1.1.1.0< /implementation-vrersions-
</lihrary-ref>

Bf-1ibrary-ref:-
library-name-oracle. rules< /library-name
= /library-ref:-

= /weblogic-application:

Source | History

Save the webl ogi c- appl i cation. xm file.

9.6.3 How to Add the MDS Deployment File to the Grades Sample Application

To add the MDS deployment file:

1.

2.

In the Application Navigator, select the GradeApp application.

Right-click the GradeApp application and in the context menu select Application
Properties....

This displays the Application Properties dialog.

In the Application Properties navigator select the Deployment item, as shown in
Figure 9-22.

9-24 Designing Business Rules with Oracle Business Process Management

Preparing the Grades Sample Application for Deployment

Figure 9-22 Application Properties - Deployment

) Application Properties - C:\JDeveloperimywork\GradeApp\GradeApp. jws
I_J\ “

Deployment

S

Application Content
ik

() Use Custom Settings
() Use Application Settings

Resource Bundles

RUR Deployment Profiles:

Gradedpp_applicationl {EAR File) (Default)

L WS Palicy Stare

Security Deployment Options

deployed.

Application Policies

Credentials

Decide whether to migrate the Following security objects,
Users and Groups

Auto Generate and Synchronize weblogic-jdbe,xml Descriptors During Deployment

Decide whether to ovenarite the Following security objects if they were previously

Edit...

o ||

Caneel

4. Inthe Application Properties dialog, click New....

This displays the Create Deployment Profile dialog.

5. Configure this dialog as follows, as shown in Figure 9-23:

® Archive Type: MAR Fil e

e Name: net adat al

Figure 9-23 Create Deployment Profile Dialog for MAR File

X

& Create Deployment Profile

Click QK to create your new deplayment profile and immediately open it ko see its configuration,

Archive Type:
[MAR File ~|

Marne:

| metadatal] |

Drescription:

Creates a profile for deploying a metadata MAR, File,

=]]|

Cancel

Click OK.

This displays the Edit MAR Deployment Properties dialog as shown in Figure 9-24.

Creating a Rule-enabled Non-SOA Java EE Application 9-25

Preparing the Grades Sample Application for Deployment

Figure 9-24 Edit MAR Deployment Profile Properties - MAR Options

> Edit MAR Deployment Profile Properties rg|
(&)| maAR options
R [11AR Cptions MAR File
£} Metadata File Groups
EI |ser Metadata |C:'l,JDeveIoper'l,mywork'l,GradeP.pp'l,deplo\,r'l,metadata1.mar | I Browse. ..
L Directories ;
- HTML Raot Dir far Grades L] Compress Archive
- Directories [] Enable customizations For ADF metadata
L)
b 4

I QK J I Cancel]

6. Expand the Metadata File Groups item and select the User Metadata item and
click Add.

This displays the Add Contributor dialog.

7. Inthe Add Contributor dialog, click the Browse button and navigate to the
directory for the project that contains the Gr adi ngRul es. r ul es dictionary file.

In this example, navigate to C: \ JDevel oper\ nywor k\ G adeApp\ G ades and
click Select.

8. In the Add Contributor dialog, click OK to close the dialog. This displays the Edit
MAR Deployment Properties dialog as shown in Figure 9-25

9-26 Designing Business Rules with Oracle Business Process Management

Preparing the Grades Sample Application for Deployment

Figure 9-25 Edit MAR Deployment Profile Properties - User Metadata

& Edit MAR Deployment Profile Properties

e MAR Opkions
[} Metadata File Groups

—1-- HTML Roat Dir For Grades
Directaries
=+ HTML Roat Dir For ViewCor
L Directories

B

User Metadata

X

File Group Mame: |User Metadata

COrder of Contributors:

C:yIDeveloper\mywork) Gradedpp Grades

o]4

i I Caneel

I

9. In the Edit MAR Deployment Profile Properties dialog, expand the Metadata File

Groups and expand the User Metadata item and select Directories.

This displays the Directories page as shown in Figure 9-26.

Figure 9-26 Edit MAR Deployment Profile Properties - Directories

& Edit MAR Deployment Profile Properties

- MAR Options
() Metadata File Groups
EI User Metadata
- Directaries
-}-- HTML Rt Dir For Grades
i Directories
- HTML Roat Dir For ViewCor
i Directories

-

Directories

| Deselect All Customizations ‘

B[]E3 .des
== @ GradingRules_graphics. xml
E-[]EA dasses
C E[]E3 data
-~ Ee[]E3 com
B[] £ orace
B[]0 rules
B[] £3 public_htmi
@[]0 weB-INF
-] sre
. E-[]E cm
= s
b [E] grades.xsd

X

Expand All Nodes

Collapse all Modes

QK

i [Cancel

I

10. Select the oracle directory check box. This selects the GradingRules.rules
dictionary to be included in the MAR.

Click OK.

Creating a Rule-enabled Non-SOA Java EE Application 9-27

Preparing the Grades Sample Application for Deployment

JDeveloper creates an application deployment profile named nmet adat al (MAR
Fi | €) as shown in Figure 9-27.

Figure 9-27 Application Properties - Deployment - MAR

& Application Praperties - C:\JDeveloperimyworkiGradeAppiGradeApp. jws

Deployment

- dpplication Content () Use Custom Settings

(3) Use Application Settings

esource Bundles

- Run Deployment Profiles:

L WS Palicy Store - | 5| @radefpp_application] (EAR File) (Default) | Edit... |
- mekadatal (MAR File) —

Auto Generate and Synchronize weblogic-jdbe. xml Descriptors During Deployment

Security Deployment Options
Decide whether to overwrite the Following security objects if they were previously
deployed,
Application Policies
Credentials

Decide whether o migrate the Fallowing security objects,
Users and Groups

| Help | o] | | Cancel

Click OK in the Application Properties dialog.

9.6.4 How to Add the EAR File to the Grades Sample Application
Add an EAR file to the Grades sample application.

To add the ear file to the grades sample application:

1. In the Application Navigator, select the GradeApp application.
2. Right-click and in the context menu select Application Properties....

3. In the Application Properties dialog, select Deployment and click New.... This
displays the Create Deployment Profile dialog.

4. Configure this dialog as follows, as shown in Figure 9-28.
® Archive Type: EAR

e Name: gr ades

9-28 Designing Business Rules with Oracle Business Process Management

Preparing the Grades Sample Application for Deployment

Figure 9-28 Create Deployment Profile Dialog for EAR File

© Create Deployment Profile

Archive Type:

Click QK to create your new deployment profile and immediately open it ta see its configuration.

3

[EAR File

Marne:

Drescription:

Creates a profile for deploying the Java EE enterprise archive (EAR) file to an application server,
The EAR file consists of the application's assembled WaR, EJB JAR, and client JAR files.

Help |

[Ok _i [Cancel |

Click OK. This displays the Edit EAR Deployment Profile Properties dialog.

In the Edit Ear Deployment Profile Properties dialog, in the navigator select
Application Assembly as shown in Figure 9-29.

Figure 9-29 Edit EAR Deployment Profile Properties - Application Assembly

& Edit EAR Deployment Profile Properties [$_<|

(@)

[=}- File Groups

EI Application Descriptars
Lo Contributors
Filters

[T

Application Assembly

Select the Java EE modules that you would like to assemble inta vour Java EE application.

Java EE Modules:

Grades.jpr
[=l grades

Model. jpr

O Gradedpp_Model_adflibGradesppl
E} ViewCantroller. jpr

il Gradedpp_WiewController_webappl

(e J | Cancel

Configure this dialog as follows:

e Select the metadatal check box.

¢ Expand the Grades.jpr item and select the grades check box.

In the Edit EAR Deployment Profile Properties dialog, click OK.

JDeveloper creates an application deployment profile named gr ades(EAR Fi | e)

as shown in Figure 9-30.

Creating a Rule-enabled Non-SOA Java EE Application 9-29

Deploying and Running the Grades Sample Application

9.

Figure 9-30 Application Properties - Deployment - EAR

) Application Properties - C:\Developerimywork\GradeApp\GradeApp. jws

Deployment

pplication Content () Use Custom Settings

() Use Application Settings

- Resource Bundles
F- Run Deployment Profiles:
s Policy Stors = I=| Gradeapp_application1 (EAR File) (Default) | Edit... |
; metadatal (MAR, File) —
grades (EAR. File)

Auto Generate and Synchronize weblogic-jdbe,xml Descriptors During Deployment

Security Deployment Options
Decide whether to ovenarite the Following security objects if they were previously
deployed.
Application Policies
Credentials
Decide whether to migrate the Following security objects,
Users and Groups

| Help | Ok | | Cancel

Click OK to close the Application Properties dialog.

10. Select Save All from the File main menu to save your work.

9.7 Deploying and Running the Grades Sample Application

You can now deploy and run the grades sample application on Oracle WebLogic
Server.

9.7.1 How to Deploy to Grades Sample Application

To deploy the grades sample application:

1.

2.

In the Application Navigator, select the GradeApp application.

Right-click the GradeApp application and in the context menu select Deploy >
grades > to > and select either an existing connection or New Connection... to
create a connection for the deployment. This starts the deployment to the specified
Oracle WebLogic Server.

As the deployment proceeds, Oracle JDeveloper shows the Deployment
Configuration dialog.

In the Deployment Configuration dialog enter the following values, as shown in
Figure 9-28:

¢ In the Repository Name field, from the list, select: mds-soa

¢ In the Partition Name field, enter grades

9-30 Designing Business Rules with Oracle Business Process Management

Deploying and Running the Grades Sample Application

Figure 9-31 Deployment Configuration Dialog for MDS with Repository and
Partition

& Deployment Configuration

Configure and customize settings for this deployment W

MDS
- Metadata Repository

Repositary Mame: | ds-s0a - |

Repository Type: DB

Partition Mame: | rades

Path{IMDI Info: jdbefmdsfMDS _LocalTxDataSource

- Shared Metadata Repositories

Mamespace Repository Type Fartition Path/JMDI Info

| Help | | Deplay | | Cancel

5. In the Deployment Configuration dialog, click Deploy.

9.7.2 How to Run the Grades Sample Application

After you deploy the grades sample application, you can run the application.

To run the grades sample application:

1. Point a web browser at,

http:/ /yourServerName:port / grades/
This displays the test servlet as shown in Figure 9-32.

Creating a Rule-enabled Non-SOA Java EE Application 9-31

Deploying and Running the Grades Sample Application

Figure 9-32 Grades Sample Application Servlet

©) Test Grade Example Servlet - Mozilla Firefox

File Edit “ew History Bookmarks Tools Help
@ - c {at I ﬂ hittp: ffmyserver example, com:7001] gradesfindesc.html - 7 - ' ,

Most Yisited |j firia |j Overview (Oracle Ent... |j Account Request |j CRM Tickets E My Qracle |j Metwork Request >

ORACLE - | 4 QL Search ~ & AriaSearch - & Bugld -

I ﬁ Test Grade Example Servlet & §

Marne: | |

Test Score:| |

Done

2. Enter a name and test score and click Submit. This returns results as shown in
Figure 9-33.

The first time you run the servlet there may be a delay before any results are returned.
The first time the servlet is invoked, during servlet initialization the runtime loads the

dictionary and creates a rule session pool. Subsequent invocations do not perform
these steps and should run much faster.

Figure 9-33 Grades Sample Application Servlet with Results

£ 2 GradesSerylet - Mozilla Firefox E”E'E'
File Edit Wew History Bookmarks Tools Help
@ - c ¢y I |j http:fimyserver, example. com: 7001 radesfgradesserviet T ' j-
Muost Yisited C‘ Aria |j Overview (Oracle Ent... C‘ Account Request |j CRM Tickets E My Oracle |j Metwork Request »
ORACLE' - |
I ﬁ GradesServlet

Test Results

Name [Score [Grade
Phil |84 B

Done

9-32 Designing Business Rules with Oracle Business Process Management

10

Working with Oracle Business Rules and

ADF Business Components

This chapter describes how Oracle Business Rules enables you to use Oracle ADF
Business Components view objects as facts. As with all fact types, trees of facts,
representing master-detail data, can be asserted as a unit. Oracle Business Rules has
built-in tests (RLcontains) and optional "tree mode" syntax (for example, master-detail)
to support navigating one-to-many relationships.

The chapter includes the following sections:

¢ Introduction to Using Business Rules with ADF Business Components

* Using Decision Points with ADF Business Components Facts

¢ Creating a Business Rules Application with ADF Business Components Facts

10.1 Introduction to Using Business Rules with ADF Business

Components

The ADF Business Components rule development process can be summarized as
below.

Using ADF Business Components rule, you can:

1.

2.

Create view object definitions.
Create action types.

Create rule dictionary.

Register view object fact types.
Register Java fact types for actions.
If you are invoking from Java:

¢ If the view object is already instantiated at the Decision Point, code the
Decision Point invocation passing the view object instance.

¢ If the view object is not instantiated at the Decision Point, code the Decision
Point invocation passing the view object key values.

10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types

When an ADF Business Components view object is imported into an Oracle Business
Rules data model, an ADF Business Components fact type is created which has a
property corresponding to each attribute of the view object.

Additionally, the ADF Business Components fact type contains the following:

Working with Oracle Business Rules and ADF Business Components 10-1

Introduction to Using Business Rules with ADF Business Components

e A property named ViewRowImpl which points directly to the or acl e. j bo. Row
instance that each fact instance represents.

¢ A property named key_values which points to an
oracl e. rul es. sdk2. deci si onpoi nt. KeyChai n object. You can use this
property to retrieve the set of key-values for this row and its parent rows.

Note the following:

¢ Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View Link
Accessors.

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a Li st which contains facts of the indicated type at runtime.

* ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the
trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

® Internally in Oracle Business Rules, when you use ADF Business Components fact
types these fact types are created as instances of RL fact types. Thus, you cannot
assert ADF Business Components view object instances directly to a Rule Session,
but must instead use the helper methods provided in the Met adat aHel per and
ADFBCFact TypeHel per classes. For more information, see Java API Reference for
Oracle Business Rules.

10.1.2 Understanding Oracle Business Rules Decision Point Action Type

With Rules SDK, the primary way to update a view object within a Decision Point is
with an action type. An action type is a Java class that you import into the rule
dictionary data model in the same way you import a rule pattern fact type Java class.
A new instance of this action type is then asserted in the action of a rule and then
processed by the Postprocessing Ruleset in the Deci si onPoi nt Di cti onary.

A Java class to be used as an action type must conform to the following requirements:

* The Java fact type class must subclass
oracl e. rul es. sdk2. deci si onpoi nt. Acti onType or
oracl e. rul es. sdk2. deci si onpoi nt . KeyedAct i onType.

By subclassing KeyedAct i onType the Java class inherits a standard

oracl e. rul es. sdk2. deci si onpoi nt . KeyChai n attribute, which may be
used to communicate the rule fact's primary keys and parent-keys to the

Act i onType instance.

e The class has a default constructor.

* The class implements abstract exec method for the Act i onType. The exec
method should contain the main action which you want to perform.

10-2 Designing Business Rules with Oracle Business Process Management

Introduction to Using Business Rules with ADF Business Components

* The Java class must have properties which conform to the JavaBean interface (that
is, each property must have a getter and setter method).

See Example 10-1 for a sample Act i onType implementation.

Table 10-1 shows the methods in Deci si onPoi nt | nst ance that an application
developer might need when implementing the Act i onType exec.

Table 10-1 DecisionPointinstance Methods

Method Description

getPropertie Suppliesa HashMap<Stri ng, Qbj ect > object containing any runtime-
s specified parameters that the action types may need.

If you intend to use the decision function from a Decision service, use only
String values.

get Rul eSessi Gives access to the Oracle Business Rules RuleSession object from which
on static configuration variables in the Rule Dictionary may be accessed.

get Activatio If populated by the caller, supplies a String value to be used for Set
nl D Control indirection.

get Transacti Provides a transaction object so that action types may make persistent
on changes in the back end.
addResul t Adds a named result to the list of output values in the form of a String key

and Object value.

Output is assembled as a Li st of

oracl e. rul es. sdk2. deci si onpoi nt. Deci si onPoi nt | nst ance.
NanedVal ue objects as would be the case in a pure map implementation.
The NanedVal ue objects are simple data-bearing classes with a getter
each for the name and value. Output values from one action types
instance are never allowed to overwrite each other, and in this regard, the
action type implementations should be considered completely
independent of each other.

10.1.2.1 Sample ActionType Implementation

Example 10-1 shows a sample Act i onType implementation and an
oracl e. rul es. sdk2. deci si onpoi nt. Deci si onPoi nt| nst ance asa
parameter to the exec method.

Example 10-1 Implementing an ActionType
package com exanpl e;
i mport oracle. | bo.domai n. Nunber;

i mport oracle.rul es.sdk2. deci si onpoi nt. Acti onType;
i mport oracle.rul es. sdk2. deci si onpoi nt. Deci si onPoi nt | nst ance;

public class RaiseAction extends ActionType {
private doubl e rai sePercent;

public void exec(DecisionPointlnstance dpi) {
Nurmber sal ary = (Number)get Vi ewRow npl (). get Attribute("Sal ary");
salary = (Number)salary.multiply(1.0d + getRai sePercent()).scal e(100,2, new bool ean[]

{false});
dpi . addResul t ("raise for " + this.getViewRow npl (). getAttribute("Enpl oyeeld"),
get Rai sePercent () + "=>" + salary);
get Vi ewRowi npl (). setAttribute("Salary", salary);
}

Working with Oracle Business Rules and ADF Business Components 10-3

Using Decision Points with ADF Business Components Facts

public void setRai sePercent (doubl e raisePercent) {
this.rai sePercent = raisePercent;

}

public doubl e getRaisePercent() {
return raisePercent;

}
}
Using Rules Designer you can select parameters appropriate for the Acti onType you
are configuring.

10.2 Using Decision Points with ADF Business Components Facts

You can use a Decision Point to execute a decision function. There are certain Decision
Point methods that only apply when working with ADF Business Components Fact

types.

For more information on decision functions, see Working with Decision Functions .

10.2.1 How to Call a Decision Point with ADF Business Components Facts

When you use ADF Business Components fact types you invoke a decision function
using the Rules SDK Decision Point interface.

To call adecision function using the Rules SDK Decision Point interface:

1. Construct and configure the template Deci si onPoi nt instance using the
Deci si onPoi nt Bui | der.

For more information, see How to Add a Decision Point Using Decision Point
Builder.

2. Create a Deci si onPoi nt | nst ance using the Deci si onPoi nt method
getl nstance.

3. Add the fact objects you want to use to the Deci si onPoi nt | nst ance using
Deci si onPoi nt | nst ance method addl nput , set | nput s, or set Vi ewChj ect .
These are either Vi ewObj ect or Vi ewCbj ect Ref er ence instances. These must
be added in the same order as they are declared in the decision function input. For
more information, see Calling the Invoke Method for an ADF Business
Components Rule

4. Set the transaction to be used by the Deci si onPoi nt | nst ance.
For more information, see Setting the Decision Point Transaction.
5. Set any runtime properties the consequent application actions may expect.
For more information, see Setting Runtime Properties.
6. Call the Deci si onPoi nt | nst ance method i nvoke.
For more information, see:
¢ Calling the Invoke Method for an ADF Business Components Rule

e What You Need to Know About Decision Point Invocation

10-4 Designing Business Rules with Oracle Business Process Management

Using Decision Points with ADF Business Components Facts

10.2.1.1 Setting the Decision Point Transaction

The Oracle Business Rules SDK framework requires an

oracl e. j bo. server. DBTransact i onl npl 2 instance to load a Vi ewObj ect and
to provide Act i onType instances within a transactional context. The class

oracl e. j bo. server. DBTransact i onl npl 2 is the default JBO transaction object
returned by calling the Appl i cat i onMbdul e method get Tr ansact i on. Setting the
transaction requires calling the Deci si onPoi nt | nst ance method

set Transact i on with the Tr ansact i on object as a parameter.

Should a DBTr ansact i on instance not be available for some reason, the Oracle
Business Rules SDK framework can bootstrap one using any of the three provided
overrides of the set Tr ansact i on method.

These require one of:
e A JDBC URL, user name, and password.
e A JDBC connection object.

e Ajavax. sql . Dat aSour ce object and a flag to specify whether the Dat aSour ce
represents a JTA transaction or a local transaction.
10.2.1.2 Setting Runtime Properties

Runtime properties may be provided with the set Pr oper t y method. These can then
be retrieved by Act i onType instances during their execution. If no runtime
properties are needed, you may safely omit these calls.

10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule

The Vi ewChj ect to be used in a Decision Point invocation can be specified in one of
two ways, as shown in Table 10-2.

Table 10-2 Setting the View Object for a Decision Point Invocation
. ___|

ViewObject Set Description
Method
set Vi ewbj ect The decision function is invoked once for each Vi ewCbj ect row. This

the preferred way to use view objects. Between each invocation of the
decision function, the rule session is not reset so any asserted facts
from previous invocations of the decision function are still in working
memory. In most cases, users should write rules that retract the
asserted facts before the decision function call completes. For
example, you can have a cleanup ruleset that retracts the

Vi ewQbj ect row that runs before the Postprocessing decision
function is called.

How to Add Retract Employees Ruleset shows this usage. To use
set Vi ewQbj ect, the Vi ewCbj ect must be the first entry in the
decision function InputTable.

addl nput The decision function is invoked once with all of the Vi ewCbj ect
set | nputs rows loaded at the same time. This is generally not a scalable
operation, since hundreds of thousands of rows can be loaded at the
same time. There are some cases where there are a known small
number of rows in a Vi ewQbj ect that this method of calling the
Vi ewObj ect can be useful.

Working with Oracle Business Rules and ADF Business Components 10-5

Using Decision Points with ADF Business Components Facts

10.2.1.4 What You Need to Know About Decision Point Invocation

Care must be taken when invoking Decision Points using a view object that loads large
amounts of data, since the default behavior of the JBO classes is to load all data
eagerly. If a view object with many rows and potentially very many child rows is
loaded into memory, not only is there risk of memory-exhaustion, but DML actions
taken based on such large data risk using all rollback segments.

10.2.1.5 Sample to Invoke a Decision Point Using setinputs Method

Example 10-2 shows how to invoke a Decision Point with a Vi ewCbj ect instance
using the set | nput s method. For the complete example, see the example shown in
How to Add the Outside Manager Finder Class.

Example 10-2 Invoking a Decision Point Using setlnputs Method

public class CQutsideManager Fi nder {
private static final String AMDEF = "com exanpl e. Apphbdul e";
private static final String CONFIG = "AppMdul eLocal ";
private static final String VO NAME = "Enpl oyeesVi ewl";

private static final DictionaryFQN DI CT_FQN =
new Di ctionaryFQ\("com exanpl e", "Chapt er 10Rul es");

private static final String DF_NAME = "Fi ndQutsi deManagers";
private DecisionPoint dp = null;

public QutsideManagerFinder () {

try {
dp = new Deci si onPoi nt Bui | der ()
. Wit h(DI CT_FQN)
. Wi t h(DF_NAME)
cbuild();

} catch (SDKException e) {
Systemerr.println(e);
}

public void run() {
final ApplicationMdule am =
Configuration. creat eRoot Appl i cati onhbdul e(AM DEF, CONFI G);
final View(bject vo = amfindVi ewbj ect (VO _NAME) ;
final DecisionPointlnstance point = dp.getlnstance();
poi nt. set Transact i on((DBTransacti onl npl 2) am get Transaction());
poi nt. set Aut oConmi t (true);
poi nt. set | nputs(new ArrayLi st <Qoject>(){{ add(vo); }});

try {
Li st <Qvj ect > i nvokeLi st = point.invoke();

Li st <Deci si onPoi nt. NanedVal ue> results = point.getResults();

} catch (RLException e) {
Systemerr.println(e);
} catch (SDKException e) {
Systemerr.println(e);
}

10-6 Designing Business Rules with Oracle Business Process Management

Using Decision Points with ADF Business Components Facts

10.2.1.6 Sample to Invoke a Decision Point Using setViewObject Method

Example 10-3 shows how to invoke a Deci si onPoi nt using the set Vi ewObj ect
method to set the Vi ew(hj ect .

Example 10-3 Invoking a Decision Point Using setViewObject Method

public void run() {

final ApplicationMdule am=

Configuration. createRoot Appl i cati onModul e(AM DEF, CONFI G);
final ViewObject vo = amfindVi ewthj ect (VO _NAVE);
final DecisionPointlnstance point = dp.getlnstance();

poi nt. set Transacti on((DBTransacti onl npl 2) am get Transaction());
poi nt. set AutoCommit (true);
poi nt. set Vi ewQhj ect (vo);

try {
Li st <Qbj ect > i nvokelLi st = point.invoke();

Li st <Deci si onPoi nt. NanedVal ue> results = point. get Results();

} catch (RLException e) {
Systemerr.printin(e);
} catch (SDKException e) {
Systemerr.printin(e);

}

10.2.2 How to Call a Decision Function with Java Decision Point Interface

To call a decision function with a ruleset using ADF Business Components fact types
with the Oracle Business Rules SDK Decision Point interface you must configure the
decision function with certain options. For more information on using decision
functions, see Working with Decision Functions.

To define a decision function using the Java Decision Point interface:

1.

In the Decision Functions tab, select the appropriate Decision Function and click
the Edit button. The Edit Decision Function dialog appears.

In the Edit Decision Function dialog, configure the decision function:

* Inputs: names the fact types to use in the configured business rules.

The inputs, when working with an application using ADF Business
Components fact types, are the ADF Business Components view objects used in
your rules.

When you use the set Vi ewCbj ect method with a Decision Point, the List
attribute should be cleared. Each Input fact type should have the List attribute
selected when you are using addl nput or set | nput s methods with the
Decision Point. Optionally, depending on the usage of the view objects, select
the Tree attribute:

List: defines that a list of ADF Business Components fact types are passed to the
decision function.

Tree: defines that all objects in the master-detail hierarchy should be asserted,
instead of only the top-level object.

Working with Oracle Business Rules and ADF Business Components 10-7

Using Decision Points with ADF Business Components Facts

For more information, see How to Call a Decision Point with ADF Business
Components Facts.

e [Initial Actions: click <insert action> to add actions that can be used to change
input facts before they are asserted, change the ruleset stack, set the effective
date, or even assert output facts. These actions can be used instead of rules, or to
"set up" the environment for running rules.

For more information on using decision functions, see Working with Decision
Functions.

* Output Fact Types: defines the fact types that the caller returns.

When calling a decision function using the Java Decision Point interface for a
decision function that uses ActionTypes, two ways of returning output are
available:

— Output fact types can be used, as with any decision function. These results
are returned from DecisionPointInstance.invoke().

— The ActionType's exec method can be overridden to call dpi.addResult (see
Example 10-1). These results are returned from
DecisionPointInstance.getResults().

Using ActionTypes is optional. Typically ActionTypes would not be used unless
the rules need to modify the ADF data. If ActionTypes are not used, then
DecisionPointDictionary.Preprocessing and
DecisionPointDictionary.Postprocessing are not needed.

For more information, see Understanding Oracle Business Rules Decision Point
Action Type.

* RuleSets and Decision Functions: an ordered list of the rulesets and other
decision functions that this decision function executes. The rulesets
DecisionPointDictionary.Preprocessing and
DecisionPointDictionary.Postprocessing from the DecisionPoint dictionary
must be added so that they run before and after, respectively, the application-
specific rulesets and decision functions.

10.2.3 What You Need to Know About Decision Function Configuration with ADF
Business Components

Both rulesets and decision functions may be included in the definition of a decision
function. It is common for an application to require some rules or decision functions
which act as "plumbing code". This plumbing code is only needed if you are using
ActionType.

Such applications include components that perform transformations on the input data,
assert auxiliary facts, or process output facts. The plumbing code may need to run
before or after the rules that contain the core business rules of the application.

You can separate these application concerns and their associated rules from the
application functional concerns using nested decision functions. Using nested decision
functions, the inner decision function does not contain the administrative, plumbing-
oriented concerns, and thus only presents those rules which define the core logic of the
application. This design eliminates the need for the user to understand the
administrative rules and prevents a user from inappropriately modifying these rules
(and possibly rendering the system inoperable due to these changes).

10-8 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

To create a configuration using multiple rulesets and nested decision functions, create
two decision functions and add one to the other. A good naming scheme is to suffix
the nested inner decision function with the name Cor e. The user specified rulesets can
be added to the inner Cor e decision function. For example, DecisionFunction_1 can
be defined to run the DecisionPointDictionary.Preprocessing decision function, the
DecisionFunction_1Core decision function, and the
DecisionPointDictionary.Postprocessing decision function. For this example,
DecisionFunction_1Core contains the core business logic rulesets.

It is also common for the input of a Decision Point to be an ADF Business Components
fact type that is the root of a tree of ADF Business Components objects. However, the
user might only write business rules that match on a subset of the types found in the
tree. In this case, it is a good practice to define the inputs of the nested decision
functions to be only the types which are actually matched in the contained rulesets.
For example, consider a Decision Point calling a decision function whose input is an
Enpl oyee fact type with the Tree option selected; if this decision function includes a
nested decision function with rulesets that only matched on the Depar t ment fact
type. In this case, the nested decision function could either have as its input specified
as an Enpl oyee fact type with the Tree option selected, or a Depar t ment fact type
with the List option selected. For this example, the Tree option causes the children of
the Enpl oyee instances, including the Depar t ment instances to be asserted (due to
the one-to-many relationship between these types). If Enpl oyee is an input to the
outer decision function and the Tree option is selected, the then Depar t ment fact
type instances are asserted, and you can identify the signature on the inner decision
function as a list of Depart ment instances (these are the exact types which are being
matched on for this decision function).

10.3 Creating a Business Rules Application with ADF Business
Components Facts

The ADF Business Components sample application shows the use of ADF Business
Component fact types.

The source code for Oracle Business Rules-specific samples and SOA samples are
available online in the Oracle SOA Suite samples page.

10.3.1 How to Create an Application That Uses ADF Business Components Facts

To work with Oracle Business Rules with ADF Business Components facts, you first
need to create an application and a project in Oracle JDeveloper.

To create an application that uses ADF Business Components facts:
1. Start Oracle JDeveloper. This displays the Oracle JDeveloper start page.
2. Inthe Application Navigator, in the application menu click New Application....

3. Inthe Name your application page enter the name and location for the new
application:

a. Inthe Application Name field, enter an application name. For example, enter
Chapt er 10.

b. In the Directory field, enter or browse for a directory name or accept the
default.

Working with Oracle Business Rules and ADF Business Components 10-9

Creating a Business Rules Application with ADF Business Components Facts

c. Inthe Application Package Prefix field, enter an application package prefix.
For example, enter com exanpl e.

This should be a globally unique prefix and is commonly a domain name

owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, use the prefix com exanpl e, as shown in Figure 10-1

Figure 10-1 Step 1 of 6

0 Create ADF Fusion Web Application - Step 10f 6 [
Name your application
Apphcation Name:
.i. Application Hame I"— J
Project 1 Name
T Directory:
[c:\DevelopermyworkiChapter 10 | Browse...
Application Package Prefix:
:nnm.exam.ll! |
Help Hext > Finish Cancel

Click Next.
4. On the Name your project page:
a. Inthe Project Name field, enter Chapt er 10.

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. Inthe Project Features area, select ADF Business Components as shown in
Figure 10-2.

Figure 10-2 Step 2 of 6

W Create ADF Fusion Web Application - Step 2 of 6

Name your project

Project Mame: (Chapter i0)

o L hame Dirgctory: (C:\Meveloper imywork|Chapter 10\Chapter 10 Browse. ..
AT 1

i
Y

Broject | Java Setfings | Project Feafures:

ADF Business Components

ADF Business Components is the business services AP provided by the Oracle
Apphcation Development Framew ork (Oracke ADF). ADF Business Components governs
interaction between the rest of the appication and the data stored in the datasource,
providing validation, specific services, and other business logic.

Java

The Java programming language i a simple object-oriented language designed fo meet
the challenges of application development in the context of heterogeneous,
network-wide distrbuted environments.

XML

Extensible Markup Language (XML} provides a syntax for describing and structuring

data independent from applcation logic and is used extensively in web-based
technologies.

10-10 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

Click Next.
5. On the Configure Java settings page:
a. In the Default Package field, enter com exanpl e.

b. In the Java Source Path field, enter or browse for a directory name or accept
the default.

c. In the Output Directory field, enter or browse for a directory name or accept
the default as shown in Figure 10-3:

Figure 10-3 Step 3 0of 6

O Create ADF Fusion Web Application - Step 3 of 6 (e
Configure Java settings
T Apphcation Name ;S:: [n: project starks with a default padkage, a source reot directory, and an output
Eroject 1 Name
a Default Package:
% Project 1Java Settin [
¢, Project 2 Name '
T Java Source Path:
[c:\Developerimywork|Chapter 10\Chapter 10\sre | romse...
DQutput Directory:
'_E:‘\.'Beveinpﬁ mywork\Chapter 10'\Chapter 10'dasses Browge. ..
bl =]
Help < Back hext > Bnish Cancel
Click Next.

6. For Project 2, on the Name your project page:
a. In the Project Name field, enter Vi enControl | er.

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. In the Project Features area, select ADF Faces as shown in Figure 10-4:

Working with Oracle Business Rules and ADF Business Components 10-11

Creating a Business Rules Application with ADF Business Components Facts

Figure 10-4 Step 4 of 6

0 Create ADF Fusion Web Application - Step 4 of 6

Name your project
Name: ViewController
T Project . ontr
’]‘ Project 1N Dirgctory: C:\MDeveloper \myworkChapter 10\iewControler Browse...

. Broiect LJava Settrgs | Project Feajres:

s Project 2 Name ADF Faces
‘I' Project 2 Java Settngs ADF Faces adds very high qually components, a dialog framework, as well as

ion and skinning ies. ADF Faces features include: fie upload
support, chent-side valdation, partial rendering of a page (AJAX-style), data tables,

ADF Page Flow

ADF Page Flow technology extends JavaServer Faces (JSF), introducing additional
concepis such as reusable task flows and advanced navigation between activities
other than JSF Page references.

Java

The Java programming language i a simple object-oriented language designed to
meed the chalenges of tion development in the conteod of hetérogeneous,

network-wide distributed environments.
JavaServer Faces (JSF)
Help < Back Next > Fnish Cancel

Click Next.
7. For Project 2, on the Configure Java settings page:
a. In the Default Package field, enter com exanpl e. vi ew.

b. In the Java Source Path field, enter or browse for a directory name or accept
the default.

c. Inthe Output Directory field, enter or browse for a directory name or accept
the default, as shown in Figure 10-5:

Figure 10-5 Step 50f 6

O Create ADF Fusion Web Application - Step 5 of 6 [
Configure Java settings
Wour new project starts with a default package, a source root drectory, and an output
T Applcation Name S
Eroject § Name
T Default Package:
Y Profest 10 SSU0G | oo exomple. ven]]
"!\ - Java Source Path:
‘I' Project 2 Java Settiq :C:\,Devehoer‘rnrmkmwln\,hew(nnunler'a: | Browse...
v BuldTool o o . .
:c:mwmwmmmm\Mmummm | Browse..
|
)
Help < Back hext > Binish Cancel

8. C(lick Finish when done.

10.3.2 How to Create ADF Business Components Application for Business Rules

You need to add ADF Business Components from a database table. For this example
we use the standard HR database tables.

10-12 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

To add ADF Business Components:

1.

2.

8.

9.

In the Application Navigator, select the Chapter10 project.
Right-click and from the menu select New....

In the New Gallery, in the Categories area expand Business Tier and select ADF
Business Components.

In the Items area select Business Components from Tables and click OK.

In the Initialize Business Components Project dialog, enter the required connection
information to add a connection. Click OK.

This displays the Create Business Components from Tables wizard.

In the Entity Objects page, select the desired objects by moving objects from the
Available box to the Selected box. You may need to click Query to see the
complete list. For example, select DEPARTMENTS and EMPLOYEES.

Click Next. This displays the Updatable View Objects page.
In the Updatable View Objects page select Departments and Employees.

Click Next. This displays the Entity based view object page.

10. Click Next. This displays the Application Module page.

11. Click Finish when done.

10.3.3 How to Update View Object Tuning for Business Rules Sample Application

You should tune the Vi ewCbj ect to meet the performance requirements of your
application.

To set tuning options for EmployeesView or DepartmentsView:

1.

5.

In the Application Navigator, double-click EmployeesView to set tuning options
for employees or DepartmentsView to set tuning options for departments.

In the General navigation tab, expand Tuning.
In the Tuning area, select All Rows.
In the Tuning area, in the Batches of: field, enter 128.

In the Tuning area, select All at Once.

10.3.4 How to Create a Dictionary for Oracle Business Rules

You use Oracle JDeveloper to create an Oracle Business Rules dictionary.

To create a dictionary:

1.

2.

In the Application Navigator, select the Chapter10 project.
Right-click, and from the list select New....

In the New Gallery, select the All Technologies tab and in the Categories area
expand Business Tier and select Business Rules.

Working with Oracle Business Rules and ADF Business Components 10-13

Creating a Business Rules Application with ADF Business Components Facts

In the New Gallery, in the Items area select Business Rules.

Click OK.

In the Create Business Rules dialog enter the dictionary name and package.
¢ For example, in the Name field enter Chapt er 10Rul es.

e For example, in the Package field enter com exanpl e.

Click OK.

JDeveloper creates the dictionary and opens the Chapt er 10Rul es. r ul es file in
Rules Designer.

10.3.5 How to Add Decision Point Dictionary Links

You need to add a dictionary links to the Oracle Business Rules supplied Decision
Point Dictionary. This dictionary supports features for working with the Decision
Point interface with ADF Business Components objects.

Add decision point dictionary links:

1.

2.

In the Rules Designer, click the Links navigation tab.

From the menu next to the Create button, select Decision Point Dictionary. This
operation can take a while to complete. After waiting, Rules Designer adds a link to
the Decision Point Dictionary.

10.3.6 How to Import the ADF Business Components Facts

You import ADF Business Components facts with Rules Designer to make these
objects available when you create rules.

Import the ADF Business Components facts:

1.

2.

6.

In Rules Designer, select the Facts navigation tab.
Select the ADF-BC Facts tab.
Click the Create... button. This displays the ADF Business Components Fact page.

In the Connection field, from the list select the connection which your ADF
Business Components objects use. The Search Classpath area shows a list of
classpaths.

In the View Definition field, select the name of the view object to import. For
example, select com.example.EmployeesView.

Click OK. This displays the Facts navigation tab.

ADF Business Components Facts can include a circular reference, as indicated with the
validation warning:

RUL-05037: A circular definition exists in the data nodel

When this warning is shown in the Business Rule validation log, you need to
manually resolve the circular reference. To do this you clear the Visible check box for
one of the properties that is involved in the circular reference.

10-14 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

10.3.6.1 How to Mark a Property as Non-visible

To mark a property as non-visible:

1. Select the Facts navigation tab and select the ADF Business Components Facts tab.
2. Double-click the icon in the DepartmentsView row.
3. In the Properties table, in the EmployeesView row clear the Visible check box.

4. Click OK.
10.3.6.2 How to Set Alias for DepartmentsView and EmployeesView

To set alias for DepartmentsView and EmployeesView:

1. Select the Facts navigation tab and select the ADF Business Components Facts tab.
2. In the Alias column, replace EmployeesView with Employee.

3. In the Alias column, replace DepartmentsView with Department.

10.3.7 How to Add and Run the Outside Manager Ruleset

The sample code that runs the outside manager ruleset invokes the Decision Point
with the view object set using the set | nput s method. This invokes the decision
function once, with all of the view object rows loaded in a Li st . Note that invoking
the Decision Point this way is not scalable, because all of the view object rows must be
loaded into memory at the same time, which can lead to OutOfMemory exceptions.
Only use this invocation style when there are a small and known number of view
object rows. You can also use a Decision Point with set Vi ewCbj ect . For more
information, see How to Call a Decision Point with ADF Business Components Facts.

10.3.7.1 How to Add the Outside Manager Ruleset and Add a Decision Function

After the view objects are imported as facts, you can rename the ruleset and create the
decision function for the application.

To rename the ruleset, select the Ruleset_1 navigation tab in Rules Designer and then
select the ruleset name and enter Qut si de Manager Rul eset to rename the ruleset.

To add a decision function:

1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Edit the decision function fields as follows:
e Enter Name value Fi ndCut si deManager s.

¢ In the Inputs area, click the Add Input button and edit the input information as
follows:

— Click the Fact Type field and select Employee from the list.

Working with Oracle Business Rules and ADF Business Components 10-15

Creating a Business Rules Application with ADF Business Components Facts

4.

5.

— Select the List check box.

In this decision function you do not define any outputs because you use the
Act i onType API for taking action rather than producing output. For more
information, see Understanding Oracle Business Rules Decision Point Action

Type.

® In the Rulesets & Decision Functions area move the following items from the
Available area to the Selected area, in the specified order:

— DecisionPointDictionary.Preprocessing
— Outside Manager Ruleset
— DecisionPointDictionary.Postprocessing

Ensure that the items in the Selected area are in this order:
DecisionPointDictionary.Preprocessing, Outside Manager Ruleset,
DecisionPointDictionary.PostProcessing.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

Click OK.

Several warnings appear. These warnings are removed in later steps when you add
rules to the ruleset.

10.3.7.2 How to Create the ActionType Java Implementation Class

To create the sample application and to modify the view object in a rule, you need to
create a Java implementation class for abstract class

oracl e. rul es. sdk2. deci si onpoi nt. Acti onType. All subclasses of

Act i onType must implement the abstract exec method.

To create the ActionType Java implementation class:

1.

2.

3.

In Oracle JDeveloper, select the project named Chapter10.
In the Application Navigator, select the Application Sources folder.

Right-click and from the list select New....

. In the New Gallery, in the Categories area select General.

In the New Gallery, in the Items area select Java Class.

Click OK.

In the Create Java Class dialog, configure the following properties:
e Enter the Name value MessageAct i on.

¢ Enter the Package value com exanpl e.

e Enter the Extends value
oracl e. rul es. sdk2. deci si onpoi nt. Acti onType.

Click OK.

Oracle JDeveloper displays the Java Class.

10-16 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

9.

Replace this code with the code shown in the example below showing actiontype
java implementation.

package com exanpl e;

import oracle.rul es.sdk2. deci si onpoi nt. Acti onType;
import oracle.rul es. sdk2. deci si onpoi nt . Deci si onPoi nt | nst ance;

public class MessageAction extends ActionType {
public MessageAction() {
super ();

}

public void exec(DecisionPointlnstance decisionPointlnstance) {
Systemout. println(nessage);

}
private String message = null;

public void set Message(String nmessage) {
this. message = nessage;

}

public String get Message() {
return message;
}
}

10. In the Application Navigator, right click the MessageAct i on. j ava and from the

list select Make.

10.3.7.3 How to Import the Message Action Java Fact

You just created a new Java class and you need to add this class as a Java fact type in
Rules Designer to use later when you create rules.

To create the Java fact type:

1.

In Rules Designer, click the Facts navigation tab.
Select the Java Facts tab.
Click Create....

In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
comand exanpl e to display the MessageAction check box.

Select the MessageAction check box.
Click OK. This adds the fact to the table.

10.3.7.4 How to Add the Find Managers Rule

You add the rule to find the managers that are in a different departments than their
employees.

To add the find managers in different departments rule:

1.

2.

In Rules Designer, select the Outside Manager Ruleset tab.

Click Add and from the list select Create Rule.

Working with Oracle Business Rules and ADF Business Components 10-17

Creating a Business Rules Application with ADF Business Components Facts

3. Rename the rule by selecting the default rule name Rule_1. This displays a text
entry area. You enter a name. For example, enter Find managers in different
department. Press Enter to apply the name.

4. Click Show Advanced Settings. For more information, see How to Show and Hide
Advanced Settings in a Rule or Decision Table.

5. In the rule select Advanced Mode.

6. Enter the rule as shown in Figure 10-6. The action for the rule shown in the THEN
area is too long to show in the figure. The complete action that you build includes
the following items:

| F Empl oyee i s Enpl oyeeandManager is a Enpl oyee

andManager . Enpl oyeel d == Enpl oyee. Manager | d

andManager . Departnentld ! = Enpl oyee. Depart nment | DTHENasser t
new MessageActi on(<add property> nessage: "Enpl oyee " +
Enpl oyee. FirstName + " " + Enpl oyee. Last Nane + " (" +

Enpl oyee. Enpl oyeeld + ")"+ " in dept " +

Enpl oyee. Departnentld + " has manager outside of departnment,
" + Manager.FirstName + " " + Manager.LastNane + " (" +
Manager . Enpl oyeeld + ")" + " in dept " +

Manager . Department i d)

Figure 10-6 Find Managers in Different Departments Rule

= % Find managers in different department
“enter description >

| 1Tree Mode [v|Rule Active | |Logical Priority: \medium |+
Effective Date: always Walid
IF
Employes is a Emploves

and

Manager is a Emploves and

Manager .Employeeld == Employee,Managerld and
Manager .Departmentld = Emplovee Departmentld

THEN
assert new Messageaction { <add property > message : "Employes " + Employee.FirstName + ° " + Employee LastMame + (" + Er

cinsert action

10.3.7.5 How to Add the Outside Manager Finder Class

Add the outside manager finder class. This uses the Decision Point to execute a
decision function.

To add the Outside Manager Finder Class:

1. Select the Chapter10 project.

2. Right-click and select New....

10-18 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

3. Inthe New Gallery, in the Categories area select General.
4. Inthe New Gallery, in the Items area select Java Class. Click OK.
5. In the Name field, enter Qut si deManager Fi nder . Click OK.

6. Replace the contents of this class with the code shown in example below showing
Outside Manager Finder java class.

package com exanpl e;
inmport java.util.Arraylist;

i mport oracle.jbo. Applicationhdul e;
import oracle.jbo. Vi ewhj ect;
import oracle.jbo.client.Configuration;

inmport oracle.rules.rl.exceptions. RLException;

i mport oracle.rul es. sdk2. deci si onpoi nt. Deci si onPoi nt ;

i mport oracle.rul es. sdk2. deci si onpoi nt. Deci si onPoi nt Bui | der ;
i mport oracle. rul es. sdk2. deci si onpoi nt. Deci si onPoi nt | nst ance;
import oracle.rul es. sdk2. excepti on. SDKExcepti on;

import oracle.rules.sdk2.repository.DictionaryFQN;

public class QutsideManagerFinder {
private static final String AM DEF = "com exanpl e. AppModul e";
private static final String CONFI G = "AppMdul eLocal *;
private static final String VO NAME = "Enpl oyeesVi ewl";

private static final DictionaryFON DI CT_FON =
new Di ctionaryFQ\("com exanpl e", "Chapter10Rul es");

private static final String DF_NAME = "Fi ndQut si deManagers";
private DecisionPoint dp = null;

public QutsideManager Fi nder () {

try {
dp = new Deci si onPoi nt Bui | der ()
. Wi t h(DI CT_FQN)
. Wi t h(DF_NAME)
cbuild();

} catch (SDKException e) {
Systemerr.printlin(e);
}
}

public void run() {
final Applicationhdule am=
Confi guration. creat eRoot Appl i cati onModul e(AM DEF, CONFI G ;

final ViewObject vo = amfindVi ewQbj ect (VO _NAME) ;
final DecisionPointlnstance point = dp.getlnstance();
poi nt. set | nput s(new ArrayLi st<Object>(){{ add(vo); }});
try {

poi nt.invoke();
} catch (RLException e) {

Systemerr.printlin(e);
} catch (SDKException e) {

Systemerr.printlin(e);

}

Working with Oracle Business Rules and ADF Business Components 10-19

Creating a Business Rules Application with ADF Business Components Facts

}

public static void main(String[] args) {
Qut si deManager Fi nder onf = new Qutsi deManager Fi nder () ;
onf.run();

10.3.7.6 How to Update ADF META INF for Local Dictionary Access

You need to update the ADF- META- | NF file with MDS information for accessing the
dictionary. You can use a local file with MDS to access the Oracle Business Rules
dictionary. However, this procedure is not the usual dictionary access method with
Oracle Business Rules in a production environment. For information on using a
Decision Point to access a dictionary with MDS in a production environment, see
What You Need to Know About Using Decision Point in a Production Environment.

To update ADF-META-INF:

1.

2.

In the Application Navigator, expand Application Resources.
Expand Descriptors and ADF META-INF folders.
Double-click adf-config.xml to open this file.

Click the Source tab to view the adf - confi g. xm source.

Add the MDS information to adf - conf i g. xm , before the closing </ adf -
conf i g> tag, as shown in the code example below:

<adf - mds-confi g xm ns="http://xm ns. oracl e. con adf/ nds/ confi g">
<mds-config version="11.1.1. 000" xm ns="http://xm ns. oracl e. conf nds/ config">
<persi st ence-confi g>
<met adat a- nanmespaces>
<namespace netadat a- st ore- usage="nst or e-usage_1" path="/"/>
</ net adat a- namespaces>
<net adat a- st or e- usages>
<net adat a- st or e- usage i d="nstore-usage_1">
<met adat a-store cl ass-
nane="or acl e. mis. persi stence. stores.file. Fil eMetadataStore">
<property name="net adat a- pat h"
val ue="C:\j devi nst ance\ mywor k\ Chapt er 10\ . adf\"/>
</ met adat a- st ore>
</ net adat a- st or e- usage>
</ met adat a- st or e- usages>
</ persi stence-confi g>
</ nds- confi g>
</ adf - nds-confi g>

In the <pr oper t y> element with the attribute et adat a- pat h, change the path
to match . adf directory in the application on your system.

10.3.7.7 How to Copy Definitions/Dictionary to MDS Accessible Location

To copy definitions/dictionary to MDS accessible location:

1.

In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10
application, and in the Chapter10 project, in the src folder select and copy the com
folder. Or if you want to copy dictionary to MDS accessible location, copy the
oracle directory that contains the Oracle Business Rules dictionary.

10-20 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

2. In the application directory for Chapter10, above the Chapter10 project, navigate to
the .adf directory.

3. Copy the com folder to this directory. or copy the oracle folder to this directory.

10.3.7.8 How to Build and Run the Project to Check the Outside Manager Finder

You can build and test the project by running the find managers with employees in
different departments rule.

Build the OutsideManagerFinder configuration:

1. From the dropdown menu next to Run button, select Manage Run
Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter a name. For example, enter
Qut si deManager Fi nder .

4. Click OK.

5. With OutsideManagerFinder selected, click Edit....

6. In the Default Run Target field, click Browse....

7. Select OutsideManagerFinder.java from the sr c\ com exanpl e folder.
8. Click Open.

9. In the Edit Run Configuration dialog, click OK.

10. In the Project Properties dialog, click OK.

To run the project, select OutsideManagerFinder in the dropdown menu next to the
Run project button. Running this configuration generates output, as shown in example
below:

Enp Shelley Higgins(205) in dept 110 manager outside of department, Neena

Kochhar (101) in dept 90

Emp Hernmann Baer (204) in dept 70 manager outside of departnent, Neena Kochhar(101)
in dept 90

Emp Susan Mavris(203) in dept 40 nmanager outside of departnent, Neena Kochhar(101)
in dept 90

Emp M chael Hartstein(201) in dept 20 manager outside of departnent, Steven
King(100) in dept 90

Emp Jenni fer \hal en(200) in dept 10 manager outside of department, Neena

Kochhar (101) in dept 90

Emp Kinberely Grant(178) in dept null manager outside of departnent, Elen

Zl otkey(149) in dept 80

Emp Eleni Zl otkey(149) in dept 80 manager outside of departnent, Steven King(100) in
dept 90

Emp Geral d Canbrault(148) in dept 80 manager outside of department, Steven King(100)
in dept 90

Emp Al berto Errazuriz(147) in dept 80 manager outside of departnent, Steven
King(100) in dept 90

Enmp Karen Partners(146) in dept 80 manager outside of departnent, Steven King(100)
in dept 90

Emp John Russel | (145) in dept 80 manager outside of department, Steven King(100) in
dept 90

Emp Kevin Mourgos(124) in dept 50 manager outside of departnent, Steven King(100) in

Working with Oracle Business Rules and ADF Business Components 10-21

Creating a Business Rules Application with ADF Business Components Facts

_(Ijiﬁgt Sﬁgnta Vol I man(123) in dept 50 manager outside of departnent, Steven King(100)
;;pd§25a:10Kaufl ing(122) in dept 50 manager outside of departnent, Steven King(100)
IE;pdiztamggri pp(121) in dept 50 nanager outside of departnent, Steven King(100) in
(Ijiﬁgt lvz?thew Wi ss(120) in dept 50 manager outside of departnent, Steven King(100) in
:Eﬁgt ng Raphael y(114) in dept 30 nmanager outside of departnent, Steven King(100) in
ept 90

Emp Nancy Greenberg(108) in dept 100 nanager outside of departnent, Neena

Kochhar (101) in dept 90

Emp Al exander Hunol d(103) in dept 60 manager outside of department, Lex De Haan(102)
in dept 90

10.3.8 How to Add and Run the Department Manager Ruleset

The sample code that runs the department manager ruleset invokes the Decision Point
with the view object set using the set Vi ewCbj ect method. This invokes the decision
function once for each row in the view object. All decision function calls occur in the
same RuleSession. Between decision function calls, the RuleSession preserves all state
from the previous decision function call. Thus, any objects asserted during the
previous call remain in working memory for the next call unless they are explicitly
retracted by rulesets that you supply. When the state is maintained, you can retract all
facts or selectively retract facts between calls by running a ruleset with rules that use
the retract action. This ruleset is run as part of the same decision function that you use
with the Decision Point. The retract all employees ruleset demonstrates retracting
these facts. For more information, see How to Call a Decision Point with ADF Business
Components Facts.

10.3.8.1 How to Add the Department Manager Finder Ruleset

You now add the department manager finder ruleset.

To add the department manager finder ruleset:
1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Depar t ment Manager
Fi nder Rul eset.

3. Click OK.

10.3.8.2 How to Add the Find Rule in the Department Manager Finder Ruleset

Next you add the Find rule to find department managers. This rule demonstrates the
use of Tree Mode rules with Oracle ADF Business Components fact types.

Add department manager finder rule:

1. In Rules Designer select the Department Manager Finder Ruleset.

2. In the dropdown menu next to the Add button, click Create Rule.

3. Change the rule name by selecting the name Rule_1, and entering Fi nd.

4. Click Show Advanced Settings. For more information, see How to Show and Hide
Advanced Settings in a Rule or Decision Table.

10-22 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

5.

6.

In the rule, select Tree Mode.

Enter the Find rule tests and actions. The following shows the complete text of this
rule:

ROOT: Enpl oyee

I F

Enpl oyee/ Depart nent sVi ew. Manager | D == Enpl oyee. Enpl oyeel D

THEN

retract Enployee

assert new MessageAction (<add property> message: Enployee.FirstName + " " +
Enpl oyee. LastNane + " is the nmanager of dept "+ Enpl oyee/

Depart ment sVi ew. Depar t ment Nane)

10.3.8.3 How to Add Retract Employees Ruleset

You add a ruleset to retract the employee fact type instances. This ensures that the
Employee fact type is removed between invocations of the decision function.

To add the retract employee ruleset:

1.

2.

Add the Retract Employees Ruleset.

In the Retract Employees Ruleset, add a rule and name it Retract all employees.

10.3.8.4 How to Add the Find Department Managers Decision Function

Now you create the decision function for the department manager finder ruleset. You
use this decision function to execute the ruleset from a Decision Point.

To add a decision function for department manager finder ruleset:

1.

2.

Click the Decision Functions navigation tab.

In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

Update the decision function fields as follows:
e Enter Name value Fi ndDepart ment Manager s.

* In the Inputs area, click the Add Input and edit the input information as
follows:

— Click the Fact Type field and select Employee from the list.

— Select the Tree check box.

In this decision function you do not define any outputs, because you use the
Act i onType API for taking action rather than producing output.

* In the Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order:

— DecisionPointDictionary.Preprocessing
— Department Manager Finder Ruleset

— Retract Employees

Working with Oracle Business Rules and ADF Business Components 10-23

Creating a Business Rules Application with ADF Business Components Facts

4.

5.

— DecisionPointDictionary.Postprocessing

Ensure that the items in the Selected area are in this order:
DecisionPointDictionary.Preprocessing, Department Manager Finder Ruleset,
Retract Employees, and DecisionPointDicitonary.Postprocessing.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

Click OK.

10.3.8.5 How to Add the Department Manager Finder Java Class

Add the department manager finder class. This class include the code with the
Decision Point that executes the decision function.

Add the department manager finder class:

1.

2.

6.

In the Application Navigator, select the Chapter10 project.
Right-click and select New....

In the New Gallery, in the Categories area select General.

In the New Gallery, in the Items area, select Java Class. Click OK.
In the Name field, enter Dept Manager Fi nder . Click OK.

Replace the contents of this class with the code example shown below:

package com exanpl e;

i mport oracle.jbo. ApplicationhMdul e;

import oracle.jbo.Viewthj ect;

inmport oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransacti onl npl 2;

import oracle.rules.rl.exceptions. RLException;

i mport oracle.rul es. sdk2. deci si onpoi nt . Deci si onPoi nt ;

i mport oracle.rul es. sdk2. deci si onpoi nt. Deci si onPoi nt Bui | der;
i mport oracle.rul es. sdk2. deci si onpoi nt . Deci si onPoi nt | nst ance;
i mport oracle.rul es. sdk2. exception. SDKExcepti on;

i mport oracle.rules.sdk2.repository. DictionaryFQ\;

public class DeptManager Finder {

private static final String AMDEF = "com exanpl e. AppModul e";
private static final String CONFI G = "AppMdul eLocal *;

private static final String VO NAME = "Enpl oyeesVi ewl";

private static final String DF_NAME = "Fi ndDepart nent Managers";

private static final DictionaryFON DI CT_FON =
new Di ctionaryFQN("com exanpl e", "Chapter10Rul es");

private DecisionPoint dp = null;
publ i c Dept Manager Fi nder () {
try {

dp = new Deci si onPoi nt Bui | der ()
. Wi t h(DI CT_FQN)

10-24 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

}

. Wi t h(DF_NAME)
cbuild();
} catch (SDKException e) {
Systemerr.printlin(e);
}

}

public void run() {
final ApplicationhMdule am =
Configuration. createRoot Appl i cati onMbdul e(AM DEF, CONFI G);
final ViewObject vo = amfindVi ewdbj ect (VO _NAVE);
final DecisionPointlnstance point = dp.getlnstance();

poi nt. set Transacti on((DBTransacti onl npl 2) am get Transaction());
poi nt. set AutoCommit (true);
poi nt. set Vi ewQhj ect (vo);
try {
poi nt.invoke();
} catch (RLException e) {
Systemerr.println(e);
} catch (SDKException e) {
Systemerr.printin(e);
}

}

public static void main(String[] args) {
new Dept Manager Fi nder (). run();
}

10.3.8.6 How to Copy the Dictionary to an MDS Accessible Location

Copy the updated dictionary to an MDS accessible location.

Copy dictionary to MDS accessible location:

1.

In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10
application, and project and copy the oracle directory that contains the dictionary.

In the application directory for Chapter10, above the Chapterl0 project, navigate to
the . adf directory.

Copy the oracle folder to this directory.

10.3.8.7 How to Build and Run the Project to Check the Find Managers Rule

You can build and test the project to execute the department manager finder ruleset.

Build the project:

1.

From the dropdown menu next to Run button, select Manage Run
Configurations....

In the Project Properties dialog, click New....

In the Create Run Configuration dialog, enter the name. For example, enter
Dept Manager Fi nder .

In the Copy Settings From field, enter Default.

Working with Oracle Business Rules and ADF Business Components 10-25

Creating a Business Rules Application with ADF Business Components Facts

5. Click OK.
6. With DeptManagerFinder selected, click Edit....
7. In the Default Run Target field, click Browse....

8. Select DeptManagerFinder.java from the sr c\ com exanpl e directory and click
Open.

9. In the Edit Run Configuration dialog, click OK.

10. In the Project Properties dialog, click OK.

To run the project, select DeptManager Finder in the menu, next to the Run project
button. Running the decision point generates output, as shown in code example
below:

M chael Hartstein is the manager of dept Marketing
John Russel|l is the manager of dept Sales

Adam Fripp i s the manager of dept Shipping

Den Raphaely is the nmanager of dept Purchasing

Al exander Hunold is the manager of dept IT

Shelley Higgins is the manager of dept Accounting
Hermann Baer is the nanager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jenni fer Whalen is the manager of dept Admi nistration
Nancy Greenberg is the manager of dept Finance

Steven King is the nanager of dept Executive

Shel l ey Higgins is the manager of dept Accounting
Hermann Baer is the nanager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jenni fer Whalen is the manager of dept Admi nistration
Nancy Greenberg is the manager of dept Finance

Al exander Hunold is the manager of dept IT

Al exander Hunold is the manager of dept IT

Nancy Greenberg is the manager of dept Finance

Den Raphaely is the nanager of dept Purchasing

Adam Fripp i s the manager of dept Shipping

John Russel|l is the manager of dept Sales

Jenni fer Whalen is the manager of dept Admi nistration
M chael Hartstein is the manager of dept Marketing
Susan Mavris is the manager of dept Human Resources
Hermann Baer is the nanager of dept Public Relations
Shel l ey Higgins is the nanager of dept Accounting

When you see duplicate entries in the output, when working with tree mode rules in
this example, the duplicate entries are due to multiple rule firings on the same data in
a different part of the view object graph.

10.3.9 How to Add and Run the Raises and Retract Employees Rulesets

The sample code that runs the raises ruleset invokes the Decision Point by specifying
the view object using the set Vi ewbj ect method. This invokes the decision function
once for each row in the view object. The retract employees ruleset retracts all
instances of Enpl oyee asserted for each call, so that they do not remain in working
memory between calls to the decision function. The action type shown in How to
Create the Raise ActionType Java Implementation Class shows how to change the

Vi ewRow npl attribute values with a Act i onType.

10-26 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

For more information, see How to Call a Decision Point with ADF Business
Components Facts.

10.3.9.1 How to Add the Raises Ruleset

You now add the raises ruleset.

To add the raises ruleset:
1. In Rules Designer, click Create Ruleset....
2. In the Create Ruleset dialog, in the Name field enter Rai ses Rul eset .

3. Click OK.

10.3.9.2 How to Create the Raise ActionType Java Implementation Class

To create this part of the sample application and to modify the view object in the raises
rule, you need to create a Java implementation class for the abstract class

oracl e. rul es. sdk2. deci si onpoi nt. Acti onType. All subclasses of

Act i onType must implement the abstract exec method.

To create the raise ActionType Java implementation class:

1. In Oracle JDeveloper, select the project named Chapter10.

2. In the Application Navigator, select the Application Sources folder.

3. Right-click and from the list select New....

4. Inthe New Gallery, in the Categories area select General.

5. Inthe New Gallery, in the Items area select Java Class. Click OK.

6. In the Create Java Class dialog, configure the following properties:
* Enter the Name value Rai seActi on.
* Enter the Package value com exanpl e.

¢ Enter the Extends value
oracl e. rul es. sdk2. deci si onpoi nt. Acti onType.

7. Click OK.
Oracle JDeveloper displays the Java Class.

8. Replace this code with the code example showing act i ont ype java
implementation as shown below:

package com exanpl e;
i mport oracle.jbo.domain. Nunber;

import oracle.rul es.sdk2. deci si onpoi nt. Acti onType;
import oracle.rul es. sdk2. deci si onpoi nt . Deci si onPoi nt | nst ance;

public class RaiseAction extends ActionType {
private doubl e raisePercent;

public void exec(DecisionPointlnstance dpi) {
Nurmber sal ary = (Number)get Vi ewRow npl (). get Attribute("Sal ary");

Working with Oracle Business Rules and ADF Business Components 10-27

Creating a Business Rules Application with ADF Business Components Facts

9.

salary = (Number)salary.multiply(1.0d + getRai sePercent()).scal e(100,2, new
bool ean[]{fal se});
dpi . addResul t ("raise for " + this.getViewRow npl ().getAttribute("Enployeeld"),
get Rai sePercent () + "=>" + salary);
get Vi ewRowl npl (). setAttribute("Salary", salary);

}

public void setRai sePercent(doubl e raisePercent) {
this.rai sePercent = raisePercent;

}

public doubl e getRai sePercent() {
return raisePercent;

}
}

In the Application Navigator, right click the Rai seAct i on. j ava and from the list
select Make.

10.3.9.3 How to Import the Raise Action Java Fact

You just created a new Java class. You import this class as a Java fact type in Rules
Designer to use later when you create rules.

To create the Java fact type:

1.

2.

In Rules Designer, select the Manager Rul es. r ul es dictionary.
Click the Facts navigation tab and select the Java Facts tab.
Click Create....

In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
comand exanpl e to display the RaiseAction check box.

Select the RaiseAction check box.
Click OK.

This adds the Raise Action fact type to the Java Facts table.

10.3.9.4 How to Add the 12 Year Raise Rule

This rule shows how to use action types to update database entries.

To add 12 year raise rule:

1.

2.

In Rules Designer in the Raises Ruleset, click Create Rule.

Change the rule name by selecting Rule_1 and entering the value: Longer t han
12 years.

Click Show Advanced Settings. For more information, see How to Show and Hide
Advanced Settings in a Rule or Decision Table.

Select Advanced Mode.

Enter the 12 year raise rules, as shown in this example:

I F
Enpl oyee is Enpl oyee
and

10-28 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

CurrentDate is a CurrentDate and

Duration.years between(Enpl oyee. Hi reDate, CurrentDate.date) >=12
THEN

assert new Rai seAction(<add property> raisePercent: .03,

vi ewRow npl e: Enpl oyee. Vi ewRowl npl)

retract Enployee

10.3.9.5 How to Add the Employee Raises Decision Function

Now create the decision function for the employee raises and the retract all employees
rulesets.

To add a decision function:

1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Update the decision function fields as follows:
e Enter Name value Enpl oyeeRai ses.

¢ In the Inputs area, click the Add Input and edit the input information as
follows:

— Click the Fact Type field and select Employee from the list.

In this decision function you do not define any outputs, because you use the
Act i onType API for taking action rather than producing output.

¢ In the Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order.

— DecisionPointDictionary.Preprocessing
— Raises Ruleset

— Retract Employees Ruleset

— DecisionPointDictionary.Postprocessing

4. Ensure that the items in the Selected area are in this order:
DecisionPointDicitonary.Preprocessing, Raises Ruleset, Retract Employees Ruleset,
DecisionPointDictionary.PostProcessing.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

10.3.9.6 How to Add the Employee Raises Java Class

Add the employee raises class. This executes the decision function.

To add the employee raises class:

1. Select the Chapter10 project.

Working with Oracle Business Rules and ADF Business Components 10-29

Creating a Business Rules Application with ADF Business Components Facts

2. Right-click and select New....

3. Inthe New Gallery, in the Categories area select General.

4. In the New Gallery, in the Items area, select Java Class. Click OK.
5. In the Name field, enter Enpl oyeeRai ses. Click OK.

6. Replace the contents of this class with the dept manager f i nder class code shown
below:

package com exanpl e;

i mport oracle.jbo. Applicationhbdul e;

import oracle.jbo. Vi ewhj ect;

import oracle.jbo.client.Configuration;

i mport oracle.jbo.server.DBTransacti onl npl 2;

import oracle.rules.rl.exceptions. RLException;

i mport oracle.rul es. sdk2. deci si onpoi nt. Deci si onPoi nt ;

i mport oracle.rul es. sdk2. deci si onpoi nt. Deci si onPoi nt Bui | der ;
i mport oracle. rul es. sdk2. deci si onpoi nt. Deci si onPoi nt | nst ance;
import oracle.rul es. sdk2. excepti on. SDKExcepti on;

import oracle.rules.sdk2.repository.DictionaryFQN;

public class Enpl oyeeRai ses {
private static final String AM DEF = "com exanpl e. AppModul e";
private static final String CONFI G = "AppMdul eLocal *;
private static final String VO NAME = "Enpl oyeesVi ewl";
private static final String DF_NAME = "Enpl oyeeRai ses";

private static final DictionaryFON DI CT_FON =
new Di ctionaryFQN("com exanpl e, "Chapter10Rul es");

private DecisionPoint dp = null;

public Enpl oyeeRaises() {

try {
dp = new Deci si onPoi nt Bui | der ()
.wi th(DI CT_FQN)
. Wi t h(DF_NAME)
cbuild();

} catch (SDKException e) {
Systemerr.printlin(e);
}
}

public void run() {
final Applicationhdule am=
Configuration. createRoot Appl i cati onModul e(AM DEF, CONFI G ;
final ViewObject vo = amfindVi ewQbj ect (VO _NAME) ;
final DecisionPointlnstance point = dp.getlnstance();

poi nt. set Transact i on((DBTransacti onl npl 2) am get Transaction());
poi nt . set Aut oCommit (true);
poi nt . set Vi ewQbj ect (vo);
try {
poi nt.invoke();
} catch (RLException e) {

10-30 Designing Business Rules with Oracle Business Process Management

Creating a Business Rules Application with ADF Business Components Facts

}

Systemerr.printin(e);
} catch (SDKException e) {
Systemerr.printin(e);

}

for (DecisionPoint.NanedVal ue result : point.getResults()){
Systemout.printin(result.getNane() + " " + result.getValue());

}

}

public static void main(String[] args) {
new Enpl oyeeRai ses().run();
}

10.3.9.7 How to Copy Dictionary to MDS Accessible Location

Copy the updated dictionary to the MDS accessible location.

To copy dictionary to MDS accessible location:

1.

3.

In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10
folder and the Chapter10 project and copy the oracle directory that contains the
dictionary.

In the application directory for Chapter10, above the Chapterl0 project, navigate to
the . adf directory.

Copy the oracle folder to this directory.

10.3.9.8 How to Build and Run the Project to Check the Raises Rule

You can build and test the project by running employee raises ruleset.

To build the project:

1.

8.

9.

From the dropdown menu next to Run button, select Manage Run
Configurations....

In the Project Properties dialog, click New....

In the Create Run Configuration dialog, enter the name. For example, enter
Enpl oyeeRai ses.

In the Copy Settings From field, enter Default. Click OK.

With EmployeeRaises selected, click Edit....

In the Default Run Target field, click Browse....

Select EmployeeRaises.java from the sr c\ com exanpl e folder. Click Open.
In the Edit Run Configuration dialog, click OK.

In the Project Properties dialog, click OK.

To run the project, select EmployeeRaises in the menu, next to the Run project button.
Oracle JDeveloper displays the output as shown in example below:

Working with Oracle Business Rules and ADF Business Components 10-31

Creating a Business Rules Application with ADF Business Components Facts

.03=>81.7
.03=>1872. 46
. 03=>60596. 78
.03=>31146. 26
. 03=>20159. 43
. 03=>35822. 68
. 03=>26084.5
03=>27500. 92
.03=>7524.5
.03=>16262. 34
.03=>16183. 41
. 03=>15591. 35
.03=>3671. 33
. 03=>4567. 98
.03=>4838. 1

. 03=>4703. 71
.03=>4044. 79
.03=>17734.79
.03=>17101. 39
. 03=>15201. 23
. 03=>12667.7
.03=>12034. 32
.03=>13047.73
.03=>12395. 35
. 03=>11400. 93
.03=>10134. 16
.03=>14567. 86
03=>13934. 48
.03=>11147. 58
03=>5480. 03
.03=>5193. 76
.03=>5219. 1

. 03=>4940. 41
.03=>5740. 99
.03=>16962. 05
.03=>8481. 03
.03=>13047.73
. 03=>15657. 27
.03=>10829. 62

raise for 100
raise for 101
raise for 102
raise for 103
raise for 104
raise for 108
raise for 109
raise for 114
raise for 115
raise for 120
raise for 121
raise for 122
raise for 131
raise for 133
raise for 137
raise for 141
raise for 142
raise for 145
raise for 146
raise for 147
rai se for 150
raise for 151
raise for 156
raise for 157
raise for 158
raise for 159
raise for 168
raise for 174
raise for 175
raise for 184
raise for 185
raise for 192
raise for 193
raise for 200
raise for 201
raise for 203
raise for 204
raise for 205
raise for 206

10-32 Designing Business Rules with Oracle Business Process Management

11

Working with Decision Components in SOA
Applications

This chapter discusses the Decision Components that support Oracle Business Rules. It
also covers how to use a Decision Component as a mechanism for publishing rules
and rulesets as a reusable service that can be invoked from multiple business
processes.

A Decision Component is an SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision Components are used for the
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

This chapter includes the following sections:
¢ Introduction to Decision Components
¢ Working with a Decision Component

e Decision Service Architecture

11.1 Introduction to Decision Components

A Decision Component is a web service that wraps a rule session to the underlying
decision function.

A Decision Component consists of the following:

* Rules or Decision Tables that are evaluated using the Rules Engine. These are
defined using Rules Designer and stored in a business rules dictionary.

® Metadata that describes facts required for specific rules to be evaluated. Rulesets
that contain rules or Decision Tables are exposed as a service with facts that are
input and output. These facts must be exposed through XSD definitions.

For example, a credit rating ruleset may expect a customer ID and previous loan
history as facts, but a pension payment ruleset may expect a value with the years of
employee service, salary, and age as facts.

For more information, see Working with Decision Component Metadata.

* A web service wraps the input, output, and the call to the underlying rule engine.

This service lets business processes assert and retract facts as part of the process. In
some cases, all facts can be asserted from the business process as one unit. In other
cases, the business process can incrementally assert facts and eventually consult the
rule engine for inferences. Therefore, the service has to support both stateless and
stateful interactions.

You can create a variety of such business rules service components.

Working with Decision Components in SOA Applications 11-1

Working with a Decision Component

For more information, see Developing SOA Applications with Oracle SOA Suite.

11.2 Working with a Decision Component

Using Oracle JDeveloper with Rules Designer these tools automatically generate all
required metadata and WSDL operations.

The Decision Component can be integrated into a SOA composite application in the
following ways:

* Create a Decision Component as a standalone component in the SOA Composite
Editor. In this scenario, the Decision Service is exposed on the composite level and
thus can be invoked from any web service client.

For more information, see Getting Started with Oracle Business Rules in Developing
SOA Applications with Oracle SOA Suite.

* Create a Decision Component in the SOA Composite Editor that you later associate
with a BPEL process. In this scenario the Decision Service is not exposed on the
composite level. However it can be wired to any other component within the
composite, such as BPEL, Oracle Mediator, and Oracle Human Workflow.

For more information, see Getting Started with Oracle Business Rules in Developing
SOA Applications with Oracle SOA Suite.

¢ Create a Decision Component within the Human Task editor of a human task
component.

This integration provides the following benefits:

¢ Dynamic processing: provides for intelligent routing, validation of policies within a
process, and constraint checks.

* Integration with ad hoc human tasks: provides policy-based task assignment,
various escalation policies, and load balancing of tasks.

11.2.1 Working with Decision Component Metadata

A Decision Component is defined by the following files:
¢ Decision Service Metadata (.decs) File
¢ SCA Component Type (.componentType) File

® Decision Component Entry in composite.xml

Typically, Oracle JDeveloper generates and maintains these files.

e Decision Service Metadata (.decs) File

Every Decision Component within a composite comprises one business rule
metadata file. The business rule metadata file provides information about the
location of the component business rule dictionary and the Decision Services
exposed by the Decision Component.

One Decision Component might expose one or more Decision Services. For
example, a CreditRating Decision Component might expose two services,
CheckEligibility and CalculateCreditRating.Oracle Fusion Middleware 11g Release
1 (11.1.1) onwards, the Decision Service metadata comprises of the decision
function name that is exposed as a web service. For projects that are migrated from

11-2 Designing Business Rules with Oracle Business Process Management

Working with a Decision Component

older releases of Oracle SOA Suite, the Decision Service metadata typically has
more information depending on the interaction pattern used in 10.1.3.x.

The business rule metadata file (busi ness_r ul e_name. decs) defines the
contract between the components involved in the interaction of the business rule
with the design time and back-end Oracle Rules Engine.

This file is in the SOA Content area of the Application Navigator in Oracle
JDeveloper for your SOA composite application. Table 11-1 describes the top-level
elements in the Decision service . decs file.

Table 11-1 Decision Metadata File (.decs) Top-level Elements

Element Description

rul eEngi neProv The busi ness_rul e_nane. decs file r ul eEngi neProvi der
i der element includes details about the rule dictionary to use:

<rul eEngi neProvi der name="0r acl eRul esSDK"
provider="COracle_11.0.0.0.0">
<repository type="SCA- Archive">
<pat h>Aut oLoanConposi t e/ or acl e/ rul es/ Aut oLoanRul es. rul es</
pat h>
</repository>
</ rul eEngi neProvi der >

The repository type is set to SCA- Ar chi ve for Decision
Components. This indicates that the rule dictionary is located in the
service component architecture archive. The path is relative and
interpreted differently by the following:

— Design time — The path is prefixed with Or ands: / . Metadata
service (MDS) APIs open the rule dictionary. Therefore, the full
path to the dictionary is as follows:

Orands: / Aut oLoanConposi t e/ oracl e/ rul es/ Aut oLoanRul es. rul es

— Runtime (business rule service engine) — The business rule
service engine uses the Oracle Business Rules SDK
Rul eReposi t ory API to open the rule dictionary located in
MDS. The composite name prefix, for example
(Aut oLoanConposi t e) is removed from the path and the
metadata manager assumes the existence of or acl e/ r ul es/
Aut oLoanRul es. r ul es relative to the composite home
directory.

Working with Decision Components in SOA Applications 11-3

Working with a Decision Component

Table 11-1 (Cont.) Decision Metadata File (.decs) Top-level Elements

Element Description

deci sionServic A Decision service is a web service (or SOA) enabler of business

e rules. It is a service in the sense of a web service, thus opening the
world of business rules to service-oriented architectures (SOA). In
12c (12.2.1), a Decision service consists of metadata and a WSDL
contract for the service.

The busi ness_rul e_nane. decs file deci si onSer vi ce element
defines the metadata that describes business rules exposed as a web
service.

In general, a Decision service includes the following elements:

— Target namespace

— Reference to the back-end Oracle Rules Engine (this is the link to
the rule dictionary). Note that Or acl eRul esSDK is the reference
name that matches the name of the Oracle Rules Engine provider
inrul eEngi nePr ovi der element.

— Name (Cr edi t Rat i ngSer vi ce in the following example)

- Additional information about the dictionary name and ruleset to
use

— List of supported operations (patterns)

Apart from the operations (patterns), the parameter types (or fact

types) of operations are specified (and validated later at runtime).

Therefore, every Decision service exposes a strongly-typed contract.

¢ SCA Component Type (.componentType) File

An SCA busi ness_rul e_nane. conponent Type file is included with each
Decision Component. This file lists the services exposed by the business rules
service component. In the following sample, two services are exposed:

Credi t Rati ngSer vi ce and LoanAdvi sor Ser vi ce.

<?xn version="1.0" encodi ng="UTF-8" ?>
<l-- Generated by Oracle SOA Mdeler version 1.0 at [5/24/07 9:27 AM. -->
<conponent Type xm ns="http://xm ns. oracl e. con sca/ 1. 0" >
<servi ce nane="CreditRatingService">
<interface. wsdl
interface="http://xm ns.oracle.conlcreditrating/Rating#wsdl .interface(lDecisionSer
vice)"l>
</ service>
<servi ce name="LoanAdvi sor Servi ce">
<interface. wsdl
interface="http://xn ns.oracle. com | oanof f er/ Advi sor #wsdl . i nterface(I Deci si onSer vi
ce)"/>
</ service>
</ conponent Type>

¢ Decision Component Entry in composite.xml
An entry in conposi t e. xr is created for a Decision Component. For example,

<conponent name="0Oracl eRul es1" >
<i npl enent ati on. deci sion src="Cracl eRul esl. decs"/>
</ conponent >

The business rules service engine uses the information from this implementation

type to process requests for the Service Engine. From an SCA perspective, a
Decision Component is a new "implementation type".

11-4 Designing Business Rules with Oracle Business Process Management

Working with a Decision Component

11.2.2 Working with Decision Components that Expose a Decision Function

You can use a decision service to expose an Oracle Business Rules Decision Function
as a service. A Decision Function is a function you use to call rules from a Java EE
application or from another component.

The code example below shows a busi ness_r ul e_nane. decs file
deci si onSer vi ces element that defines the metadata for an Oracle Business Rules
Decision Function exposed as a service.

<?xnml version="1.0" encodi ng="UTF-8" standal one="yes"?>
<deci si onServi ces xm ns="http://xn ns. oracl e. coml bpel /rul es" name="Purchasel tems">
<rul eEngi neProvi der name="0Cracl eRul esSDK" provi der="0racle_11.0.0.0.0">
<repository type="SCA-Archive">
<pat h>Pur chasi ngSanpl ePr o ect/ oracl e/ r ul es/ coml exanpl e/ Pur chasel t ens. r ul es</ pat h>
</repository>
</ rul eEngi neProvi der >
<deci si onServi ce target Nanespace="http://xnins. oracl e. conf Purchasel t ems/
Pur chasel t ens_Deci si onServi ce_Val i dat ePur chasesDF"
rul eEngi neProvi der Ref er ence="0r acl eRul esSDK"
name="Pur chasel t ems_Deci si onServi ce_Val i dat ePur chasesDF" >
<cat al og>Pur chasel t ens</ cat al og>
<pattern name="Cal | FunctionSt at el ess">
<ar gunent s>
<cal | >com exanpl e. Purchasel t ens. Val i dat ePur chasesDF</ cal | >
</ argument s>
</ pattern>
<pattern name="Cal | FunctionStateful ">
<ar gunent s>
<cal | >com exanpl e. Purchasel t ens. Val i dat ePur chasesDF</ cal | >
</ argument s>
</ pattern>
</ deci si onServi ce>
</ deci si onServi ces>

In this case, the decision function Val i dat ePur chasesDF itself is specified entirely
in the Pur chasel t ens. r ul es file.

For more information, see Working with Decision Functions.

11.2.3 Using Stateful Interactions with a Decision Component

To provide a stateful decision service you create a decision function and specify that
the decision function is not stateless. To do so, clear the Stateless check box in a
decision function.

Note the following details about stateful interactions with a Decision Component (also
see Figure 11-2):

* Rule sessions from the cache and those from the pool are mutually exclusive:
— The rule session pool is for simple, stateless interactions only.
— The rule session cache keeps the state of a rule session across Decision service
requests.
11.2.4 What You Need to Know About Stateful Interactions with Decision Components

A Decision Component running in a Business Rules service engine supports either
stateful or stateless operation. The Reset Session (stateless) check box in the Create
Business Rules dialog provides support for these two modes of operation.

Working with Decision Components in SOA Applications 11-5

Decision Service Architecture

When the Reset Session (stateless) check box selected, this indicates stateless
operation.

When Reset Session (stateless) check box is cleared, the underlying Oracle Business
Rules object is kept in memory of the Business Rules service engine at a separate
location (so that it is not given back to the Rule Session Pool when the operation is
finished). Only use stateful operation if you know you need this option (some errors
can occur at runtime when using stateful operation and these errors could use a
significant amount of service engine memory).

When Reset Session (stateless) check box is cleared, a subsequent use of the Decision
Component reuses the cached RuleSession object, with all its state information from
the cal | Functi onSt at ef ul invocation, and then releases it back to the Rule
Session pool after the cal | Funct i onSt at el ess operation is finished.

11.3 Decision Service Architecture

A Decision service consists only of the service description. All other artifacts are
shared within a Decision Component.

This is shown in Figure 11-1:

Figure 11-1 Decision Service Architecture

Decizion Service 1 |-— Request—is Decision Component
o Metadata

Decizion Service 2 [-#— Reguest—e

Rules .
Statel Rule S
Ergine [- BESSPOL;F ESEI0nN

Decizion Service 3 [-#— Reguest—ie

Deployment Artifacts
[Zenerated
JAKXB Clazses)

o o | Stateful Rule Sezsion
Decizion Service i | -— Request—s - o Cache

The heart of runtime is the decision service cache, which is organized in a tree
structure. Every Decision Component owns a subtree of that cache (depending on the
composite distinguished name (DN), component, and service name). In this regard,
decision services of a Decision Component share the following data:

® Metadata of the Decision Component
— Fact type metadata.
— Function metadata.
— Ruleset metadata.
¢ Rule session pool
— One rule session pool is created per Decision Component.

— The rule sessions in the pool are pre-initialized with the data model Oracle RL
and the ruleset Oracle RL already executed.

— New rule sessions are created on demand.
— Rule sessions can be reused for a configurable number of times.

— The initial size of the rule session pool is configurable.

11-6 Designing Business Rules with Oracle Business Process Management

Decision Service Architecture

e Stateful rule session cache

— A special cache is maintained for stateful rule sessions.

For more information, see Using Stateful Interactions with a Decision
Component.

* Deployment artifacts

— Decision Component deployment can end up in class generation for JAXB fact
types. The classes can be shared across the composite.

Figure 11-2 shows how both stateless and stateful rule sessions interact with the rule
session pool and how stateful rule sessions interact with the stateful rule session cache
during a decision service request.

Figure 11-2 Stateless and Stateful Rule Session Usage for a Decision Service
Request

0
3
2

Gat Ruasesson
from cache

Gat Aulesession
rom pool

1Y

Final
| Execute request Mo
Yes
Remova rulé
FAMIT T8 BESSI6N !l:’ﬂ
S855i00 to pool cache

Return Response

Working with Decision Components in SOA Applications 11-7

Decision Service Architecture

11-8 Designing Business Rules with Oracle Business Process Management

12

Using Oracle SOA Composer with Oracle
Business Rules at Runtime

This chapter describes how to use the Oracle SOA Composer application to work with
a deployed dictionary and tasks that are part of a SOA composite application.

The chapter includes the following sections:

® Introduction to Oracle SOA Composer

* Setting Accessibility Options

® Opening and Viewing an Oracle Business Rules Dictionary

¢ Getting Started with Editing a Dictionary

¢ Editing Rules in an Oracle Business Rules Dictionary

* Using the Oracle SOA Composer Browser Windows

¢ Editing Decision Tables in an Oracle Business Rules Dictionary
¢ Comparing and Merging Oracle Business Rules Dictionaries

¢ Localizing Names of Resources in Oracle Business Rules

* Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary
Updates

* Validating and Diagnosing an Oracle Business Rules Dictionary

¢ Working with Tasks

12.1 Introduction to Oracle SOA Composer

Oracle SOA Composer is a web-based application that enables you to work with
Oracle Business Rules dictionaries and tasks for deployed applications. Oracle SOA
Composer accesses a dictionary or a task in an MDS repository.

Oracle SOA Composer supports viewing and editing different types of metadata
artifacts, such as DVM documents, SOA composites, and Oracle Business Rules
dictionaries. You can view the different types of metadata by Types View or
Deployment View, as shown in Figure 12-1.

The Deployment View is the default. Choose the Types View to see artifacts listed by
type: Business Rules, Domain Value Maps, Human Tasks, or SOA Composites.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-1

Introduction to Oracle SOA Composer

Figure 12-1 Oracle SOA Composer Types View

SOA COmpOSEI’ Links v Preferences Help~ weblogic ~ o

_—
L ——

Search TestRules.rules 5 HvQE @8-~
Types View =l Deploy’r:ent View L E:Value Sets 4§ Globals ﬁ Business Phrases Tests Q Explorer I\ Facts Qo Dedision Functions 00 Links & Translation: Actions
Types View ~ Ep
[7] BuSINESS R S h z 4 ®
3 ApprovalR _
Rules ¥ By Type i -
(3 cartnsurar by Type (= Payment Type Rule %P |
(&3 CaseManat 4 AR “ hd .
[E2) DynamicR & _
(&3 LinkedTest o v X ¥ 2 A
e ¥ Review Rule 3
&3 Loanappre Claim.status & ClaimStatus.”Review Complete” and
() [TestRule: « “# Payment Type Rule Claim.reviewDetails is "PolicyEffective”
7] Domain Value N
3 Human Tasks & Enter Payment THEN
[soa compost @ Close Claim &+ - X ¥
[N 4
| % |- &
Claim.policy.terms.notes contains "REPAIR" -
< | 1 »
<« [3 Diagnostics History Center Savelog Validation Log
-

The Deployment View has two nodes: SOA-Infra and Shared. The default node is a
SOA partition created and managed in Enterprise Manager. The Shared folder
displays rules or DVMs created in JDeveloper and deployed as shared artifacts.

From either view, click artifacts in the navigation tree to open them in separate tabs.

In SOA Composer, the Verbal Rules and Business Phrases features do not appear if
you have not installed BPM.

Use the search field just above the View drop down to quickly find and filter types by
name, as shown in Figure 12-2. Click to open artifacts from this page.

Figure 12-2 Search and Filter

TestRules.rules x ~ Search x e g @ 8a-
Search Appro -+
Deployment Search Results Found 4 items in 60 miliseconds
@A
©) SOAInfra
(©) Shared
Name Type Deployment Path
Type ﬁltg ApprovalRuleDemo [1.0] SOA Composite /deployed-composites/default/ApprovalRuleDemo_rev1.0/composite.xml
53 ApprovalRules.rules Business Rules /deployed-composites/default/ApprovalRuleDemo_rev1.0/oracle/rules/ord...
» ZOA Composites n{tg SimpleApproval [1.0] SOA Composite /deployed-composites/default/SimpleApproval_rev1.0/composite.xml
usiness Rules 4 & SimpleApprovalTask.task Human Task /deployed-composites/default/SimpleApproval_rev1.0/SimpleApprovalTas...
Domain Value Maps
Human Tasks

Diagnostics History Center Savelog Validation Log

12.1.1 Creating and Publishing Sessions

Click an artifact to open it in read-only mode. If you plan to make changes to an
artifact, click the Edit Session button. Most action buttons only become active if you

12-2 Designing Business Rules with Oracle Business Process Management

Introduction to Oracle SOA Composer

are in a session. When you are done making changes, click Publish. All changes in a
session are committed to the main repository, can be seen by others, and the server
will begin executing. If you have validation errors, you cannot publish, though you
can save rules with validation errors and work on them again in another session.

The Discard button enables you to cancel out of changes that you do not want to save.
If, after making some changes in a session, you wanted to go back to the original state
that you started from, click Exit Session. Click Edit Session again to see the last saved

session information.

These icons and buttons provide more information:

Table 12-1 SOA Composer Buttons

Button

Description

Session Info

Hover over this icon to see Session Details.

Click to maximize the tabs section. This increases screen space
when writing or editing rules. Click again to restore the view.

v Validate

Click to validate your changes. The system validates when you
save and you can save rules with validation errors, though you
cannot publish. For more information about validating, see
Validating and Diagnosing an Oracle Business Rules
Dictionary.

& Bookmark

Click the bookmark if you want to avoid the search/
deployment view in a future session. For more information, see
Creating a Bookmark.

Save Changes in Current
Tab or Save Changes in All
Tabs

Click to save as appropriate.

Get Context Sensitive Help

Click to view the online help file.

Close All, Close Others Click the drop down and select to close tabs.
s » [Actons = The Actions drop down enables you to use the compare and
f= Dif Merge merge dictionaries, work with Decision Tables in Microsoft

l:', Import From Excel

i_lq' Export To Excel
- Dictionary Settings

Excel, and review dictionary settings.

Diff Merge enables you to compare the currently selected
dictionary with the File System, the Published Version, or the
Saved Version. If there are differences, you can choose to merge
the dictionaries.

For more information about comparing or merging dictionaries,
see Comparing and Merging Oracle Business Rules
Dictionaries.

Import From Excel enables you to import decision tables from
Excel.

Export To Excel enables you to export decision tables and edit
them in Excel.

For more information about working with Excel, see Editing
Decision Tables in Microsoft Excel.

Dictionary Settings enables you to set dictionary preferences.

For more information about reviewing dictionary settings, see
Reviewing Dictionary Settings.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-3

Introduction to Oracle SOA Composer

Table 12-1 (Cont.) SOA Composer Buttons
___|

Button Description

Diagnostics, History At the bottom of the SOA Composer page are four tabs:
Center, Save Log, Diagnostics, History Center, Save Log, and Validation Log.
Validation Log Use these tabs to validate changes to rules and perform and

resolve changes to artifacts.

For more information about these tabs, see Validating and
Diagnosing an Oracle Business Rules Dictionary.

12.1.1.1 Publishing Changes for an Oracle Business Rules Dictionary

After you verify dictionary modifications, click Publish to commit those changes to the
MDS repository.

To publish changes to an Oracle Business Rules dictionary:

1. Click the Publish menu item.

2. In the Confirm dialog, click Yes if you want to make the changes in the MDS
repository. Click No if you do not want to make the changes in the MDS repository.

Remember to update the runtime changes into Rule Editor ADF following the tasks
described in Importing Runtime Rules Changes From Repository Into JDeveloper

3. When you open the dictionary after saving the edit session and deploying the
composites, SOA composer opens the last saved edit session.

When multiple users are editing the same dictionary, Oracle SOA Composer shows
a message that the dictionary is being edited by another user and asks for a
confirmation. When multiple users work on a single dictionary, only the last
publish is persisted.

To open the new dictionary click Discard, Clear all session edits and save changes
button in the top menu.

Note:

A dictionary with validation errors can be saved, but it can be committed only
after correcting the validation issues.

12.1.1.2 Creating a Bookmark

Create a bookmark to avoid the search or deployment view.

To open adictionary using a known URL:

1. In an open dictionary, click Bookmark in the toolbar of Oracle SOA Composer.

2. Copy the URL and paste in a browser to launch SOA composer with the
bookmarked artifact opened in a tab.

12-4 Designing Business Rules with Oracle Business Process Management

Introduction to Oracle SOA Composer

Figure 12-3 Obtain the URL for an Open Dictionary

Bookmark for TestRules.rules

Paste this link into email or chat.
Or paste into address bar in your browser and bookmark it.

http:ff slcO1ato.us.oracle.com: 7001 /s0a/composer/faces/home?path=/deployed-composites/default/ TestSample_rev1.0/oracle/rules/sample/TestRules.rules

. In a browser, use the saved URL to directly access the dictionary.

For example,

http://SERVER NAME OR | P_ADDRESS/ soa/ conposer ?docPat h=/ depl oyed-
conposi tes/ defaul t/Busi nessRul esTest _revl.0/oracl e/ rul es/
busi nessrul est est/ Or der Booki ng. rul es

According to the preceding example, composites are stored as per the following
structure: deployed-composites/composite name_rev conposi te revi si on/
oracle/rules/di cti onary package path/dictionary nane.rules

12.1.1.3 Reviewing Dictionary Settings

Click the Dictionary Setting button to set preferences.

Figure 12-4 Dictionary Settings Dialog

Execution
Rule Execution Algorithm ~ RETE El

Choices Non-RETE

Phrase Suggestions
() Business Phrases
© Auto Suggestions
@ al

Include Chained Expressions

Data Model
Global Qualffier Pattern {member} of {fact} fu LY

Table 12-2 Dictionary Settings
- __|

Dialog Sections Settings

Execution section Rule Execution Algorithm: choose RETE or Non-RETE. For
more information, see 1.3 Oracle Business Rules Engine
Architecture. The Rete Algorithm and The Non-Rete Algorithm

Choices section Phrase Suggestions: choose Business Phrases, Auto
Suggestions, or AllL

Data Model section Global Qualifier Pattern: confirm {member} of {fact}.
Translations: click to translate {member} of {fact}.
Validate: click to validate {member} of {fact}.

12.1.2 Using Oracle SOA Composer User Authentication

Figure 12-5 shows the Oracle SOA Composer login page. This page allows Oracle SOA

Composer to authenticate the specified user.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-5

Setting Accessibility Options

Figure 12-5 Oracle Oracle SOA Composer Login Page

Oracle SOA Composer

Sign In

User ID

Password

To login to Oracle SOA Composer:

1. Access Oracle SOA Composer using the following URL in your browser address
bar:

htt p: // SERVER_NAME OR | P_ADDRESS/ soa/ conposer
2. In the Oracle SOA Composer login page, in the Username field, enter a user name.
3. In the Password field, enter a password.

4. Click Sign In.

For information about creating and managing users and groups, see the integrated
SOA Composer Console online help.

12.1.3 What You Need to Know About SOA Composer Access Control and User
Authentication

Oracle SOA Composer supports user and password access control and only
authenticated users can use Oracle SOA Composer. However, Oracle SOA Composer
does not provide finer grained access control. For example, Oracle SOA Composer
does not support access control for individual rulesets or rules within a dictionary.

Oracle SOA Composer does support access control to metadata. Using Oracle SOA
Composer, only users with the SOADesigner application role can access the metadata
from Oracle SOA Composer. By default, all users with WLS Administrator privileges
have this role.

If a user without the SOADesigner role logs into Oracle SOA Composer, a message
appears, stating that the user is not authorized to modify the SOA metadata.

For more information about assigning the SOADesigner role to a nonadmin user who
requires access to Oracle SOA Composer, see Managing Application Roles in Oracle
Enterprise Manager Fusion Middleware Control Console in Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

12.2 Setting Accessibility Options

Accessibility settings help you read all components of the application.

You can set accessibility options in SOA Composer for the current instance, or for all
instances.

12-6 Designing Business Rules with Oracle Business Process Management

Setting Accessibility Options

12.2.1 How to Set Accessibility Features Before Logging In

SOA Composer presents the Accessibility menu on the login page, so you can
configure accessibility before you log in. These settings can be persisted for only the
current session or for all sessions.

To set accessibility options for the current session only:

1.

2.

Launch SOA Composer.
On the login page, click Accessibility in the top right corner.
The Edit Accessibility Settings page appears, as shown in Figure 12-6.

Figure 12-6 Edit Accessibility Settings Page
Edit Accessibility Settings
Any setting here can be changed after sign in via Preferences.

Use screen reader.
Use high contrast colors.
Use large fonts.

Save as preference and use Use for this session Cancel

Select any of the following options:
® Use screen reader.

¢ Use high contrast colors.

* Use large fonts.

To save the new settings only for this session, click Use for this session. To save
the settings for all sessions, click Save as preference and use.

12.2.2 How to Set Accessibility Options After Logging In

Once you log in to SOA Composer, you can configure accessibility options from any
page. This changes the user preferences, which are retained through all sessions until
you change them again.

To set accessibility options after logging in:

1.

2.

Launch SOA Composer and log in.

From any page, select Preferences in the top right corner.
The Preferences dialog appears.

In the Preferences column, click Accessibility.

The Accessibility Preferences appear, as shown in Figure 12-7.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-7

Opening and Viewing an Oracle Business Rules Dictionary

Figure 12-7 Preferences Dialog

Preferences x

Preferences Accessibility Preferences
@
Mode Settings No Preference E\
Language
Contrast Settings No Preference E\
8
Accessibility Font Settings Mo Preference EI
4
Business Rules
@ Apply OK || Close

4. In the Mode Settings field, select Enable screen reader mode if you use a screen
reader. Select Disable screen reader mode if you do not use a screen reader.

5. In the Contrast Settings field, select Use high contrast to increase the contrast
between objects on the console; otherwise, select Use normal contrast.

6. In the Font Settings field, select Use large fonts to increase the font size; otherwise,
select Use normal fonts.

7. Click OK.

12.3 Opening and Viewing an Oracle Business Rules Dictionary

When you open Oracle SOA Composer, it connects to MDS and displays the available
composite applications that contain dictionaries. In addition, it lists the shared
dictionaries, and these shared dictionaries can also be viewed and edited.

As shown in Figure 12-8, Oracle SOA Composer shows a navigation tree that displays
a left-side panel with a list of metadata artifacts. Details for the selected item are
shown on the right-hand side. Oracle SOA Composer includes the following tabs:

e Rulesets

e Value Sets

e Globals

¢ Business Phrases

e Tests

e Explorer

e Facts

¢ Decision Functions
e Links

e Translations

12-8 Designing Business Rules with Oracle Business Process Management

Opening and Viewing an Oracle Business Rules Dictionary

Figure 12-8 Rules Tabs

TestRules.rules % CarInsuranceRules.rules 5 f_f « cﬁ E a 'i‘-’)

P [E] value Sets @ Globals & Business Phrases @ Explorer | I\ Facts 4 Decison Functions of Links = g3 Translations Actiol

&p Premium Calculstor + &2 o 3¢

frules ¥ ByType = Create Terms %
- R M -
? IF

ready to calculate score Goto Phrase
E Create Terms

Add Test

THEN
N calculate premium based on score of customer , score of policy and score of car Goto Phrase

createTerms withpremium aspremium ,remarks as"Manual Claim Review" ,id as4444 ,carld asid of car ,customerld ascusto
remove customerScore
remove carScore

remove policyScore

< | 1 |

Diagnostics History Center Save Log Validation Log

Note:

In SOA Composer, the Verbal Rules and Business Phrases features do not
appear if you have not installed BPM.

12.3.1 How to View and Edit Rulesets

Oracle SOA Composer displays the rulesets in the dictionary, as shown in Figure 12-9.
You can select a ruleset to display a detailed view of the ruleset. You can add and
delete rulesets and rules.

Figure 12-9 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to View Rules

TestRules.rules , CaseManagementBaseDictionary.rules ¢ ApprovalRuleDemo [1.0] x H« GQH @8~
@ @Value Sets P Globals i~ Business Phrases Tests Q Explorer [\ Facts 4y Decsion Functions | P Links ,",Translat[ms Actions ¥
§ da'mRuIes% LT

ClaimRules
PolicyRules y Type (= Payment Type Rule 57 -
Customer Rules
IF

PODiscountRules é W i
UpdateCustomerInPolicyRules 4 TR - s
- Claim.status & ClaimStatus."Review Complete” znd E
‘¥ Payment Type Rule Claim.reviewDetais is "PolicyEffective”
‘@ Enter Payment M THEN
@ Close Claim il ¥ ') |

[N s

L IR ¥ &

Claim.policy.terms.notes contains "REPAIR"
then -

< | 1 »

To use the ruleset tab:

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-9

Opening and Viewing an Oracle Business Rules Dictionary

In Oracle SOA Composer, open a Rules file.

Click the Rulesets tab, and click the Create Session button. The action buttons are
enabled.

Click the down arrow next to ClaimRules, as shown in Figure 12-9, and choose a
Ruleset. The ruleset is displayed and is editable. You can also add or delete rulesets
from the toolbar.

Click the Rules panel to add Decision Tables, Verbal Rules, or General Rules. You
can also delete, cut, copy, or paste rules.

For information on adding verbal rules in SOA Composer, see How to Add Verbal
Rules in SOA Composer.

When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

For more information about Decision Tables, see Editing Decision Tables in an Oracle
Business Rules Dictionary.

For more information about Verbal and General Rules, see Editing Rules in an Oracle
Business Rules Dictionary

For more information about Rulesets, see Working with Rulesets and Rules .

12.3.1.1 How to Add Verbal Rules in SOA Composer

Verbal rules provide a flexible way to author rules using natural language statements
to express rule logic in domain specific sentences.

To add verbal rules in SOA Composer:

1.

2.

In Oracle SOA Composer, open a Rules file.

Click the Rulesets tab, and click the Create Session button. The action buttons are
enabled.

Select the Ruleset from the drop down list.

Click the Rules panel to add Decision Tables, Verbal Rules, or General Rules.
To add Decision Tables, see Adding a Decision Table.
To add Verbal Rules:

a. Click the Add icon and select Verbal Rules.

The Verbal Rules window appears.

12-10 Designing Business Rules with Oracle Business Process Management

Opening and Viewing an Oracle Business Rules Dictionary

Figure 12-10 Verbal Rule window

Verbal Rule 1 &7

IF

Enter search terms to get results and filter them further by pressing Right Arrow (=)
Add Test

THEN

Add Action

In the If field, add a test. Once done, add an action in the Then field.

Note that when you add a test or an action, the test or the action becomes
editable. Type in a filter in the If field, for example, 'customer number', all
related options are displayed in the drop down list.

Use the up/down arrow keys to select and use the right arrow key on the
selected option to get similar choices.

To get more choices in the list, scroll to the end of the drop down list and
select the More option by using either keyboard or mouse.

From the list, select existing business phrase or you can instantiate a new
business phrase based on what you typed.

Once a choice is set, the text field is no longer editable and the existing
parameters become links. The links when clicked becomes editable. To set the
value, double-click the links.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-11

Opening and Viewing an Oracle Business Rules Dictionary

Note:

Some of the important keyboard-based interface for Verbal Rules are:
e Copy:ctrl + ¢

e Paste:ctrl + v

e Cut:ctrl +x

e Move row up: ctrl + up

¢ Move selection up: up arrow

* Move row down: ctrl + down

¢ Move selection down: down arrow

® Delete row: ctrl + delete

* Add new row: ctrl + enter

¢ Edit row: enter

Important keyboard gestures for setting parameter values:

* Avoid having a selected row while specifying parameter values. Since
‘enter’ makes the selected row editable and you may be trying to set a
parameter value.

¢ Using the Esc button within the parameter text field converts it back to a
link without setting the value.

¢ Using tab or entering key values does not make the link editable when its
in focus. You must use the mouse or use the enter key to activate the link.

¢ To set a parameter value, you can tab out of the parameter text field or
press enter.

5. When done, click Save Changes in Current Tab. If you are ready to apply the
changes to the runtime version, click Publish.

To add General Rules, see How to Add General Rules.

12.3.2 How to View and Edit Value Sets

When you open a dictionary and select the Value Sets tab, if the dictionary contains
value sets, the table shows all available value sets. Value sets from linked dictionaries
are also displayed. You can select a linked value set and click the Edit button to view
the values. However, a linked value set is not editable even in the edit mode.

For information on the Oracle SOA Composer edit mode, see Getting Started with
Editing a Dictionary.
To view value sets in Oracle SOA Composer:

For detailed documentation of fields and other UI controls, click Help, Help for This
Page from within SOA Composer.

12-12 Designing Business Rules with Oracle Business Process Management

Opening and Viewing an Oracle Business Rules Dictionary

1. In Oracle SOA Composer, open a Rules file.

2. Click the Value Sets tab, and click the Create Session button. The action buttons

are enabled, as shown in Figure 12-11.

3. Click + and select Value Set to add a value set to the dictionary.

4. Click + and select Range Value Set to create a range value set.

Figure 12-11 Using the Oracle SOA Composer Rules Dictionary Value Sets Tab

CarlnsuranceRules.rules x

&9 Rulesets | [E]) ¥ Globals & Business Phrases Q, Explorer I\ Facts |) Dedision Functions | o Links | (3 Translations

value Sets Name Value Set 1)

PR K
Value Set Category Desaription

Range Value Set
oL RiskClassif...

Data Type int =l

Indlude Disallowed Values in Tests 0

ritalStatusType MaritalStatus

[5} CreditRatingType CreditRating
Range Values
Gender String
3 K
Score Type String End Point Induded Endpoint Allowed in Actions
¢ Value Set 1 nt 500

200
100
Infinity

< < < (%]

v
v
v

Range
»>=300
[200..300)
[100..200)
<100

Alis Description
»=300 @
[200..300)
[100..200)
<100

5. Click + to add values in the table. You can click in a row to make it editable.
Selected rows can also be deleted or moved up or down.

6. The Name, Description, and Data Type cannot be changed only for 'enum' type

value sets. They are editable otherwise.

7. The Include Disallowed Values in Tests controls whether cleared values from the

Values list are included in tests.

8. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.3 How to View and Edit Globals

When you open a dictionary Oracle SOA Composer displays the Globals tab. Globals

can be final or not and can be edited in SOA Composer.

For the Value field, you can use the expression builder to set the value. To check for

validity, you can click the Validate button.

To view globals in Oracle SOA Composer:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Globals tab, and click the Create Session button, as shown in Figure

12-12.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-13

Opening and Viewing an Oracle Business Rules Dictionary

Figure 12-12 Using the Oracle SOA Composer Rules Dictionary Globals Tab

&) Rulesets [E] Value Sets | | (@) & Business Phrases @, Explorer | ||\ Facts =4} Decision Functions @ Links g Translations
+ X
Name Description Value Value Set
() | Minimum Driving Age ¢ € 16 =]
(X) Lower Threshold 500.00
{x) Normal Threshold 1000.00
(x) Higher Threshold 1500.00
(X) Today RL.date.get current()
(x) Median Customer Score 50.00
(x) Median Car Score 50.00
(X) Medan Policy Score 50.00
(x) Low RiskClassificationType.LOW RiskClassificationType

3. Click + to add a Global. Enter a Name, Description, and Value.
4. Choose a Value Set and Type from the drop down.

5. Check the Final check box to indicate whether the global can be changed at
runtime.

6. Check the Constant check box to indicate if the global is a constant or can be
modified.

Type
int
double
double
double
Calendar
double
double
double
RiskClassfiication

7. When done with changes, click Save Changes in Current Tab. If you are ready to

apply the changes to the runtime version, click Publish.

12.3.4 How to View and Edit Business Phrases

Use the Business Phrases tab to view and manage business phrases in your rules
project.

Note:

In SOA Composer, Verbal Rules and Business Phrases features do not appear

if you have not installed BPM.

To edit Business Phrase:

1. InOracle SOA Composer, open a Rules file.

2. Click the Business Phrases tab, and click the Create Session button. The action

buttons are enabled, as shown in Figure 12-13.

12-14 Designing Business Rules with Oracle Business Process Management

Actions v

(=]

Opening and Viewing an Oracle Business Rules Dictionary

Figure 12-13 Using the Oracle SOA Composer Rules Dictionary Business Phrases Tab

TestRules.rules « CarInsuranceRules.rules i dﬁ v 4 Q‘n a3 g .é) -

& Rulesets | [E]] value Sets | (@ Globals | | &2 Q Explorer I\ Facts 4§ Decsion Functions = oP Links g% Translations Actions ~

7 By Value = Make Draft =~ *
- R M-
Phrase - InsertParameter
é calculate premium as {percent}%o of {threshold} @_,

-

, add {points} points from car's
{score}

1

, add {points} points to
customer’s {score}

m

, add {points} points to policy's Parameters
{score} 4 4 -

- calculate premium as Name Parameter T
) ype Data Type
rcent}% of {threshold
ipe ¥ { ¥ threshold Q_, Value double

calculate premium based on percent Q‘ Value double
' {customerScore}, {policyScore}

4 LLLI
and {carScore} k

, deduct {points} points from Mapping
car's {score} #)
- 0 ¥ i

, deduct {points} points from
customer's {score*

3. Click the action buttons to add, cut, copy or paste.

To add a Business Phrase, enter the following details:

a. Phrase - A phrase can be a test or an action. It can be an English phrase, for
example, "calculate premium as {threshold} of {percentage}". You can mark
the phrase as a draft to edit later by selecting the Make Draft button.

b. Parameters - You can edit, add, or delete the parameters in the parameters
table. You can drag and drop parameters into the phrase field. You can also
use the Insert parameter link to drop parameters into the phrase.

c. Mapping - The mapping section is used to map the business phrase to the
internal test/action.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

For more information about business phrases, see Introduction to Verbal Rules and
Business Phrases.

12.3.5 How to View and Edit Tests

At runtime, you can use SOA Composer to regression test rules. This enables business
users to quickly check if a modified rule changes the existing functionality. The Tests
tab only appears if you have a deployed composite and are in a SOA Composer
session.

To view and edit tests:

1. In Oracle SOA Composer, open a Rules file.

2. Click the Tests tab, and click the Create Session button. The action buttons are
enabled, as shown in Figure 12-14.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-15

Opening and Viewing an Oracle Business Rules Dictionary

Figure 12-14 Using the Oracle SOA Composer Rules Dictionary Tests Tab

TestRules.rules x CarlnsuranceRules.rules x

Hvaaaoal-

b Rulesets E] Value Sets (@ Globals | &~ Business Phrases |2 Q, Explorer I\ Facts =) Decision Functions o Links g Translations Actions »
[E5) Test Model
B8 Test Model p [#] Draft Tests
iﬁ Claim Evaluation y # x % Fel 2
[BasicTest Test Suites
@ EevaicaimTest Name Description Dedision Function
@ EvalCalmTest Iﬁ Claim Evaluation tests G m - -
B poess = B roTests = =
[noRulFredTa
@ zeroDiscount? Iﬂ Policy Update Tests e -)
@ FvepercentDis | *
[8 1nvaldpurcha X KEE
@ MultpleResults]
B8 zeoDiscountt ~ TestTemplates
B3 Poicy Update Tes Name Description Dedision Function

[E8 updateCustom
@ UpdateCustom

LLLI

B s
[

'_], ClaimTemplate
'_l POTemplate
'_l CustomerPolicy Template

<

3. You can create and run Test Suites and Test Templates.

For more information about testing and validating rules at runtime, see Testing
Rules in SOA Composer.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.6 How to View Explorer

To view the Explorer tab:

1. In Oracle SOA Composer, open a Rules file.
2. Click the Explorer tab, as shown in Figure 12-15.

The Explorer tab is used to view the data, its type and description. You cannot
make any changes in the Explorer table.

Figure 12-15 Using the Oracle SOA Composer Rules Dictionary Explorer Tab

TestRules.rules v CaseManagementBaseDictionary.rules ; ApprovalRuleDemo [1.0] 3

Hy@Ba@8-

£p Rulesets En Value Sets & Globals & Business Phrases

Q W\ Facts 4 Decsion Functions | &2 Links & Translations Actions *
Show Hidden Trems
Name Description
Boolean -
equals E|

tostring

compareTo
indexOf

Returns the value 0 if the argument string is equal to this string; a value less than 0 i this string is lexicographically
Return the 0-based index of the start of arg1 within this String, but not before the 0-based index arg2. "banana”.

indexOf

charAt Returns the char value at 0-based index argl. "Oracle".charAt(2)=="a".

I EEEEEEREEE B

12-16 Designing Business Rules with Oracle Business Process Management

Opening and Viewing an Oracle Business Rules Dictionary

12.3.7 How to View and Edit Facts

To view and edit facts:

In Oracle SOA Composer, open a Rules file.

Click the Facts tab, and click the Create Session button. The action buttons are
enabled. Only RL facts can be created in SOA Composer, as shown in Figure 12-16.

Figure 12-16 Using the Oracle SOA Composer Rules Dictionary Facts Tab

TestRules.rules »c CaseManagementBaseDictionary.rules . ApprovalRuleDemo [1.0] ;_-j" 4 G\Q E Q \::’) B -

&P Rulesets Value Sets Globals = & Business Phrases Explorer [\ Decision Functions Links =~ &% Translations Actions ~
L -

Show Built-in Data Model Elements

@~ X 7/
RL
| Description Qualifier Pattern SuperClass Kind Source Dictionary System
lean Q Object JAVA file:/ade_autofs/gd14_fmw/nfsdo_generic/PCBPE... CaseManage... oracle.n #
4 b... l‘—_" XML oramds:/soa/shared/casemgmt/Case.xsd CaseManage... /fxs:con =
TDocumentation l‘—_" Object XML oramds:/soa/shared/casemgmt/CaseEvent.xsd CaseManage... //xs:con
StakeHolderMmember l‘—_’l XML oramds:/soa/shared/casemgmt/Case.xsd CaseManage... //xs:con
CaseHeader 1‘—_’| XML oramds:/soa/shared/casemgmt/Case.xsd CaseManage... /fxs:con
Category l‘—_" XML oramds:/soa/shared/casemgmt/Case.xsd CaseManage... /fxs:con
TCompletedCaseA... l‘—_" XML oramds:/soa/shared/casemgmt/Case.xsd CaseManage... //xs:con
TPermissionTag l‘—_’l XML oramds:/soa/shared/casemgmt/Case.xsd CaseManage... //xs:con
ThActionsPermitted... l<—_)| XML oramds:/soa/shared/casemgmt/Case.xsd CaseManage... //xs:con
< 1 3

Select a fact and click the Edit Facts button to open the Edit Facts dialog. You can
edit RL and XML facts here, but Java and ADFBC facts are read-only.

When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.8 How to View Decision Functions

In Oracle SOA Composer, you can view the decision functions that are available to the
current dictionary by using the Decision Functions tab. Currently, even in a session,
you can only modify the following fields and options:

Description

Rule Firing Limit
Check rule flow
Make stateless

Available Rulesets to fire

You cannot create any decision function, rename an existing decision function, or add
or delete any input or output.

To view decision function names in Oracle SOA Composer:

1.

2.

In Oracle SOA Composer, open a Rules file.

Click the Decision Functions tab.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-17

Opening and Viewing an Oracle Business Rules Dictionary

3. You can view information on the following tabs: Inputs, Initial Actions, Outputs,
and Rulesets Decision Functions as shown in Figure 12-17.

Figure 12-17 Viewing Decision Functions

TestRules.rules x H« B8 -

&P Rulesets | 5] value Sets | ¥ Globals & Business Phrases Tests Q Explorer [\ Facts | o Links g Transiations Actions v

Decision Functions
Name UpdateCustomerInPolicies
< EvaluateClaim 2

< EvaluateClaimAs
»_,\x ProcessPODisctount

/% UpdateCustomerInPolicies

Description

Rule Firing Limit 10000 x|
Check rule flow

11

-,}; Purchase Order AS Make stateless

Inputs Inftial Actions Outputs —Rulesets Decision Functions

Tests [=]
Name
policies
customer

Fact Type Tree List
=2] Policy
&1 Customer

Description

12.3.9 How to View Linked Dictionary Names

In Oracle SOA Composer, you can view the names of the dictionaries to which the
current dictionary is linked by using the Links tab as shown in Figure 12-18.
Currently, even in a session, you can view the linked dictionary names, but you
cannot link to a dictionary or delete an existing link to any dictionary.

To view linked dictionary names in Oracle SOA Composer:

1. In Oracle SOA Composer, open a Rules file.
2. Click the Links tab, as shown in Figure 12-18.

Figure 12-18 Viewing the Linked Dictionary Name

TestRules.rules . CaseManagementBaseDictionary.rules 5. ApprovalRuleDemo [1.0] x

dvy @800 8-

9 Rulesets D Value Sets 4@ Globals M ’ Business Phrases @, Explorer ||\ Facts Qc- Decision Functions o° ’“. Translations Actions =

Alias Name Package Name Prefix Linked Names
DedisionPointDicti... f’ DecisionPointDicti... oracle.rules.sdk2.d...

3. Select to Prefix Linked Names.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.3.10 How to Work With Dictionary Links in an Oracle Business Rules Dictionary

An Oracle Business Rules dictionary can be linked to other dictionaries. The complete
data model defined by a dictionary and its linked dictionaries is called a combined
dictionary. You can create multiple links to the same dictionary. However, in this case,
all but the first link is ignored.

You cannot use Oracle SOA Composer to link dictionaries. However, if a deployed
composite already has linked dictionaries, using Oracle SOA Composer, you can view
the linked dictionary names and make use of the Globals, Value Sets, and Rulesets of
the linked dictionaries across applications. For example, you have an application
called App1l that contains a dictionary called Di ct 1. Di ct 1 is linked to another

12-18 Designing Business Rules with Oracle Business Process Management

Opening and Viewing an Oracle Business Rules Dictionary

dictionary called Di ct 2. Because Di ct 1 is linked to Di ct 2, the objects of Di ¢t 2 will
be available for use in App1l.

For more information on viewing linked dictionary names, see How to View Linked
Dictionary Names.

In Oracle SOA Composer, you can use the Prefix Linked Names check box in the
Links table to either display or hide the linked dictionary name that is prefixed to the
all the items in the dictionary such as Globals, Value Sets, and Rulesets. Selecting the
check box prefixes facts from the linked dictionary with its dictionary name, and
deselecting hides the linked dictionary facts prefix. By default, the Prefix Linked
Names check box is in selected state as shown in Figure 12-19.

Figure 12-19 Using the Links Tab

TestRules.rules CaseManagementBaseDictionary.rules , ApprovaRuleDemo [1.0] x H< GG @8R -~
9 Rulesets D Value Sets @ Globals .'. ’ Business Phrases = @, Explorer ||\ Facts @ Decision Functions o° .“. Translations Actions
Alias MName Package Name Prefix Linked Names
DecisonPointDicti.. @ DecsionPointDicti... orade.rules.sdk2.d...

For more information about linked dictionaries, see What You Need to Know About
Dictionary Linking.
12.3.11 How to View and Edit Translations

Use the Translations tab to view the phrases included in the selected dictionary and
their translated strings.

The translation table contains all translated strings in the current locale as well as
earlier locales. For example, the current locale is Japanese and you edit some
translations and save them. If you log out, and then log back in with a different locale,
for example, English, then the translation table will contain columns for both English
and Japanese.

To translate phrases:
1. In Oracle SOA Composer, open a Rules file.
2. Click the Translations tab, as shown in Figure 12-20.

Figure 12-20 Using the Oracle SOA Composer Translations Tab

TestRules.rules CaseManagementBaseDictionary.rules » ApprovalRuleDemo [1.0] x HGBHAQR -
&P Rulesets | [E]] value Sets (@ Globals | & Business Phrases | Q Expiorer | ||\ Facts 4 Dedision Functions = o9 Links | Actions =
Untranslated ¥ English
CaseManagementBaseDictio...

ml e

{member} of {fact}
TStateEnum

ABORTED

ACTIVE

CLOSED

EXPIRED

SUSPENDED

null
TCaselLinkRelationship
DEPENDS_ON
RELATED_TO
HAS_SUBCASE
DUPLICATE
DEPENDS_ON_INVERSE
RELATED_TO_INVERSE

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-19

Getting Started with Editing a Dictionary

3. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.4 Getting Started with Editing a Dictionary

When you select and open a dictionary, Oracle SOA Composer shows the dictionary
in read-only mode. On each tab in read-only mode, use the Session buttons to make
changes and then Save them to a work area. To apply the changes to the runtime
version of the dictionary, click Publish.

For more information about how to use SOA Composer features, see Creating and
Publishing Sessions.

12.4.1 What You May Need to Know About Localized Number Formatting Support in
Oracle SOA Composer

In Oracle SOA Composer, number formatting changes based on the browser locale.
For example, you are using Oracle SOA Composer with U.S. English as the browser
language. You enter a floating-point data, such as 34533223.2345, as a value. If you
wish to view the data in any other language, such as French, you need to:

1. Modify the browser locale for the instance to French.

2. Click the Refresh button of the browser to view the number formatting changes

In French, the value should display as 34533223,2345.

Note:

The grouping and decimal separators specified in Oracle SOA Composer
overrides the locale-specific ones.

12.4.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements

You can cut/copy a value set or rule from one dictionary and open another dictionary
in composer and paste it. However, cut/copy/paste works between different
dictionaries within the same session.

Cutting/copying and pasting feature enables you to quickly create a new rule element
based on an existing one, without having to create the new element from scratch.

The buttons in the Figure 12-21 help you with cut, copy and paste options.

Figure 12-21 Cut, Copy and Paste Buttons

Oracle SOA Composer enables you to cut/copy and paste the following elements of a
rule:

e Rules
e Patterns
e Conditions

e Actions

12-20 Designing Business Rules with Oracle Business Process Management

Getting Started with Editing a Dictionary

e Value sets

Cut/copy/paste is not supported for the following;:

Globals
e Links

e Values

Decision Functions

Note:

The Paste button is disabled if multiple conditions or actions are selected. The
button is enabled only on single selected condition/action. When pasting, the
copied/cut items are added at the end of the list.

12.4.3 How to Edit Globals in an Oracle Business Rules Dictionary

In Oracle SOA Composer, selecting the Globals tab shows you a table listing the
globals in the dictionary, as shown in Figure 12-22. To edit a global, select the
appropriate row, and the entire row becomes editable. Make necessary changes as
required.

Figure 12-22 List of Globals in the Dictionary

& Rulesets | [E] Value Sets | | 4@ & Business Phrases @ Explorer I\ Facts | 4 Decision Functions o Links g3, Transiations Actions ¥
+ X
Name Description Value Value Set Type

(X) Minmum Driving Age [€ 15 [E3] int [~

(x) Lower Threshold 500.00 double

(x) Normal Threshold 1000.00 double

(x) Higher Threshold 1500.00 double

(x) Today RL.date.get current() Calendar

(x) Median Customer Score 50.00 double

(x) Median car score 50.00 double

(x) Median Policy Score 50.00 double

(x) Low RiskClassfication Type.LOW RiskClassification Type RiskClassification

To add a global, click the Add Global button on the top. A new empty row is added.
Make necessary changes to Name, Description, Value, Value Set, Type, Final, Consent.
For more information on adding globals, see Working with Oracle Business Rules
Globals.

To delete a global, select a row and click the Delete button.

12.4.4 How to Edit Value Sets in an Oracle Business Rules Dictionary

In Oracle SOA Composer, selecting the Value Sets tab displays a master list on the left
which displays the value sets in the dictionary, and a detail section with a table that
display the values. To edit a value set, click the appropriate Value Set in the master list
and then click the value in the detail section that you want to change.

You can create a Range Value Set by clicking the Add button and selecting a type. This
adds a new value set in the master list. Adding a range value automatically adds an
end point for a range and a value for an LOV based on the datatype. You can modify
the newly added value end point or value. Note that the alias is modified when an end
point or value is changed.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-21

Getting Started with Editing a Dictionary

For more information on adding value sets, see Working with Value Sets and
Associating a Value Set with Business Terms.

To cut or copy a value set, select a row and click Cut or Copy. To paste a copied value
set, click Paste.

To delete a value set, select a row and click Delete.

To edit Value Sets:

1. To edit either a Value Set or a Range Value Set, in Oracle SOA Composer select the
Value Sets tab. This displays both master and detail sections for the value sets in
the dictionary.

2. Select the appropriate Value Set from the master list. This displays the detail table,
as shown in Figure 12-23.

Figure 12-23 Editing Value Sets

CarlnsuranceRules.rules x @ @8-
O Rulesets | ([¥ Clobals | & Business Phrases | @ Explorer I\ Facts | 4y Decision Functions | o Links | 3, Translations Actions ¥
&
Value Sets Name Score Type 50}
- R K- g
[categoryType Category Description
RiskClassificatio... RiskClassifi...
Data Type sting []
MaritalStatusType MaritalStatus
Indude Disallowed Values in Tests
|:Z] CreditRatingType CreditRating
values
Gender String
+ X e
Score Type String Value Alizs Allowed in Actions Desaiption
q othernise othernise v
ficar'] Car % v 2
“Customer™ Customer v
“Policy” Falicy v

3. Edit the appropriate fields in the table. You can click Add Value to add a value,
and also select a row and click Delete Value to delete a value.

4. To change the order of values in the value set, select a value and then click the up
or down arrow to move the selected value.

You can change the relative position of values in an LOV value set only; you cannot
reorder values in a Range value set.

Only when a value has the Allowed in Actions field selected does the value set
display in the condition cell drop down in a Decision Table.

5. Click Save Changes in Current Tab to confirm the changes.

Click Validate in the menu bar to validate the dictionary while making changes to
a Value Set.

12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary

In Oracle SOA Composer, the Decision Functions tab displays a table listing the
decision functions that are available to the dictionary, both parent and linked.

You can only modify the following fields and options:
* Description

¢ Rule Firing Limit

12-22 Designing Business Rules with Oracle Business Process Management

Getting Started with Editing a Dictionary

e Check rule flow
e Make stateless
e TInitial Actions

e Rulesets and Decision Functions

To edit a decision function:

1. To edit a decision function, in Oracle SOA Composer, select the Decision
Functions tab. This displays a master list of decision functions on the left, and the
detail panel on the right.

2. Select the appropriate decision function on the left. This displays the Decision
Function Editor dialog box as shown in Figure 12-24.

Figure 12-24 Editing a Decision Function

CarInsuranceRules.rules =2 4 C‘Q B Q .;})

9 Rulesets D Value Sets (@ Globals “ ' Business Phrases | @, Explorer | ||\ Facts Qo 00 Links ."‘. Translations

Decision Functions
Name CalculatePremium
\k CalculatePremium %

Description

Rule Firing Limit 10000 =l
[check rule flow
Make stateless

Inputs Initial Actions ~Outputs = Rulesets Decision Functions

Tests EI

Name Fact Type
customer &7 Customer
car &l car
policy =Z] Policy

3. In the Description field, optionally enter a description.

4. Enter the required number value from the Rule Firing Limit list. By default, the
selected value is unl i mi t ed. However, you can enter an integer value for the rule
firing limit and press the Tab key. The newly specified value gets added to the
Rule Firing Limit list.

5. Select the appropriate decision function options:

® Check rule flow: When selected, this option specifies that the rule flow is
checked

* Make stateless: When selected specifies the decision function is stateless.

You cannot edit the following;:
* Name field
¢ Inputs tab

¢ Outputs tab

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-23

Tree

Actions

List

m

Getting Started with Editing a Dictionary

6. In the Initial Actions tab, you can add actions that could be used to change input
facts before they are asserted, change the ruleset stack, set the effective date, or
even assert output facts. These actions could be used instead of rules, or to "set up"
the environment for running rules. Initial Actions always run just before the inputs
are asserted and the rules are run. The RL for the actions will be executed just
before the inputs are asserted.

Consider a situation where a decision function (DF1) calls another decision
function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to
the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial
actions are executed, Rulesetl is pushed to the ruleset stack. Then, when DF2 is
called, Ruleset? is also pushed. So when rules start running, rules from both
rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in
the initial actions, you are calling DF2), you can use initial actions in DF1 to clear
the ruleset stack before calling DF2, and push Ruleset] on the stack after calling
DF2.

You can add any required action ranging from assert, cal | , nodi fy to even
conditional actions such asi f, el se, el sei f,while,for,if (advanced), and
whi | e (advanced).

Thei f (advanced) and whi | e (advanced) structs accepts only bool ean
values. For each of the action conditions, you can add different test form types.

Note:

If decision function DF1 contains DF2 in the Rulesets & Decision Functions
tab, then DF2 may not have any initial actions.

7. In the Rulesets & Decision Functions tab, use the left and right arrow buttons to
move items from the Available box to the Selected box.

8. Select an item in the Selected box, and click up or down arrow buttons as
appropriate to order the rulesets and the decision functions.

9. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

For more information on decision functions, see Working with Decision Functions.

12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component

You can use the Oracle Business Rules Dictionary Editor declarative component to
leverage the functionality of editing Rules Dictionaries in any ADF-based Web
application. It enables you to edit business rules metadata artifacts, such as Globals,
Value Sets, and Rulesets, by using the Rules SDK2 APIL.

For more information on Oracle Business Rules Dictionary Editor, see "Using the
Oracle Business Rules Dictionary Editor Declarative Component" in Developing SOA
Applications with Oracle SOA Suite.

12-24 Designing Business Rules with Oracle Business Process Management

Editing Rules in an Oracle Business Rules Dictionary

12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor

Task Flow

Rules Dictionary Editor Task Flow, which is a wrapper around the Rules Dictionary
Editor declarative component is used in ADF-based Web applications that require a
task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor, see Using the

Oracle Business Rules Dictionary Task Flow in Developing SOA Applications with Oracle
SOA Suite.

12.5 Editing Rules in an Oracle Business Rules Dictionary

SOA Composer provides an interface to the dictionary that enables you to edit most
dictionary components, though you can only create and edit some dictionary
components at design-time using the Rules Designer extension to Oracle JDeveloper.

In SOA Composer, Verbal Rules and Business Phrases features do not appear if you
have not installed BPM.

12.5.1 Using the Rulesets Tab

Use the Rulesets tab to view and edit Rulesets, and the General Rules, Verbal Rules

and Decision Tables they contain, in the currently selected Business Rules dictionary,
as shown in Figure 12-25.

Figure 12-25 Using Oracle SOA Composer to Edit a Ruleset in a Dictionary

CarInsuranceRules.rules 5 g+« B0 08-

& [E] value Sets | ¥ Giobals &~ Business Phrases Q Explorer | JI\ Facts # Decision Functions o Links g3 Translations

&» Premium Calculator v 59 o 3¢

Actions +

Rules 7 By Type = Create Terms P i
- R K-
é 1F

ready to calculate score and Goto Phrase
& create Terms

Add Test

THEN
calculate premium based on score of customer , score of policy and score of car Goto Phrase

createTerms withpremium aspremium remarks as"Manual Claim Review" ,id as4444 carld asid of car ,customerld ¢

remove customerScore

remnve Ccarseore
I

Table 12-3 Rulesets tab

Button Description

Rulesets drop down Click and select a ruleset from the list.

53 Click to edit properties in the pop-up Advanced Propert
"7 Advanced Property Editor. prop pop-up perty

Editor

Add Ruleset Click to add a Ruleset.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-25

Editing Rules in an Oracle Business Rules Dictionary

Table 12-3 (Cont.) Rulesets tab
__|

Button Description

Delete Ruleset Click to delete a Ruleset.

In the Rules master list, you can enter an alias and search for rules. Click Clear to clear
the Search by Alias field. You can also sort rules--click the Sort Ascending or Sort
Descending arrows to sort the IF/THEN detail panel.

Table 12-4 Rules master list buttons
- - -

Button Description
Add Click to add a new Decision Table, a Verbal Rule, or a General
Rule.
Delete Click to delete.
Cut, Copy, Paste Click to Cut, Copy, or Paste.
. By Type = Click the Sort Ascending or Sort Descending arrows to sort the

IF/THEN detail panel. Click By Type and choose an option to
sort by any of these options: Type, Name, Active, Effective Start
or End Date, Priority.

Search by Alias Enter an alias name to search for rules by alias name.

é’ Click Clear to clear search results.
Clear

12.5.2 How to Edit Rules in an Oracle Business Rules Dictionary

Oracle SOA Composer enables you to edit the rules in a dictionary.

To edit a rule with Oracle SOA Composer:

1. In Oracle SOA Composer, with an Oracle Business Rules dictionary open, click the
Rulesets tab.

n

Select the appropriate ruleset from the drop down and choose a rule from the list.
The rule appears in the detail panel.

Use the Add, Delete, Cut, Copy, and Paste buttons in the Rules toolbar to modify
the rule.

Note:

The Paste button is disabled if the selection is multiple. The button is enabled
only on single selected condition/action. When pasting, the copied/cut items
are added at the end of the list.

3. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12-26 Designing Business Rules with Oracle Business Process Management

Editing Rules in an Oracle Business Rules Dictionary

12.5.3 How to Add a Rule

In Oracle SOA Composer you can add rules to a ruleset.

To add arule in aruleset:

1.

2.

In a session, the Ruleset tab, select a ruleset of interest.

In the rule area, click Add Rule and select to add either a Decision Table, Verbal
Rule, or General Rule.

In the IF area, enter search terms to get results and filter them further by pressing
the right arrow to create the condition.

In the THEN area for the rule, click Add Action to add the required action for this
rule.

When done, click Save Changes in Current Tab.

If you are ready to apply the changes to the runtime version, click Publish.

12.5.4 How to Delete a Rule

In Oracle SOA Composer you can delete rules in a ruleset.

To delete arule in aruleset:

1.

2.

3.

4.

In a session, the Ruleset tab, select a ruleset of interest.
In the rule detail area, locate the rule you want to delete and click Delete.
When done, click Save Changes in Current Tab.

If you are ready to apply the changes to the runtime version, click Publish.

12.5.5 How to Show and Edit Advanced Settings for Rules

In Oracle SOA Composer you can edit advanced settings for rules in a ruleset. For
more information on advanced settings, see Using Advanced Settings with Rules and
Decision Tables.

To show and edit advanced settings in a rule:

1.

2.

In a session, the Ruleset tab, select a ruleset of interest.

In the rule area and locate the rule you want to show or change advanced settings.
Expand the rule first, if necessary.

Click the Advanced Property Editor button next to the rule name. This displays the
advanced settings dialog, as shown in Figure 12-26.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-27

Editing Rules in an Oracle Business Rules Dictionary

Figure 12-26 Advanced Properties Editor Dialog

Name Payment Type Rule %
Description
Priority Medium - Active
Advanced Mode [C] Tree Mode

Effective Date Always (¥

OK

12.5.6 How to Add Rule Conditions

In Oracle SOA Composer you can add conditions to a rule in a ruleset. Conditions
within a rule use a tree representation. Use the toolbar at the top of the conditions tree
to add, delete, cut, copy and paste. Within the condition tree, you can select a parent
node and perform similar actions.

For more information on working with rule conditions, see Working with Rules.

To add rule conditions:

If no condition is selected, the condition is added at the end. If a condition is selected,
a sibling to the selected condition is added.

1. In a session, the Ruleset tab, select a ruleset of interest.
2. In the rule area, locate the rule where you want to add a condition.

3. Next to the existing rule condition, click the down arrow to display a list of options
available for adding a condition as shown in Figure 12-27.

Figure 12-27 Adding a Condition

Payment Type Rule &7

IF
R EE B

simple test
variable yEffectiv
nested test ff

negated test

all of the following...

any of the following...

sa

there is a fact where...

there is a case where... containe

there is no fact where...

there is no case where...

aggregation...

5 boolean expression |

If the rule where you want to add a condition does not contain any existing
condition, then you need to click the Add Test down arrow to display a list of
available options for adding a condition as shown in Figure 12-27.

The following are some of the available options for adding a condition:

12-28 Designing Business Rules with Oracle Business Process Management

Editing Rules in an Oracle Business Rules Dictionary

¢ simple test: Adds a simple test condition

e variable: Adds a variable definition. The variable and its value can be represented
as an inline business term definition.

(...): Adds a new simple test within a nested parenthesis

not(...): Adds a new simple test within a NOT nested parenthesis

Each nesting level provides a list with the preceding options to operate on a nested
block.

For more information on tests, see How to Work with Extended Tests.

12.5.7 How to Delete Rule Conditions
In Oracle SOA Composer you can delete conditions for a rule in a ruleset. For more

information on working with rule conditions, see Working with Rules.

To delete rule conditions:

1. In asession, the Ruleset tab, select a ruleset of interest.
2. In the rule area, locate the rule where you want to delete a condition.

3. Next to the rule condition that you want to delete, click the down arrow, and then
click Delete Test from the list.

A separate list is available for each nesting level. So the delete operation can be
performed on a single condition or a nested block.

12.5.8 How to Modify Rule Conditions

Using Oracle SOA Composer, you can edit conditions in a rule. You can select a rule
condition for nesting or modify expression values within the condition. For more
information on working with rule conditions, see Working with Rules.

To modify a condition in a rule:

1. In a session, the Ruleset tab, select a ruleset of interest.
2. In the rule area locate the rule where you want to modify conditions.

3. In the IF area, use the controls, buttons, and selection boxes, including the Left
Value expression button, list for an operator, and Right Value expression button to
modify the condition.

Filtering is supported for expressions. For example, when you type Enpl oyee,
values are filtered and the values with Enpl oyee are displayed in the drop-down.
Use mouse or arrow keys to select a value.

You can use the Expression Builder, Condition Browser, Date Browser, and Right
Operand Browser to edit the left and right-side expressions.

In addition to modifying the values, you can also change the form type of a condition.
For example, a simple test can be changed to variable definition and so on. To change
the form type of a condition, you need to select the condition by using the adjacent
check box and select the required form type from the Selected Tests list.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-29

Editing Rules in an Oracle Business Rules Dictionary

12.5.9 How to Add Rule Actions

In Oracle SOA Composer you can add actions to a rule. For more information on
working with rule actions, see Working with Rules.

To add rule actions:

1. In a session, the Ruleset tab, select a ruleset of interest.
2. In the rule area locate the rule where you want to add an action.

3. In the THEN area for the rule, next to the rule action click Add Action, as shown in
Figure 12-28.

Figure 12-28 Rule Actions in a Ruleset

THEN

-
assert new
assign %
cal ptes contains "REPAIR"
modify
retract
if ::la\m
while
assert
assert tree |
Flaim

assign new

If the rule to which you want to add an action does not contain any existing action,
then you need to click the Add Action button in the THEN area.

12.5.10 How to Delete Rule Actions

In Oracle SOA Composer you can delete actions in a rule. For more information on
working with rule actions, see Working with Rules.

To delete rule actions:

1. In asession, the Ruleset tab, select a ruleset of interest.
2. In the rule area, locate the rule where you want to delete an action.
3. In the THEN area for the rule, select the action.

Click Delete Action.

12.5.11 How to Modify Rule Actions

In Oracle SOA Composer you can modify actions in a rule. For more information on
working with rule actions, see Working with Rules.

To modify rule actions:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, locate the rule where you want to modify an action.

12-30 Designing Business Rules with Oracle Business Process Management

Editing Rules in an Oracle Business Rules Dictionary

3. In the THEN area for the rule you can do the following:

Add and delete actions using Add and Delete buttons on the top.
Select the action and move it up and down using the respective arrow buttons.
Cut, copy and paste using the Cut, Copy and Paste buttons on the top.

Click the Mor e link in the drop-down area to launch Select a Target popup and
select a value.

Click the Edit Properties button next to the rule action and modify properties.

The Properties dialog box is displayed where you can modify the property details.

For more information on number formatting in rules, see What You May Need to
Know About Localized Number Formatting Support in Oracle SOA Composer.

12.5.12 How to Work with Advanced Mode Rules

In Oracle SOA Composer, you can work with advanced mode rules in a ruleset.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create any
kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules
simply by clearing the Advanced Mode check box.

For more information, see How to Work with Extended Tests.

To show and modify advanced mode rules:

1. In a session, the Ruleset tab, select a ruleset of interest.

2. In the rule area, locate the rule where you want to show or modify advanced mode
rules.

3. Click Advanced Property Editor button to show advanced settings. For more
information on showing advanced settings, see How to Show and Edit Advanced
Settings for Rules.

4. If the Advanced Mode check box is not selected, then select the Advanced Mode
check box. This shows the advanced mode rule options, as shown in Figure 12-29.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-31

Editing Rules in an Oracle Business Rules Dictionary

Figure 12-29 Showing Advanced Mode Rule Options
IF

CustomerOrder isa Customerorder [*] and + X 3-8
&+~ X % - @

the following test is true
CustomerOrder.vipStatus is VipStatusType.GOLD
CustomerOrder.vipStatus s VipStatusType.SILVER

CustomerOrder.creditScore same or more than 750

the following test is true
CustomerOrder.annualSpending same or more than 10000
CustomerOrder.totaldmount is 4000

and

sa (=] XD R B
& v X ¥ -

Add Test

12.5.12.1 Working with Advanced Mode Options

The Advanced Mode rules options enables you to create, modify, and delete patterns,
as well as add, modify, and delete conditions and actions within a pattern.

Using the Advanced Mode rule options, you can:

® Specify a pattern variable and select a fact type for the variable: You can directly
enter the name of the pattern variable in the variable field. You can specify the fact
type for the variable by using the fact type list as shown in Figure 12-30.

Figure 12-30 Specifying Pattern Variable and Fact Type

IF

w RO PR @

CustomerOrder isa CustomerOrder

CustomerOrder
4 ¥y A tfl | OrderApproval
OrderltemType

the following test is true CurrentDate

CustomerOrder.vipStatus is VipStatusType.GOLD
CustomerOrder.vipStatus is VipStatusType.SILVER

CustomerOrder.creditScore same or more than 750

the following test is true
CustomerOrder.annualSpending same or more than 10000
CustomerOrder.totalAmount is 4000

and
isa iz + X ¢ IR IR
o v ¥ % |~ &

Add Test

In the graphic example, Cust omer Or der is a pattern variable of Cust omer Or der
fact type.

* Add a pattern: Click the Add Pattern button to create a pattern to the existing rule.
Figure 12-31 displays an added pattern. The newly created pattern is blank.

12-32 Designing Business Rules with Oracle Business Process Management

Editing Rules in an Oracle Business Rules Dictionary

Figure 12-31 Adding a Pattern

IF
CustomerOrder isa CustomerOrder [¥| and 4 X S M|~ &l

g v % 2 | Add Pattern |
the following test is true
CustomerOrder.vipStatus s VipStatusType.GOLD
CustomerOrder.vipStatus is VipStatusType.SILVER

CustomerOrder.creditScore same or more than 750
the following test is true
CustomerOrder.annualSpending same or more than 10000

CustomerOrder.totalAmount s 4000
and
isa [=] + X ¢ o~ &~
| - W .

Add Test

Delete a pattern: Click the Delete Pattern button to delete a pattern from a rule.

Specify connectives: Two or more patterns are joined by a connective, and or or .
You can use the connective link to toggle between the connectives.

Work with nested patterns: A nested pattern has patterns inside it. These are
enclosed within curly braces ({}). The pattern operator list is followed by the open
curly brace. You can create a nested pattern by clicking Surround pattern with
parentheses button and you can remove the pattern nesting by clicking the
Remove parentheses from pattern button as shown in Figure 12-32.

Figure 12-32 Adding and Removing Pattern Nesting

R PHR S
(}}Surround

Inside the open curly brace, you can specify a pattern and then click the Add Test
down arrow to add conditions to the nested pattern as well as add another pattern
to the same pattern block.

A nested pattern block ends with a closing curly brace. You can have multiple
levels of nested patterns, which means that inside a nested pattern, you can have
another nested pattern. You can click the Delete Nested Pattern Block button to
remove the entire nested pattern block.

When you nest a pattern, an operator list is displayed with (for each case where)
selected as the default operator in the operator list. The other items are there is a
case where, there is no case where, and aggregate and so on.

The user interface remains the same as (for each case where) when you select there
is a case where or there is no case where as the operator. However, when you
select aggregate, the user interface changes. For an aggregate operator, you must
enter a variable in the available field and select a function from the function list.
The function list displays the following:

— count
— average

— maxi mum

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-33

Editing Rules in an Oracle Business Rules Dictionary

— m ni mum
— sum

— collection

Except for the count function, all the other functions require an expression. You
can specify an expression in the available field or launch the Condition Browser
window.

In the Advanced Mode of rules, in the THEN part, you can add any required action
ranging from assert,cal | ,nodi f y to even conditional actions such asi f , el se,
el seif,while, for,if (advanced),and whi | e (advanced.

12.5.13 How to Work with Extended Tests

Extended tests should be used when building complex rules. Extended tests, or Simple
Mode, replaces Advanced Mode rules.

Note:

Advanced Mode capability has been maintained for backward compatibility
only.

Everything that can be done in Advanced Mode can now be done in Simple Mode.
The Ul has been streamlined and improved to enable you to more easily create
complex rules and tests, as shown Figure 12-33

Figure 12-33 List of Extended Tests

Late Payment 7

IF
L AR €

simple test ft Summary
variable
nested test | Detail
negated test AYMENT"
all of the following... 2

5 any of the following...
is a

there is a fact where...

there is a case where... > (Score:3ummary.Score - 150) B3
there is no fact where...

there is no case where...

aggregation...

| boolean expression |

Advanced mode rules can be converted to the equivalent simple mode rules by
clearing the Advanced Mode check box in the Advanced Property Editor.

Extended tests are only applicable to general rules, decision tables, and while defining
business phrases. They are not visible in verbal rules.

In addition to the original four tests (shown first in Table 12-5) there are new forms:

12-34 Designing Business Rules with Oracle Business Process Management

Editing Rules in an Oracle Business Rules Dictionary

Table 12-5 Extended Tests
- - -

Forms Description

simple test This is the building block for conditions. Compares a value
against another value, range or set.

For example: Emp.salary > 1000

variable Initializes variables.

For example: age = Duration.years
between(Emp.birthdate,RL.date.get current())

nested test Encapsulates tests in a containing block.
For example: (age > 50 or Emp.salary > 50000)

negated test Negates a test.
For example: not(age > 50 and Emp.salary > 50000)

all of the following all of the following are true.

For example: (age > 50 and Emp.salary > 50000)

any of the following some of the following are true.For example:

I F

eis aEmp and there is no Emp where Enp.sal ary
< e.salary <insert test> <insert test>THEN assign
e.isLowestPaid = true

isa Defines a fact.
For example: e is a Emp

there is a case where This test has 1 or more child tests that are ANDed.

The child tests are all true for at least 1 case. A case is a binding
of facts to contained is a tests.

Must have is a descendant.

Example:

There is a case where

e is a Em and

dis a Dept and

e.salary > 1000000 and
d.name == "Marketing" and
d. enpl oyees contains e

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-35

Editing Rules in an Oracle Business Rules Dictionary

Table 12-5 (Cont.) Extended Tests
__|

Forms Description
there is a Hidden <factType> is a <factType> tests as first N children.
<factTypel>,...<factTypeN The child tests are all true for at least 1 case.

*
> where# It is legal to have no visible child tests, in which case the where

This test has N or more keyword should be suppressed.

child tests that are ANDed
Example:
| F
there is a Enp, Dept where
Enp. sal ary > 1000000 and
Dept . nane == "Marketing" and
Dept . enpl oyees contai ns Enp

THEN
call print "there is a highly paid marketer!"
IF
there is a Enp
THEN

call print "sonebody works here!"

there is no case where This test has 1 or more child tests that are ANDed.

The child tests are true for no case (no binding of facts to
contained is a tests satisfy all the other tests).

Must have is a descendant.

there is no Hidden <factType> is a <factType> as first N children
<factTypel>,...,<factTypeN
> where

The child tests are true for no case

12-36 Designing Business Rules with Oracle Business Process Management

Editing Rules in an Oracle Business Rules Dictionary

Table 12-5 (Cont.) Extended Tests
__|

Forms Description

aggregation This test has 0 or more child tests that are ANDed.
Must have is a child (may be hidden).

v is the sum | average | minimum | maximum | count | collection
of <expression> where

Where clause omitted when there are no visible child tests.

| F
nunber of enpl oyees is the count of Enp
THEN
call print "nunber of enployees: " + nunber of
enpl oyees
| F

nunber of nale enployees is the count of Enp where
Enp. gender == "M
THEN
call print "nunber of male enployees: " + nunber of
mal e enpl oyees

Note that in both rules above, the SDK will create a hidden
nested is a test for Emp.

You can also use an explicit is a

I F
nunber of nale enployees is the count of e where
e is Enp and
e.gender == "M
THEN
call print "nunber of male enployees: " + nunber of
mal e enpl oyees

boolean expression Captures a boolean expression.

For example: isEligible(Emp)

Figure Figure 12-34 shows an example of "there is a case where" form:

Figure 12-34 Extended Test Example 1

Late Payment &7

IF
e v 8| - s
summary isa Credit Report Summary
there is a case where
Detal isa Credit Report Detail
Detal.Type is "LATE_PAYMENT"
Detai.Months more than 2
THEN
LR

[] modfy > Summary - (Score:Summary.Score - 150) ‘lﬁ

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-37

Editing Rules in an Oracle Business Rules Dictionary

Figure Figure 12-35 shows an example of "there is no case where" form:

Figure 12-35 Extended Test Example 2

No Late Payment ‘1?

IF
v X AR O
summary isa Credit Report Summary
there is no case where
Detal isa Credit Report Detai
Detal. Type is "LATE_PAYMENT"
Detai.Months more than 1

THEN
v X «
[modify * summary * (Score:Summary.Score + 50) ‘1?

For information about how to build complex rules, see How to Add Rule Conditions.

For more information about Advanced Mode, see How to Work with Advanced Mode
Rules.

12.5.14 How to Work with Tree Mode Rules

In Oracle SOA Composer you can work with tree mode rules in a ruleset. For more
information on working with tree mode rules, see Working with Tree Mode Rules.

To show and modify tree mode rules:

1. In a session, the Ruleset tab, select a ruleset of interest.
2. In the rule area locate the rule where you want to show or modify tree mode rules.
3. Select Advanced Property Editor button to show advanced settings.

4. If the Tree Mode check box is not selected, then select the Tree Mode check box.
This shows the tree mode rule options, as shown in the ROOT area in Figure 12-36.

Figure 12-36 Showing the Tree Mode Rule Areain a Rule

MultiplePriceyItems 7 I an Order has 5 or more line items priced more than approvalThreshold, require Manual approval

Root: OrderApproval [

CustomerOrder
1F ‘OrderApproval
OrderltemType .
UM CurrentDate ¥ count [¥] where { &+ ¥ & B~

OrderltemType isa OrderltemType EI and 4 x, hd {é} hd
L IRR L ARG 1R
OrderTtemType.price _w more than [*] ApprovalThreshoid @
} and
| v X %[~

numPricey same or more than 5

THEN
|- ¥ ¥

[modify* Result *| (status:StatusType.MANUAL) ‘55

12-38 Designing Business Rules with Oracle Business Process Management

Using the Oracle SOA Composer Browser Windows

12.5.15 What You May Need to Know About Oracle Business Rules Editor Declarative
Component
You can use the Oracle Business Rules Editor composite declarative component to

leverage the functionality of editing business rules in any ADF-based Web application.
It enables you to edit business rules available in rulesets by using the Rules SDK2 API.

For more information on Oracle Business Rules Editor, see Using the Oracle Business
Rules Editor Declarative Component in Developing SOA Applications with Oracle SOA
Suite.

12.5.16 What You May Need to Know About Oracle Business Rules Dictionary Editor
Declarative Component

The Oracle Business Rules Dictionary Editor is a composite declarative component
that can be embedded in any ADF-based web application. It enables you to edit
business rules metadata artifacts, such as globals, value sets, and rulesets, by using the
Rules SDK2 API.

For more information on Oracle Business Rules Dictionary Editor, see Using the
Oracle Business Rules Dictionary Editor Declarative Component in Developing SOA
Applications with Oracle SOA Suite.

12.5.17 What You May Need to Know About Oracle Business Rules Dictionary Editor
Task Flow

The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules
Dictionary Editor declarative component. The task flow is used in ADF-based web
applications that require a task flow instead of a declarative component.

For more information on Oracle Business Rules Dictionary Editor Task Flow, see
Using the Oracle Business Rules Dictionary Editor Task Flow in Developing SOA
Applications with Oracle SOA Suite.

12.6 Using the Oracle SOA Composer Browser Windows

Oracle SOA Composer provides browser windows that helps you to work with
different types of expressions such as rule expressions, XPATH expressions, date
expressions, and so on.

The different types of browsers provided by Oracle SOA Composer are:
* Expression Builder

e Condition Browser

* Date Browser

¢ Right Operand Browser

12.6.1 Expression Builder

Expression Builder is used to build different types of expressions such as XPATH
expressions, rule expressions, and so on.

Expression Builder has a field where you can enter the expression directly. It has four
tabs: Variables, Functions, Operators, and Constants. Each of these tabs display data in

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-39

Using the Oracle SOA Composer Browser Windows

a tree structure. The Variables tab displays all the variables in the rules meta-data. The
Functions tab displays all the functions in the rules meta-data. The Operators tab
displays operators such as +, -, ¥, and so on. The Constants tab displays all the
constants that exist in the rules meta-data.You can switch between the tabs, select an
item in the tree, and click the Insert Into Expression button to insert the selected item
at the cursor position in the expression field. When an item is selected in the tree, the
Content Preview and the Description areas display more information about the
selected item. Once you create the expression and click OK, the newly created
expression appears in the field that is available to the left of the expression builder
button.

Figure 12-37 displays the Expression Builder browser.

Figure 12-37 The Expression Builder Browser

Expression Builder X

Expression:

Claim.setEraudAlert(true)

& Insert Into Expression

[Claim -

| Car

3 RL

| Terms

| Policy

(3 Customer!
&8 address

@@ age

111

E@ drivingExperience
E8 education
[EEG]
@ name

|_J RLYesNo

|_) PurchaseOrder

3 enrictamar

Variables = Functions = Operators =~ Constants

Content Preview: Description:

[OK Cancel

12.6.2 Condition Browser

The Condition Browser has a field, a hierarchical tree, and an Expression Builder
embedded inside it. You can enter the expression directly in the field, or select an item
from the tree. Condition Browser supports filtering. For example, when you start
entering cust onmer the tree is narrowed down to items with cust oner .

When an item is selected in the tree, the new selection appears in the field
immediately. You can also use the embedded Expression Builder to create an
expression.

Once the Expression Builder is launched and an expression is created, the new
expression appears in the Condition Browser field. Once you create an expression and
click the OK button in the Condition Browser, the newly created expression appears in
the field that is to the left of the Condition Browser button.

Figure 12-38 displays the Condition Browser.

12-40 Designing Business Rules with Oracle Business Process Management

Using the Oracle SOA Composer Browser Windows

Figure 12-38 The Condition Browser

Condition Browser]
Cuskarner.Marne Ef','r_
= temType v

B3 SupplierInfaType
=3 PurchaseCrderType
L= [UsAddress
B[Crder
v 3 cu
7 :
L= I:I Address
L= I:I Registered Date
L= [cCurrentDate
=2 Temperature
3 asco
=@ Global_3
=03 R
=3 BigDecimal
=3 BigInteger
=[] Double v

Zonstank D

M Cancel

12.6.3 Date Browser

The Date Browser is used to select a Literal Date or a Date Expression. The Date
Browser has two options to switch between a Literal Date and a Date Expression.
When one option is selected, the other one is disabled.

Select:

e Literal Date option to enter a date using a Calendar pop-up.

¢ Date Expression option to enter the expression directly in the Date Expression field
or to launch the Condition Browser to select a date expression.

Figure 12-39 displays the Date Browser.

Figure 12-39 The Date Browser

Set Date and Time B

i@;Literal Date E"@ {UTC-08:00) US Padfic Time

") Date Expression
OK | Cancel

12.6.4 Right Operand Browser

The Right Operand browser is used to select multiple right expressions. The browser
displays operands in each row. You can enter an expression directly in the operand
field or launch the Condition Browser to select an expression. The + button adds a row
after the current one. The - button deletes the current row. These buttons are enabled
and disabled based on the selected operator. For instance the in operator allows
multiple right expressions. So in this case, the buttons are enabled.

Figure 12-40 displays a Right Operand browser.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-41

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-40 The Right Operand Browser

Right Operand B

"Customer,Registered Date between”

COperand2 Sep 30, 2009 2:19:44 AM CDT \-k +||=

Validate |ﬂ Cancel |

Note:

Using Right Operand browsers, you can enter multiple values for the right-
side expression. However, you can place a Date browser outside a Right
Operand browser, and in which case, only one expression can be entered. For
both these browsers, you cannot enter values directly in the right-side
expression field. Once you have entered values using the browser and clicked
OK, the values get added as comma-separated values on the Rules UL

12.7 Editing Decision Tables in an Oracle Business Rules Dictionary

When Oracle SOA Composer is in a session, you can edit, add, and delete a Decision
Table in a ruleset.

For more information on how to use sessions, see Creating and Publishing Sessions.

You can edit the description of a rule/condition or action within a decision table. If
you hover over a condition, a right arrow is used to select the condition. If you click on
the condition value, a pop-up appears where you can edit the description.

12.7.1 Adding a Decision Table

In Oracle SOA Composer, you can add a Decision Table to a ruleset. For more
information on working with Decision Tables, see Introduction to Working with
Decision Tables.

To add a Decision Table in aruleset:

1. In asession, select a ruleset of interest.

2. In the ruleset area, click Add and then Add Decision Table, as shown in Figure
12-41. An empty Decision Table appears.

12-42 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-41 Adding a Decision Table in a Ruleset

ApprovalRules.rules . DynamicRouting.rules s Q3@ v
@ [EJ value sets ¢ Globals & Business Phrases Tests Q Explorer | |\ Facts #} Dedision Functions | o Links g Transations Actions +
& ApprovaMatrixRules ~ 57 o 3¢ A set of rules to execute

Rules ¥ By Type (= ApprovalMatrix ‘!? Determine approvals and discounts using decision table rules
v R K| Click to view tests and variables
Decsion Tabbl}‘ é 4 - &% 4 Tooks Switch Rows to Columns
Verbal Rule |
R1 R2 R3
General Ruie and disco...more p
? CustomerOrder.vipStatus PLATINUM GOLD; SILVER
a4 CustomerOrder.creditScore - Low Medium
CurrentDate.date - - Before Promo; After Pi| _
i .
=) 93 Override
& modify Resut v v v
discount:double 10 0 5 -

12.7.2 Adding Condition Rows to a Decision Table

Using Oracle SOA Composer, you can add condition rows to a Decision Table.

To add condition rows to a Decision Table:

1. In the Decision Table toolbar, from the list next to the Add button, select Add
Condition that displays the Condition Browser window where you can specify or
select conditions.

The selected or specified condition row and a Rules column with the header R1 is
added to the table; the cell below R1 has a "?" symbol (Figure 12-42). The "?" symbol
indicates that the cell does not have a value yet.

Figure 12-42 New Condition Row Added in a New Decision Table

Decision Table 1 &7

Click to view tests and variables

& myi ~| #Z Tools | [Switch Rows to Columns
R1
¥ CustomerOrder.creditScore ?

If you are adding a condition to a table that has existing condition rows, similar to
adding a condition to a blank Decision Table, Oracle SOA Composer prompts for
specifying the condition details. Once the details are provided, the specified
condition is added as the last condition row; the condition cells under each rule
column in the new row also have "?" symbols.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-43

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-43 New Condition Row Added As Last Row in a Decision Table

ApprovalMatrix 7 Determine approvals and discounts using decision table rules

Click to view tests and variables

4 - 7 - _,'; Tools « Switch Rows to Columns
R1 R2 R3
-
7 CustomerOrder.vipStatus PLATINUM GOLD; SILVER
CustomerOrder.creditScore - Low Medium
CurrentDate.date - - Before Promo; After Pi _
) .
=) 9% Override
@ modify Result v v v
discount:double 10 0 5 -

4 L 3

For information about all symbols that might be used in a decision table, see
Editing Decision Table Cells.

2. If you want to edit a specified condition, in the Conditions area, click the condition
row, and then click the Edit Condition button on the toolbar. This displays the
Condition Browser.

3. Enter an expression by clicking in the Conditions Browser to select a variable, or
click the Expression Builder button to display the Expression Builder.

Expression Builder lets you build expressions.

4. Each condition row requires a value set from which to draw the values for each
cell. When the value you select has an associated global value set, then by default
the value set is associated with the condition row.

If there is no global value set associated with the value, then after you add a
condition row to a Decision Table, you need to either specify an existing global
value set or create a Local List of Values or a Local List of Ranges value set.

To associate a value set for the condition, perform either of the following:

* In the Conditions area, select the condition, and select an existing value set
from the Select Value Set list.

¢ In the Conditions area, select the condition, and select either Local List of
Values or Local List of Ranges (as relevant) from the Select Value Set list.

You can edit the value set for the selected condition by clicking the Edit Value Set
button.

This displays the Value Set Editor where you can add, edit or delete values. If
editing a Local List of Values value set, you can also reorder values in the value set.

For more information on number formatting in value sets, see What You May Need
to Know About Localized Number Formatting Support in Oracle SOA Composer.

5. Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

For more information on adding condition rows, see How to Add Condition Rows to a
Decision Table.

12-44 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in an Oracle Business Rules Dictionary

12.7.3 Adding Actions to a Decision Table

In Oracle SOA Composer, you can add actions to a Decision Table.

To add actions to Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table where you want to add actions.

2. From the list next to the Add button, select Add Action and select an available
action from the list. For example, click Modify as shown in Figure 12-44.

Figure 12-44 Adding Actions to a Decision Table

ApprovalMatrix 7 Determine approvals and discounts using decision table rules

Click to view tests and variables

% - _,'; 3 - _,'; Took |~ Switch Rows to Columns
Add Rule
R1 R2 R3
Add Condition | A
 AddActon b
SEUREEN el PLATINUM GOLD; SILVER
assign
CustomerOrder.cr I = Low Medium
ca
CurrentDate.date modify - - Before Promo; After Pil
. retract |
=) 9% override
- -4 assert
7@ assert tree
v v
modify Result expression
discount:double retym 10 0 5 ~
throw 0 k

Table 5-1 in Working with Decision Tables, lists the available actions.

3. In the Action Editor window, select the action target and then specify values for an
action cell.

For more information on number formatting in value sets, see What You May Need
to Know About Localized Number Formatting Support in Oracle SOA Composer.

For more information on adding actions to Decision Tables, see How to Add Actions
to a Decision Table.

12.7.4 Adding Rules to a Decision Table

Using Oracle SOA Composer, you can add a rule to a Decision Table.

To add a rule to a Decision Table:

1. In a session, select a ruleset of interest, select the Decision Table where you want to
add the rule.

2. In the Rules master list, select the Decision Table where you want to add the rule.
Next to the Add button in the detail section, select Add Rule.

A new column for the added rule is displayed.

Notice that the new rule is added as the first rule of the Decision Table and the
other rules have moved as required to keep the values in their defined order. This
is because Order Rules By Bucket is enabled by default, which means rule
ordering in a Decision Table is set according to the relative position of values

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-45

Editing Decision Tables in an Oracle Business Rules Dictionary

associated with a condition expression. If Order Rules By Bucket is not enabled
when you add a rule, the new rule is added as the last rule of the Decision Table. In
either case, the cells in the new rule column have "?" symbols, indicating the cells
do not have values yet.

For information about all symbols used in a table, see Editing Decision Table Cells.
For additional information about rules ordering, see Controlling the Order of Rules
in a Decision Table.

3. Enter values for the condition cells by clicking the cells.

4. Click an Action row to enter values for the action cells.

Note:

If because of the inadequate column width, you cannot view the complete
contents of a cell in a Decision Table, you can roll your mouse pointer over the
cell to view the contents. Also, click the Maximize tabs section button in the
toolbar to increase the view.

12.7.4.1 Editing Decision Table Cells

Each rule in a Decision Table contains cells pertaining to three sections: Conditions,
Conflicts, and Actions.

Working with Condition Cells

In view mode, a condition cell with a "?" symbol indicates that the cell does not have a
condition value. If a cell has two or more values specified, a semicolon-separated list
of values is displayed in the cell.

In the editable mode the condition cells display specified condition values in
multichoice lists. When editing a new rule or when a condition value is unspecified,
the condition cell is blank.

If you select All:

¢ When the particular condition cell is clicked, the cell displays "All"

¢ When the particular condition cell is not selected, the cell displays the "-" symbol

You can select any value that is available in the condition value list.

Note:

When you edit the condition cells, if Order Rules By Bucket is selected, the
Decision Table is refreshed and the edited rule column may shift to the left or
right depending on the selected condition cell value. Click the Tools drop
down to select Order Rules By Bucket.

Note:

You can modify the value set associated with a a condition, by clicking the
condition. This enables the value set list and the Edit Value Set button so that
you can edit the associated value set.

12-46 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in an Oracle Business Rules Dictionary

Working with Action Cells

When you add an action, an action row is created with the specified action type. There
are two types of action cells:

® The Action form cells contain check boxes. When a rule fires, only selected actions
are executed. In Figure 12-45, R1 and R3 action check boxes are selected whereas
the other action check boxes are cleared. In this case, if R1 fires, the action will be
executed, but if R2 fires, then the action will not be executed.

Note:

The Edit Action button is enabled only if the action form cell row is selected.
The Edit Action button invokes the Action Editor window.

¢ The Action parameter cells contain the parameters of the action form. You can
directly enter the action parameter values in the respective field or you can invoke
the Condition Browser window to select a value.

Figure 12-45 displays the Action Editor window where you can select the values for an
action parameter cell. If you select the Always Selected check box, all the check boxes
for the particular action form get selected. All the check boxes pertaining to the action
form are also disabled, because the specified action "is always selected".

Figure 12-45 The Action Editor Window

Action Editor B
Form: | Modify W
Value: Maodify Result

Target: | customerOrder

Mame Type Value Parameterized Constant

discount double Ck O
Arguments: |status StatusType Qz, O

surcharge double '— [}

Always Selected: []

ﬂ Cancel

Note:

You can delete all the condition cells and all the action cells of a Decision Table
at one go. Clicking the Conditions or the Actions box selects all the conditions
or actions in the Decision Table respectively.

You can then click the Delete button on the Decision Table toolbar to delete
the conditions or actions.

12.7.4.2 Controlling the Order of Rules in a Decision Table

By default the Order Rules by Bucket check box is enabled in a Decision Table. This
means the order of the values in the value set associated with a condition row

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-47

Editing Decision Tables in an Oracle Business Rules Dictionary

determines the order of the condition cells, and thus the order of the rules. Click the
Tools drop down to select Order Rules By Bucket.

To change the order of rules in a Decision Table, you need to change the order of
values in the value set. For example, you can control rule ordering in a Decision Table
by changing the relative position of the values in an LOV value set associated with a
condition row. Note, however, that you cannot reorder range value sets.

When the Order Rules by Bucket check box is selected in a Decision Table and you
add a rule, by default the new rule is added as the first rule column; the other rule
columns move as required to keep the value set values in their defined order. When
the Order Rules by Bucket check box is not enabled and you add a rule, the new rule
is added as the last rule column. If you now select the Order Rules by Bucket check
box, the newly added rule shifts to the first column.

12.7.5 Deleting Rules in a Decision Table

You can delete one or multiple rules in a Decision Table.

To delete rules in a Decision Table:

1. Select the rules column that you want to delete.

If you want to delete more than one rule, press the Ctrl key, and by keeping the key
pressed, select the other rule columns

2. Click the Delete button.

12.7.6 Defining Tests in a Decision Table

In Oracle SOA Composer, you can define tests in a Decision Table by adding
conditions to facts. For more information about defining tests and working with rule
conditions, see Working with Rules.

Note:

To add more complex conditions to facts, see How to Work with Extended
Tests.

To add tests to a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table where you want to add a test.

2. Click the Advanced Properties Editor button next to the Decision Table name. If
Advanced Mode is selected, clear the check box.

3. Click the Click to view tests and variables link under the Decision Table name.

4. Click the down arrow next to the Add button and select any of the options
according to your requirements.

5. Use the field controls or Left Value and Right Value buttons, and the operator list
to create the condition expression.

12-48 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in an Oracle Business Rules Dictionary

Note:

If a Decision Table already contains test conditions, you can add new test
conditions by clicking Add at the end of an existing condition and selecting
the required test form type.

12.7.7 Splitting and Compacting a Decision Table

You can modify the contents of a Decision Table to create a table that includes a
complete set of rules for all cases, or a table that provides the least number of rules for
the cases. The split and compact operations enables you to manipulate the contents in
a Decision Table.

The split table operation creates a rule for every combination of values across the
conditions. For example, in a Decision Table with 2 boolean conditions, 2 x 2 = 4 rules
are created. In a Decision Table with 20 boolean conditions, 2**20 ~ 1 million rules are
created. So, you only use split table when the number of rules created is small enough
that filling in the action cells is feasible.

Using Oracle SOA Composer, split can be applied to an entire Decision Table.
However, you cannot perform split operation on an individual condition row or cell.

To split or compact a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table that you want to split or compact.

2. Click the Split Table button or Compact Table button on the Tools drop down.

Using Oracle SOA Composer, you can compact a Decision Table by merging
conditions of rules with identical actions. So, compacting a table enables you to
remove conditions from a Decision Table. However, using Oracle SOA Composer, you
cannot merge two or more condition cells.

For more information on splitting and compacting Decision Tables, see Introduction to
Decision Table Operations.

12.7.8 Checking for Missing Rules in a Decision Table

In a Decision Table, a missing rule is also called a "gap." A gap in a Decision Table
occurs when a rule does not cover some combinations of values, one from each
condition.

Using Oracle SOA Composer, you can check for missing rules in Decision Tables.

To check for missing rules:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table in which you want to check for missing rules.

2. Select Gap Analysis from the Tools drop down.

The Gap Analysis window is displayed as shown in Figure 12-46. You can select
the rules that need to be added to the Decision Table.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-49

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-46 The Gap Analysis Window

‘Gap Analysis x

There are 1 missing rule(s) in the decision table. Please select the rules to add by ciicking the checkboxes in the table header
columns.

‘Conditions
CustomerOrder.vipStatus PLATINUM
CustomerOrder.creditScore Low

CurrentDate.date Promo Period

OK Cancel

For more information about checking for missing rules, see How to Perform Decision
Table Gap Checking.

12.7.9 Performing Conflict Resolution in Decision Tables

Rules in a Decision Table can conflict when they overlap and have different actions.
Two rules overlap when at least one of their condition cells has a value in common.
However, overlap without conflict is common and harmless. For more information
about conflicts in Decision Tables, see Understanding Decision Table Conflict
Analysis.

Using Oracle SOA Composer, you can find and resolve conflicts in a Decision Table.

To perform conflict resolution in a Decision Table:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table on which you want to perform the Conflict Resolution.

2. Ensure that the Show Conflicts button is selected on the Tools drop down.
3. Click the Advanced Property Editor button next to the Decision Table name.

4. Ensure that Conflict Policy is set to Manual in the Advanced Settings area. This is
the default conflict policy.

Note:

For more information on conflict policies, see Understanding Decision Table
Contflict Analysis.

5. Select the Conflict row and then click the rule that has a conflict to display the
Conflict Resolution window.

6. In the Conflict Resolution window, for each conflicting rule, in the Resolution field
select a resolution from the list and click OK as shown in Figure 12-47.

12-50 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-47 Conflict Resolution Dialog

.

Conflict Resolution

Below are the rules that confiict with rule R5 and the confiict resolution methods
to resolve possible conflict occurrences. To change the resolution method, please

click the Resolution column and select the method you would fike to use to
resolve the conflict.

Rule: RS

Conflicting Rule Resolution

R2 Conflict =l
R4 override [x|

No Confiict
Override
Overridden By
Run Before
Run After

OK | Cancel

For more information about the conflict resolution options in Decision Tables, see
Understanding Decision Table Conflict Analysis.

12.7.10 Switching From Rows to Columns

In Oracle SOA Composer, you can turn the rows in a Decision Table to columns by
clicking the Switch Rows to Columns link in the detail area. This enables the rules to

be displayed as rows, and the conditions, actions, and conflicts to be displayed as the
columns.

Switching rows to columns provides ease of navigation when a Decision Table has
many rules because you can see all the rules together and you do not need to "page the

columns" for viewing the rules.

Figure 12-48 displays a Decision Table before the switch operation.

Figure 12-48 A Sample Decision Table

ApprovalMatrix 7 Determine approvals and discounts using decision table rules

Click to view tests and variables

|- 7K - Z Tools = Switch Rows to Columns
R1 R2 R3
-
? CustomerOrder.vipStatus PLATINUM GOLD; SILVER
CustomerOrder.creditScore Low Medium
CurrentDate.date Before Promo; After PI| _
1 S
=) V% override
@ modify Result v v v
discount:double 10 0 5 -

Figure 12-49 displays the sample Decision Table after switching the rows to columns.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-51

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-49 Switching Rows to Columns

ApprovalMatrix uﬁ Determine approvals and discounts using decision table rules

Click to view tests and variables

- 7/

R1

R2

R3

R4

RS

R6

12.7.11 Working with Advanced Mode Options in a Decision Table

7

CustomerOrder. vipStatus

PLATINUM

GOLD; SILVER

PLUTONIUM; null

1

Al 4 Took |+ Switch Rows to Col Ens

CustomerOrder.creditScore

Low
Medium
Medium; High

High

CurrentDate.date

Before Promo; After Promo

Promo Period

7% Override

In Oracle SOA Composer, you can use advanced mode rules in a Decision Table just
like you can work with advanced mode rules in a ruleset. The Advanced Mode rules
options enable you to create, modify, and delete patterns, as well as add, modify, and
delete conditions and actions within a pattern.

Note:

Advanced Mode capability has been maintained for backward compatibility
only. We recommend that you use extended tests in simple mode to create any

kind of condition that you need.

Everything that can be done in Advanced Mode can be done in simple mode.
Advanced mode rules can be converted to equivalent simple mode rules

simply by clearing the Advanced Mode check box.

For more information, see How to Work with Extended Tests.

To show and use advanced mode options:

1. From Oracle SOA Composer, select a ruleset from the Rulesets navigation tab and
select the Decision Table on which you want to add more complex rules.

12.7.12 Deleting a Decision Table

Click the Advanced Property Editor button next to the Decision Table name.

Select Advanced Mode.

The advanced mode options in a Decision Table are similar to the advanced mode
options in a ruleset. For more information, see Working with Advanced Mode
Options.

In Oracle SOA Composer, you can delete Decision Tables in a ruleset. For more
information on working with Decision Tables, see Introduction to Working with
Decision Tables.

12-52 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in an Oracle Business Rules Dictionary

To delete a decision table in a ruleset:

1. In a session, select a ruleset of interest.
2. In the Rules master list, click the Decision Table you want to delete.
3. Click Delete.

4. When done with changes, click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

12.7.13 Editing Decision Tables in Microsoft Excel

Business users may find that editing Decision Tables is easier to do in Microsoft Excel.
New functionality enables both developers and business users to export and edit
Decision Tables in Excel and then import the Decision Tables back into the dictionary.

When exporting Decision Tables in Microsoft Excel, only basic Action types such as
Assert New, Modify, Assign, Retract, and Call are supported.

You can export and edit Decision Tables at design-time in Oracle JDeveloper or
Business Process Composer. At runtime, you can export and edit in SOA Composer.
You can export one or more Decision Tables from a Rule dictionary to the same Excel
workbook.

When you import back into the dictionary, you can create a new dictionary, overwrite
the existing dictionary, or perform a Diff-Merge. The Diff-Merge enables you to
compare dictionaries.

For more information about comparing dictionaries, see Comparing and Merging
Oracle Business Rules Dictionaries.

The Excel workbook structure consists of several worksheets: a Readme sheet, a Value
Set sheet, and one sheet for each exported Decision Table, as shown in Figure 12-50.
Only Rules and Value Sets can be edited in Excel. You can export to .xIsm (default)

or .xls.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-53

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-50 Excel Workbook

Home Insert Page Layout Formulas Data

HHR=E=E X B oA

Add Delete Merge Split Add Remove Enable Simple Hide ReadMe

Review View Oracle Business Rules

Rule Rule Cell Bucket Bucket | Highlighting Made Sheet
Decision Table ValueSet Preferences
| c3 -(£ "New"
A B C D E
1
"New Exceptional "Payment Processing
2 Conditions "New normal Claim" Claim" Claim™
3 "status of the claim™ Claim.status I"New“ [= hew" "Processing Payment”
4 "review details" Claim.reviewDetails otherwise i

Claim.policy.terms.cover |"Closed"

"if claim is of REPAIR ages_en.contains("REPAI |.F29"
- "Processing Payment"

5 type" R") "Processing Repair"

" . B "Manual Review" L4
general terms of the | Claim.policy.terms.gener "Review Complete” m

6 claim" alTerms otherwise "Exception”
7
8 Actions
9 Al modify Claim Active Active Active
10 Fixed claimDetails
11 Fixed claimid
12 Variable payment 0.00000000698 10.645 3000.0
13 Fixed policy
14 Fixed reviewDetails
15 |Fixed status
16 A2 retract Claim InActive InActive InActive
17 A3 call print Active Active Active
"Review has been "Claim will be reviewed
18 Variable message completed" manually” "Claim has been paid"
W 4 » M| ReadMe - ValueSets Claim Table - CustomerTable %] |_!:

When you open the spreadsheet, the macros are disabled by default. If you enable the
macros, a new tab called Oracle Business Rules, appears. This tab enables you to add
or delete rules, merge or split cells, and add or remove values from value sets. You can
also disable or enable highlighting, use a simple or advanced mode and hide or show
the Readme sheet.

You can edit with the macros disabled, though you will not be able to:
® Choose values from drop lists for restricted cells.

¢ Edit free form cells.

* Copy and paste a range of cells to add a rule or Value Set.

® Delete a range of cells to delete a rule or Value Set.

¢ Split or merge cells.

¢ Create Value Sets automatically.

e Validate the structure of Decision Tables or Value Sets.

Using the predefined macros, you can:
¢ Add and delete rules.
® Split or merge cells.

e Add or delete Value Sets.

12-54 Designing Business Rules with Oracle Business Process Management

Editing Decision Tables in an Oracle Business Rules Dictionary

e Editable cells include:

— Description for Rules, Conditions, Actions.

— Condition and Action nodes.

— Action state.

— Parameterized options for Action parameters.
¢ Non-editable cells include:

— Condition expressions.

— Action expressions.

— Action parameters.

If you try to edit these cells, you will get an error message, as shown in Figure
12-51.

Figure 12-51 Non Modifiable Cell

A B C D E
1
"Mew Exceptional "Payment Processing

2 Conditions "New normal Claim" Claim" Claim"
3 | "status of the claim" Claim.status "New" "New" "Processing Payment"”
4 "review details” |change el - -

A Claim.policy.terms.covel Non—Modiﬁabltﬁe_

if claim is of REPAIR ages_en.contains("REP,
5 type" IR") _

"general terms of the | Claim.policy.terms.genef 'Q Condition Cells are Non-Modifiable
1] claim" alTerms .
7 :
. e | Retry | l Cancel] [Help]
9 Al madify Claim
10 | Fixed claimDetails
11 Fixed claimid
12 |Variahle payment '0.00000000638 "10.645 "3000.0

12.7.13.1 Understanding What is Exported

In the SDK, there are shared Value Sets that can be associated with multiple conditions
across Decision Tables. However, in Excel there are no shared Value Sets--each
condition has its own Value Set--so you can only export a Value Set if it is modifiable
in Excel. The Value Sets that are non-modifiable include:

¢ Linked Dictionary Value Sets.
¢ Enums.

¢ Internal Value Sets, for example, boolean Value Sets.

In the worksheet, you can only select values from the drop down for the conditions
associated with non-modifiable Value Sets. A highlighting mechanism informs you
which conditions are associated with non-modifiable Value Sets.

12.7.13.2 How to Export Decision Tables

The export functionality is invoked by using the Export to Excel button in the toolbar
options, as shown in Figure 12-52.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-55

Editing Decision Tables in an Oracle Business Rules Dictionary

Figure 12-52 Actions Toolbar

ApprovalRules.rules ﬁf & cﬁ E' g 'é) 5.
5 D Value Sets &9 Globals & Business Phrases Tests @, Explorer » [Actions v
. _ &
&b setuphukes » 55 o 3¢ Setup such as determining custom T Diff Merge

lj Import From Excel |

Rules 7 By Type = TreatAsPlatinum Consider s 34 Export To Excel
v R W/~ CUStomErs 7% pictionary Settings

& 1F 3
TreatAsPlatinum + - 5o 4
Consider some non platinum cu...more 4 CustomerOrder sa CustomerOrder
¥ Initialize the following test is true
Initialization Rule - Runs be...more CustomerOrder.vipStatus s VipStatusType.GOLD

CustomerOrder.vipStatus is VipStatusType.SILVER

4 I r

Diagnostics History Center Save log Validation Log

To export to Excel:

1.

2.

In SOA Composer, in a session, click Actions, Export to Excel.

In the Export Decision Tables dialog box, select the Format and browse to the
folder where you want to save the worksheet.

Select the Decision Table to export and click OK.

Check the Read Only Value Set check box to make all of the value sets read-only
in Excel. There will not be any Value Sets sheet in the Excel workbook. All
conditions will have drop down menus from which values can be selected but no
values can be added or removed.

Click Export. You can now open the worksheet and edit the Decision Table.

12.7.13.3 How to Import Decision Tables to the Dictionary

You can only import Excel spreadsheets that have been previously exported.

To import edited Decision Tables back to the Dictionary:

1.

2.

In Rules Designer, click Actions, Import from Excel.

In the Import Decision Tables dialog box, click Browse to browse to the folder
where you saved the worksheet.

The Diff-Merge check box is selected by default. For more information about using
the Diff-Merge, see Comparing and Merging Oracle Business Rules Dictionaries.
Select Create New or Overwrite depending on your requirements.

Click Import. The decision table is imported into Rules Designer, where you can
accept or reject changes. Each changed artifact is flagged with a change icon.

Note:

Merges should be done with caution. See Comparing and Merging Oracle
Business Rules Dictionaries

12-56 Designing Business Rules with Oracle Business Process Management

Comparing and Merging Oracle Business Rules Dictionaries

12.7.13.4 How to Edit Decision Tables in Excel

In Excel, enable the macros to view the Oracle Business Rules tab, which provides you
with options to author rules, edit Value Sets, and set preferences.

For more information, see Editing Decision Tables in Microsoft Excel.

12.7.14 What You Need to Know About Rule Test Variables

Oracle SOA Composer enables you to define test variables that provide a way to
shorten lengthy expressions that occur in rule and decision table conditions and
actions. The variable and its value can be represented as an inline business term
definition. The test variables are also called inline aliases.

So, instead of writing:

I | some. very Jong.expression % mare than ;I 4 % and -

I | some. very Jong.expression \-k less than ;I 10 % -

You can write:

[| foo = | some.very.long. expression JQ and -
[~ |foo *—% mare than ;I 4 *—% and -
[|foo \—k less than ;I 10 \-& -

In subsequent test conditions, you can use f 00 as part of your expressions. The
expression can be anything from a simple to a complex expression.

To define a variable, in the IF section of a rule, you need to click the down arrow
adjacent to Add Test, and select variable from the list.

Apart from variables, you can also define other test form types, such as simple test,
nested tests ((. . .)), and not nested tests (not (...)).

12.8 Comparing and Merging Oracle Business Rules Dictionaries

The Diff Merge feature enables you to review any differences in the latest revision of a
dictionary against a previous revision and be able to save or roll back any changes
since then. At runtime, in SOA Composer, you can use the Diff Merge feature to
compare the File-System, Published Version, or the Saved Version to the dictionary
that you have open.

SOA Composer only supports the compare of the edited version with one prior saved
version and the ability to select items that have changed since the saved version and to
revert them back to their saved values. The differences are viewed from the
perspective of the latest revision.

The Merge feature enables you to review any differences between the two versions
and be able to resolve or merge the differences among them. The differences are
viewed from the perspective of the changed versions.

The Diff Dictionary option is available in the Rules Designer toolbar, as shown in
Figure 12-53.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-57

Comparing and Merging Oracle Business Rules Dictionaries

Figure 12-53 Actions Drop Down List

ApprovalRules.rules e GBI v
@ D Value Sets 4@ Globals a4 Business Phrases Tests | @, Explorer * | Actions w
. _ b
&b setupRules ~ 57 o 3¢ Setup such as determining custom]f Diff Merge

l_“ Import From Excel

Rules ¥ By Type = TreatAsPlatinum Consider s 34 Export To Excel
dhlv X X%/~ CUStOMErs % pyictionary Settings

& F =
TreatAsPlatinum +* - 3 73
Consider some non platinum cu...more 4 CustomerOrder isa CustomerOrder
W Initialize the following test is true
Initialization Rule - Runs be...more CustomerOrder.vipStatus is VipStatusType.GOLD

CustomerOrder.vipStatus is VipStatusType SILVER

Diagnostics History Center Save Log Validation Log

Warning:

Before you decide to run this feature, you must be ready to resolve all changes
because the dictionary becomes read-only when in diff or merge mode.

Merging dictionaries should be done with care.

12.8.1 How to see Differences Between Dictionaries

When you want to compare dictionaries, you have the newer dictionary opened and
then use the Diff Merge to select the dictionary to compare with. Anything missing
from the newer dictionary is flagged as a deletion from the newer version.

To see differences between dictionaries:

1. In SOA Composer, with the newer dictionary open, click Actions, Diff Merge.
The Dictionary version dialog appears, as shown in Figure 12-54.
Figure 12-54 Dictionary Version dialog
[Di-t-:;ic.)nary Version ®

Select | File-Gystem v
Dictionary:

Published version

2. In the Select Dictionary field, select one of the Dictionary version to compare.

¢ File-System - File-system version give users an option to compare the rules file
available on the local file system against the rules file of the composite deployed
on the server.

¢ Published Version - Published version is the composite versions which changes
when versions change.

¢ Saved Version - Saved version is the composite version which changes when
versions change.

12-58 Designing Business Rules with Oracle Business Process Management

Localizing Names of Resources in Oracle Business Rules

3. Click OK to open the dictionary that you want to compare with.

All differences between the two dictionaries are flagged with change icons.

The change icons are shown for all tabs and for the specific artifacts within each
tab. An example is shown in Figure 12-55.

Figure 12-55 Merging or Reverting Changes

ApprovalRules.rules g QEHQR
G Rulesets B valuesets | A &4 Business Phrases Tests Q, Explorer I\ Facts 4 Decision Functions P Links o, Translations Actions
+ %

Mame Description Valug Value Set Type
/% (%) | ApprovalThresholdl ‘.f_, {4 | Threshold above which approval ne f_’_] 1002 [{b El double
(x) Result Result of Rules

rderApproval
(%) Global 1 expression Value madified Keep Revert

New value 1002
Old value 1000

4. Click Keep to retain the changes or select Revert to discard the changes made.
You may click each tab and decide to keep or revert the changes.

5. Alternatively, you can choose to Accept All or Reject All in the Actions drop
down list to accept or reject all the changes on one click.

Figure 12-56 Accept All or Reject All from the Actions Drop Down

Actions «
E §
@ Accept Al
D reject Al
E’lﬂ Refresh Diffs
ut
@:Export To Excel

:..-;'} Dictionary Settings

The Diff Merge feature is more fully functional in JDeveloper Rules Designer. For
more information, see How to Compare or Merge Two or More Dictionaries.

12.9 Localizing Names of Resources in Oracle Business Rules

Oracle BPM allows you to localize the names of some rules components.

Providing a translated version of these aliases enables users to view these aliases
based on the local setting of their browser when using the following applications:

¢ Oracle SOA Composer
¢ Oracle Business Process Composer

* Oracle Process Workspace

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-59

Localizing Names of Resources in Oracle Business Rules

Note:

Locale dictionaries are stored as resource bundles. You must create the
resource bundle using Oracle JDeveloper. They must be deployed as part of
the SOA composite application.

Resource bundles cannot be created using Oracle SOA Composer. However,
you can use Oracle SOA Composer to edit the localized strings within a
resource bundle.

Oracle SOA Composer enables you to localize the aliases of the following rules
components.

Values

Value Sets

Decision Functions
Decision Function Facts
Globals

Links

Rulesets

Rules

Patterns

12.9.1 How to Localize the Alias of a Oracle Business Rules Component

Using Oracle SOA Composer, in a session, you can add translated versions of the
aliases and their descriptions used to identify rules components.

To localize the alias of arules component:

1.

3.

4.

In Oracle SOA Composer, select the Translations tab. The Translations tab displays
a table with multiple columns. By default, there are two columns one displaying
the untranslated identifier of the rules component. The other displays the English
locale.

If you have defined other locales in your application, these also appear as columns
in this table. See Localizing Oracle Business Rule Resources. for more information.

In the column of the locale you want to edit, double-click in cell corresponding to
the alias you want to translate.

Enter the localized text for the alias.

Repeat steps 2 and 3 to localize all the aliases required for the locale.

12-60 Designing Business Rules with Oracle Business Process Management

Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates

Note:

Offline editing of locale files is not supported. When a locale is added, the xml
file generated does not contain all the keys by default. They are added when a

value is added.

You can also localize from the editor. To localize from the editor click the Translations

button.

The Translations Editor enables you to appears enter the Alias for the rule

components and click OK.

12.10 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime

Dictionary Updates

Oracle SOA Composer enables you to update rules dictionaries at runtime. However,
the modifications made to the dictionaries through Oracle SOA Composer are not
automatically reflected in Oracle JDeveloper. To synchronize the dictionary updates
made in Oracle SOA Composer with the dictionaries available in Oracle JDeveloper,
you must select the Export option in Oracle Enterprise Manager Fusion Middleware
Control Console. This utility allows you to export the SOA composite application

along with the dictionary.

To select the Export option in Fusion Middleware Control Console:

1. In Fusion Middleware Control Console, select the composite that contains the

dictionary to be exported.

2. Click SOA Composite drop-down list on the right panel and select Export as

shown in Figure 12-57.

Figure 12-57 Selecting the Export Utility

1 RestBpelService [1.0] @

|4 SOA Compostte
Home 4
Monitoring 4 [Test settings... ~ |@ @
SOA Deployment » fstamces Unit Tests Policies
Export... L\\;

Test Service > ‘
SOA Infrastructure
SOA Infrastructure Common Properties

Target Information

Services and References

Name
& RestService

Type
REST Binding

Usage
Service

Logged in as weblogicl LJ slc01ghk.us.oracle.com

Page Refreshed Apr 24, 2014 2:58:24 PM PDT O

@ Related Links ~

Component Type
BPEL

Total Messages Average Processing Time (sec)
7 0.093

3. Select Option 1: Export with all post-deploy changes from the Export Composite

page and click Export as shown in Figure 12-58.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-61

Validating and Diagnosing an Oracle Business Rules Dictionary

Figure 12-58 Exporting All Postdeployment Changes

Enterprise Manager Fusion Middleware Control 12c 2 webogc~ O

=1 Weblogic Domain ¥ == SOA Infrastructure

View - f§ SOA Compostte ~ Page Reffeshed Apr 24, 2014 3:03:52 PM PDT ()

[Application Deployments
3 soa

i Export | | Cancel | 2
28 soainfia (Adminserver) Export Composite b=
@ consoleTests “This page provides diferent options for exporting a snapshot of a running compostte. This is useful, for example, when you want to replcate the same deployment on a dfferent depioyment
@ consoleTests_wthWMG target. This operation wil have no effect on your currently running composite.
@ defautt
ot RestBpelService [10] You have chosen to export the following composite revision.
off§ RestClient [1.0] Composite Name RestBpelService
ol RestHdrMediatorClent [1.0] Composite Revision 1.0
ol RestHdrMediatorServer [1.0] Current Deployment Target /Domain_soainfra/soainfra/AdminServer/default A
offd RestServer [1.0] D 3
off} smpleApproval [1.0] © option 1: Export with all post-deploy changes
£ WebLogic Domain This option wil generate a composite archive fie containing the original, design-time definitions of the composte; as wel as al post-deployment information listed in Option 2 and 3.
(4l soainfra

O Option 2: Export with runtime/metadata changes only

] Adminserver The compostte archive fie wil include the original compostte plus such post-deployment changes as task definitions, rule changes, etc...

[Metadata Repostories
[Scheduing Services

- ©option 3: Export with property changes only
(3 User Messaging Service

The compostte archive fle wil include the original composite plus any post-deployment property changes, such as binding properties or policy settings.
©Option 4: Export with no post-deploy changes

This option wil generate a composite archive fle containing only the pre-deployment, design-time definitions of the composite. Any property settings you may have made on a running
composite, or any runtime metadata, wil be ignored in the export operation.

x

A composite archive (SAR) fie wil be aenerated with a standard name. shown below. Alternativelv. vou can specifv vour own name for the fie. The file is first exported to the server where

SAR File

Target Navigation & RestBpelService [1.0] @ Logged inas weblogicl [F sco1ghk.us.orade.com

12.11 Validating and Diagnosing an Oracle Business Rules Dictionary

In Oracle SOA Composer, in a session, you use the bottom tabs to check diagnostics
and validate a dictionary for errors. The diagnostics tab is populated after you publish
a session.

During the publish of the session, if another user has made any changes to the same
artifact (like a dictionary) it will be listed in this section. You then have three options
to handle any conflicts.

12.11.1 Understanding the Validation Log Tab

The Validation Log tab lists all the dictionary-level validation errors.

The Validation Log does not get updated automatically. The validation is only run if
you click Validate and when you save any changes.

For example, when a new rule is added with errors, the Validation Log tab is not
updated automatically. Click the Validate button on the toolbar to update the
Validation Log with the new error entries.

12.11.2 Understanding the Diagnostics Tab

Use the Diagnostics tab see if other users are modifying the same artifacts and resolve
those conflicts, as shown in Figure 12-59.

Figure 12-59 Diagnostics Tab

Diagnostics History Center Save Log Validation Log

Identifier ‘Comment Resolution
TrainingRules.rules Ignore E\

lm
Adopt
Qverwrite

Resolve

-

To resolve changes made by you or other users:

1. For each item in the table, use the Resolution drop down to Ignore, Adopt, or
Overwrite changes.

12-62 Designing Business Rules with Oracle Business Process Management

Working with Tasks

2. Adopt will try to merge changes.
3. Ignore means your changes will be discarded.

4. Overwrite means that your changes will be made, other users changes will be
discarded.

5. Click Publish when done.

12.11.3 Understanding the History Center Tab

The History Center tab displays any pending changes that you or other users have
made in a currently active session. You can discard changes from here, for example, if
you want to quickly undo all changes you have made all at once.

12.11.4 Understanding the Save Log Tab

The Save Log tab is updated whenever you save. It adds an entry to the save log if it
succeeds. It it fails it will show the error message here.

12.12 Working with Tasks

Using Oracle SOA Composer, you can view and edit tasks that may be or may not be
associated to Approval Management Extensions (AMX) rules. AMX enables you to
define complex task routing slips for human workflow by taking into account business
documents and associated rules to determine the approval hierarchy for a work item.

Additionally, AMX lets you define multi-stage approvals with associated list builders
based on supervisor or position hierarchies. At design time, you can define the
approval task in the Human Task Editor of Oracle JDeveloper, and associate the task
with a BPEL process. For more information about approval management and tasks,
see Using Approval Management in Oracle Fusion Middleware Modeling and
Implementation Guide for Oracle Business Process Management.

In Oracle SOA Composer, the Task Editor is embedded as a task flow so that you can
view and perform all the task metadata lifecycle operations.

12.12.1 How to View Task Metadata

To view task metadata:
1. In Oracle SOA Composer, to open a task or an AMX rules metadata artifact, from

the Types View, expand the Human Tasks folder, and click an artifact to open it in
a new tab, as shown in Figure 12-60.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-63

Working with Tasks

Figure 12-60 Opening a Task

SOA Composer
Search +
Deployment View x| =@v
2 soatnfa
@ defauit

off§ Amsx120xedSample [1.0]
& Amx12cXsdSampleHumantas
[Amx12cksdSampleHumantaskRule
[E8) Amsx12cxsdsampleHumantaskRule
> off§ HelpDeskRequestComposite [1.0]
g D{tﬂ SimpleApproval [1.0]
[Shared
23 CaseManagementBaseDictionary.rules
= DynamicRouting.rules

Amx12cXsdSampleHumantaskRules.rules x Amx12cXsdSampleHumantask.task x

E] Amx12cXsdSampleHumantask : Event Driven Configuration

Task Agaregation None

On Error Notify

__ Allow all participants to invite other participants
__ Allow participants to edit future participants
__ Allow initiator to add participants
__Enable auto claim
__ Complete task when participant chooses
__Enable early completion of parallel subtasks
__ Complete parent tasks of early completing subtasks

Assignment and Routing Policy

Expiration and Escalation Policy

Never Expire

Notification Settings

®
Task Status Recdipient Notification Header
Assign Assignees
Complete Initiator /
Error QOwner /

— Make notifications secure {exdude details)

— Make notification actionable

__Send task attachments with email notifications

—_Don't send multiple notifications for the same human task event

Mo reminders

Task Access

Task Content Task Actions

Task Content. Individuals with read access Individuals with write access

2. If you want to make changes, click Edit Session. When you are ready to apply the
changes to the runtime version, click Publish.

For more information about how to use the session buttons, see Creating and
Publishing Sessions

You can differentiate between traditional rules and AMX rules depending on the
naming convention.

For example, a composite may have the following artifacts:
¢ <AMX task name>.tsk

o <AMX rule name>Rules.rules

12.12.2 How to Configure a Task or an AMX Rule Metadata

Task Configuration enables business users and administrators to review the rules that
were configured automatically by the workflow designer. These predefined rules can
be changed for a specific customer based on the customer's applicable corporate
policies.

In Oracle SOA Composer, Task Configuration enables you to edit the event-driven
(only tasks) and data-driven rules (tasks with an associated AMX rules) associated
with an approval flow at runtime.

12-64 Designing Business Rules with Oracle Business Process Management

Working with Tasks

Figure 12-61 Configuring Tasks

Amx1 kRules.rules x Amx12c k. task x

[& Configure Task Approval Rules

Staget

)

Stage2

5% participantt

12.12.2.1 Configuring Event-Driven Settings

To configure event-driven settings:

Participant1

Stage3

i Participantt

1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit Session on the Oracle SOA Composer menu bar to open the selected

task for editing as shown in Figure 12-62.

Figure 12-62 Opening a Task for Editing

SimpleApprovalTask.task ;. ApprovaRules.rules 5
[simpleApprovalTask : Event Driven Configuration

Task Aggregation None =l
on Error Notify 4,

Allow al participants to invite other participants
Allow participants to edit future participants
Allow initiator to add participants
Assignment and Routing Policy [~ Enable auto claim
"] complete task when participant chooses
Enable early completion of paraliel subtasks
Complete parent tasks of early completing subtasks

Expiration and Escalation Policy

Never Expire EI

Notification Settings

G X

Diagnostics History Center Savelog Validation Log

3. Make the relevant edits and click Save Changes in Current Tab When you are

dvQEdO0@8

ready to apply the changes to the runtime version, click Publish.

You can configure the following options and settings:
e Task aggregation

¢ Error notification

* Assignment and routing policy

¢ Expiration and escalation policy

¢ Notification settings

m

g v @

Global Rules | —Select-- v

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-65

il ¢

Add var

Working with Tasks

® Task access settings

Setting Approval Aggregation Requirements

Task aggregation requirements can be any of the following;:
* None

* Once per task

* Once per stage

Notifying Errors

You can specify the user and group names that need to be notified in case of an error
in the task. You need to click the On Error Notify search button to display the
Configure Error Assignees dialog box where you can specify the user or group names.

Setting Assignment and Routing Policy

You can set the assignment and routing policy by using the options available in Oracle
SOA Composer. Click to select the available options for setting assignment and
routing policy.

For more information about the assignment and routing options available in event-
driven configuration, see Routing Policy Method in Oracle Fusion Middleware
Developer’s Guide for Oracle SOA Suite.

Setting Expiration and Escalation Policy

You can set the expiration and escalation policy for the task by using the available
items in the Expiration and Escalation Policy list. The available list items are:

¢ Never Expire

¢ Expire After

e Escalate After

e Renew After

Configuring Notification Settings

You can configure notification settings for a task by using the options available in the
Notification Settings section of Oracle SOA Composer.

#unique_499 /unique_499_Connect_42_BABFDIHH displays the different options
available to configure notification settings for a task.

12-66 Designing Business Rules with Oracle Business Process Management

Working with Tasks

Figure 12-63 Specifying Notification Settings

Notification Settings

b
Mov MoV ok status Recipient Notification H
up dow

7 Assign EI Assignees E| 7
a ¥ Complete E| Initiator E| /
a Error E| Owner E| /

< | 1] »

No reminders E|

Configuring Task Access Settings

[] Make notifications secure (exclude detais)
Make notffication actionable
[send task attachments with email notifications
[C]pon't send multiple notifications for the same human
task event

You can set access-rule settings to control the actions a user can perform. You can also
specify content and action permissions based on the logical role of a user, such as
creator (initiator), owner, assignee, and reviewers.

In Oracle SOA Composer, you can set access settings by using the options available
under Task Access area and tabs, as shown in #unique_501/
unique_501_Connect_42_BABFCAHF and #unique_501/

unique_501_Connect_42_BABIACHC.

Figure 12-64 Specifying Task Access Settings

Task Access

Task Content = Task Actions

W
Task Content Individuals with read access
Payload Admin; Approvers; Reviewers
Attachments Admin; Approvers
Assignees Al
Comments Admin; Approvers
Dates Al
Flexfields Admin; Approvers; Reviewers
History Al
Reviewers Al

d|[d)|[4] 4

4

Individuals with write
access

Al
Al
Al
Al
Al
Al
Al
Al

414 [4) | 9"« [«

4

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-67

Working with Tasks

Figure 12-65 Specifying Task Actions Settings

Task Access

Task Content ~ Task Actions

Ol

Task Actions Individuals with access

Approve Al h -
Reject Al h

Acquire Al -

Adhoc Route Al -

Delegate Assignees r =
Delete Al -

Escalate Al -

Information Request Assignees b

Override routing siip Al hd -
Purge Al -

Push Back Assignees -

Reassign Al -

Release Al -

Renew Al - N

For more information on configuring task access, see How to Define Security Access
Rules in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business
Process Management.

12.12.2.2 Configuring Data-Driven Settings (Rule or Condition)

To configure data-driven settings:
1. Log on to Oracle SOA Composer and open the required task.

2. Click Edit Session on the Oracle SOA Composer menu bar to open the selected
AMX rule-associated task for editing as shown in Figure 12-66.

Figure 12-66 Editing a Rule-Associated Task

SimpleApprovalTask.task ApprovalRules.rules 5 H< QB 3@ -
@ E} Value Sets u Globals ." ' Business Phrases Tests Q Explorer I\ Facts » Actions
&P SetupRules = 69 ofa 3¢ Setup such as determining customer status etc.

Rules = By Type = - @y Consider some non platinum customers as &
R K- TreatAsPlatinum &7 platinum
é IF
* R0 PN
‘@ TreatAsPlatinum L
Consider some non platinum cu...more CustomerOrder isa CustomerOrder and =
. the following test is true

@ Initialize :
Initialization Rule - Runs be...mare 4 GustomerrdervipStanis gl 5

CustomerOrder.vipStatus is VipStatusType.SILVER

CustomerOrder.creditScore same or more than 750 and

the following test is true
CustomerOrder.annualSpending same or more than 10000 and
CustomerOrder.totalAmount is 4000

4l I 8

1 2

<4

Diagnostics History Center Savelog Validation Log

3. Make the relevant edits and click Save Changes in Current Tab. If you are ready to
apply the changes to the runtime version, click Publish.

You can perform the following actions:

12-68 Designing Business Rules with Oracle Business Process Management

Working with Tasks

¢ Adding, updating, and deleting a rule

¢ Changing rule assertions (which depend on the type of list builder for which the
rule has been configured)
¢ Adding a variable

For more information about editing data-driven settings, see How to Edit Data-Driven
Settings in Oracle Fusion Middleware User’s Guide for Oracle Business Process
Management.

Using Oracle SOA Composer with Oracle Business Rules at Runtime 12-69

Working with Tasks

12-70 Designing Business Rules with Oracle Business Process Management

Appendices

This part contain appendices that describe the Oracle Business Rules files and
limitations, built-in classes and functions, and how to troubleshoot Oracle Business
Rules.

This part contains the following appendices:

¢ Oracle Business Rules Built-in Classes and Functions

* Working with Oracle Business Rules and JSR-94 Execution Sets
* Oracle Business Rules Frequently Asked Questions

® Oracle Business Rules Files and Limitations

¢ Working with Oracle Business Rules and JSR-94 Execution Sets

A

Oracle Business Rules Files and
Limitations

This appendix lists known naming constraints for Rules Designer files and names, and
certain Rules SDK limitations.

This appendix includes the following sections:

¢ Rules Designer Naming Conventions

A.1 Rules Designer Naming Conventions

This section covers Rules Designer naming conventions.

Some of the naming conventions are for ruleset, dictionary, alias, and, XML schema
target packaging naming.

A.1.1 Ruleset Naming

Rules Designer enforces a limitation for ruleset names; a ruleset name must start with
a letter and contain only letters, numbers, or the following characters: ". ", "-","_","",
""", and single spaces. Letters include the characters (a to z and A to Z) and

numbers (0to9).

A.1.2 Dictionary Naming

Rules Designer dictionary names can contain only the following characters, upper and
lowercase letters (a to z and A to Z), numbers (0 to 9), and the underscore (_). Special
characters are not valid in a dictionary name.

Rules Designer dictionary names are case preserving but case-insensitive. For
example, the dictionary names Di ct i onary and DI CT are both valid. If you create a
dictionary named Test , then you can create another dictionary named TEST only if
you first delete the dictionary named Test .

A.1.3 Alias Naming

Rules Designer alias names must begin with a letter and contain only letters, numbers,

"o o n,n H/ "

U, e, and single spaces.

A.1.4 XML Schema Target Package Naming

The Target Package Name that you specify for an XMLFact on the XML Schema
Selector page is limited to ASCII characters, digits, and the underscore character.

A-1

A-2 Designing Business Rules with Oracle Business Process Management

B

Oracle Business Rules Built-in Classes and

Functions

This appendix discusses the extensive library of Oracle Business Rules (OBR) built-in
classes, methods, and functions that help reasoning about data containing text strings,
lists, numbers, dates, times, and so on.

In the following sections, there are multiple tables whose each row has a Kind column
that is either Cl, Co, M, sM, P, or sP (Class, Constructor, Method, static Method,
Property, or static Property (Java static final field) respectively). The first row in each
table specifies the class. When the Java Name is the same as the OBR Name (the rule
SDK terms it the Alias), a -' is displayed. The Signature column provides type
information for methods, functions, and properties. The signature of a property is
actually the type, for example Bi gDeci mal . The signature of a method or function is
of the formreturn(argl, arg2, ...), wherer et urn is the return type and

argl, arg2, ... arethe argument types.

This appendix includes the following sections:
e String Classes

e List Classes

e Numeric Classes

e Time and Duration Classes

* Miscellaneous Classes

e Functions

B.1 String Classes

This section covers the String-related classes provided by Oracle Business Rules.

Table Table B-1 lists the St ri ng class.

Table B-1 Strings-related Classes provided by Oracle Business Rules

OBR Name Kind Signature Java Name Description Reference
String Cl - java.lang.String Java immutable http://
character strings. j ava. sun. com

Beware, Javauses | avase/ 6/
0-based indexing docs/ api /j aval
for characters in I ang/

strings, and XML String. htm
uses 1-based

indexing

B-1

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Table B-1 (Cont.) Strings-related Classes provided by Oracle Business Rules
. __|

OBR Name Kind Signature Java Name Description Reference

charAt S char(int) - Returns the char http://
value at 0-based j ava. sun. conf
index argl. j avase/ 6/
"Oracle".charAt(2 docs/ api /j aval/
)=="a". | ang/

String. htnl #ch
ar At 9%28i nt %29
compareTo M int(String) - Returns the value 0 http://
if the argument j ava. sun. conl
string is equal to j avase/ 6/
this string; a value docs/ api / j ava/
less than 0 if this | ang/
string is String. htnl #co
lexicographically npar eTo
less than the string %28j ava. | ang. S
argument; and a tring%29
value greater than
0 if this string is
lexicographically
greater than the
string argument.
"a".compareTo("b"
)<0.
contains M boolean(Strin - Tests whether this http://
g) string contains j ava. sun. conl
argl. j avase/ 6/
"Oracle".contains("r docs/ api/j aval
ac")==true. | ang/
String. htm #co
ntai ns
%28j ava. l ang. C
har Sequence%29
endsWith M boolean(Strin - Tests whether this http://
g) string ends with j ava. sun. conf
argl. j avase/ 6/
"Oracle".endsWith(docs/ api/javal/
"le")==true. | ang/
String. ht nl #en
dsWth
%28j ava. | ang. S
tring%29
equalslgnore M boolean(Strin - Tests whether this http://

Case g) string equals argl, j ava. sun. com
ignoring case j avase/ 6/
consideration. docs/ api /j aval/
"Oracle".equalsign | ang/

oreCase("oRaClE"
)==true.

String. ht nl #eq
ual sl gnor eCase
%28j ava. | ang. S
tring%29

B-2 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#charAt%28int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#compareTo%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#contains%28java.lang.CharSequence%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#endsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#equalsIgnoreCase%28java.lang.String%29

Table B-1

(Cont.) Strings-related Classes provided by Oracle Business Rules

OBR Name Kind Signature Java Name Description Reference
indexOf M int(String,int) - Returns the 0- http://
based index of the j ava. sun. com
start of argl within j avase/ 6/
this String, butnot docs/ api /j ava/
before the 0-based | ang/
index arg2. String. htnm #in
"banana".indexOf(" dexOf
an",2)==3. %28j ava. | ang. S
tring, %20i nt
929
lastIndexOf M int(String,int) - Returns the 0- http://
based index within j ava. sun. conf
this string of the j avase/ 6/
last occurrence of docs/ api /j aval/
argl, searching I ang/
backward starting ~ String. htm #l a
at the index arg2. st ndexOf
"banana"lastindex 9%28j ava. |l ang. S
Of("an","banana".le tring, %20i nt
ngth())==3. %29
length M int - Returns the length http://
of this string. j ava. sun. cont
"Oracle"length()== | avase/ 6/
6. docs/ api /j aval/
| ang/
String. htm #l e
ngt h928%29
matches M boolean(Strin - Tests if this string http://
g) matches the given j ava. sun. coml
regular expression. j avase/ 6/
"banana".matches(" docs/ api/javal/
b.*a$")==true. | ang/
String. ht M #ma
tches
%28j ava. | ang. S
tring%29
replaceAll M String(String,S - Replaces each http://
tring) substring of this j ava. sun. conl
string that matches j avase/ 6/
argl (a regular docs/ api /j aval
expression) with | ang/
arg?. String. htm #re
"banana".replaceAl pl aceAl |
1(".a","x0")=="xoxo %28j ava. |l ang. S
x0". tring,
%20j ava. | ang. S
tring%29

B-3

http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#indexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#lastIndexOf%28java.lang.String,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html#sum
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29

Table B-1

(Cont.) Strings-related Classes provided by Oracle Business Rules
. __|

OBR Name Kind Signature Java Name Description Reference
replaceFirst M String(String,S - Replaces first http://
tring) substring of this j ava. sun. conl
string that matches j avase/ 6/
argl (a regular docs/ api /j aval
expression) with | ang/
arg?. String. htm #re
"banana".replaceFir pl aceFi rst
st(".a","x0")=="xon %28j ava. |l ang. S
ana'. tring,
%20j ava. | ang. S
tring%29
startsWith M boolean(Strin - Tests whether this http://
g) string starts with j ava. sun. conl
argl. j avase/ 6/
"Oracle".startsWit ~ docs/ api /j aval/
h("Or")==true. | ang/
String. ht m #st
artsWth
9%28j ava. | ang. S
tring%29
substring M String(int,int) - Returns the http://
substring of this j ava. sun. conl
string, starting j avase/ 6/
with the 0-based docs/ api / j aval/
index argl, and | ang/
ending before the String. htn #su
0-based index arg2. bstri ng%28i nt,
"Oracle".substring(9%20i nt %29
1,4)=="rac".
toLowerCase M String() - Converts this http://
string to lower j ava. sun. conf
case. j avase/ 6/
"Oracle".toLowerC docs/ api /j aval
ase()=="oracle". | ang/
String. htm #to
Lower Case
928929
toUpperCase M String() - Converts this http://
string to upper j ava. sun. conl
case. j avase/ 6/
"Oracle".toUpperC docs/ api /j ava/
ase()=="ORACLE". | ang/
String. htm #to
Upper Case
928929

B-4 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#startsWith%28java.lang.String%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#substring%28int,%20int%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toLowerCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase%28%29

Table B-1 (Cont.) Strings-related Classes provided by Oracle Business Rules
. __|

OBR Name Kind Signature Java Name Description Reference
trim M String() - Removes leading http://
and trailing j ava. sun. com
whitespace. " j avase/ 6/
Oracle docs/ api /j aval
"trim()=="Oracle". | ang/
String. htn #tr
i NP289%29

Table B-2 lists the RL class strings methods.

Table B-2 RL class strings methods

OBR Name

Kind

Signature

Java Name

Description

Reference

RL

Cl

oracle.rule
s.rl.extensi
ons.RL

Supplement
standard Java
classes with W3C
RIF
functionality.

http://ww. w3.org/ TR rif-
dt b/

string.join

sM

String(String
)

stringJoin

Concatenates first
n-1 args using the
last arg as a
separator.
RL.string.join("a",
"b","c","#")=="a#b
#c".

http://ww. w3.org/ TR/ ri f-
dt b/ #func: string-join

string.substri
ng

sM

String(String
,Ant,int)

substring

Returns the
substring of argl,
beginning at the
1-based index
arg2, and
continuing for
arg3 characters.
RL.string.substrin
g("Oracle",
2,3)=="rac".

http://ww. wW3.org/ TR/ ri f-
dt b/ #f unc: substring

string.suffix

sM

String(String
,Ant)

substring

Returns the suffix
of argl,
beginning at the
1-based index
arg?.
RL.string.suffix("
Oracle",5)=="l¢e".

http://ww. w3.org/ TR/ rif-
dt b/ #f unc: substri ng

string.substri
ng before

sM

String(String
,String)

substringB
efore

Returns the
substring of argl
that occurs before
arg?2.
RL.string.substrin

before("Oracle","a
")=="Or".

http://ww. w3.org/ TR/ ri f -

dt b/ #f unc: substri ng-before

B-5

http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://java.sun.com/javase/6/docs/api/java/lang/String.html#trim%28%29
http://www.w3.org/TR/rif-dtb/
http://www.w3.org/TR/rif-dtb/
http://www.w3.org/TR/rif-dtb/#func:string-join
http://www.w3.org/TR/rif-dtb/#func:string-join
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring
http://www.w3.org/TR/rif-dtb/#func:substring-before
http://www.w3.org/TR/rif-dtb/#func:substring-before

Table B-2 (Cont.) RL class strings methods

|
Reference

OBR Name Kind Signature Java Name

Description

string.substri sM

ng after

String(String
,String)

substringA
fter

Returns the
substring of argl
that occurs after
arg?2.
RL.string.substrin

after("Oracle","ac"
)=="le".

http://ww. w3.org/ TR rif-
dt b/ #f unc: substring-after

encodeFor
URI

string.iri.,enco sM String(String
de path)

Encodes
characters not
permitted in an
URI path.
RL.string.iri
encode
path("Oracle
Business
Rules")=="Oracle
%?20Business
%20Rules".

http://ww. w3.org/ TR/ rif-
dt b/ #f unc: encode-for-uri

string.iri.to sM iriToUri

String(String
uri)

Encodes some
characters not
permitted in a
URI. RL.string.iri
to uri("http://
www.example.co
m/
~bébé")=="http:
//
www.example.co
m/~b%C3%A9%
%C3%A9"

http://ww. wW3.org/ TR/ ri f -
dtb/#func:iri-to-uri

string.iri.to sM

ascii

String(String escapeHtm

1Uri

Encodes non-ascii
characters.
RL.string.iri to
ascii("javascript:if
(navigator.brows
erLanguage ==
'fr')
window.open('htt
p://
www.example.co
m/
~bébé’);")=="javas
cript:if
(navigator.brows
erLanguage ==
'fr')
window.open('htt
p://
www.example.co
m/~b%C3%A9%
%C3%A9");"

http://ww. w3.org/ TR/ rif-
dt b/ #f unc: escape-htm - uri

B-6 Designing Business Rules with Oracle Business Process Management

http://www.w3.org/TR/rif-dtb/#func:substring-after
http://www.w3.org/TR/rif-dtb/#func:substring-after
http://www.w3.org/TR/rif-dtb/#func:encode-for-uri
http://www.w3.org/TR/rif-dtb/#func:encode-for-uri
http://www.w3.org/TR/rif-dtb/#func:iri-to-uri
http://www.w3.org/TR/rif-dtb/#func:iri-to-uri
http://www.w3.org/TR/rif-dtb/#func:escape-html-uri
http://www.w3.org/TR/rif-dtb/#func:escape-html-uri

Table B-2

(Cont.) RL class strings methods
. ___|

OBR Name Kind Signature Java Name Description Reference
string.is sM boolean(Stri isNormaliz A normalized http://ww. w3.org/ TR/ ri f-
normalized ng) edString string does not dt b/
contain the #Guar d_Predi cates_for_Dataty
carriage return pes
(#xD), line feed
(#xA) nor tab
(#x9) characters.
RL.string.is
normalized("
Business Rules
")==true.
string.is sM boolean(Stri isToken A token is a http://ww. w3.org/ TR/ rif-
token ng) normalized string dt b/
with no leading #Guard_Predi cates_for_Dataty
or trailing spaces, pes
and no double
spaces.
RL.string.is
token("Business
Rules")==true.
string.is sM boolean(Stri isLanguage A language http://ww. wW3.org/ TR/ ri f -
language ng) identifier. dt b/
RL.string.is #Guard_Predi cates_for_Dataty
language('en")== pes
true.
string.is sM boolean(Stri isName Anameisatoken http://ww. w3.org/ TR/ rif-
Name ng) with no spaces dt b/
(and some other ~ #Guard_Predi cates_for_Dataty
constraints on its pes
characters).
RL.string.is
Name("xs:Name"
)==true.
string.is sM boolean(Stri isSNCName A non-colonized http://ww. w3.org/ TR/ rif-
NCName ng) name. dt b/
RL.string.is #Guar d_Predi cates_for_Dataty
NCName("xs:NC pes
Name")==false.
string.is sM boolean(Stri isNMTOK An NMTOKENis http://ww. w3.org/ TR/ ri f-
NMTOKEN ng) EN a Name withno dt b/

restriction on the
initial character.
RL.string.is
NMTOKEN("-
Oracle")==true.

#Guard_Predi cates_for_Dataty
pes

B-7

http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-2

(Cont.) RL class strings methods
. ___|

OBR Name Kind Signature Java Name Description Reference
string.compa sM int(String,Str compare Returns-1,0,0or1 http://ww wW3. org/ TR/ ri f -
re ing) if argl<arg2, dt b/ #f unc: conpare_.
argl==arg2, or 28adapt ed_from fn: conpare. 29
argl>arg?2,
respectively.
RL.string.compar
e("foo","bar")==1.
B.2 List Classes

This section covers the List classes provided by Oracle Business Rules.

Table Table B-3 lists the Li st class.

Table B-3 Table lists the List class

OBR Name Kind Signature Java Name Description Reference
List cl - java.utilLLi Represents mutable and http://java. sun. conf
st immutable lists. Lists use 0- j avase/ 6/ docs/ api /
based indexes. Attempts to java/util/List.htm
modify an immutable list may
result in
UnsupportedOperationExcepti
ons.
append M void(Object add Appends argl to this list. http://java.sun. conf
) Modifies this list. j avase/ 6/ docs/ api /
javalutil/
Li st. ht nl #add(E)
add M void(int,Obj - Inserts arg? into this list at http://java. sun. conf
ect) position argl. Modifies this list. ~ j avase/ 6/ docs/ api /
javalutil/
Li st. ht m #add(i nt,
YR20E)
appendAll M void(java.ut addAll Appends the contents of argl to http://java. sun. com

il.Collection

)

this list. Modifies this list.

j avase/ 6/ docs/ api /
javalutil/

Li st. htm #addAl | (j av
a.util.Collection)

addAll M

void(intjav
a.util.Collec
tion)

Inserts the contents of arg?2 into
this list at position argl.
Modifies this list.

http://java. sun. conf
j avase/ 6/ docs/ api /
javalutil/

Li st. ht nl #addAl | (i nt

%20j ava. util. Col | ect
i on)

clear M

void()

Removes the contents of this
list. Modifies this list.

http://java. sun. conf
j avase/ 6/ docs/ api /
javalutil/

Li st. ht m #cl ear ()

B-8 Designing Business Rules with Oracle Business Process Management

http://www.w3.org/TR/rif-dtb/#func:compare_.28adapted_from_fn:compare.29
http://www.w3.org/TR/rif-dtb/#func:compare_.28adapted_from_fn:compare.29
http://www.w3.org/TR/rif-dtb/#func:compare_.28adapted_from_fn:compare.29
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/List.html#clear()

Table B-3 (Cont.) Table lists the List class

OBR Name Kind Signature Java Name Description Reference
contains M boolean(Ob - Tests whether this list contains http://java. sun. conf
ject) argl. j avase/ 6/ docs/ api /
RL.list.create(1,2,3).contains(2)= j ava/ util/
=true. Li st. ht Ml #cont ai ns(]j
ava. | ang. Obj ect)
containsAl M boolean(jav - Tests whether this list contains http://java. sun. conf

1

a.util.Collec
tion)

every element in argl.
RL.list.create(1,2,3).contains All(
RL.list.create(3,2,1))==true.

j avase/ 6/ docs/ api /
javalutil/

Li st. ht M #cont ai nsAl
| (java.util.Collecti
on)

get M Object(int) - Get the element at position argl. http://java. sun. com
RL.list.create(1,2,3).get(1)==2. j avase/ 6/ docs/ api /
javalutil/
Li st. htm #get (int)
indexOf M int(Object) - Returns first index of argl in http://java. sun. conf
this list. j avase/ 6/ docs/ api /
RL.list.create(1,2,3).indexOf(2)= java/util/
=1. Li st. ht M #i ndexOf (j a
va. |l ang. Obj ect)
remove M boolean(Ob - Removes first occurrence of http://java. sun. conf
ject) argl from this list. Returns j avase/ 6/ docs/ api /
whether this list was modified. javal/util/
Li st. ht m #r enove(j av
a.l ang. oj ect)
removeby M Object(int) remove Removes and return the http://java. sun. conf
index element at position arg]. j avase/ 6/ docs/ api /
Modifies this list. javalutil/
Li st. ht ml #renove(i nt
)
removeAll M boolean(jav - Removes all elements from this http://j ava. sun. com
a.util.Collec list that are contained in argl. j avase/ 6/ docs/ api /
tion) Returns whether this list was javalutil/
modified. Li st. ht M #removeAl | (
java.util.Collection
)
retainAll M boolean(jav - Removes all elements from this http://java. sun. com

a.util.Collec
tion)

list that are *not* contained in
argl. Returns whether this list
was modified.

j avase/ 6/ docs/ api /
javalutil/

Li st. htm #retai nAl | (
java.util.Collection

)

set M

Object(int,
Object)

Replaces the item in this list at
position argl with arg2. Returns
the replaced item. Modifies this
list.

http://java. sun. conf
j avase/ 6/ docs/ api /
javalutil/

Li st. htm #set (i nt,
YR20E)

B-9

http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#remove(int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/javase/6/docs/api/java/util/List.html#set(int,%20E)

Table B-3

(Cont.) Table lists the List class

OBR Name Kind Signature Java Name Description Reference
size M int() Returns the size of this list. http://java. sun. conf
RL.list.create(1,2,3).size()==3. j avase/ 6/ docs/ api /
javalutil/
Li st. htm #si ze()
subList M List(int,int) Returns a view of the portionof http://java. sun. com

this list between argl, inclusive,

and arg?2, exclusive.

RL.list.create(1,2,3,4).subList(1,3
==RL.list.create(2,3).

j avase/ 6/ docs/ api /
javalutil/

Li st. htm #subLi st(in
t, %20i nt)

Table B-4 lists the RL class list methods.

Table B-4 Table lists the RL class list methods
- - - -~~~]

OBR Name Kind Signature Java Description Reference
Name
RL Cl - oracle.rule - -
s.rl.extens
ions.RL
listappend sM List(List,Obj append Returns a new immutable list http://
ect...) containing the contents of argl, www. w3. org/ TR/ ri f -
followed by arg?2, arg3, ... dt b/ #f unc: append
RL.list.append(RL.list.create(1),
2,3)==RL.list.create(1,2,3).
list.concaten sM List(List...) concatenat Returns a new immutable list http://
ate e containing the concatenation of ~ www. w3. or g/ TR/ ri f -
argl, arg?2, ... dt b/
RL.list.concatenate(RL.list.creat ~ #f unc: concat enat e
e(1),RL.list.create(2))==RL.list.cr
eate(1,2).
list.distinct sM List(List) distinctVal Returns a new immutable list http://
values ues like arg1 but with duplicates www. W3. org/ TR/ ri f -
removed. RL. list.distinct dt b/ #f unc: di sti nct -
values(RL.list.create(2,2))==RL.1 val ues
ist.create(2).
list.except sM List(List,Lis except Returns a new immutable list http://
t) containing elements from argl www. w3. org/ TR/ ri f -
that are not in arg?2. dt b/ #f unc: except
RL.list.except(RL.list.create(1,2,3
4),RL.list.create(1,3))==RL.list.cr
eate(2,4).
list.get sM Object(Listi get Returns the element at position — http://
nt) arg?2 in argl. If arg2<0, return www. W3. or g/ TR/ ri f -

the element at argl.size()+arg2.
RL.list.get(RL.list.create(1,2,3),-1
)::3.

dt b/ #f unc: get

B-10 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#size()
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/List.html#subList(int,%20int)
http://www.w3.org/TR/rif-dtb/#func:append
http://www.w3.org/TR/rif-dtb/#func:append
http://www.w3.org/TR/rif-dtb/#func:append
http://www.w3.org/TR/rif-dtb/#func:concatenate
http://www.w3.org/TR/rif-dtb/#func:concatenate
http://www.w3.org/TR/rif-dtb/#func:concatenate
http://www.w3.org/TR/rif-dtb/#func:concatenate
http://www.w3.org/TR/rif-dtb/#func:distinct-values
http://www.w3.org/TR/rif-dtb/#func:distinct-values
http://www.w3.org/TR/rif-dtb/#func:distinct-values
http://www.w3.org/TR/rif-dtb/#func:distinct-values
http://www.w3.org/TR/rif-dtb/#func:except
http://www.w3.org/TR/rif-dtb/#func:except
http://www.w3.org/TR/rif-dtb/#func:except
http://www.w3.org/TR/rif-dtb/#func:get
http://www.w3.org/TR/rif-dtb/#func:get
http://www.w3.org/TR/rif-dtb/#func:get

Table B-4 (Cont.) Table lists the RL class list methods

OBR Name Kind Signature Java Description Reference
Name
listindex of sM List<Integer indexOf Returns a list of indexes where ~ http://
>(List,Objec the arg2 occurs in argl. www, W3. org/ TR/ ri f -
t) RL.list.index dt b/ #f unc: i ndex- of
of(RL.list.create(1,2,3,2),
2)==RL.list.create(1,3).
list.insert sM List(List,int, insertBefo Returns a new immutable list http://
before Object) re containing argl with arg3 www. W3. or g/ TR/ ri f -
inserted before the item at dt b/ #func:insert-
position arg?2. If arg2<0, arg3is before
inserted before the element at
argl.size()+arg2. RL list.insert
before(RL.list.create(1,2,3),-1,99
==RL.list.create(1,2,99,3).
list.intersect sM List(List,Lis intersect Returns a new immutable list http://
t) containing the intersection of www. W3. org/ TR/ ri f -
argl and arg?2. dt b/ #func:intersect
RL.list.intersect(RL.list.create(1,
2,3),RL.list.create(3,1))==RL.list.
create(1,3).
list.create sM List(Object.. list Returns a new immutable list http://
. containing the arguments. www. W3. org/ TR/ ri f -
dt b/ #f unc: make-1i st
list.remove sM List(List,int) remove Returns a new immutable list http://
containing the elements of argl, ww. w3. org/ TR/ ri f -
with the element at position dt b/ #f unc: renove
arg?2 removed. If arg2<0, the
element at argl.size()+arg2 is
removed.
RL.list.remove(RL.list.create(1,2,
3),0)==RL.list.create(2,3).
list.reverse sM List(List) reverse Returns a new immutable list http://
containing the elements of argl ~ www. w3. or g/ TR/ ri f -
in reverse order. dt b/ #f unc: rever se
RL.list.reverse(RL.list.create(1,2,
3))==RL.list.create(3,2,1).
list.union sM List(List) union Returns a new immutable list http://

containing the concatenation of
the arguments with duplicates
removed.
RL.list.union(RL.list.create(1,2),
RL.list.create(2,3))==RL.list.creat
e(1,2,3).

www. W3. org/ TR/ ri f -
dt b/ #f unc: uni on

B.3 Numeric Classes

Oracle Business Rules support the primitive Java numeric types byt e, short ,i nt,

| ong, f | oat, and doubl e.

B-11

http://www.w3.org/TR/rif-dtb/#func:index-of
http://www.w3.org/TR/rif-dtb/#func:index-of
http://www.w3.org/TR/rif-dtb/#func:index-of
http://www.w3.org/TR/rif-dtb/#func:insert-before
http://www.w3.org/TR/rif-dtb/#func:insert-before
http://www.w3.org/TR/rif-dtb/#func:insert-before
http://www.w3.org/TR/rif-dtb/#func:insert-before
http://www.w3.org/TR/rif-dtb/#func:intersect
http://www.w3.org/TR/rif-dtb/#func:intersect
http://www.w3.org/TR/rif-dtb/#func:intersect
http://www.w3.org/TR/rif-dtb/#func:make-list
http://www.w3.org/TR/rif-dtb/#func:make-list
http://www.w3.org/TR/rif-dtb/#func:make-list
http://www.w3.org/TR/rif-dtb/#func:remove
http://www.w3.org/TR/rif-dtb/#func:remove
http://www.w3.org/TR/rif-dtb/#func:remove
http://www.w3.org/TR/rif-dtb/#func:reverse
http://www.w3.org/TR/rif-dtb/#func:reverse
http://www.w3.org/TR/rif-dtb/#func:reverse
http://www.w3.org/TR/rif-dtb/#func:union
http://www.w3.org/TR/rif-dtb/#func:union
http://www.w3.org/TR/rif-dtb/#func:union

OBR also supports the "boxed" versions: Shor t, | nt, Long, Fl oat , and Doubl e.
Unlimited precision integers and decimals are supported, using the Java classes

Bi gl nt eger and Bi gDeci mal . OBR supports arithmetic expressions (+,-,*,/,**)
on all numeric types. For example, if * bd is Bi gDeci mal , then you can add one to it
by simply writing bd + 1. You do not have to write bd. add(Bi gDeci mal . ONE) .

Table Table B-5 lists the | nt eger class.

Table B-5 Table lists the Integer class

OBR Kind Signature Java Name Description Reference
Name
Integer Cl - javalang.Inte An integer object. Unlike http://java. sun. conf
ger the primitive "int", an j avase/ 6/ docs/ api / j aval
Integer can be null and | ang/ I nteger. ht m
can be in Lists.
Integer Co Integer(int | - Creates an Integer froman http://java. sun. com
String) int or from its lexical j avase/ 6/ docs/ api / j aval
representation as a String. | ang/
new Integer(1)==new I nteger. ht M #l nteger(in
Integer("1"). t)
MIN_V sP int - Smallest primitive int http://java. sun. conl
ALUE value. j avase/ 6/ docs/ api / j aval/
Integer. MIN_VALUE<0. I ang/
I nt eger. ht M #M N_VALUE
MAX_ sP int - Largest primitive int value. http://java. sun. com
VALUE Integer. MAX_VALUE>0. j avase/ 6/ docs/ api / j aval
| ang/
I nt eger . ht m #MAX_VALUE
intValu M int() - Converts this Integer toan http://java. sun. com
e int. new j avase/ 6/ docs/ api / j aval/
Integer(1).intValue()==1. | ang/
I nt eger . ht m #i nt Val ue()
toString M String() - Converts this Integer toits http://j ava. sun. com

lexical representation. new
Integer(1).toString()=="1".

j avase/ 6/ docs/ api / j aval
| ang/
I nteger. htm #toString()

Table B-6 lists the Long class.

Table B-6 Table lists the Long class

OBR Kind Signature Java Name Description Reference
Name
Long Cl - javalang.Lon A long integer object. http://java.sun. com

8

Unlike the primitive
"long", a Long can be null
and can be in Lists.

j avase/ 6/ docs/ api /
javal/l ang/ Long. ht m

B-12 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#Integer(int)
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html
http://java.sun.com/javase/6/docs/api/java/lang/Long.html
http://java.sun.com/javase/6/docs/api/java/lang/Long.html

Table B-6

(Cont.) Table lists the Long class
. __|

OBR Kind Signature Java Name Description Reference

Name

Long Co Long(long | - Creates a Long from along http://java. sun. com

String) or from its lexical j avase/ 6/ docs/ api /

representation as a String. j ava/ | ang/
new Long(1l)==new Long. ht m #Long(| ong)
Long("1").

MIN_VA sP long - Smallest primitive long http://java.sun. cont

LUE value. j avase/ 6/ docs/ api /
Long.MIN_VALUE<O0. j aval |l ang/

Long. ht ml #M N_VALUE
MAX_VA sP long - Largest primitive long http://java. sun. conf
LUE value. j avase/ 6/ docs/ api /

Long. MAX_VALUE>O0. j aval/ |l ang/

Long. ht m #MAX_VALUE
longValu M long() - Converts this Long to a http://java. sun. conf
e long. new j avase/ 6/ docs/ api /

Long(1).longValue()==1. javal |l ang/

Long. ht m #l ongVal ue()

toString M String() - Converts this Long to its http://java. sun. con

lexical representation. new
Long(1).toString()=="1".

j avase/ 6/ docs/ api /
javal/ |l ang/
Long. ht ml #t oSt ri ng()

Table B-7 lists the Shor t class.

Table B-7 Table lists the Short class
- - - - -]

OBR Kind Signature Java Name Description Reference
Name
Short Cl - java.lang.Sho A short integer object. http://java.sun. cont
rt Unlike the primitive j avase/ 6/ docs/ api /
"short", a Short can be null j ava/l ang/ Short. htni
and can be in Lists.
Short Co Short(short| - Creates a Short from a http://java. sun. conf
String) short or from its lexical j avase/ 6/ docs/ api /
representation as a String. j ava/ | ang/
new Short(1)==new Short. ht m #Short (shor
Short("1"). t)
MIN_VA sP short - Smallest primitive short http://java. sun. conf
LUE value. j avase/ 6/ docs/ api /
Short. MIN_VALUE<O. javal |l ang/
Short. ht M #M N_VALUE
MAX_VA sP short - Largest primitive short http://java. sun. com
LUE value. j avase/ 6/ docs/ api /

Short. MAX_VALUE>O0.

javal l ang/
Short. ht m #MAX_VALUE

B-13

http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#Long(long)
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Long.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#Short(short)
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MIN_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#MAX_VALUE

Table B-7

(Cont.) Table lists the Short class
. ___|

OBR Kind Signature Java Name Description Reference
Name
shortValu M short() - Converts this Short to a http://java. sun. conf
e short. new j avase/ 6/ docs/ api /
Short(-1).shortValue()==-1. j ava/l ang/
Short. ht m #short Val u
e()
toString M String() - Converts this Short to its http://java. sun. conf

lexical representation. new
Short(-1).toString()=="-1".

j avase/ 6/ docs/ api /
j aval/ |l ang/
Short. htm #toString()

Table B-8 lists the Fl oat class.

Table B-8 Table lists the Float class

OBR Kind Signature Java Name Description Reference
Name
Float Cl - javalang.Floa A Float object. Unlike the http://java.sun.com
t primitive "float", a Float j avase/ 6/ docs/ api /
canbe null and canbein] ava/l ang/ Fl oat . ht ni
Lists.
Float Co Float(float | - Creates a Float from a http://java. sun. con
double | float, a double, or from its j avase/ 6/ docs/ api /
String) lexical representationasa j ava/ |l ang/
String. new Fl oat. ht m #Fl oat (f | oa
Float(1.1)==new t)
Float("1.1").
infinite P boolean - The value of this Float is http://java. sun. com
infinity. new j avase/ 6/ docs/ api /
Float(Float NEGATIVE_IN | ava/l ang/
FINITY).infinite==true. Float. htm #i sInfinit
e()
naN P boolean - The value of this Float is http://java. sun. conf
not a number. new j avase/ 6/ docs/ api /
Float(Float.NaN).naN==tr j ava/ | ang/
ue. Fl oat . ht nl #i sNaN() ()
NaN sP float - Value representing 'nota http://java. sun. conl
number". j avase/ 6/ docs/ api /
j aval |l ang/
Fl oat . ht nl #NaN
NEGATI sP float - Value representing http://java. sun. con
VE_INFI negative infinity. j avase/ 6/ docs/ api /
NITY javal |l ang/

Fl oat . ht M #NEGATI VE_I
NFI NI TY

B-14 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Short.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#Float(float)
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#isNaN()()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#NEGATIVE_INFINITY

Table B-8 (Cont.) Table lists the Float class

OBR Kind Signature Java Name Description Reference
Name
POSITIV ~ sP float - Value representing http://java.sun. com
E_INFINI positive infinity. j avase/ 6/ docs/ api /
TY j aval |l ang/
Fl oat . ht Ml #PCSI TI VE_I
NFI NI TY
floatValu M float() - Converts this Float to a http://java. sun. conf
e float. new j avase/ 6/ docs/ api /
Float(1.1f).floatValue()==1. j ava/l ang/
1f. Fl oat . ht nl #f | oat Val u
e()
toString M String() - Converts this Float to its http://java. sun. cont

lexical representation. new
Float(1.1f).toString()=="1.1

j avase/ 6/ docs/ api /
j aval/ |l ang/
Fl oat. ht ml #toString()

Table B-9 lists the Doubl e class.

Table B-9 Table lists the Double class

OBR Name Kind Signature Java Name Description Reference
Double Cl - java.lang.Dou A Double object. Unlike http://java.sun. com
ble the primitive "double", a j avase/ 6/ docs/ api /
Double can be null and can j ava/ | ang/
be in Lists. Doubl e. ht m
Double Co Double(doub - Creates a Double from a http://java. sun. conl
le | String) double or from its lexical j avase/ 6/ docs/ api /
representation as a String. j aval/ | ang/
new Double(1.1)==new Doubl e. ht m #Doubl e(d
Double("1.1"). oubl e)
infinite P boolean - The value of this Doubleis http://java. sun. conf
infinity. new j avase/ 6/ docs/ api /
Float(Float. POSITIVE_INFI j ava/l ang/
NITY).infinite==true. Doubl e. ht m #i sl nfi ni
te()
naN P boolean - The value of this Doubleis http://java. sun. conf
not a number. new j avase/ 6/ docs/ api /
Double(double.NaN).naN j ava/l ang/
==true. Doubl e. ht m #i sNaN()
NaN sP double - Value representing "not a http://java. sun. conf

number".

j avase/ 6/ docs/ api /
javal |l ang/
Doubl e. ht m #NaN

B-15

http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#Double(double)
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isInfinite()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#isNaN()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NaN

Table B-9

(Cont.) Table lists the Double class

OBR Name Kind Signature Java Name Description Reference
NEGATIV sP double - Value representing http://java.sun. com
E_INFINIT negative infinity. j avase/ 6/ docs/ api /
Y javall ang/
Doubl e. ht M #NEGATI VE
_INFINITY
POSITIVE = sP double - Value representing http://java.sun. conf
_INFINIT positive infinity. j avase/ 6/ docs/ api /
Y javall ang/
Doubl e. ht M #PCSI TI VE
_INFINITY
doubleVal M double() - Converts this Double to a http://java. sun. conf
ue double. new j avase/ 6/ docs/ api /
Double(1.1).doubleValue(j aval/l ang/
)==1.1. Doubl e. ht m #doubl eVa
lue()
toString M String() - Converts this Double toits http://java. sun. conf
lexical representation. new j avase/ 6/ docs/ api /
Double(1.1).toString()=="1. j aval/ | ang/
1" Doubl e. ht ml #t oStrin
a()
Table B-10 lists the Bi gl nt eger class.
Table B-10 Table lists the BigInteger class
__|]
OBR Name Kind Signature Java Name Description Reference
BigInteger Cl - java.math.Big Immutable arbitrary- http://java. sun. com
Integer precision integers. j avase/ 6/ docs/ api /
j ava/ mat h/
Bi gl nteger. htm
BigInteger Co BigInteger(St - Creates a BigInteger from http://java. sun. conl
ring) its lexical representation as j avase/ 6/ docs/ api /
a String. new j aval/ mat h/
BigInteger("1")==1. Bi gl nt eger. ht m #Bi gl
nteger (java.lang. Str
i ng)
doubleVal M double() - Converts this BigInteger to http://java. sun. conl
ue a double. May lose j avase/ 6/ docs/ api /
precision. new j ava/ mat h/
BigInteger("1").doubleValu Bi gl nt eger. ht nl #doub
e()==1.0. | eVal ue()
longValue M long() - Converts this BigInteger to http://java. sun. conl

a long. May lose precision.
new
BigInteger("1").longValue(
)==1L.

j avase/ 6/ docs/ api /

j aval mat h/

Bi gl nt eger . ht m #l ong
Val ue()

B-16 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#NEGATIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/lang/Double.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#BigInteger(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#longValue()

Table B-10 (Cont.) Table lists the BigInteger class
. ___|

OBR Name Kind Signature Java Name Description Reference
max M Biglnteger(Bi - Returns the greater of this http://j ava. sun. conl
glnteger) or argl. new j avase/ 6/ docs/ api /
Biglnteger("1").max(2)==2. j aval/ mat h/
Bi gl nt eger. ht m #max(
j ava. mat h. Bi gl nt eger
)
min M BigInteger(Bi - Returns the lesser of thisor http://java. sun. con!
glnteger) argl. new j avase/ 6/ docs/ api /
BigInteger("1").min(2)==1. j ava/ mat h/
Bi gl nt eger . ht m #mi n(
j ava. mat h. Bi gl nt eger
)
toString M String() - Returns the lexical http://java. sun. conf
representation of this j avase/ 6/ docs/ api /
BigInteger. new j aval mat h/
BigInteger("123").toString(Bi gl nt eger . ht nl #t oSt
)=="123". ring()
valueOf sM Biglnteger(lo - Converts argl (along)toa http://java.sun.conl
ng) BigInteger. j avase/ 6/ docs/ api /

BigInteger.valueOf(123).to
String()=="123".

j aval mat h/
Bi gl nt eger. ht m #val u
e (1 ong)

Table B-11 Table lists the BigDecimal class

Table B-11 lists the Bi gDeci nmal class.

OBR Kind Signature Java Name Description Reference
Name
BigDecim Cl - java.math.Big Immutable, arbitrary- http://java. sun.com
al Decimal precision signed decimal j avase/ 6/ docs/ api /
numbers. j aval/ mat h/
Bi gDeci mal . ht
BigDecim Co BigDecimal(l - Creates a BigDecimal from http://java. sun. conl
al ong | double | a long, a double, or from j avase/ 6/ docs/ api /
String) its lexical representation as j ava/ mat h/
a String. new Bi gDeci mal . ht m #Bi gDe
BigDecimal(1.1)==new cimal (java.lang. Strin
BigDecimal("1.1"). 9)
BigDecim Co BigDecimal(B - Creates a BigDecimal from http://java. sun. conl
al igInteger,int) BigInteger argl and scale j avase/ 6/ docs/ api /

arg2. new BigDecimal(new
BigInteger("123"),2)==1.23.

j aval mat h/

Bi gDeci nal . ht m #Bi gbe
cimal (java. math. Bigln
t eger, %20i nt)

B-17

http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#max(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#min(java.math.BigInteger)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#toString()
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html#valueOf(long)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#BigDecimal(java.math.BigInteger,%20int)

Table B-11 (Cont.) Table lists the BigDecimal class
. __|

OBR Kind Signature Java Name Description Reference
Name
doubleVal M double() - Converts this BigDecimal http://java. sun. conf
ue to a double. May lose j avase/ 6/ docs/ api /
precision. new j aval mat h/
BigDecimal("0.1").doubleV Bi gDeci mal . ht nl #doubl
alue()==0.1. eVal ue()
longValue M long() - Converts this BigDecimal http://java. sun. conf
to a long. May lose j avase/ 6/ docs/ api /
precision. new j aval/ mat h/
BigDecimal("0.1").longValu Bi gDeci mal . ht ml #l ongV
e()==0L. al ue()
max M BigDecimal(B - Returns the greater of this http://java. sun. conf
igDecimal) BigDecimal or argl. new j avase/ 6/ docs/ api /
BigDecimal("0.1").max(0.2 j ava/ mat h/
==0.2. Bi gDeci mal . ht m #max(j
ava. mat h. Bi gDeci nmal)
min M BigDecimal(B - Returns the lesser of this http://java. sun. conf
igDecimal) BigDecimal or argl. new j avase/ 6/ docs/ api /
BigDecimal("0.1").min(0.2 j ava/ mat h/
)==0.1. Bi gDeci mal . ht m #nmi n(j
ava. mat h. Bi gDeci nal)
scale M int() - Returns the scale--the http://java. sun. conf
number of digits to the j avase/ 6/ docs/ api /
right of the decimal point. j ava/ mat h/
new Bi gDeci nal . ht m #scal
BigDecimal("1.00").scale()= e()
=2.
setScale M BigDecimal(i - Sets the scale, but don't http://java. sun. conf
nt) change the value. new j avase/ 6/ docs/ api /
BigDecimal("1").setScale(2) j aval/ mat h/
.toString()=="1.00". Bi gDeci mal . ht nl #set Sc
al e(int)
toEnginee M String() - Returns the literal http://java. sun. conf
ringString representation of this j avase/ 6/ docs/ api /
BigDecimal using j aval mat h/
engineering notationifan ~ Bi gDeci mal . ht m #t oEng
exponent is needed. new i neeringString()
BigDecimal("123E2").toEng
ineeringString()=="12.3E
+3".
toPlainStri M String - Returns the literal http://java. sun. conf
ng representation of this j avase/ 6/ docs/ api /

BigDecimal without
exponents. new
BigDecimal("123E2").toPlai
nString()=="12300".

j aval mat h/
Bi gDeci nal . ht m #t oPl a
inString()

B-18 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#longValue()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#max(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#min(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#scale()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#setScale(int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toEngineeringString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString()

Table B-11 (Cont.) Table lists the BigDecimal class
. __|

OBR Kind Signature Java Name Description Reference
Name
valueOf sM BigDecimal(l - Converts argl (a long or http://java.sun. com
ong | double) double) to a BigDecimal. j avase/ 6/ docs/ api /
new j aval/ mat h/
BigDecimal(1.3)==BigDeci Bi gDeci mal . ht nl #val ue
mal.valueOf(1.3). O (doubl e)
ROUND_ sP int - Used with divide. new http://java. sun. conf
ur BigDecimal("11").divide(2, j avase/ 6/ docs/ api/
BigDecimal ROUND_UP)= j ava/ nat h/
=6. Bi gDeci mal . ht ml #ROUND
_UP
ROUND_ sP int - Used with divide. new http://java. sun. conf
DOWN BigDecimal("11").divide(2, j avase/ 6/ docs/ api/
BigDecimal ROUND_DO j ava/ mat h/
WN)==5. Bi gDeci nal . ht m #ROUND
_DOWN
divide M BigDecimal(B - Returns this/argl with http://java. sun. conf
igDecimal,int scale the same as this j avase/ 6/ docs/ api /

)

BigDecimal. If rounding
must be performed to stay
within the result scale, use
the rounding mode given
by arg2 (ROUND_UP or
ROUND_DOWN). new
BigDecimal("11").divide(2,
BigDecimal. ROUND_UP)=
=6.

j aval mat h/

Bi gDeci nal . ht m #di vi d
e(j ava. mat h. Bi gDeci ma
|, %20i nt)

Table B-12 lists the Nunber class.

Table B-12 Table lists the Number class
- - -]

OBR Kind Signature Java Name Description Reference

Name

Number Cl - - Base class of all numerics http://java. sun. com

(except primitives). j avase/ 6/ docs/ api /

javal |l ang/
Nurber . ht m

doubleVal M double() - Converts this numbertoa http://java. sun. conf

ue double. j avase/ 6/ docs/ api /
javall ang/
Fl oat . ht n #doubl eVal
ue()

floatValue M float() - Converts thisnumbertoa http://java. sun. com

float.

j avase/ 6/ docs/ api /
javall ang/

Fl oat . ht m #f | oat Val u
e()

B-19

http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#valueOf(double)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_UP
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#ROUND_DOWN
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html#divide(java.math.BigDecimal,%20int)
http://java.sun.com/javase/6/docs/api/java/lang/Number.html
http://java.sun.com/javase/6/docs/api/java/lang/Number.html
http://java.sun.com/javase/6/docs/api/java/lang/Number.html
http://java.sun.com/javase/6/docs/api/java/lang/Number.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#doubleValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#floatValue()

Table B-12

(Cont.) Table lists the Number class

OBR Kind Signature Java Name Description Reference
Name
intValue M int() - Converts this numbertoa http://java. sun. conf
int. j avase/ 6/ docs/ api /
javall ang/
Fl oat . ht m #i nt Val ue(
)
longValue M long() - Converts this numbertoa http://java. sun. conf
long. j avase/ 6/ docs/ api /
javall ang/
Fl oat . ht m #l ongVal u
e()
shortValu M short() - Converts thisnumbertoa http://java. sun. com
e short. j avase/ 6/ docs/ api /

javal | ang/
Fl oat . ht M #short Val u

e()

Table B-13 lists the RL class number methods.

Table B-13 Table lists the RL class number methods

OBR Name Kind Signature Java Name Description Reference
RL Cl - oracle.rules.rl. - -
extensions.RL
number.is sM boolean(Nu isByte argl is integral and http://
byte mber) -128<=argl<=127. www. w3. org/ TR/ ri f -
RL.numeric.is dt b/
byte(200)==false. #Guard_Predi cates_fo
r _Dat at ypes
number.is sM boolean(Nu isShort argl is integral and http://
short mber) -32768<=argl<=32767. www. W3. org/ TR/ ri f -
RL.numeric.is dt b/
short(0.1)==false. #Cuar d_Predi cates_fo
r _Dat at ypes
number.is sM boolean(Nu isInt argl is integral and http://
int mber) -2147483648<=argl<=2147 www. wW3.org/ TR/ rif-
483647. RL.numeric.is dt b/
int(-1000)==true. #Guard_Predicates _fo
r _Dat at ypes
number.is sM boolean(Nu isLong argl is integral and http://
long mber) -9223372036854775808<=ar www. W3. org/ TR/ ri f -

g1<=9223372036854775807.
RL.numeric.is integer(new
BigInteger("100")**100)==f
alse.

dt b/
#Guard_Predicates_fo
r _Dat at ypes

B-20 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#intValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#longValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://java.sun.com/javase/6/docs/api/java/lang/Float.html#shortValue()
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-13 (Cont.) Table lists the RL class number methods
. __|

OBR Name Kind Signature Java Name Description Reference
number.is sM boolean(Nu isInteger argl is integral. http://
integer mber) RL.numeric.is integer(new www. W3. org/ TR/ ri f -
BigInteger("100")**100)==tr dt b/
ue. #Guard_Predi cates_fo
r _Dat at ypes
number.is sM boolean(Nu isDecimal argl is neither Doublenor http://
decimal mber) Float. RL.numeric.is www. W3. org/ TR/ ri f -
decimal(1.1)==false. dt b/
#Guard_Predicates_fo
r _Dat at ypes
number.is sM boolean(Nu isNonNegativ argl is integral and http://
non- mber) elnteger argl>=0. RL.numeric.is www. W3. org/ TR/ ri f -
negative non-negative dt b/
integer integer(-1)==false. #Guard_Predicates_fo
r _Dat at ypes
number.is sM boolean(Nu isNegativelnte argl is integral and http://
negative mber) ger argl<0. RL.numeric.is www. W3. org/ TR/ ri f -
integer negative integer(-1)==true. dt b/
#Guard_Predi cates_fo
r _Dat at ypes
number.is sM boolean(Nu isNonPositivel argl is integral and http://
non- mber) nteger argl<=0. RL.numeric.is wwwv. W3. org/ TR/ ri f -
positive non-positive dt b/
integer integer(-1)==true. #Guar d_Predi cates_fo
r _Dat at ypes
number.is sM boolean(Nu isPositivelnteg argl is integral and http://
positive mber) er arg1>0. RL.numeric.is wawwy. W3. or g/ TR/ ri f -
integer positive integer(-1)==false. dt b/
#Guard_Predicates_fo
r _Dat at ypes
number.is sM boolean(Nu isUnsignedByt argl is integral and http://
unsigned mber) e O<=argl<=255. www. W3. org/ TR/ ri f -
byte RL.numeric.is unsigned dt b/
byte(200)==true. #Guard_Predicates_fo
r _Dat at ypes
number.is sM boolean(Nu isUnsignedSh argl is integral and http://
unsigned mber) ort O<=argl<=65535. www. W3. org/ TR/ ri f -
short RL.numeric.is unsigned dt b/
short(0.1)==false. #Cuar d_Predi cates_fo
r _Dat at ypes
number.is sM boolean(Nu isUnsignedInt argl is integral and http://
unsigned mber) O<=argl1<=4294967295. wwwv. W3. org/ TR/ ri f -
int RL.numeric.is unsigned dt b/

int(-1000)==false.

#Guard_Predicates fo
r _Dat at ypes

B-21

http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-13

(Cont.) Table lists the RL class number methods
. __|

OBR Name Kind Signature Java Name Description Reference

number.is sM boolean(Nu isUnsignedLo argl is integral and http://

unsigned mber) ng O<=argl<=18446744073709 www. W3. org/ TR/ ri f-
long 551615. dt b/

#Guard_Predicates fo
r _Dat at ypes

B.4 Time and Duration Classes
This section lists the time and duration classes provided by Oracle Business Rules.

Table Table B-14 lists the Cal endar class.

Table B-14 Table lists the Calendar class
- - - - - "]

OBR Kind Signature Java Name Description Reference

Name

Calendar Cl1 - java.util.Calendar A Calendar http://java. sun. conf
represents a j avase/ 6/ docs/ api /
datetime and javalutil/
timezone. A Cal endar. ht m
calendar instance
has a number of
mutable int fields.
The first argument
to add, get, isSet,
roll, and set is a
field number. This
class provides a
number of static
properties that
should be used for
the field numbers.

ERA sP int - Field number for http://java. sun. conf
the Calendarera.1 javase/ 6/ docs/ api/
is for A.D. and 0 is javalutil/
for B.C. Cal endar . ht ml #ERA
((Calendar)"2010-02-
01").get(Calendar.E
RA)==1.

YEAR sP int - Field number for http://java. sun. con
the Calendar year. j avase/ 6/ docs/ api /
((Calendar)"2010-02- java/util/
01").get(Calendar.Y Cal endar. ht ml #YEAR
EAR)==2010.

MONTH sP int - Field number for http://java. sun. conl

the Calendar
month. Months are
0-based.
((Calendar)"2010-02-
01").get(Calendar.M
ONTH)==1.

j avase/ 6/ docs/ api /
javalutil/
Cal endar . ht ml #MONTH

B-22 Designing Business Rules with Oracle Business Process Management

http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ERA
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MONTH

Table B-14 (Cont.) Table lists the Calendar class

OBR Kind Signature Java Name Description Reference

Name

WEEK_O sP int - Field number for http://java. sun. con

F_YEAR the Calendar week. j avase/ 6/ docs/ api /
((Calendar)"2010-02- javal/util/
01").get(Calendar W Cal endar . ht ml #WEEK_OF
EEK_OF_YEAR)==6 _YEAR

DAY_OF_ sP int - Field number for http://java. sun. conf

YEAR the Calendar day of j avase/ 6/ docs/ api/
year. javalutil/
((Calendar)"2010-02- Cal endar . ht m #DAY_OF_
01").get(Calendar.D YEAR
AY_OF_YEAR)==32

DAY_OF_ sP int - Field number for http://java. sun. conf

MONTH the Calendar day of j avase/ 6/ docs/ api /
month. javalutil/
((Calendar)"2010-02- Cal endar . ht ml #DAY_OF_
01").get(Calendar.D MONTH
AY_OF_MONTH)=
=1.

DAY_OF_ sP int - Field number for http://java. sun. conl

WEEK the Calendar day of j avase/ 6/ docs/ api/
the week. javalutil/
((Calendar)"2010-02- Cal endar . ht ml #DAY_OF_
01").get(Calendar.D WEEK
AY_OF_WEEK)==2.

HOUR sP int - Field number for http://java. sun. con
the Calendar hour, | avase/ 6/ docs/ api/
12 hour format. javalutil/
((Calendar)"2010-02- Cal endar . ht m #HOUR
01T20:15:10").get(Ca
lendar. HOUR)==8.

AM_PM sP int - Field number for http://java. sun. conf
the Calendar j avase/ 6/ docs/ api /
AM_PM flag. 0 is javalutil/
for AMand 1is for Cal endar. ht Ml #AM_PM
PM.
((Calendar)"2010-02-
01T20:15:10").get(Ca
lendar. AM_PM)==

HOUR_O sP int - Field number for http://java. sun. conf

F_DAY the Calendar hour, j avase/ 6/ docs/ api/

24 hour format.
((Calendar)"20:15:10
").get(Calendar.HO
UR)==20.

javalutil/
Cal endar . ht M #HOUR_OF
_DAY

B-23

http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#WEEK_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_YEAR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_MONTH
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#DAY_OF_WEEK
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#AM_PM
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#HOUR_OF_DAY

Table B-14 (Cont.) Table lists the Calendar class

OBR Kind Signature Java Name Description Reference

Name

MINUTE sP int - Field number for http://java. sun. con
the Calendar j avase/ 6/ docs/ api /
minutes. javalutil/
JavaDate.from time Cal endar . ht mi #M NUTE
string("20:15:10").ge
t(Calendar. MINUTE
)==15.

SECOND sP int - Field number for http://java. sun. conf
Calendar seconds. j avase/ 6/ docs/ api /
((Calendar)"20:15:10 java/util/
").get(Calendar.SEC Cal endar . ht m #SECOND
OND)==10.

ZONE_O sP int - Field number for http://java. sun. conf

FFSET timezone. Value is j avase/ 6/ docs/ api /
millsecond offset javalutil/
from GMT. Cal endar . ht m #ZONE_OF
((Calendar)"20:15:10 FSET
-05:30").get(Calenda
r.ZONE_OFFSET)=
(5*3600+30*60)*1000

add M void(int,i add Adds the amount of http://java. sun. conl

nt) time specified by j avase/ 6/ docs/ api /

arg?2 to the calendar javal/util/
field specified by Cal endar . ht m #add(i nt
argl. Modifies this , ¥20i nt)
Calendar.

clear M void() clear Clears (unset all http://java. sun. con
fields in) this j avase/ 6/ docs/ api /
Calendar. Modifies j aval/util/
this Calendar. Cal endar . ht m #cl ear ()

get M int(int) get Gets the value of the http://java. sun. com
field specified by j avase/ 6/ docs/ api /
field number arg]. javalutil/
((Calendar)"20:15:10 Cal endar . ht m #get (i nt
").get(Calendar.SEC)
OND)==10.

getlnstanc sM Calendar(getInstance Gets a calendar http://java. sun. conf

e) initialized to the j avase/ 6/ docs/ api /

current time in the
default time zone
and locale.

javalutil/
Cal endar . ht m #get | nst
ance()

B-24 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#MINUTE
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#SECOND
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#ZONE_OFFSET
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#add(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#clear()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#get(int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getInstance()

Table B-14 (Cont.) Table lists the Calendar class

OBR Kind Signature Java Name Description Reference
Name
roll M void(int,i roll Adds the amount of http://java. sun. conf
nt) time specified by j avase/ 6/ docs/ api /
arg2 to the calendar javal/util/
field specified by Cal endar. htm #rol | (in
argl. Does not affect t, 9%20i nt)
any other calendar
field. Modifies this
Calendar.
set M void(int,i set Sets the calendar http://java. sun. conf
nt) field specified by j avase/ 6/ docs/ api /
argl to the value javalutil/
specified by arg?. Cal endar . ht m #set (i nt
Modifies this , %20i nt)
Calendar.
time P java.util. time Returns a Date http://java. sun. conf
Date object representing j avase/ 6/ docs/ api /
this Calendar's time j ava/util/
value. Cal endar . ht m #get Ti m
((Calendar)"2010-02- e()
01").time<((Calenda
r)"2010-02-02").time.
timeInMil P long timeInMillis Returns this http://java. sun. con
lis Calendar's time j avase/ 6/ docs/ api /
value in javalutil/
milliseconds. Cal endar . ht nl #get Ti ne

((Calendar)"2010-02-

01").timeInMillis<((

Calendar)"2010-02-0

2").timeInMillis.

InM I 1is()

Table B-15 lists the JavaDat e class.

Table B-15 Table lists the JavaDate class
- - - - - -]

OBR Name Kind Signature Java Description Reference
Name
JavaDate cl - oracler Helper class htt p: // downl oad. or acl e. conf
ules.rl. for working docs/ cd/ E12839_01/ api refs. 1111/
extensio with e10663/ oracl e/ rul es/ rl/ext ensi ons/
ns.Java Calendarsas JavaDate. htnl
Date immutable
objects.
Treating
Calendars as
immutable
objects can
help prevent
€rrors.

B-25

http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#roll(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#set(int,%20int)
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTime()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis()
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html

Table B-15 (Cont.) Table lists the JavaDate class
. __|

OBR Name Kind Signature Java Description Reference
Name
add yearsto sM Calendar(addYea Returnsa http://downl oad. oracl e. com
Calendar, rsTo new Calendar docs/cd/E12839_01/apirefs. 1111/
int) that is arg2 10663/ oracl e/ rul es/rl/extensions/
years later Javabat e. ht nl #addYearsTo_j ava_uti |
than argl. _Calendar__int_
JavaDate.add
years
to("2009-01-01
1)=="2010-01-
01".
add months sM Calendar(addMo Returns a http://downl oad. oracl e. con!
to Calendar, nthsTo new Calendar docs/cd/ E12839 01/ apirefs. 1111/
int) that is arg?2 e10663/ oracl e/ rul es/ rl/extensi ons/
months later JavaDat e. ht nl #addMont hsTo_j ava_ut i
than arg]. | _Cal endar__int_
JavaDate.add
months
to("2009-01-01
1)=="2009-02-
01"
add weeks to sM Calendar(addWee Returnsa http://downl oad. oracl e. con!
Calendar, ksTo new Calendar docs/cd/ E12839_01/apirefs. 1111/
int) thatis 7*arg2 €10663/ or acl e/ rul es/rl/ ext ensi ons/
days later JavaDat e. ht M #addWeeksTo_j ava_uti |
than arg]. _Cal endar __int_
JavaDate.add
weeks
to("2009-01-01
1)=="2009-01-
08".
add daysto sM Calendar(addDay Returnsa http://downl oad. oracl e. conf

Calendar,
int)

sTo

new Calendar
that is arg?2
days later
than arg].
JavaDate.add
days
to("'2009-01-01
1)=="2009-01-
02".

docs/ cd/ E12839_01/ apirefs. 1111/
e10663/ oracl e/ rul es/ rl/ ext ensi ons/
JavaDat e. ht ml #addDaysTo_j ava_util _
Cal endar __int _

B-26 Designing Business Rules with Oracle Business Process Management

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addYearsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMonthsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addWeeksTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addDaysTo_java_util_Calendar__int_

Table B-15 (Cont.) Table lists the JavaDate class
. __|

OBR Name Kind Signature Java Description Reference
Name
add hoursto sM Calendar(addHou Returnsa http://downl oad. oracl e. com
Calendar, rsTo new Calendar docs/cd/E12839_01/apirefs. 1111/
int) that is arg2 10663/ oracl e/ rul es/rl/extensions/
hours later JavaDat e. ht M #addHour sTo_j ava_uti |
than argl. _Calendar__int_
JavaDate.add
hours
to("01:01:01",
1)=="02:01:01
add minutes sM Calendar(addMin Returns a http://downl oad. oracl e. con!
to Calendar, utesTo new Calendar docs/cd/ E12839 01/ apirefs. 1111/
int) that is arg?2 e10663/ oracl e/ rul es/ rl/extensi ons/
minutes later JavaDat e. ht M #addM nut esTo_j ava_ut
than arg]. il _Calendar__int_
JavaDate.add
minutes
to("01:01:01",
1)=="01:02:01
add seconds sM Calendar(addSeco Returnsa http://downl oad. oracl e. con!
to Calendar, ndsTo new Calendar docs/cd/ E12839_01/apirefs. 1111/
int) that is arg?2 10663/ oracl e/ rul es/ rl/extensi ons/
seconds later JavabDat e. ht ml #addSecondsTo_j ava_ut
than arg]. il_Cal endar__int_
JavaDate.add
seconds
to("01:01:01",
61)=="01:02:0
2",
add sM Calendar(addMill Returnsa http://downl oad. oracl e. conf
milliseconds Calendar, isecond new Calendar docs/cd/E12839_01/apirefs. 1111/
to int) sTo that is arg2 €10663/ oracl e/ rul es/rl/ext ensi ons/

milliseconds
later than
argl.
JavaDate.add
milliseconds
to("01:01:01",
61)=="01:01:0
1.061".

JavabDat e. ht nl #addM | | secondsTo_j av
a_util_Calendar__int_

B-27

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addHoursTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMinutesTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addSecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#addMillsecondsTo_java_util_Calendar__int_

Table B-15 (Cont.) Table lists the JavaDate class
. __|

OBR Name Kind Signature Java Description Reference
Name
add duration sM Calendar(addDur Returnsa http://ww. wW3.org/ TR/ rif-dtb/
to Calendar, ationTo new Calendar #func: add-day Ti neDuration-to-
XMLDur that is later dat eTi ne_. 28adapt ed_from op: add-
ation) thanargl by dayTi meDur ati on-to-dat eTi ne. 29
the duration p ¢ p: // v, w3. org/ TR/ ri f - dt b/
arg?2. #func: add-year Mont hDur ati on-t o-
JavaDate.add gat eTi me_. 28adapt ed_from op: add-
duration

to("2009-12-30
T23:59:00",Du
ration.from
string("P1DT1
M"))=="2010-
01-01".

year Mont hDur at i on-t o- dat eTi me. 29

from date sM

string String)

Calendar(fromDa
teString

Creates a
Calendar for
the extended
1SO 8601 date
literal argl.
Extended to
allow YYYY-
MM-
DD@TimeZo
neld.
JavaDate.fro
m date
string("2010-0
2-06@PST")==
"2010-02-06-0
8:00".

http://downl oad. oracl e. con!

docs/ cd/ E12839_01/ apirefs. 1111/
€10663/ oracl e/ rul es/rl/extensions/
JavaDate. ht ml #fronDat eString_j ava_
lang_String_

from sM
datetime
string

String)
tring

Calendar(fromDa
teTimeS

Creates a
Calendar for
the extended
1SO 8601
datetime
literal argl.
Extended to
allow YYYY-
MM-
DDTHH:MM:
SS@TimeZon
eld.
JavaDate.fro
m datetime
string("2010-0
2-06T14:15:00
@PST")=="20
10-02-06T14:1
5:00-08:00".

http://downl oad. oracl e. con!

docs/ cd/ E12839_01/ apirefs. 1111/
€10663/ oracl e/ rul es/ rl/ ext ensi ons/
JavaDat e. ht m #f ronDat eTi neStri ng_j
ava_l ang_String_

B-28 Designing Business Rules with Oracle Business Process Management

http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-day%20TimeDuration-to-dateTime_.28adapted_from_op:%20add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-yearMonthDuration-to-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromDateTimeString_java_lang_String_

Table B-15 (Cont.) Table lists the JavaDate class
. __|

OBR Name Kind Signature Java Description Reference
Name
from time sM Calendar(fromTi Createsa http://downl oad. oracl e. com
string String) meStrin Calendar for ~ docs/ cd/ E12839_01/ apirefs. 1111/
g the extended 10663/ oracl e/ rul es/rl/ extensi ons/
ISO 8601 time JavabDat e. ht m #f ronili meStri ng_j ava_
literal argl. lang_String_
Extended to
allow
HH:MM:SS@
TimeZoneld.

Warning: the
date portion
of the
Calendar will
be initialized
to the current
date.
JavaDate.fro
m time
string("14:15:
00@PST")=="
14:15:00-08:00

subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. con!
years from Calendar, YearsFr new Calendar docs/cd/ E12839 01/ apirefs. 1111/
int) om that is arg?2 e10663/ oracl e/ rul es/ rl/extensi ons/
years earlier =~ JavaDat e. ht ml #subt r act Year sFrom j a
than arg]. va_util _Calendar __int_
JavaDate.subt
ract years
from("2009-01
-01",
1)=="2008-01-
01".
subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. con!
months from Calendar, Months new Calendar docs/cd/ E12839 01/ apirefs. 1111/
int) From that is arg2 10663/ oracl e/ rul es/rl/ext ensi ons/
months JavaDat e. ht m #subt r act Mont hsFrom j
earlier than ava_util _Cal endar__int_
argl.

JavaDate.subt
ract months
from('"2009-01
-01",
1)=="2008-12-
01".

B-29

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#fromTimeString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractYearsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMonthsFrom_java_util_Calendar__int_

Table B-15 (Cont.) Table lists the JavaDate class

OBR Name Kind Signature Java Description Reference
Name
subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. com
weeks from Calendar, WeeksF new Calendar docs/cd/ E12839 01/ apirefs. 1111/
int) rom thatis 7*arg2 €10663/ oracl e/ rul es/rl/ ext ensi ons/
days earlier JavabDat e. ht nl #subt r act WeeksFrom j a
than argl. va util_Calendar _int_
JavaDate.subt
ract weeks
from("2009-01
-01",
1)=="2008-12-
25",
subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. con!
days from Calendar, DaysFr new Calendar docs/cd/ E12839_01/apirefs. 1111/
int) om that is arg?2 e10663/ oracl e/ rul es/ rl/extensi ons/
days earlier JavaDat e. ht nl #subt r act DaysFrom j av
than arg]. a_util_Calendar__int_
JavaDate.subt
ract days
from("2009-01
-01",
1)=="2008-12-
31"
subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. con!
hours from Calendar, HoursF new Calendar docs/cd/ E12839 01/ apirefs. 1111/
int) rom that is arg?2 10663/ oracl e/ rul es/ rl/extensi ons/
hours earlier ~ JavaDat e. ht ml #subt r act Hour sFrom j a
than arg]. va_util_Cal endar__int_
JavaDate.subt
ract hours
from("01:01:0
1%
1)=="00:01:01
subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. conf
minutes Calendar, Minutes new Calendar docs/cd/E12839_01/apirefs. 1111/
from int) From that is arg2 €10663/ oracl e/ rul es/rl/ext ensi ons/

minutes
earlier than
argl.
JavaDate.subt
ract minutes
from("01:01:0
1",
1)=="01:00:01

"

JavaDat e. ht m #subt ract M nut esFrom_
java_util _Cal endar __int_

B-30 Designing Business Rules with Oracle Business Process Management

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractWeeksFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractDaysFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractHoursFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMinutesFrom_java_util_Calendar__int_

Table B-15 (Cont.) Table lists the JavaDate class
. __|

OBR Name Kind Signature Java Description Reference
Name
subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. com
seconds Calendar, Seconds new Calendar docs/cd/ E12839 01/ apirefs. 1111/
from int) From that is arg2 10663/ oracl e/ rul es/rl/extensions/
seconds JavaDat e. ht m #subt r act SecondsFrom_
earlier than java_util _Cal endar __int_
argl.
JavaDate.subt
ract seconds
from("01:01:0
1",
61)=="01:00:0
0".
subtract sM Calendar(subtract Returnsa http://downl oad. oracl e. con!
milliseconds Calendar, Millisec new Calendar docs/cd/ E12839 01/ apirefs. 1111/
from int) ondsFro thatis arg2 e10663/ oracl e/ rul es/ rl/extensi ons/
m milliseconds JavaDat e. ht m #subtract M | | i seconds
earlier than Fromjava util _Calendar__int_
argl.
JavaDate.subt
ract
milliseconds
from("01:01:0
1",
61)=="01:01:0
0.939".
subtract sM Calendar(subtract Returnsa http://ww. w3.org/ TR/ rif-dthbh/
duration Calendar, Duratio new Calendar #func: add-dayTi neDuration-to-
from XMLDur nFrom thatisearlier dateTi ne_. 28adapted_from op:
ation) thanargl by subtract-dayTi neDuration-from
the duration dat eTi ne. 29
arg2.

JavaDate.subt
ract duration
from("2009-12
-30T23:59:00",
Duration.fro
m
string("P1DT1

M"))=="20009
-12-29T23:58:
00".

http://ww. w3.org/ TR/ rif-dtb/
#func: subtract-yearMnthDurati on-
from dat eTi ne_. 28adapt ed_from op:
add- year Mont hDur at i on-t o- dat eTi ne.
29

B-31

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractSecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#subtractMillisecondsFrom_java_util_Calendar__int_
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20add-dayTimeDuration-to-dateTime_.28adapted_from_op:%20subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:%20subtract-yearMonthDuration-from-dateTime_.28adapted_from_op:%20add-yearMonthDuration-to-dateTime.29

Table B-15 (Cont.) Table lists the JavaDate class

OBR Name Kind Signature Java Description Reference
Name
to date string sM String(Ca toDateS Returns the http://downl oad. oracl e. com
lendar) tring ISO 8601 docs/ cd/ E12839_01/ apirefs. 1111/
lexical e10663/ oracl e/ rul es/rl/extensions/
representatio JavaDat e. ht m #t oDat eStri ng_j ava_ut
n of argl, il _Cal endar _
ignoring time
components.
JavaDate.to
date
string("2010-0
7-04T12:30:00
Z")=="2010-0
7-04Z"
to datetime sM String(Ca toDateT Returns the http://downl oad. oracl e. con!
string lendar) imeStri ISO 8601 docs/ cd/ E12839_01/ apirefs. 1111/
ng lexical e10663/ oracl e/ rul es/ rl/extensi ons/
representatio JavaDat e. ht m #t oDat eTi neStri ng_j av
n of argl. a_util _Cal endar _
JavaDate.to
datetime
string("2010-0
7-04T12:30:00
Z")=="2010-0
7-04T12:30:00.
000Z"
to time sM String(Ca toTimeS Returns the http://downl oad. oracl e. con!
string lendar) tring ISO 8601 docs/ cd/ E12839_01/ apirefs. 1111/
lexical e10663/ oracl e/ rul es/ rl/ ext ensi ons/
representatio JavaDat e. ht ml #t oTi neStri ng_j ava_ut
nof argl, i | _Cal endar _
ignoring date
components.

JavaDate.to
time
string("2010-0
7-04T12:30:00
Z")=="12:30:0
0.000Z"

Table B-16 lists the XMLGr egor i anCal endar class.

B-32 Designing Business Rules with Oracle Business Process Management

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toDateTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/JavaDate.html#toTimeString_java_util_Calendar_

Table B-16 Table lists the XMLGregorianCalendar class.
- -]

OBR Name Kind Signature Java Name Descriptio Reference
n
XMLGregori Cl - javax.xml.data Represent http://java.sun.cont
anCalendar type XMLGreg ation for javase/ 6/ docs/api/
orianCalendar W3C j avax/ xm / dat at ype/
XML XMLGr egor i anCal endar . ht
Schema m
1.0 date/
time
datatypes.
normalize M XMLGregorian - Normalize http://java. sun. conl
Calendar() s this j avase/ 6/ docs/ api /
instance j avax/ xm / dat at ype/

to UTC. XMLGr egor i anCal endar . ht
XMLDate. nl #nornalize()
from

string("20

00-03-04T

23:00:00+0

3:00").nor

malize()=

=XMLDat

e.from

string("20

00-03-04T

20:00:00Z"

)

toGregorian M java.util. Grego - Converts http://java. sun. conl
Calendar rianCalendar() this j avase/ 6/ docs/ api /
XMLGreg j avax/ xm / dat at ype/
orianCale =~ XM_Gr egori anCal endar . ht
ndar to a m #t oG egor i anCal endar (
(superclas)
s of)
Calendar.
XMLDate.
from
string("20
10-02-03").
toGregori
anCalend
ar()==(Cal
endar)"20
10-02-03".

B-33

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#normalize()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar()

Table B-16 (Cont.) Table lists the XMLGregorianCalendar class.
. __|

OBR Name Kind Signature Java Name Descriptio Reference
n

year p int - Theyear http://java.sun.conl
of this j avase/ 6/ docs/ api /
calendar, javax/xmnl/datatype/
or XMLGr egor i anCal endar . ht
Integer.MI nl #get Year ()
N_VALU
E if
undefined

XMLDate.
from
string("20
11-12-31").
year==201
1.

month P int - The http://java. sun. cont
month of javase/ 6/ docs/ api/
this j avax/ xm / dat at ype/
calendar, XM.Gr egori anCal endar . ht
or m #get Mont h()
Integer.MI
N_VALU
Eif
undefined
. Months
are 1-
based, e.g.
Janis
month 1.
XMLDate.
from
string("20
11-12-31").
month==
2.

day P int - The dayof http://java. sun. conl
this j avase/ 6/ docs/ api /
calendar,] avax/xm /datatype/
or XMLGr egor i anCal endar . ht
Integer MI i #get Day()
N_VALU
E if
undefined

XMLDate.
from
string("20
11-12-31").
day==31.

B-34 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getYear()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMonth()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getDay()

Table B-16 (Cont.) Table lists the XMLGregorianCalendar class.
. __|

OBR Name Kind Signature Java Name Descriptio Reference
n

hour P int - The hour http://java.sun.com
of this j avase/ 6/ docs/ api /
calendar, javax/xmnl/datatype/
or XMLGr egor i anCal endar . ht
Integer.MI ni #get Hour ()
N_VALU
E if
undefined

XMLDate.
from
string("20
11-12-31").
hour==Int
eger.MIN
_VALUE.

minute P int - The http://java. sun. cont
minute of | avase/ 6/ docs/ api/
this j avax/ xm / dat at ype/
calendar, XM.Gr egori anCal endar . ht
or m #get M nut e()
Integer.MI
N_VALU
E if
undefined

XMLDate.
from
string("20
11-12-31T
09:30:00").
minute==
30.

second P int - The http://java. sun. conf
second of j avase/ 6/ docs/ api /
this j avax/ xm / dat at ype/
calendar, XMLGr egori anCal endar . ht
or m #get Second()
Integer.MI
N_VALU
Eif
undefined

XMLDate.
from
string("09:
30:05Z").s
econd==>5.

B-35

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getHour()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getMinute()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getSecond()

Table B-16 (Cont.) Table lists the XMLGregorianCalendar class.
. __|

OBR Name Kind Signature Java Name Descriptio Reference
n

timezone P int - The http://java. sun. con
timezone j avase/ 6/ docs/ api/
offset in j avax/ xm / dat at ype/
minutes of XM.G egori anCal endar . ht
this m #get Ti mezone()
calendar,
or
Integer.MI
N_VALU
E if
undefined

XMLDate.
from

string("09:
30:00-09:0
0").timezo
ne==-540.

Table B-17 lists the XM_Dat e class.

Table B-17 Table lists the XMLDate class

OBR Kind Signature Java Name Description Reference
Name
XMLDate Cl - oracle.rules.rl.ex Helper class for http://
tensions.XMLDa working with downl oad. or acl e. cont
te XMLGregorianCa docs/cd/ E12839_01/
lendars as apirefs. 1111/ e10663/
immutable oracle/rules/rl/
objects. Treating ext ensi ons/
calendars as XM.Dat e. ht m
immutable

objects can help
prevent errors.

add years sM XMLGregoria addYearsTo Returns a new http://
to nCalendar(X XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) years later than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.add ext ensi ons/
years XM_Dat e. ht m

to("2009-01-01", #addYear sTo_j avax_xm _
1)=="2010-01-01". dat at ype_XM-Gr egori anC
al endar __int_

B-36 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#getTimezone()
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addYearsTo_javax_xml_datatype_XMLGregorianCalendar__int_

Table B-17

(Cont.) Table lists the XMLDate class

OBR Kind Signature Java Name Description Reference
Name
add sM XMLGregoria addMonthsTo Returns a new http://
months to nCalendar(X XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) months later than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.add ext ensi ons/
months XML_Dat e. ht ni
to("2009-01-01", #addMont hsTo_j avax_xm
1)=="2009-02-01". _dat at ype_ XM_Gr egori an
Cal endar _int_
add sM XMLGregoria addWeeksTo Returns a new http://
weeks to nCalendar(X XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar that is docs/ cd/ E12839_01/
Calendar,int) 7*arg2 days later ~ apirefs. 1111/ e10663/
than argl. oraclel/rules/rl/
XMLDate.add ext ensi ons/
weeks XM.Dat e. ht m
to("'2009-01-01", #addWeeksTo_j avax_xm _
1)=="2009-01-08". dat at ype_XM.Gr egori anC
al endar __int_
add days sM XMLGregoria addDaysTo Returns a new http://
to nCalendar(X XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) days later than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.add ext ensi ons/
days XML_Dat e. ht ni
to("2009-01-01", #addDaysTo_j avax_xm _d
1)=="2009-01-02". at atype_XM.Gregori anCa
| endar __int_
add hours sM XMLGregoria addHoursTo Returns a new http://
to nCalendar(X XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) hours later than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.add ext ensi ons/
hours XML_Dat e. ht ni
to("01:01:01", #addHour sTo_j avax_xm _
1)=="02:01:01". dat at ype_ XMLG egori anC
al endar __int_
add sM XMLGregoria addMinutesTo Returns a new http://
minutes to nCalendar(X XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) minutes later than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.add ext ensi ons/
minutes XML_Dat e. ht ni
to("01:01:01", #addM nut esTo_j avax_xm
1)=="01:02:01". | _dat at ype_XMLG egori a

nCal endar __int _

B-37

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMonthsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addWeeksTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addDaysTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addHoursTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMinutesTo_javax_xml_datatype_XMLGregorianCalendar__int_

Table B-17

(Cont.) Table lists the XMLDate class
. __|

OBR Kind Signature Java Name Description Reference
Name
add sM XMLGregoria addSecondsTo Returns a new http://
seconds to nCalendar(X XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) seconds later than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.add ext ensi ons/
seconds XML_Dat e. ht ni
to("01:01:01", #addSecondsTo_j avax_xm
61)=="01:02:02". | _dat atype_XM.G egori a
nCal endar __int _
add sM XMLGregoria addMilliseconds Returns a new http://
millisecon nCalendar(X To XMLGregorianCal downl oad. or acl e. conf
ds to MLGregorian endar thatisarg?2 docs/ cd/ E12839_01/
Calendar,int) milliseconds later api refs. 1111/ e10663/
than argl. oraclel/rules/rl/
XMLDate.add ext ensi ons/
milliseconds XM.Dat e. ht m
to("01:01:01", #addM | | i secondsTo_j av
61)=="01:01:01.061 ax_xml _dat atype XM.G e
" gori anCal endar __int_
add sM XMLGregoria addDurationTo Returns a new http://ww. w3. org/ TR/
duration nCalendar(X XMLGregorianCal ri f - dt b/ #f unc: add-
to MLGregorian endar thatis later ~ year Mont hDur ati on-t o-
Calendar, XM than argl by the dat eTi me_. 28
LDuration) duration arg?. adapt ed_from op: add-
XMLDate.add year Mont hDur ati on-t o-
duration dat eTi ne. 29
t0("2009-12-30T23: ht ¢ p: / / waww. w8. or g/ TR/
59:00" Duration.fr rj f _ dt b/ #f unc: add-
om dayTi meDur ati on-t o-
string("P1IDTIM") qat eTi me_. 28
)=="2010-01-01". adapt ed_from op: add-
dayTi neDur ati on-t o-
dateTi me. 29
from sM XMLGregoria fromString Creates an http://
string nCalendar(Str XMLGregorianCal downl oad. or acl e. cont
ing) endar for the ISO docs/ cd/ E12839_01/
8601 date literal apirefs. 1111/ e10663/
argl. oraclel/rules/rl/
XMLDate.from ext ensi ons/

string("2010-02-06
-08:00")=="2010-02
-06-08:00".

XM.Dat e. ht m
#fronBtring_java_l ang_
String_

B-38 Designing Business Rules with Oracle Business Process Management

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addSecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#addMillisecondsTo_javax_xml_datatype_XMLGregorianCalendar__int_
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-yearMonthDuration-to-dateTime_.28%20adapted_from_op:add-yearMonthDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:add-dayTimeDuration-to-dateTime_.28%20adapted_from_op:add-dayTimeDuration-to-dateTime.29
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#fromString_java_lang_String_

Table B-17

(Cont.) Table lists the XMLDate class

OBR Kind Signature Java Name Description Reference
Name
subtract sM XMLGregoria subtractYearsFro Returns a new http://
years nCalendar(X m XMLGregorianCal downl oad. or acl e. conf
from MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) years earlier than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.subtract ext ensi ons/
years XM_Dat e. ht m
from("2009-01-01", #subtract Year sFrom j av
1)=="2008-01-01". ax_xml _dat atype_XM.G e
gori anCal endar __int_
subtract sM XMLGregoria subtractMonthsF Returns a new http://
months nCalendar(X rom XMLGregorianCal downl oad. or acl e. conf
from MLGregorian endar thatisarg?2 docs/ cd/ E12839_01/
Calendar,int) months earlier apirefs. 1111/ e10663/
than argl. oraclel/rules/rl/
XMLDate.subtract ext ensi ons/
months XM.Dat e. ht m
from("2009-01-01", #subtract Mont hsFrom j a
1)=="2008-12-01". vax_xnl _dat at ype_XM.G
egori anCal endar __int _
subtract sM XMLGregoria subtractWeeksFr Returns a new http://
weeks nCalendar(X om XMLGregorianCal downl oad. or acl e. conf
from MLGregorian endar that is docs/ cd/ E12839_01/
Calendar,int) 7*arg2 days earlier apirefs. 1111/ e10663/
than argl. oracle/rules/rl/
XMLDate.subtract ext ensi ons/
weeks XML_Dat e. ht ni
from("2009-01-01", #subt ract WeeksFrom j av
1)=="2008-12-25". ax_xml _datatype_XM.Gr e
gori anCal endar __int _
subtract sM XMLGregoria subtractDaysFro Returns a new http://
days from nCalendar(X m XMLGregorianCal downl oad. or acl e. conf
MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) days earlier than apirefs. 1111/ e10663/
argl. oracle/rules/rl/
XMLDate.subtract ext ensi ons/
days XML_Dat e. ht ni
from("2009-01-01", #subtract DaysFrom j ava
1)=="2008-12-31". x_xml _dat at ype_XM-Gr eg
ori anCal endar __int_
subtract sM XMLGregoria subtractHoursFr Returns a new http://
hours nCalendar(X om XMLGregorianCal downl oad. or acl e. conf
from MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) hours earlier than apirefs. 1111/e10663/
argl. oracle/rules/rl/
XMLDate.subtract ext ensi ons/
hours XML_Dat e. ht ni
from("01:01:01", #subt r act Hour sFrom j av
1)=="00:01:01". ax_xm _dat atype_ XM.Gr e

gori anCal endar __int_

B-39

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractYearsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMonthsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractWeeksFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractDaysFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractHoursFrom_javax_xml_datatype_XMLGregorianCalendar__int_

Table B-17

(Cont.) Table lists the XMLDate class
. __|

OBR Kind Signature Java Name Description Reference
Name
subtract sM XMLGregoria subtractMinutes Returns a new http://
minutes nCalendar(X From XMLGregorianCal downl oad. or acl e. conf
from MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) minutes earlier apirefs. 1111/ e10663/
than argl. oracle/rules/rl/
XMLDate.subtract ext ensi ons/
minutes XML_Dat e. ht ni
from("01:01:01", #subtract M nut esFrom j
1)=="01:00:01". avax_xnl _dat at ype_XM.G
regori anCal endar __int _
subtract sM XMLGregoria subtractSeconds Returns a new http://
seconds nCalendar(X From XMLGregorianCal downl oad. or acl e. conf
from MLGregorian endar thatisarg?2 docs/ cd/ E12839_01/
Calendar,int) seconds earlier apirefs. 1111/ e10663/
than argl. oraclel/rules/rl/
XMLDate.subtract ext ensi ons/
seconds XM.Dat e. ht m
from("01:01:01", #subtract SecondsFrom j
61)=="01:00:00". avax_xnl _dat at ype_XM.G
regori anCal endar __int _
subtract sM XMLGregoria subtractMilliseco Returns a new http://
millisecon nCalendar(X ndsFrom XMLGregorianCal downl oad. or acl e. conf
ds from MLGregorian endar thatisarg?2 docs/cd/ E12839_01/
Calendar,int) milliseconds apirefs. 1111/ e10663/
earlier thanargl. oracle/rules/rl/
XMLDate.subtract ext ensi ons/
milliseconds XML_Dat e. ht ni
from("01:01:01", #subtractM |1 isecondsF
61)=="01:01:00.939 rom j avax_xm _dat at ype
_XM.Gr egori anCal endar _
int
subtract sM XMLGregoria subtractDuration Returns a new http://ww. wW3. org/ TR/
duration nCalendar(X From XMLGregorianCal ri f-dt b/
from MLGregorian endar that is #f unc: subtract -
Calendar, XM earlier than argl year Mont hDur at i on-
LDuration) by the duration fromdateTi me_. 28

arg?.
XMLDate.subtract
duration
from("2009-12-30T
23:59:00",Duration
from
string("P1DT1M")
)=="20009-12-29T2
3:58:00".

adapt ed_from op: subtra
ct -year Mont hDur at i on-
fromdat eTi me. 29

http://ww. w3. org/ TR/
rif-dtb/

#f unc: subtract -

dayTi neDuration-from
dat eTi me_. 28

adapt ed_from op: subtra
ct-dayTi neDur ati on-
fromdat eTi nme. 29

B-40 Designing Business Rules with Oracle Business Process Management

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMinutesFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractSecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#subtractMillisecondsFrom_javax_xml_datatype_XMLGregorianCalendar__int_
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-yearMonthDuration-from-dateTime_.28%20adapted_from_op:subtract-yearMonthDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29
http://www.w3.org/TR/rif-dtb/#func:subtract-dayTimeDuration-from-dateTime_.28%20adapted_from_op:subtract-dayTimeDuration-from-dateTime.29

Table B-17

(Cont.) Table lists the XMLDate class
. __|

OBR Kind Signature Java Name Description Reference
Name
to string sM String(XMLG toString Returns the ISO http://
regorianCale 8601 lexical downl oad. or acl e. conf
ndar) representation of ~ docs/ cd/ E12839_01/
argl. XMLDate.to apirefs.1111/e10663/
string("2010-04-15 oracle/rules/rl/
T11:00:00-09:00")= ext ensi ons/
="2010-04-15T11:0 XM.Dat e. ht ni
0:00-09:00". #toString_javax_xm _da
tatype_XM.G egori anCal
endar _
is sM boolean(XML isDateTime Checks if this http://ww. w3. org/ TR/
datetime GregorianCal calendar have rif-dtb/
endar) both date and #Guard_Predi cates_for_
time fields. Dat at ypes
XMLDate.is
datetime("2009-12
-30T23:59:00")==tr
ue.
is sM boolean(XML isDateTimeStam Checks if this http://ww. w3. org/ TR/
datetime GregorianCal p calendar have rif-dtb/
stamp endar) date, time, and #Guard_Predi cates_for _
timezone fields. Dat at ypes
XMLDate.is
datetime
stamp("2009-12-30
T23:59:00")==false
is date sM boolean(XML isDate Checks if this http://ww. wW3. org/ TR/
GregorianCal calendar have rif-dtb/
endar) date fields and no #Guar d_Pr edi cates_for _
time fields. Dat at ypes
XMLDate.is
date("2009-12-30"
)==true.
is time sM boolean(XML isTime Checks if this http://ww. wW3. org/ TR/
GregorianCal calendar have rif-dthb/
endar) time fields and no #Guar d_Pr edi cates_for _
date fields. Dat at ypes
XMLDate.is
time("2009-12-30T
23:59:00")==false.
get sM XMLDuratio getTimezone Gets the timezone -
timezone n(XMLGrego from the calendar
rianCalendar) as a duration.

XMLDate.get
timezone("11:00:0
0+05:30")==Durati
on.from
string("PTSH30M"

B-41

http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://download.oracle.com/docs/cd/E12839_01/apirefs.1111/e10663/oracle/rules/rl/extensions/XMLDate.html#toString_javax_xml_datatype_XMLGregorianCalendar_
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes

Table B-17 (Cont.) Table lists the XMLDate class
. __|

OBR Kind Signature Java Name Description Reference
Name
get sM BigDecimal(X getSeconds Gets the seconds, -
seconds MLGregorian including
Calendar) fractional part,
from the calendar
as a BigDecimal.
XMLDate.get
seconds("00:00:12.
345")==12.345.
Table B-18 lists the Or acl eDat e class.
Table B-18 Table lists the OracleDate class
OBR Name Kind Signature Java Name Description
OracleDate Cl - oracle.rules.sdk2.exte Helper class for working with
nsions.OracleDate oracle.jbo.domain.Timestamp. For
examples of method use, see like-
named XMLDate methods.
add yearsto ~ sM oracle.jpbo.domain.Tim addYearsTo Returns a new
estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg?2 years later than argl.
add months sM oracle.jbo.domain. Tim addMonthsTo Returns a new
to estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg2 months later than argl.
add weeksto sM oracle.jpbo.domain.Tim addWeeksTo Returns a new
estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) 7*arg2 days later than argl.
add days to sM oracle.jbo.domain.Tim addDaysTo Returns a new
estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg?2 days later than argl.
add hoursto sM oracle.jbo.domain.Tim addHoursTo Returns a new
estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg?2 hours later than argl.
add minutes ~ sM oracle.jbo.domain. Tim addMinutesTo Returns a new
to estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg2 minutes later than argl.
add seconds sM oracle.jbo.domain.Tim addSecondsTo Returns a new
to estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg?2 seconds later than argl.
add sM oracle.jpbo.domain.Tim addMillisecondsTo Returns a new
milliseconds estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
to main.Timestamp,int) arg?2 milliseconds later than arg].

B-42 Designing Business Rules with Oracle Business Process Management

Table B-18 (Cont.) Table lists the OracleDate class
. ___|

OBR Name Kind Signature Java Name Description

add duration sM oracle.jbo.domain.Tim addDurationTo Returns a new

to estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp, XML later than argl by the duration arg2.
Duration)

from string sM oracle.jpbo.domain.Tim fromString Creates an
estamp(String) oracle.jbo.domain.Timestamp for the

ISO 8601 date literal argl.

subtract years sM oracle.jbo.domain.Tim subtractYearsFrom Returns a new

from estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg?2 years earlier than argl.

subtract sM oracle.jbo.domain.Tim subtractMonthsFrom Returns a new

months from estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg2 months earlier than argl.

subtract sM oracle.jbo.domain.Tim subtractWeeksFrom Returns a new

weeks from estamp(oracle.jbo.do oracle.jpo.domain.Timestamp that is
main.Timestamp,int) 7*arg?2 days earlier than arg].

subtract days sM oracle.jbo.domain.Tim subtractDaysFrom Returns a new

from estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg?2 days earlier than argl.

subtract sM oracle.jpbo.domain.Tim subtractHoursFrom Returns a new

hours from estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg?2 hours earlier than arg].

subtract sM oracle.jbo.domain.Tim subtractMinutesFrom Returns a new

minutes from estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp,int) arg2 minutes earlier than arg].

subtract sM oraclejbo.domain.Tim subtractSecondsFrom Returns a new

seconds from estamp(oracle.jbo.do oracle.jpo.domain.Timestamp that is
main.Timestamp,int) arg2 seconds earlier than argl.

subtract sM oracle.jpbo.domain.Tim subtractMillisecondsF Returns a new

milliseconds estamp(oraclejbo.do rom oracle.jpbo.domain.Timestamp that is

from main.Timestamp,int) arg?2 milliseconds earlier than argl.

subtract sM oracle.jbo.domain.Tim subtractDurationFrom Returns a new

duration from estamp(oracle.jbo.do oracle.jbo.domain.Timestamp that is
main.Timestamp, XML earlier than argl by the duration
Duration) arg?.

to string sM String(oracle.jpo.dom toString Returns the ISO 8601 lexical

ain.Timestamp)

representation of argl.

Table B-19 lists the Dur at i on class.

B-43

Table B-19 Table lists the Duration class

OBR Kind Signature Java Description Reference
Name Name
Duration Cl - oracle.rule Helper class for -
s.sdk2.ext comparing and
ensions.Or subtracting dates. Can
acleDurati convert the difference
on of 2 dates into an
XMLDuration. Can
also create an
XMLDuration from its
literal (String)
representation. Only
day time and year
month XMLDurations
are supported.
compare sM int(Calendar - Returns -1, 0, or 1 http://ww. w3. org/ TR/
| according to whether rif-dtb/#pred:date Tine-
XMLGregori argl<arg?2, | ess-than_.
anCalendar | argl==arg2, or 28adapt ed_from op: dat eTi
oracle.jbo.do argl>arg?2, me- | ess-t han. 29
main.Timest respectively.
amp, Duration.compare("20
Calendar | 10-01-01","2010-02-02"
XMLGregori)==-1
anCalendar |
oracle.jbo.do
main.Timest
amp)
years sM int(Calendar yearsBetw Subtracts argl from -
between | een arg2, where the args
XMLGregori are some kind of date/
anCalendar | time. Duration.years
oracle.jbo.do between("2008-01-01",
main.Timest "2009-02-02")==1.
amp,
Calendar |
XMLGregori
anCalendar |
oracle.jbo.do
main.Timest
amp)
months sM int(Calendar monthsBet Subtracts argl from -
between | ween arg2, where the args
XMLGregori are some kind of date/
anCalendar | time. Duration.months

oracle.jbo.do
main.Timest
amp,
Calendar |
XMLGregori
anCalendar |
oracle.jbo.do
main.Timest

amp)

between("2009-01-01","
2008-02-02")==-10.

B-44 Designing Business Rules with Oracle Business Process Management

http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:date%20Time-less-than_.28adapted_from_op:dateTime-less-than.29

Table B-19 (Cont.) Table lists the Duration class
. ___|

OBR Kind Signature Java Description Reference
Name Name
weeks sM int(Calendar weeksBet Subtracts argl from -
between | ween arg?2, where the args
XMLGregori are some kind of date/
anCalendar | time. Duration.weeks
oracle.jpo.do between("2000-01-01","
main.Timest 2000-02-04")==4.
amp,
Calendar |
XMLGregori
anCalendar |

oraclejbo.do
main.Timest

amp)
days sM int(Calendar daysBetw Subtracts argl from -
between [een arg2, where the args

XMLGregori are some kind of date/

anCalendar | time. Duration.days

oracle.jbo.do between("2000-01-01","

main.Timest 2000-02-04")==34.

amp,

Calendar |

XMLGregori

anCalendar |

oracle.jbo.do
main.Timest

amp)
hours sM int(Calendar hoursBet Subtracts argl from -
between | ween arg2, where the args
XMLGregori are some kind of date/
anCalendar | time. Duration.hours
oracle.jbo.do between("2000-01-04T0
main.Timest 3:30:00","2000-01-01T00
amp, :00:00")==-75
Calendar |
XMLGregori
anCalendar |

oracle.jbo.do
main.Timest

amp)
minutes sM int(Calendar minutesBe Subtracts argl from -
between | tween arg2, where the args
XMLGregori are some kind of date/
anCalendar | time.
oracle.jbo.do Duration.minutes
main.Timest between("03:30:00","04:
amp, 45:00")==75.
Calendar |
XMLGregori
anCalendar |

oracle.jbo.do
main.Timest
amp)

B-45

Table B-19

(Cont.) Table lists the Duration class

OBR Kind Signature Java Description Reference
Name Name
seconds sM int(Calendar secondsBe Subtracts argl from -
between | tween arg2, where the args
XMLGregori are some kind of date/
anCalendar | time. Duration.seconds
oracle.jpo.do between("03:30:00","03:
main.Timest 31:15")==75.
amp,
Calendar |
XMLGregori
anCalendar |
oraclejbo.do
main.Timest
amp)
millisecon sM int(Calendar millisecon Subtracts argl from
ds [dsBetwee arg2, where the args
between XMLGregori n are some kind of date/
anCalendar | time.
oracle.jbo.do Duration.milliseconds
main.Timest between("03:30:00","03:
amp, 31:15")==75000.
Calendar |
XMLGregori
anCalendar |
oracle.jbo.do
main.Timest
amp)
between sM XMLDuratio between Subtracts argl from http://ww. w3. org/ TR/
n(Calendar | arg2, where the args rif-dtb/#func:subtract-
XMLGregori are some kind of date/ date Tines_.
anCalendar | time. Returns day-time 28adapt ed_from op: subtra
oracle.jbo.do Duration. ct-dateTi nes. 29
main.Timest Duration.between("200
amp, 9-01-01T01:15:00","2009
Calendar | -02-02T11:30:00")==Du
XMLGregori ration.from
anCalendar | string("P32DT10H15M
oracle.jbo.do).
main.Timest
amp)
from sM XMLDuratio fromStrin Parses a duration from htt p: //ww. w3. or g/ TR/
string n(String) g an ISO 8601 duration xpat h-functi ons/

literal. "P1DT2H3M" is
the duration of 1 day, 2
hours, and 3 minutes.

#dur at i on- subt ypes

B-46 Designing Business Rules with Oracle Business Process Management

http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/rif-dtb/#func:subtract-date%20Times_.28adapted_from_op:subtract-dateTimes.29
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/xpath-functions/#duration-subtypes

Table B-19 (Cont.) Table lists the Duration class
. ___|

OBR Kind Signature Java Description Reference
Name Name
compare sM int(XMLDur compareD Compares two http://ww.w3. org/ TR/
durations ation, XMLD urations durations. Both must rif-dtb/
uration) be either day-time or #pred: dayTi meDur ati on-
year-month durations. | ess-than_. 28
Returns -1, 0, or 1 adapt ed_from op: dayTi neD
according to whether uration-less-than. 29
argl<arg?, htt p: // www. 3. or g/ TR/
argl==arg2, or rif-dtb/
argl>arg?, #pr ed: year Mont hDur at i on-
respec.tively. | ess-than_. 28
Duration.compare(Dur - adapt ed_f r om op: year Mont
ation.from hDur ati on- | ess-t han. 29
string("P1Y"),Duration.
from
string("P13M"))==-1.
is day- sM boolean(XM isDayTim Checks if argl a day- http://ww. w3. or g/ TR/
time LDuration) eDuration time duration. Only rif-dtb/
duration day-time and year- #Guard_Predi cates_for_Da
month durations are tatypes
supported. Duration.is
day-time
duration(Duration.fro
m
string("P2DT1S"))==tr
ue.
is year- sM boolean(XM isYearMo Checks if argl a year- http://ww. w3. org/ TR/
month LDuration) nthDurati month duration. Only ri f-dt b/
duration on day-time and year- #Cuar d_Predi cates_for_Da
month durations are tatypes
supported. Duration.is
year-month
duration(Duration.fro
m
string("P13M"))==true.
get sM BigDecimal(getSecond Gets the seconds field http://ww. w3. or g/ TR/
seconds XMLDuratio s from the durationasa rif-dtb/#func: seconds-
n) BigDecimal, including from duration_. 28

fractional seconds.
Duration.get
seconds(Duraton.from
string("PT12.3455"))==
12.345.

adapt ed_from f n: seconds-
fromduration. 29

B-47

http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:dayTimeDuration-less-than_.28%20adapted_from_op:dayTimeDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#pred:yearMonthDuration-less-than_.28%20adapted_from_op:yearMonthDuration-less-than.29
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#Guard_Predicates_for_Datatypes
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:seconds-from-duration_.28%20adapted_from_fn:seconds-from-duration.29

Table B-19 (Cont.) Table lists the Duration class
. ___|

OBR Kind Signature Java Description Reference

Name Name

divide sM XMLDuratio - Divides a durationby http://ww. w3. or g/ TR/
n(XMLDurat an integral or double rif-dtb/#f unc:divide-
ion,int| divisor. dayTi neDur ati on_. 28
double) Duration.divide(Durat adapt ed_from op: di vi de-

ion.from string("P1Y"),
4)==Duration.from
string("P3M").

dayTi neDur ati on. 29

http://ww. wW3. org/ TR/
rif-dtb/#func:divide-
year Mont hDur ati on_. 28
adapt ed_from op: di vi de-
year Mont hDur ati on. 29

ratio sM BigDecimal(- Computes the ratio of
XMLDuratio 2 durations as a
n, XMLDurati BigDecimal.
on) Duration.ratio(Duratio
n.from
string("P1Y"),Duration.
from

string("P3M"))==4

http://ww. w3. org/ TR/
rif-dtb/#func:divide-
dayTi neDur at i on- by-
dayTi neDuration_. 28
adapt ed_from op: di vi de-
dayTi neDur at i on- by-
dayTi neDur ati on. 29
http://ww. w3. org/ TR/
rif-dtb/#func:divide-
year Mont hDur at i on- by-
year Mont hDur ati on_. 28
adapt ed_from op: di vi de-
year Mont hDur at i on- by-
year Mont hDur ati on. 29

Table B-20 lists the XMLDur at i on class.

Table B-20 Table lists the XMLDuration class

OBR Kind Signature Java Name Description Reference

Name

XMLDu Cl - javax.xml.data Immutable http://java. sun. coml

ration type.Duration representation of | avase/ 6/ docs/ api/
a time span as j avax/ xm / dat at ype/
defined in the Duration. ht m
W3C XML http: // ww. wa. or g/ TR/
Schema 1.0 xpat h- f unct i ons/
specification. #dur at i on- subt ypes

Only day-time
and year-month
XMLDurations
are supported.

years P int - Years field of the
duration.
Duration.from
string("P2Y3M").y
ears==2.

http://ww. w3. org/ TR/
rif-dtb/#func: years-
fromduration_.
28adapted_from fn:years
-fromduration. 29

B-48 Designing Business Rules with Oracle Business Process Management

http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-dayTimeDuration-by-dayTimeDuration_.28%20adapted_from_op:divide-dayTimeDuration-by-dayTimeDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://www.w3.org/TR/rif-dtb/#func:divide-yearMonthDuration-by-yearMonthDuration_.28%20adapted_from_op:divide-yearMonthDuration-by-yearMonthDuration.29
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/xpath-functions/#duration-subtypes
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20years-from-duration_.28adapted_from_fn:years-from-duration.29

Table B-20 (Cont.) Table lists the XMLDuration class

OBR Kind Signature Java Name Description Reference

Name

months P int - Months field of http://ww. w3. org/ TR/
the duration. rif-dtb/#func: nonths-
Duration.from fromduration_.
string("P2Y3M").m 28adapt ed_from fn: nonth
onths==2. s-fromduration. 29

days P int - Days field of the http://ww. w3. org/ TR/
duration. rif-dtb/#func: days-
Duration.from fromduration_.
string("P1DT2H3 28adapt ed_from fn: days-
M4S").days==1. fromduration. 29

hours P int - Hours field of the http://ww. w3. or g/ TR/
duration. rif-dtb/#func: hours-
Duration.from fromduration_.
string("P1IDT2H3 28adapt ed_from f n: hours
M4S").hours==2. -fromduration. 29

minutes P int - Minutes field of http://ww. w3. org/ TR/
the duration. rif-dtb/#func: mnutes-
Duration.from fromduration_.
string("P1DT2H3 28adapt ed_from f n: mi nut
M4S").minutes==3 es-fromduration. 29

seconds P int - Seconds field of http://ww. w3. org/ TR/
the duration. rif-dtb/#func: seconds-
Duration.from fromduration_.
string("P1DT2H3 28adapt ed_from fn: secon
M4S").seconds==4. ds-fromduration.29

sign P int - Returns the sign of -
this duration in
-1,0, or 1.
Duration.from
string("'-
P1Y").sign==-1.

add M XMLDuratio - Adds two http://java. sun. conf

n(XMLDurati durations. j avase/ 6/ docs/ api /
on) Duration.from j avax/ xm / dat at ype/

string("P6M").add(
Duration.from
string("P6M"))==D
uration.from
string("P1Y").

Dur ati on. ht nml #add(j avax
.xm . dat at ype. Dur ati on)

B-49

http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20months-from-duration_.28adapted_from_fn:months-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20days-from-duration_.28adapted_from_fn:days-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20hours-from-duration_.28adapted_from_fn:hours-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20minutes-from-duration_.28adapted_from_fn:minutes-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://www.w3.org/TR/rif-dtb/#func:%20seconds-from-duration_.28adapted_from_fn:seconds-from-duration.29
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#add(javax.xml.datatype.Duration)

Table B-20 (Cont.) Table lists the XMLDuration class

OBR Kind Signature Java Name Description Reference
Name
subtract M XMLDuratio - Subtracts two http://java. sun. com
n(XMLDurati durations. j avase/ 6/ docs/ api /
on) Duration.from j avax/ xm / dat at ype/
string("P6M").subt Dur ati on. ht m #subt r act (
ract(Duration.fro j avax. xml . dat at ype. Dur a
m tion)
string("P6M"))==D
uration.from
string("POY").
multipl M XMLDuratio - Multiplies argl http://java.sun. conl
y n(BigDecimal duration by arg2 ~ j avase/ 6/ docs/ api /
| int) factor. j avax/ xm / dat at ype/
Duration.from Duration. ht m #nul ti pl y(
string("P6M").mult j ava. mat h. Bi gDeci mal)
iply(2)==Duration.
from string("P1Y").
negate M XMLDuratio - Durations can be http://java. sun. conf
n() negative, e.g. if j avase/ 6/ docs/ api /
you reverse the j avax/ xm / dat at ype/
arguments to Dur ati on. ht M #negat e()
Duration.between(
argl,arg?).
Duration.from
string("P6M").nega
te()==Duration.fro
m string("-P6M").
tostring M String() toString Gets the ISO8601 -
literal

representation for
this duration.
Duration.from
string("P6M").to
string()=="P6M".

Table B-21 lists the Cur r ent Dat e class.

Table B-21 Table lists the CurrentDate class
- - - - -]

OBR Name Kind Signature Java Name Description
CurrentDate Cl - oracle.rules.rl.extens Fact type of a holder for the
ions.CurrentDate current date. Can be used in rule
patterns.
date P Calendar - Returns the current date.

B.5 Miscellaneous Classes
This section covers the miscellaneous classes provided by Oracle Business Rules.

Table Table B-22 lists the JAXBEI enent class.

B-50 Designing Business Rules with Oracle Business Process Management

http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#subtract(javax.xml.datatype.Duration)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#multiply(java.math.BigDecimal)
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()
http://java.sun.com/javase/6/docs/api/javax/xml/datatype/Duration.html#negate()

Table B-22 Table lists the JAXBElement class

OBR Name Kind Signature Java Name

Description

Reference

JAXBEleme Cl - javax.xml.bind.JA

Represents XML element

http://

nt XBElement information in XML Fact j ava. sun. conf
Types. j avase/ 6/ docs/ api /
javax/ xm / bi nd/
JAXBEI enent . ht i
nil P boolean - A nil element is not the http://
same thing (in XML) asan j ava. sun. com
absent element. j avase/ 6/ docs/ api /
j avax/ xm / bi nd/
JAXBEI enment . ht m #i s
NiT()
value P Object - This is a reference to an http://

XML Fact Type

j ava. sun. cont

j avase/ 6/ docs/ api /

j avax/ xm / bi nd/
JAXBE! enent . ht ml #ge
t Val ue()

Table B-23 lists the Qbj ect class.

Table B-23 Table lists the Object class
-]

OBR Kind Signat Java Name Description Reference
Name ure
Object Cl - javalang.O BaseclassofallJava http://
bject objects. java. sun. conf
j avase/ 6/

docs/ api /j aval/
| ang/ Obj ect. ht m

B.6 Functions

This section lists the Oracle Business Rules functions.

Table Table B-24 lists the different functions provided by Oracle Business Rules.

Table B-24 Table lists the different functions provided by Oracle Business Rules
- |

OBR Name Signature RL Name Description Reference
print void(Object) println Prints the string value of Oracle Fusion
argl. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.assert a tree Object(Object) assertTree Asserts (insert into Oracle Fusion
of facts working memory) the tree Middleware
of visible fact types with Language Reference
argl as the root. Returns Guide for Oracle

argl. Business Rules

B-51

http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#isNil()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue()
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html

Table B-24 (Cont.) Table lists the different functions provided by Oracle Business Rules

OBR Name Signature RL Name Description Reference
RL.assert Object(Object) assert Asserts argl (insert argl Oracle Fusion
into working memory). Middleware
Returns argl. Language Reference
Guide for Oracle
Business Rules
RL.retract void(Object) retract Removes the fact Oracle Fusion
associated with the object ~Middleware
argl from working Language Reference
memory. Guide for Oracle
Business Rules
RL.get fact ID int(Object) id Returns the fact id Oracle Fusion
associated with the object ~Middleware
argl. If argl is not Language Reference
associated with a fact, Guide for Oracle
return -1. Business Rules
RL.get fact by Object(int) object Returns the object Oracle Fusion
ID associated with the given =~ Middleware
factid. If there isnosuch ~ Language Reference
fact id, returns null. Guide for Oracle
Business Rules
RL.get firing String - Returns the name of the -
rule name currently firing rule if it is
invoked in a rule action.
Returns null otherwise.
RL.contains boolean(List,Obj contains The contains() functionis ~ Oracle Fusion
ect) similar to the contains() Middleware
method on Java Collection Language Reference
but includes the ability to ~ Guide for Oracle
handle the presence of Business Rules
JAXBElement in the
collection.
RL.suppress boolean(boolean) - Update if errors during -
rule test errors rule test evaluation should
be suppressed by the rules
engine.
RL.are rule test boolean() - Query if errors during -
errors rule test evaluation are
suppressed suppressed by the rules
engine.
RL.ruleset void(String) pushRuleset Pushes argl, the name of a Oracle Fusion
stack.push ruleset, onto the ruleset Middleware
stack. Language Reference
Guide for Oracle

Business Rules

B-52 Designing Business Rules with Oracle Business Process Management

Table B-24 (Cont.) Table lists the different functions provided by Oracle Business Rules
. __|

OBR Name Signature RL Name Description Reference
RL.ruleset String() popRuleset Pops and returns the top ~ Oracle Fusion
stack.pop of the ruleset stack, the Middleware
name of a ruleset. Language Reference
Guide for Oracle
Business Rules
RL.ruleset String[]() getRulesetStack Returns the ruleset stack ~ Oracle Fusion
stack.get as a String array. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.ruleset void(String[]) setRulesetStack Sets the ruleset stack to Oracle Fusion
stack.set argl, a String array. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.ruleset void() clearRulesetStack Pops all ruleset names off ~ Oracle Fusion
stack.clear the ruleset stack. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.date.get Calendar() getCurrentDate Returns the date Oracle Fusion
current associated with the Middleware
CurrentDate fact. Language Reference
Guide for Oracle
Business Rules
RL.date.set void(Calendar) setCurrentDate Sets the date for reasoning Oracle Fusion
current on an engine managed Middleware
fact representing the Language Reference
"current” date (with the Guide for Oracle
CurrentDate fact). Business Rules
RL.date.get Calendar() getEffectiveDate Returns the current value Oracle Fusion
effective of the effective date. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.date.set void(Calendar) setEffectiveDate Updates the effective date Oracle Fusion
effective in the rules engine. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.watch.rules void() watchRules Prints information about Oracle Fusion

rule firings (execution of
activations).

Middleware
Language Reference
Guide for Oracle
Business Rules

B-53

Table B-24 (Cont.) Table lists the different functions provided by Oracle Business Rules

OBR Name Signature RL Name Description Reference
RL.watch.activa void() watchActivations Prints information about Oracle Fusion
tions addition or removal of Middleware
activations from the Language Reference
agenda. Guide for Oracle
Business Rules
RL.watch.facts void() watchFacts Prints information about Oracle Fusion
assertion, retraction, or Middleware
modification of facts in Language Reference
working memory. Guide for Oracle
Business Rules
RL.watch.focus void() watchFocus Prints information about ~ Oracle Fusion
pushing and popping of Middleware
the ruleset stack. Language Reference
Guide for Oracle
Business Rules
RL.watch.comp void() watchCompilations Prints information about Oracle Fusion
ilations how the condition parts of Middleware
a rule are shared with Language Reference
existing rules. Guide for Oracle
Business Rules
RL.watch.all void() watchAll Prints information about Oracle Fusion
rules, facts, activations, Middleware
focus, and compilations. Language Reference
Guide for Oracle
Business Rules
RL.stop void() clearWatchRules Stops printing information Oracle Fusion
watching.rules about rule firings. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.stop void() clearWatchActivation Stops printing information Oracle Fusion
watching.activa s about addition or removal Middleware
tions of activations from the Language Reference
agenda. Guide for Oracle
Business Rules
RL.stop void() clearWatchFacts Stops printing information Oracle Fusion
watching.facts about assertion, retraction, Middleware
or modification of factsin ~ Language Reference
working memory. Guide for Oracle
Business Rules
RL.stop void() clearWatchFocus Stops printing information Oracle Fusion

watching.focus

about pushing and
popping of the ruleset
stack.

Middleware
Language Reference
Guide for Oracle
Business Rules

B-54 Designing Business Rules with Oracle Business Process Management

Table B-24 (Cont.) Table lists the different functions provided by Oracle Business Rules

OBR Name Signature RL Name Description Reference
RL.stop void() clearWatchCompilati ~ Stops printing information ~Oracle Fusion
watching.comp ons about how the condition Middleware
ilations parts of a rule are shared =~ Language Reference
with existing rules. Guide for Oracle
Business Rules
RL.stop void() clearWatchAll Stops printing information Oracle Fusion
watching.all about rules, facts, Middleware
activations, focus, and Language Reference
compilations. Guide for Oracle
Business Rules
RL.show .facts void() showFacts Prints all facts in working Oracle Fusion
memory. Middleware
Language Reference
Guide for Oracle
Business Rules
RL.show.activa void() showActivations Prints all activations on Oracle Fusion

tions

the agenda.

Middleware
Language Reference
Guide for Oracle
Business Rules

B-55

B-56 Designing Business Rules with Oracle Business Process Management

C

Oracle Business Rules Frequently Asked

Questions

This appendix contains frequently asked questions about Oracle Business Rules.

Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then
Changed Without Using the Modify Action?

What are the Differences Between Oracle Business Rules RL Language and Java?
How Does a RuleSession Handle Concurrency and Synchronization?

How Do I Correctly Express a Self-Join?

How Do I Use a Property Change Listener in Oracle Business Rules?

What Are the Limitations on a Decision Service with Oracle Business Rules?
How Do I Put Java Code in a Rule?

Can I Use Java Based Facts in a Decision Service with BPEL?

How Do I Enable Debugging in a BPEL Decision Service?

How Do I Support Versioning with Oracle Business Rules?

What is the Priority Order Using Priorities with Rules and Decision Tables?

Why do XML Schema with xsd:string Typed Elements Import as Type
JAXBElement?

Why Are Changes to My Java Classes Not Reflected in the Data Model?
How Do I Use Rules SDK to Include a null in an Expression?
Is WebDAYV Supported as a Repository to Store a Dictionary?

Using a Source Code Control System with Rules Designer

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then
Changed Without Using the Modify Action?

When a Java object has been asserted and then the object is changed without using the
modify action, the object must be re-asserted in the Rules Engine.

Therefore, if a rule associated with the changed Java object does not fire, this means
that the Rules Engine did not reevaluate any rule conditions and did not activate any
rules. Thus, when a Java object changes without using the modify action, the object
must be re-asserted in the Rules Engine.

C-1

C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
There are many differences between Oracle Business Rules RL Language and Java.

For more information on the differences between Oracle Business Rules RL Language
and Java, see Appendix A in Rules Language Reference for Oracle Business Process
Management.

C.3 How Does a RuleSession Handle Concurrency and Synchronization?

Method calls on an Oracle Business Rules RuleSession object are thread-safe such that
calls by multiple threads do not cause exceptions at the RuleSession level. However,
there are no exclusivity or transactional guarantees on the execution of methods. The
lowest-level r un method in the Rules Engine is synchronized, so two threads with a
shared Rul eSessi on cannot both simultaneously execute r un. One call to r un must
wait for the other to finish.

Oracle Business Rules functions are not synchronized by default. Like Java methods,
Oracle Business Rules functions can execute concurrently and it is the programmer's
responsibility to use synchronized blocks to protect access to shared data (for instance,
a HashMap containing results data).

Any set of actions that a user wants to be executed as in a transaction-like form must
synchronize around the shared object. Users should not synchronize around a

Rul eSessi on object because exceptions thrown when calling Rul eSessi on
methods may require the Rul eSessi on object to be discarded.

For most uses of a Rul eSessi on object in Oracle Business Rules, each thread or
servlet instance should create and use a local Rul eSessi on object. This usage pattern
is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared Rul eSessi on object.
For the case where Thread-1 includes the following:

rul eSessi on. cal | FunctionW t hArgument ("assert", singleFactl);
rul eSessi on. cal | Functi onW t hArgument ("assert", singleFact?2);

and Thread-2 includes the following:

rul eSession. cal | Function("run");
rul eSession. cal | Function("clear");

In this case, execution of the two threads might proceed as shown below in code
example showing a shared r ul esessi on object in Oracle Business Rules:

Thread-1: rul eSession. cal | Functi onWt hArgunent ("assert", singleFactl);
Thread-2: rul eSession. call Function("run");

Thread-2: rul eSession. cal | Function("clear");

Thread-1: rul eSession. cal | Functi onWt hArgunent ("assert", singleFact?2);

In the example above, the two facts Thread-1 asserted are never both in the

Rul eSessi on during a call to r un. Notice also that only one thread calls the r un
method. If you use a design where multiple threads can call r un on a shared

Rul eSessi on, this can create extremely hard to find bugs and there is usually no
gain in performance.

All accesses to a shared Rul eSessi on object must be synchronized to ensure the
intended behavior. However, a Rul eSessi on instance may throw an exception and
not be recoverable, so do not use this object as the synchronization object. Instead, use
another shared object as the synchronization point.

C-2 Designing Business Rules with Oracle Business Process Management

One can envision a shared server process producer-consumer model for

Rul eSessi on use. In this model, multiple threads assert facts to a shared

Rul eSessi on and one thread periodically calls r un, reads any results, and outputs
them. This ensures that thread conflicts cannot occur, because the two code segments
must be executed serially and cannot be intermingled. For example, the code with
shared objects, producer code, and consumer code in Example C-1, Example C-2, and
Example C-3.

C.3.1 Sample RuleSession Shared Objects
Example C-1 shows the code with shared objects.
Example C-1 RuleSession Shared Objects

Rul eSessi on rul eSessi on;
Obj ect rul eSessi onLock = new Ohject();

C.3.2 Sample RuleSession Producer Code
Example C-2 shows the producer code.

Example C-2 RuleSession Producer Code

public String addFacts(Fact TypeA fa, FactTypeB fh, Fact TypeC fc){
String status = "";
synchroni zed(rul eSessi onLock) {
try {
rul eSessi on. cal | Functi onWt hArgunent ("assert”, fa);
rul eSessi on. cal | Functi onWt hArgunent ("assert”, fh);
status = "success";
} catch (Exception e) {
/1 a method that creates a new Rul eSession loads it with rules
initializeRul eSession();
status = "failure";
1

return status;

}

C.3.3 Sample RuleSession Consumer Code
Example C-3 shows the consumer code.

Example C-3 RuleSession Consumer Code

public List exec(){
synchroni zed(rul eSessi onLock) {

try {
rul eSession. cal | Function("run");
List results = (List)rul eSession.callFunction("getResults");
rul eSession. cal | Function("cl earResul ts");
return results;

} catch (Exception e) {
/1 a method that creates a new Rul eSession loads it with rules
initializeRul eSession();
return null;

Note:

When multiple threads are sharing a Rul eSessi on object, if more than one of
the threads calls the r un method, this can create extremely hard to find bugs
and there is usually no gain in performance.

C-3

C.4 How Do | Correctly Express a Self-Join?

When working with facts, there are cases where the runtime behavior of Oracle RL
may produce surprising results.

Consider the Oracle RL code in the following self-join example:

class F {int i; };

rule rl {
if (fact Ffl & fact F f2) {
printIn("Results: " + f1.i +", " +f2.i);
}
}

assert(new F(i:1));
assert(new F(i:2));
run();

How many lines print in the above example output? The answer is 4 lines because the
same fact instance can match for both f 1 and f 2.

Thus, the example gives the following output:

Resul t's:
Resul t's:
Resul t's:
Resul t's:

Lol
N RN

Using the same example with a third F, for example (assert (new F(i: 3));) then
nine lines are printed and if, at the same time, a third term && fact F F3isadded
then 27 lines are printed.

C.4.1 Sample Find All Combinations of Fact F

If you are attempting to find all combinations and orders of distinct facts, you need an
additional term to in the test, as shown in Example C-4.

Example C-4 Find All Combinations of Fact F

rule rl {
if (fact F F1 & fact F F2 & F1 != F2) {
printIn("Results: " + FL.i +", " + F2.i);
}
1
The above code gives the following output:
Results: 2, 1
Results: 1, 2

C.4.2 Sample Finding Combinations of Fact F

The simplest, although not the fastest way to find all combinations of facts, regardless
of their order, is to use the code shown in Example C-5.

Example C-5 Finding Combinations of Fact F

rule rl {
if (fact F F1 & fact F F2 & id(F1) < id(F2)) {
printIn("Results: " + FL.i + ", " + F2.i);
}
}

C.4.3 Sample Fast Complete Comparison

The function i d() shown in Example C-5 takes longer to execute in a test pattern than
a direct comparison, the fastest method is to test on a unique value in each object. For

C-4 Designing Business Rules with Oracle Business Process Management

example, you could add an integer value property "oid" to your class that is assigned a
unique value for each instance of the class.

Example C-6 shows the same rule using the oid value.

Example C-6 Fast Complete Comparison

rule rl {
if (fact F F1 & fact F F2 & Fl.oid < F2.0id) {
printIn("Results: " + FL.i +", " + F2.i);

}
}

This problem may also arise if you attempt to remove all duplicate facts from the
Oracle Rules Engine, using a function as shown below:
rul e rRemoveDups {

if (fact F F1 & fact F F2 & F1.i == F2.i) {
retract (F2);

}
}

However, this rule removes all facts of type F, not just the duplicates because F1 and
F2 may be the same fact instance. The following example shows the correct version of
this rule:

rul e rRemoveDups {

if (fact F F1 & fact F F2 & F1 != F2 && Fl.i == F2.i) {
retract (F2);

}
}

C.5 How Do | Use a Property Change Listener in Oracle Business Rules?

The Oracle Rules Engine supports the Java Pr oper t yChangeLi st ener design
pattern. This allows an instance of a Java fact that uses the

Pr opert yChangeSupport class to automatically notify the Oracle Rules Engine
when property values have changed. Java facts are not required to implement this
pattern to be used by Oracle Rules Engine.

Typically, changes made to values of a property of a Java object that has previously
been asserted to the Oracle Rules Engine requires that the object be re-asserted in
order for rules to be reevaluated with the new property value. For properties that fire
Pr oper t yChangeEvent , changing the value of those properties both changes the
value and re-asserts the fact to the Oracle Rules Engine.

To implement the Pr oper t yChangeli st ener design pattern in a class, do the
following;:

1. Import this package in the class:

import java.beans. PropertyChangeSupport;

2. Add a private member variable to the class:

private PropertyChangeSupport mpcs = null;

3. In the constructor, create a new Pr oper t yChangeSuppor t object:

m pcs = new PropertyChangeSupport (this);

4. Then for each setter, add the call to f i r ePr oper t yChange:

C-5

public void setName(String name){
String oldval = mnane;
m name = nane;
m pcs. firePropertyChange("nanme", ol dval, mnane);

}

Implement addPr oper t yChangeLi st ener method (delegate to m pcs):

public void addPropertyChangelLi st ener (PropertyChangeLi stener pcl){
m pcs. addPr oper t yChangeLi stener (pcl);
1

Implement r enovePr oper t yChangelLi st ener method (delegate to m pcs):

public removePropertyChangelLi st ener (PropertyChangeLi stener pcl){
m pcs. removePr opert yChangeli stener(pcl);

}

When deciding whether to design your application to always explicitly re-assert
modified objects or implement the Pr oper t yChangelLi st ener design pattern,
consider the following;:

Explicitly re-asserting modified objects allows a user to group several property
changes and making them visible to the rules all at once. This is most useful when a
concurrent thread is executing rules, and the rules should see only a complete
group of property changes.

Explicit assert reduces the computational cost of rule re-evaluation when multiple
properties are changed. If multiple properties are changed at the same time, this
results in multiple re-evaluations of rule conditions that reference the fact type.
This occurs because each property change event results in a re-assertion of the
object. Using an explicit assert instead of the Pr oper t yChangeLi st ener pattern
eliminates this extra computational cost.

Explicit assert is required when a rule modifies a fact that is also tested in its
condition, but the automatic reassert triggered by the Pr oper t yChangeLi st ener
before a guard condition property is set would cause the rule to refire itself
endlessly.

Explicit assert must be used when modifying Oracle RL facts and XML facts,
because these cannot be defined to support the Pr oper t yChangelLi st ener
design pattern.

Pr oper t yChangeLi st ener -enabled facts allow a Java application to
communicate property changes to the rule engine without having to change the
application to perform explicit asserts. This also means that code that modifies a
property of an object does not need to have a reference to the Rul eSessi on object
in scope.

PropertyChangeli st ener support prevents the common error of neglecting to
re-assert a fact after changing its properties.

C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?

There are some limitations for using Business Rules with a BPEL process.

Some of the limitations include the following;:

Only visible XML fact types may be specified as the input for a decision service.

Only visible XML fact types may be specified as the output of a decision service.

C-6 Designing Business Rules with Oracle Business Process Management

For an additional restriction, see How Are Decision Service Input Output Element
Types Restricted?.

For information on setting XML fact type visible option, see Working with XML Facts.

C.7 How Do | Put Java Code in a Rule?

You do not actually put Java code in a rule.

However, you can invoke a Java method from a rule condition or action.

C.8 Can | Use Java Based Facts in a Decision Service with BPEL?

Oracle BPEL PM can invoke only decision functions exposed as a decision service, and
this means that the decision function inputs and outputs must be XML fact types.

You can use an existing ruleset or decision function that uses Java fact types if you
convert the input XML facts to Java facts. For example, you could create some rules in
a ruleset, named conver t Fr omXM_, and put this ruleset before the Java ruleset in the
decision function ruleflow. Similarly, you could create a ruleset to convert from Java
facts to output XML facts and put this ruleset after the Java ruleset in the decision
function ruleflow.

Alternatively, if your rules use only properties, and no methods or fields, from the
Java fact types you can replace the Java fact types with XML fact types as follows:

1. Delete the Java fact types (first making careful note of the aliases of the fact types
and properties).

2. Import similar XML fact types and edit the aliases of the fact types and properties
to be the same as the deleted Java fact types and properties.

C.9 How Do | Enable Debugging in a BPEL Decision Service?

To enable debugging output during ruleset execution for a BPEL Decision Service, you
enable the SOA rules logger. When the SOA rules logger is set to TRACE level then the
output of wat chAl | is logged to the SOA diagnostic log. When you change the
logging level using Fusion Middleware Control Console, you do not need to redeploy
the application to use the specified level.

For information on using the SOA oracle.soa.service.rules and
oracle.soa.services.rules.obrtrace loggers, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

C.10 How Do I Support Versioning with Oracle Business Rules?
Versioning is supported in Oracle Business Rules.

The two possible ways are:

* At design time, the dictionary is stored as an XML file in a JDeveloper project. The
dictionary can be versioned in a source control system in the same way as any
other source file.

® At runtime, the dictionary is stored in MDS. If MDS is database backed then
versioning is supported using MDS.

Note: It is possible for a server application to respond to dictionary changes as they are
made visible to the application in MDS. The rule service engine (decision service) does
this automatically. For non-SCA application, this can be done using the

C-7

RuleRepository interface. At this time, they way to support an "in-draft" version is by
using the sandbox feature of MDS. The Oracle Business Rules RuleRepository interface
supports this.

C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?

The priority for rules and decision tables is highest to lowest, with the higher priority
rule or Decision Table executing first. For example, if you create rules with priorities
1-4, they would be executed in the execution priority order 4,3,2,1.

Using Rules Designer you can select a priority from a predefined named priority list or
enter a positive or negative integer to specify your own priority level. The default
priority is medi um(with the integer value 0). For more information, see How to Set a
Priority for a Rule.

Note, however, you should try to avoid priorities as much as possible since they break
the purely declarative model of rules. If you find yourself using a lot of priorities, then
generally it is best to try to restructure your rule patterns and tests to avoid conflicts,
or divide the rules into multiple rulesets using ruleflow if they are intended to be run
in a certain order. A conflict is a case when more than one rule in a ruleset is able to
fire. For example, if a "gold customer" rule says to make a customer that spends over
$1000 a gold customer, and a "silver customer" rule says to make a customer that
spends over $500 a silver customer, then when a customer spends $1100 there is a
conflict. Rather than prioritize the rules, it is more declarative to change the "silver
customer” rule to test for customers that spend between $500 and $1000. This conflict
analysis and conflict avoidance is particularly easy if you use Decision Tables. For
more information on Decision Tables, see Working with Decision Tables.

You use ruleflow, that is the ruleset stack, to order rulesets. For information on
working with the ruleset stack, see Rules Language Reference for Oracle Business Process
Management.

C.12 Why do XML Schema with xsd:string Typed Elements Import as Type
JAXBElement?

According to the JAXB 2.0 spec, the default type mapping for elements that have

m nCccurs="0" and ni | | abl e="t rue" is JAXBEI enent <T>, where T is the
default mapping of the type defined for the element. For example, xsd: st r i ng maps
to JAXBEI erment <St ri ng>, xsd: i nt maps to JAXBEI enment <I| nt eger >, and
xsd: i nt eger maps to JAXBEI enent <Bi gl nt eger >.

This is because ni | | abl e="tr ue" means the user has defined a semantic difference
between a element not being defined in a document, with mi nCccur s=0, it does not
have to be defined, and an element being defined but having the attribute

ni | ="t rue". This is a subtle difference and is often used to define the difference
between an unknown value and a value known to be "no value".

To use the JAXBElement-typed property in a rule, the property must be first checked
for non-null, and then the "value" property or get Val ue() method can be used
retrieve a value of the underlying type:

fact Fact Typel &&
Fact Typel. propl != null &&
Fact Typel. propl. val ue == "abc"

Alternatively, you may want to define a customized JAXB binding so nillable elements

are mapped to type T rather than JAXBEl ermrent <T>. However, this is a lossy
conversion, as you no longer are able to determine the difference between a non-

C-8 Designing Business Rules with Oracle Business Process Management

existent element and a nil one. This does make the nillable attribute less useful, but it
does allow you to explicitly define an element as nil in your document, similarly to
how in Java an Object-typed field is initialized to null by default or you can explicitly
initialize it to null.

There are several ways to do this. In both cases, add these attributes to the top-level
xsd: schema element start tag:

xm ns: jaxb="http://java. sun. con xm / ns/j axb"
j axb: version="2.0"

1. To specify ALL properties to use the binding, add this immediately inside the
xsd:schema opening tag:

<xsd: annot at i on>
<xsd: appi nf 0>
<j axb: gl obal Bi ndi ngs gener at eEl enent Property="fal se"/>
</ xsd: appi nf 0>
</ xsd: annot at i on>

2. To specify only specific properties use the binding, add an annotation like this to
each desired element:

nillable="true">
<xsd: annot at i on>
<xsd: appi nf 0>
<j axb: property generat eEl ement Property="fal se" />
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el ement >

3. Add the definitions to an external customizations file and pass it as an argument
when adding the schema to the datamodel. This can only be done when
programmatically calling the SchemaBrowser class and is not exposed in Rule
Designer.

C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?

Do not import classes that have been compiled into the "SCA-INF/classes" directory.

Classes in this directory cannot be reloaded into the data model when they change.

C.14 How Do | Use Rules SDK to Include a null in an Expression?
You can use Rules SDK code to include a null value.

You can use the following Rules SDK code:

Sinpl eTest test = pattern. getSinpl eTest Tabl e().add();

test.getleft().setValue(attr);
test.setQperator(Uil.TESTOP_NE);
test.getRight().setValue("null");

C.15Is WebDAV Supported as a Repository to Store a Dictionary?

The Web Distributed Authoring and Versioning (WebDAV) repository is not
supported to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1)
Oracle Business Rules. Oracle Business Rules supports using an MDS (file backed or
Database backed) repository for storing dictionaries.

C-9

C.16 Using a Source Code Control System with Rules Designer

There are special considerations when you use Rules Designer and a source control
system, such as CVS or Subversion. When you use a source code control system with
Rules Designer you need to specify that rule dictionary files in your project are
recognized as "binary" files instead of "text" files. The rule dictionary files are XML
documents and by default the source code control system treats these files as text files.

However, rule dictionary files cannot be merged because the files contain semantic
structure. If a rule dictionary file is treated as a text file and then changed, the source
control system attempts to merge the file with a "trivial" merge. Using a trivial merge
creates a semantically invalid dictionary file which cannot be unmarshalled into a
RuleDictionary object.

Thus, when you use a source code control system with rule dictionary files, .rules files,
you need to make sure the source code control system treats the files as binary files.
There are configuration options you need to set to specify that the system treats
dictionary files as binary files. For example, in the Subversion source code control
system you can set the MIME type with the svn: mi ne- t ype file property. For more
information, see

htt p: // svnbook. r ed- bean. coni ni ghtl y/ en/ svn. advanced. props. fil e-
portability. htm #svn. advanced. props. speci al . m ne-type

When you set the source code control system options to specify the binary file type,
this allows the source code control system, for example tortoiseSVN, to treat the rules
dictionary files correctly, as binary files.

C-10 Designing Business Rules with Oracle Business Process Management

http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-portability.html#svn.advanced.props.special.mime-type
http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-portability.html#svn.advanced.props.special.mime-type

D

Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter
when using Oracle Business Rules.

This appendix includes the following sections:

* Getter and Setter Methods are not Visible

¢ Java Class with Only a Property Setter

* Runtime NoClassDefFound Error

* RL Specific Keyword Naming Conflict Errors

¢ java.lang.lllegalAccessError from Business Rules Service Runtime

* JAXB 1.0 Dictionaries and RL MultipleInheritanceException

¢ Why Does XML Schema with Underscores Fail JAXB Compilation?
* How Are Decision Service Input Output Element Types Restricted?
e How Are Decision Service Input Output Schema Restricted?

* How Do I Handle Java Reserved Names in an Imported Fact Type?

D.1 Getter and Setter Methods are not Visible

Rules Designer does not list the methods supporting a Java bean property in choice
lists; only the bean properties are visible. For example, a Java bean with a property
named Y must have at least a getter method get Y() and may also have a setter
method set Y(y-type- paran).

All of properties and methods (including getter and setter that compose the
properties) are displayed when viewing the Java FactType. Only the properties of Java
Classes (not the getter and setter methods) are displayed in choice lists. When
attempting to control the visibility of the property it is best to use the properties
visibility flag. Marking a getter or a setter method as not visible may not remove the
properties from choice lists.

D.2 Java Class with Only a Property Setter

In Java the Java Bean introspector includes write-only properties. Oracle RL does not
include such properties as Beans, because they cannot be reasoned on in a rule.

Thus, in order for Java fact type bean properties to be properly accessed in Oracle RL
they must have both a getter and setter. Properties which have a setter but not a getter,
that is write-only properties, are not allowed in the Oracle RL "new" syntax.

D-1

For example, if a bean Fo0 only has the method set Prop1(i nt i), then you cannot
use the following in Oracle RL:

Foo f = new Foo(propl: 0)

D.3 Runtime NoClassDefFound Error
Sometimes when working with XML facts, you might receive an error.
You may receive an error of the form:

Exception in thread "main" java.lang. Nod assDef FoundError:

The j ava. | ang. Nod assDef FoundEr r or is very likely due to required classes not
in classpath. Try checking the following:

e Addxm .j ar to your classpath when executing.

¢ Add the directory where the generated and compiled JAXB classes are placed to
the classpath.

D.4 RL Specific Keyword Naming Conflict Errors

Oracle Business Rules escapes RL specific keywords when generating RL from Rules
Designer.

In most cases, RL specific keywords can be used without causing errors. One
exception is using a keyword as the name of a class. This is unlikely for Java classes
because by convention they start with an upper case letter and RL specific keywords
are all lowercase..

D.5 java.lang.lllegalAccessError from Business Rules Service Runtime
There may be errors
Problem: I receive an error such as the following:

java.lang. |1l egal AccessError: tried to access class
com sun. xm . bind.v2.runtime.reflect.opt.Const fromclass:...

Reason: This can be due to JAXB 2.1.6 issue 490, caused when unmarshalling incorrect,
for example letter characters when float is expected, data as described at the following
site,

http://java.net/jiral browse/ JAXB-490

Workaround: the workaround for this problem is to assign a value to the appropriate
element, as shown in Figure D-1 and Figure D-2 where appr oval Requi r ed is
assigned a default value f al se() .

Note that the screen shots reflect a previous version, however, the content is
applicable to the current release.

D-2 Designing Business Rules with Oracle Business Process Management

http://java.net/jira/browse/JAXB-490

Figure D-1 Adding an Expression to Initialize a Value for a Business Rules Service Input

('_}J'Start Page | s40radeRulesl rules

I #5 BPELProcess1.bpel

=% OrderBookingRules. xsd | s40racleRules] . rules | s BPELProcess1. bpel W=]

. - 2 o
v R Bv 33 \.'gv Eﬂ dg I_\-“v) &d BPELT ® Ij
i ‘
§ P A
& Assign b4
| General r Copy Operation r Sensars r Annokations |
/Xt .
Fram To
(x) ¥ariable (x) ¥ariable
inputvariable/payload)/dient:proce... com_example_globalcompany _ns_o
@ E/I EXpression (x) ¥ariable
com_example_globalcompany_ns_o
§
| Help | Apply || Ok || Cancel |
BPEL_Header - [process)sequence//scopeysequence/assign[3] Zoom: E d;

Nesinn ©Snnere | Hisknes

Figure D-2 Expression Assigned to Input Variable for Business Rules Service

& Edit Co py Operation

From To
Type: |Expressi0n v| Type: |Variable v|
Expression: E’i D SRS
E}ﬁga Process
false() I D Variables
E}-/#4 Scope - BusinessRule_1
EID Variables
E}---(J} com_example_globalcompany_ns_or
; E}---(_-) nsliapprove
e NSl iprice
-+ |ns1:approvalRequired
-(x) com_example_globalcompany_ns_or:
(x) dsIn
-(x) dsOut
[] Show Detailed Node Information
¥Path: |,fnsl:approve,fnsl:approvalRequired |
| Help | [0]4 | | Cancel |

D.6 JAXB 1.0 Dictionaries and RL MultiplelnheritanceException

Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0,
which is the default for Oracle Fusion Middleware 11g Release 1 (11.1.1) dictionaries.

D-3

Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types.
If your dictionary has Element types marked as visible, generated RL may throw
Mul ti pl el nheritanceExcepti on.

The solution to this issue is to mark the Element fact types non-visible or remove them
from the datamodel. Only the Type classes generated by JAXB should be used to write
rules, so there is no functionality loss from deleting the Element types.

D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?

The defined behavior of JAXB is to fail when a name of the form"' _' + number is
found. In this case JAXB cannot generate an "obvious" Java class name from this string.
The default behavior of JAXB for' _' + char is to treat it as a word boundary

(under scor eBi ndi ng="asWr dSepar at or "), which means the underscore is
stripped and the char is UpperCamelCased. For example, _f ooBar is mapped to
FooBar.

To fix this problem, you need to provide a schema customization to direct JAXB to
generate the names differently. The default value for under scor eBi ndi ng is
specified as " asWor dSepar at or ", which does not allow an underscore to be used at
the beginning of a name.

The global annotation under scor eBi ndi ng="asChar | n\Wr d" causes the' _' to be
preserved in the classname and UpperCamelCase after the number:

<xsd: annot at i on><xsd: appi nf 0>
<j axb: gl obal Bi ndi ngs under scor eBi ndi ng="asChar | nWrd" />
</ xsd: appi nf 0></ xsd: annot at i on>

With this global annotation, the mapping for _1f oo_bar _baz is _1Foo_Bar _Baz.

D.8 How Are Decision Service Input Output Element Types Restricted?

Using the Decision Service to run business rules with XML schema defining the input,
for any given conpl exType "tFoo" in an XML-Schema file Foo. xsd there can only be
one XML-Schema element "f 00" of type "tFoo".

The Decision Service does not allow you to use two elements "f 00" and "bar " of the
same type "tFoo.

D.9 How Are Decision Service Input Output Schema Restricted?

When you use the Decision Service a schema must define a conpl exType or import
another schema which defines a conpl exType.

You cannot use schemas which do not define conpl exType, such as the following;:

<xsd: schema xm ns: xsd="http: //www. w3. or g/ 2001/ XM_Schenma"
xm ns="http://ww:. exanpl e. org"
tar get Nanespace="htt p: // www. exanpl e. org"
el ement For mDef aul t ="qual i fied">
<xsd: el ement name="count" type="xsd:int"/>
</ xsd: schema>

D.10 How Do | Handle Java Reserved Names in an Imported Fact Type?

In Oracle Business Rules, when you import fact type properties which would have the
same name as a Java language reserved word are excluded.

For a complete list of Java reserved words, see

D-4 Designing Business Rules with Oracle Business Process Management

http://java. sun. con’ docs/ books/tutorial/javal/ nut sandbol t s/
_keywords. ht m

A workaround is to rename the getter and setter method pair that produce the
excluded property. If these methods names cannot be changed, the methods should be
used in rules instead of the properties.

For example, if a property named cont i nue is excluded, you can create rules that use
get Conti nue() and set Cont i nue() methods instead of using the property.You
can do this by rewriting a pattern. For example, replace:

fact IncrCount ic & ic.continue == "foo"
with:
fact IncrCount ic & ic.getContinue() == "foo"

For another example, in an action, replace:

[assert new] |ncrCount(continue:"bar")

with:

[assign new] IncrCount ic = new IncrCount()
[call] ic.setContinue("bar")

[assert] ic

D-5

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

D-6 Designing Business Rules with Oracle Business Process Management

E

Working with Oracle Business Rules and
JSR-94 Execution Sets

This appendix describes the Java Rule Engine API (JSR-94) specification that defines a
standard Java runtime API to access a rule engine from a Java SE or Java EE client.

The appendix includes the following sections:
¢ Introduction to Oracle Business Rules and JSR-94 Execution Sets
* Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

* Using the JSR-94 Interface with Oracle Business Rules

For more information, see:
e http://jcp.org/en/jsr/detail ?i d=94

e http://java.sun.com devel oper/technical Articl es/ J2SE/
JavaRul e. ht m

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets

Oracle Business Rules provides JSR-94 support. This allows you to create more
portable rule-enabled applications.

You can create JSR-94 execution sets from Oracle Business Rules rulesets and you can
create JSR-94 rule sessions from these execution sets. For more information, see
Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets.

You can access Oracle Business Rules rulesets and execute them against the Oracle
Business Rules Engine using the JSR-94 API. For more information, see Using the
JSR-94 Interface with Oracle Business Rules.

Oracle Business Rules also provides extensions to the JSR-94 API that you may find
useful. For more information, see Using Oracle Business Rules JSR-94 Extensions.

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94 rule
execution set.

A JSR-94 rule execution set (rule execution set) is a collection of rules that are intended
to be executed together. You also must register a rule execution set before running it.
A registration associates a rule execution set with a URI; using the URI, you can create
a JSR-94 rule session.

E-1

http://jcp.org/en/jsr/detail?id=94
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

Note:

In Oracle Business Rules, a JSR-94 rule execution set registration is not
persistent. Thus, you must register a rule execution set programmatically
using a JSR-94 Rul eExecut i onSet Pr ovi der interface.

For more information, see Creating a Rule Execution Set with createRuleExecutionSet.

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text

You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL text
is directly included in the rule execution set. For more information, see Using the
Extended createRuleExecutionSet to Create a Rule Execution Set for information about
JSR-94 extensions that assist you in including RL Language text.

To create a rule execution set from Oracle Business Rules Oracle RL language
text:

1. Specify the RL Language mapping information in an XML document. Table E-1
shows the mapping elements required to construct a rule execution set. The
following code example shows a sample XML document for mapping RL
Language text to a JSR-94 rule execution set.

<rul e-execution-set xmns="http://xm ns.oracle.conmrules/jsr94/configuration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Scheme-i nst ance" version="1.0">
<name>Car Rent al Dermo</ name>
<description>The Car Rental Deno</description>
<rul e-source>
<rl-text>
rul eset DM {
fact class carrental.Driver {
hi de property ableToDrive, driverLicNum IiclssueDate, |icenceType,
I'liclssueDate, nunPreAccidents, nunPreConvictions,
nuniear sSi ncelLi cl ssued, vehicl eType;

¥
final String DeclineMessage = " Rental declined ";
public class Decision supports xpath {
public String driverNane;
public String type;
public String nessage;
}
function assertXPath(String package,
java.lang. Object elenment, String xpath) {
[IRL literal statenent
mai n. assert XPat h(package, element, xpath);
1
function printIn(String nessage) {
[IRL literal statenent
mai n. println(nessage);
1
function showDeci si on(DM Deci si on deci sion) {
[IRL literal statenent
DM println("Rental decision is &uot; + decision.type +
" for driver " + decision.driverName +
" for reason " + decision. message);
1
1
<rl-text>

E-2 Designing Business Rules with Oracle Business Process Management

</rul e-source>
<rul e-source>
<rl-text>
rul eset vehicleRent {
rul e Under Age {
priority = 0;
if ((fact carrental.Driver vO_Driver &anp;&anp;
(vO_Driver.age &t; 19))) {
DM printlIn("Rental declined: " + vO_Driver.name +
" Under age, age is: " + vO_Driver.age);
retract (vO_Driver);

}
}

<frl-text>
</rul e-source>
<rul eset-stack>
<rul eset - name>vehi cl eRent </ rul eset - name>
</rul eset-stack>
</rul e-execution-set>

You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a Rul eAdmi ni st rat i on instance).

Table E-1 Oracle Business Rules Oracle RL Language Text XML Mapping

Elements for JSR-94
|

Element Description

<rul e-source> Includes an <r| - t ext > tag containing explicit RL
Language text containing an Oracle Business Rules ruleset.
Multiple <r ul e- sour ce> tags can be used to specify
multiple rulesets (specified in the order in which they are
interpreted).

<rul eset - st ack> Specifies a list of rulesets that form the initial ruleset stack.
The order of the rulesets in the list is from the top of the
stack to the bottom of the stack.

Note:

In the <r | - t ext > element the contents must escape XML predefined entities.

orr oo

This includes the characters '&', '>', '<', ", and '\"".

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL

You can use JSR-94 with Oracle RL rulesets specified using a URL. For more
information, see Using the Extended createRuleExecutionSet to Create a Rule
Execution Set for information about JSR-94 extensions that assist you in specifying a
URL.

To create a rule execution set from Oracle RL text specified in a URL:

1.

Specify the Oracle RL mapping information in an XML document. Table E-2
shows the mapping elements required to construct a rule execution set. The
following code example shows a sample XML document for mapping Oracle RL
text to a JSR-94 rule execution set.

E-3

<?xm version="1.0" encodi ng="UTF-8"?>
<rul e-execution-set xmns="http://xn ns.oracle.con rul es/jsr94/configuration”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance" version="1.0">
<nane>Car Rent al Deno</ name>
<description>The Car Rental Deno</description>
<rul e-source>
<rl-url>
filerrl/DMr1l
<rl-url>
</rul e-source>
<rul e-source>
<rl-url>
file:rl/VehicleRent.rl
<rl-url>
</rul e-source>
<rul eset-stack>
<rul eset - name>vehi cl eRent </ r ul eset - name>
</rul eset-stack>
</rul e-execution-set>

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a Rul eAdmi ni st rat i on instance).

Table E-2 Oracle Business Rules Oracle RL URL XML Mapping Elements for

JSR-94
1
Element Description
<rul e-source> Includes an <r | - ur | > tag containing a URL that specifies
the location of RL Language text. Multiple <r ul e- sour ce>
tags can be used to specify multiple rulesets (in the order in
which they are interpreted).
<rul eset - st ack> Specifies a list of rulesets that form the initial ruleset stack.

The order of the rulesets in the list is from the top of the
stack to the bottom of the stack.

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

A rule execution set may contain rules that are derived from multiple sources and the
sources may be a mix of Rules Designer defined rulesets and RL Language rulesets. In
this case, the XML element <r ul e- execut i on- set > set contains multiple <r ul e-
sour ce> elements, one for each source of rules. You must list each <r ul e- sour ce>
in the order in which they are to be interpreted in Rules Engine.

Note:

For this Oracle Business Rules release, a JSR-94 rule execution set can only
reference one Rules Designer dictionary.

E.3 Using the JSR-94 Interface with Oracle Business Rules
This section describes the Oracle Business Rules specific details for JSR-94 interfaces.

This section contains the following sections:

¢ Creating a Rule Execution Set with createRuleExecutionSet

E-4 Designing Business Rules with Oracle Business Process Management

¢ Creating a Rule Session with createRuleSession
¢ Working with JSR-94 Metadata

* Using Oracle Business Rules JSR-94 Extensions

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet

The Rul eExecut i onSet Provi der and Local Rul eExecuti onSet Pr ovi der
interfaces in j avax. r ul es. admi n include the cr eat eRul eExecut i onSet to
create a Rul eExecut i onSet object.

For the remaining cr eat eRul eExecut i onSet methods, the first argument is
interpreted as shown in Table E-3.

Table E-3 First Argument Types for createRuleExecutionSet Method
- - -~ |

Argument Description

org.w3c. dom El emen Specifies an instance of the <r ul e- execut i on- set > element
t from the configuration schema.

java.lang. String Specifies a URL that specifies the location of an XML document

that is an instance of the <r ul e- execut i on- set > element from
the configuration schema.

java.io.lnputStrea Specifies an input stream that is used to read an XML document
m that is an instance of the <r ul e- execut i on- set > element from
the configuration schema.

java.io. Reader Specifies a character reader that is used to read an XML document
that is an instance of the <r ul e- executi on- set > element from
the configuration schema.

Note:

JSR-94 also includes cr eat eRul eExecut i onSet methods that take a

j ava. | ang. Qbj ect argument, which is intended to be an abstract syntax
tree for the rule execution set. In Oracle Business Rules for Oracle Fusion
Middleware 11g Release 1 (11.1.1), using these methods with this argument is
not supported. Invoking these methods with a j ava. | ang. Cbj ect
argument gives a Rul eExecut i onSet Cr eat eExcept i on exception.

The second argument to the cr eat eRul eExecut i onSet methods is a
java. util. Map of vendor-specific properties.

E.3.2 Creating a Rule Session with createRuleSession

Clients create a JSR-94 rule session using the cr eat eRul eSessi on method in the
Rul eRunt i me class. This method takes aj ava. uti | . Map argument of vendor-
specific properties. This argument can be used to pass in any of the properties defined
for the Oracle Business Rules or acl e. rul es. rl . Rul eSessi on.

If a rule execution set contains URL or repository rule sources, the rules from those
sources are fetched on the creation of each new Rul eSessi on.

E-5

E.3.3 Working with JSR-94 Metadata

JSR-94 allows for metadata for rule execution sets and rules within a rule execution
set. The Oracle Business Rules implementation does not add any additional metadata
beyond what is in the JSR-94 specification.

The rule execution set description is an optional item and thus may not be present. If it
is not present, the empty string is returned. For rules, only the rule name is available
and the description is initialized with an empty string.

E.3.4 Using Oracle Business Rules JSR-94 Extensions

This section covers the extensions provided in the JSR-94 implementation classes.

This section covers the following extensions:
¢ Using the Extended createRuleExecutionSet to Create a Rule Execution Set
¢ Invoking an RL Language Function in JSR-94

E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set

Oracle Business Rules provides a helper function to facilitate creating the XML control
file required as input to create a Rul eExecut i onSet .

The helper method cr eat eRul eExecut i onSet is available in the
RLLocal Rul eExecut i onSet Provi der class. The cr eat eRul eExecut i onSet
method has the following signature:

Rul eExecutionSet createRul eExecutionSet (String nane,
String description,
Rul eSource[] sources,
String[] rul eset Stack,
Map properties)

Table E-4 describes the cr eat eRul eExecut i onSet arguments.

Table E-4 createRuleExecutionSet Arguments
|

Argument Description

name Specifies the name of the rule execution set.

description Specifies the description of the rule execution set.

sour ces Specifies an array of specifications for the sources of rules. The

Rul eSour ce is an interface that the following classes implement:
¢ RLTextSource: RL Language text for RL Language text.
e RLUrI Sour ce: RL Language URL for a URL to RL Language text.

For more information, see the or acl e. rul es. j sr94. adm n package in
Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

rul esetstack Specifies the initial contents of the RL Language ruleset stack to be set
before each time the rules are executed. The contents of the array should
be ordered from the top of stack (Oth element) to the bottom of stack (last
element).

properties Oracle specific properties.

E-6 Designing Business Rules with Oracle Business Process Management

E.3.4.2 Invoking an RL Language Function in JSR-94

In a stateful interaction with a JSR-94 rule session, a user may want the ability to
invoke an arbitrary RL Language function. The class that implements the JSR-94

St at ef ul Rul eSessi on interface provides access to the cal | Funct i on methods in
theoracl e.rules.rl.Rul eSessi on class.

The following example shows how you can invoke an RL Language function with no
arguments in a JSR-94 St at ef ul Rul eSessi on.

import javax.rules.*;
St at ef ul Rul eSessi on session;

((oracle.rules.jsr94. RLSt at ef ul Rul eSession) session). cal | Function("nyFunction");

E-7

E-8 Designing Business Rules with Oracle Business Process Management

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1)

	1 Overview of Oracle Business Rules
	1.1 Introduction to Oracle Business Rules
	1.1.1 Why Use Oracle Business Rules?
	1.1.2 Understanding Oracle Business Rules Terminology
	1.1.2.1 What Are Facts and Valuesets?
	1.1.2.2 What Are Rulesets?
	1.1.2.3 What Are Dictionaries?
	1.1.2.4 What Are Globals?
	1.1.2.5 What Are Decision Functions?
	1.1.2.6 What Are Decision Points?
	1.1.2.7 What Are Business Phrases?

	1.2 Understanding Oracle Business Rules Formats
	1.2.1 Rules
	1.2.1.1 What Are Rule Conditions?
	1.2.1.2 What Are Rule Actions?
	1.2.1.3 How are Verbal Rules Different from General Rules?

	1.2.2 Decision Tables

	1.3 Oracle Business Rules Runtime and Design Time Elements
	1.3.1 Decision Component (Business Rules) in a SOA Composite Application
	1.3.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
	1.3.3 Oracle Business Rules RL Language
	1.3.4 Oracle Business Rules SDK
	1.3.5 Rules Designer
	1.3.6 Oracle SOA Composer Application
	1.3.7 Oracle Business Process Composer Application

	1.4 Oracle Business Rules Engine Architecture
	1.4.1 Declarative Rules
	1.4.2 The Rete Algorithm
	1.4.3 The Non-Rete Algorithm
	1.4.3.1 Configuring the Non-Rete Algorithm

	1.4.4 What Is Working Memory?
	1.4.5 Rule Firing and Rule Sessions

	2 Working with Data Model Elements
	2.1 Introduction to Working with Data Model Elements
	2.2 Introduction to Dictionaries and Dictionary Links
	2.2.1 Working with Dictionaries and Dictionary Links
	2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
	2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
	2.2.4 How to View and Edit Dictionary Settings
	2.2.4.1 How to Change the Dictionary Alias
	2.2.4.2 How to Edit the Preferences tab
	2.2.4.3 How to Edit the Data Model tab

	2.2.5 How to Link to a Dictionary
	2.2.6 How to Update a Linked Dictionary
	2.2.7 What You Need to Know About Dictionary Linking
	2.2.8 What You Need to Know About Dictionary Linking and Dictionary Copies
	2.2.9 What You Need to Know About Dictionary Linking to a Deployed Dictionary
	2.2.10 What You Need to Know About Business Rules Inputs and Outputs with BPEL
	2.2.11 How to Compare or Merge Two or More Dictionaries
	2.2.11.1 How to See Differences Between Dictionaries
	2.2.11.2 How to Merge Dictionaries

	2.3 Working with Oracle Business Rules Globals
	2.3.1 How to Add Oracle Business Rules Globals
	2.3.2 How to Edit Oracle Business Rules Globals
	2.3.3 What You Need to Know About the Final and Constant Options

	2.4 Working with Decision Functions
	2.5 Introduction to Oracle Business Rules Functions
	2.5.1 How to Add an Oracle Business Rules Function

	2.6 Localizing Oracle Business Rule Resources
	2.6.1 How to Localize the Resources in Oracle Business Rules

	3 Working with Facts and Value Sets
	3.1 Introduction to Working with Facts and Value Sets
	3.2 Working with XML Facts
	3.2.1 How to Create XML fact types
	3.2.2 How to Import the XML Schema and Add XML Facts
	3.2.3 How to Display and Edit XML Facts
	3.2.4 How to Reload XML Facts with Updated Schema
	3.2.5 What You Need to Know About XML Facts

	3.3 Working with Java Facts
	3.3.1 How to Import Java Classes and Define Java Facts
	3.3.2 How to Display and Edit Java Facts
	3.3.3 What You Need to Know About Java Facts

	3.4 Working with RL Facts
	3.4.1 How to Define RL Facts
	3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
	3.4.3 What You Need to Know About RL Facts

	3.5 Working with ADF Business Components Facts
	3.5.1 How to Import and Define ADF Business Components Facts
	3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
	3.5.3 What You Need to Know About ADF Business Components Circular References
	3.5.4 What You Need to Know About ADF Business Components Facts

	3.6 Working with Value Sets
	3.6.1 How to Define a List of Values Global Value Set
	3.6.2 How to Define a List of Ranges Global Value Set
	3.6.3 How to Define an Enumerated Type (Enum) Value Set from XML Types
	3.6.4 How to Define an Enumerated Type (Enum) Value Set from Java Types
	3.6.5 What You Need to Know About List of Values Value Sets
	3.6.6 What You Need to Know About Range Value Sets
	3.6.7 What You Need to Know About the Value Set Allowed in Actions Option
	3.6.8 What You Need to Know About Values

	3.7 Associating a Value Set with Business Terms
	3.7.1 How to Associate a Value Set with a Fact Property
	3.7.2 How to Associate a Value Set with Functions or Function Arguments
	3.7.2.1 How to Associate a Value Set with a Function Argument

	3.7.3 How to Associate a Value Set with a Global Value

	4 Working with Rulesets and Rules
	4.1 Introduction to Working with Rulesets, Rules, and Business Phrases
	4.2 Working with Rulesets
	4.2.1 How to Create a Ruleset
	4.2.2 How to Set the Effective Date for a Rule Set
	4.2.3 How to Set the Effective Date for a Rule
	4.2.4 How to Use a Filter to Display Matching Rules in a Ruleset
	4.2.5 Using Auto Complete when Selecting Component Values from a List

	4.3 Working with Rules
	4.3.1 How to Add General Rules
	4.3.2 How to Add Verbal Rules
	4.3.3 How to Define a Test in a Rule
	4.3.4 How to Define a Test in a Verbal Rule
	4.3.5 What You Need to Know About Oracle Business Rules Test Variables
	4.3.6 How to Define Range Tests in Rules
	4.3.7 How to Define Set Tests in Rules
	4.3.8 How to Define an Action in a General Rule
	4.3.8.1 Basic Actions in a General Rule

	4.3.9 How to Define an Action in a Verbal Rule
	4.3.10 What You Need to Know About Rule Actions
	4.3.11 What You Need to Know About Oracle Business Rules Performance Tuning

	4.4 Introduction to Verbal Rules and Business Phrases
	4.4.1 Working with Business Phrases
	4.4.1.1 Business Phrases Tab
	4.4.1.2 Draft Business Phrases and Verbal Rules

	4.4.2 How to Create Business Phrases
	4.4.2.1 Example Business Phrase Creation Scenario
	4.4.2.2 Translating Business Phrases

	4.4.3 Choosing or Adding Business Phrases in Verbal Rules
	4.4.3.1 Instantiating New Business Phrases While Authoring a Verbal Rule
	4.4.3.2 Choosing Business Phrases While Creating a Verbal Rule
	4.4.3.3 Derived Business Phrases
	4.4.3.4 Choosing Which Business Phrases to See in the List

	4.5 Validating Dictionaries
	4.5.1 Understanding Data Model Validation
	4.5.2 Understanding Rule Validation
	4.5.3 Understanding Decision Table Validation
	4.5.4 How to Validate a Dictionary

	4.6 Using Advanced Settings with Rules and Decision Tables
	4.6.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
	4.6.2 How to Select the Advanced Mode Option
	4.6.3 How to Select the Active Option
	4.6.4 How to Select the Logical Option
	4.6.5 How to Set a Priority for a Rule
	4.6.6 How to Specify Effective Dates

	4.7 Working with Nested Tests
	4.8 Working with Advanced Mode Rules
	4.8.1 How to Use Advanced Mode Pattern Matching Options
	4.8.2 How to Use Advanced Mode Matched Fact Naming
	4.8.3 How to Use Advanced Mode Action Forms
	4.8.3.1 Advanced Mode Action Options in Rule Designer

	4.8.4 How to Use Advanced Mode Aggregate Conditions
	4.8.4.1 Using Aggregate Functions

	4.8.5 What You Need to Know About Advanced Mode Rules
	4.8.5.1 How to Clear Advanced Mode Option

	4.9 Working with Extended Tests
	4.9.1 Extended Test Forms

	4.10 Working with Tree Mode Rules
	4.10.1 Sample Abbreviated PO XML Instance
	4.10.2 Understanding Tree Mode Rules (Non-Advanced Mode)
	4.10.3 Understanding Advanced Tree Mode Rules
	4.10.4 How to Create Simple Tree Mode Rules
	4.10.5 How to Create Advanced Tree Mode Rules
	4.10.6 What You Need to Know About Tree Mode Rules

	4.11 Using Date Facts, Date Functions, and Specifying Effective Dates
	4.11.1 How to Use the Current Date Fact
	4.11.2 What You Need to Know About Effective Dates
	4.11.3 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

	4.12 Introduction to Expression Builder
	4.12.1 How to Use the Expression Builder
	4.12.2 What You Need to Know About Working with Expressions

	4.13 Using Value Sets as Constraints for Options Values in Rules
	4.13.1 How to Use a List of Ranges Value Set as a Constraint for a Business Term
	4.13.2 How to Use a List of Values Value Set as a Constraint for a Fact Property
	4.13.3 How to Use Value Sets to Provide Options for Test Expressions

	4.14 Importing Runtime Rules Changes From Repository Into JDeveloper
	4.15 How to Model Rules When the Data Model is Deep

	5 Working with Decision Tables
	5.1 Introduction to Working with Decision Tables
	5.1.1 What is a Decision Table?
	5.1.1.1 What You Need to Know About Decision Table Conditions
	5.1.1.2 What You Need to Know About Decision Table Actions
	5.1.1.3 What You Need to Know About Decision Table Rules

	5.1.2 Understanding Condition Cell Values
	5.1.3 Understanding Action Cell Values
	5.1.4 What You Need to Know About Decision Table Loops

	5.2 Creating Decision Tables
	5.2.1 How to Create a Decision Table
	5.2.2 How to Add Condition Rows to a Decision Table
	5.2.3 How to Use or Specify the Value Set for a Decision Table Condition
	5.2.4 How to Add Actions to a Decision Table
	5.2.4.1 How to Set Values for Action Cells in a Decision Table
	5.2.4.2 How to Deselect an Action Cell in a Decision Table

	5.2.5 How to Add a Rule to a Decision Table
	5.2.6 How to Define Tests in a Decision Table

	5.3 Introduction to Decision Table Operations
	5.3.1 Understanding Decision Table Split and Compact Operations
	5.3.1.1 Understanding Decision Table Move Operations
	5.3.1.2 Understanding Decision Table Gap Checking
	5.3.1.3 Understanding Decision Table Conflict Analysis

	5.3.2 How to Compact or Split a Decision Table
	5.3.3 How to Merge or Split Conditions in a Decision Table
	5.3.4 How to Use the Condition Cell Operations
	5.3.4.1 How to Merge Sibling Cells in a Condition in a Decision Table
	5.3.4.2 How to Split a Cell in a Condition in a Decision Table
	5.3.4.3 How to a "Do Not Care" Value for a Cell in a Condition in a Decision Table
	5.3.4.4 How to Select all Value Sets to Specify a "Do Not Care" Value for a Cell in a Condition:

	5.3.5 How to Perform Decision Table Gap Checking
	5.3.6 How to Perform Decision Table Manual Conflict Resolution
	5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy
	5.3.8 How to Set the Decision Table Ignore Conflicts Policy

	5.4 Creating and Running an Oracle Business Rules Decision Table Application
	5.4.1 How to Obtain the Source Files for the Order Approval Application
	5.4.2 How to Create an Application for Order Approval
	5.4.3 How to Create a Business Rule Service Component for Order Approval
	5.4.4 How to View Data Model Elements for Order Approval
	5.4.5 How to Add Value Sets to the Data Model for Order Approval
	5.4.5.1 How to Add CreditScore Value Set to the Data Model

	5.4.6 How to Associate Value Sets with Order and CreditScore Properties
	5.4.7 How to Add a Decision Table for Order Approval
	5.4.7.1 How to Create an action in a Decision Table
	5.4.7.2 Split the Cells in the Decision Table and Add Actions
	5.4.7.3 How to Add Actions for Each Rule in the Decision Table
	5.4.7.4 Compact the Decision Table
	5.4.7.5 Replace Several Specific Rules with One General Rule
	5.4.7.6 Add a General Rule
	5.4.7.7 How to Enable the Auto Override Conflict Resolution Policy

	5.4.8 How to Check the Business Rule Validation Log for Order Approval
	5.4.9 How to Deploy the Order Approval Application
	5.4.10 How to Test the Order Approval Application

	5.5 Editing Decision Tables in Microsoft Excel
	5.5.1 Understanding What is Exported
	5.5.2 How to Export Decision Tables
	5.5.3 How to Import Edited Decision Tables Back to the Dictionary
	5.5.4 How to Edit Decision Tables in Excel
	5.5.4.1 Adding or Deleting Rules and Merging or Splitting Cells
	5.5.4.2 Adding or Removing Value Sets
	5.5.4.3 Showing or Hiding Value Sets and Editing the Description
	5.5.4.4 Setting Preferences
	5.5.4.5 Using Simple or Advanced Mode
	5.5.4.6 Hiding or Showing the Readme Worksheet
	5.5.4.7 Editing Condition Cells
	5.5.4.8 Editing Actions
	5.5.4.9 Editing Expressions
	5.5.4.10 Editing Action Expression Parameters
	5.5.4.11 Editing Descriptions
	5.5.4.12 Using the Auto-Addition Feature
	5.5.4.13 Aliases of Values in the Value Sets Worksheet
	5.5.4.14 Syncing Value Sets and Conditions

	6 Working with Decision Functions
	6.1 Introduction to Decision Functions
	6.2 Working with Decision Functions
	6.2.1 How to Edit an Existing Decision Function
	6.2.2 How to Change the Order of Inputs
	6.2.3 How to Change the Order of Outputs
	6.2.4 How to Edit a Decision Function

	6.3 What You Need to Know About Rule Firing Limit Option for Debugging Rules
	6.4 What You Need to Know to About Decision Function Arguments
	6.5 What You Need to Know About the Decision Function Stateless Option

	7 Testing and Validating Business Rules
	7.1 Overview
	7.1.1 Components of the Test Feature

	7.2 Testing Rules in JDeveloper
	7.2.1 How to Create and Manage Test Suites and Cases
	7.2.2 How to Create Test Templates
	7.2.3 How to Run Test Suites or Cases
	7.2.4 How to Run Ad-hoc Tests from Test Templates
	7.2.5 How to Run Tests for a Specific Decision Function

	7.3 Testing Rules in Business Process Composer
	7.4 Testing Rules in SOA Composer
	7.4.1 How to Create and Manage Test Suites and Cases
	7.4.2 How to Create Test Templates
	7.4.3 How to Run Test Suites or Cases
	7.4.4 How to Run Ad-hoc Tests from Test Templates
	7.4.5 How to Run Tests for a Specific Decision Function

	7.5 Testing Decision Functions Using a Rules Function
	7.5.1 What You Need to Know About Testing Decision Functions

	7.6 Testing Decision Services in SOA Composites

	8 Working with Rules in Standalone (Non SOA/BPM) Scenarios
	8.1 Loading a Dictionary from the Repository
	8.2 Executing a Rule Dictionary
	8.3 Introduction to the Rules SDK Decision Point API
	8.3.1 Working with Decision Point API
	8.3.2 How to Obtain the Car Rental Sample Application
	8.3.3 How to Open the Car Rental Sample Application and Project

	8.4 Creating a Dictionary for Use with a Decision Point
	8.4.1 How to Create Data Model Elements for Use with a Decision Point
	8.4.2 How to View a Decision Function to Call from the Decision Point
	8.4.3 How to Create Rules or Decision Tables for the Decision Function
	8.4.4 What You Need to Know About Using Car Rental Sample with a Decision Table

	8.5 Creating a Java Application Using Rules SDK Decision Point
	8.5.1 How to Add a Decision Point Using Decision Point Builder
	8.5.2 How to Use a Decision Point with a Pre-loaded Dictionary
	8.5.3 How to Use Executor Service to Run Threads with Decision Point
	8.5.4 How to Create and Use Decision Point Instances
	8.5.4.1 Sample Code to Create a Decision Point Instance with getInstance()

	8.6 Running the Car Rental Sample
	8.6.1 Sample Output from Car Rental

	8.7 What You Need to Know About Using Decision Point in a Production Environment
	8.8 What You Need to Know About Decision Point and Decision Tracing
	8.8.1 Sample Usage of Decision Tracing

	9 Creating a Rule-enabled Non-SOA Java EE Application
	9.1 Introduction to the Grades Sample Application
	9.2 Creating an Application and a Project for Grades Sample Application
	9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
	9.2.2 How to Develop Accessible ADF Faces Pages
	9.2.3 How to Create the Grades Project
	9.2.4 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
	9.2.4.1 How to generate JAXB 2.0 content model from grades schema

	9.2.5 How to Create an Oracle Business Rules Dictionary in the Grades Project

	9.3 Creating Data Model Elements and Rules for the Grades Sample Application
	9.3.1 How to Create Value Sets for Grades Sample Application
	9.3.2 How to Associate a Value Set with a Fact Property
	9.3.3 How to Add a Decision Table for Grades Sample Application
	9.3.4 How to Add an Action to a Decision Table
	9.3.5 How to Add Rules in the Decision Table for Grades Sample Application
	9.3.6 How to Rename the Decision Function for Grades Sample Application

	9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
	9.4.1 How to Add a Servlet to the Grades Project

	9.5 Adding an HTML Test Page for Grades Sample Application
	9.6 Preparing the Grades Sample Application for Deployment
	9.6.1 How to Create the WAR File for the Grades Sample Application
	9.6.2 How to Add the Rules Library to the Grades Sample Application
	9.6.3 How to Add the MDS Deployment File to the Grades Sample Application
	9.6.4 How to Add the EAR File to the Grades Sample Application

	9.7 Deploying and Running the Grades Sample Application
	9.7.1 How to Deploy to Grades Sample Application
	9.7.2 How to Run the Grades Sample Application

	10 Working with Oracle Business Rules and ADF Business Components
	10.1 Introduction to Using Business Rules with ADF Business Components
	10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
	10.1.2 Understanding Oracle Business Rules Decision Point Action Type
	10.1.2.1 Sample ActionType Implementation

	10.2 Using Decision Points with ADF Business Components Facts
	10.2.1 How to Call a Decision Point with ADF Business Components Facts
	10.2.1.1 Setting the Decision Point Transaction
	10.2.1.2 Setting Runtime Properties
	10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule
	10.2.1.4 What You Need to Know About Decision Point Invocation
	10.2.1.5 Sample to Invoke a Decision Point Using setinputs Method
	10.2.1.6 Sample to Invoke a Decision Point Using setViewObject Method

	10.2.2 How to Call a Decision Function with Java Decision Point Interface
	10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

	10.3 Creating a Business Rules Application with ADF Business Components Facts
	10.3.1 How to Create an Application That Uses ADF Business Components Facts
	10.3.2 How to Create ADF Business Components Application for Business Rules
	10.3.3 How to Update View Object Tuning for Business Rules Sample Application
	10.3.4 How to Create a Dictionary for Oracle Business Rules
	10.3.5 How to Add Decision Point Dictionary Links
	10.3.6 How to Import the ADF Business Components Facts
	10.3.6.1 How to Mark a Property as Non-visible
	10.3.6.2 How to Set Alias for DepartmentsView and EmployeesView

	10.3.7 How to Add and Run the Outside Manager Ruleset
	10.3.7.1 How to Add the Outside Manager Ruleset and Add a Decision Function
	10.3.7.2 How to Create the ActionType Java Implementation Class
	10.3.7.3 How to Import the Message Action Java Fact
	10.3.7.4 How to Add the Find Managers Rule
	10.3.7.5 How to Add the Outside Manager Finder Class
	10.3.7.6 How to Update ADF META INF for Local Dictionary Access
	10.3.7.7 How to Copy Definitions/Dictionary to MDS Accessible Location
	10.3.7.8 How to Build and Run the Project to Check the Outside Manager Finder

	10.3.8 How to Add and Run the Department Manager Ruleset
	10.3.8.1 How to Add the Department Manager Finder Ruleset
	10.3.8.2 How to Add the Find Rule in the Department Manager Finder Ruleset
	10.3.8.3 How to Add Retract Employees Ruleset
	10.3.8.4 How to Add the Find Department Managers Decision Function
	10.3.8.5 How to Add the Department Manager Finder Java Class
	10.3.8.6 How to Copy the Dictionary to an MDS Accessible Location
	10.3.8.7 How to Build and Run the Project to Check the Find Managers Rule

	10.3.9 How to Add and Run the Raises and Retract Employees Rulesets
	10.3.9.1 How to Add the Raises Ruleset
	10.3.9.2 How to Create the Raise ActionType Java Implementation Class
	10.3.9.3 How to Import the Raise Action Java Fact
	10.3.9.4 How to Add the 12 Year Raise Rule
	10.3.9.5 How to Add the Employee Raises Decision Function
	10.3.9.6 How to Add the Employee Raises Java Class
	10.3.9.7 How to Copy Dictionary to MDS Accessible Location
	10.3.9.8 How to Build and Run the Project to Check the Raises Rule

	11 Working with Decision Components in SOA Applications
	11.1 Introduction to Decision Components
	11.2 Working with a Decision Component
	11.2.1 Working with Decision Component Metadata
	11.2.2 Working with Decision Components that Expose a Decision Function
	11.2.3 Using Stateful Interactions with a Decision Component
	11.2.4 What You Need to Know About Stateful Interactions with Decision Components

	11.3 Decision Service Architecture

	12 Using Oracle SOA Composer with Oracle Business Rules at Runtime
	12.1 Introduction to Oracle SOA Composer
	12.1.1 Creating and Publishing Sessions
	12.1.1.1 Publishing Changes for an Oracle Business Rules Dictionary
	12.1.1.2 Creating a Bookmark
	12.1.1.3 Reviewing Dictionary Settings

	12.1.2 Using Oracle SOA Composer User Authentication
	12.1.3 What You Need to Know About SOA Composer Access Control and User Authentication

	12.2 Setting Accessibility Options
	12.2.1 How to Set Accessibility Features Before Logging In
	12.2.2 How to Set Accessibility Options After Logging In

	12.3 Opening and Viewing an Oracle Business Rules Dictionary
	12.3.1 How to View and Edit Rulesets
	12.3.1.1 How to Add Verbal Rules in SOA Composer

	12.3.2 How to View and Edit Value Sets
	12.3.3 How to View and Edit Globals
	12.3.4 How to View and Edit Business Phrases
	12.3.5 How to View and Edit Tests
	12.3.6 How to View Explorer
	12.3.7 How to View and Edit Facts
	12.3.8 How to View Decision Functions
	12.3.9 How to View Linked Dictionary Names
	12.3.10 How to Work With Dictionary Links in an Oracle Business Rules Dictionary
	12.3.11 How to View and Edit Translations

	12.4 Getting Started with Editing a Dictionary
	12.4.1 What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer
	12.4.2 What You May Need to Know About Cutting/Copying and Pasting Rule Elements
	12.4.3 How to Edit Globals in an Oracle Business Rules Dictionary
	12.4.4 How to Edit Value Sets in an Oracle Business Rules Dictionary
	12.4.5 How to Edit Decision Functions in an Oracle Business Rules Dictionary
	12.4.6 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.4.7 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.5 Editing Rules in an Oracle Business Rules Dictionary
	12.5.1 Using the Rulesets Tab
	12.5.2 How to Edit Rules in an Oracle Business Rules Dictionary
	12.5.3 How to Add a Rule
	12.5.4 How to Delete a Rule
	12.5.5 How to Show and Edit Advanced Settings for Rules
	12.5.6 How to Add Rule Conditions
	12.5.7 How to Delete Rule Conditions
	12.5.8 How to Modify Rule Conditions
	12.5.9 How to Add Rule Actions
	12.5.10 How to Delete Rule Actions
	12.5.11 How to Modify Rule Actions
	12.5.12 How to Work with Advanced Mode Rules
	12.5.12.1 Working with Advanced Mode Options

	12.5.13 How to Work with Extended Tests
	12.5.14 How to Work with Tree Mode Rules
	12.5.15 What You May Need to Know About Oracle Business Rules Editor Declarative Component
	12.5.16 What You May Need to Know About Oracle Business Rules Dictionary Editor Declarative Component
	12.5.17 What You May Need to Know About Oracle Business Rules Dictionary Editor Task Flow

	12.6 Using the Oracle SOA Composer Browser Windows
	12.6.1 Expression Builder
	12.6.2 Condition Browser
	12.6.3 Date Browser
	12.6.4 Right Operand Browser

	12.7 Editing Decision Tables in an Oracle Business Rules Dictionary
	12.7.1 Adding a Decision Table
	12.7.2 Adding Condition Rows to a Decision Table
	12.7.3 Adding Actions to a Decision Table
	12.7.4 Adding Rules to a Decision Table
	12.7.4.1 Editing Decision Table Cells
	12.7.4.2 Controlling the Order of Rules in a Decision Table

	12.7.5 Deleting Rules in a Decision Table
	12.7.6 Defining Tests in a Decision Table
	12.7.7 Splitting and Compacting a Decision Table
	12.7.8 Checking for Missing Rules in a Decision Table
	12.7.9 Performing Conflict Resolution in Decision Tables
	12.7.10 Switching From Rows to Columns
	12.7.11 Working with Advanced Mode Options in a Decision Table
	12.7.12 Deleting a Decision Table
	12.7.13 Editing Decision Tables in Microsoft Excel
	12.7.13.1 Understanding What is Exported
	12.7.13.2 How to Export Decision Tables
	12.7.13.3 How to Import Decision Tables to the Dictionary
	12.7.13.4 How to Edit Decision Tables in Excel

	12.7.14 What You Need to Know About Rule Test Variables

	12.8 Comparing and Merging Oracle Business Rules Dictionaries
	12.8.1 How to see Differences Between Dictionaries

	12.9 Localizing Names of Resources in Oracle Business Rules
	12.9.1 How to Localize the Alias of a Oracle Business Rules Component

	12.10 Synchronizing Rules Dictionary in Oracle JDeveloper With Runtime Dictionary Updates
	12.11 Validating and Diagnosing an Oracle Business Rules Dictionary
	12.11.1 Understanding the Validation Log Tab
	12.11.2 Understanding the Diagnostics Tab
	12.11.3 Understanding the History Center Tab
	12.11.4 Understanding the Save Log Tab

	12.12 Working with Tasks
	12.12.1 How to View Task Metadata
	12.12.2 How to Configure a Task or an AMX Rule Metadata
	12.12.2.1 Configuring Event-Driven Settings
	Setting Approval Aggregation Requirements
	Notifying Errors
	Setting Assignment and Routing Policy
	Setting Expiration and Escalation Policy
	Configuring Notification Settings
	Configuring Task Access Settings

	12.12.2.2 Configuring Data-Driven Settings (Rule or Condition)

	Appendices
	A Oracle Business Rules Files and Limitations
	A.1 Rules Designer Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Alias Naming
	A.1.4 XML Schema Target Package Naming

	B Oracle Business Rules Built-in Classes and Functions
	B.1 String Classes
	B.2 List Classes
	B.3 Numeric Classes
	B.4 Time and Duration Classes
	B.5 Miscellaneous Classes
	B.6 Functions

	C Oracle Business Rules Frequently Asked Questions
	C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?
	C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
	C.3 How Does a RuleSession Handle Concurrency and Synchronization?
	C.3.1 Sample RuleSession Shared Objects
	C.3.2 Sample RuleSession Producer Code
	C.3.3 Sample RuleSession Consumer Code

	C.4 How Do I Correctly Express a Self-Join?
	C.4.1 Sample Find All Combinations of Fact F
	C.4.2 Sample Finding Combinations of Fact F
	C.4.3 Sample Fast Complete Comparison

	C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
	C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?
	C.7 How Do I Put Java Code in a Rule?
	C.8 Can I Use Java Based Facts in a Decision Service with BPEL?
	C.9 How Do I Enable Debugging in a BPEL Decision Service?
	C.10 How Do I Support Versioning with Oracle Business Rules?
	C.11 What is the Priority Order Using Priorities with Rules and Decision Tables?
	C.12 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?
	C.13 Why Are Changes to My Java Classes Not Reflected in the Data Model?
	C.14 How Do I Use Rules SDK to Include a null in an Expression?
	C.15 Is WebDAV Supported as a Repository to Store a Dictionary?
	C.16 Using a Source Code Control System with Rules Designer

	D Oracle Business Rules Troubleshooting
	D.1 Getter and Setter Methods are not Visible
	D.2 Java Class with Only a Property Setter
	D.3 Runtime NoClassDefFound Error
	D.4 RL Specific Keyword Naming Conflict Errors
	D.5 java.lang.IllegalAccessError from Business Rules Service Runtime
	D.6 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
	D.7 Why Does XML Schema with Underscores Fail JAXB Compilation?
	D.8 How Are Decision Service Input Output Element Types Restricted?
	D.9 How Are Decision Service Input Output Schema Restricted?
	D.10 How Do I Handle Java Reserved Names in an Imported Fact Type?

	E Working with Oracle Business Rules and JSR-94 Execution Sets
	E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
	E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets
	E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
	E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
	E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

	E.3 Using the JSR-94 Interface with Oracle Business Rules
	E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
	E.3.2 Creating a Rule Session with createRuleSession
	E.3.3 Working with JSR-94 Metadata
	E.3.4 Using Oracle Business Rules JSR-94 Extensions
	E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
	E.3.4.2 Invoking an RL Language Function in JSR-94

