
[1]Oracle® Fusion Middleware
Development Guide for Oracle WebCenter WSRP Producer for
.NET,

11g Release 1 (11.1.1.7.0)

E14117-07

February 2015

Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET, 11g Release
1 (11.1.1.7.0)

E14117-07

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Jennifer Shipman

Contributing Author: Promila Chitkara, Susan Highmoor

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... v
Conventions ... v

1 Introducing the Oracle WebCenter WSRP Producer for .NET

1.1 About the Oracle WebCenter WSRP Producer for .NET .. 1-1
1.2 Additional Documentation.. 1-1

2 Understanding the Oracle WebCenter WSRP Producer for .NET Configuration
File

2.1 Portlet Nodes ... 2-1
2.2 Portlet Content Transformation Rulesets .. 2-2
2.2.1 Creating Custom Rules ... 2-3

3 Managing Required Script Files

3.1 Managing Required Script Files.. 3-1

4 Configuring Security Options

4.1 WS-Security (WSS) Configuration.. 4-1
4.1.1 WSDL Configuration... 4-1
4.1.2 Web.config Configuration .. 4-2
4.2 SSL Configuration... 4-3

5 Implementing Common Development Scenarios

5.1 Adding a Web Part as a Portlet... 5-1
5.2 Adding a Web Part with ASP.NET AJAX Controls... 5-4
5.2.1 Managing AJAX Outside the .NET Framework.. 5-5
5.3 Adding an ASP.NET Application... 5-9
5.4 Adding a Help Page .. 5-11
5.5 Using Markup Transformation.. 5-11
5.5.1 Transforming Text .. 5-12
5.5.2 Creating a Custom Ruleset .. 5-12

iv

5.6 Using Portlet Styles.. 5-13
5.7 Using Interportlet Communication with JavaScript... 5-14
5.8 Adding User Profile Data ... 5-19
5.9 Setting Up Security Tokens .. 5-22
5.9.1 Displaying a Token in a Web Part.. 5-23
5.9.2 Oracle WebLogic Portal with Default SAMLCredentialMapperV2.......................... 5-27
5.9.3 Oracle WebLogic Portal with Custom Signing Key .. 5-27
5.9.4 UNT for Oracle WebLogic Portal ... 5-27
5.9.5 SAML for Oracle WebCenter Portal... 5-29
5.9.6 UNT for Oracle WebCenter Portal ... 5-30
5.10 Using Oracle WebCenter Portal Features... 5-33
5.10.1 Using Customization in Oracle WebCenter Portal .. 5-33
5.10.2 Using Oracle WebCenter Portal Parameters... 5-33

v

Preface

This guide provides detailed information on authoring portlets using the Oracle
WebCenter WSRP Producer for .NET.

Audience
This document is intended for Oracle WebCenter Portal developers who want to create
WSRP portlets using the Oracle WebCenter WSRP Producer for .NET.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ Installation and Upgrade Guide for Oracle WebCenter WSRP Producer for .NET

■ Release Notes

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

Introducing the Oracle WebCenter WSRP Producer for .NET 1-1

1Introducing the Oracle WebCenter WSRP
Producer for .NET

[2]This chapter introduces you to the Oracle WebCenter WSRP Producer for .NET.

This chapter includes the following topics:

■ Section 1.1, "About the Oracle WebCenter WSRP Producer for .NET"

■ Section 1.2, "Additional Documentation"

1.1 About the Oracle WebCenter WSRP Producer for .NET
The OASIS WSRP (Web Services for Remote Portlets) Technical Committee works to
standardize presentation-oriented web services for use by aggregating intermediaries,
such as portals. For more information, see the OASIS WSRP site:
http://www.oasis-open.org/committees/wsrp/.

The Oracle WebCenter WSRP Producer for .NET is a collection of libraries that surface
.NET applications and Web Parts as WSRP 1.0 or 2.0 portlets.

1.2 Additional Documentation
The following additional documentation is available.

Resource Description

Installation Guide This guide describes the prerequisites (such as required
software) and procedures for installing and upgrading the
Oracle WebCenter WSRP Producer for .NET

Release Notes The release notes provide information about new features, issues
addressed, and known issues in the release.

WSRP 1.0 specification http://www.oasis-open.org/committees/download.php/3343/
oasis-200304-wsrp-specification-1.0.pdf

WSRP 2.0 specification http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html

Additional Documentation

1-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

2

Understanding the Oracle WebCenter WSRP Producer for .NET Configuration File 2-1

2Understanding the Oracle WebCenter WSRP
Producer for .NET Configuration File

[3]This chapter describes contents of the Oracle WebCenter WSRP Producer for .NET
configuration file, wsrp-producer.xml.

The set up of a Web Part or .NET application as a WSRP portlet is not complete until
the wsrp-producer.xml configuration file is filled out properly. Understanding this file
is critical.

Open the wsrp-producer.xml file installed in installdir\wsrpdefault for reference.

This chapter includes the following topics:

■ Section 2.1, "Portlet Nodes"

■ Section 2.2, "Portlet Content Transformation Rulesets"

2.1 Portlet Nodes
Each Web Part or .NET web application you wish to expose as a portlet must have its
own <portlet> node. Portlet nodes can include the following elements:

■ Portlet handle: The <handle> must be a string that uniquely identifies the portlet.
Alphanumeric characters are suggested for this portlet property.

■ Supported locale: The <supported-locale> must be a comma-delimited list of
supported locales. The typical format is 2 char language code-2 char country
code (for example, en-US). This information is sent to the WSRP consumer portal
during registration. These values also drive the localization for core properties of
the portlet such as title and description.

■ Localized portlet information: The <description>, <display-name>, <title>,
and <short-title> properties are localized according to the lang attribute value
specified. Each value is returned as a LocalizedString for the corresponding
WSRP values of description, displayName, title, and shortTitle. See the
PortletDescription type in the WSRP specification for more details on these
properties.

■ Supported modes: The <supports> element includes several sub-elements:

– Portlet modes: The <portlet-modes> element defines URLs (typically a
relative path) for relevant WSRP portlet modes. The Oracle WebCenter WSRP
Producer for .NET handles portlet modes as follows:

* wsrp:view—Renders the portlet

* wsrp:edit—Renders the portlet editor

Portlet Content Transformation Rulesets

2-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

* wsrp:help—Renders a web page for help

* wsrp:preview—This mode is treated the same as wsrp:view

* urn:javax:portlet:mode:custom:edit_defaults—This WSRP custom
mode is for Oracle WebCenter Portal customization

Any mode not on this list will be treated like wsrp:view mode. See the sections
that follow for examples of each portlet mode.

– MIME type: The <mime-type> element defines a MIME type supported by the
portlet. If all MIME types are supported, pass in *. See the MarkupType type in
the WSRP specification for more information on this setting.

■ User profile information: The <user-profile> element allows you to define user
profile information in <profile-item> elements for use in portlets. For more
information on using this element, see Section 5.8, "Adding User Profile Data."

■ Portlet content transformation: The <RuleSetRef> section allows you to associate
existing transformation rules (defined outside the portlet node) with a portlet. Use
the ID defined in the associated <RuleSet> element. Multiple rulesets can be
referenced by placing the IDs in the appropriate order in a comma-delimited
string. To add your own transformation rules, add a <RewriterConfig> element
and follow the same structure defined for the <Rules> element. Existing rules can
be combined with custom rules as shown in the example below:

<RuleSetRef>Default</RuleSetRef>
<RewriterConfig>
<Rules>
<RewriterRule>
<LookFor>test.csv</LookFor>
<ChangeTo>download.csv</ChangeTo>
<ChangeToAbsolute>false</ChangeToAbsolute>
<ApplyTo>*</ApplyTo>
<MakeResource>false</MakeResource>

</RewriterRule>
</Rules>

</RewriterConfig>

Note: If custom rules are combined with existing rulesets, custom
rules will be applied in order of listing after all of the referenced
rulesets.

In the above example, the portlet will apply all rules associated with the Default
rule set and then replace any occurrences of test.csv with download.csv.

For details on rulesets, see the next section.

2.2 Portlet Content Transformation Rulesets
The Oracle WebCenter WSRP Producer for .NET utilizes regular expressions to
transform relative URLs to absolute URLs and to URLs proxied through the WSRP
consumer if necessary. Specific transformation rules are defined in the
wsrp-producer.xml file in <RuleSet> elements and referenced in each portlet. Rulesets
are a way of clustering a group of markup transformation rules.

By default, there is a single default ruleset that ensures that hrefs are transformed and
proxied as WSRP resources, but src URL references (images and javascript) are
transformed but not proxied. To use different transformation settings, create a new

Portlet Content Transformation Rulesets

Understanding the Oracle WebCenter WSRP Producer for .NET Configuration File 2-3

ruleset as described below. For an example of using rulesets in a portlet, see
Section 5.5, "Using Markup Transformation."

Note: It is strongly recommended that you not modify the default
ruleset.

2.2.1 Creating Custom Rules
As noted in the previous section, custom rules can be defined within the portlet node
or outside the portlet node in a <RuleSet> element. Rulesets can be very useful if you
have a set of portlets that should use the same rules. Instead of copying the URL
transformation rules for each portlet, you can create a single ruleset and reference the
ID in each portlet. The syntax rules for the <RewriterConfig> element are the same for
both locations. (If the rule is defined within an individual portlet node, the <RuleSet>
element is omitted.)

The <RewriterConfig> element contains a <Rules> element that contains
<RewriterRule> elements, which define transformation rules using the elements in
Table 2–1.

Table 2–1 Transformation Rule Elements

Element Value/Description

<LookFor> Required. Defines the URL to search for using text and/or
regular expressions. For example,
<LookFor>(activeSrc\":\")([^\"]+)</LookFor> indicates that
the transformer should look for URLs like
activeSrc:./test/foo/bar.js or activeSrc:test2/bas.html
for replacement.

<LookFor> must be the first element in the <RewriterRule>
element.

<ChangeToAbsolute> Required. If set to true, transforms any URL identified with the
<LookFor> element into an absolute URL. (Typically, the
transformation you wish to perform on an URL is to make it an
absolute URL since a relative URL does not make sense when
proxied through a WSRP consumer.)

<MakeResource> Required. If set to true, ensures that the URL is proxied by the
WSRP consumer. While this is important for resources that you
wish to protect, applying this option liberally can have
significant performance ramifications since the WSRP consumer
must rewrite the URL and browser caching cannot be relied
upon. Use <ApplyTo> to ensure that only those URLs you wish
to proxy are included.

<ApplyTo> Limits the URLs that are transformed and proxied using a
comma-delimited list of keywords. (All URLs returned by the
<LookFor> element will be transformed to absolute URLs if
<ChangeToAbsolute> is included in the rule.)

<ChangeTo> Changes the text returned by the <LookFor> element to the
provided text. (This is not used for URL transformation, but
allows you to use the <RewriterRule> element to change any
text within the portlet, and can include regular expressions.) For
example, the entry below redirects traffic from myhost to
myhost.mycompany.com instead:

<RewriterRule>
<LookFor>myhost[\:]*[0-9]* </LookFor>
<ChangeTo>myhost.mycompany.com</ChangeTo>

</RewriterRule>

Portlet Content Transformation Rulesets

2-4 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

3

Managing Required Script Files 3-1

3Managing Required Script Files

[4]This chapter discusses the Oracle WebCenter WSRP Producer for .NET script files
(jquery-1.3.2.min.js and msPortletResizeHelper.js).

This chapter includes the following topics:

■ Section 3.1, "Managing Required Script Files"

3.1 Managing Required Script Files
The Oracle WebCenter WSRP Producer for .NET makes use of two files:
jquery-1.3.2.min.js and msPortletResizeHelper.js. By default, these files are
made into WSRP resources. Unlike other JavaScript files, portlet content
transformation rulesets (described in Section 2.2, "Portlet Content Transformation
Rulesets") are not applied to these files. To take advantage of browser caching of
JavaScript you may wish to deploy these required scripts to a web server, such as
Apache.

To override the default behavior. add the jQueryExternalURL and
msResizeHelperExternalURL ,NET application settings keys, as shown in Example 3–1
below, to the Oracle WebCenter WSRP Producer for .NET's Web.config file.

Example 3–1 .NET Application Settings Keys

<appSettings>
<add key="jQueryExternalURL"

value="http://myhost.mycompany.com/path/jquery-1.3.2.min.js"/>
<add key="msResizeHelperExternalURL"

value = "http://myhost.mycompany.com/path/msPortletResizeHelper.js"/>
</appSettings>

Managing Required Script Files

3-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

4

Configuring Security Options 4-1

4Configuring Security Options

[5]The WSRP specification does not specify which security techniques should be
employed, but encourages anyone using message-level security to use WS-Security
standards. The specification makes mention of transport-level security, but only
requires that "a Producer's WSDL declare ports for an HTTPS service entry point." This
chapter discusses the security options supported by the Oracle WebCenter WSRP
Producer for .NET.

This chapter includes the following topics:

■ Section 4.1, "WS-Security (WSS) Configuration"

■ Section 4.2, "SSL Configuration"

4.1 WS-Security (WSS) Configuration
The Oracle WebCenter WSRP Producer for .NET supports two types of WS-Security
token profiles: SAML and Username Token (UNT). For details on WS-Security
standards, see the OASIS WS-Security site:
http://www.oasis-open.org/committees/wss/.

4.1.1 WSDL Configuration
There are two WSDL files that contain WSS policy information:

■ WSRP 1.0: wsrp_v1_bindings.wsdl and WSRPService.wsdl
(installdir\wsrpdefault\wsdl\1.0)

■ WSRP 2.0: wsrp-2.0-bindings.wsdl and WSRPService.wsdl
(installdir\wsrpdefault\wsdl\2.0)

The WSRPService.wsdl file should include the following as a child of the root element
<wsdl:definitions> and before the <wsdl:service> element:

Example 4–1 SAML

<wsp:UsingPolicy wsdl:Required="true" />
<wsp:Policy s1:Id="SAMLAuth.xml">

<wsp:All>
<wssp:Identity>

<wssp:SupportedTokens>
<wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile
-1.0#SAMLAssertionID">

<wssp:Claims>
<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>

</wssp:Claims>

WS-Security (WSS) Configuration

4-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

</wssp:SecurityToken>
</wssp:SupportedTokens>

</wssp:Identity>
</wsp:All>

</wsp:Policy>

Example 4–2 UNT

<wsp:UsingPolicy wsdl:Required="true" />
<wsp:Policy s1:Id="UNTAuth.xml">

<wsp:All>
<wssp:Identity>

<wssp:SupportedTokens>
<wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken">

<wssp:UsePassword
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profi
le-1.0#PasswordText"/>

</wssp:SecurityToken>
</wssp:SupportedTokens>

</wssp:Identity>
</wsp:All>

</wsp:Policy>

The UsingPolicy must be set to required or certain WSRP consumers (such as Oracle
WebLogic Portal) will not honor the security policy. The Policy node is a standard
WS-Security policy element where SAML v1.1 sender-vouches confirmation is defined.
See the WS-Security specification for details.

The most important piece to note for WSDL configuration is the Id attribute for the
policy. This must be referenced in the wsrp*bindings.wsdl file. Open the wsrp_v1_
bindings.wsdl or wsrp-2.0-bindings.wsdl file and find the <wsdl:input> elements
with the names getMarkup and performBlockingInteraction. These sections should
reference which policy to use. For example, if the Id for the policy in WSRPService is
SAMLAuth.xml, the policy reference in wsrp*bindings.wsdl would look like the
following:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsp:PolicyReference URI="#SAMLAuth.xml"/>

</wsp:Policy>

(If the Id for the policy in WSRPService.wsdl is UNTAuth.xml, the PolicyReference URI
value in wsrp*bindings.wsdl would be #UNTAuth.xml.)

4.1.2 Web.config Configuration
The Oracle WebCenter WSRP Producer for .NET uses Microsoft Web Services
Extensions (WSE) 2.0 SP3. This section discusses the default way in which WSE is set
up to handle WS-Security tokens. To learn more about WSE and security tokens, refer
to the Microsoft documentation
(http://msdn.microsoft.com/en-us/library/ms824677.aspx).

Security aspects of WSE are managed under the <security> element under the
<microsoft.web.services2> element in Web.config.

The default UNT and SAML Security Token Managers defined in Web.config do not
actually perform authentication. Instead, they strip off the token XML and provide it
to individual portlets registered under the WSRP producer. This allows individual
portlets to implement their own authentication and authorization methodologies. To

SSL Configuration

Configuring Security Options 4-3

implement authentication at the WSRP SOAP endpoints, create your own
SecurityTokenManager for WSE following the Microsoft documentation.

Note: WSE does not properly handle WSS 1.0 security tokens sent by
the Oracle WebCenter Portal WSRP Consumer, so the Oracle
WebCenter WSRP Producer for .NET uses a request filter to decrypt
any encrypted content, validate signatures, and then pass the
modified SOAP message without encryption and signature to WSE. To
learn more about the default request filter implemented for security
tokens sent from Oracle WebCenter Portal, see the development
tutorials in Chapter 5, "Implementing Common Development
Scenarios."

To learn more about the default UNT and Security Token Managers, see Section 5.9,
"Setting Up Security Tokens" in the next section. Source code for the default
SecurityTokenManager is available in the \wsrpdefault\src folder in the installation
directory.

4.2 SSL Configuration
To set up SSL (either one-way or two-way), follow the Microsoft documentation on
configuring IIS and the documentation provided for your WSRP consumer portal. Use
https on all endpoint URLs in WSRPService.wsdl. For WSRP resources, the Oracle
WebCenter WSRP Producer for .NET will determine whether to use http or https
depending on which was used to access the endpoint.

Note: Two-way SSL is not supported in Oracle WebCenter Portal.

SSL Configuration

4-4 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

5

Implementing Common Development Scenarios 5-1

5Implementing Common Development
Scenarios

[6]This chapter provides step-by-step tutorials for common development scenarios.

This chapter includes the following topics:

■ Section 5.1, "Adding a Web Part as a Portlet"

■ Section 5.2, "Adding a Web Part with ASP.NET AJAX Controls"

■ Section 5.3, "Adding an ASP.NET Application"

■ Section 5.4, "Adding a Help Page"

■ Section 5.5, "Using Markup Transformation"

■ Section 5.6, "Using Portlet Styles"

■ Section 5.7, "Using Interportlet Communication with JavaScript"

■ Section 5.8, "Adding User Profile Data"

■ Section 5.9, "Setting Up Security Tokens"

■ Section 5.10, "Using Oracle WebCenter Portal Features"

5.1 Adding a Web Part as a Portlet
By default, the ASP.NET Web Part editor zone supports three different types of
preferences (referred to as Personalization). This section illustrates how to work with
the default preferences. The Oracle WebCenter WSRP Producer for .NET also supports
custom Personalization editors.

In the example below, steps 1-3 create an ASP.NET Web Part just as you would for
consumption in ASP.NET outside a WSRP producer, and steps 5-8 add the Web Part to
the Oracle WebCenter WSRP Producer for .NET. Refer to the Microsoft documentation
for more details on how to create Web Parts from User Controls
(http://msdn.microsoft.com/en-us/magazine/cc300767.aspx).

1. Open a Visual Studio Web Application Project and create a Web User Control
named TestPreferences.ascx.

Tip: The Visual Studio project must be a web application project, not
a web site project, and must have a project type of Visual C#.

2. Add three labels named lblStringPref, lblBooleanPref, and lblEnumPref.

Adding a Web Part as a Portlet

5-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

3. Create three properties that include the [Personalizable, WebBrowsable]
attribute. Match the label display values to the properties as shown in the example
code below:

protected void Page_Load(object sender, EventArgs e)
{

lblBooleanPref.Text = "Checkbox Pref: " + _boolPref;
lblStringPref.Text = "Text Pref: " + _stringPref;
lblEnumPref.Text = "Dropdown Pref: " + _enumPref;

}
#region Preferences
private string _stringPref = "";
private bool _boolPref = false;

public enum TestEnum
{

ListItem1, ListItem2, ListItem3
}
private TestEnum _enumPref = TestEnum.ListItem2;

[Personalizable, WebBrowsable]
public string TextPref
{

get { return _stringPref; }
set { _stringPref = value; }

}

[Personalizable, WebBrowsable]
public bool CheckboxPref
{

get { return _boolPref; }
set { _boolPref = value; }

}

[Personalizable, WebBrowsable]
public TestEnum DropdownPrefs
{

get { return _enumPref; }
set { _enumPref = value; }

}
#endregion

4. Test that the code compiles before continuing.

5. Make a copy of the existing \ASPNET_AJAX_sample folder under
installdir\wsrpdefault\portlets and rename it TestPreferences.

6. Replace the Simple_DateTime.ascx file with the TestPreferences.ascx file you
created in steps 1-3.

7. Copy the compiled assembly from your Visual Studio project to the
installdir\wsrpdefault\bin folder.

8. Update the default.aspx file in
installdir\wsrpdefault\portlets\TestPreferences to reference your control
instead of the Simple_Date_Time control. The resulting code should look
something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>

Adding a Web Part as a Portlet

Implementing Common Development Scenarios 5-3

<%@ Register src=
"~/portlets/TestPreferences/UserControl/TestPreferences.ascx"
tagname="TestPreferences" tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">

<uc1:TestPreferences ID="TestPreferences1" runat="server" />
</asp:Content>

9. Update the installdir\wsrpdefault\wsrp-producer.xml file to include your
portlet as follows:

■ Make a copy of an existing <portlet> element and its contents.

■ Change the handle, display name, description, title, and short title elements to
the correct values for the new portlet.

■ Update the <url> node under the <portlet-mode> element to point to your
portlet.

For the example above, the <portlet> element would look like the following:

<portlet>
<handle>TestPreferences</handle>
<supported-locale>en,fr</supported-locale>
<descriptions>
<description lang="en">Test Preferences</description>
<description lang="fr">Test Preferences</description>

</descriptions>
<display-names>
<display-name lang="en">Test Preferences</display-name>
<display-name lang="fr">Test Preferences</display-name>

</display-names>
<titles>
<title lang="en">Test Preferences</title>
<title lang="fr">Test Preferences</title>

</titles>
<short-titles>
<short-title lang="en">Test Preferences</short-title>
<short-title lang="fr">Test Preferences</short-title>

</short-titles>
<supports>
<portlet-modes>
<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/TestPreferences/default.aspx</url>

</portlet-mode>
<portlet-mode>
<name>wsrp:edit</name>
<url>/portlets/TestPreferences/default.aspx</url>

</portlet-mode>
</portlet-modes>
<mime-type>text/html</mime-type>

</supports>
<user-profile>
<profile-item>businessInfo/online/email</profile-item>

</user-profile>
</portlet>

10. Register the Oracle WebCenter WSRP Producer for .NET by pointing your WSRP
consumer at the WSDL URL that is in the shortcut Start > Programs > Oracle
WebCenter WSRP Producer for .NET > WSRP 2.0 WSDL. (Refer to the product

Adding a Web Part with ASP.NET AJAX Controls

5-4 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

documentation for your WSRP consumer portal for details on how to register a
WSRP producer WSDL.)

11. The portlet should now be available in your WSRP consumer. Test the portlet:

a. Add the portlet to your portal. You should see the three labels showing the
default values set for the preferences in the TestPreferences.ascx file.

b. Access the preference editor according to the documentation for your WSRP
consumer portal. You should see the same preference editor you would see if
you added your own Web Part editor zone in .NET. Change the preferences,
click Close, and observe that the labels change.

c. Log out and log back in to your portal. The preference values you changed
should be persisted.

5.2 Adding a Web Part with ASP.NET AJAX Controls
A key feature of the Oracle WebCenter WSRP Producer for .NET is support for
controls that are rendered using ASP.NET AJAX.

This tutorial starts with the example in the previous section. Again, most of the steps
are typical tasks required to set up an ASP.NET Web Part to use ASP.NET AJAX
functionality. Refer to the Microsoft documentation for details on how to set up
ASP.NET AJAX script managers and update panels.

1. Open the project you created in Section 5.1, "Adding a Web Part as a Portlet."

2. From the AJAX Extensions portion of the Visual Studio toolbox, add a Script
Manager and an Update Panel.

3. Add a label, a text box, and a button inside the Update Panel.

4. Add a label, a text box, and a button outside the Update Panel. When you are
finished, the source view should look something like the following:

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="TestPreferences.ascx.cs" Inherits="TestPref.TestPreferences" %>
<%@ Register Assembly="System.Web.Extensions, Version=1.0.61025.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"

Namespace="System.Web.UI" TagPrefix="asp" %>
<asp:Label ID="lblStringPref" runat="server" Text="Label"></asp:Label>

<asp:Label ID="lblBooleanPref" runat="server" Text="Label"></asp:Label>

<asp:Label ID="lblEnumPref" runat="server" Text="Label"></asp:Label>

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>

<asp:TextBox ID="txtAjax" runat="server"></asp:TextBox>
<asp:Button ID="btnAjax" runat="server" Text="PostAJAX" />

<asp:Label ID="lblAjax" runat="server" Text="AJAX post here"></asp:Label>

</ContentTemplate>
</asp:UpdatePanel>
<asp:TextBox ID="txtPostback" runat="server"></asp:TextBox>
<asp:Button ID="btnPostback" runat="server" Text="Postback" />

<asp:Label ID="lblPostback" runat="server" Text="Postback content
here"></asp:Label>

5. Modify the page load method so that text box entries are displayed in the label.
The source code for the page load method will look something like the following:

protected void Page_Load(object sender, EventArgs e)

Adding a Web Part with ASP.NET AJAX Controls

Implementing Common Development Scenarios 5-5

{
lblBooleanPref.Text = "Checkbox Pref: " + _boolPref;
lblStringPref.Text = "Text Pref: " + _stringPref;
lblEnumPref.Text = "Dropdown Pref: " + _enumPref;

lblAjax.Text = txtAjax.Text;
lblPostback.Text = txtPostback.Text;

}

6. Test that the code compiles before continuing. (You can also register the control in
an ASPX page in your Visual Studio project to test that it is working. See the Visual
Studio documentation for details.)

7. Open the TestPreferences.ascx file in a text editor and remove the
asp:ScriptManager control. The Oracle WebCenter WSRP Producer for .NET
references an ASP.NET Master Page that registers a ScriptManager, and ASP.NET
does not allow more than one ScriptManager per application. See the Microsoft
documentation on Master Pages and ScriptManager for more information.

8. Test that the code compiles before continuing.

9. Replace the installdir\wsrpdefault\portlets\TestPreferences.ascx file with
the latest version.

10. Replace the compiled assembly in the installdir\wsrpdefault\bin folder.

11. Return to your portal, refresh the portlet and test its functionality again.

5.2.1 Managing AJAX Outside the .NET Framework
There may be times when you want to control XMLHttpRequests directly, rather than
rely on the ASP.NET 3.5 AJAX controls. To do this, you must account for the fact that
URLs are transformed via the WSRP proxy. This tutorial provides the steps necessary
to get a simple AJAX project working.

1. This example starts with the code from the previous example. Under the
asp:Label in the previous sample, add the following code:

<!-- Added for simple AJAX sample -->

<asp:ListBox ID="listBoxPets" runat="server">

<asp:ListItem Text="cat" Value="cat" Selected="True"/>
<asp:ListItem Text="dog" Value="dog" />
<asp:ListItem Text="bird" Value="bird" />
<asp:ListItem Text="fish" Value="fish" />

</asp:ListBox>
<!-- This href URL will be properly transformed by WSRP proxy -->

<!-- Result of selection will be placed here -->
<div id="AjaxResponse"></div>

This code constructs a simple list box with a hidden href that points at the URL to
which the XMLHttpRequest will send data. This URL is placed in an anchor href so
that the markup transformer will rewrite the URL for the WSRP proxy. (For details
on transformation, see Section 5.5, "Using Markup Transformation.")

Note: In this sample, there are no URLs returned in the response.
However, you may need the response from the AJAX request to be
transformed by the Portlet Content Transformation rulesets (for
example, if you have URLs you want proxied by the WSRP
consumer). To do this, add a handle query string argument to the
target URL that references the handle you gave the portlet in
wsrp-producer.xml. In this sample, the handle would be
TestPreferences so the hidden URL would be changed to:

<a id="hiddenposturl"
href="AjaxPostDestination.aspx?handle=TestPreferences"
visible="false" >

You must also make sure that the Content Type returned is text/html
(it is text/plain in this sample) or certain WSRP consumers will not
properly proxy the transformed URLs. For details on rulesets, see
Section 2.2, "Portlet Content Transformation Rulesets."

Adding a Web Part with ASP.NET AJAX Controls

5-6 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

2. Under the <div> add the following javascript:

<script language="javascript" type="text/javascript">
var xmlHttp;
/* Tap into the onchange event so that whenever an item is selected in

the
list box, that value is sent to the server.
*/
var selectmenu;
var selectMenus = getElementsByTagNameAndEndingId("select",

"listBoxPets");
selectmenu = selectMenus[0];
selectmenu.onchange = function() {

// Prepare the XHR
createXMLHttpRequest();
// Get the selected value
var selectedPet = getSelectedPet();
// get the URL from a hidden argument since this will be transformed.
var hiddenPetURL = getElementsByTagNameAndEndingId("a",

"hiddenposturl");
// Prepare the request.
xmlHttp.open("POST", hiddenPetURL, true);
// Assign this to a function that will process the requested items
xmlHttp.onreadystatechange = handleStateChange;
// Important note - If you use application/x-www-form-urlencoded you

must include the ;charset=UTF-8 or
// will not work in Firefox 3.x. Works fine in all versions of IE.
xmlHttp.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded;charset=UTF-8");
// Send the value as post parameters. This is the suggested

methodology
// using the Oracle WebCenter WSRP Producer for .NET
xmlHttp.send("petselection=" + selectedPet);

}

/*
Standard AJAX method. This creates the appropriate XMLHttpRequest

(XHR) object, the core of AJAX.
*/
function createXMLHttpRequest() {

if (window.ActiveXObject) {

Adding a Web Part with ASP.NET AJAX Controls

Implementing Common Development Scenarios 5-7

xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}
else {

xmlHttp = new XMLHttpRequest();
}

}

/*
This function handles the results of the XMLHttpRequest (XHR).
This is part of the standard AJAX methodology of using the

onreadystatechange
event of the XHR to manage the results.

*/
function handleStateChange() {

if (xmlHttp.readyState == 4) {
if (xmlHttp.status == 200) {

parseResults();
}

}
}

/*
This helper function grabs the first selection and returns it
*/
function getSelectedPet() {

var result = "";
var options = selectmenu.childNodes;
var option = null;
for (var i = 0; i < options.length; i++) {

option = options[i];
if (option.selected) {

result = option.value;
}

}
return result;

}

/*
Write out the results returned from the XHR POST
*/
function parseResults() {

//var responseDiv = document.getElementById
("WebPartManager1_AjaxWebPart2_PetsServerResponse");

var responseDivs = getElementsByTagNameAndEndingId("div",
"AjaxResponse");

var responseDiv = responseDivs[0];
if (responseDiv.hasChildNodes()) {

responseDiv.removeChild(responseDiv.childNodes[0]);
}
var responseText = document.createTextNode(xmlHttp.responseText);
responseDiv.appendChild(responseText);

}

/*
This function returns a list of DOM elements that have the tag name

specified
and have an ID that ends in the value supplied. The reason for this function
is
that ASP.NET prepends control ID's with the webpart zone name and this

function

Adding a Web Part with ASP.NET AJAX Controls

5-8 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

provides a handy way of locating the our control of interest.
tagName - DOM tag name to look for (e.g. div, select, p)
endingID - String that the ID of the DOM elements should end with
returns - list of DOM elements that have the tag name and have an id that

ends
with value supplied

*/
function getElementsByTagNameAndEndingId(tagName, endingId) {

var tagItems = document.getElementsByTagName(tagName);
var idValue;
var idNode;
var startPos;
var returnElements = new Array(1); // Typically only one item
var j = 0;
for (i = 0; i < tagItems.length; i++) {

idNode = tagItems.item(i).attributes.getNamedItem("id");
if (idNode != null) {

idValue = idNode.nodeValue;
startPos = idValue.indexOf(endingId);
if (startPos > -1 && endingId == idValue.substring(startPos))

{
returnElements[j] = tagItems.item(i);
j++;

}
}

}
return returnElements;

}

</script>

The javascript above simply takes the value of a selected listbox item, passes it as
a POST parameter to an URL, and then takes the response text and places it in a
div. This is mostly standard AJAX methodology with two exceptions. The first is
that the URL is grabbed from a hidden href so it will be properly transformed to a
WSRP proxied URL. The second is that the URLs cannot contain query string
parameters (like most AJAX requests) because they will not be properly appended
by the WSRP consumer.

3. Create the target page that the AJAX request will be sent to by creating a new
ASPX page called AjaxPostDestination.aspx in the same directory as the
example you created in Section 5.1, "Adding a Web Part as a Portlet."

4. Paste the following code into the file:

<%@ Page Language="C#" AutoEventWireup="true" ValidateRequest="false" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<!-- NOTE that validaterequest is set to false. This is the only way our
hand-rolled AJAX requests will be accepted. -->
<head id="Head1" runat="server">

<title>Untitled Page</title>
<script language="CS" runat="server">

void Page_Load(object sender, System.EventArgs e){}
protected override void Render(HtmlTextWriter writer)
{

// Take over the response writer and send only the results of the
selection

// Turn cacheability off so that each request is viewed as "new"
Response.Cache.SetCacheability(HttpCacheability.NoCache);

Adding an ASP.NET Application

Implementing Common Development Scenarios 5-9

// For this simple example, just send back plain text. A more
sophisticated JSON or XML response could be set here.

Response.ContentType = "text/plain";
writer.Write("You selected " + Request.Params["petselection"]);

}
</script>

</head>
<body>

<form id="form1" runat="server">
<div>

</div>
</form>

</body>
</html>

Note that the Master Page is not referenced; it would serve no purpose since that
page is not displayed. Also note that the ValidateRequest attribute is set to false.
ASP.NET would throw a validation error without this attribute because the form is
not being posted as expected (with more than a single parameter). Finally, note
that caching is turned off. Since a query string parameter such as datetime cannot
be added to the request, there is no way to make it unique.

5. Test that the code compiles before continuing.

6. Replace the
installdir\wsrpdefault\portlets\TestPreferences\UserControl\TestPrefer
ences.ascx file with the latest version.

7. Replace the compiled assembly in the installdir\wsrpdefault\bin folder.

8. Copy the AjaxPostDestination.aspx file to
installdir\wsrpdefault\portlets\TestPreferences.

9. Return to your portal and refresh the page where the portlet resides. The portlet
should now display a list box with four pets listed in it. When you click on a pet
name, you should see the pet selection displayed at the bottom of the portlet.

In summary, to use XMLHttpRequest in your code without using ASP.NET 3.5 AJAX
controls, follow the rules below:

■ Put the target URL for an XMLHttpRequest in a hidden anchor tag as an href (or
use some other place like a hidden input field) and then grab the value of that
href as the target URL to send in the XMLHttpRequest.

■ If you need the response from the AJAX request to be transformed by the Portlet
Content Transformation rulesets (for example, you have URLs you want proxied
by the WSRP consumer) add a handle query string argument to the target URL
that references the handle you gave the portlet in wsrp-producer.xml. For details
on rulesets, see Section 2.2, "Portlet Content Transformation Rulesets."

■ Do not use querystring parameters as a way of posting data. Use POST
parameters only.

■ Turn off caching in your target page so the request is not cached.

5.3 Adding an ASP.NET Application
If your portlet does not use preferences, you can use the Oracle WebCenter WSRP
Producer for .NET to surface an ASP.NET application with WSRP. This tutorial adds
an ASP.NET Web Form to the Oracle WebCenter WSRP Producer for .NET.

Adding an ASP.NET Application

5-10 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

1. Create a very simple ASP.NET web form. For example, the test.aspx file below
prints Hello World in an ASP.NET label control:

<%@ Page Language="C#" AutoEventWireup="true" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<script language="CS" runat="server">
void Page_Load(object sender, System.EventArgs e)
{

this.lblTest.Text = "Hello World";
}

</script>
<title>Untitled Page</title>

</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="lblTest" runat="server" Text=""></asp:Label>
</div>
</form>

</body>
</html>

2. If the testASPX folder does not already exist under
installdir\wsrpdefault\portlets, create it now.

3. Copy the test.aspx file you created to the testASPX folder.

4. Modify the ASPX file to reference the Oracle WebCenter WSRP Producer for .NET
Master Page as follows:

Note: It is important to understand that the Oracle WebCenter WSRP
Producer for .NET uses a Master Page to render content. Your ASPX
file must reference the appropriate content placeholders of the Master
Page as outlined below.

■ Remove all DOM elements outside of the <head> and <body>.

■ Replace the <head> element with the content placeholder identified by
wsrphead and include any necessary child elements from the <head> element:

<asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead"
Runat="Server">

■ Replace the <body> and <form> elements with the content placeholder
identified by Main and include any necessary child elements from the <form>
element:

<asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server">

For example, a modified test.aspx file would look something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server">
<script language="CS" runat="server">

void Page_Load(object sender, System.EventArgs e)

Using Markup Transformation

Implementing Common Development Scenarios 5-11

{
this.lblTest.Text = "Hello World";

}
</script>

</asp:Content>
<asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server">
<asp:Label ID="lblTest" runat="server" Text=""></asp:Label>
</asp:Content>

5. Create a new <portlet> entry in wsrp-producer.xml with a portlet handle named
testASPX. Remove the <portlet-mode> element for wsrp:edit since Web Forms
do not support preferences.

6. The <portlet-mode> element for wsrp:view should look like the following:

<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/testASPX/test.aspx</url>

</portlet-mode>

7. Add the new testASPX portlet to your portal. You should see Hello World
displayed.

In the above example, the C# code was placed directly in the file. If you want to use a
code-behind .cs file, simply add that code to an \App_Code subfolder under
installdir\wsrpdefault or add the compiled C# assembly to
installdir\wsrpdefault\bin, and change the <%@ Page directive in the ASPX file to
reference the assembly or class.

5.4 Adding a Help Page
To add a help file for any portlet, simply create an HTML file for the help page and
add a new <portlet-mode> element named wsrp:help that points to the help file. For
example, create a help page called testASPXhelp.htm in the testASPX directory and
then update the <portlet-modes> element as follows:

<portlet-modes>
<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/testASPX/test.aspx</url>

</portlet-mode>
<portlet-mode>
<name>wsrp:help</name>
<url>/portlets/testASPX/testASPXhelp.htm</url>

</portlet-mode>
</portlet-modes>

When you view the portlet in your consumer portal, the help link for the portlet
should bring you to the testASPXhelp.htm page.

5.5 Using Markup Transformation
The Oracle WebCenter WSRP Producer for .NET allows you to implement markup
transformation to modify URLs and other static content before it is displayed in the
browser.

This section includes the following topics:

■ Section 5.5.1, "Transforming Text"

Using Markup Transformation

5-12 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

■ Section 5.5.2, "Creating a Custom Ruleset"

5.5.1 Transforming Text
This tutorial provides a simplified example that modifies the Hello World text in
Section 5.3, "Adding an ASP.NET Application" to read Hello New World.

1. Open the installdir\wsrpdefault\wsrp-producer.xml file in a text editor.

2. Go to the <portlet> node with the handle TestASPX and add the following below
the <RuleSetRef> element:

<RewriterConfig>
<Rules>
<RewriterRule>
<LookFor>Hello World</LookFor>
<ChangeToAbsolute>false</ChangeToAbsolute>
<ChangeTo>Hello New World</ChangeTo>
<ApplyTo>*</ApplyTo>
<MakeResource>false</MakeResource>

</RewriterRule>
</Rules>

</RewriterConfig>

For details on ruleset elements in wsrp-producer.xml, see Section 2.2, "Portlet
Content Transformation Rulesets."

3. Refresh the portal page that includes the testASPX portlet. The portlet should now
display Hello New World.

5.5.2 Creating a Custom Ruleset
This tutorial illustrates custom URL transformation by modifying the portlet from
Section 5.2, "Adding a Web Part with ASP.NET AJAX Controls" to proxy the
WebResource.axd and ScriptResource.axd files generated by the .NET framework
when ASP.NET AJAX controls are added. (The Default ruleset defined at the top of the
wsrp-producer.xml file ensures that URLs to web resource files generated by the .NET
framework (*.axd) are made absolute, but are not proxied as WSRP resources. The
practical reason for proxying .axd files would be a scenario in which WSRP consumer
portal users are not able to access URLs in your internal network.)

1. Open the installdir\wsrpdefault\wsrp-producer.xml file in a text editor.

2. Copy the entire Default ruleset (<RuleSet id="Default">) and rename the id to
axdproxy.

3. Locate the first <RewriterRule> in the new ruleset. In the <ApplyTo> element, add
, .axd.

4. Locate the second and fourth <RewriterRule> elements and remove ,.axd from
the <ApplyTo> elements under each.

5. Make a copy of the third <RewriterRule> (with <LookFor>(src=\")'). Change
the <ApplyTo> element to include only .axd and change <MakeResource> to true.

The finished ruleset should look something like the following:

<RuleSet id="axdproxy">
<RewriterConfig>

<Rules>
<RewriterRule>

<LookFor>(href=\")([^\"]+)</LookFor>

Using Portlet Styles

Implementing Common Development Scenarios 5-13

<ChangeToAbsolute>true</ChangeToAbsolute>
<ApplyTo>.aspx,.htm,.html,.axd</ApplyTo>
<MakeResource>true</MakeResource>

</RewriterRule>
<RewriterRule>

<LookFor>(href=\")([^\"]+)</LookFor>
<ChangeToAbsolute>true</ChangeToAbsolute>
<ApplyTo>.css</ApplyTo>
<MakeResource>false</MakeResource>

</RewriterRule>
<RewriterRule>

<LookFor>(src=\")([^\"]+)</LookFor>
<ChangeToAbsolute>true</ChangeToAbsolute>
<ApplyTo>.css,.js,.img,.png,.jpg,.gif</ApplyTo>
<MakeResource>false</MakeResource>

</RewriterRule>
<RewriterRule>

<LookFor>(src=\")([^\"]+)</LookFor>
<ChangeToAbsolute>true</ChangeToAbsolute>
<ApplyTo>.axd</ApplyTo>
<MakeResource>true</MakeResource>

</RewriterRule>
</Rules>

</RewriterConfig>
</RuleSet>

6. Go to the <portlet> node with the handle TestPreferences and change the
<RuleSetRef> element to reference the new axdproxy ruleset
(<RuleSetRef>axdproxy</RuleSetRef>), if it exists. If the <RuleSetRef> element
does not exist, add it now.

7. Save your changes to wsrp-producer.xml.

8. Refresh the portal page the includes the TestPreferences portlet. All URLs with
.axd should now be proxied by the WSRP consumer portal. To confirm this, use a
DOM inspection tool to search for .axd files; they will be transformed to a
URL-encoded value that begins with the URL to the WSRP consumer portal. To
compare these URLs with un-proxied URLs, simply switch the <RuleSetRef> for
the portlet back to Default.

5.6 Using Portlet Styles
The Oracle WebCenter WSRP Producer for .NET does not require any special steps to
apply skins and themes. Styles, themes, and skin management are delegated to the
.NET framework. For example, to apply a particular Oracle WebCenter Portal theme,
simply place the source .css file in the \App_Themes folder and follow standard .NET
rules to apply the style you want to a single control, a single portlet, or a set of portlets.

This simplified tutorial shows how to use built-in ASP.NET functionality to apply a
style to all labels in all portlets. For more detailed information, see the Microsoft
documentation on ASP.NET themes and skins.

1. Create a folder in installdir\wsrpdefault\App_Themes and name it MyTheme.

2. Create a new file that contains the following line:

<asp:Label runat="server" ForeColor="white" BackColor="green" />

3. Save the file in the \MyTheme folder as my.skin.

4. Open the installdir\wsrpdefault\Web.config file in a text editor.

Using Interportlet Communication with JavaScript

5-14 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

5. Locate the <pages> element and add the following attribute: theme="MyTheme".
This will make all ASP.NET pages use the themes defined in the App_
Themes\MyTheme folder.

6. View any portlets that contain a label (for example, the portlets in the previous
tutorials) and note that the background color is now green.

5.7 Using Interportlet Communication with JavaScript
The most direct way to pass data from one portlet to another is to use JavaScript. This
tutorial shows a simple technique that uses one portlet as a master portlet from which
a user selects an item. When an item is selected, data is passed to another portlet,
which displays detailed information about the item.

1. First, create the master portlet.

In Visual Studio, as part of a Web Application Project, create a new Web User
Control and name it MasterList.ascx. For ease of deployment, do not put code in
a separate file.

2. Add a label and a list box, but leave the file empty. The contents of the file should
look like the following:

<%@ Control Language="C#" AutoEventWireup="true" %>
<asp:Label ID="lblHousingType" runat="server" Text="Select House
Type"></asp:Label>

<asp:ListBox ID="listBoxHousing" runat="server" Height="80px" Width="171px">

<asp:ListItem>Single Family</asp:ListItem>
<asp:ListItem>Condominium</asp:ListItem>
<asp:ListItem>Cooperative</asp:ListItem>
<asp:ListItem>Tenancy in Common</asp:ListItem>

</asp:ListBox>
<script runat="server">

protected void Page_Load(object sender, EventArgs e)
{
}

</script>

3. Add the following JavaScript at the bottom of the file:

<script type="text/javascript" language="javascript" >
// Set up an onchange event for listBoxHousing.
//This can also be done by adding onChange attribute to the asp:ListBox
var selectmenu;
var selectMenus = getElementsByTagNameAndEndingId("select", "listBoxHousing");
selectmenu = selectMenus[0];
selectmenu.onchange=function()
{

// Update a hidden field in another portlet. This is how information will
be passed

// From one portlet to another.
var i = selectmenu.selectedIndex;
var text = selectmenu[i].value;
var portletFrame = getFrameFromSrcAttribute(window.parent.document,

"DetailPage");
var portletContent = portletFrame.contentWindow;
portletContent.theForm.submitHousingField.value= text;
portletContent.theForm.submit();

}

Using Interportlet Communication with JavaScript

Implementing Common Development Scenarios 5-15

/*
This function returns a list of DOM elements that have the tag name specified
and
have an ID that ends in the value supplied. The reason for this function is

that
ASP.NET prepends control ID's with the webpart zone name and this function
provides a handy way of locating the our control of interest.

tagName - DOM tag name to look for (e.g. div, select, p)
endingID - String that the ID of the DOM elements should end with
returns - list of DOM elements that have the tag name and have an id that

ends with value supplied
*/
function getElementsByTagNameAndEndingId(tagName, endingId) {

var tagItems = document.getElementsByTagName(tagName);
var idValue;
var idNode;
var startPos;
var returnElements = new Array(1); // Typically only one item
var j = 0;
for (i = 0; i < tagItems.length; i++) {

idNode = tagItems.item(i).attributes.getNamedItem("id");
if (idNode != null) {

idValue = idNode.nodeValue;
startPos = idValue.indexOf(endingId);

if (startPos > -1 && endingId == idValue.substring(startPos)) {
returnElements[j] = tagItems.item(i);
j++;
}

}
}
return returnElements;

}
/* This function finds an iframe based on the src element
docSource - document element to search in for frame
srcSearch - string value that should be searched for in an iframe's src field
returns - iframe element
*/
function getFrameFromSrcAttribute(docSource, srcSearch) {

var iFrames = docSource.getElementsByTagName("iframe");
var srcNode;
var srcValue;
var returnFrame;
for (i = 0; i < iFrames.length; i++) {

srcNode = iFrames.item(i).attributes.getNamedItem("src");
if (srcNode != null) {

srcValue = srcNode.nodeValue;
startPos = srcValue.indexOf(srcSearch);
if (srcValue.indexOf(srcSearch) > -1) {
returnFrame = iFrames.item(i);
}

}
}
return returnFrame;

}
</script>

The code above takes the item selected from the listbox (a select DOM element),
locates the detail portlet, and writes a value to a hidden field. The most important
part of this code is how the second portlet is located by looking for the iFrame that
contains it based on text in the src attribute that uniquely identifies it. (In this

Using Interportlet Communication with JavaScript

5-16 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

sample, the unique identifier is the folder name under which the portlet will be
placed, DetailPage.)

4. Next, create the detail portlet.

In Visual Studio, as part of a Web Application Project, create a new Web User
Control and name it DetailPage.ascx. For ease of deployment, do not put code in
a separate file. Add two ASP.NET labels and a hidden input field. The hidden field
is where data from the master portlet will be placed. The contents of the file
should look like the following:

<%@ Control Language="C#" AutoEventWireup="true" %>
<asp:Label ID="lblHousing" runat="server" Text="Housing Type
Info:"></asp:Label>

<asp:Label ID="lblHousingTypeInfo" runat="server" Text="None
selected"></asp:Label>
<!-- Use a hidden field to get data from another portlet -->
<input type="hidden" id="submitHousingField" name="submitHousingField"
value=""/>

5. Add the following code to the bottom of the file.

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
if (Request.Params != null)
{
if (Request.Params["submitHousingField"] != null)
{
string housingType = Request.Params["submitHousingField"].ToString();
// You'd probably look this up in a database in a real case, but simple

switch statement used for simplicity
switch (housingType)
{
case "Single Family":
{
lblHousingTypeInfo.Text = "Single family homes consist of a structure

and the land.";
break;

}
case "Condominium":
{
lblHousingTypeInfo.Text = "You own a condo, but the building housing the

condominium is maintained by the home owners association.";
break;

}
case "Cooperative":
{
lblHousingTypeInfo.Text = "In a Cooperative, you own shares in the

corporation that owns the entire building.";
break;

}
case "Tenancy in Common":
{
lblHousingTypeInfo.Text = "In a TIC, you own a share of the mortgage on

the entire building.";
break;

}
default:
{

Using Interportlet Communication with JavaScript

Implementing Common Development Scenarios 5-17

lblHousingTypeInfo.Text = "Unrecognized housing type selected.";
break;

}
}

}
}

}
</script>

The code above writes out values to the label based upon what is passed in a form
parameter from the hidden input field. If you look back at the MasterList.ascx
file, you will see that it populates a hidden input field called submitHousingField.
(In a real implementation, the detail data would be taken from a database rather
than hard-coded.)

6. The next set of steps set up the two Web User Controls you created in the previous
steps and surfaces them as portlets using the Oracle WebCenter WSRP Producer
for .NET.

Create the following folder: installdir\wsrpdefault\portlets\MasterList.

7. Add a new file to the folder called default.aspx that contains the following code:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register src= "~/portlets/MasterList/UserControl/MasterList.ascx"
tagname="MasterList" tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">
<uc1:MasterList ID="MasterList1" runat="server" />

</asp:Content>

8. Create the following folder:
installdir\wsrpdefault\portlets\MasterList\UserControl and copy the
MasterList.ascx file that you created to this folder.

9. Create the following folder: installdir\wsrpdefault\portlets\DetailPage and
add a new file to the folder called default.aspx that contains the following code:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register src= "~/portlets/DetailPage/UserControl/DetailPage.ascx"
tagname="DetailPage" tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">
<uc1:DetailPage ID="DetailPage1" runat="server" />

</asp:Content>

10. Create the following folder:
installdir\wsrpdefault\portlets\DetailPage\UserControl and copy the
DetailPage.ascx file that you created to this folder.

11. Open installdir\wsrpdefault\wsrp-producer.xml in a text editor and add the
following <portlet> elements to it. (For more information about the configuration
file, see Chapter 3, "Managing Required Script Files.")

<portlet>
<handle>HousingType</handle>
<supported-locale>en</supported-locale>
<descriptions>

Using Interportlet Communication with JavaScript

5-18 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

<description lang="en">Housing Type</description>
</descriptions>
<display-names>
<display-name lang="en">Housing Type</display-name>

</display-names>
<titles>
<title lang="en">Housing Type</title>

</titles>
<short-titles>
<short-title lang="en">Housing Type</short-title>

</short-titles>
<supports>
<portlet-modes>
<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/MasterList/default.aspx</url>

</portlet-mode>
</portlet-modes>
<mime-type>text/html</mime-type>

</supports>
</portlet>

<portlet>
<handle>HousingDetail</handle>
<supported-locale>en</supported-locale>
<descriptions>
<description lang="en">Housing Detail</description>

</descriptions>
<display-names>
<display-name lang="en">Housing Detail</display-name>

</display-names>
<titles>
<title lang="en">Housing Detail</title>

</titles>
<short-titles>
<short-title lang="en">Housing Detail</short-title>

</short-titles>
<supports>
<portlet-modes>
<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/DetailPage/default.aspx</url>

</portlet-mode>
</portlet-modes>
<mime-type>text/html</mime-type>

</supports>
</portlet>

12. Register the Oracle WebCenter WSRP Producer for .NET by pointing your WSRP
consumer at the WSDL URL that is in the shortcut Start > Programs > Oracle
WebCenter WSRP Producer for .NET > WSRP 2.0 WSDL. (Refer to the product
documentation for your WSRP consumer portal for details on how to register a
WSRP producer WSDL.)

13. Add the HousingType and HousingDetail portlets (these are the names defined in
the wsrp-producer.xml file) to a single page in your portal. Whenever you click on
a housing type in one portlet, details about the housing type should appear in the
other portlet.

Adding User Profile Data

Implementing Common Development Scenarios 5-19

This tutorial shows just one simple way that you can add interportlet communication
functionality to portlets.

5.8 Adding User Profile Data
This tutorial creates a Web Part that uses user profile data. The Web Part is created as a
class that inherits from System.Web.UI.WebControls.WebParts.WebPart. You could
also create a Web User Control to perform the same function. See the Microsoft
documentation for more details on both options.

IMPORTANT: This note is very important for any WSRP consumer
that uses preferences as defined in the WSRP specification (including
Oracle WebCenter Portal).

ASP.NET supports only one level of nesting for profile properties
(properties can only be nested under a <group>), but many of the
UserProfile items defined in the specification are nested several
levels deep. For example, a user's business email would be defined as
businessInfo/online/email and a user's home mobile phone
extension would be defined as homeInfo/telecom/mobile/number in
the WSRP specification. To account for this, the Oracle WebCenter
WSRP Producer for .NET uses the underscore character (_) as a
replacement for nested objects. This is shown in the steps that follow
where businessInfo/online/email is treated as businessInfo_
online.email in the C# code, but referenced in Web.config as:

<group name="businessInfo_online">
<add name="email" defaultValue="John.Doe@acme.com"/>

</group>

This issue does not apply to Oracle WebLogic Portal because it follows
the same single level of nesting rules as ASP.NET.

1. Create a new C# class in Visual Studio and copy in the following code:

using System;
using System.Collections.Generic;
using System.Collections;
using System.Linq;
using System.Text;
using System.Configuration;

using System.Web;
using System.Web.Profile;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace TestUserProfile
{

public class UserProfileWebPart : WebPart
{

Label lblEmailWLP;
Label lblEmailWSRP;
protected override void CreateChildControls()
{

Adding User Profile Data

5-20 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

// Create a label and assign a user profile value. Try the WLP
format and then the standard WSRP format.

lblEmailWLP = new Label();
lblEmailWLP.ID = "lblEmailWLP";
lblEmailWLP.Text = "WLP profile email: " +

this.Context.Profile["GroupSpace.email"].ToString();
this.Controls.Add(lblEmailWLP);
HtmlGenericControl br1 = new HtmlGenericControl("br");
this.Controls.Add(br1);

lblEmailWSRP = new Label();
lblEmailWSRP.ID = "lblEmailWSRP";
lblEmailWSRP.Text = "WSRP profile email: " +

this.Context.Profile["businessInfo_online.email"].ToString();
this.Controls.Add(lblEmailWSRP);
HtmlGenericControl br2 = new HtmlGenericControl("br");
this.Controls.Add(br2);

}
}

}

2. Add a reference to System.Core to make sure that the code compiles:

a. Right-click the solution in the Solution Explorer and choose Add Reference.

b. Click the .NET tab and scroll down to System.Core.

Tip: If you wait for the entire list to load, you can click the list and
start typing System.Core to select the item without having to scroll
through the list.

c. Click OK to accept the new reference.

3. Compile this code into an assembly called TestUserProfile and copy the
assembly to installdir\wsrpdefault\bin.

4. Open installdir\wsrpdefault\Web.config and update the profile properties so
that those referenced by the code are used. Note that in the C# code, profile
properties are specified in group.name format.

Locate the <properties> element and replace it with the following:

<properties>
<group name="businessInfo_online">
<add name="email" defaultValue="John.Doe@acme.com"/>

</group>
<group name="GroupSpace">
<add name="email" defaultValue="John.Doe@acme.com"/>

</group>
</properties>

Note: For this example to work, there must be a default value. In
Oracle WebCenter Portal or other WSRP consumers that use the
WSRP specification UserProfile items the GroupSpace.email
property will not be available. Oracle WebLogic Portal uses
UserProfile extensions to pass items, so you could not create a nested
businessInfo/online/email profile property.

Adding User Profile Data

Implementing Common Development Scenarios 5-21

5. Create a folder under installdir\wsrpdefault\portlets called
TestUserProfile.

6. Copy the default.aspx file from installdir\wsrpdefault\portlets\ASPNET_
AJAX_sample to your new TestUserProfile folder.

7. Update the installdir\wsrpdefault\portlets\TestPreferences\default.aspx
file to reference the new TestUserProfile assembly instead of the Simple_Date_
Time control.

a. Replace src with assembly and reference the TestUserProfile assembly you
created.

b. Replace tagname with namespace and reference the TestUserProfile
namespace used by the class.

c. Add the class name after the : following the tagprefix under the content
placeholder.

The resulting file will look something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register assembly="TestUserProfile" namespace="TestUserProfile"
tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"

Runat="Server">
<uc1:UserProfileWebPart ID="UserProfileWebPart1" runat="server" />

</asp:Content>

8. Update the installdir\wsrpdefault\wsrp-producer.xml file to include your
portlet and the profile properties you are using.

a. Make a copy of an existing <portlet> node and its contents under the
<portlets> element.

b. Update the handle, display name, description, title, and short title elements for
the new portlet.

c. Update the <url> node under each of the <portlet-mode> elements to point to
the new portlet. (The wsrp:edit and wsrp:help modes are not necessary.)

d. Add the profile properties referenced in the portlet to the <profile-item>
elements under the <user-profile> element.

When finished, the new <portlet> node should look like the following:

<portlet>
<handle>TestUserProfile</handle>
<supported-locale>en,fr</supported-locale>
<descriptions>
<description lang="en">Test UserProfile</description>
<description lang="fr">Test UserProfile</description>

</descriptions>
<display-names>
<display-name lang="en">Test UserProfile</display-name>
<display-name lang="fr">Test UserProfile</display-name>

</display-names>
<titles>
<title lang="en">Test UserProfile</title>
<title lang="fr">Test UserProfile</title>

</titles>
<short-titles>

Setting Up Security Tokens

5-22 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

<short-title lang="en">Test UserProfile</short-title>
<short-title lang="fr">Test UserProfile</short-title>

</short-titles>
<supports>
<portlet-modes>
<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/TestUserProfile/default.aspx</url>

</portlet-mode>
</portlet-modes>
<mime-type>text/html</mime-type>

</supports>
<user-profile>
<profile-item>businessInfo/online/email</profile-item>
<profile-item>GroupSpace/email</profile-item>

</user-profile>
</portlet>

9. The portlet should now be available in your WSRP consumer. (You should have
already registered the Oracle WebCenter WSRP Producer for .NET as explained in
Section 5.1, "Adding a Web Part as a Portlet.") Add the portlet to your portal. You
should see the two labels showing the default values for the profile properties
from Web.Config.

10. Configure your WSRP consumer to send the email preference according to your
portal documentation.

For Oracle WebLogic Portal, use the steps below. (The default WLP Data Sync has
a PropertySet called GroupSpace and one of the properties in this PropertySet is
called email.)

a. Log into the Oracle WebLogic Portal Administration Console.

b. Select Users, Groups, and Roles, and then User Management.

c. Click the user you have been using to test Web Parts.

d. Click the User Profile tab.

e. From the dropdown menu, select the GroupSpace PropertySet. (If this
PropertySet does not exist, create a new PropertySet called GroupSpace and
populate it with a Single, Unrestricted property called email.)

f. Enter a value for the email property.

g. Log in to Oracle WebLogic Portal with the user you edited and view the
UserProfile Web Part portlet to see your changes.

5.9 Setting Up Security Tokens
By default, the Oracle WebCenter WSRP Producer for .NET pulls the XML containing
a <wsse:Security> element defined in a SOAP header and puts it into the
HttpContext.Items collection. The token will only be available for the duration of the
ASP.NET request and is identified by the ASP.NET session ID.

Due to the wide number of possibilities that the WS-Security specification allows for
structuring security tokens, the Oracle WebCenter WSRP Producer for .NET
installation includes the source code for its default security implementation in
installdir\wsrpdefault\src. For the default SecurityTokenManager
implementation, see the files in the token subfolder. For the default request filter that

Setting Up Security Tokens

Implementing Common Development Scenarios 5-23

is applied specifically for WebCenter Portal WSS 1.0 tokens before the tokens are
passed to the default SecurityTokenManager, see the files in the util subfolder.

This section provides several tutorials illustrating how to access security tokens in a
number of ways.

■ Section 5.9.1, "Displaying a Token in a Web Part"

■ Section 5.9.2, "Oracle WebLogic Portal with Default SAMLCredentialMapperV2"

■ Section 5.9.3, "Oracle WebLogic Portal with Custom Signing Key"

■ Section 5.9.4, "UNT for Oracle WebLogic Portal"

■ Section 5.9.5, "SAML for Oracle WebCenter Portal"

■ Section 5.9.6, "UNT for Oracle WebCenter Portal"

5.9.1 Displaying a Token in a Web Part
This tutorial creates a simple Web Part that displays a security token. The Web Part
created is generic enough that it can be used for looking at any type of wsse:security
token (including SAML from Oracle WebLogic Portal or UNT from Oracle WebCenter
Portal). The Web Part is created as a class that inherits from
System.Web.UI.WebControls.WebParts.WebPart (you could provide the same
functionality with a Web User Control).

1. Create a new C# class in Visual Studio. Make sure to add a reference to the WSE
assembly component Microsoft.Web.Services2 or the sample code will not
compile. Copy in the following code:

using System;
using System.Collections.Generic;
using System.Collections;
using System.Text;
using System.Configuration;

using System.Web;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml;

using Microsoft.Web.Services2.Security.Tokens;

namespace SecurityTokenWebPart
{

public class SecurityTokenWebPart : WebPart
{

Label lblSamlHeader;
Label lblUntHeader;
Label lblSecurityHeader;
Label lblSamlToken;
Label lblUntToken;
Label lblSecurityToken;
protected override void CreateChildControls()
{

// Create text label for SAML token
lblSamlHeader = new Label();
lblSamlHeader.ID = "lblSamlHeader";
lblSamlHeader.Text = "SAML token:";

Setting Up Security Tokens

5-24 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

this.Controls.Add(lblSamlHeader);
HtmlGenericControl br1 = new HtmlGenericControl("br");
this.Controls.Add(br1);

// Retrieve the SAML security token associated with this session,
if available

lblSamlToken = new Label();
lblSamlToken.ID = "lblSamlToken";
Object item = HttpContext.Current.Items[Page.Session.SessionID +

".SAML_TOKEN"];
if (item != null)
{

lblSamlToken.Text =
HttpUtility.HtmlEncode(HttpUtility.UrlDecode(item.ToString()));

}
else
{

lblSamlToken.Text = "SAML token unavailable";
}
this.Controls.Add(lblSamlToken);
HtmlGenericControl br2 = new HtmlGenericControl("br");
this.Controls.Add(br2);

// Create text label for UNT token
lblUntHeader = new Label();
lblUntHeader.ID = "lblUntHeader";
lblUntHeader.Text = "UNT token:";
this.Controls.Add(lblUntHeader);
HtmlGenericControl br3 = new HtmlGenericControl("br");
this.Controls.Add(br3);

// Retrieve the UNT security token associated with this session,
if available

lblUntToken = new Label();
lblUntToken.ID = "lblUntToken";
item = HttpContext.Current.Items[Page.Session.SessionID +

".USERNAME_TOKEN"];
if (item != null)
{

lblUntToken.Text =
HttpUtility.HtmlEncode(HttpUtility.UrlDecode(item.ToString()));

}
else
{

lblUntToken.Text = "Username token (UNT) unavailable";
}
this.Controls.Add(lblUntToken);
HtmlGenericControl br4 = new HtmlGenericControl("br");
this.Controls.Add(br4);

// Create text label for security tokens
lblSecurityHeader = new Label();
lblSecurityHeader.ID = "lblSecurityHeader";
lblSecurityHeader.Text = "Security token(s):";
this.Controls.Add(lblSecurityHeader);
HtmlGenericControl br5 = new HtmlGenericControl("br");
this.Controls.Add(br5);

// Retrieve all the security tokens associated with this session,

Setting Up Security Tokens

Implementing Common Development Scenarios 5-25

if available
lblSecurityToken = new Label();
lblSecurityToken.ID = "lblSecurityToken";
item = HttpContext.Current.Items[Page.Session.SessionID +

".TOKENS"];
if (item != null)
{

SecurityTokenCollection tokens = item as
SecurityTokenCollection;

if (tokens.Count > 0)
{

foreach (SecurityToken token in tokens)
{

XmlElement xe = token.GetXml(new XmlDocument());
lblSecurityToken.Text +=

HttpUtility.HtmlEncode(xe.OuterXml);
}

}
else
{

lblSecurityToken.Text = "Security token unavailable";
}

}
else
{

lblSecurityToken.Text = "Security token unavailable";
}
this.Controls.Add(lblSecurityToken);

}
}

2. Add a reference to System.web to make sure that the code compiles:

a. Right-click the solution in the Solution Explorer and choose Add Reference.

b. Click the .NET tab and scroll down to System.web.

Tip: If you wait for the entire list to load, you can click the list and
start typing System.web to select the item without having to scroll
through the list.

c. Click OK to accept the new reference.

3. Compile this code into an assembly named ViewSecurityToken.

4. Copy the assembly into installdir\wsrpdefault\bin.

5. Create a folder under installdir\wsrpdefault\portlets called
ViewSecurityToken.

6. Copy the default.aspx file from installdir\wsrpdefault\portlets\ASPNET_
AJAX_sample to your new ViewSecurityToken folder.

7. Update the
installdir\wsrpdefault\portlets\ViewSecurityToken\default.aspx file to
reference the new TestUserProfile assembly instead of the Simple_Date_Time
control.

a. Replace src with assembly and reference the ViewSecurityToken assembly
you created.

Setting Up Security Tokens

5-26 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

b. Replace tagname with namespace and reference the SecurityTokenWebPart
namespace used by the class.

c. Add the class name after the : following the tagprefix under the content
placeholder.

The resulting file will look something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register assembly="ViewSecurityToken" namespace="SecurityTokenWebPart"
tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"

Runat="Server">
<uc1:SecurityTokenWebPart ID="SecurityTokenWebPart1" runat="server" />

</asp:Content>

8. Update the installdir\wsrpdefault\wsrp-producer.xml file to include your
portlet.

a. Make a copy of an existing <portlet> node and its contents under the
<portlets> element.

b. Update the handle, display name, description, title, and short title elements for
the new portlet.

c. Update the <url> node under each of the <portlet-mode> elements to point to
the new portlet. (The wsrp:edit and wsrp:help modes are not necessary.)

When finished, the new <portlet> node should look like the following:

<portlet>
<handle>ViewSecurityToken</handle>
<supported-locale>en</supported-locale>
<descriptions>
<description lang="en">View SecurityToken</description>

</descriptions>
<display-names>
<display-name lang="en">View SecurityToken</display-name>

</display-names>
<titles>
<title lang="en">View SecurityToken</title>

</titles>
<short-titles>
<short-title lang="en">View SecurityToken</short-title>

</short-titles>
<supports>
<portlet-modes>
<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/ViewSecurityToken/default.aspx</url>

</portlet-mode>
</portlet-modes>
<mime-type>text/html</mime-type>

</supports>
</portlet>

9. The portlet should now be available in your WSRP consumer. (You should have
already registered the Oracle WebCenter WSRP Producer for .NET as explained in
Section 5.1, "Adding a Web Part as a Portlet.") Add the portlet to your portal.

Setting Up Security Tokens

Implementing Common Development Scenarios 5-27

Assuming that you have not set up SAML or UNT tokens you should just see
Security token unavailable when you view the portlet.

5.9.2 Oracle WebLogic Portal with Default SAMLCredentialMapperV2
The Oracle WebCenter WSRP Producer for .NET is configured to request SAML tokens
by default. Oracle WebLogic Portal is set up with a SAML Credential Mapper version
(SAMLCredentialMapperV2) that is compliant with this version of the Oracle
WebCenter WSRP Producer for .NET by default. This tutorial illustrates how to view
SAML tokens from Oracle WebLogic Portal.

1. Log in to the Oracle WebLogic Server hosting your Oracle WebLogic Portal.

2. Go to Security Realms > myrealm > Providers > Credential Mapping.

3. Click SAMLCredentialMapper. (The description should include Security
Assertion Markup Language v1.1 and the version should be 2.0.)

4. Confirm that this is the default setup by clicking the Provider Specific tab and
noting that the Signing Key Alias is wsrpconsumerrsa.

5. Click the Management tab and then click the Relying Party link named rp_00001.

6. Make sure that both Enabled and Sign Assertions are true (they should be true
by default).

7. Select Include Key Info.

8. Click Save.

9. Restart Oracle WebLogic Server (even if WebLogic Server indicates a restart is not
necessary).

10. Log in to Oracle WebLogic Portal and view the portlet you created Section 5.9.1,
"Displaying a Token in a Web Part." The portlet should display a raw SAML
security token.

5.9.3 Oracle WebLogic Portal with Custom Signing Key
The previous section used the default wsrpconsumerrsa Signing Key Alias. In a typical
SAML set up, you would use your own private key to sign SAML assertions. This
section explains how to tailor the steps defined in the Oracle WebLogic Portal
documentation for creating SAML assertions to account for a WSRP producer created
by the Oracle WebCenter WSRP Producer for .NET.

When configuring a Relying Party for the Oracle WebCenter WSRP Producer for .NET,
follow the guidelines below:

■ Create the Relying Party with WSS/Sender-Vouches. (You can ignore the Source Site
Federation Services portion of the Oracle WebLogic Portal documentation as long as
you are using WSS/Sender-Vouches.)

■ Make sure that Sign Assertions and Include Keyinfo are selected.

■ If the Relying Party will not use a value of default (all parties rely on this SAML
credential mapper), be sure to put the full URL to the .asmx file defined in your
WSRPService.wsdl.

5.9.4 UNT for Oracle WebLogic Portal
This tutorial illustrates how to view UNT tokens with a username and password from
Oracle WebLogic Portal. The first two steps make sure the Oracle WebCenter WSRP

Setting Up Security Tokens

5-28 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

Producer for .NET is set up to request UNT with username and password when it is
registered, and the rest of the steps configure Oracle WebLogic Portal to send UNT
tokens with user name and password.

1. Open the installdir\wsrpdefault\wsdl\2.0\WSRPService.wsdl file in a text
editor.

2. Replace the wsp:Policy element that references SAMLAuth.xml with the following:

<wsp:Policy s1:Id="UNTAuth.xml">
<wsp:All>
<wssp:Identity>
<wssp:SupportedTokens>
<wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#UsernameToken">
<wssp:UsePassword
Type="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#PasswordText"/>

</wssp:SecurityToken>
</wssp:SupportedTokens>

</wssp:Identity>
</wsp:All>

</wsp:Policy>

3. Open the installdir\wsrpdefault\wsdl\2.0\wsrp_v1_bindings.wsdl file in a
text editor.

4. Replace all instances of SAMLAuth.xml with UNTAuth.xml. You should see the
following under the <wsdl:input> elements with the names getMarkup and
performBlockingInteraction:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsp:PolicyReference URI="#UNTAuth.xml"/>
</wsp:Policy>

Note: The PolicyReference URI value is the #Id of the wsp:Policy
defined for UNT in
installdir\wsrpdefault\wsdl\2.0\WSRPService.wsdl.

5. Log in to the Oracle WebLogic Server hosting your Oracle WebLogic Portal.

6. Go to Security Realms > myrealm > Credential Mappings.

7. Click New and enter settings that point to the markup endpoints. Leave the
defaults except the following:

■ Protocol: http

■ Remote Host: host_name (for example, myproducer.mycompany.com)

■ Remote Port: host_port (for example, 8678)

■ Path: /wsrpdefault/wsdl/2.0/WSRPBaseService.asmx (This is the path after
the host and port in the URL. Be sure to begin the path with /.)

8. Before clicking Next, confirm that the values are correct. You should get a response
from http://host_name:host_
port/wsrpdefault/wsdl/2.0/WSRPBaseService.asmx.

9. Click Next.

10. Enter user information:

Setting Up Security Tokens

Implementing Common Development Scenarios 5-29

■ Local user: A user registered with Oracle WebLogic Server, for example, the
weblogic user.

■ Remote user: testuser, the user to send to the producer when the local user is
logged in.

■ Remote password: testpassword, the password to send to the producer when
the "Local user" is logged in

11. Click Finish.

12. Restart Oracle WebLogic Server (even if WebLogic Server indicates a restart is not
necessary).

13. Register your producer with Oracle WebLogic Portal under a new name so that
portlets now ask for UNT tokens instead of SAML tokens.

a. Log in to the Oracle WebLogic Portal administration console and remove the
portlet you registered in Section 5.9.1, "Displaying a Token in a Web Part."

b. Create a new WSRP producer in the administration console pointing to the
same WSRPService.wsdl you used to register the first portlet.

c. Add the same portlet again.

d. Log in to Oracle WebLogic Portal as the local user you entered in the
Credential Mapper and view the portlet. The portlet should display a raw
UNT security token.

5.9.5 SAML for Oracle WebCenter Portal
There are several different SAML token profiles supported by Oracle WebLogic Portal.
The Oracle WebCenter WSRP Producer for .NET supports all of the WSS 1.0 options,
but does not support WSS 1.1. This tutorial uses the SAML profile that is the most
similar to the default provided by Oracle WebLogic Portal (see Section 5.9.3, "Oracle
WebLogic Portal with Custom Signing Key"), WSS 1.0 SAML Token with Message
Identity. See the Oracle WebCenter Portal documentation on securing a WSRP
producer for details on the security token options available.

This tutorial describes the process for setting up this token profile in Enterprise
Manager. If you register WSRP producers using WLST, register your producer with the
SAML_TOKEN_WITH_MSG_INTEGRITY token type and other arguments that correspond to
Enterprise Manager settings described below. You should already have completed the
tutorial in Section 5.9.1, "Displaying a Token in a Web Part."

1. Create a private key pair on the Oracle WebCenter Portal host machine using the
java keytool. Set the key algorithm to rsa and the key size to 1024.

For example:

keytool -genkeypair -keystore mykeystore.jks -storepass mykeystorepass
-keyalg RSA -keysize 1024 -alias wckey -keypass wckeypass
-dname "cn=spaces,dc=example,dc=com" -validity 360

Refer to Oracle WebCenter Portal or Java documentation on generating key pairs.

2. In Enterprise Manager, go to the Add New Portlet Producer page and select WSRP
Producer.

3. Enter the URL to the same WSDL you used in Section 5.9.1, "Displaying a Token in
a Web Part."

4. In the security section, select the token profile WSS 1.0 SAML Token with
Message Integrity.

Setting Up Security Tokens

5-30 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

5. Choose the custom option and define an Issuer Name. This can be any name.

6. Specify the Default User, for example, weblogic.

7. Enter values in the Keystore section of the page based on the values you used to
generate the key with the keytool. (Leave the encryption key values empty; they
are not required because encryption is not used.)

■ Store Path: Use the value specified for -keystore

■ Password: Use the value specified for -storepass

■ Signature Key Alias: Use the value specified for -keyalias

■ Signature Key Password: Use the value specified for -keypass

8. Once the producer is registered, add the ViewSecurityToken portlet to a
WebCenter Portal portal. If you are logged in (not anonymous) to WebCenter
Portal, the portlet should show a SAML token with your user name in the
Assertion.

Note on SAML with Message Protection: If you choose to use WSS
1.0 SAML with Message Protection, you must create a private key in
the Windows certificate store and import a public key certificate into
the java keystore on your WebCenter Portal host machine. Once you
have imported the certificate, enter the keyalias you used during the
keytool import command as the Recipient Alias. This way the
imported certificate will be used to encrypt the message to the
producer.

The process for managing the windows certificate store is explained in
the next section, Section 5.9.6, "UNT for Oracle WebCenter Portal."
The steps are the same for SAML, except you must select the WSS 1.0
SAML with Message Protection option instead of WSS 1.0 Username
Token with Password.

5.9.6 UNT for Oracle WebCenter Portal
There are two different Username token (UNT) profiles supported by WebCenter
Portal. The Oracle WebCenter WSRP Producer for .NET supports both of these
options. This tutorial describes working with the UNT profile that is the most similar
to the default provided by Oracle WebLogic Portal (see Section Section 5.9.4, "UNT for
Oracle WebLogic Portal"), WSS 1.0 Username Token with Password. See the
WebCenter Portal documentation on securing a WSRP producer for more details on
the security token options available.

This tutorial describes the process for setting up this token profile in Enterprise
Manager. If you register WSRP producers using WLST, register your producer with the
USERNAME_WITH_PASSWORD token type and other arguments that correspond to
Enterprise Manager settings described below. You should already have completed the
tutorial in Section 5.9.1, "Displaying a Token in a Web Part."

1. Add a private key in the Windows certificate store on the Windows machine
hosting the Oracle WebCenter WSRP Producer for .NET. The following steps show
you how to create a private key in LocalMachine>TrustedPeople Store and
LocalMachine>Personal Store. Refer to your Microsoft documentation for more
information on the Windows certificate store.

a. Locate the makecert.exe tool. If this tool is not present, download the
Microsoft Windows SDK for Windows and .NET Framework 3.5 SP1.

Setting Up Security Tokens

Implementing Common Development Scenarios 5-31

b. Open a command window that has the makecert.exe PATH dependencies
available. If Visual Studio 2008 is present, you can launch a Visual Studio 2008
Command Prompt from the Start Menu. If the Windows SDK is present, you
can launch a command shell from under the Microsoft Windows SDK folder in
the Start Menu.

c. Create a certificate with the algorithm set to sha1, for example:

makecert.exe -a sha1 -n CN=DotNetWSRPProducer -sr LocalMachine -ss My -sky
exchange -sk DotNetWSRPProducer

2. Import the key certificate into the TrustedPeople Store and Personal Store of the
Windows certificate store. Use the same command window where you ran
makecert.exe to run certmgr.exe. For example:

certmgr.exe -add -c -n DotNetWSRPProducer -s -r LocalMachine My -s -r
LocalMachine TrustedPeople

3. Grant security rights to the certificate for the user running the ASP.NET processes
for the IIS application running the Oracle WebCenter WSRP Producer for .NET (by
default this is the Network Service user).

■ If you installed the administrator version of WSE 2.0 SP3, use the X509
certificate tool available in the Start Menu, open the certificate from the correct
store, view the key file properties, and make sure Network Service has full
control.

■ If you do not have the X509 certificate tool, you can still set proper
permissions on the certificate you created by going to
%SystemDrive%\ProgramData\Microsoft\Crypto\RSA\MachineKeys, finding
the most recent file (these are system files so you must configure Windows
Explorer to show hidden files), and granting the Network Service user full
control.

4. Locate the certificate in the store.

a. Bring up mmc.exe from the command line.

b. From the menu bar, select File, then Add/Remove Snap-in.

c. Select certificates.

d. Click Add.

e. Select Computer Account (to view the LocalMachine contents).

f. Click OK.

g. On the left hand side, expand the list of certificates.

h. Go to the Personal section of the store and locate the certificate you added.

5. Export the certificate.

a. Right-click your certificate and select All Tasks, and then Export.

b. In the wizard, export the public key as a DER encoded binary (DER is X509
format that java keytool likes) with a file name of your choice (for example,
dnaakey.der).

6. Create a private key pair on the Oracle WebCenter Portal host machine using the
java keytool. Set the key algorithm to rsa and the key size to 1024, for example:

C:\Oracle\Middleware\jdk160_20\bin\keytool
-genkeypair

Setting Up Security Tokens

5-32 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

-keystore C:\Oracle\Middleware\keystores\mykeystore.jks
-storepass mykeystorepass
-keyalg rsa
-keysize 1024
-alias wckey
-keypass wckeypass

If you already completed Section 5.9.5, "SAML for Oracle WebCenter Portal," use
the same key for this tutorial. Refer to your WebCenter Portal or Java
documentation on generating key pairs.

7. Copy the .der file over to the WebCenter Portal server and import the key using
the java keytool, for example:

C:\Oracle\Middleware\jdk160_20\bin\keytool
-genkeypair
-keystore C:\Oracle\Middleware\keystores\mykeystore.jks
-import
-storepass mykeystorepass
-keyalg rsa
-keysize 1024
-alias dnaakey
-keypass dnaakeypass
-file C:\Oracle\Middleware\keystores\dnaakey.der

8. In Enterprise Manager, go to the Add New Portlet Producer page and select WSRP
Producer.

9. Enter the URL to the same WSDL you used in Section 5.9.1, "Displaying a Token in
a Web Part."

10. In the security section, select the token profile WSS 1.0 Username Token with
Password.

11. Choose the custom option.

12. In the Associated External Application section choose Create New. You will be
brought to a new page where you can create a new external application. Give the
application a name and click OK. This tells WebCenter Portal to prompt end users
to enter the login credentials they want to pass to the WSRP producer portlet.

13. Once you are returned to the Add New Portlet Producer page, enter values in the
Keystore section of the page based on the values you used to generate the key
with the keytool. (Leave the encryption key values empty; they are not required
because encryption is not used.)

■ Store Path: Use the value specified for -keystore

■ Password: Use the value specified for -storepass

■ Signature Key Alias: Is -alias. (This is the alias given while generating the
keystore.)

■ Signature Key Password: Is -keypass. (This is the password for the alias
given while generating the keystore.)

■ Recipient Alias: Is -alias (This value comes from importing the certificate
(step 6), not generating the key.)

14. Once the producer is registered, add the ViewSecurityToken portlet to a
WebCenter Portal portal. The first time you view the portlet you should see an
Update login information link. Click this link and provide a user name and
password. This will be the user name and password that is sent to the portlet in

Using Oracle WebCenter Portal Features

Implementing Common Development Scenarios 5-33

the Username and password token (UNT). Once you enter this information the
portlet should show a token with the user name and password you entered.

5.10 Using Oracle WebCenter Portal Features
The following features are included specifically for Oracle WebCenter Portal. Since
these features are based on WSRP standards there is a possibility they could be
applied to any WSRP consumer.

This section includes the following topics:

■ Section 5.10.1, "Using Customization in Oracle WebCenter Portal"

■ Section 5.10.2, "Using Oracle WebCenter Portal Parameters"

5.10.1 Using Customization in Oracle WebCenter Portal
This tutorial shows how to enable the Customize option for Web Parts surfaced in an
WebCenter Portal portal. This example starts with the TestPreferences portlet
described in Section 5.1, "Adding a Web Part as a Portlet."

1. Open installdir\wsrpdefault\wsrp-producer.xml in a text editor.

2. Locate the TestPreferences portlet and add a new <portlet-mode> section under
the <portlet-modes> element with a name of
urn:javax:portlet:mode:custom:edit_defaults. The <supports> element for
the portlet with the new value should look something like the following:

<supports>
<portlet-modes>
<portlet-mode>
<name>wsrp:view</name>
<url>/portlets/TestPreferences/default.aspx</url>

</portlet-mode>
<portlet-mode>
<name>wsrp:edit</name>
<url>/portlets/TestPreferences/default.aspx</url>

</portlet-mode>
<portlet-mode>
<name>urn:javax:portlet:mode:custom:edit_defaults</name>
<url>/portlets/TestPreferences/default.aspx</url>

</portlet-mode>
</portlet-modes>
<mime-type>text/html</mime-type>

</supports>

3. Add the TestPreferences portlet to a WebCenter Portal portal, and while in
Composer, select the Customize option (wrench icon).

5.10.2 Using Oracle WebCenter Portal Parameters
WebCenter Portal parameters are passed to WSRP 2.0 producers using the
navigationalParameters defined in the WSRP 2.0 specification. This tutorial shows
how to pass WebCenter Portal parameters to a portlet.

1. In Visual Studio, open the TestPreferences.ascx Web User Control you created
in Section 5.1, "Adding a Web Part as a Portlet."

2. Add two labels called lblParameter1 and lblParameter2 to the bottom of the
form.

Using Oracle WebCenter Portal Features

5-34 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

<asp:Label ID="lblParameter1" runat="server" Text=""></asp:Label>

<asp:Label ID="lblParameter2" runat="server" Text=" "></asp:Label>

3. Add the following code to the bottom of the Page_Load method:

System.Collections.Generic.Dictionary<string, string> ParameterCollection =
HttpContext.Current.Items["NavigationalParameters"] as
System.Collections.Generic.Dictionary<string, string>;
lblParameter1.Text = ParameterCollection["TestParameter1"];
lblParameter2.Text = ParameterCollection["TestParameter2"];

4. Test that the code compiles. In particular, make sure that you have
System.Collections.Generic referenced.

5. Update your TestPreferences.ascx and TestPreferences.ascx.cs (and
designer .cs file if you created one of these) under the App_Code directory.

6. Replace the installdir\wsrpdefault\portlets\TestPreferences.ascx file with
the latest version.

7. Copy the compiled assembly from your Visual Studio project to the
installdir\wsrpdefault\bin folder.

8. The following steps are required to inform the WebCenter Portal WSRP Consumer
of the existence of these parameters.

a. Open installdir\wsrpdefault\wsrp-producer.xml in a text editor and locate
the TestPreferences <portlet> element.

b. Above the <supports> element add the following XML:

<navigational-parameters>
<parameter>

<identifier>TestParameter1</identifier>
</parameter>
<parameter>

<identifier>TestParameter2</identifier>
</parameter>

</navigational-parameters>

Note that the identifier names match the names pulled from the navigational
parameters collection in the Page_Load method described in an earlier step.

9. In a WebCenter Portal page, open Composer.

10. Add the TestPreferences portlet and click the Edit button.

On the parameters tab you should see the two parameters you defined,
TestParameter1 and TestParameter2.

11. Enter a value for each parameter and click Apply and Ok.

You should see the values you entered at the bottom of the portlet.

Note: The WebCenter Portal WSRP Consumer only utilizes the
identifier portion of the navigationalParameter. However, if you
have a different WSRP consumer for which you wish to use
navigationParameters you may also assign localized values for the
description, label, and hint in your wsrp-producer.xml. For example:

<navigational-parameters>
<parameter>
<identifier>TestParameter1</identifier>
<description>
<parameter-description

lang="en">parameter1-en</parameter-description>
<parameter-description

lang="fr">parameter1-fr</parameter-description>
</description>
<label>
<parameter-label lang="en">parameter1-label-en</parameter-label>
<parameter-label lang="fr">parameter1-label-fr</parameter-label>
</label>
<hint>
<parameter-hint lang="en">parameter1-hint-en</parameter-hint>
<parameter-hint lang="fr">parameter1-hint-fr</parameter-hint>
</hint>
</parameter>
</navigational-parameters>

Using Oracle WebCenter Portal Features

Implementing Common Development Scenarios 5-35

Using Oracle WebCenter Portal Features

5-36 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introducing the Oracle WebCenter WSRP Producer for .NET
	1.1 About the Oracle WebCenter WSRP Producer for .NET
	1.2 Additional Documentation

	2 Understanding the Oracle WebCenter WSRP Producer for .NET Configuration File
	2.1 Portlet Nodes
	2.2 Portlet Content Transformation Rulesets
	2.2.1 Creating Custom Rules

	3 Managing Required Script Files
	3.1 Managing Required Script Files

	4 Configuring Security Options
	4.1 WS-Security (WSS) Configuration
	4.1.1 WSDL Configuration
	4.1.2 Web.config Configuration

	4.2 SSL Configuration

	5 Implementing Common Development Scenarios
	5.1 Adding a Web Part as a Portlet
	5.2 Adding a Web Part with ASP.NET AJAX Controls
	5.2.1 Managing AJAX Outside the .NET Framework

	5.3 Adding an ASP.NET Application
	5.4 Adding a Help Page
	5.5 Using Markup Transformation
	5.5.1 Transforming Text
	5.5.2 Creating a Custom Ruleset

	5.6 Using Portlet Styles
	5.7 Using Interportlet Communication with JavaScript
	5.8 Adding User Profile Data
	5.9 Setting Up Security Tokens
	5.9.1 Displaying a Token in a Web Part
	5.9.2 Oracle WebLogic Portal with Default SAMLCredentialMapperV2
	5.9.3 Oracle WebLogic Portal with Custom Signing Key
	5.9.4 UNT for Oracle WebLogic Portal
	5.9.5 SAML for Oracle WebCenter Portal
	5.9.6 UNT for Oracle WebCenter Portal

	5.10 Using Oracle WebCenter Portal Features
	5.10.1 Using Customization in Oracle WebCenter Portal
	5.10.2 Using Oracle WebCenter Portal Parameters

