ORACLE"

Oracle® Fusion Middleware

Administering Oracle WebLogic Server with RESTful Management
Services

12¢(12.2.1.1.0)

E74649-02

August 2016

This document describes how to use Oracle WebLogic Server
RESTful management interfaces for administration,
monitoring, deploying, and configuration tasks which are
exposed for developing RESTful clients.

Oracle Fusion Middleware Administering Oracle WebLogic Server with RESTful Management Services, 12¢
(12.2.1.1.0

E74649-02

Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.
Primary Author:

Contributing Authors:

Contributors:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ..o vii
Documentation AccesSIbilitycouoiiiiiiiiiiiiie s vii
CONVENTIONS ...t Vi

1 Introduction and Roadmap

2

1.1 Document SCope and AUIENCE.covvvreererereriririrereeer e 11
1.2 Guide to this DOCUMENt.........ccoiiiiiiiiiic e 11
1.3 Information ROAdmap ..o 1-2
1.4 New and Changed Features In This Releasecccocouoioiiiiiiiiiic 1-3

About the WLS RESTful Management Interface

2.1 Overview of the WLS RESTful Management Interface...........ccccoooiriiiiiniiicccc, 2-1
2.1.1 Generated REST API for WLS Bean Trees..........cccccvvvvivimiiviiiiniiiiiiinccnnn, 2-2
2.1.2 WLS Bean Tree OVEIVIEW ..o 2-2

2.2 Mapping the WLS Beans to RESTccccccoviiiiiiiiiniiiiinicnnesseeees 2-3
221 General REST Patterns.......ccococuiuiiiiiiiiiiiiiniciciiniccciciceei e 2-3
2.2.2 Standard Request Headers.........cccoooiiiiiiiciiiic 2-4
2.2.3 About the ROOt RESOUICESouvvviiiiiiiiiiiii e 2-4
224 Naming CONVENtiONS........ccoviimiiiiiiiiiiiiiiii s 2-6
2.2.5 Mapping the REST URLSccocociiiiiiiiiiiiiccccccescss s 2-6
2.2.6 JSON MaPPINGS ...ovurieiiiiniieieiiiicie ettt et 2-7

2.3 Standard REST ReSPONSES........ccuiiiuiuiieiiiicieiceci s 2-9
2.3.1 Returning EITOr MESSAZES.........coevveiiviiiuiiiiictcitctc et s 2-10

Using the WLS RESTful Management Interface

3.1 Accessing REST RESOUICESccuiiiiiiiiiiiiiiiiiiiiiciiccc e 3-1
3.2 Viewing WLS Beanscccccoiviiiiiiiiiiiiiiiiiicci e 3-2
321 About WLS Bean Properties ... 3-2
3.2.2 Self and Canonical LINKSc.cciiviiiiiiiiiiiiecieeceeeeteeeeete ettt a e aesaens 3-2
3.2.3 Parent LINKS......cccveciiiieiieieiieieie ettt sttt ettt e st e st e sae et e saeesaeeraesseennessaessensaens 3-3
3.2.4 Self Create FOrm LINKSccocioiiiiiieieieieieetet ettt ettt besre s 3-3
3.2.5 Child BEan LINKSccccveieiririinieieieieieieteteteeseestes e ssessessessessesaessesessesseseesessessessessensenes 3-3

3.3

34

3.5
3.6

3.7

3.8

3.9

3.10
3.11

3.12
3.13

3.2.6 Child Create FOIrm LINKSccoooouiiiiiiiieeiie ettt eae e et ssnaeessnaesssnaeeean 3-4

3.2.7 Singleton Bean Reference Links ... 3-4
3.2.8 Bean Reference Collection Links.........ccccooveiiiiiiiiiiniiicccc e, 3-4
3.2.9 Operation LINKS ... 3-5
Viewing Collections of Contains Beans.............c.cooiriiiiiiiiiicc e 3-5
3.3.1 About Collection ItemScviiiiiiiiiicc e 3-5
3.3.2 About Collection LINKS.........ccccoieviiiiiiiiiiiiii e 3-6
Retrieving Create FOIMSccoooviiiiiiiiieec e 3-6
3.4.1 About Create Form Properties ... 3-7
3.4.2 About Create Form LinKs.........ccooiiiiiiiiii e 3-7
Filtering ReSULILSooouiiiiiii e 3-7
Modifying the WLS Configurationc.coccciiiiiiiiiieceeeeeeeieene e neenenenenes 3-8
3.6.1 Modifying WLS Configuration Beans............ccccceiiiiiiiiiiiiiiicicccccces 3-9
3.6.2 About the JSON Object Request BOAYcccceueiiiiiiiiiiiiic, 3-9
Using Multiple Edit S@SSIONScccviiiiiiieiiiicc e 3-10
3.7.1 Client Specified Edit SeSSION.........ccccvvviimiiiiiiiiiiiiii e 3-10
3.7.2 The Default Edit SESSION........cceviiiiiiiiiiiiiccccc e 3-10
Creating WLS Configuration Beans ..o 3-11
3.8.1 URLs For Creating WLS Configuration Beans.............cccooooriiiiiiiiiiiiiiciccc 3-11
3.8.2 Getting a JSON Templatecocoueioiiiiiiiiiiiccc e 3-11
3.8.3 Creating the Beam ... 3-11
3.8.4 Deleting WLS Configuration Beans............ccccociiiiiiiiiiniiiiiiicccccceeae, 3-13
Managing Whether a Property Is Set..........cccoiiiiiiiiiiiiiiicccccccccnes 3-13

INVOKING OPErations........c.ccvurieiiiiicieieiecte et 3-14

USING QUETIESvvviiett ettt 3-14
3.11.1 Search RESOUTICESccoviiviiiiiiiiiiiicn s 3-15
3.11.2 ODbJECt QUETIES ... 3-15
3.11.3 Response Body ... 3-17
3.11.4 Query EXamplescooiiiiiiiiiic s 3-18

About Synchronous and Asynchronous Operations...........ccceeeiieieiiiicicieiniicicce, 3-20

Deploying Applications and LIDTariesccccociiiiiieiiicceeeeeeeeeeeeenenenenenes 3-21

Domain Level REST APl Examples

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

AAAING USETS.......omiiiiiiiiiiiiiiecccciee e e 4-1
Setting UP SEIVETScuoviiiiiiiiiiiiccicc s 4-4
Creating Partitions..........c.oceieiiicicc e 4-22
Configuring System ReSOUICESccouruiiiieiiieiieic e 4-44
Deploying Domain-Scoped Applications ..., 4-65
Monitoring Domain ReSOUICES...........cceiiiiiiiiiiiiii s 4-74
Starting and Stopping Domain-Scoped Applicationscccoceveveiviiiiininicnieiiceee 4-125
Starting and Stopping Partitionsc.coreeiiiiic 4-128
Starting and StOPPING SEIVETSc.cerruiiiiiiiicieiecie e 4-137

Partition Specific REST APl Examples

5.1
52
53
54
55

Configuring USETS........cueviieiieieiiicicie ittt 5-1
Creating Partition-Scoped System ReSOUICeS..........cccueieiiuririeiiiiiciciecc s 5-3
Deploying Partition-Scoped APPLCAtIONSccoceuiuiuimiiiiiiiccececceeeeeeeeee e 5-27
Monitoring Partition ReSOUICeS........ccoiiuiuimiiiiiiiiiccctcccccc 5-37
Starting and Stopping Partition-Scoped Applications............ccoceieiiiiiiiiiniccieccee 5-72

Vi

Preface

This preface describes the document accessibility features and conventions used in this
guide— Administering Oracle WebLogic Server with RESTful Management Services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?

ct x=acc& d=docacc.
Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Administering
Oracle WebLogic Server with RESTful Management Services.

Topics

Document Scope and Audience
Guide to this Document
Information Roadmap

New and Changed Features In This Release

1.1 Document Scope and Audience

This document describes how to use Oracle WebLogic Server RESTful management
interfaces for administration, monitoring, deploying, and configuration tasks which
are exposed for developing RESTful clients. The user communities for this
documentation are administrators who might use cURL commands to invoke these
resources in administration scripts, and software developers who will use this
information when writing code, perhaps in Java, perhaps in other languages, that
monitors and manages WLS domains.

1.2 Guide to this Document

This chapter, Introduction and Roadmap, describes the organization of this guide.

About the WLS RESTful Management Interface provides an introduction to the
WLS RESTful management interface, useful background and mapping information,
and the HTTP status codes returned by WLS REST resources.

Using the WLS RESTful Management Interface describes how to use the RESTful
management services supported by WebLogic Server.

Domain Level REST API Examples contains example scripts for users in domain
level roles that show how to use the WLS REST APIs to perform common domain
and partition management and monitoring tasks

Partition Specific REST API Examples contains example scripts for users in
partition level roles that show how to use the WLS REST APIs to perform common
partition management and monitoring tasks.

Introduction and Roadmap 1-1

Information Roadmap

1.3 Information Roadmap

WebLogic Server REST resources are based on WLS bean trees and organized
according to their corresponding root resources. For more information, see Mapping
the WLS Beans to REST.

The REST resources for managing WLS within specified partitions reside in separate
manuals (MT reference guides). Each MT manual refers to resources accessible to
partition user roles. Each non-MT manual refers to resources accessible to domain user
roles. For more information about user roles in WebLogic Server Multitenant, see
"Administrative Roles for Configuration and Management" in Using WebLogic Server
Multitenant.

In the MT reference guides, REST resources:
* Are running in a partition.

® Must be accessed over a partitioned URL by a user defined in that partition's
security realm.

¢ Only can be used to manage that partition.

e Cannot be used to manage all WLS MBeans. Many of the WLS MBeans are not
available to partition users.

In the non-MT reference guides, REST resources:
¢ Run at the domain level (versus in a partition).

* Must be accessed over a non-partitioned URL by a user defined in the domain's
default security realm.

¢ Can be used to manage all partitions.
¢ (Can be used to manage all WLS MBeans.
See Table 1-1 for a complete listing of the WLS REST reference documents and

descriptions of their use.

Table 1-1 WLS RESTful Management Interface Reference Documentation
- -]

Book Title Use These REST Resources To...

RESTful Edit Reference for Oracle WebLogic Edit the WLS configuration.
Server

RESTful Domain Configuration Reference for View the last activated WLS configuration.
Oracle WebLogic Server

RESTful Domain Runtime Reference for Oracle Monitor the entire WLS domain.
WebLogic Server

RESTful Server Configuration Reference for View the WLS configuration that the
Oracle WebLogic Server Administration Server or Managed Server is
currently running against.

1-2 Administering Oracle WebLogic Server with RESTful Management Services

New and Changed Features In This Release

Table 1-1 (Cont.) WLS RESTful Management Interface Reference Documentation
___|

Book Title

Use These REST Resources To...

RESTful Server Runtime Reference for Oracle
WebLogic Server

Monitor the Administration Server or a
Managed Server.

You can monitor a Managed Server either by
using the Administration Server's

domai nRunti e/ server Runti nes/
<managedSer ver Name>/ . . . resources or
the Managed Server's server Runti me/ . . .
resources.

RESTful Edit Reference for Oracle WebLogic
Server MT

Edit the WLS configuration in the specified
domain partition.

RESTful Domain Configuration Reference for
Oracle WebLogic Server MT

View the last activated WLS configuration in
the specified domain partition.

RESTful Domain Runtime Reference for Oracle
WebLogic Server MT

Monitor the specified WLS domain partition.

RESTful Server Configuration Reference for
Oracle WebLogic Server MT

View the WLS configuration that the
Administration Server is currently running
against in the specified domain partition.

RESTful Server Runtime Reference for Oracle
WebLogic Server MT

Monitor the Administration Server in the
specified domain partition

RESTful Lifecycle Reference for Oracle
WebLogic Server

Use WLS life cycle management REST
resources.

RESTful Management Interface Reference for
Oracle WebLogic Server

Legacy WLS RESTful management resources.

1.4 New and Changed Features In This Release

For a comprehensive listing of all the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.1.0.

Introduction and Roadmap 1-3

New and Changed Features In This Release

1-4 Administering Oracle WebLogic Server with RESTful Management Services

2

About the WLS RESTful Management
Interface

WebLogic RESTful management services provide a comprehensive public interface for
configuring, monitoring, deploying and administering WebLogic Server in all
supported environments. This chapter describes the RESTful management services
supported by WebLogic Server.

Topics
¢ Overview of the WLS RESTful Management Interface

* Mapping the WLS Beans to REST

e Standard REST Responses

2.1 Overview of the WLS RESTful Management Interface

In each release of WebLogic Server, the availability of REST resources for WebLogic
Server administration has been enhanced and extended. This release provides
comprehensive support for WebLogic Server administration through the dynamic
generation of REST resources based on WLS MBeans and descriptor interfaces. There
are resources to support the configuration and monitoring of partitioned and non-
partitioned environments, life cycle management (LCM) resources, and legacy
resources from 12.1.3.

For a guide to the WLS REST reference documentation, see the Information Roadmap.

Note:

In WebLogic Server 12.2.1, the dynamic REST resources supported one
version,12.2.1.0, and the | at est version referred to it. In 12.2.1.1, the dynamic
REST resources support two versions:

e 12.2.1.0 (also referred to as 12.2.1.0.0): this version is now deprecated

e 12.2.1.1.0: this is the | at est version

To summarize the changes in this release:

* The 12.2.1.0 REST resources have been deprecated and you should use the
12.2.1.1.0 REST resources instead

¢ Thel at est version has changed from 12.2.1.0 to 12.2.1.1.0

e All new MBean features have been added to the 12.2.1.1.0 and the 12.2.1.0
REST resources, also

About the WLS RESTful Management Interface 2-1

Overview of the WLS RESTful Management Interface

* Any MBean features that were deprecated in 12.2.1.1.0, will still be
available using the 12.2.1.0 REST URLs, but not the 12.2.1.1.0 REST URLs

2.1.1 Generated REST API for WLS Bean Trees

WLS beans are used extensively by WLS components to manage configuration settings
and to monitor and manage running servers.

The WLS beans are derived from Java interfaces. At runtime, WLS constructs internal
trees of Java beans that can be used to configure and monitor the system. In prior
releases, the bean trees were only exposed via J]MX, WLST, and configuration files (for
example, conf i g. xml).

In this release, WLS dynamically generates REST resources, incrementally and on-
demand at runtime, by using the bean trees and bean infos. These REST resources
provide an alternative for managing WLS.

2.1.2 WLS Bean Tree Overview

The following sections provide background information about WLS beans which
provide the foundation for the REST interfaces.

There are two main bean types:
¢ Configuration—used to configure WLS.

* Runtime—used to monitor WLS and for some operations, control WLS (for
example, starting and stopping servers, shrinking data source connection pools).

WLS provides the following bean trees:

e Edit access—only available on the Administration Server, used to modify the
configuration (for example, conf i g. xm and system resource files).

¢ Runtime access—available on every server, used to view that server's configuration
and to access its monitoring data.

* Domain access—only available on the Administration Server, contains copies of the
runtime beans of all of the running servers, provides a single point of access for
monitoring, is also used to view the most current configuration that has been
persisted.

For more information about WLS MBeans, see "Understanding WebLogic Server
MBeans" in Developing Custom Management Utilities Using [MX for Oracle WebLogic
Server.

WebLogic Scripting Tool (WLST) presents the bean trees as follows:
* edit—matches the underlying edit access bean tree.

¢ domainConfig—the configuration MBean half of the domain access bean tree (such
as, the last persisted configuration).

¢ domainRuntime—the runtime MBean half of the domain access bean tree (such as,
for monitoring all servers).

¢ serverConfig—the configuration MBean half of the runtime access bean tree (such
as, the configuration the server is using).

2-2 Administering Oracle WebLogic Server with RESTful Management Services

Mapping the WLS Beans to REST

serverRuntime—the runtime MBean half of the runtime access bean tree (such as,
for monitoring a specific server).

The REST resources parallel the MBean trees presentation in WLST: edit,
domainConfig, domainRuntime, serverConfig, and serverRuntime.

Within the WLS bean trees, there are several types of parent/child (containment)
relationships:

Writable collections—for example, a domain bean has a collection of server beans.

Mandatory singletons—for example, a server bean always has an SSL bean which
is automatically created and cannot be deleted.

Optional singletons—for example, an overload protection bean can optionally have
a server failure trigger bean.

Beans can include properties (generally scalars, strings, and arrays), references to other
beans, and operations (for example, to start a server).

With regard to contained collections:

Each child has a unique identity within the collection (for example, each network
channel has a name that's unique within its server).

Most collections are homogeneous (for example, a domain's applications) though a
few are heterogeneous (for example, a security realm's authentication providers).

2.2 Mapping the WLS Beans to REST

The following sections describe how WLS beans are mapped to the REST interfaces.
Some commonalities are:

All resource URLSs contain version numbers, and support a version named | at est .
For more information, see "The {version} Specifier in Resource URLs" in the
RESTful Management Interface Reference for Oracle WebLogic Server (Legacy).

All request bodies and response bodies use JSON (media type is appl i cat i on/
j son).

Response bodies have a standard set of properties—i t ens (to return information
about collections), | i nks (to return links to related resources), and nessages (to
return success, warning, and failure messages).

All resources return standard HTTP response codes—201 for successful creation,
200 for other successes, 404 for not found, 400 for user input errors, 500 for
internal server errors. For more information, see Standard REST Responses.

2.2.1 General REST Patterns

Almost all of the WLS beans (a homogeneous collection of children, a mandatory
singleton child, and an optional homogenous singleton child) use the following REST
patterns:

About the WLS RESTful Management Interface 2-3

Mapping the WLS Beans to REST

WLS Beans/REST REST Method Description
Resource
Collections: collection GET Returns the collection.
resource
POST Creates a new item in the collection.
Collections: create form GET Returns a pre-populated entity.
resource
Collections: child resource GET Returns an item in the collection.
POST Updates an item in the collection.
DELETE Removes an item from the collection.
Singletons: singleton GET Returns the singleton.
resource
POST Updates the singleton if it exists; creates it if it
doesn't.
DELETE Removes the singleton.
Operations: action POST Invokes the operation.

resource

2.2.2 Standard Request Headers

The following table describes the standard headers that clients should use to send
WebLogic Server REST requests.

Request Header

Description

Accept: application/json

Indicates that the client wants the response to contain JSON.
This header is appropriate when invoking the GET, POST,
and DELETE methods. Any resources that return other data
types are specified in the reference manual and examples.

Cont ent -

Type: application/json

Indicates that the client is sending in a request containing
JSON. This header is appropriate for the POST method.
Some methods support other content types (for example,
when uploading deployments); the reference manual and
examples specify when they are supported.

X- Request ed- By: Mydl i ent

Used to protect against Cross-Site Request Forgery (CSRF)
attacks via REST. This header is mandatory for the POST
and DELETE methods and ignored for the OPTIONS and
GET methods.

2.2.3 About the Root Resources

The Administration Server and each running Managed Server hosts a REST web
application that runs on each server's administrative port. The context root for each is
managenent . The root REST resources mimic the bean trees in WLST.

Table 2-1 describes the root resources on the Administration Server and lists the

corresponding bean tree.

2-4 Administering Oracle WebLogic Server with RESTful Management Services

Mapping the WLS Beans to REST

Table 2-1 Administration Server Root Resources
- - - - -~ " "

URL

Description

Corresponding Bean Tree

managenent / webl ogi ¢/
<version>/edit

Edits the WLS configuration.

Administration Server's edit
tree domain bean

managenent / webl ogi ¢/
<versi on>/
server Config

Views the WLS configuration
that the Administration Server
is currently running against.

Administration Server's
server runtime tree domain
bean

managenent / webl ogi ¢/
<versi on>/
server Runti ne

Monitors the Administration
Server.

Administration Server's
server runtime tree server
runtime bean

managenent / webl ogi ¢/
<versi on>/
domai nConfi g

Views the last activated WLS
configuration.

Administration Server's
domain runtime tree domain
bean

managenent / webl ogi ¢/
<versi on>/
domai nRunt i ne

Monitors the entire WLS
domain.

Administration Server's
domain runtime tree domain
runtime bean

managenent / webl ogi ¢/
<versi on>/

domai nRunt i ne/
server Runti nes

Monitors all the running servers
in the WLS domain via the
Administration Server.

Each running server's server
runtime tree server runtime
bean

managenent / webl ogi ¢/
<versi on>/

domai nRunt i ne/
server Runti nes/
<server Name>

Monitors a specific running
server in the WLS domain via
the Administration Server.

The specified server's server
runtime tree server runtime
bean

managenent /| i fecycl e Life cycle management (LCM) n/a
REST resources.

managenent/w s 12.1.3 (legacy) WLS REST n/a
resources.

Table 2-2 describes the root resources on Managed Servers.

Table 2-2 Managed Server Root Resources

URL

Description

Corresponding Bean Tree

managenent / webl ogi ¢/
<versi on>/
serverConfig

Views the WLS configuration
that a Managed Server is
Currently running against.

Managed Server's server
runtime tree domain bean

managenent / webl ogi ¢/
<versi on>/
server Runti ne

Monitors that Managed Server.

Managed Server's server
runtime tree server runtime
bean

The URLs on Managed Servers are exactly like the ones on the Administration Server,
except that the host and port are different.

For example, to view the Administration Server's server runtime:

About the WLS RESTful Management Interface 2-5

Mapping the WLS Beans to REST

curl ... -X GET http://adm nHost: 7001/ managenent / webl ogi ¢/
| at est/ serverRunti ne

To view a Managed Server's server runtime:

curl ... -X GET http://managedlHost: 7002/ managenent / webl ogi c/
| at est/ serverRunti ne

2.2.4 Naming Conventions

WLS bean property names are mapped to names in the REST URLs and JSON object
properties. WLS property names usually start with an upper case letter (for example,
Domain, JDBCDataSource, ServerRuntime) whereas the REST naming conventions use

camel case, lower then upper case letters (for example, domain, JDBCDataSource,
serverRuntime).

2.2.5 Mapping the REST URLs

Each WLS bean is mapped to a separate REST resource. Contained collections and
operations are also mapped to separate resources. All WLS beans are either root
resources (for example, the domain), contained collection children (for example,
servers) or contained singleton children (for example, a server's SSL configuration).

The URLs for the root resources are listed in Table 2-1 and Table 2-2.

Each contained collection bean property maps to a URL for the entire collection as well
as a URL for each child. For example:

URL Description Example

<par ent >/ Manages the entire ...ledit/servers
<col | ecti onPropertyNanme> collection.

<parent >/ Managesachildinthe .../edit/servers/
<col | ecti onPropertyNane>/ collection. Server-0

<chi | dNarme>

Similarly, each contained singleton bean property maps to its own URL. For example,
a server's SSL bean maps to. ../ edit/servers/ <server Name>/ SSL.

If a contained bean property is creatable (for example, you can add a new server to the
domain's servers collection, or you can create an RDBM5Secur i t ySt or e for the
domain), then create form resources are also provided which return a template JSON
object with default values to help you create the new resource. The general procedure
is that you GET the create form, fill in the values, then POST it back to create the new
resource. If any fields are not filled in, they retain their current values. The URLs of the
create form resources are <par ent >/

<si ngl ul ar Col | ect i onPr opert yNane>Cr eat eFor m for example:

e . ../edit/serverCreateForm

e .../edit/securityConfiguration/real ns/ nmyreal m
RDBMSSecuri t ySt or eCr eat eForm

Each bean operation maps to its own URL. For example, . . . / domai nRunt i e/
server Runt i nes/ <ser ver Name>/ shut down is used to shut down a specific
server.

2-6 Administering Oracle WebLogic Server with RESTful Management Services

Mapping the WLS Beans to REST

Most of the WLS bean operations are used to create, delete, list, and find contained
beans. These operations are handled separately in REST (versus exposed as REST
operation URLs). They are described in Using the WLS RESTful Management
Interface.

2.2.6 JSON Mappings

REST maps the various Java types that the WLS beans use (for example, their
properties, operation arguments and return types) to JSON.

2.2.6.1 Strings and Scalars

Java strings and scalars are mapped to their JSON equivalent.

Java JSON Example (Java to JSON)
java.lang. String string or null "Foo" -> "Foo"

null -> null
char, string 'a'->"a"

j ava. |l ang. Char act er

i nt number 7001 -> 7001
java.l ang. | nt eger

| ong

java. |l ang. Long

fl oat number 1.23->1.23
j ava. | ang. Fl oat

doubl e

j ava. | ang. Doubl e

bool ean boolean true -> true
j ava. | ang. Bool ean

2.2.6.2 Arrays

Non-null Java arrays are mapped to JSON arrays. Null Java arrays are mapped to a
JSON null.

2.2.6.3 Identities

Each WLS bean is uniquely identified within its bean tree by the trailing part of its
URL, after the version specifier. For example, edi t / machi nes/ Machi ne- 0.

This identity is mapped to a JSON string array, with one string for each path segment
past the root resource of the tree, for example:

["machines", "Machine-0"]

2.2.6.4 WLS Bean References

Some WLS bean properties contain references to other WLS beans (versus a
containment relationship). The same is true for operation arguments and return types.
For example, a Server bean has a reference to a Machine bean, and a Deployment bean
has a reference to an array of Target beans.

About the WLS RESTful Management Interface 2-7

Mapping the WLS Beans to REST

Singleton references (for example, a server's machine) map to a property whose value
is the identity of the referenced bean, as well as a link, for example:

{
machine: ["domain", "machines", "Machine-0"],
links: [
{ rel: "machine", href: "http://local host: 7001/ managenent/| at est/webl ogi ¢/ edit/
machi nes/ Machi ne-0" }

]
}

Collections of references (for example, a server's candidate machines) map to an array
property where each element is an object containing the referenced bean's identity as
well as a link to the bean, for example:

{

candi dat eMachi nes: [

{
identity: ["machines", "Mchine-0"],
links [{ rel: "canonical", href: "http://local host: 7001/ managenent/webl ogi ¢/
| at est/edit/ machi nes/ Machi ne- 0"
¥
{
identity: ["machines", "Mchine-1"],
links [{ rel: "canonical", href: "http://local host: 7001/ managenent/webl ogi ¢/
| at est/edit/ machi nes/ Machi ne- 1"

}
]
}

A null reference or null reference collection is mapped to a JSON null.

2.2.6.5 java.util.Properties

java.util.Properti es holds lists of properties, for example, a
CommonLogMBean Logger Severi t yProperti es property. It is mapped to a
JSON object, with a matching string property for each property in the set of properties,
for example:

{
"propertyl": "valuel",
"property2": "val ue2"

}

Nullj ava. util . Properti es are mapped to a JSON null.

2.2.6.6 Encrypted Properties

Some WLS bean string properties are encrypted because they hold sensitive data like
passwords. While clients must be able to set passwords (this is done by passing them
in as cleartext strings), other users are not allowed to view them but they might want
to know whether the password has a value (versus null, is not set).

The mapping is different for inbound versus outbound encrypted properties.

For outbound encrypted properties, if the password is null, it is mapped to a JSON
null. If not, then it is mapped to the JSON string
@ acl e_Confidential _Property_Set V1.1#.

For inbound encrypted properties, you would typically perform a GET to get the
current value of a resource, set the values for the properties that should be changed,

2-8 Administering Oracle WebLogic Server with RESTful Management Services

Standard REST Responses

leaving the others with their current values, then POST the new value back. Therefore,
if the value in the POST is @ acl e_Confi denti al _Property_Set V1. 1#, then
the property is not changed (it retains the old property value). Otherwise, the value is
changed to the cleartext string value in the POST.

2.3 Standard REST Responses

The REST resources return these standard HTTP response codes:

200 OK

A REST method returns 200 (OK) if the operation succeeds and does not create a
new entity, for example, GET a resource, POST to invoke an operation or modify an
entity, DELETE to remove an entity.

201 Created
A REST method returns 201 (CREATED) if the operation successfully created a new
entity. It also returns a Locat i on header with a link to the new entity.

202 Accepted

A REST method returns 202 (ACCEPTED) if the operation successfully initiated some
asynchronous work. It also returns a Locat i on header with a link to a resource that
you can poll to find out the status of the job.

400 Bad Request
A REST method returns 400 (BAD REQUEST) if the request failed because
something is wrong in the specified request, for example, invalid argument values.

401 Unauthorized

A REST method returns 401 (UNAUTHORI ZED) if the user does not have permission
to perform the operation. 401 is also returned if the user supplied incorrect
credentials (for example, a bad password).

403 Forbidden
A REST method returns 403 (FORBI DDEN) if the user is not in the ADM N,
OPERATOR, DEPLOYER or MONI TORrole.

404 Not Found
A REST method returns 404 (NOT FOUND) if the requested URL does not refer to an
existing entity.

405 Method Not Allowed

A REST method returns 405 (METHOD NOT ALLOVED) if the resource exists but
does not support the HTTP method, for example, if the user tries to create a server by
using a resource in the domain configuration tree (only the edit tree allows
configuration editing).

406 Not Acceptable
The resource identified by this request is not capable of generating a representation
corresponding to one of the media types in the Accept header of the request. For

example, the client's Accept header asks for XML but the resource can only return
JSON.

500 Internal Server Error
A REST method returns 500 (| NTERNAL SERVER ERROR) if an error occurred that
is not caused by something wrong in the request. Since the REST layer generally

About the WLS RESTful Management Interface 2-9

Standard REST Responses

treats exceptions thrown by the MBeans as BAD REQUEST, 500 is generally used for
reporting unexpected exceptions that occur in the REST layer. These responses do not
include the text of the error or a stack trace, however, generally they are logged in the
server log.

503 Service Unavailable
The server is currently unable to handle the request due to temporary overloading or
maintenance of the server. The WLS REST web application is not currently running.

2.3.1 Returning Error Messages

Resources use the following formats for returning error messages.

Error Messages with One Error String
If a resource returns one error string, it uses this format:

HTTP/ 1.1 400 Bad Request

{

type: "http://oracl e/ TBD W sRest MessageSchema",

title: "FAILURE",

detail: "Bean already exists:
\"webl ogi c. managenent . confi gurati on. Server MBeanl npl @1f a1656([mydomai n]/
Servers[Server-1])\"",

status: 400

}

Error Messages with More Than One Error String
If a resource returns more than one error string, it uses this format:

HTTP/ 1.1 400 Bad Request

{
type: "http://oracl e/ TBDY W sRest MessagesSchema”,
title: "ERRORS",
status: 400,
w s:errorsDetails: [
{
type: "http://oracl e/ TBDY WsRest MessageSchema",
title: "FAI LURE",
detail: "no-such-protocol is not a |egal value for Defaul tProtocol.\
The val ue nust be one of the following: [t3, t3s, http, https, iiop, iiops]",
o:errorPat: "defaultProtocol”
1
{
type: "http://oracl e/ TBDY WsRest MessageSchema",
title: "FAI LURE",
detail: "Type mismatch. Cannot convert abc to int",
o:errorPath: "listenPort"
}
]
}

2-10 Administering Oracle WebLogic Server with RESTful Management Services

3

Using the WLS RESTful Management

Interface

This chapter describes how to use the RESTful management services supported by
WebLogic Server. For example scripts that show how to use the WLS REST APIs to
perform common domain and partition management and monitoring tasks, see
Domain Level REST API Examples and Partition Specific REST API Examples.

Topics

Accessing REST Resources

Viewing WLS Beans

Viewing Collections of Contains Beans
Retrieving Create Forms

Filtering Results

Modifying the WLS Configuration
Using Multiple Edit Sessions

Creating WLS Configuration Beans
Managing Whether a Property Is Set
Invoking Operations

Using Queries

About Synchronous and Asynchronous Operations

Deploying Applications and Libraries

3.1 Accessing REST Resources

Each REST resource method documents which user roles can access it: Admin,
Deployer, Operator, Monitor.

In general:

You must be in the Admin, Deployer, Operator or Monitor role to read resources
(use the GET method).

You must be in the Admin role to write resources (use the POST and DELETE
methods) or to invoke operations (using POST).

Using the WLS RESTful Management Interface 3-1

Viewing WLS Beans

* However, with certain resources, a Deployer can deploy and undeploy applications
and libraries, and an Operator can start a server.

If the user is a domain user (for example, defined in the domain's default security
realm), the URL to access REST resources starts with ht t p: // host : port/
managenent . If the user is a partition user (for example, defined in that partition's
security realm), the URL to access REST resources starts with htt p: / / host : port/
partition_nane/ management.

For more information about user roles in WebLogic Server Multitenant, see
"Administrative Roles for Configuration and Management" in Using WebLogic Server
Multitenant.

3.2 Viewing WLS Beans

To view a WLS bean, invoke the HTTP GET method on its corresponding REST URL.
For example, to get the configuration for the server, Ser ver - O:

GET http://local host: 7001/ managenent / webl ogi c/ | atest/edit/| atest/servers/ Server-0
CET returns a standard WLS REST response body. It returns a JSON object containing

the bean's properties and a | i nks property, a JSON array containing links to related
resources.

3.2.1 About WLS Bean Properties

The returned JSON object contains the WLS bean's properties (for example, typical
properties and references, but not children), using the standard Java to JSON
mappings (see JSON Mappings). It also includes an i denti t y property that specifies
the bean's identity. For example:

{
identity: ["dommin", "servers", "Server-0"],
name: 'Server-0',
|istenPort: 7001,
machine: { identity: ["domain", "machines", "Machine-0"] }

}

3.2.2 Self and Canonical Links

All resources include a sel f and a canoni cal top level link that refer to the
resource. For example, a server contains sel f and canoni cal links that refer to the
specified server:

{
links: [
{ rel: "self", href: "http://local host: 7001/ management/webl ogi c/ | atest/edit/
servers/ Server-0" }
{ rel: "canonical", href: "http://local host: 7001/ managenent/webl ogic/l atest/edit/
servers/ Server-0" }

]
}
The cross-references of these links refer to that REST resource also, therefore, include

the name of the tree in which the resource is a child, for example, edi t,
domai nRunt i e, server Confi gurati on, and such.

3-2 Administering Oracle WebLogic Server with RESTful Management Services

Viewing WLS Beans

3.2.3 Parent Links

All resources, except for root resources, include a top level link to their parent
resource. The link's r el property is set to par ent .

Collection children return links to the collection resource, for example, a server returns
a link to the server's collection resource:

{
links: [
{ rel: "parent", href: "http://local host: 7001/ managenent/webl ogi ¢/l atest/edit/
servers" }
]
}

Similarly, singleton children return links to their parent resource, for example, an SSL
bean returns a link to the server bean:

{
links: [
{ rel: "parent", href: "http://local host: 7001/ managenent/webl ogi ¢/l atest/edit/
servers/ Server-0" }

]
}

3.2.4 Self Create Form Links

If a bean is a creatable, optional singleton (for example, a realm's

RDBMSSecur i t ySt or €), and the bean currently does not exist, then a link to its
corresponding create form resource is also returned. The link's r el property is set to
cr eat e. For example, calling GET on a security realm's adjudicator also returns:

{
links: [
{
rel: "create",
href: "http://1ocal host: 7001/ management / webl ogi c/ | atest/edit/
securityConfiguration/real ns/ nyreal nf adj udi cat or Cr eat eFor nf

}
]
}

3.2.5 Child Bean Links

Since a WLS bean's containment properties (for example, children) are mapped to
separate REST resources, they are returned as top level links in the JSON response
body.

Each link's r el property is mapped to the bean property's name. For example, calling
GET on Ser ver - 0 returns:

{
links: [
/1 mandatory singleton child:
{
rel: "SSL",
href: "http://1ocal host: 7001/ management / webl ogi c/ | at est/ servers/ Server -0/ SSL"
h
/1 witable collection of children:
{

Using the WLS RESTful Management Interface 3-3

Viewing WLS Beans

rel: "networkAccessPoints",
href: "http://1ocal host: 7001/ management / webl ogi c/ | at est/ edi t/servers/ Server-0/
net wor kAccessPoi nt s"
}
]
}

3.2.6 Child Create Form Links

Links to create form resources are returned for creatable containment properties
(singletons and collections). The link's r el property is set to

<si ngul ar Pr oper t yName>Cr eat eFor m For example, calling GET on Ser ver - 0
also returns:

{
links: [
{
rel: "networkAccessPoi nt Creat eFornt',
href: "http://1ocal host: 7001/ management / webl ogi c/ | at est/ edi t/servers/ Server-0/
net wor kAccessPoi nt Cr eat eFor nf

}
]
}

3.2.7 Singleton Bean Reference Links

WLS beans return top level links for each non-null singleton reference. The link's r el
property is set to the name of the reference property. For example, if Ser ver - 0 refers
to Machi ne- 0:

{
machine: ["machines", "Machine-0"],
links: [
{ rel: "machine", href: "http://local host: 7001/ managenent/webl ogi c/ | atest/edit/
machi nes/ Machi ne-0" }

]

}
If Ser ver - 0 has no machine reference:
{
machi ne: nul |
}

3.2.8 Bean Reference Collection Links

WLS beans return nested links for each reference in a reference collection. The link's
rel propertyissettoself.

For example, if Appl i cat i on- O refers to the targets Ser ver - 0 and C ust er - 0:

{

targets: [
{
identity: ["clusters", "Custer-0"],
links: [{ rel: "self", href: "http://local host: 7001/ managenent/webl ogi c/
latest/edit/clusters/Custer-0" }]
1
{

3-4 Administering Oracle WebLogic Server with RESTful Management Services

Viewing Collections of Contains Beans

identity: ["servers", "Server-0"],
links: [{ rel: "self", href: "http://local host: 7001/ managenent/webl ogi c/
latest/edit/servers/ Server-0" }]

}
}

3.2.9 Operation Links

Resources also return top level links to their operation resources. The links'r el
properties are set to act i on and the links' titles are set to the name of the operation.
For example, a Ser ver Runt i neMBean returns:

{
links: [
{
rel: "action",
title: "suspend",
href: "http://1ocal host: 7001/ management / webl ogi ¢/ | at est/ domai nRunt i ne/
server Runti mes/ Server - 0/ suspend"”
1
{

rel: "action",
title: "resune",
href: "http://1ocal host: 7001/ management / webl ogi ¢/ | at est/ domai nRunt i ne/
server Runt i mes/ Server -0/ resunme"
1
{

rel: "action",

title: "shutdown",

href: "http://1ocal host: 7001/ management /webl ogi ¢/ | at est/ domai nRunt i ne/
server Runti mes/ Server - 0/ shut down"

}
]
}

3.3 Viewing Collections of Contains Beans

To view a collection of WLS beans, invoke the HTTP GET method on its corresponding
REST URL. For example, to get the configuration of all the servers:

GET http://1ocal host: 7001/ managenent / webl ogi ¢/ | at est/edit/servers

CET returns a standard WLS REST response body. i t ens contains the children's
properties. Each item has embedded sel f and canoni cal links to that child's
resource.

Only the immediate children are returned. For example, if you get the servers
collection, each server's properties will be returned, but the server's children (such as
SSL) are not returned.

3.3.1 About Collection items

The resource returns a JSON object for each child in the collection. These objects
contain the same data as the items returned from calling GET on the children's
resources. For example, getting the domain bean's ser ver s collection returns:

{
itens: [
{ nane: "Server-1", listenPort: 7001, ... },
{ name: "Server-2", listenPort: 7003, ... }

Using the WLS RESTful Management Interface 3-5

Retrieving Create Forms

3.3.2 About Collection Links

A collection resource returns the following links:

¢ sel f and canoni cal links to itself.

¢ Alink to its parent.

* A link to its corresponding create form resource if the collection is writable.

* Nested sel f and canoni cal links to each of its children.
For example, getting the domain bean's ser ver s collection returns:

{
items: [
{
name: "Server-1",
l'istenPort: 7001,
links: [
{ rel: "self", href: "http://local host: 7001/ management / webl ogi c/ | atest/edit/
servers/ Server-1" }
{ rel: "canonical", href: "http://local host: 7001/ managenent/webl ogi c/ | atest/
edit/servers/ Server-1" }
]
1
{

nane. "Server-2",
listenPort: 7005,
links: [
{ rel: "self", href: "http://local host: 7001/ management / webl ogi c/ | atest/edit/
servers/ Server-1" }
{ rel: "canonical", href: "http://local host: 7001/ managenent/webl ogi c/| atest/
edit/servers/ Server-1" }
]
}
]
links: [
{ rel: "self", href: "http://local host: 7001/ management/webl ogi c/ | atest/edit/
servers" }
{ rel: "canonical", href: "http://local host: 7001/ managenent/webl ogic/|atest/edit/
servers" }
{ rel: "parent", href: "http://local host: 7001/ managenent/webl ogi ¢/l atest/edit" }
{ rel: "create-fornt, href: "http://local host: 7001/ managenent/webl ogi ¢/ | at est/
edit/serverCreateFornt }
]
}

3.4 Retrieving Create Forms

To retrieve a create form for creating a new resource, invoke the HTTP GET method on
its corresponding create form REST URL. For example, to retrieve a create form for
creating a new server:

GET http://local host: 7001/ managenent / webl ogi ¢/ | at est/edit/server Creat eForm

3-6 Administering Oracle WebLogic Server with RESTful Management Services

Filtering Results

GET returns a standard WLS REST response body. It returns a JSON object containing
the create form's properties and a | i nks property which is a JSON array containing
links to related resources.

3.4.1 About Create Form Properties

The returned JSON object contains a property for each writable property (normal
properties and references) that may be specified when creating a new resource of that
type. The property's value will either be the default value from the type's bean info (if
available), or the default value for the property's type (for example, O for an i nt). The
values for reference properties are always null. For example, getting the domain's
server Cr eat eFor mreturns:

{

name: null, // identity - unique names are not generated

i dl eConnectionTimeout: 65, // fromthe default value in the bean info

replicationGoup: null, // default value for a String since the bean info does not
provide a default val ue

machine: null, // singleton reference

candi dat eMachines: null, // reference collection

.
3.4.2 About Create Form Links

A create form returns the following links:
¢ sel f and canoni cal links to itself.
® A link to its parent.

¢ Acr eat e link to the corresponding resource that can be used to create a resource
of this type.

For example, getting the domain bean's ser ver Cr eat eFor mreturns:

{
links: [
{ rel: "parent", href: "http://local host: 7001/ managenent/webl ogi c/| atest/edit" },
{ rel: "self", href: "http://local host: 7001/ management / webl ogi c/ | atest/edit/
server CreateFornt' },
{ rel: "canonical", href: "http://]ocal host: 7001/ managenent/webl ogi c/| atest/edit/
server CreateFornt' },
{ rel: "create", href: "http://local host: 7001/ managenent/webl ogi c/ | atest/edit/
servers" }
]
}

3.5 Filtering Results

Bean, collection, and create form resource GET methods support the following query
parameters to let you omit properties and links from the response:

Parameter Name Description
fields Only return these properties.
excl udeFi el ds Return all properties except for these properties.

Using the WLS RESTful Management Interface 3-7

Modifying the WLS Configuration

Parameter Name Description
l'i nks Only return links with these r el names.
excl udelLi nks Return all links except for the ones with these r el names.

fiel ds and excl udeFi el ds are mutually exclusive, as are | i nks and
excl udeLi nks. All the values are comma-separated lists of names.

For example, to only retrieve a server's sel f and par ent links, and nanme and
| i stenPort properties:

curl ... -X GET http://local host: 7001/ managenent / webl ogi c/ | at est/edit/servers/
myserver\

?fiel ds=nane, | i stenPort\ & i nks=sel f, parent
{

links: [
{ rel: "parent", href: "http://local host: 7001/ managenent/webl ogi ¢/l atest/edit/
servers" },
{ rel: "self", href: "http://local host: 7001/ management/webl ogi c/ |l atest/edit/
servers/ myserver" }
1,
nanme: "nyserver",
listenPort: 7001

}

3.6 Modifying the WLS Configuration

You can create, modify and delete beans in the edit tree only (. . . / managemnent /
webl ogi ¢/ <ver si on>/edi t/...). The other bean trees are read-only.

All WLS bean edits must be performed within a configuration transaction:
¢ If you already have started a transaction, the REST changes will be made in the

same transaction. You will still be responsible for committing or rolling back the
transaction.

e If you have not started a transaction, the REST resource will begin a transaction on

your behalf, try to make the changes, and either commit or roll back the transaction
depending on whether the changes could be made (auto-transactions).

If someone else already has started a transaction, the REST resource will return an

error (instead of modifying the configuration).

Sometimes a configuration transaction cannot be committed unless complementary
changes to multiple beans are made in the same transaction. In these cases, you need
to begin and end the transaction explicitly versus relying on auto-transactions.

Also, when the client manages the transaction, each REST call saves the changes (but
does not activate them). There is some MBean validation that occurs during the save
operation which might cause it to fail. For example, when you create a JDBC system

resource, the changes cannot be saved until after its child JDBC resource name is set.
For cases like this, use the saveChanges=f al se query parameter.

For more information, see the changeManager resources in RESTful Edit Reference for
Oracle WebLogic Server.

3-8 Administering Oracle WebLogic Server with RESTful Management Services

Modifying the WLS Configuration

3.6.1 Modifying WLS Configuration Beans

To modify a WLS bean, construct a JSON object containing the values you want to
change then invoke the HTTP POST method on its corresponding REST URL, passing
in that JSON object as the request body.

For example, to change a server's listen port and administration port:

curl ... -d"{
|istenPort: 7007,
admini strationPort: 9007
}" -X PCST http://1ocal host: 7001/ managenent / webl ogi ¢/ | atest/edit/servers/ Server-0

This is similar to an HTTP PATCH operation where you only modify part of the bean,
versus needing to pass in all of the bean's properties every time.

3.6.2 About the JSON Object Request Body

You construct a JSON object containing the values you want to change. Some WLS
bean properties are read-only (for example, a server's name). Read-only properties are
ignored.

You don't have to pass in all of the bean's properties. Any properties not passed in will
retain their current values. As was described in Encrypted Properties, GET returns the
value @ acl e_Confi dential _Property_Set_V1. 1# for an encrypted string
property that has a non-null value. If you POST back this value, then the property will
retain its current value. If you want to change the encrypted property's value, then set
the value to the cleartext string that you want it to be, for example:

{ defaul tI1OPPassword: "adnminl23" }

To change a reference, pass in its identity. The same is true for reference collections.
This replaces the reference collection versus adding references to the collection. For
example, to set a server's machine to Machi ne- 0 and candidate Machines to

Machi ne- 0 and Machi ne- 1:

{
machi ne: ['machines', 'Mchine-0'"] },
candi dat eMachi nes: [
{ identity: ['machines', 'Machine-0'] },
{ identity: ['machines', 'Machine-1'] }
]
}

Also, use null to remove references. For example, to remove a server's machine and
candidate machines' references:

{

machi ne: nul |,
candi dat eMachi nes: nul |

}

If you pass in a mixture of valid and invalid values, the valid ones are written and
errors are returned for the invalid ones, and overall, the REST method returns an OK
status code. For example:

curl ... -d"{
l'istenPort: 7007,
admi nistrationPort: 'foo'
}" -X PCST http://local host: 7001/ managenent / webl ogi ¢/ | at est/edit/servers/ Server-0

Using the WLS RESTful Management Interface 3-9

Using Multiple Edit Sessions

HTTP/ 1.1 200 K

{
messages: |
{
severity: "FAILURE',
field: "admnistrationPort",
message: "Sonething about the value needs to be an integer"
}
]
}

In this example, the listen port is modified and the administration port is not. The
method returned an OK status code.

3.7 Using Multiple Edit Sessions

In a previous release, WLS introduced multiple edit sessions. (See "Managing Named
Concurrent Edit Sessions" in Using WebLogic Server Multitenant.) These edit sessions
are scoped. There is one scope for domain level edit sessions and one per partition.
Each scope has a default edit session. Edit session names are unique within a scope,
but not across scopes.

For all the REST resources in the edi t tree, you must specify which edit session to use
—the name of the scope and the name of the edit session within that scope.

The edit session scope name is derived from the URL. If you use a non-partitioned
REST URL, then REST uses the domain level scope. If you use a partitioned REST
URL, then REST uses that partition's scope.

Within that scope, REST must know which edit session to use. You can either specify a
header which states exactly which edit session to use, or you can let REST use
defaulting rules to pick one.

3.7.1 Client Specified Edit Session

You can select the edit session by including a webl ogi c. edi t . sessi on header in
the request. The header's value is used as the edit session name. For example:

curl ... -Hweblogic.edit.session=M/Session ...

Each edit session scope has a default edit session named def aul t . To explicitly select
the scope's default edit session:

curl ... -Hweblogic.edit.session=default ...

3.7.2 The Default Edit Session

If you did not include the webl ogi c. edi t . sessi on header, the REST resources use
the following rules to select an edit session:

¢ If you currently have one edit session locked in the scope, REST will use it.
® Or, if you have created one edit session in the scope, REST will use it.

* Otherwise, REST will use the scope's default edit session.

3-10 Administering Oracle WebLogic Server with RESTful Management Services

Creating WLS Configuration Beans

3.8 Creating WLS Configuration Beans

You create a new WLS configuration bean by calling POST with a JSON structure
containing the new bean's properties. To make this easier, you can use the
corresponding create form resource to retrieve a template JSON structure that is
populated with default values for the various writeable properties.

3.8.1 URLs For Creating WLS Configuration Beans

To create a collection child, call POST on the collection's URL, for example, ht t p: //
| ocal host: 7001/ managenent / webl ogi c/ | at est/ edi t/ servers.

To create an optional singleton child, call POST on the proposed child's URL, for
example, htt p: / /| ocal host: 7001/ management / webl ogi c/ | at est/ edi t/
securityConfiguration/real ms/ nyReal nf adj udi cat or.

To retrieve a create form, call GET on the corresponding create form resource, for
example:

http://1ocal host: 7001/ managenent / webl ogi ¢/ | at est/ edit/server Creat eForm

And

http://1ocal host: 7001/ managenent / webl ogi c/ | at est/ edit/securityConfiguration/real ns/
myReal nf adj udi cat or Cr eat eForm

3.8.2 Getting a JSON Template

The underlying WLS beans have default values for many properties. You typically
want to display these default values and perhaps, customize them, then use them to
create a new WLS bean. You can get these default values by calling GET on the
corresponding create form resource. For example:

curl ... -X GET http://local host: 7001/ managenent / webl ogi ¢/ | atest/edit/
server Creat eForm
HTTP/ 1.1 200 K

{
|istenPort: 7001,

-
}

3.8.3 Creating the Bean

To create the WLS configuration bean, call POST on a JSON object containing the new
bean's properties.

The JSON object does not need to include all the possible properties. Unspecified
properties are set to their default values. All collection children need to be assigned a
unique identity within their collection, for example, a server needs a unique name.
Therefore, the i dent i t y property is not optional.

The response contains a | ocat i on header containing the resource's URL. For
example:

curl ... -d"{

name: "Server-1",

defaul t Protocol : "t 3s"
}" -X PCST http://1ocal host: 7001/ managenent / webl ogi ¢/ | atest/edit/servers
HTTP/ 1.1 201 Created

Using the WLS RESTful Management Interface 3-11

Creating WLS Configuration Beans

Location: http://local host: 7001/ managenent/webl ogi c/| atest/edit/servers/ Server-1
curl -X GET http://local host: 7001/ managenent / webl ogi ¢/ | atest/edit/servers/id/ Server-1
HTTP/ 1.1 200 K

{
item {
identity: ["domain", "servers", "Server-1"],
nanme: "Server-1",
defaul tProtocol : "t3s", // specified by the caller
I'i stenAddress: 7001 /'l not specified by the caller, therefore set toits
default val ue
1
}

If a bean with that name already exists, the resource returns a BAD_REQUEST status
code along with a failure message. For example:

curl ... -d"{

nanme: "Server-1"
}" -X PCST http://local host: 7001/ managenent / webl ogi ¢/ | atest/edit/servers
HTTP/ 1.1 400 Bad Request
{

type: "http://oracl e/ TBD W sRest MessageSchema",

title: "FAILURE",

detail: "Bean already exists:
\"webl ogi c. managenent . confi gurati on. Server MBean!| npl @1f a1656([nydomai n] /
Servers[Server-1])\"",

status: 400

}

Similar to updating a WLS configuration bean, you can pass in a mixture of valid and
invalid values. Read-only properties and properties that the bean does not support are
ignored. If there is an exception setting a property, the resource adds a failure message
to the response. After processing all of the properties, if there were any errors, the
resource attempts to delete the new bean and returns a BAD_REQUEST status code.

Example 3-1 Mixture of valid and invalid properties

curl ... -d"{
nane: "Server-1",
l'istenPort: abc,
defaul t Protocol : "no-such-protocol ",
adminstrationProtocol: "iiop"
}" -X PCST http://local host: 7001/ managenment / webl ogi ¢/ | atest/edit/servers
HTTP/ 1.1 400 Bad Request
{
type: "http://oracl e/ TBD W sRest MessagesSchema",
title: "ERRORS',
status: 400,
w s:errorsDetails: [
{
type: "http://oracl e/ TBD W sRest MessageSchema",
title: "FAILURE",
detail: "no-such-protocol is not a legal value for Defaul tProtocol.\
The val ue nust be one of the following: [t3, t3s, http, https, iiop, iiops]",
o:errorPat: "defaul tProtocol"
¥
{
type: "http://oracl e/ TBD W sRest MessageSchema",

title: "FAILURE",
detail: "Type nmismatch. Cannot convert abc to int",
o:errorPath: "listenPort"

3-12 Administering Oracle WebLogic Server with RESTful Management Services

Managing Whether a Property Is Set

}
]
}

Example 3-2 All valid properties

curl ... -d"{
nane: "Server-1",
l'istenPort: 7003,
defaul t Protocol : "https",
adminstrationProtocol: "iiop"
}" -X PCST http://local host: 7001/ managenment / webl ogi ¢/ | atest/edit/servers
HTTP/ 1.1 201 Created
Location: http://local host: 7001/ managenent/webl ogi c/ | atest/edit/servers/ Server-1

3.8.4 Deleting WLS Configuration Beans

To delete a WLS bean (both collection children and optional singleton children),
invoke the HTTP DELETE operation on its corresponding REST URL. Any references
to that bean will be removed also. For example, to delete a server:

curl ... -X DELETE http://local host: 7001/ managenent / webl ogi c/ | at est/ edit/servers/
Server-0

3.9 Managing Whether a Property Is Set

An MBean property can either be set or unset. If it is set, its value is persisted (for
example, to confi g. xm) and locked in. If it is unset, then a default value is used.
The value can either be the default value for the property's type, a hard coded default
value, or a computed default value that runs some custom Java code.

By default, when you call GET on a resource, it returns the property's current value.
When you set the value of a St r i ng property to null or an empty string, it unsets the
property (returns it to its default value).

REST lets you determine whether a property has been set, and explicitly set or unset a
property.
If you set the expandedVal ues query parameter to t r ue when getting a resource,

each value is returned as a JSON object with a set Boolean property and a val ue
property that holds the current value. For example, getting a server returns:

curl ... -X GET\
http://1ocal host: 7001/ managenent / webl ogi c/ | at est/edit/servers/ nyserver?
&expandedVal ues=t rue

{

listenPortEnabl ed: { set: false, value: true }, // currently not set
name: { set: true, value: "nyserver" }, // currently set
listenPort: { set: true, value: 7003 } // currently set

}

Similarly, you can use the expandedVal ues query parameter to explicitly set or
unset values. For example, to unset the listen port and set the listen address to an

empty string:

curl ... -d"{
listenPort: { set: false }, // value will be ignored if specified
listenAddress: { set: true, value: "" }

}" -X PCST http://1ocal host: 7001/ managenent / webl ogi ¢/ | atest/edi t/servers/ nyserver?
expandedVal ues=true

Using the WLS RESTful Management Interface 3-13

Invoking Operations

3.10 Invoking Operations

Each WLS bean operation maps to its own REST URL. In the case of overloaded
operations (for example, shut down() versus shut down(i nt, bool ean)), all the
overloaded operations map to the same URL and the resource looks at the incoming
arguments to determine which operation to invoke.

If the operation requires input arguments, they are specified by passing in a JSON
object request body with a property for each argument. The name of the property
matches the name of the argument.

If the operation does not take input arguments, you must pass in a JSON object with
no properties.

Similarly, if the operation returns a value, then it is returned in a standard REST
response body's JSON object r et ur n property. If the operation is void, the response
body does not include an r et ur n property.

If the underlying MBean operation throws an exception, the REST method returns a
BAD REQUEST (404) response containing the exception's text.

Example 3-3 void operation with no arguments : void shutdown()

curl ... -d"{}"\
-X PCST http://local host: 7001/ managenent / webl ogi ¢/ | at est/ domai nRunt i me/
server Runti mes/ Server - 0/ shut down

{

Il response does not include a 'return' property since it's a void operation

}

Example 3-4 void operation with multiple arguments : void shutdown(int timeout,
boolean ignhoreSessions)

curl ... -d "{ tinmeout: 500, ignoreSessions: false }" \

-X PCST http://local host: 7001/ managenent / webl ogi ¢/ | at est/ domai nRunt i me/
server Runti mes/ Server - 0/ shut down

{

Il response does not include a 'return' property since it's a void operation

}

Example 3-5 non-void operation with an argument: String getURL(String protocol)

curl ... -d "{ protocol: "http" }" \
-X PCST http://local host: 7001/ managenent / webl ogi ¢/ | at est/ domai nRunt i me/
server Runti nmes/ Server -0/ get URL

{
return: "http://local host:7003"

}

3.11 Using Queries

The REST API includes a powerful bulk access capability that lets you dynamically
describe a tree of beans that can be returned in one call. Each tree (for example, edit,
domain runtime, and such), has a root sear ch resource. You can POST a query to
these sear ch resources. The query indicates which beans (and properties and links)
should be returned, and, as such, returns a portion ("slice") of the bean tree.

Bulk access can only be used for reading; it cannot be used for writing.

3-14 Administering Oracle WebLogic Server with RESTful Management Services

Using Queries

3.11.1 Search Resources

Each bean tree includes a sear ch resource for bulk queries.

On the Administration Server:

URL Description

.../ managemnent/ edi t/ search Returns a slice of the edit bean tree (in progress
edits that have not been saved to disk yet).

.../ managenent / domai nConfi g/ Returns a slice of the last configuration bean tree
search that was saved to disk (versus the configuration
the servers are currently using).

.../ managenent / donai nRunt i e/ Returns a slice of the Administration Server's
search domain runtime bean tree (which covers all the
servers' runtime bean trees).

.../ managemnent/ server Confi g/ Returns a slice of the Administration Server's
search configuration bean tree (the configuration the
Administration Server is running against).

.../ managenent/ server Runti ne/ Returns a slice of the Administration Server's
search runtime bean tree.

On Managed Servers:

URL Description

.../ managenent/ server Confi g/ Returns a slice of Managed Server's configuration

search bean tree (the configuration the server is running
against).

.../ managenent/ server Runti me/ Returns a slice of the Managed Server's runtime
search bean tree.

When you POST a query to a search resource, the query starts searching at the root
bean of the tree. The resource returns a JSON response containing the results of the
query, that "slice" of the bean tree.

3.11.2 Object Queries

An object query describes what data should be returned for a WLS bean (or collection
of beans), such as:

e Which of the bean's properties should be returned.
e Which of the bean's links should be returned.
e Which of the bean's children should be returned.

e For a collection, which of its children should be returned.

Note that all searches start at the root bean of the sear ch resource's tree. For example,
if you PCST a query to managenent / domai n/ r unt i me, it starts searching at the
Domai nRunt i meMBean in the domain runtime tree.

Using the WLS RESTful Management Interface 3-15

Using Queries

3.11.2.1 Fields and ExcludeFields

fi el ds specifies which bean properties (for example, scalars and references) are
returned. It is a JSON string array of property names. For example, to return the
domain's nane and confi gur ati onVer si on:

curl ... -d"{ fields: ["name', 'configurationVersion'] }" \
-X PCST http://local host: 7001/ managenent / webl ogi ¢/ | atest/edi t/search

If the query lists properties that the bean does not support, then that part of the query
is ignored (instead of returning an error). If f i el ds is not specified, then all of the
properties are returned.

excl udeFi el ds specifies a list of fields that should not be returned; all other
properties are returned. f i el ds and excl udeFi el ds are mutually exclusive.

Note that a query'sf i el ds and excl udeFi el ds properties mirror the f i el ds and
excl udeFi el ds query parameters that you can specify when calling GET on a
resource. The difference is that the query parameters use comma-separated names and
queries use JSON arrays of names.

3.11.2.2 Links and ExcludeLinks

| i nks specifies which of the bean's links should be returned. It is a JSON string array
of link r el names. For example, to return the domain's sel f and ser ver s links:

curl ... -d"{ links: ["self', 'servers'] }"\
-X POST http://1ocal host: 7001/ managenent / webl ogi ¢/ | at est/ edit/search

If the query lists links that the bean does not support, then that part of the query is
ignored (instead of returning an error).

If I i nks is not specified, then all the links are returned (except for collection children,
which only return their sel f and canoni cal links by default).

Similarly, excl udeLi nks specifies a list of links that should not be returned; all other
links are returned. | i nks and excl udeLi nks are mutually exclusive.

To return all of a collection's children's links, use excl udeLi nks:[].

Note that a query's | i nks and excl udeLi nks properties mirror the | i nks and
excl udeLi nks query parameters that you can specify when calling GET on a
resource.

3.11.2.3 Children

chi | dr en specifies which child bean properties are returned. It is a JSON object
whose property names are the names of the children to return, and whose values are
object queries. For example, to get the domain's name, along with the name and listen
port of each server:

curl ... -d"{
fields: ['name'], // only return the domain's name
children: {
servers: { // fetch the domain's 'servers' collection
fields: ['name', 'listenPort'] // only return each server's nanme and listen
port
}

}" -X PCST http://1ocal host: 7001/ managenent / webl ogi ¢/ | atest/edit/search

3-16 Administering Oracle WebLogic Server with RESTful Management Services

Using Queries

If chi I dr en is not specified, then none of the bean's children are returned.

3.11.2.4 Identities

Sometimes you want to only return certain items in a collection (for example,
nyserver and Ser ver - 0). Each collection child has a property that specifies its
identity. Typically this is the name property. The query uses this property name to
specify which children of a collection are returned. It is a JSON string array of
identities. f i el ds and | i nks can also be used to control which properties and links
are returned for each of these children. For example, to return the name and listen port
for the servers, Ser ver - 0 and Ser ver - 1:

curl ... -d"{
fields: ['nanme'], // only return the domain's name
children: {

servers: { /] fetch the domain's 'servers' collection
nanes: ['Server-0', 'Server-1'"], // only return the children whose 'nane' is
"Server-0' or 'Server-1'
fields: ['nanme', 'listenPort'] // only return each server's nane and listen
port
}

1
}" -X PCST http://local host: 7001/ managenent / webl ogi ¢/ | atest/edi t/search

Identities that do not exist are ignored (instead of returning an error). Similarly, if the
context is not a collection, then this part of the query is ignored. By default, all
collection children are returned.

3.11.3 Response Body

The response body follows the usual pattern (inline properties or i t ens, depending
on whether the URL is for a bean or a collection). The child beans are returned as
nested properties. For example:

curl ... -d"{
fields: [], // don't return any domain |evel properties
links: [], // don't return any domain level |inks
children: {
servers: { // fetch the domain's 'servers' collection
names: ['Server-0', 'Server-1'], // only return the children whose 'nanme' is
"Server-0" or 'Server-1'
fie