
Oracle® Fusion Middleware
Administering Oracle Coherence

12c (12.2.1)

E55624-08

October 2016

Documentation for System Administrators and Operators that
describes how to deploy Coherence applications and how to
tune production environments for Coherence.

Oracle Fusion Middleware Administering Oracle Coherence, 12c (12.2.1)

E55624-08

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. ix

Audience ... ix

Documentation Accessibility ... ix

Related Documents.. ix

Conventions... x

What's New in This Guide.. xi

New and Changed Features for 12c (12.2.1) .. xi

Other Significant Changes in This Document for 12c (12.2.1)... xi

Part I Basic Administration

1 Deploying Coherence Applications

1.1 Deploying Standalone Coherence Applications ... 1-1

1.1.1 Deploying a Data Tier.. 1-1

1.1.2 Deploying an Application Tier... 1-2

1.1.3 Deploying a Proxy Tier for Extend Clients... 1-3

1.1.4 Deploying Extend Clients ... 1-4

1.2 Deploying Coherence Applications to WebLogic Server .. 1-5

1.2.1 Overview of the WebLogic Server Coherence Integration... 1-5

1.2.2 Packaging Coherence Applications for WebLogic Server.. 1-6

1.2.3 Setting Up a WebLogic Server Domain Topology for Coherence................................. 1-8

1.2.4 Deploying Coherence Applications To a WebLogic Server Domain.......................... 1-11

1.2.5 Performing Basic Coherence Administration Tasks ... 1-13

1.3 Deploying Coherence Applications to an Application Server (Generic)............................... 1-14

1.3.1 Deploying Coherence as an Application Server Library.. 1-14

1.3.2 Deploying Coherence in a Java EE Module.. 1-14

1.4 Running Multiple Applications in a Single Cluster.. 1-15

1.4.1 Specifying a Scope Name .. 1-16

1.4.2 Scoping Applications in WebLogic Server ... 1-16

1.4.3 Scoping Applications in a Java EE Environment (Generic) ... 1-16

iii

1.4.4 Scoping Applications in a Standalone Environment .. 1-18

1.4.5 Providing a Custom Scope Resolver ... 1-19

2 Performing a Network Performance Test

2.1 Running the Datagram Test Utility... 2-1

2.1.1 How to Test Datagram Network Performance .. 2-3

2.1.2 Understanding Datagram Report Statistics.. 2-5

2.2 Running the Message Bus Test Utility.. 2-6

2.2.1 How to Test Message Bus Performance.. 2-8

2.2.2 Understanding Message Bus Report Statistics... 2-10

3 Performing a Multicast Connectivity Test

3.1 Running the Multicast Test Utility.. 3-1

3.2 How to Test Multicast ... 3-2

3.3 Troubleshooting Multicast Communications.. 3-4

4 Performance Tuning

4.1 Operating System Tuning... 4-1

4.1.1 Socket Buffer Sizes.. 4-1

4.1.2 High Resolution timesource (Linux) ... 4-2

4.1.3 Datagram size (Microsoft Windows)... 4-3

4.1.4 TCP Retransmission Timeout (Microsoft Windows) .. 4-3

4.1.5 Thread Scheduling (Microsoft Windows)... 4-4

4.1.6 Swapping... 4-4

4.1.7 Load Balancing Network Interrupts (Linux).. 4-5

4.2 Network Tuning... 4-6

4.2.1 Network Interface Settings ... 4-7

4.2.2 Network Infrastructure Settings .. 4-7

4.2.3 Switch and Subnet Considerations .. 4-8

4.2.4 Ethernet Flow-Control ... 4-8

4.2.5 Path MTU... 4-8

4.2.6 10GbE Considerations ... 4-9

4.2.7 TCP Considerations ... 4-9

4.3 JVM Tuning .. 4-10

4.3.1 Basic Sizing Recommendation.. 4-10

4.3.2 Heap Size Considerations ... 4-11

4.3.3 Garbage Collection Monitoring.. 4-15

4.4 Data Access Patterns ... 4-16

4.4.1 Data Access Distribution (hot spots) ... 4-16

4.4.2 Cluster-node Affinity... 4-16

4.4.3 Read/Write Ratio and Data Sizes .. 4-16

4.4.4 Interleaving Cache Reads and Writes ... 4-17

iv

5 Production Checklist

5.1 Network Performance Test and Multicast Recommendations ... 5-1

5.2 Network Recommendations .. 5-3

5.3 Cache Size Calculation Recommendations .. 5-5

5.4 Hardware Recommendations .. 5-7

5.5 Operating System Recommendations .. 5-8

5.6 JVM Recommendations .. 5-9

5.7 Oracle Exalogic Elastic Cloud Recommendations .. 5-11

5.8 Security Recommendations.. 5-15

5.9 Application Instrumentation Recommendations.. 5-15

5.10 Coherence Modes and Editions ... 5-15

5.11 Coherence Operational Configuration Recommendations ... 5-18

5.12 Coherence Cache Configuration Recommendations.. 5-18

5.13 Large Cluster Configuration Recommendations .. 5-20

5.14 Death Detection Recommendations.. 5-20

Part II Advanced Administration

6 Persisting Caches

6.1 Overview of Persistence.. 6-1

6.2 Persistence Dependencies... 6-3

6.3 Persisting Caches on Demand ... 6-3

6.4 Actively Persisting Caches ... 6-3

6.5 Using Snapshots to Persist a Cache Service... 6-3

6.5.1 Create a Snapshot ... 6-4

6.5.2 Recover a Snapshot .. 6-4

6.5.3 Remove a Snapshot .. 6-4

6.6 Archiving Snapshots ... 6-5

6.6.1 Defining a Snapshot Archive Directory .. 6-5

6.6.2 Specifying a Directory Snapshot Archiver ... 6-5

6.6.3 Performing Snapshot Archiving Operations.. 6-5

6.6.4 Creating a Custom Snapshot Archiver.. 6-7

6.7 Enabling Active Persistence Mode.. 6-8

6.7.1 Changing the Partition Count When Using Active Persistence 6-9

6.8 Modifying the Pre-Defined Persistence Environments.. 6-9

6.8.1 Changing the Pre-Defined Persistence Directory .. 6-10

6.9 Creating Persistence Environments .. 6-11

6.9.1 Define a Persistence Environment ... 6-11

6.9.2 Configure a Persistence Mode.. 6-11

6.9.3 Configure Persistence Directories.. 6-12

6.9.4 Configure a Cache Service to Use a Persistence Environment 6-12

6.10 Changing the Active Persistence Failure Response.. 6-13

v

6.11 Configuring the Quorum for Persistence Recovery .. 6-13

6.12 Subscribing to Persistence JMX Notifications.. 6-15

6.13 Managing Persistence.. 6-15

6.13.1 Plan for Persistence Storage.. 6-15

6.13.2 Monitor Persistence Storage Usage ... 6-16

6.13.3 Monitoring Persistence Latencies .. 6-16

6.14 Configuring Caches as Transient... 6-17

7 Federating Caches Across Clusters

7.1 Overview of Federated Caching.. 7-1

7.2 General Steps for Setting Up Federated Caching.. 7-2

7.3 Defining Federation Participants... 7-2

7.4 Changing the Default Settings of Federation Participants .. 7-3

7.5 Understanding Federation Topologies... 7-4

7.6 Defining Federation Topologies .. 7-7

7.6.1 Defining Active-Passive Topologies.. 7-8

7.6.2 Defining Active-Active Topologies ... 7-8

7.6.3 Defining Hub and Spoke Topologies .. 7-8

7.6.4 Defining Central Federation Topologies... 7-9

7.6.5 Defining Custom Topologies.. 7-9

7.7 Defining Federated Cache Schemes.. 7-10

7.8 Associating a Federated Cache with a Federation Topology.. 7-10

7.9 Overriding the Destination Cache... 7-11

7.10 Limiting Federation Service Resource Usage .. 7-12

7.11 Resolving Federation Conflicts.. 7-12

7.11.1 Processing Federated Connection Events... 7-12

7.11.2 Processing Federated Change Events.. 7-14

7.11.3 Federating Events to Custom Participants ... 7-15

7.12 Using a Specific Network Interface for Federation Communication................................... 7-17

7.13 Load Balancing Federated Connections .. 7-18

7.13.1 Using Federation-Based Load Balancing .. 7-18

7.13.2 Implementing a Custom Federation-Based Load Balancing Strategy...................... 7-19

7.13.3 Using Client-Based Load Balancing .. 7-19

7.14 Managing Federated Caching.. 7-20

7.14.1 Monitor Cluster Participant Status .. 7-20

7.14.2 Monitor Federation Performance and Throughput .. 7-21

A Platform-Specific Deployment Considerations

A.1 Deploying to Oracle HotSpot JVMs ... A-1

A.1.1 Heap Sizes... A-1

A.1.2 AtomicLong.. A-2

A.1.3 OutOfMemoryError .. A-2

A.2 Deploying to IBM JVMs ... A-2

vi

A.2.1 OutOfMemoryError .. A-2

A.2.2 Heap Sizing... A-2

A.3 Deploying to Linux ... A-3

A.3.1 TSC High Resolution Timesource .. A-3

A.4 Deploying to Solaris.. A-3

A.4.1 Solaris 10 (x86 and SPARC).. A-3

A.4.2 Solaris 10 Networking... A-4

A.4.3 Solaris Network Interface Cards ... A-4

A.4.4 Solaris Link Aggregation.. A-4

A.5 Deploying to Windows .. A-4

A.5.1 Performance Tuning.. A-4

A.5.2 Personal Firewalls.. A-4

A.5.3 Disconnected Network Interface... A-5

A.6 Deploying to OS X .. A-5

A.6.1 Multicast and IPv6... A-5

A.6.2 Socket Buffer Sizing... A-5

A.7 Deploying to z/OS.. A-5

A.7.1 EBCDIC ... A-5

A.7.2 Multicast.. A-6

A.8 Deploying to AIX .. A-6

A.8.1 Multicast and IPv6... A-6

A.9 Deploying to Virtual Machines... A-6

A.9.1 Multicast Connectivity.. A-6

A.9.2 Performance.. A-6

A.9.3 Fault Tolerance... A-7

A.10 Deploying to Cisco Switches ... A-7

A.10.1 Buffer Space and Packet Pauses ... A-7

A.10.2 Multicast Connectivity on Large Networks... A-7

A.10.3 Multicast Outages.. A-7

A.10.4 Multicast Time-to-Live.. A-9

A.11 Deploying to Foundry Switches ... A-9

A.11.1 Multicast Connectivity.. A-10

A.12 Deploying to IBM BladeCenters ... A-10

A.12.1 MAC Address Uniformity and Load Balancing ... A-10

B Log Message Glossary

B.1 TCMP Log Messages ... B-1

B.2 Configuration Log Messages ... B-8

B.3 Partitioned Cache Service Log Messages ... B-9

Index

vii

viii

Preface

Welcome to Administering Oracle Coherence. This document provides key
administration concepts and detailed instructions for administering Coherence
clusters and caches.

Audience
This guide is intended for the following audiences:

• Primary Audience – Administrators and Operators who want to administer
Coherence clusters in their network environment.

• Secondary Audience – System Architects and developers who want to understand
the options for administering Coherence.

The audience should be familiar with Java and JavaEE. In addition, the examples in
this guide require the installation and use of the Oracle Coherence product. Users
should be familiar with running command line scripts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Coherence
documentation set:

• Administering HTTP Session Management with Oracle Coherence*Web

• Developing Applications with Oracle Coherence

• Developing Remote Clients for Oracle Coherence

• Installing Oracle Coherence

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Integrating Oracle Coherence

• Managing Oracle Coherence

• Securing Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

•

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide, and provides pointers to
additional information.

New and Changed Features for 12c (12.2.1)
Oracle Coherence 12c (12.2.1) includes the following new and changed features for this
document.

• Persistence, which manages the backup and recovery of Coherence distributed
caches. See Persisting Caches.

• Federated Caching, which replicates and synchronizes cache data across multiple
geographically dispersed clusters. See Federating Caches Across Clusters .

Other Significant Changes in This Document for 12c (12.2.1)
For 12c (12.2.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Revised instructions for running a multicast connectivity test. See Performing a
Multicast Connectivity Test.

• Revised instructions for changing the default cluster port. See “Changing the
Default Cluster Port.”

• Revised IPv4 and IPv6 recommendations. “Ensure a Consistent IP Protocol.”

• Added a section about firewall port configuration. See “Plan for Firewall Port
Configuration.”

• Revised recommendations for Oracle Exalogic Elastic Cloud. See “Oracle Exalogic
Elastic Cloud Recommendations”.

• Added new log messages to the log message reference. See Log Message Glossary.

xi

Part I
Basic Administration

Part I contains the following chapters:

• Deploying Coherence Applications

• Performing a Network Performance Test

• Performing a Multicast Connectivity Test

• Performance Tuning

• Production Checklist

1
Deploying Coherence Applications

This chapter provides instructions for deploying Coherence as a standalone
application and as a Java EE application. Specific instructions are provided for
WebLogic Server.

The following sections are included in this chapter:

• Deploying Standalone Coherence Applications

• Deploying Coherence Applications to WebLogic Server

• Deploying Coherence Applications to an Application Server (Generic)

• Running Multiple Applications in a Single Cluster

1.1 Deploying Standalone Coherence Applications
Standalone Coherence applications are comprised of distributed processes that
perform different roles. For deployment, it is often beneficial to logically group these
processes into tiers based on their role; however, it is not a requirement for
deployment. The most common tiers are a data tier, application tier, proxy tier, and
extend client tier. Tiers facilitate deployment by allowing common artifacts,
packaging, and scripts to be defined and targeted specifically for each tier.

This section includes the following topics:

• Deploying a Data Tier

• Deploying an Application Tier

• Deploying a Proxy Tier for Extend Clients

• Deploying Extend Clients

1.1.1 Deploying a Data Tier
A data tier is comprised of cache servers that are responsible for storing cached
objects. A Coherence application may require any number of cache servers in the data
tier. The number of cache servers depends on the amount of data that is expected in
the cache and whether the data must be backed up and survive a server failure. Each
cache server is a Coherence cluster member and runs in its own JVM process and
multiple cache server processes can be collocated on a physical server. For details on
planning the number of cache servers for an application, see “Cache Size Calculation
Recommendations” and “Hardware Recommendations”.

Cache servers are typically started using the
com.tangosol.net.DefaultCacheServer class. The class contains a main
method and is started from the command line. For details about starting a cache
server, see Developing Applications with Oracle Coherence.

Deploying Coherence Applications 1-1

The following application artifacts are often deployed with a cache server:

• Configuration files such as the operational override configuration file, the cache
configuration file and the POF user type configuration file.

• POF serializers and domain objects

• Data grid processing implementations such as queries, entry processor, entry
aggregators, and so on.

• Event processing implementations.

• Cache store and loader implementations when caching objects from data sources.

There are no restrictions on how the application artifacts must be packaged on a data
tier. However, the artifacts must be found on the server classpath and all configuration
files must be found before the coherence.jar library if the default names are used;
otherwise, the default configuration files that are located in the coherence.jar
library are loaded. The following example starts a single cache server using the
configuration files in the APPLICATION_HOME\config directory and uses the
implementations classes in the APPLICATION_HOME\lib\myClasses library:

java -server -Xms4g -Xmx4g -cp APPLICATION_HOME\config;APPLICATION_HOME\lib
\myClasses.jar;COHERENCE_HOME\lib\coherence.jar com.tangosol.net.DefaultCacheServer

If you choose to include any configuration overrides as system properties (rather than
modifying an operational override file), then they can be included as -D arguments to
the java command. As a convenience, you can reuse the COHERENCE_HOME\bin
\cache-server script and modify it as required.

GAR Deployment

Coherence application artifacts can be packaged as a Grid ARchive (GAR) and
deployed with the DefaultCacheServer class. A GAR adheres to a specific
directory structure and includes an application descriptor. For details about GAR
packaging, see “Building a Coherence GAR Module”. The instructions are included as
part of WebLogic server deployment, but are also applicable to a GAR being deployed
with the DefaultCacheServer class.

The following example starts a cache server and uses the application artifacts that are
packaged in the MyGar.gar file. The default name (MyGAR) is used as the application
name, which provides a scope for the application on the cluster.

java -server -Xms4g -Xmx4g -cp APPLICATION_HOME\config;COHERENCE_HOME\lib
\coherence.jar com.tangosol.net.DefaultCacheServer D:\example\MyGAR.gar

You can override the default name by providing a different name as an argument. For
details about valid DefaultCacheServer arguments, see Developing Applications
with Oracle Coherence. For details about application scope, see “Running Multiple
Applications in a Single Cluster”.

1.1.2 Deploying an Application Tier
An application tier is comprised of any number of clients that perform cache
operations. Cache operations include loading objects in the cache, using cached
objects, processing cached data, and performing cache maintenance. The clients are
Coherence cluster members, but are not responsible for storing data.

The following application artifacts are often deployed with a client:

Deploying Standalone Coherence Applications

1-2 Administering Oracle Coherence

• Configuration files such as the operational override configuration file, the cache
configuration file and the POF user type configuration file.

• POF serializers and domain objects

• Data grid processing implementations such as queries, entry processor, entry
aggregators, and so on.

• Event processing implementations.

• Cache store and loader implementations when caching objects from data sources.

There are no restrictions on how the application artifacts must be packaged on an
application tier. Clients must include the COHERENCE_HOME/lib/coherence.jar
library on the application classpath. Coherence configuration files must be included in
the classpath and must be found before the coherence.jar library if the default
names are used; otherwise, the default configuration files that are located in the
coherence.jar library are loaded. The following example starts a client using the
configuration files in the APPLICATION_HOME\config directory and uses the
implementations classes in the APPLICATION_HOME\lib\myClasses.jar library.

java -cp APPLICATION_HOME\config;APPLICATION_HOME\lib\myClasses.jar;COHERENCE_HOME
\lib\coherence.jar com.MyApp

If you choose to include any system property configuration overrides (rather than
modifying an operational override file), then they can be included as -D arguments to
the java command. For example, to disable storage on the client, the
tangosol.coherence.distributed.localstorage system property can be
used as follows:

java -Dcoherence.distributed.localstorage=false -cp APPLICATION_HOME
\config;APPLICATION_HOME\lib\myClasses.jar;COHERENCE_HOME\lib\coherence.jar com.MyApp

Note:

If a GAR is used for deployment on a cache server, then cache services are
restricted by an application scope name. Clients must use the same application
scope name; otherwise, the clients can not access the cache services. For details
about specifying an application scope name, see “Running Multiple
Applications in a Single Cluster”.

1.1.3 Deploying a Proxy Tier for Extend Clients
A proxy tier is comprised of proxy servers that are responsible for handling extend
client requests. Any number of proxy servers may be required in the proxy tier. The
number of proxy servers depends on the expected number of extend clients and the
expected request load of the clients. Each proxy server is a cluster member and runs in
its own JVM process and multiple proxy server processes can be collocated on a
physical server. For details on extend clients and setting up proxies, see Developing
Remote Clients for Oracle Coherence.

A proxy server is typically started using the
com.tangosol.net.DefaultCacheServer class. The class contains a main
method and is started from the command line. For details about starting a cache
server, see Developing Applications with Oracle Coherence. There is no difference between
a proxy server and a cache server.

The following application artifacts are often deployed with a proxy:

Deploying Standalone Coherence Applications

Deploying Coherence Applications 1-3

• Configuration files such as the operational override configuration file, the cache
configuration file and the POF user type configuration file.

• POF serializers and domain objects. If an extend client is implemented using C++
or .NET, then a Java version of the objects must also be deployed for certain use
cases.

• Data grid processing implementations such as queries, entry processor, entry
aggregators, and so on.

• Event processing implementations.

• Cache store and loader implementations when caching objects from data sources.

There are no restrictions on how the application artifacts must be packaged on a proxy
tier. However, the artifacts must be found on the server classpath and all configuration
files must be found before the coherence.jar library; otherwise, the default
configuration files that are located in the coherence.jar library are loaded. The
following example starts a single proxy server using the configuration files in the
APPLICATION_HOME\config directory and uses the implementations classes in the
APPLICATION_HOME\lib\myClasses library:

java -server -Xms512m -Xmx512m -Dcoherence.distributed.localstorage=false -cp
APPLICATION_HOME\config;APPLICATION_HOME\lib\myClasses.jar;COHERENCE_HOME\lib
\coherence.jar com.tangosol.net.DefaultCacheServer

GAR Deployment

Coherence application artifacts can be packaged as a Grid ARchive (GAR) and
deployed with the DefaultCacheServer class. A GAR adheres to a specific
directory structure and includes an application descriptor. For details about GAR
packaging, see “Building a Coherence GAR Module”. The instructions are included as
part of WebLogic server deployment, but are also applicable to a GAR being deployed
with the DefaultCacheServer class.

The following example starts a proxy server and uses the application artifacts that are
packaged in the MyGar.gar file. The default name (MyGAR) is used as the application
name, which provides a scope for the application on the cluster.

java -server -Xms512m -Xmx512m -Dcoherence.distributed.localstorage=false -cp
APPLICATION_HOME\config;APPLICATION_HOME\lib\myClasses.jar;COHERENCE_HOME\lib
\coherence.jar com.tangosol.net.DefaultCacheServer D:\example\MyGAR.gar

You can override the default name by providing a different name as an argument. For
details about valid DefaultCacheServer arguments, see Developing Applications
with Oracle Coherence. For details about application scope, see “Running Multiple
Applications in a Single Cluster”.

1.1.4 Deploying Extend Clients
Extend clients are implemented as Java, C++, or .NET applications. In addition, any
client technology that provides a REST client API can use the caching services in a
Coherence cluster. Extend clients are applications that use Coherence caches, but are
not members of a Coherence cluster. For deployment details specific to these clients,
see Developing Remote Clients for Oracle Coherence.

The following Coherence artifacts are often deployed with an extend client:

• Configuration files such as the operational override configuration file, the cache
configuration file and the POF user type configuration file.

Deploying Standalone Coherence Applications

1-4 Administering Oracle Coherence

• POF serializers and domain objects.

• Data grid processing implementations such as queries, entry processor, entry
aggregators, and so on.

• Event processing implementations.

1.2 Deploying Coherence Applications to WebLogic Server
WebLogic Server includes a Coherence integration that standardizes the way
Coherence applications can be deployed and managed within a WebLogic Server
domain. The integration allows administrators to set up distributed Coherence
environments using familiar WebLogic Server components and infrastructure, such as
Java EE-styled packaging and deployment, remote server management, server
clusters, WebLogic Scripting Tool (WLST) automation, and configuration through the
Administration Console.

The instructions in this section assume some familiarity with WebLogic Server and
assume that a WebLogic Server domain has already been created. All instructions are
provided using the WebLogic Server Administration Console. For details on using the
WebLogic Server Administration Console, see Oracle WebLogic Server Administration
Console Online Help. For additional details on configuring and managing Coherence
clusters, see Administering Clusters for Oracle WebLogic Server.

This section includes the following topics:

• Overview of the WebLogic Server Coherence Integration

• Packaging Coherence Applications for WebLogic Server

• Setting Up a WebLogic Server Domain Topology for Coherence

• Deploying Coherence Applications To a WebLogic Server Domain

• Performing Basic Coherence Administration Tasks

1.2.1 Overview of the WebLogic Server Coherence Integration
Coherence is integrated with WebLogic Server. The integration aligns the lifecycle of a
Coherence cluster member with the lifecycle of a managed server: starting or stopping
a server JVM starts and stops a Coherence cluster member. The first member of the
cluster starts the cluster service and is the senior member.

Like other Java EE modules, Coherence supports its own application module, which is
called a Grid ARchive (GAR). The GAR contains the artifacts of a Coherence
application and includes a deployment descriptor. A GAR is deployed and
undeployed in the same way as other Java EE modules and is decoupled from the
cluster service lifetime. Coherence applications are isolated by a service namespace
and by class loader.

Coherence is typically setup in tiers that provide functional isolation within a
WebLogic Server domain. The most common tiers are: a data tier for caching data and
an application tier for consuming cached data. A proxy server tier and an extend client
tier should be setup when using Coherence*Extend. An HTTP session tier should be
setup when using Coherence*Web. See the Administering HTTP Session Management
with Oracle Coherence*Web for instructions on deploying Coherence*Web and
managing HTTP session data.

Deploying Coherence Applications to WebLogic Server

Deploying Coherence Applications 1-5

WebLogic managed servers that are associated with a Coherence cluster are referred
to as managed Coherence servers. Managed Coherence servers in each tier can be
individually managed but are typically associated with respective WebLogic Server
clusters. A GAR must be deployed to each data and proxy tier server. The same GAR
is then packaged within an EAR and deployed to each application and extend client
tier server. The use of dedicated storage tiers that are separate from client tiers is a best
practice that ensures optimal performance.

1.2.2 Packaging Coherence Applications for WebLogic Server
Coherence applications must be packaged as a GAR module for deployment. A GAR
module includes the artifacts that comprise a Coherence application and adheres to a
specific directory structure. A GAR can be left as an unarchived directory or can be
archived with a .gar extension. A GAR is deployed as both a standalone module and
within an EAR. An EAR cannot contain multiple GAR modules.

1.2.2.1 Building a Coherence GAR Module

To build a Coherence GAR module:

1. Create the following GAR directory structure:

/
/lib/
/META-INF/

2. Add the Coherence cache configuration file and the POF configuration file (if
required) to a directory within the GAR. For example:

/
/lib/
/META-INF/coherence-cache-config.xml
/META-INF/pof-config.xml

Note:

The configuration files should not be placed in the root directory of the GAR.
If the configuration files are placed in the root, do not use the default names as
shown; otherwise, the configuration files are loaded from the
coherence.jar file which is located in the system classpath.

3. Create a coherence-application.xml deployment descriptor file and save it
to the /META-INF directory. A Coherence GAR must contain a coherence-
application.xml deployment descriptor that is located within the META-INF
directory. The presence of the deployment descriptor indicates a valid GAR.

/
/lib/
/META-INF/coherence-application.xml
/META-INF/coherence-cache-config.xml
/META-INF/pof-config.xml

4. Edit the coherence-application.xml file and specify the location of the
configuration files from step 2. For example:

<?xml version="1.0"?>
<coherence-application>
 xmlns="http://xmnls.oracle.com/coherence/coherence-application">

Deploying Coherence Applications to WebLogic Server

1-6 Administering Oracle Coherence

 <cache-configuration-ref>META-INF/coherence-cache-config.xml
 </cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

Note:

• Configuration files can be placed on a network and referenced using a URL
instead of copying the files locally to the GAR.

• The cache configuration file can be overridden at runtime with a cluster
cache configuration file. For details, see Administering Clusters for Oracle
WebLogic Server.

• The cache configuration file can also be overridden at runtime using a
JNDI property. See Developing Oracle Coherence Applications for Oracle
WebLogic Server and Administering Clusters for Oracle WebLogic Server.

5. Place all Coherence application Java classes (entry processors, aggregators, filters,
and so on) in the root directory within the appropriate package structure.

6. Place any library dependencies in the /lib directory.

7. Use the Java jar command from the root directory to compress the archive with
a .gar extension. For example:

jar cvf MyApp.gar *

1.2.2.2 Packaging a GAR Module in an EAR Module

A GAR module must be packaged in an EAR module to be referenced by other
modules. For details on creating an EAR module, see Developing Applications for Oracle
WebLogic Server.

To include a GAR module within an EAR module:

1. Copy a GAR to the root directory of an EAR together with any application modules
(WAR, EJB, and so on) that use Coherence.

2. Edit the META-INF/weblogic-application.xml descriptor and include a
reference to the GAR using the <module> element. The reference is required so
that the GAR is deployed when the EAR is deployed. For example:

<?xml version = '1.0'>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application
 http://www.bea.com/ns/weblogic/weblogic-application/1.0/
 weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
 <module>
 <name>MyAppGAR</name>
 <type>GAR</type>
 <path>MyApp.gar</path>
 </module>
</weblogic-application>

Deploying Coherence Applications to WebLogic Server

Deploying Coherence Applications 1-7

1.2.3 Setting Up a WebLogic Server Domain Topology for Coherence
Coherence supports different domain topologies within a WebLogic Server domain to
provide varying levels of performance, scalability, and ease of use. For example,
during development, a single managed Coherence server instance may be used as
both a cache server and a cache client. The single-server topology is easy to setup and
use, but does not provide optimal performance or scalability. For production,
Coherence is typically setup using WebLogic Server clusters. A WebLogic Server
cluster is used as a Coherence data tier and hosts one or more cache servers; a different
WebLogic Server cluster is used as a Coherence application tier and hosts one or more
cache clients; and (if required) different WebLogic Server clusters are used for the
Coherence proxy tier that hosts one or more managed Coherence proxy servers and
the Coherence extend client tier that hosts extend clients. The tiered topology
approach provides optimal scalability and performance. A domain topology should
always be based on the requirements of an application.

Use the following guidelines when creating a domain topology for Coherence:

• A domain typically contains a single Coherence cluster.

• Multiple WebLogic Server clusters can be associated with a Coherence cluster.

• A managed server that is associated with a Coherence cluster is referred to as a
managed Coherence server and is the same as a Coherence cluster member.

• Use different managed Coherence server instances (and preferably different
WebLogic Server clusters) to separate Coherence cache servers and clients.

• Coherence members managed within a WebLogic Server domain should not join
an external Coherence cluster comprised of standalone JVM cluster members.
Standalone JVM cluster members cannot be managed within a WebLogic Server
domain.

1.2.3.1 Create a Coherence Cluster

To create a Coherence cluster using the WebLogic Server console:

1. From the console home page's Environment section, click Coherence Clusters.

2. From the Summary of Coherence Clusters page, click New.

3. From the Create a Coherence Cluster Configuration page, enter a name for the
cluster using the Name field.

4. Click Next and skip to step 6.

Or,

Click to select the Use a Custom Cluster Configuration File check-box. WebLogic
Server MBeans expose a subset of the operational settings that are sufficient for
most use cases. However, for advanced use cases that require full control over
operational settings, a cluster configuration file (such as the tangosol-
coherence-override.xml file) can be used. Click Next. For details on using
cluster operational settings, see Developing Applications with Oracle Coherence.

Note:

Deploying Coherence Applications to WebLogic Server

1-8 Administering Oracle Coherence

The use of an external cluster configuration file is only recommended for
operational settings that are not available through the provided MBeans. That
is, avoid configuring the same operational settings in both an external cluster
configuration file and through the MBeans.

5. From the Create a Coherence Cluster Configuration File screen, use the File Path
field to enter the path and name of a cluster configuration file that is located on the
administration server. Click Next and skip to step 7.

6. From the Coherence Cluster Addressing section, leave the default clustering mode
(Unicast) and change the port if required. To use multicast, use the drop-down list
and select Multicast and provide a unique multicast address and port for the
cluster. Click Next.

If Unicast is used, the cluster automatically creates a Well Known Addresses
(WKA) list based on the managed Coherence server instances in the Coherence
cluster (one per machine). You can edit the cluster definition using the
Administration Console and define your own WKA list if you wish to change the
number of members. Addresses must be entered using the actual IP address on the
host and not localhost; otherwise, the managed Coherence servers will not be
able to join with other cluster members. For details on WKA, see Developing
Applications with Oracle Coherence.

7. From the Coherence Cluster Members section, click to select the managed
Coherence servers or WebLogic Server clusters to be part of the Coherence cluster
or skip this section if managed Coherence servers and WebLogic Clusters are yet to
be defined.

8. Click Finish. The Summary of Coherence Clusters screen displays and the
Coherence Clusters table lists the cluster.

1.2.3.2 Create Coherence Deployment Tiers

The preferred approach for setting up Coherence in a WLS domain is to separate
Coherence cache servers, clients, and proxies into different tiers that are associated
with the same Coherence cluster. Typically, each tier is associated with its own
WebLogic Server cluster of managed Coherence servers. However, a tier may also be
comprised of standalone managed Coherence servers. The former approach provides
the easiest way to manage and scale Coherence because the managed Coherence
servers can inherit the WebLogic Server cluster's Coherence settings and deployments.
Use the instructions in this section to create different WebLogic Server clusters for the
data, application, and proxy tiers. For detailed instructions on creating WebLogic
Server clusters, see Administering Clusters for Oracle WebLogic Server.

To create Coherence deployment tiers:

1. From the console home page's Environment section, click Clusters.

2. From the Summary of Clusters page, click New and select Cluster.

3. From the Create a New Cluster page, use the name field to enter a name for the
WebLogic Server cluster.

4. Leave the default messaging mode (Unicast) and change the broadcast channel as
required, or use the drop-down list and select Multicast and provide a different
multicast address and port if required.

Deploying Coherence Applications to WebLogic Server

Deploying Coherence Applications 1-9

5. Click OK. The Summary of Clusters page displays and the Cluster table lists the
cluster.

6. From the Clusters table, click the cluster to configure it.

7. From the Coherence tab, use the Coherence Cluster drop-down list and select a
Coherence cluster to associate it with this WebLogic Server cluster. Click Save. By
default, the managed Coherence servers assigned to this WebLogic Server cluster
will be storage-enabled Coherence members (cache servers) as indicated by the
Local Storage Enabled field.

8. Repeat steps 1 to 6 to create another WebLogic Server cluster to be used for the
application tier. From the Coherence tab, use the Coherence Cluster drop-down list
and select the Coherence cluster to associate it with this WebLogic Server cluster.

9. Click the Local Storage Enabled check box to remove the check mark and disable
storage on the application tier. The managed Coherence servers assigned to this
WebLogic Server cluster will be storage-disabled Coherence members (cache
factory clients). Click Save.

10. (If applicable) Repeat steps 1 to 6 to create another WebLogic Server cluster to be
used for the proxy tier. From the Coherence tab, use the Coherence Cluster drop-
down list and select the Coherence cluster to associate it with this WebLogic Server
cluster.

11. Click the Local Storage Enabled check box to remove the check mark and disable
storage on the proxy tier. The managed Coherence servers assigned to this
WebLogic Server cluster are storage-disabled Coherence members. Click Save.

12. (If applicable) Repeat steps 1 to 6 to create another WebLogic Server cluster to be
used for the extend client tier. From the Coherence tab, use the Coherence Cluster
drop-down list and select the Coherence cluster to associate it with this WebLogic
Server cluster.

13. Click the Local Storage Enabled check box to remove the check mark and disable
storage on the proxy tier. The managed Coherence servers assigned to this
WebLogic Server cluster are storage-disabled Coherence members. Click Save.

1.2.3.3 Create Managed Coherence Servers For a Coherence Deployment Tier

Managed servers that are associated with a Coherence cluster are Coherence cluster
members and are referred to as managed Coherence servers. Use the instructions in
this section to create managed servers and associate them with a WebLogic Server
cluster that is configured as a Coherence deployment tier. Managed servers
automatically inherit Coherence settings from the WebLogic Server cluster. Existing
managed Coherence servers can be associated with a WebLogic Server cluster as well.
For detailed instructions on creating and configuring managed servers, see Oracle
WebLogic Server Administration Console Online Help.

To create managed servers for a Coherence deployment tier:

1. From the console home page's Environment section, click Servers.

2. Click New to create a new managed server.

3. From the Create a New Server page, enter the server's properties as required.

4. Click the Yes option to add the server to an existing cluster and use the drop-down
list to select a WebLogic Server cluster that has been configured as a Coherence tier.

Deploying Coherence Applications to WebLogic Server

1-10 Administering Oracle Coherence

The managed server inherits the Coherence settings from the WebLogic Server
cluster.

5. Click Finish. The Summary of Servers page displays and the new server is listed.

6. Repeat these steps to create additional managed servers as required.

7. Click the Control tab and select the servers and click Start. For details on starting
servers, see Oracle Fusion Middleware Administering Server Startup and Shutdown for
Oracle WebLogic Server.

1.2.4 Deploying Coherence Applications To a WebLogic Server Domain
Each Coherence deployment tier must include a Coherence application module.
Deploying the application module starts the services that are defined in the GAR's
cache configuration file. For details on packaging Coherence applications, see
“Packaging Coherence Applications for WebLogic Server”. For details on using the
console to deploy applications, see the WebLogic Server Administration Console Help.

Deploy Coherence modules as follows:

• Data Tier (cache servers) – Deploy a standalone GAR to each managed Coherence
server of the data tier. If the data tier is setup as a WebLogic Server cluster, deploy
the GAR to the cluster and the WebLogic deployment infrastructure copies the
module to each managed Coherence server.

• Application Tier (cache clients) – Deploy the EAR that contains GAR and the client
implementation (Web Application, EJB, and so on) to each managed Coherence
server in the cluster. If the application tier is setup as a WebLogic Server cluster,
deploy the EAR to the cluster and the WebLogic deployment infrastructure copies
the module to each managed Coherence server.

• Proxy Tier (proxy servers) – Deploy the standalone GAR to each managed
Coherence server of the proxy tier. If the proxy tier is setup as a WebLogic Server
cluster, deploy the GAR to the cluster and the WebLogic deployment infrastructure
copies the module to each managed Coherence server.

Note:

Proxy tier managed Coherence servers must include a proxy service definition
in the cache configuration file. You can deploy the same GAR to each tier, and
then override the cache configuration file of just the proxy tier servers by
using a cluster-level cache configuration file. For details on specifying a
cluster-level cache, see Administering Clusters for Oracle WebLogic Server.

• Extend Client Tier (extend clients) – Deploy the EAR that contains the GAR and the
extend client implementation to each managed server that hosts the extend client. If
the extend client tier is setup as a WebLogic Server cluster, deploy the EAR to the
cluster and the WebLogic deployment infrastructure copies the module to each
managed server.

Note:

Extend tier managed servers must include a remote cache service definition in
the cache configuration file. You can deploy the same GAR to each tier, and
then override the cache configuration file of just the extend tier servers by

Deploying Coherence Applications to WebLogic Server

Deploying Coherence Applications 1-11

using a cluster-level cache configuration file. For details on specifying a
cluster-level cache, see Administering Clusters for Oracle WebLogic Server.

1.2.4.1 Deploy the Data Tier GAR

To deploy a GAR on the data tier:

1. From the console home page's Your Deployed Resources section, click
Deployments.

2. Click Install.

3. From the Install Application Assistant page, locate and select the GAR to be
deployed. Click Next.

4. Select the data tier (WebLogic Server cluster or standalone managed Coherence
servers) to which the GAR should be deployed. Click Next.

5. Edit the Source accessibility settings and select the option to have the module
copied to each target. Click Finish. The Summary of Deployments page displays
and the GAR is listed in the Deployments table.

6. From the list of deployments, select the check box for the GAR and click Start.

1.2.4.2 Deploy the Application Tier EAR

To deploy an EAR on the application tier:

1. From the console home page's Your Deployed Resources section, click
Deployments.

2. Click Install.

3. From the Install Application Assistant page, locate and select the EAR to be
deployed. Click Next.

4. Keep the default target style and click Next.

5. Select the application tier (WebLogic Server cluster or standalone managed
Coherence servers) to which the EAR should be deployed. Click Next.

6. Edit the Source accessibility settings and select the option to have the module
copied to each target. Click Finish. The Summary of Deployments page displays
and the EAR is listed in the Deployments table.

7. From the list of deployments, select the check box for the EAR and click Start.

1.2.4.3 Deploy the Proxy Tier GAR

To deploy a GAR on the proxy tier

1. From the console home page's Your Deployed Resources section, click
Deployments.

2. Click Install.

3. From the Install Application Assistant page, locate and select the GAR to be
deployed. Click Next.

Deploying Coherence Applications to WebLogic Server

1-12 Administering Oracle Coherence

4. Select the proxy tier (WebLogic Server cluster or standalone managed Coherence
servers) to which the GAR should be deployed. Click Next.

5. Edit the Source accessibility settings and select the option to have the module
copied to each target. Click Finish. The Summary of Deployments page displays
and the GAR is listed in the Deployments table.

6. From the list of deployments, select the check box for the GAR and click Start.

1.2.5 Performing Basic Coherence Administration Tasks
Administrators use WebLogic Server tools to manage a Coherence environment
within a WebLogic domain. These tools simplify the tasks of administering a cluster
and cluster members. This section provides an overview of using the Administration
Console tool to perform basic administrative task. For details on completing these
tasks, see the Oracle WebLogic Server Administration Console Online Help. For details on
using the WebLogic Scripting Tool (WLST), see Understanding the WebLogic Scripting
Tool.

Table 1-1 Basic Administration Task in the Administration Console

To... Use the...

Create a Coherence cluster Coherence Clusters page

Add or remove cluster members or WebLogic
Server clusters from a Coherence Cluster

Members Tab located on a Coherence
cluster's Settings page.

Configure unicast or multicast settings for a
Coherence cluster

General Tab located on a Coherence cluster's
Settings page. If unicast is selected, the
default well known addresses configuration
can be overridden using the Well Known
Addresses tab.

Use a custom cluster configuration file to
configure a Coherence cluster

General Tab located on a Coherence cluster's
Settings page

Import a cache configuration file to a cluster
member and override the cache configuration
file deployed in a GAR

Cache Configurations Tab located on a
Coherence cluster's Settings page

Configuring Logging Logging Tab located on a Coherence cluster's
Settings page

Assign a managed server to a Coherence
Cluster

Coherence Tab located on a managed server's
Settings page

Configure Coherence cluster member
properties

Coherence Tab located on a managed server's
Settings page

Associate a WebLogic Server cluster with a
Coherence cluster and enable or disable
storage for the managed Coherence servers of
the cluster

Coherence Tab located on a WebLogic Server
cluster's Settings page

Assign a managed server to WebLogic Server
cluster that is associated with a Coherence
cluster

General Tab located on a managed server's
Settings page

Deploying Coherence Applications to WebLogic Server

Deploying Coherence Applications 1-13

1.3 Deploying Coherence Applications to an Application Server (Generic)
Java EE applications that are deployed to an application server, other than WebLogic
Server, have two options for deploying Coherence: as an application server library or
as part of a Java EE module. Coherence cluster members are class loader scoped.
Therefore, the option selected results in a different deployment scenario. All modules
share a single cluster member if Coherence is deployed as an application server
library. Whereas, a Java EE module is its own cluster member if Coherence is
deployed as part of the module. Each option has its own benefits and assumptions and
generally balances resource utilization with how isolated the cluster member is from
other modules.

Note:

See the Administering HTTP Session Management with Oracle Coherence*Web for
instructions on deploying Coherence*Web and clustering HTTP session data.

1.3.1 Deploying Coherence as an Application Server Library
Coherence can be deployed as an application server library. In this deployment
scenario, an application server's startup classpath is modified to include the
COHERENCE_HOME/lib/coherence.jar library. In addition, any objects that are
being placed into the cache must also be available in the server's classpath. Consult
your application server vendor's documentation for instructions on adding libraries to
the server's classpath.

This scenario results in a single cluster member that is shared by all applications that
are deployed in the server's containers. This scenario minimizes resource utilization
because only one copy of the Coherence classes are loaded into the JVM. See “Running
Multiple Applications in a Single Cluster” for detailed instructions on isolating
Coherence applications from each other when choosing this deployment style.

1.3.2 Deploying Coherence in a Java EE Module
Coherence can be deployed within an EAR file or a WAR file. This style of deployment
is generally preferred because modification to the application server run-time
environment is not required and because cluster members are isolated to either the
EAR or WAR.

1.3.2.1 Deploying Coherence Within an EAR

Coherence can be deployed as part of an EAR. This deployment scenario results in a
single cluster member that is shared by all Web applications in the EAR. Resource
utilization is moderate because only one copy of the Coherence classes are loaded per
EAR. However, all Web applications may be affected by any one module's use of the
cluster member. See “Running Multiple Applications in a Single Cluster” for detailed
instructions for isolating Coherence applications from each other.

To deploy Coherence within an enterprise application:

1. Copy the coherence.jar library to a location within the enterprise application
directory structure.

2. Using a text editor, open the META-INF/application.xml deployment
descriptor.

Deploying Coherence Applications to an Application Server (Generic)

1-14 Administering Oracle Coherence

3. Add a <java> element that contains the path (relative to the top level of the
application directory) and name of the coherence library. For example:

<application>
 <display-name>MyApp</display-name>
 <module>
 <java>coherence.jar</java>
 </module>
 ...
</application>

4. Make sure any objects that are to be placed in the cache are added to the
application in the same manner as described above.

5. Save and close the descriptor.

6. package and deploy the application.

1.3.2.2 Deploying Coherence Within a WAR

Coherence can be deployed as part of a Web application. This deployment scenario
results in each Web application having its own cluster member, which is isolated from
all other Web applications. This scenario uses the most amount of resources because
there are as many copies of the Coherence classes loaded as there are deployed Web
applications that include Coherence. This scenario is ideal when deploying only a few
Web applications to an application server.

To deploy Coherence within a Web application:

1. Copy the coherence.jar library to the Web Application's WEB-INF/lib
directory.

2. Make sure any objects that are to be placed in the cache are located in either the
WEB-INF/lib or WEB-INF/classes directory.

3. Package and deploy the application.

1.4 Running Multiple Applications in a Single Cluster
Coherence can be deployed in shared environments where multiple applications use
the same cluster but define their own set of Coherence caches and services. For such
scenarios, each application uses its own cache configuration file that includes a scope
name that controls whether the caches and services are allowed to be shared among
applications.

The following topics are included in this section:

• Specifying a Scope Name

• Scoping Applications in WebLogic Server

• Scoping Applications in a Java EE Environment (Generic)

• Scoping Applications in a Standalone Environment

• Providing a Custom Scope Resolver

Running Multiple Applications in a Single Cluster

Deploying Coherence Applications 1-15

1.4.1 Specifying a Scope Name
The <scope-name> element is used to specify a service namespace that uniquely
identifies the caches and services in a cache configuration file. If specified, all caches
and services are isolated and cannot be used by other applications that run on the
same cluster.

The following example configures a scope name called accounts and results in the
use of accounts as a prefix to all services instantiated by the
ConfigurableCacheFactory instance that is created based on the configuration.
The scope name is an attribute of a cache factory instance and only affects that cache
factory instance.

Note:

The prefix is only used for service names, not cache names.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>accounts</scope-name>
 </defaults>
 <caching-scheme-mapping>
 ...

1.4.2 Scoping Applications in WebLogic Server
Multiple deployed Coherence applications (GARs) are isolated by a service namespace
and by ClassLoader by default in WebLogic Server and do not require scope name
configuration. However, a scope name may still be configured to share caches between
GARs. Directly configuring the scope in the cache configuration file is typically
performed for advanced use cases.

The deployment name is used as the default scope name when deploying a GAR. If a
deployment name is not specified during deployment, the artifact name is used as the
deployment name. For example, for the MyApp.gar module, the default deployment
name is MyApp. In the case of a GAR packaged in an EAR, the deployment name is the
module name specified for the GAR in the weblogic-application.xml file.

1.4.3 Scoping Applications in a Java EE Environment (Generic)
Deploying Coherence as an application server library, or as part of an EAR, allows
multiple applications to use the same cluster as a single cluster member (one JVM). In
such deployment scenarios, multiple applications may choose to use a single set of
Coherence caches and services that are configured in a single coherence-cache-
config.xml file. This type of deployment is only suggested (and only practical) in
controlled environments where application deployment is coordinated. The likelihood
of collisions between caches, services and other configuration settings is high and may
lead to unexpected results. Moreover, all applications may be affected by any one
application's use of the Coherence node.

Running Multiple Applications in a Single Cluster

1-16 Administering Oracle Coherence

The alternative is to have each application include its own cache configuration file that
defines the caches and services that are unique to the application. The configurations
are then isolated by specifying a scope name using the <scope-name> element in the
cache configuration file. Likewise, applications can explicitly allow other applications
to share their caches and services if required. This scenario assumes that a single JVM
contains multiple ConfigurableCacheFactory instances that each pertains to an
application.

1.4.3.1 Isolating Applications in a JavaEE Environment

The following example demonstrates the steps that are required to isolate two Web
applications (trade.war and accounts.war) from using each other's caches and
services:

1. Create a cache configuration file for the trade application (for example, trade-
cache-config.xml) that defines a scope name called trade and include any
cache scheme definitions for the application:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>trade</scope-name>
 </defaults>
 ...

2. Create a cache configuration file for the accounts application (for example,
accounts-cache-config.xml) that defines a scope name called accounts and
include any cache scheme definitions for the application:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>accounts</scope-name>
 </defaults>
 ...

3. Ensure the cache configurations files are included in their respective WAR files
(typically in the WEB-INF/classes directory) so that they can be loaded at run
time and used by the application.

1.4.3.2 Sharing Application Data in a JavaEE Environment

Applications can share data by allowing access to their caches and services. The
following example demonstrates allowing a Web application (trade.war) to access
the caches and services of another Web application (accounts.war):

1. Create a cache configuration file for the trade application (for example, trade-
cache-config.xml) that defines a scope name called trade and include any
cache scheme definitions for the application:

<?xml version='1.0'?>

Running Multiple Applications in a Single Cluster

Deploying Coherence Applications 1-17

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>trade</scope-name>
 </defaults>
 ...

2. Create a cache configuration file (for example, accounts-cache-config.xml)
for the accounts application that defines a scope name called accounts and
include any cache scheme definitions for the application:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>accounts</scope-name>
 </defaults>
 ...

3. Ensure the cache configurations files are included in their respective WAR files
(typically in the WEB-INF/classes directory) so that they can be loaded at run
time and used by the application.

4. The trade application must also include the accounts-cache-config.xml file
to access the caches and services of the accounts application.

5. The trade application can then use the following pattern to create cache factories
for the accounts application:

ClassLoader loader = ...
CacheFactoryBuilder builder = CacheFactory.getCacheFactoryBuilder();
ConfigurableCacheFactory tradesCcf =
 builder.getConfigurableCacheFactory(tradesUri, loader);
ConfigurableCacheFactory accountsCcf =
 builder.getConfigurableCacheFactory(accountsUri, loader);

1.4.4 Scoping Applications in a Standalone Environment
Standalone applications that use a single Coherence cluster can each include their own
cache configuration files; however, these configurations are coalesced into a single
ConfigurableCacheFactory. Since there is a 1 to 1 relationship between
ConfigurableCacheFactory and DefaultCacheServer, application scoping is
not feasible within a single cluster node. Instead, one or more instances of
DefaultCacheServer must be started for each cache configuration, and each cache
configuration must include a scope name.

The following example isolates two applications (trade and accounts) from using each
other's caches and services:

1. Create a cache configuration file for the trade application (for example, trade-
cache-config.xml) that defines a scope name called trade and include any
cache scheme definitions for the application:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Running Multiple Applications in a Single Cluster

1-18 Administering Oracle Coherence

 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>trade</scope-name>
 </defaults>
 ...

2. Start a DefaultCacheServer instance that loads the trade-cache-
config.xml cache configuration file.

3. Create a cache configuration file for the accounts application (for example,
accounts-cache-config.xml) that defines a scope name called accounts and
include any cache scheme definitions for the application:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <scope-name>accounts</scope-name>
 </defaults>
 ...

4. Start a DefaultCacheServer instance that loads the accounts-cache-
config.xml cache configuration file.

Note:

To share data between applications, the applications must use the same cache
configuration file. Coherence does not support using multiple cache
configurations which specify the same scope name.

1.4.5 Providing a Custom Scope Resolver
The com.tangosol.net.ScopeResolver interface allows containers and
applications to modify the scope name for a given ConfigurableCacheFactory at
run time to enforce (or disable) isolation between applications. Implement the
ScopeResolver interface and add any custom functionality as required.

To enable a custom scope resolver, the fully qualified name of the implementation
class must be defined in the operational override file using the <scope-resolver>
element within the <cache-factory-builder-config> node. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cache-factory-builder-config>
 <scope-resolver>
 <class-name>package.MyScopeResolver</class-name>
 </scope-resolver>
 </cache-factory-builder-config>
<coherence>

Running Multiple Applications in a Single Cluster

Deploying Coherence Applications 1-19

As an alternative, the <instance> element supports the use of a <class-factory-
name> element to specify a factory class that is responsible for creating
ScopeResolver instances, and a <method-name> element to specify the static
factory method on the factory class that performs object instantiation. The following
example gets a custom scope resolver instance using the getResolver method on the
MyScopeResolverFactory class.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cache-factory-builder-config>
 <scope-resolver>
 <class-factory-name>package.MyScopeReolverFactory</class-factory-name>
 <method-name>getResolver</method-name>
 </scope-resolver>
 </cache-factory-builder-config>
<coherence>

Any initialization parameters that are required for an implementation can be specified
using the <init-params> element. The following example sets an isDeployed
parameter to true.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cache-factory-builder-config>
 <scope-resolver>
 <class-name>package.MyScopeResolver</class-name>
 <init-params>
 <init-param>
 <param-name>isDeployed</param-name>
 <param-value>true</param-value>
 </init-param>
 </init-params>
 </scope-resolver>
 </cache-factory-builder-config>
<coherence>

Running Multiple Applications in a Single Cluster

1-20 Administering Oracle Coherence

2
Performing a Network Performance Test

This chapter provides instructions for testing network performance between two or
more computers. Two utilities are provided: a datagram utility and a message bus
utility. Any production deployment should be preceded by a successful run of both
tests.

The following sections are included in this chapter:

• Running the Datagram Test Utility

• Running the Message Bus Test Utility

2.1 Running the Datagram Test Utility
The Coherence datagram test utility is used to test and tune network performance
between two or more computers. The utility ensures that a network is optimally
configured to support Coherence cluster management communication. There are two
types of tests: a point-to-point test that tests the performance of a pair of servers to
ensure they are properly configured, and a distributed datagram test to ensure the
network itself is functioning properly. Both tests need to be run successfully.

The datagram test operates in one of three modes: either as a packet publisher, a
packet listener, or both. When the utility is run, a publisher transmits packets to the
listener who then measures the throughput, success rate, and other statistics. Tune an
environment based on the results of these tests to achieve maximum performance. See
Performance Tuning for more information.

The datagram test utility is run from the command line using either the
com.tangosol.net.DatagramTest class or by running the datagram-test
script that is provided in the COHERENCE_HOME/bin directory. A script is provided
for both Windows and UNIX-based platforms.

The following example demonstrates using the DatagramTest class:

java -server -cp coherence.jar com.tangosol.net.DatagramTest <command value>
<command value> ...

The following example demonstrates using the script:

datagram-test <command value> <command value> ...

Table 2-1 describes the available command line options for the datagram test utility.

Performing a Network Performance Test 2-1

Table 2-1 Command Line Options for the Datagram Test Utility

Command Required/
Optional

Applicabilit
y

Description Default

-local Optional Both The local address to bind to,
specified as addr:port

localhost:
9999

-packetSize Optional Both The size of packet to work with,
specified in bytes.

1468

-payload Optional Both The amount of data to include in
each packet. Use 0 to match packet
size.

0

-
processByte
s

Optional Both The number of bytes (in multiples
of 4) of each packet to process.

4

-
rxBufferSiz
e

Optional Listener The size of the receive buffer,
specified in packets.

1428

-
rxTimeout
Ms

Optional Listener The duration of inactivity before a
connection is closed.

1000

-
txBufferSize

Optional Publisher The size of the transmit buffer,
specified in packets.

16

-txRate Optional Publisher The rate at which to transmit data,
specified in megabytes.

unlimited

-txIterations Optional Publisher Specifies the number of packets to
publish before exiting.

unlimited

-
txDuration
Ms

Optional Publisher Specifies how long to publish before
exiting.

unlimited

-
reportInter
val

Optional Both The interval at which to output a
report, specified in packets.

100000

-
tickInterval

Optional Both The interval at which to output tick
marks.

1000

-log Optional Listener The name of a file to save a tabular
report of measured performance.

none

-logInterval Optional Listener The interval at which to output a
measurement to the log.

100000

-polite Optional Publisher Switch indicating if the publisher
should wait for the listener to be
contacted before publishing.

off

-provider Optional Both The socket provider to use
(system, tcp, ssl,
file:xxx.xml)

system

Running the Datagram Test Utility

2-2 Administering Oracle Coherence

Table 2-1 (Cont.) Command Line Options for the Datagram Test Utility

Command Required/
Optional

Applicabilit
y

Description Default

arguments Optional Publisher Space separated list of addresses to
publish to, specified as addr:port.

none

2.1.1 How to Test Datagram Network Performance
This section includes instructions for running a point-to-point datagram test and a
distributed datagram test. Both tests must be run successfully and show no significant
performance issues or packet loss. For details about interpreting test statistics, see
“Understanding Datagram Report Statistics”.

2.1.1.1 Performing a Point-to-Point Datagram Test

The example in this section demonstrates how to test network performance between
two servers— Server A with IP address 195.0.0.1 and Server B with IP address
195.0.0.2. One server acts as a packet publisher and the other as a packet listener.
The publisher transmits packets as fast as possible and the listener measures and
reports performance statistics.

First, start the listener on Server A. For example:

datagram-test.sh

After pressing ENTER, the utility displays that it is ready to receive packets. Example
2-1 illustrates sample output.

Example 2-1 Output from Starting a Listener

starting listener: at /195.0.0.1:9999
packet size: 1468 bytes
buffer size: 1428 packets
 report on: 100000 packets, 139 MBs
 process: 4 bytes/packet
 log: null
 log on: 139 MBs

The test, by default, tries to allocate a network receive buffer large enough to hold
1428 packets, or about 2 MB. The utility reports an error and exits if it cannot allocate
this buffer. Either decrease the requested buffer size using the -rxBufferSize
parameter, or increase the operating system's network buffer settings. Increase the
operating system buffers for the best performance. See Production Checklist for details
on tuning an operating system for Coherence.

Start the publisher on Server B and direct it to publish to Server A. For example:

datagram-test.sh servera

After pressing ENTER, the test instance on Server B starts both a listener and a
publisher. However, the listener is not used in this configuration. Example 2-2
demonstrates the sample output that displays in the Server B command window.

Example 2-2 Datagram Test—Starting a Listener and a Publisher on a Server

starting listener: at /195.0.0.2:9999
packet size: 1468 bytes
buffer size: 1428 packets

Running the Datagram Test Utility

Performing a Network Performance Test 2-3

 report on: 100000 packets, 139 MBs
 process: 4 bytes/packet
 log: null
 log on: 139 MBs

starting publisher: at /195.0.0.2:9999 sending to servera/195.0.0.1:9999
packet size: 1468 bytes
buffer size: 16 packets
 report on: 100000 packets, 139 MBs
 process: 4 bytes/packet
 peers: 1
 rate: no limit

no packet burst limit
oooooooooOoooooooooOoooooooooOoooooooooOoooooooooOoooooooooOoooooooooOoooooooooO

The series of o and O marks appear as data is (O)utput on the network. Each o
represents 1000 packets, with O indicators at every 10,000 packets.

On Server A, a corresponding set of i and I marks, representing network (I)nput. This
indicates that the two test instances are communicating.

2.1.1.1.1 Performing a Bidirectional Datagram Test

The point-to-point test can also be run in bidirectional mode where servers act as
publishers and listeners. Use the same test instances that were used in the point-to-
point test and supply the instance on Server A with the address for Server B. For
example on Server A run:

datagram-test.sh -polite serverb

The -polite parameter instructs this test instance to not start publishing until it
starts to receive data. Run the same command as before on Server B.

datagram-test.sh servera

2.1.1.2 Performing a Distributed Datagram Test

A distributed test is used to test performance with more than two computers. For
example, setup two publishers to target a single listener. This style of testing is far
more realistic then simple one-to-one testing and may identify network bottlenecks
that may not otherwise be apparent.

The following example runs the datagram test among 4 computers:

On Server A:

datagramtest.sh -txRate 100 -polite serverb serverc serverd

On Server B:

datagramtest.sh -txRate 100 -polite servera serverc serverd

On Server C:

datagramtest.sh -txRate 100 -polite servera serverb serverd

On Server D:

datagramtest.sh -txRate 100 servera serverb serverc

Running the Datagram Test Utility

2-4 Administering Oracle Coherence

This test sequence causes all nodes to send a total of 100MB per second to all other
nodes (that is, 33MB/node/second). On a fully switched 1GbE network this should be
achievable without packet loss.

To simplify the execution of the test, all nodes can be started with an identical target
list, they obviously transmit to themselves as well, but this loopback data can easily be
factored out. It is important to start all but the last node using the -polite switch, as
this causes all other nodes to delay testing until the final node is started.

2.1.2 Understanding Datagram Report Statistics
Each side of the test (publisher and listener) periodically report performance statistics.
The publisher simply reports the rate at which it is publishing data on the network.
For example:

Tx summary 1 peers:
 life: 97 MB/sec, 69642 packets/sec
 now: 98 MB/sec, 69735 packets/sec

The report includes both the current transmit rate (since last report) and the lifetime
transmit rate.

Table 2-2 describes the statistics that can be reported by the listener.

Table 2-2 Listener Statistics

Element Description

Elapsed The time interval that the report covers.

Packet size The received packet size.

Throughput The rate at which packets are being received.

Received The number of packets received.

Missing The number of packets which were detected as lost.

Success rate The percentage of received packets out of the total packets sent.

Out of order The number of packets which arrived out of order.

Average offset An indicator of how out of order packets are.

As with the publisher, both current and lifetime statistics are reported. The following
example demonstrates a typical listener report:

Lifetime:
Rx from publisher: /195.0.0.2:9999
 elapsed: 8770ms
 packet size: 1468
 throughput: 96 MB/sec
 68415 packets/sec
 received: 600000 of 611400
 missing: 11400
 success rate: 0.9813543
 out of order: 2
 avg offset: 1

Now:

Running the Datagram Test Utility

Performing a Network Performance Test 2-5

Rx from publisher: /195.0.0.2:9999
 elapsed: 1431ms
 packet size: 1468
 throughput: 98 MB/sec
 69881 packets/sec
 received: 100000 of 100000
 missing: 0
 success rate: 1.0
 out of order: 0
 avg offset: 0

The primary items of interest are the throughput and success rate. The goal is to find
the highest throughput while maintaining a success rate as close to 1.0 as possible. A
rate of around 10 MB/second should be achieved on a 100 Mb network setup. A rate
of around 100 MB/second should be achieved on a 1 Gb network setup. Achieving
these rates require some throttle tuning. If the network cannot achieve these rates or if
the rates are considerably less, then it is very possible that there are network
configuration issues. For details on tuning network performance, see “Network
Tuning”.

Throttling

The publishing side of the test may be throttled to a specific data rate expressed in
megabytes per second by including the -txRate M parameter, when M represents the
maximum MB/second the test should put on the network.

2.2 Running the Message Bus Test Utility
The Coherence message bus test utility is used to test the performance characteristics
of message bus implementations and the network on which they operate. The utility
ensures that a network is optimally configured to support communication between
clustered data services. In particular, the utility can be used to test the TCP message
bus (TMB) implementation, which is the default transport for non-exalogic systems
and the Infiniband message bus (IMB) implementation, which is the default transport
on Exalogic systems. Tune your environment based on the results of these tests to
achieve maximum performance. See “TCP Considerations,” for more information.

The message bus test utility is run from the command line using the
com.oracle.common.net.exabus.util.MessageBusTest class. The following
example demonstrates using the MessageBusTest class:

java -server -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest
<command value> <command value> ...

Table 2-3 describes the available command line options for the message bus test utility.

Table 2-3 Command Line Options for the Message Bus Test Utility

Command Required/
Optional

Description Default

-bind Required List of one or more local end points to create none

-peer Required List of one or more remote end points to send to none

-rxThreads Optional Number of receive threads per bound EndPoint
(negative for reentrant)

-txThreads Optional Number of transmit threads per bound EndPoint

Running the Message Bus Test Utility

2-6 Administering Oracle Coherence

Table 2-3 (Cont.) Command Line Options for the Message Bus Test Utility

Command Required/
Optional

Description Default

-msgSize Optional Range of message sizes to send, expressed as
min[..max]

4096

-chunkSize Optional Defines the number of bytes to process as a single
unit; that is, 1 for byte, 8 for long, and 0 to disable

-cached Optional Re-use message objects where possible, reducing
buffer manager overhead

-txRate Optional Target outbound data rate as MBps

-
txMaxBackl
og

Optional The maximum backlog the test should produce
per tx thread.

-rxRate Optional Target inbound data rate as MBps. Cannot be used
if -rxThreads is less than or equal to 0.

-flushFreq Optional Number of messages to send before flushing, or 0
for auto

0

-
latencyFreq

Optional Number of messages to send before sampling
latency

100

-noReceipts Optional If specified, then receipts should not be used,
relies on GC to reclaim messages

false

-manager Optional Buffer manager to utilize (net, direct, or heap) net

-
depotFactor
y

Optional The fully qualified class name of a factory to use to
obtain a Depot instance

-
reportInter
val

Optional The report interval 5 seconds

-polite Optional If specified, then this instance does not start
sending until connected to

-block Optional If specified, then a transmit thread blocks while
awaiting a response

false

-relay Optional If specified, then the process relays any received
messages to one of its peers

false

-
ignoreFlow
Control

Optional If specified, then flow control events are ignored.
If flow control events are to be ignored, use the -
txMaxBacklog command to prevent out of
memory errors

false

-poll Optional If specified, then a PollingEventCollector
implementation is used that queues all events and
returns them only when they are for. A polling
collector generally requires the -rxThreads
command set to 1.

Running the Message Bus Test Utility

Performing a Network Performance Test 2-7

Table 2-3 (Cont.) Command Line Options for the Message Bus Test Utility

Command Required/
Optional

Description Default

-prompt Optional If specified, then the user is prompted before each
send

-tabular Optional If specified, then use tabular format for the output

-warmup Optional Time duration or message count that are
discarded for warmup

0

-verbose Optional If specified, then enable verbose debugging output

2.2.1 How to Test Message Bus Performance
This section includes instructions for running a point-to-point message bus test and a
distributed message bus test for the TMB transport. Both tests must be run
successfully and show no significant performance issues or errors.

2.2.1.1 Performing a Point-to-Point Message Bus Test

The example in this section demonstrates how to test network performance between
two servers— Server A with IP address 195.0.0.1 and Server B with IP address
195.0.0.2. Server A acts as a server and Server B acts as a client.

First, start the listener on Server A. For example:

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
servera:8000

After pressing ENTER, the utility displays that it is ready to receive messages.
Example 2-3 illustrates sample output.

Example 2-3 Output from Starting a Server Listener

OPEN event for tmb://195.0.0.1:8000

Start the client on Server B and direct it to send messages to Server A. For example:

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
serverb:8000 -peer tmb://servera:8000

The test instance on Server B starts both a client and a server listener. The message bus
test always performs bi-directional communication. In it's default mode the client
sends an endless stream of messages to the server, and the server periodically replies
to the client. In this configuration most communication is client to server, while the
occasional server to client communication allows for latency measurements. Example
2-4 demonstrates the sample output that displays in the Server B command window.

Note:

The performance results in Example 2-4 may not be indicative of your
network environment.

Running the Message Bus Test Utility

2-8 Administering Oracle Coherence

Example 2-4 Message Bus Test—Starting a Client and Server

OPEN event for tmb://195.0.0.2:8001
CONNECT event for tmb://195.0.0.1:8000 on tmb://195.0.0.2:8001
now: throughput(out 65426msg/s 2.14gb/s, in 654msg/s 21.4mb/s),
 latency(response(avg 810.71us, effective 1.40ms, min 37 .89us, max 19.59ms),
 receipt 809.61us), backlog(out 42% 1556/s 48KB, in 0% 0/s 0B), connections 1,
 errors 0
life: throughput(out 59431msg/s 1.94gb/s, in 594msg/s 19.4mb/s),
 latency(response(avg 2.12ms, effective 3.85ms, min 36.32us, max 457.25ms),
 receipt 2.12ms), backlog(out 45% 1497/s 449KB, in 0% 0/s 0B), connections 1,
 errors 0

The test, by default, tries to use the maximum bandwidth to push the maximum
amount of messages, which results in increased latency. Use the -block command to
switch the test from streaming data to request and response, which provides a better
representation of the network minimum latency:

now: throughput(out 17819msg/s 583mb/s, in 17820msg/s 583mb/s),
 latency(response(avg 51.06us, effective 51.06us, min 43.42us, max 143.68us),
 receipt 53.36us), backlog(out 0% 0/s 0B, in 0% 0/s 0B), connections 1, errors 0
life: throughput(out 16635msg/s 545mb/s, in 16635msg/s 545mb/s),
 latency(response(avg 56.49us, effective 56.49us, min 43.03us, max 13.91ms),
 receipt 59.43us), backlog(out 0% 0/s 2.18KB, in 0% 0/s 744B), connections 1,
 errors 0

2.2.1.1.1 Performing a Bidirectional Message Bus Test

The point-to-point test can also be run in bidirectional mode where servers act as both
client and servers. Use the same test instances that were used in the point-to-point test.
For example on Server A run:

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
servera:8000 -peer tmb://serverb:8000 -polite

The -polite parameter instructs this test instance to not start publishing until it
starts to receive data. On Server B run.

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
serverb:8000 -peer tmb://servera:8000

2.2.1.2 Performing a Distributed Message Bus Test

A distributed test is used to test performance with more than two computers. This
style of testing is far more realistic then simple one-to-one testing and may identify
network bottlenecks that may not otherwise be apparent.

The following example runs a bidirectional message bus test among 4 computers:

On Server A:

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
servera:8000 -peer tmb://serverb:8000 tmb://serverc:8000 tmb://serverd:8000 -polite

On Server B:

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
serverb:8000 -peer tmb://servera:8000 tmb://serverc:8000 tmb://serverd:8000 -polite

On Server C:

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
serverc:8000 -peer tmb://servera:8000 tmb://serverb:8000 tmb://serverd:8000 -polite

Running the Message Bus Test Utility

Performing a Network Performance Test 2-9

On Server D:

java -cp coherence.jar com.oracle.common.net.exabus.util.MessageBusTest -bind tmb://
serverd:8000 -peer tmb://servera:8000 tmb://serverb:8000 tmb://serverc:8000 -polite

It is important to start all but the last node using the -polite switch, as this causes all
other nodes to delay testing until the final node is started.

2.2.2 Understanding Message Bus Report Statistics
Each side of the message bus test (client and server) periodically report performance
statistics. The example output is from the client sending the requests:

throughput(out 17819msg/s 583mb/s, in 17820msg/s 583mb/s),
 latency(response(avg 51.06us, effective 51.06us, min 43.42us, max 143.68us),
 receipt 53.36us), backlog(out 0% 0/s 0B, in 0% 0/s 0B), connections 1, errors 0

The report includes both statistics since the last report (now:) and the aggregate
lifetime statistics (life:).

Table 2-2 describes the message bus statistics.

Table 2-4 Message Bus Statistics

Element Description

throughput The amount of messages per second being sent and received and the
transmission rate

latency The time spent for message response and receipt

backlog the number of messages waiting to be sent and to be processed

connections The number of open connections between message listeners

errors The number of messages which were detected as lost.

The primary item of interest are throughput and latency. The goal should be to utilize
as much network bandwidth as possible without resulting in high latencies. If
bandwidth usage is low or latencies are high, consider tuning TCP settings. A high
backlog or error rate can also indicate network configuration issues. For details on
tuning network performance, see “Network Tuning”.

Running the Message Bus Test Utility

2-10 Administering Oracle Coherence

3
Performing a Multicast Connectivity Test

This chapter provides instructions for using the Coherence multicast test utility to
check whether a network environment supports multicast communication. Any
production deployment should be preceded by a successful run of the multicast test.

The following sections are included in this chapter:

• Running the Multicast Test Utility

• How to Test Multicast

• Troubleshooting Multicast Communications

3.1 Running the Multicast Test Utility
The Coherence multicast test utility is used to determine if multicast is enabled
between two or more computers. The utility does not test load. Each instance, by
default, only transmit a single multicast packet every two seconds. For network load
testing, see Performing a Network Performance Test.

The multicast test utility is run from the command line using either the
com.tangosol.net.MulticastTest class or by running the multicast-test
script that is provided in the COHERENCE_HOME/bin directory. A script is provided
for both Windows and UNIX-based platforms.

The following example runs the utility using the MulticastTest class:

java com.tangosol.net.MulticastTest <command value> <command value> ...

The following example runs the utility using the script:

multicast-test <command value> <command value> ...

Table 3-1 describes the available command line options for the multicast test utility.

Table 3-1 Command Line Options for the Multicast Test Utility

Command Required/
Optional

Description Default

-local Optional The address of the NIC to transmit on, specified as
an IP address

localhost

-group Optional The multicast address to use, specified as IP:port. 237.0.0.1:90
00

-ttl Optional The time to live for multicast packets. 4

-delay Optional The delay between transmitting packets, specified
in seconds.

2

Performing a Multicast Connectivity Test 3-1

Table 3-1 (Cont.) Command Line Options for the Multicast Test Utility

Command Required/
Optional

Description Default

-packetSize Optional The size of the packet to send. The default is based
on the local MTU.

MTU

-display Optional The number of bytes to display from unexpected
packets.

0

-translate Optional Listen to cluster multicast traffic and translate
packets

none

3.2 How to Test Multicast
The example in this section demonstrates how to test if multicast address 237.0.0.1,
port 9000 (the defaults for the test) can send messages between two servers: Server A
with IP address 195.0.0.1 and Server B with IP address 195.0.0.2.

Note:

The default multicast address and port that are used by the test are different
than the Coherence default address and port. The test should be performed
using the same address and port that are being used in the actual Coherence
processes. It is possible that the default address and port for the mutlicast test
succeeds, but the Coherence defaults fail. This often due to local network
policy configuration.

Starting with Server A, determine if it has multicast address 237.0.0.1 port 9000
available for 195.0.0.1 by first checking the computer or interface by itself as follows:

From a command prompt, enter the following command:

multicast-test.sh -ttl 0

After pressing ENTER, the utility display how it is sending sequential multicast
packets and receiving them. Example 3-1 illustrates sample output.

Example 3-1 Sequential Multicast Packets Sent by the Multicast Test Utility

Starting test on ip=servera/195.0.0.1, group=/237.0.0.1:9000,ttl=0
Configuring multicast socket...
Starting listener...
Tue Mar 17 15:59:51 EST 2008: Sent packet 1.
Tue Mar 17 15:59:51 EST 2008: Received test packet 1 from self.
Tue Mar 17 15:59:53 EST 2008: Sent packet 2.
Tue Mar 17 15:59:53 EST 2008: Received test packet 2 from self.
...

Leave the test running for approximately 5 minutes to ensure there are no failures.
Press CTRL-C to stop further testing.

If you do not see something similar to the above, then multicast is not working. Also,
note that a TTL of 0 was specified to prevent the multicast packets from leaving Server
A.

How to Test Multicast

3-2 Administering Oracle Coherence

Repeat the same test on Server B to assure that it too has the multicast enabled for it's
port combination.

Next, test multicast communications between Server A and Server B. For this test use a
nonzero TTL which allows the packets to leave their respective servers. By default, the
test uses a TTL of 4, if more network hops are required to route packets between
Server A and Server B, specify a higher TTL value.

Start the test on Server A and Server B by entering the following command into each's
respective command window and pressing ENTER:

multicast-test.sh

The following example demonstrates sample output for Server A:

Starting test on ip=servera/195.0.0.1, group=/237.0.0.1:9000, ttl=4
Configuring multicast socket...
Starting listener...
Tue Mar 17 16:11:03 EST 2008: Sent packet 1.
Tue Mar 17 16:11:03 EST 2008: Received test packet 1 from self.
Tue Mar 17 16:11:05 EST 2008: Sent packet 2.
Tue Mar 17 16:11:05 EST 2008: Received test packet 2 from self.
Tue Mar 17 16:11:07 EST 2008: Sent packet 3.
Tue Mar 17 16:11:07 EST 2008: Received test packet 3 from self.
Tue Mar 17 16:11:09 EST 2008: Sent packet 4.
Tue Mar 17 16:11:09 EST 2008: Received test packet 4 from self.
Tue Mar 17 16:11:10 EST 2008: Received test packet 1 from ip=serverb/195.0.0.2,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:11 EST 2008: Sent packet 5.
Tue Mar 17 16:11:11 EST 2008: Received test packet 5 from self.
Tue Mar 17 16:11:12 EST 2008: Received test packet 2 from ip=serverb/195.0.0.2,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:13 EST 2008: Sent packet 6.
Tue Mar 17 16:11:13 EST 2008: Received test packet 6 from self.
Tue Mar 17 16:11:14 EST 2008: Received test packet 3 from ip=serverb/195.0.0.2,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:15 EST 2008: Sent packet 7.
Tue Mar 17 16:11:15 EST 2008: Received test packet 7 from self.
...

The following example demonstrates sample output for Server B:

Starting test on ip=serverb/195.0.0.2, group=/237.0.0.1:9000, ttl=4
Configuring multicast socket...
Starting listener...
Tue Mar 17 16:11:10 EST 2008: Sent packet 1.
Tue Mar 17 16:11:10 EST 2008: Received test packet 1 from self.
Tue Mar 17 16:11:11 EST 2008: Received test packet 5 from ip=servera/195.0.0.1,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:12 EST 2008: Sent packet 2.
Tue Mar 17 16:11:12 EST 2008: Received test packet 2 from self.
Tue Mar 17 16:11:13 EST 2008: Received test packet 6 from ip=servera/195.0.0.1,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:14 EST 2008: Sent packet 3.
Tue Mar 17 16:11:14 EST 2008: Received test packet 3 from self.
Tue Mar 17 16:11:15 EST 2008: Received test packet 7 from ip=servera/195.0.0.1,
group=/237.0.0.1:9000, ttl=4.
...

In the example both Server A and Server B are issuing multicast packets and seeing
their own and each other's packets. This indicates that multicast is functioning
properly between these servers using the default multicast address and port.

How to Test Multicast

Performing a Multicast Connectivity Test 3-3

Note:

Server A sees only its own packets (1-4) until it receives packet 1 from Server
B.

3.3 Troubleshooting Multicast Communications
Use the following troubleshooting tips if bidirectional multicast communication is not
established. If multicast is not functioning properly, consult with a network
administrator or sysadmin to determine the cause and to correct the situation.

• Firewalls—If any of the computers running the multicast test employ firewalls, the
firewall may be blocking the traffic. Consult your operating system/firewall
documentation for details on allowing multicast traffic.

• Switches—Ensure that the switches are configured to forward multicast traffic.

• If the multicast test fails after initially succeeding, try running the following on a
Coherence node:

tcpdump -i nic_device igmp

Where nic_device is the NIC device name. Make sure that IGMP Query
Messages (either v2 or v3) are seen in the tcpdump output. Make sure the switch is
enabled to send and receive IGMP Query Messages. Also make sure that the NIC
and OS networking is set to respond to periodic IGMP Query Messages. Lastly,
check the switch to make sure it sees the Coherence servers do both "IGMP Join"
and "IGMP Query Message" acknowledgements. The output should be similar to:

07:58:33.452537 IP (tos 0xc0, ttl 1, id 0, offset 0, flags [DF], proto IGMP
 (2), length 40, options (RA))

longcoh06a1-priv.emea.kuoni.int > igmp.mcast.net: igmp v3 report, 1 group
 record(s) [gaddr 192.168.0.5 to_ex, 0 source(s)]

07:58:43.294453 IP (tos 0xc0, ttl 1, id 0, offset 0, flags [DF], proto IGMP
 (2), length 40, options (RA))

 longcoh06a1-priv.emea.kuoni.int > igmp.mcast.net: igmp v3 report, 1 group
 record(s) [gaddr 192.168.0.5 to_ex, 0 source(s)]

07:58:51.782848 IP (tos 0xc0, ttl 1, id 3133, offset 0, flags [none], proto
 IGMP (2), length 36, options (RA))

 10.241.113.40 > all-systems.mcast.net: igmp query v3 [max resp time 10s]

08:00:56.803800 IP (tos 0xc0, ttl 1, id 3134, offset 0, flags [none], proto
 IGMP (2), length 36, options (RA))

 10.241.113.40 > all-systems.mcast.net: igmp query v3 [max resp time 10s]
…

The first two lines are servers "joining" the multicast group. The remaining output
are the IGMP Query Messages originating at the switch, these are continuous,
every few minutes - if the switch is configured to send them, and the NIC is
configured to respond.

Troubleshooting Multicast Communications

3-4 Administering Oracle Coherence

• IPv6—On operating systems which support IPv6, Java may be attempting to route
the Multicast traffic over IPv6 rather than IPv4. Try specifying the following Java
system property to force IPv4 networking java.net.preferIPv4Stack=true.
Coherence cluster members must all use either IPv4 or IPv6 and cannot use a mix
of both.

• Received ???—If the test reports receiving "???" this is an indication that it is
receiving multicast packets which did not originate from an instance of the
Multicast test. This occurs if the test is run with the same multicast address as an
existing Coherence cluster, or any other multicast application.

• Multiple NICs—If the computers have multiple network interfaces, try specifying
an explicit interface by using the -local test parameter. For instance if Server A
has two interfaces with IP addresses 195.0.0.1 and 195.0.100.1, including -local
195.0.0.1 on the test command line would ensure that the multicast packets
used the first interface. In addition, the computer's routing table may require
explicit configuration to forward multicast traffic through the desired network
interface. This can be done by issuing the following command:

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth1

Where eth1 is the device that is designated to transmit multicast traffic.

• AIX—On AIX systems, the following multicast issues may be encountered:

– IPv6—In addition to specifying java.net.preferIPv4Stack=true, the
operating system may require additional configuration to perform IPv4 name
resolution. Add hosts=local,bind4 to the /etc/netsvc.conf file.

– Virtual IP (VIPA)—AIX does not support multicast with VIPA. If using VIPA
either bind multicast to a non-VIPA device, or run Coherence with multicast
disabled. See the Developing Applications with Oracle Coherence for details.

– MTU—Configure the MTU for the multicast device to 1500 bytes.

• Cisco Switches—See “Deploying to Cisco Switches” for the list of known issues.

• Foundry Switches—See “Deploying to Foundry Switches” for the list of known
issues.

Troubleshooting Multicast Communications

Performing a Multicast Connectivity Test 3-5

Troubleshooting Multicast Communications

3-6 Administering Oracle Coherence

4
Performance Tuning

This chapter provides instructions for tuning an environment to achieve maximum
performance when deploying Coherence solutions. See also .

The following sections are included in this chapter:

• Operating System Tuning

• Network Tuning

• JVM Tuning

• Data Access Patterns

4.1 Operating System Tuning
The following topics are included in this section:

• Socket Buffer Sizes

• High Resolution timesource (Linux)

• Datagram size (Microsoft Windows)

• TCP Retransmission Timeout (Microsoft Windows)

• Thread Scheduling (Microsoft Windows)

• Swapping

• Load Balancing Network Interrupts (Linux)

4.1.1 Socket Buffer Sizes
Large operating system socket buffers can help minimize packet loss during garbage
collection. Each Coherence socket implementation attempts to allocate a default socket
buffer size. A warning message is logged for each socket implementation if the default
size cannot be allocated. The following example is a message for the inbound UDP
socket buffer:

UnicastUdpSocket failed to set receive buffer size to 16 packets (1023KB); actual
size is 12%, 2 packets (127KB). Consult your OS documentation regarding increasing
the maximum socket buffer size. Proceeding with the actual value may cause
sub-optimal performance.

It is recommended that you configure the operating system to allow for larger buffers.
However, alternate buffer sizes for Coherence packet publishers and unicast listeners
can be configured using the <packet-buffer> element. For details about
configuring packet buffer settings, see Developing Applications with Oracle Coherence.

Performance Tuning 4-1

Note:

Most versions of UNIX have a very low default buffer limit, which should be
increased to at least 2MB. Also, note that UDP recommendations are only
applicable for configurations which explicitly configure UDP in favor of TCP
as TCP is the default for performance sensitive tasks.

On Linux, execute (as root):

sysctl -w net.core.rmem_max=2097152
sysctl -w net.core.wmem_max=2097152

On Solaris, execute (as root):

ndd -set /dev/udp udp_max_buf 2097152

On AIX, execute (as root):

no -o rfc1323=1
no -o sb_max=4194304

Note:

Note that AIX only supports specifying buffer sizes of 1MB, 4MB, and 8MB.

On Windows:

Windows does not impose a buffer size restriction by default.

Other:

For information on increasing the buffer sizes for other operating systems, refer to
your operating system's documentation.

4.1.2 High Resolution timesource (Linux)
Linux has several high resolution timesources to choose from, the fastest TSC (Time
Stamp Counter) unfortunately is not always reliable. Linux chooses TSC by default
and during startup checks for inconsistencies, if found it switches to a slower safe
timesource. The slower time sources can be 10 to 30 times more expensive to query
then the TSC timesource, and may have a measurable impact on Coherence
performance. For more details on TSC, see

https://lwn.net/Articles/209101/

Note that Coherence and the underlying JVM are not aware of the timesource which
the operating system is using. It is suggested that you check your system logs
(/var/log/dmesg) to verify that the following is not present.

kernel: Losing too many ticks!
kernel: TSC cannot be used as a timesource.
kernel: Possible reasons for this are:
kernel: You're running with Speedstep,
kernel: You don't have DMA enabled for your hard disk (see hdparm),
kernel: Incorrect TSC synchronization on an SMP system (see dmesg).
kernel: Falling back to a sane timesource now.

Operating System Tuning

4-2 Administering Oracle Coherence

https://lwn.net/Articles/209101/

As the log messages suggest, this can be caused by a variable rate CPU (SpeedStep),
having DMA disabled, or incorrect TSC synchronization on multi CPU computers. If
present, work with your system administrator to identify and correct the cause
allowing the TSC timesource to be used.

4.1.3 Datagram size (Microsoft Windows)
Microsoft Windows supports a fast I/O path which is used when sending "small"
datagrams. The default setting for what is considered a small datagram is 1024 bytes;
increasing this value to match your network maximum transmission unit (MTU),
normally 1500, can significantly improve network performance.

To adjust this parameter:

1. Run Registry Editor (regedit)

2. Locate the following registry key HKLM\System\CurrentControlSet
\Services\AFD\Parameters

3. Add the following new DWORD value Name: FastSendDatagramThreshold
Value: 1500 (decimal)

4. Restart.

Note:

The COHERENCE_HOME/bin/optimize.reg script can also perform this
change. After running the script, restart the computer for the changes to take
effect.

4.1.4 TCP Retransmission Timeout (Microsoft Windows)
Microsoft Windows includes a TCP retransmission timeout that is used for existing
and new connections. The default retransmission timeout can abandon connections in
a matter of seconds based on the Windows automatic tuning for TCP data
transmission on the network. The short timeout can result in the false positive
detection of cluster member death by the TcpRing process and can result in data loss.
The default retransmission timeout can be configured to be more tolerant of short
outages that may occur on the production network.

To increase the TCP retransmission timeout:

1. Run Registry Editor (regedit)

2. Locate the following registry key HKLM\SYSTEM\CurrentControlSet
\Services\Tcpip\Parameters

3. Add the following new DWORD value Name: TcpMaxConnectRetransmissions
Value: 00000015 (Hex)

4. Add the following new DWORD value Name: TcpMaxDataRetransmissions
Value: 00000015 (Hex)

5. Restart.

Note:

Operating System Tuning

Performance Tuning 4-3

The COHERENCE_HOME/bin/optimize.reg script can also perform this
change. After running the script, restart the computer for the changes to take
effect.

4.1.5 Thread Scheduling (Microsoft Windows)
Windows is optimized for desktop application usage. If you run two console ("DOS
box") windows, the one that has the focus can use almost 100% of the CPU, even if
other processes have high-priority threads in a running state. To correct this
imbalance, you must configure the Windows thread scheduling to less-heavily favor
foreground applications.

1. Open the Control Panel.

2. Open System.

3. Select the Advanced tab.

4. Under Performance select Settings.

5. Select the Advanced tab.

6. Under Processor scheduling, choose Background services.

Note:

The COHERENCE_HOME/bin/optimize.reg script performs this change.
After running the script, restart the computer for the changes to take effect.

4.1.6 Swapping
Swapping, also known as paging, is the use of secondary storage to store and retrieve
application data for use in RAM memory. Swapping is automatically performed by
the operating system and typically occurs when the available RAM memory is
depleted. Swapping can have a significant impact on Coherence's performance and
should be avoided. Often, swapping manifests itself as Coherence nodes being
removed from the cluster due to long periods of unresponsiveness caused by them
having been swapped out of RAM. See “Avoid using virtual memory (paging to
disk).” for more information.

To avoid swapping, ensure that sufficient RAM memory is available on the computer
or that the number of running processes is accounted for and do not consume all the
available RAM. Tools such as vmstat and top (on Unix and Linux) and taskmgr (on
Windows) should be used to monitor swap rates.

Swappiness in Linux

Linux, by default, may choose to swap out a process or some of its heap due to low
usage even if it is not running low on RAM. Swappiness is performed to be ready to
handle eventual memory requests. Swappiness should be avoided for Coherence
JVMs. The swappiness setting on Linux is a value between 0 and 100, where higher
values encourage more optimistic swapping. The default value is 60. For Coherence, a
lower value (0 if possible) should always be set.

To see the current swappiness value that is set, enter the following at the command
prompt:

Operating System Tuning

4-4 Administering Oracle Coherence

cat /proc/sys/vm/swappiness

To temporarily set the swappiness, as the root user echo a value onto /
proc/sys/vm/swappiness. The following example sets the value to 0.

echo 0 > /proc/sys/vm/swappiness

To set the value permanently, modify the /etc/sysctl.conf file as follows:

vm.swappiness = 0

4.1.7 Load Balancing Network Interrupts (Linux)
Linux kernels have the ability to balance hardware interrupt requests across multiple
CPUs or CPU cores. The feature is referred to as SMP IRQ Affinity and results in better
system performance as well as better CPU utilization. For Coherence, significant
performance can be gained by balancing ethernet card interrupts for all servers that
host cluster members. Most Linux distributions also support irqbalance, which is
aware of the cache topologies and power management features of modern multi-core
and multi-socket systems.

Most Linux installations are not configured to balance network interrupts. The default
network interrupt behavior uses a single processor (typically CPU0) to handle all
network interrupts and can become a serious performance bottleneck with high
volumes of network traffic. Balancing network interrupts among multiple CPUs
increases the performance of network-based operations.

For detailed instructions on how to configure SMP IRQ Affinity, see the following
document which is only summarized below:

http://www.mjmwired.net/kernel/Documentation/IRQ-affinity.txt

To view a list of the system's IRQs that includes which device they are assigned to and
the number of interrupts each processor has handled for the device, run the following
command:

cat /proc/interrupts

The following example output snippet shows a single network interface card where all
interrupts have been handled by the same processor (CPU0). This particular network
card has multiple transmit and receive queues which have their own assigned IRQ.
Systems that use multiple network cards will have additional IRQs assigned for each
card.

 CPU0 CPU1 CPU2 CPU3
65: 20041 0 0 0 IR-PCI-MSI-edge eth0-tx-0
66: 20232 0 0 0 IR-PCI-MSI-edge eth0-tx-1
67: 20105 0 0 0 IR-PCI-MSI-edge eth0-tx-2
68: 20423 0 0 0 IR-PCI-MSI-edge eth0-tx-3
69: 21036 0 0 0 IR-PCI-MSI-edge eth0-rx-0
70: 20201 0 0 0 IR-PCI-MSI-edge eth0-rx-1
71: 20587 0 0 0 IR-PCI-MSI-edge eth0-rx-2
72: 20853 0 0 0 IR-PCI-MSI-edge eth0-rx-3

The goal is to have the interrupts balanced across the 4 processors instead of just a
single processor. Ideally, the overall utilization of the processors on the system should
also be evaluated to determine which processors can handle additional interrupts. Use
mpstat to view statistics for a system's processors. The statistics show which
processors are being over utilized and which are being under utilized and help
determine the best ways to balance the network interrupts across the CPUs.

Operating System Tuning

Performance Tuning 4-5

http://www.mjmwired.net/kernel/Documentation/IRQ-affinity.txt

SMP IRQ affinity is configured in an smp_affinity file. Each IRQ has its own
smp_affinity file that is located in the /proc/irq/irq_#/ directory. To see the
current affinity setting for an IRQ (for example 65), run:

cat /proc/irq/65/smp_affinity

The returned hexadecimal value is a bitmask and represents the processors to which
interrupts on IRQ 65 are routed. Each place in the value represents a group of 4 CPUs.
For a 4 processor system, the hexadecimal value to represent a group of all four
processors is f (or 15) and is 00000f as mapped below:

 Binary Hex
 CPU 0 0001 1
 CPU 1 0010 2
 CPU 2 0100 4
 CPU 3 1000 8

 all 1111 f

To target a single processor or group of processors, the bitmask must be changed to
the appropriate hexadecimal value. Based on the system in the example above, to
direct all interrupts on IRQ 65 to CPU1 and all interrupts on IRQ 66 to CPU2, change
the smp_affinity files as follows:

echo 000002 > /proc/irq/65/smp_affinity # eth0-tx-0
echo 000004 > /proc/irq/66/smp_affinity # eth0-tx-1

To direct all interrupts on IRQ 65 to both CPU1 and CPU2, change the smp_affinity
file as follows:

echo 000006 > /proc/irq/65/smp_affinity # eth0-tx-0

To direct all interrupts on each IRQ to all CPUs, change the smp_affinity files as
follows:

echo 00000f > /proc/irq/65/smp_affinity # eth0-tx-0
echo 00000f > /proc/irq/66/smp_affinity # eth0-tx-1
echo 00000f > /proc/irq/67/smp_affinity # eth0-tx-2
echo 00000f > /proc/irq/68/smp_affinity # eth0-tx-3
echo 00000f > /proc/irq/69/smp_affinity # eth0-rx-0
echo 00000f > /proc/irq/70/smp_affinity # eth0-rx-1
echo 00000f > /proc/irq/71/smp_affinity # eth0-rx-2
echo 00000f > /proc/irq/72/smp_affinity # eth0-rx-3

4.2 Network Tuning
• Network Interface Settings

• Network Infrastructure Settings

• Switch and Subnet Considerations

• Ethernet Flow-Control

• Path MTU

• 10GbE Considerations

• TCP Considerations

Network Tuning

4-6 Administering Oracle Coherence

4.2.1 Network Interface Settings
Verify that your Network card (NIC) is configured to operate at it's maximum link
speed and at full duplex. The process for doing this varies between operating systems.

On Linux execute (as root):

ethtool eth0

See the man page on ethtool for further details and for information on adjust the
interface settings.

On Solaris execute (as root):

kstat ce:0 | grep link_

This displays the link settings for interface 0. Items of interest are link_duplex (2 =
full), and link_speed which is reported in Mbps.

Note:

If running on Solaris 10, review issues 1000972.1 and 1000940.1 which
relate to packet corruption and multicast disconnections. These often manifest
as either EOFExceptions, "Large gap" warnings while reading packet data,
or frequent packet timeouts. It is highly recommend that the patches for both
issues be applied when using Coherence on Solaris 10 systems.

On Windows:

1. Open the Control Panel.

2. Open Network Connections.

3. Open the Properties dialog for desired network adapter.

4. Select Configure.

5. Select the Advanced tab.

6. Locate the driver specific property for Speed & Duplex.

7. Set it to either auto or to a specific speed and duplex setting.

4.2.2 Network Infrastructure Settings
If you experience frequent multi-second communication pauses across multiple cluster
nodes, try increasing your switch's buffer space. These communication pauses can be
identified by a series of Coherence log messages identifying communication delays
with multiple nodes which are not attributable to local or remote GCs.

Example 4-1 Message Indicating a Communication Delay

Experienced a 4172 ms communication delay (probable remote GC) with Member(Id=7,
Timestamp=2006-10-20 12:15:47.511, Address=192.168.0.10:8089, MachineId=13838); 320
packets rescheduled, PauseRate=0.31, Threshold=512

Some switches such as the Cisco 6500 series support configuring the amount of buffer
space available to each Ethernet port or ASIC. In high load applications it may be

Network Tuning

Performance Tuning 4-7

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1000972.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1000940.1

necessary to increase the default buffer space. On Cisco, this can be accomplished by
executing:

fabric buffer-reserve high

See Cisco's documentation for additional details on this setting.

4.2.3 Switch and Subnet Considerations
Cluster members may be split across multiple switches and may be part of multiple
subnets. However, such topologies can overwhelm inter-switch links and increase the
chances of a split cluster if the links fail.Typically, the impact materializes as
communication delays that affect cluster and application performance. If possible,
consider always locating all cluster members on the same switch and subnet to
minimize the impact.

See also: “Evaluate the Production Network's Speed for both UDP and TCP”.

4.2.4 Ethernet Flow-Control
Full duplex Ethernet includes a flow-control feature which allows the receiving end of
a point to point link to slow down the transmitting end. This is implemented by the
receiving end sending an Ethernet PAUSE frame to the transmitting end, the
transmitting end then halts transmissions for the interval specified by the PAUSE
frame. Note that this pause blocks all traffic from the transmitting side, even traffic
destined for computers which are not overloaded. This can induce a head of line
blocking condition, where one overloaded computer on a switch effectively slows
down all other computers. Most switch vendors recommend that Ethernet flow-
control be disabled for inter switch links, and at most be used on ports which are
directly connected to computers. Even in this setup head of line blocking can still
occur, and thus it is advisable to disable Ethernet flow-control. Higher level protocols
such as TCP/IP and Coherence TCMP include their own flow-control mechanisms
which are not subject to head of line blocking, and also negate the need for the lower
level flow-control.

See http://www.networkworld.com/netresources/0913flow2.html for
more details on this subject

4.2.5 Path MTU
By default Coherence assumes a 1500 byte network MTU, and uses a default packet
size of 1468 based on this assumption. Having a packet size which does not fill the
MTU results in an under used network. If your equipment uses a different MTU, then
configure Coherence by specifying the <packet-size> setting, which is 32 bytes
smaller then the network path's minimal MTU.

If you are unsure of your equipment's MTU along the full path between nodes, you
can use either the standard ping or traceroute utilities to determine the MTU. For
example, execute a series of ping or traceroute operations between the two computers.
With each attempt, specify a different packet size, starting from a high value and
progressively moving downward until the packets start to make it through without
fragmentation.

On Linux execute:

ping -c 3 -M do -s 1468 serverb

On Solaris execute:

Network Tuning

4-8 Administering Oracle Coherence

http://www.networkworld.com/netresources/0913flow2.html

traceroute -F serverb 1468

On Windows execute:

ping -n 3 -f -l 1468 serverb

On other operating systems: Consult the documentation for the ping or
traceroute command to see how to disable fragmentation, and specify the packet
size.

If you receive a message stating that packets must be fragmented then the specified
size is larger then the path's MTU. Decrease the packet size until you find the point at
which packets can be transmitted without fragmentation. If you find that you must
use packets smaller then 1468, you may want to contact your network administrator to
get the MTU increased to at least 1500.

4.2.6 10GbE Considerations
Many 10 Gigabit Ethernet (10GbE) switches and network interface cards support
frame sizes that are larger than the 1500 byte ethernet frame standard. When using
10GbE, make sure that the MTU is set to the maximum allowed by the technology
(approximately 16KB for ethernet) to take full advantage of the greater bandwidth.
Coherence automatically detects the MTU of the network and selects a UDP socket
buffer size accordingly. UDP socket buffer sizes of 2MB, 4MB, or 8MB are selected for
MTU sizes of 1500 bytes (standard), 9000 bytes (jumbo), and over 9000 (super jumbo),
respectively. Also, make sure to increase the operating system socket buffers to 8MB to
accommodate the larger sizes. A warning is issued in the Coherence logs if a
significantly small operating system buffer is detected. Lastly, always run the
datagram test to validate the performance and throughput of the network. See
Performing a Network Performance Test, for details on performing the test.

4.2.7 TCP Considerations
Coherence utilizes a TCP message bus (TMB) to transmit messages between clustered
data services. Therefore, a network must be optimally tuned for TCP. Coherence
inherits TCP settings, including buffer settings, from the operating system. Most
servers already have TCP tuned for the network and should not require additional
configuration. The recommendation is to tune the TCP stack for the network instead of
tuning Coherence for the network.

Coherence includes a message bus test utility that can be used to test throughput and
latency between network nodes. For details on using the utility, see “Running the
Message Bus Test Utility.” If a network shows poor performance, then it may not be
properly configured, use the following recommendations (note that these settings are
demonstrated on Linux but can be translated to other operating systems):

#!/bin/bash
#
aggregate size limitations for all connections, measured in pages; these values
are for 4KB pages (getconf PAGESIZE)

/sbin/sysctl -w net.ipv4.tcp_mem=' 65536 131072 262144'

limit on receive space bytes per-connection; overridable by SO_RCVBUF; still
goverened by core.rmem_max

/sbin/sysctl -w net.ipv4.tcp_rmem=' 262144 4194304 8388608'

Network Tuning

Performance Tuning 4-9

limit on send space bytes per-connection; overridable by SO_SNDBUF; still
goverered by core.wmem_max

/sbin/sysctl -w net.ipv4.tcp_wmem=' 65536 1048576 2097152'

absolute limit on socket receive space bytes per-connection; cannot be
overriden programatically

/sbin/sysctl -w net.core.rmem_max=16777216

absolute limit on socket send space bytes per-connection; cannot be overriden;
cannot be overriden programatically

/sbin/sysctl -w net.core.wmem_max=16777216

Each connection consumes a minimum of 320KB, but under normal memory pressure,
consumes 5MB per connection and ultimately the operating system tries to keep the
entire system buffering for TCP under 1GB. These are recommended defaults based on
tuning for fast (>= 10gbe) networks and should be acceptable on 1gbe.

4.3 JVM Tuning
• Basic Sizing Recommendation

• Heap Size Considerations

• Garbage Collection Monitoring

4.3.1 Basic Sizing Recommendation
The recommendations in this section are sufficient for general use cases and require
minimal setup effort. The primary issue to consider when sizing your JVMs is a
balance of available RAM versus garbage collection (GC) pause times.

Cache Servers

The standard, safe recommendation for Coherence cache servers is to run a fixed size
heap of up to 8GB. In addition, use an incremental garbage collector to minimize GC
pause durations. Lastly, run all Coherence JVMs in server mode, by specifying the -
server on the JVM command line. This allows for several performance optimizations
for long running applications.

For example:

java -server -Xms8g -Xmx8g -Xloggc: -jar coherence.jar

This sizing allows for good performance without the need for more elaborate JVM
tuning. For more information on garbage collection, see “Garbage Collection
Monitoring”.

Larger heap sizes are possible and have been implemented in production
environments; however, it becomes more important to monitor and tune the JVMs to
minimize the GC pauses. It may also be necessary to alter the storage ratios such that
the amount of scratch space is increased to facilitate faster GC compactions.
Additionally, it is recommended that you make use of an up-to-date JVM version to
ensure the latest improvements for managing large heaps. See “Heap Size
Considerations” below for additional details.

JVM Tuning

4-10 Administering Oracle Coherence

TCMP Clients

Coherence TCMP clients should be configured similarly to cache servers as long GCs
could cause them to be misidentified as being terminated.

Extends Clients

Coherence Extend clients are not technically speaking cluster members and, as such,
the effect of long GCs is less detrimental. For extend clients it is recommended that
you follow the existing guidelines as set forth by the application in which you are
embedding coherence.

4.3.2 Heap Size Considerations
Use this section to decide:

• How many CPUs are need for your system

• How much memory is need for each system

• How many JVMs to run per system

• How much heap to configure with each JVM

Since all applications are different, this section should be read as guidelines. You must
answer the following questions to choose the configuration that is right for you:

• How much data is to be stored in Coherence caches?

• What are the application requirements in terms of latency and throughput?

• How CPU or Network intensive is the application?

Sizing is an imprecise science. There is no substitute for frequent performance and
stress testing.

The following topics are included in this section:

• General Guidelines

• Moving the Cache Out of the Application Heap

4.3.2.1 General Guidelines

Running with a fixed sized heap saves the JVM from having to grow the heap on
demand and results in improved performance. To specify a fixed size heap use the -
Xms and -Xmx JVM options, setting them to the same value. For example:

java -server -Xms4G -Xmx4G ...

A JVM process consumes more system memory then the specified heap size. The heap
size settings specify the amount of heap which the JVM makes available to the
application, but the JVM itself also consumes additional memory. The amount
consumed differs depending on the operating system and JVM settings. For instance, a
HotSpot JVM running on Linux configured with a 1GB JVM consumes roughly 1.2GB
of RAM. It is important to externally measure the JVMs memory utilization to ensure
that RAM is not over committed. Tools such as top, vmstat, and Task Manager are
useful in identifying how much RAM is actually being used.

JVM Tuning

Performance Tuning 4-11

Storage Ratios

The basic starting point for how much data can be stored within a cache server of a
given size is to use a 1/3rd of the heap for primary cache storage. This leaves another
1/3rd for backup storage and the final 1/3rd for scratch space. Scratch space is then
used for things such as holding classes, temporary objects, network transfer buffers,
and GC compaction. However, this recommendation is considered a basic starting
point and should not be considered a rule. A more precise, but still conservative
starting point, is to assume your cache data can occupy no more than the total heap
minus two times the young generation size of a JVM heap (for example, 32GB – (2 *
4GB) = 24GB). In this case, cache data can occupy 75% of the heap. Note that the
resulting percentage depends on the configured young generation size. In addition,
you may instruct Coherence to limit primary storage on a per-cache basis by
configuring the <high-units> element and specifying a BINARY value for the
<unit-calculator> element. These settings are automatically applied to backup
storage as well.

Ideally, both the primary and backup storage also fits within the JVMs tenured space
(for HotSpot-based JVMs). See HotSpot's Tuning Garbage Collection guide for details
on sizing the collectors generations:

http://www.oracle.com/technetwork/java/javase/gc-
tuning-6-140523.html

Cache Topologies and Heap Size

For large data sets, partitioned or near caches are recommended. Varying the number
of Coherence JVMs does not significantly affect cache performance because the
scalability of the partitioned cache is linear for both reading and writing. Using a
replicated cache puts significant pressure on GC.

Planning Capacity for Data Grid Operations

Data grid operations (such as queries and aggregations) have additional heap space
requirements and their use must be planned for accordingly. During data grid
operations, binary representations of the cache entries that are part of the result set are
held in-memory. Depending on the operation, the entries may also be held in
deserialized form for the duration of the operation. Typically, this doubles the amount
of memory for each entry in the result set. In addition, a second binary copy is
maintained when using RAM or flash journaling as the backing map implementation
due to differences in how the objects are stored. The second binary copy is also held
for the duration of the operation and increases the total memory for each entry in the
result set by 3x.

Heap memory usage depends on the size of the result set on which the operations are
performed and the number of concurrent requests being handled. The result set size is
affected by both the total number of entries as well as the size of each entry.
Moderately sized result sets that are maintained on a storage cache server would not
likely exhaust the heap's memory. However, if the result set is sufficiently large, the
additional memory requirements can cause the heap to run out of memory. Data grid
aggregate operations typically involve larger data sets and are more likely to exhaust
the available memory than other operations.

The JVMs heap size should be increased on storage enabled cache servers whenever
large result sets are expected. For example, if a third of the heap has been reserved for
scratch space, then the scratch space must also support the projected result set sizes.
Alternatively, data grid operations can use the PartitionedFilter API. The API
reduces memory consumption by executing grid operations against individual
partition sets. See Java API Reference for Oracle Coherence for details on using this API.

JVM Tuning

4-12 Administering Oracle Coherence

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Deciding How Many JVMs to Run Per System

The number of JVMs (nodes) to run per system depends on the system's number of
processors/cores and amount of memory. As a starting point, plan to run one JVM for
every four cores. This recommendation balances the following factors:

• Multiple JVMs per server allow Coherence to make more efficient use of high-
bandwidth (>1gb) network resources.

• Too many JVMs increases contention and context switching on processors.

• Too few JVMs may not be able to handle available memory and may not fully use
the NIC.

• Especially for larger heap sizes, JVMs must have available processing capacity to
avoid long GC pauses.

Depending on your application, you can add JVMs up toward one per core. The
recommended number of JVMs and amount of configured heap may also vary based
on the number of processors/cores per socket and on the computer architecture.

Note:

Applications that use Coherence as a basic cache (get, put and remove
operations) and have no application classes (entry processors, aggregators,
queries, cachestore modules, and so on) on the cache server can sometimes go
beyond 1 JVM per core. They should be tested for both health and failover
scenarios.

Sizing Your Heap

When considering heap size, it is important to find the right balance. The lower bound
is determined by per-JVM overhead (and also, manageability of a potentially large
number of JVMs). For example, if there is a fixed overhead of 100MB for infrastructure
software (for example, JMX agents, connection pools, internal JVM structures), then
the use of JVMs with 256MB heap sizes results in close to 40% overhead for non-cache
data. The upper bound on JVM heap size is governed by memory management
overhead, specifically the maximum duration of GC pauses and the percentage of
CPU allocated to GC (and other memory management tasks).

GC can affect the following:

• The latency of operations against Coherence. Larger heaps cause longer and less
predictable latency than smaller heaps.

• The stability of the cluster. With very large heaps, lengthy long garbage collection
pauses can trick TCMP into believing a cluster member is terminated since the JVM
is unresponsive during GC pauses. Although TCMP takes GC pauses into account
when deciding on member health, at some point it may decide the member is
terminated.

The following guideline is provided:

• For Java, a conservative heap size of 8GB is recommended for most applications
and is based on throughput, latency, and stability. However, larger heap sizes, are
suitable for some applications where the simplified management of fewer, larger
JVMs outweighs the performance benefits of many smaller JVMs. A core-to-heap

JVM Tuning

Performance Tuning 4-13

ratio of roughly 4 cores: 8GB is ideal, with some leeway to manage more GBs per
core. Every application is different and GC must be monitored accordingly.

The length of a GC pause scales worse than linearly to the size of the heap. That is, if
you double the size of the heap, pause times due to GC more than double (in general).
GC pauses are also impacted by application usage:

• Pause times increase as the amount of live data in the heap increases. Do not
exceed 70% live data in your heap. This includes primary data, backup data,
indexes, and application data.

• High object allocation rates increase pause times. Even "simple" Coherence
applications can cause high object allocation rates since every network packet
generates many objects.

• CPU-intensive computations increase contention and may also contribute to higher
pause times.

Depending on your latency requirements, you can increase allocated heap space
beyond the above recommendations, but be sure to stress test your system.

4.3.2.2 Moving the Cache Out of the Application Heap

Using dedicated Coherence cache server instances for Partitioned cache storage
minimizes the heap size of application JVMs because the data is no longer stored
locally. As most Partitioned cache access is remote (with only 1/N of data being held
locally), using dedicated cache servers does not generally impose much additional
overhead. Near cache technology may still be used, and it generally has a minimal
impact on heap size (as it is caching an even smaller subset of the Partitioned cache).
Many applications are able to dramatically reduce heap sizes, resulting in better
responsiveness.

Local partition storage may be enabled (for cache servers) or disabled (for application
server clients) with the coherence.distributed.localstorage Java property
(for example, -Dcoherence.distributed.localstorage=false).

It may also be disabled by modifying the <local-storage> setting in the
tangosol-coherence.xml (or tangosol-coherence-override.xml) file as
follows:

Example 4-2 Disabling Partition Storage

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <services>
 <!--
 id value must match what's in tangosol-coherence.xml for DistributedCache
 service
 -->
 <service id="3">
 <init-params>
 <init-param id="4">
 <param-name>local-storage</param-name>
 <param-value system-property="coherence.distributed.
 localstorage">false</param-value>
 </init-param>

JVM Tuning

4-14 Administering Oracle Coherence

 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

At least one storage-enabled JVM must be started before any storage-disabled clients
access the cache.

4.3.3 Garbage Collection Monitoring
Lengthy GC pause times can negatively impact the Coherence cluster and are typically
indistinguishable from node termination. A Java application cannot send or receive
packets during these pauses. As for receiving the operating system buffered packets,
the packets may be discarded and must be retransmitted. For these reasons, it is very
important that cluster nodes are sized and tuned to ensure that their GC times remain
minimal. As a general rule, a node should spend less than 10% of its time paused in
GC, normal GC times should be under 100ms, and maximum GC times should be
around 1 second.

For detailed information on GC tuning, refer to the HotSpot garbage collection tuning
guide:

http://www.oracle.com/technetwork/java/javase/gc-
tuning-6-140523.html

Log messages are generated when one cluster node detects that another cluster node
has been unresponsive for a period of time, generally indicating that a target cluster
node was in a GC cycle.

Example 4-3 Message Indicating Target Cluster Node is in Garbage Collection
Mode

Experienced a 4172 ms communication delay (probable remote GC) with Member(Id=7,
Timestamp=2006-10-20 12:15:47.511, Address=192.168.0.10:8089, MachineId=13838); 320
packets rescheduled, PauseRate=0.31, Threshold=512

PauseRate indicates the percentage of time for which the node has been considered
unresponsive since the statistics were last reset. Nodes reported as unresponsive for
more then a few percent of their lifetime may be worth investigating for GC tuning.

GC activity can be monitored in many ways; some Oracle HotSpot mechanisms
include:

• -verbose:gc (writes GC log to standard out; use -Xloggc to direct it to some
custom location)

• -XX:+PrintGCDetails, -XX:+PrintGCTimeStamps, -XX:+PrintHeapAtGC,
-XX:+PrintTenuringDistribution, -XX:
+PrintGCApplicationStoppedTime -XX:
+PrintGCApplicationConcurrentTime

• -Xprof: enables profiling. Profiling activities should be distinguished between
testing and production deployments and its effects on resources and performance
should always be monitored

• JConsole and VisualVM (including VisualGC plug-in) that are included with the
JDK.

JVM Tuning

Performance Tuning 4-15

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

4.4 Data Access Patterns
• Data Access Distribution (hot spots)

• Cluster-node Affinity

• Read/Write Ratio and Data Sizes

• Interleaving Cache Reads and Writes

4.4.1 Data Access Distribution (hot spots)
When caching a large data set, typically a small portion of that data set is responsible
for most data accesses. For example, in a 1000 object datasets, 80% of operations may
be against a 100 object subset. The remaining 20% of operations may be against the
other 900 objects. Obviously the most effective return on investment is gained by
caching the 100 most active objects; caching the remaining 900 objects provides 25%
more effective caching while requiring a 900% increase in resources.

However, if every object is accessed equally often (for example in sequential scans of
the datasets), then caching requires more resources for the same level of effectiveness.
In this case, achieving more than 0% effectiveness requires caching 100% of the data.
(Note that sequential scans of partially cached data sets generally defeat MRU, LFU
and MRU-LFU eviction policies). In practice, most non-synthetic (benchmark) data
access patterns are uneven, and respond well to caching subsets of data.

In cases where a subset of data is active, and a smaller subset is particularly active,
Near caching can be very beneficial when used with the "all" invalidation strategy (this
is effectively a two-tier extension of the above rules).

4.4.2 Cluster-node Affinity
Coherence's Near cache technology transparently takes advantage of cluster-node
affinity, especially when used with the "present" invalidation strategy. This topology is
particularly useful when used with a sticky load-balancer. Note that the "present"
invalidation strategy results in higher overhead (as opposed to "all") when the front
portion of the cache is "thrashed" (very short lifespan of cache entries); this is due to
the higher overhead of adding/removing key-level event listeners. In general, a cache
should be tuned to avoid thrashing and so this is usually not an issue.

4.4.3 Read/Write Ratio and Data Sizes
Generally speaking, the following cache topologies are best for the following use
cases:

• Replicated cache—small amounts of read-heavy data (for example, metadata)

• Partitioned cache—large amounts of read/write data (for example, large data
caches)

• Near cache—similar to Partitioned, but has further benefits from read-heavy tiered
access patterns (for example, large data caches with hotspots) and "sticky" data
access (for example, sticky HTTP session data). Depending on the synchronization
method (expiry, asynchronous, synchronous), the worst case performance may
range from similar to a Partitioned cache to considerably worse.

Data Access Patterns

4-16 Administering Oracle Coherence

4.4.4 Interleaving Cache Reads and Writes
Interleaving refers to the number of cache reads between each cache write. The
Partitioned cache is not affected by interleaving (as it is designed for 1:1 interleaving).
The Replicated and Near caches by contrast are optimized for read-heavy caching, and
prefer a read-heavy interleave (for example, 10 reads between every write). This is
because they both locally cache data for subsequent read access. Writes to the cache
forces these locally cached items to be refreshed, a comparatively expensive process
(relative to the near-zero cost of fetching an object off the local memory heap). Note
that with the Near cache technology, worst-case performance is still similar to the
Partitioned cache; the loss of performance is relative to best-case scenarios.

Note that interleaving is related to read/write ratios, but only indirectly. For example,
a Near cache with a 1:1 read/write ratio may be extremely fast (all writes followed by
all reads) or much slower (1:1 interleave, write-read-write-read...).

Data Access Patterns

Performance Tuning 4-17

Data Access Patterns

4-18 Administering Oracle Coherence

5
Production Checklist

This chapter provides a checklist of areas that should be planned for and considered
when moving from a development or test environment to a production environment.
Solutions and best practices are provided and should be implemented as required.
Additional recommendations when using Coherence*Extend can be found in
Developing Remote Clients for Oracle Coherence.

The following sections are included in this chapter:

• Network Performance Test and Multicast Recommendations

• Network Recommendations

• Cache Size Calculation Recommendations

• Hardware Recommendations

• Operating System Recommendations

• JVM Recommendations

• Oracle Exalogic Elastic Cloud Recommendations

• Security Recommendations

• Application Instrumentation Recommendations

• Coherence Modes and Editions

• Coherence Operational Configuration Recommendations

• Coherence Cache Configuration Recommendations

• Large Cluster Configuration Recommendations

• Death Detection Recommendations

5.1 Network Performance Test and Multicast Recommendations
Test TCP Network Performance

Run the message bus test utility to test the actual network speed and determine its
capability for pushing large amounts TCP messages. Any production deployment
should be preceded by a successful run of the message bus test. See “Running the
Message Bus Test Utility,” for details. A TCP stack is typically already configured for a
network and requires no additional configuration for Coherence. If TCP performance
is unsatisfactory, consider changing TCP settings. For common TCP settings that can
be tuned, see “TCP Considerations.”

Production Checklist 5-1

Test Datagram Network Performance

Run the datagram test utility to test the actual network speed and determine its
capability for pushing datagram messages. Any production deployment should be
preceded by a successful run of both tests. See Performing a Network Performance
Test, for details. Furthermore, the datagram test utility must be run with an increasing
ratio of publishers to consumers, since a network that appears fine with a single
publisher and a single consumer may completely fall apart as the number of
publishers increases.

Consider the Use of Multicast

The term multicast refers to the ability to send a packet of information from one server
and to have that packet delivered in parallel by the network to many servers.
Coherence supports both multicast and multicast-free clustering. The use of multicast
can be used to ease cluster configuration. However, the use of multicast may not
always be possible for several reasons:

• Some organizations disallow the use of multicast.

• Multicast cannot operate over certain types of network equipment; for example,
many WAN routers disallow or do not support multicast traffic.

• Multicast is occasionally unavailable for technical reasons; for example, some
switches do not support multicast traffic.

Run the multicast test to verify that multicast is working and to determine the correct
(the minimum) TTL value for the production environment. Any production
deployment should be preceded by a successful run of the multicast test. See
Performing a Multicast Connectivity Test for more information.

Applications that cannot use multicast for deployment must use unicast and the well
known addresses feature. See Developing Applications with Oracle Coherence for details.

Configure Network Devices

Network devices may require configuration even if all network performance tests and
the multicast test pass without incident and the results are perfect. Review the
suggestions in “Network Tuning”.

Changing the Default Cluster Port

The default cluster port is 7574 and for most use cases does not need to be changed.
This port number, or any other selected port number, must not be within the operating
system ephemeral port range. Ephemeral ports can be randomly assigned to other
processes and can result in Coherence not being able to bind to the port during
startup. On most operating systems, the ephemeral port range typically starts at 32,768
or higher. Some versions of Linux, such as Red Hat, have a much lower ephemeral
port range and additional precautions must be taken to avoid random bind failures.

On Linux the ephemeral port range can be queried as follows:

sysctl net.ipv4.ip_local_port_range

sysctl net.ipv4.ip_local_reserved_ports

The first command shows the range as two space separated values indicating the start
and end of the range. The second command shows exclusions from the range as a
comma separated list of reserved ports, or reserved port ranges (for example,
(1,2,10-20,40-50, and so on).

Network Performance Test and Multicast Recommendations

5-2 Administering Oracle Coherence

If the desired port is in the ephemeral range and not reserved, you can modify the
reserved set and optionally narrow the ephemeral port range. This can be done as root
be editing /etc/sysctl.conf. For example:

net.ipv4.ip_local_port_range = 9000 65000
net.ipv4.ip_local_reserved_ports = 7574

After editing the file you can then trigger a reload of the settings by running:

sysctl -p

5.2 Network Recommendations
Ensure a Consistent IP Protocol

It is suggested that cluster members share the same setting for the
java.net.preferIPv4Stack property. In general, this property does not need to
be set. If there are multiple clusters running on the same machine and they share a
cluster port, then the clusters must also share the same value for this setting. In rare
circumstances, such as running multicast over the loopback address, this setting may
be required.

Test in a Clustered Environment

After the POC or prototype stage is complete, and until load testing begins, it is not
out of the ordinary for an application to be developed and tested by engineers in a
non-clustered form. Testing primarily in the non-clustered configuration can hide
problems with the application architecture and implementation that appear later in
staging or even production.

Make sure that the application has been tested in a clustered configuration before
moving to production. There are several ways for clustered testing to be a natural part
of the development process; for example:

• Developers can test with a locally clustered configuration (at least two instances
running on their own computer). This works well with the TTL=0 setting, since
clustering on a single computer works with the TTL=0 setting.

• Unit and regression tests can be introduced that run in a test environment that is
clustered. This may help automate certain types of clustered testing that an
individual developer would not always remember (or have the time) to do.

Evaluate the Production Network's Speed for both UDP and TCP

Most production networks are based on 10 Gigabit Ethernet (10GbE), with some still
built on Gigabit Ethernet (GbE) and 100Mb Ethernet. For Coherence, GbE and 10GbE
are suggested and 10GbE is recommended. Most servers support 10GbE, and switches
are economical, highly available, and widely deployed.

It is important to understand the topology of the production network, and what the
devices are used to connect all of the servers that run Coherence. For example, if there
are ten different switches being used to connect the servers, are they all the same type
(make and model) of switch? Are they all the same speed? Do the servers support the
network speeds that are available?

In general, all servers should share a reliable, fully switched network. This generally
implies sharing a single switch (ideally, two parallel switches and two network cards
per server for availability). There are two primary reasons for this. The first is that
using multiple switches almost always results in a reduction in effective network
capacity. The second is that multi-switch environments are more likely to have
network partitioning events where a partial network failure results in two or more

Network Recommendations

Production Checklist 5-3

disconnected sets of servers. While partitioning events are rare, Coherence cache
servers ideally should share a common switch.

To demonstrate the impact of multiple switches on bandwidth, consider several
servers plugged into a single switch. As additional servers are added, each server
receives dedicated bandwidth from the switch backplane. For example, on a fully
switched gigabit backplane, each server receives a gigabit of inbound bandwidth and
a gigabit of outbound bandwidth for a total of 2Gbps full duplex bandwidth. Four
servers would have an aggregate of 8Gbps bandwidth. Eight servers would have an
aggregate of 16Gbps. And so on up to the limit of the switch (in practice, usually in the
range of 160-192Gbps for a gigabit switch). However, consider the case of two
switches connected by a 4Gbps (8Gbps full duplex) link. In this case, as servers are
added to each switch, they have full mesh bandwidth up to a limit of four servers on
each switch (that is, all four servers on one switch can communicate at full speed with
the four servers on the other switch). However, adding additional servers potentially
create a bottleneck on the inter-switch link. For example, if five servers on one switch
send data to five servers on the other switch at 1Gbps per server, then the combined
5Gbps is restricted by the 4Gbps link. Note that the actual limit may be much higher
depending on the traffic-per-server and also the portion of traffic that must actually
move across the link. Also note that other factors such as network protocol overhead
and uneven traffic patterns may make the usable limit much lower from an
application perspective.

Avoid mixing and matching network speeds: make sure that all servers connect to the
network at the same speed and that all of the switches and routers between those
servers run at that same speed or faster.

Plan for Sustained Network Outages

The Coherence cluster protocol can of detect and handle a wide variety of connectivity
failures. The clustered services are able to identify the connectivity issue, and force the
offending cluster node to leave and re-join the cluster. In this way the cluster ensures a
consistent shared state among its members.

See “Death Detection Recommendations” for more details. See also “Deploying to
Cisco Switches”

Plan for Firewall Port Configuration

Coherence clusters members that are located outside of a firewall must be able to
communicate with cluster members that are located within the firewall. Configure the
firewall to allow Coherence communication as required. The following list shows
common default ports and additional areas where ports are configured.

• cluster port: The default multicast port is 7574. For details, see Developing
Applications with Oracle Coherence.

• unicast ports: UDP requires two ports and TMB uses one port. The default unicast
ports are automatically assigned from the operating system's available ephemeral
port range. For clusters that communicate across a firewall, a range of ports can be
specified for coherence to operate within. Using a range rather then a specific port
allows multiple cluster members to reside on the same machine and use a common
configuration. For details, see Developing Applications with Oracle Coherence.

Note:

In general, using a firewall within a cluster (even between TCMP clients and
TCMP servers) is an anti-pattern as it is very easy to mis-configure and prone
to reliability issues that can be hard to troubleshoot in a production

Network Recommendations

5-4 Administering Oracle Coherence

environment. By definition, any member within a cluster should be
considered trusted. Untrusted members should not be allowed into the cluster
and should connect as Coherence extend clients or using a services layer
(HTTP, SOA, and so on).

• port 7: The default port of the IpMonitor component that is used for detecting
hardware failure of cluster members. Coherence doesn't bind to this port, it only
tries to connect to it as a means of pinging remote machines. The port needs to be
open in order for Coherence to do health monitoring checks.

• Proxy service ports: The proxy by default listens on an ephemeral port. For firewall
based configurations, this can be restricted to a range of ports which can then be
opened in the firewall. Using a range of ports allows multiple cluster members to
be run on the same machine and share a single common configuration. For details,
see Developing Remote Clients for Oracle Coherence.

• Coherence REST ports: Any number of ports that are used to allow remote
connections from Coherence REST clients. For details, see Developing Remote Clients
for Oracle Coherence.

5.3 Cache Size Calculation Recommendations
The recommendations in this section are used to calculate the approximate size of a
cache. Understanding what size cache is required can help determine how many
JVMs, how much physical memory, and how many CPUs and servers are required.
Hardware and JVM recommendations are provided later in this chapter. The
recommendations are only guidelines: an accurate view of size can only be validated
through specific tests that take into account an application's load and use cases that
simulate expected users volumes, transactions profiles, processing operations, and so
on.

As a starting point, allocate at least 3x the physical heap size as the data set size,
assuming that you are going to keep 1 backup copy of primary data. To make a more
accurate calculation, the size of a cache can be calculated as follows and also assumes 1
backup copy of primary data:

Cache Capacity = Number of entries * 2 * Entry Size

Where:

Entry Size = Serialized form of the key + Serialized form of the Value + 150 bytes

For example, consider a cache that contains 5 million objects, where the value and key
serialized are 100 bytes and 2kb, respectively.

Calculate the entry size:

100 bytes + 2048 bytes + 150 bytes = 2298 bytes

Then, calculate the cache capacity:

5000000 * 2 * 2298 bytes = 21,915 MB

If indexing is used, the index size must also be taken into account. Un-ordered cache
indexes consist of the serialized attribute value and the key. Ordered indexes include
additional forward and backward navigation information.

Indexes are stored in memory. Each node will require 2 additional maps (instances of
java.util.HashMap) for an index: one for a reverse index and one for a forward
index. The reverse index size is a cardinal number for the value (size of the value

Cache Size Calculation Recommendations

Production Checklist 5-5

domain, that is, the number of distinct values). The forward index size is of the key set
size. The extra memory cost for the HashMap is about 30 bytes. Extra cost for each
extracted indexed value is 12 bytes (the object reference size) plus the size for the value
itself.

For example, the extra size for a Long value is 20 bytes (12 bytes + 8 bytes) and for a
String is 12 bytes + the string length. There is also an additional reference (12 bytes)
cost for indexes with a large cardinal number and a small additional cost (about 4
bytes) for sorted indexes. Therefore, calculate an approximate index cost as:

Index size = forward index map + backward index map + reference + value size

For an indexed Long value of large cardinal, it's going to be approximately:

30 bytes + 30 bytes + 12 bytes + 8 bytes = 80 bytes

For an indexed String of an average length of 20 chars it's going to be approximately:

30 bytes + 30 bytes + 12 bytes + (20 bytes * 2) = 112 bytes

The index cost is relatively high for small objects, but it's constant and becomes less
and less expensive for larger objects.

Sizing a cache is not an exact science. Assumptions on the size and maximum number
of objects have to be made. A complete example follows:

• Estimated average entry size = 1k

• Estimated maximum number of cache objects = 100k

• String indexes of 20 chars = 5

Calculate the index size:

5 * 112 bytes * 100k = 56MB

Then, calculate the cache capacity:

100k * 2 * 1k + 56MB = ~312MB

Each JVM stores on-heap data itself and requires some free space to process data. With
a 1GB heap this will be approximately 300MB or more. The JVM process address space
for the JVM – outside of the heap is also approximately 200MB. Therefore, to store
312MB of data requires the following memory for each node in a 2 node JVM cluster:

312MB (for data) + 300MB (working JVM heap) + 200MB (JVM executable) = 812MB
(of physical memory)

Note that this is the minimum heap space that is required. It is prudent to add
additional space, to take account of any inaccuracies in your estimates, about 10%, and
for growth (if this is anticipated). Also, adjust for M+N redundancy. For example, with
a 12 member cluster that needs to be able to tolerate a loss of two servers, the
aggregate cache capacity should be based on 10 servers and not 12.

With the addition of JVM memory requirements, the complete formula for calculating
memory requirements for a cache can be written as follows:

Cache Memory Requirement = ((Size of cache entries + Size of indexes) * 2 (for primary and
backup)) + JVM working memory (~30% of 1GB JVM)

Cache Size Calculation Recommendations

5-6 Administering Oracle Coherence

5.4 Hardware Recommendations
Plan Realistic Load Tests

Development typically occurs on relatively fast workstations. Moreover, test cases are
usually non-clustered and tend to represent single-user access (that is, only the
developer). In such environments the application may seem extraordinarily
responsive.

Before moving to production, ensure that realistic load tests have been routinely run in
a cluster configuration with simulated concurrent user load.

Develop on Adequate Hardware Before Production

Coherence is compatible with all common workstation hardware. Most developers use
PC or Apple hardware, including notebooks, desktops and workstations.

Developer systems should have a significant amount of RAM to run a modern IDE,
debugger, application server, database and at least two cluster instances. Memory
utilization varies widely, but to ensure productivity, the suggested minimum memory
configuration for developer systems is 2GB.

Select a Server Hardware Platform

Oracle works to support the hardware that the customer has standardized on or
otherwise selected for production deployment.

• Oracle has customers running on virtually all major server hardware platforms.
The majority of customers use "commodity x86" servers, with a significant number
deploying Oracle SPARC and IBM Power servers.

• Oracle continually tests Coherence on "commodity x86" servers, both Intel and
AMD.

• Intel, Apple and IBM provide hardware, tuning assistance and testing support to
Oracle.

If the server hardware purchase is still in the future, the following are suggested for
Coherence:

It is strongly recommended that servers be configured with a minimum of 32GB of
RAM. For applications that plan to store massive amounts of data in memory (tens or
hundreds of gigabytes, or more), evaluate the cost-effectiveness of 128GB or even
256GB of RAM per server. Also, note that a server with a very large amount of RAM
likely must run more Coherence nodes (JVMs) per server to use that much memory, so
having a larger number of CPU cores helps. Applications that are data-heavy require a
higher ratio of RAM to CPU, while applications that are processing-heavy require a
lower ratio.

A minimum of 1000Mbps for networking (for example, Gigabit Ethernet or better) is
strongly recommended. NICs should be on a high bandwidth bus such as PCI-X or
PCIe, and not on standard PCI.

Plan the Number of Servers

Coherence is primarily a scale-out technology. The natural mode of operation is to
span many servers (for example, 2-socket or 4-socket commodity servers). However,
Coherence can also effectively scale-up on a small number of large servers by using
multiple JVMs per server. Failover and failback are more efficient the more servers
that are present in the cluster and the impact of a server failure is lessened. A cluster
should contain a minimum of four physical servers to minimize the possibility of data

Hardware Recommendations

Production Checklist 5-7

loss during a failure. In most WAN configurations, each data center has independent
clusters (usually interconnected by Extend-TCP). This increases the total number of
discrete servers (four servers per data center, multiplied by the number of data
centers).

Coherence is often deployed on smaller clusters (one, two or three physical servers)
but this practice has increased risk if a server failure occurs under heavy load. As
discussed in “Evaluate the Production Network's Speed for both UDP and TCP”,
Coherence clusters are ideally confined to a single switch (for example, fewer than 96
physical servers). In some use cases, applications that are compute-bound or memory-
bound applications (as opposed to network-bound) may run acceptably on larger
clusters.

Also, given the choice between a few large JVMs and a lot of small JVMs, the latter
may be the better option. There are several production environments of Coherence
that span hundreds of JVMs. Some care is required to properly prepare for clusters of
this size, but smaller clusters of dozens of JVMs are readily achieved. Please note that
disabling multicast (by using WKA) or running on slower networks (for example,
100Mbps Ethernet) reduces network efficiency and makes scaling more difficult.

Decide How Many Servers are Required Based on JVMs Used

The following rules should be followed in determining how many servers are required
for reliable high availability configuration and how to configure the number of storage-
enabled JVMs.

• There must be more than two servers. A grid with only two servers stops being
machine-safe as soon as several JVMs on one server are different than the number
of JVMs on the other server; so, even when starting with two servers with equal
number of JVMs, losing one JVM forces the grid out of machine-safe state. If the
number of JVMs becomes unequal it may be difficult for Coherence to assign
partitions in a way that ensures both equal per-member utilization as well as the
placement of primary and backup copies on different machines. As a result, the
recommended best practice is to use more than two physical servers.

• For a server that has the largest number of JVMs in the cluster, that number of
JVMs must not exceed the total number of JVMs on all the other servers in the
cluster.

• A server with the smallest number of JVMs should run at least half the number of
JVMs as a server with the largest number of JVMs; this rule is particularly
important for smaller clusters.

• The margin of safety improves as the number of JVMs tends toward equality on all
computers in the cluster; this is more of a general practice than the preceding rules.

5.5 Operating System Recommendations
Selecting an Operating System

Oracle tests on and supports the following operating systems:

• Various Linux distributions

• Sun Solaris

• IBM AIX

• Windows

Operating System Recommendations

5-8 Administering Oracle Coherence

• Mac

• OS/400

• z/OS

• HP-UX

• Various BSD UNIX distributions

For commodity x86 servers, Linux distributions (Linux 2.6 kernel or higher) are
recommended. While it is expected that most Linux distributions provide a good
environment for running Coherence, the following are recommended by Oracle:
Oracle Linux (including Oracle Linux with the Unbreakable Enterprise Kernel), Red
Hat Enterprise Linux (version 4 or later), and Suse Linux Enterprise (version 10 or
later).

Review and follow the instructions in Platform-Specific Deployment Considerations
for the operating system on which Coherence is deployed.

Note:

The development and production operating systems may be different. Make
sure to regularly test the target production operating system.

Avoid using virtual memory (paging to disk).

In a Coherence-based application, primary data management responsibilities (for
example, Dedicated Cache Servers) are hosted by Java-based processes. Modern Java
distributions do not work well with virtual memory. In particular, garbage collection
(GC) operations may slow down by several orders of magnitude if memory is paged
to disk. A properly tuned JVM can perform full GCs in less than a second. However,
this may grow to many minutes if the JVM is partially resident on disk. During
garbage collection, the node appears unresponsive for an extended period and the
choice for the rest of the cluster is to either wait for the node (blocking a portion of
application activity for a corresponding amount of time) or to consider the
unresponsive node as failed and perform failover processing. Neither of these
outcomes are a good option, and it is important to avoid excessive pauses due to
garbage collection. JVMs should be configured with a set heap size to ensure that the
heap does not deplete the available RAM memory. Also, periodic processes (such as
daily backup programs) should be monitored to ensure that memory usage spikes do
not cause Coherence JVMs to be paged to disk.

See also: “Swapping”.

Increase Socket Buffer Sizes

The operating system socket buffers must be large enough to handle the incoming
network traffic while your Java application is paused during garbage collection. Most
versions of UNIX have a very low default buffer limit, which should be increased to
2MB.

See also: “Socket Buffer Sizes”.

5.6 JVM Recommendations
During development, developers typically use the latest Oracle HotSpot JVM or a
direct derivative such as the Mac OS X JVM.

JVM Recommendations

Production Checklist 5-9

The main issues related to using a different JVM in production are:

• Command line differences, which may expose problems in shell scripts and batch
files;

• Logging and monitoring differences, which may mean that tools used to analyze
logs and monitor live JVMs during development testing may not be available in
production;

• Significant differences in optimal garbage collection configuration and approaches
to tuning;

• Differing behaviors in thread scheduling, garbage collection behavior and
performance, and the performance of running code.

Make sure that regular testing has occurred on the JVM that is used in production.

Select a JVM

Refer to "System Requirements" in Installing Oracle Coherence for the minimum
supported JVM version.

Often the choice of JVM is also dictated by other software. For example:

• IBM only supports IBM WebSphere running on IBM JVMs. Most of the time, this is
the IBM "Sovereign" or "J9" JVM, but when WebSphere runs on Oracle Solaris/
Sparc, IBM builds a JVM using the Oracle JVM source code instead of its own.

• Oracle WebLogic and Oracle Exalogic include specific JVM versions.

• Apple Mac OS X, HP-UX, IBM AIX and other operating systems only have one
JVM vendor (Apple, HP, and IBM respectively).

• Certain software libraries and frameworks have minimum Java version
requirements because they take advantage of relatively new Java features.

On commodity x86 servers running Linux or Windows, use the Oracle HotSpot JVM.
Generally speaking, the recent update versions should be used.

Note:

Test and deploy using the latest supported Oracle HotSpot JVM based on your
platform and Coherence version.

Before going to production, a JVM vendor and version should be selected and well
tested, and absent any flaws appearing during testing and staging with that JVM, that
should be the JVM that is used when going to production. For applications requiring
continuous availability, a long-duration application load test (for example, at least two
weeks) should be run with that JVM before signing off on it.

Review and follow the instructions in Platform-Specific Deployment Considerations
for the JVM on which Coherence is deployed.

Set JVM Options

JVM configuration options vary over versions and between vendors, but the following
are generally suggested.

• Using the -server option results in substantially better performance.

JVM Recommendations

5-10 Administering Oracle Coherence

• Using identical heap size values for both -Xms and -Xmx yields substantially better
performance on Oracle HotSpot JVM and "fail fast" memory allocation.

• Using Concurrent Mark and Sweep (CMS) garbage collection results in better
garbage collection performance: -XX:+UseConcMarkSweepGC

• Monitor garbage collection– especially when using large heaps: -verbose:gc, -
XX:+PrintGCDetails, -XX:+PrintGCTimeStamps, -XX:+PrintHeapAtGC, -
XX:+PrintTenuringDistribution, -XX:
+PrintGCApplicationStoppedTime -XX:
+PrintGCApplicationConcurrentTime

• JVMs that experience an OutOfMemoryError can be left in an indeterministic
state which can have adverse effects on a cluster. Configure JVMs to exit upon
encountering an OutOfMemoryError instead of allowing the JVM to attempt
recovery: On Linux, -XX:OnOutOfMemoryError="kill -9 %p"; on Windows,
-XX:OnOutOfMemoryError="taskkill /F /PID %p".

• Capture a heap dump if the JVM experiences an out of memory error: -XX:
+HeapDumpOnOutOfMemoryError.

Plan to Test Mixed JVM Environments

Coherence is pure Java software and can run in clusters composed of any combination
of JVM vendors and versions and Oracle tests such configurations.

Note that it is possible for different JVMs to have slightly different serialization formats
for Java objects, meaning that it is possible for an incompatibility to exist when objects
are serialized by one JVM, passed over the wire, and a different JVM (vendor, version,
or both) attempts to deserialize it. Fortunately, the Java serialization format has been
very stable for several years, so this type of issue is extremely unlikely. However, it is
highly recommended to test mixed configurations for consistent serialization before
deploying in a production environment.

See also:

• “Deploying to Oracle HotSpot JVMs”

• “Deploying to IBM JVMs”

5.7 Oracle Exalogic Elastic Cloud Recommendations
Oracle Exalogic and the Oracle Exalogic Elastic Cloud software provide a foundation
for extreme performance, reliability, and scalability. Coherence has been optimized to
take advantage of this foundation especially in its use of Oracle Exabus technology.
Exabus consists of unique hardware, software, firmware, device drivers, and
management tools and is built on Oracle's Quad Data Rate (QDR) InfiniBand
technology. Exabus forms the high-speed communication (I/O) fabric that ties all
Oracle Exalogic system components together. For detailed instructions on Exalogic,
see Oracle Exalogic Enterprise Deployment Guide.

Oracle Coherence includes the following optimizations:

• Transport optimizations

Oracle Coherence uses the Oracle Exabus messaging API for message transport.
The API is optimized on Exalogic to take advantage of InfiniBand. The API is part
of the Oracle Exalogic Elastic Cloud software and is only available on Oracle
Exalogic systems.

Oracle Exalogic Elastic Cloud Recommendations

Production Checklist 5-11

http://www.oracle.com/pls/topic/lookup?ctx=E18476-01&id=ELEDG

In particular, Oracle Coherence uses the InfiniBand Message Bus (IMB) provider.
IMB uses a native InfiniBand protocol that supports zero message copy, kernel
bypass, predictive notifications, and custom off-heap buffers. The result is
decreased host processor load, increased message throughput, decreased
interrupts, and decreased garbage collection pauses.

The default Coherence setup on Oracle Exalogic uses IMB for service
communication (transferring data) and for cluster communication. Both defaults
can be changed and additional protocols are supported. For details on changing the
default protocols, see “Changing the Reliable Transport Protocol”.

• Elastic data optimizations

The Elastic Data feature is used to store backing map and backup data seamlessly
across RAM memory and devices such as Solid State Disks (SSD). The feature
enables near memory speed while storing and reading data from SSDs. The feature
includes dynamic tuning to ensure the most efficient use of SSD memory on
Exalogic systems. For details about enabling and configuring elastic data, see
Developing Applications with Oracle Coherence.

• Coherence*Web optimizations

Coherence*Web naturally benefits on Exalogic systems because of the increased
performance of the network between WebLogic Servers and Coherence servers.
Enhancements also include less network usage and better performance by enabling
optimized session state management when locking is disabled
(coherence.session.optimizeModifiedSessions=true). For details about
Coherence*Web context parameters, see Administering HTTP Session Management
with Oracle Coherence*Web.

Consider Using Fewer JVMs with Larger Heaps

The IMB protocol requires more CPU usage (especially at lower loads) to achieve
lower latencies. If you are using many JVMs, JVMs with smaller heaps (under 12GB),
or many JVMs and smaller heaps, then consider consolidating the JVMs as much as
possible. Large heap sizes up to 20GB are common and larger heaps can be used
depending on the application and its tolerance to garbage collection. For details about
heap sizing, see “JVM Tuning”.

Disable Application Support for Huge (Large) Pages

Support for huge pages (also called large pages) is enabled in the Linux OS on
Exalogic nodes by default. However, due to JVM stability issues, Java applications
should not enable large pages. For example, do not use the -XX:+UseLargePages
option when starting the JVM. Depending on the specific version of the JVM in use,
large pages may be enabled with the JVM by default and thus the safest configuration
is to explicitly disable them using -XX:-UseLargePages.

Note:

Updates to large page support is scheduled for a future release of Exalogic.

Changing the Reliable Transport Protocol

On Oracle Exalogic, Coherence automatically selects the best reliable transport
available for the environment. The default Coherence setup uses the InfiniBand
Message Bus (IMB) for service communication (transferring data) and for cluster
communication unless SSL is enabled, in which case SDMBS is used. You can use a

Oracle Exalogic Elastic Cloud Recommendations

5-12 Administering Oracle Coherence

different transport protocol and check for improved performance. However, you
should only consider changing the protocol after following the previous
recommendations in this section.

Note:

The only time the default transport protocol may need to be explicitly set is in
a Solaris Super Cluster environment. The recommended transport protocol is
SDMB or (if supported by the environment) IMB.

The following transport protocols are available on Exalogic:

• datagram – Specifies the use of UDP.

• tmb – Specifies the TCP Message Bus (TMB) protocol. TMB provides support for
TCP/IP.

• tmbs – TCP/IP message bus protocol with SSL support. TMBS requires the use of
an SSL socket provider. See Developing Applications with Oracle Coherence.

• sdmb – Specifies the Sockets Direct Protocol Message Bus (SDMB). The Sockets
Direct Protocol (SDP) provides support for stream connections over the InfiniBand
fabric. SDP allows existing socket-based implementations to transparently use
InfiniBand.

• sdmbs – SDP message bus with SSL support. SDMBS requires the use of an SSL
socket provider. See Developing Applications with Oracle Coherence.

• imb (default on Exalogic) – InfiniBand message bus (IMB). IMB is automatically
used on Exalogic systems as long as TCMP has not been configured with SSL.

To configure a reliable transport for all cluster (unicast) communication, edit the
operational override file and within the <unicast-listener> element add a
<reliable-transport> element that is set to a protocol:

Note:

By default, all services use the configured protocol and share a single
transport instance. In general, a shared transport instance uses less resources
than a service-specific transport instance.

<?xml version="1.0"?>
<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <reliable-transport
 system-property="coherence.transport.reliable">imb
 </reliable-transport>
 </unicast-listener>
 </cluster-config>
</coherence>

Oracle Exalogic Elastic Cloud Recommendations

Production Checklist 5-13

The coherence.transport.reliable system property also configures the reliable
transport. For example:

-Dcoherence.transport.reliable=imb

To configure reliable transport for a service, edit the cache configuration file and
within a scheme definition add a <reliable-transport> element that is set to a
protocol. The following example demonstrates setting the reliable transport for a
partitioned cache service instance called ExampleService:

Note:

Specifying a reliable transport for a service results in the use of a service-
specific transport instance rather then the shared transport instance that is
defined by the <unicast-listener> element. A service-specific transport
instance can result in higher performance but at the cost of increased resource
consumption and should be used sparingly for select, high priority services. In
general, a shared transport instance uses less resource consumption than
service-specific transport instances.

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>ExampleService</service-name>
 <reliable-transport>imb</reliable-transport>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Each service type also has a system property that sets the reliable transport,
respectively. The system property sets the reliable transport for all instances of a
service type. The system properties are:

coherence.distributed.transport.reliable

coherence.replicated.transport.reliable

coherence.optimistic.transport.reliable

coherence.invocation.transport.reliable

coherence.proxy.transport.reliable

Oracle Exalogic Elastic Cloud Recommendations

5-14 Administering Oracle Coherence

5.8 Security Recommendations
Ensure Security Privileges

The minimum set of privileges required for Coherence to function are specified in the
security.policy file which is included as part of the Coherence installation. This
file can be found in coherence/lib/security/security.policy. If using the
Java Security Manager, these privileges must be granted in order for Coherence to
function properly.

Plan for SSL Requirements

Coherence-based applications may chose to implement varying levels of security as
required, including SSL-based security between cluster members and between
Coherence*Extend clients and the cluster. If SSL is a requirement, ensure that all
servers have a digital certificate that has been verified and signed by a trusted
certificate authority and that the digital certificate is imported into the servers' key
store and trust store as required. Coherence*Extend clients must include a trust key
store that contains the certificate authority's digital certificate that was used to sign the
proxy's digital certificate. See Securing Oracle Coherence for detailed instructions on
setting up SSL.

5.9 Application Instrumentation Recommendations
Some Java-based management and monitoring solutions use instrumentation (for
example, bytecode-manipulation and ClassLoader substitution). Oracle has
observed issues with such solutions in the past. Use these solutions cautiously even
though there are no current issues reported with the major vendors.

5.10 Coherence Modes and Editions
Select the Production Mode

Coherence may be configured to operate in either evaluation, development, or
production mode. These modes do not limit access to features, but instead alter some
default configuration settings. For instance, development mode allows for faster
cluster startup to ease the development process.

The development mode is used for all pre-production activities, such as development
and testing. This is an important safety feature because development nodes are
restricted from joining with production nodes. Development mode is the default
mode. Production mode must be explicitly specified when using Coherence in a
production environment. To change the mode to production mode, edit the
tangosol-coherence.xml (located in coherence.jar) and enter prod as the
value for the <license-mode> element. For example:

...
<license-config>
 ...
 <license-mode system-property="coherence.mode">prod</license-mode>
</license-config>
...

The coherence.mode system property is used to specify the license mode instead of
using the operational deployment descriptor. For example:

-Dcoherence.mode=prod

Security Recommendations

Production Checklist 5-15

In addition to preventing mixed mode clustering, the license-mode also dictates the
operational override file to use. When in eval mode the tangosol-coherence-
override-eval.xml file is used; when in dev mode the tangosol-coherence-
override-dev.xml file is used; whereas, the tangosol-coherence-override-
prod.xml file is used when the prod mode is specified. A tangosol-coherence-
override.xml file (if it is included in the classpath before the coherence.jar file)
is used no matter which mode is selected and overrides any mode-specific override
files.

Select the Edition

Note:

The edition switches no longer enforce license restrictions. Do not change the
default setting (GE).

All nodes within a cluster must use the same license edition and mode. Be sure to
obtain enough licenses for the all the cluster members in the production environment.
The servers hardware configuration (number or type of processor sockets, processor
packages or CPU cores) may be verified using ProcessorInfo utility included with
Coherence. For example:

java -cp coherence.jar com.tangosol.license.ProcessorInfo

If the result of the ProcessorInfo program differs from the licensed configuration,
send the program's output and the actual configuration as a support issue.

The default edition is grid edition. To change the edition, edit the operational override
file and add an <edition-name> element, within the <license-config> element,
that includes an edition name as defined in Table 5-1. For example:

...
<license-config>
 <edition-name system-property="tangosol.coherence.edition">EE</edition-name>
</license-config>
...

The coherence.edition system property is used to specify the license edition
instead of using the operational deployment descriptor. For example:

-Dcoherence.edition=EE

Coherence Modes and Editions

5-16 Administering Oracle Coherence

Table 5-1 Coherence Editions

Value Coherence Edition C
o
m
p
a
t
i
b
l
e
E
d
i
t
i
o
n
s

GE Grid Edition R
T
C
,
D
C

EE Enterprise Edition D
C

SE Standard Edition D
C

RTC Real-Time Client G
E

DC Data Client G
E
,
E
E
,
S
E

Note:

clusters running different editions may connect by using Coherence*Extend as
a Data Client.

Coherence Modes and Editions

Production Checklist 5-17

Ensuring that RTC Nodes do Not Use Coherence TCMP

Real-Time client nodes can connect to clusters using either Coherence TCMP or
Coherence*Extend. If the intention is to use extend clients, disable TCMP on the client
to ensure that it only connects to a cluster using Coherence*Extend. Otherwise, The
client may become a member of the cluster. See Developing Remote Clients for Oracle
Coherence for details on disabling TCMP communication.

5.11 Coherence Operational Configuration Recommendations
Operational configuration relates to cluster-level configuration that is defined in the
tangosol-coherence.xml file and includes such items as:

• Cluster and cluster member settings

• Network settings

• Management settings

• Security settings

The operational aspects are typically configured by using a tangosol-coherence-
override.xml file. See Developing Applications with Oracle Coherence for more
information on specifying an operational override file.

The contents of this file often differs between development and production. It is
recommended that these variants be maintained independently due to the significant
differences between these environments. The production operational configuration file
should be maintained by systems administrators who are far more familiar with the
workings of the production systems.

All cluster nodes should use the same operational configuration override file and any
node-specific values should be specified by using system properties. See Developing
Applications with Oracle Coherence for more information on system properties. A
centralized configuration file may be maintained and accessed by specifying a URL as
the value of the coherence.override system property on each cluster node. For
example:

-Dcoherence.override=/net/mylocation/tangosol-coherence-override.xml

The override file need only contain the operational elements that are being changed. In
addition, always include the id and system-property attributes if they are defined
for an element.

See Developing Applications with Oracle Coherence for a detailed reference of each
operational element.

5.12 Coherence Cache Configuration Recommendations
Cache configuration relates to cache-level configuration and includes such things as:

• Cache topology (<distributed-scheme>, <near-scheme>, and so on)

• Cache capacities (<high-units>)

• Cache redundancy level (<backup-count>)

The cache configuration aspects are typically configured by using a coherence-
cache-config.xml file. See Developing Applications with Oracle Coherence for more
information on specifying a cache configuration file.

Coherence Operational Configuration Recommendations

5-18 Administering Oracle Coherence

The default coherence-cache-config.xml file included within coherence.jar
is intended only as an example and is not suitable for production use. Always use a
cache configuration file with definitions that are specific to the application.

All cluster nodes should use the same cache configuration descriptor if possible. A
centralized configuration file may be maintained and accessed by specifying a URL as
the value the coherence.cacheconfig system property on each cluster node. For
example:

-Dcoherence.cacheconfig=/net/mylocation/coherence-cache-config.xml

Caches can be categorized as either partial or complete. In the former case, the
application does not rely on having the entire data set in memory (even if it expects
that to be the case). Most caches that use cache loaders or that use a side cache pattern
are partial caches. Complete caches require the entire data set to be in cache for the
application to work correctly (most commonly because the application is issuing non-
primary-key queries against the cache). Caches that are partial should always have a
size limit based on the allocated JVM heap size. The limits protect an application from
OutOfMemoryExceptions errors. Set the limits even if the cache is not expected to
be fully loaded to protect against changing expectations. See JVM Tuning for sizing
recommendations. Conversely, if a size limit is set for a complete cache, it may cause
incorrect results.

It is important to note that when multiple cache schemes are defined for the same
cache service name, the first to be loaded dictates the service level parameters.
Specifically the <partition-count>, <backup-count>, and <thread-count>
subelements of <distributed-scheme> are shared by all caches of the same
service. It is recommended that a single service be defined and inherited by the
various cache-schemes. If you want different values for these items on a cache by
cache basis then multiple services may be configured.

For partitioned caches, Coherence evenly distributes the storage responsibilities to all
cache servers, regardless of their cache configuration or heap size. For this reason, it is
recommended that all cache server processes be configured with the same heap size.
For computers with additional resources multiple cache servers may be used to
effectively make use of the computer's resources.

To ensure even storage responsibility across a partitioned cache the <partition-
count> subelement of the <distributed-scheme> element, should be set to a
prime number which is at least the square of the number of expected cache servers.

For caches which are backed by a cache store, it is recommended that the parent
service be configured with a thread pool as requests to the cache store may block on
I/O. Thread pools are also recommended for caches that perform CPU-intensive
operations on the cache server (queries, aggreations, some entry processors, and so
on). The pool is enabled by using the <thread-count> subelement of
<distributed-scheme> element. For non-CacheStore-based caches more threads
are unlikely to improve performance and should be left disabled.

Unless explicitly specified, all cluster nodes are storage enabled, that is, they act as
cache servers. It is important to control which nodes in your production environment
are storage enabled and storage disabled. The
coherence.distributed.localstorage system property may be used to control
storage, setting it to either true or false. Generally, only dedicated cache servers
(including proxy servers) should have storage enabled. All other cluster nodes should
be configured as storage disabled. This is especially important for short lived
processes which may join the cluster to perform some work and then exit the cluster.
Having these nodes as storage enabled introduces unneeded re-partitioning.

Coherence Cache Configuration Recommendations

Production Checklist 5-19

http://primes.utm.edu/

See Developing Applications with Oracle Coherence for a detailed reference of each cache
configuration element.

5.13 Large Cluster Configuration Recommendations
• Distributed caches on large clusters of more than 16 cache servers require more

partitions to ensure optimal performance. The default partition count is 257 and
should be increased relative to the number of cache servers in the cluster and the
amount of data being stored in each partition. For details on configuring and
calculating the partition count, see Developing Applications with Oracle Coherence.

• The maximum packet size on large clusters of more than 400 cluster members must
be increased to ensure better performance. The default of 1468 should be increased
relative to the size of the cluster, that is, a 600 node cluster would need the
maximum packet size increased by 50%. A simple formula is to allow four bytes
per node, that is, maximum_packet_size >= maximum_cluster_size * 4B.
The maximum packet size is configured as part of the coherence operational
configuration file, see Developing Applications with Oracle Coherence for details on
configuring the maximum packet size.

• Multicast cluster communication should be enabled on large clusters that have
hundreds of cluster members because it provides more efficient cluster-wide
transmissions. These cluster-wide transmissions are rare, but when they do occur
multicast can provide noticeable benefits. Multicast is enabled in an operational
configuration file, see Developing Applications with Oracle Coherence for details.

5.14 Death Detection Recommendations
The Coherence death detection algorithms are based on sustained loss of connectivity
between two or more cluster nodes. When a node identifies that it has lost connectivity
with any other node, it consults with other cluster nodes to determine what action
should be taken.

In attempting to consult with others, the node may find that it cannot communicate
with any other nodes and assumes that it has been disconnected from the cluster. Such
a condition could be triggered by physically unplugging a node's network adapter. In
such an event, the isolated node restarts its clustered services and attempts to rejoin
the cluster.

If connectivity with other cluster nodes remains unavailable, the node may
(depending on well known address configuration) form a new isolated cluster, or
continue searching for the larger cluster. In either case, the previously isolated cluster
nodes rejoins the running cluster when connectivity is restored. As part of rejoining
the cluster, the nodes former cluster state is discarded, including any cache data it may
have held, as the remainder of the cluster has taken on ownership of that data
(restoring from backups).

It is obviously not possible for a node to identify the state of other nodes without
connectivity. To a single node, local network adapter failure and network wide switch
failure looks identical and are handled in the same way, as described above. The
important difference is that for a switch failure all nodes are attempting to re-join the
cluster, which is the equivalent of a full cluster restart, and all prior state and data is
dropped.

Dropping all data is not desirable and, to avoid this as part of a sustained switch
failure, you must take additional precautions. Options include:

Large Cluster Configuration Recommendations

5-20 Administering Oracle Coherence

• Increase detection intervals: The cluster relies on a deterministic process-level
death detection using the TcpRing component and hardware death detection using
the IpMonitor component. Process-level detection is performed within milliseconds
and network or machine failures are detected within 15 seconds by default.
Increasing these value allows the cluster to wait longer for connectivity to return.
Death detection is enabled by default and is configured within the <tcp-ring-
listener> element. See Developing Applications with Oracle Coherence for details on
configuring death detection.

• Persist data to external storage: By using a Read Write Backing Map, the cluster
persists data to external storage, and can retrieve it after a cluster restart. So long as
write-behind is disabled (the <write-delay> subelement of <read-write-
backing-map-scheme>) no data would be lost if a switch fails. The downside
here is that synchronously writing through to external storage increases the latency
of cache update operations, and the external storage may become a bottleneck.

• Decide on a cluster quorum: The cluster quorum policy mandates the minimum
number of cluster members that must remain in the cluster when the cluster service
is terminating suspect members. During intermittent network outages, a high
number of cluster members may be removed from the cluster. Using a cluster
quorum, a certain number of members are maintained during the outage and are
available when the network recovers. See Developing Applications with Oracle
Coherence for details on configuring cluster quorum.

Note:

To ensure that Windows does not disable a network adapter when it is
disconnected, add the following Windows registry DWORD, setting it to
1:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\Tcpip\Parameters\DisableDHCPMediaSense. This setting also affects
static IPs despite the name.

• Add network level fault tolerance: Adding a redundant layer to the cluster's
network infrastructure allows for individual pieces of networking equipment to fail
without disrupting connectivity. This is commonly achieved by using at least two
network adapters per computer, and having each adapter connected to a separate
switch. This is not a feature of Coherence but rather of the underlying operating
system or network driver. The only change to Coherence is that it should be
configured to bind to the virtual rather then physical network adapter. This form of
network redundancy goes by different names depending on the operating system,
see Linux bonding, Solaris trunking and Windows teaming for further details.

Death Detection Recommendations

Production Checklist 5-21

http://support.microsoft.com/kb/239924
http://support.microsoft.com/kb/239924
http://linux-ip.net/html/ether-bonding.html
http://java.sun.com/products/jain/WP2002.pdf
http://www.intel.com/support/network/sb/cs-009747.htm

Death Detection Recommendations

5-22 Administering Oracle Coherence

Part II
Advanced Administration

Part II contains the following chapters:

• Persisting Caches

• Federating Caches Across Clusters

6
Persisting Caches

This chapter provides instructions for using Coherence persistence to save and recover
the contents of a cache.

This chapter includes the following sections:

• Overview of Persistence

• Persistence Dependencies

• Persisting Caches on Demand

• Actively Persisting Caches

• Using Snapshots to Persist a Cache Service

• Archiving Snapshots

• Enabling Active Persistence Mode

• Modifying the Pre-Defined Persistence Environments

• Creating Persistence Environments

• Changing the Active Persistence Failure Response

• Configuring the Quorum for Persistence Recovery

• Subscribing to Persistence JMX Notifications

• Managing Persistence

• Configuring Caches as Transient

6.1 Overview of Persistence
Coherence persistence is a set of tools and technologies that manage the persistence
and recovery of Coherence distributed caches. Cached data is persisted so that it can
be quickly recovered after a catastrophic failure or after a cluster restart due to
planned maintenance. Persistence and federated caching can be used together as
required. For details about using federated caching, see Federating Caches Across
Clusters .

Persistence Modes

Persistence can operate in two modes:

• On-Demand persistence mode – a cache service is manually persisted and
recovered upon request using the persistence coordinator. The persistence

Persisting Caches 6-1

coordinator is exposed as an MBean interface that provides operations for creating,
archiving, and recovering snapshots of a cache service.

• Active persistence mode – In this mode, cache contents are automatically persisted
on all mutations and are automatically recovered on cluster/service startup. The
persistence coordinator can still be used in active persistence mode to perform on-
demand snapshots.

Disk-Based Persistence Storage

Persistence uses a database for the persistence store. The database is used to store the
backing map partitions of a partitioned service. The locations of the database files can
be stored on the local disk of each cache server or on a shared disk on a storage area
network (SAN).

Note:

Database files should never be manually edited. Editing the database files can
lead to persistence errors.

The local disk option allows each cluster member to access persisted data for the
service partitions that it owns. Persistence is coordinated across all storage member
using a list of cache server host addresses. The address list ensures that all persisted
partitions are discovered during recovery. Local disk storage provides a high
throughput and low latency storage mechanism; however, a partition service must still
rely on in-memory backup (backup-count value greater than zero) to remain
machine safe.

The shared disk option, together with active persistence mode, allows each cluster
member to access persisted data for all service partitions. An advantage to using a
shared disk is that partitioned services do not require in-memory backup (backup-
count value can be equal to zero) to remain machine-safe; because, all storage-
enabled members can recover partitions from the shared storage. Disabling in-
memory backup increases the cache capacity of the cluster at the cost of higher latency
recovery during node failure. In general, the use of a SAN can potentially affect
throughput and latencies and should be tested and monitored accordingly.

Note:

The service statusHA statistic shows an ENDAGERED status when the backup
count is set to zero even if persistence is being used to replace in-memory
backup.

Both the local disk and shared disk approach can rely on a quorum policy that controls
how many cluster members must be present to perform persistence operations and
before recovery can begin. Quorum policies allow time for a cluster to start before data
recovery begins.

Persistence Configuration

Persistence is declaratively configured using Coherence configuration files and
requires no changes to application code. An operational override file is used to
configure the underlying persistence implementation if the default settings are not
acceptable. A cache configuration file is used to set persistence properties on a
distributed cache.

Overview of Persistence

6-2 Administering Oracle Coherence

Management and Monitoring

Persistence can be monitored and managed using MBean attributes and operations.
Persistence operations such as creating and archiving snapshots are performed using
the PersistenceCoordinatorMBean MBean. Persistence attributes are included as
part of the attributes of a service and can be viewed using the ServiceMBean MBean.

Persistence attributes and statistics are aggregated in the persistence and
persistence-details reports. Persistence statistics are also aggregated in the Java
VisualVM plug-in. Both tools can help troubleshoot possible resource and
performance issues.

6.2 Persistence Dependencies
Persistence is only available for distributed caches and requires the use of a centralized
partition assignment strategy. Distributed caches use a centralized partitioned
assignment strategy by default. Although uncommon, it is possible that an
autonomous or a custom partition assignment strategy is being used. Check the
StrategyName attribute on the PartitionAssignment MBean to verify the
strategy that is currently configured for a distributed cache. For details about partition
assignment strategies, see Developing Applications with Oracle Coherence.

6.3 Persisting Caches on Demand
Caches can be persisted to disk at any point in time and recovered as required.

To persist caches on demand:

1. Use the persistence coordinator to create, recover, and remove snapshots as
described in “Using Snapshots to Persist a Cache Service”.

2. Optionally, change the location where persistence files are written to disk as
described in “Changing the Pre-Defined Persistence Directory”.

3. Optionally, configure the number of storage members that are required to perform
recovery as described in “Configuring the Quorum for Persistence Recovery ”.

6.4 Actively Persisting Caches
Caches can be automatically persisted to disk and automatically recovered when a
cluster is restarted.

To actively persist caches:

1. Enable active persistence as described in “Enabling Active Persistence Mode”.

2. Optionally, change the location where persistence files are written to disk as
described in “Changing the Pre-Defined Persistence Directory”.

3. Optionally, change how a service responds to possible failures during active
persistence as described in “Changing the Active Persistence Failure Response”.

4. Optionally, configure the number of storage members that are required to perform
recovery as described in “Configuring the Quorum for Persistence Recovery ”.

6.5 Using Snapshots to Persist a Cache Service
Snapshots are a backup of the contents of a cache service that must be manually
managed using the PersistenceCoordinatorMBean MBean. The MBean includes

Persistence Dependencies

Persisting Caches 6-3

asynchronous operations to create, recover, and remove snapshots. When a snapshot
is recovered, the entire service is automatically restored to the state of the snapshot. To
use the MBean, JMX must be enabled on the cluster. For details about enabling JMX
management and accessing Coherence MBeans, see Managing Oracle Coherence.

Note:

The instructions in this section were created using the VisualVM-MBeans
plugin for the JDK Java VisualVM tool. The Coherence-Java VisualVM Plug-in
can also be used to perform snapshot operations.

6.5.1 Create a Snapshot
Creating snapshots writes the contents of a cache service to the snapshot directory that
is specified within the persistence environment definition in the operational override
configuration file.

To create a snapshot:

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to create a snapshot and select the
PersistenceCoordinator MBean.

3. From the Operations tab, enter a name for the snapshot in the field for the
createSnapshot operation.

4. Click createSnapshot.

6.5.2 Recover a Snapshot
Recovering snapshots restores the contents of a cache service from a snapshot.

To recover a snapshot:

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to recover a snapshot and select the
PersistenceCoordinator MBean.

3. From the Operations tab, enter the name of a snapshot in the field for the
recoverSnapshot operation.

4. Click recoverSnapshot.

After the operation has returned, check the OperationStatus or Idle attributes
on the persistence coordinator to determine when the operation has completed.
Applications can be notified when the operation completes by subscribing to the
snapshot JMX notifications.

6.5.3 Remove a Snapshot
Removing a snapshot deletes the snapshot from the snapshot directory. The cache
service remains unchanged.

To remove a snapshot:

Using Snapshots to Persist a Cache Service

6-4 Administering Oracle Coherence

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to remove a snapshot and select the
PersistenceCoordinator MBean.

3. From the Operations tab, enter the name of a snapshot in the field for the
removeSnapshot operation.

4. Click removeSnapshot.

6.6 Archiving Snapshots
Snapshots can be archived to a central location and then later retrieved and restored.
Archiving snapshots requires defining the directory where archives are stored and
configuring cache services to use an archive directory. Archiving operations are
performed using the PersistenceCoordinatorMBean MBean. An archive is
slower to create than snapshots but, unlike snapshots, the archive is portable.

6.6.1 Defining a Snapshot Archive Directory
The directory where snapshots are archived is defined in the operational override file
using a directory snapshot archiver definition. Multiple definitions can be created as
required.

To define a snapshot archiver directory, include the <directory-archiver>
element within the <snapshot-archivers> element. Use the <archiver-
directory> element to enter the directory where snapshot archives are stored. Use
the id attribute to provide a unique name for the definition. For example:

<snapshot-archivers>
 <directory-archiver id="archiver1">
 <archive-directory>/mydirectory</archive-directory>
 </directory-archiver>
</snapshot-archivers>

6.6.2 Specifying a Directory Snapshot Archiver
To specify a directory snapshot archiver, edit the persistence definition within a
distributed scheme and include the name of a directory snapshot archiver that is
defined in the operational override configuration file. For example:

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>Service1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <persistence>
 <archiver>archiver1</archiver>
 </persistence>
 <autostart>true</autostart>
</distributed-scheme>

6.6.3 Performing Snapshot Archiving Operations
Snapshot archiving is manually managed using the
PersistenceCoordinatorMBean MBean. The MBean includes asynchronous
operations to archive and retrieve snapshot archives and also includes operations to
list and remove archives.

Archiving Snapshots

Persisting Caches 6-5

6.6.3.1 Archiving a Snapshot

To archive a snapshot:

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to archive a snapshot and select the
PersistenceCoordinator MBean.

3. From the Operations tab, enter a name for the archive in the field for the
archiveSnapshot operation.

4. Click archiveSnapshot. The snapshot is archived to the location that is specified in
the directory archiver definition defined in the operational override configuration
file.

Check the OperationStatus on the persistence coordinator to determine when
the operation has completed.

6.6.3.2 Retrieving Archived Snapshots

To retrieve an archived snapshot:

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to retrieve an archived snapshot and select
the PersistenceCoordinator MBean.

3. From the Operations tab, enter the name of an archived snapshot in the field for the
retrieveArchivedSnapshot operation.

4. Click retrieveArchivedSnapshot. The archived snapshot is copied from the
directory archiver location to the snapshot directory and is available to be
recovered to the service backing map. For details about recovering a snapshot, see
“Recover a Snapshot”.

6.6.3.3 Removing Archived Snapshots

To remove an archived snapshot:

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to purge an archived snapshot and select the
PersistenceCoordinator MBean.

3. From the Operations tab, enter the name of an archived snapshot in the field for the
removeArchivedSnapshot operation.

4. Click removeArchivedSnapshot. The archived snapshot is removed from the
archive directory.

6.6.3.4 Listing Archived Snapshots

To get a list of the current archived snapshots:

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to list archived snapshots and select the
PersistenceCoordinator MBean.

Archiving Snapshots

6-6 Administering Oracle Coherence

3. From the Operations tab, click the listArchivedSnapshots operation. A list of
archived snapshots is returned.

6.6.3.5 Listing Archived Snapshot Stores

To list the individual stores, or parts of and archived snapshot:

1. From the list of MBeans, select and expand the Persistence node.

2. Expand a service for which you want to list archived snapshot stores and select the
PersistenceCoordinator MBean.

3. From the Operations tab, enter the name of an archived snapshot in the field for the
listArchivedSnapshotStores operation.

4. Click listArchivedSnapshotStores. A list of stores for the archived snapshots is
returned.

6.6.4 Creating a Custom Snapshot Archiver
Custom snapshot archiver implementations can be created as required to store
archives using an alternative technique than the default directory snapshot archiver
implementation. For example, you may want to persist archives to an external
database, use a web service to store archives to a storage area network, or store
archives in a content repository.

6.6.4.1 Create a Custom Snapshot Archiver Implementation

To create a custom snapshot archiver implementation, create a class that extends the
AbstractSnapshotArchiver class. For details about the
AbstractSnapshotArchiver class, see Java API Reference for Oracle Coherence.

6.6.4.2 Create a Custom Snapshot Archiver Definition

To create a custom snapshot archiver definition, include the <custom-archiver>
element within the <snapshot-archivers> element and use the id attribute to
provide a unique name for the definition. Add the <class-name> element within the
<custom-archiver> element that contains the fully qualified name of the
implementation class. The following example creates a definition for a custom
implementation called MyCustomArchiver:

<snapshot-archivers>
 <custom-archiver id="custom1">
 <class-name>package.MyCustomArchiver</class-name>
 </custom-archiver>
</snapshot-archivers>

Use the <class-factory-name> element if your implementation uses a factory
class that is responsible for creating archiver instances. Use the <method-name>
element to specify the static factory method on the factory class that performs object
instantiation. The following example gets a snapshot archiver instance using the
getArchiver method on the MyArchiverFactory class.

<snapshot-archivers>
 <custom-archiver id="custom1">
 <class-factory-name>package.MyArchiverFactory</class-factory-name>
 <method-name>getArchiver</method-name>
 </custom-archiver>
</snapshot-archivers>

Archiving Snapshots

Persisting Caches 6-7

Any initialization parameters that are required for an implementation can be specified
using the <init-params> element. The following example sets the UserName
parameter to Admin.

<snapshot-archivers>
 <custom-archiver id="custom1">
 <class-name>package.MyCustomArchiver</class-name>
 <init-params>
 <init-param>
 <param-name>UserName</param-name>
 <param-value>Admin</param-value>
 </init-param>
 </init-params>
 </custom-archiver>
</snapshot-archivers>

6.6.4.3 Specifying a Custom Snapshot Archiver

To specify a custom snapshot archiver, edit the persistence definition within a
distributed scheme and include the name of a custom snapshot archiver that is defined
in the operational override configuration file. For example:

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>Service1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <persistence>
 <archiver>custom1</archiver>
 </persistence>
 <autostart>true</autostart>
</distributed-scheme>

6.7 Enabling Active Persistence Mode
Active persistence can be enabled for all services or for specific services. To enable
active persistence for all services, set the
coherence.distributed.persistence.mode system property to active. For
example:

-Dcoherence.distributed.persistence.mode=active

The default value if no value is specified is on-demand, which enables on-demand
persistence. The persistence coordinator can still be used in active persistence mode to
take snapshots of a cache.

To enable active persistence for a specific service, modify a distributed scheme
definition and include the <environment> element within the <persistence>
element. Set the value of the <environment> element to default-active. For
example:

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>Service1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <persistence>
 <environment>default-active</environment>
 </persistence>

Enabling Active Persistence Mode

6-8 Administering Oracle Coherence

 <autostart>true</autostart>
</distributed-scheme>

The default value if no value is specified is default-on-demand, which enables on-
demand persistence for the service.

6.7.1 Changing the Partition Count When Using Active Persistence
The partition count cannot be changed when using active persistence. If you change a
services partition count, then on restart of the services all active data is moved to the
persistence trash and must be recovered after the original partition count is restored.
Data that is persisted can only be recovered to services running with the same
partition count.

Ensure that the partition count is not modified if active persistence is being used. If the
partition count is changed, then a message similar to the following is displayed when
the services are started:

<Warning> (thread=DistributedCache:DistributedCachePersistence, member=1):
Failed to recover partition 0 from SafeBerkeleyDBStore(...); partition-count
mismatch 501(persisted) != 277(service); reinstate persistent store from
trash once validation errors have been resolved

The message indicates that the change in the partition-count is not supported and the
current active data has been copied to the trash directory. To recover the data:

1. Shutdown the entire cluster.

2. Remove the current active directory contents for the cluster and service affected on
each cluster member.

3. Copy (recursively) the contents of the trash directory for each service to the active
directory.

4. Restore the partition count to the original value.

5. Restart the cluster.

6.8 Modifying the Pre-Defined Persistence Environments
The operational deployment descriptor includes two pre-defined persistence
environment definitions:

• default-active – used when active persistence is enabled.

• default-on-demand – used when on-demand persistence is enabled.

The operational override file or system properties are used to override the default
settings of the pre-defined persistence environments. The pre-defined persistence
environments have the following configuration:

<persistence-environments>
 <persistence-environment id="default-active">
 <persistence-mode>active</persistence-mode>
 <active-directory
 system-property="coherence.distributed.persistence.active.dir">
 </active-directory>
 <snapshot-directory
 system-property="coherence.distributed.persistence.snapshot.dir">
 </snapshot-directory>
 <trash-directory

Modifying the Pre-Defined Persistence Environments

Persisting Caches 6-9

 system-property="coherence.distributed.persistence.trash.dir">
 </trash-directory>
 </persistence-environment>
 <persistence-environment-environment id="default-on-demand">
 <persistence-mode>on-demand</persistence-mode>
 <active-directory
 system-property="coherence.distributed.persistence.active.dir">
 </active-directory>
 <snapshot-directory
 system-property="coherence.distributed.persistence.snapshot.dir">
 </snapshot-directory>
 <trash-directory
 system-property="coherence.distributed.persistence.trash.dir">
 </trash-directory>
 </persistence-environment>
</persistence-environments>

6.8.1 Changing the Pre-Defined Persistence Directory
The pre-defined persistence environments use a base directory called coherence
within the USER_HOME directory to save persistence files. The location includes
directories for active persistence files, snapshot persistence files, and trash files. The
locations can be changed to a different local directory or a shared directory on the
network.

Note:

• Persistence directories and files (including the meta.properties files)
should never be manually edited. Editing the directories and files can lead
to persistence errors.

• If persistence is configured to use an NFS mounted file system, then the
NFS mount should be configured to use synchronous IO and not
asynchronous IO, which is the default on many operating systems. The use
of asynchronous IO can lead to data loss if the file system becomes
unresponsive due to an outage. For details on configuration, refer to the
mount documentation for your operating system.

To change the pre-defined location of persistence files, include the <active-
directory>, <snapshot-directory>, and <trash-directory> elements that
are each set to the respective directories where persistence files are saved. The
following example modifies the pre-defined on-demand persistence environment and
changes the location of all directories to the /persistence directory:

<persistence-environments>
 <persistence-environment id="default-on-demand">
 <active-directory
 system-property="coherence.distributed.persistence.active.dir">
 /persistence/active</active-directory>
 <snapshot-directory
 system-property="coherence.distributed.persistence.snapshot.dir">
 /persistence/snapshot</snapshot-directory>
 <trash-directory
 system-property="coherence.distributed.persistence.trash.dir">
 /persistence</trash</trash-directory>
 </persistence-environment>
</persistence-environments>

Modifying the Pre-Defined Persistence Environments

6-10 Administering Oracle Coherence

The following system properties are used to change the pre-defined location of the
persistence files instead of using the operational override file:

-Dcoherence.distributed.persistence.active.dir=/persistence/active
-Dcoherence.distributed.persistence.snapshot.dir=/persistence/snapshot
-Dcoherence.distributed.persistence.trash.dir=/persistence/trash

Use the coherence.distributed.persistence.base.dir system property to
change the default directory off the USER_HOME directory:

-Dcoherence.distributed.persistence.base.dir=persistence

6.9 Creating Persistence Environments
A solution can choose to define and use multiple persistence environments to support
different cache scenarios. Persistence environments are defined in the operational
override configuration file and are referred within a distributed scheme definition in
the cache configuration file.

6.9.1 Define a Persistence Environment
To define a persistence environment, include the <persistence-environments>
element that contains a <persistence-environment> element. The
<persistence-environment> element includes the configuration for a persistence
environment. Use the id attribute to name the environment. The id attribute is used
to refer to the persistence environment from a distributed scheme definition. The
following example creates a persistence environment with the name environment1:

<persistence-environments>
 <persistence-environment id="enviornment1">
 <persistence-mode></persistence-mode>
 <active-directory></active-directory>
 <snapshot-directory></snapshot-directory>
 <trash-directory></trash-directory>
 </persistence-environment>
</persistence-environments>

6.9.2 Configure a Persistence Mode
A persistence environment supports two persistence modes: on-demand and active.
On-demand persistence requires the use of the persistence coordinator to persist and
recover cache services. Active persistence automatically persists and recovers cache
services. You can still use the persistence coordinator in active persistence mode to
periodically persist a cache services.

To configure the persistence mode, include the <persistence-mode> element set to
either on-demand or active. The default value if no value is specified is on-
demand. The following example configures active persistence.

<persistence-environments>
 <persistence-environment id="enviornment1">
 <persistence-mode>active</persistence-mode>
 <persistence-mode></persistence-mode>
 <active-directory></active-directory>
 <snapshot-directory></snapshot-directory>
 <trash-directory></trash-directory>
 </persistence-environment>
</persistence-environments>

Creating Persistence Environments

Persisting Caches 6-11

6.9.3 Configure Persistence Directories
A persistence environment saves cache service data to disk. The location can be
configured as required and can be either on a local drive or on a shared network drive.
When configuring a local drive, only the partitions that are owned by a cache server
are persisted to the respective local disk. When configuring a shared network drive, all
partitions are persisted to the same shared disk.

Note:

• Persistence directories and files (including the meta.properties files)
should never be manually edited. Editing the directories and files can lead
to persistence errors.

• If persistence is configured to use an NFS mounted file system, then the
NFS mount should be configured to use synchronous IO and not
asynchronous IO, which is the default on many operating systems. The use
of asynchronous IO can lead to data loss if the file system becomes
unresponsive due to an outage. For details on configuration, refer to the
mount documentation for your operating system.

Different directories are used for active, snapshot and trash files and are named
accordingly. Only the top-level directory must be specified. To configure persistence
directories, include the <active-directory>, <snapshot-directory>, and
<trash-directory> elements that are each set to a directory path where persistence
files are saved. The default value if no value is specified is the USER_HOME directory.
The following example configures the /env1 directory for all persistence files:

<persistence-environments>
 <persistence-environment id="enviornment1">
 <persistence-mode>on-demand</persistence-mode>
 <active-directory>/env1</active-directory>
 <snapshot-directory>/env1</snapshot-directory>
 <trash-directory>/env1</trash-directory>
 </persistence-environment>
</persistence-environments>

6.9.4 Configure a Cache Service to Use a Persistence Environment
To change the persistence environment used by a cache service, modify the distributed
scheme definition and include the <environment> element within the
<persistence> element. Set the value of the <environment> element to the name
of a persistence environment that is defined in the operational override configuration
file. For example:

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>Service1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <persistence>
 <environment>environment1</environment>
 </persistence>
 <autostart>true</autostart>
</distributed-scheme>

Creating Persistence Environments

6-12 Administering Oracle Coherence

6.10 Changing the Active Persistence Failure Response
You can change the way a partitioned cache service responds to possible persistence
failures during active persistence operations. The default response is to immediately
stop the service. This behavior is ideal if persistence is critical for the service (for
example, a cache depends on persistence for data backup). However, if persistence is
not critical, you can chose to let the service continue servicing requests.

To change the active persistence failure response for a service, edit the distributed
scheme definition and include the <active-failure-mode> element within the
<persistence> element and set the value to stop-persistence. If no value is
specified, then the default value (stop-service) is automatically used. The
following example changes the active persistence failure response to stop-
persistence.

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>Service1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <persistence>
 <active-failure-mode>stop-persistence</active-failure-mode>
 </persistence>
 <autostart>true</autostart>
</distributed-scheme>

6.11 Configuring the Quorum for Persistence Recovery
Persistence recovery can be controlled using a partitioned quorum policy. The quorum
defines the number of cluster storage members that must be available before recovery
starts. The use of the quorum allows time for a cluster to start and ensures that
partitions can be recovered gracefully without overloading too few storage members.
For additional details about partitioned quorum policies, see Developing Applications
with Oracle Coherence.

To configure the recover quorum, modify a distributed scheme definition and include
the <recover-quorum> element within the <partitioned-quorum-policy-
scheme> element. Set the <recover-quorum> element value to the number of
storage members that must be available before recovery starts. For example:

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>Service1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <recover-quorum>2</recover-quorum>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>
</distributed-scheme>

In shared disk scenarios, all partitions are persisted and recovered from a single
location. However, for local-disk scenarios each storage member recovers its partitions
from a local disk. When using the recovery quorum with local-disk based storage, you
must define a list of storage-enabled hosts in the cluster that are required to recover

Changing the Active Persistence Failure Response

Persisting Caches 6-13

orphaned partition from the persistent storage or assign empty partitions if the
persistent storage is unavailable or lost.

Note:

Recovery hosts must be specified to ensure that recovery does not commence
prior to all persisted state being available.

To define a list of addresses, edit the operational override configuration file and
include the <address-provider> element that contains a list of addresses each
defined using an <address> element. Use the id attribute to name the address
provider list. The id attribute is used to refer to the list from a distributed scheme
definition. The following example creates an address provider list that contains two
member addresses and is named persistence_hosts:

<address-providers>
 <address-provider id="persistence-host-list">
 <address>HOST_NAME</address>
 <address>HOST_NAME</address>
 </address-provider>
</address-providers>

To refer to the address provider list, modify a distributed scheme definition and
include the <recovery-hosts> element within the <partitioned-quorum-
policy-scheme> element and set the value to the name of an address provider list.
For example:

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>Service1</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <partitioned-quorum-policy-scheme>
 <recover-quorum>2</recover-quorum>
 <recovery-hosts>persistence-hosts</recovery-hosts>
 </partitioned-quorum-policy-scheme>
 <autostart>true</autostart>
</distributed-scheme>

If quorum is not satisfied, then the recovery does not proceed. The service or cluster
may appear to be hung. To check for this scenario, view the QuorumPolicy attribute
in the ServiceMBean MBean to see if recover is included in the list of actions.

If data has not been recovered after cluster startup, the following log message is
emitted (each time a new service member starts up) to indicate that the quorum has
not been satisfied:

<Warning> (thread=DistributedCache:DistributedCachePersistence, member=1):
 Action recover disallowed; all-disallowed-actions: recover(4)

After the quorum is satisfied, the following message is emitted:

<Warning> (thread=DistributedCache:DistributedCachePersistence, member=1):
 All actions allowed

Configuring the Quorum for Persistence Recovery

6-14 Administering Oracle Coherence

6.12 Subscribing to Persistence JMX Notifications
The PersistenceCoordinatorMBean MBean includes a set of notification types
that applications can use to monitor persistence operations. For details about the
notification types, see Managing Oracle Coherence.

To subscribe to persistence JMX notifications, implement the JMX
NotificationListener interface and register the listener. The following code
snippet demonstrates registering a notification listener. Refer to the Coherence
examples for the complete example, which includes a sample listener implementation.

...
MBeanServer server = MBeanHelper.findMBeanServer();
Registry registry = cluster.getManagement();
try
 {
 for (String sServiceName : setServices)
 {
 logHeader("Registering listener for " + sServiceName);
 String sMBeanName = getMBeanName(sServiceName);

 ObjectName oBeanName = new ObjectName(sMBeanName);
 NotificationListener listener = new
 PersistenceNotificationListener(sServiceName);
 server.addNotificationListener(oBeanName, listener, null, null);
 }
 ...

6.13 Managing Persistence
Persistence should be managed to ensure there is enough disk space and to ensure
persistence operations do not add significant latency to cache operations. Latency is
specific to active persistence mode and can affect cache performance because
persistence operations are being performed in parallel with cache operations.

6.13.1 Plan for Persistence Storage
An adequate amount of disk space is required to persist data. Ensure enough space is
provisioned to persist the expected amount of cached data. The following guidelines
should be used when sizing disks for persistence:

• The approximate overhead for active persistence data storage is an extra 10-30%
per partition. The actual overhead may vary depending upon data access patterns,
the size of keys and values, and other factors such as block sizes and heavy system
load.

• Use the Coherence Java VisualVM plugin and persistence reports to monitor space
availability and usage. See “Monitor Persistence Storage Usage”. Specifically, use
the PersistenceActiveSpaceUsed attribute on the ServiceMBean MBean to
monitor the actual persistence space used for each service and node.

• Persistence configurations that use a shared disk for storage should plan for the
potential maximum size of the cache because all partitions are persisted to the same
location. For example, if the maximum capacity of a cache is 8GB, then the shared
disk must be able to accommodate at least 8GB of persisted data plus overhead.

Subscribing to Persistence JMX Notifications

Persisting Caches 6-15

• Persistence configurations that use a local disk for storage should plan for the
potential maximum cache capacity of the cache server because only the partitions
owned by a cache server are persisted to the local disk. For example, if the
maximum cache capacity of a cache server is 2GB, then the local disk must be able
to accommodate at least 2GB of persisted data plus overhead.

• Plan additional space when creating snapshots in either active or on-demand
mode. Each snapshot of a cache duplicates the size of the persistence files on disk.

• Plan additional space for snapshot archives. Each archive of a snapshot is slightly
less than the size of the snapshot files on disk.

6.13.2 Monitor Persistence Storage Usage
Monitor persistence storage to ensure that there is enough space available on the file
system to persist cached data.

Coherence-Java VisualVM Plug-in

Use the Persistence tab in the Coherence-Java VisualVM plug-in to view the amount of
space being used by a service for active persistence. The space is reported in both
Bytes and Megabytes. The tab also reports the current number of snapshots available
for a service. The snapshot number can be used to estimate the additional space usage
and to determine whether snapshots should be deleted to free up space.

Coherence Reports

Use the persistence detail report (persistence-detail.txt) to view the amount of
space being used by a service for both active persistence and for persistence snapshots.
The amount of available disk space is also reported and allows you to monitor if a disk
is reaching capacity.

Coherence MBeans

Use the persistence attributes on the ServiceMBean MBean to view all the
persistence storage statistics for a service. The MBean includes statistics for both active
persistence and persistence snapshots.

6.13.3 Monitoring Persistence Latencies
Monitor persistence latencies when using active persistence to ensure that persistence
operations are not adversely affecting cache operations. High latencies can be a sign
that network issues are delaying writing persistence files to a shared disk or delaying
coordination between local disks.

Coherence-Java VisualVM Plug-in

Use the Persistence tab in the Coherence-Java VisualVM plug-in to view the amount of
latency that persistence operations are adding to cache operations. The time is
reported in milliseconds. Statistics are reported for each service and provide the
average latency of all persistence operations and for the highest recorded latency.

Coherence Reports

Use the persistence detail report (persistence-detail.txt) to view the amount of
latency that persistence operations are adding to cache operations. The time is
reported in milliseconds. Statistics are provided for the average latency of all
persistence operations and for the highest recorded latency on each cluster node of a
service. The statistics can be used to determine if some nodes are experiencing higher
latencies than other nodes.

Managing Persistence

6-16 Administering Oracle Coherence

Coherence MBeans

Use the persistence attributes on the ServiceMBean MBean to view the amount of
latency that persistence operations are adding to cache operations. The time is
reported in milliseconds. Statistics are provided for the average latency of all
persistence operations and for the highest recorded latency on each cluster nodes of a
service. The statistics can be used to determine if some nodes are experiencing higher
latencies than other nodes.

6.14 Configuring Caches as Transient
Caches that do not require persistence can be configured as transient. Caches that are
transient are not recovered during persistence recovery operations.

Note:

During persistence recovery operations, the entire cache service is recovered
from the persisted state and any caches that are configured as transient are
reset.

Caches are configured as transient using the <transient> element within the
<backing-map-scheme> element of a distributed scheme definition. However,
because persistence is always enabled on a service, a parameter macro is used to
configure the transient setting for each cache. For example:

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>nonPersistedCache</cache-name>
 <scheme-name>distributed</scheme-name>
 <init-params>
 <init-param>
 <param-name>transient</param-name>
 <param-value>true</param-value>
 </init-param>
 </init-params>
 </cache-mapping>
 <cache-mapping>
 <cache-name>persistedCache</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedService</service-name>
 <backing-map-scheme>
 <transient>{transient false}</transient>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Note:

The default value of the <transient> element is false and indicates that
cache data is persisted.

Configuring Caches as Transient

Persisting Caches 6-17

Configuring Caches as Transient

6-18 Administering Oracle Coherence

7
Federating Caches Across Clusters

This chapter provides instructions for using the Coherence federated caching feature
to federate cache data across clusters.

This chapter includes the following sections:

• Overview of Federated Caching

• General Steps for Setting Up Federated Caching

• Defining Federation Participants

• Changing the Default Settings of Federation Participants

• Understanding Federation Topologies

• Defining Federation Topologies

• Defining Federated Cache Schemes

• Associating a Federated Cache with a Federation Topology

• Overriding the Destination Cache

• Limiting Federation Service Resource Usage

• Resolving Federation Conflicts

• Using a Specific Network Interface for Federation Communication

• Load Balancing Federated Connections

• Managing Federated Caching

7.1 Overview of Federated Caching
The federated caching feature federates cache data asynchronously across multiple
geographically dispersed clusters. Cached data is federated across clusters to provide
redundancy, off-site backup, and multiple points of access for application users in
different geographical locations.

Multiple Federation Topologies

Federated caching supports multiple federation topologies. These include: active-
active, active-passive, hub-spoke, and central-federation. The topologies define
common federation strategies between clusters and support a wide variety of use
cases. Custom federation topologies can also be created as required.

Federating Caches Across Clusters 7-1

Conflict Resolution

Federated caching provides applications with the ability to accept, reject, or modify
cache entries being stored locally or remotely. Conflict resolution is application
specific to allow the greatest amount of flexibility when defining federation rules.

Federation Configuration

Federated caching is configured using Coherence configuration files and requires no
changes to application code. An operational override file is used to configure
federation participants and the federation topology. A cache configuration file is used
to create federated caches schemes. A federated cache is a type of partitioned cache
service and is managed by a federated cache service instance.

Management and Monitoring

Federated caching is managed using attributes and operations from the
FederationManagerMBean, DestinationMBean, OriginMBean and
TopologyMBean MBeans. These MBeans make it easy to perform administrative
operations, such as starting and stopping federation and to monitor federation
configuration and performance statistics. Many of these statistics and operations are
also available from the Coherence Java VisualVM plugin.

Federation attributes and statistics are aggregated in the federation-status,
federation-origin, and federation-destination reports. Federation
statistics are also aggregated in the Coherence Java VisualVM plugin. Both tools can
help troubleshoot possible resource and performance issues.

In addition, as with any distributed cache, federated services and caches can be
managed and monitored using the attributes operations of the ServiceMBean MBean
and CacheMBean MBean and related reports and Java VisualVM plugin tabs.

7.2 General Steps for Setting Up Federated Caching
To set up federated caching:

1. Ensure that all clusters that are participating in the federation are operational and
that you know the address (host and cluster port) of at least one cache server in
each cluster.

2. Configure each cluster with a list of the cluster participants that are in the
federation as described in “Defining Federation Participants”.

3. Configure each cluster with a topology definition that specifies how data is
federated among cluster participants as described in “Defining Federation
Topologies”.

4. Configure each cluster with a federated cache scheme that is used to store cached
data as described in “Defining Federated Cache Schemes”.

5. Configure the federated cache on each cluster to use a defined federation topology
as described in “Associating a Federated Cache with a Federation Topology”.

7.3 Defining Federation Participants
Each Coherence cluster in a federation must be defined as a federation participant.
Federation participants are defined in an operational override file. The operational
override file for each cluster in the federation must include the list of participants to be
federated. The list of participants must include the local cluster participant and remote
cluster participants.

General Steps for Setting Up Federated Caching

7-2 Administering Oracle Coherence

To define federation participants, include any number of <participant> elements
within the <participants> element. Use the <name> element to define a name for
the participant and the <name—service-addresses> element to define the address
of at least one cache server that is located in the participant cluster. For example:

<federation-config>
 <participants>
 <participant>
 <name>LocalClusterA</name>
 <name-service-addresses>
 <address>192.168.1.7</address>
 </name-service-addresses>
 </participant>
 <participant>
 <name>RemoteClusterB</name>
 <name-service-addresses>
 <address>192.168.10.16</address>
 </name-service-addresses>
 </participant>
 <participant>
 <name>RemoteClusterC</name>
 <name-service-addresses>
 <socket-address>
 <address>192.168.19.25</address>
 <port>1234</port>
 </socket-address>
 </name-service-addresses>
 </participant>
 </participants>
</federation-config>

7.4 Changing the Default Settings of Federation Participants
Federation participants can be explicitly configured to override their default settings.
For details on each setting, see Developing Applications with Oracle Coherence. The
default settings include:

• The federation state that a cluster participant is in when the cluster is started

• The connect time-out to a destination cluster

• The send time-out for acknowledgement messages from a destination cluster

• The maximum bandwidth for sending federated data

• The maximum number of entries that are federated in a single batch

• The location meta-data for the participant

To change the default settings of federation participants, edit the operational override
file for the cluster and modify the <participant> definition. Update the value of
each setting as required. For example:

<participant>
 <name>ClusterA</name>
 <initial-action>start</initial-action>
 <connect-timeout>2m</connect-timeout>
 <send-timeout>6m</send-timeout>
 <max-bandwidth>10</max-bandwidth>
 <batch-size>25</batch-size>
 <geo-ip>Philadelphia</geo-ip>

Changing the Default Settings of Federation Participants

Federating Caches Across Clusters 7-3

 <name-service-addresses>
 <address>192.168.1.7</address>
 </name-service-addresses>
</participant>

7.5 Understanding Federation Topologies
Federation topologies determine how data is federated and synchronized between
cluster participants in a federation. The federation topology defines which clusters can
send cached data, which clusters can receive cached data, and which clusters can re-
send cached data. These roles are well-defined and ensure that data is not missed or
sent multiples times.

The supported federation topologies are:

• Active-Passive Topologies

• Active-Active Topologies

• Hub and Spoke Topologies

• Central Federation Topologies

• Custom Federation Topologies

Active-Passive Topologies

Active-passive topologies are used to federate data from an active cluster to a passive
cluster. Data that is put into active cluster is federated to the passive cluster. If data is
put into the passive cluster, then it does not get federated to the active cluster.
Consider using active-passive topologies when a copy of cached data is required for
read-only operations or an off-site backup is required.

Figure 7-1 provides conceptual view of an active-passive topology.

Figure 7-1 Active-Passive Topology

Active-Active Topologies

Active-active topologies are used to federate data between active clusters. Data that is
put into one active cluster, is federated at the other active clusters. The active-active
topology ensures that cached data is always synchronized between clusters. Consider
using an active-active topology to provide applications in multiple geographical
location with access to a local cluster instance.

Figure 7-2 provides a conceptual view of an active-active topology.

Understanding Federation Topologies

7-4 Administering Oracle Coherence

Figure 7-2 Active-Active Topology

Hub and Spoke Topologies

Hub and spoke topologies are used to federate data from a single hub cluster to
multiple spoke clusters. The hub cluster can only send data and spoke clusters can
only receive data. Consider using a hub and spoke topology when multiple
geographically dispersed copies of a cluster are required. Each spoke cluster can be
used by local applications to perform read-only operations.

Figure 7-3 provides a conceptual view of a hub and spoke topology.

Figure 7-3 Hub and Spoke Topology

Central Federation Topologies

Central federation topologies are used to federate data from a single hub to multiple
leaf clusters. In addition, each leaf can send data to the hub cluster and the hub cluster
re-sends (repeats) the data to all the other leaf clusters. Consider using a central
federation topology to provide applications in multiple geographical location with
access to a local cluster instance.

Figure 7-4 provides a conceptual view of a central federation topology.

Understanding Federation Topologies

Federating Caches Across Clusters 7-5

Figure 7-4 Central Federation Topology

Custom Federation Topologies

Custom federation topologies are used to create free-from topologies. Clusters are
organized into groups and each cluster is designated with a role in the group. The
roles include: sender, receiver, or repeater. A sender participant only federates
changes occurring on the local cluster. A repeater federates both local cluster changes
as well changes it receives from other participants. Only sender and repeater clusters
can federate data to other clusters in the group. Consider creating a custom federation
topology if the pre-defined federation topologies do not address the federation
requirements of a cache.

Figure 7-5 provides a conceptual view of a custom federation topology in one possible
configuration.

Understanding Federation Topologies

7-6 Administering Oracle Coherence

Figure 7-5 Custom Federation Topology

7.6 Defining Federation Topologies
Federation topologies are defined in an operational override file within the
<federation-config> element. If you are unsure about which federation topology
to use, then see “Understanding Federation Topologies” before completing the
instructions in this section.

A topology definition includes the federation roles that each cluster participant
performs in the topology. Multiple topologies can be defined and participants can be
part of multiple topologies. Each cluster in the federation should have a corresponding
federation topology definition to ensure that data is federated between participants in
an expected manner.

Note:

If no topology is defined, then all the participants are assumed to be in an
active-active topology.

This section includes the following topics:

• Defining Active-Passive Topologies

• Defining Active-Active Topologies

• Defining Hub and Spoke Topologies

• Defining Central Federation Topologies

Defining Federation Topologies

Federating Caches Across Clusters 7-7

• Defining Custom Topologies

7.6.1 Defining Active-Passive Topologies
To configure active-passive topologies edit the operational override file and include an
<active-passive> element within the <topology-definitions> element. Use
the <name> element to include a name that is used to reference this topology. Use the
<active> element to define active participants and the <passive> element to define
passive participants. For example:

<federation-config>
 ...
 <topology-definitions>
 <active-passive>
 <name>MyTopology</name>
 <active>LocalClusterA</active>
 <passive>RemoteClusterB</passive>
 </active-passive>
 </topology-definitions>
</federation-config>

With this topology, changes that are made on LocalClusterA are federated to
RemoteClusterB, but changes that are made on RemoteClusterB are not federated to
LocalClusterA.

7.6.2 Defining Active-Active Topologies
To configure active-active topologies edit the operational override file and include an
<active-passive> element within the <topology-definitions> element. Use
the <name> element to include a name that is used to reference this topology. Use the
<active> element to define active participants. For example:

<federation-config>
 ...
 <topology-definitions>
 <active-passive>
 <name>MyTopology</name>
 <active>LocalClusterA</active>
 <active>RemoteClusterB</active>
 </active-passive>
 </topology-definitions>
</federation-config>

With this topology, changes that are made on LocalClusterA are federated to
RemoteClusterB and changes that are made on RemoteClusterB are federated to
LocalClusterA.

7.6.3 Defining Hub and Spoke Topologies
To configure hub and spoke topologies edit the operational override file and include a
<hub-spoke> element within the <topology-definitions> element. Use the
<name> element to include a name that is used to reference this topology. Use the
<hub> element to define the hub participant and the <spoke> element to define the
spoke participants. For example:

<federation-config>
 ...
 <topology-definitions>
 <hub-spoke>

Defining Federation Topologies

7-8 Administering Oracle Coherence

 <name>MyTopology</name>
 <hub>LocalClusterA</hub>
 <spoke>RemoteClusterB</spoke>
 <spoke>RemoteClusterC</spoke>
 </hub-spoke>
 </topology-definitions>
</federation-config>

With this topology, changes that are made on LocalClusterA are federated to
RemoteClusterB and RemoteClusterC, but changes that are made on RemoteClusterB
and RemoteClusterC are not federated to LocalClusterA.

7.6.4 Defining Central Federation Topologies
To configure central federation topologies edit the operational override file and
include a <central-replication> element within the <topology-
definitions> element. Use the <name> element to include a name that is used to
reference this topology. Use the <hub> element to define the hub participant and the
<leaf> element to define the leaf participants. For example:

<federation-config>
 ...
 <topology-definitions>
 <central-replication>
 <name>MyTopology</name>
 <hub>LocalClusterA</hub>
 <leaf>RemoteClusterB</leaf>
 <leaf>RemoteClusterC</leaf>
 </central-replication>
 </topology-definitions>
</federation-config>

With this topology, changes that are made on LocalClusterA are federated to
RemoteClusterB and RemoteClusterC. Changes that are made on RemoteClusterB or
RemoteClusterC are federated to LocalClusterA, which re-sends the data to the other
cluster participant.

7.6.5 Defining Custom Topologies
To configure custom topologies edit the operational override file and include a
<custom-topology> element within the <topology-definitions> element. Use
the <name> element to include a name that is used to reference this topology. Use the
<group> element within the <groups> element to define the role (sender, repeater,
or receiver) for each the participant in the group. For example:

<federation-config>
 ...
 <topology-definitions>
 <custom-topology>
 <name>MyTopology</name>
 <groups>
 <group>
 <sender>LocalClusterA</sender>
 <sender>RemoteClusterB</sender>
 </group>
 <group>
 <repeater>LocalClusterA</repeater>
 <receiver>RemoteClusterC</receiver>
 </group>
 </groups>

Defining Federation Topologies

Federating Caches Across Clusters 7-9

 </custom-topology>
 </topology-definitions>
</federation-config>

With this topology, changes that are made on LocalClusterA or RemoteClusterB are
federated to RemoteClusterC. Any changes made on RemoteClusterC are not
federated to LocalCluster A or RemoteClusterB.

7.7 Defining Federated Cache Schemes
The <federated-scheme> element is used to define federated caches. Any number
of federated caches can be defined in a cache configuration file. For a detailed
reference of the <federated-scheme> element, see Developing Applications with
Oracle Coherence.

Each participant in the cluster must include a federated cache scheme in their
respective cache configuration file. The federated caches on all participants must be
managed by the same federated service instance. The service is specified using the
<service-name> element.

Example 7-1 defines a basic federated cache scheme that uses federated as the
scheme name and federated as the service instance name. The scheme is mapped to
the cache name example. The <autostart> element is set to true to start the
federated cache service on a cache server node.

Example 7-1 Sample Federated Cache Definition

<?xml version="1.0" encoding="windows-1252"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example</cache-name>
 <scheme-name>federated</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </federated-scheme>
 </caching-schemes>
</cache-config>

7.8 Associating a Federated Cache with a Federation Topology
A federated cache must be associated with a topology for data to be federated to
federation participants. Topologies are defined in an operational override file and
referenced from a federated cache definition. For details about defining federation
topologies, see “Defining Federation Topologies”.

Note:

Defining Federated Cache Schemes

7-10 Administering Oracle Coherence

If no topology is defined (all participants are assumed to be in an active-active
topology) or if only one topology is defined, then a topology name does not
need to be specified in a federated scheme definition.

To associate a federated cache with a federation topology, include a <topology>
element within the <topologies> element and use the <name> element to references
a federation topology that is defined in an operational override file. For example:

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <topologies>
 <topology>
 <name>MyTopology</name>
 </topology>
 </topologies>
</federated-scheme>

A federated cache can be associated with multiple federation topologies. For example:

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <topologies>
 <topology>
 <name>MyTopology1</name>
 </topology>
 <topology>
 <name>MyTopology2</name>
 </topology>
 </topologies>
</federated-scheme>

7.9 Overriding the Destination Cache
By default, a federation service federates data to a cache on the remote participant
using same cache name that is defined on the local participant. A different remote
cache can be explicitly specified if required. However, each cache should still be
managed by the same federation service; that is, the caches should specify the same
value in the <service-name> element.

To override the default destination cache, include a <cache-name> element and set
the value to the name of the destination cache on the remote participant. For example:

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>

Overriding the Destination Cache

Federating Caches Across Clusters 7-11

 <topologies>
 <topology>
 <name>MyTopology</name>
 <cache-name>fed-remote</cache-name>
 </topology>
 </topologies>
</federated-scheme>

7.10 Limiting Federation Service Resource Usage
The federation service relies on an internal cache and journal to hold entries during
federation. The internal cache can consume all the available resources on a cluster
node depending on the amount and size of the entries being federated. This can in
turn adversely affect all clusters in the federation. To guard against such scenarios, the
internal cache can be configured to limit the size of the internal cache. Once the limit is
reached, the cluster participant is placed in an error state by other cluster participants
and federation to the participant is stopped.

To limit federation service resources usage, edit a federated cache scheme and set the
<journalcache-highunits> elements to the number of cache entries allowed in
the internal cache before the limit is reached. For example:

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <journalcache-highunits>1000</journalcache-highunits>
</federated-scheme>

7.11 Resolving Federation Conflicts
Applications can implement any custom logic that is needed to resolve conflicts that
may arise between concurrent updates of the same entry. Conflicts are resolved by
creating interceptors to capture federation-specific event types and performing custom
logic as required. Conflict resolution makes use of Coherence live events, for details on
using live events, see Developing Applications with Oracle Coherence.

7.11.1 Processing Federated Connection Events
Federated connection events (FederatedConnectionEvent) represent the
communication between participants of a federated service. Event types include:
CONNECTING, DISCONNECTED, BACKLOG_EXCESSIVE, BACKLOG_NORMAL, and
ERROR events. For more information about federated connection events, see Developing
Applications with Oracle Coherence.

To process federated connection events:

1. Create an event interceptor to process the desired event types and implement any
custom logic as required. For details about creating event interceptors, see
Developing Applications with Oracle Coherence. The following example shows an
interceptor that processes ERROR events and prints the participant name to the
console.

Note:

Limiting Federation Service Resource Usage

7-12 Administering Oracle Coherence

Federated connection events are raised on the same thread that caused the
event. Interceptors that handle these events must never perform blocking
operations.

package com.examples

import com.tangosol.internal.federation.service.FederatedCacheServiceDispatcher;
import com.tangosol.net.events.EventDispatcher;
import com.tangosol.net.events.EventDispatcherAwareInterceptor;
import com.tangosol.net.events.federation.FederatedConnectionEvent;
import com.tangosol.net.events.annotation.Interceptor;
import java.util.Map;

@Interceptor(identifier = "testConnection", federatedConnectionEvents =
 FederatedConnectionEvent.Type.ERROR)
public class ConnectionInterceptorImp implements
 EventDispatcherAwareInterceptor<FederatedConnectionEvent>
 {
 @Override
 public void onEvent(FederatedConnectionEvent event)
 {
 System.out.println("Participant in Error: " + event.getParticipantName());
 }

 @Override
 public void introduceEventDispatcher(String sIdentifier, EventDispatcher
 dispatcher)
 {
 if (dispatcher instanceof FederatedCacheServiceDispatcher)
 {
 dispatcher.addEventInterceptor(sIdentifier, this);
 }
 }
 }

2. Register the interceptor in a federated cache scheme. For details about registering
event interceptors, see Developing Applications with Oracle Coherence. For example:

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <interceptors>
 <interceptor>
 <name>MyInterceptor</name>
 <instance>
 <class-name>
 com.examples.ConnectionInterceptorImp
 </class-name>
 </instance>
 </interceptor>
 </interceptors>
 <topologies>
 <topology>
 <name>MyTopology</name>
 </topology>

Resolving Federation Conflicts

Federating Caches Across Clusters 7-13

 </topologies>
</federated-scheme>

3. Ensure the interceptor implementation is found on the classpath at runtime.

7.11.2 Processing Federated Change Events
Federated change events (FederatedChangeEvent) represent a transactional view
of all the changes that occur on the local participant. All changes that belong to a
single partition are captured in a single FederatedChangeEvent object. From the
event, a map of ChangeRecord objects that are indexed by cache name is provided
and the participant name to which the change relates is also accessible. Through the
ChangeRecord map, you can accept the changes, modify the values, or reject the
changes. The object also provides methods to extract or update POF entries using the
PofExtractor and PofUpdater APIs.

Event types include: COMMITTING_LOCAL, COMMITTING_REMOTE, and
REPLICATING events. REPLICATING events are dispatched before local entries are
federated to remote participants. This event is used to perform changes to the entries
prior to federation. Any changes performed in the REPLICATING event interceptor are
not reflected in the local caches. COMMITTING_LOCAL events are dispatched before
entries are inserted locally. It is designed to resolve any local conflicts.
COMMITTING_REMOTE events are dispatched before entries from other participants
are inserted locally. It is designed to resolve the conflicts between federating entries
and local entries. Any changes performed when processing COMMITTING_LOCAL and
COMMITTING_REMOTE events are reflected in the local participant caches.

Note:

• In an active-active federation topology, modifications that are made to an
entry when processing COMMITTING_REMOTE events are sent back to the
originating participant. This can potentially end up in a cyclic loop where
changes keep looping through the active participants.

• Interceptors that capture COMMITTING_LOCAL events are not called for
passive spoke participants.

• Synthetic operations are not included in federation change events.

To process federated change events:

1. Create an event interceptor to process the desired event types and implement any
custom logic as required. For details about creating event interceptors, see
Developing Applications with Oracle Coherence. The following example shows an
interceptor that processes REPLICATING events and assigns a key name before
the entry is federated.

package com.examples

import com.tangosol.coherence.federation.events.AbstractFederatedInterceptor;
import com.tangosol.coherence.federation.ChangeRecord;
import com.tangosol.coherence.federation.ChangeRecordUpdater;
import com.tangosol.net.events.annotation.Interceptor;
import com.tangosol.net.events.federation.FederatedChangeEvent;

@Interceptor(identifier = "yourIdentifier", federatedChangeEvents =

Resolving Federation Conflicts

7-14 Administering Oracle Coherence

 FederatedChangeEvent.Type.REPLICATING)
public static class MyInterceptor extends
 AbstractFederatedInterceptor<String, String>
 {
 public ChangeRecordUpdater getChangeRecordUpdater()
 {
 return updater;
 }

 public class ChangeRecordUpdate implements ChangeRecordUpdater<String, String>
 {
 @Override
 public void update(String sParticipant, String sCacheName,
 ChangeRecord<String, String> record)
 {
 if (sParticipant.equals("NewYork") && (record.getKey()).equals("key"))
 {
 record.setValue("newyork-key");
 }
 }
 }

 private ChangeRecordUpdate updater = new ChangeRecordUpdate();
 }

2. Register the interceptor in a federated cache scheme. For details about registering
event interceptors, see Developing Applications with Oracle Coherence. For example:

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <interceptors>
 <interceptor>
 <name>MyInterceptor</name>
 <instance>
 <class-name>
 com.examples.MyInterceptor
 </class-name>
 </instance>
 </interceptor>
 </interceptors>
 <topologies>
 <topology>
 <name>MyTopology</name>
 </topology>
 </topologies>
</federated-scheme>

3. Ensure the interceptor implementation is found on the classpath at runtime.

7.11.3 Federating Events to Custom Participants
Federated ChangeRecord objects can be federated to custom, non-cluster participants
in addition to other cluster members. For example, ChangeRecord objects can be
saved to a log, message queue, or perhaps one or more databases. Custom participants
are implemented as event interceptors for the change records. Custom participants are
only receiver participants.

Resolving Federation Conflicts

Federating Caches Across Clusters 7-15

To federated ChangeRecord objects to custom participants:

1. Create a FederatedChangeEvent interceptor to process REPLICATING event
types and implement any custom logic for ChangeRecord objects. For details
about creating event interceptors, see Developing Applications with Oracle Coherence.
The following example shows an interceptor for REPLICATING events that
process federation change records.

@Interceptor(identifier = "MyInterceptor", federatedChangeEvents =
FederatedChangeEvent.Type.REPLICATING)
public static class MyInterceptorImplChangeEvents implements
EventInterceptor<FederatedChangeEvent>
 {
 @Override
 public void onEvent(FederatedChangeEvent event)
 {
 final String sParticipantName = "ForLocalCacheStore";
 if (sParticipantName.equals(event.getParticipant()))
 {
 Map<String, Iterable<ChangeRecord<Object, Object>>> mapChanges =
event.getChanges();
 switch (event.getType())
 {
 case REPLICATING:
 m_cEvents++;
 for (Map.Entry<String, Iterable<ChangeRecord<Object, Object>>>
entry : mapChanges.entrySet())
 {
 for (ChangeRecord<Object, Object> record : entry.getValue())
 {
 if (record.isDeleted())
 {
 System.out.printf("deleted key: " + record.getKey());
 }
 else
 {
 System.out.printf("added entry, key: " + record.getKey()
+ ", value: " +
 record.getModifiedEntry().getValue());
 }
 }
 }
 break;
 default:
 throw new IllegalStateException("Expected event of type " +
FederatedChangeEvent.Type.REPLICATING
 + ", but got event of type: " + event.getType());
 }
 }
 }

 public long getMessageCount()
 {
 return m_cEvents;
 }

 private volatile long m_cEvents;
}

2. Configure a custom participant in the operational configuration file and enter
interceptor for the participant type. For example:

Resolving Federation Conflicts

7-16 Administering Oracle Coherence

<participant>
 <name>ForLogging</name>
 <send-timeout>5s</send-timeout>
 <participant-type>interceptor</participant-type>
</participant>

3. Register the interceptor for the participant using the <interceptor> element
and specify the interceptor class. For example:

<participant>
 <name>ForLogging</name>
 <send-timeout>5s</send-timeout>
 <participant-type>interceptor</participant-type>
 <interceptors>
 <interceptor>
 <name>MyInterceptor</name>
 <instance>
 <class-name>example.MyInterceptorImplChangeEvents</class-name>
 </instance>
 </interceptor>
 </interceptors>
</participant>

Note:

You can either specify the interceptor instance(s) in the participant
configuration (as shown) or in a federated cache schema. If you specify the
interceptor in the participant configuration, then it is applied to all the
federated cache services that use the participant. Specify the interceptor in a
federated cache scheme if you want to control which services use the
interceptor. See olink:COHDG-
GUID-14D28324-2097-491D-987E-5A140205FF32.

4. Include the custom participant as part of the federation topology for which you
want to federate events. For example:

<topology-definitions>
 <active-passive>
 <name>Active</name>
 <active>BOSTON</active>
 <active>NEWYORK</active>
 <interceptor>ForLogging</interceptor>
 </active-passive>
</topology-definitions>

5. Ensure the interceptor implementation is found on the classpath at runtime.

7.12 Using a Specific Network Interface for Federation Communication
Federation communication can be configured to use a network interface that is
different than the interface used for cluster communication.

To use a different network configuration for federation communication:

1. Edit the operational override file on each cluster participant and include an
<address-provider> element that defines a NameService address on a
separate IP address and port that is bound to the desired network interface. For
example

Using a Specific Network Interface for Federation Communication

Federating Caches Across Clusters 7-17

<cluster-config>
 <address-providers>
 <address-provider id="NameServiceAddress">
 <socket-address>
 <address system-property="coherence.nameservice.ip">
 192.168.1.5</address>
 <port system-property="coherence.nameservice.port">
 10100</port>
 </socket-address>
 </address-provider>
 </address-providers>
</cluster-config>

2. Modify the participant definition to use the remote address. For example:

<federation-config>
 <participants>
 <participant>
 <name>LocalClusterA</name>
 <remote-addresses>
 <address-prover>NameServiceAddress</address-provider>
 </remote-addresses>
 </participant>
 ...

3. When starting cluster members (for the LocalClusterA participant in the above
example), use the coherence.nameservice.addressprovider system
property and reference the address provider definition for the name service. For
example:

-Dcoherence.nameservice.addressprovider=NameServiceAddress

7.13 Load Balancing Federated Connections
Connections between federated service members are load balanced. By default, a
federation-based strategy is used that distributes connections to federated service
members that are being utilized the least. Custom strategies can be created or the
default strategy can be modified as required. As an alternative, a client-based load
balance strategy can be implemented by creating an address provider implementation
or by relying on randomized connections to federated service members. The random
approach provides minimal balancing as compared to federated-based load balancing.

Connections between federated service members are distributed equally across
federated service members based upon existing connection count and incoming
message backlog. Typically, this algorithm provides the best load balancing strategy.
However, you can choose to implement a different load balancing strategy as
required.

7.13.1 Using Federation-Based Load Balancing
federation-based load balancing is the default strategy that is used to balance
connections between two or more members of the same federation service. The
strategy distribute connections equally across federated service members based upon
existing connection count and incoming message backlog.

The federation-based load balancing strategy is configured within a <federated-
scheme> definition using a <load-balancer> element that is set to federation.
For clarity, the following example explicitly specifies the strategy. However, the

Load Balancing Federated Connections

7-18 Administering Oracle Coherence

strategy is used by default if no strategy is specified and is not required in a federated
scheme definition.

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <load-balancer>federation</load-balancer>
 <topologies>
 <topology>
 <name>MyTopology</name>
 </topology>
 </topologies>
</federated-scheme>

7.13.2 Implementing a Custom Federation-Based Load Balancing Strategy
The com.tangosol.coherence.net.federation package includes the APIs that
are used to balance client load across federated service members. See Java API
Reference for Oracle Coherence for details on using the federation-based load balancing
APIs that are discussed in this section.

A custom strategy must implement the FederatedServiceLoadBalancer
interface. New strategies can be created or the default strategy
(DefaultFederatedServiceLoadBalancer) can be extended and modified as
required.

To enable a custom federation-based load balancing strategy, edit a federated scheme
and include an <instance> subelement within the <load-balancer> element and
provide the fully qualified name of a class that implements the
FederatedServiceLoadBalancer interface. The following example enables a
custom federation-based load balancing strategy that is implemented in the
MyFederationServiceLoadBalancer class:

...
<load-balancer>
 <instance>
 <class-name>package.MyFederationServiceLoadBalancer</class-name>
 </instance>
</load-balancer>
...

In addition, the <instance> element also supports the use of a <class-factory-
name> element to use a factory class that is responsible for creating
FederatedServiceLoadBalancer instances, and a <method-name> element to
specify the static factory method on the factory class that performs object instantiation.
See Developing Applications with Oracle Coherence for detailed instructions on using the
<instance> element.

7.13.3 Using Client-Based Load Balancing
The client-based load balancing strategy relies upon a
com.tangosol.net.AddressProvider implementation to dictate the distribution
of connections across federated service members. If no address provider
implementation is provided, each configured cluster participant member is tried in a

Load Balancing Federated Connections

Federating Caches Across Clusters 7-19

random order until a connection is successful. For details on specifying an address
provider implementation, see Developing Applications with Oracle Coherence.

The client-based load balancing strategy is configured within a <federated-
scheme> definition using a <load-balancer> element that is set to client. For
example:

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <load-balancer>client</load-balancer>
 <topologies>
 <topology>
 <name>MyTopology</name>
 </topology>
 </topologies>
</federated-scheme>

7.14 Managing Federated Caching
Federated caching should be managed on each cluster participant in the same manner
as any cluster and distributed cache to ensure optimal performance and resource
usage. A poorly performing cluster is likely to cause performance issues when it is
included as part of a federation. In addition, federated caching should also be
managed to ensure efficient federation performance and throughput among cluster
participants in the federation. Monitoring federation performance is especially
important due to the possible issues that are inherent in wide area network topologies.

7.14.1 Monitor Cluster Participant Status
Monitor the status of each cluster participant in the federation to ensure that there are
no issues.

Coherence-Java VisualVM Plug-in

Use the Federation tab in the Coherence Java VisualVM plug-in to view the status of
each cluster participant from the context of the local cluster participant. That is, each
destination cluster participant is listed and its status is shown. In addition, the
federation state of each node in the local cluster participant is reported in the
Outbound tab. Check the Error Description field to view an error message, if the status
of cluster participant is Error.

Coherence Reports

Use the federation destination report (federation-destination.txt) to view the
status of each destination cluster participant and the federation state of each node over
time.

Coherence MBeans

Use the persistence attributes on the DestinationMBean MBean to view the status of
each destination cluster participants and the federation state of each node of the local
cluster participant.

Managing Federated Caching

7-20 Administering Oracle Coherence

7.14.2 Monitor Federation Performance and Throughput
Monitor federation performance and throughput to ensure that the local cluster
participant is federating data to each participant without any substantial delays or lost
data. Issues with performance and throughput can be a sign that there is a problem
with the network connect between cluster participants or that there is a problem on
the local cluster participant.

Coherence-Java VisualVM Plug-in

Use the Federation tab in the Coherence-Java VisualVM plug-in to view the current
federation performance statistics and throughput from the local participant to each
destination cluster participant. Select a destination cluster participant and view its
federation performance statistics, then view the Current Throughput column on the
Outbound tab to see the throughput to the selected participant from each node in the
local cluster. Select an individual node in the Outbound tab to see its bandwidth
utilization and federation performance in the graph tabs, respectively. Lastly, select
the Inbound tab to view how efficiently the local cluster participant is receiving data
from destination cluster participants.

Coherence Reports

Use the federation destination report (federation-destination.txt) and the
federation origin report (federation-origin.txt) to view federation performance
statistics. The destination report shows how efficiently each node in the local cluster
participant is sending data to each destination cluster participant. The federation
origin reports shows how efficiently each node in the local cluster participant is
receiving data from destination cluster participants.

Coherence MBeans

Use the persistence attributes on the DestinationMBean MBean and the
OriginMBean MBean to view federation performance statistics. The
DestinationMBean MBean attribute shows how efficiently each node in the local
cluster participant is sending data to each destination cluster participant. The
OriginMBean MBean shows how efficiently the local cluster participant is receiving
data from destination cluster participants.

Managing Federated Caching

Federating Caches Across Clusters 7-21

Managing Federated Caching

7-22 Administering Oracle Coherence

A
Platform-Specific Deployment

Considerations

This appendix identifies issues that should be considered when deploying Coherence
to various platforms and offers solutions if available.

This appendix includes the following sections:

• Deploying to Oracle HotSpot JVMs

• Deploying to IBM JVMs

• Deploying to Linux

• Deploying to Solaris

• Deploying to Windows

• Deploying to OS X

• Deploying to z/OS

• Deploying to AIX

• Deploying to Virtual Machines

• Deploying to Cisco Switches

• Deploying to Foundry Switches

• Deploying to IBM BladeCenters

A.1 Deploying to Oracle HotSpot JVMs
When deploying Coherence on Oracle HotSpot JVMs, be aware of the following:

A.1.1 Heap Sizes
Coherence recommends keeping heap sizes at 1-8GB per JVM. However, larger heap
sizes, up to 20GB, are suitable for some applications where the simplified management
of fewer, larger JVMs outweighs the performance benefits of many smaller JVMs.
Using multiple cache servers allows a single computer to achieve higher capacities.
With Oracle's JVMs, heap sizes beyond 8GB are reasonable, though GC tuning is still
advisable to minimize long GC pauses. See Oracle's GC Tuning Guide for tuning
details. It is also advisable to run with fixed sized heaps as this generally lowers GC
times. See JVM Tuning for additional information.

Platform-Specific Deployment Considerations A-1

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

A.1.2 AtomicLong
When available Coherence uses the highly concurrent AtomicLong class, which allows
concurrent atomic updates to long values without requiring synchronization.

It is suggested to run in server mode to ensure that the stable and highly concurrent
version can be used. To run the JVM in server mode include the -server option on the
Java command line.

A.1.3 OutOfMemoryError
JVMs that experience an OutOfMemoryError can be left in an indeterministic state
which can have adverse effects on a cluster. We recommend configuring JVMs to exit
upon encountering an OutOfMemoryError instead of allowing the JVM to attempt
recovery. Here is the parameter to configure this setting on Sun JVMs:

UNIX:

-XX:OnOutOfMemoryError="kill -9 %p"

Windows:

-XX:OnOutOfMemoryError="taskkill /F /PID %p"

Additionally, it is recommended to configure the JVM to generate a heap dump if an
OutOfMemoryError is thrown to assist the investigation into the root cause for the
error. Use the following flag to enable this feature on the Sun JVM:

-XX:+HeapDumpOnOutOfMemoryError

A.2 Deploying to IBM JVMs
When deploying Coherence on IBM JVMs, be aware of the following:

A.2.1 OutOfMemoryError
JVMs that experience an OutOfMemoryError can be left in an indeterministic state
which can have adverse effects on a cluster. We recommend configuring JVMs to exit
upon encountering an OutOfMemoryError instead of allowing the JVM to attempt
recovery. Here is the parameter to configure this setting on IBM JVMs:

UNIX:

-Xdump:tool:events=throw,filter=java/lang/OutOfMemoryError,exec="kill -9 %pid"

Windows:

-Xdump:tool:events=throw,filter=java/lang/OutOfMemoryError,exec="taskkill /F /PID
%pid"

A.2.2 Heap Sizing
IBM does not recommend fixed size heaps for JVMs. In many cases, it is recommended
to use the default for -Xms (in other words, omit this setting and only set -Xmx). See
this link for more details:

http://www.ibm.com/developerworks/java/jdk/diagnosis/

It is recommended to configure the JVM to generate a heap dump if an
OutOfMemoryError is thrown to assist the investigation into the root cause for the

Deploying to IBM JVMs

A-2 Administering Oracle Coherence

http://www.ibm.com/developerworks/java/jdk/diagnosis/

error. IBM JVMs generate a heap dump on OutOfMemoryError by default; no
further configuration is required.

A.3 Deploying to Linux
When deploying Coherence on Linux, be aware of the following:

A.3.1 TSC High Resolution Timesource
Linux has several high resolution timesources to choose from, the fastest TSC (Time
Stamp Counter) unfortunately is not always reliable. Linux chooses TSC by default,
and during startup checks for inconsistencies, if found it switches to a slower safe
timesource. The slower time sources can be 10 to 30 times more expensive to query
then the TSC timesource, and may have a measurable impact on Coherence
performance. For more details on TSC, see

https://lwn.net/Articles/209101/

Coherence and the underlying JVM are not aware of the timesource which the
operating system is using. It is suggested that you check your system logs (/var/log/
dmesg) to verify that the following is not present.

kernel: Losing too many ticks!
kernel: TSC cannot be used as a timesource.
kernel: Possible reasons for this are:
kernel: You're running with Speedstep,
kernel: You don't have DMA enabled for your hard disk (see hdparm),
kernel: Incorrect TSC synchronization on an SMP system (see dmesg).
kernel: Falling back to a sane timesource now.

As the log messages suggest, this can be caused by a variable rate CPU (SpeedStep),
having DMA disabled, or incorrect TSC synchronization on multi CPU computers. If
present, it is suggested that you work with your system administrator to identify the
cause and allow the TSC timesource to be used.

A.4 Deploying to Solaris
When deploying Coherence on Solaris, be aware of the following:

A.4.1 Solaris 10 (x86 and SPARC)
When running on Solaris 10, there are known issues relate to packet corruption and
multicast disconnections. These most often manifest as either EOFExceptions, "Large
gap" warnings while reading packet data, or frequent packet timeouts. It is highly
recommend that the patches for both issues below be applied when using Coherence
on Solaris 10 systems.

Possible Data Integrity Issues on Solaris 10 Systems Using the e1000g Driver for the
Intel Gigabit Network Interface Card (NIC)

https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=ALERT&id=1000972.1

IGMP(1) Packets do not Contain IP Router Alert Option When Sent From Solaris 10
Systems With Patch 118822-21 (SPARC) or 118844-21 (x86/x64) or Later Installed

https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=ALERT&id=1000940.1

Deploying to Linux

Platform-Specific Deployment Considerations A-3

https://lwn.net/Articles/209101/
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=ALERT&id=1000972.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=ALERT&id=1000972.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=ALERT&id=1000940.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=ALERT&id=1000940.1

A.4.2 Solaris 10 Networking
If running on Solaris 10, review the above Solaris 10 (x86 and SPARC) issues which
relate to packet corruption and multicast disconnections. These most often manifest as
either EOFExceptions, "Large gap" warnings while reading packet data, or frequent
packet timeouts. It is highly recommend that the patches for both issues be applied
when using Coherence on Solaris 10 systems.

A.4.3 Solaris Network Interface Cards
Solaris M series systems include an on-board NIC (bge) and PCI connected NIC
(nxge). The on-board gigabit ethernet ports are used for low-bandwidth
administrative networking connectivity for the domain and are not intended for high-
performance cluster interconnect workloads with high traffic demands. Coherence
cluster members must always use the dedicated PCIe NICs for high bandwidth cluster
interconnects.

A.4.4 Solaris Link Aggregation
Solaris 11 supports two types of NIC link aggregation: trunk aggregation and Datalink
multipathing (DLMP) aggregations. Trunk aggregation requires the use of a network
switch, which must support the Link Aggregation Control Protocol (LCAP). DLMP
aggregation requires the use of at least one network switch. However, when using
DLMP aggregations, make sure any switches are not configured to use trunk
aggregation with LCAP. If you change from a trunk aggregation to a DLMP
aggregation, you must remove the switch configuration that was previously created
for the trunk aggregation. Failure to do so, can result in packet loss and under
utilization of the network bandwidth.

A.5 Deploying to Windows
When deploying Coherence on Windows, be aware of the following:

A.5.1 Performance Tuning
The default Windows configuration is not optimized for background processes, heavy
network loads, and network interruptions. This may be addressed by running the
optimize.reg script included in the Coherence installation's bin directory. See
“Operating System Tuning” for details on the optimizations which are performed.

A.5.2 Personal Firewalls
If running a firewall on a computer you may have difficulties in forming a cluster
consisting of multiple computers. This can be resolved by either:

• Disabling the firewall, though this is generally not recommended.

• Granting full network access to the Java executable which runs Coherence.

• Opening up individual address and ports for Coherence. For details, see Developing
Applications with Oracle Coherence.

Deploying to Windows

A-4 Administering Oracle Coherence

A.5.3 Disconnected Network Interface
On Microsoft Windows, if the Network Interface Card (NIC) is unplugged from the
network, the operating system invalidates the associated IP address. The effect of this
is that any socket which is bound to that IP address enters an error state. This results
in the Coherence nodes exiting the cluster and residing in an error state until the NIC
is reattached to the network. In cases where it is desirable to allow multiple collocated
JVMs to remain clustered during a physical outage Windows must be configured to
not invalidate the IP address.

To adjust this parameter:

1. Run Registry Editor (regedit)

2. Locate the following registry key

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters

3. Add or reset the following new DWORD value

Name: DisableDHCPMediaSense
Value: 1 (boolean)

4. Reboot

While the name of the keyword includes DHCP, the setting effects both static and
dynamic IP addresses. See Microsoft Windows TCP/IP Implementation Details for
additional information:

http://technet.microsoft.com/en-us/library/bb726981.aspx#EDAA

A.6 Deploying to OS X
When deploying Coherence on OS X, be aware of the following:

A.6.1 Multicast and IPv6
OS X defaults to running multicast over IPv6 rather than IPv4. If you run in a mixed
IPv6/IPv4 environment, configure your JVMs to explicitly use IPv4. This can be done
by setting the java.net.preferIPv4Stack system property to true on the Java
command line.

A.6.2 Socket Buffer Sizing
Generally, Coherence prefers 2MB or higher buffers, but for OS X this may result in
unexpectedly high kernel CPU time, which in turn reduces throughput. For OS X, the
suggested buffers size is 768KB, though your own tuning may find a better size. See
the Developing Applications with Oracle Coherence for details on configuring socket
buffers.

A.7 Deploying to z/OS
When deploying Coherence on z/OS, be aware of the following:

A.7.1 EBCDIC
When deploying Coherence into environments where the default character set is
EBCDIC rather than ASCII, ensure that Coherence configuration files which are

Deploying to OS X

Platform-Specific Deployment Considerations A-5

http://technet.microsoft.com/en-us/library/bb726981.aspx#EDAA

loaded from JAR files or off of the classpath are in ASCII format. Configuration files
loaded directly from the file system should be stored in the systems native format of
EBCDIC.

A.7.2 Multicast
Under some circumstances, Coherence cluster nodes that run within the same logical
partition (LPAR) on z/OS on IBM zSeries cannot communicate with each other. (This
problem does not occur on the zSeries when running on Linux.)

The root cause is that z/OS may bind the MulticastSocket that Coherence uses to an
automatically-assigned port, but Coherence requires the use of a specific port in order
for cluster discovery to operate correctly. (Coherence does explicitly initialize the
java.net.MulitcastSocket to use the necessary port, but that information
appears to be ignored on z/OS when there is an instance of Coherence running within
that same LPAR.)

The solution is to run only one instance of Coherence within a z/OS LPAR; if multiple
instances are required, each instance of Coherence should be run in a separate z/OS
LPAR. Alternatively, well known addresses may be used. See Developing Applications
with Oracle Coherence for details on using well known addresses.

A.8 Deploying to AIX
When deploying Coherence on AIX, be aware of the following:

A.8.1 Multicast and IPv6
AIX 5.2 and above default to running multicast over IPv6 rather than IPv4. If you run
in a mixed IPv6/IPv4 environment, configure your JVMs to explicitly use IPv4. This
can be done by setting the java.net.preferIPv4Stack system property to true
on the Java command line. See the IBM 32-bit SDK for AIX User Guide for details.

A.9 Deploying to Virtual Machines
Oracle Coherence follows the support policies of Oracle Fusion Middleware. See the
following link for Oracle Fusion Middleware supported virtualization and
partitioning technologies:

http://www.oracle.com/technetwork/middleware/ias/oracleas-
supported-virtualization-089265.html

When deploying Coherence to virtual machines, be aware of the following:

A.9.1 Multicast Connectivity
Virtualization adds another layer to your network topology and it must be properly
configured to support multicast networking. See Developing Applications with Oracle
Coherence for detailed information on configuring multicast networking.

A.9.2 Performance
It is less likely that a process running in a virtualized operating system can fully use
gigabit Ethernet. This is not specific to Coherence and is visible on most network
intensive virtualized applications.

Deploying to AIX

A-6 Administering Oracle Coherence

http://www.ibm.com/developerworks/java/jdk/aix/142/sdkguide.aix32.htm#wq132
http://www.oracle.com/technetwork/middleware/ias/oracleas-supported-virtualization-089265.html
http://www.oracle.com/technetwork/middleware/ias/oracleas-supported-virtualization-089265.html

A.9.3 Fault Tolerance
Additional configuration is required to ensure that cache entry backups reside on
physically separate hardware. See Developing Applications with Oracle Coherence for
detailed information on configuring cluster member identity.

A.10 Deploying to Cisco Switches
When deploying Coherence with Cisco switches, be aware of the following:

A.10.1 Buffer Space and Packet Pauses
Some Cisco switches may run out of buffer space and exhibit frequent multi-second
communication pauses under heavy packet load some. These communication pauses
can be identified by a series of Coherence log messages referencing communication
delays with multiple nodes which cannot be attributed to local or remote GCs.

Experienced a 4172 ms communication delay (probable remote GC) with Member(Id=7,
Timestamp=2008-09-15 12:15:47.511, Address=xxx.xxx.x.xx:8089, MachineId=13838); 320
packets rescheduled, PauseRate=0.31, Threshold=512

The Cisco 6500 series support configuring the amount of buffer space available to each
Ethernet port or ASIC. In high load applications it may be necessary to increase the
default buffer space. This can be accomplished by executing:

fabric buffer-reserve high

See Cisco's documentation for additional details on this setting.

A.10.2 Multicast Connectivity on Large Networks
Cisco's default switch configuration does not support proper routing of multicast
packets between switches due to the use of IGMP snooping. See the Cisco's
documentation regarding the issue and solutions.

A.10.3 Multicast Outages
Some Cisco switches have shown difficulty in maintaining multicast group
membership resulting in existing multicast group members being silently removed
from the multicast group. This cause a partial communication disconnect for the
associated Coherence node(s) and they are forced to leave and rejoin the cluster. This
type of outage can most often be identified by the following Coherence log messages
indicating that a partial communication problem has been detected.

A potential network configuration problem has been detected. A packet has failed to
be delivered (or acknowledged) after 60 seconds, although other packets were
acknowledged by the same cluster member (Member(Id=3, Timestamp=Sat Sept 13 12:02:54
EST 2008, Address=192.168.1.101, Port=8088, MachineId=48991)) to this member
(Member(Id=1, Timestamp=Sat Sept 13 11:51:11 EST 2008, Address=192.168.1.101,
Port=8088, MachineId=49002)) as recently as 5 seconds ago.

To confirm the issue, use the same multicast address and port as the running cluster. If
the issue affects a multicast test node, its logs show that it suddenly stopped receiving
multicast test messages. See Performing a Multicast Connectivity Test.

The following test logs show the issue:

Deploying to Cisco Switches

Platform-Specific Deployment Considerations A-7

http://www.cisco.com/en/US/docs/ios/vswitch/command/reference/vs_01.html#wp1206360
http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_note09186a008059a9df.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_note09186a008059a9df.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_note09186a008059a9df.shtml#solu

Example A-1 Log for a Multicast Outage

Test Node 192.168.1.100:

Sun Sept 14 16:44:22 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:23 GMT 2008: Received test packet 76 from ip=/192.168.1.101,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:23 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:23 GMT 2008: Sent packet 85. Sun Sept 14 16:44:23 GMT 2008:
Received test packet 85 from self.
Sun Sept 14 16:44:24 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:25 GMT 2008: Received test packet 77 from ip=/192.168.1.101,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:25 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:25 GMT 2008: Sent packet 86.
Sun Sept 14 16:44:25 GMT 2008: Received test packet 86 from self. Sun Sept 14
16:44:26 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:27 GMT 2008: Received test packet 78 from ip=/192.168.1.101,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:27 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:27 GMT 2008: Sent packet 87.
Sun Sept 14 16:44:27 GMT 2008: Received test packet 87 from self.
Sun Sept 14 16:44:28 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:29 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:29 GMT 2008: Sent packet 88.
Sun Sept 14 16:44:29 GMT 2008: Received test packet 88 from self.
 Sun Sept 14 16:44:30 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:31 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:31 GMT 2008: Sent packet 89.
Sun Sept 14 16:44:31 GMT 2008: Received test packet 89 from self.
Sun Sept 14 16:44:32 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???
Sun Sept 14 16:44:33 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ???

Test Node 192.168.1.101:

Sun Sept 14 16:44:22 GMT 2008: Sent packet 76.
Sun Sept 14 16:44:22 GMT 2008: Received test packet 76 from self.
Sun Sept 14 16:44:22 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:22 GMT 2008: Received test packet 85 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:23 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ??? Sun Sept 14 16:44:24 GMT 2008: Sent packet 77.
Sun Sept 14 16:44:24 GMT 2008: Received test packet 77 from self.
Sun Sept 14 16:44:24 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:24 GMT 2008: Received test packet 86 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:25 GMT 2008: Received 83 bytes from a Coherence cluster node at

Deploying to Cisco Switches

A-8 Administering Oracle Coherence

192.168.1.100: ???
Sun Sept 14 16:44:26 GMT 2008: Sent packet 78.Sun Sept 14 16:44:26 GMT 2008:
Received test packet 78 from self.
Sun Sept 14 16:44:26 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:26 GMT 2008: Received test packet 87 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:27 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:28 GMT 2008: Sent packet 79.
Sun Sept 14 16:44:28 GMT 2008: Received test packet 79 from self.
Sun Sept 14 16:44:28 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:28 GMT 2008: Received test packet 88 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:29 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:30 GMT 2008: Sent packet 80.
Sun Sept 14 16:44:30 GMT 2008: Received test packet 80 from self.
Sun Sept 14 16:44:30 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:30 GMT 2008: Received test packet 89 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:31 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:32 GMT 2008: Sent packet 81.Sun Sept 14 16:44:32 GMT 2008:
Received test packet 81 from self.
Sun Sept 14 16:44:32 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:32 GMT 2008: Received test packet 90 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4.
Sun Sept 14 16:44:33 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ???
Sun Sept 14 16:44:34 GMT 2008: Sent packet 82.

Note that at 16:44:27 the first test node stops receiving multicast packets from other
computers. The operating system continues to properly forward multicast traffic from
other processes on the same computer, but the test packets (79 and higher) from the
second test node are not received. Also note that both the test packets and the cluster's
multicast traffic generated by the first node do continue to be delivered to the second
node. This indicates that the first node was silently removed from the multicast group.

If you encounter this multicast issue it is suggested that you contact Cisco technical
support, or you may consider changing your configuration to unicast-only by using
the well known addresses. See Developing Applications with Oracle Coherence for details
on using well known addresses.

A.10.4 Multicast Time-to-Live
The Cisco 6500 series router may become overloaded if too many packets with a time-
to-live (TTL) value of 1 are received. In addition, a low TTL setting may overload
single group members. Set the Coherence multicast TTL setting to at least the size of
the multicast domain (127 or 255) and make sure that clusters do not use overlapping
groups. See Developing Applications with Oracle Coherence for details on configuring
multicast TTL.

A.11 Deploying to Foundry Switches
When deploying Coherence with Foundry switches, be aware of the following:

Deploying to Foundry Switches

Platform-Specific Deployment Considerations A-9

A.11.1 Multicast Connectivity
Foundry switches have shown to exhibit difficulty in handing multicast traffic. When
deploying on with Foundry switches, ensure that all computers that are part of the
Coherence cluster can communicate over multicast. See Performing a Multicast
Connectivity Test.

If you encounter issues with multicast you may consider changing your configuration
to unicast-only by using the well-known-addresses feature. See Developing Applications
with Oracle Coherence for details on using well known addresses.

A.12 Deploying to IBM BladeCenters
When deploying Coherence on IBM BladeCenters, be aware of the following:

A.12.1 MAC Address Uniformity and Load Balancing
A typical deployment on a BladeCenter may include blades with two NICs where one
is used for administration purposes and the other for cluster traffic. By default, the
MAC addresses assigned to the blades of a BladeCenter are uniform enough that the
first NIC generally has an even MAC address and the second has an odd MAC
address. If the BladeCenter's uplink to a central switch also has an even number of
channels, then layer 2 (MAC based) load balancing may prevent one set of NICs from
making full use of the available uplink bandwidth as they are all bound to either even
or odd channels. This issue arises due to the assumption in the switch that MAC
addresses are essentially random, which in BladeCenter's is untrue. Remedies to this
situation include:

• Use layer 3 (IP based) load balancing (if the IP addresses do not follow the same
even/odd pattern).

– This setting must be applied across all switches carrying cluster traffic.

• Randomize the MAC address assignments by swapping them between the first and
second NIC on alternating computers.

– Linux enables you to change a NIC's MAC address using the ifconfig
command.

– For other operating systems custom tools may be available to perform the same
task.

Deploying to IBM BladeCenters

A-10 Administering Oracle Coherence

B
Log Message Glossary

This appendix provides a reference to common Coherence log messages and includes
the cause of the message and possible actions to take.

The following sections are included in this appendix:

• TCMP Log Messages

• Configuration Log Messages

• Partitioned Cache Service Log Messages

B.1 TCMP Log Messages
The following are TCMP-related log messages:

Experienced a %n1 ms communication delay (probable remote GC) with Member
%s
%n1 - the latency in milliseconds of the communication delay; %s - the full Member
information. Severity: 2-Warning or 5-Debug Level 5 or 6-Debug Level 6 depending
on the length of the delay.

Cause: This node detected a delay in receiving acknowledgment packets from the
specified node, and has determined that is it likely due to a remote GC (rather than a
local GC). This message indicates that the overdue acknowledgment has been
received from the specified node, and that it has likely emerged from its GC. Any
slowdown in the network or the remote server can trigger this, but the most common
cause is GC, which should be investigated first.

Action: Prolonged and frequent garbage collection can adversely affect cluster
performance and availability. If these warnings are seen frequently, review your JVM
heap and GC configuration and tuning. See Performance Tuning, for more details.

Failed to satisfy the variance: allowed=%n1 actual=%n2
%n1 - the maximum allowed latency in milliseconds; %n2 - the actual latency in
milliseconds. Severity: 3-Informational or 5-Debug Level 5 depending on the message
frequency.

Cause: One of the first steps in the Coherence cluster discovery protocol is the
calculation of the clock difference between the new and the senior nodes. This step
assumes a relatively small latency for peer-to-peer round trip communication
between the nodes. By default, the configured maximum allowed latency (the value
of the <maximum-time-variance> configuration element) is 16 milliseconds. See
the <incoming-message-handler> element in the Developing Applications with
Oracle Coherence. Failure to satisfy that latency causes this message to be logged and
increases the latency threshold, which is reflected in a follow up message.

Log Message Glossary B-1

Action: If the latency consistently stays very high (over 100 milliseconds), consult
your network administrator and see Performing a Network Performance Test.

Created a new cluster "%s1" with Member(%s2)
%s1 - the cluster name; %s2 - the full Member information. Severity: 3-Informational.

Cause: This Coherence node attempted to join an existing cluster in the configured
amount of time (specified by the <join-timeout-milliseconds> element, see the
<multicast-listener> element), but did not receive any responses from any
other node. As a result, it created a new cluster with the specified name (either
configured by the <cluster-name> element, see <member-identity> element, or
calculated based on the multicast listener address and port, or the <well-known-
addresses> list). The Member information includes the node id, creation
timestamp, unicast address and port, location, process id, role, and so on.

Action: None, if this node is expected to be the first node in the cluster. Otherwise, the
operational configuration has to be reviewed to determine the reason that this node
does not join the existing cluster.

This Member(%s1) joined cluster "%s2" with senior Member(%s3)
%s1 - the full Member information for this node; %s2 - the cluster name; %s3 - the full
Member information for the cluster senior node. Severity: 3-Informational.

Cause: This Coherence node has joined an existing cluster.

Action: None, if this node is expected to join an existing cluster. Otherwise, identify
the running cluster and consider corrective actions.

Member(%s) joined Cluster with senior member %n
%s - the full Member information for a new node that joined the cluster this node
belongs to; %n - the node id of the cluster senior node. Severity: 5-Debug Level 5.

Cause: A new node has joined an existing Coherence cluster.

Action: None.

Member(%s) left Cluster with senior member %n
%s - the full Member information for a node that left the cluster; %n - the node id of
the cluster senior node. Severity: 5-Debug Level 5.

Cause: A node has left the cluster. This departure could be caused by the
programmatic shutdown, process termination (normal or abnormal), or any other
communication failure (for example, a network disconnect or a very long GC pause).
This message reports the node's departure.

Action: None, if the node departure was intentional. Otherwise, the departed node
logs should be analyzed.

MemberLeft notification for Member %n received from Member(%s)
%n - the node id of the departed node; %s - the full Member information for a node
that left the cluster. Severity: 5-Debug Level 5.

Cause: When a Coherence node terminates, this departure is detected by some nodes
earlier than others. Most commonly, a node connected through the TCP ring
connection ("TCP ring buddy") would be the first to detect it. This message provides
the information about the node that detected the departure first.

Action: None, if the node departure was intentional. Otherwise, the logs for both the
departed and the detecting nodes should be analyzed.

TCMP Log Messages

B-2 Administering Oracle Coherence

Received cluster heartbeat from the senior %n that does not contain this %s ;
stopping cluster service.
%n - the senior service member id; %s - a cluster service member's id. Severity: 1-
Error.

Cause: A heartbeat is broadcast from the senior cluster service member that contains a
cluster member set. If this cluster service member is not part of the broadcast set, then
it is assumed that the senior member believes this service member to be dead and the
cluster service is stopped on the member. This typically occurs if a member lost
communication with the cluster for an extended period of time (possibly due to
network issues or extended garbage collection) and was ejected from the cluster.

Action: Corrective action is not necessarily required, since the rest of the cluster
presumably is continuing its operation. However, it may warrant an investigation
into root causes of the problem (especially if it is recurring with some frequency).

Service %s joined the cluster with senior service member %n
%s - the service name; %n - the senior service member id. Severity: 5-Debug Level 5.

Cause: When a clustered service starts on a given node, Coherence initiates a
handshake protocol between all cluster nodes running the specified service. This
message serves as an indication that this protocol has been initiated. If the senior node
is not currently known, it is shown as "n/a".

Action: None.

This node appears to have partially lost the connectivity: it receives responses from
MemberSet(%s1) which communicate with Member(%s2), but is not responding
directly to this member; that could mean that either requests are not coming out or
responses are not coming in; stopping cluster service.
%s1 - set of members that can communicate with the member indicated in %s2; %s2 -
member that can communicate with set of members indicated in %s1. Severity: 1-
Error.

Cause: The communication link between this member and the member indicated by
%s2 has been broken. However, the set of witnesses indicated by %s1 report no
communication issues with %s2. It is therefore assumed that this node is in a state of
partial failure, thus resulting in the shutdown of its cluster threads.

Action: Corrective action is not necessarily required, since the rest of the cluster
presumably is continuing its operation and this node may recover and rejoin the
cluster. On the other hand, it may warrant an investigation into root causes of the
problem (especially if it is recurring with some frequency).

validatePolls: This senior encountered an overdue poll, indicating a dead member,
a significant network issue or an Operating System threading library bug (e.g.
Linux NPTL): Poll
Severity: 2-Warning

Cause: When a node joins a cluster, it performs a handshake with each cluster node. A
missing handshake response prevents this node from joining the service. The log
message following this one indicates the corrective action taken by this node.

Action: If this message reoccurs, further investigation into the root cause may be
warranted.

TCMP Log Messages

Log Message Glossary B-3

Received panic from junior member %s1 caused by %s2
%s1 - the cluster member that sent the panic; %s2 - a member claiming to be the senior
member. Severity 2-Warning

Cause: This occurs after a cluster is split into multiple cluster islands (usually due to a
network link failure). This message indicates that this senior member has no
information about the other member that is claiming to be the senior member and will
ignore the panic from the junior member until it can communicate with the other
senior member.

Action: If this issue occurs frequently, the root cause of the cluster split should be
investigated.

Received panic from senior Member(%s1) caused by Member(%s2)
%s1 - the cluster senior member as known by this node; %s2 - a member claiming to
be the senior member. Severity: 1-Error.

Cause: This occurs after a cluster is split into multiple cluster islands (usually due to a
network link failure). When a link is restored and the corresponding island seniors
see each other, the panic protocol is initiated to resolve the conflict.

Action: If this issue occurs frequently, the root cause of the cluster split should be
investigated.

Member %n1 joined Service %s with senior member %n2
%n1 - an id of the Coherence node that joins the service; %s - the service name; %n2 -
the senior node for the service. Severity: 5-Debug Level 5.

Cause: When a clustered service starts on any cluster node, Coherence initiates a
handshake protocol between all cluster nodes running the specified service. This
message serves as an indication that the specified node has successfully completed
the handshake and joined the service.

Action: None.

Member %n1 left Service %s with senior member %n2
%n1 - an id of the Coherence node that joins the service; %s - the service name; %n2 -
the senior node for the service. Severity: 5-Debug Level 5.

Cause: When a clustered service terminates on some cluster node, all other nodes that
run this service are notified about this event. This message serves as an indication that
the specified clustered service at the specified node has terminated.

Action: None.

Service %s: received ServiceConfigSync containing %n entries
%s - the service name; %n - the number of entries in the service configuration map.
Severity: 5-Debug Level 5.

Cause: As a part of the service handshake protocol between all cluster nodes running
the specified service, the service senior member updates every new node with the full
content of the service configuration map. For the partitioned cache services that map
includes the full partition ownership catalog and internal ids for all existing caches.
The message is also sent for an abnormal service termination at the senior node when
a new node assumes the service seniority. This message serves as an indication that
the specified node has received that configuration update.

Action: None.

TCMP Log Messages

B-4 Administering Oracle Coherence

TcpRing: connecting to member %n using TcpSocket{%s}
%s - the full information for the TcpSocket that serves as a TcpRing connector to
another node; %n - the node id to which this node has connected. Severity: 5-Debug
Level 5.

Cause: For quick process termination detection Coherence utilizes a feature called
TcpRing, which is a sparse collection of TCP/IP-based connection between different
nodes in the cluster. Each node in the cluster is connected to at least one other node,
which (if at all possible) is running on a different physical box. This connection is not
used for any data transfer; only trivial "heartbeat" communications are sent once a
second per each link. This message indicates that the connection between this and
specified node is initialized.

Action: None.

Rejecting connection to member %n using TcpSocket{%s}
%n - the node id that tries to connect to this node; %s - the full information for the
TcpSocket that serves as a TcpRing connector to another node. Severity: 4-Debug
Level 4.

Cause: Sometimes the TCP Ring daemons running on different nodes could attempt
to join each other or the same node at the same time. In this case, the receiving node
may determine that such a connection would be redundant and reject the incoming
connection request. This message is logged by the rejecting node when this happens.

Action: None.

Timeout while delivering a packet; requesting the departure confirmation for
Member(%s1) by MemberSet(%s2)
%s1 - the full Member information for a node that this node failed to communicate
with; %s2 - the full information about the "witness" nodes that are asked to confirm
the suspected member departure. Severity: 2-Warning.

Cause: Coherence uses TMB for all data communications (mostly peer-to-peer
unicast), which by itself does not have any delivery guarantees. Those guarantees are
built into the cluster management protocol used by Coherence (TCMP). The TCMP
daemons are responsible for acknowledgment (ACK or NACK) of all incoming
communications. If one or more packets are not acknowledged within the ACK
interval ("ack-delay-milliseconds"), they are resent. This repeats until the packets are
finally acknowledged or the timeout interval elapses ("timeout-milliseconds"). At this
time, this message is logged and the "witness" protocol is engaged, asking other
cluster nodes whether they experience similar communication delays with the non-
responding node. The witness nodes are chosen based on their roles and location.

Action: Corrective action is not necessarily required, since the rest of the cluster
presumably is continuing its operation and this node may recover and rejoin the
cluster. On the other hand, it may warrant an investigation into root causes of the
problem (especially if it is recurring with some frequency).

This node appears to have become disconnected from the rest of the cluster
containing %n nodes. All departure confirmation requests went unanswered.
Stopping cluster service.
%n - the number of other nodes in the cluster this node was a member of. Severity: 1-
Error.

Cause: Sometime a node that lives within a valid Java process, stops communicating
to other cluster nodes. (Possible reasons include: a network failure; extremely long

TCMP Log Messages

Log Message Glossary B-5

GC pause; swapped out process.) In that case, other cluster nodes may choose to
revoke the cluster membership for the paused node and completely shun any further
communication attempts by that node, causing this message be logged when the
process attempts to resume cluster communications.

Action: Corrective action is not necessarily required, since the rest of the cluster
presumably is continuing its operation and this node may recover and rejoin the
cluster. On the other hand, it may warrant an investigation into root causes of the
problem (especially if it is recurring with some frequency).

A potential communication problem has been detected. A packet has failed to be
delivered (or acknowledged) after %n1 seconds, although other packets were
acknowledged by the same cluster member (Member(%s1)) to this member
(Member(%s2)) as recently as %n2 seconds ago. Possible causes include network
failure, poor thread scheduling (see FAQ if running on Windows), an extremely
overloaded server, a server that is attempting to run its processes using swap space,
and unreasonably lengthy GC times.
%n1 - The number of seconds a packet has failed to be delivered or acknowledged;
%s1 - the recipient of the packets indicated in the message; %s2 - the sender of the
packets indicated in the message; %n2 - the number of seconds since a packet was
delivered successfully between the two members indicated above. Severity: 2-
Warning.

Cause: Possible causes are indicated in the text of the message.

Action: If this issue occurs frequently, the root cause should be investigated.

Node %s1 is not allowed to create a new cluster; WKA list: [%s2]
%s1 - Address of node attempting to join cluster; %s2 - List of WKA addresses.
Severity: 1-Error.

Cause: The cluster is configured to use WKA, and there are no nodes present in the
cluster that are in the WKA list.

Action: Ensure that at least one node in the WKA list exists in the cluster, or add this
node's address to the WKA list.

This member is configured with a compatible but different WKA list then the
senior Member(%s). It is strongly recommended to use the same WKA list for all
cluster members.
%s - the senior node of the cluster. Severity: 2-Warning.

Cause: The WKA list on this node is different than the WKA list on the senior node.
Using different WKA lists can cause different cluster members to operate
independently from the rest of the cluster.

Action: Verify that the two lists are intentionally different or set them to the same
values.

<socket implementation> failed to set receive buffer size to %n1 packets (%n2
bytes); actual size is %n3 packets (%n4 bytes). Consult your OS documentation
regarding increasing the maximum socket buffer size. Proceeding with the actual
value may cause sub-optimal performance.
%n1 - the number of packets that fits in the buffer that Coherence attempted to
allocate; %n2 - the size of the buffer Coherence attempted to allocate; %n3 - the
number of packets that fits in the actual allocated buffer size; %n4 - the actual size of
the allocated buffer. Severity: 2-Warning.

TCMP Log Messages

B-6 Administering Oracle Coherence

Cause: See “Operating System Tuning”.

Action: See “Operating System Tuning”.

The timeout value configured for IpMonitor pings is shorter than the value of 5
seconds. Short ping timeouts may cause an IP address to be wrongly reported as
unreachable on some platforms.
Severity: 2-Warning

Cause: The ping timeout value is less than 5 seconds.

Action: Ensure that the ping timeout that is configured within the <tcp-ring-
listener> element is greater than 5 seconds.

Network failure encountered during InetAddress.isReachable(): %s
%n - a stack trace. Severity: 5-Debug Level 5.

Cause: The IpMonitor component is unable to ping a member and has reached the
configured timeout interval.

Action: Ensure that the member is operational or verify a network outage. The ping
timeout that is configured within the <tcp-ring-listener> element can be
increased to allow for a longer timeout as required by the network.

TcpRing has been explicitly disabled, this is not a recommended practice and will
result in a minimum death detection time of %n seconds for failed processes.
%n - the number of seconds that is specified by the packet publisher's resend timeout
which is 5 minutes by default. Severity: 2-Warning.

Cause: The TcpRing Listener component has been disabled.

Action: Enable the TcpRing listener within the <tcp-ring-listener> element.

IpMonitor has been explicitly disabled, this is not a recommended practice and
will result in a minimum death detection time of %n seconds for failed machines
or networks.
%n - the number of seconds that is specified by the packet publisher's resend timeout
which is 5 minutes by default. Severity: 2-Warning.

Cause: The IpMonitor component has been disabled.

Action: The IpMonitor component is enabled when the TcpRing listener is enabled
within the <tcp-ring-listener> element.

TcpRing connecting to %s
%s - the cluster member to which this member has joined to form a TCP-Ring.
Severity: 6-Debug Level 6.

Cause: This message indicates that the connection between this and the specified
member is initialized. The TCP-Ring is used for quick process termination detection
and is a sparse collection of TCP/IP-based connection between different nodes in the
cluster.

Action: none.

TcpRing disconnected from %s to maintain ring
%s - the cluster member from which this member has disconnected. Severity: 6-Debug
Level 6.

TCMP Log Messages

Log Message Glossary B-7

Cause: This message indicates that this member has disconnected from the specified
member and that the specified member is no longer a member of the TCP-Ring. The
TCP-Ring is used for quick process termination detection and is a sparse collection of
TCP/IP-based connection between different nodes in the cluster.

Action: If the member was intentionally stopped, no further action is required.
Otherwise, the member may have been released from the cluster due to a failure or
network outage. Restart the member.

TcpRing disconnected from %s due to a peer departure; removing the member.
%s - the cluster member from which this member has disconnected. Severity: 5-Debug
Level 5.

Cause: This message indicates that this member has disconnected from the specified
member and that the specified member is no longer a member of the TCP-Ring. The
TCP-Ring is used for quick process termination detection and is a sparse collection of
TCP/IP-based connection between different nodes in the cluster.

Action: If the member was intentionally stopped, no further action is required.
Otherwise, the member may have been released from the cluster due to a failure or
network outage. Restart the member.

TcpRing connection to "%s" refused ("%s1"); removing the member.
%s - the cluster member to which this member was refused a connection; %s1- the
refusal message. Severity: 5-Debug Level 5.

Cause: The specified member has refused a TCP connection from this member and
has subsequently been removed from the TCP-Ring.

Action: If the member was intentionally stopped, no further action is required.
Otherwise, the member may have been released from the cluster due to a failure or
network outage. Restart the member.

B.2 Configuration Log Messages
The following are configuration-related log messages:

java.io.IOException: Configuration file is missing: "tangosol-coherence.xml"
Severity: 1-Error.

Cause: The operational configuration descriptor cannot be loaded.

Action: Make sure that the tangosol-coherence.xml resource can be loaded from
the class path specified in the Java command line.

Loaded operational configuration from resource "%s"
%s - the full resource path (URI) of the operational configuration descriptor. Severity:
3-Informational.

Cause: The operational configuration descriptor is loaded by Coherence from the
specified location.

Action: If the location of the operational configuration descriptor was explicitly
specified using system properties or programmatically, verify that the reported URI
matches the expected location.

Configuration Log Messages

B-8 Administering Oracle Coherence

Loaded operational overrides from "%s"
%s - the URI (file or resource) of the operational configuration descriptor override.
Severity: 3-Informational.

Cause: The operational configuration descriptor points to an override location, from
which the descriptor override has been loaded.

Action: If the location of the operational configuration descriptor was explicitly
specified using system properties, descriptor override or programmatically, verify
that the reported URI matches the expected location.

Optional configuration override "%s" is not specified
%s - the URI of the operational configuration descriptor override. Severity: 3-
Informational.

Cause: The operational configuration descriptor points to an override location which
does not contain any resource.

Action: Verify that the operational configuration descriptor override is not supposed
to exist.

java.io.IOException: Document "%s1" is cyclically referenced by the 'xml-override'
attribute of element %s2
%s1 - the URI of the operational configuration descriptor or override; %s2 - the name
of the XML element that contains an incorrect reference URI. Severity: 1-Error.

Cause: The operational configuration override points to itself or another override that
point to it, creating an infinite recursion.

Action: Correct the invalid xml-override attribute's value.

java.io.IOException: Exception occurred during parsing: %s
%s - the XML parser error. Severity: 1-Error.

Cause: The specified XML is invalid and cannot be parsed.

Action: Correct the XML document.

Loaded cache configuration from "%s"
%s - the URI (file or resource) of the cache configuration descriptor. Severity: 3-
Informational.

Cause: The operational configuration descriptor or a programmatically created
ConfigurableCacheFactory instance points to a cache configuration descriptor
that has been loaded.

Action: Verify that the reported URI matches the expected cache configuration
descriptor location.

B.3 Partitioned Cache Service Log Messages
The following are partitioned cache-related log messages:

Asking member %n1 for %n2 primary partitions
%n1 - the node id this node asks to transfer partitions from; %n2 - the number of
partitions this node is willing to take. Severity: 4-Debug Level 4.

Cause: When a storage-enabled partitioned service starts on a Coherence node, it first
receives the configuration update that informs it about other storage-enabled service

Partitioned Cache Service Log Messages

Log Message Glossary B-9

nodes and the current partition ownership information. That information allows it to
calculate the "fair share" of partitions that each node is supposed to own after the re-
distribution process. This message demarcates the beginning of the transfer request to
a specified node for its "fair" ownership distribution.

Action: None.

Transferring %n1 out of %n2 primary partitions to member %n3 requesting %n4
%n1 - the number of primary partitions this node transferring to a requesting node;
%n2 - the total number of primary partitions this node currently owns; %n3 - the node
id that this transfer is for; %n4 - the number of partitions that the requesting node
asked for. Severity: 4-Debug Level 4.

Cause: During the partition distribution protocol, a node that owns less than a "fair
share" of primary partitions requests any of the nodes that own more than the fair
share to transfer a portion of owned partitions. The owner may choose to send any
number of partitions less or equal to the requested amount. This message demarcates
the beginning of the corresponding primary data transfer.

Action: None.

Transferring %n1 out of %n2 partitions to a machine-safe backup 1 at member %n3
(under %n4)
%n1 - the number of backup partitions this node transferring to a different node; %n2
- the total number of partitions this node currently owns that are "endangered" (do
not have a backup); %n3 - the node id that this transfer is for; %n4 - the number of
partitions that the transferee can take before reaching the "fair share" amount.
Severity: 4-Debug Level 4.

Cause: After the primary partition ownership is completed, nodes start distributing
the backups, ensuring the "strong backup" policy, that places backup ownership to
nodes running on computers that are different from the primary owners' computers.
This message demarcates the beginning of the corresponding backup data transfer.

Action: None.

Transferring backup%n1 for partition %n2 from member %n3 to member %n4
%n1 - the index of the backup partition that this node transferring to a different node;
%n2 - the partition number that is being transferred; %n3 the node id of the previous
owner of this backup partition; %n4 the node id that the backup partition is being
transferred to. Severity: 5-Debug Level 5.

Cause: During the partition distribution protocol, a node that determines that a
backup owner for one of its primary partitions is overloaded may choose to transfer
the backup ownership to another, underloaded node. This message demarcates the
beginning of the corresponding backup data transfer.

Action: None.

Failed backup transfer for partition %n1 to member %n2; restoring owner from:
%n2 to: %n3
%n1 the partition number for which a backup transfer was in-progress; %n2 the node
id that the backup partition was being transferred to; %n3 the node id of the previous
backup owner of the partition. Severity: 4-Debug Level 4.

Cause: This node was in the process of transferring a backup partition to a new
backup owner when that node left the service. This node is restoring the backup
ownership to the previous backup owner.

Partitioned Cache Service Log Messages

B-10 Administering Oracle Coherence

Action: None.

Deferring the distribution due to %n1 pending configuration updates
%n1- the number of configuration updates. Severity: 5-Debug Level 5.

Cause: This node is in the process of updating the global ownership map (notifying
other nodes about ownership changes) when the periodic scheduled distribution
check takes place. Before the previous ownership changes (most likely due to a
previously completed transfer) are finalized and acknowledged by the other service
members, this node postpones subsequent scheduled distribution checks.

Action: None.

Limiting primary transfer to %n1 KB (%n2 partitions)
%n1 - the size in KB of the transfer that was limited; %n2 the number of partitions
that were transferred. Severity: 4-Debug Level 4.

Cause: When a node receives a request for some number of primary partitions from
an underloaded node, it may transfer any number of partitions (up to the requested
amount) to the requester. The size of the transfer is limited by the <transfer-
threshold> element located within a <distributed-scheme> element. This
message indicates that the distribution algorithm limited the transfer to the specified
number of partitions due to the transfer-threshold.

Action: None.

DistributionRequest was rejected because the receiver was busy. Next retry in %n1
ms
%n1 - the time in milliseconds before the next distribution check is scheduled.
Severity: 6-Debug Level 6.

Cause: This (underloaded) node issued a distribution request to another node asking
for one or more partitions to be transferred. However, the other node declined to
initiate the transfer as it was in the process of completing a previous transfer with a
different node. This node waits at least the specified amount of time (to allow time for
the previous transfer to complete) before the next distribution check.

Action: None.

Restored from backup %n1 partitions
%n1 - the number of partitions being restored. Severity: 3-Informational.

Cause: The primary owner for some backup partitions owned by this node has left the
service. This node is restoring those partitions from backup storage (assuming
primary ownership). This message is followed by a list of the partitions that are being
restored.

Action: None.

Re-publishing the ownership for partition %n1 (%n2)
%n1 the partition number whose ownership is being re-published; %n2 the node id of
the primary partition owner, or 0 if the partition is orphaned. Severity: 4-Debug Level
4.

Cause: This node is in the process of transferring a partition to another node when a
service membership change occurred, necessitating redistribution. This message
indicates this node re-publishing the ownership information for the partition whose
transfer is in-progress.

Partitioned Cache Service Log Messages

Log Message Glossary B-11

Action: None.

%n1> Ownership conflict for partition %n2 with member %n3 (%n4!=%n5)
%n1 - the number of attempts made to resolve the ownership conflict; %n2 - the
partition whose ownership is in dispute; %n3 - the node id of the service member in
disagreement about the partition ownership; %n4 - the node id of the partition's
primary owner in this node's ownership map; %n5 - the node id of the partition's
primary owner in the other node's ownership map. Severity: 4-Debug Level 4.

Cause: If a service membership change occurs while the partition ownership is in-
flux, it is possible for the ownership to become transiently out-of-sync and require
reconciliation. This message indicates that such a conflict was detected, and denotes
the attempts to resolve it.

Action: None.

Unreconcilable ownership conflict; conceding the ownership
Severity: 1-Error

Cause: If a service membership change occurs while the partition ownership is in-
flux, it is possible for the ownership to become transiently out-of-sync and require
reconciliation. This message indicates that an ownership conflict for a partition could
not be resolved between two service members. To resolve the conflict, one member is
forced to release its ownership of the partition and the other member republishes
ownership of the partition to the senior member.

Action: None

Multi-way ownership conflict; requesting a republish of the ownership
Severity: 1-Error

Cause: If a service membership change occurs while the partition ownership is in-
flux, it is possible for the ownership to become transiently out-of-sync and require
reconciliation. This message indicates that a service member and the most senior
storage-enabled member have conflicting views about the owner of a partition. To
resolve the conflict, the partitioned is declared an orphan until the owner of the
partition republishes its ownership of the partition.

Action: None

Assigned %n1 orphaned primary partitions
%n1 - the number of orphaned primary partitions that were re-assigned. Severity: 2-
Warning.

Cause: This service member (the most senior storage-enabled) has detected that one
or more partitions have no primary owner (orphaned), most likely due to several
nodes leaving the service simultaneously. The remaining service members agree on
the partition ownership, after which the storage-senior assigns the orphaned
partitions to itself. This message is followed by a list of the assigned orphan
partitions. This message indicates that data in the corresponding partitions may have
been lost.

Action: None.

validatePolls: This service timed-out due to unanswered handshake request.
Manual intervention is required to stop the members that have not responded to
this Poll
Severity: 1-Error.

Partitioned Cache Service Log Messages

B-12 Administering Oracle Coherence

Cause: When a node joins a clustered service, it performs a handshake with each
clustered node running the service. A missing handshake response prevents this node
from joining the service. Most commonly, it is caused by an unresponsive (for
example, deadlocked) service thread.

Action: Corrective action may require locating and shutting down the JVM running
the unresponsive service. See My Oracle Support Note 845363.1 for more details.

https://support.oracle.com/epmos/faces/DocumentDisplay?
_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl
-state=lp6w36vgb_4

com.tangosol.net.RequestPolicyException: No storage-enabled nodes exist for
service service_name
Severity: 1-Error.

Cause: A cache request was made on a service that has no storage-enabled service
members. Only storage-enabled service members may process cache requests, so
there must be at least one storage-enabled member.

Action: Check the configuration/deployment to ensure that members that are
intended to store cache data are configured to be storage-enabled. Storage is enabled
on a member using the <local-storage> element located within a
<distributed-scheme> element, or by using the -
Dcoherence.distributed.localstorage command-line override.

An entry was inserted into the backing map for the partitioned cache "%s" that is
not owned by this member; the entry will be removed."
%s - the name of the cache into which insert was attempted. Severity: 1-Error.

Cause: The backing map for a partitioned cache may only contain keys that are
owned by that member. Cache requests are routed to the service member owning the
requested keys, ensuring that service members only process requests for keys which
they own. This message indicates that the backing map for a cache detected an
insertion for a key which is not owned by the member. This is most likely caused by a
direct use of the backing-map as opposed to the exposed cache APIs (for example,
NamedCache) in user code running on the cache server. This message is followed by
a Java exception stack trace showing where the insertion was made.

Action: Examine the user-code implicated by the stack-trace to ensure that any
backing-map operations are safe. This error can be indicative of an incorrect
implementation of KeyAssociation

Exception occurred during filter evaluation: %s; removing the filter...
%s - the description of the filter that failed during evaluation. Severity: 1-Error.

Cause: An exception was thrown while evaluating a filter for a MapListener
registered on this cache. As a result, some map events may not have been issued.
Additionally, to prevent further failures, the filter (and associated MapListener) are
removed. This message is followed by a Java exception stack trace showing where the
failure occurred.

Action: Review filter implementation and the associated stack trace for errors.

Exception occurred during event transformation: %s; removing the filter...
%s - the description of the filter that failed during event transformation. Severity: 1-
Error.

Partitioned Cache Service Log Messages

Log Message Glossary B-13

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4

Cause: An Exception was thrown while the specified filter was transforming a
MapEvent for a MapListener registered on this cache. As a result, some map events
may not have been issued. Additionally, to prevent further failures, the Filter
implementation (and associated MapListener) are removed. This message is
followed by a Java exception stack trace showing where the failure occurred.

Action: Review the filter implementation and the associated stack trace for errors.

Exception occurred during index rebuild: %s
%s - the stack trace for the exception that occurred during index rebuild. Severity: 1-
Error.

Cause: An Exception was thrown while adding or rebuilding an index. A likely cause
of this is a faulty ValueExtractor implementation. As a result of the failure, the
associated index is removed. This message is followed by a Java exception stack trace
showing where the failure occurred.

Action: Review the ValueExtractor implementation and associated stack trace for
errors.

Exception occurred during index update: %s
%s - the stack trace for the exception that occurred during index update. Severity: 1-
Error.

Cause: An Exception was thrown while updating an index. A likely cause of this is a
faulty ValueExtractor implementation. As a result of the failure, the associated
index is removed. This message is followed by a Java exception stack trace showing
where the failure occurred.

Action: Review the ValueExtractor implementation and associated stack trace for
errors.

Exception occurred during query processing: %s
%s - the stack trace for the exception that occurred while processing a query. Severity:
1-Error.

Cause: An Exception was thrown while processing a query. A likely cause of this is an
error in the filter implementation used by the query. This message is followed by a
Java exception stack trace showing where the failure occurred.

Action: Review the filter implementation and associated stack trace for errors.

BackingMapManager %s1: returned "null" for a cache: %s2
%s1 - the classname of the BackingMapManager implementation that returned a null
backing-map; %s2 - the name of the cache for which the BackingMapManager
returned null. Severity: 1-Error.

Cause: A BackingMapManager returned null for a backing-map for the specified
cache.

Action: Review the specified BackingMapManager implementation for errors and to
ensure that it properly instantiates a backing map for the specified cache.

BackingMapManager %s1: failed to instantiate a cache: %s2
%s1 - the classname of the BackingMapManager implementation that failed to create
a backing-map; %s2 - the name of the cache for which the BackingMapManager
failed. Severity: 1-Error.

Partitioned Cache Service Log Messages

B-14 Administering Oracle Coherence

Cause: A BackingMapManager unexpectedly threw an Exception while attempting
to instantiate a backing-map for the specified cache.

Action: Review the specified BackingMapManager implementation for errors and to
ensure that it properly instantiates a backing map for the specified cache.

BackingMapManager %s1: failed to release a cache: %s2
%s1 - the classname of the BackingMapManager implementation that failed to release
a backing-map; %s2 - the name of the cache for which the BackingMapManager
failed. Severity: 1-Error.

Cause: A BackingMapManager unexpectedly threw an Exception while attempting
to release a backing-map for the specified cache.

Action: Review the specified BackingMapManager implementation for errors and to
ensure that it properly releases a backing map for the specified cache.

Unexpected event during backing map operation: key=%s1; expected=%s2; actual=
%s3
%s1 - the key being modified by the cache; %s2 - the expected backing-map event
from the cache operation in progress; %s3 - the actual MapEvent received. Severity: 6-
Debug Level 6.

Cause: While performing a cache operation, an unexpected MapEvent was received
on the backing-map. This indicates that a concurrent operation was performed
directly on the backing-map and is most likely caused by direct manipulation of the
backing-map as opposed to the exposed cache APIs (for example, NamedCache) in
user code running on the cache server.

Action: Examine any user-code that may directly modify the backing map to ensure
that any backing-map operations are safe.

Application code running on "%s1" service thread(s) should not call %s2 as this
may result in deadlock. The most common case is a CacheFactory call from a
custom CacheStore implementation.
%s1 - the name of the service which has made a re-entrant call; %s2 - the name of the
method on which a re-entrant call was made. Severity: 2-Warning.

Cause: While executing application code on the specified service, a re-entrant call (a
request to the same service) was made. Coherence does not support re-entrant service
calls, so any application code (CacheStore, EntryProcessor, and so on...) running on
the service thread(s) should avoid making cache requests.

Action: Remove re-entrant calls from application code running on the service
thread(s) and consider using alternative design strategies as outlined in the Developing
Applications with Oracle Coherence.

Repeating %s1 for %n1 out of %n2 items due to re-distribution of %s2
%s1 - the description of the request that must be repeated; %n1 - the number of items
that are outstanding due to re-distribution; %n2 - the total number of items requested;
%s2 - the list of partitions that are in the process of re-distribution and for which the
request must be repeated. Severity: 5-Debug Level 5.

Cause: When a cache request is made, the request is sent to the service members
owning the partitions to which the request refers. If one or more of the partitions that
a request refers to is in the process of being transferred (for example, due to re-
distribution), the request is rejected by the (former) partition owner and is
automatically resent to the new partition owner.

Partitioned Cache Service Log Messages

Log Message Glossary B-15

Action: None.

Error while starting cluster: com.tangosol.net.RequestTimeoutException: Timeout
during service start: ServiceInfo(%s)
%s - information on the service that could not be started. Severity: 1-Error.

Cause: When joining a service, every service in the cluster must respond to the join
request. If one or more nodes have a service that does not respond within the timeout
period, the join times out.

Action: See My Oracle Support Note 845363.1

https://support.oracle.com/epmos/faces/DocumentDisplay?
_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl
-state=lp6w36vgb_4

Failed to restart services: com.tangosol.net.RequestTimeoutException: Timeout
during service start: ServiceInfo(%s)
%s - information on the service that could not be started. Severity: 1-Error.

Cause: When joining a service, every service in the cluster must respond to the join
request. If one or more nodes have a service that does not respond within the timeout
period, the join times out.

Action: See My Oracle Support Note 845363.1

https://support.oracle.com/epmos/faces/DocumentDisplay?
_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl
-state=lp6w36vgb_4

Failed to recover partition 0 from SafeBerkeleyDBStore(...); partition-
countmismatch 501(persisted) != 277(service); reinstate persistent store fromtrash
once validation errors have been resolved
Cause: The partition-count is changed while active persistence is enabled. The current
active data is copied to the trash directory.

Action: Complete the following steps to recover the data:

1. Shutdown the entire cluster.

2. Remove the current active directory contents for the cluster and service affected
on each cluster member.

3. Copy (recursively) the contents of the trash directory for each service to the active
directory.

4. Restore the partition count to the original value.

5. Restart the cluster.

Partitioned Cache Service Log Messages

B-16 Administering Oracle Coherence

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=231462233678969&id=845363.1&_afrWindowMode=0&_adf.ctrl-state=lp6w36vgb_4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1)
	Other Significant Changes in This Document for 12c (12.2.1)

	Part I Basic Administration
	1 Deploying Coherence Applications
	1.1 Deploying Standalone Coherence Applications
	1.1.1 Deploying a Data Tier
	1.1.2 Deploying an Application Tier
	1.1.3 Deploying a Proxy Tier for Extend Clients
	1.1.4 Deploying Extend Clients

	1.2 Deploying Coherence Applications to WebLogic Server
	1.2.1 Overview of the WebLogic Server Coherence Integration
	1.2.2 Packaging Coherence Applications for WebLogic Server
	1.2.2.1 Building a Coherence GAR Module
	1.2.2.2 Packaging a GAR Module in an EAR Module

	1.2.3 Setting Up a WebLogic Server Domain Topology for Coherence
	1.2.3.1 Create a Coherence Cluster
	1.2.3.2 Create Coherence Deployment Tiers
	1.2.3.3 Create Managed Coherence Servers For a Coherence Deployment Tier

	1.2.4 Deploying Coherence Applications To a WebLogic Server Domain
	1.2.4.1 Deploy the Data Tier GAR
	1.2.4.2 Deploy the Application Tier EAR
	1.2.4.3 Deploy the Proxy Tier GAR

	1.2.5 Performing Basic Coherence Administration Tasks

	1.3 Deploying Coherence Applications to an Application Server (Generic)
	1.3.1 Deploying Coherence as an Application Server Library
	1.3.2 Deploying Coherence in a Java EE Module
	1.3.2.1 Deploying Coherence Within an EAR
	1.3.2.2 Deploying Coherence Within a WAR

	1.4 Running Multiple Applications in a Single Cluster
	1.4.1 Specifying a Scope Name
	1.4.2 Scoping Applications in WebLogic Server
	1.4.3 Scoping Applications in a Java EE Environment (Generic)
	1.4.3.1 Isolating Applications in a JavaEE Environment
	1.4.3.2 Sharing Application Data in a JavaEE Environment

	1.4.4 Scoping Applications in a Standalone Environment
	1.4.5 Providing a Custom Scope Resolver

	2 Performing a Network Performance Test
	2.1 Running the Datagram Test Utility
	2.1.1 How to Test Datagram Network Performance
	2.1.1.1 Performing a Point-to-Point Datagram Test
	2.1.1.1.1 Performing a Bidirectional Datagram Test

	2.1.1.2 Performing a Distributed Datagram Test

	2.1.2 Understanding Datagram Report Statistics

	2.2 Running the Message Bus Test Utility
	2.2.1 How to Test Message Bus Performance
	2.2.1.1 Performing a Point-to-Point Message Bus Test
	2.2.1.1.1 Performing a Bidirectional Message Bus Test

	2.2.1.2 Performing a Distributed Message Bus Test

	2.2.2 Understanding Message Bus Report Statistics

	3 Performing a Multicast Connectivity Test
	3.1 Running the Multicast Test Utility
	3.2 How to Test Multicast
	3.3 Troubleshooting Multicast Communications

	4 Performance Tuning
	4.1 Operating System Tuning
	4.1.1 Socket Buffer Sizes
	4.1.2 High Resolution timesource (Linux)
	4.1.3 Datagram size (Microsoft Windows)
	4.1.4 TCP Retransmission Timeout (Microsoft Windows)
	4.1.5 Thread Scheduling (Microsoft Windows)
	4.1.6 Swapping
	4.1.7 Load Balancing Network Interrupts (Linux)

	4.2 Network Tuning
	4.2.1 Network Interface Settings
	4.2.2 Network Infrastructure Settings
	4.2.3 Switch and Subnet Considerations
	4.2.4 Ethernet Flow-Control
	4.2.5 Path MTU
	4.2.6 10GbE Considerations
	4.2.7 TCP Considerations

	4.3 JVM Tuning
	4.3.1 Basic Sizing Recommendation
	4.3.2 Heap Size Considerations
	4.3.2.1 General Guidelines
	4.3.2.2 Moving the Cache Out of the Application Heap

	4.3.3 Garbage Collection Monitoring

	4.4 Data Access Patterns
	4.4.1 Data Access Distribution (hot spots)
	4.4.2 Cluster-node Affinity
	4.4.3 Read/Write Ratio and Data Sizes
	4.4.4 Interleaving Cache Reads and Writes

	5 Production Checklist
	5.1 Network Performance Test and Multicast Recommendations
	5.2 Network Recommendations
	5.3 Cache Size Calculation Recommendations
	5.4 Hardware Recommendations
	5.5 Operating System Recommendations
	5.6 JVM Recommendations
	5.7 Oracle Exalogic Elastic Cloud Recommendations
	5.8 Security Recommendations
	5.9 Application Instrumentation Recommendations
	5.10 Coherence Modes and Editions
	5.11 Coherence Operational Configuration Recommendations
	5.12 Coherence Cache Configuration Recommendations
	5.13 Large Cluster Configuration Recommendations
	5.14 Death Detection Recommendations

	Part II Advanced Administration
	6 Persisting Caches
	6.1 Overview of Persistence
	6.2 Persistence Dependencies
	6.3 Persisting Caches on Demand
	6.4 Actively Persisting Caches
	6.5 Using Snapshots to Persist a Cache Service
	6.5.1 Create a Snapshot
	6.5.2 Recover a Snapshot
	6.5.3 Remove a Snapshot

	6.6 Archiving Snapshots
	6.6.1 Defining a Snapshot Archive Directory
	6.6.2 Specifying a Directory Snapshot Archiver
	6.6.3 Performing Snapshot Archiving Operations
	6.6.3.1 Archiving a Snapshot
	6.6.3.2 Retrieving Archived Snapshots
	6.6.3.3 Removing Archived Snapshots
	6.6.3.4 Listing Archived Snapshots
	6.6.3.5 Listing Archived Snapshot Stores

	6.6.4 Creating a Custom Snapshot Archiver
	6.6.4.1 Create a Custom Snapshot Archiver Implementation
	6.6.4.2 Create a Custom Snapshot Archiver Definition
	6.6.4.3 Specifying a Custom Snapshot Archiver

	6.7 Enabling Active Persistence Mode
	6.7.1 Changing the Partition Count When Using Active Persistence

	6.8 Modifying the Pre-Defined Persistence Environments
	6.8.1 Changing the Pre-Defined Persistence Directory

	6.9 Creating Persistence Environments
	6.9.1 Define a Persistence Environment
	6.9.2 Configure a Persistence Mode
	6.9.3 Configure Persistence Directories
	6.9.4 Configure a Cache Service to Use a Persistence Environment

	6.10 Changing the Active Persistence Failure Response
	6.11 Configuring the Quorum for Persistence Recovery
	6.12 Subscribing to Persistence JMX Notifications
	6.13 Managing Persistence
	6.13.1 Plan for Persistence Storage
	6.13.2 Monitor Persistence Storage Usage
	6.13.3 Monitoring Persistence Latencies

	6.14 Configuring Caches as Transient

	7 Federating Caches Across Clusters
	7.1 Overview of Federated Caching
	7.2 General Steps for Setting Up Federated Caching
	7.3 Defining Federation Participants
	7.4 Changing the Default Settings of Federation Participants
	7.5 Understanding Federation Topologies
	7.6 Defining Federation Topologies
	7.6.1 Defining Active-Passive Topologies
	7.6.2 Defining Active-Active Topologies
	7.6.3 Defining Hub and Spoke Topologies
	7.6.4 Defining Central Federation Topologies
	7.6.5 Defining Custom Topologies

	7.7 Defining Federated Cache Schemes
	7.8 Associating a Federated Cache with a Federation Topology
	7.9 Overriding the Destination Cache
	7.10 Limiting Federation Service Resource Usage
	7.11 Resolving Federation Conflicts
	7.11.1 Processing Federated Connection Events
	7.11.2 Processing Federated Change Events
	7.11.3 Federating Events to Custom Participants

	7.12 Using a Specific Network Interface for Federation Communication
	7.13 Load Balancing Federated Connections
	7.13.1 Using Federation-Based Load Balancing
	7.13.2 Implementing a Custom Federation-Based Load Balancing Strategy
	7.13.3 Using Client-Based Load Balancing

	7.14 Managing Federated Caching
	7.14.1 Monitor Cluster Participant Status
	7.14.2 Monitor Federation Performance and Throughput

	A Platform-Specific Deployment Considerations
	A.1 Deploying to Oracle HotSpot JVMs
	A.1.1 Heap Sizes
	A.1.2 AtomicLong
	A.1.3 OutOfMemoryError

	A.2 Deploying to IBM JVMs
	A.2.1 OutOfMemoryError
	A.2.2 Heap Sizing

	A.3 Deploying to Linux
	A.3.1 TSC High Resolution Timesource

	A.4 Deploying to Solaris
	A.4.1 Solaris 10 (x86 and SPARC)
	A.4.2 Solaris 10 Networking
	A.4.3 Solaris Network Interface Cards
	A.4.4 Solaris Link Aggregation

	A.5 Deploying to Windows
	A.5.1 Performance Tuning
	A.5.2 Personal Firewalls
	A.5.3 Disconnected Network Interface

	A.6 Deploying to OS X
	A.6.1 Multicast and IPv6
	A.6.2 Socket Buffer Sizing

	A.7 Deploying to z/OS
	A.7.1 EBCDIC
	A.7.2 Multicast

	A.8 Deploying to AIX
	A.8.1 Multicast and IPv6

	A.9 Deploying to Virtual Machines
	A.9.1 Multicast Connectivity
	A.9.2 Performance
	A.9.3 Fault Tolerance

	A.10 Deploying to Cisco Switches
	A.10.1 Buffer Space and Packet Pauses
	A.10.2 Multicast Connectivity on Large Networks
	A.10.3 Multicast Outages
	A.10.4 Multicast Time-to-Live

	A.11 Deploying to Foundry Switches
	A.11.1 Multicast Connectivity

	A.12 Deploying to IBM BladeCenters
	A.12.1 MAC Address Uniformity and Load Balancing

	B Log Message Glossary
	B.1 TCMP Log Messages
	B.2 Configuration Log Messages
	B.3 Partitioned Cache Service Log Messages

