
Oracle® Fusion Middleware
Developing and Administering Spring Applications for Oracle

WebLogic Server

12c (12.2.1.1.0)

E78183-01

August 2016

This document describes Spring support in WebLogic Server,
tells how to enable the Spring extension and the Spring
console-extension, and provides information about developing
Spring applications for WebLogic Server.

Oracle Fusion Middleware Developing and Administering Spring Applications for Oracle WebLogic Server,
12c (12.2.1.1.0)

E78183-01

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... v

Documentation Accessibility .. v

Conventions... v

1 Introduction and Roadmap

1.1 Document Scope and Audience... 1-1

1.2 Guide to This Document... 1-1

1.3 Related Documentation .. 1-2

1.4 Examples for Spring Application Development ... 1-2

1.5 Support for Spring Framework on WebLogic Server... 1-2

1.6 New and Changed Features in This Release ... 1-2

2 Simplified Configuration for Spring Applications

3 WebLogic Spring Security Integration

3.1 Spring Container Adapter Provides Integration... 3-1

3.2 How applicationContext-acegi-security.xml Is Plugged Into web.xml................................... 3-2

4 Spring Console Extension in WebLogic Server

5 Using WebLogic Server Clustering

6 Spring Dependency Injection Extension to WebLogic Server

7 Developing Spring-Based Applications for Oracle WebLogic Server

7.1 Configure Spring Inversion of Control... 7-1

7.2 Enable the Spring Web Services Client Service ... 7-2

7.3 Make JMS Services Available to the Application at Runtime ... 7-3

7.4 Use JPA Data Access ... 7-3

7.5 Use the Spring Transaction Abstraction Layer for Transaction Management 7-4

iii

iv

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing and Administering Spring Applications for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and organization of this guide - Developing and
Administering Spring Applications for Oracle WebLogic Server.

WebLogic Server supports the open source Spring projects when they are used in Java
EE applications. This document describes the Spring features that WebLogic supports
for use inside Java EE applications. WebLogic Server does not support any commercial
products by SpringSource.

This chapter includes the following sections:

• Document Scope and Audience

• Guide to This Document

• Related Documentation

• Examples for Spring Application Development

• Support for Spring Framework on WebLogic Server

• New and Changed Features in This Release

1.1 Document Scope and Audience
This document is written for developers who develop Spring applications and for
administrators who configure and monitor those applications.

It is assumed that the reader is familiar with WebLogic Server and Java EE application
development.

1.2 Guide to This Document
• This section, Introduction and Roadmap, introduces the organization of this guide.

• Simplified Configuration for Spring Applications, discusses the preconfigured
MBeans that you can use for dependency injection, with no special configuration
required.

• WebLogic Spring Security Integration , tells how to use the Spring security
framework with the WebLogic Server security framework.

• Spring Console Extension in WebLogic Server, tells how to enable the Spring
extension to the WebLogic Server Administration Console.

• Using WebLogic Server Clustering, tells how to take advantage of WebLogic Server
clustering for Spring applications.

Introduction and Roadmap 1-1

• Spring Dependency Injection Extension to WebLogic Server, tells how to enable
Spring support in WebLogic Server.

• Developing Spring-Based Applications for Oracle WebLogic Server , provides
examples of how to develop Spring applications for WebLogic Server.

1.3 Related Documentation
For Spring documentation and other information about the Spring Framework, see
http://www.springsource.com/.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

• Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

• Tuning Performance of Oracle WebLogic Server contains information on monitoring
and improving the performance of WebLogic Server applications.

1.4 Examples for Spring Application Development
In addition to this document, Oracle provides a sample application developed using
Spring. It is a Spring version of Avitek Medical Records (or MedRec) and is based on
the original MedRec sample application, but it is reimplemented using the Spring
framework. It is a Oracle WebLogic Server sample application suite that concisely
demonstrates many aspects of Spring and WebLogic.

In this release of WebLogic Server, the Code Examples and MedRec sample
applications are not installed by default. To run the examples and sample applications,
you must select a custom installation of WebLogic Server and select to install the
Server Examples.

1.5 Support for Spring Framework on WebLogic Server
WebLogic Server supports the WebLogic Server/Spring integration features described
in this document with Spring Framework versions 3.0.x, 3.1.x, 4.0.x, and 4.1.x (note
that version 3.2.x is not supported).

Other versions of Spring may be used in WebLogic Server applications without using
the integration features described in this document, similar to the way other open
source technologies may be used in WebLogic Server applications. In such cases,
Oracle does not support the WebLogic Server/Spring integration features, but does
provide support for WebLogic Server itself, and does provide problem resolution
assistance if WebLogic Server is not providing documented capabilities.

1.6 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.

Related Documentation

1-2 Developing and Administering Spring Applications for Oracle WebLogic Server

http://www.springsource.com/

2
Simplified Configuration for Spring

Applications

This chapter describes how to configure Spring applications to use WebLogic Server
resources.

To use WebLogic Server resources for a Spring application, you must specify a
number of configurations for the application. WebLogic Server detects that an
application is a Spring application and automatically creates these configurations for
optimal performance. When the application context is created on application startup,
WebLogic Server automatically creates a parent context containing the predefined
resources. By making the application's context a child of this context, all of these
resources become available to the application, and no explicit configuration is
required.

The Spring configuration file WL_HOME\server\lib
\SpringServerApplicationContext.xml specifies the default settings, which
you can review to see if they satisfy your needs. You can override these settings in
your own application context, if desired.

The defaults include:

• The default transaction manager is WebLogicJtaTransactionManager.

• The WebLogic Server runtime MBean server is automatically configured for Spring
JMX

• Server resources defined in WebLogic Server are automatically exposed as Spring
beans.

Simplified Configuration for Spring Applications 2-1

2-2 Developing and Administering Spring Applications for Oracle WebLogic Server

3
WebLogic Spring Security Integration

This chapter describes how to integrate the WebLogic Server security system with the
Spring security framework.

The WebLogic Server security system supports and extends Java EE security while
providing a rich set of security providers that you can be customize to integrate with
different security databases or security policies.

As described at the Spring Security Web site (http://
static.springsource.org/spring-security/site/), Acegi Security is now
Spring Security, the official security project of the Spring Portfolio. The Spring Security
(acegi) framework provides security to a Spring application and includes a rich set of
security providers.

The question then becomes how to integrate the two security frameworks.

For a combined Java EE and Spring application, rather than require authentication
with both security frameworks, WLS security and Spring security work together. WLS
security handles the authentication via the default Authentication provider for the
security realm, and converts WLS principals to Spring GrantedAuthority principals
through a mapper class. Once authenticated by WLS security, a user is authenticated
for Spring security. You can then decide how to secure the objects in the application.
One common practice is to secure Java EE resource with WebLogic security and secure
Spring resource with Spring security.

3.1 Spring Container Adapter Provides Integration
As described in the Spring Security Reference, Container Adapters enable Spring
Security to integrate directly with the containers used to host end user applications, in
this case WebLogic Server.

The integration between a container and Spring Security is achieved through an
adapter. The adapter provides a container-compatible user authentication provider,
and needs to return a container-compatible user object.

applicationContext-acegi-security.xml is the configuration file for Spring
security. For WebLogic Server, WeblogicAuthenticationFilter is added to the
list of filters in applicationContext-acegi-security.xml. This filter is
responsible for converting the WebLogic principals to Spring GrantedAuthority
subjects, based on the mapper. The mapper is configured as a property for the
WeblogicAuthenticationFilter, and it is injected at creation time.

The following is an example of the mapper class.

public class MyAuthorityGranter implements AuthorityGranter {
public Set grant(Principal principal) {
Set rtnSet = new HashSet();
if (principal.getName().equals("fred@oracle.com")) {
rtnSet.add("ROLE_SUPERVISOR");
rtnSet.add("IS_AUTHENTICATED_ANONYMOUSLY");

WebLogic Spring Security Integration 3-1

http://static.springsource.org/spring-security/site/
http://static.springsource.org/spring-security/site/

}
return rtnSet;
}
}

In this example, user fred@oracle.com in the WebLogic domain is mapped to
ROLE_SUPERVISOR and IS_AUTHENTICATED_ANONYMOUSLY.

3.2 How applicationContext-acegi-security.xml Is Plugged Into web.xml
The following code is added to web.xml to plug in the applicationContext-
acegi-security.xml file:

<filter>
 <filter-name>Acegi Filter Chain Proxy</filter-name>
 <filter-class>org.acegisecurity.util.FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetClass</param-name>
 <param-value>org.acegisecurity.util.FilterChainProxy</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>Acegi Filter Chain Proxy</filter-name>
 <url-pattern>/main/secure/*</url-pattern>
 </filter-mapping>
<listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/applicationContext-acegi-security.xml
 </param-value>
</context-param>

How applicationContext-acegi-security.xml Is Plugged Into web.xml

3-2 Developing and Administering Spring Applications for Oracle WebLogic Server

4
Spring Console Extension in WebLogic

Server

This chapter describes the Spring console extension, which is based on Runtime
MBeans registered using the WebLogic Server infrastructure. The console extension
displays configuration and runtime information for deployed Spring beans.

Note:

To enable the Spring console extension, you must have a Web component as
part of your application. This is because most of the applications that use
Spring are Web applications.

To use the Spring console extension, you must turn on support for Spring beans and
enable the Spring console extension, as explained in steps 1 and 2, below. You only
have to do this once. In addition, you must enable your Spring applications to make
use of the Spring console extension. This requires making simple changes to your
Spring application configuration, as explained in step 3, below. You have to do this for
each of your Spring applications.

1. Deploy WL_HOME/server/lib/weblogic-spring.jar to WebLogic Server,
where WL_HOME refers to the main WebLogic Server installation directory, such as
Oracle\Middleware\Oracle_Home\wlserver. You only need to perform
this step once for your WebLogic Server instance.

weblogic-spring.jar file is a Java EE optional package used by an
application (packaged as an EAR or WAR file). It creates the MBeans for your
application during its deployment.

Deploy weblogic-spring.jar either of the following ways:

• Use the WebLogic Server Administration Console, as described in Deploy
applications and modules in Oracle WebLogic Server Administration Console
Online Help. The JAR file is located in WL_HOME\server\lib.

• Issue the following command at the command line:

java weblogic.Deployer -library -deploy – source
 WL_HOME/server/lib/weblogic-spring.jar – targets
 server_name -adminurl server_URL -user
user_name -password password

2. Enable the Spring console extension in the WebLogic Server Administration
Console. (The Spring console extension is disabled by default.) You only need to
perform this step once for your domain. Do the following:

a. Log into the WebLogic Server Administration Console.

Spring Console Extension in WebLogic Server 4-1

b. In the banner toolbar region at the top of the right pane of the Console, click
Preferences.

c. On the Preferences page, click Extensions.

d. Select the check box next to spring-console, then click Enable.

e. Stop the server, then restart it for the change to take effect.

3. Change the manifest of your application (packaged as an EAR or WAR file) so it
includes weblogic-spring.jar as a Java EE optional package. Do this to each
Spring application you want to make use of the Spring runtime MBeans or the
Spring console extension

Do this by adding the following lines to your META-INF/Manifest.mf:

Extension-List: WeblogicSpring
WeblogicSpring-Extension-Name: weblogic-spring
WeblogicSpring-Specification-Version: 10.3.0.0
WeblogicSpring-Implementation-Version: 10.3.0.0

After you deploy your application, you can monitor it in the WebLogic Server
Administration Console. The Spring configuration and monitoring pages are under
the Spring Framework tab. See Spring Bean Task Overview in Oracle WebLogic Server
Administration Console Online Help

4-2 Developing and Administering Spring Applications for Oracle WebLogic Server

5
Using WebLogic Server Clustering

This chapter describes how Spring applications can take advantage of WebLogic
Server's clustering features. Because most Spring applications are packaged as Web
applications (.war files), you do not need to do anything special in order to take
advantage of WebLogic Server clusters. All you need to do is deploy your Spring
application to the servers in a WebLogic Server cluster. For information on which
Spring versions are supported with this and other WebLogic Server/Spring
integration features, seeSupport for Spring Framework on WebLogic Server .

WebLogic Server extends the Spring JndiRmiProxyFactoryBean and its associated
service exporter so that it supports proxying with any Java EE RMI implementation.
To use the extension to the JndiRmiProxyFactoryBean and its exporter:

1. Configure client support by implementing code such as the following:

<bean id="proProxy"
 class="org.springframework.remoting.rmi.JndiRmiProxyFactoryBean">
 <property name="jndiName" value="t3://${serverName}:${rmiPort}/order"/>
 </property>
 <property name="jndiEnvironment">
 <props>
 <prop key="java.naming.factory.url.pkgs">weblogic.jndi.factories</prop>
 </props>
 </property>
 <property name="serviceInterface"
 value="org.springframework.samples.jpetstore.domain.logic.OrderService"/>
</bean>

2. Configure the service exporter by implementing code such as the following:

<bean id="order-pro"
 class="org.springframework.remoting.rmi.JndiRmiServiceExporter">
 <property name="service" ref="petStore"/>
 <property name="serviceInterface"
 value="org.springframework.samples.jpetstore.domain.logic.OrderService"/>
 <property name="jndiName" value="order"/>
</bean>

Using WebLogic Server Clustering 5-1

5-2 Developing and Administering Spring Applications for Oracle WebLogic Server

6
Spring Dependency Injection Extension to

WebLogic Server

This chapter describes how to enable the Spring Framework extension that provides
enhanced dependency-injection with WebLogic Server.

A standard WebLogic Server installation provides standard Java EE 7 dependency
injection (DI) and interceptors (a form of aspect-oriented programming) in the
WebLogic Server Java EE container. WebLogic Server also supports a Spring
Framework extension that provides enhanced dependency injection and aspect-
oriented programming features in the container. This extension uses Pitchfork, a
Spring Framework add-on that provides JSR-250 (Common Annotations), dependency
injection, and EJB 3.0 style interception. (See http://oss.oracle.com/projects/
pitchfork/.) The extension provides dependency injection and aspect-oriented
programming to EJB instances and Web components that include the servlet listener
and filter.

Note:

JSP tag handlers do not support the Spring extension in this release of
WebLogic Server.

To enable the Spring extension with WebLogic Server, do the following:

1. Download a version of Spring and its dependencies from http://
www.springsource.com/download. Download the version of Spring that is
certified by Oracle. For that information, see the Oracle Fusion Middleware
Supported System Configurations page on the Oracle Technology Network.

You must have at least the following JAR files:

• spring.jar

• aspectjweaver.jar

• commons-logging.jar

• log4j-1.2.14.jar

• pitchfork.jar

Also download pitchfork.jar from http://oss.oracle.com/projects/
pitchfork/

You can add other JAR files if necessary.

2. Add the JARs listed above to the WebLogic Server classpath. See Adding JARs to
the System Classpath in Developing Applications for Oracle WebLogic Server.

Spring Dependency Injection Extension to WebLogic Server 6-1

http://oss.oracle.com/projects/pitchfork/
http://oss.oracle.com/projects/pitchfork/
http://www.springsource.com/download
http://www.springsource.com/download
http://oss.oracle.com/projects/pitchfork/
http://oss.oracle.com/projects/pitchfork/

The WebLogic Server Web container and EJB container use these JARs to provide
container services (dependency injection and interceptor).

Applications (packaged as EAR, WAR, or JAR files) can use these JARs because
they are in the server classpath. You can configure your application to use the
version of JARs packaged with the application if you enable certain of the
deployment descriptors.

3. Enable the Spring extension by setting the <component-factory-class-
name> element to
org.springframework.jee.interfaces.SpringComponentFactory.
This element exists in EJB, Web, and application descriptors. A module level
descriptor overwrites an application level descriptor. If the tag is set to null
(default), the Spring extension is disabled.

4. Provide the standard Spring bean definition file with the name spring-ejb-
jar.xml or spring-web.xml, and place it in the /WEB-INF/classes/META-
INF directory of your application (or put the META-INF directory in a JAR file).
These are the standard Spring bean definition files with the names that the
Weblogic container searches for. For the Spring container to be aware of the EJB or
servlet instance, the <id> tag of the Spring bean must be set to the ejb-name for
EJB or the class-name of the Web components.

For example, for the following stateless EJB...

@Stateless

public class TraderImpl
 implements Trader {
 private List symbolList;
 public void setSymbolList(List l) {
 symbolList = l;
 }

 ...
}

...you can add the following spring-ejb-jar.xml to the application...

<beans>
 <!-- id corresponds to ejb-name. -->
 <bean id="Trader">
 <property name="symbolList">
 <list>
 <value>ORCL</value>
 <value>MSFT</value>
 </list>
 </property>
</beans>

...to inject a symbolList to the EJB, which is not available using the standard
Java EE specification.

6-2 Developing and Administering Spring Applications for Oracle WebLogic Server

7
Developing Spring-Based Applications for

Oracle WebLogic Server

This chapter describes the MedRec-Spring sample application, the Spring version of
WebLogic Server's Java EE-based Avitek Medical Records (MedRec) sample
application.

Included with WebLogic Server is a sample application, called MedRec (Spring
Version), called MedRec-Spring for short. In MedRec-Spring, the Java EE-based
Medrec's components are replaced with Spring components, as described in the
following sections:

1. Configure Spring Inversion of Control.

2. Enable the Spring Web Services Client Service. Spring offers a JAX-WC factory to
produce a proxy for Web Services

3. Make JMS Services Available to the Application at Runtime.

4. Use JPA Data Access.

5. Use the Spring Transaction Abstraction Layer for Transaction Management.

The sample code in the following sections are from MedRec-Spring.

Note:

MedRec-Spring is not installed by default when you install WebLogic Server.
You must choose Custom installation, then select Server Examples from the
Choose Products and Component page.

If you have already installed WebLogic Server, rerun the installer, select the
Middleware home where WebLogic Server is installed, choose Custom
installation, then select Server Examples from the Choose Products and
Component page.

Included with Medrec-Spring is documentation which discusses its design
and implementation. That documentation is available at ORACLE_HOME
\wlserver\samples\server\docs\, where ORACLE_HOME represents the
directory in which you installed WebLogic Server. For more information
about the WebLogic Server code examples, see "Sample Applications and
Code Examples" in Understanding Oracle WebLogic Server.

7.1 Configure Spring Inversion of Control
In Spring, references to other beans (injected properties) are configured via the Spring
configuration file applicationContext-web.xml.

Developing Spring-Based Applications for Oracle WebLogic Server 7-1

Spring 2.5 annotation-driven configuration is used in MedRec-Spring. The application
context is configured to have Spring automatically scan the Spring beans detecting
Spring-specific annotations like @Service, so it is not necessary to declare every
Spring bean in the XML configuration files. The configuration, in ORACLE_HOME
\wlserver\samples\server\medrec-spring\modules\medrec\web\war
\WEB-INF\applicationContext.xml, is as follows:

<context:component-scan base-package="com.oracle.medrec"/>

The dependency injection is mainly configured via the @Autowired annotation. For
example, the ORACLE_HOME\wlserver\samples\server\medrec-spring
\modules\medrec\domain\src\com\oracle\medrec\service\impl
\RecordServiceImpl.java includes the following:

@Service("recordService")
@Transactional
public class RecordServiceImpl implements RecordService {

 @Autowired
 private RecordRepository recordRepository;

 @Autowired
 private PatientRepository patientRepository;

 @Autowired
 private PhysicianRepository physicianRepository;

All of these provide similar development experience as that of EJB 3.0. For more
information, see "Annotation Type Autowired" in the Spring documentation at
http://www.springsource.org/documentation/.

7.2 Enable the Spring Web Services Client Service
MedRec-Spring uses the Spring JaxWsPortProxyFactoryBean to expose a
dynamic proxy for Web Services, as shown in the following example from
ORACLE_HOME\wlserver\samples\server\medrec-spring\modules
\physician\web\war\WEB-INF\applicationContext.xml:

<bean id="patientService" class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
 <property name="serviceInterface" value="com.oracle.physician.service.PatientService"/>
 <property name="wsdlDocumentUrl"
 value="http://localhost:7011/medrec/webservices/PatientFacadeService?WSDL"/>
 <property name="namespaceUri" value="http://www.oracle.com/medrec"/>
 <property name="serviceName" value="PatientFacadeService"/>
 <property name="portName" value="PatientFacadePort"/>
</bean>

<bean id="physicianService" class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
 <property name="serviceInterface" value="com.oracle.physician.service.PhysicianService"/>
 <property name="wsdlDocumentUrl"
 value="http://localhost:7011/medrec/webservices/PhysicianFacadeService?WSDL"/>
 <property name="namespaceUri" value="http://www.oracle.com/medrec"/>
 <property name="serviceName" value="PhysicianFacadeService"/>
 <property name="portName" value="PhysicianFacadePort"/>
</bean>

<bean id="recordService" class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
 <property name="serviceInterface" value="com.oracle.physician.service.RecordService"/>
 <property name="wsdlDocumentUrl"
 value="http://localhost:7011/medrec/webservices/RecordFacadeService?WSDL"/>

Enable the Spring Web Services Client Service

7-2 Developing and Administering Spring Applications for Oracle WebLogic Server

http://www.springsource.org/documentation

 <property name="namespaceUri" value="http://www.oracle.com/medrec"/>
 <property name="serviceName" value="RecordFacadeService"/>
 <property name="portName" value="RecordFacadePort"/>
</bean>

With this approach, you do not have to use the tool-generated Web Services stubs. For
more information, see JaxWsPortProxyFactoryBean in the Spring documentation
at http://www.springsource.org/documentation/.

7.3 Make JMS Services Available to the Application at Runtime
In Spring, you must configure JMS services so they are provided to the application
during runtime. In MedRec-Spring, Oracle made JMS services available to the
application at runtime by implementing the following code in the Spring
configuration file ORACLE_HOME\wlserver\samples\server\medrec-spring
\modules\medrec\web\war\WEB-INF\applicationContext.xml:

<!--- Messaging ************************************* -->
 <bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory"/>
 </bean>
 <jee:jndi-lookup id="connectionFactory" jndi-name="weblogic.jms.XAConnectionFactory"/>

 <jee:jndi-lookup id="patientNotificationQueue"
 jndi-name="com.oracle.medrec.jms.PatientNotificationQueue"/>
 <bean id="messageListener"
 class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
 <property name="delegate" ref="patientNotifierBroker"/>
 <property name="defaultListenerMethod" value="notifyPatient"/>
 </bean>

 <bean id="messageListenerContainer"
 class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <!--<property name="taskExecutor" ref="taskExecutor"/>-->
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="messageListener" ref="messageListener"/>
 <property name="destination" ref="patientNotificationQueue"/>
 <!-- no need to use XA transaction now -->
 <property name="sessionTransacted" value="true"/>
</bean>

Here, various beans from the Spring framework are declared. In particular, the
jmsTemplate wraps the underlying JMS APIs and is used to send messages.
messageListenerContainer provides similar functionality as the Message-Driven
Bean container, and the JMS listener in MedRec-Spring is registered to it.

7.4 Use JPA Data Access
MedRec-Spring use the standard Java Persistence API (JPA) to manage data sources.
The configuration is in ORACLE_HOME\wlserver\samples\server\medrec-
spring\modules\medrec\domain\src\META-INF\persistence.xml:

 <persistence-unit name="MedRec" transaction-type="JTA">
 <jta-data-source>jdbc/MedRecGlobalDataSourceXA</jta-data-source>
 <class>com.oracle.medrec.model.Address</class>
 <class>com.oracle.medrec.model.Administrator</class>
 <class>com.oracle.medrec.model.BaseEntity</class>
 <class>com.oracle.medrec.model.PersonName</class>
 <class>com.oracle.medrec.model.Patient</class>

Make JMS Services Available to the Application at Runtime

Developing Spring-Based Applications for Oracle WebLogic Server 7-3

http://www.springsource.org/documentation

 <class>com.oracle.medrec.model.Physician</class>
 <class>com.oracle.medrec.model.Prescription</class>
 <class>com.oracle.medrec.model.Record</class>
 <class>com.oracle.medrec.model.RegularUser</class>
 <class>com.oracle.medrec.model.User</class>
 <class>com.oracle.medrec.model.VersionedEntity</class>
 <class>com.oracle.medrec.model.VitalSigns</class>
 <properties>
 <property name="kodo.jdbc.SynchronizeMappings"
 value="buildSchema"/>
 </properties>
 </persistence-unit>

MedRec-Spring does not declare a Data Access Object (DAO) in the Spring
configuration file, because MedRec-Spring uses the annotation-driven approach (in
this case @Repository for all the DAOs), so all of them will be automatically
managed by Spring. For example, see the following in
RecordRepositoryImpl.java:

@Repository
public class RecordRepositoryImpl
 extends EntityRepositorySupport<Record, Long> implements RecordRepository {

 public List<Record> findRecordsByPatientId(Long patientId) {
 return findByProperty("Record.findRecordsByPatientId", patientId);
 }
}

7.5 Use the Spring Transaction Abstraction Layer for Transaction
Management

MedRec-Spring uses Spring 2.5 configuration to use the WebLogic JTA transaction
manager and to enable annotation-based declarative transaction management. See the
configuration in ORACLE_HOME\wlserver\samples\server\medrec-spring
\modules\medrec\web\war\WEB-INF\applicationContext.xml:

 <tx:jta-transaction-manager/>

 <tx:annotation-driven/>

All the transaction demarcation is implemented via Spring's @Transactional
annotation. This is similar to what is done in EJB 3.0 applications. See ORACLE_HOME
\wlserver\samples\server\medrec-spring\modules\medrec\domain\src
\com\oracle\medrec\service\impl\RecordServiceImpl.java:

@Service("recordService")
@Transactional
public class RecordServiceImpl implements RecordService {

…
 public void createRecord(Record record, Long physicianId, Long patientId) {

 }

 @Transactional(readOnly = true)
 public List<Record> getRecordsByPatientId(Long patientId) {
 }

 @Transactional(readOnly = true)
 public Record getRecord(Long id) {

Use the Spring Transaction Abstraction Layer for Transaction Management

7-4 Developing and Administering Spring Applications for Oracle WebLogic Server

 }
}

Use the Spring Transaction Abstraction Layer for Transaction Management

Developing Spring-Based Applications for Oracle WebLogic Server 7-5

Use the Spring Transaction Abstraction Layer for Transaction Management

7-6 Developing and Administering Spring Applications for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Examples for Spring Application Development
	1.5 Support for Spring Framework on WebLogic Server
	1.6 New and Changed Features in This Release

	2 Simplified Configuration for Spring Applications
	3 WebLogic Spring Security Integration
	3.1 Spring Container Adapter Provides Integration
	3.2 How applicationContext-acegi-security.xml Is Plugged Into web.xml

	4 Spring Console Extension in WebLogic Server
	5 Using WebLogic Server Clustering
	6 Spring Dependency Injection Extension to WebLogic Server
	7 Developing Spring-Based Applications for Oracle WebLogic Server
	7.1 Configure Spring Inversion of Control
	7.2 Enable the Spring Web Services Client Service
	7.3 Make JMS Services Available to the Application at Runtime
	7.4 Use JPA Data Access
	7.5 Use the Spring Transaction Abstraction Layer for Transaction Management

