ORACLE"

Oracle® Fusion Middleware

Developing JAX-WS Web Services for Oracle WebLogic Server
12¢(12.2.1.1.0)

E75844-02

August 2016

Documentation for software developers that describes how to
develop Java EE web services using the Java API for XML-
based Web services (JAX-WS).

Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle WebLogic Server, 12¢ (12.2.1.1.0)
E75844-02
Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ...t XV
Documentation AccesSIbilitycouoiiiiiiiiiiiiie s XV
COMVEINEIONS ...ttt ettt ettt a bt et e b e bt bt s bt et e b et et et et et e st eat e st eatebtebeeaeebeebesbesbebensenseneen XV

What's NEW iN THIS GUITE...........covirieceeceieseiieeeeie i Xvii
New and Changed Features for 12¢ (12.2.1.1.0) c.c.ccccoviviviniiiiiniiiniiiiiiiss XVii

Part | Introduction

1 Introduction to JAX-WS Web Services

1.1 Overview of JAX-WS Web Service Development..........c.cccoovvivininnnninnnnnnin 1-1
1.1.1 The Programming Model-—Metadata Annotationscc.ccooeeieiiiinciciiiicicee 11
1.1.2 The Development Model—Bottom-up and Top-downccccceeueeiiiiieciciiiiiiiicnas 1-2

1.2 Roadmap for Implementing JAX-WS Web Services.........c.cocovvvrrrnninirnnnnnrrreecenenes 1-3

2 Examples for JAX-WS Web Service Developers
Part Il Developing Basic JAX-WS Web Services

3 Developing JAX-WS Web Services

3.1 Overview of the WebLogic Web Service Programming Model............ccccccoevriniiininnnnnn. 3-1
3.2 Configuring Your Domain For Advanced Web Services Features...........cccccecevurvvrrnnnenne. 3-2
3.2.1 Resources Required by Advanced Web Service Features...........cccocoiiiiiiininnnnnn. 3-4
3.2.2 Configuring a Domain for Advanced Web Service Features Using the
Configuration Wizard ..o 3-7
3.2.3 Using WLST to Extend a Domain With the Web Services Extension Template 39
3.24 Updating Resources Added After Extending Your Domain...........cccccooeiviiiininnnnce. 3-10
3.3 Developing WebLogic Web Services Starting From Java: Main Stepscccccevvvviininnnne 3-11
3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps................... 3-12
3.5 Creating the Basic Ant build.Xml File........ccccocoiiiiiiiiiicceeeeeeeeeeeeee s 3-13
3.6 Running the jwsc WebLogic Web Services Ant Task........ccccccoeevvvinininnnniinrncccene 3-14

3.6.1 Specifying the Transport Used to Invoke the Web Service..........cccccoviiviiiinininnns 3-16

3.6.2 Defining the Context Path of a WebLogic Web Service..........ccoviiiiinnncncnncnee. 3-17
3.6.3 Examples of USING JWSC....cccoiiiiiiiiiiiiiiccccccccccec e 3-17
3.7 Running the wsdlc WebLogic Web Services Ant Taskcccoceueieiiiniiiniicccecceee 3-18
3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc................ 3-20
3.9 Deploying and Undeploying WebLogic Web Services...........ccccoeueiiiriiiiiincciiccce, 3-21
3.9.1 Using the wldeploy Ant Task to Deploy Web Services.........cccoviiiinnincnininincnnnce. 3-22
3.9.2 Using the Administration Console to Deploy Web Servicescccevviiiiiinnnnce. 3-23
3.10 Browsing to the WSDL of the Web Service..........ccccoviiiiniviniiiniiinniiiiiniiinccc 3-23
3.11 Configuring the Server Address Specified in the Dynamic WSDL............ccccccoorine. 3-24
3.11.1 Web service is not a callback service and can be invoked using HTTP/S............... 3-25
3.11.2 Web service is a callback SEIVICEccoiviiriimiriiiiiiiiiiiice e 3-25
3.11.3 Web service is invoked uSing a Proxy SEIVer.........ccoveeeeieiiieereieineceieeenenenennee 3-26
3.12 Testing the Web Service........cccooviiiiiiviniiiiiiiniiiiiiiiii s 3-26
3.13 Integrating Web Services Into the WebLogic Split Development Directory Environment
.. 3-26

Programming the JWS File

4.1 Overview of JWS Files and JWS ANNOtationsc.ccceecveeueeviiireerieericieeeeteere et ere e s 4-1
4.2 Java Requirements for a JWS File.......ccccccoiiiiiiiiiiics 4-2
4.3 Programming the JWS File: Typical Stepsccooooueiiiiiiriiiiiicc e, 4-2
4.3.1 Example of a JWS File.....ccoooiiiiiiiiiiiiii e 4-4
432 Specifying that the JWS File Implements a Web Service (@WebService Annotation)
... 4-4
4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBINdINg ANNOLATION)....c.cuvviiiiiiiiiiiiiiiiiiccceee e 4-5
4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod
and @ONeWay ANNOAtIONS)......c.ovuvueeririririririiecirereee e ees 4-5
4.3.5 Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam ANNOtation).........coeeeerieririerieerieenieenieereenteesreteteseeteteteseebe e seeseseesesaesesaenens 4-6
4.3.6 Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@WebResult ANNOtAtion).......c..cccvueirieirierinieniniiiieeeiene ettt 4-7
4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType Annotation) 4-8
4.4 Accessing Runtime Information About a Web Service.........ccccooeuvirininiiiiinicnccie, 4-9
441 Accessing the Protocol Binding Context..........cccouiiiiiiiiiiiiiiiiiieccceceenns 4-9
442 Accessing the Web Service CONteXt.........cocoiiiiiiiiiiiiiiiiiiicccccecccne 4-12
443 Using the MessageContext Property Values...........cccoooiiiic 4-13
4.5 Should You Implement a Stateless or Singleton Session EJB?ccccooiiiiiiinnn, 4-14
4.6 Programming the User-Defined Java Data Typeccccccooruiiieiiieiiciiicccc 4-16
4.7 Invoking Another Web Service from the JWS File.........ccoooiiiniinncee, 4-18
4.8 USING SOAP 1.2ttt 4-18
4.9 Validating the XML SChema..........ccoociiiiiiiiii e 4-18
49.1 Enabling Schema Validation on the Server ... 4-19

49.2 Enabling Schema Validation on the Client............cccooooiiii 4-19

4.10 JWS Programming Best PractiCesccccouiiviiiiiiniiiiiiiiiiiiiiciccceenen 4-20

Using JAXB Data Binding

51
52
53

54

5.5

5.6

Overview of Data Binding Using JAXB........ccccccciiiiiiiiicceeeeeeieieeneeeeneienenenenenenenas 5-1
Developing the JAXB Data Binding Artifacts.........cccocooeiiiiiiiiiiicccece 5-3
Standard Data Type Mappingccccceeeriiiiiininiiiiiiiiiiciiee et 5-4
5.3.1 Supported Built-In Data Types........cccooeueiiiriiiiiiiicic e 5-4
5.3.2 Supported User-Defined Data TYPesccooevvuviviiiiiiiniiiiiiiincscne 5-9
Customizing Java-to-XML Schema Mapping Using JAXB Annotations...........c.cccccceeueueneeee 5-11
5.4.1 Example of JAXB ANNOtatioNnsccocoiiiiiiiiiiiiiiiccccc e 5-12
54.2 Specifying Default Serialization of Fields and Properties (@XmlAccessorType

F AN a1] - L 1o)) 1S TSRS 5-12
5.4.3 Mapping Properties to Local Elements (@XmlIElement)cccoeoiiinininiininnnnce. 5-13
5.4.4 Specifying the MIME Type (@XmIMimeType Annotation)..........ccccoeevviviiiiininnnne. 5-13
5.45 Mapping a Top-level Class to a Global Element (@XmlRootElement)....................... 5-14
5.4.6 Binding a Set of Classes (@XmISeEAISO).........ccccovuvimiiiiiniininiiiiiicae 5-14
5.4.7 Mapping a Value Class to a Schema Type (@XmIType).......ccccceevriieiniinininccrinenennee. 5-15
Customizing XML Schema-to-Java Mapping Using Binding Declarations.......................... 5-15
5.5.1 Creating an External Binding Declarations File............cccccccoovviiininine. 5-17
5.5.2 Embedding Binding Declarations..........ccccoouoirieiiiiiiciiiiiicceccec 5-19
5.5.3 JAX-WS Custom Binding Declarations ..o, 5-20
5.5.4 JAXB Custom Binding Declarations.............cccceoiiiiiiiiininiiiiiiccccceceeceeeene 5-24
Using the Glassfish RI JAXB Data Binding and JAXB Providerscccccccoeiiiiiiiiicnnes 5-27
5.6.1 Configuring Global Server-Level Data Binding and JAXB Providers........................ 5-28
5.6.2 Configuring Application-Level Data Binding and JAXB Providersccc.......... 5-29
5.6.3 Configuring Java System Properties for JAXB........cccoovviiiiiiiiiiiiiicenns 5-29

Examples of Developing JAX-WS Web Services

6.1

6.2

6.3

Creating a Simple HelloWorld Web Service..........ccociiiiiiiiiiiiicccceecceeeeeeenenenes 6-1
6.1.1 Sample HelloWorldImpljava JWS Filecccccoviiiiiiiiiiiiicnrcciceeceenes 6-4
6.1.2 Sample Ant Build File for HelloWorldImpljavac.ccccocvvvvninnnnninnnnninnne 6-4
Creating a Web Service With User-Defined Data Typescccoceueiiiiiiiiiiiiiiicee 6-5
6.2.1 Sample BasicStruct JavaBean ... 6-8
6.2.2 Sample ComplexImpljava JWS File ..o 6-8
6.2.3 Sample Ant Build File for ComplexImpl.java JWS Fileccccccovvvvinvnniinne 6-9
Creating a Web Service from a WSDL Fileccccooiiiiiiiiice 6-11
6.3.1 Sample WSDL File........cocooiiiii s 6-15
6.3.2 Sample TemperatureService_TemperaturePortImpl Java Implementation File....... 6-16
6.3.3 Sample Ant Build File for TemperatureServicecccocevvuvverrrrvvrcrrrceeeenes 6-16

Part Il Developing Basic JAX-WS Web Service Clients

7

8

Roadmap for Developing JAX-WS Web Service Clients

Developing Web Service Clients

8.1 Overview of WebLogic Web Services Client Development.............ccooooviiiiiiniincneeinen
8.2 Invoking a Web Service from a Java SE Client..........c.cccooeomiiiiiiiiiiiiiiccccce
8.2.1 Using the clientgen Ant Task To Generate Client Artifacts...........ccooooeviiiinni.
8.2.2 Getting Information About a Web Service ..o,
8.2.3 Writing the Java Client Application Code to Invoke a Web Servicec.cccceuvuvuence.
8.24 Compiling and Running the Client Applicationcccccovvviiinnnninnniiiiine
8.2.5 Sample Ant Build File for a Java Client.............cccoooiiiiiic,
8.3 Invoking a Web Service from a Standalone Java SE Clientcccocoevveeviiniiicinicinicicne
8.4 Invoking a Web Service from Another WebLogic Web Serviceccccceuveviuevvvencnnnnne.
8.4.1 Sample build.xml File for a Web Service Client...........ccccccceuvuvuviiirirnnvniinnrccceen
8.4.2 Sample JWS File That Invokes a Web Service...........cccocovuvvivniiiiinnnnniniiinniiee,
8.5 Configuring Web Service CHEntscccoiiiieiiiiiccci e
8.6 Defining a Web Service Reference Using the @WebServiceRef Annotation........................
8.7 Managing Client Identity.........ccccoceiiiiiiiccre s
8.7.1 Defining the Client ID During Port Initialization............cccoceviivnnniinnniiine,
8.7.2 Accessing the Server-generated Client IDccccoovoiiiiiiiiii,
8.7.3 Client Identity Lifecycleccoouoiiiiiiiiii
8.8 Using a Proxy Server When Invoking a Web Servicec.coooeeieiiiiciiiiniccce
8.8.1 Using the ClientProxyFeature API to Specify the Proxy Server...........cccccecvuevrueununene.
8.8.2 Using System Properties to Specify the Proxy Server...........ccccevvvvvvnvnvnnnnnnes
8.9 Client Considerations When Redeploying a Web Service.........ccccoovoeiiiiniiiniiniicice
8.10 Client Considerations When Web Service and Client Are Deployed to the Same

MaANAGEA SEIVETcocuiiiiiiiiiiiiicice et

Examples of Developing JAX-WS Web Service Clients

9.1 Developing a JAX-WS Java SE CHENtccccouvuriiiiiriririiiiiirriiicrrrscrseeeeeeeeeeeas
9.1.1 Sample Java Client APpLCation ...
9.1.2 Sample Ant Build File For Building Java Client Applicationccccccoevoreiiininnnnnn.

9.2 Invoking a Web Service from a WebLogic Web Service...........cccooooveeiviniiiininicce
9.2.1 Sample ClientServicelmpljava JWS File........ccoioiiiiiiiiiiiiicccicccccceeeee
9.2.2 Sample Ant Build File For Building ClientServicec.cocoovrnieivieiriiniccnccnnen,

Part IV Developing Advanced Features of JAX-WS Web Services

10 Using Web Services Addressing

Vi

10.1 Overview of WS-AdAIeSSing ...
10.2 Enabling WS-Addressing on the Web Service...........ccccooiiiiiiiiiiiiiiiiiicccccccenes

11

12

13

14

10.2.1 Enabling WS-Addressing on the Web Service (Starting From Java)cccc.c......... 10-4

10.2.2 Enabling WS-Addressing on the Web Service (Starting from WSDL) 10-4
10.3 Enabling WS-Addressing on the Web Service Client.............ccccccceiiiiiiiiiccciiiccnenes 10-5
10.3.1 Explicitly Enabling WS-Addressing on the Web Service Client.............ccccccceueueunnnes 10-5
10.3.2 Implicitly Enabling WS-Addressing on the Web Service Client..............ccccueeeeee. 10-6
10.3.3 Disabling WS-Addressing on the Web Service Client ..o 10-7
10.4 Associating WS-Addressing Action Properties.............cocciiiiiiiiccccceeecceeeeenenes 10-7

10.4.1 Explicitly Associating WS-Addressing Action Properties (Starting from Java) 10-7
10.4.2 Explicitly Associating WS-Addressing Action Properties (Starting from WSDL) . 10-8

10.4.3 Implicitly Associating WS-Addressing Action Properties............ccooeeviiiirieienninne. 10-9
10.5 Configuring Anonymous WS-Addressingcccooeueirieimeiieiicciiccceees 10-9
Roadmap for Developing Asynchronous Web Service Clients
Developing Asynchronous Clients
12.1 Overview of Asynchronous Web Service INVocation...........cccceueeinieiiinininiciciccce 12-1
12.2 Steps to Invoke Web Services ASynchronously ... 12-5
12.3 Configuring Your Servers for Asynchronous Web Service Invocation..........cccccccecueueneee 12-6
12.4 Building the Client Artifacts for Asynchronous Web Service Invocation............cccccceee. 12-8
12.5 Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport). 12-9
12.5.1 Enabling and Configuring the Asynchronous Client Transport Feature............... 12-10
12.5.2 Developing the Asynchronous Handler Interface............cccocoeoeeciciicccccnccnns 12-15
12.5.3 Propagating User-defined Request Context to the Response..........c.cccccocueuiuiurncnnces 12-17
12.6 Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection) 12-17
12.6.1 Enabling and Configuring Make Connection on a Web Service............ccccoceueene. 12-19
12.6.2 Enabling and Configuring Make Connection on a Web Service Client.................. 12-23
12.7 Using the JAX-WS Reference Implementationccccccoceiiiiciiiiccciecccceeeenes 12-26
12.8 Propagating Request Context to the Response............cccovvviereieiniiiicecceee 12-29
12.9 Monitoring Asynchronous Web Service INnVOcation ..., 12-30
12.10 Clustering Considerations for Asynchronous Web Service Messaging...........ccccc.co...... 12-31
Roadmap for Developing Reliable Web Services and Clients
13.1 Roadmap for Developing Reliable Web Service Clients............cccccoovveviirieininicinicicicennn. 13-1
13.2 Roadmap for Developing Reliable Web Services...........cccoiiviviiiiiiiiiiiiiiicnns 13-6
13.3 Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make
COMMECHION) vttt ettt ettt ettt ettt st ae et sttt et b et b et eb e e b et e besa st st enesaenestemenaenees 13-7
13.4 Roadmap for Securing Reliable Web Services...........cccoooeueviiiiiiiininicicec 13-8
Using Web Services Reliable Messaging
14.1 Overview of Web Services Reliable MeSSagingc.cccoeerueviueiriieiiieiiiceeecees 14-1
14.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions............ccccccc..... 14-2
14.1.2 Supported Transport Types for Reliable Messaging............ccccccceeeuiuiuiiicciiiccnnns 14-2
14.1.3 The Life Cycle of the Reliable Message Sequence..............cccccoeiiiiiiiiicccicinincnnas 14-3

Vii

15

viii

14.1.4 Reliable Messaging Failure Recovery Scenarios...........cccceueeirieieiinciciciiciciee 14-4

14.2 Steps to Create and Invoke a Reliable Web Service..........cccooiiiiiiiiiciciicccccccenns 14-11
14.3 Configuring the Source and Destination WebLogic Server Instances............ccccccceeueueee 14-13
14.4 Creating the Web Service Reliable Messaging WS-Policy Filec.cccooiiiniininne. 14-14

14.4.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy
Assertions Versions 1.2 and 1.1 ..o 14-16

14.4.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy
Assertions Version 1.0 (Deprecated)..........ccocoiviiiininiiiiniiiiiiiciiccccnes 14-18
14.4.3 Using Multiple Policy AIErnatives ... 14-19
14.5 Programming Guidelines for the Reliable JWS File........cccccoooviiiiiiiiiiiiiiciicnes 14-20
14.6 Invoking a Reliable Web Service from a Web Service Client............cccceviiiiiiinnnnnns 14-22
14.7 Configuring Reliable MeSSagingcccocoeueieiiiiiiiiiiiiiciecci e 14-23
14.7.1 Configuring Reliable Messaging on WebLogic Serverccccocoveeicinicicinnnnnee. 14-24
14.7.2 Configuring Reliable Messaging on the Web Service Endpointccccccceueuneens 14-25
14.7.3 Configuring Reliable Messaging on Web Service Clients..........ccccccceiiiiiiunnnnns 14-26
14.7.4 Configuring the Base Retransmission Intervalccooooiii 14-27
14.7.5 Configuring the Retransmission Exponential Backoff............ccccoooviiniiiiiniinnnne. 14-28
14.7.6 Configuring the Sequence EXpiration ..., 14-30
14.7.7 Configuring Inactivity TIMEOULccccccoiiiiiiiiiiiiiccccccceeccccee e 14-32
14.7.8 Configuring a Non-buffered Destination for a Web Serviceccccccoeeiiinnnnns 14-34
14.7.9 Configuring the Acknowledgement Interval.............cccooeiiiiiiiiiiii 14-35
14.8 Implementing the Reliability Error Listener..........ccccooiiiiiiiiiiiicc 14-36
14.9 Managing the Life Cycle of a Reliable Message SeqUENCec.ccceeeueucmimrrcccccccenes 14-38
14.9.1 Managing the Reliable SEqUENCEccoooimiiiiiiiiiiiiiiccccccecceees 14-39
14.9.2 Managing the Clent ID ... 14-41
14.9.3 Managing the Acknowledged Requestscccooueiiiriiiiiiiiiiicc 14-41
14.9.4 Accessing Information About a Messagecccoeuvueviueiieiiiieiiinicecec s 14-42
14.9.5 Identifying the Final Message in a Reliable Sequence.............cccccocoecuiicccccccnnns 14-43
14.9.6 Closing the Reliable SeqUENCE...........cccciiimiiiiiiiiiiiiicccccccccee e 14-43
14.9.7 Terminating the Reliable Sequence............cccccooiiiiiiiiiiiiiiccces 14-44
14.9.8 Resetting a Client to Start a New Message Sequencecccoeeecueveiiicucienennnn. 14-45
14.10 Monitoring Web Services Reliable MeSSagingcccceuvuiurueieiiiinieiiiiiccecee 14-45
14.11 Grouping Messages into Business Units of Work (Batching)cccccoeeeiiiccccccnns 14-46
14.12 Client Considerations When Redeploying a Reliable Web Service...........cccocoeiuinunnces 14-51
14.13 Interoperability with WebLogic Web Service Reliable Messagingc.cccccocueueuennnee. 14-51

Using Web Services Atomic Transactions

15.1 Overview of Web Services Atomic Transactionsccccceiiiieiiiiiiiiiiiccccnes 15-1
15.2 Configuring the Domain Resources Required for Web Service Advanced Features........ 15-3
15.3 Enabling Web Services Atomic Transactions on Web Servicescccoovveiiiiiiininninns 15-4
15.3.1 Using the @Transactional Annotation in Your JWS Filec.cccccccoeiiiiiiiinicnnas 15-5
15.3.2 Enabling Web Services Atomic Transactions Starting From WSDL..................... 15-10
154 Enabling Web Services Atomic Transactions on Web Service Clients............ccccccvururunens 15-11

16

17

15.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation............ 15-11

15.4.2 Passing the TransactionalFeature to the Client............cccocoeiiiiiiiiiiciiccieenns 15-14
15.5 Configuring Web Services Atomic Transactions Using the Administration Console..... 15-17
15.5.1 Securing Messages Exchanged Between the Coordinator and Participant........... 15-17
15.5.2 Enabling and Configuring Web Services Atomic Transactionsccccceueeuee. 15-17
15.6 Using Web Services Atomic Transactions in a Clustered Environment.............c.............. 15-18
15.7 More Examples of Using Web Services Atomic Transactionsccccceeeecccccccncnes 15-18
Optimizing XML Transmission Using Fast Infoset
16.1 Overview of Fast INfOSEt........cccovviiiiiiiiiiiic s 16-1
16.2 Enabling Fast Infoset on Web Services...........ccooiiiiiiiiiiiiiiiiiccccccceicceennes 16-1
16.3 Enabling and Configuring Fast Infoset on Web Services Clients...........cccccccoeiiuiiiiiiiinnnes 16-2
16.3.1 Configuring the Content Negotiation Strategy...........cccoooeeuiireiiiiiii 16-3
16.3.2 Example Using @FastInfosetClient Annotation at Design Time............cccccecvvvvinnnn. 16-3
16.3.3 Example Using FastInfosetClientFeature Feature Class at Design Time................. 16-4
16.4 Disabling Fast Infoset on Web Services and Clients.............cccccoeeeiiiiiiciiicciiiiennas 16-4
Using SOAP Over JMS Transport
17.1 Overview of SOAP Over JMS Transport ... 17-1
17.2 Configuring the WebLogic Server Domain for JMS Transport...........ccccoeeueeeiriiiiiiincieinnes 17-4
17.3 Developing Web Services Using JMS Transport—Starting From Java.........cccccoveireinnne. 17-5
17.3.1 Using the @ MSTransportService ANNOtationcccocoeceucueuicccceccneeceeeenenes 17-6
17.3.2 Using the <jmstransportservice> Child Element in the Ant build.xml File............ 17-7
17.4 Developing Web Services Using JMS Transport—Starting From WSDL............................ 17-8
17.4.1 Updating the WSDL to Use JMS Transport.........ccccoeeuoimueieiniicieiniicieeeccee e 17-10
17.5 Invoking a WebLogic Web Service Using JMS Transportcccocoeueueiiicieiiiinicienne. 17-13
17.5.1 Using the <jmstransportclient> Element in the Ant build.xml File........................ 17-14
17.5.2 Using the @ MSTransportClient ANNotationcccoeeeveveiviceninicceeeeeee 17-15
17.5.3 Using the JMSTransportClientFeature Client APcccocooiiiiiiiiiiiiinns 17-16
17.54 Configuring the JMS URI as the Target Endpoint Address..........ccccoeeviiririennnnnee. 17-17
17.5.5 Using AsyncClientTransportFeature to Configure Asynchronous Clients........... 17-18
17.6 Configuring JMS Transport Properties............ccciiiiiiiiiiiiiiicceeeeeeeeeeenenes 17-19
17.6.1 Summary of JMS Transport Configuration Properties...........cccocoeeuiiiiicincnnes 17-20
17.6.2 Configuration Methods and Order of Precedenceccccooeiiiiiiiiiiinnnnns 17-26
17.6.3 Configuring JMS Transport Using the Administration Console.............ccccccuuuee. 17-27
17.6.4 Configuring JMS Transport Using WLSTccccccovviniiiiiiccie, 17-28
17.6.5 Configuring the JMS URL ... 17-28
17.6.6 Configuring the JMS Request URI..........cccccccoiiiiiiiiiiiiiiicicccccccccnes 17-29
17.6.7 Configuring the WS-Addressing Headers...........ccocoovoiriiiiiiiiiiiicce 17-29
17.6.8 Configuring the JMS Response QUEUE...........cccovuevrieiiieiiieiiieee e 17-30
17.6.9 Configuring the JMS Message TYPE ... 17-31
17.6.10 Configuring HTTP Access to the WSDL File ... 17-32
17.7 Monitoring SOAP Over JMS TranSport........ccccoeeiviiiiiiniiiniiiiiccecc s 17-32

18

19

20

Creating and Using SOAP Message Handlers
18.1 Overview of SOAP Message Handlers...........ccooouoiiiiiiiiiiiiiic 18-1
18.2 Adding Server-side SOAP Message Handlers: Main Steps..........ccccoovreieiiiiciciiiincicns 18-2
18.3 Adding Client-side SOAP Message Handlers: Main Steps..........c.cccocoeecceiccccccecnenenes 18-2
18.4 Designing the SOAP Message Handlers and Handler Chainsccccooevevviniiiicinennnns 18-4
18.4.1 Server-side Handler EXeCUtion..........ccccoiiiiiiiiiiiiiiiiiiiiiicciccccccccccce 18-4
18.4.2 Client-side Handler EXeCUtiONccouivimimiiiiiiiiiiiiiiiiiiiccccccce 18-5
18.5 Creating the SOAP Message Handler ... 18-5
18.5.1 Example of a SOAP Handler ..o 18-6
18.5.2 Example of a Logical Handler ..o 18-7
18.5.3 Implementing the Handler.handleMessage() Method.ccccooorriiinininnn. 18-8
18.5.4 Implementing the Handler.handleFault() Method............c.ccoooriiiiiiii 18-9
18.5.5 Implementing the Handler.close() Method..........ccccccoviiiiiiiininiiiicen, 18-9
18.5.6 Using the Message Context Property Values and Methods.........c.ccccccceeciiicnnns 18-9
18.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ.. 18-11
18.6 Configuring Handler Chains in the JWS Fileccoooiiiiiie 18-12
18.7 Creating the Handler Chain Configuration Filec.ccccocooriiiiiiiie, 18-13
18.8 Compiling and Rebuilding the Web Service ... 18-14
18.9 Configuring the Client-side SOAP Message Handlerscccccoeiiiiiiiiiicciincenns 18-15
Handling Exceptions Using SOAP Faults
19.1 Overview of Exception Handling Using SOAP Faults...........cccccccoeiiiiiiiiiiniciiiccnenas 19-1
19.2 Contents of the SOAP Fault Element............cccccoiiiiiiiiiiiiiiiiiiicccccccccccees 19-2
19.2.1 SOAP 1.2 <Fault> Element Contents............ccccoeiiiiiiiiiiiiiiiicceccecenes 19-2
19.2.2 SOAP 1.1 <Fault> Element Contents..........c.ccccerieiiiiiiiiiiieccceeeenneennes 19-4
19.3 Using Modeled Faults ... e 19-4
19.3.1 Creating and Using a Custom EXception...........ccccoeevviviciieinicnniccecceees 19-5
19.3.2 How Modeled Faults are Mapped in the WSDL File..........cccccooouiiiiiiiniiine 19-5
19.3.3 How the Fault is Communicated in the SOAP Message..........ccccccooorrueiniiniereninnn. 19-7
19.3.4 Creating the Web Service Clent ..o 19-7
19.4 Using Unmodeled Faults............cooiiiiiiiiiiiccccicecceeeeeeeee e 19-10
19.5 Customizing the Exception Handling Processcccooiiiiiiiiiiiiiiiiiiccciccnes 19-10
19.6 Disabling the Stack Trace from the SOAP Fault...........ccocooooiiiii 19-10
19.7 Other EXCEPHONS.......coiieiiiiici e 19-12
Optimizing Binary Data Transmission
20.1 Optimizing Binary Data Transmission Optimization Using MTOM/XOP........................ 20-1
20.1.1 Annotating the Data TyPes.......ccccoiiiininiiiiiiiii s 20-2
20.1.2 Enabling MTOM on the Web Service..........ccoiiiiiiiininiiiiiiiccccccccceeaene 20-3
20.1.3 Enabling MTOM on the CHEeNt ... 20-5
20.1.4 Setting the Attachment Threshold.............ccooi 20-5
20.1.5 Enabling HTTP ChUnKing.........cccooeiiiiiiiiiiiiicieec i 20-6

21

22

23

20.2 Streaming SOAP Attachments..........ccooouoiiiiiiiiiiii e 20-7

20.2.1 Client Side EXamPLeccccciuimiiiiiiiiiiiiicccceececc e 20-7
20.2.2 Server Side EXampPleccooiiiiiiiiiiiiii e 20-8
20.2.3 Configuring Streaming SOAP Attachments............ccccooiviiiiiiininie, 20-9
20.3 Sending SOAP Messages With Attachments Using swaRefc..ccoooiiini, 20-10
Managing Web Service Persistence
21.1 Overview of Web Service Persistence...........ccccooviviiiiiiiiniiiiniininns 21-1
21.2 Roadmap for Configuring Web Service Persistence...........c.cccocoururiminiieiciiicciiccce, 21-3
21.3 Configuring Web Service Persistence...........ccccccvueuruririiuririririiiicirieceeeeeeeeeeeeeeeeeeas 21-3
21.3.1 Configuring the Logical StOTe...........cocooioiiiiiiiiiiiiiiic, 21-5
21.3.2 Configuring Web Service Persistence for a Web Service Endpoint.............c........... 21-6
21.3.3 Configuring Web Service Persistence for Web Service Clientscccccocovvevurunnen. 21-7
21.4 Using Web Service Persistence in a CIUSter..........ccccovuvimiiiiiiiiiiies 21-7
21.5 Cleaning Up Web Service Persistenceccccccvueuruririiiririririiiiirirreecceeeeeeeeeeeeeens 21-8
Configuring Message Buffering for Web Services
221 Overview of Message BUferingcccccoviiiiiiiniiiiiiicccceeeee s 22-1
22.2 Configuring Messaging Buffering............c.cccoooviniiiinniniiccccs 22-1
22.2.1 Configuring the Request QUeUe...........cocovoiiiiiiiiii 22-2
22.2.2 Configuring the Response QUEUE.............ccoviueiiueiiiciiiei e 22-2
22.2.3 Configuring Message Retry Count and Delaycccoooiiiinininnninnnccceeene. 22-3
Managing Web Services in a Cluster
23.1 Opverview of Web Services Cluster ROULINGccccoeuiuiiiriiiiiiiiiriicreeceeeeeeeeees 23-1
23.2 Cluster ROUtING SCENATIOScuovviiriuiriiiiiiieieici e 23-3
23.2.1 Scenario 1: Routing a Web Service Response to a Single Serverc.c..cocoeueunnne 23-3
23.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing
INFOTMALION ...ocviiviti s 23-4
23.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID............. 23-4
23.3 How Web Service Cluster Routing WoOrks..........ccouiriiiiiiiiciiiccci e 23-5
23.3.1 Adding Routing Information to Outgoing Requestsccccooeurruriirniiinriicinnnnn. 23-6
23.3.2 Detecting Routing Information in Incoming Requestsccceeeeiiiinncnincninennnce. 23-6
23.3.3 Routing Requests Within the CIUSter ..o, 23-7
23.3.4 Maintaining the Routing Map on the Front-end SOAP Router..........cccccceveviinnnee. 23-7
23.4 Configuring Web Services in @ Cluster...........cooeuiiiiiiiiiicc e, 23-8
23.4.1 Setting Up the WebLogic Cluster............oooirioiiiii 23-8
23.4.2 Configuring the Domain Resources Required for Web Service Advanced Features
in a Clustered ENVIroNmMentcocooviiiiiiiiiiiiicicccc e 23-9
23.4.3 Extending the Front-end SOAP Router to Support Web Servicesc.ccccoeeueunnne 23-9
23.4.4 Enabling Routing of Web Services Atomic Transaction Messages..........cccccco.o..... 23-10
23.4.5 Enabling Routing of Web Services Make Connection Messagesccccccucuueee. 23-10
23.4.6 Configuring the Identity of the Front-end SOAP Router............cccccoeuvuvivvinininnnnne. 23-10

Xi

23.4.7 Configuring the Identity of the Front-end SOAP Router Using Network Channels

... 23-10
23.5 Monitoring Cluster Routing Performancecooooeeiiiiiiiniiiccccee, 23-11
24 Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP
Messages
241 Opverview of Web Service Provider-based Endpoints and Dispatch Clients....................... 24-1
242 Usage Modes and Message Formats for Operating at the XML Level............cccccccevueunnne 24-2
24.3 Developing a Web Service Provider-based Endpoint (Starting from Java)c.ccc........ 24-3
24.3.1 Developing a Synchronous Provider-based Endpointcccooooiiiinn 24-3
24.3.2 Developing an Asynchronous Provider-based Endpointcccccoouiiiiiiiinnnnnnns 24-6
24.3.3 Specifying the Message FOrmat...........cccccoiiiiiiiiiiiiiiccciiiccc e 24-9
24.3.4 Specifying that the JWS File Implements a Web Service Provider
(@WebServiceProvider ANNOtation)cococorerrereenieeniecnieeneene et eene 24-9
24.3.5 Specifying the Usage Mode (@ServiceMode Annotation).........ccccccceueueueurueuerenennne 24-10
24.3.6 Defining the invoke() Method for a Synchronous Provider-based Endpoints 24-10

25

26

27

Xii

24.3.7 Defining the invoke() Method for an Asynchronous Provider-based Endpoints 24-11
24.3.8 Defining the Callback Handler for the Asynchronous Provider-based Endpoint 24-12

244 Developing a Web Service Provider-based Endpoint (Starting from WSDL)................... 24-12
245 Using SOAP Handlers with Provider-based Endpoints...........cccccceeeeerriccnncccennnes 24-13
24.6 Developing a Web Service Dispatch Clentcccovvieeiiviiiiececcceees 24-15
24.6.1 Example of a Web Service Dispatch Client...........ccccccceviviiiiiiiiiiiiiiiiiinie, 24-16
24.6.2 Creating a Dispatch INStanceoooceiiiiiiic 24-17
24.6.3 Invoking a Web Service Operation............ccoceueviiuiiiieiinciciecce i 24-18
Sending and Receiving SOAP Headers
25.1 Overview of Sending and Receiving SOAP Headers...........ccooovviviiviiinniiniinnn, 25-1
252 Sending SOAP Headers Using WSBIindingProvider...........ccccccevvviiiinniiinrccccne 25-1
25.3 Receiving SOAP Headers Using WSBindingProvider ..o, 25-2
Using Callbacks
26.1 Overview of Callbacks ... 26-1
26.2 Example Callback Implementation..........ccoooiiiiiiiiiiiiicc e, 26-1
26.3 Steps to Program Callbacks............cooiiuiiiiiiiiiiii s 26-2
26.4 Programming Guidelines for Target Web Service.........ccccoeveivniiiinnncicceeeeccee 26-4
26.5 Programming Guidelines for the Callback Client Web Service...........cccccevuvivvvvvinicnnnnnne. 26-5
26.6 Programming Guidelines for the Callback Web Servicecccoovviivinininninnnnninnicnn. 26-7
26.7 Updating the build.xml File for the Target Web Servicecccoooeueiiiriiiniiiiie, 26-7
Developing Dynamic Proxy Clients
27.1 Overview of Static Versus Dynamic Proxy CLHentsccocooiiiiinceiccc, 27-1
27.2 Steps to Develop a Dynamic Proxy CHent ... 27-1
27.3 Additional Considerations When Specifying WSDL Location...........ccccceceeueiivvvninnennne. 27-2

28 Publishing a Web Service Endpoint

29 Using XML Catalogs

29.1 Overview of XML Catalogscccouviiiiiiiiiiiiiii s
29.2 Defining and Referencing XML Catalogs.........cccceviiimieiniiiniciiicicieci
29.2.1 Defining an External XML Catalog..........ccccevvueiiieiiiniiiniiciiicc e
29.2.2 Embedding an XML Catalog ...t
29.3 Disabling XML Catalogs in the Client Runtime............cccoooviiiiniiiinnniicccae,
29.4 Getting a Local Copy of XML ReSOUICES.........cooeurueiiiiurieiiicicie et

30 Programming Web Services Using XML Over HTTP

30.1 About Programming Web Services Using XML Over HTTP...........ccocoovviriiiniinine,
30.2 Programming Guidelines for the Web Service Using XML Over HTTP.............ccc.ccc........
30.3 Accessing the Web Service from @ CHENt..........ccccoeuvueiiuriririiieicirceeeeeeeeeeeeeeeeeeeeeees
30.4 Securing Web Services that Use XML Over HTTPcccccccoviiiiinniiiiiiccccccce

31 Programming Stateful JAX-WS Web Services Using HTTP Session

31.1 Overview of Stateful Web Services ..o
31.2 Accessing HTTP Session on the SEIver ...
31.3 Enabling HTTP Session on the Clent ..o
31.4 Developing Stateful Services in a Cluster Using Session State Replication..............c........
31.5 A Note About the JAX-WS RI @Stateful EXtensSionccccceevvevievierierieiecieieieeeeee e

32 Testing and Monitoring Web Services

32.1 TeSting WED SEIVICES.......cucuiuiiiiiiiiciciciciieceeee et
32.2 Monitoring Web Services and CHENtSccccceuviviriiiiiiiiininiiiiiicccrcceeees
32.2.1 Monitoring Web Servicescceuiiiriiiiiiicieece
32.2.2 Monitoring Web Service CLENtsccccouoiiiieiiiiiiiiicccc

32.3 Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute
TREEAAS ...

PartV Reference

A Pre-packaged WS-Policy Files for Web Services Reliable Messaging and
Make Connection

A.1 DefaultReliability1.2.xml (WS-Policy File)cc.cocoooiiiiiiiiiiiiiicc e
A2 DefaultReliabilityl.1.xml (WS-POLCY File)ccccoiiiiiiiiiiiiiiiiiicccc e
A.3 DefaultReliability.xml WS-Policy File (WS-Policy) [Deprecated]..........cccooiiiiiiiiiniiiiinne.
A4 LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated].........cccccovviiiiiiinnnce.
A5 Mcl.1.xml (WS-POLCY FL@)....oiieiiiiii s
A6 Mcxml (WS-POLiCY File)ooiiiiiiiiic e
A7 Reliability1.2_ExactlyOnce_ WithMC1.1.xml (WS-Policy File).........cccocoiiiiiiiiiiiiiiiiaee.

Xiii

A8
A9
A.10
All
A2
A13

B

C

C1
C2
C3
C4
C5
C.6
C7
C8

Xiv

Reliability1.2_SequenceSTR.xml (WS-Policy File)cocooormimiiiiiiiii A-6

Reliability1.1_SequenceSTR.xml (WS-Policy File)cccccociuiiiiiiiiiiiiccceeeccceieeeeenenenes A-7
Reliability1.2_SequenceTransportSecurity.xml (WS-Policy File).........ccccccceveiiiiiiiiiiicnnns A-7
Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File).........cccccocovvininnnnniinnnnnn A-7
Reliability1.0_1.2.xml (WS-Policy File)cccoemoiiriiiiii e A-8
Reliability1.0_1.1.xml (WS-Policy.xml File)cccooeiniiiiiiiii e A-8

Example Client Wrapper Class for Batching Reliable Messages

Migrating JAX-RPC Web Services and Clients to JAX-WS

Setting the Final Context Root of a WebLogic Web Service..........cocouoiiiiiii, C-2
Using WebLogic-specific ANNOtatioNSccviiiiiiiiiiiiiiiiic i C-2
Generating @ WSDL FIle ..ot C-2
Using JAXB CUStom TYPEScvoviuiiiiiiiiiiiicctcc s C-2
USING ETB 3.0 ..ot C-2
Migrating from RPC Style SOAP Binding........cccccoceviueiiiniiiiniiiicicic s C-3
Updating SOAP Message Handlersccociiiiiiiiiiceeeeeeieeiee oo nenenenenes C-3
INVOKING JAX-WS CLENESooviiiiiiiiiicicciccee et C-3

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing JAX-WS Web Services for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New Iin This Guide

The following topics introduce the new and changed features of WebLogic Java API
for XML Web Services (JAX-WS) Web services in Oracle Fusion Middleware 12¢
(12.2.1), and provides pointers to additional information.

New and Changed Features for 12¢ (12.2.1.1.0)

Oracle Fusion Middleware 12c (12.2.1.1.0) does not contain any new and changed
features for this document.

XVii

Part |

Introduction

Part I introduces developing WebLogic (Java EE) web services using the Java API for
XML-based Web services (JAX-WS).

Sections include:
e Introduction to JAX-WS Web Services

¢ Examples for JAX-WS Web Service Developers

1

Introduction to JAX-WS Web Services

This chapter provides an overview of developing WebLogic (Java EE) web services
using the Java API for XML-based Web Services (JAX-WS). JAX-WS is a standards-
based API for coding, assembling, and deploying Java web services.

This chapter includes the following sections:
¢ Overview of JAX-WS Web Service Development

¢ Roadmap for Implementing JAX-WS Web Services

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 Overview of JAX-WS Web Service Development

WebLogic web services are implemented according to the SR 109: Implementing
Enterprise Web Services specification (ht t p: / / www. j cp. org/ en/j sr/ detail ?

i d=109), which defines the standard Java EE runtime architecture for implementing
web services in Java. The specification also describes a standard Java EE web service
packaging format, deployment model, and runtime services, all of which are
implemented by WebLogic web services.

The following sections describe:
* The Programming Model—Metadata Annotations

¢ The Development Model—Bottom-up and Top-down

1.1.1 The Programming Model—Metadata Annotations

The JSR 109: Implementing Enterprise Web Services specification (ht t p: //
www. j cp. org/ en/jsr/detail ?i d=109) describes that a Java EE web service is
implemented by one of the following components:

* A Java class running in the Web container.

¢ A stateless or singleton session EJB running in the EJB container.

The code in the Java class or EJB implements the business logic of your web service.
Oracle recommends that, instead of coding the raw Java class or E]B directly, you use
the JWS annotations programming model, which makes programming a WebLogic
web service much easier.

This programing model takes advantage of the JDK metadata annotations feature in
which you create an annotated Java file and then use Ant tasks to compile the file into
a Java class and generate all the associated artifacts. The Java Web Service (JWS)
annotated file is the core of your web service. It contains the Java code that determines
how your web service behaves. A JWS file is an ordinary Java class file that uses
annotations to specify the shape and characteristics of the web service. The JWS

Introduction to JAX-WS Web Services 1-1

http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109

Overview of JAX-WS Web Service Development

annotations you can use in a JWS file include the standard ones defined by the Web
Services Metadata for the Java Platform specification (ht t p: / / www. j cp. org/ en/ j sr/
det ai | ?i d=181) as well as a set of other standard or WebLogic-specific annotations,
depending on the type of web service you are creating.

Once you have coded the basic WebLogic web service, you can program and configure
additional advanced features. For example, you can specify that the SOAP messages
be digitally signed and encrypted (as specified by the WS-Security specification at
http://ww. oasi s-open. org/ comni ttees/tc_hone. php?wg_abbr ev=wss).
You configure these more advanced features of WebLogic web services using WS-
Policy files, which is an XML file that adheres to the WS-Policy specification and
contains security-specific or web service reliable messaging-specific XML elements
that describe the security and reliable-messaging configuration, respectively.

1.1.2 The Development Model—Bottom-up and Top-down

There are two approaches to web service development: bottom-up and top-down.
Each approach is described in the following sections.

1.1.2.1 Bottom-up Approach: Starting from Java

In the bottom-up approach, you develop your the JWS file from scratch. After you
create the JWS file, you use the] wsc WebLogic web service Ant task to compile the
JWS file, as described by the JSR 109: Implementing Enterprise Web Services specification
athttp://ww. jcp.org/en/jsr/detail ?i d=109.

The j wsc Ant task always compiles the JWS file into a plain Java class; the only time it
implements a stateless or singleton session E]JB is if you implement a stateless or
singleton session E]B in your JWS file. The j wsc¢ Ant task also generates all the
supporting artifacts for the web service, packages everything into an archive file, and
creates an Enterprise Application that you can then deploy to WebLogic Server.

By default, the j wsc Ant task packages the web service in a standard Web application
WAR file with all the standard WAR artifacts. The WAR file, however, contains
additional artifacts to indicate that it is also a web service; these additional artifacts
include deployment descriptor files, the WSDL file that describes the public contract of
the web service, and so on. If you execute j wsc against more than one JWS file, you
can choose whether j wsc packages the web services in a single WAR file or each web
service in a separate WAR file. In either case,] wsC generates a single Enterprise
Application.

If you implement a stateless or singleton session EJB in your JWS file, then the j wsc
Ant task packages the web service in a standard EJB JAR with all the usual artifacts,
such as the ej b-j ar. xm and webl ogi c-ej b. j ar. xm deployment descriptor
files. The E]B JAR file also contains additional web service-specific artifacts, as
described in the preceding paragraph, to indicate that it is a web service. Similarly,
you can choose whether multiple JWS files are packaged in a single or multiple EJB
JAR files.

Alternatively, you can specify that your session EJB be packaged as a Web application
WAR file by updating the j wsc Ant task in your bui | d. xm file to enable the

ej bV&1 nWar attribute in the modul e child element. For more information, see "jwsc"
in WebLogic Web Services Reference for Oracle WebLogic Server.

For more information about the bottom-up approach, see Developing WebLogic Web
Services Starting From Java: Main Steps.

1-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.jcp.org/en/jsr/detail?id=109

Roadmap for Implementing JAX-WS Web Services

1.1.2.2 Top-down Approach: Starting from WSDL

In the top-down approach, you create the web service from a WSDL file. You can use
the wsdl c Ant task to generate a partial implementation of the web service described
by the WSDL file. The wsdl ¢ Ant task generates the JWS service endpoint interface
(SEI), the stubbed-out JWS class file, JavaBeans that represent the XML Schema data
types, and so on, into output directories.

After running the wsdl ¢ Ant task, (which typically you only do once) you update the
generated JWS implementation file, for example, to add Java code to the methods so
that they function as defined by your business requirements. The generated JWS
implementation file does not initially contain any business logic because the wsdl ¢
Ant task does not know how you want your web service to function, although it does
know the shape of the web service, based on the WSDL file.

The wsdl ¢ Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the j wsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

For more information about the top-down approach, see Developing WebLogic Web
Services Starting From a WSDL File: Main Steps.

1.2 Roadmap for Implementing JAX-WS Web Services

The following table provides a roadmap of common tasks for developing, packaging
and deploying, invoking, and administering JAX-WS web services and clients using
WebLogic Server.

Table 1-1 Roadmap for Implementing JAX-WS Web Services

This chapter . .. Describes how to . ..

Developing Basic JAX-WS Web Services Develop basic JAX-WS web services using the WebLogic
development environment. Program the JWS file that implements
your web service and use the Java Architecture for XML Binding

(JAXB) data binding.
Developing Basic JAX-WS Web Service Develop WebLogic web service clients using JAX-WS and apply
Clients best practices.
Developing Advanced Features of JAX- Develop advanced features of WebLogic web services using JAX-
WS Web Services WS. Advanced features include asynchronous clients, reliable

messaging, atomic transactions, and so on. Test and monitor web
services.

Reference Use pre-packaged WS-Policy files for web services reliable
messaging and Make Connection, use batch reliable messaging, and
migrate JAX-RPC web services and clients to JAX-WS.

Note:

The JAX-WS implementation in Oracle WebLogic Server is extended from the
JAX-WS Reference Implementation (RI) developed by the Glassfish
Community (see htt p: //j ax-ws. j ava. net /). All features defined in the
JAX-WS specification (JSR-224) are fully supported by Oracle WebLogic
Server.

Introduction to JAX-WS Web Services 1-3

http://jax-ws.java.net/

Roadmap for Implementing JAX-WS Web Services

The JAX-WS RI also contains a variety of extensions, provided by Glassfish
contributors. Unless specifically documented, JAX-WS RI extensions are not
supported for use in Oracle WebLogic Server.

For an overview of WebLogic web services, standards, samples, and related
documentation, see Understanding WebLogic Web Services for Oracle WebLogic Server. For
information about WebLogic web service security, see Securing Web Services and
Managing Policies with Oracle Web Services Manager and Securing WebLogic Web Services

for Oracle WebLogic Server.

1-4 Developing JAX-WS Web Services for Oracle WebLogic Server

2

Examples for JAX-WS Web Service

Developers

This chapter summarizes the examples for developing WebLogic web services using
the Java API for XML-based Web services (JAX-WS).

Table 2-1 Examples for JAX-WS Web Service Developers

Example

For More Information

Web service sample applications

"Samples for Java EE Web Service Developers" in
Understanding WebLogic Services for Oracle WebLogic
Server

Common web service code examples

Examples of Developing JAX-WS Web Services

Common web service client examples

Examples of Developing JAX-WS Web Service Clients

Advanced web service client example

Example 7-1

Asynchronous web service client example

Example 11-1

Reliable web service client example

Example 13-1

Examples for JAX-WS Web Service Developers 2-1

2-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Part Il

Developing Basic JAX-WS Web Services

Part II describes how to develop basic WebLogic web services using Java API for
XML-based Web Services (JAX-WS).

Sections include:

* Developing JAX-WS Web Services
® Programming the JWS File

e Using JAXB Data Binding

¢ Examples of Developing JAX-WS Web Services

3

Developing JAX-WS Web Services

This chapter describes the iterative development process for WebLogic web services
using Java API for XML-based Web Services (JAX-WS).

This chapter includes the following topics:

* Overview of the WebLogic Web Service Programming Model

* Configuring Your Domain For Advanced Web Services Features

* Developing WebLogic Web Services Starting From Java: Main Steps

¢ Developing WebLogic Web Services Starting From a WSDL File: Main Steps

® Creating the Basic Ant build.xml File

¢ Running the jwsc WebLogic Web Services Ant Task

* Running the wsdlc WebLogic Web Services Ant Task

¢ Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc

* Deploying and Undeploying WebLogic Web Services

¢ Browsing to the WSDL of the Web Service

¢ Configuring the Server Address Specified in the Dynamic WSDL

¢ Testing the Web Service

¢ Integrating Web Services Into the WebLogic Split Development Directory
Environment

3.1 Overview of the WebLogic Web Service Programming Model

The WebLogic web services programming model centers around JWS files—Java files
that use JWS annotations to specify the shape and behavior of the web service—and
Ant tasks that execute on the JWS file. JWS annotations are based on the metadata
feature, introduced in Version 5.0 of the JDK (specified by JSR-175at ht t p: / /

www. j cp. org/ en/jsr/detail ?i d=175) and include standard annotations defined
by Web Services Metadata for the Java Platform specification (JSR-181), described at
http://wwv. jcp.org/en/jsr/detail ?i d=181, the JAX-WS specification
(JSR-224), described atht t p: / /] ax-ws. j ava. net, as well as additional ones. For a
complete list of JWS annotations that are supported, see "Web Service Annotation
Support" in WebLogic Web Services Reference for Oracle WebLogic Server. For additional
detailed information about this programming model, see The Programming Model—
Metadata Annotations.

Developing JAX-WS Web Services 3-1

http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=181
http://jax-ws.java.net

Configuring Your Domain For Advanced Web Services Features

Web services can be created using two development methods: bottom-up or top-
down. Bottom-up development refers to the process of developing a web service from
the underlying Java implementation using SOAP. Top-development describes the
development of a web service from the WSDL source.

The following sections describe the high-level steps for iteratively developing a web
service, either starting from Java (bottom-up) or starting from an existing WSDL file
(top-down):

* Developing WebLogic Web Services Starting From Java: Main Steps

* Developing WebLogic Web Services Starting From a WSDL File: Main Steps

Iterative development refers to setting up your development environment in such a
way so that you can repeatedly code, compile, package, deploy, and test a web service
until it works as you want. The WebLogic web service programming model uses Ant
tasks to perform most of the steps of the iterative development process. Typically, you
create a single bui | d. xmi file that contains targets for all the steps, then repeatedly
run the targets, after you have updated your JWS file with new Java code, to test that
the updates work as you expect.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper or Oracle Enterprise Pack for Eclipse (OEPE), to develop
web services. For more information, see "Using Oracle IDEs to Build Web Services" in
Understanding WebLogic Web Services for Oracle WebLogic Server.

3.2 Configuring Your Domain For Advanced Web Services Features

When creating or extending a domain, you can apply the WebLogic Advanced Web
Services for JAX-WS Extension template (oracle.wls-webservice-jaxws-template jar) to
configure automatically the resources required to support the following advanced web
service features:

¢ Asynchronous messaging, as described in Developing Asynchronous Clients.

* Web services reliable messaging, as described in Using Web Services Reliable
Messaging.

* Message buffering, as described in Configuring Message Buffering for Web
Services.

* Security using WS-SecureConversation, as described in "Configuring Message-level
Security" in Securing WebLogic Web Services for Oracle WebLogic Server.

Note:

To configure your domain for SOAP over JMS transport, see Configuring the
WebLogic Server Domain for J]MS Transport.

Use of the WebLogic Advanced Web Services for JAX-WS Extension template is only
required when you need to ensure recoverability of advanced web services. The
extension template configures the following resources that support recoverability by
enabling WebLogic Server to retain critical state information in the event of a server
failure:

* JMS queues for storing reliable messaging requests.

3-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Your Domain For Advanced Web Services Features

¢ Default web service persistence configuration that provides a built-in, high-
performance storage solution for web services.

The benefits of using the WebLogic Advanced Web Services for JAX-WS Extension
template include:

* Web services and clients, by default, use the reliable and high performance
WebLogic storage solution.

e Web services that use reliable messaging can buffer incoming asynchronous
requests to increase fault tolerance and better absorb load. (This feature is enabled
by default.)

* Messages between web services and clients can be configured such that they are
fault-tolerant and recoverable in the event of a client failure, service failure, or both.

If you do not use the WebLogic Advanced Web Services for JAX-WS Extension
template, you can still develop using the advanced features, but with a reduced
quality of service, as describe below:

* By default, the state of an advanced web service is stored in memory; in the event
of server failure, the data will be lost.

* Web services will not buffer incoming asynchronous requests when using reliable
messaging.

* Web services and clients will not be recoverable in the event of a failure; any in-
flight requests between them will be lost.

For more information, see Resources Required by Advanced Web Service Features.

Note:

If you do not apply the WebLogic Advanced Web Services for JAX-WS
Extension template to support recoverability:

* You must ensure that buffering is disabled for web services reliable
messaging on the destination server. For more information, see
Configuring a Non-buffered Destination for a Web Service.

* Quality of service features that you have configured for your web service
may not be in effect. In this case, a message will be logged to the sever log
to indicate the feature has been disabled.

Although use of this extension template is not required, it makes the configuration of
the required resources much easier. Alternatively, you can manually configure the
resources required for these advanced features using the Oracle WebLogic Server
Administration Console or WLST.

The following procedures describe how to configure a domain automatically for the
advanced web services features. For more detailed instructions about using the
Configuration Wizard to create and update WebLogic Server domains, see Creating
WebLogic Domains Using the Configuration Wizard.

* Resources Required by Advanced Web Service Features

* Configuring a Domain for Advanced Web Service Features Using the
Configuration Wizard

Developing JAX-WS Web Services 3-3

Configuring Your Domain For Advanced Web Services Features

* Using WLST to Extend a Domain With the Web Services Extension Template

e Updating Resources Added After Extending Your Domain

3.2.1 Resources Required by Advanced Web Service Features

Table 3-1 lists the resources that are defined automatically when using the WebLogic
Advanced Web Services for JAX-WS Extension template.

If you do not apply the extension template, you need to configure the resources
manually using the Oracle WebLogic Server Administration Console or WLST. Be sure
to configure JMS targeting according to best practices defined in "Best Practices for
JMS Beginners and Advanced Users" in Administering JMS Resources for Oracle
WebLogic Server. Specifically:

¢ Configure a JMS server, Store-and-forward (SAF) service agent, and persistent
store on each WebLogic Server. In a cluster, target each to a local migratable target
(not the server). The host server's "default migratable target" is sufficient in most
cases.

e Target JMS modules to a cluster (or single server if not using a clustered
environment).

¢ Create exactly one subdeployment per module, and populate the subdeployment
with the applicable JMS servers or SAF agents only, not the servers.

e Target JMS destinations to the subdeployment (referred to as Advanced Targeting
in the WebLogic Server Administration Console). JMS destinations must never use
the default targeting option.

The following variables are used in the table:

» server_designator specifies an ID that is generated automatically by the
configuration framework. Typically, this ID is of the format aut o_nunber .

* uniquelD specifies unique numeric ID that is generated automatically by the
configuration framework. Typically, this ID is a numeric value, such as 1234.

* server_name specifies the user-specified name of the server.

Note:

At runtime, you should not change the name of resources; otherwise, you may
experience runtime errors or data loss.

3-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Your Domain For Advanced Web Services Features

Table 3-1 Resources Required by Advanced Web Services Features
- - - |

Resource Name

Resource Type

Description

WseeJaxwsJnsMdul e

JMS Module

Defines a JMS module that defines the JMS resources
needed for advanced web services. All associated
targets (JMS servers targeted to a server) on this JMS
module will be used to support JAX-WS web
services. All servers to which this module is targeted
must have the proper web services resources
configured.

Oracle recommends that you target this module to all
servers in the domain.

Note: You must configure the JMS module as a
Uniform Distributed Destination (UDD). Any queues
that are used by web services on JAX-WS must be
Uniform Distributed Queues. Otherwise, an
exception is thrown.

To configure distributed destinations manually and
for more information, see "Using Distributed
Destination" in Developing [MS Applications for Oracle
WebLogic Server.

WeeJaxwsFi | eStore_s
erver _desi gnat or

File store

Specifies the file store, or physical store, used by the
WebLogic Server to handle the I/O operations to
save and retrieve data from the physical storage
(such as file, DBMS, and so on).

A separate file store is configured on each Managed
Server targeted by the WseeJaxwsJInsModul e, as
specified by ser ver _desi gnat or . In a single
server domain, the file store is named
VWeeJaxwsFi | eSt ore.

Note: Oracle recommends targeting the file store to a
migratable target.

To configure the file stores manually, see
Administering the WebLogic Persistent Store.

WseeJaxwsJnsServer _s
erver _desi gnat or

JMS server

Specifies the JMS server management container. A
separate JMS Server is configured on each Managed
Server targeted by WseeJaxwsJInsMdul e, as
specified by ser ver _desi gnat or . The JMS server
uses WseeFi | eSt ore_server _desi gnat or as the
file store.

When configuring the JMS server, Oracle
recommends the following:

e Target the JMS server to a migratable target.

® Set realistic quotas on each JMS server. For more
information, see "Tuning WebLogic JMS" in
Tuning Performance of Oracle WebLogic Server.

To configure the JMS server manually, see "JTMS

Configuration" in Administering JMS Resources for

Oracle WebLogic Server.

Developing JAX-WS Web Services 3-5

Configuring Your Domain For Advanced Web Services Features

Table 3-1 (Cont.) Resources Required by Advanced Web Services Features
. ___|

Resource Name Resource Type Description
WeeJaxwsJmsSer ver un JMS subdeployment Specifies the JMS subdeployment targeting the JMS
i quel D servers defined on all Managed Servers in the cluster.

To configure the JMS subdeployment manually, see
"Configure subdeployments in JMS system modules"
in Oracle WebLogic Server Administration Console

Online Help.
webl ogi c. wsee. j axws. Work Manager Enables an application to execute multiple work
mdb. Di spat chPol i cy items concurrently within a container. One Work

Manager is generated for the domain and targeted to
all servers to which the WseeJaxwsJnsModul e is
targeted.

Note: You should not change the name of the Work
Manager resource.

To configure Work Managers manually, see
"Description of the Work Manager API" in Developing
Common] Applications for Oracle WebLogic Server.

Rel i abl eWseeJaxwsSAF SAF service agent Provides highly available JMS message production.

Agent _server _nane A separate SAF agent is configured on each Managed
Server, as specified by ser ver _name. The SAF agent
uses WseeFi | eSt or e_ser ver _nane as the file
store.

In a single server domain, the SAF agent is named
Rel i abl eWseeJaxws SAFAgent .

When configuring the SAF agent, Oracle
recommends that you set realistic quotas on each
JMS server. For more information, see "Tuning
WebLogic JMS" in Tuning Performance of Oracle
WebLogic Server.

To configure SAF service agents, see "Understanding
the Store-and-Forward Service" in Administering the
Store-and-Forward Service for Oracle WebLogic Server.

WseeBuf f er edRequest Q JMS queue Specifies the queue used for buffered requests. A
ueue_server _desi gnat separate queue is configured on each Managed
or Server, as specified by ser ver _narre.

In a single server domain, the queue is named
WseeBuf f er edRequest Queue. In a clustered
domain, each JMS queue is prefixed by di st _.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration
Console Online Help.

3-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Your Domain For Advanced Web Services Features

Table 3-1 (Cont.) Resources Required by Advanced Web Services Features
. ___|

Resource Name Resource Type Description

WeeBuf f eredRequest E JMS queue Specifies the error queue used for

rror Queue_server _des W eeBuf f er edRequest Queue for buffered
i gnat or requests that cannot be processed within the

maximum number of retries. A separate queue is
configured on each Managed Server, as specified by
server_nane.

In a single server domain, the queue is named
WseeBuf f er edRequest Error Queue.Ina
clustered domain, each JMS queue is prefixed by
dist_.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration

Console Online Help.
WseeBuf f er edResponse JMS queue Specifies the queue used for buffered responses. A
Queue_server_desi gna separate queue is configured on each Managed
tor Server, as specified by ser ver _desi gnat or .

In a single server domain, the queue is named
WseeBuf f er edResponseQueue. In a clustered
domain, each JMS queue is prefixed by di st _.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration

Console Online Help.
WseeBuf f er edResponse JMS queue Specifies the error queue used for
Error Queue_server _de WseeBuf f er edResponseQueue for buffered
si gnhat or responses that cannot be delivered within the

maximum number of retries. A separate queue is
configured on each Managed Server, as specified by
server _desi gnator.

In a single server domain, the queue is named

W eeBuf f er edResponseErr or Queue.Ina
clustered domain, each JMS queue is prefixed by
dist_.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration
Console Online Help.

WseeSt or e Logical store Defines the logical store. A separate logical store is
configured on each Managed Server targeted by
WseeJaxwsJInsModul e. The logical store points to
the VeeBuf f er edRequest Queue queue for its
configuration and file store.

To configure the logical store manually, see
Configuring the Logical Store.

3.2.2 Configuring a Domain for Advanced Web Service Features Using the
Configuration Wizard

The following sections describe how to configure a domain for advanced web service
features.

* Creating a Domain With the Web Services Extension Template

Developing JAX-WS Web Services 3-7

Configuring Your Domain For Advanced Web Services Features

¢ Extending a Domain With the Web Services Extension Template

3.2.2.1 Creating a Domain With the Web Services Extension Template

To create a domain that is automatically configured for the advanced web service

features:
1.

2.

Start the Configuration Wizard.

In the Welcome window, select Create a new WebLogic domain.

Click Next.

Select Generate a domain configured automatically to support the following
products and select WebLogic Advanced Web Services for JAX-WS Extension.

Click Next.

Enter the name and location of the domain and click Next.

Configure the administrator user name and password and click Next.

Conlfigure the server start mode and JDK and click Next.

To configure additional servers and clusters:

a.

On the Select Optional Configuration screen, at a minimum select Managed
Servers, Clusters, and Machines to define the Managed Servers and clusters.
Select any other items, as desired, and click Next.

Configure the Managed Servers in your environment and click Next.
Configure the clusters in your environment and click Next.

Assign the managed servers to the clusters on the Assign to Clusters screen
and click Next.

Configure the machines in your environment and click Next.

Target the services defined in the environment to clusters or servers on the
Target Services to Clusters or Servers screen and click Next.

Note: Target the WseeJaxwsJInsModul e J]MS module and
webl ogi c. wsee. j axws. ndb. Di spat chPol i cy Work Manager to all
servers in the cluster.

Servers targeted on this screen will be fully configured for use with advanced
web services.

Configure additional information on additional configuration screens (if
selected in step 9a) and click Next.

10. When you reach the Configuration Summary screen, verify the domain details
and click Create.

3.2.2.2 Extending a Domain With the Web Services Extension Template

To extend an existing domain so that it is automatically configured for these Web
Services features:

1.

Start the Configuration Wizard.

3-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Your Domain For Advanced Web Services Features

2. In the Welcome window, select Extend an Existing WebLogic Domain.
3. Click Next.

4. Select the domain to which you want to apply the extension template.
5. Click Next.

6. Select Extend my domain automatically to support the following added
products and select WebLogic Advanced Web Services for JAX-WS Extension.

7. Click Next.
8. To configure additional servers and clusters:

a. On the Select Optional Configuration screen, at a minimum select Managed
Servers, Clusters, and Machines to define the Managed Servers and clusters.
Select any other items, as desired, and click Next.

b. Configure the Managed Servers in your environment and click Next.
c. Configure the clusters in your environment and click Next.

d. Assign the managed servers to the clusters on the Assign to Clusters screen
and click Next.

e. Configure the machines in your environment and click Next.

f. Target the services defined in the environment to clusters or servers on the
Target Services to Clusters or Servers screen and click Next.

Note: Target the WseeJaxwsJInsMbdul e J]MS module and
webl ogi c. wsee. j axws. ndb. Di spat chPol i cy Work Manager to all
servers in the cluster.

Servers targeted on this screen will be fully configured for use with advanced
web services.

g. Configure additional information on additional configuration screens (if
selected in step 9a) and click Next.

9. Verify that you are extending the correct domain, then click Extend.

10. Click Done to exit.

3.2.3 Using WLST to Extend a Domain With the Web Services Extension Template

The following provides an example of how to use WLST to extend a domain using the
web services extension template. Specifically, this example demonstrates how to
extend a single server domain. It is assumed that you have already created a single
server domain. You can add additional servers and clusters to the domain in the
location noted in the example script below.

After updating the script and executing it against your domain, all resources will be
configured for advanced web service features.

Review the comments provided in the sample for more information. For more
information about the WLST commands described, see the Understanding the WebLogic
Scripting Tool.

Developing JAX-WS Web Services 3-9

Configuring Your Domain For Advanced Web Services Features

Example 3-1 WLST Script to Extend a Domain With the Web Services Extension Template

Read the domain.
readDomai n(si ngl e_server _domai n_dir)

Apply the tenplate to the domain to configure the servers for advanced web service features.
instalIDir = install _directory/w server_10.3

templ ateLocation = install _directory + '/oracle_comon/commn/tenpl ates/w s/ oracl e. W s-webservi ce-
jaxws-tenpl ate.jar'

addTenpl at e(t enpl at eLocat i on)

Save and close the domain
updat eDonai n()
cl oseDomai n()

Read the donmain
readDomai n(domai n_dir)

Optionally create any servers and clusters required in your domain environnent.
<Include create calls here . . . >
For exanple: create('serverl','Server') or create('clusterl',"Custer')

Optionally configure the JM5 nodule as a Uniform Distributed Destination (Reconmmended)
set Di st Dest Type(' WseeJaxwsJnshbdul e', ' UDD)

Target WeeJaxwsJnsMbdul e to the desired servers and clusters.
assi gn(' JMSSyst enResour ce', ' WseeJaxwsJnsModul e', 'Target', server_or_cluster)
Repeat assign call for other servers and clusters in the environment.

Unassign the resource fromthe Admnistration Server.
unassi gn(' JMSSyst enResource', ' WseeJaxwsJnsMbdul ', 'Target', Administration_Server)

sys. pat h. append(donai n_di r)
appl yJAXWS(gl obal s())

Save and close the domain
updat eDonai n()
cl oseDomai n()

3.2.4 Updating Resources Added After Extending Your Domain

Once you have created or extended a domain using the WebLogic Advanced Web
Services for JAX-WS Extension template, if you then modify the resources in your
domain, you can update the configuration of those resources quickly and easily using
the following WLST script.

After updating the script and executing it against your domain, all resources will be
configured for advanced web service features.

Review the comments provided in the sample for more information. For more
information about the WLST commands described, see the Understanding the WebLogic
Scripting Tool.

Example 3-2 WLST Script for Updating Resources Added After Extending Your Domain

Read the domain.
readDomai n(domai n_di r)

Optionally configure the JVS nodule as a UniformDistributed Destination (Recomended)
set Di st Dest Type(' WeeJaxwsJnshbdul e', ' UDD)

3-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing WebLogic Web Services Starting From Java: Main Steps

Target VWeeJaxwsJnshbdul e to the desired servers and clusters.
assi gn(' JMSSyst enResource', 'WseeJaxwsJnsModul ', 'Target', server_or_cluster_nane)
Repeat assign call for other servers and clusters in the environment.

Unassign the resource fromthe Admnistration Server.
unassi gn(' JMSSyst enResource', ' WseeJaxwsJnsModul ', 'Target', Administration_Server_nane)

sys. pat h. append(donai n_di r)
appl yJAXWS(gl obal s())

Save and cl ose the domin.
updat eDonai n()

3.3 Developing WebLogic Web Services Starting From Java: Main Steps

This section describes the general procedure for developing WebLogic web services
starting from Java—in effect, coding the JWS file from scratch and later generating the
WSDL file that describes the service. See Examples of Developing JAX-WS Web
Services for specific examples of this process.

The following procedure is just a recommendation; if you have set up your own
development environment, you can use this procedure as a guide for updating your
existing environment to develop WebLogic web services.

Note:

This procedure does not use the WebLogic web services split development
directory environment. If you are using this development environment, and
would like to integrate web services development into it, see Integrating Web
Services Into the WebLogic Split Development Directory Environment for
details.

Table 3-2 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the set Dormai nEnv. cnd
(Windows) or set Domai nEnv. sh (UNIX) command, located in the bi n
subdirectory of your domain directory. The default location of WebLogic
Server domains is ORACLE_HOME/ user _pr oj ect s/ donai ns/
donai nNane, where ORACLE_HOME is the directory you specified as Oracle
Home when you installed Oracle WebLogic Server and dormai nNane is the
name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source for any user-
defined data types, and the Ant bui | d. xm file. You can name the project
directory anything you want.

3 Create the JWS file that See Programming the JWS File.
implements the web service.

4 Create user-defined data If your web service uses user-defined data types, create the JavaBeans that
types. (Optional) describes them. See Programming the User-Defined Java Data Type.

5 Create a basic Ant build file, = See Creating the Basic Ant build.xml File.
bui l d. xm .

Developing JAX-WS Web Services 3-11

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

Table 3-2 (Cont.) Steps to Develop Web Services Starting From Java
. ___|

Step Description
6 Run the j wsc Ant task The j wsc Ant task generates source code, data binding artifacts,
against the JWS file. deployment descriptors, and so on, into an output directory. The j wsc Ant

task generates an Enterprise application directory structure at this output
directory; later you deploy this exploded directory to WebLogic Server as
part of the iterative development process. See Running the jwsc WebLogic
Web Services Ant Task.

7 Deploy the web service to See Deploying and Undeploying WebLogic Web Services.

WebLogic Server.
8 Browse to the WSDL of the Browse to the WSDL of the web service to ensure that it was deployed
web service. correctly. See Browsing to the WSDL of the Web Service.
9 Test the web service. See Testing the Web Service.
10 Edit the web service. To make changes to the web service, update the JWS file, undeploy the web
(Optional) service as described in Deploying and Undeploying WebLogic Web
Services, then repeat the steps starting from running the j wsc Ant task (Step
6).

See Developing Web Service Clients for information on writing client applications that
invoke a web service.

3.4 Developing WebLogic Web Services Starting From a WSDL File: Main
Steps

This section describes the general procedure for developing WebLogic web services
based on an existing WSDL file. See Examples of Developing JAX-WS Web Services,
for a specific example of this process.

The procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing
environment to develop WebLogic web services.

It is assumed in this procedure that you already have an existing WSDL file.

Note:

This procedure does not use the WebLogic web services split development
directory environment. If you are using this development environment, and
would like to integrate web services development into it, see Integrating Web
Services Into the WebLogic Split Development Directory Environment for
details.

3-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating the Basic Ant build.xml File

Table 3-3 Steps to Develop Web Services Starting From Java
- -~ |

Step Description
1 Setup the environment. Open a command window and execute the set Domai nEnv. cnd
(Windows) or set Donmai nEnv. sh (UNIX) command, located in the bi n
subdirectory of your domain directory. The default location of WebLogic
Server domains is ORACLE_HOVE/ user _pr oj ect s/ donai ns/
donai nNane, where ORACLE_HOME is the directory you specified as Oracle
Home when you installed Oracle WebLogic Server and donmai nNane is the
name of your domain.
2 Create a project directory. The project directory will contain the generated artifacts and the Ant
buil d. xnl file.
3 Create a basic Ant build file, =~ See Creating the Basic Ant build.xml File.
bui ld. xm .
4 Putyour WSDL filein a For example, you can put the WSDL file inawsdl _f i | es child directory of
directory that the the project directory.
bui I d. xm Ant build file is
able to read.
5 Run the wsdl ¢ Ant task The wsdl ¢ Ant task generates the JWS service endpoint interface (SEI), the
against the WSDL file. stubbed-out JWS class file, JavaBeans that represent the XML Schema data
types, and so on, into output directories. See Running the wsdlc WebLogic
Web Services Ant Task.
6 Update the stubbed-out JWS The wsdl ¢ Ant task generates a stubbed-out JWS file. You need to add your
file generated by thewsdl ¢ business code to the web service so it behaves as you want. See Updating
Ant task. the Stubbed-out JWS Implementation Class File Generated By wsdlc.
7 Run thejwsc Ant task Specify the artifacts generated by the wsdl ¢ Ant task as well as your
against the JWS file. updated JWS implementation file, to generate an Enterprise Application that
implements the web service. See Running the jwsc WebLogic Web Services
Ant Task.
8 Deploy the web service to See Deploying and Undeploying WebLogic Web Services.
WebLogic Server.
9 Browse to the WSDL of the Browse to the WSDL of the web service to ensure that it was deployed
web service. correctly. See Browsing to the WSDL of the Web Service.
10 Test the web service. See Testing the Web Service.
11 Edit the web service. To make changes to the web service, update the JWS file, undeploy the web

(Optional)

service as described in Deploying and Undeploying WebLogic Web
Services, then repeat the steps starting from running the j wsc Ant task (Step
6).

See Developing Web Service Clients for information on writing client applications that
invoke a web service.

3.5 Creating the Basic Ant build.xml File

Ant uses build files written in XML (default name bui | d. xm) that contain a

<pr oj ect > root element and one or more targets that specify different stages in the
web services development process. Each target contains one or more tasks, or pieces of
code that can be executed. This section describes how to create a basic Ant build file;

Developing JAX-WS Web Services 3-13

Running the jwsc WebLogic Web Services Ant Task

later sections describe how to add targets to the build file that specify how to execute
various stages of the web services development process, such as running the j wsc Ant
task to process a JWS file and deploying the web service to WebLogic Server.

The following skeleton bui | d. xm file specifies a default al | target that calls all
other targets that will be added in later sections:

<project default="all">
<target nane="all"
depends="cl ean, bui | d- servi ce, depl oy" />
<target nane="clean">
<del ete dir="output" />
</target>
<target name="buil d-service">
<!--add jwsc and related tasks here -->
</target>
<target nane="depl oy">
<!--add w depl oy task here -->
</dftarget>
</ project>

For detailed information about how to integrate and use Ant tasks in your

development environment to program a web service and a client application that
invokes the web service, see:

e "Using Oracle WebLogic Server Ant Tasks" in Understanding WebLogic Web Services
for Oracle WebLogic Server

* "Ant Task Reference" in WebLogic Web Services Reference for Oracle WebLogic Server
¢ The following sections in Developing Applications for Oracle WebLogic Server:

"Using Ant Tasks to Configure and Use a WebLogic Server Domain"

— "wldeploy Ant Task Reference"

3.6 Running the jwsc WebLogic Web Services Ant Task

The j wsc Ant task takes as input a JWS file that contains JWS annotations and
generates all the artifacts you need to create a WebLogic web service. The JWS file can

be either one you coded yourself from scratch or one generated by the wsdl ¢ Ant
task.

The j wsc-generated artifacts include:
¢ JSR-109 web service class file.
¢ JAXB data binding artifact class file.
¢ All required deployment descriptors, including:
— Servlet-based web service deployment descriptor file: web. xni .

— Ear deployment descriptor files: appl i cati on. xm and webl ogi c-
application.xm .

Note:

The WSDL file is generated when the service endpoint is deployed.

3-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Running the jwsc WebLogic Web Services Ant Task

If you are running the j wsc Ant task against a JWS file generated by the wsdl ¢ Ant
task, the j wsc task does not generate these artifacts, because the wsdl ¢ Ant task
already generated them for you and packaged them into a JAR file. In this case, you
use an attribute of the j wsc Ant task to specify this wsdl c-generated JAR file.

After generating all the required artifacts, the j wsc Ant task compiles the Java files
(including your JWS file), packages the compiled classes and generated artifacts into a
deployable JAR archive file, and finally creates an exploded Enterprise Application
directory that contains the JAR file.

The j wsc Ant task includes attributes and child elements that enable you to:

® Process multiple JWS files at once. You can choose to package each resulting web
service into its own Web application WAR file, or group all of the web services into
a single WAR file.

® Specify the transports (HTTP/HTTPS or JMS transport) that client applications can
use when invoking the web service, as described Specifying the Transport Used to
Invoke the Web Service.

¢ Update an existing Enterprise Application or Web application, rather than generate
a completely new one.

To run the j wsc Ant task, add the following t askdef and bui | d- ser vi ce target to
the bui I d. xm file:

<taskdef name="jwsc"
cl assnanme="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<target name="buil d-service">
<jwsc
srcdir="src_directory"
destdir="ear_directory"
>
<jws file="JWs file"
conpi | edWdl ="WSDLC_Gener at ed_JAR"
type="WebService_type"/>
</jwsc>
</target>

where:

e ear_directory referstoan Enterprise Application directory that will contain all
the generated artifacts.

e src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

e JWE_fil e refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

e WBDLC_Gener at ed_JARrefers to the JAR file generated by the wsdl ¢ Ant task
that contains the JWS SEI and data binding artifacts that correspond to an existing
WSDL file.

Note:

You specify this attribute only in the "starting from WSDL" use case; this
procedure is described in Developing WebLogic Web Services Starting From a
WSDL File: Main Steps.

Developing JAX-WS Web Services 3-15

Running the jwsc WebLogic Web Services Ant Task

* \\bServi ce_t ype specifies the type of web service. This value can be set to
JAXWS or JAXRPC.

The required t askdef element specifies the full class name of the j wsc Ant task.

Only the srcdi r and dest di r attributes of the j wsc Ant task are required. This
means that, by default, it is assumed that Java files referenced by the JWS file (such as
JavaBeans input parameters or user-defined exceptions) are in the same package as the
JWE file. If this is not the case, use the sour cepat h attribute to specify the top-level
directory of these other Java files.

See "jwsc" in the WebLogic Web Services Reference for Oracle WebLogic Server for complete
documentation and examples about the j wsc Ant task.

3.6.1 Specifying the Transport Used to Invoke the Web Service

The <j ws> child element of j wsc includes the following optional child elements for
specifying the transports (HTTP/S or JMS) that are used to invoke the web service:

e W.Ht t pTr anspor t —Specifies the context path and service URI sections of the
URL used to invoke the web service over the HTTP/S transport, as well as the
name of the port in the generated WSDL. For more information, see
"WLHttpTransport" in WebLogic Web Services Reference for Oracle WebLogic Server.

e JnsTransport Servi ce—Enables and configures SOAP over JMS transport.
Optionally, you can configure the destination name, destination type, delivery
mode, request and response queues, and other JMS transport properties. For more
information, see Developing JAX-WS Web Services.

The following guidelines describe the usage of the transport elements for the j wsc
Ant task:

e The transports you specify to j Wsc always override any corresponding transport
annotations in the JWS file. In addition, all attributes of the transport annotation are
ignored, even if you have not explicitly specified the corresponding attribute for
the transport element, in which case the default value of the transport element
attribute is used.

* You can specify both transport elements for a particular JWS file. However, you
can specify only one instance of a particular transport element. For example,
although you cannot specify two different <WLHt t pTr anspor t > elements for a
given JWS file, you can specify one <W.Ht t pTr ansport > and one
<WLJnsTr ansport > element.

* The value of the ser vi ceURI attribute can be the same when you specify both
<WL.JIMSTr ansport>and <W.Ht t pTr ansport >.

e All transports associated with a particular JWS file must specify the same
cont ext Pat h attribute value.

¢ If you specify more than one transport element for a particular JWS file, the value
of the por t Name attribute for each element must be unique among all elements.
This means that you must explicitly specify this attribute if you add more than one
transport child element to <j ws>, because the default value of the element will
always be the same and thus cause an error when running the j wsc¢ Ant task.

¢ If you do not specify any transport as either one of the transport elements to the
j wsc Ant task or a transport annotation in the JWS file, then the web service's
default URL corresponds to the default value of the W.Ht t pTr ansport element.

3-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Running the jwsc WebLogic Web Services Ant Task

3.6.2 Defining the Context Path of a WebLogic Web Service

There are a variety of places where the context path (also called context root) of a
WebLogic web service can be specified. This section describes how to determine which
is the true context path of the service based on its configuration, even if it is has been
set in multiple places.

In the context of this discussion, a web service context path is the string that comes
after the host : port portion of the web service URL. For example, if the deployed
WSDL of a WebLogic web service is as follows:

http://hostname: 7001/ fi nanci al / Get Quot e?WSDL

The context path for this web service is f i nanci al .

The following list describes the order of precedence, from most to least important, of
all possible context path specifications:

1. The cont ext Pat h attribute of the <nmodul e> element and <j ws> element (when
used as a direct child of the j wsc Ant task.)

2. The cont ext Pat h attribute of the <W_.Ht t pTr anspor t > child elements of
<j ws>.

3. The default value of the context path, which is the name of the JWS file without any
extension.

Assume that you update the bui | d. xm file and add a <WLHt t pTr anspor t > child
element to the <j ws> element that specifies the JWS file and set its cont ext Pat h
attribute to f i nance. The context path of the web service would now be f i nance. If,
however, you then group the <j ws> element (including its child

<WLHt t pTr ansport > element) under a <nmodul e> element, and set its

cont ext Pat h attribute to noney, then the context path of the web service would
now be nmoney.

If you do not specify any cont ext Pat h attribute in either the JWS file or the j wsc
Ant task, then the context path of the web service is the default value: the name of the
JWS file without its * . j ava extension.

If you group two or more <j ws> elements under a <nodul e> element and do not set
the context path using any of the other options listed above, then you must specify the
cont ext Pat h attribute of <nbdul e> to specify the common context path used by all
the web services in the module. Otherwise, the default context paths for all the web
services in the module are going to be different (due to different names of the
implementing JWS files), which is not allowed in a single WAR file.

3.6.3 Examples of Using jwsc

The following bui | d. xm excerpt shows a basic example of running the j wsc Ant
task on a JWS file:

<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<target name="buil d-service">

<jwsc
srcdir="src"
dest di r="out put/hel | oWor | dEar" >
<jws

file="exanpl es/webservices/hel |l o_worl|d/ Hel | oWr | dl npl .| ava"

Developing JAX-WS Web Services 3-17

Running the wsdlc WebLogic Web Services Ant Task

type="JAXWS"/ >
</jwsc>
</target>

In the example:

¢ The Enterprise application will be generated, in exploded form, in out put /
hel | oWor | dEar, relative to the current directory.

e The JWS file is called Hel | oWor | dI npl . j ava, and is located in the sr c/
exanpl es/ webser vi ces/ hel | o_wor | d directory, relative to the current
directory. This implies that the JWS file is in the package
exanpl es. webservi ces. hel | oWor | d.

* A JAX-WS web service is generated.

The following example is similar to the preceding one, except that it uses the
conpi | edWsdl attribute to specify the JAR file that contains wsdl c-generated
artifacts (for the "starting with WSDL" use case):

<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<target name="buil d-service">

<jwsc
srcdir="src"
dest di r="out put/wsdl cEar" >
<jws

file="exanpl es/ webservi ces/ wsdl ¢/ Tenper at ur ePort Typel npl . j ava"
conpi | edWdl =" out put/ conpi | edWdl / Tenper at ureServi ce_wsdl . jar"
type="JAXWS"/ >
</jwsc>
</target>

In the preceding example, the Tenper at ur ePor t Typel npl . j ava file is the
stubbed-out JWS file that you updated to include your business logic. Because the
conpi | edWsdl attribute is specified and points to a JAR file, the j wsc Ant task does
not regenerate the artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

pronmpt> ant buil d-service

3.7 Running the wsdlc WebLogic Web Services Ant Task

The wsdl ¢ Ant task takes as input a WSDL file and generates artifacts that together
partially implement a WebLogic web service. These artifacts include:

* JWS service endpoint interface (SEI) that implements the web service described by
the WSDL file.

* JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

¢ JAXB data binding artifacts.

* Optional Javadocs for the generated JWS SEI

The wsdl ¢ Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the j wsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

3-18 Developing JAX-WS Web Services for Oracle WebLogic Server

Running the wsdlc WebLogic Web Services Ant Task

To run the wsdl ¢ Ant task, add the following t askdef and gener at e- f r om wsdl
targets to the bui | d. xmi file:

<t askdef name="wsdl c"
cl assname="wehl ogi c. wsee. t ool s. ant t asks. Wdl cTask"/>
<target nane="generate-fromwsdl ">
<wsdl ¢
src\Wsdl =" WSDLFi | e"
dest JwsDi r="JW5 i nterface_directory"
dest | npl Di r="JW5 i npl enent ation_directory"
packageName="Package_nange"
type="WebService_type"/>
</target>

where:

* WBDLFi | e refers to the name of the WSDL file from which you want to generate a
partial implementation, including its absolute or relative pathname.

e JWE_interface_directory refers to the directory into which the JAR file that
contains the JWS SEI and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFi | e_wsdl . j ar, where WSDLFi | e
refers to the root name of the WSDL file. For example, if the name of the WSDL file
you specify to the file attribute is MySer vi ce. wsdl , then the generated JAR file is
MyServi ce_wsdl . jar.

e JWS_inpl enent ati on_di rect ory refers to the top directory into which the
stubbed-out JWS implementation file is generated. The file is generated into a
subdirectory hierarchy corresponding to its package name.

The name of the generated JWS file is Ser vi ce_Por t Typel npl . j ava, where
Ser vi ce and Por t Type refer to the nane attribute of the <ser vi ce> element
and its inner <por t > element, respectively, in the WSDL file for which you are
generating a web service. For example, if the service name is MySer vi ce and the
port name is MySer vi cePor t Type, then the JWS implementation file is called
MySer vi ce_MyServi cePort Typel npl . j ava.

e Package_narre refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the
wsdl ¢ Ant task generates a package name based on the t ar get Nanespace of the
WSDL.

¢ WebServi ce_t ype specifies the type of web service. This value can be set to
JAXWS or JAXRPC.

The required t askdef element specifies the full class name of the wsdl ¢ Ant task.

Only the srcVédl and dest JwsDi r attributes of the wsdl ¢ Ant task are required.
Typically, however, you generate the stubbed-out JWS file to make your programming
easier. Oracle recommends you explicitly specify the package name in case the

t ar get Nanmespace of the WSDL file is not suitable to be converted into a readable
package name.

The following bui | d. xm excerpt shows an example of running the wsdl ¢ Ant task
against a WSDL file:

<t askdef name="wsdl c"
cl assname="webl ogi c. wsee. t ool s. antt asks. Wdl cTask"/>
<target nane="generate-fromwsdl ">
<wsdl ¢

Developing JAX-WS Web Services 3-19

Updating the Stubbed-out JWS Implementation Class File Generated By wsdic

src\Wdl ="wsdl _fil es/ Tenperat ureService. wsdl "
dest JwsDi r="out put / conpi | edVédl "
dest I npl Di r="i npl _out put"
packageName="exanpl es. webser vi ces. wsdl ¢"
type="JAXWS" />

</target>

In the example:

¢ The existing WSDL file is called Tenper at ur eSer vi ce. wsdl and is located in
thewsdl _fi | es subdirectory of the directory that contains the bui | d. xm file.

* The JAR file that will contain the JWS SEI and data binding artifacts is generated to
the out put / conpi | edWdl directory; the name of the JAR file is
Tenperat ureServi ce_wsdl . jar.

¢ The package name of the generated JWS files is exanpl es. webser vi ces. wsdl d.

* The stubbed-out JWS file is generated into the i npl _out put / exanpl es/
webser vi ces/ wsdl ¢ directory relative to the current directory.

* Assuming that the service and port type names in the WSDL file are
Tenper at ur eSer vi ce and Tenper at ur ePor t Type, then the name of the JWS
implementation file is
Tenper at ur eSer vi ce_Tenper at ur ePort Typel npl . j ava.

* A JAX-WS web service is generated.
To actually run this task, type the following at the command line:

pronpt> ant generate-fromwsdl

See “wsdlc” in WebLogic Web Services Reference for Oracle WebLogic Server for more
information.

3.8 Updating the Stubbed-out JWS Implementation Class File Generated

By wsdic

The wsdl ¢ Ant task generates the stubbed-out JWS implementation file into the
directory specified by its dest | npl Di r attribute; the name of the file is

Servi ce_Port Typel npl . j ava, where Ser vi ce is the name of the service and
Por t Type is the name of the port type in the original WSDL. The class file includes
everything you need to compile it into a web service, except for your own business
logic.

The JWS class implements the JWS web service endpoint interface that corresponds to
the WSDL file; the JWS SEI is also generated by wsdl ¢ and is located in the JAR file
that contains other artifacts, such as the Java representations of XML Schema data
types in the WSDL and so on. The public methods of the JWS class correspond to the
operations in the WSDL file.

The wsdl ¢ Ant task automatically includes the @\ébSer vi ce annotation in the JWS
implementation class; the value corresponds to the equivalent value in the WSDL. For
example, the ser vi ceNane attribute of @\ebSer vi ce is the same as the name
attribute of the <ser vi ce> element in the WSDL file.

When you update the JWS file, you add Java code to the methods so that the
corresponding web service operations operate as required. Typically, the generated
JWE file contains comments where you should add code, such as:

3-20 Developing JAX-WS Web Services for Oracle WebLogic Server

Deploying and Undeploying WebLogic Web Services

Ilreplace with your inpl here

In addition, you can add additional JWS annotations to the file, with the following
restrictions:

* You can include the following annotations from the standard (JSR-181) j avax. j ws
package in the JWS implementation file: @bSer vi ce, @4andl er Chai n,
@QOAPMessageHandl er, and @OAPMessageHand! er s. If you specify any other
JWS annotation from the j avax. j ws package, the] wsc Ant task returns error
when you try to compile the JWS file into a web service. For example, if you specify
the @0l i cy annotation in a your JWS implementation file, the] wsc Ant task
throws a compilation error.

* You can specify only the ser vi ceNane, endpoi nt | nt erf ace, and
t ar get Nanmespace attributes of the @\ébSer vi ce annotation. Use the
ser vi ceName attribute to specify a different <ser vi ce> WSDL element from the
one that the wsdl ¢ Ant task used, in the rare case that the WSDL file contains more
than one <ser vi ce> element. Use the endpoi nt | nt er f ace attribute to specify
the JWS SEI generated by the wsdl ¢ Ant task. Use the t ar get Nanespace
attribute to specify the namespace of a WSDL service, which can be different from
the on in JWS SEL

* You can specify JAX-WS—]JSR 224, JAXB (JSR 222)—or Common (JSR 250)
annotations, as required. For more information about the annotations that are
supported, see "JWS Annotation Reference" in WebLogic Web Services Reference for
Oracle WebLogic Server.

After you have updated the JWS file, Oracle recommends that you move it to an
official source location, rather than leaving it in the wsdl ¢ output directory.

The following example shows the wsdl c-generated JWS implementation file from the
WSDL shown in Sample WSDL File; the text in bold indicates where you would add
Java code to implement the single operation (get Tenp) of the web service:

package exanpl es.webservi ces. wsdl c;
inport javax.jws.\WbService;
/**
* TenperaturePort Typel npl class inplements web service endpoint interface
* Tenperat urePort Type */
@ebSer vi ce(
servi ceNane="Tenper at ur eSer vi ce",
endpoi nt | nt er face="exanpl es. webservi ces. wsdl ¢c. Tenper at ur ePort Type")
public class TenperaturePortTypel npl inplenments TenperaturePort Type {
publ i c Tenperat urePort Typel npl () {

public float getTemp(java.lang.String zipcode)

{
[Ireplace with your inpl here

return O;

}
}

3.9 Deploying and Undeploying WebLogic Web Services

Because web services are packaged as Enterprise Applications, deploying a web
service simply means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the
WebLogic Server Administration Console to using the webl ogi c. Depl oyer Java

Developing JAX-WS Web Services 3-21

Deploying and Undeploying WebLogic Web Services

utility. There are also various issues you must consider when deploying an application
to a production environment as opposed to a development environment. For a
complete discussion about deployment, see Deploying Applications to Oracle WebLogic
Server.

This guide, because of its development nature, discusses just two ways of deploying
web services:

¢ Using the wldeploy Ant Task to Deploy Web Services

* Using the Administration Console to Deploy Web Services

3.9.1 Using the wideploy Ant Task to Deploy Web Services

The easiest way to deploy a web service as part of the iterative development process is
to add a target that executes the W depl oy WebLogic Ant task to the same

bui I d. xm file that contains the j wsc Ant task. You can add tasks to both deploy
and undeploy the web service so that as you add more Java code and regenerate the
service, you can redeploy and test it iteratively.

To use the W depl oy Ant task, add the following target to your bui | d. xm file:

<target name="depl oy">
<wl depl oy acti on="depl oy"
nanme="Depl oynment Narme"
sour ce="Sour ce" user="Adm nUser"
passwor d=" Adm nPasswor d"
adni nur| =" Adni nSer ver URL"
target s="Server Nane"/ >
</target>

where:

® DeploymentName refers to the deployment name of the Enterprise Application, or
the name that appears in the WebLogic Server Administration Console under the
list of deployments.

® Source refers to the name of the Enterprise Application EAR file or exploded
directory that is being deployed. By default, the j wsc Ant task generates an
exploded Enterprise Application directory.

o AdminUser refers to administrative username.
* AdminPassword refers to the administrative password.

o AdminServerURL refers to the URL of the Administration Server, typically t 3: / /
| ocal host: 7001.

¢ ServerName refers to the name of the WebLogic Server instance to which you are
deploying the web service.

For example, the following W depl oy task specifies that the Enterprise Application
exploded directory, located in the out put / Conpl exSer vi ceEar directory relative
to the current directory, be deployed to the mySer ver WebLogic Server instance. Its
deployed name is Conpl exSer vi ceEar .

<target nane="depl oy">
<wl depl oy action="depl oy"
nane=" Conpl exSer vi ceEar"
sour ce="out put / Conpl exServi ceEar" user="webl ogi c"
passwor d="webl ogi ¢c" verbose="true"

3-22 Developing JAX-WS Web Services for Oracle WebLogic Server

Browsing to the WSDL of the Web Service

adminurl ="t 3:// ocal host: 7001"
targets="nyserver"/>
</target>

To actually deploy the web service, execute the depl oy target at the command-line:
pronpt > ant depl oy

You can also add a target to easily undeploy the web service so that you can make

changes to its source code, then redeploy it:

<target nane="undepl oy">
<wl depl oy acti on="undepl oy"

nane=" Conpl exSer vi ceEar"
user ="webl ogi c"
passwor d="webl ogi ¢c" verbose="true"
adminurl ="t 3:// ocal host: 7001"
targets="nyserver"/>

</target>

When undeploying a web service, you do not specify the sour ce attribute, but rather
undeploy it by its name.
3.9.2 Using the Administration Console to Deploy Web Services

To use the WebLogic Server Administration Console to deploy the web service, first
invoke it in your browser using the following URL:

http://[host]:[port]/consol e
where:

* host refers to the computer on which WebLogic Server is running.

* port refers to the port number on which WebLogic Server is listening (default
value is 7001).

Then use the deployment assistants to help you deploy the Enterprise application. For
more information on the WebLogic Server Administration Console, see the Oracle
WebLogic Server Administration Console Online Help.

3.10 Browsing to the WSDL of the Web Service

You can display the WSDL of the web service in your browser to ensure that it has
deployed correctly.

The following URL shows how to display the web service WSDL in your browser:
http://[host]:[port]/[contextPath]/[serviceUri]?WsDL

where:

* host refers to the computer on which WebLogic Server is running (for example,
| ocal host).

* port refers to the port number on which WebLogic Server is listening (default
value is 7001).

¢ cont ext Pat h refers to the context root of the web service. There are many places
to set the context root (the <WLHt t pTr ansport >, <nodul e>, or <j ws> element of

Developing JAX-WS Web Services 3-23

Configuring the Server Address Specified in the Dynamic WSDL

j wsc) and certain methods take precedence over others. See Defining the Context
Path of a WebLogic Web Service.

e serviceUri refers to the value of the ser vi ceUr i attribute of the
<WLHt t pTr anspor t > child element of the j wsc Ant task. If you do not specify
any servi celUri attribute in the j wsc Ant task, then the servi ceUri of the web
service is the default value: the ser vi ceNane element of the @\&bSer vi ce
annotation if specified; otherwise, the name of the JWS file, without its extension,
followed by Ser vi ce.

For example, assume that you specified the following <W.Ht t pTr anspor t > child
element in the j ws¢ task that you use to build your web service:

<target name="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}"
keepGenerat ed="true">
<jws file="exanpl es/webservices/ conmpl ex/ Conpl ex| npl . j ava"
type="JAXWS" >
<W.Htt pTransport
cont ext Pat h="conpl ex" servi ceUri =" Conpl exServi ce"
por t Name=" Conpl exServi cePort"/ >
</jws>
</jwsc>
</target>

Then the URL to view the WSDL of the web service, assuming the service is running
on a host called ari el at the default port number (7001), is:

http://ariel: 7001/ conpl ex/ Conpl exServi ce?WsDL

3.11 Configuring the Server Address Specified in the Dynamic WSDL

The WSDL of a deployed web service (also called dynamic WSDL) includes an

<addr ess> element that assigns an address (URI) to a particular web service port. For
example, assume that the following WSDL snippet partially describes a deployed
WebLogic web service called Conpl exSer vi ce:

<definitions name="Conpl exServi ceDefinitions"
t ar get Nanespace="http://exanpl e. org">

<servi ce name="Conpl exServi ce">
<port bi ndi ng="s0: Conpl exSer vi ceSoapBi ndi ng" nanme="Conpl exServi cePort">
<sl:address location="http://myhost: 7101/ conpl ex/ Conpl exServi ce"/ >
</ port>
</ service>
</definitions>

The preceding example shows that the Conpl exSer vi ce web service includes a port
called Conpl exSer vi cePor t, and this port has an address of ht t p: / / myhost :
7101/ conpl ex/ Conpl exSer vi ce.

WebLogic Server determines the conpl ex/ Conpl exSer vi ce section of this address
by examining the cont ext Pat h and ser vi ceURI attributes of the] wsc elements, as
described in Browsing to the WSDL of the Web Service. However, the method
WebLogic Server uses to determine the protocol and host section of the address
(http:// myhost: 7101, in the example) is more complicated, as described below.
For clarity, this section uses the term server address to refer to the protocol and host
section of the address.

3-24 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring the Server Address Specified in the Dynamic WSDL

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed
web service depends on whether the web service can be invoked using HTTP/S or
JMS, whether you have configured a proxy server, whether the web service is
deployed to a cluster, or whether the web service is actually a callback service.

The following sections reflect these different configuration options, and provide links
to procedural information about changing the configuration to suit your needs.

* Web service is not a callback service and can be invoked using HTTP/S
e Web service is a callback service

* Web service is invoked using a proxy server

It is assumed in the sections that you use the WebLogic Server Administration Console
to configure cluster and standalone servers.

3.11.1 Web service is not a callback service and can be invoked using HTTP/S

o [f the web service is deployed to a cluster, the following values are used in the
server address of the dynamic WSDL, in order of precedence:

- Configured network channel, as described in Configuring the Identity of the
Front-end SOAP Router Using Network Channels.

— Frontend Host,Frontend HTTP Port,and Front end HTTPS Port
configured for the cluster, as described in "Configure HTTP Settings for a
Cluster" in Oracle WebLogic Server Administration Console Online Help.

— Frontend Host,Frontend HTTP Port,and Frontend HTTPS Port
configured for the local server, as described in "Configure HTTP Protocol" in
Oracle WebLogic Server Administration Console Online Help.

— If none of the above items are set, the Cl ust er Addr ess must be set for the
cluster, as described in "Configure Clusters" in Oracle WebLogic Server
Administration Console Online Help. The server channel for the specified protocol
from the request URL (for example, ht t p) will be used to generate the cluster
address that is displayed in the WSDL.

* If the web service is deployed to an individual server, the Fr ont end Host,
Frontend HTTP Port,and Frontend HTTPS Port configured for the local
server are used in the server address of the dynamic WSDL, as described in
"Configure HTTP Protocol" in Oracle WebLogic Server Administration Console Online
Help.

3.11.2 Web service is a callback service

1. If the callback service is deployed to a cluster, the following values are used in the
server address of the dynamic WSDL, in order of precedence:

* Configured network channel, as described in Configuring the Identity of the
Front-end SOAP Router Using Network Channels.

e Frontend Host,Frontend HTTP Port,and Front end HTTPS Port
configured for the cluster, as described in "Configure HTTP Settings for a
Cluster" in Oracle WebLogic Server Administration Console Online Help.

Developing JAX-WS Web Services 3-25

Testing the Web Service

e Frontend Host,Frontend HTTP Port,and Frontend HTTPS Port
configured for the local server, as described in "Configure HTTP Protocol” in
Oracle WebLogic Server Administration Console Online Help.

e Cl uster Address for the cluster, as described in "Configure Clusters" in
Oracle WebLogic Server Administration Console Online Help. The Cl ust er
Addr ess is required if no other values are set.

2. If the callback service is deployed to an individual server, the Fr ont end Host,
Frontend HTTP Port,and Frontend HTTPS Port configured for the local
server are used in the server address of the dynamic WSDL, as described in
"Configure HTTP Protocol" in Oracle WebLogic Server Administration Console Online
Help.

3. Ifnone of the preceding values are set, but the Li st en Addr ess of the server to
which the callback service is deployed is set, then WebLogic Server uses this value
in the server address.

See "Configure Listen Addresses" in Oracle WebLogic Server Administration Console
Online Help.

3.11.3 Web service is invoked using a proxy server

Although not required, Oracle recommends that you explicitly set the Fr ont end
Host , Front End HTTP Port,and Front end HTTPS Port of either the cluster or
individual server to which the web service is deployed to point to the proxy server.

See "Configure HTTP Settings for a Cluster” or "Configure HTTP Protocol" in Oracle
WebLogic Server Administration Console Online Help.

3.12 Testing the Web Service

After you have deployed a WebLogic web service, you can test basic and advanced
features of your web service, such as security, quality of service (QoS), HTTP headers,
and so on. You can also perform stress testing of the security features. For information
about testing web services using the Web Services Test Client or Fusion Middleware
Control Test Web Service page, see "Testing Web Services" in Administering Web
Services.

3.13 Integrating Web Services Into the WebLogic Split Development
Directory Environment

This section describes how to integrate web services development into the WebLogic
split development directory environment. It is assumed that you understand this
WebLogic feature and have set up this type of environment for developing standard
Java Platform, Enterprise Edition (Java EE) Version 5 applications and modules, such
as EJBs and Web applications, and you want to update the single bui | d. xrm file to
include web services development.

For detailed information about the WebLogic split development directory
environment, see "Creating a Split Development Directory Environment" in Developing
Applications for Oracle WebLogic Server and the spl i t di r/ hel | oWor | dEar example
installed with WebLogic Server, located in the ORACLE_HOVE/ Wl ser ver/ sanpl es/
server/ exanpl es/ src/ exanpl es directory, where ORACLE_HOVE represents the
directory in which you installed WebLogic Server. For more information about the
WebLogic Server code examples, see "Sample Applications and Code Examples" in
Understanding Oracle WebLogic Server.

3-26 Developing JAX-WS Web Services for Oracle WebLogic Server

Integrating Web Services Into the WebLogic Split Development Directory Environment

. In the main project directory, create a directory that will contain the JWS file that
implements your web service.

For example, if your main project directory is called / sr c/ hel | oWor | dEar , then
create a directory called / src/ hel | oWor | dEar/ hel | oWebSer vi ce:

pronpt> nkdir /src/hell oWrl dEar/ hel | oWebServi ce

. Create a directory hierarchy under the hel | oWebSer vi ce directory that
corresponds to the package name of your JWS file.

For example, if your JWS file is in the package exanpl es. splitdir. hello
package, then create a directory hierarchy exanpl es/ splitdir/hell o:

pronpt > cd /src/hel |l oWrl dEar/ hel | oWebSer vi ce
pronpt > nmkdir exanples/splitdir/hello

. Put your JWS file in the just-created web service subdirectory of your main project
directory (/ sr ¢/ hel | oWor | dEar/ hel | oWebSer vi ce/ exanpl es/ splitdir/
hel | 0 in this example.)

. Inthebui I d. xm file that builds the Enterprise application, create a new target to
build the web service, adding a call to the j wsc WebLogic web service Ant task, as
described in Running the jwsc WebLogic Web Services Ant Task.

The j wsc srcdi r attribute should point to the top-level directory that contains the
JWES file (hel | oWebSer vi ce in this example). The j wsc dest di r attribute
should point to the same destination directory you specify for v conpi | e, as
shown in the following example:

<target nane="buil d. hel | oWebServi ce" >
<jwsc
srcdir="hel | o\bServi ce"
destdir="destination_dir"
keepGener at ed="yes" >
<jws file="exanples/splitdir/hellolHelloWrldlnpl.java"
type="JAXWS" />
</jwsc>
</target>

In the example, dest i nati on_di r refers to the destination directory that the
other split development directory environment Ant tasks, such as Wl appc and
w conpi | e, also use.

. Update the main build target of the bui | d. xnl file to call the web service-related
targets:

<l-- Builds the entire helloWrldEar application -->

<target nane="build"
description="Conpiles hel | oWrl| dEar application and runs appc"
depends="bui | d- hel | o\WebSer vi ce, conpi | e, appc" />

Note:

When you actually build your Enterprise Application, be sure you run the

j wsc Ant task before you run the W appc Ant task. This is because W appc
requires some of the artifacts generated by j wsc for it to execute successfully.
In the example, this means that you should specify the bui | d-

hel | oWebSer vi ce target before the appc target.

Developing JAX-WS Web Services 3-27

Integrating Web Services Into the WebLogic Split Development Directory Environment

6. If you use the W conpi | e and W appc Ant tasks to compile and validate the entire
Enterprise Application, be sure to exclude the web service source directory for both
Ant tasks. This is because the j ws¢ Ant task already took care of compiling and
packaging the web service. For example:

<target nanme="conpile">
<wl conpile srcdir="%{src.dir}" destdir="${dest.dir}"
excl udes="appStartup, hel | oWebServi ce">

</w conplile>
</target>
<target name="appc">
<wl appc source="${dest.dir}" deprecation="yes" debug="fal se"

excl udes="hel | oWebhService"/>
</target>

7. Update the appl i cati on. xm file in the META- | NF project source directory,
adding a <web> module and specifying the name of the WAR file generated by the
j wsc Ant task.

For example, add the following to the appl i cati on. xm file for the helloWorld
web service:

<appl i cati on>

<nmodul e>
<web>
<web- uri >exanpl es/ splitdir/hell ol Hell oWrl dl npl . war </ web-uri >
<cont ext - root >/ hel | o</ cont ext - r oot >
</ web>
</ nodul e>

</ application>

Note:

The j wsc Ant task always generates a Web Application WAR file from the
JWE file that implements your web service, unless you JWS file defines an EJB
via the @bt at el ess annotation. In that case you must add an <ej b> module
element to the appl i cati on. xm file instead.

Your split development directory environment is now updated to include web service
development. When you rebuild and deploy the entire Enterprise Application, the
web service will also be deployed as part of the EAR. You invoke the web service in
the standard way described in Browsing to the WSDL of the Web Service.

3-28 Developing JAX-WS Web Services for Oracle WebLogic Server

A

Programming the JWS File

This chapter describes how to program the JWS file that implements your WebLogic
web service using Java API for XML-based web services (JAX-WS).

This chapter includes the following sections:

e Overview of JWS Files and JWS Annotations

® Java Requirements for a JWS File

® Programming the JWS File: Typical Steps

¢ Accessing Runtime Information About a Web Service

e Should You Implement a Stateless or Singleton Session EJB?
¢ Programming the User-Defined Java Data Type

¢ Invoking Another Web Service from the JWS File

¢ Using SOAP 1.2

e Validating the XML Schema

* JWS Programming Best Practices

4.1 Overview of JWS Files and JWS Annotations

There are two ways to program a WebLogic web service from scratch:

1. Annotate a standard EJB or Java class with web service Java annotations, as
defined by JSR-181, the JAX-WS specification, and by the WebLogic web services
programming model.

2. Combine a standard E]B or Java class with the various XML descriptor files and
artifacts specified by JSR-109 (such as, deployment descriptors, WSDL files, data
mapping descriptors, data binding artifacts for user-defined data types, and so
on).

Oracle strongly recommends using option 1 above. Instead of authoring XML
metadata descriptors yourself, the WebLogic Ant tasks and runtime will generate the
required descriptors and artifacts based on the annotations you include in your JWS.
Not only is this process much easier, but it keeps the information about your web
service in a central location, the JWS file, rather than scattering it across many Java and
XML files.

The Java web service (JWS) annotated file is the core of your web service. It contains
the Java code that determines how your web service behaves. A JWS file is an ordinary
Java class file that uses Java metadata annotations to specify the shape and
characteristics of the web service. The JWS annotations you can use in a JWS file

Programming the JWS File 4-1

Java Requirements for a JWS File

include the standard ones defined by the web services Metadata for the Java Platform
specification (JSR-181), described at ht t p: / / www. j cp. org/ en/j sr/ detai | ?

i d=181, plus a set of additional annotations based on the type of web service you are
building—JAX-WS or JAX-RPC. For a complete list of JWS annotations that are
supported for JAX-WS and JAX-RPC web services, see "Web Service Annotation
Support" in WebLogic Web Services Reference for Oracle WebLogic Server.

When programming the JWS file, you include annotations to program basic web
service features. The annotations are used at different levels, or targets, in your JWS
file. Some are used at the class-level to indicate that the annotation applies to the entire
JWES file. Others are used at the method-level and yet others at the parameter level.

4.2 Java Requirements for a JWS File

When you program your JWS file, you must follow a set of requirements, as specified
by the Web Services Metadata for the Java Platform specification (JSR-181) at htt p: //
Www. j cp. org/ en/j sr/detail ?i d=181. In particular, the Java class that
implements the web service:

® Must be an outer public class, must not be declared f i nal , and must not be
abstract.

® Must have a default public constructor.
e Mustnot defineafinal i ze() method.

e Must include, at a minimum, a @\&bSer vi ce JWS annotation at the class level to
indicate that the JWS file implements a web service.

* May reference a service endpoint interface by using the
@\¢bSer vi ce. endpoi nt | nt er f ace annotation. In this case, it is assumed that
the service endpoint interface exists and you cannot specify any other JWS
annotations in the JWS file other than @\bSer vi ce. endpoi nt I nt er f ace,
@\bServi ce. servi ceNanme, and @\ébSer vi ce. t ar get Namespace.

o If JWS file does not implement a service endpoint interface, all public methods
other than those inherited from j ava. | ang. Qbj ect will be exposed as web
service operations. This behavior can be overridden by using the @\ébMet hod
annotation to specify explicitly the public methods that are to be exposed. If a
@\ebMet hod annotation is present, only the methods to which it is applied are
exposed.

4.3 Programming the JWS File: Typical Steps

The following procedure describes the typical steps for programming a JWS file that
implements a web service.

Note:

It is assumed that you have created a JWS file and now want to add JWS
annotations to it.

For more information about each of the JWS annotations, see "JWS Annotation
Reference" in WebLogic Web Services Reference for Oracle WebLogic Server.

4-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

Programming the JWS File: Typical Steps

Table 4-1 Steps to Program the JWS File
- ___|

Step Description

1 Import the standard JWS The standard JWS annotations are in either the j avax. j ws,
annotations that will be used j avax.j ws. soap, or j avax. xm . ws package. For example:
in your JWS file.)])

i mport javax.jws.\WebMet hod,;

i mport javax.jws.\WebService;
inport javax.jws.soap. SOAPBi ndi ng;
inport javax.xn .ws. Bi ndi ngType;

2 Import additional For a complete list of JWS annotations that are supported, see "Web Service
annotations, as required. Annotation Support" in WebLogic Web Services Reference for Oracle WebLogic

Server.

3 Add the standard required See Specifying that the JWS File Implements a Web Service (@WebService
@\ebSer vi ce JWS Annotation).
annotation at the class level
to specify that the Java class
exposes a web service.

4 Add the standard In particular, use this annotation to specify whether the web service is
@CAPBI ndi ng JWS document-literal, document-encoded, and so on. See Specifying the
annotation at the classlevel =~ Mapping of the Web Service to the SOAP Message Protocol (@SOAPBinding
to specify the mapping Annotation).
between the web service and Ajthough this JWS annotation is not required, Oracle recommends you
the S_OAP message protocol. explicitly specify it in your JWS file to clarify the type of SOAP bindings a
(Optional) client application uses to invoke the web service.

5 Add the JAX-WS See Specifying the Binding to Use for an Endpoint (@BindingType
@Bi ndi ngType JWS Annotation).
annotation at the class level
to specify the binding type to
use for a web service
endpoint implementation
class. (Optional)

6 Add the standard Optionally specify that the operation takes only input parameters but does
@\ebMet hod annotation for not return any value by using the standard @neway annotation. See
each method in the JWS file Specifying That a JWS Method Be Exposed as a Public Operation
that you want to exposeasa (@WebMethod and @OneWay Annotations).
public operation. (Optional)

7 Add @ebParam See Customizing the Mapping Between Operation Parameters and WSDL
annotation to customize the = Elements (@WebParam Annotation).
name of the input
parameters of the exposed
operations. (Optional)

8 Add @ebResul t See Customizing the Mapping Between the Operation Return Value and a
annotations to customize the = WSDL Element (@WebResult Annotation).
name and behavior of the
return value of the exposed
operations. (Optional)

9 Add your business code. Add your business code to the methods to make the WebService behave as

required.

Programming the JWS File 4-3

Programming the JWS File: Typical Steps

4.3.1 Example of a JWS File

The following sample JWS file shows how to implement a simple web service.

package exanpl es.webservi ces. si npl e;
/1 Inport the standard JWS annotation interfaces
import javax.jws.\WebMet hod,;
import javax.jws.\WebServi ce;
i mport javax.jws.soap. SOAPBi ndi ng;
[/ Standard JWS annotation that specifies that the porType name of the Wb
/1 Service is "SinplePortType", the service name is "SinpleService", and the
/1 target Namespace used in the generated WSDL is "http://exanple.org"
@ébSer vi ce(name="Si npl ePort Type", servi ceName="Si npl eServi ce",
tar get Nanespace="http://exanpl e. org")
[/ Standard JWS annotation that specifies the mapping of the service onto the
/1 SOAP nessage protocol. In particular, it specifies that the SOAP nessages
/| are document-1literal-wapped.
@QAPBI ndi ng(styl e=SOAPBi ndi ng. St yl e. DOCUMENT,
use=SOAPBi ndi ng. Use. LI TERAL,
par anet er St yl e=SOAPBi ndi ng. Par anet er St yl e. WRAPPED)

/**

* This JWs file forms the basis of sinple Java-class inplenmented WebLogic

* Web Service with a single operation: sayHello

*

*/
public class Sinplelnpl {

/1 Standard JW5 annotation that specifies that the method shoul d be exposed

/1 as a public operation. Because the annotation does not include the

Il menber-val ue "operationName", the public name of the operation is the

/1 same as the method name: sayHello.

@\ebMet hod()

public String sayHello(String message) {

Systemout. println("sayHello:" + message);
return "Here is the nmessage: '" + message + "'";

}
}

4.3.2 Specifying that the JWS File Implements a Web Service (@WebService
Annotation)

Use the standard @\ebSer vi ce annotation to specify, at the class level, that the JWS
file implements a web service, as shown in the following code excerpt:

@bServi ce(name="Si npl ePort Type", servi ceName="Si npl eServi ce",
target Nanespace="http://exanpl e. org")

In the example, the name of the web service is Si npl ePor t Type, which will later
map to the wsdl : por t Type element in the WSDL file generated by the j wsc Ant
task. The service name is Si npl eSer vi ce, which will map to the wsdl : servi ce
element in the generated WSDL file. The target namespace used in the generated
WSDLis http://exanpl e. org.

You can also specify the following additional attributes of the @\ebSer vi ce
annotation:

e endpoi nt | nt er f ace—Fully qualified name of an existing service endpoint
interface file. This annotation allows the separation of interface definition from the
implementation. If you specify this attribute, the j wsc Ant task does not generate

4-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Programming the JWS File: Typical Steps

the interface for you, but assumes you have created it and it is in your
CLASSPATH.

e port name—Name that is used in the wsdl : port.

None of the attributes of the @\&bSer vi ce annotation is required. See the Web
Services Metadata for the Java Platform (JSR 181) athtt p: // www. j cp. org/ en/j sr/
det ai | ?i d=181 for the default values of each attribute.

4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)

It is assumed that you want your web service to be available over the SOAP message
protocol; for this reason, your JWS file should include the standard @QOAPBI ndi ng
annotation, at the class level, to specify the SOAP bindings of the web service (such as,
document-encoded or document-literal-wrapped), as shown in the following code
excerpt:

@QAPBI ndi ng(styl e=SOAPBI ndi ng. St yl e. DOCUMENT,
use=SOAPBi ndi ng. Use. LI TERAL,
par amet er St yl e=SOAPBi ndi ng. Par anet er St yl e. WRAPPED)

In the example, the web service uses document-wrapped-style encodings and literal
message formats, which are also the default formats if you do not specify the
@QOAPBI ndi ng annotation. In general, document-literal-wrapped web services are
the most interoperable type of web service.

You use the par anmet er St yl e attribute (in conjunction with the

st yl e=SOAPBI ndi ng. St yl e. DOCUVENT attribute) to specify whether the web
service operation parameters represent the entire SOAP message body, or whether the
parameters are elements wrapped inside a top-level element with the same name as
the operation.

The following table lists the possible and default values for the three attributes of the
@OAPBI ndi ng (either the standard or WebLogic-specific) annotation.

Table 4-2 Attributes of the @SOAPBInding Annotation
-]

Attribute Possible Values Default Value

style SQAPBI ndi ng. Styl e. RPC SQAPBI ndi ng. St yl e. DOCUMENT
SOAPBI ndi ng. St yl e. DOCUMENT

use SQAPBI ndi ng. Use. LI TERAL SQAPBI ndi ng. Use. LI TERAL
paranet er SOAPBI ndi ng. Paraneter Styl e SOAPBI ndi ng. Par anmet er St yl e. WRA
Style . BARE PPED

SOAPBI ndi ng. Par aneter Styl e

. W\RAPPED

4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod
and @0OneWay Annotations)

Use the standard @\bMet hod annotation to specify that a method of the JWS file
should be exposed as a public operation of the web service, as shown in the following
code excerpt:

Programming the JWS File 4-5

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

Programming the JWS File: Typical Steps

public class Sinplelnpl {
@\ebMet hod(oper at i onName="sayHel | oOperati on")
public String sayHello(String message) {
Systemout. println("sayHello:" + nessage);
return "Here is the nessage: '" + nessage + "'"

}

In the example, the sayHel | o() method of the Si npl el mpl JWS file is exposed as a
public operation of the web service. The oper at i onNane attribute specifies,
however, that the public name of the operation in the WSDL file is

sayHel | oOper at i on. If you do not specify the oper at i onNamne attribute, the
public name of the operation is the name of the method itself.

You can also use the act i on attribute to specify the action of the operation. When
using SOAP as a binding, the value of the act i on attribute determines the value of
the SOAPAct i on header in the SOAP messages.

To exclude a method as a web service operation, specify
@WebMethod(exclude="true").

Note:

For JAX-WS, the service endpoint interface (SEI) defines the public methods. If
no SEI exists, then all public methods are exposed as web service operations,
unless they are tagged explicitly with @WebMethod (exclude="true").

You can specify that an operation not return a value to the calling application by using
the standard @neway annotation, as shown in the following example:

public class OneVayl npl {
@\ebMet hod()

@newvay()
public void ping() {
Systemout. println("ping operation");

}

If you specify that an operation is one-way, the implementing method is required to
return voi d, cannot use a Holder class as a parameter, and cannot throw any checked
exceptions.

None of the attributes of the @\&bMet hod annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) athtt p: / / www. j cp. org/ en/jsr/detail ?
i d=181 for the default values of each attribute, as well as additional information
about the @¥€bMet hod and @neway annotations.

4.3.5 Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam Annotation)

Use the standard @\&bPar amannotation to customize the mapping between
operation input parameters of the web service and elements of the generated WSDL
file, as well as specify the behavior of the parameter, as shown in the following code
excerpt:

public class Sinplelnpl {
@\ebMet hod()
@¢bResul t (name="1nt eger Qut put",

4-6 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

Programming the JWS File: Typical Steps

target Nanespace="http://exanpl e. org/ docLi t eral Bare")
public int echolnt(
@\ébPar an(nane="1nt eger | nput ",
target Nanespace="htt p://exanpl e. org/ docLi teral Bare")

int input)

{
Systemout. printin("echolnt '" + input +"' to you too!");
return input;

In the example, the name of the parameter of the echol nt operation in the generated
WSDL s | nt eger | nput ; if the @\¥bPar amannotation were not present in the JWS
file, the name of the parameter in the generated WSDL file would be the same as the
name of the method's parameter: i nput . The t ar get Namespace attribute specifies
that the XML namespace for the parameter is ht t p: / / exanpl e. or g/

doclLi t er al Bar e; this attribute is relevant only when using document-style SOAP
bindings where the parameter maps to an XML element.

You can also specify the following additional attributes of the @\¥bPar amannotation:

¢ nmode—The direction in which the parameter is flowing (WebPar am Mode. | N,
WebPar am Mode. OUT, or WebPar am Mode. | NOUT). OUT and INOUT modes are
only supported for RPC-style operations or for parameters that map to headers.

¢ header —Boolean attribute that, when set to t r ue, specifies that the value of the
parameter should be retrieved from the SOAP header, rather than the default body.

None of the attributes of the @\ébPar amannotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) athtt p: / / www. j cp. org/ en/jsr/detail ?
i d=181 for the default value of each attribute.

4.3.6 Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@WebResult Annotation)

Use the standard @\ébResul t annotation to customize the mapping between the web
service operation return value and the corresponding element of the generated WSDL
file, as shown in the following code excerpt:

public class Sinple {
@ebMet hod()
@\ébResul t (name="1nt eger Qut put ",
target Namespace="htt p: // exanpl e. or g/ docLi t eral Bare")
public int echolnt(
@\ebPar an{ name="1 nt eger | nput ",
tar get Nanespace="http://exanpl e. org/ docLit eral Bare")

int input)

{
Systemout. printin("echolnt "" + input + "' to you too!");
return input;

In the example, the name of the return value of the echol nt operation in the
generated WSDL is | nt eger Qut put ; if the @\¢bResul t annotation were not present
in the JWS file, the name of the return value in the generated WSDL file would be the
hard-coded name r et ur n. The t ar get Namespace attribute specifies that the XML
namespace for the return value is ht t p: / / exanpl e. or g/ doclLi t er al Bar e; this

Programming the JWS File 4-7

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

Programming the JWS File: Typical Steps

attribute is relevant only when using document-style SOAP bindings where the return
value maps to an XML element.

None of the attributes of the @\¢bResul t annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) athtt p: / / www. j cp. org/ en/jsr/detail ?
i d=181 for the default value of each attribute.

4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType Annotation)

Use the JAX-WSj avax. xnl . ws. Bi ndi ngType annotation to customize the binding
to use for a web service endpoint implementation class, as shown in the following
code excerpt:

i mport javax.xm .ws. Bi ndi ngType;
i mport javax.xm .ws.soap. SOAPBi ndi ng;
public class Sinple {
@ébServi ce()
@i ndi ngType(val ue=SOAPBi ndi ng. SCAP12HTTP_BI NDI NG
public int echolnt(
@\ébPar an(name="1nt eger | nput ",
target Nanespace="htt p://exanpl e. or g/ docLi t eral Bare")
int input)

Systemout. printin("echolnt '"" + input + "' to you too!");
return input;

In the example, the deployed endpoint would use the SOAP 1.2 over HTTP binding. If

not specified, the binding defaults to SOAP 1.1 over HTTP.

Table 4-3 lists the bindings that are supported for JAX-WS web services.

Table 4-3 Bindings Supported for JAX-WS Web Services

Binding

Description

javax. xm . ws. soap. SOAPBI ndi
ng. SOAP12HTTP_BI NDI NG

SOAP 1.2 over HTTP binding.

javax. xm . ws. soap. SOAPBi ndi
ng. SOAP11HTTP_BI NDI NG

SOAP 1.1 over HTTP binding. This is the default for SOAP over HTTP
transport connection protocol.

j avax. xm . ws. soap. SOAPBi ndi
ng. SOAP12HTTP_MIOM Bl NDI NG

SOAP 1.2 over HTTP and Message Transmission Optimized Mechanism
(MTOM) binding.

j avax. xm . ws. soap. SOAPBIi ndi
ng. SOAP11HTTP_MIOM BI NDI NG

SOAP 1.1 over HTTP and Message Transmission Optimized Mechanism
(MTOM) binding.

You can also specify the following additional attributes of the @i ndi ngType

annotation:

¢ feat ur es—An array of features to enable/disable on the specified binding. If not
specified, features are enabled based on their own rules.

For more information about the @i ndi ngType annotation, see JAX-WS 2.1
Annotations athtt p: //j ax-ws. j ava. net/ nonav/ 2. 1. 4/ docs/
annot ations. htni.

4-8 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181
http://jax-ws.java.net/nonav/2.1.4/docs/annotations.html
http://jax-ws.java.net/nonav/2.1.4/docs/annotations.html

Accessing Runtime Information About a Web Service

4.4 Accessing Runtime Information About a Web Service

When a client application invokes a WebLogic web service that was implemented with
a JWS file, WebLogic Server automatically creates a context that the web service or
client can use to access, and sometimes change, runtime information about the service.

To access runtime information, you can use one of the following methods:

e javax.xm .ws. Bi ndi ngProvider (http://docs. oracl e. com
j avaeel/ 7/ api / j avax/ xm / ws/ Bi ndi ngPr ovi der . ht m)—From the client
application, access the request and response context of the protocol binding. See
Accessing the Protocol Binding Context.

e javax.xm .ws. WbServi ceCont ext (http://docs. oracl e. com
j avaeel 7/ api / j avax/ xm / ws/ WebSer vi ceCont ext . ht M)—From the web
service, access runtime message context and security information relative to a
request being served. Typically, a WebSer vi ceCont ext is injected into an
endpoint using the @esour ce annotation. See Accessing the Web Service
Context.

e javax.xm .ws. handl er. MessageCont ext (http://docs. oracl e. com
j avaeel 7/ api / j avax/ xm / ws/ handl er / MessageCont ext . ht m)—Access a
set of runtime properties from a message handler—from the client application or
web service—or directly from the WVebSer vi ceCont ext from a web service. See
Using the MessageContext Property Values.

The following sections describe how to use the Bi ndi ngPr ovi der,
WebSer vi ceCont ext , and MessageCont ext to access runtime information in more
detail.

4.4.1 Accessing the Protocol Binding Context

Note:

The com sun. xnl . ws. devel oper. JAXWSPr operti es and

com sun. xm . ws. cl i ent. Bi ndi ngProvi der Properties APIs are
supported as an extension to the JDK 6.0. Because the APIs are not provided
as part of the JDK 6.0 kit, they are subject to change.

The j avax. xm . ws. Bi ndi ngPr ovi der interface enables you to access from the
client application the request and response context of the protocol binding. For more
information, see ht t p: / / docs. or acl e. com j avaee/ 7/ api / j avax/ xm / ws/

Bi ndi ngPr ovi der. ht m . For more information about developing web service client
files, see Developing Web Service Clients.

The following example shows a simple web service client application that uses the
context to access HTTP request header information. The code in bold is discussed in
the programming guidelines described following the example.

package exanpl es.webservices. hello_world.client;

i mport javax.xnl.namespace. QNane;
import java.net. Ml formedURLException;
inport java.net.URL;

inport java.util.Mp;

import javax.xnl.ws. Bi ndi ngProvi der;

Programming the JWS File 4-9

http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html

Accessing Runtime Information About a Web Service

i mport javax.xnl.ws. handl er. MessageCont ext ;
import com sun. xn . ws. devel oper. JAXWSPr operti es;
import com sun. xnm . ws.client.BindingProvi derProperti es;

/**
* This is a sinple standal one client application that invokes the

* the <code>sayHel | oWor | d</ code> operation of the Sinple web service.
*/

public class Main {
public static void main(String[] args) {
Hel | oWor | dServi ce service;
try {
service = new Hel | oWor | dServi ce(new URL(args[0] + "?WSDL"),
new QNane("http://hello_world. webservices. exanpl es/",
"Hel | oWor | dService"));
} catch (Mal formedURLException murl) { throw new RuntineException(murl); }
Hel | oWor | dPort Type port = service. get Hel | oWor | dPort TypePort();
Map request Cont ext = ((Bindi ngProvider)port). get Request Context();
request Cont ext . put (Bi ndi ngProvi der . ENDPO NT_ADDRESS _PROPERTY,
"http://exanpl es. com Hel | oWr | dl npl / Hel | oWr | dService");
request Cont ext . put (JAXWSPr operti es. CONNECT_TI MEQUT, 300);
request Cont ext . put (Bi ndi ngPr ovi der Properti es. REQUEST _TI MEQUT, 300);
String result = null;
result = port.sayHelloWrld("H there!");
Systemout.printin("CGot result: " + result);
Map responseContext = ((BindingProvider)port).get ResponseContext();
I nteger responseCode =
(I'nteger)responseCont ext . get (MessageCont ext . HTTP_RESPONSE_CODE) ;
1
}
Use the following guidelines in your JWS file to access the runtime context of the web
service, as shown in the code in bold in the preceding example:

* Import the j avax. xm . ws. Bi ndi ngPr ovi der API, as well as any other related
APIs that you might use:

inport java.util.Mp;

i mport javax.xn .ws. Bi ndi ngProvi der;

i mport javax.xnl.ws. handl er. MessageCont ext ;

i mport com sun. xn . ws. devel oper. JAXWSPr operti es;

import com sun. xm . ws. client.BindingProviderProperti es;
import com sun. xm . ws. client.BindingProviderProperti es;

* Use the methods of the Bi ndi ngPr ovi der class to access the binding protocol
context information. The following example shows how to get the request and
response context for the protocol binding and subsequently set the target service
endpoint address used by the client for the request context, set the connection and
read timeouts (in milliseconds) for the request context, and set the HTTP response
status code for the response context:

Map request Context = ((BindingProvider)port).getRequest Context();
request Cont ext . put (Bi ndi ngProvi der . ENDPO NT_ADDRESS_PROPERTY,
"http://exanpl es. com Hel | oWor | dl npl / Hel | o\r | dSer vi ce");
request Cont ext . put (JAXWSPr operti es. CONNECT_TI MEQUT, 300);
request Cont ext . put (Bi ndi ngPr ovi der Properti es. REQUEST_TI MECUT, 300);
e
Map responseCont ext = ((Bindi ngProvider)port). get ResponseContext();

4-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Accessing Runtime Information About a Web Service

I nteger responseCode =
(I'nteger)responseCont ext . get (MessageCont ext . HTTP_RESPONSE CODE) ;

The following table summarizes the methods of the
javax. xm . ws. Bi ndi ngPr ovi der that you can use in your JWS file to access
runtime information about the web service.

Table 4-4 Methods of the BindingProvider
- __|

Method Returns Description
get Bi ndi ng() Bi ndi ng Returns the binding for the binding provider.
get Request Cont ext () java. Uil. Map Returns the context that is used to initialize the message

and context for request messages.

get ResponseCont ext () java. Uil. Map

Returns the response context.

One you get the request or response context, you can access the Bi ndi ngPr ovi der
property values defined in the following table and the MessageCont ext property
values defined in Using the MessageContext Property Values.

Table 4-5 Properties of BindingProvider
- -]

Property Type Description
ENDPO NT_ADDRESS_PROPERTY java.lang. Strin Targetservice endpoint address.
g
PASSWORD PROPERTY java.lang. Strin Password used for authentication.
g
SESSI ON_MAI NTAI N_PROPERTY j ava. | ang. Bool e Flag that specifies whether a service client wants to
an participate in a session with a service endpoint.
Defaults to f al se, indicating that the service client
does not want to participate.
SQAPACTI ON_URI _PROPERTY java.lang. Strin Property for SOAPAction specifying the SOAPAction
g URI. This property is valid only if
SOAPACTI ON_USE_PROPERTY is settot r ue.
SOAPACTI ON_USE_PROPERTY java.l ang. Bool e Property for SOAPAction specifying whether or not
an SOAPACction should be used.
USERNAME _PROPERTY java.lang. Strin User name used for authentication.
g

In addition, in the previous example:

* The JAXWEPr oper ti es. CONNECT_TI MEQUT property is used to define the
connection timeout. For a complete list of JAXWSPr oper ti es that you can set, see
the com sun. xnl . ws. devel oper. JAXWSPr operti es Javadocathttp: //

j ax-ws. j ava. net/ nonav/ j ax- ws- 20-f cs/ arch/ com sun/ xm / ws/
devel oper/ JAXWEPr oper ti es. ht m #CONNECT_TI MEQUT.

e The Bi ndi ngPr ovi der Properti es. REQUEST_TI MEQUT property is used to
define the request timeout. For a complete list of Bi ndi ngPr ovi der Properti es
that you can set, see the
com sun. xm . ws. cl i ent. Bi ndi ngProvi der Properti es Javadoc at

Programming the JWS File 4-11

http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html#CONNECT_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html#CONNECT_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html#CONNECT_TIMEOUT

Accessing Runtime Information About a Web Service

http://jax-ws.java. net/ nonav/j ax-ws-20-fcs/
arch/ conml sun/ xm /ws/client/
Bi ndi ngProvi der Properties. ht Ml #REQUEST_TI MEQUT.

4.4.2 Accessing the Web Service Context

The j avax. xnl . ws. WebSer vi ceCont ext interface enables you to access from the
web service runtime message context and security information relative to a request
being served. Typically, a WebSer vi ceCont ext is injected into an endpoint using the
@Resour ce annotation. For more information, see ht t p: // docs. or acl e. con!

j avaeel 7/ api / j avax/ xm / ws/ WebSer vi ceCont ext . ht ml .

The following example shows a simple JWS file that uses the context to access HTTP
request header information. The code in bold is discussed in the programming
guidelines described following the example.

package exanpl es.webservi ces.jws_cont ext;
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WbService;
inport java.util.Mp;
i mport javax.xm .ws. WbServi ceCont ext ;
i mport javax.annotation. Resour ce;
i mport javax.xnl.ws. handl er. MessageCont ext ;
@ébSer vi ce(name="JwsCont ext Port Type", servi ceName="JwsCont ext Servi ce",
target Namespace="http://exanple.org")
/**
* Sinple web service to show how to use the @ontext annotation.
*/
public class JwsContextlnpl {
@Resour ce
private WebServiceContext ctx;
@\ebMet hod()
public String msgContext(String nsg) {
MessageCont ext cont ext =ct x. get MessageCont ext () ;
Map request Headers = (Map) cont ext. get (MessageCont ext . HTTP_REQUEST HEADERS) ;
1
}

Use the following guidelines in your JWS file to access the runtime context of the web
service, as shown in the code in bold in the preceding example:

¢ Import the @ avax. annot at i on. Resour ce JWS annotation:

i mport javax.annot ation. Resour ce;

e Import thej avax. xm . ws. WebSer vi ceCont ext API, as well as any other
related APIs that you might use:

inport java.util.Mp;
import javax.xm .ws.\WebServi ceContext;
inport javax.xm .ws. handl er. MessageCont ext ;

* Annotate a private variable, of data type j avax. xm . ws. \.ebSer vi ceCont ext ,
with the field-level @Resour ce JWS annotation:

@Resour ce
private \WbServi ceContext ctx;

® Use the methods of the WebSer vi ceCont ext class to access runtime information
about the web service. The following example shows how to get the message

4-12 Developing JAX-WS Web Services for Oracle WebLogic Server

http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/client/BindingProviderProperties.html#REQUEST_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/client/BindingProviderProperties.html#REQUEST_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/client/BindingProviderProperties.html#REQUEST_TIMEOUT
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html

Accessing Runtime Information About a Web Service

context for the current service request and subsequently access the HTTP request
headers:

MessageCont ext cont ext =ct x. get MessageCont ext () ;
Map request Headers = (Map) cont ext. get (MessageCont ext . HTTP_REQUEST HEADERS)

For more information about the MessageCont ext property values, see Using the
MessageContext Property Values.

The following table summarizes the methods of the

javax. xm . ws. WebSer vi ceCont ext that you can use in your JWS file to access
runtime information about the web service. For more information, see ht t p: / /
docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/

WebSer vi ceCont ext . ht il .

Table 4-6 Methods of the WebServiceContext

Method Returns Description

get MessageCont ext () MessageCont ext Returns the MessageContext for the current service
request. You can access properties that are application-
scoped only, such as HTTP_REQUEST_HEADERS,
MESSAGE_ATTACHMENTS, and so on, as defined in Using
the MessageContext Property Values.

get User Pri nci pal () java. security. Returns the Principal that identifies the sender of the

Pri nci pal current service request. If the sender has not been

authenticated, the method returns nul | .

i sUserinRol e(java.l an bool ean Returns a boolean value specifying whether the

g.String role) authenticated user is included in the specified logical role.

If the user has not been authenticated, the method returns
fal se.

4.4.3 Using the MessageContext Property Values

The following table defined the j avax. xm . ws. handl er . MessageCont ext
property values that you can access from a message handler—from the client
application or web service—or directly from the WebSer vi ceCont ext from the web
service. For more information, see the j avax. xm . ws. handl er. MessageCont ext
Javadocs athtt p: // docs. oracl e. conl j avaee/ 7/ api / j avax/ xm [ws/

handl er / MessageCont ext . htm .

Table 4-7 Properties of MessageContext

Property Type Description
HTTP_REQUEST_HEADERS java.util.Mp Map of HTTP request headers for the request
message.

HTTP_REQUEST _METHOD java.lang. Strin HTTP request method for example GET, POST, or
g PUT.

HTTP_RESPONSE_CODE java.lang. I nteg HTTP response status code for the last invocation.
er

HTTP_RESPONSE_HEADERS java.util.Mp HTTP response headers.

Programming the JWS File 4-13

http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Should You Implement a Stateless or Singleton Session EJB?

Table 4-7 (Cont.) Properties of MessageContext
. __|

Property Type Description

| NBOUND_MESSAGE_ATTACHMVE java.util.Map Map of attachments for the inbound messages.
NTS

MESSAGE_QUTBOUND_PROPERT j ava. |l ang. Bool e Message direction. This property ist r ue for
Y an outbound messages and f al se for inbound
messages.

OUTBOUND_MESSAGE_ATTACHM java.util.Mp Map of attachments for the outbound messages.
ENTS

PATH_| NFO java.lang. Strin Request path information.
g
QUERY_STRI NG java.lang. Strin Query string for request.
g
REFERENCE_PARAMETERS java.awt. Li st WS-Addressing reference parameters. The list must

include all SOAP headers marked with the
wsa: | sRef er encePar anet er ="t rue" attribute.

SERVLET_CONTEXT javax.servlet.S Servlet context object associated with request.
ervl et Cont ext

SERVLET _REQUEST javax.servlet.h Servlet request object associated with request.
ttp. HtpServlet
Request

SERVLET_RESPONSE javax.servlet.h Servlet response object associated with request.
ttp. HtpServl et
Response

WSDL_DESCRI PTI ON org. xm .sax. | np Inputsource (resolvable URI) for the WSDL
ut Sour ce document.

WSDL_| NTERFACE javax.xml .names Name of the WSDL interface or port type.
pace. QNane

WSDL_ OPERATI ON javax.xm .names Name of the WSDL operation to which the current
pace. QName message belongs.

WEDL_PCORT javax.xm . names Name of the WSDL port to which the message was
pace. QNane received.

WSDL_SERVI CE javax.xm . names Name of the service being invoked.
pace. QNane

4.5 Should You Implement a Stateless or Singleton Session EJB?

The j wsc Ant task always chooses a plain Java object as the underlying
implementation of a web service when processing your JWS file.

Sometimes, however, you may want the underlying implementation of your web
service to be a stateless or singleton session E]B to take advantage of all that E]Bs have
to offer, such as instance pooling, transactions, security, container-managed
persistence, container-managed relationships, and data caching. If you decide you

4-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Should You Implement a Stateless or Singleton Session EJB?

want an EJB implementation for your web service, then follow the programming
guidelines in the following section.

EJB 3.0 introduced metadata annotations that enable you to automatically generate,
rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB. For more information
about EJB 3.0, see Developing Enterprise JavaBeans for Oracle WebLogic Server.

By default, E]B-based web services are packaged as a JAR file. When building the EJB-
based web service, you can specify that it be packaged as a WAR file by updating the
j wsc Ant task in your bui | d. xnl file to enable the ej bW 1 nWar attribute in the
nmodul e child element. For more information, see "jwsc" in WebLogic Web Services
Reference for Oracle WebLogic Server.

To implement an EJB in your JWS file, perform the following steps:

¢ Import the EJB annotations, all of which are in the j avax. ej b package. Ata
minimum you need to import the @5t at el ess or @i ngl et on annotation. You
can also specify additional EJB annotations in your JWS file to specify the shape
and behavior of the EJB. For more information, see the j avax. ej b Javadoc at
http://docs. oracl e.conijavaeel/ 7/ api / j avax/ ej b/ package-
summary. htnl .

For example:

inmport javax.ejb. Statel ess;

e Ata minimum, use the @bt at el ess or @i ngl et on annotation at the class level
to identify the EJB:

@t at el ess
public class SinpleE blnpl {

The following example shows a simple JWS file that implement a stateless session E]JB.
The relevant code is shown in bold.

package exanpl es.webservi ces. j axws;

i mport webl ogi c. transaction. Transacti onHel per;
inport javax.ejb. Stateless;

i mport javax.ejb. SessionContext;

import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
i mport javax.annotation. Resour ce;

import javax.jws.\WebService;

import javax.jws.\WebMet hod,;

import javax.transaction. SystenException;
import javax.transaction. Status;

import javax.transaction. Transaction;
import javax.xm .ws.\WebServi ceCont ext;

/**

* A transaction-awared statel ess EJB-inpl emented JWS
*|

/1 Standard JWS annotation that specifies that the portNane, servi ceNane and
/1 target Nanespace of the Web Service.
@\ébSer vi ce(

name = "Sinple",

port Name = "Sinpl eEJBPort",

servi ceNanme = "Sinpl eEj bServi ce",

target Namespace = "http://w s/ sanpl es")

Programming the JWS File 4-15

http://docs.oracle.com/javaee/7/api/javax/ejb/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/ejb/package-summary.html

Programming the User-Defined Java Data Type

/I Standard EJB annotation
@t at el ess
public class SinpleEblnpl {

@Resour ce
private WebServiceContext context;
private String constructed = null;

/1 The WebMet hod annotation exposes the subsequent nethod as a public
/] operation on the Web Service.
@ebMet hod()
@ransactionAttribute(Transacti onAttributeType. REQUI RED)
public String sayHel lo(String s) throws SystenException {
Transaction transaction =
Transact i onHel per. get Transacti onHel per (). get Transaction();
int status = transaction. getStatus();
if (Status. STATUS ACTI VE ! = status)
throw new ||l egal StateException("transaction did not start,
status is: " + status + ", check ejb annotation processing");

return constructed + ":" + s;

}

4.6 Programming the User-Defined Java Data Type

The methods of the JWS file that are exposed as web service operations do not
necessarily take built-in data types (such as Strings and integers) as parameters and
return values, but rather, might use a Java data type that you create yourself. An
example of a user-defined data type is Tr adeResul t , which has two fields: a St ri ng
stock symbol and an integer number of shares traded.

If your JWS file uses user-defined data types as parameters or return values of one or
more of its methods, you must create the Java code of the data type yourself, and then
import the class into your JWS file and use it appropriately. The j wsc Ant task will
later take care of creating all the necessary data binding artifacts.

Follow these basic requirements when writing the Java class for your user-defined
data type:

* Define a default constructor, which is a constructor that takes no parameters.

* Define both get XXX() and set XXX() methods for each member variable that you
want to publicly expose.

* Make the data type of each exposed member variable one of the built-in data types,
or another user-defined data type that consists of built-in data types.

Note:

You can use JAXB to provide custom mapping. For more information, see
Customizing Java-to-XML Schema Mapping Using JAXB Annotations.

The j wsc Ant task can generate data binding artifacts for most common XML and
Java data types. For the list of supported user-defined data types, see Supported User-
Defined Data Types. See Supported Built-In Data Types for the full list of supported
built-in data types.

4-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Programming the User-Defined Java Data Type

The following example shows a simple Java user-defined data type called
Basi cStruct:

package exanpl es.webservi ces. conpl ex;
/**

* Defines a sinple JavaBean cal l ed BasicStruct that has integer, String,
* and String[] properties

*/
public class BasicStruct {

Il Properties

private int intValue;

private String stringVal ue;

private String[] stringArray;

Il Cetter and setter nethods

public int getlntValue() {

return intVal ue;

public void setlntValue(int intValue) {
this.intValue = intValue;

1

public String getStringValue() {
return stringVal ue;

public void setStringVal ue(String stringValue) {
this.stringValue = stringVal ue;

1
public String[] getStringArray() {
return stringArray;

public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;
1
}

The following snippets from a JWS file show how to import the Basi ¢St r uct class
and use it as both a parameter and return value for one of its methods; for the full JWS
file, see Sample ComplexImpl.java JWS File:

package exanpl es.webservi ces. conpl ex;

/1 Import the standard JWS annotation interfaces

i mport javax.jws.\\ebMet hod;

inport javax.jws.\WbParam

i mport javax.jws.\MbResul t;

i mport javax.jws.\WbService;

import javax.jws.soap. SOAPBi ndi ng;

/1 Inport the WebLogi c-specific JWs annotation interface

[l Inport the BasicStruct JavaBean

i mport exanpl es. webservi ces. conpl ex. Basi cStruct;

@ébSer vi ce(servi ceName="Conpl exServi ce", nane="Conpl exPort Type",
target Nanespace="http://exanple.org")

public class Conplexlnpl {
@\ebMet hod(oper at i onName="echoConpl exType")
public BasicStruct echoStruct(BasicStruct struct)
{
return struct;
1
}

Programming the JWS File 4-17

Invoking Another Web Service from the JWS File

4.7 Invoking Another Web Service from the JWS File

From within your JWS file you can invoke another web service, either one deployed
on WebLogic Server or one deployed on some other application server, such as .NET.
The steps to do this are similar to those described in Invoking a Web Service from a
WebLogic Web Service, except that rather than running the cl i ent gen Ant task to
generate the client stubs, you include a <cl i ent gen> child element of the j wsc Ant
task that builds the invoking web service to generate the client stubs instead. You then
use the standard JAX-WS APlIs in your JWS file, the same as you do for a Java SE client
application.

See Invoking a Web Service from Another WebLogic Web Service for detailed
instructions.

4.8 Using SOAP 1.2

WebLogic web services use, by default, Version 1.1 of Simple Object Access Protocol
(SOAP) as the message format when transmitting data and invocation calls between
the web service and its client. WebLogic web services support both SOAP 1.1 and the
newer SOAP 1.2, and you are free to use either version.

To specify that the web service use Version 1.2 of SOAP, use the class-level

@ avax. xm . ws. Bi ndi ngTyp annotation in your JWS file and set its single attribute
to the value SOAPBI ndi ng. SOAP12HTTP_BI NDI NG, as shown in the following
example (relevant code shown in bold):

package exanpl es. webservi ces. soapl2;
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WebService;
i mport javax.xnl.ws. Bi ndi ngType;
i mport javax.xnl.ws. SOAPBi ndi ng;
@\ebSer vi ce(name=" SOAP12Por t Type",
servi ceName="S0AP12Ser vi ce",
tar get Nanespace="http://exanple.org")
@i ndi ngType(val ue = SOAPBI ndi ng. SOAP12HTTP_BI NDI NG
/**
* This JWs file forns the basis of sinple Java-class inplemented WbLogic
* Wb Service with a single operation: sayHello. The class uses SOAP 1.2
* as its binding.
*
*|
public class SQAP12Inmpl {
@ebMet hod()
public String sayHello(String message) {
Systemout. println("sayHello:" + nessage);
return "Here is the nessage: '" + message + "'";
}
}

Other than set this annotation, you do not have to do anything else for the web service
to use SOAP 1.2, including changing client applications that invoke the web service;
the WebLogic web services runtime takes care of all the rest.

4.9 Validating the XML Schema

By default, SOAP messages are not validated against their XML schemas. You can
enable XML schema validation for document-literal web services on the server or

4-18 Developing JAX-WS Web Services for Oracle WebLogic Server

Validating the XML Schema

client, as described in the following sections. In the event a SOAP message is invalid, a
SOAP fault is returned.

Note:
This feature adds a small amount of extra processing to a web service request.

By default, the stack trace is included in the details of the SOAP fault. To
disable the stack trace, see Disabling the Stack Trace from the SOAP Fault.

4.9.1 Enabling Schema Validation on the Server

Note:

The com sun. xn . ws. devel oper. SchemaVal i dati on APl is supported
as an extension to the JDK 6.0. Because this APl is not provided as part of the
JDK 6.0 kit, it is subject to change.

To enable schema validation on the server, add the @chenaVal i dat i on annotation
on the endpoint implementation. For example:

i mport com sun. xm . ws. devel oper. SchemaVal i dat i on;
import javax.jws.\WebServi ce;
@chenaVal i dati on
@ebServi ce(name="Hel | oWr| dPort Type", serviceName="Hel | oWor| dService")
public class Hel | oWorldlnpl {
public String sayHell oWrl d(String message) {
Systemout. println("sayHel | oWrld:" + nmessage);
return "Here is the message: '" + message + "'";
}
}

You can pass your own validation error handler class as an argument to the
annotation, if you want to manage errors within your application. For example:

@chemaVal i dat i on(handl er =Er r or Handl er . cl ass)

4.9.2 Enabling Schema Validation on the Client

Note:

The com sun. xnl . ws. devel oper. SchenaVal i dati onFeat ur e APl is
supported as an extension to the JDK 6.0. Because this API is not provided as
part of the JDK 6.0 kit, it is subject to change.

To enable schema validation on the client, create a SchenmaVal i dat i onFeat ur e
object and pass this as an argument when creating the Por t Type stub
implementation.

package exanpl es. webservices. hello_world.client;

i mport com sun. xm . ws. devel oper. SchemaVal i dat i onFeat ure;
i mport javax.xm .nanmespace. QNane;

i mport java.net. Ml formedURLException;

i mport java.net.URL;

Programming the JWS File 4-19

JWS Programming Best Practices

public class Main {
public static void main(String[] args) {
Hel | oWor | dServi ce service;

try {
service = new Hel | oWr| dServi ce(new URL(args[0] + "?WsDL"),

new QNane("http://exanple.org", "HelloWrldService"));
} catch (Mal formedURLException murl) { throw new RuntineException(murl); }
SchemaVal i dationFeature feature =
new SchenmaVal i dationFeature();
Hel | oWor | dPort Type port = service. get Hel | oWor | dPort TypePort (feature);
String result = null;
result = port.sayHelloWrld("H there!");
Systemout.printin("CGot result: " + result);
1
}

You can pass your own validation error handler as an argument to the
SchemaVal i dat i onFeat ur e object, if you want to manage errors within your
application. For example:

SchemaVal i dati onFeature feature =
new SchenmaVal i dati onFeat ure(MyError Handl er. cl ass) ;
Hel | oWor | dPort Type port = service. get Hel | oWor | dPort TypePort (feature);

4.10 JWS Programming Best Practices

The following list provides some best practices when programming the JWS file:

* When you create a document-literal-bare web service, use the @&bPar amJWS
annotation to ensure that all input parameters for all operations of a given web
service have a unique name. Because of the nature of document-literal-bare web
services, if you do not explicitly use the @\bPar amannotation to specify the
name of the input parameters, WebLogic Server creates one for you and run the
risk of duplicating the names of the parameters across a web service.

® In general, document-literal-wrapped web services are the most interoperable type
of web service.

¢ Use the @¢bResul t JWS annotation to explicitly set the name of the returned
value of an operation, rather than always relying on the hard-coded name r et urn,
which is the default name of the returned value if you do not use the @\ébResul t
annotation in your JWS file.

4-20 Developing JAX-WS Web Services for Oracle WebLogic Server

5

Using JAXB Data Binding

This chapter describes how to use Java Architecture for XML Binding (JAXB) data
binding.

This chapter includes the following topics:

¢ Overview of Data Binding Using JAXB

* Developing the JAXB Data Binding Artifacts

e Standard Data Type Mapping

¢ Customizing Java-to-XML Schema Mapping Using JAXB Annotations

¢ Customizing XML Schema-to-Java Mapping Using Binding Declarations

* Using the Glassfish RI JAXB Data Binding and JAXB Providers

5.1 Overview of Data Binding Using JAXB

With the emergence of XML as the standard for exchanging data across disparate
systems, web service applications need a way to access data that are in XML format
directly from the Java application. Specifically, the XML content needs to be converted
to a format that is readable by the Java application. Data binding describes the
conversion of data between its XML and Java representations.

JAX-WS uses JAXB, described athtt p: //j cp. org/ en/jsr/detail ?i d=222, to
manage all of the data binding tasks. Specifically, JAXB binds Java method signatures
and WSDL messages and operations and allows you to customize the mapping while
automatically handling the runtime conversion. This makes it easy for you to
incorporate XML data and processing functions in applications based on Java
technology without having to know much about XML.

The following figure shows the JAXB data binding process.

Using JAXB Data Binding 5-1

http://jcp.org/en/jsr/detail?id=222

Overview of Data Binding Using JAXB

Figure 5-1 Data Binding With JAXB

P i FoTTTTTTTN
: Custom : : JAXE :
! binding | | Annotations |
| declarations | i I
o o o s o o = I\-————I————-I
|
e I R
! - 'i r’ N :S{hema-derived-l
[, > Bind » andexisting |
iS:hemar(—— € JavaClasses |
S T
|
______ ¥ Y
| — | J— » Unmarshal » .
. | — JavaObjects
HTTP | | SOAP | XML =
L/\Ei — 1:"5* < Marshal <
T -
M "
JAXB

As shown in the previous figure, the JAXB data binding process consists of the
following tasks:

¢ Bind—Binds XML Schema to schema-derived JAXB Java classes, or value classes. Each
class provides access to the content via a set of JavaBean-style access methods (that
is, get and set). Binding is managed by the JAXB schema compiler.

¢ Unmarshal—Converts the XML document to create a tree of Java program
elements, or objects, that represent the content and organization of the document
that can be accessed by your Java code. In the content tree, complex types are
mapped to value classes. Attribute declarations or elements with simple types are
mapped to properties or fields within the value class and you can access the values
for them using get and set methods. Unmarshalling is managed by the JAXB
binding framework.

e Marshal—Converts the Java objects back to XML content. In this case, the Java
methods that are deployed as WSDL operations determine the schema components
in the wsdl : t ypes section. Marshalling is managed by the JAXB binding
framework.

You can use the JAXB binding language to define custom binding declarations or
specify JAXB annotations to control the conversion of data between XML and Java.

WebLogic Server provides two data binding and JAXB providers:

e EclipseLink MOXy, the default in this release of WebLogic Server, is a fully
compliant JAXB implementation. In addition to offering the standard JAXB
features, EclipseLink MOXy provides useful extensions, such as the ability to use
an external metadata file to configure the equivalent of JAXB annotations without
modifying the Java source it refers to, and XPath based mapping. The JAXB
enhancements can be used in the annotations on a service endpoint interface (SEI)
or one of the value types used by the SEI. Users of JAXB in standalone mode can
also take advantage of these features.

Some of the additional extensions offered by EclipseLink MOXy include:
— Extensions for mapping JPA entities to XML

— Bidirectional mapping

5-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing the JAXB Data Binding Artifacts

— Virtual properties

— Ability to bootstrap from metadata and generate in-memory domain classes
(Dynamic MOXy)

For a web service, the EclipseLink MOXy extensions can be leveraged on the server
side only, and only in the Java to WSDL scenario, in which the SEI and value types
can use the extended EclipseLink functionality. For more information about these
extensions and EclipseLink MOXy, see The EclipseLink MOXy (JAXB) User’s Guide at
http://wi ki.eclipse.org/EclipseLink/ User Gui de/ MOXy.

No configuration is required to use the EclipseLink MOXy providers.

Glassfish RI JAXB, which is the default Glassfish JAXB implementation, and was
the default JAXB offering in WebLogic Server in previous releases. The Glassfish RI
JAXB proprietary features will not work with EclipseLink MOXy. If desired, you
can enable the Glassfish RI JAXB data binding and JAXB providers at the server or
application level. For more information, see Using the Glassfish RI JAXB Data
Binding and JAXB Providers.

The following sections describe how to use JAXB data binding with WebLogic Server
and how to configure the Glassfish RI JAXB providers if desired:

Developing the JAXB Data Binding Artifacts—Describes how to develop the JAXB
data binding artifacts using WebLogic Server.

Standard Data Type Mapping—Describes the standard built-in and user-defined
data types that are supported.

Customizing Java-to-XML Schema Mapping Using JAXB Annotations—Describes
how you can control and customize the Java-to-XML Schema mapping using JAXB
annotations in the JWS file.

Customizing XML Schema-to-Java Mapping Using Binding Declarations—
Describes how you can control and customize the XML Schema-to-Java mapping
using binding declarations that are defined in a separate file or embedded inline.

Using the Glassfish RI JAXB Data Binding and JAXB Providers—Describes the
global server-level and application-level procedures required to configure the
Glassfish RI JAXB Data Binding and JAXB providers instead of the default
EclipseLink MOXy JAXB providers.

5.2 Developing the JAXB Data Binding Artifacts

The steps to develop the JAXB data binding artifacts using WebLogic Server depend
on whether you are starting from a Java class file or a WSDL.

Start from Java: Using this programming model, you create the Java classes. At
run-time, JAXB marshals the Java objects to generate the XML content which is then
packaged in a SOAP message and sent as a web service request or response.

To control the Java-to-XML mapping, you include JAXB annotations in your JWS
file, as described in Customizing Java-to-XML Schema Mapping Using JAXB
Annotations. If no customizations are required, JAXB uses the standard built-in
and user-defined data type mapping as described in the following sections: Java-to-
XML Mapping for Built-In Data Types and Supported Java User-Defined Data

Types.

Using JAXB Data Binding 5-3

http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy

Standard Data Type Mapping

For more information about this programming model, see Developing WebLogic
Web Services Starting From Java: Main Steps.

e Start from WSDL: Using this programming model, the XML Schemas exist and
JAXB unmarshals the XML document to generate the Java objects.

To control the XML-to-Java mapping, you can define custom binding declarations
within the WSDL or XML Schema, or in an external file, as described in
Customizing XML Schema-to-Java Mapping Using Binding Declarations. If no
customizations are required, the standard built-in and user-defined data type
mapping as described in the following sections: XML-to-Java Mapping for Built-in
Data Types and Supported XML User-Defined Data Types.

For more information about this programming model, see Developing WebLogic
Web Services Starting From a WSDL File: Main Steps.

Please note, when invoking the j wsc, wsdl ¢, or cl i ent gen Ant tasks described in
these procedures:

* You must specify the t ype="JAXWS" attribute to generate a JAX-WS web service
and JAXB binding artifacts. For j wsc, you specify the type attribute as part of the
<j ws> child element.

* You can optionally specify the <bi ndi ng> child element to specify a
customizations file that contains JAX-WS and JAXB data binding customizations.
For information about creating a customizations file, see Customizing XML
Schema-to-Java Mapping Using Binding Declarations. If no customizations are
required, JAXB uses the standard built-in and user-defined data type mappings
described in Standard Data Type Mapping.

5.3 Standard Data Type Mapping

WebLogic web services support a full set of built-in XML Schema, Java, and SOAP
types, as specified by the JSR 222: Java™ Architecture for XML Binding (JAXB) 2.0
specificationathtt p: //j cp. org/ en/j sr/ detai |l ?i d=222, that you can use in
your web service operations without performing any additional programming steps.
Built-in data types are those such as i nt eger,string,andti ne.

Additionally, you can use a variety of user-defined XML and Java data types as input
parameters and return values of your web service. User-defined data types are those
that you create from XML Schema or Java building blocks, such as

<xsd: conpl exType> or JavaBeans. The WebLogic web services Ant tasks, such as

j wsc and cl i ent gen, automatically generate the data binding artifacts needed to
convert the user-defined data types between their XML and Java representations. The
XML representation is used in the SOAP request and response messages, and the Java
representation is used in the JWS that implements the web service.

The following sections describe the built-in and user-defined data types that are
supported by JAXB:

* Supported Built-In Data Types

e Supported User-Defined Data Types

5.3.1 Supported Built-In Data Types

The following sections describe the built-in data types supported by WebLogic web
services and the mapping between their XML and Java representations. As long as the
data types of the parameters and return values of the back-end components that

5-4 Developing JAX-WS Web Services for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=222

Standard Data Type Mapping

implement your web service are in the set of built-in data types, WebLogic Server
automatically converts the data between XML and Java.

When using user-defined data types, then you must create the data binding artifacts
that convert the data between XML and Java. WebLogic Server includes the j wsc and
wsdl ¢ Ant tasks that can automatically generate the data binding artifacts for most
user-defined data types. See Supported User-Defined Data Types for a list of
supported XML and Java data types.

5.3.1.1 XML-to-Java Mapping for Built-in Data Types

The following table lists alphabetically the supported XML Schema data types (target
namespace ht t p: / / www. w3. or g/ 2001/ XM_Schena) and their corresponding Java
data types. For a list of the supported user-defined XML data types, see Java-to-XML
Mapping for Built-In Data Types.

Table 5-1 Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type Java Data Type (lower case indicates a primitive data
type)

anySi npl eType (for j ava. l ang. Obj ect

xsd:element of this type)

anySi npl eType (for java.lang. String

xsd:attribute of this type)

base64Bi nary byte[]

bool ean bool ean

byt e byt e

date j ava. xnl . dat at ype. XM_G egor i anCal endar

dat eTi me j avax. xm . dat at ype. XMLGr egor i anCal endar

deci mal j ava. mat h. Bi gDeci nal

doubl e doubl e

duration j avax. xm . dat at ype. Durati on

f1 oat f1 oat

g java. xnl . dat at ype. XM_G egor i anCal endar

hexBi nary byt e[]

int i nt

i nt eger j ava. mat h. Bi gl nt eger

| ong I ong

NOTATI ON j avax. xml . namespace. QNanme

Q\ane j avax. xm . nanmespace. QNane

short short

Using JAXB Data Binding 5-5

Standard Data Type Mapping

Table 5-1 (Cont.) Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type

Java Data Type (lower case indicates a primitive data

type)

string java.lang. String

tinme j ava. xnl . dat at ype. XM_G egor i anCal endar
unsi gnedByt e short

unsi gnedl nt | ong

unsi gnedShort i nt

The following example, borrowed from the JAXB specification, shows an example of

the default XML-to-Java binding.

5.3.1.1.1 XML Schema

<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<xsd: el ement name="purchaseCrder" type="PurchaseC der Type"/>
<xsd: el ement name="coment" type="xsd:string"/>

<xsd: conpl exType name="Pur chaseCr der Type" >

<xsd: sequence>

<xsd: el ement name="shi pTo" type="USAddress"/>
<xsd: el ement name="bill To" type="USAddress"/>
<xsd: el ement ref="coment" m nCccurs="0"/>
<xsd: el ement nanme="items" type="Itenms"/>

</ xsd: sequence>

<xsd:attribute name="orderDate" type="xsd:date"/>

</ xsd: conpl exType>

<xsd: conpl exType name="USAddr ess" >

<xsd: sequence>

<xsd: el ement name="name" type="xsd:string"/>
<xsd: el ement name="street" type="xsd:string"/>
<xsd: el ement name="city" type="xsd:string"/>
<xsd: el ement name="state" type="xsd:string"/>
<xsd: el ement name="zip" type="xsd: deci mal"/>

</ xsd: sequence>

<xsd:attribute name="country" type="xsd: NMTOKEN" fixed="US"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="1Itens">

<xsd: sequence>

<xsd: el ement name="item' mnQccurs="1" maxCccurs="unbounded">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement name="product Name" type="xsd:string"/>
<xsd: el ement nanme="quantity">
<xsd: si npl eType>
<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el ement >
<xsd: el ement name="USPrice" type="xsd: decimal"/>
<xsd: el ement ref="comment" m nCccurs="0"/>
<xsd: el ement name="shi pDate" type="xsd: date"
m nCccurs="0"/>

</ xsd: sequence>

5-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Standard Data Type Mapping

<xsd:attribute name="partNunt type="SKU' use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
<I-- Stock Keeping Unit, a code for identifying products -->
<xsd: si npl eType nane="SKU'>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>

5.3.1.1.2 Default Java Binding

i mport javax.xnl.datatype. XM.Gregori anCal endar; inport java.util.List;
public class PurchaseO der Type {
USAddr ess get ShipTo(){...}
voi d set Shi pTo(USAddress){. ..}
USAddress getBillTo(){...}
voi d setBill To(USAddress){...}
[** Optional to set Conment property. */
String get Comment (){...}
voi d set Comrent (String){...}
[tems getltems(){...}
void setltens(ltens){...}
XM.Gr egori anCal endar get Order Dat e()
voi d set O der Dat e(XMLGr egor i anCal endar)
¥
public class USAddress {
String getName(){...}
voi d setName(String){...}
String getStreet(){...}
void setStreet(String){...}
String getCty(){...}
void setCty(String){...}
String getState(){...}
void setState(String){...}
int getZip(){...}
void setzZip(int){...}
static final String COUNTRY="USA";
¥
public class Itens {
public class ItenfType {
String getProduct Nane(){...}
voi d set Product Name(String){...}
/** Type constraint on Quantity setter value 0..99.*/
int getQuantity(){...}
void setQuantity(int){...}
float getUSPrice(){...}
void set USPrice(float){...}
/** Optional to set Conment property. */
String get Comment (){...}
voi d set Comrent (String){...}
XMLG egori anCal endar get Shi pDate();
voi d set Shi pDat e(XMLG egori anCal endar) ;
[** Type constraint on PartNumsetter value "\d{3}-[A-Z]{2}".*/
String getPartNun(){...} void setPartNum(String){...}
¥
/** Local structural constraint 1 or nore instances of Itens.|tenfType.*/
List<ltens.|tenlype> getlten(){...}

Using JAXB Data Binding 5-7

Standard Data Type Mapping

public class QojectFactory {
Il type factories

Obj ect newl nstance(C ass javalnterface){...}
Pur chaseOr der Type creat ePurchaseOr der Type(){...}
USAddr ess creat eUSAddress(){...}

[tems createltems(){...}

Itens. |tenType createltenmsltenlype(){...}

/'l elenment factories

JAXBEI ement <Pur chaseOr der Type>cr eat ePur chaseOr der (Pur chaseOr der Type){. ..}
JAXBEl ement <String> createComment (String value){...}

}

5.3.1.2 Java-to-XML Mapping for Built-In Data Types

The following table lists alphabetically the supported Java data types and their
equivalent XML Schema data types. For a list of the supported user-defined Java data
types, see Supported Java User-Defined Data Types.

Table 5-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case
indicates a primitive data

XML Schema Data Type

type)

bool ean bool ean
byte byt e
doubl e doubl e
fl oat f1 oat

| ong | ong
int i nt

j avax. acti vati on. Dat aHa

base64Bi nary

ndl er

java. awt . | nage base64Bi nary
j ava. |l ang. Qbj ect anyType
java.lang. String string

j ava. mat h. Bi gl nt eger i nt eger

j ava. mat h. Bi gDeci nal deci nal

java. net. URI string
java.util. Cal endar dat eTi ne
java.util.Date dat eTi ne
java.util.UU D string

javax. xnl . dat at ype. XMLG
regori anCal endar

anySi npl eType

5-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Standard Data Type Mapping

Table 5-2 (Cont.) Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case
indicates a primitive data

XML Schema Data Type

type)

javax. xm . datatype. Dura duration
tion

j avax. xm . nanespace. QNa Qnane

nme

javax. xm . transform Sou
rce

base64Bi nary

short short

5.3.2 Supported User-Defined Data Types

The tables in the following sections list the user-defined XML and Java data types for
which the j wsc and wsdl ¢ Ant tasks can automatically generate data binding
artifacts, such as the corresponding Java or XML representation.

If your XML or Java data type is not listed in these tables, and it is not one of the built-
in data types listed in Supported Built-In Data Types, then you must create the user-

defined data type artifacts manually.

5.3.2.1 Supported XML User-Defined Data Types

The following table lists the XML Schema data types supported by the j wsc and
wsdl ¢ Ant tasks and their equivalent Java data type or mapping mechanism.

Table 5-3 Supported User-defined XML Schema Data Types
- - - -]

XML Schema Data Type

Equivalent Java Data Type or Mapping
Mechanism

<xsd: conpl exType> with elements of both
simple and complex types.

JavaBean

<xsd: conpl exType> with simple content.

JavaBean

<xsd:attribute>in
<xsd: conpl exType>

Property of a JavaBean

Derivation of new simple types by restriction
of an existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element.

Facets not enforced during serialization and
deserialization.

<xsd: list>

Array of the list data type.

Array derived from soapenc: Array by
restriction using the wsdl : arr ayType
attribute.

Array of the Java equivalent of the
arrayType data type.

Array derived from soapenc: Arr ay by
restriction.

Array of Java equivalent.

Using JAXB Data Binding 5-9

Standard Data Type Mapping

Table 5-3 (Cont.) Supported User-defined XML Schema Data Types

XML Schema Data Type

Equivalent Java Data Type or Mapping
Mechanism

Derivation of a complex type from a simple
type.

JavaBean with a property called _val ue
whose type is mapped from the simple type

according to the rules in this section.

<xsd: anyType> j ava. |l ang. Obj ect

<xsd: any> java. |l ang. vj ect

<xsd:any[] > j ava. |l ang. Qbj ect

<xsd: uni on> Common parent type of union members.
<xsi : nil>and<xsd: ni | | abl e> attribute Java nul | value.

If the XML data type is built-in and usually
maps to a Java primitive data type (such as

i nt orshort), then the XML data type is
actually mapped to the equivalent object
wrapper type (such as j ava. | ang. | nt eger
orj ava. | ang. Short).

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

5.3.2.2 Supported Java User-Defined Data Types

The following table lists the Java user-defined data types supported by the j wsc and
wsdl ¢ Ant tasks and their equivalent XML Schema data type.

Table 5-4 Supported Java User-defined Data Types
- -]

Java Data Type Equivalent XML Schema Data Type

<xsd: conpl exType> whose content model
is a <xsd: sequence> of elements
corresponding to JavaBean properties.

JavaBean whose properties are any supported
data type.

Array and multidimensional array of any
supported data type (when used as a
JavaBean property)

An element in a <xsd: conpl exType> with
the maxQccur s attribute set to unbounded.

java. |l ang. vj ect <xsd: anyType>

Note: The data type of the runtime object
must be a known type.

java.util.Collection Literal Array
java.util.List Literal Array
java.util.Arrayli st Literal Array
java.util.LinkedLi st Literal Array
java.util. Vector Literal Array

5-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Table 5-4 (Cont.) Supported Java User-defined Data Types

Java Data Type

Equivalent XML Schema Data Type

java.util. Stack Literal Array
java.util. Set Literal Array
java.util.TreeSet Literal Array
java.utils. SortedSet Literal Array
java. utils. HashSet Literal Array

5.4 Customizing Java-to-XML Schema Mapping Using JAXB Annotations

If required, you can override the default binding rules for Java-to-XML Schema
mapping using JAXB annotations. Table 5-5 summarizes the JAXB mapping
annotations that you can include in your JWS file to control how the Java objects are
mapped to XML. Each of these annotations are available with the

javax. xm . bi nd. annot at i on package, described at ht t p: //

docs. oracl e. com j avaee/ 7/ api / j avax/ xm / bi nd/ annot at i on/ package-

summary. htm .

Table 5-5 JAXB Mapping Annotations

Annotation

Description

@Xm Accessor Type

Specifies whether fields or properties are mapped by default. See
Specifying Default Serialization of Fields and Properties
(@XmlAccessorType Annotation).

@l El enent

Maps a property contained in a class to a local element in the XML
Schema complex type to which the containing class is mapped. See
Mapping Properties to Local Elements (@XmlElement).

@XM_M neType

Associates the MIME type that controls the XML representation of
the property with a textual representation, such as i mage/ j peg. See
Specifying the MIME Type (@XmIMimeType Annotation).

@M Root El emrent

Maps a top-level class to a global element in the XML Schema that is
used by the WSDL of the web service. See Mapping a Top-level
Class to a Global Element (@XmIRootElement).

@ SeeAl so

Binds other classes when binding the current class. See Binding a Set
of Classes (@XmlSeeAlso).

@Xm Type

Maps a class or enum type to an XML Schema type.See Mapping a
Value Class to a Schema Type (@XmlType).

The default mapping of Java objects to XML Schema for the supported built-in and
user-defined types are listed in the following sections:

* Java-to-XML Mapping for Built-In Data Types

¢ Supported Java User-Defined Data Types

Using JAXB Data Binding 5-11

http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/package-summary.html

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

5.4.1 Example of JAXB Annotations

The following provides an example of the JAXB annotations.

@ Root El enent (name = "Conpl exServi ce", namespace ="http://exanpl es.org")
@ Accessor Type(Xm AccessType. Fl ELD)
@m Type(nanme = "basicStruct”, propOder = {
"intVal ue",
"stringArray",
"stringVal ue"
)
public class BasicStruct {
protected int intValue;
@m El ement(nillable = true)
protected List<String> stringArray;
protected String stringVal ue;
public int getlntValue() {
return intVal ue;

public void setlntValue(int value) {
this.intValue = val ue;
}
public List<String> getStringArray() {
if (stringArray == null) {
stringArray = new ArrayList<String>();
}

return this.stringArray;

}

public String getStringValue() {
return stringVal ue;

public void setStringValue(String value) {
this.stringValue = val ue;
}
}

5.4.2 Specifying Default Serialization of Fields and Properties (@XmlAccessorType

Annotation)

The @M Accessor Type annotation specifies whether fields or properties are
mapped by default. The annotation can be specified for the following Java program
elements:

e Package

¢ Top-level class

The @XM Accessor Type can be specified with the @{nl Type (see Mapping a Value
Class to a Schema Type (@XmlType)) and @ Root El enment (see Mapping a Top-
level Class to a Global Element (@XmIRootElement)) annotations.

The following table lists the optional element that can be passed to the
@M Accessor Type annotation.

5-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Table 5-6 Optional Element for @XMLAccessorType Annotation

Element Description

val ue Specifies XML AccessType. val ue, where val ue can be one of the
following values:

e Fl ELD—Fields are bound to XML.

* PROPERTY—]JavaBean properties and annotated fields are bound to XML.

e PUBLI C_MEMBER—Public and annotated fields, and JavaBean properties
are bound to XML. This is the default.

* NONE—Only annotated fields and properties are bound to XML.

For more information, see the j avax. xm . bi nd. annot ati on. Xm Accessor Type
Javadocathtt p://docs. oracl e. com j avaee/ 7/ api / j avax/ xm / bi nd/

annot ati on/ Xm Accessor Type. ht M . An example is provided in Example of
JAXB Annotations.

5.4.3 Mapping Properties to Local Elements (@XmIElement)

The @M El erent annotation maps a property contained in a class to a local element
in the XML Schema complex type to which the containing class is mapped. The
annotation can be specified for the following Java program elements:

¢ JavaBean property
¢ Non-static, non-transient field

The following table lists the annotation elements that can be passed to the
@ El enment annotation.

Table 5-7 Optional Element Summary for @XMLElement Annotation

Element Description

name Local name of the XML element that represents the property of a JavaBean.
This element defaults to the JavaBean property name.

nanespace Namespace of the XML element that represents the property of a JavaBean.
By default, the namespace is derived from the namespace of the containing
class.

nillable Customize the element declaration to be nillable.

For more information, see the j avax. xm . bi nd. annot ati on. Xm El enent

Javadocathtt p://docs. oracl e. com j avaee/ 7/ api / j avax/ xm / bi nd/
annot ati on/ Xm El enent . htm .

5.4.4 Specifying the MIME Type (@XmIMimeType Annotation)

The @M M meType annotation specifies the MIME type that controls the XML
representation of the property. The annotation can be specified for data types, such as
| mage or Sour ce, that are bound to the xsd: base64Bi nar y binary in XML.

The following table lists the required element that can be passed to the
@mM M nmeType annotation.

Using JAXB Data Binding 5-13

http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlAccessorType.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlAccessorType.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlElement.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlElement.html

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Table 5-8 Required Element for @XMLMimeType Annotation
- - |

Element Description

val ue Specifies the textual representation of the MIME type, such as i mage/ j peg,
t ext/ xnl , and so on.

For more information, see the j avax. xm . bi nd. annot ati on. Xmi M neType
Javadocathtt p://docs. oracl e. com j avaee/ 7/ api / j avax/ xm / bi nd/
annotati on/ Xm M neType. ht mi .

5.4.5 Mapping a Top-level Class to a Global Element (@XmIRootElement)

The @M Root El erent annotation maps a top-level class to a global element in the
XML Schema that is used by the WSDL of the web service. The annotation can be
specified for the following Java program elements:

¢ Top-level class

¢ Enum type

The @n Root El enent can be specified with the @M Type (see Mapping a Value
Class to a Schema Type (@XmlType)) and @ Accessor Type (see Specifying
Default Serialization of Fields and Properties (@XmlAccessorType Annotation))
annotations.

The following table lists the optional elements that can be passed to the
@ Root El enent annotation.

Table 5-9 Optional Elements for @XmIRootElement Annotation

Element Description
name Local name of the XML element. This element defaults to the class name.
nanespace Namespace of the XML element. By default, the namespace is derived from

the package of the class.

For more information, see the j avax. xm . bi nd. annot ati on. Xm Root El ermrent
Javadocat htt p: // docs. oracl e. cont j avaee/ 7/ api / j avax/ xm / bi nd/
annot at i on/ Xm Root El enent . ht M . An example is provided in Example of JAXB
Annotations.

5.4.6 Binding a Set of Classes (@XmISeeAlso)

The @M SeeAl so annotation binds a list of classes when binding the current class.
The following table lists the optional element that can be passed to the
@XM_Root El enment annotation.

Table 5-10 Optional Element for @XmISeeAlso Annotation
|

Element Description

val ue List of classes that JAXB uses when binding the current class.

5-14 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlMimeType.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlMimeType.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlRootElement.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlRootElement.html

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5.4.7 Mapping a Value Class to a Schema Type (@XmIType)

The @M Type annotation maps a class or enum type to an XML Schema type. The
type can be a simple or complex type. The annotation can be specified for the
following Java program elements:

e Top-level class

¢ Enum type

The @XM Type can be specified with the @nl Root El enent (see Mapping a Top-
level Class to a Global Element (@XmIRootElement)) and @Xnl Accessor Type (see
Specifying Default Serialization of Fields and Properties (@XmlAccessorType
Annotation)) annotations.

The following table lists the optional elements that can be passed to the @ Type
annotation.

Table 5-11 Optional Elements for @XmIType Annotation

Element Description

name Name of the XML Schema type to which the class is mapped.

nanespace Name of the target namespace of the XML Schema type. By default, the
target namespace to which the package containing the class is mapped.

propOr der List of JavaBean property names defined in a class. The list defines an order
for the XML Schema elements when the class is mapped to an XML Schema
complex type. Each name in the list is the name of a Java identifier of the
JavaBean property. All of the JavaBean properties must be listed.

For more information, see the j avax. xmni . bi nd. annot ati on. Xm Type Javadoc at
http://docs. oracl e. conl javaee/ 7/ api / j avax/ xm / bi nd/ annot at i on/
Xm Type. ht m . An example is provided in Example of JAXB Annotations.

5.5 Customizing XML Schema-to-Java Mapping Using Binding
Declarations

Due to the distributed nature of a WSDL, you cannot always control or change its
contents to meet the requirements of your application. For example, the WSDL may
not be owned by you or it may already be in use by your partners, making changes
impractical or impossible.

If directly editing the WSDL is not an option, you can customize how the WSDL
components are mapped to Java objects by specifying custom binding declarations. You
can use binding declarations to control specific features, as well, such as asynchrony,
wrapper style, and so on, and to control the JAXB data binding artifacts that are
produced by customizing the XML Schema.

You can define binding declarations in one of the following ways:

¢ Create an external binding declarations file that contains all binding declarations
for a specific WSDL or XML Schema document. See Creating an External Binding
Declarations File.

Using JAXB Data Binding 5-15

http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlType.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlType.html

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Note:

If customizations are required, Oracle recommends this method to maintain
flexibility by keeping the customizations separate from the WSDL or XML
Schema document.

¢ Embed binding declarations within the WSDL or XML Schema document. See
Embedding Binding Declarations.

The binding declarations are semantically equivalent regardless of which method you
choose.

Custom binding declarations are associated with a scope, as shown in the following
figure.

Figure 5-2 Scopes for Custom Binding Declarations

Global Scope
Schema Scope
Definition Scope
Component Scope

The following table describes the meaning of each scope.

Table 5-12 Scope for Custom Binding Declarations
- - - - |

Scope Definition

Global scope Describes customization values with global scope. Specifically:

¢ For JAX-WS binding declarations, describes customization values
that are defined as part of the root element, as described in
Specifying the Root Element.

e For JAXB annotations, describes customization values that are
contained within the <gl obal Bi ndi ngs> binding declaration.
Global scope values apply to all of the schema elements in the
source schema as well as any schemas that are included or
imported.

Schema scope Describes JAXB customization values that are contained within the
<schemaBi ndi ngs> binding declaration. Schema scope values apply
to the elements in the target namespace of a schema.

Note: This scope applies for JAXB binding declarations only.

Definition scope Describes JAXB customization values that are defined in binding
declarations of a type definition or global declaration. Definition scope
values apply to elements that reference the type definition or global
declaration.

Note: This scope applies for JAXB binding declarations only.

Component scope Describes customization values that apply to the WSDL or schema
element that was annotated.

5-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Scopes for custom binding declarations adhere to the following inheritance and
overriding rules:

¢ Inheritance—Customization values are inherited from the top down. For example,
a WSDL element (JAX-WS) in a component scope inherits a customization value
defined in global scope. A schema element (JAXB) in a component scope inherits a
customization value defined in global, schema, and definition scopes.

* Overriding—Customization values are overridden from the bottom up. For
example, a WSDL element (JAX-WS) in a component scope overrides a
customization value defined in global scope. A schema element (JAXB) in a
component scope overrides a customization value defined in definition, schema,
and global scopes.

The following sections describe how to create custom binding declarations and
describe the standard custom binding declarations:

* C(Creating an External Binding Declarations File
¢ Embedding Binding Declarations
* JAX-WS Custom Binding Declarations

¢ JAXB Custom Binding Declarations

For more information about using custom binding declarations, see:

o JAX-WS WSDL Customizations athtt p: //j ax-ws. j ava. net/ nonav/ 2. 1. 2/
docs/ custom zations. htm

¢ "Customizing XML Schema to Java Representation Binding" in the JAXB
specificationathttp: //jcp. org/en/jsr/detail ?i d=222.
5.5.1 Creating an External Binding Declarations File

Create an external binding declarations file that contains all binding declarations for a
specific WSDL or XML Schema document. Then, pass the binding declarations file to
the <bi ndi ng> child element of the wsdl ¢, j wsc, or cl i ent gen Ant task.

The following sections describe:
* Creating an External Binding Declarations File Using JAX-WS Binding Declarations

¢ Creating an External Binding Declarations File Using JAXB Binding Declarations
5.5.1.1 Creating an External Binding Declarations File Using JAX-WS Binding
Declarations

The following sections describe how to specify the root and child elements of the JAX-
WS binding declarations file. For information about the custom binding declarations
that you can define, see JAX-WS Custom Binding Declarations.

5.5.1.1.1 Specifying the Root Element

The j axws: bi ndi ngs declaration is the root of all other binding declarations and
defines the location of the WSDL file and the namespace to which the XML Schema
conforms: htt p: //j ava. sun. coni xm / ns/ j axws.

The format of the root declaration is as follows:

Using JAXB Data Binding 5-17

http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jcp.org/en/jsr/detail?id=222

Customizing XML Schema-to-Java Mapping Using Binding Declarations

<j axws: bi ndi ngs
wsdl Location="uri _of _wsdl"
jaxws: xm ns="http://java. sun. com xm / ns/j axws" >

uri _of _wsdl specifies the URI of the WSDL file.

The package, wrapper style, and asynchronous mapping customizations, defined in
Table 5-5, can be globally defined as part of the root binding declaration in the external
customization file. Global bindings apply to the entire scope of the

wsdl : defi ni ti on in the WSDL referenced by the wsdl Locat i on attribute.

The following provides an example of the root binding element that defines the
package name, wrapper style, and asynchronous mapping customizations.

<j axws: bi ndi ngs
xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Location="http://| ocal host: 7001/ si npl e/ Si npl eSer vi ce?WsDL"
xm ns:jaxws="http://java. sun. com xm / ns/jaxws">
<package nane="exanpl e. webservi ces. si npl e. si npl eservi ce">
<enabl eW apper Styl e>t rue</ enabl eW apper Styl e>
<enabl eAsyncMappi ng>f al se</ enabl eAsyncMappi ng>
</ j axws: bi ndi ngs>

5.5.1.1.2 Specifying Child Elements

The root j axws: bi ndi ngs element can contain child elements. You specify the
WSDL node that is being customized by passing an XPath expression in the node
attribute.

An XML Schema inlined inside a compiled WSDL file can be customized by using
standard JAXB bindings. For more information, see "XML Schema Customization" in
JAX-WS WSDL Customizations at htt p: / / j ax-ws. j ava. net/ nonav/ 2. 1. 2/
docs/ custom zati ons. ht m . For information about the custom JAXB binding
declarations that you can define, see JAXB Custom Binding Declarations.

For example, the following example defines the package name as
exanpl es. webser vi ces. conpl ex. conpl exser vi ce for the
wsdl : defi ni ti ons node of the WSDL document.

<j axws: bi ndi ngs

xm ns: wsdl ="http: // schemas. xnl soap. or g/ wsdl /"

wsdl Location="http://| ocal host: 7001/ si npl e/ Si npl eSer vi ce?WsDL

xnl ns:jaxws="http://java. sun. com xm / ns/j axws" >

<j axws: bi ndi ngs node="wsdl : defi ni tions"

xm ns: wsdl ="htt p: // schemas. xn soap. or g/ wsdl /" >
<j axws: package name="exanpl es. webservi ces. si npl e. si npl eservi ce"/ >

</ bi ndi ngs>

5.5.1.2 Creating an External Binding Declarations File Using JAXB Binding
Declarations

The JAXB binding declarations file is an XML document that conforms to the XML
Schema for the following namespace: ht t p: / / j ava. sun. com’ xml / ns/ j axb. The
following sections describe how to specify the root and child elements of the JAXB

binding declarations file. For information about the custom binding declarations that
you can define, see JAXB Custom Binding Declarations.

5.5.1.2.1 Specifying the Root Element

The j axb: bi ndi ngs declaration is the root of all other binding declarations.The
format of the root declaration is as follows:

5-18 Developing JAX-WS Web Services for Oracle WebLogic Server

http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html

Customizing XML Schema-to-Java Mapping Using Binding Declarations

<j axb: bi ndi ngs
schemalLocation="uri _of _schem">

uri _of _schena specifies the URI of the XML Schema file.

5.5.1.2.2 Specifying Child Elements

The root j axb: bi ndi ngs element can contain child elements. You specify the
schema node that is being customized by passing an XPath expression in the node
attribute.

For example, the following example defines the package name as
exanpl es. webservi ces. si npl e. si npl eservi ce.

<j axb: bi ndi ngs
schemalocat i on="si npl eservi ce. xsd" >
<j axb: bi ndi ngs node="//xs: si npl eType[@ane="val uel']">
<j axbh: package nanme="exanpl es. webservi ces. si npl e. si npl eservi ce"/>
</j axb: bi ndi ngs>
</ j axb: bi ndi ngs>

5.5.2 Embedding Binding Declarations

You can embed binding declarations in a WSDL file using one of the following
methods:

e Enbed a JAX-WS or JAXB binding declaration in the WeDL file
usi ng the jaxws: bi ndi ngs element as a WSDL extension. See Embedding
JAX-WS or JAXB Binding Declarations in the WSDL File.

* Embed a JAXB binding declaration in the XML Schema as part of an <appi nf 0>
element. See Embedding JAXB Binding Declarations in the XML Schema.

5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL File

You can embed a binding declaration in the WSDL file using the j axws: bi ndi ngs
element as a WSDL extension. For information about the custom binding declarations
that you can define, see JAX-WS Custom Binding Declarations.

For example, the following example defines the class name as Si npl eSer vi ce for the
Si npl eSer vi cel npl service endpoint interface (or port).

<wsdl : port Type name="Si npl eServi cel npl ">
<j axws: bi ndi ngs xm ns:jaxws="http://java. sun.con xnl/ns/jaxws">
<j axws: cl ass name="Si nmpl eService"/>
</ j axws: bi ndi ngs>
</ wsdl : port Type>

If this binding declaration had not been specified, the class name of the service
endpoint interface would be set to the wsdl : port Type name—
Si npl eSer vi cel npl —by default.

An XML Schema inlined inside a compiled WSDL file can be customized by using
standard JAXB bindings. For more information, see "XML Schema Customizations" in
JAX-WS WSDL Customizations, which is available at ht t p: / / j ax- ws. j ava. net/
nonav/ 2. 1. 2/ docs/ cust om zat i ons. ht nl . For information about the custom
JAXB binding declarations that you can define, see JAXB Custom Binding
Declarations.

Using JAXB Data Binding 5-19

http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema

You can embed a JAXB custom declaration within the <appi nf 0> element of the XML
Schema, as illustrated below.

<xs:annot ati on>
<xs: appi nf 0>
<bi ndi ng decl arati on>
</ xs: appi nf 0>
</ xs: annot ati on>

For example, the following defines the package name for the schema:

<schema xm ns="http://ww. w3. or g/ 2001/ XM.Schenma"
target Nanespace="htt p: // waw. w3. or g/ 2001/ XM_Schena"
xnmi ns: jaxb="http://java.sun. conf xm /ns/j axb"
j axb: version="2.0">
<annot at i on>
<appi nf 0>
<j axb: schenaBi ndi ngs>
<j axh: package name="exanpl e. webservi ces. si mpl e. si npl eservice"/>
</ j axh: schemaBi ndi ngs>
</ appi nf 0>
</annot ati on>
</ schema>

5.5.3 JAX-WS Custom Binding Declarations

The following table summarizes the typical JAX-WS customizations. For a complete
list of JAX-WS custom binding declarations, see JAX-WS WSDL Customization at
http://jax-ws.java. net/nonav/ 2. 1. 2/ docs/ custom zations. htni.

5-20 Developing JAX-WS Web Services for Oracle WebLogic Server

http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-13 JAX-WS Custom Binding Declarations
- - - - |

Customization

Description

Package name

Use the j axws: package binding declaration to define the
package name.

If you do not specify this customization, the wsdl ¢ Ant
task generates a package name based on the

t ar get Namespace of the WSDL. This data binding
customization is overridden by the packageNare attribute
of thewsdl ¢, j wsc, or cl i ent gen Ant task. For more
information, see "wsdlc" in the WebLogic Web Services
Reference for Oracle WebLogic Server.

This binding declaration can be specified as part of the root
binding element, as described in Creating an External
Binding Declarations File, or on the wsdl : defi ni ti ons
node, as shown in the following example:

<bi ndi ngs

xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"

wsdl Locati on=

"http://1ocal host: 7001/ si npl e/ Si npl eSer vi ce?WsDL"

xm ns="http://java. sun.conf xm /ns/j axws">

<bi ndi ngs node="wsdl : definitions"

xm ns:wsdl ="http://schemas. xm soap. or g/
wsdl /">
<package

nane="exanpl e. webservi ces. si npl e. si npl eServi ce"/ >
</ bi ndi ngs>

Using JAXB Data Binding 5-21

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-13 (Cont.) JAX-WS Custom Binding Declarations
__|

Customization Description

Wrapper-style rules Use the j axws: enabl esW apper St yl e binding
declaration to enable or disable the wrapper style rules that
control how the parameter types and return types of a
WSDL operation are generated.

This binding declaration can be specified as part of the root
binding element, as described in Creating an External
Binding Declarations File, or on one of the following nodes:

e wsdl : definitions—Applies to all
wsdl : oper ati ons of all wsdl : port Type attributes.
e wsdl : port Type—Applies to all wsdl : oper ati ons
in the wsdl : port Type.
e wsdl : oper ati on—Applies to the wsdl : operati on
only.
The following example disables the wrapper style rules for
thewsdl : defi ni ti ons node:

<bi ndi ngs
xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Location="http://local host: 7001/ si npl e/
Si npl eSer vi ce?WsDL"
xm ns="http://java.sun.conf xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions"
xm ns:wsdl ="http://schemas. xm soap. or g/

wsdl /">
<enabl eW apper Styl e>
fal se
</ enabl eW apper Styl e>
</ bi ndi ngs>

5-22 Developing JAX-WS Web Services for Oracle WebLogic Server

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-13 (Cont.) JAX-WS Custom Binding Declarations
__|

Customization

Description

Asynchrony

Use the j axws: enabl eAsycMappi ng binding declaration
to instruct the cl i ent gen Ant task to generate
asynchronous polling and callback operations along with
the normal synchronous methods when it compiles a WSDL
file.

This binding declaration can be specified as part of the root
binding element, as described in Creating an External
Binding Declarations File, or on one of the following nodes:

e wsdl : definitions—Applies to all
wsdl : oper ati ons of all wsdl : port Type attributes.
e wsdl : port Type—Applies to all wsdl : oper ati ons
in the wsdl : port Type.
e wsdl : oper ati on—Applies to the wsdl : operati on
only.
The following example disables asynchronous polling and
callback operations:

<bi ndi ngs
xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Location="http://local host: 7001/ si npl e/
Si npl eSer vi ce?WsDL"
xm ns="http://java.sun.conf xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions"
xm ns:wsdl ="http://schemas. xm soap. or g/
wsdl /">
<enabl eAsyncMappi ng>
fal se
</ enabl eAsyncMappi ng>
</ bi ndi ngs>

Provider

Use the j axws: provi der binding declaration to mark the
part as a provider interface. This binding declaration can be
specified as part of the wsdl : por t Type. This binding
declaration applies when you are developing a service
starting from a WSDL file.

Class name

Use the j axws: cl ass binding declaration to define the

class name. This binding declaration can be specified for

one of the following nodes:

e wsdl : port Type—Defines the interface class name.

e wsdl : f aul t —Defines fault class names.

e soap: header f aul t —Defines exception class names.

e wsdl : servi ce—Defines the implementation class
names.

The following example defines the class name for the

implementation class.

<bi ndi ngs node="wsdl : definitions/

wsdl : servi ce[@anme="Si npl eService']">
<cl ass name="nyServi ce"></cl ass>

</ bi ndi ngs>

Using JAXB Data Binding 5-23

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-13 (Cont.) JAX-WS Custom Binding Declarations
__|

Customization Description

Method name Use the j axws: met hod binding declaration to customize
the generated Java method name of a service endpoint
interface or the port accessor method in the generated
Servi ce class.

The following example defines the Java method name for
the wsdl : operati on EchoHel | o.

<bi ndi ngs node="wsdl : definitions/
wsdl : port Type[@ane="Si npl eServicelnpl ']/
wsdl : operati on[@ane=" EchoHel 1 o']">
<met hod name="G eeting"></ met hod>
</ bi ndi ngs>

Java parameter name Use the j axws: par anet er binding declaration to
customize the parameter name of generated Java methods.
This declaration can be used to change the method
parameter of awsdl : operati oninawsdl : port Type.

The following example defines the Java method name for
the wsdl : oper ati on echoHel | o.

<bi ndi ngs node="wsdl : defini tions/

wsdl : port Type[@ane="Si npl eServicelnpl ']/

wsdl : operati on[@ane=" EchoHel | 0"]">
<paraneter part="definitions/

message[@ane=" EchoHel I 0"]/
part[@ane="paraneters']" el ement="hel |l 0"
nane="greeting"/>

</ bi ndi ngs>

Javadoc Use the j axws: j avadoc binding declaration to specify
Javadoc text for a package, class, or method.

For example, the following defines Javadoc at the method
level.

<bi ndi ngs node="wsdl : defini tions/
wsdl : port Type[@ane="Si npl eServicelnpl ']/
wsdl : operati on[@ane=" EchoHel 1 0']">
<met hod name="Hel | 0" >
<javadoc>Prints hello.</javadoc>
</ met hod>
</ bi ndi ngs>

Handler chain Use the j avaee: handl er chai n binding declaration to
customize or add handlers. The inline handler must
conform to the handler chain configuration defined in the
Web Services Metadata for the Java Platform specification
(JSR-181) athtt p: // www. j cp. org/ en/jsr/ detail ?
i d=181.

5.5.4 JAXB Custom Binding Declarations
The following table lists the typical JAXB customizations.

5-24 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Note:

The following table only summarizes the JAXB custom binding declarations,
to help get you started. For a complete list and description of all JAXB custom
binding declarations, see the JAXB specification (ht t p: / /
jcp.org/en/jsr/detail ?i d=222) or "Customizing JAXB Bindings" in the

Java EE 5 Tutorial.

Table 5-14 JAXB Custom Binding Declarations
- - |

Customization

Description

Global bindings Use the <gl obal Bi ndi ngs> binding declaration to define
binding declarations with global scope (see Figure 5-2).
You can specify attributes and elements to the
<gl obal Bi ndi ngs> binding declaration. For example, the
following binding declaration defines:

e col | ectionType attribute that specifies a type class,
nyAr r ay, that implements the j ava. uti | . Li st
interface and that is used to represent all lists in the
generated implementation.

e gener at el sSet Met hod attribute to generate the
i sSet () method corresponding to the getter and setter
property methods.

e javaType element to customize the binding of an XML
Schema atomic datatype to a Java datatype (built-in or
application-specific).

<j axb: gl obal Bi ndi ngs

col l ectionType ="java.util.nyArray"

gener at el sSet Met hod="f al se">

<j axb: javaType name="java.util.Date"
xm Type="xsd: dat e"

</jaxb: javaType>

</j axb: gl obal Bi ndi ngs>

Schema bindings Use the <schemaBi ndi ngs> binding declaration to define

binding declarations with schema scope (see Figure 5-2).

For an example, see the description of "Package name" in
this table.

Using JAXB Data Binding 5-25

http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-14 (Cont.) JAXB Custom Binding Declarations
__

Customization Description

Package name Use the <package> element of the <schenaBi ndi ngs>
binding declaration (see Table 5-12) to define the package
name for the schema.

If you do not specify this customization, the wsdl ¢ Ant
task generates a package name based on the

t ar get Namespace of the WSDL. This data binding
customization is overridden by the packageNarre attribute
of thewsdl ¢, j wsc, or cl i ent gen Ant task. For more
information, see "wsdlc" in the WebLogic Web Services
Reference for Oracle WebLogic Server.

For example, the following defines the package name for all
JAXB classes generated from the si npl eser vi ce. xsd
file:

<j axb: bi ndi ngs
xm ns: xs="http://ww. w3. org/ 2001/ XM.Schema"
schemalocat i on="si npl eservi ce. xsd"
node="/xs: schema" >
<j axb: schenaBi ndi ngs>
<j axh: package name="exanpl es. j axb"/>
</ j axh: schemaBi ndi ngs>
</ j axh: bi ndi ngs>

The following shows how to define the package name for
an imported XML Schema:

<j axb: bi ndi ndgs
xm ns: xs="http://ww. w3. or g/ 2001/ XM.Schema"
node="//xs: schena/ xs: i mport [@anespace="http://
exanpl es. webservi ces. or g/ conpl exservice']">
<j axb: schemaBi ndi ngs>
<j axb: package nane="exanpl es. j axbh"/>
</ j axh: schemaBi ndi ngs>
</ j axh: bi ndi ngs>

Class name Use the <cl ass> binding declaration to define the class
name for a schema element.

The following example defines the class name for an
xsd: conpl exType

<xs: conpl exType nane="Conpl exType" >
<xs: annot at i on><xs: appi nf 0>
<j axb:javadoc>This is ny class. </
j axb: j avadoc>
</jaxbh: class>
</ xs: appi nf 0></ xs: annot at i on>
</ xs: conpl exType>

5-26 Developing JAX-WS Web Services for Oracle WebLogic Server

Using the Glassfish RI JAXB Data Binding and JAXB Providers

Table 5-14 (Cont.) JAXB Custom Binding Declarations
__|

Customization Description

Java property name Use the <pr oper t y> binding declaration to define the
property name for a schema element.

The following example shows how to define the Java
property name:

<j axb: bi ndi ndgs
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
node="//xs: schema/ ">
<j axb: schemaBi ndi ngs>
<j axb: property generat el sSet Met hod="true"/>
</j axb: schemaBi ndi ngs>
</ j axb: bi ndi ngs>

Java datatype Use the <j avaType> binding declaration to customize the
binding of an XML Schema atomic datatype to a Java
datatype (built-in or application-specific).

For example, see Global bindings (above).

Javadoc Use the <j avadoc> child element of the <cl ass> or
<pr oper t y> binding declaration to specify Javadoc for the
element.

For example:

<xs: conpl exType name="Conpl exType" >

<xS: annot at i on><xs: appi nf 0>
<j axb: cl ass name="M/C ass">

<j axb:javadoc>This is ny class. </
j axb: j avadoc>
</jaxb: cl ass>

</ xs: appi nf 0></ xs: annot at i on>

</ xs: conpl exType>

5.6 Using the Glassfish Rl JAXB Data Binding and JAXB Providers

The Glassfish RI JAXB data binding and JAXB providers provide the standard
Glassfish JAXB implementation, and were the default JAXB providers in previous
WebLogic Server releases. If desired, you can restore the Glassfish RI providers, either
globally on the server, or on a per application basis.

Note that the JAXB data binding provider and the JAXB provider are two distinct
entities, although both use EclipseLink MOXy as the default. The JAXB data binding
provider is used by the web services tooling and runtime, and performs tasks such as
WSDL generation from a Java endpoint, as in the JWS task, and the runtime
marshalling and unmarshalling of the contents of the SOAP message. The JAXB
provider, on the other hand, specifies which JAXBContext provider to use for all other
JAXB-related tasks. Although the JAXB provider configuration does apply to some of
the web services tooling, such as Java class generation from WSDL/schema files, it
includes all other JAXB usage as well. These two providers can be configured
independently. For example, you could retain EclipseLink MOXy for data binding, but
revert to the Glassfish RI JAXB provider for other JAXB tasks.

Using JAXB Data Binding 5-27

Using the Glassfish RI JAXB Data Binding and JAXB Providers

The data binding and JAXB providers are configured using the following Java Service
Provider Interface (SPI) files in MW _HOME/ or acl e_conmon/ nodul es/
com oracl e. webservi ces. W s. W s-ws-net ai nf-services-inpl.jar:

e META-I NF/ servi ces/ com sun. xnl . ws. spi . db. Bi ndi ngCont ext Fact ory

e META-I NF/ services/javax. xm . bi nd. JAXBCont ext

Note:

In 12.1.2.0, the providers were located in MW HOME/ or acl e_conmon/
nodul es/ com or acl e. webservi ces. W s. W s-ws- et ai nf -
services_2.0.0.0.jar.In121.1.0, the providers were located in
W._HOVE/ server/1ib/webl ogic.jar.

Global and application-level configuration is described in the following sections.

5.6.1 Configuring Global Server-Level Data Binding and JAXB Providers

The following jar file is provided in the WebLogic Server distribution to simplify the
task of overriding the default data binding configuration:

nodul es/ dat abi ndi ng. override.jar

This jar file is not included in the classpath by default. To restore the Glassfish RI data
binding and JAXB provider settings, edit the WebLogic Server start script to prepend
this jar file to the classpath.

For the tooling and client, you can apply this jar file globally to Ant scripts or to
another build environment.

Note that the nodul es/ dat abi ndi ng. overri de. j ar file overrides both the data
binding provider and the JAXB provider. If you desire to override one of these
providers, but not both, you can do so by creating a simple jar file containing only the
service provider entry that you want to override, and putting this first in the classpath.

For example, to configure only the Glassfish RI JAXB provider:

1. Create a file named META- | NF/ servi ces/j avax. xml . bi nd. JAXBCont ext
that contains a single entry for the Glassfish RI JAXB provider:

com sun. xml . bi nd. v2. Cont ext Fact ory

2. Create ajar file, for example j axb_overri de. j ar, and add the file created in
Step 1.

3. Prepend this jar file to the classpath to use the Glassfish JAXB provider.

The same procedure applies if you want to configure only the Glassfish RI data
binding provider. In this case, however, name the file you create in Step 1 META- | NF/
servi ces/ com sun. xm . ws. spi . db. Bi ndi ngCont ext Fact or y containing a
single entry for the Glassfish RI data binding provider:

com sun. xm . ws. db. gl assfi sh. JAXBRI Cont ext Fact ory.

Note:

Configuring the data binding provider may affect other behavior in addition
to runtime data binding. For example, WebLogic Server generates its WSDL at

5-28 Developing JAX-WS Web Services for Oracle WebLogic Server

Using the Glassfish RI JAXB Data Binding and JAXB Providers

runtime using the data binding provider. Conversely, some runtime SOAP
faults are produced by invoking the JAXB provider directly.

As an alternative to placing the override jar file in the classpath, you can edit the Java
system properties directly. For more information, see Configuring Java System
Properties for JAXB.

5.6.2 Configuring Application-Level Data Binding and JAXB Providers

To configure the data binding and JAXB providers for a single Web application, you
can use the filtering loading mechanism provided by WebLogic Server. This
mechanism allows the system classpath search to be bypassed when looking for
specific application classes and resources that are on the application classpath.
Specifically, you use the <pr ef er - appl i cat i on-r esour ces> tag in the

webl ogi c-appl i cation. xni file for the application EAR or build-out directory.

For example, to configure the Glassfish RI data binding provider for an application:

1. Edit the webl ogi c- appl i cation. xm file to include an entry for the data
binding resource, as shown in the following example:

<prefer-application-resources> <resource- name>META- | NF/ ser vi ces/
com sun. xm . ws. spi . db. Bi ndi ngCont ext Fact or y</ r esour ce- name>
</ prefer-application-resources>

2. Create a file named META- | NF/ ser vi ces/
com sun. xn . ws. spi . db. Bi ndi ngCont ext Fact or y containing an entry for
the desired provider, in this case,
com sun. xm . ws. db. gl assfi sh. JAXBRI Cont ext Fact ory.

3. Add the file created in step 2 to the build-out directory, or add it as an entry in the
EAR file.

Use the same procedure to configure the Glassfish RI JAXB provider using the values
appropriate for the JAXB provider. Specifically, add the resource name META- | NF/
servi ces/javax. xm . bi nd. JAXBCont ext to the webl ogi c-

appl i cation.xm file and set the provider name in the file to

com sun. xm . bi nd. v2. Cont ext Fact ory.

For more information about the filtering loading mechanism in WebLogic Server, see
"Filtering Loader Mechanism" in Tuning Performance of Oracle WebLogic Server.

5.6.3 Configuring Java System Properties for JAXB

You can configure the Java system properties to revert to the Glassfish RI providers
and to configure the default EclipseLink MOXy providers if you had previously
reverted.

Note:

In certain situations, it can be difficult to propagate the system properties to an
indirectly invoked Java instance, such as a client forked from an Ant task. In
these situations, it is important to ensure that the environment you are using
propagates the properties.

Using JAXB Data Binding 5-29

Using the Glassfish RI JAXB Data Binding and JAXB Providers

To configure the Glassfish RI data binding and JAXB providers, set the Java system
properties as shown in Table 5-15.

Table 5-15 Java System Property Settings for Glassfish Rl Providers

Set this Java system property . .. To this value . . .
com.sun.xml.ws.spi.db.BindingContextFactory com.sun.xml.ws.db.glassfish.JAXBRIContextFactory
javax.xmlbind.JAXBContext com.sun.xml.bind.v2.ContextFactory

To configure the default EclipseLink MOXy providers, set the Java system properties
as shown in Table 5-16.

Table 5-16 Java System Property Settings for EclipseLink MOXy Providers

Set this Java system property . .. To this value . . .
com.sun.xml.ws.spi.db.BindingContextFactory com.sun.xml.ws.db.toplink.JAXBContextFactory
javax.xmlbind.JAXBContext org.eclipse.persistence.jaxb.JAXBContextFactory

5-30 Developing JAX-WS Web Services for Oracle WebLogic Server

6

Examples of Developing JAX-WS Web
Services

This chapter provides some common examples of developing WebLogic web services
using Java API for XML-based Web services (JAX-WS).

This chapter includes the following sections:
¢ Creating a Simple HelloWorld Web Service
* Creating a Web Service With User-Defined Data Types

® Creating a Web Service from a WSDL File

Each example provides step-by-step procedures for creating simple WebLogic web
services and invoking an operation from a deployed web service. The examples
include basic Java code and Ant bui | d. xml files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The examples do not go into detail about the processes and tools used in the examples;
later chapters are referenced for more detail.

Note:

For best practice examples demonstrating advanced web service features, see
Roadmap for Developing JAX-WS Web Service Clients and Roadmap for
Developing Reliable Web Services and Clients.

6.1 Creating a Simple HelloWorld Web Service

This section describes how to create a very simple web service that contains a single
operation. The Java Web Service (JWS) file that implements the web service uses just the
one required JWS annotation: @\ebSer vi ce. A JWS file is a standard Java file that uses
JWS metadata annotations to specify the shape of the web service. Metadata
annotations were introduced with JDK 5.0, and the set of annotations used to annotate
web service files are called JWS annotations. WebLogic web services use standard JWS
annotations. For a complete list of JWS annotations that are supported, see "Web
Service Annotation Support" in WebLogic Web Services Reference for Oracle WebLogic
Server.

The following example shows how to create a web service called
Hel | oWor | dSer vi ce that includes a single operation, sayHel | oWor | d. For
simplicity, the operation returns the inputted String value.

1. Set your WebLogic Server environment.

Examples of Developing JAX-WS Web Services 6-1

Creating a Simple HelloWorld Web Service

Open a command window and execute the set Domai nEnv. cnd (Windows) or
set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOVE/
user _pr oj ect s/ domai ns/ domai nName, where ORACLE_HOME is the directory
you specified as Oracle Home when you installed Oracle WebLogic Server and
domai nNane is the name of your domain.

2. Create a project directory, as follows:
pronpt > nkdir /myExanpl es/ hello_world

3. Create a sr ¢ directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

pronpt > cd /nyExanpl es/ hel | o_worl d
pronpt > nkdir src/exanmpl es/ webservices/hello_world

4. Create the JWS file that implements the web service.

Open your favorite Java IDE or text editor and create a Java file called
Hel | oWor | dI mpl . j ava using the Java code specified in Sample
HelloWorldImpl.java JWS File.

The sample JWS file shows a Java class called Hel | oWbr | dI npl that contains a
single public method, sayHel | oWor | d(Stri ng) . The @¥bSer vi ce annotation
specifies that the Java class implements a web service called

Hel | oWor | dSer vi ce. By default, all public methods are exposed as operations.

5. Save the Hel | oWor | dI npl . j ava file in the sr ¢/ exanpl es/ webser vi ces/
hel | o_wor | d directory.

6. Create a standard Ant bui | d. xm file in the project directory (myExanpl es/
hel | o_wor | d/ src)and add at askdef Ant task to specify the full Java
classname of the j wsc task:

<proj ect name="webservices-hello_world" default="all">
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
</ proj ect >

See Sample Ant Build File for HelloWorldImpl.java for a full sample bui | d. xm
file that contains additional targets from those described in this procedure, such as
cl ean, undepl oy, cl i ent,and run. The full bui | d. xm file also uses
properties, such as ${ ear - di r } , rather than always using the hard-coded name
for the EAR directory.

7. Add the following call to the j wsc Ant task to the bui | d. xr file, wrapped inside
of the bui | d- servi ce target:

<target name="buil d-service">
<jwsc
srcdir="src"
destdir="out put/hel | oVWor | dEar" >
<jws file="exanpl es/webservices/hello_world/ HelloWrldlnpl.java"
type="JAXWS"/ >
</jwsc>
</target>

The j wsc WebLogic web service Ant task generates the supporting artifacts,
compiles the user-created and generated Java code, and archives all the artifacts

6-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Simple HelloWorld Web Service

9.

10.

11.

into an Enterprise Application EAR file that you later deploy to WebLogic Server.
You specify the type of web service (JAX-WS) that you want to create using
type="JAXWE".

Execute the] wsc Ant task by specifying the bui | d- ser vi ce target at the
command line:

pronpt > ant buil d-service

See the out put / hel | oWor | dEar directory to view the files and artifacts
generated by the j wsc Ant task.

Start the WebLogic Server instance to which the web service will be deployed.

Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the W depl oy
Ant task. In either case, you deploy the hel | oWor | dEar Enterprise application,
located in the out put directory.

To use the W depl oy Ant task, add the following target to the bui | d. xm file:

<t askdef name="wl depl oy"
cl assnanme="webl ogi c. ant . t askdef s. management . W.Depl oy"/ >
<target nane="depl oy">
<w depl oy action="depl oy"
nane="hel | oWor | dEar" source="out put/hel | oWor| dEar"
user="${w s. username}" password="${w s. password}"
ver bose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>

Substitute the values for W s. user name, W s. passwor d, W s. host nane,
W s. port,andw s. server. nane that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the depl oy target:
pronpt > ant depl oy

Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/Hel | oVrldl npl/Hel | oWr| dServi ce?WsDL

You construct the URL using the default values for the cont ext Pat h and

servi ceUri attributes. The default value for the cont ext Pat h is the name of the
Java class in the JWS file. The default value of the ser vi ceURI attribute is the

ser vi ceName element of the @\ébSer vi ce annotation if specified. Otherwise,
the name of the JWS file, without its extension, followed by Ser vi ce. For example,
if the ser vi ceNane element of the @¥bSer vi ce annotation is not specified and
the name of the JWS file is Hel | oWor | dI npl . j ava, then the default value of its
servi ceUri isHel | oWor | dl npl Servi ce.

These attributes will be set explicitly in the next example, Creating a Web Service
With User-Defined Data Types. Use the hostname and port relevant to your
WebLogic Server instance.

Examples of Developing JAX-WS Web Services 6-3

Creating a Simple HelloWorld Web Service

You can use the cl ean, bui | d- servi ce, undepl oy, and depl oy targets in the
bui I d. xm file to iteratively update, rebuild, undeploy, and redeploy the web service
as part of your development process.

To run the web service, you need to create a client that invokes it. See Invoking a Web
Service from a WebLogic Web Service for an example of creating a Java client
application that invokes a web service.

6.1.1 Sample HelloWorldimpl.java JWS File

package exanpl es.webservi ces. hel | o_worl d;
/1 Inport the @ebService annotation
import javax.jws.\WebServi ce;
@ebServi ce(name="Hel | oWr| dPort Type", serviceName="Hel | oWor | dService")
/**
* This JWs file forns the basis of sinple Java-class inplenmented WebLogic
* Web Service with a single operation: sayHelloWrld
*/
public class Hel | oWorldlnpl {
/1 By default, all public nmethods are exposed as Web Services operation
public String sayHell oWorl d(String message) {
try {
Systemout. println("sayHel | oWrld:" + message);
} catch (Exception ex) { ex.printStackTrace(); }

return "Here is the nessage: '" + message + "'";

}
}

6.1.2 Sample Ant Build File for HelloWorldimpl.java
The following bui | d. xnl file uses properties to simplify the file.

<proj ect name="webservices-hello_world" default="all">
<!-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s. server.nane" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="hel | oWor| dEar" />
<property name="exanpl e-out put" val ue="output" />
<property name="ear-dir" val ue="${exanpl e-out put}/hel | oWor| dEar" />
<property name="clientclass-dir" val ue="${exanpl e-out put}/clientclasses" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. O i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nane="al|" depends="cl ean, bui | d-service, depl oy,client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-out put}"/>

</target>
<target name="buil d-service">
<jwsc
srcdir="src"

6-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Web Service With User-Defined Data Types

destdir="${ear-dir}">
<jws file="exanpl es/webservices/hello_world/ Hel | oWorldlnpl.java"
type="JAXWS"/ >
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy" name="${ear.depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. usernanme}" password="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target name="client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/ Hel | oWr | dl npl / Hel | oWr | dSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. hel | o_world.client"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservices/hel lo_world/client/**/* java"/>
</target>
<target name="run">
<java cl assnane="exanpl es. webservices. hel l o_worl d.client.Min"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${w s.hostnane}: ${w s. port}/Hel | oWorl dl npl / Hel | oVr | dServi ce" />
</java> </target>
</ project>

6.2 Creating a Web Service With User-Defined Data Types

The preceding example uses only a simple data type, St ri ng, as the parameter and
return value of the web service operation. This next example shows how to create a
web service that uses a user-defined data type, in particular a JavaBean called

Basi cStruct, as both a parameter and a return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in
a web service, other than to create the Java source of the data type and use it correctly
in the JWS file. The j wsc Ant task, when it encounters a user-defined data type in the
JWE file, automatically generates all the data binding artifacts needed to convert data
between its XML representation (used in the SOAP messages) and its Java
representation (used in WebLogic Server).The data binding artifacts include the XML
Schema equivalent of the Java user-defined type.

The following procedure is very similar to the procedure in Creating a Simple
HelloWorld Web Service. For this reason, although the procedure does show all the
needed steps, it provides details only for those steps that differ from the simple
HelloWorld example.

Examples of Developing JAX-WS Web Services 6-5

Creating a Web Service With User-Defined Data Types

1. Set your WebLogic Server environment.

Open a command window and execute the set Domai nEnv. cnd (Windows) or
set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOVE/
user _pr oj ect s/ domai ns/ domai nName, where ORACLE_HOME is the directory
you specified as Oracle Home when you installed Oracle WebLogic Server and
domai nNane is the name of your domain.

2. Create a project directory:
pronpt > nkdir /nyExanpl es/ conpl ex

3. Create a sr ¢ directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

pronpt > cd / nyExanpl es/ conpl ex
pronpt> nkdir src/exanpl es/ webser vi ces/ conpl ex

4. Create the source for the Basi cSt r uct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
Basi cStruct . j ava, in the project directory, using the Java code specified in
Sample BasicStruct JavaBean.

5. Save the Basi cStruct . j ava file in the sr c/ exanpl es/ webser vi ces/
conpl ex subdirectory of the project directory.

6. Create the JWS file that implements the web service using the Java code specified in
Sample ComplexImpl.java JWS File.

The sample JWS file uses several JWS annotations: @\&bMet hod to specify
explicitly that a method should be exposed as a web service operation and to
change its operation name from the default method name echoSt r uct to
echoConpl exType; @\bPar amand @¥bResul t to configure the parameters
and return values; and @OAPBI ndi ng to specify the type of web service. The
Conpl ex! npl . j ava JWS file also imports the

exanpl es. webser vi ce. conpl ex. Basi ¢St ruct class and then uses the

Basi cStruct user-defined data type as both a parameter and return value of the
echoSt ruct () method.

For more in-depth information about creating a JWS file, see Programming the JWS
File.

7. Save the Conpl ex| mpl . j ava file in the sr ¢/ exanpl es/ webser vi ces/
conpl ex subdirectory of the project directory.

8. Create a standard Ant bui | d. xm file in the project directory and add a t askdef
Ant task to specify the fully Java classname of the j wsc task:

<proj ect name="webservices-conpl ex" default="all">
<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
</ proj ect >

See Sample Ant Build File for ComplexImpl.java JWS File for a full sample
bui | d. xnm file.

9. Add the following call to the j wsc Ant task to the bui | d. xm file, wrapped inside
of the bui | d- servi ce target:

6-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Web Service With User-Defined Data Types

<target name="buil d-service">
<jwsc
srcdir="src"
dest dir="out put/ Conpl exServi ceEar" >
<jws file="exanpl es/webservices/ conpl ex/ Conpl exl npl . j ava"
type="JAXWS" >
<W.Ht t pTransport
cont ext Pat h="conpl ex" servi ceUri ="Conpl exService"
por t Nane=" Conpl exSer vi cePort"/ >
</ jws>
</jwsc>
</target>

In the preceding example:

¢ Thet ype attribute of the <j ws> element specifies the type of web service (JAX-
WS or JAX-RPC).

e The <W.Ht t pTr anspor t > child element of the <j ws> element of the j wsc Ant
task specifies the context path and service URI sections of the URL used to
invoke the web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL. For more information about defining the context
path, see Defining the Context Path of a WebLogic Web Service.

10. Execute the j wsc Ant task:

pronpt > ant buil d-service

See the out put / Conpl exSer vi ceEar directory to view the files and artifacts
generated by the j wsc Ant task.

11. Start the WebLogic Server instance to which the web service will be deployed.

12. Deploy the web service, packaged in the Conpl exSer vi ceEar Enterprise
Application, to WebLogic Server, using either the WebLogic Server Administration
Console or the W depl oy Ant task. For example:

pronpt > ant depl oy

13. Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the W depl oy
Ant task. In either case, you deploy the Conpl exSer vi ceEar Enterprise
application, located in the out put directory.

To use the W depl oy Ant task, add the following target to the bui | d. xm file:

<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. management . W.Depl oy"/ >
<target name="depl oy">
<w depl oy action="depl oy"
nane=" Conpl exServi ceEar" sour ce="out put/ Conpl exSer vi ceEar"
user="${w s. usernane}" password="${w s. password}"
ver bose="true"
admi nurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server.nane}" />
</target>

Substitute the values for W s. user name, W s. passwor d, W s. host nane,
W s. port,and W s. server. nane that correspond to your WebLogic Server
instance.

Examples of Developing JAX-WS Web Services 6-7

Creating a Web Service With User-Defined Data Types

Deploy the WAR file by executing the depl oy target:
pronpt > ant depl oy

14. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host: port/conpl ex/ Conpl exServi ce?WsDL

To run the web service, you need to create a client that invokes it. See Invoking a Web
Service from a WebLogic Web Service for an example of creating a Java client
application that invokes a web service.

6.2.1 Sample BasicStruct JavaBean

package exanpl es.webservi ces. conpl ex;
/**
* Defines a sinple JavaBean call ed BasicStruct that has integer, String,
* and String[] properties
*/
public class BasicStruct {
Il Properties
private int intVal ue;
private String stringVal ue;
private String[] stringArray;
Il Cetter and setter mnethods
public int getlntValue() {
return intVal ue;

public void setlntValue(int intValue) {
this.intValue = intVal ue;

public String getStringVal ue() {
return stringVal ue;

public void setStringValue(String stringValue) {
this.stringValue = stringVal ue;

}
public String[] getStringArray() {
return stringArray;

public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;

1
public String toString() {
return "IntVal ue="+intVal ue+", StringVal ue="+stringVal ue;
1
}

6.2.2 Sample Compleximpl.java JWS File

package exanpl es.webservi ces. conpl ex;

/1 Import the standard JWS annotation interfaces

i mport javax.jws.\\ebMet hod;

inport javax.jws.\WbParam

i mport javax.jws.\MbResul t;

i mport javax.jws.\WebService;

import javax.jws.soap. SOAPBi ndi ng;

[l Inport the BasicStruct JavaBean

i mport exanpl es. webservi ces. conpl ex. Basi cStruct;

/] Standard JWS annotation that specifies that the portType name of the Wb

6-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Web Service With User-Defined Data Types

/1 Service is "Conpl exPortType", its public service name is "Conpl exService",
/1 and the targetNanespace used in the generated WSDL is "http://exanple.org"
@\ebSer vi ce(servi ceName="Conpl exServi ce", name="Conpl exPort Type",

target Nanespace="http://exanple.org")
/1 Standard JWS annotation that specifies this is a docunent-literal-w apped
/1 Wb Service
@OAPBI ndi ng(st yl e=SOAPBI ndi ng. St yl e. DOCUMENT,

use=SOAPBi ndi ng. Use. LI TERAL,

par anmet er St yl e=SOAPBI ndi ng. Par anet er St yl e. WRAPPED)
/**
* This JWs file forns the basis of a WbLogic Wb Service. The Wb Services
* has two public operations:

*
* - echolnt(int)

* - echoConpl exType(Basi cStruct)
*

*

The Wb Service is defined as a "docunent-literal" service, which neans
* that the SOAP nessages have a single part referencing an XM. Scherma el enent
* that defines the entire body.
*/
public class Conplexlnpl {
/1 Standard JWS annotation that specifies that the method should be exposed
I/ as a public operation. Because the annotation does not include the
/1 menber-val ue "operationName", the public name of the operation is the
Il same as the method name: echolnt.
I
/1 The WebResult annotation specifies that the name of the result of the
I/ operation in the generated WSDL is "IntegerQutput”, rather than the
Il default nanme "return". The WebParam annotation specifies that the input
Il parameter name in the WDL file is "Integerlnput" rather than the Java
Il name of the paraneter, "input".
@\ebMet hod()
@¢bResul t (name="1nt eger Qut put",
t arget Nanespace="htt p: // exanpl e. or g/ conpl ex")
public int echolnt(
@\ébPar an(nane="1nt eger | nput ",
target Nanespace="htt p://exanpl e. or g/ conpl ex")
int input)
{
Systemout. println("echolnt "" + input +"' to you too!");
return input;
1
/1 Standard JWS annotation to expose nethod "echoStruct" as a public operation
/1 called "echoConpl exType"
/1 The WebResult annotation specifies that the nanme of the result of the
I/ operation in the generated WSDL is "EchoStruct ReturnMessage"”,
Il rather than the default name "return".
@\ebMet hod(oper at i onName="echoConpl exType")
@¢bResul t (name="EchoSt ruct Ret ur nMessage",
t arget Nanespace="htt p: // exanpl e. or g/ conpl ex")
public BasicStruct echoStruct(BasicStruct struct)
{
System out. println("echoConpl exType cal |l ed");
return struct;
1
}

6.2.3 Sample Ant Build File for Compleximpl.java JWS File

The following bui | d. xm file uses properties to simplify the file.

Examples of Developing JAX-WS Web Services 6-9

Creating a Web Service With User-Defined Data Types

<proj ect name="webservices-conpl ex" default="all">
<!-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s.server.nanme" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="conpl exServi ceEAR"' />
<property name="exanpl e-out put" val ue="output" />
<property name="ear-dir" val ue="${exanpl e-out put}/ conpl exServi ceEar" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclass" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nane="all" depends="cl ean, bui | d-service, depl oy, client"/>
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-out put}"/>

</target>
<target name="buil d-service">
<jwsc
srcdir="src"

destdir="${ear-dir}"
keepGener at ed="t r ue"
>
<jws file="exanpl es/ webservices/ conpl ex/ Conpl ex| npl . j ava"
type="JAXWE" >
<W.H tpTransport
cont ext Pat h="conpl ex" servi ceUri =" Conpl exServi ce"
por t Name=" Conpl exServi cePort"/>
</jws>
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy"
nane="${ear. depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server.name}"/>
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" failonerror="fal se"
nane="${ear. depl oyed. nane}"
user="${w s. usernanme}" password="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server.name}"/>
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. conpl ex. cl i ent"
type="JAXWS"/ >
<j avac

6-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Web Service from a WSDL File

srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/ conpl ex/client/**/* java"/>
</target>
<target name="run" >
<java fork="true"
cl assname="exanpl es. webservi ces. conpl ex. cl i ent. Mai n"
failonerror="true" >
<cl asspath refid="client.class.path"/>
<arg line="http://${w s. hostnane}: ${w s. port}/conpl ex/ Conpl exServi ce"
/>
</java>
</target>
</ project>

6.3 Creating a Web Service from a WSDL File

Another common example of creating a web service is to start from an existing WSDL
file, often referred to as the golden WSDL. A WSDL file is a public contract that
specifies what the web service looks like, such as the list of supported operations, the
signature and shape of each operation, the protocols and transports that can be used
when invoking the operations, and the XML Schema data types that are used when
transporting the data. Based on this WSDL file, you generate the artifacts that
implement the web service so that it can be deployed to WebLogic Server. You use the
wsdl ¢ Ant task to generate the following artifacts.

¢ JWS service endpoint interface (SEI) that implements the web service described by
the WSDL file.

* JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

¢ JAXB data binding artifacts.

* Optional Javadocs for the generated JWS SEI.

Note:

The only file generated by the wsdl ¢ Ant task that you update is the JWS
implementation file. You never need to update the JAR file that contains the
JWS SEI and data binding artifacts.

Typically, you run the wsdl ¢ Ant task one time to generate a JAR file that contains the
generated JWS SEI file and data binding artifacts, then code the generated JWS file that
implements the interface, adding the business logic of your web service. In particular,
you add Java code to the methods that implement the web service operations so that
the operations behave as needed and add additional JWS annotations.

After you have coded the JWS implementation file, you run the j wsc Ant task to
generate the deployable web service, using the same steps as described in the
preceding sections. The only difference is that you use the conpi | edWd! attribute to
specify the JAR file (containing the JWS SEI file and data binding artifacts) generated
by the wsdl ¢ Ant task.

Examples of Developing JAX-WS Web Services 6-11

Creating a Web Service from a WSDL File

The following simple example shows how to create a web service from the WSDL file
shown in Sample WSDL File. The web service has one operation, get Tenp, that
returns a temperature when passed a zip code.

1.

Set your WebLogic Server environment.

Open a command window and execute the set Domai nEnv. cnd (Windows) or
set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOVE/
user _pr oj ect s/ domai ns/ domai nName, where ORACLE_HOME is the directory
you specified as Oracle Home when you installed Oracle WebLogic Server and
domai nNane is the name of your domain.

Create a working directory:
pronpt > nkdir /nyExanpl es/wsdl ¢
Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
Tenper at ur eSer vi ce. wsdl and is located in the / nyExanpl es/ wsdl c/
wsdl _fil es directory. See Sample WSDL File for a full listing of the file.

Create a standard Ant bui | d. xrm file in the project directory and add a t askdef
Ant task to specify the full Java classname of the wsdl ¢ task:

<proj ect name="webservices-wsdl c" default="all">
<t askdef name="wsdl c"
cl assname="webl ogi c. wsee. t ool s. antt asks. dl cTask"/ >
</ proj ect >

See Sample Ant Build File for TemperatureService for a full sample bui | d. xm file
that contains additional targets from those described in this procedure, such as

cl ean,undepl oy, cl i ent,and r un. The full bui | d. xm file also uses
properties, such as ${ ear - di r } , rather than always using the hard-coded name
for the EAR directory.

Add the following call to the wsdl ¢ Ant task to the bui | d. xm file, wrapped
inside of the gener at e- fr om wsdl target:

<target nane="generate-fromwsdl ">
<wsdl ¢

src\Wdl ="wsdl _fil es/ Tenperat ureService. wsdl "
dest JwsDi r="out put/ conpi | edViédl "
dest I npl Di r="out put/inpl"
packageName="exanpl es. webser vi ces. wsdl ¢"
type="JAXWS"/ >

</target>

The wsdl c task in the examples generates the JAR file that contains the JWS SEI
and data binding artifacts into the out put / conpi | edWsdl directory under the
current directory. It also generates a partial implementation file

(Tenper at ur eSer vi ce_Tenper at ur ePort | npl . j ava) of the JWS SEI into the
out put /i npl / exanpl es/ webser vi ces/ wsdl ¢ directory (which is a
combination of the output directory specified by dest | npl Di r and the directory
hierarchy specified by the package name). All generated JWS files will be packaged
in the exanpl es. webser vi ces. wsdl ¢ package.

6-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Web Service from a WSDL File

6. Execute the wsdl ¢ Ant task by specifying the gener at e- f r om wsdl target at the
command line:

pronpt> ant generate-fromwsdl

See the out put directory if you want to examine the artifacts and files generated
by the wsdl ¢ Ant task.

7. Update the generated out put /i npl / exanpl es/ webser vi ces/ wsdl c/
Termper at ur eSer vi ce_Tenper at ur ePor t | mpl . j ava JWS implementation file
using your favorite Java IDE or text editor to add Java code to the methods so that
they behave as you want.

See Sample TemperatureService_TemperaturePortImpl Java Implementation File
for an example; the added Java code is in bold. The generated JWS implementation
file automatically includes values for the @\&bSer vi ce JWS annotation that
corresponds to the value in the original WSDL file.

Note:

There are restrictions on the JWS annotations that you can add to the JWS
implementation file in the "starting from WSDL" use case. See "wsdlc" in the
WebLogic Web Services Reference for Oracle WebLogic Server for details.

For simplicity, the sample get Tenp() method in

Tenper at ureServi ce_Tenper at urePort | npl . j ava returns a hard-coded
number. In real life, the implementation of this method would actually look up the
current temperature at the given zip code.

8. Copy the updated Tenper at ur eSer vi ce_Tenper at ur ePort | npl . j ava file
into a permanent directory, such as a sr ¢ directory under the project directory;
remember to create child directories that correspond to the package name:

pronpt > cd /exanpl es/ wsdl ¢

pronpt> nkdir src/exanpl es/ webservi ces/ wsdl ¢

pronpt> cp out put/inpl/exanpl es/ webservi ces/wsdl c/

Tenper at ur eServi ce_Tenperat urePort | npl.java.java \src/exanpl es/ webservi ces/ wsdl ¢/
Tenper at ureServi ce_TenperaturePort|npl.java.java

9. Addabuild-service target to the bui | d. xm file that executes the j wsc Ant
task against the updated JWS implementation class. Use the conpi | edWdl
attribute of j wsc to specify the name of the JAR file generated by the wsdl ¢ Ant
task:

<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. ant t asks. JwscTask" />
<target name="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws file="exanpl es/ webservices/wsdl c/
Tenper at ur eServi ce_Tenperat urePort | npl . java"
conpi | edWdl =" ${ conpi | edWédl - di r}/ Tenper at ureServi ce_wsdl . jar"
type="JAXWS" >
<W.Ht t pTranspor t
cont ext Pat h="t enp" servi ceUri ="Tenper at ur eServi ce"
por t Name="Tenper at urePort ">
</W.Ht t pTransport >

Examples of Developing JAX-WS Web Services 6-13

Creating a Web Service from a WSDL File

10.

11.

12.

</jws>
</jwsc>
</target>

In the preceding example:

¢ Thet ype attribute of the <j ws> element specifies the type of web services
(JAX-WS or JAX-RPC).

e The <W.Ht t pTr anspor t > child element of the <j ws> element of the j wsc Ant
task specifies the context path and service URI sections of the URL used to
invoke the web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL.

Execute the bui | d- ser vi ce target to generate a deployable web service:

pronpt > ant buil d-service
You can re-run this target if you want to update and then re-build the JWS file.
Start the WebLogic Server instance to which the web service will be deployed.

Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the W depl oy
Ant task. In either case, you deploy the wsdl cEar Enterprise application, located
in the out put directory.

To use the W depl oy Ant task, add the following target to the bui | d. xm file:

<taskdef name="wl depl oy"
cl assnane="webl ogi c. ant . t askdef s. management . W.Depl oy"/ >
<target nane="depl oy">
<wl depl oy action="depl oy" nane="wsdl cEar"

sour ce="out put/wsdl cEar" user="${w s. user name}"

passwor d="${w s. password}" verbose="true"

adm nurl ="t 3://${w s. host name}: ${w s. port}"

targets="${w s.server.name}" />
</target>

Substitute the values for W s. user nanme, W s. passwor d, W s. host nane,
W s. port,andw s. server. nane that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the depl oy target:
pronpt > ant depl oy

13. Test that the web service is deployed correctly by invoking its WSDL in your

browser:

http://host: port/tenp/ Tenperat ureServi ce?WsDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL. Use the hostname and port relevant to your WebLogic
Server instance. Note that the deployed and original WSDL files are the same,
except for the host and port of the endpoint address.

You can use the cl ean, bui | d- servi ce, undepl oy, and depl oy targets in the
bui | d. xn file to iteratively update, rebuild, undeploy, and redeploy the web service
as part of your development process.

6-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Web Service from a WSDL File

To run the web service, you need to create a client that invokes it. See Invoking a Web
Service from a WebLogic Web Service for an example of creating a Java client
application that invokes a web service.

6.3.1 Sample WSDL File

<?xm version="1.0"?>
<definitions
nane="Tenper at ur eSer vi ce"
target Namespace="htt p: / / www. xmet hods. net/ sd/ Tenper at ur eSer vi ce. wsdl "
xmns:tns="http://ww:. xnet hods. net/sd/ Tenper at ur eSer vi ce. wsdl "
xm ns: xsd="http://ww:. w3. or g/ 2001/ XM.Schena"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xm soap. or g/ wsdl /" >
<types>
<xsd: schema
target Namespace="htt p: / / www. xmet hods. net/ sd/ Tenper at ur eSer vi ce. wsdl "
xm ns: xsd="http:// ww. w3. or g/ 2001/ XM_Schema" >
<xsd: el ement nanme="get TenpRequest ">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="zip" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nanme="get TenpResponse" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="return" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>
</types>
<nessage name="get TenpRequest ">
<part name="paraneters" el ement="tns: get TenpRequest"/>
</ message>
<message nane="get TenpResponse" >
<part name="paraneters" el enent="tns: get TenpResponse"/>
</ message>
<port Type nane="Tenper at ur ePort Type">
<operation nane="get Tenp">
<input message="tns: get TenpRequest"/>
<out put message="t ns: get TenpResponse"/ >
</ operati on>
</ port Type>
<bi ndi ng name="Tenper at ur eBi ndi ng" type="tns: Tenper at ur ePort Type" >
<soap: bi ndi ng styl e="document"
transport="http://schemas. xn soap. or g/ soap/ http"/>
<operation nane="get Tenp">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input>
<out put >
<soap: body use="literal"/>
</ out put >
</ operation>
</ bi ndi ng>
<servi ce name="Tenper at ureService">
<docunent ati on>

Examples of Developing JAX-WS Web Services 6-15

Creating a Web Service from a WSDL File

Returns current tenperature in a given U S. zipcode
</ docunent ati on>
<port name="TenperaturePort" bindi ng="tns: Tenper at ur eBi ndi ng" >
<soap: addr ess
location="http://local host: 7001/t enp/ Tenper at ur eServi ce"/ >
</port>
</ service>
</ definitions>

6.3.2 Sample TemperatureService_TemperaturePortimpl Java Implementation File

package exanpl es.webservi ces. wsdl c;
import javax.jws.\WebServi ce;
i mport javax.xm .ws. Bi ndi ngType;

/**
* Returns current temperature in a given U S. zipcode
* This class was generated by the JAX-WS RI.
* JAX-WS Rl 2.2.8-b13684
* Cenerated source version: 2.2
*
*/
@ebSer vi ce(
portName = "TenperaturePort",
servi ceNane = "Tenperat ureServi ce",
target Namespace="htt p: / / www. xmet hods. net/ sd/ Tenper at ur eSer vi ce. wsdl "
wsdl Location = "/wsdl s/ Tenper at ureServi ce. wsdl ",
endpoi ntI nterface = "exanpl es. webservi ces. wsdl c. Tenper at ur ePort Type")
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
public class TenperatureService_TenperaturePortlnpl inplenents

Tenper at ur ePor t Type
{
public TenmperatureService_TenperaturePortinpl () { }
/**
*
* @aram zip
* @eturn
* returns float
*/
public float getTenp(String zip) {
return 1.234f;
}
}

6.3.3 Sample Ant Build File for TemperatureService
The following bui | d. xnl file uses properties to simplify the file.

<project default="all">
<!-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s. server.nane" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="wsdl cEar" />
<property name="exanpl e-out put" val ue="output" />
<property name="conpil edWdl -dir" val ue="${exanpl e-out put}/ conpi | edVédl " />
<property name="inpl-dir" val ue="${exanpl e-output}/inpl" />
<property name="ear-dir" val ue="${exanpl e-out put}/wsdl cEar" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclasses" />

6-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating a Web Service from a WSDL File

<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<t askdef name="wsdl c"
cl assname="webl ogi c. wsee. t ool s. antt asks. édl cTask"/ >
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. O i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nanme="all"
depends="cl ean, gener at e-from wsdl , bui | d-servi ce, depl oy, client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-out put}"/>
</target>
<target nane="generate-fromwsdl ">
<wsdl ¢
src\Wdl ="wsdl _fil es/ Tenperat ureService. wsdl "
dest JwsDi r="${conpi | edWdl -dir}"
destInpl Dir="${inpl-dir}"
packageName="exanpl es. webser vi ces. wsdl ¢"

type="JAXWS"/ >
</target>
<target name="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws

file="exanpl es/ webservi ces/ wsdl ¢/ Tenper at ureServi ce_Tenperat urePort | npl . java"
conpi | edWdl =" ${ conpi | edVédl - di r}/ Tenper at ureServi ce_wsdl .jar"
type="JAXWS" >
<W.H tpTransport
cont ext Path="t enp" servi ceUri ="Tenper at ur eServi ce"
por t Nane="Tenper at urePort"/>
</jws>
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy" name="${ear.depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. username}" password="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/tenp/ Tenper at ur eSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. wsdl c. client"
type="JAXWS"' >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

Examples of Developing JAX-WS Web Services 6-17

Creating a Web Service from a WSDL File

includes="**/*java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/wsdl c/client/**/* java"/>
</target>
<target name="run">
<java cl assnane="exanpl es. webservi ces.wsdl c. client. Tenperaturedient"
fork="true" failonerror="true" >
<cl asspath refid="client.class.path"/>
<arg
line="http://${w s.hostnane}: ${w s. port}/tenp/ Tenperat ureServi ce"
</java>
</target>
</ project>

6-18 Developing JAX-WS Web Services for Oracle WebLogic Server

/>

Part Il

Developing Basic JAX-WS Web Service
Clients

Part III describes how to develop basic WebLogic web service clients using Java API
for XML-based web services (JAX-WS).

Sections include:
* Roadmap for Developing JAX-WS Web Service Clients
¢ Developing Web Service Clients

¢ Examples of Developing JAX-WS Web Service Clients

v

Roadmap for Developing JAX-WS Web

Service Clients

This chapter presents best practices for developing WebLogic web service clients for
Java API for XML Web Services (JAX-WS).

Table 7-1 lists each best practice and is followed by an example that illustrates the best
practices presented. The best practices are described in more detail later in this

document.

For additional best practices, refer to the following sections:

* For best practices when developing asynchronous web service clients, see
Roadmap for Developing Asynchronous Web Service Clients.

¢ For best practices when developing reliable web service clients, see Roadmap for
Developing Reliable Web Services and Clients.

Note:

In the following table, client instance can be a port or a Dispatch instance.

Table 7-1 Roadmap for Developing Web Service Clients

Best Practice

Description

Synchronize use of client
instances.

Create client instances as you need them; do not store them long term.

Use a stored list of features,
including client ID, to create
client instances.

Define all features for the web service client instance, including client ID, so that
they are consistent each time the client instance is created. For example:

_service. get BackendSer vi cePort (_features);

Explicitly define the client ID.

Usethe O i ent| dentityFeat ure to define the client ID explicitly. This client
ID is used to group statistics and other monitoring information, and for
reporting runtime validations, and so on. For more information, see Managing
Client Identity.

Note: Oracle strongly recommends that you define the client ID explicitly. If not
explicitly defined, the server generates the client ID automatically, which may
not be user-friendly.

Roadmap for Developing JAX-WS Web Service Clients 7-1

Table 7-1 (Cont.) Roadmap for Developing Web Service Clients
. ___|

Best Practice Description

Explicitly close client instances For example:

when processing is complete. ((java.io.C oseabl e)port).close();
If not closed explicitly, the client instance will be closed automatically when it
goes out of scope.

Note: The client ID remains registered and visible until the container (Web
application or EJB) is deactivated. For more information, see Client Identity
Lifecycle.

The following example illustrates best practices for developing web service clients.
Example 7-1 Web Service Client Best Practices Example

import java.io.|CException;
inmport java.util.*;

import javax.servlet.*;
import javax.xm.ws.*;

import weblogic.jws.jaxws.client.CientldentityFeature;

/**
* Exanple client for invoking a web service.
*/
public class BestPracticeCient
extends GenericServlet {

private BackendServiceService _service;
private WebServiceFeature[] _features;
private CientldentityFeature _clientldFeature;

@verride
public void init()
throws ServletException {

/] Create a single instance of a web service as it is expensive to create repeatedly.
if (_service == null) {
_service = new BackendServi ceService();

}

/] Best Practice: Use a stored list of features, per client ID, to create client instances.
/] Define all features for the web service client instance, per client 1D, so that they are
/1 consistent each time the client instance is created. For exanple:

/| _service. get BackendServi cePort (_features);

Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

/1 Best Practice: Explicitly define the client ID.

[/ TODO Maybe allow ClientldentityFeature to store other features, and
11 then create new client instances sinply by passing the

11 ClientldentityFeature (and the registered features are used).
_clientldFeature = new ClientldentityFeature("MBackendServicedient");
features.add(_clientldFeature);

/] Set the features used when creating clients with
/1 the client ID "MBackendServicedient". The features are stored in an array to

7-2 Developing JAX-WS Web Services for Oracle WebLogic Server

/] reinforce that the list should be treated as i mutable.
_features = features.toArray(new WebServi ceFeature[features.size()]);

}

@wverride
public void service(Servl et Request req, ServletResponse res)
throws ServletException, |CException {

/1 ... Read the servlet request ...

/] Best Practice: Synchronize use of client instances.
/] Create a web service client instance to talk to the backend service.
/1 Note, at this point the client IDis 'registered and becones
/] visible to nonitoring tools such as the Admnistration Console and W.ST.
[l The client ID *remains* registered and visible until the container
/1 (the Web application hosting our servlet) is deactivated (undeployed).
/11
[l Aclient ID can be used when creating multiple client instances (port or Dispatch client).
[l The client instance should be created with the sane set of features each tine, and should
/1 use the same service class and refer to the same port type.
/1 Agiven a client 1D should be used for a given port type, but not across port types.
[l 1t can be used for both port and Dispatch clients.
BackendServi ce port =
_service. get BackendSer vi cePort (_features);

/1 Set the endpoint address for BackendServi ce.
((Bi ndi ngProvi der)port).get Request Cont ext ().
put (Bi ndi ngPr ovi der . ENDPOl NT_ADDRESS_PROPERTY,
"http://1ocal host: 7001/ Best Practi ceServi ce/ BackendService");

/1 Print out the explicit client ID, and conpare it to the client ID
/1 that woul d have been generated automatically for the client instance.
showC i entldentity();

/1 Make the invocation on our real port

String request = "Mike a cake";

Systemout. println("Invoking DoSonething with request: " + request);
String response = port.doSonet hi ng(request);

Systemout. println("Got response: " + response);
res.getWiter().wite(response);

/1 Best Practice: Explicitly close client instances when processing i s conplete.

/1 1f not closed, the client instance will be closed automatically when it goes out of
/'l scope. Note, this client IDwll remain registered and visible until our

/] container (Wb application) is undeployed.

((java.io. O oseabl e)port).close();

}

/**
[/ Print out the client's full ID, which is a conbination of
/1 the client 1D provided above and qualifiers fromthe application and
/1 Wb application that contain the client. Then conpare this with the client ID that
/1 woul d have been generated for the client instance if not explicitly set.
11
private void showdientldentity()
throws | CException {

Systemout.printIn("Cient ldentity is: " + _clientldFeature.getCientld());

Il Create a client instance without explicitly defining the client IDto viewthe
/1 client IDthat is generated automatically.

Roadmap for Developing JAX-WS Web Service Clients 7-3

ClientldentityFeature dummydient|dFeature =

new CientldentityFeature(null);
BackendServi ce dumyPort =

_service. get BackendSer vi cePort (dummyCl i ent | dFeature);
Systemout.printin("Generated Client Identity is: " +

dumyd ient|dFeature.getCientld());

/1 Best Practice: Explicitly close client instances when processing i s conplete.
/1 1f not closed, the client instance will be closed automatically when it goes out of
/'l scope. Note, this client IDwll remain registered and visible until our
/1 container (Wb application) is undeployed.
((java.io.d oseabl) dumyPort). cl ose();

}

@verride
public void destroy() {

}
}

7-4 Developing JAX-WS Web Services for Oracle WebLogic Server

8

Developing Web Service Clients

This chapter describes how to develop Java EE clients to invoke a WebLogic web
service using Java API for XML-based Web Services (JAX-WS).

This chapter includes the following sections:

e Overview of WebLogic Web Services Client Development

¢ Invoking a Web Service from a Java SE Client

¢ Invoking a Web Service from a Standalone Java SE Client

¢ Invoking a Web Service from Another WebLogic Web Service

¢ Configuring Web Service Clients

¢ Defining a Web Service Reference Using the @WebServiceRef Annotation

* Managing Client Identity

* Using a Proxy Server When Invoking a Web Service

¢ C(Client Considerations When Redeploying a Web Service

® C(lient Considerations When Web Service and Client Are Deployed to the Same
Managed Server

8.1 Overview of WebLogic Web Services Client Development

Invoking a web service refers to the actions that a client application performs to use
the web service.

There are two types of client applications:

* Java SE client—In its simplest form, a Java SE client is a Java program that has the
Mai n public class that you invoke with the j ava command. A Java SE client can be
invoked within a WebLogic Server environment (with access to the WebLogic
Server classpath) or as a standalone client application.

* Java EE component deployed to WebLogic Server—In this type of client
application, the web service runs inside a Java Platform, Enterprise Edition (Java
EE) Version 5 component deployed to WebLogic Server, such as an EJB, servlet, or
another web service. This type of client application, therefore, runs inside a
WebLogic Server container.

The sections that follow describe how to use Oracle's implementation of the JAX-WS
specification to invoke a web service from a Java client application. You can use this
implementation to invoke web services running on any application server, both
WebLogic and non-WebLogic.

Developing Web Service Clients 8-1

Invoking a Web Service from a Java SE Client

WebLogic Server optionally includes examples of creating and invoking WebLogic
web services in the ORACLE_HOVE/ Wl ser ver/ sanpl es/ server/ exanpl es/ src/
exanpl es directory, where ORACLE_HOVE represents the directory in which you
installed WebLogic Server. For detailed instructions on how to build and run the
examples, open the ORACLE_HOVE/ Wl ser ver/ sanpl es/ server/ docs/

i ndex. ht mM Web page in your browser and expand the WebLogic Server Examples-
>Examples->API->Web Services node. For more information, see "Sample
Applications and Code Examples" in Understanding Oracle WebLogic Server.

For more information about:

¢ Invoking message-secured web services, see "Updating a Client Application to
Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server.

¢ Best practices for developing web service clients, see Roadmap for Developing
JAX-WS Web Service Clients.

¢ Invoking web services asynchronously, see Developing Asynchronous Clients.

e Creating a dynamic proxy client, using the j avax. xml . ws. Ser vi ce AP, that
enables a web service client to invoke a web service based on a service endpoint
interface (SEI) dynamically at run-time (without using cl i ent gen), see
Developing Dynamic Proxy Clients. This chapter focuses on how to generate a
static Java class of the Ser vi ce interface implementation for the particular web
service you want to invoke.

8.2 Invoking a Web Service from a Java SE Client

The following table summarizes the main steps to create a Java SE application that
invokes a web service.

Note:

In this section, it is assumed that:

* When you invoke a web service using the client-side artifacts generated by
the cl i ent gen or wsdl ¢ Ant tasks, you have the entire set of WebLogic
Server classes in your CLASSPATH. Support for standalone Java
applications that are running in an environment where WebLogic Server
libraries is described in Invoking a Web Service from a Standalone Java SE
Client.

* You use Ant in your development environment to build your client
application, compile Java files, and so on, and that you have an existing
bui | d. xm file that you want to update with web services client tasks. For
general information about using Ant in your development environment,
see Creating the Basic Ant build.xml File. For a full example of a
bui | d. xm file used in this section, see Sample Ant Build File for a Java
Client.

8-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from a Java SE Client

Table 8-1 Steps to Invoke a Web Service from a Java SE Client
- - -]

Step Description
1 Setup the environment. Open a command window and execute the set Donmai nEnv. crnd
(Windows) or set Domai nEnv. sh (UNIX) command, located in the bi n
subdirectory of your domain directory. The default location of WebLogic
Server domains is ORACLE_HOVE/ user _pr oj ect s/ donai ns/
donai nNane, where ORACLE_HOVE is the directory you specified as Oracle
Home when you installed Oracle WebLogic Server and donmai nNane is the
name of your domain.
2 Update your bui | d. xml file See Using the clientgen Ant Task To Generate Client Artifacts.
to execute the cl i ent gen
Ant task to generate the
needed client-side artifacts to
invoke a web service.
3 Getinformation about the See Getting Information About a Web Service.
web service, such as the
signature of its operations
and the name of the ports.
4 Write the client application See Writing the Java Client Application Code to Invoke a Web Service.
Java code that includes code
for invoking the web service
operation.
5 Create a basic Ant build file, =~ See Creating the Basic Ant build.xml File.
bui ld. xm .
6 Compile and run your Java See Compiling and Running the Client Application.

client application.

8.2.1 Using the clientgen Ant Task To Generate Client Artifacts

The cl i ent gen WebLogic web services Ant task generates, from an existing WSDL
file, the client artifacts that client applications use to invoke both WebLogic and non-
WebLogic web services. These artifacts include:

* The Java class for the Ser vi ce interface implementation for the particular web
service you want to invoke.

¢ JAXB data binding artifacts.

* The Java class for any user-defined XML Schema data types included in the WSDL

file.

For additional information about the cl i ent gen Ant task, such as all the available
attributes, see "Ant Task Reference" in the WebLogic Web Services Reference for Oracle

WebLogic Server.

Update your bui | d. xm file, adding a call to the cl i ent gen Ant task, as shown in
the following example:

<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />
<target nanme="build-client">

<clientgen

wsdl ="http://${wW s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"

Developing Web Service Clients 8-3

Invoking a Web Service from a Java SE Client

destDir="clientcl asses"
packageNanme="exanpl es. webservi ces. si npl e_client"
type="JAXWS"/ >

</target>

Before you can execute the cl i ent gen WebLogic web service Ant task, you must
specify its full Java classname using the standard t askdef Ant task.

You must include the wsdl and dest Di r attributes of the cl i ent gen Ant task to
specify the WSDL file from which you want to create client-side artifacts and the
directory into which these artifacts should be generated. The packageNare attribute
is optional; if you do not specify it, the cl i ent gen task uses a package name based on
the t ar get Nanmespace of the WSDL. The t ype is required in this example;
otherwise, it defaults to JAXRPC.

In this example, the package name is set to the same package name as the client
application, exanpl es. webser vi ces. si npl e_cl i ent . If you set the package
name to one that is different from the client application, you would need to import the
appropriate class files. For example, if you defined the package name as

exanpl es. webser vi ces. conpl ex, you would need to import the following class
files in the client application:

i mport exanpl es. webservi ces. conpl ex. Basi cStruct;
i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webservi ces. conpl ex. Conpl exSer vi ce;

Note:

The cl i ent gen Ant task also provides the dest Fi | e attribute if you want
the Ant task to automatically compile the generated Java code and package all
artifacts into a JAR file. For details and an example, see "clientgen" in the
WebLogic Web Services Reference for Oracle WebLogic Server.

If the WSDL file specifies that user-defined data types are used as input parameters or
return values of web service operations, cl i ent gen automatically generates a
JavaBean class that is the Java representation of the XML Schema data type defined in
the WSDL. The JavaBean classes are generated into the dest Di r directory.

For a full sample bui | d. xm file that contains additional targets from those described
in this procedure, such as cl ean, see Sample Ant Build File for a Java Client.

To execute the cl i ent gen Ant task, along with the other supporting Ant tasks,
specify the bui | d- cl i ent target at the command line:

pronpt > ant build-client

See the cl i ent cl asses directory to view the files and artifacts generated by the
cl i ent gen Ant task.

8.2.2 Getting Information About a Web Service

You need to know the name of the web service and the signature of its operations
before you write your Java client application code to invoke an operation. There are a
variety of ways to find this information.

The best way to get this information is to use the cl i ent gen Ant task to generate the
web service-specific Ser vi ce files and look at the generated * . j ava files. These files
are generated into the directory specified by the dest Di r attribute, with

8-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from a Java SE Client

subdirectories corresponding to either the value of the packageNare attribute, or, if
this attribute is not specified, to a package based on the t ar get Nanespace of the
WSDL.

e The Servi ceNane. j ava source file contains the get Por t Name() methods for
getting the web service port, where Ser vi ceNane refers to the name of the web
service and Por t Nanme refers to the name of the port. If the web service was
implemented with a JWS file, the name of the web service is the value of the
ser vi ceNane attribute of the @\&bSer vi ce JWS annotation and the name of the
port is the value of the por t Nane attribute of the <W.Ht t pTr anspor t > child
element of the <j ws> element of the j wsc Ant task.

e The Port Type. j ava file contains the method signatures that correspond to the
public operations of the web service, where Por t Type refers to the port type of the
web service. If the web service was implemented with a JWS file, the port type is
the value of the nane attribute of the @\ebSer vi ce JWS annotation.

You can also examine the actual WSDL of the web service; see Browsing to the WSDL
of the Web Service for details about the WSDL of a deployed WebLogic web service.
The name of the web service is contained in the <ser vi ce> element, as shown in the
following excerpt of the Tr ader Ser vi ce WSDL.:

<servi ce name="Trader Servi ce">
<port name="Trader Servi cePort"
bi ndi ng="t ns: Trader Ser vi ceSoapBi ndi ng" >

</port>
</ service>

The operations defined for this web service are listed under the corresponding
<bi ndi ng> element. For example, the following WSDL excerpt shows that the

Tr ader Ser vi ce web service has two operations, buy and sel | (for clarity, only
relevant parts of the WSDL are shown):

<bi ndi ng name="Tr ader Servi ceSoapBi ndi ng" ...>
<operation name="sel|">

</ operation>
<operation name="buy">
</ operation>

</ bi ndi ng>

8.2.3 Writing the Java Client Application Code to Invoke a Web Service

In the following code example, a Java application invokes a web service operation. The
application uses standard JAX-WS API code and the web service-specific
implementation of the Ser vi ce interface, generated by cl i ent gen, to invoke an
operation of the web service.

The example also shows how to invoke an operation that has a user-defined data type
(exanpl es. webser vi ces. si npl e_cl i ent. Basi cStruct) as an input parameter
and return value. The cl i ent gen Ant task automatically generates the Java code for
this user-defined data type.

Because the <cl i ent gen> packageNane attribute was set to the same package name
as the client application, we are not required to import the <cl i ent gen>-generated
files.

Developing Web Service Clients 8-5

Invoking a Web Service from a Java SE Client

package exanpl es.webservices. sinple_client;
/**
* This is a sinple Java application that invokes the
* the echoConpl exType operation of the Conpl exService web service.
*/
public class Main {
public static void main(String[] args) {
Conpl exService test = new Conpl exService();
Conpl exPort Type port = test. get Conpl exPort TypePort();
Basi cStruct in = new BasicStruct();
in.setlntVal ue(999);
in.setStringValue("Hello Struct");
Basi cStruct result = port.echoConpl exType(in);
System out. println("echoConpl exType called. Result: " + result.getlntValue() +
", " +result.getStringVvalue());
1
}

In the preceding example:

¢ The following code shows how to create a Conpl exPor t Type stub:

Conpl exServi ce test = new Conpl exService(),
Conpl exPort Type port = test.get Conpl exPort TypePort();

The Conpl exSer vi ce class implements the JAX-WS Ser vi ce interface. The
get Conpl exSer vi cePort TypePort () method is used to return an instance of
the Conpl exPor t Type stub implementation.

¢ The following code shows how to invoke the echoConpl exType operation of the
Conpl exSer vi ce web service:

BasicStruct result = port.echoConpl exType(in);

The echoConpl exType operation returns the user-defined data type called
Basi cStruct.

8.2.4 Compiling and Running the Client Application

Add j avac tasks to the bui | d-cl i ent target in the bui | d. xm file to compile all
the Java files (both of your client application and those generated by cl i ent gen) into
class files, as shown by the bold text in the following example:

<target nane="build-client">
<clientgen
wsdl ="http://${w s. host name}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="clientclasses"
packageName="exanpl es. webservi ces. si nple_client"
type="JAXWS"/ >
<j avac
srcdir="clientcl asses"
destdir="clientclasses"
includes="**/*_java"/>
<j avac
srcdir="src"
destdir="clientclasses"
i ncl udes="exanpl es/ webservices/sinple_client/*.java"/>
</target>

In the example, the first j avac task compiles the Java files in the cl i ent cl asses
directory that were generated by cl i ent gen, and the second j avac task compiles

8-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from a Java SE Client

the Java files in the exanpl es/ webser vi ces/ si npl e_cl i ent subdirectory of the
current directory; where it is assumed your Java client application source is located.

In the preceding example, the cl i ent gen-generated Java source files and the
resulting compiled classes end up in the same directory (cl i ent cl asses). Although
this might be adequate for prototyping, it is often a best practice to keep source code
(even generated code) in a different directory from the compiled classes. To do this, set
the dest di r for both j avac tasks to a directory different from the sr cdi r directory.
To run the client application, add a r un target to the bui | d. xm that includes a call to
the j ava task, as shown below:

<path id="client.class.path">
<pat hel ement path="clientcl asses"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>

</ pat h>
<target name="run" >
<j ava
fork="true"

cl assnanme="exanpl es. webSer vi ces. si npl e_cl i ent. Mai n"
failonerror="true" >
<cl asspath refid="client.class.path"/>

</target>

The pat h task adds the cl i ent cl asses directory to the CLASSPATH. The r un
target invokes the Mai n application, passing it the URL of the deployed web service as
its single argument.

See Sample Ant Build File for a Java Client for a full sample bui | d. xm file that
contains additional targets from those described in this procedure, such as cl ean.

Rerun the bui | d- cl i ent target to regenerate the artifacts and recompile into classes,
then execute the r un target to invoke the echoSt r uct operation:

pronpt> ant build-client run

You can use the bui | d-cl i ent and r un targets in the bui | d. xni file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

8.2.5 Sample Ant Build File for a Java Client

The following example shows a complete bui | d. xm file for generating and
compiling a Java client. See Using the clientgen Ant Task To Generate Client Artifacts
and Compiling and Running the Client Application for explanations of the sections in
bold.

<proj ect name="webservices-sinple_client" default="all">
<I-- set global properties for this build -->
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="exanpl e-out put" val ue="output" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclass" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />
<target nane="clean" >
<delete dir="${clientclass-dir}"/>
</target>

Developing Web Service Clients 8-7

Invoking a Web Service from a Standalone Java SE Client

<target nane="all" depends="cl ean, build-client,run" />
<target nanme="build-client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. si npl e_client"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservices/sinple_client/*.java"/>
</target>
<target name="run" >
<java fork="true"
cl assnanme="exanpl es. wehservi ces. si npl e_cl i ent. Mai n"
failonerror="true" >
<cl asspath refid="client.class.path"/>
</java>
</target>
</ project>

8.3 Invoking a Web Service from a Standalone Java SE Client

In Invoking a Web Service from a Java SE Client, it is assumed that when you invoke a
Web Service using the client-side artifacts generated by the cl i ent gen or wsdl ¢ Ant
tasks, you have the entire set of WebLogic Server classes in your classpath. If,
however, you do not have WebLogic Server installed locally, you can still invoke a
Web Service by using one of the standalone WebLogic web services client JAR files.

Table 8-2 summarizes the standalone web service client JAR files that are available in
the installation.

Table 8-2 Standalone Web Service Client JAR Files
- - - - - - - - -]

JAR File Location Description

com or acl e. webservi ces ORACLE_HOWE/ W server/ Supports basic JAX-WS client-side
W s, j axws-w swss- nodul es/ cli ents/ functionality including:
client.jar .

Using client-side artifacts created by both
the cl i ent gen Ant tasks

* Processing SOAP messages

¢ Using advanced features, such as web
services reliable messaging, WS addressing,

asynchronous request-response, and
MTOM

¢ Using WS-Security

¢ Using client-side SOAP message handlers

¢ Invoking both JAX-WS and JAX-RPC web
services

¢ Using SSL

The standalone client JAR does not support

invoking web services that use the following

advanced features:

¢ SOAP over JMS transport

¢ Conversations

* Buffering

8-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from a Standalone Java SE Client

Table 8-2 (Cont.) Standalone Web Service Client JAR Files
. ___|

JAR File

Location Description

com oracl e. webservi ces ORACLE_HOVE/ Supports the same functionality as

.W s, j axws- owsnt
client.jar

oracl e_conmon/ nodul es/ com or acl e. webservi ces. W sj axws-

clients/ client_12.1.2.jar (above), plus support
for Oracle Web Services Manager (OWSM)
security policies, as described in Securing Web
Services and Managing Policies with Oracle Web
Services Manager

.fmw.client.jar

com or acl e. webservi ces ORACLE_HOWH Provides support for WS-Secure Conversation
oracl e_common/ nodul es/ security, as described in "Configuring Secure
clients/ Conversation" in Securing Web Services and
Managing Policies with Oracle Web Services
Manager.

To use a standalone web services client JAR file with your client application, perform
the following steps:

1.

Create a Java SE client using your favorite IDE, such as Oracle JDeveloper. For
more information, see "Developing and Securing Web Services and Clients" in
Developing Applications with Oracle JDeveloper.

Copy the required JAR files, defined in Table 8-2, from the computer hosting
WebLogic Server to the appropriate directory on the standalone client computer.

For example, you might copy the files into the directory that contains other classes
used by your client application.

Add the JAR files to your CLASSPATH.

Note:

Ensure that your CLASSPATH includes the JAR file that contains the Ant
classes (ant . j ar) as a subset are used by the standalone client JAR files. This
JAR file is typically located in the | i b directory of the Ant distribution.

Configure your environment for Oracle Web Services Manager (OWSM) policies.
This step is optional, required only if you are attaching OWSM security policies to
the web service client.

The configuration steps required vary based on the type of policy being attached.
Examples are provided below. For additional configuration requirements, see
"Configuring Java SE Applications to Use OPSS" in Securing Applications with
Oracle Platform Security Services.

Example: Basic Authentication

For example, to support basic authentication, using the or acl e/
wss_htt p_t oken_cli ent _pol i cy security policy, perform the following
steps:

a. Copy thejps-config-jse.xm andaudit-store.xm files from the
domai n_home/ confi g/ f mmconf i g directory, where dormai n_hore is the

Developing Web Service Clients 8-9

Invoking a Web Service from Another WebLogic Web Service

name and location of the domain, to a location that is accessible to the web
service client.

b. Create a wallet (cwal | et . ss0) in the same location that you copied the files
in step 2 that defines a map called or acl e. wsm securi ty and the
credential key name that the client application will use (for example,
webl ogi c- csf - key).

The location of the file cwal | et . sso is specified in the configuration file

j ps-config-jse. xm with the element <ser vi cel nst ance>.For more
information, see "Using a Wallet-based Credential Store" in Securing
Applications with Oracle Platform Security Services.

c. On the Java command line, pass the following property defining the JPS
configuration file copied in step 1:

-Doracl e. security.jps. config=<pat hToConfi gFi | e>

For more information, see "Scenario 3: Securing a Java SE Application” in
Securing Applications with Oracle Platform Security Services.
Example: SSL

For example, to support SSL policies, perform the following steps:

a. Copy thejps-config-jse.xm andaudit-store.xn files from the
donmmi n_hone/ confi g/ f mmconf i g directory, where domai n_horme is the
name and location of the domain, to a location that is accessible to the web
service client.

b. On the Java command line, pass the following properties:defining the JPS
configuration file copied in step 1:

Define the JPS configuration file copied in step 1:

-Doracl e. security.jps.config=<pathToConfigFil e>

For more information, see "Scenario 3: Securing a Java SE Application" in
Securing Applications with Oracle Platform Security Services.

Define the trust store containing the trusted certificates:

-Dj avax. net.ssl . trust Store=<trustStore>

For more information, see "Setting Up the WebLogic Server in Case of a Java
SE Application” in "Setting Up a One-Way SSL Connection to the LDAP" in
Securing Applications with Oracle Platform Security Services.

Define the trust store password:

-Dj avax. net. ssl . trust St or ePasswor d=<passwor d>

8.4 Invoking a Web Service from Another WebLogic Web Service

Invoking a web service from a Java EE client, such as another WebLogic web service,
is similar to invoking one from a Java SE application, as described in Invoking a Web
Service from a Java SE Client, with the following variation:

¢ Instead of using the cl i ent gen Ant task to generate the JAX-WS Ser vi ce
interface of the web service to be invoked, you use the <cl i ent gen> child
element of the <j ws> element, inside the j wsc Ant task that compiles the invoking

8-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from Another WebLogic Web Service

web service. In the JWS file that invokes the other web service, however, you still
use the same standard JAX-WS APIs to get Ser vi ce and Por t Type instances to
invoke the web service operations.

* You can use the @\ébSer vi ceRef annotation to define a reference to a web
service, as described in Sample JWS File That Invokes a Web Service.

This section describes the differences between invoking a web service from a client in
a Java EE component, specifically another web service, and invoking from a Java SE
client. It is assumed that you use Ant in your development environment to build your
client application, compile Java files, and so on, and that you have an existing

bui I d. xm that builds a web service that you want to update to invoke another web
service.

The following list describes the changes you must make to the bui | d. xnl file that
builds your client web service, which will invoke another web service. See Sample
build.xml File for a Web Service Client for the full sample bui | d. xmi file:

e Adda<client gen> child element to the <j ws> element that specifies the JWS
file that implements the web service that invokes another web service. Set the
required wsdl attribute to the WSDL of the web service to be invoked. Set the
required packageNane attribute to the package into which you want the JAX-WS
client stubs to be generated.

The following list describes the changes you must make to the JWS file that
implements the client web service; see Sample JWS File That Invokes a Web Service for
the full JWS file example.

¢ Import the files generated by the <cl i ent gen> child element of the j wsc Ant
task. These include the JAX-WS Ser vi ce interface of the invoked web service, as
well as the Java representation of any user-defined data types used as parameters
or return values in the operations of the invoked web service.

Note:

If the package name set using the packageNane attribute of <cl i ent gen> is
set to the same package name as the client application, then you are not
required to import the <cl i ent gen>-generated files.

® Getthe Servi ce and Por t Type interface implementation and invoke the
operation on the port as usual; see Writing the Java Client Application Code to
Invoke a Web Service for details.

8.4.1 Sample build.xml File for a Web Service Client

The following sample bui | d. xnl file shows how to create a web service that itself
invokes another web service; the relevant sections that differ from the bui | d. xm for
building a simple web service that does not invoke another web service are shown in
bold.

The bui | d- ser vi ce target in this case is very similar to a target that builds a simple
web service; the only difference is that the] wsc Ant task that builds the invoking web
service also includes a <cl i ent gen> child element of the <j ws> element so that

j wsc also generates the required JAX-WS client stubs.

<proj ect name="webservices-service_to_service" default="all">
<!-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />

Developing Web Service Clients 8-11

Invoking a Web Service from Another WebLogic Web Service

<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s. server.nane" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="Client Servi ceEar" />
<property name="exanpl e-out put" val ue="output" />
<property name="ear-dir" val ue="${exanpl e-output}/CientServiceEar" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclasses" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nane="al|" depends="cl ean, bui | d-service, depl oy,client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-out put}"/>

</target>
<target name="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}" >
<jws
file="exanpl es/ webservices/service_to_service/ dientServicelnpl.java"
type="JAXWS" >
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/conpl ex/ Conpl exSer vi ce?WsDL"
packageName="exanpl es. webservi ces. conpl ex" />
</jws>
</jwsc>
</target>

<target nane="depl oy">
<wl depl oy action="depl oy" name="${ear.depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. usernane}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. hostnane}: ${w s. port}/ Cient Service/ Cient Servi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. service_to_service.client"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"

8-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from Another WebLogic Web Service

i ncl udes="exanpl es/ webservi ces/service_to_service/client/**/* java"/>
</target>
<target name="run">
<java cl assnane="exanpl es. webservi ces. service_to_service.client.Min"
fork="true"
failonerror="true" >
<cl asspath refid="client.class.path"/>
</java>
</target>
</ proj ect>

8.4.2 Sample JWS File That Invokes a Web Service

The following sample JWS file, called Cl i ent Ser vi cel npl . j ava, implements a
web service called Cl i ent Ser vi ce that has an operation that in turn invokes the
echoConpl exType operation of a web service called Conpl exSer vi ce. This

operation has a user-defined data type (Basi ¢St r uct) as both a parameter and a
return value. The relevant code is shown in bold and described after the example.

package exanpl es.webservices. service_to_service;

i mport javax.jws.\WbService;
i mport javax.jws.\WebMet hod;
import javax.xm .ws.\WebServi ceRef;

/] Inport the BasicStruct data type, generated by clientgen and used
/1 by the Conpl exService Wb Service
i mport exanpl es. webservi ces. conpl ex. Basi cStruct ;

/1 Trmport the JAX-WS stubs generated by clientgen for invoking
/1 the Conpl exService web service.

i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;

i mport exanpl es. webservi ces. conmpl ex. Conpl exSer vi ce;

@ebServi ce(name="C i ent Port Type", serviceName="Cl i ent Service",
target Nanespace="http://exanpl es. org")
public class CientServicelnpl {
/1 Use the @¥bServiceRef annotation to define a reference to a web service.
@\ebSer vi ceRef ()
Conpl exServi ce test;

@\ebMet hod()
public String call Conpl exService(BasicStruct input, String servicelrl)

{
/] Create a port stub to invoke Conpl exService
Conpl exPort Type port = test. get Conpl exPort TypePort();

/1 Invoke the echoConpl exType operation of Conpl exService

Basi cStruct result = port.echoConpl exType(input);

Systemout. println("lnvoked Conpl exPort Type. echoConpl exType.");

return "Invoke went okay! Here's the result: '" + result.getlntValue() +

}

) + result.getStringValue() +"'";
}

Follow these guidelines when programming the JWS file that invokes another web
service; code snippets of the guidelines are shown in bold in the preceding example:

¢ Import any user-defined data types that are used by the invoked web service. In
this example, the Conpl exSer vi ce uses the Basi cStruct JavaBean:

Developing Web Service Clients 8-13

Configuring Web Service Clients

i mport exanpl es. webservi ces. conpl ex. Basi cStruct;

e Import the JAX-WS interfaces of the Conpl exSer vi ce web service; the stubs are
generated by the <cl i engen> child element of <j ws>:

i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webser vi ces. conpl ex. Conpl exServi ce;

* Define a reference to a web service and an injection target for it using the
@\ebSer vi ceRef annotation:

@\ebSer vi ceRef ()
Conpl exServi ce service;

For more information about @\ébSer vi ceRef, see Defining a Web Service
Reference Using the @WebServiceRef Annotation.

Alternatively, you can create a proxy stub to the Conpl exSer vi ce web service, as
shown below:

Conpl exServi ce service = new Conpl exService();

® Return an instance of the Conpl exPor t Type stub implementation by calling the
get Conpl exPort TypePort () operation on the web service reference:

Conpl exPort Type port = service. get Conpl exPort TypePort ();

* Invoke the echoConpl exType operation of Conpl exSer vi ce using the port you
just instantiated:

Basi cStruct result = port.echoConpl exType(input);

8.5 Configuring Web Service Clients

By default, web service clients use the web service configuration defined for the
server. You can override the configuration settings used by the web service client
using one of the following methods:

¢ Using the Administration or WLST, if applicable. Only a subset of web service
features are configurable on the client.

e Using the @\¥bSer vi ceRef annotation to associate the web service client with the
configuration defined for the specified web service reference. The web service
reference configuration is defined in the webl ogi c. xm for Web containers and
webl ogi c-ej b-j ar. xm for EJB containers. For more information about the
@\ebSer vi ceRef annotation, see Defining a Web Service Reference Using the
@WebServiceRef Annotation.

e Using the Wr nl i ent | ni t Feat ur e when creating a web services reliable
messaging client. For more information, see Configuring Reliable Messaging on
Web Service Clients.

8.6 Defining a Web Service Reference Using the @ WebServiceRef
Annotation

The @¢bSer vi ceRef annotation enables you to define a reference to a web service
and attach the configuration of the web service to the client instance.

8-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Defining a Web Service Reference Using the @ WebServiceRef Annotation

For example, in the following code excerpt, @¥bSer vi ceRef is used to attach the
configuration for Rel i abl eEchoSer vi ce to the client's web service instance. The
port that is subsequently created and initialized uses the properties defined for

Rel i abl eEchoSer vi ce service reference in the webl ogi ¢. xm for the Web
application.

package wsrm j axws. exanpl e;

i mport java.xm .ws. WebServi ce;

inport java.xm .ws.WebServi ceRef;

i mport wsrm j axws. exanpl e.client_service.*;

i mport wsrm j axws. exanpl e. client_service. EchoResponse;

@\ebService
public class OientServicelnpl {

@\ebSer vi ceRef (name="MServi ceRef")
private Reliabl eEchoService service;
private Reliabl eEchoPort Type port = null;

@ost Const ruct
public void initPort() {
port = service. get Rel i abl eEchoPort();

}

Example 8-1 shows an example of a webl ogi ¢. xni file that contains a web service
reference description. For information about the reliable messaging properties shown
in this example, see Configuring Reliable Messaging.

Example 8-1 Example weblogic.xml File Containing Web Service Reference Description

<?xm version='1.0" encodi ng=" UTF-8' 7>
<webl ogi c-web-app xm ns="http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c- web- app" >
<servi ce-reference-description>
<l-- Any nane you want, but use this sanme name on
@ebServi ceRef (name=<ny name>). This anno goes on the service
field in your client container -->
<servi ce-ref - name>My Ser vi ceRef </ servi ce-r ef - name>
<I-- Use / and any path within the web app to get a | ocal WSDL, or
use a resource name as defined by the Java C assLoader, or use an
absol ute/ external URL you can guarantee is deployed when this web
app deploys -->
<wsdl - url >/ VEB- | NF/ wsdl s/ Rel i abl eEcho. wsdl </ wsdl -ur | >
<l-- One or nore port-infos, one for each type of port/stub you'll create
inyour JWS -->
<port-info>
<I-- The local name of wsdl:port (not portType). The Java type for this
port, when created fromthe @ebServiceRef JWs field, will contain,
in Request Context, the props you define bel ow -->
<port - name>Rel i abl eEchoPort </ port - nane>

<l-- Any prop name/val ue pairs you want to show up on you service stub
The Java type for this port, when created fromthe @ébServiceRef JWS field,
will contain, in RequestContext, the stub-props you define below -->

<!-- RM Source Properties -->

<st ub- property>

<nanme>webl ogi c. wsee. wsr m BaseRet ransmi ssi onl nt er val </ nane>
<val ue>PT30S</ val ue>

Developing Web Service Clients 8-15

Managing Client Identity

</ st ub- property>

<st ub- property>
<nanme>webl ogi c. wsee. wsrm Ret r ansmi ssi onExponent i al Backof f </ name>
<val ue>true</val ue>

</ st ub- property>

<l-- RM Destination Properties -->

<st ub- property>
<nanme>webl ogi c. wsee. wsr m Ret r yCount </ nane>
<val ue>5</ val ue>
</ st ub- property>

<st ub- property>
<name>webl ogi c. wsee. wsr m Ret ryDel ay</ nane>
<val ue>PT30S</ val ue>

</ st ub- property>

<st ub- property>
<nanme>webl ogi c. wsee. wsr m Acknow edgenent | nt er val </ name>
<val ue>PT5S</ val ue>

</ st ub- property>

<stub- property>
<nanme>webl ogi c. wsee. wsr m NonBuf f er edDest i nat i on</ name>
<val ue>true</val ue>

</ st ub- property>

<I-- RM Source *or* Destination Properties -->

<stub- property>
<nanme>webl ogi c. wsee. wsrm | nact i vityTi meout </ nane>
<val ue>PT5M/ val ue>

</ st ub- property>

<stub- property>
<name>webl ogi c. wsee. wsr m SequenceExpi rati on</ name>
<val ue>PT10M/ val ue>

</ st ub- property>

</port-info>

</ service-reference-description>
<w - di spat ch-pol i cy>webl ogi c. wsee. mdb. Di spat chPol i cy</wl - di spat ch- pol i cy>
</ webl ogi c- web- app>

8.7 Managing Client Identity

Web services enable you to assign any meaningful name to a client, which is
represented as the client identity (client ID). This client ID is used to group statistics
and other monitoring information, and for reporting runtime validations, and so on.

For on-server clients (clients running in a container within a WebLogic Server
instance), the client ID can be generated in one of the following ways:

* By the client when it initializes connection to web service port. This is the
recommended approach. See Defining the Client ID During Port Initialization.

8-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Managing Client Identity

* By the server and discovered later by the client. See Accessing the Server-generated
Client ID.

Note:

Although optional, Oracle strongly recommends that you define the client ID
explicitly.

The webl ogi c. wsee. j axws. persi stence. i entldentityFeature client
feature enables web service clients to set and access the web service client ID. The
following table summarizes the Cl i ent | dent i t yFeat ur e methods.

Table 8-3 Methods of ClientldentityFeature for Setting and Accessing Client ID

Method Description
getdientlD() Gets the currently defined client ID for the web service port.
setdientlD() Sets the client ID for the web service port.

In addition, you can set the client ID by passing it as an
argument when instantiating the Cl i ent | dent i t yFeat ure
object. For example:

ClientldentityFeature clientlDFeature = new
CientldentityFeature("MBackendServiceAsyncCient");

di spose() Disposes the client ID.

If a client ID is not disposed of explicitly, it will be done when
the container for the client instances that use the client ID is
deactivated (for example, the host Web application or EJB is
deactivated). For more information, see Client Identity
Lifecycle.

The following sections describe the methods for managing the client ID:
® Defining the Client ID During Port Initialization
e Accessing the Server-generated Client ID

* C(lient Identity Lifecycle

8.7.1 Defining the Client ID During Port Initialization

To provide its client ID, the web service client can pass an instance of the
CientldentityFeat ure containing the client ID to the web service port at
initialization time.

The client ID must be unique within the Web application or EJB that contains the
client. It is recommended that the client ID appropriately reflect the business purpose.
In order to ensure that the client ID is unique, the system prepends the names of the
containing server, application, and component (Web application or EJB) to the client
ID.

Note:

Developing Web Service Clients 8-17

Managing Client Identity

Care should be taken when choosing a client ID. If a client instance is created
with the same client ID as an existing client instance, the two client instances
will be treated as the same instance. No exception will be thrown to alert you
to the duplication.

The following example demonstrates this method of specifying the client ID. It is
recommended that you close the client instance once all processing has been complete,
as shown.

This example is excerpted from Roadmap for Developing JAX-WS Web Service
Clients.

Example 8-2 Example of Specifying the Client ID During Port Initialization

inport javax.servlet.*;
i mport javax.xm .ws.*;
i mport webl ogic.jws.jaxws.client.CientldentityFeature;

public class BestPracticeAsyncdient
extends GenericServlet {

private BackendServiceService _service;
// dient ID
ClientldentityFeature clientldFeature =
new ClientldentityFeature("MBackendServiceAsyncClient");
features.add(clientldFeature);
_features = features.toArray(new VebServi ceFeature[features.size()]);
BackendServi ce port = _service. get BackendServi cePort(_features);
((java.io. O oseabl e) _port).close();

}
}

8.7.2 Accessing the Server-generated Client ID

Note:

As described in this section, in order to ensure that the client ID is unique, the
server-generated version may be long and difficult to read. To guarantee that
the client ID is presented in a user-friendly format, it is recommended that you
define the client ID during port initialization, as described in Defining the
Client ID During Port Initialization.

Client IDs that are generated automatically by the server use the following format:

appl i cati onnane[_appl i cati onversion]: conponent nane: uni quel D
Where:
¢ applicati onname—Name of the application hosting the client.

e applicationversi on—Version of the application. Only used if multiple
versions of the same application is running simultaneously.

8-18 Developing JAX-WS Web Services for Oracle WebLogic Server

Managing Client Identity

e comnponent nare—Name of the component (Web application or E]JB) hosting the
client.

e uni quel D—Calculated based on the information that is available when the client
instance is created. The uni quel Dis constructed by choosing one of the following
(whichever is available):

— Web service reference name, as defined by the @\¢bSer vi ceRef annotation.

— [portNanmespaceUR : port Local Name] [:][endpoi nt Addr ess] —port
name, endpoint address, or both (separated by a colon).

— Port class simple name.

The following information, when available, may also be concatenated to the
uni quel D, separated by a colon (:), in the order presented below:

— WSDL location (minus ?wsdl)

— Features used to create the client instance, represented by the features class
name and separated by dash (-).

For example, assume that you deploy a web service client with the following
information associated with it:

¢ Application name: exanpl e

* Component: Web application called Best Practi ced i ent
e Portname: htt p:// exanpl e/ BackendSer vi cePort

e Port class: BackendSer vi ce

e WSDL:jar:file:/C. /exanpl e/ BackendServi ce. war!/VWEB- | NF/
BackendSer vi ceServi ce. wsdl

The server-generated client ID will be:

exanpl e: Best PracticeClient:http://exanpl e/ :BackendServicePort:jar:file:/C: /exanplel
BackendSer vi ce. war ! / WEB- | NF/ BackendSer vi ceSer vi ce. wsdl : AsyncC i ent Transport Feat ure() -
ClientldentityFeature

Each time the code is executed, assuming it is in the same containment hierarchy, the
same client ID is generated. This provides a stable client ID that can be used across
server VM instances and allows for asynchronous responses to be delivered to the
client even after a server restart.

Note:

A given Client ID can be used from multiple locations in the client code, but
care should be taken to initialize any port or Dispatch instance that uses that
client ID in the same way (same features, service, and so on) as was used in
any other location for that client ID.

For best practice information on the recommended approach to client instance
(port or Dispatch) initialization, see Roadmap for Developing JAX-WS Web
Service Clients.

Developing Web Service Clients 8-19

Using a Proxy Server When Invoking a Web Service

The following example demonstrates how to access the server-generated client ID.
This example is excerpted from Table 7-1.

Example 8-3 Example of Accessing the Server-generated Client ID

/] Create a port without explicitly defining the client IDto viewthe client IDthat is
/1 generated automatically.

CientldentityFeature dumyCientldFeature = new CientldentityFeature(null);

BackendServi ce dummyPort = _servi ce. get BackendServi cePort (dummyd i ent | dFeat ure);
Systemout.printIn("Generated Client ldentity is: " + dumyCientldFeature.getCientld());

/1 Best Practice: Explicitly close client instances when processing i s conplete.
/1 1f not closed, the port will be closed automatically when it goes out of scope.
/1 Note, this client IDwll remain registered and visible until our

/] container (Wb application) is undeployed.

((java.io.d oseabl) dummyPort). cl ose();

8.7.3 Client Identity Lifecycle

A client ID is registered with the web services runtime when the first client instance
(port or Dispatch instance) using the client ID is created. Any asynchronous response
endpoint associated with the client instances is also tracked along with the registered
client ID.

The client ID remains registered until one of the following occurs:

® The client ID is explicitly disposed using the di spose() method on
ClientldentityFeature, asdescribed in Table 8-3.

e The container for the client instances that use the client ID is deactivated (for
example, the host Web application or EJB is deactivated).

8.8 Using a Proxy Server When Invoking a Web Service

You can use a proxy server to proxy requests from a client application to an
application server (either WebLogic or non-WebLogic) that hosts the invoked web
service. You typically use a proxy server when the application server is behind a
firewall. You can specify the proxy server in your client application using Java system
properties. There are two ways to specify the proxy server in your client application:
programmatically using the WebLogic Cl i ent Pr oxyFeat ur e API or using system
properties.

8.8.1 Using the ClientProxyFeature API to Specify the Proxy Server

You can programmatically specify within the Java client application itself the details of
the proxy server that will proxy the web service invoke using the

webl ogi c. wsee. j axws. proxy. C i ent ProxyFeat ur e API. For more about the
Cl i ent ProxyFeat ur e API, see the Java API Reference for Oracle WebLogic Server.

The proxy server settings defined by the O i ent Pr oxyFeat ur e override the settings
defined at the JVM-level, as described in Using System Properties to Specify the Proxy
Server.

Note:

The O i ent Pr oxyFeat ur e configures the port for WebLogic HTTP over
SSL. It is recommended that you configure SSL for WebLogic Server. For more

8-20 Developing JAX-WS Web Services for Oracle WebLogic Server

Using a Proxy Server When Invoking a Web Service

information, see "Configuring SSL" in Administering Security for Oracle

WebLogic Server.

The Cl i ent ProxyFeat ur e set UseSunHt t pHandl er method forces
WebLogic Server to use the Sun HTTP implementation on a per-connection-
request basis. You can instead use the - DUseSunHt t pHandl er =t r ue
WebLogic Server startup configuration option, which applies the setting for

the WebLogic Server instance.

You can configure the proxy server information using the Cl i ent Pr oxyFeat ur e
and pass the feature as an argument when creating the web service port, as shown in

the following example.

Example 8-4 Pass ClientProxyFeature as an Argument When Creating Port

package exanpl es.webservices.sinple_client;
i mport webl ogi c. wsee. j axws. pr oxy
public class Main {

}

public static void main(String[] args) {
Conpl exService test = new Conpl exService();
CientProxyFeature cpf = new O ientProxyFeature();
cpf. set ProxyHost ("1 ocal host");
cpf. set ProxyPort (8888);
cpf . set ProxyUser Nane(" proxyu");
cpf . set ProxyPasswor d(" proxyp");

Conpl exPort Type port = test.get Conpl exPort TypePort (cpf);

Basi cStruct in = new BasicStruct();
in.setlntVal ue(999);

in.setStringValue("Hello Struct");

Basi cStruct result = port.echoConpl exType(in);

System out. println("echoConmpl exType called. Result: " + result.getlintValue() +", " +
result.getStringValue());

}

Alternatively, you can configure the proxy server information after the port is created,
as shown in the following example. In this case, you execute the at t achsPort ()
method to attach the O i ent Pr oxyFeat ur e to the existing port.

Example 8-5 Configuring the ClientProxyFeature After Creating the Port

package exanpl es.webservices. sinple_client;
i mport webl ogi c. wsee. j axws. pr oxy
public class Main {

public static void main(String[] args) {
Conpl exService test = new Conpl exService();
Conpl exPort Type port = test.get Conpl exPort TypePort();
CientProxyFeature cpf = new O ientProxyFeature();
cpf. set ProxyHost ("1 ocal host");
cpf . set ProxyPort (8888);
cpf . set ProxyUser Nane(" proxyu");
cpf . set ProxyPasswor d(" proxyp");
cpf. attachsPort (port);
Basi cStruct in = new BasicStruct();
in.setlntVal ue(999);
in.setStringValue("Hello Struct");
Basi cStruct result = port.echoConpl exType(in);

System out. println("echoConmpl exType called. Result: " + result.getlintValue() +", " +
result.getStringValue());

Developing Web Service Clients 8-21

Using a Proxy Server When Invoking a Web Service

If after configuring the Cl i ent Pr oxyFeat ur e and attaching it to the port you want
to disable the client proxy settings, you set the proxy port to a negative value. For

example:

Example 8-6 Disabling Client Proxy Settings

CientProxyFeature cpf = new O ientProxyFeature();

cpf. setProxyPort(-1);\
cpf. attachsPort (port);

8.8.2 Using System Properties to Specify the Proxy Server

To use system properties to specify the proxy server, write your client application in
the standard way, and then specify Java system properties when you execute the client

application.

The following table summarizes the Java system properties.

Note:

In this case, the proxySet system property must not be set. If the proxySet
system property is set to (proxySet=false), proxy properties will be ignored
and no proxy will be used.

Table 8-4 Java System Properties Used to Specify Proxy Server

Property

Description

http.proxyHost=proxyHost
or
https.proxyHost=proxyHost

Name of the host computer on which the proxy server is
running. Use https.proxyHost for HTTP over SSL.

http.proxyPort=proxyPort
or
https.proxy.Port=proxyPort

Port to which the proxy server is listening. Use https.proxyPort
for HTTP over SSL.

http.non.proxyHosts=hostn
ame | hostname | ...

List of hosts that should be reached directly, bypassing the
proxy. Separate each host name using a | character. This
property applies to only HTTP.

https.nonProxyHosts=hostn
ame | hostname | ...

List of hosts that should be reached directly, bypassing the
proxy. Separate each host name using a | character. This
property applies to only HTTPS.

The following excerpt from an Ant build script shows an example of setting Java
system properties when invoking a client application called
clients. | nvokeMyService:

<target name="run-client">

<java fork="true"

cl assname="cl i ents. | nvokeMyServi ce"
failonerror="true">
<classpath refid="client.class.path"/>
<arg line="${http-endpoint}"/>

8-22 Developing JAX-WS Web Services for Oracle WebLogic Server

Client Considerations When Redeploying a Web Service

<jvmarg line=
"-Dhttp. proxyHost =${ pr oxy- host }
-Dhtt p. proxyPort =${ pr oxy- port}
- Dht t p. nonPr oxyHost s=${ myhost } "
/>
</java>
</target>

8.9 Client Considerations When Redeploying a Web Service

WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated WebLogic web service alongside an older version
of the same web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
web service.

You can continue using the old client application with the new version of the web
service, as long as the following web service artifacts have not changed in the new
version:

e WSDL that describes the web service

e WS-Policy files attached to the web service

If any of these artifacts have changed, you must regenerate the JAX-WS stubs used by
the client application by re-running the cl i ent gen Ant task.

For example, if you change the signature of an operation in the new version of the web
service, then the WSDL file that describes the new version of the web service will also
change. In this case, you must regenerate the JAX-WS stubs. If, however, you simply
change the implementation of an operation, but do not change its public contract, then
you can continue using the existing client application.

8.10 Client Considerations When Web Service and Client Are Deployed to
the Same Managed Server

If a web service and client are deployed to the same Managed Server, and one of the
following is true:

* The web service client uses the @\¥bSer vi ceRef annotation, but does not specify
a value for the wsdl Locat i on element.

¢ The web service client uses the wsdl Locat i on element of the @\&bSer vi ceRef
annotation to refer to the live WSDL location (for example,
@¢bServi ceRef (wsdl Locati on="http://xyz. conl nyServi ce?WsDL")),
as opposed to a WSDL that is packaged with the web service application (for
example, @\bSer vi ceRef (wsdl Locat i on="nySer vi ce. wsdl ")).

Then, when you restart the Managed Server on which the web service and client are
deployed, the web service client may fail to redeploy, regardless of the deployment
order, because the applications are deployed initially in administration mode, and
later transition to production mode to accept HTTP requests. In this situation, you
must restart the application manually once the server has restarted.

Developing Web Service Clients 8-23

Client Considerations When Web Service and Client Are Deployed to the Same Managed Server

If a web service and client are deployed to the same Managed Server, to avoid this
situation, it is recommended that you package the WSDL as part of the web service
application and refer to the packaged version from the @\bSer vi ceRef annotation.

8-24 Developing JAX-WS Web Services for Oracle WebLogic Server

9

Examples of Developing JAX-WS Web
Service Clients

This chapter provides some common examples of developing WebLogic web service
clients using Java API for XML-based Web services (JAX-WS).

This chapter includes the following sections:
¢ Developing a JAX-WS Java SE Client

¢ Invoking a Web Service from a WebLogic Web Service

Each example provides step-by-step procedures for creating simple WebLogic web
services and invoking an operation from a deployed web service. The examples
include basic Java code and Ant bui | d. xm files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The examples do not go into detail about the processes and tools used in the examples;
later chapters are referenced for more detail.

Note:

For best practice examples demonstrating advanced web service features, see
Roadmap for Developing JAX-WS Web Service Clients and Roadmap for
Developing Reliable Web Services and Clients.

9.1 Developing a JAX-WS Java SE Client

Note:

You can invoke a web service from any Java SE or Java EE application running
on WebLogic Server (with access to the WebLogic Server classpath). Invoking
a web service from standalone Java applications that are running in an
environment where WebLogic Server libraries are not available is not
supported in this release for JAX-WS web services.

When you invoke an operation of a deployed web service from a client application, the
web service could be deployed to WebLogic Server or to any other application server,
such as .NET. All you need to know is the URL to its public contract file, or WSDL.

In addition to writing the Java client application, you must also run the cl i ent gen
WebLogic web service Ant task to generate the artifacts that your client application
needs to invoke the web service operation. These artifacts include:

Examples of Developing JAX-WS Web Service Clients 9-1

Developing a JAX-WS Java SE Client

* The Java class for the Ser vi ce interface implementation for the particular web
service you want to invoke.

¢ JAXB data binding artifacts.

® The Java class for any user-defined XML Schema data types included in the WSDL
file.

The following example shows how to create a Java client application that invokes the
echoConpl exType operation of the Conpl exSer vi ce WebLogic web service
described in Creating a Web Service With User-Defined Data Types. The

echoConpl exType operation takes as both a parameter and return type the

Basi cStruct user-defined data type.

Note:

It is assumed in this procedure that you have created and deployed the
Conpl exSer vi ce web service.

1. Set your WebLogic Server environment.

Open a command window and execute the set Domai nEnv. cnd (Windows) or
set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOVE/
user _proj ect s/ domai ns/ domai nName, where ORACLE_HOVE is the directory
you specified as Oracle Home when you installed Oracle WebLogic Server and
domai nNane is the name of your domain.

2. Create a project directory:
pronpt > nkdir /myExanpl es/sinple_client

3. Create a sr c directory under the project directory, as well as subdirectories that
correspond to the package name of the Java client application (shown later on in
this procedure):

pronpt > cd /myExanpl es/ sinpl e_client
pronpt > nkdir src/exanmpl es/ webservi ces/sinple_client

4. Create a standard Ant bui | d. xm file in the project directory and add a t askdef
Ant task to specify the full Java classname of the cl i ent gen task:

<proj ect name="webservices-sinple_client" default="all">
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. i ent GenTask" />
</ proj ect >

See Sample Ant Build File For Building Java Client Application for a full sample
bui | d. xm file. The full bui | d. xm file uses properties, such as $
{clientclass-dir}, rather than always using the hard-coded name output
directory for client classes.

5. Add the following calls to the cl i ent gen and j avac Ant tasks to the bui | d. xm
file, wrapped inside of the bui | d-cl i ent target:

<target name="build-client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port }/ conpl ex/ Conpl exSer vi ce?WsDL"

9-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing a JAX-WS Java SE Client

destDir="output/clientclass"
packageName="exanpl es. webservi ces. si npl e_client"
type="JAXWS"/ >
<j avac
srcdir="output/clientclass" destdir="output/clientclass"
includes="**/*java"/>
<j avac
srcdir="src" destdir="output/clientclass"
i ncl udes="exanpl es/ webservices/sinple_client/*.java"/>
</target>

The cl i ent gen Ant task uses the WSDL of the deployed Conpl exSer vi ce web
service to generate the necessary artifacts and puts them into the out put /

cl i ent cl ass directory, using the specified package name. Replace the variables
with the actual hostname and port of your WebLogic Server instance that is hosting
the web service.

In this example, the package name is set to the same package name as the client
application, exanpl es. webser vi ces. si npl e_cl i ent . If you set the package
name to one that is different from the client application, you would need to import
the appropriate class files. For example, if you defined the package name as
exanpl es. webservi ces. conpl ex, you would need to import the following
class files in the client application:

i mport exanpl es. webservi ces. conpl ex. Basi cStruct;
i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webservi ces. conpl ex. Conpl exServi ce;

The cl i ent gen Ant task also automatically generates the

exanpl es. webservi ces. si npl e_cl i ent. Basi ¢St ruct JavaBean class,
which is the Java representation of the user-defined data type specified in the
WSDL.

The bui | d-cl i ent target also specifies the standard j avac Ant task, in addition
tocl i ent gen, to compile all the Java code, including the Java program described
in the next step, into class files.

The cl i ent gen Ant task also provides the dest Fi | e attribute if you want the
Ant task to automatically compile the generated Java code and package all artifacts
into a JAR file. For details and an example, see "clientgen" in the WebLogic Web
Services Reference for Oracle WebLogic Server.

. Create the Java client application file that invokes the echoConpl exType
operation.

Open your favorite Java IDE or text editor and create a Java file called Mai n. j ava
using the code specified in Sample Java Client Application.

The application follows standard JAX-WS guidelines to invoke an operation of the
web service using the web service-specific implementation of the Ser vi ce
interface generated by cl i ent gen. For details, see Developing Web Service
Clients.

. Save the Mai n. j ava file in the sr c/ exanpl es/ webser vi ces/ si npl e_cl i ent
subdirectory of the main project directory.

. Execute the cl i ent gen and j avac Ant tasks by specifying the bui | d- cl i ent
target at the command line:

pronpt> ant build-client

Examples of Developing JAX-WS Web Service Clients 9-3

Developing a JAX-WS Java SE Client

See the out put / cl i ent cl ass directory to view the files and artifacts generated
by the cl i ent gen Ant task.

9. Add the following targets to the bui | d. xm file, used to execute the Mai n
application:

<path id="client.class.path">
<pat hel ement pat h="out put/clientclass"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ pat h>
<target nane="run" >
<java fork="true"
cl assname="exanpl es. webser vi ces. si npl e_cl i ent. Mai n"
failonerror="true" >
<classpath refid="client.class.path"/>
</target>

The r un target invokes the Mai n application, passing it the WSDL URL of the
deployed web service as its single argument. The cl asspat h element adds the
clientcl ass directory to the CLASSPATH, using the reference created with the
<pat h> task.

10. Execute the r un target to invoke the echoConpl exType operation:

pronpt> ant run

If the invoke was successful, you should see the following final output:

run:
[java] echoConpl exType cal led. Result: 999, Hello Struct

You can use the bui | d-cl i ent and r un targets in the bui | d. xni file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

9.1.1 Sample Java Client Application

The following provides a simple Java client application that invokes the

echoConpl exType operation. Because the <cl i ent gen> packageNane attribute
was set to the same package name as the client application, we are not required to
import the <cl i ent gen>-generated files.

package exanpl es.webservices.sinple_client;
/**
* This is a sinple Java application that invokes the
* echoConpl exType operation of the Conpl exService web service.
*/
public class Min {
public static void main(String[] args) {
Conpl exServi ce test = new Conpl exService();
Conpl exPort Type port = test. get Conpl exPort TypePort();
BasicStruct in = new BasicStruct();
in.setlntVal ue(999);
in.setStringValue("Hello Struct");
Basi cStruct result = port.echoConpl exType(in);
System out. println("echoConpl exType called. Result: " + result.getlntValue() +
", " +result.getStringVvalue());
}
}

9-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from a WebLogic Web Service

9.1.2 Sample Ant Build File For Building Java Client Application

The following bui | d. xm file defines tasks to build the Java client application. The
example uses properties to simplify the file.

<proj ect name="webservices-sinple_client" default="all">
<I-- set global properties for this build -->
<property name="w s. host name" val ue="|ocal host" />
<property name="w s.port" val ue="7001" />
<property name="exanpl e-out put" val ue="output" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclass" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ pat h>
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />
<target name="clean" >
<delete dir="${clientclass-dir}"/>
</target>
<target nane="all" depends="cl ean, build-client,run" />
<target name="build-client">
<clientgen
type="JAXWS'
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exServi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. sinple_client"/>
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/sinple_client/*.java"/>
</target>
<target nane="run" >
<java fork="true"
cl assname="exanpl es. webser vi ces. si npl e_cl i ent. Mai n"
failonerror="true" >
<cl asspath refid="client.class.path"/>
</java>
</target>
</ project>

9.2 Invoking a Web Service from a WebLogic Web Service

You can invoke a web service (WebLogic, Microsoft .NET, and so on) from within a
deployed WebLogic web service.

The procedure is similar to that described in Developing a JAX-WS Java SE Client
except that instead of running the cl i ent gen Ant task to generate the client stubs,
you use the <cl i ent gen> child element of <j ws>, inside of the j wsc Ant task. The
j wsc Ant task automatically packages the generated client stubs in the invoking web
service WAR file so that the web service has immediate access to them. You then
follow standard JAX-WS programming guidelines in the JWS file that implements the
web service that invokes the other web service.

The following example shows how to write a JWS file that invokes the
echoConpl exType operation of the Conpl exSer vi ce web service described in
Creating a Web Service With User-Defined Data Types.

Examples of Developing JAX-WS Web Service Clients 9-5

Invoking a Web Service from a WebLogic Web Service

Note:

It is assumed that you have successfully deployed the Conpl exSer vi ce web
service.

1. Set your WebLogic Server environment.

Open a command window and execute the set Domai nEnv. cnd (Windows) or
set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOVE/
user _pr oj ect s/ domai ns/ domai nName, where ORACLE_HOME is the directory
you specified as Oracle Home when you installed Oracle WebLogic Server and
domai nNane is the name of your domain.

2. Create a project directory:
pronpt > nkdir /nyExanpl es/ service_to_service

3. Create a sr ¢ directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS and client application files (shown later
on in this procedure):

pronpt > cd /nyExanpl es/ service_to_service
pronpt > nkdir src/exanpl es/ webservices/ service_to_service

4. Create the JWS file that implements the web service that invokes the
Conpl exSer vi ce web service.

Open your favorite Java IDE or text editor and create a Java file called
Client Servicel npl . j ava using the Java code specified in Sample
ClientServiceImpl.java JWS File.

The sample JWS file shows a Java class called O i ent Ser vi cel npl that contains
a single public method, cal | Conpl exSer vi ce() . The Java class imports the JAX-
WS stubs, generated later on by the j wsc Ant task, as well as the Basi cSt r uct
JavaBean (also generated by cl i ent gen), which is the data type of the parameter
and return value of the echoConpl exType operation of the Conpl exSer vi ce
web service.

The Cl i ent Ser vi cel npl Java class defines one method,

cal | Conpl exSer vi ce(), which takes one parameter: a Basi ¢St r uct which is
passed on to the echoConpl exType operation of the Conpl exSer vi ce web
service. The method then uses the standard JAX-WS APIs to get the Ser vi ce and
Por t Type of the Conpl exSer vi ce, using the stubs generated by j wsc, and then
invokes the echoConpl exType operation.

5. Save the Cl i ent Servi cel npl . j ava file in the sr c/ exanpl es/ webser vi ces/
servi ce_t o_servi ce directory.

6. Create a standard Ant bui | d. xm file in the project directory and add the
following task:
<proj ect name="webservices-service_to_service" default="all">
<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
</ proj ect>

The t askdef task defines the full classname of the j wsc Ant task.

9-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from a WebLogic Web Service

See Sample Ant Build File For Building ClientService for a full sample bui | d. xm
file that contains additional targets from those described in this procedure, such as
cl ean, depl oy, undepl oy, cl i ent, and r un. The full bui | d. xm file also uses
properties, such as ${ ear - di r } , rather than always using the hard-coded name
for the EAR directory.

7. Add the following call to the j wsc Ant task to the bui | d. xm file, wrapped inside
of the bui | d- servi ce target:

<target name="buil d-service">

<jwsc
srcdir="src"
destdir="output/CientServicekar" >
<jws
fil e="exanpl es/ webservi ces/service_to_service/ CientServicelnpl.java"
type="JAXW\S' >
<W.Ht t pTr anspor t
cont ext Pat h="Cl i ent Servi ce" serviceUi="Cient Service"
port Name="0l i ent Servi cePort"/>
<clientgen
type="JAXWS"

wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
packageNanme="exanpl es. webservi ces. conpl ex" />
</jws>
</jwsc>
</target>

In the preceding example, the <cl i ent gen> child element of the <j ws> element
of the j wsc Ant task specifies that, in addition to compiling the JWS file, j wsc
should also generate and compile the client artifacts needed to invoke the web
service described by the WSDL file.

In this example, the package name is set to exanpl es. webser vi ces. conpl ex,
which is different from the client application package name,

exanpl es. webservi ces. si npl e_cl i ent. As a result, you need to import the
appropriate class files in the client application:

i mport exanpl es. webservi ces. conpl ex. Basi cStruct;
i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webser vi ces. conpl ex. Conpl exServi ce;

If the package name is set to the same package name as the client application, the
import calls would be optional.

8. Execute the j wsc Ant task by specifying the bui | d- ser vi ce target at the
command line:

pronpt > ant buil d-service
9. Start the WebLogic Server instance to which you will deploy the web service.

10. Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the W depl oy
Ant task. In either case, you deploy the Cl i ent Ser vi ceEar Enterprise
application, located in the out put directory.

To use the W depl oy Ant task, add the following target to the bui | d. xm file:

<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. management . W.Depl oy"/ >
<target name="depl oy">

Examples of Developing JAX-WS Web Service Clients 9-7

Invoking a Web Service from a WebLogic Web Service

<wl depl oy action="depl oy" nane="C i ent Servi ceEar"
source="Client Servi ceEar" user="${w s. usernane}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>

Substitute the values for W s. user name, W s. passwor d, W s. host nane,
W s. port,andw s. server. nane that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the depl oy target:
pronpt > ant depl oy

11. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/CientServicel OientService?WDL

See Developing a JAX-WS Java SE Client for an example of creating a Java client
application that invokes a web service.

9.2.1 Sample ClientServicelmpl.java JWS File

The following provides a simple web service client application that invokes the
echoConpl exType operation.

package exanpl es.webservices. service_to_service;

i mport javax.jws.\WbService;
i mport javax.jws.\\ebMet hod;
import javax.xnm .ws.\WebServi ceRef;

/1 Inport the BasicStruct data type, generated by clientgen and used
/1 by the Conpl exService Wb Service
i mport exanpl es. webservi ces. conpl ex. Basi cStruct;

[l Inport the JAX-WS stubs generated by clientgen for invoking
/1 the Conpl exService web service.

i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;

i mport exanpl es. webservi ces. conpl ex. Conpl exSer vi ce;

@ebServi ce(name="C i ent Port Type", serviceNane="C i ent Service",
target Nanespace="http://exanpl es. org")
public class OientServicelnpl {
/1 Use the @\bServiceRef annotation to define a reference to the
/'l Conpl exService web service.
@\ebSer vi ceRef ()
Conpl exServi ce test;

@\ebMet hod()
public String call Conpl exService(BasicStruct input, String servicelrl)
{

/] Create a port stub to invoke Conpl exService

Conpl exPort Type port = test. get Conpl exPort TypePort();

/'l Invoke the echoConpl exType operation of Conpl exService

Basi cStruct result = port.echoConpl exType(input);

Systemout. println("lnvoked Conpl exPort Type. echoConpl exType.");

return "Invoke went okay! Here's the result: '" + result.getlntValue() +

9-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a Web Service from a WebLogic Web Service

", " +result.getStringValue() +"'"

}
}

9.2.2 Sample Ant Build File For Building ClientService

The following bui | d. xm file defines tasks to build the client application. The
example uses properties to simplify the file.

The following bui | d. xm file uses properties to simplify the file.

<proj ect name="webservices-service_to_service" default="all">
<I-- set global properties for this build -->
<property name="w s. usernanme" val ue="webl ogi c" />
<property name="w s. password" val ue="webl ogi c" />
<property name="w s. host name" val ue="| ocal host" />
<property name="w s.port" val ue="7001" />
<property name="wl s.server.nanme" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="Client Servi ceEar" />
<property name="exanpl e-out put" val ue="output" />
<property name="ear-dir" val ue="${exanpl e-output}/CientServiceEar" />
<property name="clientclass-dir" value="${exanpl e-output}/clientclasses" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ pat h>
<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenment . W.Depl oy"/ >
<target nanme="al|" depends="cl ean, bui | d-service, depl oy, client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-output}"/>

</target>
<target name="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}" >
<jws
file="exanpl es/ webservi ces/service_to_service/ CientServicelnpl.java"
type="JAXW\S' >
<WL.Ht t pTransport

cont ext Pat h="Cl i ent Servi ce" serviceUi="0i ent Service"
port Name="Cl i ent Servi cePort"/>
<clientgen
type="JAXWS"
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
packageName="exanpl es. webservi ces. conpl ex" />
</jws>
</jwsc>
</target>
<target name="depl oy">
<w depl oy action="depl oy" name="${ear. depl oyed. nane}"
source="${ear-dir}" user="${w s. usernane}"
passwor d="${w s. password}" verbose="tr ue"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server.nane}" />
</target>
<target name="undepl oy">

Examples of Developing JAX-WS Web Service Clients 9-9

Invoking a Web Service from a WebLogic Web Service

<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. usernane}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. hostnane}: ${w s. port}/Cient Service/ Cient Servi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. service_to_service.client"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/service_to_service/client/**/* java"/>
</target>
<target name="run">
<java cl assnane="exanpl es. webservi ces. service_to_service.client.Min"
fork="true"
failonerror="true" >
<cl asspath refid="client.class.path"/>
</java>
</target>
</ proj ect>

9-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Part IV

Developing Advanced Features of JAX-WS

Web Services

Part IV describes how to develop advanced features of WebLogic web services using
Java API for XML-based Web services JAX-WS).

Sections include:

Using Web Services Addressing

Roadmap for Developing Asynchronous Web Service Clients
Developing Asynchronous Clients

Roadmap for Developing Reliable Web Services and Clients
Using Web Services Reliable Messaging

Using Web Services Atomic Transactions

Optimizing XML Transmission Using Fast Infoset

Using SOAP Over JMS Transport

Creating and Using SOAP Message Handlers

Handling Exceptions Using SOAP Faults

Optimizing Binary Data Transmission

Managing Web Service Persistence

Configuring Message Buffering for Web Services

Managing Web Services in a Cluster

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP
Messages

Sending and Receiving SOAP Headers

Using Callbacks

Developing Dynamic Proxy Clients

Publishing a Web Service Endpoint

Using XML Catalogs

Programming Web Services Using XML Over HTTP

Programming Stateful JAX-WS Web Services Using HTTP Session

¢ Testing and Monitoring Web Services

10

Using Web Services Addressing

This chapter describes how to use Web Services Addressing (WS-Addressing) for
WebLogic web services using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

Overview of WS-Addressing

Enabling WS-Addressing on the Web Service
Enabling WS-Addressing on the Web Service Client
Associating WS-Addressing Action Properties

Configuring Anonymous WS-Addressing

10.1 Overview of WS-Addressing

WS-Addressing provides a transport-neutral mechanism to address web services and
their associated messages. Using WS-Addressing, endpoints are uniquely and
unambiguously defined in the SOAP header.

WS-Addressing provides two key components that enable transport-neutral
addressing, including:

Endpoint reference (EPR)—Communicates the information required to address a
web service endpoint.

Message addressing properties—Communicates end-to-end message
characteristics, including addressing for source and destination endpoints and
message identity, that allows uniform addressing of messages independent of the
underlying transport.

Message addressing properties can include one or more of the properties defined in
Table 10-1. All properties are optional except wsa: Act i on.

Table 10-1 WS-Addressing Message Addressing Properties

Component Description

wsa: To Destination. If not specified, the destination defaults to
http://ww. w3. or g/ 2005/ 08/ addr essi ng/
anonynous.

wsa: From Source endpoint.

wsa: Repl yTo Reply endpoint. If not specified, the reply endpoint

defaults to ht t p: / / www. w3. or g/ 2005/ 08/
addr essi ng/ anonynous.

Using Web Services Addressing 10-1

Overview of WS-Addressing

Table 10-1 (Cont.) WS-Addressing Message Addressing Properties

Component Description
wsa: Faul t To Fault endpoint.
wsa: Acti on Required action.

This property is required when WS-Addressing is enabled.
It can be implicitly or explicitly configured, as described in
Associating WS-Addressing Action Properties.

wsa: Messagel D Unique ID of the message.

wsa: Rel at esTo Message ID to which the message relates. This element can
be repeated if there are multiple related messages. You can
specify Rel ati onshi pType as an attribute of this
property, which defaults to ht t p: / / www. w3. or g/
2005/ 08/ addr essi ng/ repl y.

wsa: Ref erencePar anet e Reference parameters that need to be communicated.
rs

Example 10-1 shows a SOAP 1.2 request message sent over HTTP 1.2 with WS-
Addressing enabled. As shown in bold, WS-Addressing provides a transport-neutral
mechanism for defining a unique ID for the message (wsa: Messagel D), the
destination (wsa: To) endpoint, the reply endpoint (wsa: Repl yTo), and the required
action (wsa: Act i on).

A response to this message may appear as shown in Example 10-2. The Rel at esTo
property correlates the response message with the original request message.

WS-Addressing is used by the following advanced WebLogic JAX-WS features:

® Asynchronous client transport, as described in Developing Asynchronous Clients.
* WS-ReliableMessaging, as described in Using Web Services Reliable Messaging.

e Callbacks, as described in Using Callbacks.

The following sections describe how to enable WS-Addressing on the web service or
client, and explicitly define the action and fault properties.

A Note About WS-Addressing Standards Supported

WebLogic web services support the following standards for web service addressing:
e W3C WS-Addressing, as described at: ht t p: / / www. w3. or g/ 2002/ ws/ addr /

¢ Member Submission, as described at: htt p: / / www. w3. or g/ Submi ssi on/ ws-
addr essi ng/

This chapter focuses on the use of W3C WS-Addressing only.
Example 10-1 SOAP 1.2 Message With WS-Addressing—Request Message

<S: Envel ope xm ns: S="http:// wwv. w3. or g/ 2003/ 05/ soap- envel ope"
xm ns: wsa="http://ww. w3. or g/ 2005/ 08/ addr essi ng/ " >
<S: Header >

<wsa: Messagel D>
http://exanpl e. con someuni questring

</wsa: Messagel D>

<wsa: Repl yTo
<wsa: Address>htt p: // exanpl e. com Mycl i ent </ wsa: Addr ess>

10-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.w3.org/2002/ws/addr/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/

Enabling WS-Addressing on the Web Service

</wsa: Repl yTo>
<wsa: To>
http://exanpl e. coni f abri kam Purchasi ng
</ wsa: To>
<wsa: Acti on>
http://exanpl e. con fabri kani Subm t PO
</wsa: Acti on>
<S: Header >
<S: Body>

</ S: Body>
</ S: Envel ope>

Example 10-2 SOAP 1.2 Message Without WS-Addressing—Response Message

<S: Envel ope

xm ns: S="http://ww. w3. or g/ 2003/ 05/ soap- envel ope"

xm ns:wsa="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >

<S: Header >
<wsa: Messagel D>ht t p: // exanpl e. coni soneot her uni quest ri ng</ wsa: Messagel D>
<wsa: Rel at esTo>ht t p: // exanpl e. cond soneuni quest ri ng</ wsa: Rel at esTo>
<wsa: To>http: // exanpl e. com MyCl i ent/wsa: To>
<wsa: Acti on>

http://exanpl e. com f abri kanm Submi t POAck

</wsa: Acti on>

</ S: Header >

<S: Body>

</ S: Body>
</ S: Envel ope>

10.2 Enabling WS-Addressing on the Web Service

By default, WS-Addressing is disabled on a web service endpoint, and any WS-
Addressing headers received are ignored. You can enable WS-Addressing on the Web
Service starting from Java or WSDL, as described in the following sections:

¢ Enabling WS-Addressing on the Web Service (Starting From Java)
* Enabling WS-Addressing on the Web Service (Starting from WSDL)
When you enable WS-Addressing on a web service endpoint:

¢ All WS-Addressing headers are understood by the endpoint. That is, if any WS-
Addressing header is received with must Under st and enabled, then no fault is
thrown.

¢ WS-Addressing headers received are validated to ensure:
— Correct syntax
— Correct number of elements

- wsa: Act i on header in the SOAP header matches what is required by the
operation

* Response messages returned to the client contain the required WS-Addressing
headers.

Using Web Services Addressing 10-3

Enabling WS-Addressing on the Web Service

10.2.1 Enabling WS-Addressing on the Web Service (Starting From Java)

To enable WS-Addressing on the web service starting from Java, use the
java. xnl . ws. soap. Addr essi ng annotation on the web service class. Optionally,
you can pass one or more of the Boolean attributes defined in Table 10-2.

Table 10-2 Attributes of the @Addressing Annotation

Attribute Description

enabl ed Specifies whether WS-Addressing is enabled. Valid values
include t r ue (enabled) and f al se (disabled). This attribute
defaults to t r ue.

required Specifies whether WS-Addressing rules are enforced for the
inbound message. Valid values include t r ue (enforced) and
f al se (not enforced). If set to f al se, the inbound message is
checked to see if WS-Addressing is enabled, and, if so, the rules
are enforced. This attribute defaults to f al se.

Once enabled, the wsaw: Usi ngAddr essi ng element is generated in the
corresponding wsdl : bi ndi ng element. For more information, see Enabling WS-
Addressing on the Web Service (Starting from WSDL).

The following provides an example of how to enable WS-Addressing starting from
Java. In this example, WS-Addressing is enforced on the endpoint (r equi r ed is set to
true).

Example 10-3 Enabling WS-Addressing on the Web Service (Starting From Java)

package exanpl es;
i mport javax.jws.\WbService;
i nport javax.xnl.ws.soap. Addressi ng;

@ebServi ce(name="Hel | oWor| d", serviceNane="Hel | oWor | dService")
@\ddr essi ng(enabl ed=true, required=fal se)

public class Hel lovrld {
public String sayHel | oWorld(String nmessage) throws MssingName { ... }
}

10.2.2 Enabling WS-Addressing on the Web Service (Starting from WSDL)

To enable WS-Addressing on the web service starting from WSDL, add the

wsaw. Usi ngAddr essi ng element to the corresponding wsdl : bi ndi ng element.
Optionally, you can add the wsdl : r equi r ed Boolean attribute to specify whether
WS-Addressing rules are enforced for the inbound message. By default, this attribute
isfal se.

The following provides an example of how to enable WS-Addressing starting from
WSDL. In this example, WS-Addressing is enforced on the endpoint
(wsdl : requiredissettotrue).

Example 10-4 Enabling WS-Addressing on the Web Service (Starting From WSDL)

<bi ndi ng name="Hel | oWr | dPort Bi ndi ng" type="tns: Hel | oWr| d">
<wsaw: Usi ngAddr essi ng wsdl : required="true" />
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http"
styl e="docunent"/>

10-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling WS-Addressing on the Web Service Client

<operation nane="sayHel | oWor|ld">
<soap: operation soapAction=""/>
<i nput>
<soap: body use="literal"/>
</input>
<out put >
<soap: body use="literal"/>
</ out put >
<fault nanme="M ssi ngNang" >
<soap: fault name="M ssi ngNane" use="literal"/>
</fault>
</ operati on>
</ bi ndi ng>

10.3 Enabling WS-Addressing on the Web Service Client

WS-Addressing can be enabled on the web service client implicitly or explicitly. Once
enabled on the client:

¢ All WS-Addressing headers received on the client are understood. That is, if any
WS-Addressing header is received with must Under st and enabled, then no fault
is thrown.

e The JAX-WS runtime:

- Maps all wsaw: Act i on elements, including i nput, out put, and f aul t
elements in the wsdl : operati on toj avax. xm . ws. Acti on and
javax. xm . ws. Faul t Act i on annotations in the generated service endpoint
interface (SEI).

— Generates Act i on, To, Messagel D, and anonymous Repl yTo headers on the
outbound request.

The following sections describe how to enable WS-Addressing on the web service
client explicitly and implicitly, and how to disable WS-Addressing explicitly.

¢ Explicitly Enabling WS-Addressing on the Web Service Client
¢ Implicitly Enabling WS-Addressing on the Web Service Client

¢ Disabling WS-Addressing on the Web Service Client

10.3.1 Explicitly Enabling WS-Addressing on the Web Service Client

The web service client can enable WS-Addressing explicitly by passing

javax. xm . ws. soap. Addr essi ngFeat ur e as an argument to the get Port or
creat eDi spat ch methods on the j avax. xm . ws. Ser vi ce object. Optionally, you
can pass one or more of the Boolean parameters defined in Table 10-3.

Table 10-3 Parameters of the AddressingFeature Feature
- |

Parameter Description

enabl ed Specifies whether WS-Addressing is enabled for an outbound
message. Valid values include t r ue (enabled) and f al se
(disabled). This attribute defaults to t r ue.

Using Web Services Addressing 10-5

Enabling WS-Addressing on the Web Service Client

Table 10-3 (Cont.) Parameters of the AddressingFeature Feature
___|

Parameter Description

required Specifies whether WS-Addressing rules are enforced for the
inbound messages. Valid values include t r ue (enforced) and
f al se (not enforced). If set to f al se, the inbound message is
checked to see if WS-Addressing is enabled, and, if so, the rules
are enforced. This attribute defaults to f al se.

The following shows an example of enabling WS-Addressing on a web service client
when creating a web service proxy, by passing the Addr essi ngFeat ur e to the
get Port method.

Example 10-5 Enabling WS-Addressing on a Web Service Client on the Web
Service Proxy

package exanpl es.client;

i mport javax.xnl.namespace. QNane;

i mport java.net. Ml formedURLException;

import java.net.URL;

i mport exanpl es. client. M ssingNane_Exception;
i mport javax.xnl.ws.soap. Addr essi ngFeat ure;

public class Min {
public static void main(String[] args) throws M ssingName_Exception {
Hel | oWor | dServi ce service;

try {
service = new Hel | oWr| dServi ce(new URL(args[0] + "?WsDL"),
new QNane("http://exanples/", "HelloWrldService"));
} catch (Mal formedURLException murl) { throw new RuntinmeException(murl); }

Hel | oWor | d port = service. getHel | oWrl dPort (
new Addressi ngFeature(true, true));

)
)

The following shows an example of enabling WS-Addressing on a web service client
when creating a Dispatch instance, by passing the Addr essi ngFeat ur e to the
cr eat eDi spat ch method.

Example 10-6 Enabling WS-Addressing on a Web Service Client on the Dispatch
Instance

Hel | oWor | d port = service. getHel | oWrl dPort (new Addressi ngFeat ure(true));

10.3.2 Implicitly Enabling WS-Addressing on the Web Service Client

WS-Addressing is enabled implicitly if the wsaw. Usi ngAddr essi ng extensibility
element exists in the WSDL For more information, see Enabling WS-Addressing on the
Web Service (Starting from WSDL).

10-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Associating WS-Addressing Action Properties

10.3.3 Disabling WS-Addressing on the Web Service Client

A web service client may need to disable WS-Addressing processing explicitly, for
example, if it has its own WS-Addressing processing module. For example, a Dispatch
client in MESSAGE mode may be used to perform non-anonymous ReplyTo and
FaultTo processing.

The following shows an example of how to disable explicitly WS-Addressing on a web
service client when creating a web service proxy. In this example, the
Addr essi ngFeat ur e feature is called with enabl ed set to f al se.

Example 10-7 Disabling WS-Addressing on a Web Service Client

new AddNumber sl npl Servi ce() . get AddNunber sl npl Port (new
javax. xnl . ws. Addr essi ngFeat ure(fal se));

10.4 Associating WS-Addressing Action Properties

WS-Addressing defines an attribute, wsaw: Act i on, that can be used to explicitly
associate WS-Addressing action message addressing properties with the web service.
By default, an implicit action association is made when WS-Addressing is enabled and
no action is explicitly associated with the web service.

The following sections describe how to associate WS-Addressing Action properties
either explicitly or implicitly:

¢ Explicitly Associating WS-Addressing Action Properties (Starting from Java)

¢ Explicitly Associating WS-Addressing Action Properties (Starting from WSDL)

¢ Implicitly Associating WS-Addressing Action Properties

10.4.1 Explicitly Associating WS-Addressing Action Properties (Starting from Java)

To explicitly associate WS-Addressing action properties with the web service starting
from Java, use the j avax. xml . ws. Acti on andj avax. xm . ws. Faul t Acti on
annotations.

Optionally, you can pass to the @\ct i on annotation one or more of the attributes
defined in Table 10-4.

Table 10-4 Attributes of the @Action Annotation
- - - - - -~

Attribute Description

i nput Associates Action message addressing property for the input
message of the operation.

out put Associates Action message addressing property for the output
message of the operation.

faul t Associates Action message addressing property for the fault
message of the operation. Each exception that is mapped to a
SOAP fault and requires explicit association must be specified
using the @aul t Act i on annotation, as described in Table
10-5.

Using Web Services Addressing 10-7

Associating WS-Addressing Action Properties

You can pass to the @aul t Acti on annotation one or more of the attributes defined
in Table 10-4.

Table 10-5 Attributes of the @FaultAction Annotation

Attribute Description
cl assNane Name of the exception class. This attribute is required.
val ue Value of the WS-Addressing Action message addressing

property for the exception.

Once you explicitly associate the WS-Addressing action properties, the wsaw: Act i on
attribute is generated in the corresponding i nput , out put , and f aul t elements in
the wsdl : por t Type element. For more information, see Enabling WS-Addressing on
the Web Service (Starting from WSDL).

The following provides an example of how to explicitly associate the WS-Addressing
action message addressing properties for the input, output, and fault messages on the
sayHel | oWor | d method, using the @\ct i on and @aul t Act i on annotations.

Example 10-8 Example of Explicitly Associating an Action (Starting from Java)

@\ction(
input = "http://exanpl es/Hel | oWr | d/ sayHel | oWr | dRequest ",
output = "http://exanpl es/ Hel | oWor| d/ sayHel | oWr | dResponse”,
fault = { @aul tAction(className = M ssi ngNane. cl ass,
val ue = "http://exanmpl es/ M ssi ngNaneFaul t")})

public String sayHel | oWorld(String message) throws M ssingName {

Once defined, the wsaw: Act i on element is generated in the corresponding i nput,
out put, and f aul t elements of the wsdl : oper at i on element for the endpoint. For
more information about these elements, see Explicitly Associating WS-Addressing
Action Properties (Starting from WSDL).

10.4.2 Explicitly Associating WS-Addressing Action Properties (Starting from WSDL)

To explicitly associate WS-Addressing action properties with the web service starting
from WSDL, add the wsaw: Act i on element to the corresponding wsdl : bi ndi ng
element. Optionally, you can add the wsdl : r equi r ed Boolean attribute to specify
whether WS-Addressing rules are enforced for the inbound message. By default, this
attribute is f al se.

The following provides an example of how to, within the WSDL file, explicitly
associate the WS-Addressing action message addressing properties for the i nput,
out put, and f aul t messages on the sayHel | oWor | d method of the HelloWorld
endpoint.

Example 10-9 Example of Explicitly Associating an Action (Starting from WSDL)

<port Type nane="Hel | oWor| d">
<operation nane="sayHel | oWor|ld">
<input wsaw: Action="http://exanpl es/ Hel | oWorl d/ sayHel | oWor | dRequest "
message="t ns: sayHel | oWor | d"/>
<out put wsaw: Action="http://exanpl es/ Hel | oWor | d/ sayHel | oWor | dResponse”
message="t ns: sayHel | oWor | dResponse”/ >

10-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Anonymous WS-Addressing

<fault message="tns: M ssingName" nane="M ssi ngNang"
wsaw. Action="http://exanmpl es/ M ssi ngNaneFaul t"/>
</ operati on>
</ port Type>

10.4.3 Implicitly Associating WS-Addressing Action Properties

When WS-Addressing is enabled, if no explicit action is defined in the WSDL, the
client sends an implicit wsa: Act i on header using the following formats:

¢ Input message action: t ar get Namespace/ port TypeNane/ i nput Nane
* Output message action: t ar get Namespace/ por t TypeNane/ out put Nane

e Fault message action: t ar get Namespace/ port TypeName/ oper at i onNarre/
Faul t/ Faul t Nane

tar get Nanespace/ port TypeNane/ [i nput Nane | out put Nare]

For example, for the following WSDL excerpt:

<definitions target Namespace="http://exanples/"...>

<port Type name="Hel | oVr | d">
<operation nane="sayHel | oWor | d">
<input nmessage="tns:sayHel | oWorld" name="sayHel | oRequest"/>
<out put message="tns: sayHel | oWor | dResponse” name="sayHel | oResponse"/ >
<fault message="tns: M ssingNanme" name="M ssi ngNane" />
</ operati on>
</ port Type>

</ aefi nitions>

The default input and output actions would be defined as follows:

* Input message action: ht t p: / / exanpl es/ Hel | oWbr | d/ sayHel | oRequest

e Output message action: ht t p: / / exanpl es/ Hel | oWor | d/ sayHel | oResponse

* Fault message action: ht t p: / / exanpl es/ Hel | oWor | d/ sayHel | oVor | d/
Faul t/ M ssi ngNane

If the input or output message name is not specified in the WSDL, the operation name
is used with Request or Response appended, respectively. For example:
sayHel | owr | dRequest or sayHel | oWwor | dResponse.

10.5 Configuring Anonymous WS-Addressing

In some cases, the network technologies used in an environment (such as, firewalls,
Dynamic Host Configuration Protocol (DHCP), and so on) may prohibit the use of
globally addressed URI for a given endpoint. To enable non-addressable endpoints to
exchange messages, the WS-Addressing specification supports "anonymous"
endpoints using the wsaw. Anonynous element.

The wsaw. Anonynous element can be set to one of the values defined in Table 10-6.

Using Web Services Addressing 10-9

Configuring Anonymous WS-Addressing

Table 10-6 Valid Values for the wsaw:Anonymous Element
|

Value Description

opt i onal The response endpoint EPR in a request message may contain
an anonymous URIL

required The response endpoint EPR in a request message must contain
an anonymous URL. Otherwise, an
I nval i dAddr essi ngHeader fault is returned.

prohi bited The response endpoint EPRs in a request message must not
contain an anonymous URI. Otherwise, an
I nval i dAddr essi ngHeader fault is returned.

To configure anonymous WS-Addressing:

1. Enable WS-Addressing on the web service, add the wsaw. Usi ngAddr essi ng
element to the corresponding wsdl : bi ndi ng element. For more information, see
Enabling WS-Addressing on the Web Service (Starting from WSDL).

Note:

When anonymous WS-Addressing is enabled, the wsdl : r equi r ed attribute
must not be enabled in the wsaw: Usi ngAddr essi ng element.

2. Add the wsaw: Anonynous element to the wsdl : oper at i on within the
wsdl : bi ndi ng element.

Example 10-10 Enabling Anonymous WS-Addressing on the Web Service

The following provides an example of how to enable anonymous WS-Addressing in
the WSDL file. In this example, anonymous addressing is required.

<bi ndi ng name="Hel | oWor | dPort Bi ndi ng" type="tns: Hel | o\Wor| d">
<wsaw. Usi ngAddr essi ng wsdl : required="true" />
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http"
styl e="document"/ >
<operation nane="sayHel | oWor | d">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input>
<out put >
<soap: body use="literal"/>
</ out put >
<fault nane="M ssi ngNang" >
<soap: fault name="M ssi ngNane" use="literal"/>
</fault>
</ operati on>
<wsaw. Anonynous>r equi r ed</ wsaw: Anonynous>
</ bi ndi ng>

10-10 Developing JAX-WS Web Services for Oracle WebLogic Server

11

Roadmap for Developing Asynchronous
Web Service Clients

This chapter presents best practices for developing asynchronous WebLogic web
service clients for Java API for XML Web Services (JAX-WS).

Table 11-1 provides best practices for developing asynchronous web service clients,
and is followed by an example that illustrates the best practices presented. These
guidelines should be used in conjunction with the general guidelines provided in
Roadmap for Developing JAX-WS Web Service Clients.

For best practices when developing reliable web service clients, see Roadmap for
Developing Reliable Web Services and Clients.

Note:

In the following table, client instance can be a port or a Dispatch instance.

Table 11-1 Roadmap for Developing Asynchronous Web Service Clients
|

Best Practice Description

Define a port-based asynchronous Use of AsyncCl i ent Handl er Feat ur e is recommended as a best
callback handler, practice when using asynchronous invocation due to its scalability and
Asyncd i ent Handl er Feat ur e, for ability to survive a JVM restart. It can be used by any client (survivable
asynchronous and dispatch callback or not.) For information, see Developing the Asynchronous Handler
handling. Interface.

Define a singleton port instance and Creation of the singleton port:

initialize it when the client container o

Triggers the asynchronous response endpoint to be published upon
deployment.

® Supports failure recovery by re-initializing the singleton port
instance after VM restart.

initializes (upon deployment).

Within a cluster, initialization of a singleton port will ensure that all
member servers in the cluster publish an asynchronous response
endpoint.This ensures that the asynchronous response messages can be
delivered to any member server and optionally forwarded to the correct
server via in-place cluster routing. For complete details, see Clustering
Considerations for Asynchronous Web Service Messaging.

Roadmap for Developing Asynchronous Web Service Clients 11-1

Table 11-1 (Cont.) Roadmap for Developing Asynchronous Web Service Clients
. ___|

Best Practice Description

If using Make Connection for clients The Make Connection polling interval should be set as high as possible
behind a firewall, set the Make to avoid unnecessary polling overhead, but also low enough to allow
Connection polling interval to a value ~ responses to be retrieved in a timely fashion. A recommended value for
that is realistic for your scenario. the Make Connection polling interval is one-half of the expected

average response time of the web service being invoked. For more
information setting the Make Connection polling interval, see
Configuring the Polling Interval.

Note: This best practice is not demonstrated in Example 11-1.

If using the JAX-WS Reference Use of the AsyncHandl| er <T> interface is more efficient than the
Implementation (RI), implement the Response<T> interface. For more information and an example, see
AsyncHandl er <T> interface. Using the JAX-WS Reference Implementation.

Note: This best practice is not demonstrated in Example 11-1.

Define a Work Manager and set the For example, if a web service client issues 20 requests in rapid

thread pool minimum size constraint succession, the recommended thread pool minimum size constraint
(min-threads-constraint)toa value would be 20 for the application hosting the client. If the

value that is at least as large as the configured constraint value is too small, performance can be severely
expected number of concurrent degraded as incoming work waits for a free processing thread.

requests or responses into the service. For more information about the thread pool minimum size constraint,

see "Constraints" in Administering Server Environments for Oracle
WebLogic Server.

The following example illustrates best practices for developing asynchronous web
service clients.

Example 11-1 Asynchronous Web Service Client Best Practices Example

inport java.io.*;
inmport java.util.*;

import javax.servlet.*
inmport javax.xm.ws.*

import weblogic.jws.jaxws.client.CientldentityFeature;
i mport webl ogi c.jws.jaxws.client.async. AsyncC i ent Handl er Feat ur e;
i mport webl ogi c.jws.jaxws.client.async. AsyncC ient Transport Feat ure;

import com sun. xm . ws. devel oper. JAXWSPr operti es;

/**
* Exanple client for invoking a web service asynchronously.
*/
public class BestPracticeAsyncC i ent
extends GenericServlet {

private static final String MY_PROPERTY = "M/Property";
private BackendServiceService _service;
private WebServiceFeature[] _features;

private BackendService _singletonPort;

private static String _| astResponse;
private static int _requestCount;

11-2 Developing JAX-WS Web Services for Oracle WebLogic Server

@wverride
public void init()
throws ServletException {

/] Only create the web service object once as it is expensive to create repeatedly.
if (_service == null) {
_service = new BackendServi ceService();

}

/] Best Practice: Use a stored list of features, including client ID, to create client

/'l instances.

Il Define all features for the web service client instance, including client 1D, so that they
/1 are consistent each time the client instance is created. For exanple:

/| _service. get BackendServi cePort (_features);

Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

I/ Best Practice: Explicitly define the client ID.
ClientldentityFeature clientldFeature =

new CientldentityFeature("MBackendServiceAsyncCient");
features.add(clientldFeature);

/'l Asynchronous endpoi nt
AsyncC i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(get Servl et Context ());
features. add(asyncFeature);

/] Best Practice: Define a port-based asynchronous cal |l back handler,
/'l AsyncOient Handl er Feature, for asynchronous and di spatch cal | back handling.
BackendSer vi ceAsyncHandl er handl er =
new BackendServi ceAsyncHandl er () {
/1 This class is stateless and should not depend on
/1 having nmenber variables to work with across restarts.
public voi d onDoSonet hi ngResponse(Response<DoSonet hi ngResponse> res) {
Il ... Handl e Response ...
try {
DoSonet hi ngResponse response = res. get();
res. get Context();
_last Response = response. get Return();
Systemout. println("Got async response: " + _|astResponse);
/] Retrieve the request property. This property can be used to
/1 "remenber' the context of the request and subsequently process
/'l the response.
Map<String, Serializable> requestProps =
(Map<String, Serializable>)
res. get Cont ext (). get (JAXWSPr operti es. PERSI STENT_CONTEXT) ;
String nyProperty = (String)requestProps. get (MY_PROPERTY);
Systemout. println("Got MyProperty value propagated fromrequest: "+
myProperty);
} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();
1
}
b
AsyncC i ent Handl er Feat ure handl er Feature =
new Asyncd i ent Handl er Feat ur e(handl er);
features. add(handl er Feature);

/1 Set the features used when creating clients with
/'l the client 1D "MBackendServiceAsyncCient".

Roadmap for Developing Asynchronous Web Service Clients 11-3

_features = features.toArray(new WebServi ceFeature[features.size()]);

/] Best Practice: Define a singleton port instance and initialize it when

/1 the client container initializes (upon deployment).

[l The singleton port will be available for the life of the servlet.

Il Creation of the singleton port triggers the asynchronous response endpoint to be published
[/ and it will remain published until our container (Web application) is undeployed.

/1 Note, the destroy() method will be called before this.

/1 The singleton port ensures proper/robust operation in both

/] recovery and clustered scenario0s.

_singletonPort = _service. getBackendServi cePort(_features);

}

@wverride
public void service(Servl et Request req, ServletResponse res)
throws ServletException, |CException {

[/ TODO ... Read the servlet request ...

[l For this sinple exanple, echo the _|astResponse captured from
/1 an asynchronous DoSonet hi ngResponse response nessage.

if (_lastResponse != null) {
res.getWiter().wite(_| astResponse);
_lastResponse = null; // Clear the response so we can get another
return;

}

/1 Set _lastResponse to NULL to to support the invocation against
/1 BackendService to generate a new response.

/] Best Practice: Synchronize use of client instances.
I/ Create another client instance using the *exact* sane features used when creating _
/'l singletonPort. Note, this port uses the sanme client ID as the singleton port
Il and it is effectively the same as the singleton
/1 fromthe perspective of the web services runtine.
/1 This port will use the asynchronous response endpoint for the client ID,
/] as it is defined in the features |ist.
BackendServi ce anotherPort =
_service. get BackendSer vi cePort (_features);

/1 Set the endpoint address for BackendServi ce.
((Bi ndi ngProvi der) anot her Port) . get Request Cont ext ().
put (Bi ndi ngPr ovi der . ENDPOl NT_ADDRESS_PROPERTY,
"http://1ocal host: 7001/ Best Practi ceServi ce/ BackendService");

/1 Add a persistent context property that will be retrieved on the
/'l response. This property can be used as a rem nder of the context of this
/'l request and subsequently process the response. This property will *not*
/'l be passed over the wire, so the properties can change independent of the
/1 application message.
Map<String, Serializable> persistentContext =

(Map<String, Serializable>)((BindingProvider)anotherPort).

get Request Cont ext (). get (JAXWSPr oper ti es. PERSI STENT_CONTEXT) ;

String nyProperty = "Request " + (++_request Count);
per si st ent Cont ext . put (MY_PROPERTY, nyProperty);
System out. println("Request being made with M/Property value: " +

myProperty);

/1 Make the asychronous invocation. The asynchronous handl er inplenmentation (set

11-4 Developing JAX-WS Web Services for Oracle WebLogic Server

/1 into the AsyncOientHandl er Feature above) receives the response.

String request = "Dance and sing";

System out. println("Invoking DoSonet hi ng asynchronously with request: " +
request);

anot her Port . doSomet hi ngAsync(request);

/1 Return a canned string indicating the response was not received
/'l synchronously. Cient will need to invoke the servlet again to get
/'l the response.

res.getWiter(). wite("Waiting for response...");

/] Best Practice: Explicitly close client instances when processing is conplete.
[l 1f not closed explicitly, the port will be closed automatically when it goes out of scope.
((java.io.d oseabl e)anot herPort). close();

}

@verride
public void destroy() {

try {
Il Best Practice: Explicitly close client instances when processing is conplete.
I/ Close the singleton port created during initialization. Note, the asynchronous
/'l response endpoi nt generated by creating _singletonPort *remains*
/1 published until our container (Web application) is undepl oyed.
((java.io.C oseabl e) _singletonPort).close();

/1 Upon return, the Wb application is undeployed, and the asynchronous
/'l response endpoint is stopped (unpublished). At this point,
Il the client 1D used for _singletonPort will be unregistered and will no |onger be
Il visible fromthe Administration Console and W.ST.
} catch (Exception e) {
e.printStackTrace();

Roadmap for Developing Asynchronous Web Service Clients 11-5

11-6 Developing JAX-WS Web Services for Oracle WebLogic Server

12

Developing Asynchronous Clients

This chapter describes how to develop asynchronous WebLogic web service clients
using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

e Overview of Asynchronous Web Service Invocation

¢ Steps to Invoke Web Services Asynchronously

¢ Configuring Your Servers for Asynchronous Web Service Invocation

¢ Building the Client Artifacts for Asynchronous Web Service Invocation

¢ Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client
Transport)

* Using Asynchronous Web Service Clients From Behind a Firewall (Make
Connection)

* Using the JAX-WS Reference Implementation
* Propagating Request Context to the Response
* Monitoring Asynchronous Web Service Invocation

¢ Clustering Considerations for Asynchronous Web Service Messaging

Note:

See also Roadmap for Developing Asynchronous Web Service Clients.

12.1 Overview of Asynchronous Web Service Invocation

To support asynchronous web services invocation, WebLogic web services can use an
asynchronous client programming model, asynchronous transport, or both.

Table 12-1 provides a description and key benefits of the asynchronous client
programming model and transport types, and introduces the configuration options
available to support asynchronous web service invocation.

Note:

The method of generating a WSDL for the asynchronous web service
containing two one-way operations defined as two portTypes—one for the

Developing Asynchronous Clients 12-1

Overview of Asynchronous Web Service Invocation

asynchronous operation and one for the callback operation—is not supported
in the current release.

Table 12-1 Support for Asynchronous Web Service Invocation

Type

Description

Benefits

Client programming model

Describes the invocation semantics used to call
a web service operation: synchronous or
asynchronous.

When you invoke a web service synchronously,
the invoking client application waits for the
response to return before it can continue with
its work. In cases where the response returns
immediately, this method of invoking the web
service might be adequate. However, because
request processing can be delayed, it is often
useful for the client application to continue its
work and handle the response later on.

By calling a web service asynchronously, the
client can continue its processing, without
interruption, and be notified when the
asynchronous response is returned.

To support asynchronous invocation, you
generate automatically an asynchronous flavor
of each operation on a web service port using
the cl i ent gen Ant task, as described later in
Building the Client Artifacts for Asynchronous
Web Service Invocation. Then, you add
methods in your client, including your business
logic, that handle the asynchronous response or
failures when it returns later on. Finally, to
invoke a web service asynchronously, rather
than invoking the operation directly, you
invoke the asynchronous flavor of the
operation. For example, rather than invoking an
operation called addNunber s directly, you
would invoke addNurber sAsync instead.

Asynchronous invocation
enables web service clients to
initiate a request to a web
service, continue processing
without blocking, and receive
the response at some point in
the future.

Transport

There are three transport types: asynchronous
client transport, Make Connection transport,
and synchronous transport. For a comparison
of each transport type, see Table 12-2.

Asynchronous client transport
and Make Connection
transport deliver the following
key benefits:

¢ Improves fault tolerance in
the event of network
outages.

e Enables servers to absorb
more efficiently spikes in
traffic.

12-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Overview of Asynchronous Web Service Invocation

Table 12-1 (Cont.) Support for Asynchronous Web Service Invocation
__|

Type Description Benefits

Configuration Configure web service persistence and Benefits of configuring the web
buffering (optional) to support asynchronous service features include:
web service invocation. e Persistence supports long
For more information, see Configuring Your running requests and
Servers for Asynchronous Web Service provides the ability to
Invocation. survive server restarts.

¢ Buffering enables all
requests to a web service to
be handled
asynchronously.

Table 12-2 summarizes the transport types that WebLogic Server supports for
invoking a web service asynchronously (or synchronously, if configured) from a web
service client.

Table 12-2 Transport Types for Invoking Web Services Asynchronously

Transport Types Description

Asynchronous Client Transport Provides a scalable asynchronous client programming model
through the use of an addressable client-side asynchronous
response endpoint and WS-Addressing.

Asynchronous client transport decouples the delivery of the
response message from the initiating transport request used to
send the request message. The response message is sent to the
asynchronous response endpoint using a new connection
originating from the web service. The client correlates request
and response messages through WS-Addressing headers.

Asynchronous client transport provides improved fault tolerance
and enables servers to better absorb spikes in server load.

For details about using asynchronous client transport, see
Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport).

Asynchronous client transport supports the following
programming models:

* Asynchronous and dispatch callback handling using one of
the following methods:

- Port-based asynchronous callback handler,
Asyncd i ent Handl er Feat ur e, described in Developing
the Asynchronous Handler Interface. This is recommended as
a best practice when using asynchronous invocation due to its
scalability and ability to survive a JVM restart.
- Per-request asynchronous callback handler, as described in
Using the JAX-WS Reference Implementation.

* Asynchronous polling, as described in Using the JAX-WS
Reference Implementation.

* Synchronous invocation by enabling a flag, as described in
Configuring Asynchronous Client Transport for Synchronous
Operations.

Developing Asynchronous Clients 12-3

Overview of Asynchronous Web Service Invocation

Table 12-2 (Cont.) Transport Types for Invoking Web Services Asynchronously

Transport Types Description

Make Connection Transport Enables asynchronous web service invocation from behind a
firewall using Web Services Make Connection 1.1 or 1.0.

Make Connection is a client polling mechanism that provides an
alternative to asynchronous client transport. As with
asynchronous client transport, Make Connection enables the
decoupling of the response message from the initiating transport
request used to send the request message. However, unlike
asynchronous client transport which requires an addressable
asynchronous response endpoint to forward the response to, with
Make Connection typically the sender of the request message is
non-addressable and unable to accept an incoming connection. For
example, when the sender is located behind a firewall.

Make Connection transport provides improved fault tolerance
and enables servers to better absorb spikes in server load.

For details about Make Connection transport, see Using
Asynchronous Web Service Clients From Behind a Firewall
(Make Connection).

Make Connection transport is recommended as a best practice
when using asynchronous invocation from behind a firewall due
to its scalability and ability to survive a JVM restart. It supports
the following programming models:

* Asynchronous and dispatch callback handling using one of
the following methods:

- Port-based asynchronous callback handler,
Asyncd i ent Handl er Feat ur e, described in Developing
the Asynchronous Handler Interface.

- Per-request asynchronous callback handler, as described in
Using the JAX-WS Reference Implementation.

* Asynchronous polling, as described in Using the JAX-WS
Reference Implementation.

¢ Synchronous invocation by enabling a flag, as described in
Configuring Make Connection as the Transport for
Synchronous Methods.

Use of Make Connection transport with

AsyncC i ent Handl er Feat ur e is recommended as a best

practice when using asynchronous invocation due to its

scalability and ability to survive a JVM restart.

Synchronous Transport Provides support for synchronous and asynchronous web service
invocation with very limited support for WS-Addressing. For
details, see Using the JAX-WS Reference Implementation.

Synchronous transport is recommended when using synchronous

invocation. It can be used for asynchronous invocation, as well,

though this is not considered a best practice. It supports the

following programming models:

¢ Asynchronous and dispatch callback handling on a per
request basis using the standard JAX-WS RI implementation,
described in Using the JAX-WS Reference Implementation.

* Asynchronous polling, as described in Using the JAX-WS
Reference Implementation.

® Synchronous invocation.

12-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Steps to Invoke Web Services Asynchronously

12.2 Steps to Invoke Web Services Asynchronously

This section describes the steps required to invoke web services asynchronously.

It is assumed that you have set up an Ant-based development environment and that
you have a working bui | d. xm file to which you can add targets for running the

j wsc Ant task and deploying the web services. For more information, see Developing
JAX-WS Web Services.

Table 12-3 Steps to Invoke Web Services Asynchronously

#

Step

Description

1

Configure web service
persistence to support
asynchronous web
service invocation.

Configure web service persistence on the servers hosting the
web service and client to retain context information required
for processing a message at the web service or client. For
more information, see Configuring Your Servers for
Asynchronous Web Service Invocation.

Note: This step is not required if you are programming the
web service client using the standard JAX-WS RI
implementation and synchronous transport (in Step 3), as
described in Using the JAX-WS Reference Implementation.

Configure web service
buffering to enable the
web service to process
requests
asynchronously.
(Optional)

This step is optional. To configure the web service to process
requests asynchronously, configure buffering on the server
hosting the web service. Buffering enables you to store
messages in a JMS queue for asynchronous processing by the
web service. For more information, see Configuring Your
Servers for Asynchronous Web Service Invocation.

Build the client artifacts
required for
asynchronous
invocation.

To generate asynchronous polling and asynchronous callback
handler methods in the service endpoint interface, create an
external binding declarations that enables asynchronous
mappings and pass the bindings file as an argument to the

cl i ent gen when compiling the client. See Building the
Client Artifacts for Asynchronous Web Service Invocation.

Implement the web
service client based on
the transport and
programming model
required.

Refer to one of the following sections based on the transport
and programming model required:

* Use asynchronous client transport, as described in
Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport). (Recommended as a
best practice.)

* Enable asynchronous access from behind a firewall using
Make Connection. See Using Asynchronous Web Service
Clients From Behind a Firewall (Make Connection).

¢ Implement standard JAX-WS programming models, such
as asynchronous polling or per-request asynchronous
callback handling, using synchronous transport. See
Using the JAX-WS Reference Implementation.

When using web services in a cluster, review the guidelines

described in Clustering Considerations for Asynchronous

Web Service Messaging.

Compile the web

service client and
package the client
artifacts.

For more information, see Compiling and Running the Client
Application.

Developing Asynchronous Clients 12-5

Configuring Your Servers for Asynchronous Web Service Invocation

Table 12-3 (Cont.) Steps to Invoke Web Services Asynchronously

Step Description

6 Deploy the web service See Deploying and Undeploying WebLogic Web Services.
client.

7 Monitor the web service You can monitor runtime information for clients that invoke
client. web services asynchronously, such as number of invocations,
errors, faults, and so on, using the WebLogic Server
Administration Console or WLST. See Monitoring
Asynchronous Web Service Invocation.

12.3 Configuring Your Servers for Asynchronous Web Service Invocation

Note:

This step is not required if you are programming the web service client using
the standard JAX-WS RI implementation and synchronous transport, as
described in Using the JAX-WS Reference Implementation.

To support asynchronous web service invocation, you need to configure the features

defined in the following table on the servers to which the web service and client are
deployed.

12-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Your Servers for Asynchronous Web Service Invocation

Table 12-4 Configuration for Asynchronous Web Service Invocation
- -]

Feature

Description

Persistence

Web service persistence is used to save the following
types of information:

¢ C(lient identity and properties

* SOAP message, including its headers and body

¢ Context properties required for processing the
message at the web service or client (for both
asynchronous and synchronous messages)

The Make Connection transport protocol makes use of

web service persistence as follows:

* Web service persistence configured on the MC
Receiver (web service) persists response messages
that are awaiting incoming Make Connection
messages for the Make Connection anonymous
URI to which they are destined. Messages are
persisted until either they are returned as a
response to an incoming Make Connection
message or the message reaches the maximum
lifetime for a persistent store object, resulting in
the message being cleaned from the store.

* web service persistence configured on the MC
Initiator (web service client) is used with the
asynchronous client handler feature to recover
after a VM restart.

You can configure web service persistence using the

Configuration Wizard to extend the WebLogic Server

domain using a web services-specific extension

template. Alternatively, you can configure the
resources required for these advanced features using
the Oracle WebLogic Server Administration Console
or WLST. For information about configuring web
service persistence, see Configuring Web Service

Persistence for Web Service Clients. For information

about the APIs available for persisting client and

message information, see Propagating Request

Context to the Response.

Message buffering

When a buffered operation is invoked by a client, the
request is stored in a JMS queue and WebLogic Server
processes it asynchronously. If WebLogic Server goes
down while the request is still in the queue, it will be
processed as soon as WebLogic Server is restarted.
Message buffering is configured on the server hosting
the web service. For configuration information, see
Configuring Message Buffering for Web Services.

Note: Message buffering is enabled automatically on
the web service client.

Developing Asynchronous Clients 12-7

Building the Client Artifacts for Asynchronous Web Service Invocation

12.4 Building the Client Artifacts for Asynchronous Web Service

Invocation

Using the WebLogic Server client-side tooling (for example, cl i ent gen), you can
generate automatically the client artifacts required for asynchronous web service
invocation. Specifically, the following artifacts are generated:

¢ Service endpoint interfaces for invoking the web service asynchronously with or
without a per-request asynchronous callback handler. For example, if the web
service defined the following method:

public int addNunbers(int opA, int opB) throws M/Exception

Then the following methods will be generated:

public Future<?> addNumbersAsync(int opA, int opB,
AsyncHandl er <AddNunber sResponse>)
publi ¢ Response<AddNunber sResponse> addNunber sAsync(int opA, int opB)

* Asynchronous handler interface for implementing a handler and setting it on the
port using Asyncd i ent Handl er Feat ur e. The asynchronous handler interface
is named as follows: port | nt er f aceNanmeAsyncHandl er , where
por t | nt er f aceNane specifies the name of the port interface.

For example, for a web service with a port type name AddNunber sPor t Type, an
asynchronous handler interface named AddNurrber sPor t TypeAsyncHandl er is
generated with the following method:

public voi d onAddNunber sResponse(Response<AddNunber sResponse>)

The Asyncd i ent Handl er Feat ur e is described later, in Developing the
Asynchronous Handler Interface.

To generate asynchronous client artifacts in the service endpoint interface when the
WSDL is compiled, enable the j axws: enabl eAsyncMappi ng binding declaration in
the WSDL file.

Alternatively, you can create an external binding declarations file that contains all
binding declarations for a specific WSDL or XML Schema document. Then, pass the
binding declarations file to the <bi ndi ng> child element of the wsdl c, j wsc, or

cl i ent gen Ant task. For more information, see Creating an External Binding
Declarations File Using JAX-WS Binding Declarations.

The following provides an example of a binding declarations file (j axws-
bi ndi ng. xn) that enables the j axws: enabl eAsyncMappi ng binding declaration:

<bi ndi ngs
xm ns: xsd="htt p: // www. w3. or g/ 2001/ XM_Schema"
xm ns: wsdl ="htt p: // schemas. xn soap. or g/ wsdl /"
wsdl Locat i on="AddNunbers. wsdl "
xm ns="http://java. sun. com xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions">
<package nane="exanpl es. webservi ces. async"/>
<enabl eAsyncMappi ng>t r ue</ enabl eAsyncMappi ng>
</ bi ndi ngs>
</ bi ndi ngs>

Then, to update the bui | d. xm file to generate client artifacts necessary to invoke a
web service operation asynchronously:

12-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

1. Use thet askdef Ant task to define the full classname of the cl i ent gen Ant
tasks.

2. Add a target that includes a reference to the external binding declarations file
containing the asynchronous binding declaration, as defined above. In this case, the
cl i ent gen Ant task generates both synchronous and asynchronous flavors of the
web service operations in the JAX-WS stubs.

For example:

<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />

<target name="build_client">

<clientgen

type="JAXWS'
wsdl =" AddNunber s. wsdl "
destDir="${clientclasses.dir}"
packageName="exanpl es. webservi ces. async. client">
<binding file="jaxws-binding.xm" />

</clientgen>

<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>

<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/ async/client/**/* java"/>

</target>

12.5 Developing Scalable Asynchronous JAX-WS Clients (Asynchronous
Client Transport)

The asynchronous client transport feature provides a scalable asynchronous client
programming model. Specifically, this feature:

® Publishes a client-side asynchronous response endpoint, shown in Figure 12-1.

¢ Creates and publishes a service implementation that invokes the requested
asynchronous handler implementation.

* Automatically adds WS-Addressing non-anonymous ReplyTo headers to all non-
one-way, outbound messages. This header references the published response
endpoint.

¢ Correlates asynchronous request and response messages using the facilities listed
above.

When the asynchronous client transport feature is enabled, all other JAX-WS client
programming models (such as asynchronous polling, callback handler, dispatch, and
so on) continue to be supported. Synchronous web service operations will, by default,
use synchronous transport, unless explicitly configured to use asynchronous client
transport feature when enabling the feature.

The following figure shows the message flow used by the asynchronous client
transport feature.

Developing Asynchronous Clients 12-9

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Figure 12-1 Asynchronous Client Transport Feature

Client Asynchronous
Application Response Endpoint
] Response Message
Asynchronous Correlation Web
Handler 4 Service

Invoke
Asynchronous
Operation

|, Client Request Message
@ >

o

As shown in the previous figure:

1. The client enables the asynchronous client transport feature on the client proxy and
invokes an asynchronous web service operation.

2. The web service operation is invoked via the client proxy.

3. The web service processes the request and sends a response message (at some time
in the future) back to the client. The response message is sent to the client's
asynchronous response endpoint. The address of the asynchronous response
endpoint is maintained in the WS-Addressing headers.

4. The response message is forwarded to the appropriate client via the client proxy.
5. The client asynchronous handler is invoked to handle the response message.

The following sections describe how to develop scalable asynchronous JAX-WS clients
using asynchronous client transport:

¢ Enabling and Configuring the Asynchronous Client Transport Feature
¢ Developing the Asynchronous Handler Interface

¢ Propagating User-defined Request Context to the Response

12.5.1 Enabling and Configuring the Asynchronous Client Transport Feature

Note:

The Make Connection and asynchronous client transport features are
mutually exclusive. If you attempt to enable both features on the same web
service client, an error is returned. For more information about Make
Connection, see Using Asynchronous Web Service Clients From Behind a
Firewall (Make Connection).

To enable the asynchronous client transport feature on a client, pass an instance of
webl ogi c. jws. jaxws. client.async. AsyncCl i ent Transport Featureasa
parameter when creating the web service proxy or dispatch.

The asynchronous response endpoint described by the

Asyncd i ent Transpor t Feat ur e is used by all client instances that share the same
client ID and is in effect from the time the first client instance using the client ID is
published. The asynchronous response endpoint remains published until the client ID

12-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

is explicitly disposed or the container for the client is deactivated (for example, the
host Web application or EJB is undeployed). For more information about managing
the client ID, see Managing Client Identity.

The asynchronous response endpoint address is generated automatically using the
following format:

http://context Address: port/context/targetPort-AsyncResponse

In the above:

¢ cont ext Addr ess: por t —Specifies one of the following:
— If clustered application, cluster address and port.

— If not clustered application, default WebLogic Server address and port for the
selected protocol.

— If no default address is defined, first network channel address for the given
protocol. For more information about network channels, see "Configuring
Network Resources" in Administering Server Environments for Oracle WebLogic
Server.

¢ cont ext —Current servlet context, if running within an existing context.
Otherwise, a new context named by the UUID and scoped to the application.

e targetPort-AsyncResponse—Port name of the service accessed by the client
appended by - AsyncResponse.

You can configure the asynchronous client transport feature, as described in the
following sections:

¢ Configuring the Address of the Asynchronous Response Endpoint

¢ Configuring the ReplyTo and FaultTo Headers of the Asynchronous Response
Endpoint

¢ Configuring the Context Path of the Asynchronous Response Endpoint
¢ Publishing the Asynchronous Response Endpoint

¢ Configuring Asynchronous Client Transport for Synchronous Operations

For more information about the AsyncCl i ent Tr ansport Feat ur e() constructor
formats, see the Java API Reference for Oracle WebLogic Server.

12.5.1.1 Configuring the Address of the Asynchronous Response Endpoint

You can configure an address for the asynchronous response endpoint by passing it as
an argument to the Asyncd i ent Tr anspor t Feat ur e, as follows:

String responseAddress = "http://myserver.com 7001/ nmyRel i abl eServi ce/ myd i ent Cal | back";
AsyncC i ent Transport Feat ure asyncFeature = new Asyncd i ent Transport Feat ur e(r esponseAddr ess);
BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

The specified address must be a legal address for the server or cluster (including the
network channels or proxy addresses). Ephemeral ports are not supported. The
specified context must be scoped within the current application or refer to an unused
context; it cannot refer to a context that is scoped to another deployed application,
otherwise an error is thrown.

Developing Asynchronous Clients 12-11

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

The following tables summarizes the constructors that can be used to configure the
address of the asynchronous response endpoint.

Table 12-5 Constructors for Configuring the Address of the Asynchronous Response Endpoint

Constructor Description

Asyncd i ent Transport Feat ure(j ava. |l ang. Str Configures the address of the asynchronous response
i ng address) endpoint.

Asyncd i ent Transport Feat ure(j ava. | ang. Str Configures the following:

ing address, bool ean doPublish) ¢ Address of the asynchronous response endpoint.

* Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

Asyncd i ent Transport Feat ure(j ava. | ang. Str Configures the following:
i ng address, bool ean doPublish, bool ean

; * Address of the asynchronous response endpoint.
useAsyncW t hSyncl nvoke)

® Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

¢ Whether to enable asynchronous client transport for
synchronous operations. For more information, see
Configuring Asynchronous Client Transport for
Synchronous Operations.

12.5.1.2 Configuring the ReplyTo and FaultTo Headers of the Asynchronous
Response Endpoint

You can configure the address to use for all outgoing ReplyTo and FaultTo headers of
typej avax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence for the
asynchronous response endpoint by passing them as arguments to the

Asyncd i ent Transport Feat ure.

For example, to configure only the ReplyTo header address:

VBCEndpoi nt Ref er ence repl yToAddress = "http://nyserver.com 7001/ nyRel i abl eServi ce/ myC i ent Cal | back";
AsyncC i ent Transport Feat ure asyncFeature = new AsyncC i ent Transport Feat ur e(repl yToAddr ess);
BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

To configure both the ReplyTo and FaultTo header addresses:

VBCEndpoi nt Ref erence repl yToAddress = "http://nyserver.com 7001/ nyRel i abl eServi ce/ myC i ent Cal | back";
VBCEndpoi nt Ref erence faul t ToAddress = "http://nyserver.com 7001/ nyRel i abl eServi ce/ Faul t To";

Asyncd i ent Transport Feat ure asyncFeature = new Asyncd i ent Transport Feat ur e(repl yToAddr ess,

faul t ToAddr ess);

BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

The following tables summarizes the constructors that can be used to configure the
endpoint reference address for the outgoing ReplyTo and FaultTo headers.

Table 12-6 Constructors for Configuring the ReplyTo and FaultTo Headers

Constructor Description

Asyncd i ent Transport Feat ure(j avax. xm .ws. Configures the endpoint reference address for the
wsaddr essi ng. WBCEndpoi nt Ref erence outgoing ReplyTo headers.

repl yTo)

12-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Table 12-6 (Cont.) Constructors for Configuring the ReplyTo and FaultTo Headers
. __|

Constructor Description

Asyncd i ent Transport Feat ure(j avax. xnl . ws. Configures the following:
wsaddr essi ng. WBCEndpoi nt Ref er ence .

; Endpoint reference address for the outgoing
repl yTo, bool ean doPubl i sh)

ReplyTo headers.

e Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

Asyncd i ent Transport Feat ure(j avax. xm .ws. Configures the following:
wsaddr essi ng. WBCEndpoi nt Ref er ence .
repl yTo, bool ean doPublish, bool ean
useAsyncWt hSyncl nvoke)

Endpoint reference address for the outgoing

ReplyTo headers.

¢ Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

* Whether to enable asynchronous client transport for

synchronous operations. For more information, see

Configuring Asynchronous Client Transport for

Synchronous Operations.

Asyncd i ent Transport Feat ure(j avax. xm . ws. Configures the endpoint reference address for the
wsaddr essi ng. WBCEndpoi nt Ref er ence outgoing ReplyTo and FaultTo headers
replyTo,

j avax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref e

rence faul tTo)

Asyncd i ent Transport Feat ure(j avax. xm . ws. Configures the following:
wsaddr essi ng. WBCEndpoi nt Ref erence .
repl yTo,

javax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref e
rencefaul t To, bool ean doPubl i sh)

Endpoint reference address for the outgoing
ReplyTo and FaultTo headers.

¢ Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

Asyncd i ent Transport Feat ure(j avax. xnl . ws. Configures the following:
wsaddr essi ng. WBCEndpoi nt Ref erence .
replyTo,

j avax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref e
rencefaul t To, bool ean doPublish, bool ean
useAsyncWt hSyncl nvoke)

Endpoint reference address for the outgoing
ReplyTo and FaultTo headers.

Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

¢ Whether to enable asynchronous client transport for
synchronous operations. For more information, see
Configuring Asynchronous Client Transport for
Synchronous Operations.

12.5.1.3 Configuring the Context Path of the Asynchronous Response Endpoint

When a client is running within a servlet or Web application-based web service, it can
use its ServletContext and context path to construct the asynchronous response
endpoint. You pass the information as an argument to the

Asyncd i ent Transport Feat ur e, as follows:

¢ When running inside a servlet:

AsyncC i ent Transport Feat ure asyncFeature =
new AsyncCl i ent Transport Feat ur e(get Servl et Cont ext ());

Developing Asynchronous Clients 12-13

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

¢ When running inside a web service or an EJB-based web service:

import com sun. xn . ws. api . server. Cont ai ner;

Contai ner ¢ = Cont ai ner Resol ver. get | nstance(). get Contai ner();
Servl et Context servletContext = c.getSPI(ServletContext.class);
AsyncCl i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(servl et Cont ext);

The specified context must be scoped within the current application or refer to an
unused context; it cannot refer to a context that is scoped to another deployed
application.

Note:

When you use the empty constructor for Asyncd i ent Tr ansport Feat ur e,
the web services runtime attempts to discover the container in which the
current feature was instantiated and publish the endpoint using any available
container context.

The following tables summarizes the constructors that can be used to configure the
context path of the asynchronous response endpoint.

Table 12-7 Constructors for Configuring the Context Path of the Asynchronous Response Endpoint

Constructor Description

Asyncd i ent Transport Feat ure(j ava. | ang. Qoj Configures the context path of the asynchronous
ect context) response endpoint.

Asyncd i ent Transport Feat ure(j ava. | ang. Qbj Configures the following:
ect context, bool ean

’ ¢ Context path of the asynchronous response
useAsyncW t hSyncl nvoke)

endpoint.

* Whether to enable asynchronous client transport for
synchronous operations. For more information, see
Configuring Asynchronous Client Transport for
Synchronous Operations.

12.5.1.4 Publishing the Asynchronous Response Endpoint

You can configure whether to publish the asynchronous response endpoint by passing
the doPubl i sh boolean value as an argument to
Asycnd i ent Transport Feat ur e() when configuring the following properties:

* Address of the asynchronous response endpoint. See Table 12-5.
* ReplyTo and FaultTo headers. See Table 12-6.

¢ Context path of the asynchronous response endpoint. See Table 12-7.

If doPubl i sh is set to false, then the asynchronous response endpoint is not
published automatically, but WS-Addressing headers will be added to outbound non-
one-way messages. This scenario supports the following programming models:

* Asynchronous polling (with no attempt to access the Response object)

¢ Dispatch asynchronous polling (with no attempt to access the Response object)

12-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

¢ Dispatch one-way invocation

* Synchronous invocation using synchronous transport option (default)

For all other asynchronous programming models, the availability of a asynchronous
response endpoint is required and the web service client is responsible for publishing
it prior to making outbound requests if doPubl i sh is set to false.

The following example configures the asynchronous response endpoint address and
publishes the asynchronous response endpoint:

String responseAddress = "http://local host: 7001/ nyRel i abl eServi ce/ nyRel i abl eResponseEndpoi nt";
bool ean doPublish = true;
AsyncC i ent Transport Feat ure asyncFeature =
new AsyncCl i ent Transport Feat ur e(r esponseAddr ess, doPublish);
BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

12.5.1.5 Configuring Asynchronous Client Transport for Synchronous Operations

You can enable or disable asynchronous client transport for synchronous operations
using the useAsyncW t hSyncl nvoke boolean flag when configuring the following
properties:

* Address of the asynchronous response endpoint. See Table 12-5.
¢ ReplyTo and FaultTo headers. See Table 12-6.

¢ Context path of the asynchronous response endpoint. See Table 12-7.

The following example configures the asynchronous response endpoint address and
enables use of asynchronous client transport for synchronous operations:

String responseAddress = "http://|ocal host: 7001/ nyRel i abl eServi ce/ nyRel i abl eResponseEndpoint";
bool ean useAsyncWthSyncl nvoke = true;
AsyncCl i ent Transport Feat ure asyncFeature =
new AsyncCl i ent Transport Feat ur e(r esponseAddr ess, useAsyncW t hSyncl nvoke);
BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

12.5.2 Developing the Asynchronous Handler Interface

Note:

If you set a single asynchronous handler instance on the port, as described in
this section, and subsequently attempt to configure a per-request
asynchronous handler, as described in Using the JAX-WS Reference
Implementation, then a runtime exception is returned.

As described in Building the Client Artifacts for Asynchronous Web Service
Invocation, the asynchronous handler interface,

webl ogi c. jws. jaxws. client.async. AsyncCl i ent Handl er Feat ur e, sets a
single asynchronous handler instance on the port rather than on a per-request basis.

For example, when you build the client classes using clientgen, as described in
Building the Client Artifacts for Asynchronous Web Service Invocation, the
asynchronous handler interface is generated, as shown below.

Example 12-1 Example of the Asynchronous Handler Interface

i mport javax.xnl .ws. Response;

Developing Asynchronous Clients 12-15

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

/**
* This class was generated by the JAX-WS RI.

* Oacle JAX-Ws 2.1.5
* Cenerated source version: 2.1

*
*/
public interface BackendServiceAsyncHandl er {

/**

*

* (@aram response

*/

public voi d onDoSonet hi ngResponse(Response<DoSonet hi ngResponse> response) ;

The asynchronous handler interface is generated as part of the same package as the
port interface and represents the methods required to accept responses for any
operation defined on the service. You can import and implement this interface in your
client code to provide a way to receive and process asynchronous responses in a
strongly-typed manner.

To set a single asynchronous handler instance on the port, pass an instance of the
webl ogi c. jws. jaxws. client.async. AsyncC i ent Handl er Feat ure asa
parameter when creating the web service proxy or dispatch. You specify the name of
the asynchronous handler that will be invoked when a response message is received.

The following example shows how to develop an asynchronous handler interface. The
example demonstrates how to initialize the Asyncd i ent Handl er Feat ur e to
connect the asynchronous handler implementation to the port used to make
invocations on the backend service. This example is excerpted from Example 11-1.

Example 12-2 Example of Developing the Asynchronous Handler Interface

i mport webl ogic.jws.jaxws.client.async. AsyncC i entHandl er Feat ure;

BackendSer vi ceAsyncHandl er handl er = new BackendServi ceAsyncHandl er () {
public voi d onDoSonet hi ngResponse(Response<DoSonet hi ngResponse> res) {
/1 ... Handl e Response ...
try {
DoSonet hi ngResponse response = res. get();
_last Response = response. get Return();
Systemout. println("Got async response: " + _|astResponse);
} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();
1
}
b
AsyncC i ent Handl er Feat ure handl er Feat ure = new AsyncC i ent Handl er Feat ure(handl er);
features. add(handl er Feature);
_features = features.toArray(new WebServi ceFeature[features.size()]);
BackendServi ce anotherPort = _service. get BackendServicePort(_features);

/1 Make the invocation. Qur asynchronous handl er inplenmentation (set

/1 into the AsyncO ientHandl er Feature above) receives the response.

String request = "Dance and sing";

System out. println("Invoking DoSonet hing asynchronously with request: " + request);

12-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

anot her Port . doSomet hi ngAsync(request);

12.5.3 Propagating User-defined Request Context to the Response

The webl ogi c. wsee. j axws. JAXWSPr oper t i es API defines the following
properties that enables users to propagate user-defined request context information to
the response message, without relying on the asynchronous handler instance state.

The asynchronous handler instance may be created at any time; for example, if the
client's server goes down and is restarted. Therefore, storing request context in the
asynchronous handler interface will not be useful.

The JAXWEPr oper t i es properties are defined in the following table.

Table 12-8 Properties Supported by the JAXWSProperties API
|

This property . . .

Specifies . ..

MVESSAGE_|I D

Message ID for the request. The client can set this property on the request context
to override the auto-generation of the per-request Message ID header.

PERSI STENT_CONTEXT Context properties required by the client or the communication channels. Web

service clients can persist context properties, as long as they are Serializable, for
the request message. These properties will be available in the response context
map available from the Response object when the asynchronous handler is
invoked. For more information, see Propagating Request Context to the Response.

RELATES TO

Message ID to which the response correlates.

REQUEST _TI MEQUT For synchronous operations using asynchronous client transport, maximum

amount of time to block and wait for a response. This property default to 0
indicating no timeout.

In addition, web service clients can persist context properties, as long as they are
Serializable, for the request message. Context properties can include those required by
the client or the communication channels. Message properties can be stored as part of
the webl ogi c. wsee. j axws. JAXWSPr oper ti es. PERSI STENT_CONTEXT Map
property and retrieved after the response message is returned. For complete details,
see Propagating Request Context to the Response.

12.6 Using Asynchronous Web Service Clients From Behind a Firewall
(Make Connection)

Web Services Make Connection is a client polling mechanism that provides an
alternative to asynchronous client transport, typically to provide support for clients
that are behind a firewall. WebLogic Server supports WS-MakeConnection version 1.1,
as described in the Make Connection specification at: ht t p: / / docs. oasi s-

open. or g/ ws-rx/ wsnt/ 200702, and is backwards compatible with version 1.0.

Specifically, Make Connection:

¢ Enables the decoupling of the response message from the initiating transport
request used to send the request message (similar to asynchronous client
transport).

* Supports web service clients that are non-addressable and unable to accept an
incoming connection (for example, clients behind a firewall).

Developing Asynchronous Clients 12-17

http://docs.oasis-open.org/ws-rx/wsmc/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

Enables a web service client to act as an MC-Initiator and the web service to act as
an MC-Receiver, as defined by the WS-MakeConnection specification.

The following figure, borrowed from the Web Services Make Connection specification,
shows a typical Make Connection message flow.

Figure 12-2 Make Connection Message Flow

[

\

Client @ MakeConnection Web Service
(wsa:ReplyTo=MCAnonURITuuid=1 23&56?]} Addressable
Non-addressable Empty Response (HTTP 202) (4) Endpoint
Endpaoint I {MC Receiver)
(MC Initiator)

@ getQuote() Request Message (\
(wsa:ReplyTo=MCAnonURI?uuid=1234567)

Empty Response (HTTP 202) (2)

Web Service

@ MakeConnection
(wsa:ReplyTo=MCAnonURI?uuid=1234567)

getQuoteResponse()

e RS A /

As shown in the previous figure, the Make Connection message flow is as follows:

1.

The get Quot e() request message is sent from the web service client (MC
Initiator) to the web service (MC Receiver). The ReplyTo header contains a Make
Connection anonymous URI that specifies the UUID for the MC Initiator.

The MC Receiver receives the get Quot e() message. The presence of the Make
Connection anonymous URI in the ReplyTo header indicates that the response
message can be sent back on the connection's back channel or the client will use
Make Connection polling to retrieve it.

The MC Receiver closes the connection by sending back an empty response (HTTP
202) to the MC Initiator.

Upon receiving an empty response, the MC Initiator initializes and starts its polling
mechanism to enable subsequent polls to be sent to the MC Receiver. Specifically,
the MC Initiator polling mechanism starts a timer with expiration set to the interval
configured for the time between successive polls.

. Upon timer expiration, the MC Initiator sends a Make Connection message to the

MC Receiver with the same Make Connection anonymous URI information in its
message.

As the MC Receiver has not completed process the getQuote() operation, no
response is available to send back to the MC Initiator. As a result, the MC Receiver
closes the connection by sending back another empty response (HTTP 202)
indicating that no responses are available at this time.

Upon receipt of the empty message, the MC Initiator restarts the timer for the Make
Connection polling mechanism.

Before the timer expires, the get Quot e() operation completes. Since the original
request contained a Make Connection anonymous URI in its ReplyTo header, the
MC Receiver stores the response and waits to receive the next Make Connection
message with a matching address.

12-18 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

5. Upon timer expiration, the MC Initiator sends a Make Connection message to the
MC Receiver with the same Make Connection anonymous URI information in its
message.

6. Upon receipt of the Make Connection message, the MC Receiver retrieves the
stored response message and sends it as a response to the received Make
Connection message.

The MC Initiator receives the response message and terminates the Make
Connection polling mechanism.

Make Connection transport is recommended when using asynchronous invocation
from behind a firewall. For a list of programming models supported, see Table 12-2.

The following sections describe how to enable and configure Make Connection on a
web service and client:

¢ Enabling and Configuring Make Connection on a Web Service

¢ Enabling and Configuring Make Connection on a Web Service Client

12.6.1 Enabling and Configuring Make Connection on a Web Service

Make Connection can be enabled by attaching a Make Connection policy assertion to
the web service and then calling its methods from a client using the standard JAX-WS
client APIs. A policy can be attached to a web service in one of the following ways:

¢ Adding an @0l i cy annotation to the JWS file. You can attach a Make Connection
policy at the class level only.

* Adding reference to the policy to the web service WSDL.

The following sections describe the steps required to enable Make Connection on a
web service:

¢ Creating the Web Service Make Connection WS-Policy File (Optional)

* Programming the JWS File to Enable Make Connection

12.6.1.1 Creating the Web Service Make Connection WS-Policy File (Optional)

A WS-Policy file is an XML file that contains policy assertions that comply with the
WS-Policy specification. In this case, the WS-Policy file contains web service Make
Connection policy assertions.

WebLogic Server includes pre-packaged WS-Policy files that contain typical Make
Connection assertions that you can use if you do not want to create your own WS-
Policy file. The pre-packaged WS-Policy files that support Make Connection are listed
in the following table. In some cases, both reliable messaging and Make Connection
are enabled by the policy. For more information, see Pre-packaged WS-Policy Files for
Web Services Reliable Messaging and Make Connection.

Note:

You can attach Make Connection policies at the class level only; you cannot
attach the Make Connection policies at the method level.

Developing Asynchronous Clients 12-19

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

Table 12-9 Pre-packaged WS-Policy Files That Support Make Connection
- -]

Pre-packaged WS-Policy File Description

M1, 1. xm Enables Make Connection support on the web service and specifies usage
as optional on the web service client. The WS-Policy 1.5 protocol is used.
See Mc1.1.xml (WS-Policy File).

M. xm Enables Make Connection support on the web service and specifies usage
as optional on the web service client. The WS-Policy 1.2 protocol is used.
See Mc.xml (WS-Policy File).

Reliabilityl.2 ExactlyOnce Specifies policy assertions related to quality of service. It enables Make

_WthML. 1. xm Connection support on the web service and specifies usage as optional on
the web service client. See Reliabilityl.2_ExactlyOnce_WithMC1.1.xml
(WS-Policy File).

Reliabilityl.2_SequenceSTR Specifies that in order to secure messages in a reliable sequence, the

. xm runtime will use the wsse: Securi t yTokenRef er ence that is referenced
in the Cr eat eSequence message. It enables Make Connection support on
the web service and specifies usage as optional on the web service client.
See Reliability1.2_SequenceSTR.xml (WS-Policy File).

Combines 1.2 and 1.0 WS-Reliable Messaging policy assertions. The policy
assertions for the 1.2 version Make Connection support on the web service
and specifies usage as optional on the web service client. This sample relies
on smart policy selection to determine the policy assertion that is applied
at runtime. See Reliability1.0_1.2.xml (WS-Policy File).

Reliabilityl.0_1.2. xm

You can use one of the pre-packaged Make Connection WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom WS-
Policy file. For example, you may wish to configure support of Make Connection as
required on the web service client side. The Make Connection policy assertions
conform to the WS-Policy Assertions specification.

To create a custom WS-Policy file that contains Make Connection assertions, use the
following guidelines:

¢ The root element of a WS-Policy file is always <wsp: Pol i cy>.

* To configure web service Make Connection, you simply add a
<wsnt: MCSuppor t ed> child element to define the web service Make Connection
support.

e The <wsnt: MCSuppor t ed> child element contains one policy attribute,
Opt i onal , that specifies whether Make Connection must be configured on the
web service client. This attribute can be settot r ue or f al se, and is setto t r ue by
default. If set to f al se, then use of Make Connection is required and both the
ReplyTo and FaultTo (if specified) headers must contain Make Connection
anonymous URIs.

The following example enables Make Connection on the web service and specifies that
Make Connection must be enabled on the web service client. In this example, the WS-
Policy 1.5 protocol is used.

<?xm version="1.0"?>
<wspl5: Policy xmns:wspl5="http://wm. w3. or g/ ns/ ws-policy"
xm ns:wsnc="http://docs. oasi s- open. or g/ ws-r x/ wsnt/ 200702" >

12-20 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

<wsnt: MCSupported wspl5: Optional ="fal se" />
</wspl5: Pol i cy>

12.6.1.2 Programming the JWS File to Enable Make Connection

This section describes how to enable Make Connection on the web service using a pre-
packaged or custom Make Connection WS-Policy file. For information about creating a
custom policy file, see Creating the Web Service Make Connection WS-Policy File
(Optional).

Use the @0l i cy annotation in your JWS file to specify that the web service has a WS-
Policy file attached to it that contains Make Connection assertions. WebLogic Server
delivers a set of pre-packaged WS-Policy files, as described in Pre-packaged WS-Policy
Files for Web Services Reliable Messaging and Make Connection.

Refer to the following guidelines when using the @0l i cy annotation for web service
reliable messaging:

* You can attach the Make Connection policy at the class level only; you cannot
attach the Make Connection policy at the method level.

¢ Usethe uri attribute to specify the build-time location of the policy file, as follows:

— If you have created your own WS-Policy file, specify its location relative to the
JWS file. For example:

@olicy(uri="MPolicy.xm", attachToWd| =true)

In this example, the McPol i cy. xm file is located in the same directory as the
JWS file.

— To specify one of the pre-packaged WS-Policy files or a WS-Policy file that is
packaged in a shared Java EE library, use the pol i cy: prefix along with the
name and path of the policy file. This syntax tells the j wsc Ant task at build-
time not to look for an actual file on the file system, but rather, that the web
service will retrieve the WS-Policy file from WebLogic Server at the time the
service is deployed.

Note:

Shared Java EE libraries are useful when you want to share a WS-Policy file
with multiple web services that are packaged in different Enterprise
applications. As long as the WS-Policy file is located in the META- | NF/

pol i ci es or VEB- | NF/ pol i ci es directory of the shared Java EE library,
you can specify the policy file in the same way as if it were packaged in the
same archive at the web service. See "Creating Shared Java EE Libraries and
Optional Packages" in Developing Applications for Oracle WebLogic Server for
information about creating libraries and setting up your environment so the
web service can locate the policy files.

— To specify that the policy file is published on the Web, use the ht t p: prefix
along with the URL, as shown in the following example:

@olicy(uri="http://someSite.con policies/nypolicy.xm"
attachToWdl =t rue)

¢ SettheattachToWsdl attribute of the @0l i cy annotation to specify whether the
policy file should be attached to the WSDL file that describes the public contract of

Developing Asynchronous Clients 12-21

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

the web service. Typically, you want to publicly publish the policy so that client
applications know the reliable messaging capabilities of the web service. For this
reason, the default value of this attribute ist r ue.

For more information about the @0l i cy annotation, see "weblogic.jws.Policy" in
WebLogic Web Services Reference for Oracle WebLogic Server.

The following example shows a simple JWS file that enables Make Connection; see the
explanation after the example for coding guidelines that correspond to the Java code
in bold.

package exanpl es.webservi ces. async

import javax.jws.\WebMet hod,;
import javax.jws.\WebhServi ce;
i mport webl ogi c. jws. Policy;

/**

* Sinple reliable Wb Service.
*/

@ebServi ce(name="Hel | oWr| dPort Type",
servi ceNanme="Hel | oWr | dServi ce")

@olicy(uri="MPolicy.xm", attachToWdl =true)
public class Hel | oWorldlnpl {
private static String onewaySaved| nput = null;

/**

* A one-way helloWrld nmethod that saves the given string for later
* concatenation to the end of the nessage passed into hel | oWrl dReturn.
*/
@\ebMet hod()
public void helloWrld(String input) {
Systemout.printIn(" Hello Wrld " + input);
onewaySaved| nput = input;

}
/**

* This echo method concatenates the saved nmessage from hel | oVorld
* onto the end of the provided message, and returns it.
*/
@\ebMet hod()
public String echo(String input2) {
Systemout.printIn(" Hello Wrld " + input2 + onewaySavedl nput);
return input + onewaySaved| nput;

}
}

As shown in the previous example, the custom McPol i cy. xm policy file is attached
to the web service at the class level, which means that the policy file is applied to all
public operations of the web service. You can attach a Make Connection policy at the
class level only; you cannot attach a Make Connection policy at the method level.

The policy file is attached to the WSDL file. For information about the pre-packaged
policies available and creating a custom policy, see Creating the Web Service Make
Connection WS-Policy File (Optional).

The echo() method has been marked with the @\bMet hod JWS annotation, which
means it is a public operation called echo. Because of the @0l i cy annotation, the
operation using Make Connection transport protocol.

12-22 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

12.6.2 Enabling and Configuring Make Connection on a Web Service Client

Note:

The Make Connection and asynchronous client transport features are
mutually exclusive. If you attempt to enable both features on the same web
service client, an error is returned. For more information about asynchronous
client transport, see Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport).

It is recommended that you use the asynchronous handler feature,
Asyncd i ent Handl er Feat ur e when using the asynchronous callback
handler programming model. For more information, see Developing the
Asynchronous Handler Interface.

To enable Make Connection on a web service client, pass an instance of the

webl ogi c. wsee. nt. api . McFeat ur e as a parameter when creating the web service
proxy or dispatch. A simple example of how to enable Make Connection is shown
below.

Note:

This example will use synchronous transport for synchronous methods. To
configure Make Connection as the transport for synchronous methods, see
Configuring Make Connection as the Transport for Synchronous Methods.

package exanpl es. webservices. myservice.client;
i mport webl ogi c. wsee. nt. api . McFeature;
Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

MFeature ncFeature = new MFeature();
features. add(ncFeature);

/1 ... Inplenment asynchronous handler interface as described in

Il Developing the Asynchronous Handler Interface.

oo

Asyncd i ent Handl er Feat ure handl er Feat ure = new Asyncd i ent Handl er Feat ur e(handl er) ;
features. add(handl er Feature);

_features = features.toArray(new VebServi ceFeature[features.size()]);
BackendService port = _service. get BackendServi cePort(_features);

/1 Make the invocation. Qur asynchronous handl er inplenmentation (set

/1 into the Asyncd ientHandl er Feature above) receives the response.

String request = "Dance and sing";

Systemout. println("Invoking DoSonet hi ng asynchronously with request: " + request);
anot her Por t . doSomet hi ngAsync(request);

To configure specific features of Make Connection on the web service client, as
described in the following sections.

Developing Asynchronous Clients 12-23

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

¢ Configuring the Expiration Time for Sending Make Connection Messages
¢ Configuring the Polling Interval

¢ Configuring the Exponential Backoff

¢ Configuring Make Connection as the Transport for Synchronous Methods

12.6.2.1 Configuring the Expiration Time for Sending Make Connection Messages

Table 12-10 defines that McFeat ur € methods for configuring the maximum interval
of time before an MC Initiator stops sending Make Connection messages to an MC
Receiver.

Table 12-10 Methods for Configuring the Expiration Time for Sending Make Connection Messages
- - |

Method Description

String getsExpires() Returns the expiration value currently
configured.

voi d set Expires(Stringexpires) Set the expiration time.

The value specified must be a positive
value and conform to the XML schema
duration lexical format,
PnYnMhDTnHNMIS, where nY specifies the
number of years, NMspecifies the number
of months, nD specifies the number of
days, T is the date/time separator, nH
specifies the number of hours, nMspecifies
the number of minutes, and nS specifies
the number of seconds. This value defaults
to P1D (1 day).

12.6.2.2 Configuring the Polling Interval

Table 12-11 defines that McFeat ur e methods for configuring the interval of time that
must pass before a Make Connection message is sent by an MC Initiator to an MC
Receiver after the receipt of an empty response message. If the MC Initiator does not
receive a non-empty response for a given message within the specified interval, the
MC Initiator sends another Make Connection message.

Table 12-11 Methods for Configuring the Polling Interval
- |

Method Description

String getlnterval () Gets the polling interval.

12-24 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

Table 12-11 (Cont.) Methods for Configuring the Polling Interval
. ___|

Method Description

voi d setlnterval (Stringpollinglnterval) Set the polling interval.

The value specified must be a positive
value and conform to the XML schema
duration lexical format,
PnYnMhDTnHNMS, where nY specifies the
number of years, NMspecifies the number
of months, nD specifies the number of
days, T is the date/time separator, nH
specifies the number of hours, nMspecifies
the number of minutes, and nS specifies
the number of seconds. This value defaults
to PODT5S (5 seconds).

In the following example, the polling interval is set to 36 hours.

MFeature ncFeature = new MFeature();
ncFeat ure. set | nterval ("PODT36H")
MyService port = service.get MyServicePort (ntFeature);

12.6.2.3 Configuring the Exponential Backoff

Table 12-12 defines the McFeat ur e methods for configuring the exponential backoff
flag. This flag specifies whether the polling interval, described in Configuring the
Polling Interval, will be adjusted using the exponential backoff algorithm. In this case,
if the MC Initiator does not receive a non-empty response for the time interval
specified by the polling interval, the exponential backoff algorithm is used for timing
successive retransmissions by the MC Initiator, should the response not be received.

The exponential backoff algorithm specifies that successive polling intervals should
increase exponentially, based on the polling interval. For example, if the polling
interval is 2 seconds, and the exponential backoff element is set, successive polling
intervals if the response is not received are 2, 4, 8, 16, 32, and so on.

This value defaults to false, the same polling interval is used in successive retries; the
interval does not increase exponentially.

Table 12-12 Methods for Configuring the Exponential Backoff

__|]
Method Description

bool ean i sExponenti al Backof f () Returns a boolean value indicating
whether exponential backoff is enabled.

voi d set Exponenti al Backof f (bool ean backof f) Set the exponential backoff flag. Valid
values aret r ue and f al se. This flag
defaults to f al se.

In the following example, enables the exponential backoff flag.

MFeature ncFeature = new MFeature();
mcFeat ur e. set Messagel nt er val (PODT36H)
mcFeat ur e. set Exponent i al Backof f (true);

Developing Asynchronous Clients 12-25

Using the JAX-WS Reference Implementation

MyService port = service. get M/ServicePort (ntFeature);

12.6.2.4 Configuring Make Connection as the Transport for Synchronous Methods

By default, synchronous methods use synchronous transport even when Make
Connection is enabled on the client. You can configure your client to use Make
Connection as the transport for synchronous methods. In this case, Make Connection
messages are sent by the MC Initiator based on the configured polling interval
(described in Configuring the Polling Interval) until a non-empty response message is
received.

To configure Make Connection as the transport protocol to use for synchronous
methods, use one of the following methods:

e When instantiating a new McFeat ur e() object, you can pass as a parameter a
boolean value that specifies whether Make Connection should be used as the
transport protocol for synchronous methods. For example:

MFeature ncFeature = new MFeature(true);
MyServi ce port = service. get M/ServicePort (ntFeature);

* Use the McFeat ur e methods defined in Table 12-13. For example:

MFeature ncFeature = new MFeature();
mcFeat ur e. set UseMCW t hSyncl nvoke(true);
MyService port = service.get MyServicePort (ntFeature);

Table 12-13 Methods for Configuring Synchronous Method Support

Method Description

bool ean i sUseMCW t hSyncl nvoke() Returns a boolean value indicating
whether synchronous method support is
enabled.

voi d set UseMCW t hSyncl nvoke(bool ean Sets the synchronous method support flag.

useMCW t hSyncl nvoke) Valid values are t r ue and f al se. This

flag defaults to f al se.

You can set the maximum amount of time a synchronous method will block and wait
for a response using the

webl ogi c. wsee. j axws. JAXWSPr oper ti es. REQUEST_TI MECQUT property. This
property default to 0 indicating no timeout. For more information about setting
message properties, see Propagating User-defined Request Context to the Response.

12.7 Using the JAX-WS Reference Implementation

The JAX-WS Reference Implementation (RI) supports the following programming
models:

* Asynchronous client polling through use of the
java. util.concurrent. Futur e interface.

12-26 Developing JAX-WS Web Services for Oracle WebLogic Server

Using the JAX-WS Reference Implementation

* Asynchronous callback handlers on a per request basis. The calling client specifies
the callback handler at invocation time. When the response is available, the
callback handler is invoked to process the response.

Unlike with asynchronous client transport feature, the JAX-WS RI provides very
limited support for WS-Addressing, including:

* Manual support for adding client-side outbound WS-Addressing headers.
e Manual support for publishing the client-side endpoint to receive responses.

¢ No support for detecting incorrect client-side programming model (resulting in
synchronous call hanging, for example).

¢ No support for surviving a client-side or service-side restart.

The following example shows a simple client file, AsyncC i ent, that has a single
method, AddNunber sTest Dr i ve, that asynchronously invokes the

AddNunber sAsync method of the AddNunber sSer vi ce service. The Java code in
bold is described following the code sample.

package exanpl es.webservices. async. client;

inmport java.util.concurrent.ExecutionException;
inmport java.util.concurrent. TimeUnit;

i mport javax.xm .ws. Bi ndi ngProvi der;

import java.util.concurrent.Future;
import javax.xm .ws. AsyncHandl er;
i mport javax.xnl.ws. Response;

public class AsyncCient {

private AddNumbersPort Type port = null;
protected void setUp() throws Exception {
AddNunber sServi ce service = new AddNurmber sServi ce();
port = service. get AddNumbersPort ();
String serverURl = System getProperty("w s-server");
((Bindi ngProvider) port).getRequest Cont ext (). put (
Bi ndi ngProvi der. ENDPO NT_ADDRESS_PROPERTY,
"http://" + serverUR + "/ JAXWS_ASYNC/ AddNunber sServi ce");

/**
*
* Asynchronous cal | back handl er
*|
class AddNunber sCal | backHandl er inpl enents AsyncHandl er <AddNunber sResponse> {
private AddNunber sResponse out put;
public void handl eResponse(Response<AddNunber sResponse> response) {
try {
output = response. get();
} catch (ExecutionException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
1
1
AddNunber sResponse get Response() {
return output;

Developing Asynchronous Clients 12-27

Using the JAX-WS Reference Implementation

}

}

public void AddNunbersTestDrive() throws Exception {
int nunberl = 10;
int nunber2 = 20;

}
}

/'l Asynchronous Cal | back nethod
AddNunber sCal | backHandl er cal | backHandl er =
new AddNumber sCal | backHandl er ();
Fut ure<?> resp = port.addNunber sAsync(nunber1, nunber2,
cal I backHandl er);
Il For the purposes of a test, block until the async call conpletes
resp. get (5L, TinmeUnit. M NUTES);
int result = call backHandl er. get Response(). get Return();

/1 Polling method
Response<AddNunmber sResponse> addNunber sResp =
port. AddNunber sAsync(nunber 1, nunber2);
whi | e (!addNunber sResp.isDone()) {
Thr ead. sl eep(100);
1

AddNunber sResponse reply = addNunber sResp. get () ;
Systemout. printIn("Server responded through polling with: " +
reply. get ResponseType());

The example demonstrates the steps to implement both the asynchronous polling and
asynchronous callback handler programming models.

To implement an asynchronous callback handler:

1.

Create an asynchronous handler that implements the

javax. xml . ws. AsyncHandl| er <T> interface (see ht t p: //

docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/ AsyncHandl er. ht m).
The asynchronous handler defines one method, handl eResponse, that enables
clients to receive callback notifications at the completion of service endpoint

operations that are invoked asynchronously. The type should be set to
AddNunber Response.

class AddNunber sCal | backHandl er i npl enents AsyncHandl er <AddNunber sResponse> {
private AddNunber sResponse out put;

public void handl eResponse(Response<AddNunber sResponse> response) {
try {
output = response. get();
} catch (ExecutionException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();

}
}

AddNunber sResponse get Response() {
return output;
}

}

2. Instantiate the asynchronous callback handler.

12-28 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/xml/ws/AsyncHandler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/AsyncHandler.html

Propagating Request Context to the Response

AddNunber sCal | backHandl er cal | backHandl er =
new AddNunber sCal | backHandl er () ;

3. Instantiate the AddNunber sSer vi ce web service and call the asynchronous
version of the web service method, addNunber sAsync, passing a handle to the
asynchronous callback handler.

AddNunber sServi ce service = new AddNunber sServi ce();
port = service. get AddNunbersPort();

Future<?> resp = port.addNurmber sAsync(number 1, nunber 2,
cal I backHandl er);

java.util.concurrent. Future (seehttps://docs. oracl e.com

j avase/ 8/ docs/ api /javal util/concurrent/ Future. htnl)represents
the result of an asynchronous computation and provides methods for checking
the status of the asynchronous task, getting the result, or canceling the task
execution.

4. Get the result of the asynchronous computation. In this example, a timeout value
is specified to wait for the computation to complete.

resp. get (5L, TimeUnit. M NUTES),
5. Use the callback handler to access the response message.
int result = callbackHandl er. get Response(). get Return();
To implement an asynchronous polling mechanism:

1. Instantiate the AddNurber sSer vi ce web service and call the asynchronous
version of the web service method, addNunber sAsync.

Response<AddNurmber sResponse> addNunber sResp =
port. AddNunber sAsync(nunber 1, nunber2);

2. Sleep until a message is received.

whi | e (!addNunbersResp.isDone()) {
Thr ead. sl eep(100);

3. Poll for a response.

AddNunber sResponse reply = addNurber sResp. get () ;

12.8 Propagating Request Context to the Response

WebLogic Server provides a powerful facility that enables you to attach your business
context—for example, a business-level message ID—to the request message and access
it when the response is returned, regardless of what the request and response
messages convey over the wire. For example, you may have a business-level message
ID that will not otherwise be available in the response message. By propagating this
information with the message, you can access it when the response message is
returned.

Web service clients can store any request message context property, as long as it is
Serializable. Message context properties can be stored as part of the

webl ogi c. wsee. j axws. JAXWSPr oper ti es. PERSI STENT_CONTEXT Map
property and retrieved after the response message is returned.

Developing Asynchronous Clients 12-29

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

Monitoring Asynchronous Web Service Invocation

The following example shows how to use the PERSI STENT_CONTEXT Map property
to define and set a message context property.

Example 12-3 Setting Message Context Properties

i mport webl ogi c. wsee. j axws. JAXWSPr operti es;

My/ClientPort port = nyService.getPort();
Map<String, Serializable> clientPersistProps =
port. get Request Cont ext (). get (JAXWSPr oper ti es. PERSI STENT_CONTEXT) ;
Serializable obj = <ny_property>;
client PersistProps. put ("MProperty", obj);

port. myQperati onAsync(<args>, new AsyncHandl er <MyQper ati onResponse>() {
public void handl eResponse(Response<MyQper ati onResponse> res) {

try {
/1 Get the actual response

MyOper ati onResponse response = res. get().getReturn();

/] Get the property stored when meking request. Note, this property did not get
/] passed over the wire with the reugest. The web services runtine stores it.
Map<String, Serializable> clientPersistProps =
res. get Cont ext (). get (JAXWSPr operti es. PERSI STENT_CONTEXT) ;

Serializable obj = clientPersistProps.get("MHProperty");

/1 Do sonething with MyProperty
} catch (Exception e) {

[/ Error handling
}

12.9 Monitoring Asynchronous Web Service Invocation

You can monitor runtime information for clients that invoke web services
asynchronously, such as number of invocations, errors, faults, and so on, using the
WebLogic Server Administration Console. To monitor web service clients, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab.

If you use the Make Connection transport protocol, you can monitor the Make
Connection anonymous endpoints for a web service or client. For each anonymous
endpoint, runtime monitoring information is displayed, such as the number of
messages received, the number of messages pending, and so on.

You can customize the information that is shown in the table by clicking Customize
this table.

To monitor Make Connection anonymous endpoints for a web service, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the web service is packaged.
Expand the application by clicking the + node; the web services in the application are
listed under the Web Services category. Click on the name of the web service and
select Monitoring> Ports> Make Connection.

To monitor Make Connection anonymous endpoints for a web service client, click on
the Deployments node in the left pane and, in the Deployments table that appears in

12-30 Developing JAX-WS Web Services for Oracle WebLogic Server

Clustering Considerations for Asynchronous Web Service Messaging

the right pane, locate the Enterprise application in which the web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab. Then click Monitoring> Servers> Make
Connection.

12.10 Clustering Considerations for Asynchronous Web Service

Messaging

When a web service client runs in a cluster, you need to make special allowances to
ensure that the response messages can be delivered properly to the asynchronous
response endpoint for asynchronous calls. You defined the asynchronous response
endpoint with the AsyncClientTransportFeature, as described in Enabling and
Configuring the Asynchronous Client Transport Feature.

Consider the scenario shown in the following figure.
Figure 12-3 Clustering Scenario Resulting in an Error
Web Service Client

i .|
]]
]

! External HTTP :
i Request @®)

L -

Cliant Cluster

™ Front End

NG @

Load balanced Response to asynchronous
external request response endpoint — ERROR!

[There is no asynchronous

response endpoint
Serverl @ Server? on Serverd,)
N Asynchronous "
Client Response Client
WebApp, Endpoint WebApp

dosomethinghAsync s dnfSomethingiayne
Response (ReplyTo=asynchranous .

*.. response endpoint] -

“d

Service Endpoint

In the scenario shown in the previous figure:

* A two-node cluster hosts the client application; the nodes are named Serverl and
Server2. The cluster has a simple load-balancing front-end proxy.

¢ The client application is a Web application called ClientWebApp which is deployed
homogeneously to the cluster. In other words, the Web application runs on both
member servers in the cluster.

Developing Asynchronous Clients 12-31

Clustering Considerations for Asynchronous Web Service Messaging

External clients of the ClientWebApp application make requests through the
cluster front-end address.

Now consider the following sequence:

1.

2.

An external client requests a page from ClientWebApp via the cluster front-end.

The cluster front-end load balances the page request and sends it to the
ClientWebApp on Serverl.

ClientWebApp on Server] creates an instance of a web service client,
BackendServiceClient, to communicate with its back-end service, BackendService.
The creation of BackendServiceClient causes an asynchronous response endpoint
to be published to receive asynchronous responses whenever
BackendServiceClient is used to make an asynchronous request.

ClientWebApp on Serverl calls

BackendSer vi ced i ent . doSoret hi ngAsync() to perform an operation on
the backend service. The address of the asynchronous response endpoint is
included in the ReplyTo address. This address starts with the address of the
cluster front end, and not the address of Serverl.

The cluster receives the response to the doSoret hi ng operation.
The cluster load balances the message, this time to Server2.

The message delivery fails because there is no asynchronous response endpoint
on Server2 to receive the response.

You can use one of the following to resolve this problem:

Use a SOAP-aware cluster front-end proxy plug-in, such as WebLogic Server
HttpClusterServlet. For more information, see "Configure Proxy Plug-ins" in
Administering Clusters for Oracle WebLogic Server. This option may not be feasible,
for example if your company has standardized on a cluster front-end technology.

Ensure that all member servers in a cluster publish an asynchronous response
endpoint so that the asynchronous response messages can be delivered to any
member server and optionally forwarded to the correct server via in-place cluster
routing.

To implement the second option, it is recommended that you define a singleton port
instance and initialize it when the client container initializes (upon deployment). For
an example illustrating the recommended method for initializing the asynchronous
response endpoint in a cluster, see Example 11-1.

Note:

You may choose to initialize the endpoint in different ways depending on the
container type. For example, if the client is hosted in a web service, a method
on the web service container could be annotated with @ost Const r uct and
that method could initialize the singleton port. In an EJB container, you could
use the ej bCr eat e() method as the trigger point for creating the singleton
port.

12-32 Developing JAX-WS Web Services for Oracle WebLogic Server

13

Roadmap for Developing Reliable Web
Services and Clients

This chapter presents best practices for developing WebLogic web services and clients
for Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:
¢ Roadmap for Developing Reliable Web Service Clients
* Roadmap for Developing Reliable Web Services

* Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make
Connection)

¢ Roadmap for Securing Reliable Web Services

Note:

See also Roadmap for Configuring Web Service Persistence.

13.1 Roadmap for Developing Reliable Web Service Clients

Table 13-1 provides best practices for developing reliable web service clients,
including an example that illustrates the best practices presented. These guidelines
should be used in conjunction with the guidelines provided in Roadmap for
Developing JAX-WS Web Service Clients.

Table 13-1 Roadmap for Developing Reliable Web Service Clients

Best Practice Description

Always implement a reliability error For more information, see Implementing the Reliability Error Listener.
listener.

Group messages into units of work. Rather than incur the RM sequence creation and termination protocol

overhead for every message sent, you can group messages into business
units of work—also referred to as batching. For more information, see
Grouping Messages into Business Units of Work (Batching).

Note: This best practice is not demonstrated in Example 13-1.

Set the acknowledgement interval toa The recommended setting is two times the nominal interval between
realistic value for your particular requests. For more information, see Configuring the Acknowledgement
scenario. Interval.

Note: This best practice is not demonstrated in Example 13-1.

Roadmap for Developing Reliable Web Services and Clients 13-1

Roadmap for Developing Reliable Web Service Clients

Table 13-1 (Cont.) Roadmap for Developing Reliable Web Service Clients
. __|

Best Practice Description

Set the base retransmission interval to The recommended setting is two times the acknowledgement interval
a realistic value for your particular or nominal response time, whichever is greater. For more information,
scenario. see Configuring the Base Retransmission Interval.

Note: This best practice is not demonstrated in Example 13-1.

Set timeouts (inactivity and sequence For more information, see Configuring Inactivity Timeout and
expiration) to realistic values for your ~ Configuring the Sequence Expiration.

particular scenario. Note: This best practice is not demonstrated in Example 13-1.

The following example illustrates best practices for developing reliable web service
clients.

Example 13-1 Reliable Web Service Client Best Practices Example

inport java.io.*;
inport java.util.*;

inport javax.servlet.*;
import javax.xni.bind. JAXBCont ext ;
inport javax.xm.ws.*;

import weblogic.jws.jaxws.client.CientldentityFeature;

inmport webl ogi c.jws.jaxws.client.async. Asyncd i ent Handl er Feat ure;

i mport webl ogi c.jws.jaxws.client.async. Asyncd i ent Transport Feat ure;
i mport webl ogi c. wsee.reliability2. api.ReliabilityErrorContext;

i mport webl ogi c. wsee.reliability2. api.ReliabilityErrorlListener;

i mport webl ogi c. wsee.reliability2. api.WrnOientlnitFeature;

inmport com sun. xn . ws. devel oper. JAXWSPr operti es;

/**
* Exanple client for invoking a reliable web service asynchronously.
*|
public class BestPracticeAsyncRnCl i ent
extends GenericServlet {

private BackendRel i abl eServi ceService _service;
private BackendRel i abl eService _singletonPort;
private WebServiceFeature[] _features;

private static int _requestCount;
private static String _|astResponse;
private static final String MY_PROPERTY = "MProperty";

@verride
public void init()
throws Servl et Exception {

_request Count = 0;
_|last Response = nul | ;

/] Only create the web service object once as it is expensive to create repeatedly.
if (_service == null) {
_service = new BackendRel i abl eServi ceServi ce();

}

13-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Roadmap for Developing Reliable Web Service Clients

/] Best Practice: Use a stored list of features, per client ID, to create client instances.
/] Define all features for the web service port, per client ID, so that they are

/1 consistent each time the port is called. For exanple:

/| _service. get BackendServi cePort (_features);

Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

/1 Best Practice: Explicitly define the client ID.
ClientldentityFeature clientldFeature =

new CientldentityFeature("MBackendServi ceAsyncRnClient");
features.add(clientldFeature);

/] Best Practice: Always inplenent a reliability error |istener.
/1 Include this feature in your reusable feature list. This enables you to deternine
/1 a reason for failure, for exanple, RMcannot deliver a request or the RMsequence fails in
Il some way (for exanple, client credentials refused at service).
VérnClientlnitFeature rnfFeature = new WsrnClientlnitFeature();
features. add(rnfeature);
rnfeat ure. setErrorListener(new ReliabilityErrorListener() {
public void onReliabilityError(ReliabilityErrorContext context) {

[/ At a *minimnt do this
Systemout. println("RM sequence failure: " +

cont ext . get Faul t Summar yMessage());
_l ast Response = cont ext. get Faul t Sumrar yMessage() ;

/1 And optionally do this...

/1 The context parameter conveys whether a request or the entire
/'l sequence has failed. |If a sequence fails, you will get a notification
[l for each undelivered request (if any) on the sequence.
if (context.isRequestSpecific()) {
/1 Single request failure (possibly as part of a l|arger sequence failure).
I/ Retrieve the original request.
String operationNanme = context.get OperationNane();
Systemout.printin("Failed to deliver request for operation'" +
operationNane + "'. Fault summary: " +
cont ext . get Faul t Sunmar yMessage());
if ("DoSonet hing".equal s(operationName)) {
try {
String request = context.get Request (JAXBCont ext. newl nstance(),
String.class);
Systemout.printin("Failed to deliver request for operation'" +
operationName + "' with content: " +
request);
Map<String, Serializable> requestProps =
cont ext . get User Request Cont ext Properties();
if (requestProps !=null) {
/] Retrieve the request property. Use MyProperty
/1 to describe the request that failed and print this value
[l during the sinple "error recovery' bel ow.
String nyProperty = (String)requestProps. get (MY_PROPERTY);
Systemout. println("Got MyProperty value propagated fromrequest: "+
myProperty);
Systemout. println(nyProperty + " failed!");

} catch (Exception e) {
e.printStackTrace();
}
1

Roadmap for Developing Reliable Web Services and Clients 13-3

Roadmap for Developing Reliable Web Service Clients

} else {
/1 The entire sequence has encountered an error.
Systemout.printin("Entire sequence failed: " +
cont ext . get Faul t Sunmar yMessage());

1

/'l Asynchronous endpoi nt.
AsyncCl i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(get Servl et Context ());
features. add(asyncFeature);

/] Best Practice: Define a port-based asynchronous cal |l back handler,
/1 AsyncOient Handl er Feature, for asynchronous and di spatch cal | back handling.
BackendRel i abl eServi ceAsyncHandl er handl er =
new BackendRel i abl eServi ceAsyncHandl er () {
public voi d onDoSonet hi ngResponse(Response<DoSonet hi ngResponse> res) {
Il ... Handl e Response ...
try {
/] Show getting the MyProperty val ue back.
DoSonet hi ngResponse response = res. get();
_last Response = response. get Return();
Systemout.printIn("Got (reliable) async response: " + _|astResponse);
/] Retrieve the request property. This property can be used to
/1 "remenber' the context of the request and subsequently process
/'l the response.
Map<String, Serializable> requestProps =
(Map<String, Serializable>)
res. get Cont ext (). get (JAXWSPr operti es. PERSI STENT_CONTEXT) ;
String nyProperty = (String)requestProps. get (MY_PROPERTY);
Systemout. println("Got MyProperty value propagated fromrequest: "+
myProperty);
} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();
1
}
B
AsyncC i ent Handl er Feat ure handl er Feature =
new AsyncC i ent Handl er Feat ur e(handl er);
features. add(handl er Feature);

/1 Set the features used when creating clients with
Il the client 1D "MBackendServiceAsyncRrClient."

_features = features.toArray(new WebServi ceFeature[features.size()]);

/] Best Practice: Define a singleton port instance and initialize it when

/1 the client container initializes (upon deployment).

/1 The singleton port will be available for the life of the servlet.

Il Creation of the singleton port triggers the asynchronous response endpoint to be published
[/ and it will remain published until our container (Wb application) is undeployed.

/] Note, we will get a call to destroy() before this.

_singletonPort = _service. getBackendRel i abl eServicePort(_features);

1
@verride

public void service(Servl et Request req, ServletResponse res)
throws ServletException, |CException {

13-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Roadmap for Developing Reliable Web Service Clients

[/ TODO ... Read the servlet request ...

[l For this sinple exanple, echo the _|astResponse captured from
/1 an asynchronous DoSonet hi ngResponse response nessage.

if (_lastResponse !=null) {
res.getWiter().wite(_| astResponse);
_lastResponse = null; // Clear the response so we can get another
return;

}

/1 Set _lastResponse to NULL in order to make a new invocation agai nst
/1 BackendService to generate a new response

/] Best Practice: Synchronize use of client instances.

/1 Create another port using the *exact* same features used when creating _singletonPort.
/1 Note, this port uses the sane client 1D as the singleton port and it is effectively the
/] same as the singleton fromthe perspective of the web services runtine.

/1 This port will use the asynchronous response endpoint for the client ID,

/] as it is defined in the features |ist.

/1 NOTE: This is *DEFINITELY* not best practice or ideal because our applicationis

/1 incurring the cost of an RM handshake and sequence termination

/1 for *every* reliable request sent. It would be better to send

/1 mul tiple requests on each sequence. |f there is not a natural grouping
/1 for nmessages (a business 'unit of work'), then you could batch

/1 requests onto a sequence for efficiency. For nore information, see

11 Grouping Messages into Business Units of Work (Batching).

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

/1 Set the endpoint address for BackendServi ce.
((Bi ndi ngProvi der) anot her Port) . get Request Cont ext ().
put (Bi ndi ngPr ovi der . ENDPOl NT_ADDRESS_PROPERTY,
“http://1ocal host: 7001/ Best Practi ceRel i abl eServi ce/ BackendRel i abl eServi ce");

/1 Make the invocation. Qur asynchronous handler inplenentation (set

/1 into the AsyncCientHandl er Feature above) receives the response.

String request = "Protect and serve";

Systemout. println("Invoking DoSoret hing reliably/async with request: " +
request);

/1 Add a persistent context property that will be returned on the response.

[l This property can be used to 'renenber' the context of this

/'l request and subsequently process the response. This property will *not*

/] get passed over wire, so the properties can change independent of the

/] application message.

Map<String, Serializable> persistentContext =

(Map<String, Serializable>)((BindingProvider)anotherPort).
get Request Cont ext (). get (JAXWSPr oper ti es. PERSI STENT_CONTEXT) ;

String nyProperty = "Request " + (++_request Count);

per si st ent Cont ext . put (MY_PROPERTY, nyProperty);

Systemout. println("Request being made (reliably) with M/Property value: " +
myProperty);

anot her Port . doSomet hi ngAsync(request);

/1 Return a canned string indicating the response was not received
/1 synchronously. Cient needs to invoke the servlet again to get
/'l the response.

res.getWiter().wite("Waiting for response...");

/1 Best Practice: Explicitly close client instances when processing i s conplete.

Roadmap for Developing Reliable Web Services and Clients 13-5

Roadmap for Developing Reliable Web Services

[l 1f not closed, the port will be closed automatically when it goes out of scope.

/1 This will force the ternination of the RM sequence we created when sending the first
/1 doSonething request. For a better way to handle this, see

'l Grouping Messages into Business Units of Work (Batching).

/1 NOTE: Even though the port is closed explicitly (or even if it goes out of scope)

/1 the reliable request sent above will still be delivered
/1 under the scope of the client ID used. So, even if the service endpoint
/1 is down, RMretries the request and delivers it when the service endpoint
/1 avail abl e. The asynchronous resopnse will be delivered as if the port instance was
/1 still available.
((java.io.d oseabl e)anot herPort). cl ose();
1
@verride

public void destroy() {

try {

Il Best Practice: Explicitly close client instances when processing is conplete.
/1 Close the singleton port created during initialization. Note, the asynchronous
/'l response endpoi nt generated by creating _singletonPort *remains*

/1 published until our container (Web application) is undepl oyed.

((java.io.C oseabl e) _singletonPort).close();

/1 Upon return, the Wb application is undeployed, and our asynchronous

/'l response endpoint is stopped

(unpubl i shed). At this point,

Il the client 1D used for _singletonPort will be unregistered and will no |onger be
Il visible fromthe Administration Console and W.ST.

} catch (Exception e) {
e.printStackTrace();

13.2 Roadmap for Developing Reliable Web Services

Table 13-2 provides best practices for developing reliable web services. For best
practices when accessing reliable web services from behind a firewall, see Roadmap
for Accessing Reliable Web Services from Behind a Firewall (Make Connection).

Table 13-2 Roadmap for Developing Reliable Web Services

Best Practice

Description

Set the base retransmission interval to
a realistic value for your particular
scenario.

For more information, see Configuring the Base Retransmission
Interval.

Set the acknowledgement interval to a
realistic value for your particular
scenario.

The recommended setting is two times the nominal interval between
requests. For more information, see Configuring the Acknowledgement
Interval.

Set timeouts (inactivity and sequence
expiration) to realistic values for your
particular scenario.

Consider the following;:

¢ For very short-lived exchanges, the default timeouts may be too
long and sequence state might be maintained longer than necessary.

* Set timeouts to two times the expected lifetime of a given business
unit of work. This allows the sequence to live long enough

For more information, see Configuring Inactivity Timeout and

Configuring the Sequence Expiration.

13-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make Connection)

Table 13-2 (Cont.) Roadmap for Developing Reliable Web Services
. ___|

Best Practice

Description

Use an reliable messaging policy that
reflects the minimum delivery
assurance (or quality of service)
required.

By default, the delivery assurance is set to Exactly Once, In Order. If
you do not require ordering, it can increase performance to set the
delivery assurance to simply Exactly Once. Similarly, if your service can
tolerate duplicate requests, delivery assurance can be set to At Least
Once.

For more information about delivery assurance for reliable messaging,
see Table 14-1 and Creating the Web Service Reliable Messaging WS-
Policy File.

13.3 Roadmap for Accessing Reliable Web Services from Behind a
Firewall (Make Connection)

Table 13-3 provides best practices for accessing reliable web services from behind a
firewall using Make Connection. These guidelines should be used in conjunction with
the general guidelines provided in Roadmap for Developing Reliable Web Services
and Roadmap for Developing Asynchronous Web Service Clients.

Table 13-3 Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make Connection)

Best Practice

Description

Coordinate the Make Connection
polling interval with the reliable
messaging base retransmission
interval.

The polling interval you set for Make Connection transport sets the
lower limit for the amount of time it takes for reliable messaging
protocol messages to make the round trip between the client and
service. If you set the reliable messaging base retransmission interval to
a value near to the Make Connection polling interval, it will be unlikely
that a reliable messaging request will be received by the web service,
and the accompanying RM acknowledgement sent for that request (at
best one Make Connection polling interval later) before the reliable
messaging runtime attempts to retransmit the request. Setting the
reliable messaging base retransmission interval to a value that is too
low results in unnecessary retransmissions for requests, and potentially
a cascading load on the service side as it attempts to process redundant
incoming requests and Make Connection poll messages to retrieve the
responses from those requests.

Oracle recommends setting the base retransmission interval to a value
that is at least two times the Make Connection polling interval.

Note: When web services reliable messaging and Make Connection are
used together, the Make Connection polling interval value will be
adjusted at runtime, if necessary, to ensure that the value is set at least 3
seconds less than the reliable messaging base transmission interval. If
the base transmission interval is three seconds or less, the Make
Connection polling interval is set to the value of the base retransmission
interval.

For more information setting the Make Connection polling interval and
reliable messaging base retransmission interval, see Configuring the
Polling Interval and Configuring the Base Retransmission Interval,
respectively.

Roadmap for Developing Reliable Web Services and Clients 13-7

Roadmap for Securing Reliable Web Services

13.4 Roadmap for Securing Reliable Web Services

Table 13-4 provides best practices for securing reliable web services using WS-
SecureConversation. These guidelines should be used in conjunction with the
guidelines provided in Roadmap for Developing Reliable Web Services.

Table 13-4 Roadmap for Securing Reliable Web Services

Best Practice Description

Coordinate the WS- A WS-SecureConversation lifetime that is set to a value near to or less

SecureConversation lifetime with the ~ than the reliable messaging base retransmission and acknowledgement

reliable messaging base retransmission intervals may result in the WS-SecureConversation token expiring

and acknowledgement intervals. before the reliable messaging handshake message can be sent to the web
service. For this reason, Oracle recommends setting the WS-
SecureConversation lifetime to a value that is at least two times the base
retransmission interval.

For more information setting the base retransmission interval, see
Configuring the Base Retransmission Interval.

13-8 Developing JAX-WS Web Services for Oracle WebLogic Server

14

Using Web Services Reliable Messaging

This chapter describes how to use web services reliable messaging (WS-
ReliableMessaging) for WebLogic web services using Java API for XML Web Services
(JAX-WS).

See also Roadmap for Developing Reliable Web Services and Clients.

This chapter includes the following sections:

e Overview of Web Services Reliable Messaging

® Steps to Create and Invoke a Reliable Web Service

¢ Configuring the Source and Destination WebLogic Server Instances

¢ Creating the Web Service Reliable Messaging WS-Policy File

* Programming Guidelines for the Reliable JWS File

¢ Invoking a Reliable Web Service from a Web Service Client

¢ Configuring Reliable Messaging

* Implementing the Reliability Error Listener

* Managing the Life Cycle of a Reliable Message Sequence

¢ Monitoring Web Services Reliable Messaging

* Grouping Messages into Business Units of Work (Batching)

® C(lient Considerations When Redeploying a Reliable Web Service

* Interoperability with WebLogic Web Service Reliable Messaging

The WebLogic Server Examples Server includes three reliable messaging examples:
¢ Configuring Reliable Messaging for JAX-WS Web Services

¢ Using Make Connection and Reliable Messaging for JAX-WS Web Services

¢ Configuring Secure and Reliable Messaging for JAX-WS Web Services

For more information, see "Web Services Samples in the WebLogic Serer Distribution”
in Understanding WebLogic Web Services for Oracle WebLogic Server.

14.1 Overview of Web Services Reliable Messaging

Web service reliable messaging is a framework that enables an application running on
one application server to reliably invoke a web service running on another application
server, assuming that both servers implement the WS-ReliableMessaging specification.

Using Web Services Reliable Messaging 14-1

Overview of Web Services Reliable Messaging

Reliable is defined as the ability to guarantee message delivery between the two
endpoints (web service and client) in the presence of software component, system, or
network failures.

WebLogic web services conform to the WS-ReliableMessaging 1.2 specification
(February 2009) at ht t p: / / docs. oasi s- open. or g/ ws-r x/ wsr m 200702 (and
supports version 1.1). This specification describes how two endpoints (web service
and client) on different application servers can communicate reliably. In particular, the
specification describes an interoperable protocol in which a message sent from a source
endpoint (or client web service) to a destination endpoint (or web service whose
operations can be invoked reliably) is guaranteed either to be delivered, according to
one or more delivery assurances, or to raise an error.

A reliable WebLogic web service provides the following delivery assurances.

Table 14-1 Delivery Assurances for Reliable Messaging
- - -]

Delivery Assurance Description

At Most Once Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

At Least Once Every message is delivered at least once. It is possible that some
messages are delivered more than once.

Exactly Once Every message is delivered exactly once, without duplication.

In Order Messages are delivered in the order that they were sent. This
delivery assurance can be combined with one of the preceding three
assurances.

The following sections describe how to create reliable web services and clients and
how to configure WebLogic Server instances to which the web services are deployed.

14.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions

WebLogic web services use WS-Policy files to enable a destination endpoint to
describe and advertise its web service reliable messaging capabilities and
requirements. The WS-Policy files are XML files that describe features such as the
version of the supported WS-ReliableMessaging specification and quality of service
requirements. The WS-Policy specification (ht t p: / / www. w3. or g/ TR/ ws- pol i cy/)
provides a general purpose model and syntax to describe and communicate the
policies of a web service.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions, as described in Pre-packaged WS-Policy Files for Web Services
Reliable Messaging and Make Connection. If the pre-packaged WS-Policy files do not
suit your needs, you must create your own WS-Policy file. See Creating the Web
Service Reliable Messaging WS-Policy File for details. See "Web Service Reliable
Messaging Policy Assertion Reference" in the WebLogic Web Services Reference for Oracle
WebLogic Server for reference information about the reliable messaging policy
assertions.

14.1.2 Supported Transport Types for Reliable Messaging

You can use web service reliable messaging asynchronously or synchronously. When
delivering messages asynchronously, you can configure buffering to support
automatic message delivery retries, if desired.

14-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.w3.org/TR/ws-policy/

Overview of Web Services Reliable Messaging

The following table summarizes the transport type support for web services reliable
messaging. For information about transport type support for web service clients, see
Invoking a Reliable Web Service from a Web Service Client. For failure recovery
information, see Reliable Messaging Failure Recovery Scenarios.

Note:

Message buffering is configurable for web services, as described in
Configuring Message Buffering for Web Services. For web service clients,
message buffering is enabled by default.

Table 14-2 Transport Types for Web Services Reliable Messaging
. ___|

Transport Type Features

Asynchronous transport For buffered web services:
* Most robust usage mode, but requires the most overhead.
* Automatically retries message delivery.
* Survives network outages.
* Enables restart of the source or destination endpoint.
¢ Uses non-anonymous ReplyTo.

¢ Employs asynchronous client transport enabling a single thread to service
multiple requests, absorbing load more efficiently. For more information, see
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client
Transport).

¢ Web service clients can use asynchronous or synchronous invocation semantics
to invoke the web service. For more information, see Table 12-1.

For non-buffered web services:

* Less overhead than asynchronous, buffered usage mode.
* DPersists sequence state only.

¢ Uses non-anonymous ReplyTo.

e Web service clients can use asynchronous or synchronous invocation semantics
to invoke the web service. For more information, see Table 12-1.

Synchronous transport ¢ Offers the least overhead and simplest programming model.
¢ Uses anonymous ReplyTo.
e Web service clients can use asynchronous or synchronous invocation semantics
to invoke the web service. For more information, see Table 12-1.
e If a web service client invokes a buffered web service using synchronous
transport, one of following will result:

- If this is the first request of the sequence, the destination sequence will be set
to be non-buffered (as though the web service configuration was set as non-
buffered).

- If this is not the first request of the sequence (that is, the client sent a request
using asynchronous transport previously), then the request is rejected and a
fault returned.

14.1.3 The Life Cycle of the Reliable Message Sequence

The following figure shows a one-way reliable message exchange.

Using Web Services Reliable Messaging 14-3

Overview of Web Services Reliable Messaging

Figure 14-1 Web Service Reliable Message Exchange
inport webgervice.port

Web Service .

Client Web Service

% o - = o

ET] [i7]

i3 +

® L 4 qg -
Transmit .

RM Source < RM Destination

Acknowledge

A reliable message sequence is used to track the progress of a set of messages that are
exchanged reliably between an RM source and RM destination. A sequence can be
used to send zero or more messages, and is identified by a string identifier. This
identifier is used to reference the sequence when using reliable messaging.

The web service client application sends a message for reliable delivery which is
transmitted by the RM source to the RM destination. The RM destination
acknowledges that the reliable message has been received and delivers it to the web
service application. The message may be retransmitted by the RM source until the
acknowledgement is received. The RM destination, if configured to buffer requests,
may redeliver the request to the web service if the web service fails to process the
request.

A web service client sends messages to a target web service by invoking methods on
the client instance (port or Dispatch instance). A port is associated with the port type of
the reliable web service and represents a programmatic interface to that service. The
port is created by the <cl i ent gen> child element of the j wsc Ant task. A Dispatch
instance is a loosely-typed, general-purpose interface for delivering whole messages
from the client to the web service. For more information about Dispatch clients, see
Developing a Web Service Dispatch Client.

WebLogic stores the identifier for the reliable message sequence within this client
instance. This causes the reliable message sequence to be connected to a single client
instance. All messages that are sent using a given client instance will use the same
reliable messaging sequence, regardless of the number of messages that are sent.
(Unless you using batching, as described in Grouping Messages into Business Units of
Work (Batching).)

Because WebLogic Server retains resources associated with the reliable sequence, it is
recommended that you take steps to release these resources in a timely fashion. this
can be done by managing the lifecycle of the client instance itself, or by using the
webl ogi c. wsee.reliability2. api.WrnC ient APIL Use the WsrnTl i ent
API to perform common tasks such as set configuration options, get the sequence id,
and terminate a reliable sequence. For more information, see Managing the Life Cycle
of a Reliable Message Sequence.

14.1.4 Reliable Messaging Failure Recovery Scenarios

The following sections outline reliable messaging failure recovery for various
scenarios.

¢ RM Destination Down Before Request Arrives

* RM Source Down After Request is Made

14-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Overview of Web Services Reliable Messaging

® RM Destination Down After Request Arrives

e Failure Scenarios with Non-buffered Reliable Web Services

The first three scenarios assume that buffering is enabled on both the web service and
client. The last scenario describes reliable messaging failure recovery for non-buffered
web services. Buffering is enabled on web service client by default. To configure
buffering on the web service, see Configuring Message Buffering for Web Services.

14.1.4.1 RM Destination Down Before Request Arrives

Table 14-3 describes the reliable messaging failure recovery scenario when an RM
destination is unavailable before a request from the RM source arrives.

It is assumed that web service buffering is enabled on both the web service and client.
Buffering is enabled on web service client by default. To configure buffering on the
web service, see Configuring Message Buffering for Web Services.

Table 14-3 Reliable Messaging Failure Recovery Scenario—RM Destination Down Before Request

Arrives

|
Scenario Description

Transport Type

Asynchronous Transport

8.

Client invokes an asynchronous method.

Reliable messaging runtime accepts the request; client returns to do
other work.

Reliable messaging runtime attempts to deliver the request and fails
because the RM destination is down.

Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery fails again.

RM destination comes up.

Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery succeeds.

Acknowledgement is sent to the client which includes the message
number of the request. The reliable messaging runtime removes the
message from the retry list.

Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

Using Web Services Reliable Messaging 14-5

Overview of Web Services Reliable Messaging

Table 14-3 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Destination Down Before

Request Arrives
- ___|

Transport Type Scenario Description

Synchronous Transport
1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request and fails
because the RM destination is down.

4. Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery fails again.

5. RM destination comes up.

6. Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery succeeds.

7. Response and acknowledgement are sent to the client via the
transport back-channel. The acknowledgement includes the message
number of the request. The reliable messaging runtime removes the
message from the retry list.

8. Reliable messaging runtime unblocks the client thread and returns the
response.

9. Client receives the response as the return value of the method
invocation, and processes the response.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

Note: To achieve true reliability with synchronous transport, it is
recommended that you use Make Connection. For more information, see
Using Asynchronous Web Service Clients From Behind a Firewall (Make
Connection).

14.1.4.2 RM Source Down After Request is Made

Table 14-4 describes the reliable messaging failure recovery scenario when an RM
source goes down after a request is made.

It is assumed that web service buffering is enabled on both the web service and client.
Buffering is enabled on web service clients by default. To configure buffering on the
web service, see Configuring Message Buffering for Web Services.

14-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Overview of Web Services Reliable Messaging

Table 14-4 Reliable Messaging Failure Recovery Scenario—RM Source Down After Request is Made
- -~~~ |

Transport Type Scenario Description

Asynchronous Transport
1. Client invokes an asynchronous method.

2. Reliable messaging runtime accepts the request; client returns to do
other work.

3. Client (RM source) goes down.

4. Client comes up. Client must re-initialize the client instance using the
same client ID. The runtime will use this client ID to retrieve the
reliable sequence ID that was active for the client. For more
information, see Managing the Client ID.

5. Reliable messaging runtime detects the reliable sequence ID that was
in use prior to the client going down and recovers the accepted
requests.

Note: This step is accomplished only after the client re-initializes the
client instance that was used to send the request because delivery of
the request depends on resources provided by the client instance. It is
recommended that clients initialize the client instance in a static block,
or use a @ost Const r uct annotation or other mechanism to ensure
early initialization of the client instance. For more information, see the
best practices examples presented in Roadmap for Developing
Asynchronous Web Service Clients.

6. Reliable messaging runtime sends the request and succeeds.

7. Acknowledgement is sent to the client which includes the message
number of the request. The reliable messaging runtime removes the
message from the retry list.

8. Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

Using Web Services Reliable Messaging 14-7

Overview of Web Services Reliable Messaging

Table 14-4 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Source Down After Request

is Made
__|]
Transport Type Scenario Description

Synchronous Transport
1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request. The
request delivery succeeds.

4. Before response can be sent, the client (RM source) goes down. Client
thread is lost as the VM exits, along with the invocation state and
calling stack of the client itself.

5. Client (RM source) comes up. Client must re-initialize the client
instance (port or Dispatch) using the same client ID. For more
information, see Managing the Client ID.

6. Reliable messaging runtime detects the previous sequence ID for the
client, and sees that the last request was made synchronously.

7. Reliable messaging runtime delivers a permanent failure notification
for this request, and fails the entire RM sequence associated with the
client instance. Any Rel i abi | i t yError Li st ener associated with
the client instance will be called at this point.

8. Client is responsible for retrieving the original request (via some
client-specific mechanism) and resending it by re-invoking the client
instance with the request.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

Note: To achieve true reliability with synchronous transport, it is
recommended that you use Make Connection. For more information, see
Using Asynchronous Web Service Clients From Behind a Firewall (Make
Connection).

14.1.4.3 RM Destination Down After Request Arrives

Table 14-5 describes the reliable messaging failure recovery scenario when an RM
destination is unavailable after a request has been accepted from the RM source.

It is assumed that web service buffering is enabled on both the web service and client.
Buffering is enabled on web service client by default. To configure buffering on the
web service, see Configuring Message Buffering for Web Services.

14-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Overview of Web Services Reliable Messaging

Table 14-5 Reliable Messaging Failure Recovery Scenario—RM Destination Down After Request

Arrives
__|
Transport Type Scenario Description

Asynchronous Transport
1. Client invokes an asynchronous method.

2. Reliable messaging runtime accepts the request; client returns to do
other work.

3. Reliable messaging runtime attempts to deliver the request and
succeeds.

4. The RM destination accepts the request and send an
acknowledgement on the back channel.

5. Reliable messaging runtime sees the acknowledgement and removes
the message from the retry list.

6. RM destination goes down.

7. Reliable messaging runtime on RM source retries any pending
requests during this time.

8. RM destination comes up.

9. RM destination recovers the stored request, processes it, and sends
the response.

10. Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

Using Web Services Reliable Messaging 14-9

Overview of Web Services Reliable Messaging

Table 14-5 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Destination Down After

Request Arrives
- ___|

Transport Type Scenario Description

Synchronous Transport Note: If you attempt to invoke a buffered web service using synchronous
transport, one of following will result:

e If this is the first request of the sequence, the destination sequence will
be set to be non-buffered (as though the web service configuration was
set as non-buffered).

e If this is not the first request of the sequence (that is, the client sent a
request using asynchronous transport previously), then the request is
rejected and a fault returned.

The following describes the sequence of this scenario:
1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request. The
request delivery succeeds.

4. RM destination accepts the request and sends an acknowledgement
via the transport back channel.

5. Client (RM source) detects the acknowledgement and removes the
request from the retry list.

6. RM destination goes down.
7. Client thread remains blocked.

8. RM Destination comes up, recovers, and processes the request, and
sends the response to the client.

9. Reliable messaging runtime unblocks the client thread and returns the
response.

10. Client receives the response as the return value of the method
invocation, and processes the response.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

14.1.4.4 Failure Scenarios with Non-buffered Reliable Web Services

A non-buffered web service operates differently than a buffered web service in that it
does not buffer a request to hardened storage before acknowledging it and attempting
to process it. A non-buffered web service will not attempt to reprocess a request if the
service logic fails, whereas a buffered web service will attempt to reprocess the
request. In both cases, buffered or non-buffered, any response generated by the web
service will be buffered before it is sent back to the client.

A non-buffered web service may be useful in the following cases:

* Web service operates against non-transactional resources and should not process
any request more than once (because rolling back the transaction that dequeued the
buffered request cannot roll back the side effects of the non-transactional service).

14-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Steps to Create and Invoke a Reliable Web Service

* Web service is relatively light weight, and does not take very long to process
requests.

* Web service performance is of paramount importance and risk of losing request or
response is acceptable. Non-buffered web services will not incur the overhead of
buffering the request to a store, and thus can deliver better throughput than a
buffered web service. The performance gain is dependent on how much time and
resources are required to buffer the requests (for example, very large request
messages may take significant time and resources to buffer).

A non-buffered web service is operationally similar to a buffered web service in most
failure scenarios. The exceptions are cases where the service (RM destination) itself
fails. For example, in all the RM source failure scenarios described, the behavior is the
same for a buffered or a non-buffered web service (RM destination). For non-buffered
web services the failure window is open between the following two points:

e The request is accepted for processing.

® The response from the web service is registered for delivery to the client (RM
source).

If the web service (RM destination) fails between these two points, the RM source will
assume the request has been successfully processed (since it has been acknowledged)
but will never receive a response, and the request may never have been processed.

Carefully consider this failure window before configuring a web service to run as non-
buffered.

14.2 Steps to Create and Invoke a Reliable Web Service

Configuring reliable messaging for a WebLogic web service requires standard JMS
tasks such as creating JMS servers and Store and Forward (SAF) agents, as well as web
service-specific tasks, such as adding additional JWS annotations to your JWS file.
Optionally, you create custom WS-Policy files that describe the reliable messaging
capabilities of the reliable web service if you do not use the pre-packaged ones.

If you are using the WebLogic client APIs to invoke a reliable web service, the client
application must run on WebLogic Server. Thus, configuration tasks must be
performed on both the source WebLogic Server instance on which the web service
client code is deployed, as well as the destination WebLogic Server instance on which
the reliable web service itself is deployed.

Table 14-6 summarizes the steps to create a reliable web service and a client that
invokes an operation of the reliable web service. The procedure describes how to
create the JWS files that implement the web service and client from scratch; if you
want to update existing JWS files, use this procedure as a guide. The procedure also
describes how to configure the source and destination WebLogic Server instances.

It is assumed that you have completed the following tasks:

* You have created the destination and source WebLogic Server instances. You deploy
the reliable web service to the destination WebLogic Server instance, and the client
that invokes the reliable web service to the source WebLogic Server instance.

* You have set up an Ant-based development environment.

* You have working bui | d. xm files that you can edit, for example, to add targets
for running the j wsc Ant task and deploying the generated reliable web service.

Using Web Services Reliable Messaging 14-11

Steps to Create and Invoke a Reliable Web Service

For more information, see Developing JAX-WS Web Services. For best practices for
developing asynchronous and reliable web services and clients, see Roadmap for
Developing Reliable Web Services and Clients.

Table 14-6 Steps to Create and Invoke a Reliable Web Service

Step Description
1 Configure the destination You deploy the reliable web service to the destination WebLogic Server
and source WebLogic instance, and the client that invokes the reliable web service to the source
Server instances. WebLogic Server instance. For information about configuring the destination
WebLogic Server instance, see Configuring the Source and Destination
WebLogic Server Instances.
2 Create the WS-Policy file. = Using your favorite XML or plain text editor, optionally create a WS-Policy file
(Optional) that describes the reliable messaging capabilities of the web service running on
the destination WebLogic Server. For details about creating your own WS-
Policy file, see Creating the Web Service Reliable Messaging WS-Policy File.
Note: This step is not required if you plan to use one of the WS-Policy files that
are included in WebLogic Server; see Pre-packaged WS-Policy Files for Web
Services Reliable Messaging and Make Connection for more information.
3 Create or update the JWS This web service will be deployed to the destination WebLogic Server instance.
file that implements the See Programming Guidelines for the Reliable JWS File.
reliable web service. For examples demonstrating best practices, see Roadmap for Developing
Reliable Web Services and Clients.
4 Update the bui I d. xm Update your bui | d. xm fi | e toinclude a call to the j wsc Ant task which
file that is used to compile will compile the reliable JWS file into a web service.
the reliable web services. gee Running the jwsc WebLogic Web Services Ant Task for general
information about using the j wsc task.
5 Compile and deploy the Compile the reliable JWS file by calling the appropriate target and deploy to
reliable JWS file. the destination WebLogic Server. For example:
pronpt> ant build-reliabl eService depl oy-reliabl eService
6 Create or update the web ~ The web service client invokes the reliable web service and will be deployed to
service client. the source WebLogic Server. See Invoking a Reliable Web Service from a Web
Service Client.
7 Configure reliable Configure reliable messaging for the reliable web service using the WebLogic
messaging. (Optional) Server Administration Console. The WS-Policy file attached to the reliable web
service provides the initial configuration settings. See Configuring Reliable
Messaging.
8 Implement a reliability Implement a reliability error listener to receive notifications if a reliable
error listener. (Optional) delivery fails. See Implementing the Reliability Error Listener.
9 Manage thelifecycleofa WebLogic Server provides a client API,
reliable message sequence. Webl ogi c. wsee. reliability2. api.WrnCient, for use with the web
(Optional) service reliable messaging. Use this API to perform common life cycle tasks
such as set configuration options, get the reliable sequence id, and terminate a
reliable sequence. See Managing the Life Cycle of a Reliable Message Sequence.
10 Update the bui | d. xm Update your bui | d. xm fi | e toinclude a call to the j wsc Ant task which

file that is used to compile
the client web service.

will compile the reliable JWS file into a web service.

See Running the jwsc WebLogic Web Services Ant Task for general
information about using the j wsc task.

14-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring the Source and Destination WebLogic Server Instances

Table 14-6 (Cont.) Steps to Create and Invoke a Reliable Web Service
. ___|

Step Description
11 Compile and deploy the Compile your client file by calling the appropriate target and deploy to the
web service client file. source WebLogic Server. For example:
pronpt > ant build-clientService depl oy-clientService
12 Monitor web services Use the WebLogic Server Administration Console to monitor web services
reliable messaging. reliable messaging. See Monitoring Web Services Reliable Messaging.

Each of these steps is described in more detail in the following sections. In addition,
the following topics are discussed:

* Grouping Messages into Business Units of Work (Batching)—Describes how to
group messages into business units of work—also called batching—to improve
performance when using reliable messaging.

¢ C(lient Considerations When Redeploying a Reliable Web Service—Describes client
considerations for when you deploy a new version of an updated reliable
WebLogic web service alongside an older version of the same web service.

¢ Interoperability with WebLogic Web Service Reliable Messaging—Provides
recommendations for interoperating with WebLogic web services reliable
messaging.

14.3 Configuring the Source and Destination WebLogic Server Instances

You need to configure web service persistence on the destination and source
WebLogic Server instances. You deploy the reliable web service to the destination
WebLogic Server instance, and the client that invokes the reliable web service to the
source WebLogic Server instance.

When using web services reliable messaging, the web services reliable messaging
sequence is saved to the web service persistent store any time its state changes.
Examples of state change include:

¢ Reliable messaging state is updated (creating, created, terminating, terminated, and
SO on).

® Security property is updated (such as security context token)

* Message is sent on the reliable messaging sequence (if message buffering is
enabled)

¢ Acknowledgement when a message arrives

You can configure web service persistence using the Configuration Wizard to extend
the WebLogic Server domain using a web services-specific extension template.
Alternatively, you can configure the resources required for these advanced features
using the Oracle WebLogic Server Administration Console or WLST. For information
about configuring web service persistence, see Configuring Web Service Persistence.

You may also wish to configure buffering for web services. For considerations and
steps to configure message buffering, see Configuring Message Buffering for Web
Services.

Using Web Services Reliable Messaging 14-13

Creating the Web Service Reliable Messaging WS-Policy File

14.4 Creating the Web Service Reliable Messaging WS-Policy File

A WS-Policy file is an XML file that contains policy assertions that comply with the
WS-Policy specification. In this case, the WS-Policy file contains web service reliable
messaging policy assertions.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions that you can use if you do not want to create your own WS-
Policy file.

The pre-packaged WS-Policy files are listed in the following table. This table also
specifies whether the WS-Policy file can be attached at the method level; if the value in
this column is no, then the WS-Policy file can be attached at the class level only. For
more information, see Pre-packaged WS-Policy Files for Web Services Reliable
Messaging and Make Connection.

Note:

The Def aul t Rel i abi | ity. xm and LongRunni ngRel i ability. xn
files are deprecated in this release. Use of the

Def aul t Rel i abilityl. 2. xm,
Reliabilityl.2_SequenceTransport Security,or
Reliabilityl.0_1.2.xm fileis recommended and required to comply
with the 1.2 version of the WS-ReliableMessaging specification at ht t p: //
docs. oasi s-open. org/ ws-rx/wsrnm 200702/ wsrm+ 1. 2- spec-

os. pdf.

Table 14-7 Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
Def aul t Rel i abi lityl. 2. xm Specifies policy assertions related to delivery assurance. Yes

The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.2 at
http://docs. oasi s- open. or g/ ws- r x/ wsr np/
200702. See DefaultReliability1.1.xml (WS-Policy File).

Defaul tReliabilityl. 1. xm Specifies policy assertions related to quality of service. Yes
The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.1 at
http://docs. oasi s-open. or g/ ws-r x/ wsr np/
200702/ wsr np- 1. 1- spec- 0s-01. ht ml . See
DefaultReliability1l.1.xml (WS-Policy File).

Reliabilityl. 2_ExactlyOnce Specifies policy assertions related to quality of service. It No
_WthMCL. 1. xm enables Make Connection support on the web service and
specifies usage as optional on the web service client. See
Reliability1.2_ExactlyOnce_ WithMC1.1.xml (WS-Policy
File).

14-14 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Creating the Web Service Reliable Messaging WS-Policy File

Table 14-7 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
Reliabilityl. 2_SequenceSTR Specifies that in order to secure messages in a reliable No

Security

sequence, the runtime will use the

wsse: Securi t yTokenRef er ence that is referenced in
the Cr eat eSequence message. It enables Make
Connection support on the web service and specifies
usage as optional on the web service client. The web
service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.2 at ht t p: //
docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702. See
Reliability1.2_SequenceTransportSecurity.xml (WS-Policy
File).

Reliabilityl. 1 SequenceSTR
Security

The web service reliable messaging assertions are based Yes
on WS Reliable Messaging Policy Assertion 1.1 at
http://docs. oasi s-open. or g/ ws-r x/ wsr np/

200702/ wsr np- 1. 1- spec- 0s-01. ht m . See
Reliability1.1_SequenceTransportSecurity.xml (WS-Policy

File).

Reliabilityl.2_SequenceTra
nsport Security

Specifies policy assertions related to transport-level Yes
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 atht t p: // docs. oasi s-

open. or g/ ws-r x/ wsr np/ 200702. See
Reliability1.2_SequenceTransportSecurity.xml (WS-Policy

File).

Reliabilityl.1 SequenceTra
nsport Security

Specifies policy assertions related to transport-level Yes
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.1 at ht t p: // docs. oasi s-

open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1- spec-
0s-01. ht m . See
Reliability1.1_SequenceTransportSecurity.xml (WS-Policy

File).

Reliabilityl.0_1.2.xm

Combines 1.2 and 1.0 WS-Reliable Messaging policy No
assertions. The policy assertions for the 1.2 version Make
Connection support on the web service and specifies

usage as optional on the web service client. This sample

relies on smart policy selection to determine the policy
assertion that is applied at runtime. See

Reliability1.0_1.2.xml (WS-Policy File).

Reliabilityl.0_1.1.xm

Combines 1.1 and 1.0 WS Reliable Messaging policy Yes
assertions. See Reliability1.0_1.1.xml (WS-Policy.xml File).

Using Web Services Reliable Messaging 14-15

http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Creating the Web Service Reliable Messaging WS-Policy File

Table 14-7 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
Defaul tReliability.xm Deprecated. The web service reliable messaging Yes

assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 athtt p: //

schemas. xm soap. or g/ ws/ 2005/ 02/ r m \\5-
RMPol i cy. pdf . In this release, many of the reliable
messaging policy assertions are managed through JWS
annotations or configuration.

Specifies typical values for the reliable messaging policy
assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base
retransmission interval of 3 seconds. See
DefaultReliability.xml WS-Policy File (WS-Policy)
[Deprecated].

LongRunni ngRel i ability.xm Deprecated. The web service reliable messaging Yes
assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 for long running processes. In this
release, many of the reliable messaging policy assertions
are managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging WS-
Policy file, except that it specifies a much longer activity
timeout interval (24 hours.) See
LongRunningReliability.xml WS-Policy File (WS-Policy)
[Deprecated].

You can use one of the pre-packaged reliable messaging WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom WS-
Policy file. The following sections describe how to create a custom WS-Policy file.

¢ Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Versions 1.2 and 1.1

¢ Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Version 1.0 (Deprecated)

* Using Multiple Policy Alternatives

14.4.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy
Assertions Versions 1.2 and 1.1

This section describes how to create a custom WS-Policy file that contains web service
reliable messaging assertions that are based on the following specifications:

¢ WS Reliable Messaging Policy Assertion Version 1.2 athtt p://docs. oasi s-
open. or g/ ws-rx/ wsrnp/ 200702/ wsr np- 1. 2- spec- 0s. htm

* WS Reliable Messaging Policy Assertion Version 1.1 athtt p: // docs. oasi s-
open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1- spec- 0s- 01. ht n

The root element of the WS-Policy file is <Pol i cy> and it should include the
following namespace declaration:

14-16 Developing JAX-WS Web Services for Oracle WebLogic Server

http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Creating the Web Service Reliable Messaging WS-Policy File

<wsp: Pol i cy
xm ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy" >

You wrap all web service reliable messaging policy assertions inside of a
<wsr np: RVAsser t i on> element. This element should include the following
namespace declaration for using web service reliable messaging policy assertions:

<wsr np: RMAssertion
xm ns:wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >

The following table lists the web service reliable messaging assertions that you can
specify in the WS-Policy file. The order in which the assertions appear is important.
You can specify the following assertions; the order they appear in the following list is
the order in which they should appear in your WS-Policy file:

Table 14-8 Web Service Reliable Messaging Assertions (Versions 1.2 and 1.1)
- - - -~~~ --—__-— |

Assertion

Description

<wsr np: SequenceSTR>

To secure messages in a reliable sequence, the runtime will use the
wsse: Securi t yTokenRef er ence that is referenced in the

Cr eat eSequence message. You can only specify one security
assertion; that is, you can specify wsr np: SequenceSTRor

wsr np: SequenceTr ansport Securi ty, but not both.

<wsr np: SequenceTransport Security>

To secure messages in a reliable sequence, the runtime will use the
SSL transport session that is used to send the Cr eat eSequence
message. This assertion must be used in conjunction with the

sp: Transpor t Bi ndi ng assertion that requires the use of some
transport-level security mechanism (for example, sp: Ht t psToken).
You can only specify one security assertion; that is, you can specify
wsr p: SequenceSTRor wsr np: SequenceTr ansport Security,
but not both.

Delivery assurance (or quality of service) of the web service. Valid

<wsrm Del i veryAssurance> values are At Mbst Once, At Least Once, Exact | yOnce, and

I nOr der . You can set one of the delivery assurances defined in the
following table. If not set, the delivery assurance defaults to

Exact | yOnce. For more information about delivery assurance, see
Table 14-1.

The following example shows a simple web service reliable messaging WS-Policy file:

<?xnml version="1.0"?>

<wsp: Policy xm ns:wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsr np: RMAssertion
xm ns: wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: SequenceTransport Security/>
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</ wsp: Policy>

For more information about Reliable Messaging policy assertions in the WS-Policy file,

see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

Using Web Services Reliable Messaging 14-17

Creating the Web Service Reliable Messaging WS-Policy File

14.4.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy
Assertions Version 1.0 (Deprecated)

This section describes how to create a custom WS-Policy file that contains web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.0 at ht t p: // schemas. xm soap. or g/ ws/ 2005/ 02/ r 1 W5-
RMPol i cy. pdf.

Note:

Many of the reliable messaging policy assertions described in this section are
managed through JWS annotations or configuration.

The root element of the WS-Policy file is <Pol i cy> and it should include the
following namespace declarations for using web service reliable messaging policy
assertions:

<wsp: Pol i cy
xm ns:wsrnE"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r nf
xm ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="http://wwm. bea. comf wsrn pol i cy">

You wrap all web service reliable messaging policy assertions inside of a

<wsr m RVAssert i on> element. The assertions that use the wsr m namespace are
standard ones defined by the WS-ReliableMessaging specification atht t p: //

docs. oasi s-open. or g/ ws-rx/wsrm 200702/ wsrm 1. 1- spec- 0s- 01. pdf.
The assertions that use the beapol i cy: namespace are WebLogic-specific. See "Web
Service Reliable Messaging Policy Assertion Reference" in the WebLogic Web Services
Reference for Oracle WebLogic Server for details.

The following table lists the web service reliable messaging assertions that you can
specify in the WS-Policy file. All web service reliable messaging assertions are
optional, so only set those whose default values are not adequate. The order in which
the assertions appear is important. You can specify the following assertions; the order
they appear in the following list is the order in which they should appear in your WS-
Policy file,

Table 14-9 Web Service Reliable Messaging Assertions (Version 1.0)

Assertion

Description

<wsrm | nactivityTi neout >

Number of milliseconds, specified with the M | | i seconds
attribute, which defines an inactivity interval. After this amount of
time, if the destination endpoint has not received a message from
the source endpoint, the destination endpoint may consider the
sequence to have terminated due to inactivity. The same is true for
the source endpoint. By default, sequences never timeout.

<wsrm BaseRet ransni ssi onl nt erval >

Interval, in milliseconds, that the source endpoint waits after
transmitting a message and before it retransmits the message if it
receives no acknowledgment for that message. Default value is set
by the SAF agent on the source endpoint's WebLogic Server
instance.

14-18 Developing JAX-WS Web Services for Oracle WebLogic Server

http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

Creating the Web Service Reliable Messaging WS-Policy File

Table 14-9 (Cont.) Web Service Reliable Messaging Assertions (Version 1.0)

Assertion Description

Specifies that the retransmission interval will be adjusted using the

<wsr m Exponenti al Backof f> exponential backoff algorithm. This element has no attributes.

Maximum interval, in milliseconds, in which the destination
endpoint must transmit a standalone acknowledgement. The
default value is set by the SAF agent on the destination endpoint's
WebLogic Server instance.

<wsr m Acknow edgment I nt erval >

Amount of time after which the reliable web service expires and
does not accept any new sequence messages. The default value is to
never expire. This element has a single attribute, Expi r es, whose
data type is an XML Schema duration type (see ht t p: //

www. W3. or g/ TR/ 2001/ REC- xm schema- 2- 20010502/

#dur at i on). For example, if you want to set the expiration time to
one day, use the following: <beapol i cy: Expi r es

Expi res="P1D" />.

<beapol i cy: Expi res>

) Delivery assurance level, as described in Table 14-1. The element
<beapol i cy: QOS> has one attribute, QOS, which you set to one of the following values:
At Most Once, At Least Once, or Exact | yOnce. You can also
include the | NOr der string to specify that the messages be in order.
The default value is Exact | yOnce | nOr der . This element is
typically not set.

The following example shows a simple web service reliable messaging WS-Policy file:

<?xm version="1.0"?>

<wsp: Pol i cy
xm ns:wsrnE"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r ml pol i cy"
xm ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="http://wwmv. bea. comf wsrn pol i cy"
>
<wsr m RMAsserti on>
<wsrm | nactivityTi meout
M11iseconds="600000" />
<wsrm BaseRet ransmi ssi onl nt erval
M1 1iseconds="500" />
<wsrm Exponenti al Backof f />
<wsrm Acknow edgement I nt er val
M11iseconds="2000" />
</wsrm RMAssertion>
</ wsp: Pol i cy>

For more information about reliable messaging policy assertions in the WS-Policy file,
see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

14.4.3 Using Multiple Policy Alternatives

You can configure multiple policy alternatives—also referred to as smart policy
alternatives—for a single web service by creating a custom policy file. At runtime,
WebLogic Server selects which of the configured policies to apply. It excludes policies
that are not supported or have conflicting assertions and selects the appropriate

Using Web Services Reliable Messaging 14-19

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration

Programming Guidelines for the Reliable JWS File

policy, based on your configured preferences, to verify incoming messages and build
the response messages.

The following example provides an example of a security policy that supports both 1.2
and 1.0 WS-Reliable Messaging. Each policy alternative is enclosed in a <wsp: Al | >
element.

Note:

The 1.0 web service reliable messaging assertions are prefixed by wsr np10.

<wsp: Policy xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsp: Exact | yOne>
<wsp: Al >
<wsrmpl0: RVAssertion
xm ns: wsrnpl0="http://schemas. xn soap. or g/ ws/ 2005/ 02/ r m pol i cy" >
<wsr npl0: I nactivityTi meout MIIiseconds="1200000"/>
<wsr np10: BaseRet ransmi ssionlnterval MI1iseconds="60000"/>
<wsr npl0: Exponent i al Backof f/ >
<wsr mp10: Acknowl edgenent I nterval M11iseconds="800"/>
</wsrnpl0: RMAssertion>
</wsp: Al l >
<wsp: Al >
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsrnp/ 200702" >
<wsrnp: SequenceSTR/ >
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: At Most Once/ >
</ wsp: Pol i cy>
</wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp: Al l >
</ wsp: Exact | yOne>
</ wsp: Pol i cy>

For more information about multiple policy alternatives, see "Smart Policy Selection"
in Securing WebLogic Web Services for Oracle WebLogic Server.

14.5 Programming Guidelines for the Reliable JWS File

Note:

For best practices for developing reliable web services, see Roadmap for
Developing Reliable Web Services and Clients.

Use the @Pol i cy annotation in your JWS file to specify that the web service has a WS-
Policy file attached to it that contains reliable messaging assertions. WebLogic Server
delivers a set of pre-packaged WS-Policy files, as described in Pre-packaged WS-Policy
Files for Web Services Reliable Messaging and Make Connection.

Follow the following guidelines when using the @Pol i cy annotation for web service
reliable messaging:

¢ Usetheuri attribute to specify the build-time location of the policy file, as follows:

14-20 Developing JAX-WS Web Services for Oracle WebLogic Server

Programming Guidelines for the Reliable JWS File

— If you have created your own WS-Policy file, specify its location relative to the
JWES file. For example:

@ol i cy(uri="Reliabl eHel | oWrl|dPolicy. xm",
direction=Policy.Direction.both,
attachToWédl =t r ue)

In this example, the Rel i abl eHel | oWor | dPol i cy. xnl file is located in the
same directory as the JWS file.

— To specify one of the pre-packaged WS-Policy files or a WS-Policy file that is
packaged in a shared Java EE library, use the pol i cy: prefix along with the
name and path of the policy file. This syntax tells the j wsc¢ Ant task at build-
time not to look for an actual file on the file system, but rather, that the web
service will retrieve the WS-Policy file from WebLogic Server at the time the
service is deployed.

Note:

Shared Java EE libraries are useful when you want to share a WS-Policy file
with multiple web services that are packaged in different Enterprise
applications. As long as the WS-Policy file is located in the META- | NF/

pol i ci es or VEB- | NF/ pol i ci es directory of the shared Java EE library,
you can specify the policy file in the same way as if it were packaged in the
same archive at the web service. See "Creating Shared Java EE Libraries and
Optional Packages" in Developing Applications for Oracle WebLogic Server for
information about creating libraries and setting up your environment so the
web service can locate the policy files.

— To specify that the policy file is published on the Web, use the ht t p: prefix
along with the URL, as shown in the following example:

@olicy(uri="http://someSite.con policies/nypolicy.xm"
direction=Policy.Direction.both,
attachToWdl =true)

¢ By default, WS-Policy files are applied to both the request (inbound) and response
(outbound) SOAP messages. You can change this default behavior with the
di recti on attribute by setting the attribute to Pol i cy. Di recti on. i nbound or
Pol i cy. Di recti on. out bound.

* You can specify whether the web service requires the operations to be invoked
reliably and have the responses delivered reliably using the wsp: opt i onal
attribute within the policy file specified by uri .

Please note:

— If the client uses synchronous transport to invoke a web service, and the
inbound direction of the operation requires reliability (opt i onal attribute is
f al se), the client must provide an offer sequence (<wsrm O fer...>as
described in the WS-ReliableMessaging specification at ht t p: / / docs. oasi s-
open. or g/ ws-r x/ wsrm 200702/ wsr m 1. 1- spec- 0s- 01. pdf) for use
when sending reliable responses.

— If the client uses asynchronous transport, the client is not required to send an
offer sequence. If a request is made reliably, and the outbound direction has any
RM policy (optional or not), the reliable messaging runtime will enforce the

Using Web Services Reliable Messaging 14-21

http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

Invoking a Reliable Web Service from a Web Service Client

handshaking of a new RM sequence for sending the response. This new
sequence will be associated with the request sequence, and all responses from
that point onward are sent on the new response sequence. The response
sequence is negotiated with the endpoint indicated by the ReplyTo address of
the request.

* Setthe at t achToWsd| attribute of the @0l i cy annotation to specify whether the
policy file should be attached to the WSDL file that describes the public contract of
the web service. Typically, you want to publicly publish the policy so that client
applications know the reliable messaging capabilities of the web service. For this
reason, the default value of this attribute ist r ue.

For more information about the @ol i cy annotation, see "weblogic.jws.Policy" in
WebLogic Web Services Reference for Oracle WebLogic Server.

Example 14-1 shows a simple JWS file that implements a reliable web service.
Example 14-1 Example of a Reliable Web Service

import javax.jws.\WebServi ce;

i mport webl ogi c. jws. Policies;
i mport webl ogi c. jws. Policy;

/**
* Exanpl e web service for reliable client best practice exanples
*/
@\ébServi ce
/1 Enable RMon this service.
@olicies({ @olicy(uri = "policy:DefaultReliabilityl.2.xm") })
public class BackendReliabl eService {

public String doSomething(String what) {
System out. print!|n("BackendRel i abl eService doing: " + what);

return "Did (Reliably) '" + what + "' at: " + SystemcurrentTimeMIlis();

}
}

In the example, the predefined Def aul t Rel i abi l'i ty1. 2. xm policy file is
attached to the web service at the class level, which means that the policy file is
applied to all public operations of the web service—the doSomet hi ng() operation
can be invoked reliably. The policy file is applied to both request and response by
default. For information about the pre-packaged policies available and creating a
custom policy, see Creating the Web Service Reliable Messaging WS-Policy File.

14.6 Invoking a Reliable Web Service from a Web Service Client

Note:

For best practices for developing reliable web service clients, see Roadmap for
Developing Reliable Web Service Clients.

The following table summarizes how to invoke a reliable web service from a web
service client based on the transport type that you want to employ. For a description
of transport types, see Table 14-2.

14-22 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Reliable Messaging

Table 14-10 Invoking a Reliable Web Service Based on Transport Type
-~ -]

Transport Type Description

Asynchronous transport To use asynchronous transport, perform the following steps:

1. Implement the web service client, as described in Table 12-3.

In step 3 of Table 12-3, implement one of the following transport mechanisms,
depending on whether the client is behind a firewall or not:

-Asynchronous client transport feature, as described in Developing Scalable
Asynchronous JAX-WS Clients (Asynchronous Client Transport).

- Make Connection if the client is behind a firewall, as described in Using
Asynchronous Web Service Clients From Behind a Firewall (Make
Connection).

2. Invoke the web service using either asynchronous or synchronous invocation
semantics.

Note: You can invoke synchronous operations when asynchronous client
transport or Make Connection is enabled, as described in Configuring
Asynchronous Client Transport for Synchronous Operations and Configuring
Make Connection as the Transport for Synchronous Methods.

Synchronous transport To use synchronous transport, invoke an asynchronous or synchronous method on
the reliable messaging service port instance using the standard JAX-WS Reference
Implementation, as described in Using the JAX-WS Reference Implementation.

Note: If you attempt to invoke a buffered web service using synchronous transport,
one of following will result:

e If this is the first request of the sequence, the destination sequence will be set to
be non-buffered (as though the web service configuration was set as non-
buffered).

e If this is not the first request of the sequence (that is, the client sent a request
using asynchronous transport previously), then the request is rejected and a
fault returned.

For additional control on the client side, you may wish to perform one or more of the
following tasks:

* Configure reliable messaging on the client side, as described in Configuring
Reliable Messaging.

¢ Implement the reliability error listener to receive notifications if a reliable delivery
fails, as described in Implementing the Reliability Error Listener. Oracle
recommends that you always implement the reliability error listener as a best
practice.

® Perform common life cycle tasks on the reliable messaging sequence, such as set
configuration options, get the reliable sequence id, and terminate a reliable
sequence, as described in Managing the Life Cycle of a Reliable Message Sequence.

14.7 Configuring Reliable Messaging

Note:

Using Web Services Reliable Messaging 14-23

Configuring Reliable Messaging

For best practices for configuring reliable web services, see Roadmap for
Developing Reliable Web Services and Clients.

You can configure properties for a reliable web service and client at the WebLogic
Server, web service endpoint, or web service client level.

The properties that you define at the WebLogic Server level apply to all reliable web
services and clients on that server. For information about configuring reliable
messaging at the WebLogic Server level, see Configuring Reliable Messaging on
WebLogic Server.

If desired, you can override the reliable message configuration options defined at the
server level, as follows:

At the web service endpoint level by updating the application deployment plan. The
deployment plan associates new values with specific locations in the descriptors for
your application, and is stored in the webl ogi c- webser vi ces. xnl descriptor.
At deployment time, a deployment plan is merged with the descriptors in the
application by applying the values in its variable assignments to the locations in
the application descriptors to which the variables are linked. For more information,
see Configuring Reliable Messaging on the Web Service Endpoint.

At the web service client level, as described in Configuring Reliable Messaging on
Web Service Clients.

The following sections describe how to configure reliable messaging at the WebLogic
Server, web service endpoint, and web service client levels.

Configuring Reliable Messaging on WebLogic Server
Configuring Reliable Messaging on the Web Service Endpoint
Configuring Reliable Messaging on Web Service Clients
Configuring the Base Retransmission Interval

Configuring the Retransmission Exponential Backoff
Configuring the Sequence Expiration

Configuring Inactivity Timeout

Configuring a Non-buffered Destination for a Web Service
Configuring the Acknowledgement Interval

Implementing the Reliability Error Listener

14.7.1 Configuring Reliable Messaging on WebLogic Server

You can configure reliable messaging on WebLogic Server using the WebLogic Server
Administration Console or WLST, as described in the following sections.

Using the Administration Console

Using WLST

14-24 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Reliable Messaging

14.7.1.1 Using the Administration Console

To configure reliable messaging for WebLogic Server using the WebLogic Server
Administration Console:

1.

6.

Invoke the WebLogic Server Administration Console, as described in "Using the
Administration Console" in Understanding WebLogic Web Services for Oracle WebLogic
Server.

In the left navigation pane, select Environment, then Servers.

Select the Configuration tab and in the Server tables, click on the name of the
server for which you want to configure reliable messaging.

Click the Configuration tab, then the Web Services tab, then the Reliable Message
tab.

Edit the reliable messaging properties, as described in the following sections:

¢ Configuring the Base Retransmission Interval on WebLogic Server or the Web
Service Endpoint

¢ Configuring the Retransmission Exponential Backoff on WebLogic Server or
Web Service Endpoint

¢ Configuring the Sequence Expiration on WebLogic Server or Web Service
Endpoint

¢ Configuring the Inactivity Timeout on WebLogic Server or Web Service
Endpoint

¢ Configuring a Non-buffered Destination for a Web Service
* Configuring the Acknowledgement Interval

Click Save.

For more information, see "Web Service Reliable Messaging" in the Oracle WebLogic
Server Administration Console Online Help.

14.7.1.2 Using WLST

Alternatively, you can use WLST to configure reliable messaging. For information
about using WLST to extend the domain, see "Configuring Existing Domains" in
Understanding the WebLogic Scripting Tool.

14.7.2 Configuring Reliable Messaging on the Web Service Endpoint

By default, web service endpoints use the reliable messaging configuration defined for
the server. You can override the reliable messaging configuration used by the web
service endpoint using the WebLogic Server Administration Console, as follows:

Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

Using Web Services Reliable Messaging 14-25

Configuring Reliable Messaging

9.

Invoke the WebLogic Server Administration Console, as described in "Invoking the
Administration Console" in Understanding WebLogic Web Services for Oracle WebLogic
Server.

In the left navigation pane, select Deployments.

Click the name of the web service in the Deployments table.
Select the Configuration tab, then the Port Components tab.
Click the name of the web service endpoint in the Ports table.
Select the Reliable Message tab.

Click Customize Reliable Message Configuration and follow the instructions to
save the deployment plan, if required.

Edit the reliable messaging properties, as described in the following sections:

¢ Configuring the Base Retransmission Interval on WebLogic Server or the Web
Service Endpoint

¢ Configuring the Retransmission Exponential Backoff on WebLogic Server or
Web Service Endpoint

¢ Configuring the Sequence Expiration on WebLogic Server or Web Service
Endpoint

¢ Configuring the Inactivity Timeout on WebLogic Server or Web Service
Endpoint

¢ Configuring a Non-buffered Destination for a Web Service
¢ Configuring the Acknowledgement Interval

Click Save.

For more information, see "Configure Web Service Reliable Messaging" in the Oracle
WebLogic Server Administration Console Online Help.

14.7.3 Configuring Reliable Messaging on Web Service Clients

For general information about configuring reliable messaging on web service clients,
see Configuring Web Service Clients.

For information about using the
webl ogi c. wsee. reliability2.api.WrnmdientlnitFeature when creating
a web services reliable messaging client, refer to the following sections:

Configuring the Base Retransmission Interval on the Web Service Client
Configuring the Retransmission Exponential Backoff on the Web Service Client
Configuring the Sequence Expiration on the Web Service Client

Configuring the Inactivity Timeout on the Web Service Client

14-26 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Reliable Messaging

14.7.4 Configuring the Base Retransmission Interval

If the source endpoint does not receive an acknowledgement for a given message
within the specified base retransmission interval, the source endpoint retransmits the
message. The source endpoint can modify this retransmission interval at any point
during the lifetime of the sequence of messages.

This interval can be used in conjunction with the retransmission exponential backoff,
described in Configuring the Retransmission Exponential Backoff, to specify the
algorithm that is used to adjust the retransmission interval.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, NH specifies the number of hours, nMspecifies the number of minutes, and
NS specifies the number of seconds. This value defaults to PODT5S (5 seconds).

The following sections describe how to configure the base retransmission interval:

¢ Configuring the Base Retransmission Interval on WebLogic Server or the Web
Service Endpoint

¢ Configuring the Base Retransmission Interval on the Web Service Client

14.7.4.1 Configuring the Base Retransmission Interval on WebLogic Server or the
Web Service Endpoint
To configure the retransmission exponential backoff on WebLogic Server or the web

service endpoint level using the WebLogic Server Administration Console, perform
the following steps:

Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

¢ Configuring Reliable Messaging on WebLogic Server
¢ Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Base Retransmission Interval value, as required.

14.7.4.2 Configuring the Base Retransmission Interval on the Web Service Client

Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

Using Web Services Reliable Messaging 14-27

Configuring Reliable Messaging

Table 14-11 defines that

webl ogi c. wsee.reliability2.api.WrnCientlnitFeature methods for
configuring the interval of time that must pass before a message is retransmitted to the
RM destination.

Table 14-11 Methods for Configuring the Base Retransmission Interval
- - - |

Method Description

String get BaseRetransni ssionlnterval () Gets the base retransmission interval.
voi d set BaseRetransni ssionlnterval (String Sets the base retransmission interval.
interval)

In the following example, the base retransmission interval is set to 3 hours.

inmport java.xm .ws.WebService;

import java.xm .ws.WebServi ceRef;

import wsrm jaxws.exanpl e.client_service.*;

i mport wsrm jaxws. exanpl e. client_service. EchoResponse;

i mport webl ogi c. wsee.reliability2.api.WrnCientlnitFeature;

@\ebServi ce
public class CientServicelnpl {

@ebSer vi ceRef (name="Rel i abl eEchoServi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientInitFeature initFeature = new WrnCientlnitFeature(true);
i ni t Feat ure. set BaseRet ransmi ssi onl nt erval ("PODT3H");

port = service. get M/Rel i abl eServi cePort (initFeature);

The base retransmission interval configuration appears in the webl ogi c. xm file as
follows:

<servi ce-reference-description>

<port-info>
<st ub- property>
<name>webl ogi c. wsee. wsr m BaseRet r ansni ssi onl nt er val </ name>
<val ue>PT30S</ val ue>
</ st ub-property>

</ port-info>
</ service-reference-description>

14.7.5 Configuring the Retransmission Exponential Backoff

The retransmission exponential backoff is used in conjunction with the base
retransmission interval, described in Configuring the Base Retransmission Interval. If
a destination endpoint does not acknowledge a sequence of messages for the time
interval specified by the base retransmission interval, the exponential backoff
algorithm is used for timing successive retransmissions by the source endpoint,
should the message continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals
should increase exponentially, based on the base retransmission interval. For example,
if the base retransmission interval is 2 seconds, and the exponential backoff element is

14-28 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Reliable Messaging

set, successive retransmission intervals if messages continue to go unacknowledged
are2,4,8,16,32, and so on.

By default, this flag is disabled (false), indicating that the same retransmission interval
is used in successive retries; the interval does not increase exponentially.

The following sections describe how to configure the retransmission exponential
backoff:

¢ Configuring the Retransmission Exponential Backoff on WebLogic Server or Web
Service Endpoint

¢ Configuring the Retransmission Exponential Backoff on the Web Service Client

14.7.5.1 Configuring the Retransmission Exponential Backoff on WebLogic Server or
Web Service Endpoint
To configure the retransmission exponential backoff on WebLogic Server or the web

service endpoint level using the WebLogic Server Administration Console, perform
the following steps:

Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

¢ Configuring Reliable Messaging on WebLogic Server
¢ Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Enable Retransmission Exponential Backoff flag, as required.

14.7.5.2 Configuring the Retransmission Exponential Backoff on the Web Service
Client

Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

Table 14-12 defines the

webl ogi c. wsee. reliability2. api.WrndientlnitFeature methods for
configuring whether the message retransmission interval will be adjusted using the
retransmission exponential backoff algorithm.

Using Web Services Reliable Messaging 14-29

Configuring Reliable Messaging

Table 14-12 Methods for Configuring the Retransmission Exponential Backoff
- - - - |

Method Description

Bool ean i sRetransmi ssi onExponenti al Backof f () Indicates whether retransmission
exponential backoff is enabled.

void Specifies whether base retransmission
set BaseRet r ansni ssi onExponent i al Backof f (bool ean exponential backoff is enabled. Valid
val ue) values aretrue or f al se.

In the following example, the retransmission exponential backoff is enabled.

inmport java.xm .ws.WebService;

inmport java.xm .ws.WebServi ceRef;

import wsrm jaxws. exanpl e.client_service.*;

i mport wsrm jaxws. exanpl e. client_service. EchoResponse;

i mport webl ogi c. wsee.reliability2.api.WrnCientlnitFeature;

@\ebServi ce
public class CientServicelnpl {

@ebSer vi ceRef (name="Rel i abl eEchoServi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientlInitFeature initFeature = new WrnCientlnitFeature(true);
i ni t Feat ure. set BaseRet ransmi ssi onl nt erval ("PODT3H");
i ni t Feature. set BaseRet ransmi ssi onExponent i al Backof f (true);
port = service. get M/Rel i abl eServi cePort (initFeature);

The retransmission exponential backoff configuration appears in the webl ogi c. xm
file as follows:

<servi ce-reference-description>

<port-info>
<st ub- property>
<name>webl ogi c. wsee. wsr m Ret ransmi ssi onExponent i al Backof f </ nane>
<val ue>true</ val ue>
</ st ub-property>

. ”</port-i nf o>
</ service-reference-description>
14.7.6 Configuring the Sequence Expiration

The sequence expiration specifies the expiration time for a sequence regardless of
activity.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, NH specifies the number of hours, nMspecifies the number of minutes, and
nS specifies the number of seconds. This value defaults to P1D (1 day).

The following sections describe how to configure the sequence expiration:

¢ Configuring the Sequence Expiration on WebLogic Server or Web Service Endpoint

14-30 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Reliable Messaging

¢ Configuring the Sequence Expiration on the Web Service Client
14.7.6.1 Configuring the Sequence Expiration on WebLogic Server or Web Service
Endpoint

To configure the sequence expiration on WebLogic Server or the web service endpoint
level using the WebLogic Server Administration Console, perform the following steps:

Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

¢ Configuring Reliable Messaging on WebLogic Server
* Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Sequence Expiration value, as required.

14.7.6.2 Configuring the Sequence Expiration on the Web Service Client

Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

Table 14-13 defines that
webl ogi c. wsee.reliability2. api.WrnCl ientlnitFeature methods for
expiration time for a sequence regardless of activity.

Table 14-13 Methods for Configuring Sequence Expiration
- - |

Method Description

String get SequenceExpiration() Returns the sequence expiration currently
configured.

voi d set SequenceExpiration(Stringexpiration) Expiration time for a sequence regardless

of activity.

In the following example, the sequence expiration is set to 36 hours.

inport java.xm.ws.WebService;

inmport java.xm .ws.WebServiceRef;

inport wsrm jaxws. exanple.client_service.*;

inport wsrm jaxws. exanpl e. client_service. EchoResponse;

i mport webl ogi c. wsee.reliability2. api.WrnOientlnitFeature;

@\ebServi ce

public class CientServicelnpl {

Using Web Services Reliable Messaging 14-31

Configuring Reliable Messaging

@ébSer vi ceRef (name="Rel i abl eEchoServi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientInitFeature initFeature = new WrnCientlnitFeature(true);
i ni t Feature. set SequenceExpi rati on("PODT36H");

port = service.get M/Rel i abl eServi cePort (i nitFeature);

The sequence expiration configuration appears in the webl ogi c. xni file as follows:

<service-reference-description>

<port-info>
<st ub- property>
<name>webl ogi c. wsee. wsr m SequenceExpi rati on</ name>
<val ue>PT10MK/ val ue>
</ st ub- property>

</port-info>
</ service-reference-description>

14.7.7 Configuring Inactivity Timeout

If, during the inactivity timeout interval, an endpoint (the RM source or destination)
has not received messages application or protocol messages, the endpoint may
consider the RM sequence to have been terminated due to inactivity.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, NH specifies the number of hours, nMspecifies the number of minutes, and
NS specifies the number of seconds. This value defaults to PODT600S (600 seconds).

The following sections describe how to configure the inactivity timeout:
¢ Configuring the Inactivity Timeout on WebLogic Server or Web Service Endpoint

¢ Configuring the Inactivity Timeout on the Web Service Client
14.7.7.1 Configuring the Inactivity Timeout on WebLogic Server or Web Service
Endpoint

To configure the inactivity timeout on WebLogic Server or the web service endpoint
level using the WebLogic Server Administration Console, perform the following steps:

Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

¢ Configuring Reliable Messaging on WebLogic Server

14-32 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Reliable Messaging

¢ Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Inactivity Timeout value, as required.

14.7.7.2 Configuring the Inactivity Timeout on the Web Service Client

Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

Table 14-14 defines that
webl ogi c. wsee.reliability2. api.WrnCientlnitFeature methods for
configuring the inactivity timeout.

Table 14-14 Methods for Configuring Inactivity Timeout
|

Method Description

String getlnactivityTi meout () Returns the inactivity timeout currently
configured.

voi d setlnactivityTimeout(Stringtineout) Sets the inactivity timeout.

In the following example, the inactivity timeout interval is set to 1 hour.

inport java.xm .ws.WebService;

import java.xm .ws. WebServi ceRef;

import wsrm jaxws. exanpl e.client_service.*;

import wsrm jaxws. exanpl e. client_service. EchoResponse;

i mport webl ogi c. wsee.reliability2. api.WrnOientlnitFeature;

@\ebSer vi ce
public class CientServicelnpl {

@ébSer vi ceRef (name="Rel i abl eEchoSer vi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientInitFeature initFeature = new WrnCientlnitFeature(true);
i nitFeature.setlnactivityTineout("PODT1H");

port = service. get M/Rel i abl eServi cePort (i nitFeature);

The inactivity timeout configuration appears in the webl ogi ¢. xim file as follows:

<servi ce-reference-description>

<port-info>
<st ub- property>
<name>webl ogi ¢. wsee. wsrm | nacti vit yTi meout </ name>
<val ue>PT5MK/ val ue>
</ st ub- property>

</port-info>
</ service-reference-description>

Using Web Services Reliable Messaging 14-33

Configuring Reliable Messaging

14.7.8 Configuring a Non-buffered Destination for a Web Service

You can control whether you want to disable message buffering on a particular
destination server to control whether buffering is used when receiving messages. You
can configure non-buffering on the destination server at the WebLogic Server or web
service endpoint level only, not at the web service client level (buffering is enabled by
default on a web service client).

Note:

If you configure a non-buffered destination, any web service client that uses
@\ebSer vi ceRef to define a reference to the configuration will receive
responses without buffering them.

The non-buffered destination configuration appears in the webl ogi c. xm
file as follows:

<service-reference-description>

<port-info>
<st ub- property>
<name>webl ogi c. wsee. wsr m NonBuf f er edDest i nat i on</ nane>
<val ue>true</val ue>
</ st ub- property>

</port-info>
</ service-reference-description>

For more information about @\ébSer vi ceRef, see Defining a Web Service
Reference Using the @WebServiceRef Annotation.

To configure the destination server to disable message buffering, on WebLogic Server
or the web service endpoint level using the WebLogic Server Administration Console,
perform the following steps:

Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

¢ Configuring Reliable Messaging on WebLogic Server
¢ Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Non-buffered Destination value, to configure the destination server,
respectively, as required.

Note:

14-34 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Reliable Messaging

On the source server, message buffering should always be enabled. That is,
the Non-buffered Source value should always be disabled.

14.7.9 Configuring the Acknowledgement Interval

The acknowledgement interval specifies the maximum interval during which the
destination endpoint must transmit a standalone acknowledgement. You can
configure the acknowledgement interval at the WebLogic Server or web service
endpoint level only, not at the web service client level.

Note:

A web service client that uses @\ebSer vi ceRef to define a reference to the
web service uses the acknowledgement interval value to control the amount of
time that the client's response handling will wait until acknowledging
responses that it receives. In other words, the client acts like an RM
destination when receiving response messages.

The non-buffered destination configuration appears in the webl ogi c. xm
file as follows:

<service-reference-description>

<port-info>
<stub- property>
<name>webl ogi c. wsee. wsr m Acknowl edgenent | nt er val </ name>
<val ue>PT5S</ val ue>
</ st ub- property>

</ port-info>
</ service-reference-description>

For more information about @\ébSer vi ceRef, see Defining a Web Service
Reference Using the @WebServiceRef Annotation.

A destination endpoint can send an acknowledgement on the return message
immediately after it has received a message from a source endpoint, or it can send one
separately as a standalone acknowledgement. If a return message is not available to
send an acknowledgement, a destination endpoint may wait for up to the
acknowledgement interval before sending a standalone acknowledgement. If there are
no unacknowledged messages, the destination endpoint may choose not to send an
acknowledgement.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHNIVhS. Table 14-15 describes the duration format fields.
This value defaults to PODTO. 2S (0.2 seconds).

Table 14-15 Duration Format Description

Field Description

ny Number of years (n).
nM Number of months (n).
nD Number of days (n).

Using Web Services Reliable Messaging 14-35

Implementing the Reliability Error Listener

Table 14-15 (Cont.) Duration Format Description

Field Description

T Date and time separator.
nH Number of hours (n).
nM Number of minutes (n).
nsS Number of seconds (n).

To configure the acknowledgement interval, on WebLogic Server or the web service
endpoint level using the WebLogic Server Administration Console, perform the
following steps:

Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

¢ Configuring Reliable Messaging on WebLogic Server
¢ Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Acknowledgement Interval value, as required.

14.8 Implementing the Reliability Error Listener

To receive notifications related to reliability delivery failures in the event that a
request cannot be delivered, you can implement the following
webl ogi c. wsee.reliability2. api.ReliabilityErrorlListener interface:

public interface ReliablityErrorListener {

public void onReliabilityError(ReliabilityErrorContext context);
}

Table 14-16 defines that

webl ogi c. wsee.reliability2. api.WrnClientlnitFeature methods for
configuring the reliability error listener.

Table 14-16 Methods for Configuring the Reliability Error Listener

Method Description

ReliabilityErrorListener getReliabilityListener() Gets the reliability listener currently
configured.

14-36 Developing JAX-WS Web Services for Oracle WebLogic Server

Implementing the Reliability Error Listener

Table 14-16 (Cont.) Methods for Configuring the Reliability Error Listener
. __|

Method Description

voi d setErrorListener(ReliabilityErrorlListener Sets the reliability error listener.
errorlListener)

The following provides an example of how to implement and use a reliability error
listener in your web service client. This example is excerpted from Example 13-1.

i mport webl ogi c. wsee.reliability2. api.ReliabilityErrorListener;
i mport webl ogi c. wsee.reliability2. api.WrnCientlnitFeature;

@\ebService
public class OientServicelnpl {

VérnClientlnitFeature rnfFeature = new WsrnClientlnitFeature();
features. add(rnfeature);

ReliabilityErrorListener listener = new ReliabilityErrorListener() {
public void onReliabilityError(ReliabilityErrorContext context) {

[/ At a *mininunt do this
Systemout. println("RM sequence failure: " +

cont ext . get Faul t Summar yMessage()) ;
_l ast Response = cont ext. get Faul t Sumrar yMessage() ;

/1 And optionally do this...

/1 The context parameter tells you whether a request or the entire
/'l sequence has failed. If a sequence fails, you'll get a notification
[l for each undelivered request (if any) on the sequence.
if (context.isRequestSpecific()) {
/1 W have a single request failure (possibly as part of a larger
Il sequence failure).
/1 W can get the original request back like this:
String operationName = context.get OperationNane();
Systemout.printin("Failed to deliver request for operation'" +
operationName + "'. Fault summary: " +
cont ext . get Faul t Sunmar yMessage());
i f ("DoSonet hing".equal s(operationName)) {
try {
String request = context.get Request (JAXBCont ext . newl nstance(),
String.class);
Systemout.printIn("Failed to deliver request for operation'" +
operationName + "' with content: " +
request);
Map<String, Serializable> requestProps =
cont ext . get User Request Cont ext Properties();
if (requestProps !=null) {
/] Fetch back any property you sent in
/1 JAXWEPr operti es. PERSI STENT_CONTEXT when you sent the
/'l request.
String nmyProperty = (String)requestProps. get(M_PROPERTY);
Systemout. printIn(nyProperty + " failed!");

} catch (Exception e) {
e.printStackTrace();
}
}

Using Web Services Reliable Messaging 14-37

Managing the Life Cycle of a Reliable Message Sequence

} else {
/1 The entire sequence has encountered an error.
Systemout.printin("Entire sequence failed: " +
cont ext . get Faul t Sunmar yMessage());

}
}
b

rnfFeature. setReliabilityErrorListener(listener);
_features = features.toArray(new WebServi ceFeat ure[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

14.9 Managing the Life Cycle of a Reliable Message Sequence

WebLogic Server provides a client API,

webl ogi c. wsee. reliability2.api.WrnCient, for use with the web service
reliable messaging. Use this API to perform common life cycle tasks such as set
configuration options, get the reliable sequence id, and terminate a reliable sequence.

An instance of the Wsr mCl i ent API can be accessed from the reliable web service
port using the webl ogi c. wsee. reliability2. api. WsrnClientFactory
method, as follows:

package wsrm j axws. exanpl e;

i mport java.xm .ws. WebServi ce;

import java.xm .ws.WebServi ceRef;

i mport wsrm j axws. exanpl e.client_service.*;

i mport wsrm j axws. exanpl e. client_service. EchoResponse;

i mport webl ogi c. wsee.reliability2. api.WrnCientlnitFeature;

@\ebServi ce
public class OientServicelnpl {

@ébSer vi ceRef (name="Rel i abl eEchoServi ce")
private Reliabl eEchoService service;
private Reliabl eEchoPort Type port = null;

port = service. get Rel i abl eEchoPort () ;
VérnClient wsrnClient = WrnClientFactory. get WsrnC i ent FronPort (port);

The following sections describe how to manage the life cycle of a reliable message
sequence using Wr nCl i ent .

¢ Managing the Reliable Sequence

* Managing the Client ID

¢ Managing the Acknowledged Requests

* Accessing Information About a Message

¢ Identifying the Final Message in a Reliable Sequence
¢ Closing the Reliable Sequence

¢ Terminating the Reliable Sequence

14-38 Developing JAX-WS Web Services for Oracle WebLogic Server

Managing the Life Cycle of a Reliable Message Sequence

* Resetting a Client to Start a New Message Sequence

For complete details on the web service reliable messaging client API, see
webl ogi c. wsee. reliability2.api.WrnCient in Java API Reference for Oracle
WebLogic Server.

14.9.1 Managing the Reliable Sequence

To manage the reliable sequence, you can perform one or more of the following tasks.

* Get and set the reliable sequence ID, as described in Getting and Setting the
Reliable Sequence ID.

® Access the state of the reliable sequence, for example, to determine if it is active or
terminated, as described in Accessing the State of the Reliable Sequence.

14.9.1.1 Getting and Setting the Reliable Sequence ID

The sequence ID is used to identify a specific reliable sequence. You can get and set
the sequence ID using the

webl ogi c. wsee.reliability2.api.WrnCient.getSequencel D() and
webl ogi c. wsee.reliability2. api.WrnCient.setSequencel)
methods, respectively. If no messages have been sent when you issue the

get Sequencel D() method, the value returned is null.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnCientFactory;
i mport webl ogi c. wsee.reliability2. api.WrnCient;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... sonme features ...);
_features = features.toArray(new WebServi ceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

WrnCient rnCient = WrnCientFactory. get WrnQ i ent FronPort (anot her Port);

/1 WIIl be null

String sequenceld = rnCient. get Sequencel d();
/] Send first message

anot her Port . doSonet hi ng("Bake a cake");

Il WII be non-null

sequencel d = rnCient. get Sequencel d();

During recovery from a server failure, you can set the reliable sequence on a newly
created web service port or dispatch instance after a client or server restart. Setting the
sequence ID for a client instance is an advanced feature. Advanced clients may use
set Sequencel d to connect a client instance to a known RM sequence.

14.9.1.2 Accessing the State of the Reliable Sequence

To access the state of a sequence, use

webl ogi c. wsee.reliability2. api.WrnClient.getSequenceState().
This method returns an j ava. | ang. Enumconstant of the type

webl ogi c. wsee. reliability2. api.SequenceSt at e.

The following table defines valid values that may be returned for sequence state.

Using Web Services Reliable Messaging 14-39

Managing the Life Cycle of a Reliable Message Sequence

Table 14-17 Sequence State Values
- - __|

Sequence State Description

CLOSED Reliable sequence is closed.

Note: Closing a sequence should be considered a last resort, and
only to prepare to close down a reliable messaging sequence for
which you do not expect to receive the full range of requests.
For more information, see Closing the Reliable Sequence.

CLOSI NG Reliable sequence is in the process of being closed.

Note: Closing a sequence should be considered a last resort, and
only to prepare to close down a reliable messaging sequence for
which you do not expect to receive the full range of requests.
For more information, see Closing the Reliable Sequence.

CREATED Reliable sequence has been created and the initial handshaking
is complete.

CREATI NG Reliable sequence is being created; the initial handshaking is in
progress.

LAST_MESSAGE Deprecated. WS-ReliableMessaging 1.0 only. The last message

in the sequence has been received.

LAST_MESSAGE_PENDI NG Deprecated. WS-ReliableMessaging 1.0 only. The last message
in the sequence is pending.

NEW Reliable sequence is in its initial state. Initial handshaking has
not started.

TERM NATED Reliable sequence is terminated.

Under normal processing, after all messages up to and
including the final message are acknowledged, the reliable
message sequence is terminated. Though not recommended,
you can force the termination of a reliable sequence, as
described in Terminating the Reliable Sequence.

TERM NATI NG Reliable sequence is in the process of being terminated.

Under normal processing, after all messages up to and
including the final message are acknowledged, the reliable
message sequence is terminated. Though not recommended,
you can force the termination of a reliable sequence, as
described in Terminating the Reliable Sequence.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnCientFactory;

i mport webl ogic. wsee.reliability2. api.WrnCient;

i mport webl ogi c. wsee. reliability2.api.SequenceState;
_service = new BackendRel i abl eServi ceServi ce();

features.add(... some features ...);
_features = features.toArray(new WebServi ceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

14-40 Developing JAX-WS Web Services for Oracle WebLogic Server

Managing the Life Cycle of a Reliable Message Sequence

WrnCient rnCient = WrnCientFactory. get WrnQ i ent FronPort (anot her Port);

SequenceState rnState = rnClient. get SequenceState();
if (rnBtate == SequenceState. TERM NATED) {

. Do some work or log a nessage ...
}

14.9.2 Managing the Client ID

The client ID identifies the web service client. Each client has its own unique ID. The
client ID can be used to access saved requests that may exist for a reliable sequence
after a client or server restart.

The client ID is configured automatically by WebLogic Server. You can set the client
ID to a custom value when creating the port using the

webl ogi c. wsee. j axws. persi stence. d i entldentityFeat ure. For more
information, see Managing Client Identity.

Reliable messaging uses the client ID to find any requests that were sent prior to a VM
restart that were not sent before the VM exited. When you establish the first client
instance using the prior client ID, reliable messaging uses the resources associated
with that port to begin sending requests on behalf of the restored client ID.

You can get the client ID using the
webl ogi c. wsee.reliability2. api.WrnCient.getlD() method.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnCientFactory;
i mport webl ogi c. wsee.reliability2. api.WrnCient;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... some features ...);
_features = features.toArray(new WebServiceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

WrnClient rnCient = WrnCientFactory. get WrnCl i ent FronPort (anot herPort);

String clientld = rnCient.getld();

14.9.3 Managing the Acknowledged Requests

Use the webl ogi c. wsee.reliability2. api.WrnCient.ackRanges()
method to display the requests that have been acknowledged during the life cycle of a
reliable message sequence. The ackRanges() method returns a set of

webl ogi c. wsee. reliability. MessageRange objects.

After reviewing the range of requests that have been acknowledged, the client may
choose to:

¢ Send an acknowledgement request to the RM destination using the
webl ogi c. wsee.reliability2. api.WrnCient.request Acknow edgem
ent () method.

® C(lose the sequence (see Closing the Reliable Sequence) and perform error handling
to account for unacknowledged messages after a specific amount of time.

Using Web Services Reliable Messaging 14-41

Managing the Life Cycle of a Reliable Message Sequence

Note: Clients may call get AckRanges() repeatedly, to keep track of the reliable
message sequence over time. However, you should take into account that there is a
certain level of additional overhead associated each call.

14.9.4 Accessing Information About a Message

Use the webl ogi c. wsee.reliability2. api.WrnCient.get Messagel nfo()
method to get information about a reliable message sent from the client based on the
message number. This method accepts a long value representing the sequential
message number of a request message sent from the client instance, and returns
information about the message of type

webl ogi c. wsee. reliability2. sequence. Sour ceMessagel nf 0. You can use
the Wsr nCl i ent . get Most Recent MessageNunber () method to determine the
maximum value of the message number value to pass to get Messagel nf o() .

The returned Sour ceMessagel nf o object should be treated as immutable, and only
the get methods should be used.

The following table list the Sour ceMessagel nf o methods that you can use to access
specific details about the source message.

Table 14-18 Methods for SourceMessagelnfo()

Method Description
get Messagel D() Gets the message ID as a String value.
get MessageNum() Gets the number of the message as a long value.

get ResponseMessagel n Returnsa

fo() webl ogi c. wsee. reliability2. sequence. Destination
Messagel nf o object representing the response that has been
correlated to the request represented by the current
Sour ceMessagel nf o() object. Returns NULL if no response
has been received for this request or if none is expected (for
example, request was one way).

i sAck() Indicates whether the message has been acknowledged.

The following table lists the Dest i nat i onMessagel nf o methods that you can use to
access specific details about the destination message.

Table 14-19 Methods for DestinationMessagelnfo()

Method Description
get Messagel () Gets the message ID as a String value.
get MessageNum() Gets the number of the message as a long value.

The get Messagel nf o() method can be used in conjunction with

webl ogi c. wsee.reliability2. api.WrnC ient.get Most Recent MessageNu
mber () to obtain information about the most recently sent reliable message. This
method returns a monotonically increasing long value, starting from 1. This method
will return -1 in the following circumstances:

o [f the reliable sequence ID has not been established (get Sequencel D() returns
null).

14-42 Developing JAX-WS Web Services for Oracle WebLogic Server

Managing the Life Cycle of a Reliable Message Sequence

* The first reliable message has not been sent yet.

* The reliable sequence has been terminated.

14.9.5 Identifying the Final Message in a Reliable Sequence

Because WebLogic Server retains resources associated with the reliable sequence, it is
recommended that you take steps to release these resources in a timely fashion. Under
normal circumstances, a reliable sequence should be retained until all messages have
been sent and acknowledged by the RM destination. To facilitate the timely and
proper termination of a sequence, it is recommended that you identify the final
message in a reliable message sequence. Doing so indicates you are done sending
messages to the RM destination and that WebLogic Server can begin looking for the
final acknowledgement before automatically terminating the reliable sequence.
Indicate the final message using the

webl ogi c. wsee.reliability2. api.WrnC ient.setFinal Message()
method.

When you identify a final message, after all messages up to and including the final
message are acknowledged, the reliable message sequence is terminated, and all
resources are released. Otherwise, the sequence is terminated automatically after the
configured sequence expiration period is reached.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnCientFactory;
i mport webl ogi c. wsee.reliability2.api.WrnCient;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... sonme features ...);
_features = features.toArray(new WebServi ceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

WrnCient rnCient = WrnClientFactory. get WrnQ i ent FronPort (anot her Port);

anot her Port . doSonet hi ng(" One potato");

anot her Port . doSonet hi ng(" Two potato");

anot her Port . doSonet hi ng(" Three potato");

/1 Indicate this next invoke marks the 'final' nessage for the sequence
rnCient.setFinal Message();

anot her Port . doSonet hi ng(" Four");

14.9.6 Closing the Reliable Sequence

Use the webl ogi c. wsee. reliability2. api.Wrnmdient.cl oseMessage() to
close a reliable messaging sequence.

Note:

This method is valid for WS-ReliableMessaging 1.1 only; it is not supported
for WS-ReliableMessaging 1.0.

When a reliable messaging sequence is closed, no new messages will be accepted by
the RM destination or sent by the RM source. A closed sequence is still tracked by the

Using Web Services Reliable Messaging 14-43

Managing the Life Cycle of a Reliable Message Sequence

RM destination and continues to service acknowledgment requests against it. It allows
the RM source to get a full and final accounting of the reliable messaging sequence
before terminating it.

Note: Closing a sequence should be considered a last resort, and only to prepare to
close down a reliable messaging sequence for which you do not expect to receive the
full range of requests. For example, after reviewing the range of requests that have
been acknowledged (see Managing the Acknowledged Requests), the client may
decide it necessary to close the sequence and perform error handling to account for
unacknowledged messages after a specific amount of time.

Once a reliable messaging sequence is closed, it is up to the client to terminate the
sequence; it will no longer be terminated automatically by the server after a
configured timeout has been reached. See Terminating the Reliable Sequence.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnQientFactory;
i mport webl ogi c. wsee.reliability2.api.WrnQOient;

_service = new BackendRel i abl eServi ceService();

features.add(... sone features ...);
_features = features.toArray(new WebServi ceFeature[features.size()]);

BackendRel i abl eServi ce anotherPort =
_servi ce. get BackendRel i abl eServi cePort (_features);

VérnClient rnClient = WrnCientFactory. get WrnC i ent FronPort (anot herPort);

anot her Port . doSonet hi ng(" One potato");
anot her Port . doSonet hi ng(" Two potato");

/1 ... Wait some anmount of time, and check for acks
/1 ... using WrnCient.getAckRanges() ...

[l ... If wedon't find all of our acks ...
rmClient. cl oseSequence();

/1 ... Do sonme error recovery like telling our

[l ... client we couldn't deliver all requests ...

rmClient. term nat eSequence();

14.9.7 Terminating the Reliable Sequence

Although not recommended, you can terminate the reliable message sequence
regardless of whether all messages have been acknowledged using the

webl ogi c. wsee.reliability2.api.WrnCient.tern nateSequence()
method.

Note:

It is recommended that, instead, you use the set Fi nal Message() method
to identify the final message in a reliable sequence. When you identify a final
message, after all messages up to and including the final message are
acknowledged, the reliable message sequence is terminated, and all resources
are released. For more information, see Identifying the Final Message in a
Reliable Sequence.

14-44 Developing JAX-WS Web Services for Oracle WebLogic Server

Monitoring Web Services Reliable Messaging

Terminating a sequence causes the RM source and RM destination to remove all state
associated with that sequence. The client can no longer perform any action on a
terminated sequence. When a sequence is terminated, any pending requests being
delivered through server-side retry (SAF agents) for the sequence are rejected and sent
as a notification on the Rel i abl i t yErr or Li st ener.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnCientFactory;
i mport webl ogi c. wsee.reliability2. api.WrnCient;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... sonme features ...);
_features = features.toArray(new WebServiceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

WrnCient rnCient = WrnCientFactory. get WrnQ i ent FronPort (anot her Port);

anot her Port . doSonet hi ng(" One potato");
anot her Port . doSonet hi ng(" Two potato");

[l ... Wit some anount of time, and check for acks
[l ... using WrnClient.getAckRanges() ...

[l ... If wedon't find all of our acks ...
rnCient.closeSequence();

/1 ... Do some error recovery like telling our

[l ... client we couldn't deliver all requests ...

rnClient.term nateSequence();

14.9.8 Resetting a Client to Start a New Message Sequence

Use the webl ogi c. wsee. reliability2. api.WrnCient.reset() method to
clear all Request Cont ext properties related to reliable messaging that do not need
to be retained once the reliable sequence is closed. Typically, this method is called
when you want to initiate another sequence of reliable messages from the same client.

For an example of using r eset () , see Example B-1.

14.10 Monitoring Web Services Reliable Messaging

You can monitor reliable messaging sequences for a web service or client using the
WebLogic Server Administration Console. For each reliable messaging sequence,
runtime monitoring information is displayed, such as the sequence state, the source
and destination servers, and so on. You can customize the information that is shown in
the table by clicking Customize this table.

In particular, you can use the monitoring pages to determine:

* Whether or not you are cleaning up sequences in a timely fashion. If you view a
large number of sequences in the monitoring tab, you may wish to review your
client code to determine why.

* Whether an individual sequence has unacknowledged requests, or has not received
expected responses.

To monitor reliable messaging sequences for a web service, click on the Deployments
node in the left pane and, in the Deployments table that appears in the right pane,

Using Web Services Reliable Messaging 14-45

Grouping Messages into Business Units of Work (Batching)

locate the Enterprise application in which the web service is packaged. Expand the
application by clicking the + node; the web services in the application are listed under
the Web Services category. Click on the name of the web service and select
Monitoring> Ports> Reliable Messaging.

To monitor reliable messaging sequences for a web service client, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab. Then click Monitoring> Servers> Reliable
Messaging.

14.11 Grouping Messages into Business Units of Work (Batching)

Often, the messages flowing between a web service client and service are part of a
single business transaction or unit of work. An example might be a travel agency
reservation process that requires messages between the agency, airline, hotel, and
rental car company. All of the messages flowing between any two endpoints could be
considered a business unit of work.

Reliable messaging is tailored to handling messages related to a unit of work by
grouping them into an RM sequence. The entire unit of work (or sequence) is treated
as a whole, and error recovery, and so on can be applied to the entire sequence (see the
I nconmpl et eSequenceBehavi or element description in the WS-ReliableMessaging
1.2 specification (February 2009) at ht t p: / / docs. oasi s- open. or g/ ws-r x/ wsr 1
200702). For example, an RM sequence can be configured to discard requests that
occur after a gap in the sequence, or to discard the entire sequence of requests if any
request is missing from the sequence.

You can indicate that a message is part of a business unit of work by creating a new
client instance before sending the first message in the unit, and by disposing of the
client instance after the last message in the unit. Alternatively, you can use the

Wr mCl i ent API (obtained by passing a client instance to the

WrmCl i ent Fact ory. get Wer mnCl i ent Fr onrPor t () method) to identify the final
request in a sequence is about to be sent. This is done by calling

WrmCl i ent . set Fi nal Message() just before performing the invoke on the client
instance, as described in Identifying the Final Message in a Reliable Sequence.

There is some significant overhead associated with the RM protocol. In particular,
creating and terminating a sequence involves a round-trip message exchange with the
service (RM destination). This means that four messages must go across the wire to
establish and then terminate an RM sequence. For this reason, it is to your advantage
to send the requests within a single business unit of work on a single RM sequence.
This allows you to amortize the cost of the RM protocol overhead over a number of
business messages.

In some cases, the client instance being used to talk to the reliable service runs in an
environment where there is no intrinsic notion of the business unit of work to which
the messages belong. An example of this is an intermediary such as a message broker.
In this case, the broker is often aware only of the message itself, and not the context in
which the message is being sent. The broker may not do anything to demarcate the
start and end of a business unit of work (or sequence); as a result, when using reliable
messaging to send requests, the broker will incur the RM sequence creation and
termination protocol overhead for every message it sends. This can result in a serious
negative performance impact.

14-46 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702

Grouping Messages into Business Units of Work (Batching)

In cases where no intrinsic business unit of work is known for a message, you can
choose to arbitrarily group (or batch) messages into an artificially created unit of work
(called a batch). Batching of reliable messages can overcome the performance impact
described above and can be used to tune and optimize network usage and throughput
between a reliable messaging client and service. Testing has shown that batching
otherwise unrelated requests into even small batches (say 10 requests) can as much as
triple the throughput between the client and service when using reliable messaging
(when sending small messages).

Note:

Oracle does not recommend batching requests that already have an
association with a business unit of work. This is because error recovery can
become complicated when RM sequence boundaries and unit of work
boundaries do not match. For example, when you add a

Rel i abi |'i t yErrorLi stener toyour client instance (via

Wr nCl i ent | ni t Feat ur e), as described in Implementing the Reliability
Error Listener, this listener can be used to perform error recovery for single
requests in a sequence or whole-sequence failures. When batching requests,
this error recovery logic would need to store some information about each
request in order to properly handle the failure of a request. A client that does
not employ batching will likely have more context about the request given the
business unit of work it belongs to.

The following code excerpt shows an example class called

Bat chi ngRmCl i ent W apper that can be used to make batching of RM requests
simple and effective. This class batches requests into groups of a specified number of
requests. It allows you to create a dynamic proxy that takes the place of your regular
client instance. When you make invocations on the client instance, the batching
wrapper seamlessly groups the outgoing requests into batches, and assigns each batch
its own RM sequence. The batching wrapper also takes a duration specification that
indicates the maximum lifetime of any given batch. This allows incomplete batches to
be completed in a timely fashion even if there are not enough outgoing requests to
completely fill a batch. If the batch has existed for the maximum lifetime specified, it
will be closed as if the last message in the batch had been sent.

An example of the client wrapper class that can be used for batching reliable
messaging is provided in Example Client Wrapper Class for Batching Reliable
Messages. You can use this class as-is in your own application code, if desired.

Example 14-2 Example of Grouping Messages into Units of Work (Batching)

import java.io.|CException;
inport java.util.*;
inport java.util.*;

import javax.servlet.*;
import javax.xm.ws.*;

import weblogic.jws.jaxws.client.CientldentityFeature;

i mport webl ogi c. jws.jaxws.client.async. Asyncd i ent Handl er Feat ur e;

i mport webl ogi c. jws.jaxws.client.async. AsyncC ient Transport Feat ure;
i mport webl ogi c. wsee.reliability2.api.ReliabilityErrorContext;

i mport webl ogi c. wsee.reliability2. api.ReliabilityErrorlListener;

i mport webl ogi c. wsee.reliability2.api.WrnCientlnitFeature;

/**

Using Web Services Reliable Messaging 14-47

Grouping Messages into Business Units of Work (Batching)

* Exanple client for invoking a reliable web service and 'batching' requests
*artificially into a sequence. A wapper class called

* BatchingRCl i ent Wapper is called to begin and end RM sequences for each batch of
* requests. This avoids per-message RM sequence handshaki ng

* and ternination overhead (delivering better performance).

*/
public class BestPracticeAsyncRBat chi ngQ i ent

extends GenericServlet {

private BackendReliabl eServiceService _service;
private BackendRel i abl eService _singletonPort;
private BackendRel i abl eService _batchingPort;

private static int _requestCount;
private static String _| astResponse;

@wverride
public void init()
throws ServletException {

_request Count = 0;
_last Response = nul | ;

/1 Only create the web service object once as it is expensive to create repeatedly.
if (_service == null) {
_service = new BackendRel i abl eServi ceServi ce();

}

/] Best Practice: Use a stored list of features, per client ID, to create client instances.
/1 Define all features for the web service port, per client ID, so that they are

/1 consistent each time the port is called. For exanple:

/| _service. get BackendServi cePort (_features);

Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

/1 Best Practice: Explicitly define the client ID.
ClientldentityFeature clientldFeature =

new CientldentityFeature("MBackendServi ceAsyncRnBat chingCient");
features.add(clientldFeature);

/1 Best Practice: Always inplenent a reliability error |istener.
/1 Include this feature in your reusable feature list. This enables you to deternine
/1 a reason for failure, for exanple, RMcannot deliver a request or the RM sequence fails in
/1 some way (for exanple, client credentials refused at service).
WrnClientlnitFeature rnfeature = new VérnClientlnitFeature();
features. add(rnfeature);
rnfeat ure. setErrorListener(new ReliabilityErrorListener() {
public void onReliabilityError(ReliabilityErrorContext context) {
[/ At a *minimnt do this
Systemout. println("RM sequence failure: " +
cont ext . get Faul t Summar yMessage()) ;
_l ast Response = cont ext. get Faul t Sumrar yMessage() ;
1
oK

/'l Asynchronous endpoi nt
AsyncC i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(get Servl et Context ());
features. add(asyncFeature);

/] Best Practice: Define a port-based asynchronous cal |l back handler,

14-48 Developing JAX-WS Web Services for Oracle WebLogic Server

Grouping Messages into Business Units of Work (Batching)

/1 AsyncOient Handl er Feature, for asynchronous and di spatch cal | back handling.
BackendRel i abl eServi ceAsyncHandl er handl er =
new BackendRel i abl eServi ceAsyncHandl er () {
public voi d onDoSonet hi ngResponse(Response<DoSonet hi ngResponse> res) {
/1 ... Handl e Response ...
try {
DoSonet hi ngResponse response = res. get();
_last Response = response. get Return();
Systemout. println("Got reliable/async/batched response: " + _|astResponse);
} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();
1
}
b
AsyncC i ent Handl er Feat ure handl er Feature =
new AsyncCl i ent Handl er Feat ure(handl er);
features. add(handl er Feature);

/1 Set the features used when creating clients with
/1 this client 1D "MBackendServiceAsyncRmBat chingClient"”

\\ebServi ceFeature[] featuresArray =
features.toArray(new WebServi ceFeature[features.size()]);

/] Best Practice: Define a singleton port instance and initialize it when

/1 the client container initializes (upon deployment).

/1 The singleton port will be available for the life of the servlet.

Il Creation of the singleton port triggers the asynchronous response endpoint to be published
[/ and it will remain published until our container (Wb application) is undeployed.

/] Note, we will get a call to destroy() before this.

_singletonPort = _service. getBackendRel i abl eServicePort (featuresArray);

/] Create a wapper class to 'batch' nmessages onto RM sequences so
/1 aclient with no concept of which nmessages are related as a unit can still achieve
/1 good performance fromRM The class will send a given nunber of requests on
/1 the same sequence, and then terminate that sequence before starting
/] another to carry further requests. A batch has both a max size and
/1 lifetime so no sequence is left open for too |ong.
/1 The exanpl e batches 10 nmessages or executes for 20 seconds, whichever cones
[l first. Assuming there were 15 total requests to send, the class would start and conplete
/1 one full batch of 10 requests, then send the next batch of five requests.
/1 Once the batch of five requests has been open for 20 seconds, it will be closed and the
/] associated sequence termnated (even though 10 requests were not sent to fill the batch).
BackendRel i abl eServi ce batchingPort =
_service. get BackendRel i abl eServi cePort (featuresArray);
Bat chi ngRCl i ent W apper <BackendRel i abl eSer vi ce> bat chi ngSeq
= new Bat chi ngRC i ent W apper <BackendRel i abl eSer vi ce>(bat chi ngPort,
BackendRel i abl eServi ce. cl ass,
10, "PT20S",
Systemout);
_bat chi ngPort = bat chi ngSeq. creat eProxy();

}

@wverride

public void service(Servl et Request req, ServletResponse res)
throws ServletException, |CException {
[/ TODO ... Read the servlet request ...

[l For this sinple exanple, echo the _|astResponse captured from

Using Web Services Reliable Messaging 14-49

Grouping Messages into Business Units of Work (Batching)

/1 an asynchronous DoSonet hi ngResponse response nessage.

if (_lastResponse != null) {
res.getWiter().wite(_| astResponse);
Systemout. printIn("Servlet returning _|astResponse value: " + _|astResponse);
_lastResponse = null; // Clear the response so we can get another
return;

}

/1 Synchronize on _batchingPort since it is a class-level variable and it m ght
/1 be in this method on multiple threads fromthe servlet engine.

synchroni zed(_bat chi ngPort) {

/1 Use the 'batching' port to send the requests instead of creating a
Il new request each tine.
BackendRel i abl eServi ce port = _batchingPort;

/1 Set the endpoint address for BackendService.
((Bi ndi ngProvi der) port). get Request Cont ext ().
put (Bi ndi ngPr ovi der . ENDPOI NT_ADDRESS_PROPERTY,
"http://1ocal host: 7001/ Best PracticeRel i abl eServi ce/ BackendRel i abl eService");

/1 Make the invocation. Qur asynchronous handl er inplenmentation (set
/1 into the AsyncOientHandl er Feature above) receives the response.
String request = "Protected and serve " + (++_request Count);
Systemout. println("Invoking DoSonething reliably/async/batched with request: " +
request);
port. doSomet hi ngAsync(request);
}

/1 Return a canned string indicating the response was not received
/'l synchronously. Cient needs to invoke the servlet again to get
/'l the response.

res.getWiter().wite("Waiting for response...");

}

@verride
public void destroy() {

try {
Il Best Practice: Explicitly close client instances when processing is conplete.
I/ Close the singleton port created during initialization. Note, the asynchronous
/'l response endpoi nt generated by creating _singletonPort *remains*
/1 published until our container (Web application) is undepl oyed.
((java.io.C oseabl e) _singletonPort).close();
Il Best Practice: Explicitly close client instances when processing is conplete.
/1 Close the batching port created during initialization. Note, this will close
Il the underlying client instance used to create the batching port.
((java.io.C oseabl) _batchingPort).close();

/1 Upon return, the Wb application is undeployed, and the asynchronous
/'l response endpoint is stopped (unpublished). At this point,
Il the client 1D used for _singletonPort will be unregistered and will no |onger be
Il visible fromthe Administration Console and W.ST.
} catch (Exception e) {
e.printStackTrace();

14-50 Developing JAX-WS Web Services for Oracle WebLogic Server

Client Considerations When Redeploying a Reliable Web Service

14.12 Client Considerations When Redeploying a Reliable Web Service

WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated reliable WebLogic web service alongside an older
version of the same web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
web service. If the client is connected to a reliable web service, its work is considered
complete when the existing reliable message sequence is explicitly ended by the client
or as a result of a timeout.

For additional information about production redeployment and web service clients,
see Client Considerations When Redeploying a Web Service.

14.13 Interoperability with WebLogic Web Service Reliable Messaging

The WebLogic web services reliable messaging implementation will interoperate with
the web service reliable messaging implementations provided by the following third-
party vendor web services: IBM and Microsoft .NET. For best practices when
interoperating with Microsoft .NET, see "Interoperability with Microsoft WCF/.NET"
in Understanding WebLogic Web Services for Oracle WebLogic Server.

To enhance interoperability with Oracle SOA services that use web services reliable
messaging, please consider the following interoperability guidelines:

¢ Do no use Make Connection for asynchronous transport, as described in Using
Asynchronous Web Service Clients From Behind a Firewall (Make Connection).
Reliable SOA services do not support Make Connection.

* Do no use WS-SecureConversation to secure reliable web services. SOA services do
not support the use of web services reliable messaging and WS-
SecureConversation together.

¢ For reliable WebLogic web service clients that are accessing reliable SOA services:

— Use synchronous (anonymous WS-Addressing ReplyTo EPR) request-reply or
one-way MEP (Message exchange pattern).

— Do not use asynchronous (non-anonymous WS-Addressing ReplyTo EPR)
request-reply MEP.

¢ For reliable SOA clients that are accessing reliable WebLogic web services, use one
of the following:

- Synchronous (anonymous WS-Addressing ReplyTo EPR) request-reply or one-
way MEP.

— Asynchronous (non-anonymous WS-Addressing ReplyTo EPR) request-reply
MEP.

Using Web Services Reliable Messaging 14-51

Interoperability with WebLogic Web Service Reliable Messaging

14-52 Developing JAX-WS Web Services for Oracle WebLogic Server

15

Using Web Services Atomic Transactions

This chapter describes how to use web services atomic transactions for WebLogic web
services using Java API for XML Web Services (JAX-WS) to enable interoperability
with other external transaction processing systems.

This chapter includes the following sections:

* Overview of Web Services Atomic Transactions

* Configuring the Domain Resources Required for Web Service Advanced Features
* Enabling Web Services Atomic Transactions on Web Services

¢ Enabling Web Services Atomic Transactions on Web Service Clients

¢ Configuring Web Services Atomic Transactions Using the Administration Console
* Using Web Services Atomic Transactions in a Clustered Environment

* More Examples of Using Web Services Atomic Transactions

15.1 Overview of Web Services Atomic Transactions

WebLogic web services enable interoperability with other external transaction
processing systems, such as Websphere, Microsoft .NET, and so on, through the
support of the following specifications:

e Web Services Atomic Transaction (WS-AtomicTransaction) Versions 1.0, 1.1, and
1.2:http://docs. oasi s- open. or g/ ws-t x/ wst x-wsat - 1. 2- spec- cs- 01/
wst X-wsat - 1. 2-spec-cs-01. ht

e Web Services Coordination (WS-Coordination) Versions 1.0, 1.1, and 1.2: ht t p: //
docs. oasi s- open. or g/ ws-t x/ wst x-wscoor - 1. 2- spec- cs- 01/ wst x-
wscoor-1. 2-spec-cs-01. ht m

These specifications define an extensible framework for coordinating distributed
activities among a set of participants. The coordinator, shown in the following figure,
is the central component, managing the transactional state (coordination context) and
enabling web services and clients to register as participants.

Using Web Services Atomic Transactions 15-1

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

Overview of Web Services Atomic Transactions

Figure 15-1 Web Services Atomic Transactions Framework

"Web Service)
(-E reateCoordinationCo ntext)

\

Activation Registration

Service Service

Protocol Protocol
Appllcauoni—ﬂ Service X ServiceY (€—Application
Protocol X Protocol ¥

Coordinator

The following table describes the components of web services atomic transactions,
shown in the previous figure.

Table 15-1 Components of Web Services Atomic Transactions
- - - - -~~~ -

Component Description

Coordinator Manages the transactional state (coordination context) and
enables web services and clients to register as participants.

Activation Service Enables the application to activate a transaction and create a
coordination context for an activity. Once created, the
coordination context is passed with the transaction flow.

Registration Service Enables an application to register as a participant.

Application Protocol X, Y Supported coordination protocols, such as WS-
AtomicTransaction.

The following figure shows two instances of WebLogic Server interacting within the
context of a web services atomic transaction. For simplicity, two WebLogic web service
applications are shown.

Figure 15-2 Web Services Atomic Transactions in WebLogic Server Environment

Server A (WebLogic Server) Server B (Weblogic Server)
»

Application A . SOAP 5 Application B
b= + -
] Context E

JTA Transaction £ L T JTA Transaction
Manager b Manager
i e
Coordinator < ~_| Participant

Please note the following:

® Using the local JTA transaction manager, a transaction can be imported to or
exported from the local JTA environment as a subordinate transaction, all within the
context of a web service request.

15-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring the Domain Resources Required for Web Service Advanced Features

¢ Creation and management of the coordination context is handled by the local JTA
transaction manager.

¢ All transaction integrity management and recovery processing is done by the local
JTA transaction manager.

For more information about JTA, see Developing JTA Applications for Oracle WebLogic
Server.

The following describes a sample end-to-end web services atomic transaction
interaction, illustrated in Figure 15-2:

1. Application A begins a transaction on the current thread of control using the JTA
transaction manager on Server A.

2. Application A calls a web service method in Application B on Server B.

3. Server A updates its transaction information and creates a SOAP header that
contains the coordination context, and identifies the transaction and local
coordinator.

4. Server B receives the request for Application B, detects that the header contains a
transaction coordination context and determines whether it has already registered
as a participant in this transaction. If it has, that transaction is resumed and if not,
a new transaction is started.

Application B executes within the context of the imported transaction. All
transactional resources with which the application interacts are enlisted with this
imported transaction.

5. Server B enlists itself as a participant in the WS-AtomicTransaction transaction by
registering with the registration service indicated in the transaction coordination
context.

6. Server A resumes the transaction.

7. Application A resumes processing and commits the transaction.

15.2 Configuring the Domain Resources Required for Web Service
Advanced Features

When creating or extending a domain, if you expect that you will be using other web
service advanced features in addition to web service atomic transactions (either now
or in the future), you can apply the WebLogic Advanced Web Services for JAX-WS
Extension template (M S_webser vi ce_j axws. j ar) to configure automatically the
resources required to support the advanced web service features. Although use of this
extension template is not required, it makes the configuration of the required
resources much easier. Alternatively, you can configure the resources required for
these advanced features using the Oracle WebLogic Server Administration Console or
WLST. For more information, see Configuring Your Domain For Advanced Web
Services Features.

Note:

If you do not expect to use other web service advanced features with web
service atomic transactions, application of this extension template is not
required, minimizing start-up times and memory footprint.

Using Web Services Atomic Transactions 15-3

Enabling Web Services Atomic Transactions on Web Services

15.3 Enabling Web Services Atomic Transactions on Web Services

To enable web services atomic transactions on a web service:

* When starting from Java (bottom-up), add the
@webl ogi c. wsee. wst x. wsat . Transact i onal annotation to the web service
endpoint implementation class or method. For more information, see Using the
@Transactional Annotation in Your JWS File.

® When starting from WSDL (top-down), use wsdl ¢ to generate a web service from
an existing WSDL file. In this case, The WS-AtomicTransaction policy assertions
that are advertised in the WSDL are carried forward and are included in the WSDL
file for the new web service generated by wsdl c. See Enabling Web Services
Atomic Transactions Starting From WSDL.

¢ At deployment time, enable and configure web services atomic transactions at the
web service endpoint or method level using the WebLogic Server Administration
Console. For more information, see Configuring Web Services Atomic Transactions
Using the Administration Console.

The following tables summarizes the configuration options that you can set when
enabling web services atomic transactions.

Table 15-2 Web Services Atomic Transactions Configuration Options
- -]

Attribute Description

Ver si on Version of the web services atomic transaction coordination context that is used for
web services and clients. For clients, it specifies the version used for outbound
messages only. The value specified must be consistent across the entire transaction.

Valid values include WSAT10, WBAT11, WSAT12, and DEFAULT. The DEFAULT value
for web services is all three versions (driven by the inbound request); the DEFAULT
value for web service clients is WSAT10.

Fl ow type Whether the web services atomic transaction coordination context is passed with the
transaction flow. For valid values, see Table 15-3.

The following table summarizes the valid values for flow type and their meaning on
the web service and client. The table also summarizes the valid value combinations
when configuring web services atomic transactions for an E]B-style web service that
uses the @Tr ansacti onAttri but e annotation.

15-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling Web Services Atomic Transactions on Web Services

Table 15-3 Flow Types Values

Value Web Service Client Web Service Valid EJB
@ransacti onAttri but e Values
NEVER JTA transaction: Do Transaction flow exists: Do NEVER, NOT_SUPPORTED, REQUI RED,
not export transaction ~ not import transaction REQUI RES_NEW SUPPORTS
coordination context. coordination context. If the
No JTA transaction: CoordinationContext header
Do not export contains
transaction nmust under st and="t r ue",
coordination context. a SOAP fault is thrown.
No transaction flow: Do not
import transaction
coordination context.
SUPPORTS JTA transaction: Transaction flow exists: REQUI RED, SUPPORTS
(Default) Export transaction Import transaction context.
coordination context. No transaction flow: Do not
No JTA transaction: import transaction
Do not export coordination context.
transaction
coordination context.
MANDATORY JTA transaction: Transaction flow exists: MANDATORY, REQUI RED, SUPPORTS

Export transaction
coordination context.

No JTA transaction:

An exception is
thrown.

Import transaction context.

No transaction flow: Service-
side exception is thrown.

15.3.1 Using the @Transactional Annotation in Your JWS File

To enable web services atomic transactions, specify the
@webl ogi c. wsee. wst x. wsat . Transact i onal annotation on the web service
endpoint implementation class or method.

Note:

This annotation is not to be mistaken with webl ogi c. j ws. Tr ansact i onal ,
which ensures that the annotated class or operation runs inside of a
transaction, but not an atomic transaction.

Please note the following:

e If you specify the @t ansact i onal annotation at the web service class level, the
settings apply to all two-way methods defined by the service endpoint interface.
You can override the flow type value at the method level; however, the version
must be consistent across the entire transaction.

* You cannot explicitly specify the @r ansact i onal annotation on a Web method
that is also annotated with @neway.

* web services atomic transactions cannot be used with the client-side asynchronous
programming model.

Using Web Services Atomic Transactions 15-5

Enabling Web Services Atomic Transactions on Web Services

The format for specifying the @Tr ansact i onal annotation is as follows:

@ransacti onal (
ver si on=Transact i onal . Ver si on. [WSAT10| WSAT11| WSAT12| DEFAULT],
val ue=Transacti onal . Transact i onFowType. [MANDATORY| SUPPORTS| NEVER]

)

For more information about the version and flow type configuration options, see Table
15-2.

The following sections provide examples of using the @ ansact i onal annotation at
the web service implementation class and method levels, and with the EJB
@TransactionAttribute annotation.

¢ Example: Using @Transactional Annotation on a Web Service Class
¢ Example: Using @Transactional Annotation on a Web Service Method

¢ Example: Using the @Transactional and the EJB @TransactionAttribute
Annotations Together

15.3.1.1 Example: Using @Transactional Annotation on a Web Service Class

The following example shows how to add @ ansact i onal annotation on a web
service class. Relevant code is shown in bold. As shown in the example, there is an
active JTA transaction.

Note:

The following excerpt is borrowed from the web services atomic transaction
example that is delivered with the WebLogic Server Samples Server. For more
information, see More Examples of Using Web Services Atomic Transactions.

package exanpl es.webservi ces. j axws. wsat . si npl e. servi ce;

i mport webl ogi c. jws. Policy;
import javax.transaction.UserTransaction;

import javax.jws.\WebService;

i mport webl ogi c. wsee. wst x. wsat . Transact i onal ;

i mport webl ogi c. wsee. wst x. wsat . Transact i onal . Versi on;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Transact i onFl owType;

/**
* This JWs file forms the basis of a WebLogic Ws-Atomic Transaction Wb Service with the
* operations: createAccount, deleteAccount, transferMnet, |istAccount

*

*/

@\ébServi ce(serviceName = "Wat BankTr ansf er Servi ce", targetNamespace = "http://tenpuri.org/",
portNanme = "WSHt t pBi ndi ngl Servi ce")
@ransact i onal (val ue=Transactional . Transacti onFl owType. MANDATCRY,
ver si on=webl ogi c. wsee. wst x. wsat . Transact i onal . Ver si on. WSAT10)
public class WsatBankTransfer Service {

public String createAccount(String acctNo, String anmount) throws java.lang. Exception{
Context ctx = null;
User Transaction tx = nul | ;

try {

15-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling Web Services Atomic Transactions on Web Services

ctx = new Initial Context();
tx = (UserTransaction)ctx.|ookup("javax.transaction. UserTransaction");

try {
Dat aSour ce dat aSource = (DataSource)ctx. | ookup("exanpl es- denpXA-2");
String sql = "insert into wsat_acct_renote (acctno, anount) values (" + acctNo +

", " + amount +")";
int insCount = dataSource. get Connection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at remte.");
return ":acctno=" + acctNo + " ampunt=" + ampunt + " creating. ";
} catch (SQLException e) {
Systemout. println("**** Exception caught *****").
e.printStackTrace();
throw new SQLException("SQ. Exception during createAccount() at remnte.");
}
} catch (java.lang. Exception e) {
Systemout. printIn("**** Exception caught *****").
e.printStackTrace();
throw new j ava. | ang. Exception(e);

}

public String del eteAccount (String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String amount, String direction) throws
java.lang. Excepti on{

public String listAccount() throws java.lang. Exception{

}...

package jaxws.interop.rsp;

inport javax.jws.\WbService;

inport javax.xm .ws. Bi ndi ngType;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal ;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Transact i onal Fl owType;
i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Versi on;

@ébSer vi ce(
portNane = "Flight Servi ceBi ndi ngs_Basi c",
servi ceNane = "Flight Service",
target Nanespace = "http://wsinterop.org/ sanples",
wsdl Location = "/wsdl s/ FlightService. wsdl ",
endpointInterface = "jaxws.interop.rsp.|FlightService"
)
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
@avax. xm . ws. soap. Addr essi ng
@ransactional (val ue = Transactional . Transacti onFl owType. SUPPCRTS,
version = Transactional . Versi on. WAT12)
public class FlightServicelnpl inplenents |FlightService {

}

15.3.1.2 Example: Using @Transactional Annotation on a Web Service Method

The following example shows how to add @ ansacti onal annotation on a web
service implementation method. Relevant code is shown in bold.

Using Web Services Atomic Transactions 15-7

Enabling Web Services Atomic Transactions on Web Services

package jaxws.interop.rsp;

inport javax.jws.\WbService;

import javax.xm .ws. Bi ndi ngType;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal ;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Transact i onal Fl owType;
i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Versi on;

@eébSer vi ce(

portNane = "Flight Servi ceBi ndi ngs_Basi c",

servi ceNane = "Fli ght Service",

target Nanespace = "http://wsinterop.org/ sanples",

wsdl Location = "/wsdl s/ FlightService. wsdl ",

endpoi ntInterface = "jaxws.interop.rsp.|FlightService"
)
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
@ avax. xm . ws. soap. Addr essi ng
public class FlightServicelnpl inplenents |FlightService {

@ransactional (val ue = Transactional . Transacti onFl owType. SUPPCRTS,
version = Transactional . Versi on. WSAT12)
public FlightReservationResponse reserveFlight(FlightReservationRequest request) {
[lreplace with your inpl here
Fl i ght ReserverationEnitity entity = new FlightReserverationEnitity();
entity.setAirlinelD(request.getAirlinelD());
entity.setFlightNunber(request. get FlightNumber());
entity.setFlight Type(request.getFlightType());
bool ean successful = saveRequest(entity);
FI i ght Reservati onResponse response = new Fl i ght Reservati onResponse();
if (!successful) {
response. set Confirmati onNunber ("OF" + CONF_NUMBER++ + "-" + request.getAirlinel () +
String.val ueCf (entity.getld()));
} else if (request.getFlightNunber() == null ||
request. get Fl i ght Nunber (). trin().endsWth("LAS")) {
successful = fal se;
response. set Confirmati onNumber ("OF" + "- No flight available for " +
request.getAirlinel I());
} else {
response. set Confirmati onNunber ("OF" + CONF_NUMBER++ + "-" + request.getAirlinel () +
String.val ueCf (entity.getld()));
}
response. set Success(successful);
return response;

}
package exanpl es.webservi ces. j axws. wsat . si npl e. servi ce;

i mport webl ogi c. jws. Policy;
inport javax.transaction.UserTransaction;

inport javax.jws.\WbService;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal ;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Versi on;

i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Transact i onFl owType;

/**

* This JWs file forms the basis of a WebLogic Ws-Atomic Transaction Wb Service with the
* operations: createAccount, deleteAccount, transferMnet, |istAccount

*

*/

15-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling Web Services Atomic Transactions on Web Services

@\ebServi ce(serviceName = "Wsat BankTr ansfer Servi ce", targetNanmespace = "http://tenmpuri.org/",

port Nanme = "WSHt t pBi ndi ngl Servi ce")

public class WsatBankTransfer Service {

@ransactional (val ue=Transacti onal . Transact i onFl owType. MANDATCRY,

ver si on=webl ogi c. wsee. wst x. wsat . Transact i onal . Ver si on. WSAT10)

public String createAccount(String acctNo, String anmount) throws java.lang. Exception{

Context ctx = null;
User Transaction tx = null;
try {
ctx = new Initial Context();
tx = (UserTransaction)ctx.|ookup("javax.transaction. UserTransaction");

try {
Dat aSour ce dat aSource = (DataSource)ctx. | ookup("exanpl es- denpXA-2");
String sql = "insert into wsat_acct_renote (acctno, anount) values (" + acctNo +

", " + amount +")";
int insCount = dataSource. get Connection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at remte.");
return ":acctno=" + acctNo + " ampunt=" + ampunt + " creating. ";
} catch (SQLException e) {
Systemout. printIn("**** Exception caught *****").
e.printStackTrace();
throw new SQLException("SQ. Exception during createAccount() at remnte.");
}
} catch (java.lang. Exception e) {
Systemout. printIn("**** Exception caught *****").
e.printStackTrace();
throw new j ava. | ang. Exception(e);

}

public String del eteAccount (String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String amount, String direction) throws

java.lang. Excepti on{

public String listAccount() throws java.lang. Exception{

}...

15.3.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute
Annotations Together

The following example illustrates how to use the @r ansact i onal and EJB

@r ansact i onAttri but e annotations together. In this case, the flow type values

must be compatible, as outlined in Table 15-3. Relevant code is shown in bold.

package exanpl es. webservi ces. j axws. wsat . si npl e. servi ce;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

webl ogi c. jws. Poli cy;
javax.transaction. User Transacti on;

javax.j ws. WebServi ce;

javax.ejb. TransactionAttribute;

javax.ejb. TransactionAttri but eType;

webl ogi c. wsee. wst x. wsat . Transact i onal ;

webl ogi c. wsee. wst x. wsat . Transact i onal . Ver si on;

webl ogi c. wsee. wst x. wsat . Transact i onal . Transact i onFl owType;

Using Web Services Atomic Transactions 15-9

Enabling Web Services Atomic Transactions on Web Services

/**

* This JWs file forms the basis of a WebLogic Ws-Atomic Transaction Wb Service with the
* operations: createAccount, deleteAccount, transferMnet, |istAccount

*

*/

@\ebServi ce(serviceName = "Wsat BankTr ansfer Servi ce", targetNanmespace = "http://tenmpuri.org/",
port Nanme = "WSHt t pBi ndi ngl Servi ce")
@ransactional (val ue=Transacti onal . Transact i onFl owType. MANDATCRY,
ver si on=webl ogi c. wsee. wst x. wsat . Transact i onal . Ver si on. WSAT10)
@ransactionAttribute(TransactionAttributeType. REQU RED
public class WatBankTransfer Service {

15.3.2 Enabling Web Services Atomic Transactions Starting From WSDL

When enabled, web services atomic transactions are advertised in the WSDL file using
a policy assertion.

Table 15-4 summarizes the WS-AtomicTransaction 1.2 policy assertions that
correspond to a set of common web services atomic transaction flow type and EJB
Transaction attribute combinations. All other combinations result in a build-time error.

Table 15-4 Web Services Atomic Transaction Policy Assertion Values (WS-AtomicTransaction 1.2)

Atomic Transaction Flow EJB WS-AtomicTransaction 1.2 Policy Assertion
Type @ransactionAttri but
e
MANDATORY MANDATORY, REQUI RED, <wsat : ATAssertion/ >
SUPPCRTS
SUPPORTS REQUI RED, SUPPCRTS <wsat : ATAsserti on wsp: Opti onal ="true"/>
NEVER REQUI RED, No policy advertisement
REQUI RES_NEW NEVER,
SUPPORTS,

NOT_SUPPORTED

You can use wsdl ¢ Ant task to generate, from an existing WSDL file, a set of artifacts
that together provide a partial Java implementation of the web service described by
the WSDL file. The WS-AtomicTransaction policy assertions that are advertised in the
WSDL are carried forward and are included in the WSDL file for the new web service
generated by wsdl c.

The wsdl ¢ Ant tasks creates a JWS file that contains a partial (stubbed-out)
implementation of the generated JWS interface. You need to modify this file to include
your business code. After you have coded the JWS file with your business logic, run
the j wsc Ant task to generate a complete Java implementation of the web service. Use
the conpi | edWdl| attribute of j wsc to specify the JAR file generated by the wsdl ¢
Ant task which contains the JWS interface file and data binding artifacts. By specifying
this attribute, the j wsc Ant task does not generate a new WSDL file but instead uses
the one in the JAR file. Consequently, when you deploy the web service and view its
WSDL, the deployed WSDL will look just like the one from which you initially started
(with the WS-AtomicTransaction policy assertions).

15-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling Web Services Atomic Transactions on Web Service Clients

For complete details about using wsdl ¢ to generate a web service from a WSDL file,
see Developing WebLogic Web Services Starting From a WSDL File: Main Steps.

15.4 Enabling Web Services Atomic Transactions on Web Service Clients

On a web service client, enable web services atomic transactions using one of the
following methods:

e Add the @webl ogi c. wsee. wst x. wsat . Transact i onal annotation on the web
service reference injection point for a client. For more information, see Using
@Transactional Annotation with the @WebServiceRef Annotation.

¢ Pass an instance of the webl ogi c. wsee. wst x. wsat . Transact i onal Feat ure
as a parameter when creating the web service proxy or dispatch. For more
information, see Passing the TransactionalFeature to the Client.

¢ At deployment time, enable and configure web services atomic transactions at the
web service client endpoint or method level using the WebLogic Server
Administration Console. For more information, see Configuring Web Services
Atomic Transactions Using the Administration Console.

e At run-time, if the non-atomic transactional web service client calls an atomic
transaction-enabled web service, then based on the flow type advertised in the
WSDL.:

— If the flow type is set to SUPPORTS or NEVER on the service-side, then the call is
included as part of the transaction.

— If the flow type is set to MANDATCRY, then an exception is thrown.

Note:

Web services atomic transactions are not supported by Java SE clients.

For information about the configuration options that you can set when enabling web
services atomic transactions, see Table 15-2.

15.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation

To enable web services atomic transactions, specify the
@webl ogi c. wsee. wst X. wsat . Transacti onal annotation on the web service
client at the web service reference (@¥bSer vi ceRef) injection point.

The format for specifying the @Tr ansact i onal annotation is as follows:

@ransacti onal (

ver si on=Transact i onal . Ver si on. [WAT10| WSAT11| WSAT12| DEFAULT],

val ue=Transacti onal . Transact i onFl owType. [MANDATORY| SUPPORTS| NEVER]
)

For more information about the version and flow type configuration options, see Table
15-2.

The following example illustrates how to annotate the web service reference injection
point. Relevant code is shown in bold. As shown in the example, the active JTA
transaction becomes a part of the atomic transaction.

Using Web Services Atomic Transactions 15-11

Enabling Web Services Atomic Transactions on Web Service Clients

Note:

The following excerpt is borrowed from the web services atomic transaction
example that is delivered with the WebLogic Server Samples Server. For more
information, see More Examples of Using Web Services Atomic Transactions.

package exanpl es.wehservi ces. j axws. wsat . sinple.client;

inport javax.servlet.*;
inport javax.servlet.http.*;

inport java.net.URL;
inport javax.xnl.nanespace. QNane;

inport javax.transaction. UserTransaction;
inport javax.transaction. SystenException;

import javax.xm .ws.\WebServi ceRef;
i mport webl ogi c. wsee. wst x. wsat . Transacti onal ;
*|

/**
* This exanpl e denonstrates using a Ws-Atonmic Transaction to create or delete an account,

* or transfer noney via web service as a single atonm c transaction.
*|

public class WsatBankTransferServl et extends HttpServlet {

String url = "http://local host: 7001";
URL wsdl URL = new URL(url + "/WsatBankTransfer Servi ce/ at BankTr ansf er Servi ce");

Dat aSource ds = null;
User Transaction utx = null;

try {
ctx = new Initial Context();

utx = (UserTransaction) ctx.|ookup("javax.transaction. UserTransaction");
ut x. set Transact i onTi neout (900) ;

} catch (java.lang. Exception e) {
e.printStackTrace();

}

V\6at BankTr ansf er Servi ce port = get\WebServi ce(wsdl URL);

try {
ut x. begin();
if (renoteAccountNo.length() > 0) {
if (action.equals("create")) {
result = port.createAccount (renoteAccount No, anount);
} else if (action.equals("delete")) {
result = port.del et eAccount (remot eAccount No) ;
} else if (action.equals("transfer")) {
result = port.transferMpney(renmoteAccount No, amount, direction);
}

}

utx.comit();

result = "The transaction is committed " + result;
} catch (java.lang. Exception e) {

try {

15-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling Web Services Atomic Transactions on Web Service Clients

e.printStackTrace();
ut x. rol I back();
result = "The transaction is rolled back. " + e.get Message();
} catch(java.lang. Exception ex) {
e.printStackTrace();
result = "Exception is caught. Check stack trace.";
}
1

request.setAttribute("result", result);

@ransactional (val ue = Transactional . Transacti onFl owType. MANDATORY,
version = Transactional . Versi on. WSAT10)
@ébServi ceRef (wsdl Location =

“http://1ocal host: 7001/ Wat BankTr ansf er Ser vi ce/ Wsat BankTr ansf er Servi ce?WsDL", val ue =
exanpl es. webservi ces. j axws. wsat . si npl e. servi ce. Wsat BankTr ansf er Ser vi ce. cl ass)

V\6at Bank Tr ansf er Servi ce_Servi ce service;

private Wat BankTransfer Servi ce get WebService() {
return service. get WsHt t pBi ndi ngl Servi ce();

}
public String createAccount(String acctNo, String amount) throws java.lang. Exception{
Context ctx = null; User Transaction tx = null;
try {
ctx = new Initial Context();
tx = (UserTransaction)ctx.|ookup("javax.transaction.UserTransaction");
try {
Dat aSour ce dataSource = (DataSource)ctx. | ookup("exanpl es- dat aSour ce- demoXAPool ") ;
String sql = "insert into wsat_acct_local (acctno, amount) values (
"+ acctNo + ", " + amount + ")";
int insCount = dataSource. get Connection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at local.");
return ":acctno=" + acctNo + " ampunt=" + anmount + " creating.. ";
} catch (SQLException e) {
Systemout.println("**** Exception caught *****").
e.printStackTrace();
throw new SQLException("SQ. Exception during createAccount() at local.");
} catch (java.lang. Exception e) {
Systemout.println("**** Exception caught *****").
e.printStackTrace();
throw new j ava. | ang. Exception(e);
}
}

public String del eteAccount (String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String amount, String direction) throws
java.l ang. Exception{

public String listAccount() throws java.lang. Exception{
}

package exanpl es.webservices. service_to_service;
i mport javax.jws.\WbService;

i mport javax.jws.\\ebMet hod;

import javax.xn .ws.\WebServi ceRef;

Using Web Services Atomic Transactions 15-13

Enabling Web Services Atomic Transactions on Web Service Clients

i mport
i mport
i mport
i mport
i mport

webl ogi c. wsee. wst x. wsat . Transacti onal ;

webl ogi c. wsee. wst x. wsat . Transacti onal . Transact i onal Fl owType;
webl ogi c. wsee. wst x. wsat . Transacti onal . Versi on;

exanpl es. webser vi ces. conpl ex. Conpl exPort Type;

exanpl es. webser vi ces. conpl ex. Conpl exSer vi ce;

@ébServi ce(nanme="C i ent Port Type", serviceNane="C i ent Service",

target Nanespace="http://exanpl es. org")

public class OientServicelnpl {
@ransactional (val ue = Transactional . Transacti onFl owType. SUPPORTS,

version = Transactional . Versi on. WAT12)

@\ebSer vi ceRef ()

Conpl exServi ce service;

@\ebMet hod()

public String cal | Conpl exService(BasicStruct input)

{
1

Create service and port stubs to invoke Conpl exService

Conpl exPort Type port = service. get Conpl exPort TypePort ();

1

}
}

I nclude your inplementation here.

15.4.2 Passing the TransactionalFeature to the Client

To enable web services atomic transactions on the client of the web service, you can
pass an instance of the webl ogi c. wsee. wst x. wsat . Transact i onal Feat ur e as
a parameter when creating the web service proxy or dispatch, as illustrated in the
following example. Relevant code is shown in bold.

Note:

The following excerpt is borrowed from the web services atomic transaction
example that is delivered with the WebLogic Server Samples Server. For more
information, see More Examples of Using Web Services Atomic Transactions.

package exanpl es. webservi ces. j axws. wsat. sinpl e.client;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport java. net.URL;

i mport javax.xnl.namespace. QNang;

i mport javax.transaction. User Transaction;
i mport javax.transaction. SystenException;

i mport webl ogi c. wsee. wst x. wsat . Transact i onal Feat ure;
i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Ver si on;
i mport webl ogi c. wsee. wst x. wsat . Transacti onal . Transact i onFl owType;

*|

/**

* This exanpl e denonstrates using a Ws-Atonmic Transaction to create or delete an account,
* or transfer noney via web service as a single atonm c transaction.

*/

public class WatBankTransferServlet extends HtpServlet {

15-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling Web Services Atomic Transactions on Web Service Clients

String url = "http://local host: 7001";
URL wsdl URL = new URL(url + "/WsatBankTransfer Servi ce/ Wsat BankTr ansf er Servi ce");

Dat aSource ds = null;
User Transaction utx = null;

try {
ctx = new Initial Context();
utx = (UserTransaction) ctx.|ookup("javax.transaction. UserTransaction");
ut x. set Transact i onTi neout (900) ;
} catch (java.lang. Exception e) {
e.printStackTrace();
}

Wat BankTr ansfer Service port = getWebServi ce(wsdl URL);

try {
ut x. begin();
if (renoteAccountNo.length() > 0) {
if (action.equals("create")) {
result = port.createAccount (renoteAccount No, anount);
} else if (action.equals("delete")) {
result = port.del et eAccount (remot eAccount No) ;
} else if (action.equals("transfer")) {
result = port.transferMpney(remoteAccount No, amount, direction);
}

}
utx.comit();
result = "The transaction is commtted " + result;
} catch (java.lang. Exception e) {
try {
e.printStackTrace();
ut x. rol I back();
result = "The transaction is rolled back. " + e.get Message();
} catch(java.lang. Exception ex) {
e.printStackTrace();
result = "Exception is caught. Check stack trace.";
}
1

request.setAttribute("result", result);

/'l Passing the Transactional Feature to the dient
private \Wat BankTransfer Servi ce get WebServi ce(URL wsdl URL) {
Transactional Feature feature = new Transactional Feature();
feature. set Fl owType(Transacti onFl owType. MANDATCRY) ;
feature. set Versi on(Versi on. WSAT10) ;
Wat BankTr ansf er Servi ce_Servi ce service = new \Wat BankTr ansf er Servi ce_Servi ce(wsdl URL,
new QNane("http://tenpuri.org/", "WatBankTransferService"));
return service. get WsHt t pBi ndi ngl Servi ce(new j avax. xm . ws. soap. Addr essi ngFeat ure(),

feature);
}
public String createAccount(String acctNo, String anmount) throws java.lang. Exception{
Context ctx = null; User Transaction tx = null;
try {

ctx = new Initial Context();
tx = (UserTransaction)ctx.|ookup("javax.transaction. UserTransaction");

try {
Dat aSour ce dataSource = (DataSource)ctx. | ookup("exanpl es- dat aSour ce- demoXAPool ") ;
String sql = "insert into wsat_acct_local (acctno, amount) values (

"+ acctNo + ", " + amount + ")";

Using Web Services Atomic Transactions 15-15

Enabling Web Services Atomic Transactions on Web Service Clients

int insCount = dataSource. get Connection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at local.");
return ":acctno=" + acctNo + " ampunt=" + anmpunt + " creating.. ";
} catch (SQLException e) {
Systemout.println("**** Exception caught *****").
e.printStackTrace();
t hrow new SQLException("SQ Exception during createAccount() at local.");

} catch (java.lang. Exception e) {
Systemout. printIn("**** Exception caught *****"):
e.printStackTrace();
throw new j ava. | ang. Exception(e);
}
}

public String del eteAccount (String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String amount, String direction) throws
java.l ang. Exception{

public String listAccount() throws java.lang. Exception{
}
}

package jaxws.interop.rsp;

inport javax.jws.\WbService;
i mport javax.xm .ws.*;
i mport webl ogi c. wsee. wst x. wsat . Transacti onal Feat ure;

@eébSer vi ce(
port Name = "Travel AgencyServi ceBi ndi ngs_Basi c",
servi ceNane = "Travel AgencyServi ce",
target Nanespace ="http://wsinterop. org/sanpl es",
wsdl Location = "/wsdl s/ Travel AgencyServi ce. wsdl ",
endpoi ntInterface = "jaxws.interop.rsp.|Travel AgencyService"
)
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
@ avax. xm . ws. soap. Addr essi ng()
public class Travel AgencyServicelnpl inplenments |Travel AgencyService {

private | FlightService getFlightProxy(String endpoint, String stsEndpoint) throws Exception {
Transactional Feature feature = new Transactional Feature();
/1 Optional setting.
feature. set Version(Transactional . Versi on. WBAT12) ;
/1 Optional setting.
feature. set Enabl ed("ReserveFlight", true);
I Fl'ightService flightProxy = flightService.getFlightServiceBindingsBasic(feature);

15-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Web Services Atomic Transactions Using the Administration Console

15.5 Configuring Web Services Atomic Transactions Using the
Administration Console

The following sections describe how to configure web services atomic transactions
using the WebLogic Server Administration Console.

® Securing Messages Exchanged Between the Coordinator and Participant

¢ Enabling and Configuring Web Services Atomic Transactions

15.5.1 Securing Messages Exchanged Between the Coordinator and Participant

Using transport-level security, you can secure messages exchanged between the web
services atomic transaction coordinator and participant by configuring the properties
defined in the following table using the WebLogic Server Administration Console.
These properties are configured at the domain level. For detailed steps, see "Configure
web services atomic transactions" in the Oracle WebLogic Server Administration Console
Online Help.

Table 15-5 Securing Web Services Atomic Transactions
|

Property Description
Web Services Transactions Transport Security Specifies whether two-way SSL is used for the message
Mode exchange between the coordinator and participant. This

property can be set to one of the following values:

e SSL Not Required—All web service transaction
protocol messages are exchanged over the HTTP
channel.

e SSL Required—All web service transaction protocol
messages are exchanged over the HTTPS channel. This
flag must be enabled when invoking Microsoft .NET
web services that have atomic transactions enabled.

* Client Certificate Required—All web service
transaction protocol messages are exchanged over
HTTPS and a client certificate is required.

For more information, see "Configure two-way SSL" in the

Oracle WebLogic Server Administration Console Online Help.

Web Service Transactions Issued Token Enabled Flag the specifies whether to use an issued token to enable
authentication between the coordinator and participant.

The | ssuedToken is issued by the coordinator and
consists of a security context token (SCT) and a session key
used for signing. The participant sends the signature,
signed using the shared session key, in its registration
message. The coordinator authenticates the participant by
verifying the signature using the session key.

15.5.2 Enabling and Configuring Web Services Atomic Transactions

To enable web services atomic transactions and configure the version and flow type,
you can customize the configuration at the endpoint or method level for the web
service or client. For detailed steps, see "Configure web services atomic transactions"
in the Oracle WebLogic Server Administration Console Online Help.

Using Web Services Atomic Transactions 15-17

Using Web Services Atomic Transactions in a Clustered Environment

15.6 Using Web Services Atomic Transactions in a Clustered
Environment

For considerations when using atomic transaction-enabled web services in a clustered
environment, see Managing Web Services in a Cluster.

15.7 More Examples of Using Web Services Atomic Transactions

Refer to the following sections for additional examples of using web services atomic
transactions:

¢ For an example of how to sign and encrypt message headers exchanged during the
web services atomic transaction, see "Securing Web Services Atomic Transactions"
in Securing WebLogic Web Services for Oracle WebLogic Server.

Note:

You can secure applications that enable web service atomic transactions using
only WebLogic web service security policies. You cannot secure them using
Oracle Web Services Manager (WSM) policies.

¢ A detailed example of web services atomic transactions is provided as part of the
WebLogic Server sample application. For more information about running the
sample application and accessing the example, see "Sample Application and Code
Examples" in Understanding Oracle WebLogic Server.

15-18 Developing JAX-WS Web Services for Oracle WebLogic Server

16

Optimizing XML Transmission Using Fast
Infoset

This chapter describes how to use Fast Infoset for WebLogic web services using Java
API for XML Web Services (JAX-WS).

This chapter includes the following sections:

¢ Overview of Fast Infoset

¢ Enabling Fast Infoset on Web Services

¢ Enabling and Configuring Fast Infoset on Web Services Clients

¢ Disabling Fast Infoset on Web Services and Clients

16.1 Overview of Fast Infoset

Fast Infoset is a compressed binary encoding format that provides a more efficient
serialization than the text-based XML format. Fast Infoset optimizes both document
size and processing performance.

When enabled, Fast Infoset converts the XML Information Set in the SOAP envelope
into a compressed binary format before transmitting the data. Fast Infoset optimizes
encrypted and signed messages, MTOM-enabled messages, and SOAP attachments,
and supports both HTTP and JMS transports.

The Fast Infoset specification, ITU-T Rec. X.891 and ISO/IEC 24824-1 (Fast Infoset) is
defined by both the ITU-T and ISO standards bodies. The specification can be
downloaded from the ITU Web site: htt p: // ww. i t u. i nt/rec/ T- REC X.
891-200505-1/en

The Fast Infoset capability is enabled on all web services, by default. For web service
clients, Fast Infoset is enabled if it is enabled on the web service and advertised in the
WSDL.

You can explicitly enable and configure Fast Infoset on a web service or client, as
described in the following sections.

16.2 Enabling Fast Infoset on Web Services

The Fast Infoset capability is enabled on a web service and advertised in the WSDL, by
default. You can enable Fast Infoset explicitly on a web service, using one of the
following methods:

e At design time, using com or acl e. webser vi ces. api . Fast | nf oset Ser vi ce
annotation, as shown in Example Using @FastInfosetService Annotation at Design
Time. For more information about the annotation, see "@FastInfosetService" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Optimizing XML Transmission Using Fast Infoset 16-1

http://www.itu.int/rec/T-REC-X.891-200505-I/en
http://www.itu.int/rec/T-REC-X.891-200505-I/en

Enabling and Configuring Fast Infoset on Web Services Clients

* Post-deployment, by attaching the or acl e/ f ast _i nf oset _servi ce_pol i cy to
the web service. For more information, see the following sections:

"Attaching Policies to Web Services and Clients Using Fusion Middleware
Control" in Securing Web Services and Managing Policies with Oracle Web Services
Manager

— "Configuring Fast Infoset Using WLST" in Administering Web Services

— "oracle/fast_infoset_service_policy" in Securing Web Services and Managing
Policies with Oracle Web Services Manager

Example Using @FastIinfosetService Annotation at Design Time

The following code excerpt provides an example of using the
com or acl e. webservi ces. api . Fast | nf oset Ser vi ce annotation to enable and
configure Fast Infoset on a web service at design time.

package exanpl es.webservices. hel | o_worl d;
inport javax.jws.\WbService;
import com oracl e. webservi ces. api . Fast | nf oset Servi ce;

@ebServi ce(nanme="Hel | oVor | dPort Type", serviceName="Hel | oWor | dServi ce")
@ast | nf oset Servi ce(enabl ed=t rue)

public class Hel | oWorldlnpl {
public String sayHel l oWorl d(String message) {

try {
Systemout. println("sayHel | oWrld:" + nmessage);

} catch (Exception ex) { ex.printStackTrace(); }
return "Message fromFl Enabled Service: '" + nmessage + """

}
}

16.3 Enabling and Configuring Fast Infoset on Web Services Clients

You can explicitly enable and configure Fast Infoset on a web service client, using one
of the following methods:

* At design time, using
com or acl e. webservi ces. api . Fast | nf oset Cl i ent Feat ur e feature class,
as shown in Example Using FastInfosetClientFeature Feature Class at Design Time.

— comoracl e. webservi ces. api . Fast I nfoset d i ent annotation, as
shown in Example Using @FastInfosetClient Annotation at Design Time. For
more information about the annotation, see "@FastInfosetService" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

— com oracl e. webservi ces. api . Fast I nfoset d i ent Feat ur e feature
class, as shown in Example Using FastInfosetClientFeature Feature Class at
Design Time.

* Post-deployment, by attaching or acl e/ f ast _i nf oset _cl i ent _pol i cy to the
web service. For more information, see the following sections:

— "Attaching Policies to Web Services and Clients Using Fusion Middleware
Control" in Securing Web Services and Managing Policies with Oracle Web Services
Manager

16-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Enabling and Configuring Fast Infoset on Web Services Clients

"Configuring Fast Infoset Using WLST" in Administering Web Services

— "oracle/fast_infoset_client_policy" in Securing Web Services and Managing Policies
with Oracle Web Services Manager

16.3.1 Configuring the Content Negotiation Strategy

When enabling Fast Infoset on the client, you can configure the content negotiation
policy. Table 16-1 summarizes the valid content negotiation strategies defined by
com or acl e. webservi ces. api . Fast | nf oset Cont ent Negot i ati onType.

Table 16-1 Content Negotiation Strategy
-]

Value Description

OPTIM STIC Assumes that Fast Infoset is enabled on the service. All requests
will be sent using Fast Infoset.

PESSI M STI C Initial request from client is sent without Fast Infoset enabled,
but with an HTTP Accept header that indicates that the client
supports the Fast Infoset capability. If the service response is in
Fast Infoset format, confirming that Fast Infoset is enabled on
the service, then subsequent requests from the client will be
sent in Fast Infoset format.

NONE Client requests will not use Fast Infoset.

Please note:
¢ [f the content negotiation strategy is configured explicitly on the client:
— It takes precedence over the negotiation strategy advertised in the WSDL.

— If the configured content negotiation strategy conflicts with the capabilities
advertised by the service (for example, if the client configures OPTI M STI Cand
the service has Fast Infoset disabled), then an exception is generated.

¢ If the content negotiation strategy is not configured explicitly by the client:

— If Fast Infoset is enabled and advertised on the service, the OPTI M STI C
content negotiation strategy is used.

— If Fast Infoset is disabled and not advertised on the service, the NONE content
negotiation strategy is used.

16.3.2 Example Using @FastinfosetClient Annotation at Design Time

The following code excerpt provides an example of using the

com or acl e. webservi ces. api . Fast | nfoset i ent annotation to enable and
Fast Infoset on a Web service client at design time and configure the content
negotiation strategy.

THIS EXAMPLE NEEDS TO BE UPDATED.

package exanpl es. webservices. fastinfoset.client;

i mport com oracl e. webservi ces. api . FastInfosetdient;

inport com oracl e. webservi ces. api . Fast | nf oset Cont ent Negoti ati onType;
import javax.xm .ws.\WebServi ceRef;

public class Hel | oServicePortCient {

Optimizing XML Transmission Using Fast Infoset 16-3

Disabling Fast Infoset on Web Services and Clients

@\ebSer vi ceRef
@ast I nfoset dient(fastlnfosetContentNegotiation =

Fast | nf oset Cont ent Negot i ati onType. OPTI M STI Q)
private static HelloServiceService hel |l oServiceService;

16.3.3 Example Using FastinfosetClientFeature Feature Class at Design Time

The following code excerpt provides an example of using the
com or acl e. webservi ces. api . Fast | nf oset O i ent Feat ur e feature class to
enable and configure Fast Infoset on a web service at design time.

package exanpl es. webservices. hello_world.client;

i mport javax.xm .nanespace. QNane;

i mport java.net. Ml formedURLException;

i mport java.net.URL;

i mport com oracl e. webservi ces. api . Fast I nf oset C i ent Feat ure;

i mport com oracl e. webservi ces. api . Fast | nf oset Cont ent Negot i ati onType;

public class Min {

public static void main(String[] args) {
Hel | oWor | dServi ce service;
Fast I nf oset Cont ent Negoti ati onType clientNeg =
Fast I nf oset Cont ent Negot i ati onType. PESSI M STI C,
FastInfosetCientFeature feature =
Fast I nf oset O i ent Feat ure. bui | der (). fast | nf oset Cont ent Negoti ation(clientNeg).enabl ed(t

rue). build();
try {
service = new Hel | oWr | dServi ce(new URL(args[0] + "?WSDL"), new QName("http://
hel | o_wor | d. webservi ces. exanpl es/", "Hel |l oWrl dService"));

} catch (MalformedURLException nmurl) { throw new RuntimeException(nurl); }
Hel | oWor | dPort Type port = service. get Hel | oWor| dPort TypePort (feature);

String result = null;
result = port.sayHelloWrld("H there!");
Systemout.printin("Cot result: " + result);
}
}

16.4 Disabling Fast Infoset on Web Services and Clients

At design time, to disable Fast Infoset explicitly:

* Onaweb service, set the enabl ed flag to f al se on the annotation, as described in
Enabling Fast Infoset on Web Services.

¢ On a web service client, set the enabl ed flag to f al se or set the content
negotiation strategy to NONE on the annotation or Feature class, as described in
Enabling and Configuring Fast Infoset on Web Services Clients.

The following code excerpt provides an example of using the
com or acl e. webser vi ces. api . Fast | nf oset Ser vi ce annotation to disable
Fast Infoset on a web service at design time.

package exanpl es.webservices. hel | o_worl d;
inport javax.jws.\WbService;
i mport com oracl e. webservi ces. api . Fast | nf oset Ser vi ce;

16-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Disabling Fast Infoset on Web Services and Clients

@ébServi ce(nanme="Hel | oWor | dPort Type", serviceName="Hel | oWor | dServi ce")
@ast | nf oset Servi ce(enabl ed=f al se)

public class HelloWrldlnpl {
public String sayHel | oWrld(String nessage) {

try {
Systemout. println("sayHel | oWrld:" + nmessage);

} catch (Exception ex) { ex.printStackTrace(); }
return "Message fromFl Enabled Service: '" + nmessage + """

}
}

At post-deployment time, to disable Fast Infoset:

e Detach the or acl e/ fast _i nfoset _servi ce_policy ororacl e/
fast_infoset_client_policy policy from the web service or client,
respectively.

For complete details, see the following sections:

"Attaching Policies to Web Services and Clients Using Fusion Middleware
Control" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

"Configuring Fast Infoset Using WLST" in Administering Web Services.

¢ To disable Fast Infoset globally, at a higher scope on a web service or client, define
a policy set that includes or acl e/ no_f ast _i nf oset _servi ce_pol i cy or
oracl e/ no_f ast _i nfoset _cl i ent _pol i cy policy, respectively.

For complete details, see the following sections:

"Attaching Policies Globally Using Policy Sets" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

— "Attaching Policies Globally Using Policy Sets Using WLST" in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

Optimizing XML Transmission Using Fast Infoset 16-5

Disabling Fast Infoset on Web Services and Clients

16-6 Developing JAX-WS Web Services for Oracle WebLogic Server

17

Using SOAP Over JMS Transport

This chapter describes how to use SOAP over Java Messaging Service (JMS) transport
as the connection protocol for WebLogic web services using Java API for XML Web
Services (JAX-WS).

Note:

SOAP over JMS transport is not compatible with the following web service
features: reliable messaging and HTTP transport-specific security.

This chapter includes the following sections:

* Overview of SOAP Over JMS Transport

¢ Configuring the WebLogic Server Domain for JMS Transport

¢ Developing Web Services Using JMS Transport—Starting From Java

* Developing Web Services Using JMS Transport—Starting From WSDL
¢ Invoking a WebLogic Web Service Using JMS Transport

¢ Configuring J]MS Transport Properties

* Monitoring SOAP Over JMS Transport

17.1 Overview of SOAP Over JMS Transport

Typically, web services and clients communicate using SOAP over HTTP/S as the
connection protocol. You can, however, configure a WebLogic web service so that
client applications use JMS as the transport.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

¢ Reliability
® Scalability

* Quality of service

As with web service reliable messaging, if WebLogic Server goes down while the
method invocation is still in the queue, it will be handled as soon as WebLogic Server
is restarted. When a client invokes a web service, the client does not wait for a
response, and the execution of the client can continue. Using SOAP over JMS transport
does require slightly more overhead and programming complexity than HTTP/S.

Using SOAP Over JMS Transport 17-1

Overview of SOAP Over JMS Transport

For each transport that you specify, WebLogic Server generates an additional port in
the WSDL. For this reason, if you want to give client applications a choice of
transports they can use when they invoke the web service (JMS, HTTP, or HTTPS),
you should explicitly configure each transport. You configure transports using JWS
annotations or child elements of the j wsc Ant task.

If you configure JMS transport only, although you cannot invoke the web service
using HTTP, you can view its WSDL using HTTP, which is how the cl i ent gen is still
able to generate JAX-WS stubs for the web service.

Note:

Using JMS transport is a WebLogic feature; non-WebLogic client applications,
such as a .NET client, may not be able to invoke the web service using the J]MS
port.

Figure 17-1 shows the flow of request and response messages for a web service
invocation using SOAP over JMS transport.

The client stub invokes the web service and sends the SOAP request message to the
web service via the JMS request queue, and then waits for the response.

On the server side, the MDB listener receives the request and invokes the service
endpoint.

Once processed, the service endpoint sends the response to the JMS response
queue.

The JMS listener on the client side receives the response and passes it to the client.

The JMS response endpoint and listener are removed when the client issues the
java.io. C osabl e. cl ose() command.

Figure 17-1 Web Service Invocation Using SOAP Over JMS Transport

F Py Request Request Request
r ient Stu
EL Message Message Message
-_’_ ____—J — Service 9 > F:;:I:::t 9 > MDE 9 >
e, Invocation
Client 3 Service
- Endpoint

(Call Initiator) Response Response

IMS Message | Response Message

Listener ¢ Queue <

Figure 17-2 shows the flow of request and response messages for an asynchronous
web service invocation using SOAP over JMS transport.

The client stub invokes the web service asynchronously and sends the SOAP
request message to the web service via the JMS request queue. The client stub
returns aj avax. xnm . ws. Response orj ava. util . concurrent. Fut ure<T>
instance, and does not wait for the response.

On the server side, the MDB listener receives the request and invokes the service
endpoint.

17-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Overview of SOAP Over JMS Transport

® Once processed, the service endpoint sends the response to the JMS response
queue.

* The JMS listener invokes the response endpoint which populates the Response or
Fut ur e<T> instance for the client.

¢ The JMS response endpoint and listener are removed when the client issues the
java.io. C osabl e. cl ose() command.

Figure 17-2 Asynchronous Web Service Invocation Using SOAP Over JMS Transport

— - Request Request Request
@ o cl;.:.:ii:“b Messa ge | Request Messag e MDB Messagi
/_"-"'-._E:; Invocation Queue
Client ‘ Eszr'i‘;e
ndpoint
(Call Initiator) Response Respanse Response P

Response | Message JMs _MESS*?"QE‘ Response | Message
Endpoint | Listener |* Queue |

Before sending the request message to the JMS destination, the client sets the JMS
message properties defined in Table 17-1.

Table 17-1 JMS Message Properties Defined in the Request Message

JMS Message Property Description

SQAPJMS_bi ndi ngVer si on Version of the SOAP JMS binding. This value must be set to 1. O for this
release.

SOAPJMS_cont ent Type MIME content type of the message

SQAPJMS_r equest URI JMS request URI. For more information about how the value is
configured, see Configuring the JMS Request URI.

SOAPJMS_soapAct i on SOAP action which defines the intent of the request.

SOAPJMS_t ar get Ser vi ce Port component name of the web service.

nessageType Message type to use with the request message. A value of BYTES

indicates the

com or acl e. webservi ces. api . j ns. JMSMessageType. BYTES
object is used. A value of TEXT indicates

com oracl e. webservi ces. api . j ns. JIMSMessageType. TEXT
object is used. This value defaults to BYTES.

JMsMessagel D ID that uniquely identifies the JMS message and that is used to correlate
the response message with the request. The JM5Cor r el at i onl D
property of the response message must match the JMSMessagel D of the
request message.

ECI DCont ext Execution Context Identifier (ECID), wrapper code, and encoding details.
This content is similar to what is provided for the HTTP header, and is
required for the client only.

Before sending the response message to the JMS destination, the service sets the JMS
message properties defined in Table 17-1.

Using SOAP Over JMS Transport 17-3

Configuring the WebLogic Server Domain for JMS Transport

Table 17-2 JMS Message Properties Defined in the Response Message
- -~ - - -]

JMS Message Property

Description

SQAPJMS_bi ndi ngVer si on

Version of the SOAP JMS binding. This value must be set to 1. O for this

release.

SOAPJMS_cont ent Type

MIME content type of the message

JMSCorrel ationl D

ID used to correlate the request and response messages. The
JMBCor r el at i onl Dmust match the JMSMessagel D of the request

message.

JMSMessagel D

ID that uniquely identifies the JMS message and that is used to correlate
the response message with the request.

17.2 Configuring the WebLogic Server Domain for JMS Transport

Table 17-3 lists the default resources used by JMS transport in your WebLogic Server
domain, by default.

Table 17-3 Default Resources Used by JMS Transport

Resource Name (Default)

Resource Type

Description

WseeSoapj nsJnsSer ver

JMS server

JMS server management container.

To configure the JMS server manually, see
"IMS Configuration" in Administering JMS
Resources for Oracle WebLogic Server.

WseeSoapj nsFi | eSt ore

File store

File store, or physical store, used by the
WebLogic Server to handle the I/O operations
to save and retrieve data from the physical
storage (such as file, DBMS, and so on).

To configure the file stores manually, see
Administering the WebLogic Persistent Store.

WseeSoapj nsJnsMdul e

JMS Module

JMS module that defines the JMS resources
needed for SOAP over JMS transport.

To configure the JMS module manually, see
"IMS Configuration" in Administering JMS
Resources for Oracle WebLogic Server.

WseeSoapj nsJnsSer ver Sub

JMS subdeployment

JMS subdeployment for targeting the JMS
resources to the WseeSoapJnsSer ver.

To configure the JMS subdeployment
manually, see "JMS Configuration" in
Administering JMS Resources for Oracle
WebLogic Server.

com or acl e. webservi ces. api
.j ms. Connecti onFact ory

JMS Connection Factory

Default JMS connection factory used to create
connections for SOAP over JMS transport.

You can configure a different connection
factory using the

j ndi Connect i onFact or yNane JMS
transport property, as described in
Configuring JMS Transport Properties.

17-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Web Services Using JMS Transport—Starting From Java

Table 17-3 (Cont.) Default Resources Used by JMS Transport
. __|

Resource Name (Default) Resource Type Description

com oracl e. webservi ces. api JMS Queue Default JMS request queue.

-] ms. Request Queue You can configure a different JMS request

queue using the dest i nat i onNanme JMS
transport property, as described in
Configuring JMS Transport Properties.

com oracl e. webservi ces. api JMS Queue Default JMS response queue.

-] ms. ResponseQueue You can configure a different JMS response

queue, as described in Configuring the JMS
Response Queue.

When creating or extending a domain, you can apply the WebLogic JAX-WS
SOAP/JMS Extension template (W s_webser vi ce_soapj ns. j ar) to configure
automatically the JMS resources required to support JMS transport.

To configure automatically the JMS resources required to support JMS transport, use
one of the following methods:

* Use the Configuration Wizard to create or extend a domain, as described in
Creating WebLogic Domains Using the Configuration Wizard. When prompted to
specify a template to use to create or extend the domain, select the WebLogic JAX-
WS SOAP/JMS Extension template.

e Use WLST to extend a domain, using the W s_webser vi ce_soapj ns. j ar
extension template JAR file, as described in "Editing a WebLogic Domain (Offline)"
in Understanding the WebLogic Scripting Tool.

Although use of this extension template is not required, it makes the configuration of
the required resources much easier. Alternatively, you can manually configure the
resources required using the Oracle WebLogic Server Administration Console or
WLST.

To configure manually the resources required to support JMS transport, use one of the
following methods:

® Use the WebLogic Server Administration Console to create the resources, as
described in Table 17-3. For more information, see "JMS Configuration" in
Administering JMS Resources for Oracle WebLogic Server.

e Use WLST to create the resources defined in Table 17-3. For more information, see
"Creating Existing WebLogic Domains" in Understanding the WebLogic Scripting Tool.

17.3 Developing Web Services Using JMS Transport—Starting From Java

To use JMS transport for web services when starting from Java, you must perform at
least one of the following tasks:

e Add the @om or acl e. webservi ces. api . j ns. JMSTransport Servi ce
annotation to your JWS file.

e Adda<jmstransportservi ce> child element in the <j ws> element of the
j wsc Ant task. This setting overrides the transports defined in the JWS file.

Using SOAP Over JMS Transport 17-5

Developing Web Services Using JMS Transport—Starting From Java

The following procedure describes the complete set of steps required so that your web
service can be invoked using the JMS transport when starting from Java.

Table 17-4 Steps to Develop Web Services With JMS Transport—Starting From Java

Step Description
1 Complete the It is assumed that you have created a basic JWS file that implements a
prerequisites. web service and that you want to configure the web service to be

invoked using JMS transport

It is also assumed that you have set up an Ant-based development
environment and that you have a working bui | d. xn file that
includes targets for running the j wsc Ant task and deploying the
service.

For more information, see Developing JAX-WS Web Services.

2 Configure the WebLogic See Configuring the WebLogic Server Domain for JMS Transport.
Server domain for the
required JMS components.

3 Add the This step is optional. If you do not add the @ MSTr anspor t Ser vi ce
@om oracl e. webservi annotation to your JWS file, then you must add a
ces.api.jms. IJM5Trans <jmstransportservi ce> child element in the <j ws> element of the
port Servi ce annotation j wsc Ant task, as described in Step 4.

to your JWS file. (Optional) gee Using the @ MSTransportService Annotation.

4 Add a Use the <j st r ansport ser vi ce> child element to override the
<j mstransportservice transports defined in the JWS file.
> child element to the This step is required if you did not add the @nsTr anspor t Ser vi ce

j wsc Ant task. (Optional) annotation to your JWS file in Step 3. Otherwise, this step is optional.

See Using the <jmstransportservice> Child Element in the Ant
build.xml File for details.

5 Build your web serviceby For example, if the target that calls the j wsc Ant task is called bui | d-
running the target in the servi ce, then you would run:
bui | d. xm Ant file that

calls the | wsc task. pronpt> ant buil d-service

See Running the jwsc WebLogic Web Services Ant Task.

6 Deploy your web service to See Deploying and Undeploying WebLogic Web Services.
WebLogic Server.

See Invoking a WebLogic Web Service Using JMS Transport for information about
updating your client application to invoke the web service using JMS transport.

17.3.1 Using the @JMSTransportService Annotation

If you know at the time that you program the JWS file that you want client
applications to use JMS transport (instead of HTTP/S) to invoke the web service, you
can use the @om or acl e. webser vi ces. api . j ms. IMSTransport Servi ce
annotation to specify the details of the invocation.

You can include only one @ MSTr ansport Ser vi ce annotation in a JWS file.

Optionally, you can configure the destination name, connection factory, delivery
mode, and other JMS transport properties using the @ M5Tr ansport Ser vi ce
annotation. For more information, see Configuring JMS Transport Properties.

17-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Web Services Using JMS Transport—Starting From Java

Later, at build-time, you can override the invocation defined in the JWS file and add
additional JMS transport specifications, by specifying the <j mst r ansport servi ce>
child element in the <j ws> element of "jwsc" j wsC Ant task, as described in Using the
<jmstransportservice> Child Element in the Ant build.xml File.

Example 17-1 shows an excerpt from a JWS file, implemented as a stateless EJB, that
uses the @MSTr ansport Ser vi ce annotation, with the relevant code in bold.

Example 17-1 Enabling JMS Transport for a Stateless EJB Using @JMSTransportService Annotation

package jaxws. ej b;

i mport javax.ejb. Statel ess;
i mport javax.jws.\WebService;
i mport com oracl e. webservi ces. api . j ms. JMSTr anspor t Ser vi ce;

@\ebService(name = "Sinple", targetNamespace = "http://exanple.org")
@MSTr ansport Ser vi ce(
target Servi ce="Si npl eEj bServi ce",
destinati onNanme="com or acl e. webser vi ces. api . j ms. Request Queue",
j ndi Connect i onFact or yName="webl ogi c. j ns. Connect i onFact ory",
mdbPer Dest i nat i on=f al se,
activationConfig=("transAttribute=Never; maxBeans! nFreePool =1000;
di spat chPol i cy=webl ogi c. wsee. j axws. mdb. Di spat chPol i cy"
)

@t at el ess
public class Sinplegb { ... }

Example 17-2 shows an excerpt from a provider-based web service that uses the
@MSTr anspor t Ser vi ce annotation, with the relevant code in bold.

Example 17-2 Enabling JMS Transport for a Provider-based Web Service Using
@JMSTransportService Annotation

package exanpl es.webservi ces. j axws;

i mport javax.xn.transform Source;

import javax.xm .ws.Provider;

i mport javax.xm .ws. Servi ceMode;

import javax.xm .ws.\WebServi ceProvider;

import javax.xm .ws. Service;

import java.io.ByteArraylnput Stream

i mport com oracl e. webservi ces. api . j ms. JMSTransport Ser vi ce;

@er vi ceMbde(val ue=Servi ce. Mode. PAYLQAD)
@\ebSer vi ceProvi der (port Name="\\r ehouseSer vi cePort ",
servi ceNanme="\War ehouseSer vi ce", t ar get Nanespace="htt p: / / exanpl es. org/")
@MSTr ansport Servi ce(dest i nati onName="rmyQueue")
public class WarehouseServicel npl inplements Provider<Source> {

public Source invoke(Source source) { ... }

}

17.3.2 Using the <jmstransportservice> Child Element in the Ant build.xml File

You can specify the JMS transport at build-time by adding the

<j mstransport servi ce> child element in the <j ws> element of the j wsc Ant task.
You may want to configure JMS transport at build-time for one of the following
reasons:

Using SOAP Over JMS Transport 17-7

Developing Web Services Using JMS Transport—Starting From WSDL

* You want to override the attribute values specified in the JWS file using the
@MNSBTr ansport Ser vi ce annotation.

e The JWS file does not include a @ MSTr anspor t Ser vi ce annotation and you
determine at build-time that you want clients to use the JMS transport to invoke the
web service.

The <j mst r anspor t ser vi ce> child element of the j wsc Ant task takes precedence
over the @ MSTr anspor t Ser vi ce transport annotation in the JWS file.

Optionally, you can configure the destination name, destination type, delivery mode,
and other JMS transport properties, using the <j mgt r anspor t ser vi ce> element.
For a complete list of JMS transport properties supported, see Configuring JMS
Transport Properties.

Example 17-3 shows an excerpt from a bui | d. xm file that shows how to enable and
configure JMS transport using the <j st r ansport ser vi ce> child element in the
<j ws> element of the j wsc Ant task. The relevant code is shown in bold.

Example 17-3 Enabling JMS Transport Using the <jmstransportservice> Child Element

<?xm version="1.0"?>
<proj ect name="jaxws.jns.jwsc" default="all">
<inmport file="../build-jms.xm"/>
<path id="client.class.path">
<pat hel ement path="${clientclasses.dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<target nanme="jwsc">
<jwsc srcdir="." sourcepath="client" destdir="${output.dir}" debug="on"
keepGener at ed="yes" >
<jws file="JWSCEndpoint.java" type="JAXWS" expl ode="true">
<j mstransportservice
t ar get Servi ce=" JWSCEndpoi nt Ser vi ce"
desti nati onName="com oracl e. webser vi ces. api . j ns. Request Queue"
jndilnitial ContextFactory="webl ogic.jndi.WlInitial ContextFactory"
j ndi Connecti onFact or yNanme="webl ogi c. j ns. XAConnect i onFact ory"
jndi URL="t 3://1 ocal host: 7001"
del i ver yMode=com oracl e. webser vi ces. api . j ns. JMSDel i ver yMbde. PERS| STENT
ti meToLi ve=60000
priority=1
messageType=com or acl e. webservi ces. api . j ns. JMSMessageType. BYTES
activationConfig = "transAttribute=Supports"
/>
</jws>
</jwsc>
</target>
</ proj ect>

For more information about using the j wsc Ant task, see "jwsc" in WebLogic Web
Services Reference for Oracle WebLogic Server.

17.4 Developing Web Services Using JMS Transport—Starting From
WSDL

To use JMS transport for web services when starting from WSDL, you must perform at
least one of the following tasks:

¢ Update the WSDL to use JMS transport before running the wsdl ¢ Ant task.

17-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Web Services Using JMS Transport—Starting From WSDL

* Update the stubbed-out JWS implementation file generated by the wsdl ¢ Ant task
to add the @om or acl e. webser vi ces. api . j ns. IMSTransport Servi ce

annotation.

e Addac<jnstransportservi ce> child element in the <j ws> element of the
j wsc Ant task used to build the JWS implementation file. This setting overrides the
transports defined in the JWS file.

The following procedure describes the complete set of steps required so that your web
service can be invoked using the JMS transport when starting from WSDL.

Table 17-5 Steps to Developing Web Services With JMS Transport—Starting From WSDL
-~ |

#

Step

Description

1

Complete the prerequisites.

It is assumed in this procedure that you have an existing WSDL file.

Configure the WebLogic
Server domain for the
required JMS components.

See Configuring the WebLogic Server Domain for JMS Transport.

Update the WSDL to use
JMS transport. (Optional)

This step is optional. If you do not update the WSDL to use JMS transport,

then you must do at least one of the following:

e Edit the stubbed out JWS file to add the @MSTr ansport Servi ce
annotation to your JWS file, as described in Step 5.

e Adda<jnstransportservi ce> child element in the <j ws> element
of the j wsc Ant task, as described in Step 7.

See Updating the WSDL to Use JMS Transport.

Run the wsdl ¢ Ant task
against the WSDL file.

For example, if the target that calls the wsdl ¢ Ant task is called generate-
from-wsdl, then you would run:

pronpt> ant generate-fromwsdl

See Running the wsdlc WebLogic Web Services Ant Task.

Update the stubbed-out JWS
file.

The wsdl ¢ Ant task generates a stubbed-out JWS file.You need to add your
business code to the web service so it behaves as you want. See Updating
the Stubbed-out JWS Implementation Class File Generated By wsdlc.

If you updated the WSDL to use the JMS transport in Step 3, the JWS file
includes the @MSTr anspor t Ser vi ce annotation that defines the JMS
transport. If the @ MSTr anspor t Ser vi ce annotation is not included in the
JWS file, you must do at least one of the following:

e Edit the JWS file to add the @ MSTr ansport Ser vi ce annotation to
your JWS file, as described in Using the @ MSTransportService
Annotation.

e Addac<jnstransportservi ce> child element in the <j ws> element
of the j wsc Ant task, as described in Step 7.

Add a

<j metransportservi ce>
child element to the j wsc
Ant task. (Optional)

Use the <j mst r ansport ser vi ce> child element to override the
transports defined in the JWS file. This step is required if the JWS file does
not include the @MSTr anspor t Ser vi ce annotation, as noted in Step 5.
Otherwise, this step is optional.

See Using the <jmstransportservice> Child Element in the Ant build.xml File
for details.

Using SOAP Over JMS Transport 17-9

Developing Web Services Using JMS Transport—Starting From WSDL

Table 17-5 (Cont.) Steps to Developing Web Services With JMS Transport—Starting From WSDL

Step Description

7 Run thejwsc Ant task Specify the artifacts generated by the wsdl ¢ Ant task as well as your
against the JWS file to build ~ updated JWS implementation file, to generate an Enterprise Application that
the web service. implements the web service.

See Running the jwsc WebLogic Web Services Ant Task.

8 Deploy the web service to See Deploying and Undeploying WebLogic Web Services.
WebLogic Server.

See Invoking a WebLogic Web Service Using JMS Transport for information about
updating your client application to invoke the web service using JMS transport.

17.4.1 Updating the WSDL to Use JMS Transport

To update the WSDL to use JMS transport, you need to add the <wsdl : bi ndi ng>
definition that defines JMS transport information. You can add the definition in one of
the following ways, depending on whether you want to specify multiple transport
options:

e Edit the existing HTTP <wsdl : bi ndi ng> definition.

¢ To specify multiple transport options in the WSDL (such as HTTP and JMS
transport), copy the existing HTTP <wsdl : bi ndi ng> definition and edit it to use
JMS transport.

Optionally, you can configure JMS transport properties at the binding or JMS URI
level.

The following sections describe how to update the WSDL to use JMS transport:
¢ Enabling JMS Transport at the WSDL Binding Level
¢ Configuring JMS Transport Properties in the WSDL

¢ Example of Enabling JMS Transport in WSDL

17.4.1.1 Enabling JMS Transport at the WSDL Binding Level

To enable JMS transport at the WSDL binding level, set the t r anspor t attribute of
the <soapwsdl : bi ndi ng> child element of the <wsdl : bi ndi ng> element to
htt p: // ww. w3. or g/ 2010/ soapj 1s.

Optionally, you can configure JMS transport properties within the <wsdl : bi ndi ng>
element definition, as described in Configuring JMS Transport Properties in the
WSDL.

Example 17-4 provides an example of the <wsdl : bi ndi ng> element for JMS
transport. In this example, an HTTP binding is also defined.

Example 17-4 Enabling JMS Transport at the WSDL Binding Level

<bi ndi ng xm ns: soapj ms="htt p: / / ww. w3. or g/ 2010/ soapj ms/ "
nane="AddNunber sJMSBi ndi ng" type="tns: AddNunber sPort Type" >
<soap: bi nding transport="http://ww. w3. org/ 2010/ soapj ms/" styl e="document" />
<operation nane="addNunbers">
<soap: operation soapAction="" />

17-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Web Services Using JMS Transport—Starting From WSDL

<i nput >
<soap: body use="literal" />
</input >
<out put >
<soap: body use="literal" />
</ out put >
</ operati on>
</ bi ndi ng>
<bi ndi ng name="AddNurmber sSOAPBI ndi ng" type="t ns: AddNunber sPort Type" >
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http" style="docunent" />

</'bi ndi ng>
17.4.1.2 Configuring JMS Transport Properties in the WSDL

Optionally, you can configure a subset of JMS transport properties within the
following WSDL elements:

e <wsdl : bi ndi ng> element—Propagates to all ports using the binding.
e <wsdl : servi ce>element—Propagates to all ports.
e <wsdl : port > element—Used only by the port.

¢ JMS UR], as described in Configuring the JMS URL

Specifically, you can configure the following JMS transport properties in the WSDL.
For a description of the properties, see Table 17-6.

e deliveryhMde

j ndi Connect i onFact or yNane

j ndi Cont ext Par anet ers

jndilnitial ContextFactory

j ndi URL

e priority

repl yToNane

ti meTolLi ve

Example 17-5 provides an example of the <wsdl : bi ndi ng> element with J]MS
transport properties defined. In this case, the JMS transport properties propagate to all
ports that use the binding.

Example 17-5 Configuring JMS Transport Properties in the WSDL

<bi ndi ng xm ns: soapj ms="http://ww. w3. or g/ 2010/ soapj ns/ "
nane="AddNunber sBi ndi ng" type="t ns: AddNunber sPort Type">
<soap: binding transport="http://ww.w3. org/ 2010/ soapj ns/ "
styl e="docunent" />
<soapj ns: j ndi I ni ti al Cont ext Fact ory>
webl ogi c. j ndi . W.I ni tial ContextFactory
</ soapj ns: j ndi | ni tial Context Fact ory>
<soapj ns: j ndi Connect i onFact or yNane>
webl ogi c. j ms. XAConnect i onFact ory
</ soapj ns: j ndi Connect i onFact or yNanme>

Using SOAP Over JMS Transport 17-11

Developing Web Services Using JMS Transport—Starting From WSDL

<soapj ns: bi ndi ngVer si on>1. 0</ soapj ms: bi ndi ngVer si on>
<soapj ns: desti nati onNane>
com oracl e. webservi ces. api . j m5. Request Queue
</ soapj ns: desti nati onNane>
<soapj ns: t ar get Servi ce>AddNunber sSer vi ce</ soapj ns: t ar get Servi ce>
<soapj ns: del i ver yMode>
com oracl e. webservi ces. api . j ns. JMSDel i ver yMode. PERSI STENT
</ soapj ns: del i ver yMode>
<soapj ns: priority>0</soapj ms: priority>
<soapj ms: messageType>
com oracl e. webservi ces. api . j ms. JMBMessageType. BYTES
</ soapj ns: nessageType>
<soapj ns: desti nati onType>
com oracl e. webservi ces. api . j ms. JMSDest i nat i onType. QUEUE
</ soapj ns: desti nationType>
<operation nane="addNunbers">
<soap: operation soapAction="" />
<i nput >
<soap: body use="literal" />
</input>
<out put >
<soap: body use="literal" />
</ out put >
</ operati on>
</ bi ndi ng>

17.4.1.3 Example of Enabling JMS Transport in WSDL

Example 17-6 provides an example of a WSDL that is configured for SOAP over JMS

transport.
Example 17-6 Enabling JMS Transport in WSDL

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions
name="AddNunber s"
t ar get Namespace="http: // exanpl e. org"
xmns:tns="http://exanple.org"
xm ns="http://schemas. xn soap. or g/ wsdl /
xm ns: xsd="http://ww:. w3. or g/ 2001/ XM.Schena"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ ">
<types>
<xsd: schema
xm ns="http:// ww. w3. or g/ 2001/ XM.Schema"
t ar get Namespace="http: // exanpl e. org"
el ement For mDef aul t ="qual i fied" >

<conpl exType nanme="addNunber sResponse”
<sequence>
<el ement name="return" type="xsd:int" />
</ sequence>
</ conpl exType>
<el ement nanme="addNunber sResponse” type="tns: addNunber sResponse”/ >

<conpl exType nanme="addNunbers" >
<sequence>
<el enent name="arg0" type="xsd:int" />
<el enent name="argl" type="xsd:int" />
</ sequence>
</ conpl exType>

17-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a WebLogic Web Service Using JMS Transport

<el ement nanme="addNunmbers" type="tns: addNurmbers"/>
</ xsd: schema>
</types>
<nessage nane="addNunbers" >
<part name="paraneters" el ement="tns:addNunbers" />
</ nessage>
<nessage nane="addNunber sResponse" >
<part name="result" el enent="tns:addNunber sResponse" />
</ nessage>
<port Type nane="AddNunber sPort Type">
<operation nanme="addNunbers">
<i nput message="tns: addNunbers" />
<out put message="t ns: addNunber sResponse" />
</ operation>
</ port Type>
<bi ndi ng xn ns: soapj ms="http://ww. w3. or g/ 2010/ soapj ns/ " name="AddNurber sBi ndi ng"
type="tns: AddNurber sPort Type" >
<soap: bi nding transport="http://ww:. w3. org/ 2010/ soapj ns/" styl e="docunent" />
<soapj ns:j ndi | nitial Context Factory>webl ogic.jndi.WInitial ContextFactory
</ soapj ns: j ndi | ni tial Context Fact ory>
<soapj ns: j ndi Connect i onFact or yName>webl ogi c. j ms. XAConnect i onFact ory
</ soapj nms: j ndi Connect i onFact or yName>
<soapj ms: bi ndi ngVer si on>1. 0</ soapj ms: bi ndi ngVer si on>
<soapj ns: desti nati onNane>com or acl e. webservi ces. api . j m5. Request Queue
</ soapj ms: dest i nati onNane>
<soapj ns: tar get Servi ce>AddNunber sSer vi ce</ soapj ns: t ar get Servi ce>
<soapj ns: del i ver yMode>com or acl e. webser vi ces. api . j ms. JMSDel i ver yMode. PERS| STENT
</ soapj ns: del i ver yMde>
<soapj nms: pri ority>0</soapj ms: priority>
<soapj ns: nessageType>com or acl e. webservi ces. api . j ns. IMSMessageType. BYTES
</ soapj ns: nessageType>
<soapj ns: destinati onType>com oracl e. webservi ces. api . j ns. JMSDest i nati onType. QUEUE
</ soapj ns: desti nati onType>
<operation name="addNunbers">
<soap: operation soapAction="" />
<i nput >
<soap: body use="literal" />
</input >
<out put >
<soap: body use="literal" />
</ out put >
</ operation>
</ bi ndi ng>
<servi ce name="AddNunber sServi ce">
<port name="AddNunmbersPort" bi ndi ng="tns: AddNunber sBi ndi ng" >
<soap: address |ocation="jms:jndi:com oracl e. webservi ces. api . j ms. Request Queue?
tar get Servi ce=AddNunber sSer vi ce&anp; j ndi I ni ti al Cont ext Fact or y=webl ogi c. j ndi . W.I ni ti al Cont ext Fact or y&m
p; j ndi Connect i onFact or yName=webl ogi c. j ms. XAConnect i onFact ory"/ >

</port>
</ service>
</definitions>

17.5 Invoking a WebLogic Web Service Using JMS Transport

You write a client application to invoke a web service using JMS transport in the same
way as you write one using the HTTP transport. In the case of JMS transport, the client
sends SOAP request messages to the JMS request destination and receives SOAP
response messages from the JMS response destination. For examples of invoking a
web service, see Examples of Developing JAX-WS Web Service Clients.

Using SOAP Over JMS Transport 17-13

Invoking a WebLogic Web Service Using JMS Transport

You enable and optionally configure JMS transport on the web service client using one
of the following methods:

e Use the <j mst ransport cl i ent > element of the cl i ent gen Ant task to generate
automatically client artifacts with JMS transport enabled, as described in Using the
<jmstransportclient> Element in the Ant build.xml File.

¢ Update the web service client to configure JMS transport, using one of the
following methods:

- Adding @om or acl e. webservi ces. api . j ms. JMSTransport C i ent
annotation, as described in Using the @ MSTransportClient Annotation.

- Adding
com or acl e. webservi ces. api . j ns. JIMSTransport C i ent Feat ure
feature client API, as described in Using the J]MSTransportClientFeature Client
APIL

— Configure the JMS URI as the target endpoint address for synchronous clients,
as described in Configuring the JMS URI as the Target Endpoint Address.

¢ Update the asynchronous web service client to enable and configure JMS transport,
as described in Using AsyncClientTransportFeature to Configure Asynchronous
Clients.

17.5.1 Using the <jmstransportclient> Element in the Ant build.xml File

The cl i ent gen tool generates a JMS transport client proxy from a WSDL file
containing a JMS transport binding. When generating the client proxy using

cl i ent gen, you can enable JMS transport by adding the <j mst ransportcli ent >
element in cl i ent gen Ant task.

Note:

Although you cannot invoke a JMS-transport-configured web service using
HTTP, you can view its WSDL using HTTP, which is how the cl i ent gen Ant
task is still able to create the JAX-WS artifacts for the web service.

Optionally, you can configure the destination name, destination type, delivery mode,
request and response queues, and other JMS transport properties, using the

<j mst ransport cl i ent > element. For a complete list of JMS transport properties
supported, see Configuring JMS Transport Properties.

Example 17-7 shows an excerpt from a bui | d. xmi file that shows how to enable and
configure JMS transport using the <j mst r anspor t cl i ent > element of the
cl i ent gen Ant task. The relevant code is shown in bold.

Example 17-7 Using the <jmstransportclient> Element in the Ant build.xml File

<target name="clientgen">
<clientgen
wsdl =". / War ehouseSer vi ce. wsdl "
destDir="clientclasses"
packageName="cl i ent . war ehouse"
type="JAXWS' >
<jmstransportclient
tar get Ser vi ce=" JWSCEndpoi nt Ser vi ce"
desti nati onName="com oracl e. webser vi ces. api . j ms. Request Queue"

17-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a WebLogic Web Service Using JMS Transport

jndiInitial ContextFactory="webl ogic.jndi.WlInitial ContextFactory"
j ndi Connecti onFact or yNanme="webl ogi c. j ns. Connect i onFact or y"
jndi URL="t 3://1 ocal host: 7001"
ti meTolLi ve=60000
priority=1
messageType=com or acl e. webservi ces. api . j ns. JMSMessageType. TEXT
repl yToName="com or acl e. webser vi ces. api . j ns. ResponseQueue”
/>
</clientgen>

For more information about using the cl i ent gen Ant task, see "clientgen" in
WebLogic Web Services Reference for Oracle WebLogic Server.

17.5.2 Using the @JMSTransportClient Annotation

When you run cl i ent gen to generate the web service client artifacts from the WSDL
file, the @om or acl e. webservi ces. api . j ms. IMSTransport d i ent
annotation is included automatically to the generated client proxy if JMS transport is
enabled in the build file using the <j nst r ansport cl i ent > element, as described in
Using the <jmstransportclient> Element in the Ant build.xml File.

If the @MSTr ansport O i ent annotation is not configured automatically through
cl i ent gen, you can add it to the file manually.

Optionally, you can configure the following JMS transport properties using the
@WNSTr anspor t C i ent annotation. For a description of the properties, see Table
17-6.

e destinati onNare

e destinationType

e enabl ed

* jmsMessageHeader

e jmsMessageProperty

¢ j ndi Connecti onFact or yNane
¢ jndi Cont ext Paraneters

e jndilnitial ContextFactory
e jndi URL

e nmessageType

e priority

e repl yToNane

e targetService

e timeTolLive

Example 17-8 shows an excerpt from a client file that uses the
@MNSTr ansport C i ent annotation, with the relevant code in bold.

Using SOAP Over JMS Transport 17-15

Invoking a WebLogic Web Service Using JMS Transport

Example 17-8 Enabling JMS Transport for a Client Proxy Using the @JMSTransportClient
Annotation

i mport javax.xm .ws.WbServicedient;
i mport com oracl e. webservi ces. api . j ms. JMSTransportCient;
@eébServi ced ient(name = "WarehouseService", targetNamespace = "http://oracle.confsanples/",
wsdl Locat i on="\\r ehouseSer vi ce. wsdl ")
@MSTransportdient (
desti nati onNane="nyQueue",
repl yToName="rmyRepl yToQueue",
jndi URL="t 3://1 ocal host: 7001",
j ndiI'nitial ContextFactory="webl ogic.jndi.WInitial ContextFactory" ,
j ndi Connecti onFact or yNane="webl ogi c. j ns. Connecti onFact ory" ,
timeTolLi ve=1000, priority=1,
messageType=com or acl e. webservi ces. api . j ns. JMSMessageType. TEXT

)

public class WarehouseService extends Service { ... }

17.5.3 Using the JMSTransportClientFeature Client API

You can use the
com or acl e. webservi ces. api . j ms. JMSTransport Cl i ent Feat ur e client API
to configure JMS transport in the web service client.

Optionally, you can configure the following JMS transport properties using the
com or acl e. webservi ces. api . j ns. JMSTransport d i ent Feat ur e. For a
description of the properties, see Table 17-6.

e destinati onNane

e destinationType

e enabl ed

* jmsMessageHeader

e jnsMessageProperty

¢ j ndi Connecti onFact or yNane
¢ jndi Cont ext Paraneters

e jndilnitial ContextFactory
e jndi URL

e nmessageType

e priority

e repl yToNane

e targetService

e timeTolLive

Example 17-9 shows an excerpt from a Web client that uses
JMSTr ansport C i ent Feat ur e, with the relevant code in bold.

17-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Invoking a WebLogic Web Service Using JMS Transport

Example 17-9 Enabling JMS Transport for a Client Proxy Using JMSTransportClientFeature

i mport
i mport
i mport

j avax. xnl . nanespace. Q\ane;
java. net. URL;
com oracl e. webservi ces. api . j ns. IMSTransport C i ent Feat ure;

URL url = new URL("http://local host: 7001/ War ehouseSer vi cePort / War ehouseSer vi ce?WsDL") ;
QName serviceName = new QNane("http://ww. oracl e. conf sanpl es/", "WarehouseService");

\\r ehouseSer vi ce service = new \WarehouseService (url, serviceNane);

JMSTransportClientFeature feature =
JMSTransport C i ent Feat ure. buil der().jndiInitial ContextFactory("weblogic.jndi.WInitial ContextFactory")
.jndi URL("t3://1ocal host:7001"). build();
port = service. get WarehouseShi pnent sPort (new WebServi ceFeature[]{feature});
Itemitem= new Item);

i tem set Product Nunber (10001) ;
itemsetQuantity(100);

port. shi pGoods(item "BEA");

Example 17-10 shows an excerpt from a Dispatch client that uses
JMSTr ansport Cl i ent Feat ur e, with the relevant code in bold.

Example 17-10 Enabling JMS Transport for a Dispatch Client Using JMSTransportClientFeature

i mport
i mport
i mport
i mport
i mport
i mport

j avax. xnl . namespace. QNane;

java. net. URL;

j avax. xni . bi nd. JAXBCont ext ;

javax. xnl . ws. Servi ceMbde;

javax. xnl . ws. Di spat ch;

com oracl e. webser vi ces. api . j ms. JMSTranspor t 0 i ent Feat ur e;

Service service = Service.create(new URL(wsdl), new QName(naneSpace, serviceNane));
JAXBCont ext j axbContext = JAXBCont ext.new nst ance(Cbj ect Factory. cl ass);

JMSTransportClientFeature feature =
JMSTransport C i ent Feature. bui | der().jndi URL("t3://adc2170585: 7003") . bui 1 d();
Di spat ch dispatch =

servi ce. creat eDi spat ch(new QNane(naneSpace, "WarehouseServicePort"), jaxbContext,
Servi ce. Mbde. PAYLOAD, new WebServi ceFeature[]{feature});

17.5.4 Configuring the JMS URI as the Target Endpoint Address

You can specify the JMS URI as the target endpoint address for the client binding to
enable and configure JMS transport in the web service client. For information about
constructing the JMS URI, see Configuring the JMS URI.

Example 17-11

i mport
i mport
i mport
i mport
i mport

Example 17-11 shows an excerpt from a Web client that sets the target endpoint
address to the JMS URI with the relevant code in bold. In this example, if the

r epl yToNane had been configured using JM5Tr ansport C i ent Feat ur e, it would
take precedence over the target endpoint address value.

j avax. xnl . nanespace. Q\ane;

java. net. URL;

j avax. xnl . ws. Bi ndi ngProvi der;

j avax. xn . ws. handl er. MessageCont ext ;

com oracl e. webservi ces. api . j ns. IMSTransport C i ent Feat ure;

Enabling JMS Transport for a Client Proxy Using JMS URI

Using SOAP Over JMS Transport 17-17

Invoking a WebLogic Web Service Using JMS Transport

URL url = new URL("http://1ocal host: 7001/ War ehouseSer vi cePort / War ehouseSer vi ce?WsDL") ;

QName serviceName = new QNane("http://ww oracl e. conf sanpl es/", "WarehouseService");

War ehouseServi ce service = new WarehouseService (url, serviceNane);

JMSTransport Client Feature feature = new JMSTransport ClientFeature(). build();

feature.setJndi I nitial ContextFactory ("weblogic.jndi.WlInitial ContextFactory");

feature.setJndi Url ("t3://1ocal host:7001");

port = service. get War ehouseShi pnent sPort (new WebServi ceFeature[]{feature});

Bi ndi ngProvi der bp = (BindingProvider) port;

bp. get Request Cont ext () . put (Bi ndi ngPr ovi der. ENDPOl NT_ADDRESS_PROPERTY,
"jms:jndi:nyQueue?t arget Servi ce=War ehouseSer vi ce&r epl yToNane=nyRepl yToQueue") ;

Itemitem= new Iten();

i tem set Product Nunber (10001) ;

itemsetQuantity(100);

port. shi pGoods(item "BEA");

Example 17-12 shows an excerpt from a Dispatch client that uses

JMSTr ansport C i ent Feat ur e, with the relevant code in bold. In this example, the
JMS transport properties specified in the IMSTr ansport Cl i ent Feat ur e take
precedence over the JMS URL

Example 17-12 Example of Enabling JMS Transport for a Dispatch Client Using JMS URI

String uri = "jns:jndi:nyQueue?

tar get Servi ce=Wr ehouseSer vi ce&j ndi Connect i onFact or yNane=webl ogi c. j ms. Connect i onFact ory& ndi URL=t 3://
adc2170585: 7003& ndi I ni ti al Cont ext Fact or y=webl ogi c. j ndi . W.I ni ti al Cont ext Factory";

Service service = Service.create(new URL(wsdl), new QName(naneSpace, serviceNane));

JAXBCont ext j axbContext = JAXBCont ext.new nstance(Cbj ect Factory. cl ass);

JMSTransport Qi ent Feature feature = new JVMSTransport ClientFeature(). build();

feature.setJndi Url ("t3://adc2170585: 7003");

Di spat ch dispatch =
servi ce. creat eDi spat ch(new QNane(naneSpace, "WarehouseServicePort"), jaxbContext,
Servi ce. Mbde. PAYLOAD, new WebServi ceFeature[]{feature});

di spat ch. get Request Cont ext () . put (Bi ndi ngProvi der . ENDPOl NT_ADDRESS_PROPERTY, uri);

17.5.5 Using AsyncClientTransportFeature to Configure Asynchronous Clients

The asynchronous client transport feature, described in Developing Scalable
Asynchronous JAX-WS Clients (Asynchronous Client Transport), provides a scalable
asynchronous client programming model.

To enable SOAP over JMS transport for an asynchronous client:

1. Specify the JMS URI as the target endpoint address for the client binding. For
information about constructing the JMS URI, see Configuring the J]MS URI.

Note:

When using JMS transport, the context path of the asynchronous response
endpoint is ignored if specified using AsyncC i ent Tr ansport Feat ur e.

2. Optionally, configure a "permanent” response queue by configuring the addr ess
or Repl yTo header using the AsyncCl i ent Tr anspor t Feat ur e, as described in
Enabling and Configuring the Asynchronous Client Transport Feature.

17-18 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring JMS Transport Properties

If you do not configure the address of the JMS response queue or if the

dest i nat i onNane property is set to anonymous (which is not supported by JMS
transport), then a temporary response queue is used. For more information about
configuring the JMS response queue, see Configuring the JMS Response Queue.

Example 17-13 Example of Enabling JMS Transport and Configuring Permanent Queue for an
Asynchronous Client

\\r ehouseSer vi ce service = new \WarehouseService(url, serviceNanme);
AsyncC i ent Transport Feature replyTo = new AsyncO i ent Transport Feature (
"jms:jndi: myRepl yToQueue?t ar get Ser vi ce=War ehouseServi ce");
AsyncC i ent Transport Feature faultTo = new AsyncO i ent Transport Feature (
"jms:jndi:nmyFaul t ToQueue?t ar get Servi ce=War ehouseServi ce");
AsyncCl i ent Transport Feature cal | backFeature = new AsyncC ient Transport Feature (
repl yTo. get Endpoi nt Ref er ence(WBCEndpoi nt Ref er ence. cl ass),
faul t To. get Endpoi nt Ref er ence(WBCEndpoi nt Ref er ence. cl ass)) ;
port = service. get WarehouseServi cePort (new WebServi ceFeature[] { cal | backFeature });
status = port.shipGoods(item "BEAN');
(Bi ndi ngProvider) port.get Request Context (). put (Bi ndi ngProvi der. ENDPO NT_ADDRESS_PROPERTY,
"jms:jndi:nyQueue?t ar get Servi ce=\War ehouseServi ce");
((C osabl e)port).close();

When the endpoint is invoked, the client runtime environment publishes the response
endpoint and deploys the JMS listener on the response JMS queue. Once attached to
the client, the AsyncC i ent Tr anspor t Feat ur e instance determines the response
endpoint of all client invocations; the r epl y ToName property in the target endpoint
address and JMSTr anspor t Cl i ent Feat ur e are ignored.

Example 17-13 shows an excerpt from an asynchronous client that uses
Asyncd i ent Transpor t Feat ur e, with the relevant code in bold. In this example,
therepl yTo and f aul t To addresses are defined and passed to the client.

17.6 Configuring JMS Transport Properties

Optionally, you can configure JMS transport properties when enabling JMS transport,
as described in the following sections:

¢ Summary of JMS Transport Configuration Properties

¢ Configuration Methods and Order of Precedence

* Configuring JMS Transport Using the Administration Console
¢ Configuring JMS Transport Using WLST

* Configuring the JMS URI

¢ Configuring the JMS Request URI

* Configuring the WS-Addressing Headers

¢ Configuring the JMS Response Queue

¢ Configuring the JMS Message Type

¢ Configuring HTTP Access to the WSDL File

Using SOAP Over JMS Transport 17-19

Configuring JMS Transport Properties

17.6.1 Summary of JMS Transport Configuration Properties

Table 17-6 lists the JMS transport properties that can be configured and the supported
configuration methods, defined in Table 17-7.

Table 17-6 Summary of JMS Transport Configuration Properties

Name

Description

Supported Configuration Methods

activationConfig

Activation configuration properties
passed to the JMS provider. Each property
is specified as name-value pairs using the
following format:

"nanel=val uel; ... ; naneN=val ueN'

For example:
"keyl=val uel; key2=val ue2"

For a list of activation configuration
properties that are supported by this
property, see Table 17-7.

This value defaults to:

e <jmetransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation

bi ndi ngVer si on

Version of the SOAP JMS binding. This
value must be set to 1. O for this release,
which equates to

com or acl e. webservi ces. api . j ms.
JMVSBI ndi ngVer si on. SOAP_JMS_1_0.
This value maps to the

SCAPJMS_bi ndi ngVer si on JMS

message property, as defined in Table
17-1.

e <jmstransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation

del i ver yMode

Delivery mode indicating whether the
request message is persistent. Valid values
are

com or acl e. webservi ces. api . j ns.
JMsDel i ver yMbde. PERSI STENT and
com or acl e. webservi ces. api . j ns.
JMVBDel i ver yMode. NON_PERS| STENT.

This value defaults to:
com or acl e. webservi ces. api . j ims.
JMVBDel i ver yMode. PERSI STENT

e <jmstransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation

desti nati onNane

JNDI name of the destination queue or
topic.

This value defaults to:

"com oracl e. webservices. api . j s
. Request Queue”

All configuration methods in Table 17-8

17-20 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring JMS Transport Properties

Table 17-6 (Cont.) Summary of JMS Transport Configuration Properties
. ___|

Name

Description

Supported Configuration Methods

desti nati onType

Destination type. Valid values include:
com or acl e. webservi ces. api . j ims.
JMSDest i nat i onType. QUEUE or

com or acl e. webservi ces. api . j ims.
JMSDest i nati onType. TOPI C.

This value defaults to:
com or acl e. webservi ces. api . j nms
JMBDest i nat i onType. QUEUE

This value overrides the

dest i nat i onType value specified as an
entry in act i vati onConfi g property
(as defined in Table 17-7), if applicable.

Topics are supported only for one-way
communication.

All configuration methods in Table 17-8

enabl ed

Boolean flag that specifies whether J]MS
transport is enabled. This value defaults to
true.

@MSTr ansport Servi ce and
@MSTransport C i ent annotations

enabl eHt t pWdl Acc
ess

Boolean flag that specifies whether to
publish the WSDL through HTTP. This
flag defaults to t r ue.

e <jnstransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation

j meMessageHeader

JMS header properties. Each property is
specified as name-value pairs using the
following format:

"nanel=val uel&. .. &nameN=val ueN'

For example:
" JMSType=car &IMSPri ori t y=4"

This value defaults to:

e <jmstransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation
e @MSTransportd i ent annotation

j msMessagePr opert
y

JMS message properties. Each property is
specified as name-value pairs using the
following format:

"namel=val uel&. .. &anmeN=val ueN'

For example:
" JMSType=car &IMSPri ori t y=4"

This value defaults to:

e <jmstransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation
e @MSTransportd i ent annotation

j ndi Connect i onFac
t or yName

JNDI name of the connection factory that
is used to establish a JMS connection.

This value defaults to:
"com oracl e. webservices. api .j s
. Connecti onFact ory"

All configuration methods in Table 17-8

Using SOAP Over JMS Transport 17-21

Configuring JMS Transport Properties

Table 17-6 (Cont.) Summary of JMS Transport Configuration Properties
. ___|

Name Description Supported Configuration Methods
j ndi Cont ext Parame JNDI properties. Each property is All configuration methods in Table 17-8
ter specified as name-value pairs using the

following format:
"nanel=val uelé&. .. &aneN=val ueN"

The properties are added to the
java. util . Hasht abl e sent to the
I nitial Cont ext constructor for the
JNDI provider.

This value defaults to:

jndilnitial Contex Name of the initial context factory class All configuration methods in Table 17-8
t Factory used for JNDI lookup. This value maps to

thej ava. nam ng. factory.initial

property.

This value defaults to:
"webl ogi c. j ndi . W.lInitial Context
Fact ory"

j ndi URL JNDI provider URL. All configuration methods in Table 17-8

This value defaults to: "t 3: //
| ocal host: 7001"

This value maps to the
j ava. nami ng. provi der. url property.

| ookupVar i ant Method used for looking up the specified ~ None (cannot be modified)
destination name. This value must be set
toj ndi to support JMS transport; this is

the default.

ndbPer Dest i nati on Boolean flag that specifies whether to e <jmstransportservice> child
create one listening message-driven bean element in the <j ws> element of the
(MDB) for each requested destination. j wsc Ant task
This value defaults to t r ue. e @NMBTransport Ser vi ce annotation

If set to f al se, one listening MDB is
created for each web service port, and that
MDB cannot be shared by other ports.

nessageType Message type to use with the request All configuration methods in Table 17-8
message. Valid values are
com or acl e. webservi ces. api . j ns.
JMsMessageType. BYTES and
com or acl e. webservi ces. api . j ns.
JMSMessageType. TEXT.

This value defaults to:
com or acl e. webservi ces. api . j ims.
JMSMessageType. BYTES

For more information about configuring
the message type, see Configuring the JMS
Message Type.

17-22 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring JMS Transport Properties

Table 17-6 (Cont.) Summary of JMS Transport Configuration Properties
. ___|

Name

Description

Supported Configuration Methods

priority

JMS priority associated with the request
and response message. Specify this value
as a positive Integer from 0, the lowest
priority, to 9, the highest priority. The
default value is O.

All configuration methods in Table 17-8

repl yToNane

JNDI name of the JMS destination to
which the response message is sent.

For a two-way operation, a temporary
response queue is generated by default.
Using the default temporary response
queue minimizes the configuration that is
required. However, in the event of a
server failure, the response message may
be lost.

This property enables the client to use a
previously defined, "permanent” queue or
topic rather than use the default
temporary queue or topic, for receiving
replies. For more information about
configuring the JMS response queue, see
Configuring the JMS Response Queue.

The value maps to the JMSRepl yTo JMS
header in the request message.

This value defaults to:

All configuration methods in Table 17-8

runAsPri nci pal

Principal used to run the listening MDB.

This value defaults to:

e <jmstransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation

runAsRol e

Role used to run the listening MDB.

This value defaults to:

e <jnstransportservice> child
element in the <j ws> element of the
j wsc Ant task

e @MSTransport Servi ce annotation

target Servi ce

Port component name of the web service.
This value is used by the service
implementation to dispatch the service
request. If not specified, the service name
from the WSDL or

@ avax. j ws. WebSer vi ce annotation is
used.

This value maps to the
SOAPJMS_t ar get Ser vi ce JMS message
property.

This value defaults to:

e <jnstransportservice> child
element in the <j ws> element of the
j wsc Ant task
e @MSTransport Servi ce annotation
e @MSTransportd i ent annotation

Using SOAP Over JMS Transport 17-23

Configuring JMS Transport Properties

Table 17-6 (Cont.) Summary of JMS Transport Configuration Properties
. ___|

Name Description Supported Configuration Methods

timeTolLive Lifetime, in milliseconds, of the request All configuration methods in Table 17-8
message. A value of 0 indicates an infinite
lifetime. If not specified, the JMS-defined
default value of 180000L is used.

On the service side, t i meToLi ve also
specifies the expiration time for each MDB
transaction.

The following table lists the activation properties that are supported by the

acti vati onConf i g property in Table 17-6. For information about using the
activation properties to tune MDBs, see "Tuning Message-Driven Beans" in Tuning
Performance of Oracle WebLogic Server.

Table 17-7 Activation Properties Supported by the activationConfig Property

Name Description

acknow edgeMbde Acknowledgment mode that controls how the JMS provider is notified that the message
was received and processed. Valid values include:
e AUTO_ACKNOW. EDGE—Message is acknowledged immediately. This is the default.
e DUPS_OK_ACKNOW EDGE—Acknowledgement may be delayed, allowing duplicate
messages to be received.
The acknowledgement mode is ignored if you are using container-managed transactions.
(In this case, the acknowledgement is performed within the context of the transaction.)

connecti onFact or JNDI name of the JMS connection factory that the MDB uses to create its queues and
yJndi Narre topics. This value defaults to
webl ogi c. j ms. MessageDri venBeanConnecti onFactory.

destinati onJndi N JNDI name used to associate an MDB with an actual JMS queue or topic deployed in the
ane WebLogic Server JNDI tree.

destinati onType Type of the JMS destination. Valid values include: QUEUE and TCPI C.

di spat chPol i cy Work manager for the MDB. This value defaults to
webl ogi c. wsee. j axws. mdb. Di spat chPol i cy.

Connection setting that specifies whether an MDB that accesses a WebLogic JMS
distributed destination (topic or queue) in the same cluster consumes from all distributed
destination members or only those members local to the current WebLogic Server
instance. Valid values include:

di stributedDesti nat
i onConnection

e Local Onl y—MDB consumes JMS distributed destinations from members local to the
current WebLogic Server instance. This is the default.

e Ever yMenber —MDB consumes JMS distributed destinations from all distributed
destination members.

dur abl eSubscri pt Flag that specifies whether you want durable topic subscriptions to be automatically
i onDel eti on deleted when an MDB is undeployed or removed. This value defaults to f al se.

i nitial ContextFa Initial context factory that the EJB container uses to create its connection factories. This
ctory value defaults to webl ogi c. j ndi . W.I ni ti al Cont ext Factory.

17-24 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring JMS Transport Properties

Table 17-7 (Cont.) Activation Properties Supported by the activationConfig Property

Name

Description

i ni t SuspendSecon
ds

Initial number of seconds to suspend an MDB's JMS connection when the EJB container
detects a JMS resource outage. This value can be set to any Integer value and defaults to
5.

jmedientld

Client ID for the MDB when it connects to a JMS destination. This value is used for
durable subscriptions to JMS topics.

jmsPol l'i ngl nterv
al Seconds

Number of seconds between attempts by the EJB container to reconnect to a JMS
destination that has become unavailable. This value can be set to any Integer value and
defaults to 10.

maxBeansl| nFr eePo
ol

Maximum number of inactive MDBs in the free pool. This value can be set to any positive
Integer value or 0. This value defaults to 1000.

maxMessages!| nTra
nsaction

Maximum number of messages that can be in a transaction for this MDB. This value can
be set to any positive Integer value or 0. This value defaults to 1.

maxSuspendSecond
s

Maximum number of seconds to suspend an MDB's JMS connection when the EJB
container detects a JMS resource outage. This value can be set to any Integer and defaults
to 60.

nmessageSel ect or

String used by a client to specify, by header field references and property references, the
messages it should receive. Only messages whose header and property values match the
specified selector are delivered. This value can be set to a message header or a conditional
expression using message properties. This value defaults to nul | .

provi der URL

URL provider to be used by the | ni ti al Cont ext, typically, host : port . This value
can be any valid URL and defaults to nul | .

subscri pti onDura
bility

Flag that specifies whether a JMS topic subscription is Dur abl e or NonDur abl e. This
value defaults to Dur abl e.

t opi cMessagesDi s
tributi onvbde

Distribution mode for topic messages. Valid values include: One- Copy- Per -

Appl i cati on, One- Copy- Per - Server, Conpati bi | ty. This value defaults to
Conpat i bi | i ty. For more information about the valid values, see "Topic Deployment
Scenarios" in Developing Message-Driven Beans for Oracle WebLogic Server.

transAttribute

Transaction setting that specifies how the container must manage the transaction
boundaries when delegating a method invocation to an enterprise bean's business
method. Valid values include: Requi r ed, Not Suppor t ed, Supports, Requi r esNew,
Mandat or y, and Never . This value defaults to Requi r ed. For more information about
the valid values, see Using Web Services Atomic Transactions .

transTi neout Seco
nds

Maximum duration for an EJB's container-initiated transactions, in seconds, after which
the transaction is rolled back and the service will return a SOAP fault. This value can be
set to any positive Integer or 0.

If the transaction timeout is not specified or is set to 0, the transaction timeout configured
for the domain is used. If a timeout is not configured for the domain, the default is 30.

use81Styl ePol i n
g

Flag that specifies whether backwards compatibility for WebLogic Server version 8.1-
style polling is supported. Valid values include: Tr ue or Fal se. This value defaults to
Fal se.

Using SOAP Over JMS Transport 17-25

Configuring JMS Transport Properties

17.6.2 Configuration Methods and Order of Precedence

Optionally, you can configure JMS transport properties when enabling JMS transport
using one of the methods defined in Table 17-8.

Table 17-8 Methods Used to Configure JMS Properties.
]

Configuration Methods Description

JMBTransport d i ent Feat ure API Create the web service client and pass JMS transport properties as
arguments to the
webl ogi c. jws. jaxws. client.JnmsTransportC ientFeature
API. For more information, see Invoking a WebLogic Web Service
Using JMS Transport.

Target service endpoint address Construct the target service endpoint address and include JMS
transport properties as part of the query string. For more
information, see Configuring the JMS URL

@WMsTransport d i ent annotation Create the web service client and pass JMS transport properties as
attributes to the
@om oracl e. webservi ces. api . j ns. JMSTransport C i ent
annotation in the JWS file, as described in Using the
@JMSTransportClient Annotation.

@MSTr anspor t Ser vi ce annotation Create the web service and pass JMS transport properties as
attributes to the
@om oracl e. webservi ces. api . j ns. JMSTransport Servi ce
annotation in the JWS file, as described in Using the
@JMSTransportService Annotation.

<j mstransportcl i ent > element of the Build the web service including the <j st r ansportclient >
cl i ent gen Ant task element in the cl i ent gen Ant task For more information, see Using
the <jmstransportclient> Element in the Ant build.xml File.

<j mstransportservi ce> child Build the web service including the <j nst r ansport servi ce>

element in the <j ws> element of the child element in the <j ws> element of the j wsc Ant task For more

j wsc Ant task information, see Using the <jmstransportservice> Child Element in
the Ant build.xml File.

WSDL Create the web service from a WSDL that includes JMS transport
property elements, as defined in Configuring JMS Transport
Properties in the WSDL.

Administration Console Configure the JMS transport properties for the deployed web service

using the WebLogic Server Administration Console, as described in
Configuring JMS Transport Using the Administration Console.

<soapj ns- ser Vi ce- endpoi nt - You can update the webl ogi c- webser vi ces. xnml deployment

addr ess> element in the webl ogi c- descriptor manually, though it is not recommended. For more

webser vi ces. xml deployment information about the <soapj ns- ser vi ce- endpoi nt - addr ess>

descriptor elements, see "WebLogic Web Service Deployment Descriptor
Schema Reference" in WebLogic Web Services Reference for Oracle
WebLogic Server.

The following summarizes the order of precedence for JMS transport property
configuration on the web service or client at design time and run time:

* For the web service at design time (from high to low):

17-26 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring JMS Transport Properties

— <j nmstransportservi ce> child element in the <j ws> element of the j wsc
Ant task

— @MNBTransport Servi ce annotation
For the web service at run time (from high to low):
— Administration Console

— <soapj ns- servi ce- endpoi nt - addr ess> element in the webl ogi c-
webser vi ces. xn deployment descriptor

— @MBTransport Servi ce annotation

For the client at design time (from high to low):

- <jmstransportclient> child element of clientgen
— JMS transport properties defined in the WSDL

For the client at run time (from high to low):

— JMS URI service endpoint address

— JMSTransport d i ent Feat ure API

— @WNBTransportd i ent annotation

17.6.3 Configuring JMS Transport Using the Administration Console

After you have deployed your web service with JMS transport enabled, you can
configure JMS transport properties using the WebLogic Server Administration
Console.

To configure JMS transport properties using the WebLogic Server Administration
Console:

1.

9.

Invoke the WebLogic Server Administration Console, as described in "Invoking the
Administration Console" in Understanding WebLogic Web Services for Oracle WebLogic
Server.

In the left navigation pane, select Deployments.

Click the name of the web service in the Deployments table.
Select the Configuration tab, then the Port Components tab.
Click the name of the web service endpoint in the Ports table.
Select the SOAP over JMS Transport tab.

Click Customize SOAP over JMS Transport Configuration and follow the
instructions to save the deployment plan, if required.

Edit the SOAP over JMS transport properties, as described in Configuring J]MS
Transport Properties.

Click Save.

For more information, see "Configuring SOAP Over JMS Transport" in the Oracle
WebLogic Server Administration Console Online Help.

Using SOAP Over JMS Transport 17-27

Configuring JMS Transport Properties

17.6.4 Configuring JMS Transport Using WLST

Alternatively, you can use WLST to configure JMS transport. For information about
using WLST to extend the domain, see "Configuring Existing Domains" in
Understanding the WebLogic Scripting Tool.

17.6.5 Configuring the JMS URI

When a WebLogic web service is configured to use SOAP over JMS as the connection
transport, the endpoint address specified for the corresponding port in the generated
WSDL of the web service uses j ms: in its URL rather than htt p: / /.

The JMS URI format is shown below:

j ms: | ookupVari ant : desti nati onName[?t ar get Servi ce=val ue[&pr operty=val ue]
[&property=val ue] . ..
]

The JMS URI is constructed as follows:

e Prefixj nms:

¢ Lookup variant type (must be set to j ndi)

e JMS destination name (dest i nat i onNane)

* Query string containing a list of property-value pairs used to specify JMS endpoint
information. The t ar get Ser vi ce property must be specified to define the port
component name of the web service.

Other valid properties include:

— bi ndi ngVer si on

— deliveryMde

— deliveryType

— j ndi Connecti onFact or yNane
— j ndi Cont ext Par anet er

— jndilnitial ContextFactory
- jndi URL

— messageType

— priority

— repl yToNane

— timeToLive

The | ookupVari ant, desti nati onNare, and t ar get Ser vi ce JMS properties are
required in the JMS endpoint address.

For more information about the JMS transport properties that construct the JMS URI,
see Table 17-6. Optionally, you can configure JMS transport properties when enabling
JMS transport using one of the methods defined in Table 17-7.

17-28 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring JMS Transport Properties

Examples:

The following provides an example of a JMS endpoint address. In this example, the
JMS destination is my Queue and the port component name of the web service is
War ehouseSer vi cePort .

j ms: j ndi: myQueue?t ar get Servi ce=War ehouseSer vi cePor t

The following example shows the same JMS endpoint address with replyToName
property set to specify the JNDI name of the JMS destination to which the response
message is sent.

j ms: j ndi: myQueue?t ar get Ser vi ce=War ehouseSer vi cePor t & epl yToName=nyRepl yToQueue

The following example shows how to specify additional JNDI environment properties,
such asj ndi - com acne. j ndi . enabl e. traci ngandj ndi -
java.nam ng.referral.

j ms: j ndi: myQueue?t ar get Ser vi ce=War ehouseSer vi cePort & ndi -
com acne. j ndi . enabl e. traci ng=true& ndi -j ava. nani ng. ref erral =i gnore

17.6.6 Configuring the JMS Request URI

Each JMS transport message has a message property defined as
SOAPJIMS_r equest URI that is derived from the JMS URI. The JMS Request URI is
constructed using the JMS URI and stripping off the query parameters.

The JMS request URI format is shown below:

j ms: | ookupVari ant : desti nati onName

The JMS Request URI is constructed as follows:
e Prefix| ns:

¢ Lookup variant type (must be set to j ndi)

e JMS destination name (dest i nat i onNane)

For more information about the JMS transport properties that construct the JMS
Request URI, see Table 17-6. Optionally, you can configure JMS transport properties
when enabling JMS transport using one of the methods defined in Table 17-7.

Example:

The following provides an example of a JMS endpoint address. In this example, the
JMS destination is my Queue.

jms:jndi:nyQueue

17.6.7 Configuring the WS-Addressing Headers

Web services and clients that use SOAP over JMS transport populate the WS-
Addressing headers To and Repl yTo of the request and response messages with a
value that is derived from the JMS URI.

The WS-Addressing header format is shown below:

j ms: | ookupVari ant : desti nati onName?t ar get Ser vi ce=val ue

For more information about the JMS transport properties that construct the WS-
Addressing headers, see Table 17-6. Optionally, you can configure JMS transport

Using SOAP Over JMS Transport 17-29

Configuring JMS Transport Properties

properties when enabling JMS transport using one of the methods defined in Table
17-7.

Examples:

The following provides an example of the WS-Addressing headers in a SOAP request
message.

<S: Header >
<To xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
j ms: j ndi: myQueue?t ar get Ser vi ce=\ar ehouseSer vi ce
</ To>
<Action xm ns="http://ww. w3. org/ 2005/ 08/ addr essi ng" >
http: //www. or acl e. conf sanpl es/ Shi pGoodsRequest
</ Action>
<Repl yTo xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
<Addr ess>j ms: j ndi : nyRepl yToQueue?t ar get Ser vi ce=War ehouseSer vi ce</ Addr ess>
</ Repl yTo>
<Messagel D xm ns="http:// wwmv. w3. or g/ 2005/ 08/ addr essi ng" >
uui d: 3b9e7b20- 3aa0- 4ada- 9422- 470f a7b9adal
</ Messagel D>
</ S: Header >

The following provides an example of the WS-Addressing headers in a SOAP
response message.

<S: Header >
<To xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
jms: j ndi: myRepl yToQueue?t ar get Ser vi ce=War ehouseSer vi ce
</ To>
<Action xm ns="http://ww. w3. org/ 2005/ 08/ addr essi ng" >
http: //www. or acl e. cont sanpl es/ Shi pGoodsResponse
</ Action>
<Messagel D xm ns="htt p: // wwmv. w3. or g/ 2005/ 08/ addr essi ng" >
uui d: 9d0be951- 79f c- 4a56- b3e6- 4775bde2bd82
</ Messagel D>
<Rel at esTo xm ns="http:// wwv. w3. or g/ 2005/ 08/ addr essi ng" >
uui d: 3b9e7b20- 3aa0- 4ada- 9422- 470f a7h9adal
</ Rel at esTo>
</ S: Header >

17.6.8 Configuring the JMS Response Queue

For a two-way operation, a temporary response queue is generated by default. Using
the default temporary response queue minimizes the configuration that is required.
However, in the event of a server failure, the response message may be lost.

You can configure a "permanent" JMS response queue—one that is available after
server restart. A permanent JMS response queue provides the following benefits:

* Ensures that the response message can be restored following a server restart.

¢ Improves performance, avoiding the overhead required to create the temporary
queue at initial invocation.

¢ Enables you to configure the queue for quality of service (QoS).

You can configure the JMS response queue using one of the following methods (in
order of precedence):

17-30 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring JMS Transport Properties

* Configuring the addr ess or Repl yTo header using the
Asyncd i ent Transport Feat ur e, as described in Enabling and Configuring the
Asynchronous Client Transport Feature.

¢ Configuring the r epl y ToNane property using one of the following methods:

- <jmstransportclient>elementofclientgen, as described in Using the
<jmstransportclient> Element in the Ant build.xml File.

— Target endpoint address, as described in Summary of JMS Transport
Configuration Properties.

- JMSTransport d i ent Feat ur e, as described in Using the
JMSTransportClientFeature Client APL

- @MsTransport d i ent annotation, as described in Using the
@JMSTransportClient Annotation.

Note:

If the destinationName property is set to anonymous (which is not supported
by JMS transport), then a temporary response queue is used.

By default, the JMS response queue is used as the fault queue for JMS transport service
invocation. You can configure the f aul t To header using the

Asyncd i ent Transport Feat ur e, as described in Configuring the ReplyTo and
FaultTo Headers of the Asynchronous Response Endpoint.

17.6.9 Configuring the JMS Message Type

You can configure one of the following message types to use with the request
message.

e com oracl e. webservi ces. api . j ms. JMSMessageType. BYTES—The body of
the JMS message is binary data. This is the default.

e com oracl e. webservi ces. api . j ms. JMSMessageType. TEXT— The body of
the JMS message is String data.

You can configure the messageType property using any of the configuration
methods defined in Table 17-8.

The web service uses the same message type when sending the response. If the request
is received as a BYTES, the reply will be sent as a BYTES.

When setting the messageType property to TEXT, consider the following:

¢ For large payloads, the memory requirements for TEXT messages can be
significantly greater than BYTES messages because the data requirements for the
in-memory representation is larger.

® Messages with binary attachments must be base64-encoded, which can also
increase the size of the message significantly.

Using SOAP Over JMS Transport 17-31

Monitoring SOAP Over JMS Transport

17.6.10 Configuring HTTP Access to the WSDL File

By default, the WSDL of the deployed web service is still accessible using HTTP. If you
want to disable access to the WSDL file, in particular if your web service can be
accessed outside of a firewall, then you can do one of the following:

e Use the enabl eHt t pWsdl Access attribute of the <j nst r ansport servi ce>
child element of the <j ws> element, as described in Using the
<jmstransportservice> Child Element in the Ant build.xml File.

e @MSTransport Servi ce annotation, as described in Using the
@JMSTransportService Annotation.

* Use the WebLogic Server Administration Console to disable access to the WSDL
file after the web service has been deployed. In this case, the configuration
information will be stored in the deployment plan rather than through the
annotation.

To use the WebLogic Server Administration Console to perform this task, go to the
Configuration -> General page of the deployed web service and uncheck the View
Dynamic WSDL Enabled check box. After saving the configuration to the
deployment plan, you must redeploy (update) the web service, or Enterprise
Application which contains it, for the change to take effect.

17.7 Monitoring SOAP Over JMS Transport

You can monitor web services that use SOAP over JMS transport from the following
perspectives:

* Monitor web service performance, as described in:

— "Monitor a Web Service" in Oracle WebLogic Server Administration Console Online
Help

"Monitoring and Auditing Web Services" in Administering Web Services

¢ Monitor JMS destination metrics, as described in "Monitoring JMS Statistics and
Managing Messages" in Administering JMS Resources for Oracle WebLogic Server.

17-32 Developing JAX-WS Web Services for Oracle WebLogic Server

18

Creating and Using SOAP Message
Handlers

This chapter describes how to create and use SOAP message handlers for WebLogic
web services using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

¢ Overview of SOAP Message Handlers

¢ Adding Server-side SOAP Message Handlers: Main Steps

¢ Adding Client-side SOAP Message Handlers: Main Steps

¢ Designing the SOAP Message Handlers and Handler Chains
¢ Creating the SOAP Message Handler

¢ Configuring Handler Chains in the JWS File

¢ Creating the Handler Chain Configuration File

¢ Compiling and Rebuilding the Web Service

¢ Configuring the Client-side SOAP Message Handlers

18.1 Overview of SOAP Message Handlers

Web services and their clients may need to access the SOAP message for additional
processing of the message request or response. A SOAP message handler provides a
mechanism for intercepting the SOAP message in both the request and response of the
web service. You can create SOAP message handlers to enable web services and clients
to perform additional processing on the SOAP message.

A simple example of using handlers is to access information in the header part of the
SOAP message. You can use the SOAP header to store web service specific
information and then use handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your web
service. After your web service has been deployed for a while, you might discover that
many consumers invoke it with the same parameters. You could improve the
performance of your web service by caching the results of popular invokes of the web
service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the web
service. You implement this performance improvement by using handlers to check the
request SOAP message to see if it contains the popular parameters.

JAX-WS supports two types of SOAP message handlers: SOAP handlers and logical
handlers. SOAP handlers can access the entire SOAP message, including the message

Creating and Using SOAP Message Handlers 18-1

Adding Server-side SOAP Message Handlers: Main Steps

headers and body. Logical handlers can access the payload of the message only, and

cannot change any protocol-specific information (like headers) in a message.

Note:

If SOAP handlers are used in conjunction with policies (security, WS-
ReliableMessaging, MTOM, and so on), for inbound messages, the policy
interceptors are executed before the user-defined message handlers. For
outbound messages, this order is reversed.

18.2 Adding Server-side SOAP Message Handlers: Main Steps

The following procedure describes the high-level steps to add SOAP message handlers

to your web service.

It is assumed that you have created a basic JWS file that implements a web service and

that you want to update the web service by adding SOAP message handlers and
handler chains. It is also assumed that you have set up an Ant-based development

environment and that you have a working bui | d. xni file that includes a target for

running the j wsc Ant task. For more information, see:

* Developing JAX-WS Web Services

¢ Programming the JWS File

* Developing Web Service Clients

Table 18-1 Steps to Add SOAP Message Handlers to a Web Service

Step Description

1 Design the handlers and Design SOAP message handlers and group them
handler chains. together in a handler chain. See Designing the SOAP

Message Handlers and Handler Chains.

2 For each handler in the See Creating the SOAP Message Handler.
handler chain, create a Java
class that implements the
SOAP message handler
interface.

3 Update your JWS file, See Configuring Handler Chains in the JWS File.
adding annotations to
configure the SOAP message
handlers.

4 Create the handler chain See Creating the Handler Chain Configuration File.
configuration file.

5 Compile all handler classes See Compiling and Rebuilding the Web Service .

in the handler chain and
rebuild your web service.

18.3 Adding Client-side SOAP Message Handlers: Main Steps

You can configure client-side SOAP message handlers for both standalone clients and

clients that run inside of WebLogic Server. You create the actual Java client-side

18-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Adding Client-side SOAP Message Handlers: Main Steps

handler in the same way you create a server-side handler (by creating a Java class that
implements the SOAP message handler interface). In many cases you can use the exact
same handler class on both the web service running on WebLogic Server and the client
applications that invoke the web service. For example, you can write a generic logging

handler class that logs all sent and received SOAP messages, both for the server and
for the client.

The following procedure describes the high-level steps to add client-side SOAP
message handlers to the client application that invokes a web service operation.

It is assumed that you have created the client application that invokes a deployed web
service, and that you want to update the client application by adding client-side SOAP
message handlers and handler chains. It is also assumed that you have set up an Ant-
based development environment and that you have a working bui | d. xmi file that
includes a target for running the cl i ent gen Ant task. For more information, see
Invoking a Web Service from a Java SE Client.

Table 18-2 Steps to Add SOAP Message Handlers to a Web Service Client
- - -~ -~ - |

Step Description

1 Design the handlers and This step is similar to designing the server-side SOAP
handler chains. message handlers, except the perspective is from the

client application, rather than a web service. See
Designing the SOAP Message Handlers and Handler
Chains.

2 For each handler in the This step is similar to designing the server-side SOAP
handler chain, create a Java message handlers, except the perspective is from the
class that implements the client application, rather than a web service. See
SOAP message handler Creating the SOAP Message Handler for details about
interface. programming a handler class.

3 Update your client to See Configuring the Client-side SOAP Message
programmatically configure ~ Handlers.
the SOAP message handlers.

4 Update the build.xml file See Compiling and Rebuilding the Web Service .
that builds your application,
specifying to the clientgen
Ant task the customization
file.

5 Rebuild your client

application by running the
relevant task.

pronpt> ant build-client

When you next run the client application, the SOAP messaging handlers listed in the
configuration file automatically execute before the SOAP request message is sent and
after the response is received.

Note:

You do not have to update your actual client application to invoke the client-
side SOAP message handlers; as long as you specify to the cl i ent gen Ant
task the handler configuration file, the generated interface automatically takes
care of executing the handlers in the correct sequence.

Creating and Using SOAP Message Handlers 18-3

Designing the SOAP Message Handlers and Handler Chains

18.4 Designing the SOAP Message Handlers and Handler Chains

When designing your SOAP message handlers, you must decide:
¢ The number of handlers needed to perform the work.

* The sequence of execution.

You group SOAP message handlers together in a handler chain. Each handler in a
handler chain may define methods for both inbound and outbound messages.

Typically, each SOAP message handler defines a separate set of steps to process the
request and response SOAP message because the same type of processing typically
must happen for the inbound and outbound message. You can, however, design a

handler that processes only the SOAP request and does no equivalent processing of

the response. You can also choose not to invoke the next handler in the handler chain
and send an immediate response to the client application at any point.

18.4.1 Server-side Handler Execution

When invoking a web service, WebLogic Server executes handlers as follows:

1.

The inbound methods for handlers in the handler chain are all executed in the order
specified by the JWS annotation. Any of these inbound methods might change the
SOAP message request.

. When the last handler in the handler chain executes, WebLogic Server invokes the

back-end component that implements the web service, passing it the final SOAP
message request.

When the back-end component has finished executing, the outbound methods of the
handlers in the handler chain are executed in the reverse order specified by the JWS
annotation. Any of these outbound methods might change the SOAP message
response.

. When the first handler in the handler chain executes, WebLogic Server returns the

final SOAP message response to the client application that invoked the web service.

For example, assume that you are going to use the @andl er Chai n JWS annotation
in your JWS file to specify an external configuration file, and the configuration file

defines a handler chain called Si npl eChai n that contains three handlers, as shown in
the following sample:

<?xm version="1.0" encodi ng="UTF-8" ?>
<handl er-chai ns xm ns="http://java. sun. conm xnl/ns/javaee">
<handl er - chai n>
<handl er >
<handl er-cl ass>
Handl er 1
</ handl er-cl ass>
</ handl er >
</ handl er - chai n>
<handl er - chai n>
<handl er >
<handl er-cl ass>
Handl er 2
</ handl er-cl ass>
</ handl er>
</ handl er - chai n>

18-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Creating the SOAP Message Handler

<handl er - chai n>
<handl er >
<handl er - cl ass>
Handl er 3
</ handl er-cl ass>
</ handl er>
</ handl er - chai n>
</ handl er - chai ns>

The following graphic shows the order in which WebLogic Server executes the
inbound and outbound methods of each handler.

Figure 18-1 Order of Execution of Handler Methods

— hatidletOne. handlerTwo. hatflerThree.
handlelessage() ® handlelde seage() ™ handlel essagel) -
inboured inbownd Inbound Back-end
C ot otient
-l handletiDne. -— handletTwo. handletThree. /
hatidl ehdessage) handleldessagzel) y handlehlessagzel)

ordborgnd ourboumd

18.4.2 Client-side Handler Execution

In the case of a client-side handler, the handler executes twice:
¢ Directly before the client application sends the SOAP request to the web service

¢ Directly after the client application receives the SOAP response from the web
service

18.5 Creating the SOAP Message Handler

There are two types of SOAP message handlers that you can create, as defined in the
following table.

Table 18-3 Types of SOAP Message Handlers
]

Handler Type Description

SOAP handler Enables you to access the full SOAP message including headers.
SOAP handlers are defined using the
javax. xnml . ws. handl er. soap. SOAPHandl er interface. They
are invoked using the import
j avax. xm . ws. handl er. soap. SOAPMessageCont ext which
extends j avax. xm . ws. handl er. MessageCont ext The
SCAPMessageCont ext . get Message() method returns a
j avax. xm . soap. SOAPMessage.

Creating and Using SOAP Message Handlers 18-5

Creating the SOAP Message Handler

Table 18-3 (Cont.) Types of SOAP Message Handlers
___|

Handler Type Description

Logical handlers Provides access to the payload of the message. Logical handlers
cannot change any protocol-specific information (like headers) in a
message. Logical handlers are defined using the
javax. xm . ws. handl er . Logi cal Handl er interface (see
http://docs. oracl e. conij avaeel/ 7/ api / j avax/ xm / ws/
handl er/ Logi cal Handl er. ht nl). They are invoked using the
javax. xm . ws. handl er. Logi cal MessageCont ext which
extends j avax. xm . ws. handl er . MessageCont ext The
Logi cal MessageCont ext . get Message() method returns a
javax. xm . ws. Logi cal Message.

The payload can be accessed either as a JAXB object or as a
javax. xnl . transform Sour ce object (see htt p: //
docs. oracl e. cont j avaee/ 7/ api / j avax/ xm / ws/
Logi cal Message. htm).

Each type of message handler extends the j avax. xm . ws. Handl| er interface (see
http://docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / ws/ handl er/
Handl er . ht m), which defines the methods defined in the following table.

Table 18-4 Handler Interface Methods
- - - - - -]

Method Description

Manages normal processing of inbound and outbound messages.
A property in the MessageCont ext object is used to determine if
the message is inbound or outbound. See Implementing the
Handler.handleMessage() Method.

handl eMessage()

Manages fault processing of inbound and outbound messages. See
handl eFaul t () Implementing the Handler.handleFault() Method.

Concludes the message exchange and cleans up resources that
were accessed during processing. See Implementing the
Handler.close() Method.

cl ose()

In addition, you can use the @ avax. annot at i on. Post Const r uct and
@ avax. annot at i on. Pr eDest r oy annotations to identify methods that must be
executed after the handler is created and before the handler is destroyed, respectively.

Sometimes you might need to directly view or update the SOAP message from within
your handler, in particular when handling attachments, such as image. In this case,
use the j avax. xml . soap. SOAPMessage abstract class, which is part of the SOAP
With Attachments API for Java 1.1 (SAA]) specification at ht t p: / / j ava. net/

proj ect s/ saaj / For details, see Directly Manipulating the SOAP Request and
Response Message Using SAA].

18.5.1 Example of a SOAP Handler

The following example illustrates a simple SOAP handler that returns whether the
message is inbound or outbound along with the message content.

package exanpl es.webservi ces. handl er;

18-6 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalHandler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalHandler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/LogicalMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/LogicalMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/LogicalMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/Handler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/Handler.html
http://java.net/projects/saaj/
http://java.net/projects/saaj/

Creating the SOAP Message Handler

import java.util.Set;

import java.util.Collections;

i mport javax.xnl.namespace. QNane;

import javax.xm .ws. handl er. soap. SOAPHandl er;

i mport javax.xnl.ws. handl er. MessageCont ext ;

i mport javax.xnl.ws. handl er. soap. SOAPMessageCont ext ;
i mport javax.xn .soap. SOAPMessage;

public class Handlerl inplenents SOAPHandl er <SOAPMessageCont ext >

{
public Set<QName> get Headers()
{
return Collections.enptySet();
1

publ i c bool ean handl eMessage(SOAPMessageCont ext messageCont ext)
{
Bool ean out boundProperty = (Bool ean)
messageCont ext . get (MessageCont ext. MESSAGE_OUTBOUND PROPERTY) ;

i f (outboundProperty.bool eanVal ue()) {
Systemout. println("\nQutbound nessage:");
} else {
Systemout. println("\nlnbound nessage:");
}

Systemout. printIn("** Response: "+nessageContext.getMessage().toString());
return true;

}

publ i ¢ bool ean handl eFaul t (SOAPMessageCont ext nessageCont ext)
{

return true,;

}

public void close(MssageContext nessageCont ext)
{
1

}

18.5.2 Example of a Logical Handler

The following example illustrates a simple logical handler that returns whether the
message is inbound or outbound along with the message content.

package exanpl es.webservi ces. handl er;

inport java.util.Set;

inmport java.util.Collections;

i mport javax.xm .namespace. QNane;

import javax.xm .ws. handl er. Logi cal Handl er;

import javax.xm .ws. handl er. MessageCont ext ;

i mport javax.xm .ws. handl er. Logi cal MessageCont ext ;
i mport javax.xm .ws. Logi cal Message;

i mport javax.xn.transform Source;

public class Handler2 inplenents Logical Handl er <Logi cal MessageCont ext >
public Set<QName> get Headers()

{
return Collections.enptySet();

Creating and Using SOAP Message Handlers 18-7

Creating the SOAP Message Handler

}

publ i c bool ean handl eMessage(Logi cal MessageCont ext nmessageCont ext)

{

Bool ean out boundProperty = (Bool ean)
messageCont ext . get (MessageCont ext. MESSAGE_OUTBOUND PROPERTY) ;
i f (outboundProperty.bool eanVal ue()) {
System out. println("\nQutbound nessage:");
} else {
System out. println("\nlnbound message:");
}

Systemout. println("** Response: "+messageContext.get Message().toString());
return true;

}

publ i c bool ean handl eFaul t (Logi cal MessageCont ext messageCont ext)

{

return true,;

}

public void close(MessageCont ext nessageCont ext)

{
}
}

18.5.3 Implementing the Handler.handleMessage() Method

The Handl er . handl eMessage() method is called to intercept a SOAP message
request before and after it is processed by the back-end component. Its signature is:

public bool ean handl eMessage(C cont ext)
throws java.lang. RuntineException, java.xm .ws.Protocol Exception {}

Implement this method to perform such tasks as encrypting/decrypting data in the
SOAP message before or after it is processed by the back-end component, and so on.

Cextends j avax. xnl . ws. handl er. MessageCont ext (seehttp://

docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/ handl er/

MessageCont ext . ht ml). The MessageCont ext properties allow the handlers in a
handler chain to determine if a message is inbound or outbound and to share
processing state. Use the SOAPMessageCont ext or Logi cal MessageCont ext sub-
interface of MessageCont ext to get or set the contents of the SOAP or logical
message, respectively. For more information, see Using the Message Context Property
Values and Methods.

After you code all the processing of the SOAP message, code one of the following
scenarios:

* Invoke the next handler on the handler request chain by returning t r ue.

The next handler on the request chain is specified as the next <handl er >
subelement of the <handl er - chai n> element in the configuration file specified
by the @andl er Chai n annotation.

¢ Block processing of the handler request chain by returning f al se.

Blocking the handler request chain processing implies that the back-end
component does not get executed for this invoke of the web service. You might
want to do this if you have cached the results of certain invokes of the web service,
and the current invoke is on the list.

18-8 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Creating the SOAP Message Handler

Although the handler request chain does not continue processing, WebLogic Server
does invoke the handler response chain, starting at the current handler.

e Throw thej ava. | ang. Runt i meExcepti on or
java. xn . ws. Prot ocol Except i on for any handler-specific runtime errors.

WebLogic Server catches the exception, terminates further processing of the
handler request chain, logs the exception to the WebLogic Server log file, and
invokes the handl eFaul t () method of this handler.

18.5.4 Implementing the Handler.handleFault() Method

The Handl er . handl eFaul t () method processes the SOAP faults based on the
SOAP message processing model. Its signature is:

public bool ean handl eFaul t (C cont ext)
throws java.lang. RuntineException, java.xm.ws.Protocol Exception{}

Implement this method to handle processing of any SOAP faults generated by the
handl eMessage() method, as well as faults generated by the back-end component.

Cextendsj avax. xnl . ws. handl er . MessageCont ext (seehttp://

docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/ handl er/

MessageCont ext . ht m). The MessageCont ext properties allow the handlers in a
handler chain to determine if a message is inbound or outbound and to share
processing state.Use the Logi cal MessageCont ext or SOAPMessageCont ext sub-
interface of MessageCont ext to get or set the contents of the logical or SOAP
message, respectively. For more information, see Using the Message Context Property
Values and Methods.

After you code all the processing of the SOAP fault, do one of the following:

¢ Invoke the handl eFaul t () method on the next handler in the handler chain by
returning t r ue.

* Block processing of the handler fault chain by returning f al se.

18.5.5 Implementing the Handler.close() Method

The Handl er . cl ose() method concludes the message exchange and cleans up
resources that were accessed during processing. Its signature is:

public bool ean cl ose(MessageCont ext context) {}

18.5.6 Using the Message Context Property Values and Methods

The following context objects are passed to the SOAP message handlers.

Table 18-5 Message Context Property Values
- -]

Message Context Property Values Description

. . Context object for logical handlers.
j avax. xnl . ws. handl er. Logi cal MessageCont ext

. Context object for SOAP handlers.
javax. xnl . ws. handl er. soap. SOAPMessageCont ext

Creating and Using SOAP Message Handlers 18-9

http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Creating the SOAP Message Handler

Each context object extends j avax. xm . ws. handl er . MessageCont ext , which
enables you to access a set of runtime properties of a SOAP message handler from the
client application or web service, or directly from the

javax. xm . ws. WebSer vi ceCont ext from a web service (see htt ps: //j ax-
Ws. j ava. net/ nonav/ j ax-ws- 20- pf d/ api / j avax/ xm / ws/

WebSer vi ceCont ext . htm).

For example, the MessageCont ext . MESSAGE_COQUTBOUND_PRCPERTY holds a

Bool ean value that is used to determine the direction of a message. During a request,
you can check the value of this property to determine if the message is an inbound or
outbound request. The property would be t r ue when accessed by a client-side
handler or f al se when accessed by a server-side handler.

For more information about the MessageCont ext property values that are available,
see Accessing the Web Service Context.

The Logi cal MessageCont ext class defines the following method for processing the
Logical message. For more information, see the

java. xm . ws. handl er. Logi cal MessageCont ext Javadocathttp://

docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/ handl er/

Logi cal MessageCont ext. htmi .

Table 18-6 LogicalMessageContext Class Method
- - -]

Method Description

Gets aj avax. xnl . ws. Logi cal Message object that contains the SOAP

get Message() message.

The SOAPMessageCont ext class defines the following methods for processing the
SOAP message. For more information, see the

j ava. xm . ws. handl er . soap. SOAPMessageCont ext Javadocathttp://
docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/ handl er/ soap/
SOAPMessageCont ext . ht i .

Note:

The SOAP message itself is stored in aj avax. xrml . soap. SOAPMessage
objectathtt p://docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / soap/
SOAPMessage. ht m . For detailed information on this object, see Directly
Manipulating the SOAP Request and Response Message Using SAA].

Table 18-7 SOAPMessageContext Class Methods
- - - - - |

Method Description

Gets headers that have a particular qualified name from the message in the

get Header S() message context.

Gets aj avax. xnl . soap. SOAPMessage object that contains the SOAP

get Message() message.

Gets the SOAP actor roles associated with an execution of the handler

get Rol es() chain.

18-10 Developing JAX-WS Web Services for Oracle WebLogic Server

https://jax-ws.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws/WebServiceContext.html
https://jax-ws.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws/WebServiceContext.html
https://jax-ws.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/soap/SOAPMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/soap/SOAPMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/soap/SOAPMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/SOAPMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/SOAPMessage.html

Creating the SOAP Message Handler

Table 18-7 (Cont.) SOAPMessageContext Class Methods
__|

Method Description

Sets the SOAP message.
set Message()

18.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ

The j avax. xm . soap. SOAPMessage abstract class is part of the SOAP With
Attachments API for Java 1.1 (SAA]J) specification at ht t p: / / j ava. sun. com
webser vi ces/ saaj / docs. ht ml . You use the class to manipulate request and
response SOAP messages when creating SOAP message handlers. This section
describes the basic structure of a SOAPMessage object and some of the methods you
can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPar t object (which contains the actual
SOAP XML document) and zero or more attachments.

Refer to the SAA] Javadocs for the full description of the SOAPMessage class.

18.5.7.1 The SOAPPart Object

Note:

The set Cont ent and get Cont ent methods of the SOAPPar t object support
javax.xm . transform stream St reanBour ce content only; the
methods do not support j avax. xm . t r ansf or m dom DOVSour ce content.

The SOAPPar t object contains the XML SOAP document inside of a SOAPEnvel ope
object. You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageCont ext object, provided by the Handl er class, and get at its parts:

SOAPMessage soapMessage = nessageCont ext. get Message();
SOAPPart soapPart = soapMessage. get SOAPPart () ;
SOAPEnvel ope soapEnvel ope = soapPart. get Envel ope();
SOAPBody soapBody = soapEnvel ope. get Body();

SOAPHeader soapHeader = soapEnvel ope. get Header () ;

18.5.7.2 The AttachmentPart Object

Thej avax. xm . soap. At t achrment Par t object (see ht t p: // docs. or acl e. com
j avaee/ 7/ api / j avax/ xm / soap/ At t achment Par t . ht m) contains the optional
attachments to the SOAP message. Unlike the rest of a SOAP message, an attachment

is not required to be in XML format and can therefore be anything from simple text to
an image file.

Note:

If you are going to access a j ava. awt . | mage attachment from your SOAP
message handler, see Manipulating Image Attachments in a SOAP Message
Handler for important information.

Creating and Using SOAP Message Handlers 18-11

http://java.sun.com/webservices/saaj/docs.html
http://java.sun.com/webservices/saaj/docs.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/AttachmentPart.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/AttachmentPart.html

Configuring Handler Chains in the JWS File

Use the following methods of the SOAPMessage class to manipulate the attachments.
For more information, see the j avax. xm . soap. SOAPMessage Javadocathttp://
docs. oracl e. com j avaee/ 7/ api / j avax/ xm / soap/ SOAPMessage. ht m .

Table 18-8 SOAPMessage Class Methods to Manipulate Attachments
- - |

Method Description

Adds an At t achmrent Par t object, after it has been
addAt tachnent Part () created, to the SOAPMessage.

Returns the number of attachments in this SOAP

count At t achnent s() message.

Create an At t achment Par t object from another type of
creat eAttachment Part () hj ect.

Gets all the attachments (as At t achment Par t objects)

get Attachrment s() intoan | t er at or object.

18.5.7.3 Manipulating Image Attachments in a SOAP Message Handler

It is assumed in this section that you are creating a SOAP message handler that
accesses aj ava. awt . | mage attachment and that the | nage has been sent from a
client application that uses the client JAX-WS ports generated by the cl i ent gen Ant
task.

In the client code generated by the cl i ent gen Ant task, aj ava. awt . | mage
attachment is sent to the invoked WebLogic web service with a MIME type of

t ext/ xm rather thani mage/ gi f, and the image is serialized into a stream of
integers that represents the image. In particular, the client code serializes the image
using the following format:

e int width
e int height
e int[] pixels

This means that, in your SOAP message handler that manipulates the received Image
attachment, you must deserialize this stream of data to then re-create the original
image.

18.6 Configuring Handler Chains in the JWS File

The @ avax. j ws. Handl er Chai n annotation (also called @andl er Chai n in this
chapter for simplicity) enables you to configure a handler chain for a web service. Use
the f i | e attribute to specify an external file that contains the configuration of the
handler chain you want to associate with the web service. The configuration includes
the list of handlers in the chain, the order in which they execute, the initialization
parameters, and so on.

The following JWS file shows an example of using the @andl er Chai n annotation;
the relevant Java code is shown in bold:

package exanpl es.webservi ces. handl er;

import javax.jws.\WebMet hod,;

18-12 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/xml/soap/SOAPMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/SOAPMessage.html

Creating the Handler Chain Configuration File

i mport javax.jws.\WebService;
inport javax.jws.Handl er Chai n;
i mport javax.annotation. Resour ce;
i mport javax.xm .ws. WbServi ceCont ext ;
@ebService(nane = "Handl er", targetNamespace = "http://exanple.org")
@Handl er Chai n(fil e="handl er-chain.xm")
public class Handl er W5
{
@Resour ce
V\ebSer vi ceCont ext ct x;
@\ebMet hod()
public String getProperty(String propertyNane)
{
return (String) ctx.getMessageContext().get(propertyNane);
1
}

Before you use the @and| er Chai n annotation, you must import it into your JWS
file, as shown above.

Use the f i | e attribute of the @Handl er Chai n annotation to specify the name of the
external file that contains configuration information for the handler chain. The value
of this attribute is a URL, which may be relative or absolute. Relative URLs are relative
to the location of the JWS file at the time you run the j wsc Ant task to compile the file.

Note:

It is an error to specify more than one @Hand| er Chai n annotation in a single
JWS file.

For details about creating the external configuration file, see Creating the Handler
Chain Configuration File.

For additional detailed information about the standard JWS annotations discussed in
this section, see the web services Metadata for the Java Platform specification at
http://ww.jcp.org/en/jsr/detail ?i d=181.

18.7 Creating the Handler Chain Configuration File

As described in the previous section, you use the @4andl er Chai n annotation in your
JWS file to associate a handler chain with a web service. You must create the handler
chain file that consists of an external configuration file that specifies the list of handlers
in the handler chain, the order in which they execute, the initialization parameters,
and so on.

Because this file is external to the JWS file, you can configure multiple web services to
use this single configuration file to standardize the handler configuration file for all
web services in your enterprise. Additionally, you can change the configuration of the
handler chains without needing to recompile all your web services.

The configuration file uses XML to list one or more handler chains, as shown in the
following simple example:

<?xm version="1.0" encodi ng="UTF-8"?>
<handl er-chai ns xm ns="http://java. sun. com xm /ns/ | avaee">
<handl er - chai n>
<handl er >
<hand| er - cl ass>exanpl es. webser vi ces. handl er. Handl er 1</ handl er - cl ass>

Creating and Using SOAP Message Handlers 18-13

http://www.jcp.org/en/jsr/detail?id=181

Compiling and Rebuilding the Web Service

</ handl er >

</ handl er - chai n>

<hand| er - chai n>
<handl er >

<handl er - cl ass>exanpl es. webser vi ces. handl er. Handl er 2</ handl er - cl ass>

</ handl er >

</ handl er - chai n>

</ handl er - chai ns>

In the example, the handler chain contains two handlers implemented with the class
names specified with the <handl er - cl ass> element. The two handlers execute in
forward order before the relevant web service operation executes, and in reverse order
after the operation executes.

Use the <i ni t - par am> and <soap- r ol e>child elements of the <handl| er > element
to specify the handler initialization parameters and SOAP roles implemented by the
handler, respectively.

You can include logical and SOAP handlers in the same handler chain. At runtime, the
handler chain is re-ordered so that all logical handlers are executed before SOAP
handlers for an outbound message, and vice versa for an inbound message.

For the XML Schema that defines the external configuration file, additional
information about creating it, and additional examples, see the web services Metadata
for the Java Platform specification at ht t p: / / www. j cp. org/ en/j sr/ detail ?

i d=181.

18.8 Compiling and Rebuilding the Web Service

It is assumed in this section that you have a working bui | d. xm Ant file that
compiles and builds your web service, and you want to update the build file to
include handler chain. See Developing JAX-WS Web Services for information on
creating this bui | d. xm file.

Follow these guidelines to update your development environment to include message
handler compilation and building:

¢ After you have updated the JWS file with the @4andl er Chai n annotation, you
must rerun the j ws¢ Ant task to recompile the JWS file and generate a new web
service. This is true anytime you make a change to an annotation in the JWS file.

If you used the @andl er Chai n annotation in your JWS file, reran the j wsc Ant
task to regenerate the web service, and subsequently changed only the external
configuration file, you do not need to rerun j wsc for the second change to take
affect.

* Thej wsc Ant task compiles SOAP message handler Java files into handler classes
(and then packages them into the generated application) if all the following
conditions are true:

— The handler classes are referenced in the @Hand| er Chai n annotation of the
JWS file.

— The Java files are located in the directory specified by the sour cepat h
attribute.

— The classes are not currently in your CLASSPATH.

18-14 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

Configuring the Client-side SOAP Message Handlers

If you want to compile the handler classes yourself, rather than let j wsc compile
them automatically, ensure that the compiled classes are in your CLASSPATH
before you run the j wsc Ant task.

* You deploy and invoke a web service that has a handler chain associated with it in
the same way you deploy and invoke one that has no handler chain. The only
difference is that when you invoke any operation of the web service, the WebLogic
web services runtime executes the handlers in the handler chain both before and
after the operation invoke.

18.9 Configuring the Client-side SOAP Message Handlers

You configure client-side SOAP message handlers in one of the following ways:

® Set a handler chain directly on the j avax. xnl . ws. Bi ndi ngPr ovi der ,such as a
port proxy or j avax. xm . ws. Di spat ch object. For example:

package exanpl es.webservices. handl er.client;

inport javax.xnl.nanespace. QNane;
inport java.net. Mal formedURLException;
inport java.net.URL;

import javax.xn .ws. handl er. Handl er;
import javax.xnl .ws. Bi nding;

i mport javax.xnl.ws. Bi ndi ngProvi der;
inport java.util.List;

i mport exanpl es. webservi ces. handl er. Handl er 1;
i mport exanpl es. webservi ces. handl er. Handl er 2;

public class Main {
public static void main(String[] args) {
Handl er W5 test;
try {
test = new Handl er Ws(new URL(args[0] + "?WSDL"), new
QNanme("http://exanple.org", "HandlerWs"));
} catch (Mal formedURLException nurl) { throw new RuntimeException(nurl); }
Handl er WsPor t Type port = test. get Handl er WsPor t TypePort ();

Bi ndi ng bi nding = ((Bindi ngProvider)port).getBinding();
Li st <Handl er> handl erLi st = bi ndi ng. get Handl er Chai n();
handl er Li st. add(new Handl er1());
handl er Li st. add(new Handl er2());
bi ndi ng. set Handl er Chai n(handl er Li st);
String result = null;
result = port.sayHello("foo bar");
Systemout.printIn("Got result: " + result);
1
}

¢ Implementaj avax. xml . ws. handl er. Handl er Resol ver ona Servi ce
instance. For example:

public static class MyHandl er Resol ver inpl ements Handl er Resol ver {
public List<Handl er> get Handl er Chai n(PortInfo portinfo) {
Li st <Handl er> handl ers = new ArrayLi st <Handl er>();
/1 add handlers to list based on PortInfo information
return handl ers;

Creating and Using SOAP Message Handlers 18-15

Configuring the Client-side SOAP Message Handlers

}

Add a handler resolver to the Ser vi ce instance using the

set Handl er Resol ver () method. In this case, the port proxy or Di spat ch
object created from the Ser vi ce instance uses the Handl er Resol ver to
determine the handler chain. For example:

test. set Handl er Resol ver (new MyHandl er Resol ver());

e (reate a customization file that includes a <bi ndi ng> element that contains a
handler chain description. The schema for the <handl er - chai ns> element is the
same for both handler chain files (on the server) and customization files. For
example:

<bi ndi ngs xm ns: xsd="http://ww:. w3. or g/ 2001/ XM.Schema"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Location="http://1ocal host: 7001/ handl er/ Handl er Ws?\WsDL"
xm ns="http://java.sun.com xm /ns/jaxws">
<bi ndi ngs node="wsdl : definitions"
xmns:jws="http://java.sun.com xm /ns/javaee">
<handl er - chai ns>
<handl er - chai n>
<handl er >
<handl er - cl ass>exanpl es. webser vi ces. handl er. Handl er 1
</ handl er - cl ass>
</ handl er >
</ handl er - chai n>
<handl er - chai n>
<handl er >
<handl er - cl ass>exanpl es. webser vi ces. handl er. Handl er 2
</ handl er - cl ass>
</ handl er >
</ handl er - chai n>
</ handl er - chai ns>
</ bi ndi ngs>

Use the <bi ndi ng> child element of the cl i ent gen command to pass the
customization file.

18-16 Developing JAX-WS Web Services for Oracle WebLogic Server

19

Handling Exceptions Using SOAP Faults

This chapter describes how to handle exceptions that occur when a message is being
processed using Simple Object Access Protocol (SOAP) faults for WebLogic web
services using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

e Overview of Exception Handling Using SOAP Faults
¢ Contents of the SOAP Fault Element

¢ Using Modeled Faults

* Using Unmodeled Faults

* Customizing the Exception Handling Process

¢ Disabling the Stack Trace from the SOAP Fault

e Other Exceptions

19.1 Overview of Exception Handling Using SOAP Faults

When a web service request is being processed, if an error is encountered, the nature
of the error needs to be communicated to the client, or sender of the request. Because
clients can be written on a variety of platforms using different languages, there must
exist a standard, platform-independent mechanism for communicating the error.

The SOAP specification (available at ht t p: / / www. w3. or g/ TR/ soap/) defines a
standard, platform-independent way of describing the error within the SOAP message
using a SOAP fault. In general, a SOAP fault is analogous to an application exception.
SOAP faults are generated by receivers to report business logic errors or unexpected
conditions.

In JAX-WS, Java exceptions (j ava. | ang. Except i on) that are thrown by your Java
web service are mapped to a SOAP fault and returned to the client to communicate the
reason for failure. SOAP faults can be one of the following types:

* Modeled—Maps to an exception that is thrown explicitly from the business logic of
the Java code and mapped to wsdl : f aul t definitions in the WSDL file, when the
web service is deployed. In this case, the SOAP faults are predefined.

¢ Unmodeled—Maps to an exception (for example,
java. l ang. Runt i meExcept i on) that is generated at run-time when no business
logic fault is defined in the WSDL. In this case, Java exceptions are represented as
generic SOAP fault exceptions, j avax. xm . ws. soap. SOAPFaul t Excepti on.

Handling Exceptions Using SOAP Faults 19-1

http://www.w3.org/TR/soap/

Contents of the SOAP Fault Element

The faults are returned to the sender only if request/response messaging is in use. If a
web service operation is configured as one-way, the SOAP fault is not returned to the

sender, but stored for further processing.

As illustrated in Figure 19-1, JAX-WS handles SOAP fault processing during SOAP
protocol binding. The SOAP binding maps exceptions to SOAP fault messages.

Figure 19-1 How SOAP Faults Are Processed

Web
Service

SEl

Other
Classes

S0AP

Protocol
SOAP | Endpoint Binding Java/XML
Request Serviet ~ SOAP 7 Binding

Client
Fault
HBSD‘“'P o 1 Processing

JAX-WS Runtime Services

19.2 Contents of the SOAP Fault Element

The SOAP <Faul t > element is used to transmit error and status information within a
SOAP message. The <Faul t > element is a child of the body element. There can be

only one <Faul t > element in the body of a SOAP message.

The SOAP <Faul t > element contents for SOAP 1.2 and 1.1 are defined in the

following sections:
e SOAP 1.2 <Fault> Element Contents

e SOAP 1.1 <Fault> Element Contents

19.2.1 SOAP 1.2 <Fault> Element Contents

The <Faul t > element for SOAP 1.2 contains the subelements defined in Table 19-1.

Table 19-1 Subelements of the SOAP 1.2 <Fault> Element

Subelement Description

Required?

env: Code Information pertaining to the fault error code. The env: Code element consists
of the following two subelements:

e env: Val ue
e env: Subcode
The subelements are defined below.

Required

19-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Contents of the SOAP Fault Element

Table 19-1 (Cont.) Subelements of the SOAP 1.2 <Fault> Element
. __|

Subelement Description Required?
env: Val ue Code value that provides more information about the fault. A set of code values Required
is predefined by the SOAP specification, including:
* Versi onM smat ch—Invalid namespace defined in SOAP envelope
element. The SOAP envelope must conform to the ht t p: //
schemas. xnl soap. or g/ soap/ envel ope namespace.
e Must Under st and—SOAP header entry not understood by processing
party.
* Sender —Message was incorrectly formatted or is missing information.
* Recei ver —Problem with the server that prevented the message from being
processed.
e Dat aEncodi ngUnknown—Received message has an unrecognized encoding
style value. You can define encoding styles for SOAP headerblocks and child
elements of the SOAP body, and this encoding style must be recognized by
the web services server.
env: Subcode Subcode value that provides more information about the fault. This subelement ~ Optional
can have a recursive structure.
env: Reason Human-readable description of fault. Required
The <env: Reason> element contains one or more <Text > elements, each of
which contains information about the fault in a different language.
env: Node Information regarding the actor (SOAP node) that caused the fault. Optional
env: Rol e Role being performed by actor at the time of the fault. Optional
env: Detai | Application-specific information, such as the exception that was thrown. Optional
The following provides an example of a SOAP 1.2 fault message.
Example 19-1 Example of SOAP 1.2 Fault Message

<?xm version="1.0"?>
<env: Envel ope xm ns: env=http://ww. w3. or g/ 2003/ 05/ soap- envel ope>

<env: Body>

<env: Faul t >
<env: Code>
<env: Val ue>env: Sender </ env: Val ue>
<env: Subcode>

<env: Val ue>r pc: BadAr gument s</ env: Val ue>
</ env: Subcode>
</ env: Code>
<env: Reason>
<env: Text xnl:|ang=en- US>Processing error<env: Text>
</ env: Reason>
<env: Detai | >
<e:nyFaul t Details
xm ns: e=http://travel conpany. exanpl e. org/ faul t s>
<e: message>Nane does not match card nunber</e: message>
<e:errorcode>999</ e: errorcode>
</ e:nyFaul t Detai | s>
</env:Detail >
</ env: Faul t >
</ env: Body>
</ env: Envel ope>

Handling Exceptions Using SOAP Faults 19-3

Using Modeled Faults

19.2.2 SOAP 1.1 <Fault> Element Contents

The <Faul t > element for SOAP 1.1 contains the subelements defined in Table 19-2.

Table 19-2 Subelements of the SOAP 1.1 <Fault> Element

Subelement Description

faul t code Standard code that provides more information about the fault. A set of code values is
predefined by the SOAP specification, as defined below. This set of fault code values can be
extended by the application.

Predefined fault code values include:
¢ Versi onM smat ch—Invalid namespace defined in SOAP envelope element. The SOAP

envelope must conform to the ht t p: / / schemas. xn soap. or g/ soap/ envel ope
namespace.

* Must Under st and—SOAP header entry not understood by processing party.
e dient —Message was incorrectly formatted or is missing information.
e Server —Problem with the server that prevented message from being processed.

faul tstring Human-readable description of fault.

faul tactor URIassociated with the actor (SOAP node) that caused the fault. In RPC-style messaging, the
actor is the URI of the web service.

det ai | Application-specific information, such as the exception that was thrown. This element can be an
XML structure or plain text.

The following provides an example of a SOAP 1.1 fault message.
Example 19-2 Example of SOAP 1.1 Fault Message

<?xm version="1.0"?>
<soap: Envel ope
xm ns: soap="http://schemas. xn soap. or g/ soap/ envel ope' >
<soap: Body>
<soap: Faul t >
<faul t code>soap: Ver si onM smat ch</ f aul t code>
<faultstring, xm:lang="en">
Message was not SOAP 1.1 conpliant
</faul tstring>
<faul tact or>
http://sanpl e. org. ocn jws/ aut hnti cat or
</faul tactor>
</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

19.3 Using Modeled Faults

As described previously, a modeled fault is mapped to an exception that is thrown
explicitly from the business logic of the Java code. In this case, the exception is
mapped toawsdl : faul t definitions in the WSDL file, when the web service is
deployed.

The following sections provide more information about using modeled faults:
¢ Creating and Using a Custom Exception

* How Modeled Faults are Mapped in the WSDL File

19-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Modeled Faults

* How the Fault is Communicated in the SOAP Message

¢ Creating the Web Service Client

19.3.1 Creating and Using a Custom Exception

To use modeled faults, you need to create a custom Java exception and throw it from
within your web service.

Example 19-3 provides a simple example of a custom exception being thrown by a
web service. The exception is called M ssi ngName and is thrown when the input
argument is empty.

Example 19-3 Web Service With Custom Exception

package exanpl es;
i mport javax.jws.\WbService;

@eébServi ce(name="Hel | oWor | d", serviceNanme="Hel | oWor| dService")
public class HelloWrld {
public String sayHel | oWorld(String message) throws M ssingName {
Systemout.printIn("Say Hello Wrld: " + nessage);
if (message == null || nessage.isEmpty()) {
throw new M ssi ngNanme();
}

return "Here is the message: '" + nessage + "'"
}
}

Example 19-4 shows the he class for the exception, M ssi ngNane. j ava.
Example 19-4 Custom Exception Class (MissingName)

package exanpl es;
i mport java.lang. Exception;

public class M ssingNane extends Exception {
public M ssingNanme() {
super ("Your nanme is required.");
}

}

19.3.2 How Modeled Faults are Mapped in the WSDL File

The JAX-WS Java-to-WSDL mapping binds subclasses of j ava. | ang. Excepti on to
wsdl : f aul t messages. Example 19-4 shows the WSDL that is generated from the
annotated web service in Example 19-3.

In this example:

e The<nessage name="M ssi ngNane" > element defines the parts of the
M ssi ngNanme message, namely f aul t, and its associated data type,
tns: M ssi ngNane.

<nessage nanme="M ssi ngNanme" >
<part name="fault" el ement="tns:M ssingNane" />
</ nessage>

¢ The M ssi ngNane SOAP fault is mapped to the sayHel | oWor | d operation.

<operation name="sayHel | oWr|d">
<input message="tns:sayHel | oWorld" />

Handling Exceptions Using SOAP Faults 19-5

Using Modeled Faults

<out put message="tns: sayHel | oWor | dResponse” />
<fault message="tns: M ssingName" name="M ssingNane" />
</ operation>

This <f aul t > subelement in this example is derived from the t hr ows
M ssi ngNane clause of the sayHel | oWwr | d() method declaration (see Example
19-3).

public String sayHel | oWorld(String message) throws M ssingName {
}

® The fault message is mapped to the sayHel | oWr | d operation in the <bi ndi ng>
element, as well.

<fault name="M ssi ngNanme" >
<soap: fault nane="M ssingNane" use="literal" />
</faul t>

Example 19-5 Example of WSDL with Modeled Exceptions

<?xm version="1.0" encodi ng="UTF-8" ?>
<definitions
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xmns:tns="http://exanpl es/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns="http://schemas. xn soap. or g/ wsdl /
target Nanespace="http://exanpl es/"
name=""Hel | oWr | dServi ce">
<types>
<xsd: schema>
<xsd:inport nanespace="http://exanples/"
schemaLocation="http://l ocal host: 7001/ Hel | oWr | d/ Hel | oWor | dSer vi ce?xsd=1"/>
</ xsd: schema>
</types>
<nessage name="sayHel | oWr | d">
<part name="parameters" el enment="tns:sayHel | oWrld" />
</ message>
<nessage name="sayHel | oWr | dResponse">
<part name="parameters" el ement="tns:sayHel | o\Wr| dResponse" />
</ message>
<nessage name="M ssi ngName">
<part name="fault" el enent="tns:M ssingName" />
</ message>
<port Type name="Hel | oVr | d">
<operation nanme="sayHel | oWor| d">
<input message="tns:sayHel | oWrld" />
<out put message="tns: sayHel | oWr | dResponse” />
<fault message="tns:M ssingNanme" name="M ssingNane" />
</ operation>
</ port Type>
<bi ndi ng name="Hel | oWor | dPort Bi ndi ng" type="tns: Hel | oWr| d">
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http"
styl e="docunent" />
<operation nanme="sayHel | oWor| d">
<soap: operation soapAction="" />
<i nput >
<soap: body use="literal" />
</input>
<out put >
<soap: body use="literal" />
</ out put >

19-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Modeled Faults

<fault nanme="M ssi ngNang" >
<soap: fault name="M ssi ngNane" use="literal" />
</fault>
</ operati on>
</ bi ndi ng>
<servi ce name="Hel | oWor| dServi ce">
<port name="Hel | oWrl dPort" bindi ng="t ns: Hel | oWr | dPort Bi ndi ng" >
<soap: addr ess
| ocation="http://local host: 7001/ Hel | oWr | d/ Hel | oWor | dServi ce" />
</ port>
</ service>

19.3.3 How the Fault is Communicated in the SOAP Message

Example 19-6 shows how the SOAP fault is communicated in the resulting SOAP
message when the M ssi ngNane Java exception is thrown.

Example 19-6 Example SOAP Fault Message for MissingName Exception

<?xm version = "1.0" encoding = ' UTF-8' ?>
<S: Envel ope xm ns: S="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<S: Body>
<S:Fault xm ns:ns4="http://wm. w3. or g/ 2003/ 05/ soap- envel ope" >
<faul t code>S: Server</faul t code>
<faul tstring>Your name is required. </faultstring>
<detai | >
<ns2: M ssingNanme xm ns:ns2="http://exanpl es/">
<message>Your nane i s required. </ nessage>
</ ns2: M ssi ngNanme>
<ns2: exception xmns:ns2="http://jax-ws.java.net/"
cl ass="exanpl es. M ssi ngName" note="To disable this feature, set
com sun. xm . ws. faul t. SOAPFaul t Bui | der . di sabl eCapt ur eSt ackTrace system
property to fal se">
<message>Your nane i s required. </ nessage>
<ns2:stackTrace>
<ns2:frame class="exanpl es. Hel | oWor|d" file="HelloWrld.java"
line="14" nethod="sayHel | oWor!l d"/>

</ ns2:stackTrace>
</ ns2: exception>
</detail >
</ S: Faul t>

</ S: Body>
</ S: Envel ope>

19.3.4 Creating the Web Service Client

When you generate a web service client from a WSDL file that contains mapped faults
using cl i ent gen, the required exception classes are generated automatically,
including the mapped exception, fault bean, service implementation classes client
implementation class, which you must modify, as described in the following sections.

¢ Reviewing the Generated Java Exception Class
* Reviewing the Generated Java Fault Bean Class
¢ Reviewing the Client-side Service Implementation

¢ Creating the Client Implementation Class

Handling Exceptions Using SOAP Faults 19-7

Using Modeled Faults

For more information about clientgen, see "clientgen" in WebLogic Web Services
Reference for Oracle WebLogic Server.
19.3.4.1 Reviewing the Generated Java Exception Class

An example of the generated Java exception class is shown in Example 19-7. The
@\ebFaul t annotation identifies the class as a mapped exception.

Example 19-7 Example of Generated Java Exception Class

package exanpl es.client;
inport javax.xm .ws.\WebFault;

@ebFaul t (name = "M ssi ngNane", targetNanespace = "http://exanples/")
public class M ssingName_Exception extends Exception {
private M ssingNanme faul tlnfo;
public M ssingName_Exception(String nessage, MssingNane faultinfo) { ... }
public M ssingName_Exception(String nessage, M ssingNane faultlnfo,
Throwabl e cause) { ... }
public MssingNane getFaultinfo() { ... }
}

19.3.4.2 Reviewing the Generated Java Fault Bean Class

An example of the generated Java fault bean class is shown in Example 19-8, defining
the getters and setters for the fault message.

Example 19-8 Example of Generated Java Fault Bean Class

package exanpl es.client;

import javax.xm .bind. annotation. Xm AccessType;
import javax.xn .bind. annotation. Xm Accessor Type;
import javax.xnl.bind. annot ation. Xm Type;

@ Accessor Type(Xm AccessType. Fl ELD)

@ Type(nanme = "M ssingName", propOrder = {
"message”

)

public class M ssingNane {

protected String message;

public String getMessage() {
return message;
}

public void setMessage(String value) {
this. message = val ue;
}

}

19.3.4.3 Reviewing the Client-side Service Implementation

An example of the generated client-side service implementation class is shown in
Example 19-9.

Example 19-9 Client-side Service Implementation

package exanpl es.client;

@eébService(nane = "Hel | oWorl d", targetNanespace = "http://exanples/")

19-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Modeled Faults

@ SeeAl so({
bj ect Factory. cl ass
1y

public interface Hell oWrld {

@\ebMet hod
@ébResul t (target Nanespace = "")
@Request W apper (| ocal Nane = "sayHel | oWorld",
target Nanespace = "http://exanples/",
cl assNanme = "exanpl es. client. SayHel | oWor | d")
@ResponseW apper (| ocal Nane = "sayHel | oWor | dResponse”,
target Nanespace = "http://exanples/",
cl assNane = "exanpl es. client. SayHel | oWr| dResponse")
public String sayHel | oVor I d(
@\ébPar an{nanme = "arg0", targetNanespace = "")
String arg0)
throws M ssingNane_Excepti on;

}

19.3.4.4 Creating the Client Inplementation Class

Create the client implementation class to call the web service method and throw the
custom exception. Then, compile and run the client. For more information about
creating web service clients, see "Invoking Web Services" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Example 19-10 shows an example client implementation class.
Example 19-10 Client Implementation Class

package exanpl es.client;

i mport javax.xm .nanmespace. QNane;

i mport java.net. Ml formedURLException;

i mport java.net.URL;

i mport exanpl es.client.M ssingNane_Excepti on;

public class Min {

public static void main(String[] args) throws M ssingName_Exception {
Hel | oWor | dServi ce service;

try {
service = new Hel | oWor | dServi ce(new URL(args[0] + "?WsDL"),

new QNanme("http://exanples/", "HelloWrldService"));
} catch (Mal formedURLException nmurl) { throw new RuntimeException(nurl); }
Hel | oWorl d port = service. getHelloWrldPort();

String result = null;
try {
result = port.sayHelloWrld("");
} catch (M ssingNanme_Exception e)
Systemerr.printIn("Error: " + e);

}

Systemout.printin("Cot result: " + result);

Handling Exceptions Using SOAP Faults 19-9

Using Unmodeled Faults

19.4 Using Unmodeled Faults

As noted previously, an unmodeled fault maps to an exception (for example,

java. |l ang. Runti meExcept i on) that is generated at run-time when no business
logic fault is defined in the WSDL. In this case, Java exceptions are represented as
generic SOAP fault exceptions, j avax. xii . ws. soap. SOAPFaul t Excepti on.

The following shows an example of an exception that maps to an unmodeled fault.
Example 19-11 Example of Web Service Using Unmodeled Fault

package exanpl es;

i mport javax.jws.\WebService;

@eébServi ce(name="Hel | oWor | d", serviceNanme="Hel | oWor| dService")

public class HelloWrld {

public String sayHel | oWorld(String message) throws M ssingName {
Systemout.printin("Say Hello Wrld: " + nessage);
if (message == null || nessage.isEmpty()) {
throw new M ssingName(); // Mdeled fault

} else if (message. equal sl gnoreCase("abc")) {
throw new Runti meException("Please enter a nane."); //Unnodel ed fault

}

return "Here is the message: '" + nessage + "'"

}
}

In this example, if the string "abc" is passed to the method, the following
SOAPFaul t Except i on and Runt i mneExcept i on messages are returned in the log
file:

Example 19-12 Example of Log File Message for Unmodeled Fault

run:
[java] Exception in thread "main" javax.xn .ws.soap. SOAPFaul t Exception: Pl ease
enter a nane.

Caused by: java.lang.RuntimeException: Please enter a nane.\

19.5 Customizing the Exception Handling Process

You can customize the SOAP fault handling process using SOAP message handlers. A
SOAP message handler provides a mechanism for intercepting the SOAP message in
both the request and response of the web service. You can create SOAP message
handlers to enable web services and clients to perform additional processing on the
SOAP message. For more information, see Creating and Using SOAP Message
Handlers.

19.6 Disabling the Stack Trace from the SOAP Fault

Note:

The
com sun. xm . ws. faul t. SOAPFaul t Bui | der. di sabl eCapt ur eSt ackT

19-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Disabling the Stack Trace from the SOAP Fault

r ace property is supported as an extension to the JDK 6.0. Because this APl is
not provided as part of the JDK 6.0 kit, it is subject to change.

By default, the entire stack trace, including nested exceptions, is included in the details
of the SOAP fault message. For example, the following shows an example of a SOAP
fault message that includes the stack trace:

You can disable the inclusion of the stack trace in the SOAP fault message by setting
the

com sun. xm . ws. faul t. SOAPFaul t Bui | der. di sabl eCapt ureSt ackTrace
Java startup property to f al se.

To disable the stack trace:

1. Locate the following entry in the ORACLE_HQOVE/ user _pr oj ect s/ domai ns/
domai nNane/ st art WebLogi c. cnd file, where ORACLE_HOME is the directory
you specified as the Oracle Home when you installed Oracle WebLogic Server:

set JAVA_OPTI ONS=%BAVE_JAVA_CPTI ONS%
2. Edit the entry as follows:

set JAVA OPTI ONS=-
Dcom sun. xm . ws. faul t. SOAPFaul t Bui | der . di sabl eCapt ur eSt ackTr ace=f al se
YSAVE_JAVA OPTI ONS%

3. Save the st art WebLogi c. cnd file.

Example 19-13 Example of Stack Trace in SOAP Fault Message

<?xm version = '1.0" encoding = 'UTF-8' ?>
<S: Envel ope xm ns: S="http:// ww. w3. or g/ 2003/ 05/ soap- envel ope" >
<S: Body>
<S:Fault xnml ns:ns4="http://schemas. xn soap. or g/ soap/ envel ope/ ">
<S: Code>
<S: Val ue>S: Recei ver </ S: Val ue>
</ S: Code>
<S: Reason>
<S:Text xm:lang="en">String index out of range: 3</S:Text>
</ S: Reason>
<S: Detail >
<ns2: exception xmns:ns2="http://jax-ws.java.net/"
class="java.l ang. Stri ngl ndexQut Of BoundsExcepti on" note="To disable this feature, set
com sun. xm . ws. faul t. SOAPFaul t Bui | der . di sabl eCapt ureSt ackTrace system property
to false">
<nmessage>String index out of range: 3</nessage>
<ns2:stackTrace>
<ns2:frame class="java.lang. String" file="String.java" |ine="1934"
met hod="substring"/>
<ns2:frame class="ratingservice. CreditRating" file="CreditRating.java"
line="21" nethod="processRating"/>
<ns2:frame class="sun.reflect. NativeMet hodAccessorlnpl"
file="NativeMethodAccessorInpl.java" line="native" method="invoke0"/>
<ns2:frame class="sun.reflect.NativeMet hodAccessorlnpl"
file="NativeMethodAccessorlnpl.java" |ine="39" nethod="invoke"/>
<ns2:frame class="sun.reflect. Del egati ngMet hodAccessor I npl "
file="Del egatingMet hodAccessor|npl.java" |ine="25" nethod="invoke"/>
<ns2:frame class="java.lang.reflect. Method" file="Method.java" |ine="597"
met hod="i nvoke"/>

</ ns2:stackTrace>

Handling Exceptions Using SOAP Faults 19-11

Other Exceptions

</ ns2: exception>
</ S: Detail >
</ S: Faul t >
</ S: Body>
</ S: Envel ope>

19.7 Other Exceptions

Note that in addition to the custom exceptions that are thrown explicitly in your web
service and the SOAPFaul t Except i ons that are used to map exceptions that are not
caught by your business logic, there are two other exceptions that might be
communicated to the web service client, and that you should be aware of.

Table 19-3 Other Exceptions

Exception

Description

javax. xm . ws. WebSer vi ceExcepti on

Base exception for all JAX-WS API runtime exceptions, used
when calls to JAX-WS Java classes fail, such as
Ser vi ce. Bi ndi ngProvi der and Di spat ch.

java. util.concurrent. Executi onExcept
ion

Used by JAX-WS asynchronous calls, when a client tries to
get the response from an asynchronous call.

19-12 Developing JAX-WS Web Services for Oracle WebLogic Server

20

Optimizing Binary Data Transmission

This chapter describes how to send SOAP messages as attachments to optimize
transmission for WebLogic web services using Java API for XML Web Services (JAX-
WS).

This chapter includes the following sections:
¢ Optimizing Binary Data Transmission Optimization Using MTOM /XOP
® Streaming SOAP Attachments

¢ Sending SOAP Messages With Attachments Using swaRef

20.1 Optimizing Binary Data Transmission Optimization Using MTOM/XOP

SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) defines a method for optimizing the transmission of XML
data of type xs: base64Bi nary or xs: hexBi nary in SOAP messages. When the
transport protocol is HTTP, Multipurpose Internet Mail Extension (MIME)
attachments are used to carry that data while at the same time allowing both the
sender and the receiver direct access to the XML data in the SOAP message without
having to be aware that any MIME artifacts were used to marshal the base64Bi nary
or hexBi nary data.

The binary data optimization process involves the following steps:
1. Encode the binary data.

2. Remove the binary data from the SOAP envelope.

3. Compress the binary data.

4. Attach the binary data to the MIME package.

5. Add references to the MIME package in the SOAP envelope.

MTOM/XOP support is standard in JAX-WS via the use of JWS annotations. The
MTOM specification does not require that, when MTOM is enabled, the web service
runtime use XOP binary optimization when transmitting base64bi nary or

hexBi nary data. Rather, the specification allows the runtime to choose to do so. This
is because in certain cases the runtime may decide that it is more efficient to send the
binary data directly in the SOAP Message; an example of such a case is when
transporting small amounts of data in which the overhead of conversion and transport
consumes more resources than just inlining the data as is.

The following Java types are mapped to the base64Bi nar y XML data type, by
default: j avax. acti vati on. Dat aHandl er,j ava. awt . | mage, and

j avax. xm . transf or m Sour ce. The elements of type base64Bi nary or
hexBi nary are mapped to byt e[], by default.

Optimizing Binary Data Transmission 20-1

Optimizing Binary Data Transmission Optimization Using MTOM/XOP

The following table summarizes the steps required to use MTOM/XOP to send
base64Bi nary or hexBi nary attachments.

Table 20-1 Steps to Use MTOM/XOP to Send Binary Data

Step

Description

1 Annotate the data types that
you are going to use as an
MTOM attachment.
(Optional)

Depending on your programming model, you can
annotate your Java class or WSDL to define the content
types that are used for sending binary data. This step is
optional. By default, XML binary types are mapped to
Java byt e[] . For more information, see Annotating the
Data Types.

2 Enable MTOM on the web
service.

See Enabling MTOM on the Web Service.

3 Enable MTOM on the client
of the web service.

See Enabling MTOM on the Client.

4 Set the attachment threshold.

Set the attachment threshold to specify when the
Xs: bi nar y64 data is sent inline or as an attachment.
See Setting the Attachment Threshold.

5 (Optional) Enable HTTP
chunking.

Enable HTTP chunking to minimize excessive buffering
on the client side during the processing of MTOM
attachments. See Enabling HTTP Chunking.

For more information see:

e MTOM specification at ht t p: / / www. W3. or g/ TR/ soap12- nt om

* XOP specification at ht t p: / / www. w3. or g/ TR/ xop10

20.1.1 Annotating the Data Types

Depending on your programming model, you can annotate your Java class or WSDL
to define the MIME content types that are used for sending binary data. This step is

optional.

The following table defines the mapping of MIME content types to Java types. In some
cases, a default MIME type-to-Java type mapping exists. If no default exists, the MIME
content types are mapped to Dat aHandl er .

Table 20-2 Mapping of MIME Content Types to Java Types

MIME Content Type

Java Type

i mage/ gi f java.aw .| mge
i mage/j peg java. awt . | mage
text/plain java.lang. String

20-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.w3.org/TR/soap12-mtom
http://www.w3.org/TR/xop10

Optimizing Binary Data Transmission Optimization Using MTOM/XOP

Table 20-2 (Cont.) Mapping of MIME Content Types to Java Types

MIME Content Type Java Type
text/xm or application/xn javax. xnl . transf orm Sour ce
[javax. activation. Dat aHandl er

The following sections describe how to annotate the data types based on whether you
are starting from Java or WSDL.

* Annotating the Data Types: Start From Java

* Annotating the Data Types: Start From WSDL

20.1.1.1 Annotating the Data Types: Start From Java

When starting from Java, to define the content types that are used for sending binary
data, annotate the field that holds the binary data using the @ M meType
annotation.

The field that contains the binary data must be of type Dat aHandl er .

The following example shows how to annotate a field in the Java class that holds the
binary data.

@\ebMet hod
@neway
public void dataUpl oad(
@m M neType("appl i cation/octet-streant) DataHandl er data)
{

}

20.1.1.2 Annotating the Data Types: Start From WSDL

When starting from WSDL, to define the content types that are used for sending
binary data, annotate the WSDL element of type Xs: base64Bi nary or
xs: hexBi nary using one of the following attributes:

e xm nme: cont ent Type - Defines the content type of the element.

e xm ne: expect edCont ent Type - Defines the range of media types that are
acceptable for the binary data.

The following example maps the i mage element of type base64bi nary to
i mage/ gi f MIME type (which maps to the j ava. awt . | mage Java type).

<el enent nane="i mage" type="base64Bi nary"

xm ne: expect edCont ent Types="i mage/ gi f"
xm ns: xmi me="http:// www. w3. or g/ 2005/ 05/ xnm mi me"/ >

20.1.2 Enabling MTOM on the Web Service

You can enable MTOM on the web service using an annotation or WS-Policy file, as
described in the following sections:

¢ Enabling MTOM on the Web Service Using Annotation

Optimizing Binary Data Transmission 20-3

Optimizing Binary Data Transmission Optimization Using MTOM/XOP

* Enabling MTOM on the Web Services by Attaching a WS-Policy File

20.1.2.1 Enabling MTOM on the Web Service Using Annotation

To enable MTOM in the web service, specify the @ ava. xm . ws. soap. MTOM
annotation on the service endpoint implementation class, as illustrated in the
following example. Relevant code is shown in bold.

package exanpl es.webservi ces. nt om

import javax.jws.\WebMet hod,;
import javax.jws.\WebhServi ce;
import javax.xn .ws.soap. MTOM

@mrom
@ébSer vi ce(name="M onPort Type",
servi ceNanme="M onfer vi ce",
target Nanespace="http://exanpl e. org")
public class MIOM mpl {
@\ebMet hod
public String echoBinaryAsString(byte[] bytes) {
return new String(bytes);

}
}

20.1.2.2 Enabling MTOM on the Web Services by Attaching a WS-Policy File

In addition to the @MTOM annotation, described in the previous section, support for
MTOM/XOP in WebLogic JAX-WS web services is implemented using the pre-
packaged WS-Policy file M om xmi . WS-Policy files follow the WS-Policy specification,
described at ht t p: / / www. w3. or g/ TR/ ws- pol i cy; this specification provides a
general purpose model and XML syntax to describe and communicate the policies of a
web service, in this case the use of MTOM/XOP to send binary data. The installation
of the pre-packaged M om xm WS-Policy file in the t ypes section of the web service
WSDL is as follows (provided for your information only; you cannot change this file):

<wsp: Policy wsu:ld="nyService_policy">
<wsp: Exact | yOne>
<wsp: Al >
<wsoma: Optim zedM neSeri al i zation
xm ns: wsoma="htt p: // schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy/
optim zednmi neserialization" />
</wsp: Al'l >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file;
the snippet indicates that the web service uses MTOM /XOP:

<wsdl : bi ndi ng name="Basi cHt t pBi ndi ng_I M onfTest "
type="i0: | M onffest ">
<wsp: Pol i cyRef erence URI ="#nyService_policy" />
<soap: bi nding transport="http://schemas. xn soap. or g/ soap/ http" />

You can associate the M om xm WS-Policy file with a web service at development-
time by specifying the @0l i cy metadata annotation in your JWS file. Be sure you
also specify the at t achToWsdl =t r ue attribute to ensure that the dynamic WSDL
includes the required reference to the M om xni file; see the example below.

20-4 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.w3.org/TR/ws-policy

Optimizing Binary Data Transmission Optimization Using MTOM/XOP

You can associate the M om xm WS-Policy file with a web service at deployment time
by modifying the WSDL to add the Policy to the types section just before deployment.

In addition, you can attach the file at runtime using by the WebLogic Server
Administration Console; for details, see "Attach a WS-Policy file to a web service" in
the Oracle WebLogic Server Administration Console Online Help. This section describes
how to use the JWS annotation.

The following simple JWS file example shows how to use the

@webl ogi c. j ws. Pol i cy annotation in your JWS file to specify that the pre-
packaged M om xml file should be applied to your web service (relevant code shown
in bold):

package exanpl es. webservi ces. nt om
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WebService;
i mport webl ogi c.jws. Policy;
@\ebSer vi ce(name="M onPort Type",
servi ceName="M onBer vi ce",
tar get Nanespace="http://exanple.org")
@olicy(uri="policy:Momxm", attachToWsdl =true)
public class Mom npl {
@¥ebMet hod
public String echoBinaryAsString(byte[] bytes) {
return new String(bytes);

}

20.1.3 Enabling MTOM on the Client

To enable MTOM on the client of the web service, pass an instance of the

javax. xm . ws. soap. MTOVFeat ur e as a parameter when creating the web service
proxy or dispatch, as illustrated in the following example. Relevant code is shown in
bold.

package exanpl es.webservices.ntomclient;
import javax.xnl.ws.soap. MTOVFeat ur e;

public class Min {

public static void main(String[] args) {
String FOO = "FOO';
M onServi ce service = new M onBervice()
M onPort Type port = service. get M onPort TypePort (new MTOVFeat ure());
String result = null;
result = port.echoBinaryAsString(FOO. getBytes());
Systemout.printin("Got result: " + result);

}
}

20.1.4 Setting the Attachment Threshold

You can set the attachment threshold to specify when the xs: bi nar y64 data is sent
inline or as an attachment. By default, the attachment threshold is 0 bytes. All
Xs: bi nar y64 data is sent as an attachment.

To set the attachment threshold:

* On the web service, pass the t hr eshol d attribute to the
@ ava. xm . ws. soap. MTOMannotation. For example:

Optimizing Binary Data Transmission 20-5

Optimizing Binary Data Transmission Optimization Using MTOM/XOP

@mroM t hr eshol d=3072)

* On the client of the web service, pass the threshold value to
javax. xm . ws. soap. MTOMFeat ur e. For example:

M onPort Type port = service. get M onPort TypePort (new MTOVFeat ure(3072));

In each of the examples above, if a message is greater than or equal to 3 KB, it will be
sent as an attachment. Otherwise, the content will be sent inline, as part of the SOAP
message body.

20.1.5 Enabling HTTP Chunking

You can minimize excessive buffering on the client side when processing MTOM
attachments by enabling HTTP chunking on the transport layer using one of the
following methods:

¢ Setthejaxws.transport. streamn ng system property to t r ue. In this case, no
code modifications are required.

e Set
com sun. xm . ws. devel oper. JAXWEPr operti es. HTTP_CLI ENT_STREAM N
G_CHUNK_SI ZE property on the protocol binding request context. For more
information, see the JAXWEPr operti es Javadocat: htt p: / /| ax-
Ws. j ava. net/ nonav/j ax-ws- 20-fcs/arch/ com sun/ xm / ws/
devel oper/ JAXWSPr operties. htnl.

It is recommended that you enable HTTP chunking for CPU-intensive applications
that are running on a WebLogic Server instance that is participating in web services
interactions as a client and is sending out large messages.

The following excerpt from an Ant build script shows an example of setting the
system property when invoking a client application called
clients. | nvokeMrOVBer vi ce:

<target name="run-client">
<java fork="true"
cl assnanme="cl i ents. | nvokeMrOVSer vi ce"
failonerror="true">
<classpath refid="client.class.path"/>
<arg line="${http-endpoint}"/>
<jvmarg |ine=
"-Dj axws. transport. stream ng=true"
/>
</java>
</target>

The following code excerpt shows how to set the
HTTP_CLI ENT_STREAM NG_CHUNK_SI ZE property.

package exanpl es.webservi ces. ntonstreamn ng.client;
inport java.util.Mp;

i mport javax.xm .ws. Bi ndi ngProvi der;
import com sun. xm . ws. devel oper. JAXWSPr operti es;

public class Min {
public static void main(String[] args) {

Map<String, Object> ctxt=((BindingProvider)port).getRequest Context();

20-6 Developing JAX-WS Web Services for Oracle WebLogic Server

http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html

Streaming SOAP Attachments

ctxt. put (JAXWSProperties. HTTP_CLI ENT_STREAM NG_CHUNK_SI ZE, 8192);

-
20.2 Streaming SOAP Attachments

Note:

The com sun. xnl . ws. devel oper. St r eani ngDat aHandl er APIis
supported as an extension to the JAX-WS RI. Because this API is not provided
as part of the WebLogic software, it is subject to change.

Using MTOM and the j avax. acti vat i on. Dat aHandl er and

com sun. xml . ws. devel oper. Streani ngDat aHandl er APIs you can specify
that a web service use a streaming API when reading inbound SOAP messages that
include attachments, rather than the default behavior in which the service reads the
entire message into memory. This feature increases the performance of web services
whose SOAP messages are particularly large.

Note:

Streaming MTOM cannot be used in conjunction with message encryption.

The following sections describe how to employ streaming SOAP attachments on the
client and server sides.

20.2.1 Client Side Example

The following provides an example that employs streaming SOAP attachments on the
client side.

package exanpl es.webservi ces. ntonstreamn ng.client;

inport java.util.Mp;

inmport java.io.lnputStream

import javax.xm .ws.soap. MTOVFeat ur e;

i mport javax.activation. DataHandl er;

i mport javax.xm .ws. Bi ndi ngProvi der;

import com sun. xm . ws. devel oper. JAXWSPr operti es;

i mport com sun. xm . ws. devel oper. Streani ngDat aHand| er;

public class Min {

public static void main(String[] args) {
M onft r eam ngSer vi ce service = new M onft ream ngService();
MrOVFeat ure feature = new MIOVFeature();
M on®t r eami ngPort Type port = service. get M onfst r eani ngPor t TypePor t (

feature);
Map<String, Object> ctxt=((BindingProvider)port).getRequest Context();
ct xt. put (JAXWSPr operties. HTTP_CLI ENT_STREAM NG_CHUNK_SI ZE, 8192);
Dat aHandl er dh = new Dat aHandl er (new
Fi | eDat aSour ce("/tmp/ exanple.jar"));

port.fileUpload("/tnp/tnp.jar",dh);

Dat aHandl er dhn = port.fileDownl oad("/tnp/tnp.jar");
St reani ngDat aHandl er sdh = (Stream ngDat aHandl er) dhn;

Optimizing Binary Data Transmission 20-7

Streaming SOAP Attachments

tryf
File file = new File("/tnp/tnp.jar");
sdh. moveTo(file);
sdh. cl ose();

}

cat ch(Exception e){
e.printStackTrace();

}

}
}

The preceding example demonstrates the following:

¢ To enable MTOM on the client of the web service, pass an instance of the
javax. xm . ws. soap. MTOVFeat ur e as a parameter when creating the web
service proxy or dispatch.

* Configure HTTP streaming support by enabling HTTP chunking on the MTOM
streaming client. For more information, see Enabling HTTP Chunking.

Map<String, Object> ctxt = ((BindingProvider)port).getRequest Context();
ctxt. put (JAXWSPr operties. HTTP_CLI ENT_STREAM NG_CHUNK S| ZE, 8192);

e Calltheport.fil eUpl oad method.

e (Cast the Dat aHandl er to St r eam ngDat aHandl er and use the
St r eam ngDat aHandl er . r eadOnce() method to read the attachment.

20.2.2 Server Side Example

The following provides an example that employs streaming SOAP attachments on the
server side.

package exanpl es.webservi ces. nt onst ream ng;

inmport java.io.File;

import java.jws. Oneway;

import javax.jws.\WbMet hod,;

inmport java.io.lnputStream

import javax.jws.\WebService;

import javax.xm .bind. annotation. Xm M meType;

import javax.xm .ws.\WebServi ceExcepti on;

import javax.xm .ws.soap. MTOM

i mport javax.activation. Dat aHandl er;

import javax.activation. Fil eDat aSource;

i mport com sun. xm . ws. devel oper. Streani ngAttachnent;
import com sun. xm . ws. devel oper. Streani ngDat aHand| er;

@t r eani ngAt t achment (par seEager | y=true, menoryThreshol d=40000L)
@rom
@\ébSer vi ce(name="M onft r eani ng",
servi ceNanme="M onft r eani ngSer vi ce",
target Nanespace="http://exanpl e. org",
wsdl Locat i on="St r eam ngl npl Servi ce. wsdl ")
@nevay
@\ebMet hod
public class Stream nglnpl {

/] Use @m M nmeType to map to DataHandler on the client side

public void fileUpload(String fileNang,
@m M meType("appl i cation/octet-streant)

20-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Streaming SOAP Attachments

Dat aHandl er data) {

try {
St ream ngDat aHandl er dh = (Streani ngDat aHandl er) dat a;
File file = new File(fileName);
dh. noveTo(file);
dh. cl ose();

} catch (Exception e) {
t hrow new WebSer vi ceException(e);

}

@nm M neType("appl i cation/octet-streant)

@\ebMet hod

publ i c DataHandl er fileDownl oad(String filenane)
{

return new Dat aHandl er (new Fi | eDat aSource(filenane));

}
}

The preceding example demonstrates the following:

¢ The @bt r eani ngAtt achenent annotation is used to configure the streaming
SOAP attachment. For more information, see Configuring Streaming SOAP
Attachments.

e The @ M neType annotation is used to map the Dat aHandl er, as follows:

— If starting from WSDL, it is used to map the
xm me: expect edCont ent Types="appl i cati on/ oct et - streant to
Dat aHandl er in the generated SEIL

— If starting from Java, it is used to generate an appropriate schema type in the
generated WSDL.

e (Cast the Dat aHandl er to St r eam ngDat aHandl er and use the
St r eam ngDat aHandl er . nroveTo(Fi | €) method to store the contents of the
attachment to a file.

20.2.3 Configuring Streaming SOAP Attachments

You can configure streaming SOAP attachments on the client and server sides to
specify the following:

¢ Directory in which large attachments are stored.
¢ Whether to parse eagerly the streaming attachments.

* Maximum attachment size (bytes) that can be stored in memory. Attachments that
exceed the specified number of bytes are written to a file.

20.2.3.1 Configuring Streaming SOAP Attachments on the Server

Note:

The com sun. xnl . ws. devel oper. St reani ngAt t achment APlis
supported as an extension to the JDK 6.0. Because this API is not provided as
part of the JDK 6.0 kit, it is subject to change.

Optimizing Binary Data Transmission 20-9

Sending SOAP Messages With Attachments Using swaRef

To configure streaming SOAP attachments on the server, add the

@t r eam ngAt t achment annotation on the endpoint implementation. The following
example specifies that streaming attachments are to be parsed eagerly (read or write
the complete attachment) and sets the memory threshold to 4MB. Attachments under
4MB are stored in memory.

import com sun. xn . ws. devel oper. Streani ngAttachnent;
inport javax.jws.\WbService;

@t r eani ngAt t achnent (par seEager | y=true, nmenoryThreshol d=4000000L)
@ébServi ce(nane="Hel | oWor | dPort Type", serviceName="Hel | oWor | dServi ce")
public class Stream nglnpl {

}
20.2.3.2 Configuring Streaming SOAP Attachments on the Client

Note:

The com sun. xnl . ws. devel oper. St reani ngAt t achment Feat ur e API
is supported as an extension to the JDK 6.0. Because this API is not provided
as part of the JDK 6.0 kit, it is subject to change.

To configure streaming SOAP attachments on the client, create a

St r eam ngAt t achnment Feat ur e object and pass this as an argument when creating
the Por t Type stub implementation. The following example sets the directory in
which large attachments are stored to / t np, specifies that streaming attachments are
to be parsed eagerly and sets the memory threshold to 4MB. Attachments under 4MB
are stored in memory.

import com sun. xn . ws. devel oper. Streami ngAttachnment Feat ure;

MIOVFeat ure ntom = new MIOMFeat ure();
Stream ngAttachnent Feature stf = new Stream ngAttachment Feature("/tnp", true,
4000000L) ;
M onSt r eam ngServi ce service = new M onStream ngService();
M onSt r eam ngPort Type port = service. get M onft r eam ngPort TypePort (
mom stf);

20.3 Sending SOAP Messages With Attachments Using swaRef

Together, the specifications defined in Table 20-3 define a mechanism for sending
SOAP messages with attachments using the swaRef XML attachment type.

Table 20-3 Specifications Supported for Sending SOAP Messages With Attachments

Specification

Description

SOAP With Attachments Defines a MIME nul ti part/r el at ed structure for packaging attachments with

(SwA)

SOAP messages. For more information, see ht t p: / / www. W3. or g/ TR/ SOAP-
attachments

20-10 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments

Sending SOAP Messages With Attachments Using swaRef

Table 20-

3 (Cont.) Specifications Supported for Sending SOAP Messages With Attachments

Specification Description

WS-I Attachments Profile Defines the swaRef schema type that can be used in the WSDL description to

represent a reference to an attachment as a content-ID (CID) URL. WS-I publishes a
public schema which defines the swaRef type, as defined by the following XSD:
http://ws-i.org/profil es/basic/1l.1/xsd/swaref.xsd

JAXB maps the swaRef schema type toj avax. acti vati on. Dat aHandl er.

For more information, see: ht t p: / / www. ws-i . org/ Profil es/
Attachnment sProfil e-1.0-2004-08-24. htm

Example

The following shows an example of how to use swaRef in a WSDL file to specify that
the cl ai nFor mrequest and response messages be passed as an attachment.

20-1 Example of WSDL File Using swaRef Data Type

<?xm version="1.0" encodi ng="utf-8"?>

<wsdl : def
xm ns
xm ns
xm ns
xm ns
xm ns
xm ns

initions name="SOAPBui | ders-m nme-cr-test"
:types="http://exanpl e. org/ m me/ dat a"
:xsd="http://wwm. w3. or g/ 2001/ XM_Schema"
:soap="http://schemas. xm soap. or g/ wsdl / soap/ "
:wsdl ="http://schemas. xm soap. org/ wsdl /"
;tns="http://exanpl e. org/ ni me"
:mme="http://schemas. xm soap. org/ wsdl / m me/"

target Nanespace="htt p://exanpl e. org/ m ne" >

<wsdl

‘types>

<schema

xm ns="http://ww. w3. or g/ 2001/ XM_Schema"

t arget Nanespace="htt p://exanpl e. or g/ m ne/ dat a"

xm ns: xmi me="http: // www. w3. or g/ 2005/ 05/ xn mi me"

el ement For mDef aul t ="qual i fied"
xmns:ref="http://ws-i.org/profiles/basic/l. 1/xsd">

<inport namespace="http://ws-i.org/profiles/basic/1l. 1/xsd"

schemalocati on="W6-| SwA. xsd"/>

<conpl exType nanme="cl ai nfFor nTypeRequest ">

<sequence>
<el ement name="request" type="ref:swaRef"/>
</ sequence>

</ conpl exType>
<conpl exType nanme="cl ai nfFor nTypeResponse" >

<sequence>
<el enent nane="response" type="ref:swaRef"/>
</ sequence>

</ conpl exType>

<el ement name="cl ai nFor mRequest” type="types: cl ai nFor niTypeRequest "/ >
<el ement nane="cl ai nFor nResponse" type="types: cl ai nFor nTypeResponse"/ >

</ schema>
</wsdl : types>
<wsdl : message name="cl ai nForm n">
<wsdl : part nane="data" el enent ="types: cl ai nFor nRequest"/ >
</ wsdl : message>
<wsdl : message name="cl ai nFor mout " >

Optimizing Binary Data Transmission 20-11

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html

Sending SOAP Messages With Attachments Using swaRef

<wsdl : part nane="data" el enent ="types: cl ai nFor nResponse"/ >
</ wsdl : message>

<wsdl : port Type name="Hel | 0">

<wsdl : operation name="cl ai nForni' >
<wsdl :input message="tns: cl ai nForm n"/>
<wsdl : out put nmessage="tns: cl ai nFornmQut"/>
</wsdl : operation>
</ wsdl : port Type>

</wsdl : definitions>

As specified in the WSDL example in Example 20-1, the XML content that is tagged as
type swaRef is sent as a MIME attachment and the element inside the SOAP body
holds the reference to this attachment, as shown in Example 20-2.

Example 20-2 Example of SOAP Message with MIME Attachment

Content-Type: Miltipart/Related; start-info="text/xm"; type="application/xop+xm"
boundary="----=_Part_4 32542424, 1118953563492" Cont ent - Lengt h: 1193SOAPAction: ""
------ = Part_5 32550604. 1118953563502Cont ent - Type: appl i cation/ xop+xnl; type="text/xm"

charset=utf-8
<soapenv: Envel ope xnl ns: soapenv="http://schenas. xn soap. or g/ soap/ envel ope/ ">

<soapenv: Body>
<request xm ns="http://exanple.org/ntonm data">
ci d: b0a597f d- 5ef 7- 4f 0c- 9d85- 6666239f 1d25@xanpl e. j axws. sun. com
</request >
</ soapenv: Body>
</ soapenv: Envel ope>

------ = Part_5_32550604. 1118953563502

Content-Type: application/xm Content-ID:
<b0a597f d- 5ef 7- 4f Oc- 9d85- 6666239f 1d25@xanpl e. j axws. sun. conp

<2xni
version="1.0" encodi ng="UTF-8"?><application xm ns="http://java.sun. com xm /ns/j2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocaption="http://java. sun.conf xm / ns/j 2ee
http://java.sun.com xm /ns/j2eel application_1 _4.xsd" version="1.4">
<di spl ay- nanme>Si npl e exanpl e of application</display-name>
<description>Sinpl e exanpl e</description>
<modul e>

<ejb>ejbl.jar</ejb>
</ modul e>
<modul e>
<ej b>ej b2.jar</ejb>
</ modul e>
<modul e>
<web> <web- uri>web. war </ web-uri > <cont ext - r oot >web</ cont ext - r oot ></ web>
</ modul e></ appl i cati on>

Example 20-3 shows a sample web service that defines the cl ai nFor moperation. As
defined in the WSDL, the request and response messages are sent as MIME
attachments.

Example 20-3 Example Web Service

package mine. server;

inport javax.jws.\WbService;

i mport javax.xnl.ws. Hol der;

i mport javax.xnl.transform Source;

i mport javax.xnl.transform stream StreanSour ce;

20-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Sending SOAP Messages With Attachments Using swaRef

inport javax.activation. DataHandl er;
inport java.awt.*;
inport java.io.ByteArraylnput Stream

@ébService (endpointinterface = "mine.server. Hello")
public class Hellolnpl {

public d ai nfFor niTypeResponse cl ai nFor n{ O ai nFor nTypeRequest dat a) {
C ai nFor nTypeResponse resp = new O ai nfFor niTypeResponse() ;
resp. set Response(dat a. get Request ());
return resp;

Example 20-4 shows a sample web service client that calls the cl ai nfFor moperation.
Note that the client request data that will be transmitted as an attachment is mapped
to the Dat aHandl er data type.

Example 20-4 Example Web Service Client With MIME Attachments

package mine.client;

i mport javax.xnl.transform stream StreanSour ce;
i mport javax.xnl.transform Source;

i mport javax.activation. Dat aHandl er;

inport java.io.ByteArraylnput Stream

inport java.awt.*;

public class M neApp {
public static void main (String[] args){
try {
oj ect port = new Hel | oService().getHelloPort ();
test Swaref ((Hello)port);
} catch (Exception ex) {
ex.printStackTrace ();
}
}

private static void testSwaref (Hello port) throws Exception{
Dat aHandl er cl ai nForm = new Dat aHandl er (new StreanSour ce(
new Byt eArrayl nput Strean(sanpl eXM.. getBytes())), "text/xm");
C ai nFor nTypeRequest req = new C ai nfFor niTypeRequest () ;
req. set Request (cl ai nForm;
C ai nFor nTypeResponse resp = port.clainForm (req);
Dat aHandl er out = resp. get Response();

}

private static final String sampleXM. = "<?xml version=\"1.0\" encodi ng=\"UTF-8\" ?>\n" +
"<NMEAst d>\n" +
"<Devl dSent encel d>$GPRMC</ Devl dSent encel d>\ n" +
"<Ti me>212949</ Ti me>\ n" +
"<Navi gati on>A</ Navi gation>\n" +
"<Nort hOr Sout h>4915. 61N</ Nor t hOr Sout h>\ n" +
"<\W\est Or East >12310. 55/ West Or East >\ n" +
" <SpeedOnG ound>000. 0</ SpeedOnG ound>\ n" +
"<Cour se>360. 0</ Cour se>\ n" +
"<Dat e>030904</ Dat e>\n" +
"<Magneti cVari ati on>020. 3</ Magneti cVariation>\n" +
"<Magnet i cPol eEast Or West >E</ Magnet i cPol eEast Or West >\ n" +
"<Checksum nHex>*6B</ Checksunl nHex>\n" +

Optimizing Binary Data Transmission 20-13

Sending SOAP Messages With Attachments Using swaRef

"</ NVEAst d>";

20-14 Developing JAX-WS Web Services for Oracle WebLogic Server

21

Managing Web Service Persistence

This chapter describes how to manage persistence for WebLogic web services using
Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

Overview of Web Service Persistence

Roadmap for Configuring Web Service Persistence
Configuring Web Service Persistence

Using Web Service Persistence in a Cluster

Cleaning Up Web Service Persistence

21.1 Overview of Web Service Persistence

WebLogic Server provides a default web service persistence configuration that
provides a built-in, high-performance storage solution for web services. Web service
persistence is used by the following advanced features to support long running
requests and to survive server restarts:

Asynchronous web service invocation using asynchronous client transport or Make
Connection

Web services reliable messaging
Message buffering

Security using WS-SecureConversation

Specifically, web service persistence is used to save the following types of information:

Client identity and properties
SOAP message, including its headers and body

Context properties required for processing the message at the web service or client
(for both asynchronous and synchronous messages)

The following figure illustrates an example web service persistence configuration.

Managing Web Service Persistence 21-1

Overview of Web Service Persistence

Figure 21-1 Example Web Service Persistence Configuration

Cluster
Serverl [Web Servicel Server2 [Web Servicel
r Y r Y
Logical Store Logical Store
"Storel" "Storel"
Physical Store Physical Store
"Server1Storel” "Server2Storel”
F Y F Y
..-""'_'__-‘ ..--""'_'__-‘
Physical Physical
Storage Storage
{File, DBMS, etc) {File, DBMS, etc)

The following table describes the components of web service persistence, shown in the
previous figure.

Table 21-1 Components of the Web Service Persistence
-]

Component Description

Logical Store Provides the configuration requirements and connects the web service to the
physical store and buffering queue.

Physical store Handles the I/O operations to save and retrieve data from the physical storage (such
as file, DBMS, and so on). The physical store can be a WebLogic Server persistent
store, as configured using the WebLogic Server Administration Console or WLST, or
in-memory store.

Note: When using a WebLogic Server persistent store as the physical store for a

logical store, the names of the request and response buffering queues are taken from
the logical store configuration and not the buffering configuration.

Buffering queue Stores buffered requests and responses for the web service.

When configuring web service persistence, you associate:
* A logical store with a buffering queue.

* A buffering queue that is associated with a physical store via JMS configuration.

The association between the logical store and buffering queue is used to infer the
association between the logical store and physical store. The default logical store is
named WseeSt or e and is created automatically when a domain is created using the
WebLogic Advanced Web Services for JAX-WS Extension template

(W s_webservi ce_j axws. j ar). By default, the physical store that is configured for
the server is associated with the buffering queue. This strategy ensures that the same
physical store is used for all web service persistence and buffering. Using a single
physical store ensures a more efficient, single-phase XA transaction and facilitates
migration.

21-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Roadmap for Configuring Web Service Persistence

You can configure one or more logical stores for use within your application
environment. In Table 21-1, the servers Ser ver 1 and Ser ver 2 use the same logical
store. This configuration allows applications that are running in a cluster to be
configured globally to access a single store name. As described later in Configuring
Web Service Persistence, you can configure web service persistence at various levels
for fine-grained management. Best practices are provided in Roadmap for Configuring
Web Service Persistence.

21.2 Roadmap for Configuring Web Service Persistence

Table 21-2 provides best practices for configuring web service persistence to support
web service reliable messaging.

Table 21-2 Roadmap for Configuring Web Service Persistence

Best Practice Description
Define a logical store for each By defining separate logical stores, you can better manage the service-
administrative unit (for example, level agreements for each administrative unit. For more information, see

business unit, department, and so on). Configuring the Logical Store.

Use the correct logical store for each You can configure the logical store at the WebLogic Server, web service,
client or service related to the or web service client level. For more information, see Configuring Web
administrative unit. Service Persistence.

Define separate physical stores and For more information, see Figure 21-1.

buffering queues for each logical store.

The best practices defined in Table 21-2 facilitates maintenance, and failure recovery
and resource migration.

For example, assume Company X is developing web services for several departments,
including manufacturing, accounts payable, accounts receivable. Following best
practices, Company X defines a minimum of three logical stores, one for each
department.

Furthermore, assume that the manufacturing department has a service-level
agreement with the IT department that specifies that it can tolerate system outages
that are no longer than a few minutes in duration. The accounts payable and
receivable departments, on the other hand, have a more relaxed service-level
agreement, tolerating system outages up to one hour in duration. If the systems that
host web services and clients for the manufacturing department become unavailable,
the IT department is responsible for ensuring that any resources required by those
web services and clients are migrated to new active servers within minutes of the
failure. Because separate logical stores were defined, the IT department can migrate
the file store, JMS servers, and so on, associated with the manufacturing department
logical store independently of the resources required for accounts payables and
receivables.

21.3 Configuring Web Service Persistence

The following table summarizes the information that you can configure for each of the
web service persistence components.

Managing Web Service Persistence 21-3

Configuring Web Service Persistence

Table 21-3 Summary of the Web Service Persistence Component Configuration
- - -~ |

Component Summary of Configuration Requirements

Logical Store You configure the following information for each logical store:
* Name of the logical store.
¢ Maximum lifetime of an object in the store.

* The cleaner thread that removes stale objects from the store. For more
information, see Cleaning Up Web Service Persistence.

* Accessibility from other servers in a network.

* Request and response buffering queues. The request buffering queue is used to
infer the physical store by association.

Physical store You configure the following information for the physical store:
¢ Name of the physical store.
e Type and performance parameters.
* Location of the store.

Note: You configure the physical store or buffering queue, but not both. If the
buffering queue is configured, then the physical store information is inferred.

Buffering queue You configure the following information for the buffering queue:

* Request and response queue details
® Retry counts and delays

You can configure web service persistence at the levels defined in the following table.

Table 21-4 Configuring Web Service Persistence
|

Level Description

WebLogic Server The web service persistence configured at the server level defines the
default configuration for all web services and clients running on that
server. To configure web service persistence for WebLogic Server, use
one of the following methods:

* When creating or extending a domain using Configuration
Wizard, you can apply the WebLogic Advanced Web Services for
JAX-WS Extension template (M S_webser vi ce_j axws. j ar) to
configure automatically the resources required to support web
services persistence.

Although use of this extension template is not required, it makes
the configuration of the required resources much easier.

¢ Configure the resources required for web service persistence using
the Oracle WebLogic Server Administration Console or WLST. For
more information, see:

- WebLogic Server Administration Console: "Configure web
service persistence" in Oracle WebLogic Server Administration
Console Online Help

- WLST: "Configuring Existing Domains" in Understanding the
WebLogic Scripting Tool

For more information, see Configuring Your Domain For Advanced
Web Services Features.

Web service Configure the default logical store used by the web service endpoint,
endpoint as described in Configuring Web Service Persistence for a Web
Service Endpoint.

21-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Web Service Persistence

Table 21-4 (Cont.) Configuring Web Service Persistence

Level Description

Web service client Configure the default logical store used by the web service client, as
described in Configuring Web Service Persistence for Web Service
Clients.

The following sections provide more information about configuring web service
persistence:

¢ Configuring the Logical Store
¢ Configuring Web Service Persistence for a Web Service Endpoint

¢ Configuring Web Service Persistence for Web Service Clients

21.3.1 Configuring the Logical Store

You can configure one or more logical stores for use within your application
environment, and identify the logical store that is used as the default.

The default logical store, WseeSt or e, is generated automatically when you create or
extend a domain using the WebLogic Advanced Web Services for JAX-WS Extension
template (WM s_webser vi ce_j axws. j ar), as described in Configuring Your Domain
For Advanced Web Services Features.

You can configure the logical store using the WebLogic Server Administration
Console, see "Configure web service persistence" in Oracle WebLogic Server
Administration Console Online Help. Alternatively, you can use WLST to configure the
resources. For information about using WLST to extend the domain, see "Configuring
Existing Domains" in Understanding the WebLogic Scripting Tool.

The following table summarizes the properties that you define for the logical store.

Table 21-5 Configuration Properties for the Logical Store

Property Description

Default Logical Store Name of the logical store. The name must begin with an alphabetical character and

Name can contain alphabetical characters, spaces, dashes, underscores, and numbers only.
This field defaults to Logi cal St or e_n. This field is required.
If you create or extend a single server domain using the web service extension
template, a logical store named WseeSt or e is created by default.

Default Logical Store Flag that specifies whether the logical store is used, by default, to persist state of all
web services on the server.
Only one logical store can be set as the default. If you enable this flag on the current
logical store, the flag is disabled on the current default store.

Persistence strategy Persistence strategy. Select one of the following values from the drop-down menu.

e Local Access Onl y—Accessible to the local server only.

* | n Menory—Accessible by the local VM only. In this case, the buffering queue
and physical store configuration information is ignored.

Managing Web Service Persistence 21-5

Configuring Web Service Persistence

Table 21-5 (Cont.) Configuration Properties for the Logical Store
. ___|

Property Description
Request Buffering JNDI name for the request buffering queue. The request buffering queue is used to
Queue JNDI Name infer the physical store by association. If this property is not set, then the default

physical store that is configured for the server is used.

Note: You configure the physical store or buffering queue, but not both. If the
buffering queue is configured, then the physical store information is inferred.

It is recommended that the same physical storage resource be used for both
persistent state and message buffering to allow for a more efficient, single-phase XA
transaction and facilitate service migration. By setting this value, you ensure that the
buffering queue and physical store reference the same physical storage resource.

If you create or extend a domain using the web service extension template, a
buffering queue named webl ogi c. wsee. Buf f er edRequest Queue is created by
default.

Note: This property is ignored if Persistence strategy is set to | n Menory.

Response Buffering JNDI name for the response buffering queue.

Queue JNDI Name If this property is not set, then the request queue is used, as defined by the Request

Buffering Queue JNDI Name property.

If you create or extend a domain using the web service extension template, a
buffering queue named webl ogi c. wsee. Buf f er edRequest Er r or Queue is
created by default.

Note: This property is ignored if Persistence strategy is set to | n Menory.

Cleaner Interval Interval at which the logical store will be cleaned. For more information, see
Cleaning Up Web Service Persistence.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years,
nMspecifies the number of months, nD specifies the number of days, T is the date/
time separator, NHspecifies the number of hours, nMspecifies the number of
minutes, and nS specifies the number of seconds. This value defaults to PTLOM(10
minutes).

Note: This field is available when editing the logical store only. When creating the
logical store, the field is set to the default, PT10M(10 minutes).

Default Maximum Default value used as the maximum lifetime of an object. This value can be
Object Lifetime overridden by the individual objects saved to the logical store.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years,
nMspecifies the number of months, nD specifies the number of days, T is the date/
time separator, NHspecifies the number of hours, nMspecifies the number of
minutes, and nS specifies the number of seconds. This value defaults to P1D (one
day).

Note: This field is available when editing the logical store only. When creating the
logical store, the field is set to the default, P1D (one day).

21.3.2 Configuring Web Service Persistence for a Web Service Endpoint

By default, web service endpoints use the web service persistent store defined for the
server. You can override the logical store used by the web service endpoint using the
WebLogic Server Administration Console. For more information, see "Configure web
service persistence" in Oracle WebLogic Server Administration Console Online Help.

21-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Web Service Persistence in a Cluster

21.3.3 Configuring Web Service Persistence for Web Service Clients

For information about configuring persistence for web service clients, see Configuring
Web Service Clients.

21.4 Using Web Service Persistence in a Cluster

The following provides some considerations for using web services persistence in a
cluster:

If you create or extend a clustered domain using the WebLogic Advanced Web
Services for JAX-WS Extension template (WM s_webser vi ce_j axws. j ar), the
resources required to support web services persistence in a cluster are
automatically created. For more information, see Configuring Your Domain For
Advanced Web Services Features.

To facilitate service migration, it is recommended that the same physical storage
resource be used for both persistent state and message buffering. To ensure that the
buffering queue and physical store reference the same physical storage resource,
you configure the Request Buffering Queue JNDI Name property of the logical
store, as described in Configuring the Logical Store.

It is recommended that the buffering queues be defined as JMS uniform distributed
destinations (UDDs). JMS defines a member queue for the UDD on each JMS Server
that you identify. Because a logical store is associated with a physical store through
the defined buffering queue, during service migration, this allows a logical store to
use the new physical stores seamlessly for the member queues that migrate onto
the new server.

It is recommended that you target the JMS Server, store-and-forward (SAF) service
agent, and physical store (file store) resources to migrateable targets. For more
information, see Resources Required by Advanced Web Service Features.

For example, consider the two-node cluster configuration shown in Figure 21-2. The
domain resources are configured and targeted using the guidelines provided above.

Managing Web Service Persistence 21-7

Cleaning Up Web Service Persistence

Figure 21-2 Example of a Two-Node Cluster Configuration (Before Migration)

Cluster
Server] (Web Servicel Server2 (Web Servicel
r Y r Y
Logical Store Logical Store
"Storel" "Storel"

Server1JMSServer Server2)JMSServer
S S
ServerlAgent Server2Agent
Physical Storage Physical Storage
(File, DBMS, etc) l (File, DBMS, etc) l
Server]Service2MigTarget Server2Service2MigTarget

The following figure shows how the resources on Serverl can be easily migrated to
Server? in the event Serverl fails.

Figure 21-3 Example of a Two-Node Cluster Configuration (After Migration)

Cluster
Server?
(Web Servicel
Queual F 3
{UDD)}
Va "‘--.,,“T\: Logical Store
d "Storel"
AN
Physical Store Physical Stm_ Buffering
"ServerlStore1” "Server2Storal Queue
A "Queusal™
Server1JMSServer Server2)MS5erver
< Serverl Agent <l Server2Agent
Physical Storage Physical Storage | ©
(File, DBMS, atc) l (File, DBMS, atc) l
_T___/ il _T___/ il
Server]Service2ZMigTarget Server2Service2ZMigTarget

21.5 Cleaning Up Web Service Persistence

The persisted information is cleaned up periodically to remove expired or stale objects.
Typically, an object is associated with a specific expiration time or a maximum

21-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Cleaning Up Web Service Persistence

lifetime. In addition, a stale object may represent a request for which no response was
received or a reliable messaging sequence that was not explicitly terminated.

You configure the interval of time at which web service persistence will be cleaned by
setting the Cleaner Interval configuration property on the logical store. For more
information about setting this property, see Configuring the Logical Store.

Managing Web Service Persistence 21-9

Cleaning Up Web Service Persistence

21-10 Developing JAX-WS Web Services for Oracle WebLogic Server

22

Configuring Message Buffering for Web
Services

This chapter describes how to configure message buffering for WebLogic web services
using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:
¢ Overview of Message Buffering

¢ Configuring Messaging Buffering

22.1 Overview of Message Buffering

When an operation on a buffered web service is invoked, the message representing
that invocation is stored in a JMS queue. WebLogic Server processes this buffered
message asynchronously. If WebLogic Server goes down while the message is still in
the queue, it will be processed as soon as WebLogic Server is restarted.

WebLogic Server then processes the request message on a separate thread obtained
from a pre-configured and managed pool of threads. This allows WebLogic Server to
absorb spikes in client load, and continue to process the requests in an orderly fashion
over a period of time. Message buffering is a powerful tool to avoid denial of service
attacks and general overload conditions on the server.

To assist you in determining whether to configure message buffering on the web
service, it is recommended that you review Failure Scenarios with Non-buffered
Reliable Web Services.

22.2 Configuring Messaging Buffering

You can configure message buffering for web services at the WebLogic Server or web
service endpoint levels. The message buffering configured at the server level defines
the default message buffering defined for all web services and clients running on that
server, unless explicitly overridden at the web service endpoint level.

For detailed steps to configure message buffering for web services at the WebLogic
Server or web service endpoint level using the WebLogic Server Administration
Console, see "Configure message buffering for web services" in Oracle WebLogic Server
Administration Console Online Help.

When you configure message buffering at the web service endpoint level, select
Customize Buffering Configuration to indicate that you want to customize the
buffering configuration defined in the web service descriptor or deployment plan at
the web service endpoint level. If not checked, the buffering configuration specified at
the WebLogic Server level is used.

Configuring Message Buffering for Web Services 22-1

Configuring Messaging Buffeting

Alternatively, you can use WLST to configure message buffering. For information
about using WLST to extend the domain, see "Configuring Existing Domains" in
Understanding the WebLogic Scripting Tool.

The following sections describe message buffering configuration properties:
¢ Configuring the Request Queue
¢ Configuring the Response Queue

¢ Configuring Message Retry Count and Delay

22.2.1 Configuring the Request Queue

The following table summarizes the properties used to configure the request queue.

Table 22-1 Configuring the Request Queue

Property Description

Request Queue Enabled Flag that specifies whether the request queue is enabled. By default, the request
queue is disabled. The request queue name is defined by the logical store enabled at
this level.

When using a WebLogic Server persistent store as the physical store for a logical
store, the names of the request and response buffering queues are taken from the
logical store configuration and not the buffering configuration.

Request Queue JNDI name of the connection factory to use for request message buffering. This value
Connection Factory JNDI defaults to the default JMS connection factory defined by the server.
Name

Request Queue Flag that specifies whether transactions should be used when storing and retrieving
Transaction Enabled messages from the request buffering queue. This flag defaults to false.

22.2.2 Configuring the Response Queue

The following table summarizes the properties used to configure the response queue.

Table 22-2 Configuring the Response Queue
- __|

Property Description
Response Queue Flag that specifies whether the response queue is enabled. By default, the response
Enabled queue is disabled. The response queue name is defined by the logical store enabled

at this level.

When using a WebLogic Server persistent store as the physical store for a logical
store, the names of the request and response buffering queues are taken from the
logical store configuration and not the buffering configuration.

Response Queue JNDI name of the connection factory to use for response message buffering. This
Connection Factory JNDI value defaults to the default JMS connection factory defined by the server.
Name

Response Queue Flag that specifies whether transactions should be used when storing and retrieving
Transaction Enabled messages from the response buffering queue. This flag defaults to false.

22-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Messaging Buffering

22.2.3 Configuring Message Retry Count and Delay

The following table summarizes the properties used to configure the message retry
count and delay.

Table 22-3 Configuring Message Retry Count and Delay
. ___|

Property Description

Retry Count Number of times that the JMS queue on the invoked WebLogic Server instance
attempts to deliver the message to the web service implementation until the
operation is successfully invoked. This value defaults to 3.

Retry Delay Amount of time between retries of a buffered request and response. Note, this value

is only applicable when RetryCount is greater than 0.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years,
nMspecifies the number of months, nD specifies the number of days, T is the date/
time separator, NHspecifies the number of hours, nMspecifies the number of
minutes, and nS specifies the number of seconds. This value defaults to PODT30S (30
seconds).

Configuring Message Buffering for Web Services 22-3

Configuring Messaging Buffeting

22-4 Developing JAX-WS Web Services for Oracle WebLogic Server

23

Managing Web Services in a Cluster

This chapter describes how to manage WebLogic web services in a cluster.

This chapter includes the following sections:

¢ Overview of Web Services Cluster Routing
® Cluster Routing Scenarios

e How Web Service Cluster Routing Works
* Configuring Web Services in a Cluster

¢ Monitoring Cluster Routing Performance

Note:

For considerations specific to using web service persistence in a cluster, see
Using Web Service Persistence in a Cluster.

23.1 Overview of Web Services Cluster Routing

Clustering of stateless web services—services that do not require knowledge of state
information from prior invocations—is straightforward and works with existing
WebLogic HTTP routing features on a third-party HTTP load balancer.

Clustering of web services that require state information be maintained provides more
challenges. Each instance of such a web service is associated with state information
that must be managed and persisted. The cluster routing decision is based on whether
the message is bound to a specific server in the cluster. For example, if a particular
server stores state information that is needed to process the message, and that state
information is available only locally on that server.

Note:

Services that use session state replication to maintain their state are a separate
class of problem from those that make use of advanced web service features,
such as Reliable Secure Profile. The latter require a more robust approach to
persistence that may include storing state that may be available only from the
local server. For more information, see A Note About Persistence.

In addition to ensuring that the web service requests are routed to the appropriate
server, the following general clustering requirements must be satisfied:

Managing Web Services in a Cluster 23-1

Overview of Web Services Cluster Routing

¢ The internal topology of a cluster must be transparent to clients. Clients interact
with the cluster only through the front-end host, and do not need to be aware of
any particular server in the cluster. This enables the cluster to scale over time to
meet the demands placed upon it.

® Cluster migration must be transparent to clients. Resources within the cluster
(including persistent stores and other resources required by a web service or web
service client) can be migrated from one server to another as the cluster evolves,
responds to failures, and so on.

To meet the above requirements, the following methods are available for routing web
services in a cluster:

¢ In-place SOAP router—Assumes request messages arrive on the correct server
and, if not, forwards the messages to the correct server ("at most one additional
hop"). The routing decision is made by the web service that receives the message.
This routing strategy is the simplest to implement and requires no additional
configuration. Though, it is not as robust as the next option.

e Front-end SOAP router (HTTP cluster servlet only)—Message routing is managed
by the front-end host that accepts messages on behalf of the cluster and forwards
them onto a selected member server of the cluster. For web services, the front-end
SOAP router inspects information in the SOAP message to determine the correct
server to which it should route messages.

This routing strategy is more complicated to configure, but is the most efficient
since messages are routed directly to the appropriate server (avoiding any
"additional hops").

Note:

When using Make Connection, as described in Using Asynchronous Web
Service Clients From Behind a Firewall (Make Connection), only front-end
SOAP routing can guarantee proper routing of all messages related to a given
Make Connection anonymous URL

This chapter describes how to configure your environment to optimize the routing of
web services within a cluster. Use of the HTTP cluster servlet for the front-end SOAP
router is described. The in-place SOAP router is also enabled and is used in the event
the HTTP cluster servlet is not available or has not yet been initialized.

A Note About Persistence

While it is possible to maintain state for a web service using the HttpSession as
described in Programming Stateful JAX-WS Web Services Using HTTP Session, in
some cases this simple persistence may not be robust enough. Advanced web services
features like reliable messaging, Make Connection, secure conversation, and so on,
have robust persistence requirements that cannot be met by using the HttpSession
alone. Advanced web service features use a dedicated persistence implementation
based on the concept of a logical store. For more information, see Managing Web
Service Persistence.

At this time, these two approaches to persistence of web service state are not
compatible with each other. If you choose to write a clustered stateful web service
using HttpSession persistence and then use the advanced web service features from
that service (either as a client or service), Oracle cannot guarantee correct operation of
your service in a cluster. This is because HttpSession replication may make the

23-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Cluster Routing Scenarios

HttpSession available on a different set of servers than are hosting the persistence for
advanced web service features.

23.2 Cluster Routing Scenarios

The following sections illustrate several scenarios for routing web service request and
response messages within a clustered environment:

¢ Scenario 1: Routing a Web Service Response to a Single Server

® Scenario 2: Routing Web Service Requests to a Single Server Using Routing
Information

¢ Scenario 3: Routing Web Service Requests to a Single Server Using an ID

23.2.1 Scenario 1: Routing a Web Service Response to a Single Server

In this scenario, an incoming request is load balanced to a server. Any responses to
that request must be routed to that same server, which maintains state information on
behalf of the original request.

Figure 23-1 Routing a Web Service Response to a Single Server

Web Service Client

|
l
=
L ¢ ___-'I
Front-end SOAP Router
{WebLogic Server Instance) /
Routing

\ Servlet

h 4

Load Balanced
esponse Request Routed Response
Serverl Server?
Routing H\-. oo
| fserverz | Y eduest, Fouting™
v (Gerver?) | ;
e -}-’f k-—""” information |

v (Serverd) /
* y

Service Endpoint
My
% Service

As shown in the previous figure:

1. The front-end SOAP router routes an incoming HTTP request and sends it to
Server2 using standard load balancing techniques.

2. Server?2 calls Myservice at the web service endpoint address. The ReplyTo header
in the SOAP message contains a pointer back to the front-end SOAP router.

Managing Web Services in a Cluster 23-3

Cluster Routing Scenarios

3. MyService returns the response to the front-end SOAP router.

4. The front-end SOAP router must determine where to route the response. Because
Server2 maintains state information that is relevant to the response, the front-end
SOAP router routes the response to Server2.

23.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing

Information

In this scenario, an incoming request is load balanced to a server. The response
contains routing information that targets the original server for any subsequent
requests

Figure 23-2 Routing Web Service Requests to a Single Server

¢ Web Service Client s
| |
: [Requestl] [Request?] |
|
|
—— ——_ | =
: [/ Routing k'
| Hnformation e
\ ' (Server2) g ‘
N h 4 ¥ —————=
Front-and SOAP Router e o
, Routing
(WebLogic Server Instance) ! information
Routing jnformation |)
Serviet v beverd) [“Routing
Load Balanced) | ~ linformation |
]
Request], Routed Request2 Response 1 . iSE e r2.}-z!
Response 2

Serverl Serverl

As shown in the previous figure:

1. The front-end SOAP router routes an incoming HTTP request (Request1) and sends
it to Server 2 using standard load balancing techniques. The request has no routing
information.

2. Server2 calls the Myservice at the web service endpoint address. The ReplyTo
header in the SOAP message contains a pointer back to the front-end SOAP router.

3. MyService returns the response to the caller. The response contains routing
information that targets Server2 for any subsequent requests. The caller is
responsible for passing the routing information contained in the response in any
subsequent requests (for example, Request2).

4. The front-end SOAP router uses the routing information passed with Request2 to
route the request to Server2.

23.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID

In this scenario, an incoming SOAP request contains an identifier, but no routing
information. All subsequent requests with the same identifier must go to the same
server.

23-4 Developing JAX-WS Web Services for Oracle WebLogic Server

How Web Service Cluster Routing Works

Figure 23-3 Routing Web Service Requests to a Single Server Using an ID

o - Wab Service Client

|
|
| [Request] j[Request? j
|
|
!
|
|

Y

" ID = MakeConnection’ v [samelD, °,
anonyrmous URI, | !. bu t_"."~_'lth !
*.. no affinity to a server uh_iﬁ_m_l'fg L
. - y -
Front-end SOAF Router

(WebLogic Server Instance)
Routing

Affinity
Store

Serviet (ID-te-Server
Load Balanced Mappingl)
Request] Affinity Routed
Request?

Serverl

As shown in the previous figure:

Serverd

1. A request comes from a web service client that includes an ID (Make Connection
anonymous URI) that will be shared by future requests that are relevant to
Requestl. The form of this ID is protocol-specific.

2. The front-end SOAP router detects an ID in Requestl and checks the affinity store
to determine if the ID is associated with a particular server in the cluster. In this

case, there is no association defined.

3. The front-end SOAP router load balances the request and sends it to Server 2 for

handling.

4. The MyService web service instance on Server2 handles the request (generating a
response, if required). Unlike in Scenario 2: Routing Web Service Requests to a
Single Server Using Routing Information, routing information cannot be

propagated in this case.

5. Request2 arrives at the front-end SOAP router using the same ID as that used in

Requestl.

6. The front-end SOAP router detects the ID and checks the affinity store to determine
if the ID is associated with a particular server. This time, it determines that the ID is

mapped to Server2.

7. Based on the affinity information, the front-end SOAP router routes Request2 to

Server?2.

23.3 How Web Service Cluster Routing Works

The following sections describe how web service cluster routing works:
¢ Adding Routing Information to Outgoing Requests

¢ Detecting Routing Information in Incoming Requests

Managing Web Services in a Cluster 23-5

How Web Service Cluster Routing Works

¢ Routing Requests Within the Cluster

* Maintaining the Routing Map on the Front-end SOAP Router

23.3.1 Adding Routing Information to Outgoing Requests

The web services runtime adds routing information to the SOAP header of any
outgoing message to ensure proper routing of messages in the following situations:

* The request is sent from a web service client that uses a store that is not accessible
from every member server in the cluster.

® The request requires in-memory state information used to process the response.

When processing an outgoing message, the web services runtime:

* Creates a message ID for the outgoing request, if one has not already been
assigned, and stores it in the Rel at esTo/Messagel DSOAP header using the
following format:

uui d: W.Sf or nat _ver si on: st or e_nane: uni quel D
Where:

— format _ver si on specifies the WebLogic Server format version, for example
WLS1.

— st ore_nane specifies the name of the persistent store, which specifies the store
in use by the current web service or web service client sending the message. For
example, Ser ver 1St or e. This value may be a system-generated name, if the
default persistent store is used, or an empty string if no persistent store is
configured.

— uni que_I Dspecifies the unique message ID. For example:
68d6f c6f 85a3clch: - 2d3b89ab8: 12068ad2e60: - 7f eb

¢ Allows other web service components to inject routing information into the
message before it is sent.

23.3.2 Detecting Routing Information in Incoming Requests

The SOAP router (in-place or front-end) inspects incoming requests for routing
information. In particular, the SOAP router looks for a Rel at esTo/Messagel D
SOAP header to find the name of the persistent store and routes the message back to
the server that hosts that persistent store.

In the event that there is an error in determining the correct server using front-end
SOAP routing, then the message is sent to any server within the cluster and the in-
place SOAP router is used. If in-place SOAP routing fails, then the sender of the
message receives a fault on the protocol-specific back channel.

Note:

SOAP message headers that contain routing information must be presented in
clear text; they cannot be encrypted.

23-6 Developing JAX-WS Web Services for Oracle WebLogic Server

How Web Service Cluster Routing Works

23.3.3 Routing Requests Within the Cluster

To assist in making a routing determination, the SOAP router (in-place or front-end)
uses a dynamic map of store-to-server name associations. This dynamic map
originates on the Managed Servers within a cluster and is accessed in memory by the
in-place SOAP router and via HTTP response headers by the front-end SOAP router.
The HTTP response headers are included automatically by WebLogic Server in every
HTTP response sent by a web service in the cluster.

Note:

For more information about the HTTP response headers, see Maintaining the
Routing Map on the Front-end SOAP Router.

Initially, the dynamic map is empty. It is only initialized after receiving its first
response back from a Managed Server in the cluster. Until it receives back its first
response with the HTTP response headers, the front-end SOAP router simply load
balances the requests, and the in-place SOAP router routes the request to the
appropriate server.

In the absence of SOAP-based routing information, it defers to the base routing that
includes HTTP-session based routing backed by simple load balancing (for example,
round-robin).

23.3.4 Maintaining the Routing Map on the Front-end SOAP Router

As noted in Routing Requests Within the Cluster, to assist in making a routing
determination, the SOAP router (in-place or front-end) uses a dynamic map of store-
to-server name associations.

To generate this dynamic map, two new HTTP response headers are provided, as
described in the following sections. These headers are included automatically by
WebLogic Server in every HT'TP response sent by a web service in the cluster.

Note:

When implementing a third-party front-end to include the HTTP response
headers described below, clients should send an HTTP request header with
the following variable set to any value: X- webl ogi c- wsee-r equest -
storetoserver-1li st

23.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header

A complete list of store-to-server mappings is maintained in the X- webl ogi c- wsee-
storetoserver-|ist HTTP response header. The front-end SOAP router uses this
header to populate a mapping that can be referenced at runtime to route messages.

The X- webl ogi c- wsee- st or et oserver -1 i st HTTP response header has the
following format:

st orenanmel: host _server_spec | storenane2: host_server_spec |
st or enane3: host _server _spec

In the above:

Managing Web Services in a Cluster 23-7

Configuring Web Services in a Cluster

* st or enare specifies the name of the persistent store.

* host _server _spec is specifies using the following format:
server nane: host : port: ssl port. If not known, the ssl port issetto-1.
23.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header

A hash mapping of the store-to-server list is provided in X- webl ogi c- wsee-
st or et oser ver - hash HTTP response header. This header enables you to determine
whether the new mapping list needs to be refreshed.

The X- webl ogi c-wsee- st or et oser ver - hash HTTP response header contains a
String value representing the hash value of the list contained in the X- webl ogi c-
wsee- st oret oserver -1 i st HTTP response header. By keeping track of the last
entry in the list, it can be determined whether the list needs to be refreshed.

23.4 Configuring Web Services in a Cluster

The following table summarizes the steps to configure web services in a cluster.

Table 23-1 Steps to Manage Web Services in a Cluster

Step Description

1 Setup the WebLogic cluster. See Setting Up the WebLogic Cluster.

2 Configure the clustered domain resources required You can configure automatically the clustered
for advanced web service features. domain resources required using the cluster

extension template script. Alternatively, you can
configure the resources using the Oracle WebLogic
Server Administration Console or WLST. See
Configuring the Domain Resources Required for
Web Service Advanced Features in a Clustered
Environment.

3 Extend the front-end SOAP router to support web Note: This step is required only if you are using the
services. front-end SOAP router.

The web services routing servlet extends the
functionality of the WebLogic HTTP cluster servlet
to support routing of web services in a cluster. See
Extending the Front-end SOAP Router to Support
Web Services.

4 Enable routing of web services atomic transaction See Enabling Routing of Web Services Atomic
messages. Transaction Messages.

5 Enable routing of web services Make Connection See Enabling Routing of Web Services Make
messages. Connection Messages.

6 Configure the identity of the front-end SOAP router. Each WebLogic Server instance in the cluster must
be configured with the address and port of the front-
end SOAP router. See Configuring the Identity of the
Front-end SOAP Router.

23.4.1 Setting Up the WebLogic Cluster

Set up the WebLogic cluster, as described in "Setting up WebLogic Clusters" in
Administering Clusters for Oracle WebLogic Server. Please note:

23-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Configuring Web Services in a Cluster

* To configure the clustered domain, see Configuring the Domain Resources
Required for Web Service Advanced Features in a Clustered Environment.

¢ To enable SOAP-based front-end SOAP routing, configure an HTTP cluster servlet,
as described in "Set Up the HttpClusterServlet" in Administering Clusters for Oracle
WebLogic Server.

23.4.2 Configuring the Domain Resources Required for Web Service Advanced
Features in a Clustered Environment

When creating or extending a domain using Configuration Wizard, you can apply the
WebLogic Advanced Web Services for JAX-WS Extension template

(W s_webservi ce_j axws. j ar) to configure automatically the resources required to
support the advanced web service features in a clustered environment. Although use
of this extension template is not required, it makes the configuration of the required
resources much easier. Alternatively, you can configure the resources required for
these advanced features using the Oracle WebLogic Server Administration Console or
WLST.

In addition, the template installs scripts into the domain directory that can be used to
manage the resource required for advanced web services in-sync as the domain
evolves (for example, servers are added or removed, and so on).

For more information about how to configure the domain and run the scripts to
manage resources, see Configuring Your Domain For Advanced Web Services
Features.

23.4.3 Extending the Front-end SOAP Router to Support Web Services

Note:

If you are not using the front-end SOAP router, then this step is not required.

You extend the front-end SOAP router to support web services by specifying the
Rout i ngHandl er C assNane parameter shown in the following example (in bold),
as part of the WebLogic HTTP cluster servlet definition.

<! DOCTYPE web-app PUBLIC
"-//'Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_3.dtd">
<web- app>
<servl et>
<servl et - name>Ht t pCl ust er Ser vl et </ servl et - nane>
<servl et-cl ass>webl ogi c. servl et. proxy. H t pC ust er Servl et </ servl et - cl ass>
<init-paran
<par am name>\WebLogi ¢ ust er </ par am nane>
<par am val ue>Server 1: 7001| Server 2: 7001</ par am val ue>
</init-paran>
<init-paranp
<par am name>Rout i ngHandl er O assNanme</ par am nanme>
<param val ue>
webl ogi c. wsee. j axws. cl ust er. proxy. SOAPRout i ngHandl er
</ param val ue>
</init-paran>
</servlet>
<servl et - mappi ng>
<servl et - name>Ht t pCl ust er Ser vl et </ servl et - nane>

Managing Web Services in a Cluster 23-9

Configuring Web Services in a Cluster

<url-pattern>/</url-pattern>
</ servl et - mppi ng>

.</ Web app>
23.4.4 Enabling Routing of Web Services Atomic Transaction Messages

High availability and routing of web services atomic transaction messages is
automatically enabled in web service clustered environments. However, if the
WebLogic HTTP cluster servlet is being used as the front-end server, you need to set
the following system property to f al se on the server hosting the WebLogic HTTP
cluster servlet:

webl ogi c. wsee. wst x. wsat . depl oyed=f al se

In addition, when using a WebLogic Server plugin, you should configure the

WLI OTi meout Secs parameter value appropriately. This parameter defines the
amount of time the plug-in waits for a response to a request from WebLogic Server. If
the value is less than the time the servlets take to process, then you may see
unexpected results. For more information about the W.I OTi meout Secs parameter,
see "General Parameters for Web Server Plug-ins" in Using Oracle WebLogic Server
Proxy Plug-Ins 12.2.1.1.

23.4.5 Enabling Routing of Web Services Make Connection Messages

To support Web Service Make Connection, as described in Using Asynchronous Web
Service Clients From Behind a Firewall (Make Connection), you must configure a
default logical store on the WebLogic Server that is hosting the WebLogic HTTP
cluster servlet. For information about configuring the default logical store, see
Configuring the Logical Store.

23.4.6 Configuring the Identity of the Front-end SOAP Router

Each WebLogic Server instance in the cluster must be configured with the address and
port of the front-end SOAP router.

You can configure the identity of the front-end SOAP router using one of the
following methods, listed in order of precedence:

* Create a network channel, as describe in Configuring the Identity of the Front-end
SOAP Router Using Network Channels. This is the recommended method.

¢ Configure the front-end host and port for the cluster, as described in "Configure
HTTP Settings for a Cluster" in Oracle WebLogic Server Administration Console Online
Help.

¢ Configure the front-end host and port for the local server, as described in
"Configure HTTP Protocol" in Oracle WebLogic Server Administration Console Online
Help.

* Define the Cl ust er Addr ess for the cluster, as described in "Configure Clusters"
in Oracle WebLogic Server Administration Console Online Help. The Cl ust er
Addr ess is required if no other values are set.

23.4.7 Configuring the Identity of the Front-end SOAP Router Using Network Channels

Network channels enable you to provide a consistent way to access the front-end
address of a cluster. For more information about network channels, see

23-10 Developing JAX-WS Web Services for Oracle WebLogic Server

Monitoring Cluster Routing Performance

"Understanding Network Channels" in Administering Server Environments for Oracle
WebLogic Server.

To configure the identity of the front-end SOAP router using network channels, for
each server instance:

1. Create a network channel for the protocol you use to invoke the web service. You
must name the network channel webl ogi c- wsee- pr oxy- channel - XXX, where
XXX refers to the protocol. For example, to create a network channel for HTTPS, call
itwebl ogi c- wsee- pr oxy- channel - htt ps.

See "Configure custom network channels" in Oracle WebLogic Server Administration
Console Online Help for general information about creating a network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

23.5 Monitoring Cluster Routing Performance

You can monitor the following cluster routing statistics to evaluate the application
performance:

* Total number of requests and responses.
¢ Total number of requests and responses that were routed specifically to the server.

¢ Routing failure information, including totals and last occurrence.

You can use the WebLogic Server Administration Console or WLST to monitor cluster
routing performance. For information about using WebLogic Server Administration
Console to monitor cluster routing performance, see "Monitor SOAP web services"
and "Monitor SOAP web service clients," in Oracle WebLogic Server Administration
Console Online Help.For information about using WLST to monitor cluster routing
performance, see "Configuring Existing Domains" in Understanding the WebLogic
Scripting Tool.

Managing Web Services in a Cluster 23-11

Monitoring Cluster Routing Performance

23-12 Developing JAX-WS Web Services for Oracle WebLogic Server

24

Using Provider-based Endpoints and
Dispatch Clients to Operate on SOAP
Messages

This chapter describes how to develop web service provider-based endpoints and
dispatch clients to operate on SOAP messages at the XML message level for WebLogic
web services using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

* Overview of Web Service Provider-based Endpoints and Dispatch Clients
* Usage Modes and Message Formats for Operating at the XML Level

* Developing a Web Service Provider-based Endpoint (Starting from Java)

¢ Developing a Web Service Provider-based Endpoint (Starting from WSDL)
* Using SOAP Handlers with Provider-based Endpoints

¢ Developing a Web Service Dispatch Client

24.1 Overview of Web Service Provider-based Endpoints and Dispatch

Clients

Although the use of JAXB-generated classes is simpler, faster, and likely to be less
error prone, there are times when you may want to generate your own business logic
to manipulate the XML message content directly. Message-level access can be
accomplished on the server side using web service Provider-based endpoints, and on
the client side using Dispatch clients.

A web service Provider-based endpoint offers a dynamic alternative to the Java
service endpoint interface (SEI)-based endpoint. Unlike the SEI-based endpoint that
abstracts the details of converting between Java objects and their XML representation,
the Provider interface enables you to access the content directly at the XML message
level—without the JAXB binding. web service Provider-based endpoints can be
implemented synchronously or asynchronously using the

javax. xm . ws. Provi der <T> or

com sun. xm . ws. api . server. AsyncPr ovi der <T> interfaces, respectively. For
more information about developing web service Provider-based endpoints, see
Developing a Web Service Provider-based Endpoint (Starting from Java).

A web service Dispatch client, implemented using the

javax. xm . ws. Di spat ch<T> interface, enables clients to work with messages at
the XML level. The steps to develop a web service Dispatch client are described in
Developing a Web Service Dispatch Client.

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-1

Usage Modes and Message Formats for Operating at the XML Level

Provider endpoints and Dispatch clients can be used in combination with other
WebLogic web services features as long as a WSDL is available, including:

¢ WS-Security

* WS-ReliableMessaging
¢ WS-MakeConnection

¢ WS-AtomicTransaction

In addition, Dispatch clients can be used in combination with the asynchronous client
transport and asynchronous client handler features. These features are described in
detail in Developing Asynchronous Clients, and a code example is provided in
Creating a Dispatch Instance.

24.2 Usage Modes and Message Formats for Operating at the XML Level

When operating on messages at the XML level using Provider-based endpoints or
Dispatch clients, you use one of the usage modes defined in the following table. You
define the usage mode using the j avax. xm . ws. Ser vi ceMbde annotation, as
described in Specifying the Usage Mode (@ServiceMode Annotation).

Table 24-1 Usage Modes for Operating at the XML Message Level

Usage Mode Description

Message Operates directly with the entire message. For example, if a SOAP binding is used,
then the entire SOAP envelope is accessed.

Payload Operates on the payload of a message only. For example, if a SOAP binding is used,
then the SOAP body is accessed.

Provider-based endpoints and Dispatch clients can receive and send messages using
one of the message formats defined in Table 24-2. This table also defines the valid

message format and usage mode combinations based on the configured binding type
(SOAP or XML over HTTP).

Table 24-2 Message Formats Supported for Operating at the XML Message Level

Message Format Usage Mode Support for SOAP/ Usage Mode Support for XML/
HTTP Binding HTTP Binding
javax.xm . transform Source Message mode: SOAP envelope =~ Message mode: XML content as
Payload mode: SOAP body Source
Payload mode: XML content as
Sour ce
javax. activati on. Dat aSour ce Not valid in either mode because = Message mode: Dat aSour ce
attachments in SOAP/HTTP object

binding are sent using

Not valid in payload mode
SOAPMessage format.

because Dat aSour ce is used for
sending attachments.

24-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing a Web Service Provider-based Endpoint (Starting from Java)

Table 24-2 (Cont.) Message Formats Supported for Operating at the XML Message Level

Message Format Usage Mode Support for SOAP/ Usage Mode Support for XML/
HTTP Binding HTTP Binding

j avax. xm . soap. SOAPMessage Message mode: SOAPMessage Not valid in either mode because
object the client can send a non-SOAP
Not valid in payload mode message in XML/HTTP binding.

because the entire SOAP message
is received, not just the payload.

24.3 Developing a Web Service Provider-based Endpoint (Starting from

Java)

You can develop both synchronous and asynchronous web service Provider-based
endpoints, as described in the following sections:

* Developing a Synchronous Provider-based Endpoint

* Developing an Asynchronous Provider-based Endpoint

Note:

To start from WSDL and flag a port as a web service provider, see Developing
a Web Service Provider-based Endpoint (Starting from WSDL).

24.3.1 Developing a Synchronous Provider-based Endpoint

A web service Provider-based endpoint, implemented using the

j avax. xm . ws. Provi der <T>, enables you to access content directly at the XML
message level—without the JAXB binding. The Pr ovi der interface processes
messages synchronously—the service waits to process the response before continuing
with its work. For more information about the j avax. xm . ws. Pr ovi der <T>

interface, see ht t p: // docs. oracl e. coni j avaee/ 7/ api / j avax/ xm [/ ws/
Provider. htm .

The following procedure describes the typical steps for programming a JWS file that
implements a synchronous web service Provider-based endpoint.

Table 24-3 Steps to Develop a Synchronous Web Service Provider-based Endpoint

Step

Description

1 Import the JWS annotations ~ The standard JWS annotations for a web service Provider-based JWS file
that will be used in your web include:

service Provider-based JWS

file.

inport javax.xnl.ws. Provider;
inport javax.xm .ws.\WebServiceProvider;
inport javax.xn .ws. Servi ceMde;

Import additional annotations, as required. For a complete list of JWS
annotations that are supported, see "Web Service Annotation Support" in
WebLogic Web Services Reference for Oracle WebLogic Server.

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-3

http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html

Developing a Web Service Provider-based Endpoint (Starting from Java)

Table 24-3 (Cont.) Steps to Develop a Synchronous Web Service Provider-based Endpoint
. ___|

Step Description

2 Specify one of the message See Specifying the Message Format.
formats supported, defined
in Table 24-2, when
developing the Provider-
based implementation class.

3 Add the standard required See Specifying that the JWS File Implements a Web Service Provider
@\ebSer vi ceProvi der (@WebServiceProvider Annotation).
JWS annotation at the class
level to specify that the Java
class exposes a web service

provider.
4 Add the standard See Specifying the Usage Mode (@ServiceMode Annotation).
@er vi ceMbde JWS The service mode defaults to Ser vi ce. Mbde. Payl oad.

annotation at the class level
to specify whether the web
service provider is accessing
information at the message
or message payload level.

(Optional)
5 Define the i nvoke() The i nvoke() method is called and provides the message or message
method. payload as input to the method using the specified message format. See

Defining the invoke() Method for a Synchronous Provider-based Endpoints.

The following sample JWS file shows how to implement a simple synchronous web
service Provider-based endpoint. The steps to develop a synchronous web service
Provider-based endpoint are described in detail in the sections that follow. To review
the JWS file within the context of a complete sample, see "Creating JAX-WS Web
Services for Java EE" in the Web Services Samples distributed with Oracle WebLogic
Server.

Note:

RESTful Web Services can be built using XML/HTTP binding Provider-based
endpoints. For an example of programming a Provider-based endpoint within

the context of a RESTful web service, see Programming Web Services Using
XML Over HTTP.

Example 24-1 Example of a JWS File that Implements a Synchronous Provider-
based Endpoint

package exanpl es.webservi ces. j axws;
i mport org.w3c. dom Node;

i mport javax.xn.transform Source;

import javax.xm .transform TransfornerFactory;
import javax.xm .transform Transforner;

import javax.xm .transform dom DOVResul t;
import javax.xm .transform stream StreanSour ce;
import javax.xm .ws.Provider;

24-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing a Web Service Provider-based Endpoint (Starting from Java)

i mport javax.xn .ws. Servicelbde;

import javax.xm .ws.\WebServi ceProvider;
i mport javax.xnl.ws. Service;

inport java.io.ByteArraylnput Stream

/**

* A sinple Provider-based web service inplenentation.

*

* @ut hor Copyright (c¢) 2010, Oracle and/or its affiliates.

* All Rights Reserved.

*/

/1 The @erviceMde annotation specifies whether the Provider instance
/] receives entire messages or nessage payl oads.

@er vi ceMbde(val ue = Servi ce. Mbde. PAYLOAD)

/] Standard JWS annotation that configures the Provider-based web service.
@ébServi ceProvi der (portName = "SinpledientPort",

servi ceNane = "Sinpl eCl i ent Servi ce",

target Nanespace = "http://]axws. webservi ces. exanpl es/",

wsdl Location = "SinpledientService. wsdl ")
public class SinpleQdientProviderlnpl inplements Provider<Source> {

/11 nvokes an operation according to the contents of the request nessage.
public Source invoke(Source source) {
try {
DOVResul t dom = new DOVResul t();
Transforner trans = Transformer Fact ory. new nst ance(). newTransforner();
trans.transforn{source, dom;
Node node = dom get Node();
I/ Get the operation nane node.
Node root = node.getFirstChild();
/1 Get the parameter node.
Node first = root.getFirstChild();
String input = first.getFirstChild().getNodeVal ue();
/1 Get the operation name.
String op = root. getLocal Nange();
if ("invokeNoTransaction".equal s(op)) {
return sendSource(input);
} else {
return sendSource2(input);
1

}
catch (Exception e) {

throw new Runti meException("Error in provider endpoint", e);
}
}

private Source sendSource(String input) {
String body =
"<ns:invokeNoTransact i onResponse

xm ns:ns=\"http://]axws. webservi ces. exanpl es/\ " ><ret urn>"
+ "constructed: " + input
+ "</return></ns:invokeNoTransact i onResponse>";

Source source = new StreanBSource(new Byt eArrayl nput St reanm(body. get Bytes()));

return source;

}

private Source sendSource2(String input) {
String body =
"<ns:invokeTransacti onResponse

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-5

Developing a Web Service Provider-based Endpoint (Starting from Java)

xm ns:ns=\"http://jaxws.webservi ces. exanpl es/\ " ><ret urn>"

+ "constructed: " + input

+ "</return></ns:invokeTransacti onResponse>";
Source source = new StreanSource(new Byt eArrayl nput St rean(body. get Bytes()));
return source;

}
}

24.3.2 Developing an Asynchronous Provider-based Endpoint

As with the Pr ovi der interface, web service Provider-based endpoints implemented
using the com sun. xnl . ws. api . server. AsyncPr ovi der <T> interface enable
you to access content directly at the XML message level—without the JAXB binding.
However, the AsyncPr ovi der interface processes messages asynchronously—the
service can continue its work and process the request when it becomes available,
without blocking the thread.

The following procedure describes the typical steps for programming a JWS file that
implements an asynchronous web service Provider-based endpoint.

Step

Table 24-4 Steps to Develop an Asynchronous Web Service Provider-based Endpoint

Description

Import the JWS annotations
that will be used in your web
service Provider-based JWS
file.

The standard JWS annotations for an asynchronous web service Provider-
based JWS file include:

import com sun. xm . ws. api . server. AsyncProvi der;
import com sun. xm . ws. api . server. AsyncProvi der Cal | back;
import javax.xm .ws. Servi ceMde;

Import additional annotations, as required. For a complete list of JWS
annotations that are supported, see "Web Service Annotation Support" in
WebLogic Web Services Reference for Oracle WebLogic Server.

Specify one of the message
formats supported, defined
in Table 24-2, when
developing the Provider-
based implementation class.

See Specifying the Message Format.

Add the standard required
@\bSer vi ceProvi der
JWS annotation at the class
level to specify that the Java
class exposes a web service
provider.

See Specifying that the JWS File Implements a Web Service Provider
(@WebServiceProvider Annotation).

Add the standard

@ser vi ceMode JWS
annotation at the class level
to specify whether the web
service provider is accessing
information at the message
or message payload level.
(Optional)

See Specifying the Usage Mode (@ServiceMode Annotation).
The service mode defaults to Ser vi ce. Mbde. Payl oad.

24-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing a Web Service Provider-based Endpoint (Starting from Java)

Table 24-4 (Cont.) Steps to Develop an Asynchronous Web Service Provider-based Endpoint
. __|

Step Description
5 Define the i nvoke() The i nvoke() method is called and provides the message or message
method. payload as input to the method using the specified message format. See
Defining the invoke() Method for an Asynchronous Provider-based
Endpoints.
6 Define the asynchronous The method handles the response when it is returned. See Defining the

handler callback method to ~ Callback Handler for the Asynchronous Provider-based Endpoint.
handle the response.

The following sample JWS file shows how to implement a simple asynchronous web
service Provider-based endpoint. The steps to develop an asynchronous web service
Provider-based endpoint are described in detail in the sections that follow.

Example 24-2 Example of a JWS File that Implements an Asynchronous Provider-based Endpoint

package asyncprovider. server;

import com sun. xm . ws. api . server. AsyncProvi der;
import com sun. xm . ws. api . server. AsyncProvi der Cal | back;

i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.

xm .
xm .
xm .
xm .
xm .
xm .

bi nd. JAXBCont ext ;

t ransf orm Sour ce;

transf orm stream StreanfSour ce;
ws. WebSer vi ceCont ext ;

ws. V\ebSer vi ceExcepti on;

ws. WebSer vi ceProvi der;

import java.io.ByteArraylnput Stream
import java.io.ByteArrayCQut put Stream

@\ébSer vi ceProvi der (
wsdl Locat i on="VEB- | NF/ wsdl /hel l o_literal.wsdl",
target Nanespace = "urn:test",
servi ceNanme="Hel | 0")

public class Hel | oAsyncl npl inplenments AsyncProvi der <Source> {

private static final JAXBContext jaxbContext = createJAXBContext();
private int bodylndex;

public javax.xm .bind. JAXBCont ext get JAXBCont ext () {
return jaxbContext;

}

private static javax.xm .bind. JAXBCont ext createJAXBContext (){

try{

return javax.xm . bi nd. JAXBCont ext . new nst ance(Chj ect Fact ory. cl ass);

}cat ch(j avax. xm . bi nd. JAXBException e){

}
}

t hrow new WebSer vi ceException(e. get Message(), e€);

private Source sendSource() {
Systemout. println("**** sendSource ******").

String[] body = {

"<Hel | oResponse xm ns=\"urn:test:types\">

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-7

Developing a Web Service Provider-based Endpoint (Starting from Java)

<argunent xm ns=\"\">foo</ar gument >
<extra xmns=\"\">bar</extra>
</ Hel | oResponse>",
"<ansl: Hel | oResponse xm ns:ansl=\"urn:test:types\">
<ar gunent >f oo</ ar gunent >
<extra>bar </ extra>
</ ansl: Hel | oResponse>",
¥
int i = (+tbodyl ndex)%ody. | ength;
return new Streanour ce(
new Byt eArrayl nput Strean(body[i].getBytes()));
}

private Hell o_Type recvBean(Source source) throws Exception {
Systemout. println("**** recvBean ******"):
return (Hell o_Type)jaxbContext. createUnmarshal | er(). unmarshal (source);

}

private Source sendBean() throws Exception {

Systemout. println("**** sendBean ******"):

Hel | oResponse resp = new Hel | oResponse();

resp. set Argunent ("fo00");

resp.setExtra("bar");

Byt eArrayQut put Stream bout = new Byt eArrayQut put Strean();

j axbCont ext . creat eMarshal | er (). marshal (resp, bout);

return new StreanSource(new Byt eArrayl nput Strean(bout.toByteArray()));
}

public void invoke(Source source, AsyncProviderCal | back<Source> chak,
VebServi ceContext ctxt) {
Systemout. printIn("**** Received in AsyncProvider |npl ***x**").
try {
Hel | o_Type hell o = recvBean(source);
String arg = hello.get Argunent();
if (arg.equals("sync")) {
String extra = hello.getExtra();
if (extra.equals("source")) {
chak. send(sendSource());
} else if (extra.equal s("bean")) {
cbak. send(sendBean());
} else {
t hrow new WebSer vi ceException("Expected extra =
(source| bean|fault), Got="+extra);

} else if (arg.equals("async")) {
new Thread(new Request Handl er (chak, hello)).start();
} else {
t hrow new WebServi ceException("Expected Argunent =
(sync| async), Got="+arg);

} catch(Exception e) {
t hrow new WebServi ceException("Endpoint failed", e);
}
}

private class RequestHandl er inplements Runnable {
final AsyncProviderCal | back<Source> chak;
final Hello_Type hello;
publi ¢ Request Handl er (AsyncProvi der Cal | back<Source> chak, Hello_Type hello) {
this.chak = chak;
this.hello = hello;

24-8 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing a Web Service Provider-based Endpoint (Starting from Java)

}

}

public void run() {

try {
Thr ead. sl eep(5000) ;

} catch(InterruptedException ie) {

}

try {
String extra = hello.getExtra();

if (extra.equals("source")) {

chak. sendError (new WebServi ceException("Interrupted..."));
return;

chak. send(sendSource());

} else if (extra.equal s("bean")) {

cbak. send(sendBean());

} else {

chak. sendError (new WebSer vi ceExcept i on(
"Expected extra = (source|bean|fault), Cot="+extra));

} catch(Exception e) {

}

cbak. sendError (new WebSer vi ceException(e));

24.3.3 Specifying the Message Format

Specify one of the message formats supported, defined in Table 24-2, when developing
the Provider-based implementation class.

For example, in the Provider implementation example shown in Example 24-1, the

Si npl eCl i ent Provi der | npl class implements the Pr ovi der <Sour ce> interface,
indicating that both the input and output types are j ava. xm . t r ansf or m Sour ce
objects.

public class SinpledientProviderlnpl inplements Provider<Source> {

Similarly, in the AsyncProvider implementation example shown in Example 24-2, the
Hel | oAsyncl npl class implements the AsyncPr ovi der <Sour ce> interface,
indicating that both the input and output types are j ava. xml . t r ansf or m Sour ce
objects.

public class Hell oAsyncl npl inplenments AsyncProvider<Source> {

24.3.4 Specifying that the JWS File Implements a Web Service Provider
(@WebServiceProvider Annotation)

Use the standard j avax. xnl . ws. .ebSer vi cePr ovi der annotation to specify, at
the class level, that the JWS file implements a web service provider, as shown in the
following code excerpt:

@ébSer vi ceProvi der (portName = "SinpledientPort",
servi ceNanme = "Sinpl el i ent Servi ce",
target Nanespace = "http://]axws. webservi ces. exanpl es/",
wsdl Location = "SinpledientService.wsdl")

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-9

Developing a Web Service Provider-based Endpoint (Starting from Java)

In the example, the service name is Si npl eCl i ent Ser vi ce, which will map to the
wsdl : servi ce element in the generated WSDL file. The port name is

Si npl eC i ent Port, which will map to the wsdl : port element in the generated
WSDL. The target namespace used in the generated WSDL is ht t p: //

j axws. webser vi ces. exanpl es/ and the WSDL location is local to the web service
provider, at Si npl eCl i ent Servi ce. wsdl .

For more information about the @\bSer vi cePr ovi der annotation, see htt ps: //
j ax-ws. j ava. net/ nonav/ 2. 1. 5/ docs/ annot ati ons. htni .

24.3.5 Specifying the Usage Mode (@ServiceMode Annotation)

The j avax. xm . ws. Ser vi ceMbde annotation is used to specify whether the web
service Provider-based endpoint receives entire messages (Ser vi ce. Mbde. MESSAGE)
or message payloads (Ser vi ce. Mode. PAYLOAD) only.

For example:

@er vi ceMbde(val ue = Service. Mbde. PAYLOAD)

If not specified, the @er vi ceMbde annotation defaults to Ser vi ce. Mode. PAYLQAD.
For a list of valid message format and usage mode combinations, see Table 24-2.

For more information about the @er vi ceMbde annotation, see htt ps: / /] ax-
Ws. j ava. net/ nonav/ 2. 1. 4/ docs/ annot ati ons. ht i .

24.3.6 Defining the invoke() Method for a Synchronous Provider-based Endpoints

The Pr ovi der <T> interface defines a single method that you must define in your
implementation class:

T invoke(T request)

When a web service request is received, the i nvoke() method is called and provides
the message or message payload as input to the method using the specified message
format.

For example, in the Provider implementation example shown in Example 24-1,
excerpted below, the class defines an i nvoke method to take as input the Sour ce
parameter and return a Sour ce response.

public Source invoke(Source source) {
try {
DOVResul t dom = new DOVResul t();
Transforner trans = Transformer Fact ory. newl nst ance(). newTransforner();
trans.transforn{source, dom;
Node node = dom get Node();
I/ Get the operation nane node.
Node root = node. getFirstChild();
I/ Get the parameter node.
Node first = root.getFirstChild();
String input = first.getFirstChild().getNodeVal ue();
|/ Get the operation name.
String op = root. getLocal Nange();
if ("invokeNoTransaction".equal s(op)) {
return sendSource(input);
} else {
return sendSource2(input);
1
}

24-10 Developing JAX-WS Web Services for Oracle WebLogic Server

https://jax-ws.java.net/nonav/2.1.5/docs/annotations.html
https://jax-ws.java.net/nonav/2.1.5/docs/annotations.html
https://jax-ws.java.net/nonav/2.1.4/docs/annotations.html
https://jax-ws.java.net/nonav/2.1.4/docs/annotations.html

Developing a Web Service Provider-based Endpoint (Starting from Java)

catch (Exception e) {
throw new Runti meException("Error in provider endpoint", e);
}
}

24.3.7 Defining the invoke() Method for an Asynchronous Provider-based Endpoints

The AsycnPr ovi der <T> interface defines a single method that you must define in
your implementation class:

voi d invoke(T request, AsyncProviderCal | back<t> cal | back, WbserviceContext context))
You pass the following parameters to the invoke method:
* Request message or message payload in the specified format.

e com sun. xm . ws. api . server. AsyncProvi der Cal | back implementation
that will handle the response once it is returned. For more information, see
Defining the Callback Handler for the Asynchronous Provider-based Endpoint.

e Thejavax. xnl . ws. WebSer vi ceCont ext that defines the message context for
the request being served. An asynchronous Provider-based endpoint cannot use
the injected WebSer vi ceCont ext which relies on the calling thread to determine
the request it should return information about. Instead, it passes the
WebSer vi ceCont ext object which remains usable until you invoke
AsyncProvi der Cal | back.

For example, in the AysncProvider implementation example shown in Example 24-2,
excerpted below, the class defines an i nvoke method as shown below:

public void invoke(Source source, AsyncProviderCal | back<Source> cbak,
ViebServi ceCont ext ctxt) {
Systemout. printIn("**** Received in AsyncProvider |npl ***xxx").
try {
Hel 1 o_Type hello = recvBean(source);
String arg = hel |l 0. get Argunent();
if (arg.equal s("sync")) {
String extra = hello.getExtra();
if (extra.equals("source")) {
chak. send(sendSource());
} else if (extra.equal s("bean")) {
chak. send(sendBean());
} else {
t hrow new WebServi ceExcepti on("Expected extra =
(source| bean|fault), Got="+extra);

} else if (arg.equal s("async")) {
new Thread(new Request Handl er (cbak, hello)).start();
} else {
t hrow new WebServi ceExcepti on(" Expected Argunent =
(sync|async), Got="+arg);

} catch(Exception e) {
throw new WebServi ceExcepti on("Endpoint failed", e);

}

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-11

Developing a Web Service Provider-based Endpoint (Starting from WSDL)

24.3.8 Defining the Callback Handler for the Asynchronous Provider-based Endpoint

The AsyncPr ovi der Cal | back interface enables you to define a callback handler for
processing the asynchronous response once it is received.

For example, in the AysncProvider implementation example shown in Example 24-2,
excerpted below, the Request Handl er method uses the AsyncProviderCallback
callback handler to process the asynchronous response.

private class RequestHandl er inplements Runnable {
final AsyncProviderCal | back<Source> chak;
final Hello_Type hello;
publi ¢ Request Handl er (AsyncProvi der Cal | back<Sour ce> cbhak, Hello_Type hello) {
this.cbhak = chak;
this.hello = hello;

}

public void run() {
try {
Thr ead. sl eep(5000) ;
} catch(InterruptedException ie) {
chak. sendError (new WebServi ceException("Interrupted..."));
return;

}

try {
String extra = hello.getExtra();

if (extra.equal s("source")) {
chak. send(sendSource());
} else if (extra.equal s("bean")) {
chak. send(sendBean());
} else {
chak. sendError (new WbSer vi ceExcept i on(
"Expected extra = (source|bean|fault), Cot="+extra));

} catch(Exception e) {
chak. sendError (new WebSer vi ceException(e));

}

}

24.4 Developing a Web Service Provider-based Endpoint (Starting from
WSDL)

If the Provider-based endpoint is being generated from a WSDL file, the <pr ovi der >
WSDL extension can be used to mark a port as a provider. For example:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<bi ndi ngs wsdl Locati on="Si npl ed i ent Servi ce. wsdl "
xm ns="http://java.sun.com xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions" >
<package name="provi der.server"/>
<provi der >t r ue</ provi der >
</ bi ndi ngs>

24-12 Developing JAX-WS Web Services for Oracle WebLogic Server

Using SOAP Handlers with Provider-based Endpoints

24.5 Using SOAP Handlers with Provider-based Endpoints

Provider-based endpoints may need to access the SOAP message for additional
processing of the message request or response. You can create SOAP message
handlers to enable Provider-based endpoints to perform this additional processing on
the SOAP message, just as you do for an SEI-based endpoint. For more information
about creating the SOAP handler, see Creating the SOAP Message Handler.

Table 18-1 enumerates the steps required to add a SOAP handler to a web service.
These steps apply to web service Provider-based endpoints, as well.

For example:

1. Design SOAP message handlers and group them together in a handler chain, as
described in Designing the SOAP Message Handlers and Handler Chains.

2. For each handler in the handler chain, create a Java class that implements the SOAP
message handler interface, as described in Creating the SOAP Message Handler.

An example of the SOAP handler, MyHandl er , is shown below.

package provider.rootpart_charset_772.server;

i mport javax.activation. Dat aHandl er;

i mport javax.activation. DataSource;

i mport javax.xnl.namespace. QNane;

i mport javax.xnl.soap. AttachmentPart;

i mport javax.xnl .soap. SOAPMessage;

import javax.xm .ws.\WebServi ceExcepti on;

i mport javax.xnl.ws. handl er. MessageCont ext ;

import javax.xm .ws. handl er. soap. SOAPHandl er;

i mport javax.xnl.ws. handl er. soap. SOAPMessageCont ext ;
i mport java.io.lnputStream

inport java.io.QutputStream.inport java.io.ByteArraylnputStream
import java.util.Set;

public class MyHandl er inplenents SOAPHandl er <SOAPMessageCont ext > {

public Set<QNane> get Headers() {
return null;
}

public bool ean handl eMessage(SOAPMessageCont ext snt) {
if (!
(Bool ean) snt. get (MessageCont ext . MESSAGE_COUTBOUND_PROPERTY))
return true;
try {
SOAPMessage nsg = snt. get Message();
AttachmentPart part =
meg. cr eat eAt t achnment Part (get Dat aHandl er ());

part.set Content | d(" SOAPTest Handl er @xanpl e. j axws. sun. cont') ;
meg. addAt t achment Part (part);
msg. saveChanges();
snt. set Message(nsg);
} catch (Exception e) {
t hrow new WebSer vi ceException(e);
}

return true,

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-13

Using SOAP Handlers with Provider-based Endpoints

publi c bool ean handl eFaul t (SOAPMessageCont ext context) {
return true;

}
public void close(MessageContext context) {}

private DataHandl er getDataHandl er() throws Exception {
return new Dat aHandl er (new Dat aSource() {
public String getContent Type() {
return "text/xm";
}

public InputStream getlnputStrean() {
return new Byt eArrayl nput Stream("<a/>".getBytes());
}

public String getName() {
return nul l;
}

public QutputStream get Qut put Streanm() {
t hrow new Unsupport edOper ati onException();

1),

}

3. Add the @ avax. j ws. Handl er Chai n annotation to the Provider
implementation, as described in Configuring Handler Chains in the JWS File.

For example:

package provider.rootpart_charset_772.server;

import javax.jws.Handl er Chain;

import javax.xn .soap. MessageFact ory;

i mport javax.xm .soap. SOAPMessage;

i mport javax.xn .transform Source;

import javax.xm .transform stream StreanSour ce;
import javax.xm.ws.*;

import java.io.ByteArraylnput Stream

@ebSer vi ceProvi der (target Nanespace="urn:test", portNanme="Hel|oPort",
servi ceName="Hel | 0")

@er vi ceMbde(val ue=Servi ce. Mode. MESSAGE)

@1and! er Chai n(file="handl ers.xm")

public class SCAPMsgProvi der inplements Provider <SOAPMessage> {

public SOAPMessage invoke(SOAPMessage nsg) {

try {
/1 Keeping white space in the string is intentional
String content = "<soapenv: Envel ope

xm ns: soapenv=\"http://schemas. xm soap. or g/ soap/ envel ope/\" >
<soapenv: Body> <Voi dTest Response
xmns=\"urn:test:types\">
</ Voi dTest Response></ soapenv: Body></ soapenv: Envel ope>";
Source source = new StreanfSour ce(new
Byt eArrayl nput St rean(content. get Bytes()));
MessageFactory fact = MessageFact ory. newl nstance();
SOAPMessage soap = fact. createMessage();
soap. get SOAPPart () . set Cont ent (source) ;

24-14 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing a Web Service Dispatch Client

soap. get M neHeader s() . addHeader ("foo0", "bar");
return soap;

} catch(Exception e) {
t hrow new WebSer vi ceException(e);

}

}

4. Create the handler chain configuration file, as described in Creating the Handler
Chain Configuration File.

An example of the handler chain configuration file, handl er s. xnl , is shown
below.

<handl er - chai ns xm ns="http://java. sun.conf xm / ns/j avaee' >
<handl er - chai n>
<hand| er >
<hand| er - name>MyHandl er </ handl er - name>
<hand| er - cl ass>
provider.rootpart_charset_772.server. MyHandl er
</ handl er - cl ass>
</ handl er >
</ handl er - chai n>
</ handl er - chai ns>

5. Compile all handler classes in the handler chain and rebuild your web service, as
described in Compiling and Rebuilding the Web Service .

24.6 Developing a Web Service Dispatch Client

A web service Dispatch client, implemented using the
javax. xm . ws. Di spat ch<T> interface, enables clients to work with messages at
the XML level.

The following procedure describes the typical steps for programming a web service
Dispatch client.

Table 24-5 Steps to Develop a Web Service Provider-based Endpoint

Step

Description

1 Import the JWS annotations ~ The standard JWS annotations for a web service Provider-based JWS file
that will be used in your web include:
service Provider-based JWS

file.

inmport javax.xnl.ws. Service;
import javax.xnl .ws.Dispatch;
import javax.xm .ws. Servi ceMde;

Import additional annotations, as required. For a complete list of JWS
annotations that are supported, see "Web Service Annotation Support" in
WebLogic Web Services Reference for Oracle WebLogic Server.

2 Create a Di spat ch instance. See Creating a Dispatch Instance.

3 Invoke a web service You can invoke a web service operation synchronously (one-way or two-

operation.

way) or asynchronously (polling or asynchronous handler). See Invoking a
Web Service Operation.

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-15

Developing a Web Service Dispatch Client

24.6.1 Example of a Web Service Dispatch Client

The following sample shows how to implement a basic web service Dispatch client.
The sample is described in detail in the sections that follow.

Example 24-3 Example of a Web Service Dispatch Client

package jaxws.dispatch.client;

import java.io.ByteArrayQut put Stream
import java.io. QutputStream

inmport java.io.StringReader;

i mport java.net. URL;

i mport javax.xm .soap. SOAPExcepti on;

i mport javax.xm .soap. SOAPMessage;

import javax.xm .transform Qutput Keys;

i mport javax.xm .transform Source;

import javax.xm .transform Transforner;

import javax.xm .transform Transforner Excepti on;
import javax.xm .transform TransfornerFactory;
import javax.xm .transform stream StreanResul t;
import javax.xm .transform stream StreanSource;

import javax.xmn .ws.Dispatch;

import javax.xm .ws. Service;

import javax.xm .ws.\WebServi ceExcepti on;
i mport javax.xm .bind. JAXBCont ext ;

i mport javax.xm .bind. JAXBEl enent ;

i mport javax.xm .nanmespace. QNane;

import javax.xm .ws.soap. SOAPBi ndi ng;

public class WbTest extends TestCase {
private static String in_str = "wiseking";
private static String request =
"<nsl:sayHell o xm ns:nsl=\"http://exanple.org\"><arg0>"+i n_str+"</arg0></nsl: sayHel | 0>";

private static final QName portQName = new QName("http://exanple.org", "SinplePort");
private Service service = null;

protected void setUp() throws Exception {

String url_str = SystemgetProperty("wsdl");

URL url = new URL(url _str);

QName servi ceNane = new QNanme("http://exanple.org", "SinplelnplService");
service = Service. create(serviceName);

servi ce. addPort (port QNanme, SOAPBi ndi ng. SOAPL1HTTP_BI NDING, url _str);
Systemout. printIn("Setup conplete.");

}

public void testSayHel | oSource() throws Exception {
set Un();
Di spat ch<Sour ce> sour ceDi spatch =
servi ce. creat eDi spat ch(port QName, Source. cl ass, Service. Mde. PAYLOAD);
Systemout. printIn("\nlnvoking xm request: " + request);
Source result = sourceDi spatch.invoke(new StreanSource(new StringReader (request)));
String xm Result = sourceToXM.String(result);
Systemout. println("Received xm response: " + xm Result);
assert True(xm Resul t. i ndexOf ("HELLO " +i n_str)>=0);

24-16 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing a Web Service Dispatch Client

}

private String sourceToXM.String(Source result) {
String xm Result = null;

try {
TransfornerFactory factory = TransformerFactory. new nstance();
Transforner transformer = factory. newlransformer();
transforner. set Qut put Property(Qut put Keys. OM T_XM._DECLARATI ON, "yes");
transforner. set Qut put Property(Qut put Keys. METHOD, "xm");
Qut put Stream out = new Byt eArrayQut put Strean();
StreanResult streanResult = new StreanResul t();
streanResul t. set Qut put Streanf{out);
transforner.transformresult, streanResult);
xm Resul't = streanResul t.get Qutput Strean().toString();

} catch (TransfornerException e) {
e.printStackTrace();

}

return xm Resul t;

}

24.6.2 Creating a Dispatch Instance

The j avax. xm . ws. Ser vi ce interface acts as a factory for the creation of Di spat ch
instances. So to create a Dispatch instance, you must first create a Ser vi ce instance.
Then, create the Dispatch instance using the Ser vi ce. cr eat eDi spat ch() method.

You can pass one or more of the following parameters to the cr eat eDi spat ch()
method:

® Qualified name (QName) or endpoint reference of the target service endpoint.

¢ C(lass of the type parameter T. In this example, the
j avax. xm . transf orm Sour ce format is used. For valid values, see Table 24-2.

® Usage mode. In this example, the message payload is specified. For valid usage
modes, see Table 24-1.

¢ Alist of web service features to configure on the proxy.

* JAXB context used to marshal or unmarshal messages or message payloads.

For more information about the valid parameters that can be used to call the

Servi ce. creat eDi spat ch() method, see the j avax. xm . ws. Ser vi ce Javadoc
at: https://jax-ws.java. net/nonav/2. 1. 1/ docs/ api /j avax/ xm [/ ws/
Service. htm .

For example:

String url_str = System getProperty("wsdl");
QNane serviceNane = new QName("http://exanple.org", "Sinplelnpl Service");
service = Service. create(serviceNanme);
service. addPort (port QName, SQOAPBi ndi ng. SOAP11HTTP_BI NDI NG url _str);
Di spat ch<Sour ce> sour ceDi spatch =
servi ce. creat eDi spat ch(port QNane, Source. cl ass, Service. Mde. PAYLQAD);

In the example above, the cr eat eDi spat ch() method takes three parameters:

Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages 24-17

https://jax-ws.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Service.html
https://jax-ws.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Service.html

Developing a Web Service Dispatch Client

® Qualified name (QName) of the target service endpoint.

* C(Class of the type parameter T. In this example, the
javax. xm . transf or m Sour ce format is used. For valid values, see Table 24-2.

® Usage mode. In this example, the message payload is specified. For valid usage
modes, see Table 24-1.

The following example shows how to pass a list of web service features, specifically
the asynchronous client transport feature and asynchronous client handler feature. For
more information about these features, see Developing Asynchronous Clients.

protected Dispatch createDispatch(bool ean i sSoapl2, C ass dateType,
Servi ce. Mbde nmode, AsyncdientHandl er Feature feature)
throws Exception {
String address = publishEndpoint (i sSoapl2);
Service service = Service.create(new URL(address + "?wsdl "),
new QNane("http://exanple.org", "AddNunbersService"));
QName portName = new QName("http://exanple.org", "AddNunbersPort");
AsyncC ient TransportFeature transportFeature = new
AsyncC i ent Transport Feature("http:// I ocal host: 8238/ clientsoapl2/" +
UUI D. randomJUl D() . toString());
Di spatch di spatch = service. createDi spat ch(port Nanme, dateType, node,
feature, transportFeature);
return dispatch;

24.6.3 Invoking a Web Service Operation

Once the Di spat ch instance is created, use it to invoke a web service operation. You
can invoke a web service operation synchronously (one-way or two-way) or
asynchronously (polling or asynchronous handler). For complete details about the
synchronous and asynchronous invoke methods, see the j avax. xm . ws. Di spat ch
Javadoc at: ht t ps: //j ax-ws. j ava. net/ nonav/ 2. 1. 1/ docs/ api /

javax/ xm /ws/ Di spat ch. ht m

For example, in the following code excerpt, the XML message is encapsulated as a
javax.xm . transform stream St reanBour ce object and passed to the
synchronous i nvoke() method. The response XML is returned in the r esul t
variable as a Sour ce object, and transformed back to XML. The

sour cet oXMLSt ri ng() method used to transform the message back to XML is
shown in Example 24-3.

private static String request = "<nsl:sayHello xm ns:nsl=\"http://exanple.org\"><arg0>"+in_str+"</
arg0></nsl: sayHel | 0>";

Source result = sourceDispatch.invoke(new StreanSource(new StringReader(request)));

String xm Result = sourceToXM.String(result);

24-18 Developing JAX-WS Web Services for Oracle WebLogic Server

https://jax-ws.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Dispatch.html
https://jax-ws.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Dispatch.html

25

Sending and Receiving SOAP Headers

This chapter describes how use the methods available from

com sun. xm . ws. devel oper . WSBi ndi ngPr ovi der to send outbound or receive
inbound SOAP headers for WebLogic web services using Java API for XML Web
Services (JAX-WS).

This chapter includes the following sections:
¢ Overview of Sending and Receiving SOAP Headers
¢ Sending SOAP Headers Using WSBindingProvider

¢ Receiving SOAP Headers Using WSBindingProvider

Note:

The com sun. xnl . ws. devel oper . W5Bi ndi ngPr ovi der and

com sun. xm . ws. api . message. Header s APIs are supported as an
extension to the JDK 6.0. Because the APIs are not provided as part of the JDK
6.0 kit, they are subject to change.

25.1 Overview of Sending and Receiving SOAP Headers

When you create a proxy or Dispatch client, the client implements the

javax. xm . ws. Bi ndi ngPr ovi der interface. If you need to send or receive a SOAP
header, you can downcast the web service proxy or Dispatch client to

com sun. xm . ws. devel oper . WSBi ndi ngPr ovi der and use the methods on the
interface to send outbound or receive inbound SOAP headers.

25.2 Sending SOAP Headers Using WSBindingProvider

Use the set Qut boundHeader s method to the
com sun. xm . ws. devel oper . W5Bi ndi ngPr ovi der to send SOAP headers. You
create SOAP headers using the com sun. xm . ws. api . nessage. Header s method.

For example, the following provides a code excerpt showing how to pass a simple
string value as a header.

Example 25-1 Sending SOAP Headers Using WSBindingProvider

i mport com sun. xn . ws. devel oper. WSBi ndi ngPr ovi der;
import com sun. xn . ws. api . message. Headers;
i mport javax.xnl.namespace. QNane;

Hel | oService helloService = new Hel | oService();

Hel | oPort port = helloService.getHelloPort();
WBBi ndi ngProvi der bp = (WEBi ndi ngProvi der) port;

Sending and Receiving SOAP Headers 25-1

Receiving SOAP Headers Using WSBindingProvider

bp. set Qut boundHeader s(

I/ Sets a sinple string value as a header

Headers. creat e(new QName("si npl eHeader "), "stringVal ue")
);

25.3 Receiving SOAP Headers Using WSBindingProvider

Use the get | nboundHeader s method to the
com sun. xm . ws. devel oper. W5Bi ndi ngPr ovi der to receive SOAP headers.

For example, the following provides a code excerpt showing how to get inbound
headers.

Example 25-2 Receiving SOAP Headers Using WSBindingProvider

i mport com sun. xn . ws. devel oper. WSBi ndi ngProvi der;
import com sun. xn . ws. api . message. Headers;

i mport javax.xnl.namespace. QNane;

import java.util.List;

Hel | oService helloService = new Hel | oService();
Hel | oPort port = helloService.getHelloPort();
WBBi ndi ngProvi der bp = (WEBi ndi ngProvi der) port;

Li st i nboundHeaders = bp. get | nboundHeaders();

25-2 Developing JAX-WS Web Services for Oracle WebLogic Server

26

Using Callbacks

This chapter describes how to use callbacks to notify clients of events for WebLogic
web services using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

Overview of Callbacks

Example Callback Implementation

Steps to Program Callbacks

Programming Guidelines for Target Web Service
Programming Guidelines for the Callback Client Web Service
Programming Guidelines for the Callback Web Service

Updating the build.xml File for the Target Web Service

26.1 Overview of Callbacks

A callback is a contract between a client and service that allows the service to invoke
operations on a client-provided endpoint during the invocation of a service method
for the purpose of querying the client for additional data, allowing the client to inject
behavior, or notifying the client of progress. The service advertises the requirements
for the callback using a WSDL that defines the callback port type and the client
informs the service of the callback endpoint address using WS-Addressing.

26.2 Example Callback Implementation

The example callback implementation described in this section consists of the
following three Java files:

JWS file that implements the callback web service: The callback web service
defines the callback methods. The implementation simply passes information back
to the target web service that, in turn, passes the information back to the client web
service.

In the example in this section, the callback web service is called
Cal | backSer vi ce. The web service defines a single callback method called
cal | back().

JWS file that implements the target web service: The target web service includes
one or more standard operations that invoke a method defined in the callback web
service and sends the message back to the client web service that originally
invoked the operation of the target web service.

Using Callbacks 26-1

Steps to Program Callbacks

In the example, this web service is called Tar get Ser vi ce and it defines a single
standard method called t ar get Oper ati on().

JWS file that implements the client web service: The client web service invokes an
operation of the target web service. Often, this web service will include one or
more methods that specify what the client should do when it receives a callback
message back from the target web service via a callback method.

In the example, this web service is called Cal | er Ser vi ce. The method that
invokes Tar get Ser vi ce in the standard way is called cal | ().

The following shows the flow of messages for the example callback implementation.

Figure 26-1 Example Callback Implementation

WebLogic Server A

WebLogic Server B

CallerService

Ccall (SCring o)

() TargetService
CargetOperation(sString s,

/1 WiCtEndpointReference callback)

CallbackService

K /@/
callback (String =) 4

The cal | () method of the Cal | er Ser vi ce web service, running in one
WebLogic Server instance, explicitly invokes the t ar get Qper ati on() method
of the Tar get Ser vi ce and passes a web service endpoint to the

Cal I backSer vi ce. Typically, the Tar get Ser vi ce service is running in a
separate WebLogic Server instance.

The implementation of the Tar get Ser vi ce. t ar get Oper ati on() method
explicitly invokes the cal | back() method of the Cal | backSer vi ce, which
implements the callback service, using the web service endpoint that is passed in
from Cal | er Ser vi ce when the method is called.

The Cal | backSer vi ce. cal | back() method sends information back to the
Tar get Ser vi ce web service.

The Tar get Ser vi ce. t ar get Oper ati on() method, in turn, sends the
information back to the Cal | er Ser vi ce service, completing the callback
sequence.

26.3 Steps to Program Callbacks

The procedure in this section describes how to program and compile the three JWS
files that are required to implement callbacks: the target web service, the client web
service, and the callback web service. The procedure shows how to create the JWS files
from scratch; if you want to update existing JWS files, you can also use this procedure
as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working bui | d. xml file to which you can add targets for running the

j wsc Ant task and deploying the web services. For more information, see
Programming the JWS File.

26-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Steps to Program Callbacks

Table 26-1 Steps to Program Callbacks
|

Step Description
1 Create a new JWSfile, Use your favorite IDE or text editor. See Programming
or update an existing Guidelines for Target Web Service.
one, that implemen.ts Note: The JWS file that implements the target web service
the target web service. jnyokes one or more callback methods of the callback web
service. However, the step that describes how to program the
callback web service comes later in this procedure. For this
reason, programmers typically program the three JWS files at
the same time, rather than linearly as implied by this
procedure. The steps are listed in this order for clarity only.
2 Update your See Updating the build.xml File for the Target Web Service.
bui I d. xm file to
include a call to the
j wsc Ant task to
compile the target JWS
file into a web service.
3 Run the Ant target to For example:
build the target web .
. pronpt> ant buil d-target
service.
4 Deploy the target web See Deploying and Undeploying WebLogic Web Services.
service as usual.
5 Create a new JWS file, It is assumed that the client web service is deployed to a
or update an existing different WebLogic Server instance from the one that hosts
one, that implements the target web service. See Programming Guidelines for the
the client web service. Callback Client Web Service.
6 Create the JWS file that ~ See Programming Guidelines for the Callback Web Service.
implements the callback
web service.
7 Update the bui | d. xm The j wsc Ant task that builds the client web service also

file that builds the client
web service.

compiles Cal | backWs. j ava and includes the class file in
the WAR file using the Fi | eset Ant task element. For
example:

<clientgen
type="JAXVS"
wsdl =" ${ awsdl }"
packageName="j axws. cal | back. cli ent. add"/>
<clientgen
type="JAXVS"
wsdl =" ${twsdl }"

packageName="j axws. cal | back.client.target"/>
<FileSet dir="." >

<include nanme="Cal | backWs. j ava" />
</ Fi |l eSet >

Using Callbacks 26-3

Programming Guidelines for Target Web Service

Table 26-1 (Cont.) Steps to Program Callbacks
-

Step Description

8 Run the Ant target to For example:
build the client and

callback web services. pronpt> ant bui | d-cal I er

9 Deploy the client web See Deploying and Undeploying WebLogic Web Services.
service as usual.

26.4 Programming Guidelines for Target Web Service

The following example shows a simple JWS file that implements the target web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package exanpl es. wehservi ces. cal | back;

inport javax.jws.\WbService;

import javax.xm .ws. Bi ndi ngType;

import javax.xn .ws.wsaddressi ng. WBCEndpoi nt Ref er ence;
i mport exanpl es. webservi ces. cal | back. cal | backservi ce. *;

@\ebSer vi ce(
por t Name="Tar get Port ",
servi ceNane="Tar get Servi ce",
target Nanespace="htt p://exanpl e. oracl e. cont',
endpoi ntInterface=
"exanpl es. webservi ces. cal | back. target. Target Port Type",
wsdl Locati on="/wsdl s/ Tar get . wsdl ")
@i ndi ngType(val ue="http://schemas. xnl soap. or g/ wsdl / soap/ http")

public class Targetlnpl {
public String targetQperation(String s, WBCEndpoi nt Ref erence cal | back)

{
Cal I backService aservice = new Cal | backService();
Cal I backPort Type aport =
aservi ce. get Port (cal I back, CallbackPortType. cl ass);
String result = aport.callback(s);
return result + " processed by target";
1

}

Follow these guidelines when programming the JWS file that implements the target
web service. Code snippets of the guidelines are shown in bold in the preceding
example.

e Import the packages required to pass the callback service endpoint and access the
Cal | backSer vi ce stub implementation.

inport javax.xn .ws.wsaddressi ng. WBCEndpoi nt Ref er ence;
i mport exanpl es. webservi ces. cal | back. cal | backservi ce. *;

¢ Create an instance of the Cal | backSer vi ce implementation using the stub
implementation and get a port by passing the Cal | backSer vi ce service
endpoint, which is passed by the calling application (Cal | er Ser vi ce).

26-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Programming Guidelines for the Callback Client Web Service

Cal | backService aservice = new Cal | backService();
Cal | backPort Type aport =
aservi ce. get Port (cal I back, CallbackPort Type. cl ass);

Invoke the callback operation of Cal | backSer vi ce using the port you
instantiated:

String result = aport.callback(s);
Return the result to the Cal | er Ser vi ce service.

return result + " processed by target";

26.5 Programming Guidelines for the Callback Client Web Service

The following example shows a simple JWS file for a client web service that invokes
the target web service described in Programming Guidelines for Target Web Service;
see the explanation after the example for coding guidelines that correspond to the Java
code in bold.

package exanpl es. webservi ces. cal | back;

i mport javax.annotation. Resour ce;
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WebService;

i mport javax.xnl.ws. Bi ndi ngType;

i mport javax.xnl.ws. Endpoint;

i mport javax.xnl.ws. WbServi ceCont ext ;

i mport javax.xnl.ws. WbServi ceExcepti on;

i mport javax.xn .ws. WebServi ceRef;

i mport javax.xnl.ws. handl er. MessageCont ext ;

i mport javax.xnl.ws.wsaddressi ng. WBCEndpoi nt Ref er ence;

i mport exanpl es. webservi ces. cal | back. target. *;

@\ebSer vi ce(

port Nanme="Cal | er Port",
servi ceName="Cal | er Ser vi ce",
tar get Nanespace="http: // exanpl e. oracl e. cont')

@i ndi ngType(val ue="http://schemas. xm soap. or g/ wsdl / soap/ htt p")

public class Callerlnpl

{

@Resour ce
private WebServiceContext context;

@\ebSer vi ceRef ()
private Target Service target;

@ebMet hod()
public String call(String s) {
hj ect sc =
cont ext . get MessageCont ext () . get (MessageCont ext . SERVLET_CONTEXT) ;
Endpoi nt cal | backl npl = Endpoi nt. creat e(new Cal | backWs()) ;
cal | backl npl . publ i sh(sc);
Target Port Type tPort = target.get TargetPort();
String result = tPort.targetCperation(s,
cal | backl npl . get Endpoi nt Ref er ence(\BCEndpoi nt Ref er ence. cl ass));
cal | backl mpl . stop();
return result;

Using Callbacks 26-5

Programming Guidelines for the Callback Client Web Service

}
}

Follow these guidelines when programming the JWS file that invokes the target web
service; code snippets of the guidelines are shown in bold in the preceding example:

* Import the packages required to access the servlet context, publish the web service
endpoint, and access the Tar get Ser vi ce stub implementation.

i mport javax.xn .ws. Endpoint;

i mport javax.xm .ws. WbServi ceCont ext ;

i mport javax.xnl.ws. handl er. MessageCont ext ;

i mport javax.xn .ws.wsaddressi ng. WBCEndpoi nt Ref er ence;
i mport exanpl es. webservi ces. cal | back. target. *;

* Get the servlet context using the WebSer vi ceCont ext and MessageCont ext .
You will use the servlet context when publishing the web service endpoint, later.

@Resour ce

private \WbServi ceContext context;

oj ect sc
cont ext . get MessageCont ext () . get (MessageCont ext . SERVLET_CONTEXT) ;

For more information about accessing runtime information using
WebSer vi ceCont ext and MessageCont ext, see Accessing Runtime
Information About a Web Service.

¢ Create a web service endpoint to the Cal | backSer vi ce implementation and
publish that endpoint to accept incoming requests.

Endpoi nt cal | backl npl = Endpoi nt. creat e(new Cal | backWs()) ;
cal I backl npl . publish(sc);

For more information about web service publishing, see Publishing a Web Service
Endpoint.

® Access an instance of the Tar get Ser vi ce stub implementation and invoke the
t ar get Qper at i on operation of Tar get Ser vi ce using the port you instantiated.
You pass the Cal | backSer vi ce service endpoint as a
javax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence data type:

Note:

Ensure that the callback web service is deployed during the range of time that
callbacks may arrive.

@\ebSer vi ceRef ()
private Target Service target;

Target Port Type tPort = target.getTargetPort();
String result = tPort.targetOperation(s,
cal I backl npl . get Endpoi nt Ref er ence(WBCEndpoi nt Ref erence. cl ass));

* Stop publishing the endpoint:

26-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Programming Guidelines for the Callback Web Service

cal | backl npl . stop();

26.6 Programming Guidelines for the Callback Web Service

The following example shows a simple JWS file for a callback web service. The
cal | back operation is shown in bold.

package exanpl es. webservi ces. cal | back;

i mport javax.jws.\WebService;
i mport javax.xnl.ws. Bi ndi ngType;

@\ebSer vi ce(
por t Nane="Cal | backPort",
servi ceNanme="Cal | backSer vi ce",
tar get Nanespace="htt p: // exanpl e. oracl e. cont',
endpoi ntI nterface=
"exanpl es. webser vi ces. cal | back. cal | backservi ce. Cal | backPort Type",
wsdl Locati on="/wsdl s/ Cal | back. wsdl ")

@i ndi ngType(val ue="http://schemas. xm soap. or g/ wsdl / soap/ htt p")

public class Cal | backWs i npl enents
exanpl es. webser vi ces. cal | back. cal | backservi ce. Cal | backPort Type {

publ i c Cal | backWs() {
}

public java.lang.String callback(java.lang.String arg0) {
return arg0.t oUpper Case();
}

}
26.7 Updating the build.xml File for the Target Web Service

You update a bui | d. xmi file to generate a target web service that invokes the
callback web service by adding t askdef s and a bui | d-t ar get target that resemble
the following example. See the description after the example for details.

<t askdef nanme="jwsc"
cl assname="webl ogi c. wsee. t ool s. ant t asks. JwscTask" />

<target nane="build-target">
<jwsc srcdir="src" destdir="${ear-dir}" listfiles="true">
<jws file="Targetlnpl.java"
conpi | edWdl ="${cowDi r}/target/ Target _wsdl.jar" type="JAXWS">
<WHt t pTransport contextPath="target" serviceUri="Target Service"/>
</jws>
<clientgen
type="JAX\S"
wsdl =" Cal | back. wsdl
packageName="exanpl es. webservi ces. cal | back. cal | backservi ce"/>
</jwsc>
<zip destfile="${ear-dir}/jws.war" update="true">
<zipfileset dir="src/exanpl es/ webservices/cal | back" prefix="wsdl s">
<include name="Cal | back*. wsdl "/ >
</zipfileset>
<l zi p>
</target>

Using Callbacks 26-7

Updating the build.xml File for the Target Web Service

Use the t askdef Ant task to define the full classname of the j wsc Ant tasks. Update
the j wsc Ant task that compiles the client web service to include:

e <cl i ent gen> child element of the <j ws> element to generate and compile the
Ser vi ce interface stubs for the deployed Cal | backSer vi ce web service. The
j wsc Ant task automatically packages them in the generated WAR file so that the
client web service can immediately access the stubs. You do this because the
Tar t get | npl JWS file imports and uses one of the generated classes.

e <zi p> element to include the WSDL for the Cal | backSer vi ce service in the
WAR file so that other web services can access the WSDL from the following URL:
http://${w s. host nane}: ${w s. port}/cal | back/ wsdl s/

Cal | back. wsdl .

For more information about j wsc, see "Running the jwsc WebLogic Web Services Ant
Task" in Developing JAX-RPC Web Services for Oracle WebLogic Server.

26-8 Developing JAX-WS Web Services for Oracle WebLogic Server

21

Developing Dynamic Proxy Clients

This chapter highlights the differences between static and dynamic proxy clients, and
describes the steps to develop a dynamic proxy client for WebLogic web services
using Java API for XML Web Services (JAX-WS)

This chapter includes the following sections:
¢ Overview of Static Versus Dynamic Proxy Clients
¢ Steps to Develop a Dynamic Proxy Client

¢ Additional Considerations When Specifying WSDL Location

27.1 Overview of Static Versus Dynamic Proxy Clients

Table 27-1 highlights the differences between static and dynamic proxy clients.

Table 27-1 Static Versus Dynamic Proxy Clients

Proxy Client Type Description

Static proxy client Compile and bind the web service client at development time. This generates a static
stub for the web service client proxy. The source code for the generated static stub
client relies on a specific service implementation. As a result, this option offers the
least flexibility.

For examples of static proxy clients, see:

e '"Invoking Web Service Clients" in Developing JAX-WS Web Services for Oracle
WebLogic Server

* Roadmap for Developing JAX-WS Web Service Clients

Dynamic proxy client Compile nothing at development time. At runtime, the application retrieves and
interprets the WSDL and dynamically constructs calls. A dynamic proxy client enables
a web service client to invoke a web service based on a service endpoint interface
(SEI) dynamically at run-time (without using ¢l i ent gen). This option does not rely
upon a specific service implementation, providing greater flexibility, but also a
greater performance hit.

The steps to develop a dynamic proxy client are described in Steps to Develop a
Dynamic Proxy Client.

27.2 Steps to Develop a Dynamic Proxy Client

The steps to create a dynamic proxy client are outlined in the following table. For more
information, see the j avax. xm . ws. Ser vi ce Javadocathttp://
docs. oracl e. com' j avaee/ 7/ api / j avax/ xm / ws/ Servi ce. ht ml .

Developing Dynamic Proxy Clients 27-1

http://docs.oracle.com/javaee/7/api/javax/xml/ws/Service.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Service.html

Additional Considerations When Specifying WSDL Location

Table 27-2 Steps to Create a Dynamic Proxy Client
- ___|

Step Description
1 Create the Create the Ser vi ce instance using the Ser vi ce. cr eat e method.
javax. xm . ws. Servic

You must pass the service name and optionally the location of the WSDL

e instance. document. The method details are as follows:

public static Service create (QName serviceNane) throws
javax. xm . ws. WebSer vi ceException {}

public static Service create (URL wsdl Docunent Location, QName
servi ceNane) throws javax.xm .ws.\WebServi ceException {}

For example:

URL wsdl Location = new URL("http://exanple.org/ my.wsdl");
Nane servi ceNane = new QName("http://exanpl e. or g/ sanpl e",
"MService");

Service s = Service.create(wsdl Location, serviceNane);

See Additional Considerations When Specifying WSDL Location for additional
usage information.

2 Create the proxy stub. Use the Ser vi ce. get Port method to create the proxy stub. You can use this
stub to invoke operations on the target service endpoint.

You must pass the service endpoint interface (SEI) and optionally the name of
the port in the WSDL service description. The method details are as follows:

public <T> T getPort(QNane portNanme, C ass<T>

servi ceEndpoi ntInterface) throws javax.xn .ws.WebServi ceException {}
public <T> T getPort(C ass<T> servi ceEndpointInterface) throws
javax. xm . ws. WebSer vi ceException {}

For example:

M/Port port = s.getPort(MPort.class);

27.3 Additional Considerations When Specifying WSDL Location

If you use HTTPS to get the web service from the WSDL, and the hostname definition
in the WebLogic Server SSL certificate does not equal the hostname of the peer HTTPS
server or is not one of the following, the action fails with a hostname verification error:

e Jocalhost
e 127.0.0.1
e hostname of localhost

e P address of localhost
The hostname verification error is as follows:

EchoServi ce service = new EchoService(https-wsdl, webservice-gNane);

javax. xm . ws. \\ebSer vi ceException: javax.net.ssl.SSLKeyExcepti on:

Security: 090504 Certificate chain received from host.conpany.com - 10.167.194. 63
failed hostnanme verification check. Certificate contained {....} but

check expected host.conpany.com

27-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Additional Considerations When Specifying WSDL Location

The recommended workaround is to use HTTP instead of HTTPS to get the web
service from a WSDL when creating the service, and your own hostname verifier code
to verify the hostname after the service is created:

EchoService service = Service.create(http_wsdl, gnane);

/1 get Port

EchoPort port = service.getPort(...);

//set self-defined hostname verifier

((Bi ndi ngProvider) port).getRequest Context (). put(
com sun. xm . ws. devel oper. JAXWSPr oper ti es. HOSTNAME_VERI Fl ER,
new MHost NameVerifier());

*

)

Optionally, you can ignore hostname verification by setting the binding provider
property:
((Bi ndingProvider) port).getRequest Context (). put(

Bi ndi ngProvi der Properties. HOSTNAME_VERI FI CATI ON_PROPERTY,
"true");

However, if you must use HTTPS to get the web service from the WSDL, there are
several possible workarounds:

¢ Turn off hostname verification if you are using the WebLogic Server HTTPS
connection. To do this, set the global system property to ignore hostname
verification:

webl ogi c. security. SSL. i gnoreHost naneVeri fication=true

The system property does not work for service creation if the connection is a JDK
connection or other non-WebLogic Server connection.

® Set your own hostname verifier for the connection before you get the web service
from the WSDL, then use HTTPS to get the web service from the WSDL:

//set self-defined hostname verifier

URL url = new URL(https_wsdl);

Ht t psURLConnecti on connection = (Htt psURLConnection)url.openConnection();
connection. set Host nameVeri fi er (new MyHost NaneVerifier());

[/then initiate the service
EchoService service = Service.create(https_wsdl, gnane);

/1get port and set self-defined hostnane verifier to binding provider

For the workarounds in which you set your own hostname verifier, an example
hostname verifier might be as follows:

public class MyHostnaneVerifier inplenents HostnaneVerifier {
public bool ean verify(String hostname, SSLSession session) {
if (hostname. equal s("the host you want"))
return true;
el se
return fal se;

Developing Dynamic Proxy Clients 27-3

Additional Considerations When Specifying WSDL Location

27-4 Developing JAX-WS Web Services for Oracle WebLogic Server

28

Publishing a Web Service Endpoint

This chapter describes how to create a web service endpoint at runtime without
deploying the web service to a WebLogic Server instance using the
j avax. xm . ws. Endpoi nt APL

For more information, see htt p: / / docs. or acl e. com j avaee/ 7/ api /
j avax/ xm / ws/ Endpoi nt. ht m .

The following table summarizes the steps to publish a web service endpoint.

Table 28-1 Steps to Publish a Web Service Endpoint
-~ |

#

Step

Description

1

Create a web service endpoint.

Use the j avax. xm . ws. Endpoi nt create()
method to create the endpoint, specify the
implementor (that is, the web service
implementation) to which the endpoint is
associated, and optionally specify the binding type.
If not specified, the binding type defaults to
SOAP1. 1/ HTTP. The endpoint is associated with
only one implementation object and one

j avax. xm . ws. Bi ndi ng, as defined at runtime;
these values cannot be changed.

For example, the following example creates a web
service endpoint for the Cal | backW5()
implementation.

Endpoi nt cal | backl npl = Endpoi nt. creat e(new
Cal | backWs());

2

Publish the web service endpoint
to accept incoming requests.

Use the j avax. xm . ws. Endpoi nt publ i sh()
method to specify the server context, or the address
and optionally the implementor of the web service
endpoint.

Note: If you wish to update the metadata
documents (WSDL or XML schema) associated with
the endpoint, you must do so before publishing the
endpoint.

For example, the following example publishes the
web service endpoint created in Step 1 using the
server context.

oj ect sc

cont ext . get MessageCont ext () . get (MessageCont ext
. SERVLET_CONTEXT) ;

cal I backl npl . publish(sc);

Publishing a Web Service Endpoint 28-1

http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html

Table 28-1 (Cont.) Steps to Publish a Web Service Endpoint

Step Description

3 Stop the web service endpoint to Use the j avax. xml . ws. Endpoi nt st op()
shut it down and prevent method to shut down the endpoint and stop
additional requests after accepting incoming requests. Once stopped, an
processing is complete. endpoint cannot be republished.

For example:

cal | backl npl . st op()

For an example of publishing a web service endpoint within the context of a callback
example, see Programming Guidelines for the Callback Client Web Service.

In addition to the steps described in the previous table, you can defined the following
using the j avax. xm . ws. Endpoi nt API methods:

¢ Endpoint metadata documents (WSDL or XML schema) associated with the
endpoint. You must define metadata before publishing the web service endpoint.

¢ Endpoint properties.

e java.util.concurrent. Executor thatwill be used to dispatch incoming
requests to the application (see ht t p: / / docs. or acl e. cont j avase/ 8/
docs/api/javal/util/concurrent/Executor. htnl).

For more information, see the j avax. xm . ws. Endpoi nt Javadocathttp://
docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/ Endpoi nt . ht m .

28-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html

29

Using XML Catalogs

This chapter describes how to use XML catalogs with WebLogic web services using
Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

¢ Overview of XML Catalogs

* Defining and Referencing XML Catalogs

¢ Disabling XML Catalogs in the Client Runtime

* Getting a Local Copy of XML Resources

29.1 Overview of XML Catalogs

An XML catalog enables your application to reference imported XML resources, such
as WSDLs and XSDs, from a source that is different from that which is part of the
description of the web service. Redirecting the XML resources in this way may be
required to improve performance or to ensure your application runs properly in your
local environment.

For example, a WSDL may be accessible during client generation, but may no longer
be accessible when the client is run. You may need to reference a resource that is local
to or bundled with your application rather than a resource that is available over the
network. Using an XML catalog file, you can specify the location of the WSDL that will
be used by the web service at runtime.

The following table summarizes how XML catalogs are supported in the WebLogic
Server Ant tasks.

Using XML Catalogs 29-1

Overview of XML Catalogs

Table 29-1 Support for XML Catalogs in WebLogic Server Ant Tasks
- - - - - |

Ant Task Description

Define and reference XML catalogs in one of the following ways:

¢ Use the cat al og attribute to specify the name of the external XML

catalog file. For more information, see Defining an External XML Catalog.
e Use the <xm cat al 0g> child element to reference an embedded XML

catalog file. For more information, see Embedding an XML Catalog.
When you execute the cl i ent gen Ant task to build the client (or the j wsc
Ant task if the cl i ent gen task is embedded), the j ax- ws- cat al og. xm
file is generated and copied to the client runtime environment. The j ax- ws-
cat al og. xnl file contains the XML catalog(s) that are defined in the
external XML catalog file(s) and/or embedded in the bui | d. xmi file. This
file is copied, along with the referenced XML targets, to the META- | NF or
VEB- | NF folder for Enterprise or Web applications, respectively.

clientgen

Note: The contents of the XML resources are not impacted during this
process.

You can disable the j ax- ws- cat al og. xm file from being copied to the
client runtime environment, as described in Disabling XML Catalogs in the
Client Runtime.

Define and reference XML catalogs in one of the following ways:

¢ Use the cat al og attribute to specify the name of the external XML
catalog file. For more information, see Defining an External XML Catalog.

e Use the <xm cat al 0g> child element to reference an embedded XML
catalog file. For more information, see Embedding an XML Catalog.

When you execute the wsdl ¢ Ant task, the XML resources are copied to the

compiled WSDL JAR file or exploded directory.

wsdl ¢

dl et Define and reference XML catalogs in one of the following ways:
WS €
g e Use the cat al og attribute to specify the name of the external XML

catalog file. For more information, see Defining an External XML Catalog.
e Use the <xm cat al 0g> child element to reference an embedded XML

catalog file. For more information, see Embedding an XML Catalog.
When you execute the wsdl get Ant task, the WSDL and imported resources
are downloaded to the specified directory.

Note: The contents of the XML resources are updated to reference the
resources defined in the XML catalog(s).

The following sections describe how to:

* Define and reference an XML catalog to specify the XML resources that you want
to redirect. See Defining and Referencing XML Catalogs.

e Disable XML catalogs in the client runtime. See Disabling XML Catalogs in the
Client Runtime.

* Getalocal copy of the WSDL and its imported XML resources using wsdl get .
These files can be packaged with your application and referenced from within an
XML catalog. See Getting a Local Copy of XML Resources.

For more information about XML catalogs, see the Oasis XML Catalogs specification at
http://ww. oasi s- open. org/ conmi tt ees/ downl oad. php/ 14809/ xm -
cat al ogs. htm .

29-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Defining and Referencing XML Catalogs

29.2 Defining and Referencing XML Catalogs

You define an XML catalog and then reference it from the cl i ent gen or wsdl ¢ Ant
task in your bui | d. xm file in one of the following ways:

* Define an external XML catalog - Define an external XML catalog file and
reference that file from the cl i ent gen or wsdl ¢ Ant tasks in your bui I d. xmi
file using the cat al ogs attribute. For more information, see Defining an External
XML Catalog.

Note:

If you use the catalog option, you cannot define the catalog element in the
catalog file using a relative path that starts with "../". If you do so, the element
file cannot be copied to the client class directory and it may cause an
unexpected exception in the client runtime.

¢ Embed an XML catalog - Embed the XML catalog directly in the bui I d. xnl file
using the <xm cat al 0og> element and reference it from the cl i ent gen or wsdl ¢
Ant tasks in your bui | d. xml file using the <xmi cat al og> child element. For
more information, see Embedding an XML Catalog.

In the event of a conflict, entries defined in an embedded XML catalog take precedence
over those defined in an external XML catalog.

Note:

You can use the wsdl get Ant task to get a local copy of the XML resources, as
described in Disabling XML Catalogs in the Client Runtime.

29.2.1 Defining an External XML Catalog

To define an external XML catalog;:

1. Create an external XML catalog file that defines the XML resources that you want
to be redirected. See Creating an External XML Catalog File.

2. Reference the XML catalog file from the cl i ent gen or wsdl ¢ Ant task in your
bui | d. xn file using the cat al ogs attribute. See Referencing the External XML
Catalog File.

Each step is described in more detail in the following sections.

29.2.1.1 Creating an External XML Catalog File

The <cat al og> element is the root element of the XML catalog file and serves as the
container for the XML catalog entities. To specify XML catalog entities, you can use the
syst emor publ i ¢ elements, for example.

The following provides a sample XML catalog file:

<catal og xm n="urn: oasi s:names:tc:entity:xn ns:xm : catal og"
prefer="systent>
<system system d="http://foo.org/ hel | o?wsdl "
uri="Hel I oService.wsdl " />

Using XML Catalogs 29-3

Defining and Referencing XML Catalogs

<public publicld="1SO 8879:1986//ENTI TI ES Added Latin 1//EN'

uri="wsdl / nyApp/ nyApp. wsdl "/ >
</ catal og>

In the above example:

¢ The <cat al 0g> root element defines the XML catalog namespace and sets the
pref er attribute to syst emto specify that system matches are preferred.

* The <syst en® element associates a URI reference with a system identifier.

¢ The <publ i c> element associates a URI reference with a public identifier.

For a complete description of the XML catalog file syntax, see the Oasis XML Catalogs
specification at ht t p: / / waww. oasi s- open. or g/ conmmi t t ees/ downl oad. php/
14809/ xm - cat al ogs. htnl .

29.2.1.2 Referencing the External XML Catalog File

To reference the XML catalog file from the cl i ent gen or wsdl ¢ Ant task in your
bui | d. xnl file, use the cat al ogs attribute.

The following example shows how to reference an XML catalog file using cl i ent gen.
Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
type="JAXW\E'
wsdl =" ${wsdl }"
destDir="${clientclasses.dir}"
packageName="xnl cat al og. j axws. clientgen.client"
cat al og="wsdl cat al og. xm "/ >
</clientgen>
</target>

29.2.2 Embedding an XML Catalog
To embed an XML catalog;:

1. Create an embedded XML catalog in the bui | d. xmi file. See Creating an
Embedded XML Catalog.

2. Reference the embedded XML catalog from the cl i ent gen or wsdl ¢ Ant task
using the xm cat al og child element. See Referencing an Embedded XML Catalog.

Each step is described in more detail in the following sections.

Note:

In the event of a conflict, entries defined in an embedded XML catalog take
precedence over those defined in an external XML catalog.

29.2.2.1 Creating an Embedded XML Catalog

The <xmm cat al 0og> element enables you to embed an XML catalog directly in the
bui I d. xm file. The following shows a sample of an embedded XML catalog in the
bui I d. xm file.

<xn cat al og i d="wsi nportcatal og">
<entity publicid="http://helloservice.org/types/HelloTypes. xsd"

29-4 Developing JAX-WS Web Services for Oracle WebLogic Server

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Disabling XML Catalogs in the Client Runtime

| ocati on="${basedir}/Hel |l oTypes. xsd"/ >
</ xm cat al og>

For a complete description of the embedded XML catalog syntax, see the Oasis XML
Catalogs specification at ht t p: / / www. oasi s- open. or g/ conmi tt ees/
downl oad. php/ 14809/ xm - cat al ogs. ht mi .

29.2.2.2 Referencing an Embedded XML Catalog

The <xm cat al og> child element of the cl i ent gen or wsdl ¢ Ant tasks enables you
to reference an embedded XML catalog. To specify the <xml cat al 0g> element, use
the following syntax:

<xnl catal og refid="id"/>

The i d referenced by the <xni cat al 0g> child element must match the ID of the
embedded XML catalog.

The following example shows how to reference an embedded XML catalog using
cl i ent gen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
type="JAXW\E'
wsdl =" ${wsdl }"
destDir="${clientclasses.dir}"
packageName="xnl cat al og. j axws. clientgen.client"
cat al og="wsdl cat al og. xm "/ >
<xm cat al og refid="wsinportcatal og"/>
</clientgen>
</target>
<xnl cat al og i d="wsi nportcatal og">
<entity publicid="http://helloservice.org/types/HelloTypes.xsd"
| ocation="${basedir}/Hel | oTypes. xsd"/ >
</ xm cat al og>

29.3 Disabling XML Catalogs in the Client Runtime

By default, when you define and reference XML catalogs in your bui | d. xni file, as
described in Defining and Referencing XML Catalogs, when you execute the

cl i ent gen Ant task to build the client, the j ax- ws- cat al og. xml file is generated
and copied to the client runtime environment. The j ax- ws- cat al og. xm file
contains the XML catalog(s) that are defined in the external XML catalog file(s) and/or
embedded in the bui | d. xnl file. This file is copied, along with the referenced XML
targets, to the META- | NF or VEB- | NF folder for Enterprise or Web applications,
respectively.

You can disable the generation of the XML catalog artifacts in the client runtime
environment by setting the genRunt i meCat al og attribute of the cl i ent gen to
f al se. For example:

<clientgen
type="JAXW\E'
wsdl =" ${wsdl }"
destDir="${clientclasses.dir}"
packageName="xnl cat al 0og. j axws. clientgen.client"
cat al og="wsdl cat al og. xm "
genRunti meCat al og="f al se"/ >

Using XML Catalogs 29-5

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Getting a Local Copy of XML Resources

In this case, the j ax-ws- cat al og. xim file will not be copied to the runtime
environment.

If you generated your client with the genRunt i neCat al og attribute set to f al se, to
subsequently enable the XML catalogs in the client runtime, you will need to create the
j ax-ws-cat al og. xm file manually and copy it to the META- | NF or VVEB- | NF
folder for Enterprise or Web applications, respectively. Ensure that the j ax- ws-

cat al og. xm file contains all of the entries defined in the external XML catalog file(s)
and/or embedded in the bui | d. xmi file.

29.4 Getting a Local Copy of XML Resources

The wsdl get Ant task enables you to get a local copy of XML resources, such as
WSDL and XSD files. Then, you can refer to the local version of the XML resources
using an XML catalog, as described in Defining and Referencing XML Catalogs.

The following excerpt from an Ant bui I d. xri file shows how to use the wsdl get
Ant task to download a WSDL and its XML resources. The XML resources will be
saved to the wsdl folder in the directory from which the Ant task is run.

<target nanme="wsdl get"
<wsdl get
wsdl ="http: //host/service?wsdl "
destDir="./wsdl /"
/>
</target>

29-6 Developing JAX-WS Web Services for Oracle WebLogic Server

30

Programming Web Services Using XML
Over HTTP

This chapter describes how to program web services using XML over HTTP.

This chapter includes the following sections:

® About Programming Web Services Using XML Over HTTP

* Programming Guidelines for the Web Service Using XML Over HTTP
® Accessing the Web Service from a Client

* Securing Web Services that Use XML Over HTTP

30.1 About Programming Web Services Using XML Over HTTP

In addition to standard "SOAP over HTTP" use cases, WebLogic JAX-WS can also be
used for some "XML over HTTP" web services. Use of the XML over HTTP style
allows you to build simple RESTful web services while still leveraging the
convenience of the JAX-WS programming model.

Note:

As a best practice, it is recommended that you develop RESTful web services
using the Jersey JAX-RS RI, as described in Developing and Securing RESTful
Web Services for Oracle WebLogic Server. The Jersey JAX-RS RI provides an open
source, production quality RI for building RESTful web services and supports
all of the HTTP methods.

When using the HTTP protocol to access web service resources, the resource identifier
is the URL of the resource and the standard operation to be performed on that
resource is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

Note:

In this JAX-WS implementation, the set of supported HTTP methods is limited
to GET and POST. DELETE, PUT, and HEAD are not supported. Any HTTP
requests containing these methods will be rejected with a 405 Met hod Not
Al | owed error.

If the functionality of PUT and DELETE are required, the desired action can be
accomplished by tunneling the actual method to be executed on the POST
method. This is a workaround referred to as overloaded POST. (A Web search
on "REST overloaded POST" will return a number of ways to accomplish this.)

Programming Web Services Using XML Over HTTP 30-1

Programming Guidelines for the Web Service Using XML Over HTTP

You build RESTful-like endpoints using the i nvoke() method of the

j avax. xm . ws. Provi der <T> interface (see htt p: / / docs. oracl e. com

j avaeel 7/ api / j avax/ xm / ws/ Provi der. ht m). The Pr ovi der interface
provides a dynamic alternative to building an service endpoint interface (SEI).

The procedure in this section describes how to program and compile the JWS file
required to implement web services using XML over HTTP. The procedure shows
how to create the JWS file from scratch; if you want to update an existing JWS file, you
can also use this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working bui | d. xm file to which you can add targets for running the

j wsc Ant task and deploying the web services. For more information, see Developing
JAX-WS Web Services.

Table 30-1 Steps to Program RESTful Web Services
- - - |

Step Description

1 Create a new JWS file, or Use your favorite IDE or text editor. See Programming
update an existing one, that ~ Guidelines for the Web Service Using XML Over HTTP.
implements the web service
using XML over HTTP.

2 Update your bui | d. xm file For example:
to include a call to the j wsc

Ant task to compile the JWS <jwsc srcdir="." destdir="output/restEar">
file into a web service. Sjws file="NearbyGty.java" type="JAXUE'/>
</jwsc>

For more information, see Running the jwsc WebLogic
Web Services Ant Task.

3 Run the Ant target to build For example:

the web service. .
pronpt> ant buil d-rest

4 Deploy the web service as See Deploying and Undeploying WebLogic Web
usual. Services.

5 Access the web service from See Accessing the Web Service from a Client.
your web service client.

30.2 Programming Guidelines for the Web Service Using XML Over HTTP

The following example shows a simple JWS file that implements a web service using
XML over HTTP; see the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package exanpl es.webservices. jaxws. rest;
import javax.xm .ws.\WebServi ceProvider;

i mport javax.xnl.ws. Bi ndi ngType;

import javax.xm .ws. Provider;

i mport javax.xm .ws. WbServi ceCont ext ;

i mport javax.xnl.ws. handl er. MessageCont ext ;
i mport javax.xnl .ws. http. HTTPBi ndi ng;

i mport javax.xm .ws.http. HTTPEXxcepti on;

i mport javax.xnl.transform Source;

i mport javax.xnl.transform stream StreanSour ce;
i mport javax.annotation. Resour ce;

555555 b

30-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html

Programming Guidelines for the Web Service Using XML Over HTTP

inport java.io.ByteArraylnput Stream
inport java.util.StringTokenizer;

@\ebSer vi ceProvi der (
target Nanespace="http://exanpl e.org",
servi ceNane = "NearbyC tyService")
@i ndi ngType(val ue = HTTPBI ndi ng. HTTP_BI NDI NG)

public class NearbyGity inplenments Provider<Source> {
@resour ce(t ype=hj ect . cl ass)
protected WebServi ceCont ext wsCont ext;

public Source invoke(Source source) {
try {

MessageCont ext messageCont ext = wsCont ext . get MessageCont ext () ;

[/ Cbtain the HTTP nehtod of the input request.
javax. servlet. http. HtpServl et Request servl et Request =
(javax.servlet.http. HtpServl et Request) messageCont ext . get (
MessageCont ext . SERVLET _REQUEST) ;
String httpMethod = servl et Request. get Met hod();
i f (httpMethod. equal sl gnoreCase("GET"));
{

String query =
(String)messageCont ext . get (MessageCont ext . QUERY_STRING) ;
if (query !'= null && query.contains("lat=") &&
query. contains("long=")) {
return createSource(query);
} else {
Systemerr.printIn("Query String = "+query);
throw new HTTPException(404);
}
} catch(Exception e) {
e.printStackTrace();
t hrow new HTTPExcepti on(500);

}
}

} else {

/1 This operation only supports "CET"

}

t hrow new HTTPExcepti on405);

private Source createSource(String str) throws Exception {

}

StringTokeni zer st = new StringTokenizer(str, "=&");

String latLong = st.nextToken();

doubl e l'atitude = Doubl e. parseDoubl e(st . next Token());

| at Long = st. next Token();

doubl e | ongi tude = Doubl e. par seDoubl e(st. next Token());

City nearby = Cty.findNearBy(latitude, |ongitude);

String body = nearby.toXM();

return new StreanBSource(new Byt eArrayl nput St ream(body. get Bytes()));

static class City {

String city;

String state;

doubl e latitude;

doubl e I ongitude;

City(String city, double lati, double longi, String st) {
this.city = city;
this.state = st;

Programming Web Services Using XML Over HTTP 30-3

Programming Guidelines for the Web Service Using XML Over HTTP

this.latitude = lati;
this.longitude = longi;

}

doubl e di stance(double lati, double Iongi) {
return Math.sqrt((lati-this.latitude)*(lati-this.latitude) +
(longi-this.longitude)*(longi-this.longitude)) ;
}

static final City[] cities = {
new City("San Francisco", 37. 7749295, - 122. 4194155, " CA"),
new Gity(" Col unbus", 39. 9611755, - 82. 9987942, "COH') ,
new City("Indianapolis", 39. 7683765, - 86. 1580423, "I N'),
new City("Jacksonville", 30.3321838, - 81. 655651, "FL"),
new City("San Jose", 37.3393857, - 121. 8949555, "CA"),
new Gity("Detroit", 42.331427,-83.0457538,"M "),
new City("Dall as", 32. 7830556, - 96. 8066667, " TX"),
new City("San Diego", 32.7153292, -117. 1572551, "CA"),
new City("San Antonio", 29.4241219, - 98. 4936282, " TX"),
new Ci ty("Phoeni x", 33. 4483771, -112. 0740373, "AZ"),
new Gi ty("Phil adel phia", 39. 952335, - 75. 163789, " PA") ,
new G ty("Houston", 29. 7632836, - 95. 3632715, " TX") ,
new Gity(" Chicago", 41. 850033, - 87. 6500523, "I L"),
new City("Los Angel es", 34.0522342, - 118. 2436849, "CA"),
new City("New York", 40. 7142691, - 74. 0059729, "NY") };
static City findNearBy(double lati, double Iongi) {
int n=0;
for (int i =1, i <cities.length; i++) {
if (cities[i].distance(lati, longi) <
cities[n].distance(lati, longi)) {
n=i;
}
}

return cities[n];

}

public String toXM.() {
return "<ns:NearbyCity xmns:ns=\"http://exanmple.org\"><Cty>"
+this.city+'</City><State>"+ this.state+"</State><Lat>"
+this.latitude +
"</ Lat ><Lng>"+t hi s. | ongi t ude+"</ Lng></ ns: Near byC ty>";

}

Follow these guidelines when programming the JWS file that implements the web
service using XML over HTTP. Code snippets of the guidelines are shown in bold in
the preceding example.

¢ Import the packages required to implement the Provider web service.

import javax.xm .ws.\WebServi ceProvider;
i mport javax.xnl.ws. Bi ndi ngType;
import javax.xm .ws. Provider;

* Annotate the Pr ovi der implementation class and set the binding type to HTTP.

@ebSer vi ceProvi der (
t arget Namespace="http://exanpl e. org",
servi ceNane = "NearbyGCi tyService")
@i ndi ngType(val ue = HTTPBI ndi ng. HTTP_BI NDI NG

30-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Accessing the Web Service from a Client

* Implement the i nvoke() method of the Provi der interface.

public class NearbyGity inplenments Provider<Source> {
@resour ce(t ype=oj ect . cl ass)
protected WebServi ceCont ext wsCont ext;

public Source invoke(Source source) {

¢ Get the request string using the QUERY_STRI NGfield in the
javax. xm . ws. handl er. MessageCont ext for processing (see message URL
http://docs.oracle.conijavaeel/ 7/ api /j avax/ xm / ws/ handl er/
MessageCont ext . ht nl). The query string is then passed to the
cr eat eSour ce() method that returns the city, state, longitude, and latitude that
is closest to the specified values.

String query =
(String)messageCont ext . get (MessageCont ext . QUERY_STRING) ;

return createSource(query);

30.3 Accessing the Web Service from a Client

To access the web service from a web service client, use the resource URI. For
example:

URL url = new URL (http://1ocal host: 7001/ NearbyCity/ Near byGi tyService?
| at =35& ong=-120) ;

Ht t pURLConnecti on conn = (Htt pURLConnection)url.openConnection();
connect i on. set Request Met hod(" PCST") ;

Il Get result

InputStreamis = connection. getlnputStream);

In this example, you set the latitude (I at) and longitude (I ong) values, as required, to
access the required resource.

30.4 Securing Web Services that Use XML Over HTTP

You can secure web services that use XML over HTTP using the same methods that
you use to secure Web applications. For more information, see "Options for Securing
Web Application and EJB Resources" in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

Programming Web Services Using XML Over HTTP 30-5

http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Securing Web Services that Use XML Over HTTP

30-6 Developing JAX-WS Web Services for Oracle WebLogic Server

31

Programming Stateful JAX-WS Web
Services Using HTTP Session

This chapter describes how you can develop WebLogic web services using Java API
for XML Web Services (JAX-WS) that interact with an Oracle database.

This chapter includes the following sections:

* Overview of Stateful Web Services

® Accessing HTTP Session on the Server

¢ Enabling HTTP Session on the Client

* Developing Stateful Services in a Cluster Using Session State Replication

¢ A Note About the JAX-WS RI @Stateful Extension

31.1 Overview of Stateful Web Services

Normally, a JAX-WS web service is stateless: that is, none of the local variables and
object values that you set in the web service object are saved from one invocation to
the next. Even sequential requests from a single client are treated each as independent,
stateless method invocations.

There are web service use cases where a client may want to save data on the service
during one invocation and then use that data during a subsequent invocation. For
example, a shopping cart object may be added to by repeated calls to the addToCar t
web method and then fetched by the get Cart web method. In a stateless web service,
the shopping cart object would always be empty, no matter how many addToCar t
methods were called. But by using HTTP Sessions to maintain state across web service
invocations, the cart may be built up incrementally, and then returned to the client.

Enabling stateful support in a JAX-WS web service requires a minimal amount of
coding on both the client and server.

31.2 Accessing HTTP Session on the Server

On the server, every web service invocation is tied to an HttpSession object. This object
may be accessed from the web service Context that, in turn, may be bound to the web
service object using resource injection. Once you have access to your HttpSession
object, you can "hang" off of it any stateful objects you want. The next time your client
calls the web service, it will find that same HttpSession object and be able to lookup
the objects previously stored there. Your web service is stateful!

The steps required on the server:

1. Add the @Resource (defined by Common Annotations for the Java Platform, JSR
250) to the top of your web service.

Programming Stateful JAX-WS Web Services Using HTTP Session 31-1

Enabling HTTP Session on the Client

2. Add a variable of type WebServiceContext that will have the context injected into
it.

3. Using the web service context, get the HttpSession object.

4. Save objects in the HttpSession using the setAttribute method and retrieve saved
object using getAttribute. Objects are identified by a string value you assign.

Example 31-1 Accessing HTTP Session on the Server
The following snippet shows its usage:

@\ebService
public class ShoppingCart {
@esour ce /] Step 1
private WebServi ceCont ext wsCont ext; /] Step 2
public int addToCart(ltemiten {
Il Find the HtpSession
MessageCont ext mc = wsCont ext . get MessageCont ext () ; Il Step 3
Ht t pSessi on session =
((javax.servlet.http. HtpServl et Request) nt. get (MessageCont ext . SERVLET _REQUEST)). get Se
ssion();
if (session == null)
t hrow new WebSer vi ceException("No HTTP Session found");
Il Get the cart object fromthe HtpSession (or create a new one)
List<ltem> cart = (List<ltenp)session.getAttribute("myCart"); // Step 4
if (cart == null)
cart = new ArraylList<litens();
/1 Add the itemto the cart (note that Itemis a class defined
Il in the WSDL)
cart.add(iten;
Il Save the updated cart in the HTTPSession (since we use the sane
Il "nyCart" nanme, the old cart object will be replaced)
session.setAttribute("nyCart", cart);
Il return the nunber of items in the stateful cart
return cart.size();

31.3 Enabling HTTP Session on the Client

The client-side code is quite simple. All you need to do is set the
SESSION_MAINTAIN_PROPERTY on the request context. This tells the client to pass
back the HTTP Cookies that it receives from the web service. The cookie contains a
session ID that allows the server to match the web service invocation with the correct
HttpSession, providing access to any saved stateful objects.

Example 31-2 Enabling HTTP Session on the Client

Shoppi ngCart proxy = new Cart Service().getCartPort();

((Bi ndi ngProvi der) proxy) . get Request Cont ext () . put (Bi ndi ngPr ovi der . SESSI ON_MAI NTAI N_PRO
PERTY, true);

/] Create a new Itemobject with a part nunber of '123456' and an item

/1 count of 4.

Itemitem = new | ten(' 123456, 4);

[l After first call, we'll print "1'" (the return value is the nunber of objects
/1 in the Cart object)

System out. print!|n(proxy.addToCart(iten));

/1 After the second call, we'll print '2', since we've added anot her

/1 Itemto the stateful, saved Cart object.

System out. print!|n(proxy.addToCart(iten));

31-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Stateful Services in a Cluster Using Session State Replication

31.4 Developing Stateful Services in a Cluster Using Session State

Replication

In a high-availability environment, a JAX-WS web service may be replicated across
multiple server instances in a cluster. A stateful JAX-WS web service is supported in
this environment through the use of the WebLogic Server HTTP Session State
Replication feature. For more information, see "HTTP Session State Replication” in
Administering Clusters for Oracle WebLogic Server.

There are a variety of techniques and configuration requirements for setting up a
clustered environment using session state replication (for example, supported servers
and load balancers, and so on). From the JAX-WS programming perspective, the only
new consideration is that the objects you store in the HttpSession using the
HttpSession.setAttribute method (as in Example 31-1) must be Serializable. If they are
Serializable, then these stateful objects become available to the web service on all
replicated web service instances in the cluster, providing both load balancing and
failover capabilities for JAX-WS stateful web services.

31.5 A Note About the JAX-WS RI @ Stateful Extension

The JAX-WS 2.1 Reference Implementation (RI) contains a vendor extension that
supports a different model for stateful JAX-WS web services using the @Stateful
annotation. It's implementation "pins" the state to a particular instance and is not
designed to be scalable or fault-tolerant. This feature is not supported for WebLogic
Server JAX-WS web services.

Programming Stateful JAX-WS Web Services Using HTTP Session 31-3

A Note About the JAX-WS Rl @ Stateful Extension

31-4 Developing JAX-WS Web Services for Oracle WebLogic Server

32

Testing and Monitoring Web Services

This chapter introduces you to the tools available for developing and administering
WebLogic web services.

This chapter includes the following sections:
e Testing Web Services
* Monitoring Web Services and Clients

¢ Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute
Threads

32.1 Testing Web Services

You can test basic and advanced features of your web service, such as security, quality
of service (QoS), HTTP headers, and so on. You can also perform stress testing of the
security features. For information about testing web services using the Web Services
Test Client or Fusion Middleware Control Test Web Service page, see "Testing Web
Services" in Administering Web Services.

32.2 Monitoring Web Services and Clients

You can monitor runtime information for web services and clients, such as number of
invocations, errors, faults, and so on, using the WebLogic Server Administration
Console or WLST.

The following naming convention is used to identify the web service or client in the
monitoring pages:

<appl i cati on_nanme>#<appl i cation_versi on>! <servi ce_nane><cont ext pat h><ur| _pattern>
Where:

e applicati on_name—Name of the application that contains the web service or
client.

e application_versi on—Version of the application that contains the web service
or client.

e servi ce_name—Name of the web service or client.

e cont ext _pat h—Context path defined for the web service. For more information,
see Defining the Context Path of a WebLogic Web Service.

e url _patter n—System default or user-defined web service URL pattern. For
more information, see Specifying the Transport Used to Invoke the Web Service.

Testing and Monitoring Web Services 32-1

Monitoring Web Services and Clients

32.2.1 Monitoring Web Services

To monitor a web service using the WebLogic Server Administration Console, click on
the Deployments node in the left pane and in the Deployments table that appears in
the right pane, locate the Enterprise application in which the web service is packaged.
Expand the application by clicking the + node; the web services in the application are
listed under the Web Services category. Click on the name of the web service and click
the Monitoring tab.

Alternatively, click the Deployments node in the left pane, the Monitoring tab that
appears in the right pane, and then the Web Service tab. Click on the name of the web
service for which you want to view monitoring statistics.

The following table lists the tabs that you can select to monitor web service
information. The pages aggregate the statistics of all the servers on which the web
service is running.

Note:

For JAX-WS web services, the built-in - Pr ot ocol operation displays
statistics that are relevant to the underlying WS-* protocols. This information
is helpful in evaluating the application performance.

Table 32-1 Monitoring Web Services
. __|

Click this tab . . . To view . ..
Monitoring> General General statistics about the web services, including total error and invocations
counts.

Monitoring> Invocations Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy Policies that are attached to the web service, organized into the following categories:
authentication, authorization, confidentiality, and integrity.

Monitoring> Ports Table listing the web service endpoints (ports). The table provides a summary of
information for each port. Click a port name to view more details.

Monitoring> Ports > General statistics about the web service endpoint. The page displays information

General such as the web service endpoint name, its URI, and its associated web service,
Enterprise application, and application module. Error and invocations counts are
aggregated for all web service endpoint operations.

Monitoring> Ports > Invocation statistics for the web service endpoint, such as success, fault, and
Invocations violation counts.

Monitoring> Ports > Cluster routing statistics for the web service endpoint, such as request and response,
Cluster Routing and routing failures.

Monitoring> Ports > MakeConnection anonymous endpoints for a web service. For each anonymous
Make Connection endpoint, runtime monitoring information is displayed, such as the number of

messages received, the number of messages pending, and so on. You can customize
the information that is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

32-2 Developing JAX-WS Web Services for Oracle WebLogic Server

Monitoring Web Services and Clients

Table 32-1 (Cont.) Monitoring Web Services
. ___|

Click this tab . . . To view . ..
Monitoring> Ports > Reliable messaging sequences for a web service. For each reliable messaging
Reliable Message sequence, runtime monitoring information is displayed, such as the sequence state,
the source and destination servers, and so on. You can customize the information
that is shown in the table by clicking Customize this table.
Click the sequence ID to view more details.
Monitoring> Ports > Reliable messaging requests for a web service. For each reliable messaging request,
Reliable Message > runtime monitoring information is displayed. You can customize the information
Requests that is shown in the table by clicking Customize this table.

Click the reliable message ID to view more details.

Monitoring> Ports > WS- Statistics related to the policies that are attached to the web service endpoint,

Policy

organized into the following categories: authentication, authorization,
confidentiality, and integrity.

Monitoring> Ports > List of operations for the web service endpoint.

Operations

For each operation, runtime monitoring information is displayed, such as the
number of times the operation has been invoked since the WebLogic Server instance
started, the average time it took to invoke the web service, the average time it took to
respond, and so on. You can customize the information that is shown in the table by
clicking Customize this table.

Note: For JAX-WS web services, the built-in Ws-Protocol operation displays statistics
that are relevant to the underlying WS-* protocols. For example, for web services
reliable messaging, this operation captures message statistics for Cr eat eSequence
and AckRequest ed messages received or sent by the reliable messaging subsystem
on behalf of the web service or client. This information is helpful in evaluating the
application performance.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

32.2.2 Monitori

ng Web Service Clients

To monitor a web service client using the WebLogic Server Administration Console,
click on the Deployments node in the left pane and, in the Deployments table that
appears in the right pane, locate the Enterprise application in which the web service
client is packaged. Expand the application by clicking the + node and click on the
application module within which the web service client is located. Click the
Monitoring tab, then click the Web Service Clients tab.

Alternatively, click the Deployments node in the left pane, the Monitoring tab that
appears in the right pane, and then the Web Service Clients tab. Click on the name of
the web service client for which you want to view monitoring statistics.

The table provides a summary of runtime information for each web service client.
Click the client name in the table to view more information.

Note:

For JAX-WS web services, the web services runtime creates system-defined
client instances within a web service endpoint that are used to send protocol-
specific messages as required by that endpoint. These client instances are
named after the web service endpoint that they serve with the following

Testing and Monitoring Web Services 32-3

Monitoring Web Services and Clients

suffix: - Syst enCl i ent . Monitoring information relevant to the system-
defined client instances is provided to assist in evaluating the application.

Table 32-2 Monitoring Web Service Clients

Click this tab . ..

To view . ..

Monitoring> General

General statistics about the web service clients, including total error and invocations
counts. The page displays the web service client name, its associated Enterprise
application and application module, and context root. Error and invocations
statistics are aggregated for all servers on which the web service is running.

Monitoring> Invocations

Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy

Policies that are attached to the web service client, organized into the following
categories: authentication, authorization, confidentiality, and integrity.

Monitoring> Servers

Table listing the server on which the client is currently running. Click the client name
and then use the tabs in the following steps to view more information about the web
service client on that server.

Monitoring> Servers >
General

General statistics about the web service client. The page displays information such as
the web service client port, its associated Enterprise application, and application
module, context root, and so on. Error and invocations counts are aggregated for all
web service client operations.

Monitoring> Servers >
Invocations

Invocation statistics for the web service client, such as success, fault, and violation
counts.

Monitoring> Servers >
Cluster Routing

Cluster routing statistics for the web service client, such as request and response, and
routing failures. For more information, see Monitoring Cluster Routing Performance.

Monitoring> Servers >
Make Connection

MakeConnection anonymous endpoints for a web service client. For each
anonymous endpoint, runtime monitoring information is displayed, such as the
number of messages received, the number of messages pending, and so on. You can
customize the information that is shown in the table by clicking Customize this
table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Servers >
Reliable Message

Reliable messaging sequences for a web service client. For each reliable messaging
sequence, runtime monitoring information is displayed, such as the sequence state,
the source and destination servers, and so on. You can customize the information
that is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Servers >
WS-Policy

Statistics related to the policies that are attached to the web service client, organized
into the following categories: authentication, authorization, confidentiality, and
integrity.

Monitoring> Servers >
Operations

List of operations for the web service client. For each operation, runtime monitoring
information is displayed, such as average response, execution, and dispatch times,
response, invocation and error counts, and so on. You can customize the information
that is shown in the table by clicking Customize this table.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

32-4 Developing JAX-WS Web Services for Oracle WebLogic Server

Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

32.3 Using Work Managers to Prioritize Web Services Work and Reduce
Stuck Execute Threads

After a connection has been established between a client application and a web
service, the interactions between the two are ideally smooth and quick, whereby the
client makes requests and the service responds in a prompt and timely manner.
Sometimes, however, a client application might take a long time to make a new
request, during which the web service waits to respond, possibly for the life of the
WebLogic Server instance; this is often referred to as a stuck execute thread. If, at any
given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular web service gets into this state fairly often, you can specify how the
service prioritizes the execution of its work by configuring a Work Manager and
applying it to the service. For example, you can configure a response time request class (a
specific type of Work Manager component) that specifies a response time goal for the
web service.

The following shows an example of how to define a response time request class in a
deployment descriptor:

<wor k- manager >
<name>r esponset i me_wor knmanager </ name>
<response-ti me-request-class>
<name>ny_response_t i me</ nane>
<goal - m5>2000</ goal - s>
</response-tine-request-class>
</ wor k- manager >

You can configure the response time request class using the WebLogic Server
Administration Console, as described in "Work Manager: Response Time:
Configuration" in Oracle WebLogic Server Administration Console Online Help.

For more information about Work Managers in general and how to configure them for
your web service, see "Using Work Managers to Optimize Scheduled Work" in
Administering Server Environments for Oracle WebLogic Server.

Testing and Monitoring Web Services 32-5

Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

32-6 Developing JAX-WS Web Services for Oracle WebLogic Server

Part V

Reference

Part V contains the following chapters:

e Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make
Connection

¢ Example Client Wrapper Class for Batching Reliable Messages

e Migrating JAX-RPC Web Services and Clients to JAX-WS

A

Pre-packaged WS-Policy Files for Web
Services Reliable Messaging and Make
Connection

This appendix summarizes the pre-packaged WS-Policy files that support reliable
messaging, Make Connection, or both features together, for WebLogic web services

using Java API for XML Web Services (JAX-WS).

You cannot change these pre-packaged files. If their values do not suit your needs, you

must create your own WS-Policy file. For details, see:

* Creating the Web Service Reliable Messaging WS-Policy File

® Creating the Web Service Make Connection WS-Policy File (Optional)

For reference information about the reliable messaging and Make Connection policy

assertions, see:

* "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web

Services Reference for Oracle WebLogic Server

¢ "Web Service Make Connection Policy Assertion Reference" in WebLogic Web

Services Reference for Oracle WebLogic Server

The following table summarizes the pre-packaged WS-Policy files. This table also
specifies whether the WS-Policy file can be attached at the method level; if the value in
this column is no, then the WS-Policy file can be attached at the class level only.

Table A-1 Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
o Specifies policy assertions related to delivery assurance. Yes
Def aul tRel i abilityl. 2. xm The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.2 at
http://docs. oasi s-open. or g/ ws-r x/ wsr np/
200702. See DefaultReliability1.2.xml (WS-Policy File).
Specifies policy assertions related to quality of service. Yes

Defaul tReliabi[ityl. 1. xn The web service reliable messaging assertions are based

on WS Reliable Messaging Policy Assertion 1.1 at
http://docs. oasi s-open. or g/ ws-r x/ wsr np/
200702/ wsr np- 1. 1- spec- 0s- 01. htm . See
DefaultReliability1.1.xml (WS-Policy File).

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make Connection A-1

http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Table A-1 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File

Description

Method Level
Attachment?

Defaul t Rel i bility.xn

Deprecated. The web service reliable messaging
assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 atht t p: //

schemas. xm soap. or g/ ws/ 2005/ 02/ r m W5-
RMPol i cy. pdf . In this release, many of the reliable
messaging policy assertions are managed through JWS
annotations or configuration.

Specifies typical values for the reliable messaging policy
assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base
retransmission interval of 3 seconds. See
DefaultReliability.xml WS-Policy File (WS-Policy)
[Deprecated].

Yes

LongRunni ngRel i abi l'ity. xm

Deprecated. The web service reliable messaging
assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 for long running processes. In this
release, many of the reliable messaging policy assertions
are managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging WS-
Policy file, except that it specifies a much longer activity
timeout interval (24 hours.) See
LongRunningReliability.xml WS-Policy File (WS-Policy)
[Deprecated].

Yes

Ml 1. xmi

Enables Make Connection support on the web service and
specifies usage as optional on the web service client. The
WS-Policy 1.5 protocol is used. See Mc1.1.xml (WS-Policy
File).

No

M. xm

Enables Make Connection support on the web service and
specifies usage as optional on the web service client. The
WS-Policy 1.2 protocol is used. See Mc.xml (WS-Policy
File).

No

Reliabilityl.2_ExactlyOnce
_WthMCL. 1. xm

Specifies policy assertions related to quality of service. It
enables Make Connection support on the web service and
specifies usage as optional on the web service client. See
Reliability1.2_ExactlyOnce_ WithMC1.1.xml (WS-Policy
File).

Reliabilityl.2_SequenceSTRSecur
ity

Specifies that in order to secure messages in a reliable
sequence, the runtime will use the

wsse: SecurityTokenRef er ence that is referenced in
the Cr eat eSequence message. It enables Make
Connection support on the web service and specifies
usage as optional on the web service client. The web
service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.2 at ht t p: //
docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702. See
Reliability1.2_SequenceTransportSecurity.xml (WS-Policy
File).

A-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702

DefaultReliability1.2.xml (WS-Policy File)

Table A-1 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File

Description

Method Level
Attachment?

Reliabilityl. 1_SequenceSTRSecur
ity

The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.1 at
http://docs. oasi s-open. or g/ ws-r x/ wsr np/
200702/ wsr np- 1. 1- spec- 0s-01. html . See
Reliability1.1_SequenceTransportSecurity.xml (WS-Policy
File).

Yes

Rel i abi l'ityl.2_SequenceTranspor
tSecurity

Specifies policy assertions related to transport-level
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at ht t p: // docs. oasi s-

open. or g/ ws-r x/ wsr np/ 200702. See
Reliability1.2_SequenceTransportSecurity.xml (WS-Policy
File).

Yes

Reliabilityl. 1 SequenceTranspor
tSecurity

Specifies policy assertions related to transport-level
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.1 atht t p: // docs. oasi s-

open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1- spec-
0s-01. htm . See
Reliability1.1_SequenceTransportSecurity.xml (WS-Policy
File).

Yes

Reliabilityl.0_1.2.xm

Combines 1.2 and 1.0 WS-Reliable Messaging policy
assertions. The policy assertions for the 1.2 version Make
Connection support on the web service and specifies
usage as optional on the web service client. This sample
relies on smart policy selection to determine the policy
assertion that is applied at runtime. See
Reliability1.0_1.2.xml (WS-Policy File).

Rel i abilityl.0_1. 1. xni

Combines 1.1 and 1.0 WS Reliable Messaging policy
assertions. See Reliability1.0_1.1.xml (WS-Policy.xml File).

Yes

A.1 DefaultReliability1.2.xml (WS-Policy File)

The Def aul t Real i abi lityl. 2. xm WS-Policy file specifies policy assertions
related to delivery assurance. The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.2 at htt p: / / docs. oasi s-

open. or g/ ws-rx/ wsrm 200702/ wsrm 1. 2- spec-o0s. htm .

<?xm version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://ww. w3. or g/ ns/ ws-policy">

<wspl5: Al l >

<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: Del i ver yAssur ance>
<wspl5: Pol i cy>

<wsrnp: Exact | yOnce/ >
<wsrmp: I nOrder/ >

</wspl5: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RVAssertion>

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make Connection A-3

http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html

DefaultReliability1.1.xml (WS-Policy File)

</wspl5: Al >
</wspl5: Pol i cy>

A.2 DefaultReliability1.1.xml (WS-Policy File)

The Def aul t Real i abi | i tyl. 1. xm WS-Policy file specifies policy assertions
related to quality of service. The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.1 at htt p: / / docs. oasi s-

open. or g/ ws-rx/ wsr np/ 200702/ wsr np- 1. 1- spec-0s-01. htni .

<?xm version="1.0"?>

<wsp: Pol i cy
xm ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
>
<wsrnp: RMAssertion
xm ns: wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702"
>
<wsrnp: Del i veryAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce />
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp: Pol i cy>

A.3 DefaultReliability.xml WS-Policy File (WS-Policy) [Deprecated]

This WS-Policy file is deprecated. The web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 athtt p://

schemas. xm soap. or g/ ws/ 2005/ 02/ r mf pol i cy/ . In the current release, many
of the reliable messaging policy assertions are managed through JWS annotations or
configuration.

The Def aul t Rel i abi | i ty. xm WS-Policy file specifies typical values for the
reliable messaging policy assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base retransmission interval of 3
seconds.

<?xnl version="1.0"?>

<wsp: Pol i cy
xm ns:wsrme"htt p: // schemas. xn soap. or g/ ws/ 2005/ 02/ r i pol i cy"
xm ns: wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="htt p: // wwmn. bea. coml wsrni pol i cy"
>

<wsrm RVAssertion >
<wsrm I nactivityTinmeout MIIiseconds="600000" />
<wsrm BaseRetransm ssionlnterval MIIliseconds="3000" />
<wsrm Exponent i al Backof f />
<wsrm Acknowl edgement I nterval M Iliseconds="200" />
<beapol i cy: Expires Expires="P1D' optional ="true"/>

</ wsrm RMAssertion>

</wsp: Poli cy>

A-4 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated]

A.4 LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated]

This WS-Policy file is deprecated. The web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 athtt p://

schemas. xm soap. or g/ ws/ 2005/ 02/ r mf pol i cy/ . In the current release, many
of the reliable messaging policy assertions are managed through JWS annotations or
configuration.

The LongRunni ngRel i bi | i ty. xm WS-Policy files specifies values that are similar
to the Def aul t Rel i abi I'i ty. xml WS-Policy file, except that it specifies a much
longer activity timeout interval (24 hours). See LongRunningReliability.xml WS-Policy
File (WS-Policy) [Deprecated].

<?xnl version="1.0"?>

<wsp: Pol i cy
xm ns:wsrme"htt p: // schemas. xnl soap. or g/ ws/ 2005/ 02/ r i pol i cy"
xm ns: wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy"
xn ns: beapol i cy="htt p:// wwmn. bea. coml wsrni pol i cy"
>
<wsrm RMAssertion >
<wsrm I nactivityTimeout MIIiseconds="86400000" />
<wsrm BaseRet ransmi ssionlnterval MIIiseconds="3000" />
<wsrm Exponent i al Backof f />
<wsrm Acknowl edgement I nterval M Iliseconds="200" />
<beapol i cy: Expires Expires="P1M optional ="true"/>
</wsrm RMAssertion>
</wsp: Pol i cy>

A.5 Mc1.1.xml (WS-Policy File)

The Mc1. 1. xm WS-Policy file enables Make Connection support on the web service
and sets usage as optional on the web service client. In this case, the WS-Policy 1.5
protocol is used. The assertions are based on the Make Connection policy assertion
defined at ht t p: / / docs. oasi s- open. or g/ ws-r x/ wsnt/ 200702/ wsnt- 1. 1-
spec-0s. htnl .

<?xm version="1.0"?>

<wspl5: Policy
xn ns: wsp15="htt p: // waw. w3. or g/ ns/ ws- pol i cy"
xnl ns: wsne="htt p: // docs. oasi s- open. or g/ ws- r x/ wsnt/ 200702" >
<wsnt: MCSupport ed wspl5: Optional ="true" />

</wspl5: Pol i cy>

A.6 Mc.xml (WS-Policy File)

The Mc. xm WS-Policy file enables Make Connection support on the web service and
sets usage as optional on the web service client. The assertions are based on the Make
Connection policy assertion defined at ht t p: / / docs. oasi s- open. or g/ ws-r x/
wsnt/ 200702/ wsne- 1. 1- spec-o0s. htm .

<?xm version="1.0"?>

<wsp: Pol i cy
xnl ns: wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
xnl ns: wsne="http://docs. oasi s- open. or g/ ws- r x/ wsnt/ 200702" >
<wsnt: MCSupported wsp: Optional ="true" />

</wsp: Pol i cy>

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make Connection A-5

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html

Reliability1.2_ExactlyOnce_WithMC1.1.xml (WS-Policy File)

A.7 Reliability1.2_ExactlyOnce_WithMC1.1.xml (WS-Policy File)

TheRel i abilityl.2_Exactl yOnce_WthMCL. 1. xml WS-Policy file specifies
policy assertions related to quality of service. It enables Make Connection support on
the web service and specifies usage as optional on the web service client.

The assertions are based on the following specifications:

* Web service reliable messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at ht t p: // docs. oasi s- open. or g/ ws-r x/ wsr m
200702/ wsrm 1. 2-spec-0s. htni .

* Make Connection assertions are based on the Make Connection policy assertion
defined at ht t p: / / docs. oasi s- open. or g/ ws-r x/ wsnt/ 200702/
wsnt- 1. 1-spec-o0s. htnl .

<?xm version="1.0" encodi ng="UTF-8" ?>
<wspl5: Policy xm ns:wspl5="http://ww. w3. org/ ns/ ws-policy">
<wspl5: Al l >
<wsrnp: RMAssertion
xm ns: wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >
<wsr mp: Del i ver yAssur ance>
<wspl5: Policy>
<wsrnp: Exactl yOnce />
</wspl5: Pol i cy>
</ wsrnp: Del i ver yAssurance>
</ wsrnp: RMAssertion>
<wsnc: MCSupport ed
xm ns: wsne="http://docs. oasi s- open. or g/ ws-rx/ wsnc/ 200702"
wspl5: Optional ="true" />
</wspl5: Al l >
</wspl5: Pol i cy>

A.8 Reliability1.2_SequenceSTR.xml (WS-Policy File)

The Rel i abi | i tyl. 2_SequenceSTR. xm file specifies that in order to secure
messages in a reliable sequence, the runtime will use the

wsse: Securit yTokenRef er ence that is referenced in the Cr eat eSequence
message. It enables Make Connection support on the web service and specifies usage
as optional on the web service client.

The assertions are based on the following specifications:

¢ Web service reliable messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at ht t p: / / docs. oasi s- open. or g/ ws-r x/ wsr ml
200702/ wsrm 1. 2-spec-0s. htm .

® Make Connection assertions are based on the Make Connection policy assertion
defined at ht t p: / / docs. oasi s- open. or g/ ws-r x/ wsnt/ 200702/
wsnt- 1. 1-spec-o0s. htnl.

<?xml version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://wmv. w3. or g/ ns/ws-policy">
<wspl5: Al | >
<wsr np: RMAsserti on
xm ns: wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: SequenceSTR/ >
<wsr np: Del i ver yAssur ance>
<wspl5: Pol i cy>

A-6 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html

Reliability1.1_SequenceSTR.xml (WS-Policy File)

<wsr np: Exact | yOnce/ >
</ wspl5: Pol i cy>
</ wsrnp: Del i ver yAssurance>
</ wsrnp: RMAssertion>
<wsnc: MCSupport ed
xm ns:wsnc="http://docs. oasi s- open. or g/ ws-r x/ wsnc/ 200702"
wspl5: Optional ="true"/>
</wspl5: Al >
</ wspl5: Pol i cy>

A.9 Reliability1.1_SequenceSTR.xml (WS-Policy File)

TheRel i abilityl.1_SequenceSTR. xml file specifies that in order to secure
messages in a reliable sequence, the runtime will use the

wsse: Securi t yTokenRef er ence that is referenced in the Cr eat eSequence
message. The web service reliable messaging assertions are based on WS Reliable
Messaging Policy Assertion 1.1 at ht t p: // docs. oasi s- open. or g/ ws-r x/
wsr np/ 200702/ wsr np- 1. 1- spec-0s-01. htm .

<wsp: Policy xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsrnp: RMAssertion
xm ns: wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: SequenceSTR/ >
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsr np: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</ wsp: Pol i cy>

A.10 Reliability1.2_SequenceTransportSecurity.xml (WS-Policy File)

The Rel i abi lityl. 2_SequenceTransport Security. xm file specifies policy
assertions related to transport-level security and quality of service. The web service
reliable messaging assertions are based on WS Reliable Messaging Policy Assertion 1.2
athttp://docs. oasi s-open. or g/ ws-rx/ wsrnl 200702/ wsr m 1. 2- spec-

os. htni.

<?xm version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://ww. w3. or g/ ns/ ws-policy">
<wspl5: Al | >
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: SequenceTransport Security/>
<wsr np: Del i ver yAssur ance>
<wspl5: Pol i cy>
<wsrmp: Exact | yOnce/ >
</ wspl5: Pol i cy>
</ wsr np: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wspl5: Al >
</ wspl5: Pol i cy>

A.11 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)

The Rel i abi lityl.1_SequenceTransport Security. xm file specifies policy
assertions related to transport-level security and quality of service. The web service
reliable messaging assertions are based on WS Reliable Messaging Policy Assertion 1.1

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make Connection A-7

http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html

Reliability1.0_1.2.xml (WS-Policy File)

athttp://docs. oasi s-open. or g/ ws-r x/ wsrnp/ 200702/ wsr np- 1. 1- spec-
0s-01. htm .

<wsp: Policy xm ns:wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsr np: RMAssertion
xm ns: wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsrnp: SequenceTr ansport Security/>
<wsrnp: Del i veryAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp: Pol i cy>

A.12 Reliability1.0_1.2.xml (WS-Policy File)

The Rel i abi lityl.0_1.2. xm WS-Policy file combines 1.2 and 1.0 WS-Reliable
Messaging policy assertions.

This sample relies on smart policy selection to determine the policy assertion that is
applied at runtime. For more information about smart policy selection, see Using
Multiple Policy Alternatives.

<?xnm version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://ww. w3. org/ ns/ ws-policy">
<wspl5: Exact | yOne>
<wspls: Al l >
<wsrmp: RMAsserti on
xm ns:wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >
<wsrnp: Del i veryAssur ance>
<wspl5: Pol i cy>
<wsrmp: Exact | yOnce/ >
</ wspl5: Pol i cy>
</ wsrnp: Del i ver yAssurance>
</ wsrnp: RMAssertion>
<wsnc: MCSuppor t ed
xm ns:wsne="http://docs. oasi s- open. or g/ ws-r x/ wsnc/ 200702"
wspl5: Optional ="true"/>
</wspl5: Al'l >
<wspls: Al l >
<wsr mpl0: RMAssertion
xm ns: wsrnpl0="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r mf pol i cy" >
<wsrnpl0: I nactivityTimeout MIIiseconds="600000"/>
<wsrnpl0: BaseRet ransni ssionlnterval MIliseconds="3000"/>
<wsr np10: Exponent i al Backof f/>
<wsrnpl0: Acknow edgenent I nterval MIliseconds="200"/>
</wsrnpl0: RMAsserti on>
</wspl5: Al'l >
</ wsp15: Exact | yOne>
</wspl5: Pol i cy>

A.13 Reliability1.0_1.1.xml (WS-Policy.xml File)

The Rel i abilityl.0_1.1.xm WS-Policy file combines 1.1 and 1.0 WS-Reliable
Messaging policy assertions. This sample relies on smart policy selection to determine
the policy assertion that is applied at runtime. For more information about smart
policy selection, see Using Multiple Policy Alternatives.

A-8 Developing JAX-WS Web Services for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Reliability1.0_1.1.xml (WS-Policy.xml File)

Note:

The 1.0 web service reliable messaging assertions are prefixed by wsr np10.

<wsp: Policy xm ns:wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsp: Exact | yOne>
<wsp: Al | >
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp: Al l >
<wsp: Al l >
<wsrmpl0: RVAssertion
xm ns: wsrnpl0="http://schemas. xn soap. or g/ ws/ 2005/ 02/ r ml pol i cy" >
<wsr npl0: I nactivityTi meout MIIiseconds="600000"/>
<wsr np10: BaseRet ransmi ssionlnterval MI1iseconds="3000"/>
<wsr np10: Exponent i al Backof f/>
<wsr np10: Acknowl edgenent I nterval M11iseconds="200"/>
</ wsrnp10: RMAsserti on>
</wsp: Al l >
</ wsp: Exact | yOne>
</ wsp: Policy>

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make Connection A-9

Reliability1.0_1.1.xml (WS-Policy.xml File)

A-10 Developing JAX-WS Web Services for Oracle WebLogic Server

B

Example Client Wrapper Class for Batching

Reliable Messages

This appendix provides an example client wrapper class that can be used for batching
reliable messaging for WebLogic web services using Java API for XML Web Services
(JAX-WS).

For more information about batching reliable messages, see Grouping Messages into
Business Units of Work (Batching).

Note:

This client wrapper class is example code only; it is not an officially supported
production class.

Example B-1 Example Client Wrapper Class for Batching Reliable Messages

package exanpl e.servlet;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport

/**

java.io.PrintStream

java.io.PrintWiter;

java.lang.ref. WeakRef erence;
java.lang.reflect.lnvocationHandl er;
java.lang.reflect. Method;
java.lang.reflect. Proxy;

. Date;

. SortedSet;

CTiner;

. Ti ner Task;

java. util
java. util
java. util
java. util

j avax. xm
j avax. xm
j avax. xm

webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.

. dat at ype. Dat at ypeFactory;
. datatype. Duration;

. WS,

wsee
wsee

wsee.
wsee.
wsee.
wsee.
wsee.

Bi ndi ngProvi der;

. j axws. JAXWSPr operti es;
.jaxws.spi.Cientlnstance;

reliability. MessageRange;

reliability2. api.Wrndient;

reliability2. api.WrnCientFactory;
reliability2. property.WrmnvocationPropertyBag;
reliability2.tube. WrnCientlnpl;

* Exanpl e wrapper class to batch reliable requests into fixed size 'batches'
* that can be sent using a single RMsequence. This class allows a client to

* k%

send requests that have no natural conmon grouping or
"business unit of work' and not pay the costs associated with creating and
termnating an RM sequence for every message.

Example Client Wrapper Class for Batching Reliable Messages B-1

* NOTE: This class is an *exanpl e* of how batching nm ght be perfornmed. To do

* batching correctly, you should consider error recovery and how to

* report sequence errors (reported via ReliabilityErrorListener) back

* to the clients that made the original requests.

* o<p>

* |f your web service client code knows of some natural business-oriented

* grouping of requests (called a 'business unit of work'), it should make the

* RM subsystem aware of this unit of work by using the

* WsrnCl i ent. set Fi nal Message() nethod to demarcate the end of a unit (just

* before sending the actual final request via an invocation on

* the client instance). In some cases, notably when the client code represents

* an internediary in the processing of nessages, the client code may not be

* aware of any natural unit of work. In the past, if no business unit of work

* could be determned, clients often just created the client instance, sent the

* single current nmessage they had, and then allowed the sequence to terninate.

* This is functionally workable, but very inefficient. These clients pay the

* cost of an RM sequence handshake and ternination for every nessage they send.

* The Bat chi ngRrCl i ent Wapper class can be used to introduce an artificial

* unit of work (a batch) when no natural business unit of work is available.

* <p>

* Each instance of BatchingRrCientWapper is a wapper instance around a

* client instance (port or Dispatch instance). This wapper can be used to

* obtain a Proxy instance that can be used in place of the original client

* instance. This allows this class to perform batching operations conpletely

* invisibly fromthe perspective of the client code.

* o<p>

* This class is used for batching reliable requests into

* batches of a given max size that will survive for a given maxi num

* duration. If a batch fills up or times out, it is ended, causing the

* RMsequence it represents to be ended/term nated. The tinmeout ensures that

* if the flow of incoming requests stops the batch/sequence will still

*end in a tinmely manner.

*/

public class Batchi ngRrd i ent Wapper <T>
i npl ements | nvocati onHandl er {

private O ass<T> _clazz;
private int _batchSize;
private long _maxBatchLifetimeMIlis;
private T _clientlnstance;
private PrintWiter _out;
private WrnClient _rnCient;
private int _num nCurrentBatch;
private int _batchNum

private Timer _tiner;

private bool ean _cl osed,;
private bool ean _proxyCreated;

/**

* Create a wapper instance for batching reliable requests into

* batches of the given max size that will survive for the given maxi mum

* duration. If a batch fills up or times out, it is ended, causing the

* RM sequence it represents to be ended/term nated.

* @aramclientinstance The client instance that acts as the source object

* for the batching proxy created by the createProxy() nethod. This
* is the port/Dispatch instance returned fromthe call to

* get Port/createDi spatch. The Batchi ngRrCl i ent Wapper will take over
* responsibility for managing the interaction with and cl eanup of

* the client instance via the proxy created from createProxy.

* @aramclazz of the proxy instance we'll be creating in createProxy.

* This should be the class of the port/Dispatch instance you woul d

B-2 Developing JAX-WS Web Services for Oracle WebLogic Server

* use to invoke operations on the service. BatchingRrCientWapper will

* create (via createProxy) a proxy of the given type that can be

* used in place of the original client instance.

* @aram bat chSi ze Max nunber of requests to put into a batch. If the

* max nunber of requests are sent for a given batch, that batch is
* ended (ending/termnating the sequence it represents) and a new

* batch is started.

* @aram maxBatchLifetime A duration value (in the lexical form supported
* by java.util.Duration, e.g. PT30S for 30 seconds) representing

* the maximumtime a batch should exist. If the batch exists |onger
* than this time, it is ended and a new batch is begun.

* @aramout A print streamthat can be used to print diagnostic and

* status messages.

*/

publ i ¢ BatchingRMC i ent Wapper (T clientlnstance, Oass<T> clazz,
int batchSize, String maxBatchLifetine,
PrintStreamout) {
_clazz = clazz;
_batchSi ze = batchSi ze;
try {
if (maxBatchLifetime == null) {
maxBat chLi fetime = "PT5M';
1
Duration duration =
Dat at ypeFact ory. newl nst ance() . newDur ati on(nmaxBat chLi feti ne);
_maxBatchLifetimeMIlis = duration.getTimelnMIlis(new Date());
} catch (Exception e) {
throw new Runti meException(e.toString(), e);
}
_clientlnstance = clientlnstance;
_out = new PrintWiter(out, true);
_rnClient = WérnCientFactory.get\WrnCientFronPort(_clientlnstance);
_closed = fal se;
_proxyCreated = fal se;
_timer = new Tiner(true);
_tiner.schedul e(new Ti mer Task() {
@verride
public void run() {
term nat eOr EndBat ch() ;
1

}, _maxBatchLifetineMIlis);

}

/**
* Creates the dynamic proxy that should be used in place of the client
* instance used to create this BatchingRC ientWapper instance. This nethod
* shoul d be called only once per BatchingRrC ient W apper.
*|
public T createProxy() {
if (_proxyCreated) {
throw new I |1 egal Stat eException("A ready created the proxy for this Batchi ngRnC ient W apper
i nstance which waps the client instance: " + _clientlnstance);
}
_proxyCreated = true;
return (T) Proxy.newProxylnstance(get Cl ass().getd assLoader(),
new Cass[] {
_clazz,
Bi ndi ngProvi der. cl ass,
java.io.d oseable.class
}, this);

Example Client Wrapper Class for Batching Reliable Messages B-3

private void termnateO EndBatch() {
synchroni zed(_cl i entInstance) {
if (_rnCient.getSequenceld() !'=
if (termnateBatchAl lowed()) {
_out.printIn("Termnating batch " + _batchNum + " sequence (" + _
rnClient.getSequenceld() + ") for " + _clientlnstance);
try {
_rnCient.term nat eSequence();
} catch (Exception e) {
e.printStackTrace(_out);

null) {

} else {

_out.printIn("Batch " + _batchNum+ " sequence (" + _rnCient.getSequenceld() +
for " + _clientlnstance + " tinmed out but has outstanding requests to send and
cannot be terninated now');

}
1
endBat ch() ;
}
1

/**
* Check to see if we have acks for all requests sent. If so,
* we can terminate.
*/
private bool ean term nateBat chAl | owed() {
try {
synchroni zed(_clientlnstance) {
if (_rnCient.getSequenceld() '=null) {
long maxMsgNum = _rnCient. get Mbst Recent MessageNunber () ;
if (maxMsgNum < 1) {
/1 No messages sent, go ahead and terninate.
return true;
1
Sort edSet <MessageRange> ranges = _rnCient. get AckRanges();
ong maxAck = -1;
bool ean hasGaps = fal se;
I ong | ast RangeUpper = -1;
for (MessageRange range: ranges) {
if (lastRangeUpper > 0) {
if (range.lowerBounds != | astRangeUpper + 1) {
hasGaps = true;

1
} else {

| ast RangeUpper = range. upper Bounds;
}
maxAck = range. upper Bounds;

1
return ! (hasGaps || maxAck < maxMsgNunm);

}

} catch (Exception e) {
e.printStackTrace(_out);
}

return true,;

}

private void endBatch() {
synchroni zed(_cl i ent I nstance)
if (_num nCurrentBatch > 0)

—_——

B-4 Developing JAX-WS Web Services for Oracle WebLogic Server

")

_out.println("Ending batch " + _batchNum + " sequence (" + _rnClient.getSequenceld() + ")
for " + _clientInstance + "...");

1
/**
* rnClient.reset() resets a rnClient instance (and the client instance it represents)
* so it can track a new Ws-RM sequence for the next invoke on the client
* instance. This nethod effectively *di sconnects* the RM sequence fromthe
* client instance and lets them continue/conplete separately.
*|
_rnClient.reset();
_num nCurrentBatch = 0;
if (!_closed) {
_tiner.schedul e(new Ti mer Task() {
@verride
public void run() {
term nat eOr EndBat ch() ;
1
}, _maxBatchLifetineMIlis);
1
}
1

public Object invoke(Chject proxy, Method nethod, Object[] args)
throws Throwabl e {
bool ean operati onl nvoke
bool ean cl oseabl el nvoke

met hod. get Decl aringC ass() == _cl azz;
met hod. get Decl ari ngd ass() ==
java.io.d oseabl e.cl ass;
bool ean endO Batch = fal se;
i f (operationlnvoke) {
synchroni zed(_clientlnstance) {
/1 Check our batch size
if (_numnCurrentBatch == 0) {
_bat chNumt+;

endOf Batch = _num nCurrentBatch >= _batchSize - 1,

if (endOf Batch) {
_rnClient.setFinal Message();

}

_out.printIn("Mking " + (endOfBatch ? "final " : "") + "invoke " +
(_num nCurrentBatch+1) + " of batch " + _batchNum+ " sequence (" + _
rnClient.get Sequenceld() + ") with operation: " + method. get Nane());

} else if (closeablelnvoke & nethod. get Nane(). equal s("close")) {
synchroni zed(_clientlnstance) {
/1 Make sure we don't try to schedule the tinmer anynore
_closed = true;
_timer.cancel ();
1
}

oj ect ret = nethod.invoke(_clientlnstance, args);
if (operationlnvoke) {
synchroni zed(_clientlnstance) {
_num nCurrent Bat ch++;
if (endOfBatch) {
endBat ch() ;
}
}
}

return ret,

Example Client Wrapper Class for Batching Reliable Messages B-5

B-6 Developing JAX-WS Web Services for Oracle WebLogic Server

C

Migrating JAX-RPC Web Services and
Clients to JAX-WS

This appendix describes how to migrate Java API for XML-based RPC (JAX-RPC) web
services and clients to Java API for XML-based Web Services (JAX-WS).

When migrating your JAX-RPC web services, to preserve the original WSDL file, use
the top-down approach, starting from a WSDL file, to generate the JAX-WS web
service. For more information, see Developing WebLogic Web Services Starting From
a WSDL File: Main Steps.

Note:

In some cases, a JAX-RPC feature may not be supported currently by JAX-WS.
In this case, the application cannot be migrated unless it is re-architected.

The following table summarizes the topics that are covered.

Table C-1 Tips for Migrating JAX-RPC Web Services and Clients to JAX-WS
- -~ - - - |

Topic Description

Setting the Final Context Describes the methods that can be used to set the final context root of a WebLogic web
Root of a WebLogic service. The use of @ NLXXXTransport JWS annotations is not supported for JAX-WS;
Web Service these annotations are supported by JAX-RPC only.

Using WebLogic- Describes the WebLogic-specific annotations that are supported by JAX-WS.

specific Annotations

Generating a WSDL File = Describes how to generate a WSDL file when you are generating a JAX-WS web
service using the jwsc Ant task.

Using JAXB Custom Describes the use of Java Architecture for XML Binding (JAXB) for managing all of the

Types data binding tasks.

Using EJB 3.0 Describes changes in EJB 3.0 from EJB 2.1. JAX-WS supports EJB 3.0. JAX-RPC
supports EJB 2.1 only.

Migrating from RPC Provides guidelines for setting the SOAP binding. RPC style is supported, but not

Style SOAP Binding recommended for JAX-WS.

Updating SOAP Explains how you must re-write your JAX-RPC SOAP message handlers when

Message Handlers migrating to JAX-WS.

Invoking JAX-WS Explains how you must re-write your JAX-RPC client to invoke JAX-WS clients.

Clients

Migrating JAX-RPC Web Services and Clients to JAX-WS C-1

Setting the Final Context Root of a WebLogic Web Service

C.1 Setting the Final Context Root of a WebLogic Web Service

You can set the final context root of a WebLogic web service using a variety of
methods, as described in "Specifying the Transport Used to Invoke the Web Service" in
Developing JAX-RPC Web Services for Oracle WebLogic Server.

As described in this section, when defining a JAX-RPC web service, you can use the
@WLXXXTransport JWS annotations to specify the context root. For JAX-WS web
services, the @WLXXXTransport JWS annotations are not valid. If used in the JAX-
RPC web service, the JWS file needs to be updated to remove the annotations in favor
of one of the other methods.

C.2 Using WebLogic-specific Annotations

JAX-WS supports the following WebLogic-specific annotations:
* @Policy

* @Policies

® @SecurityPolicy

® @SecurityPolicies

¢ @WssConfiguration

All other WebLogic-specific annotations must be removed from your JAX-RPC
applications when migrating to JAX-WS. For more information, see "WebLogic-
specific Annotations" in WebLogic Web Services Reference for Oracle WebLogic Server.

C.3 Generating a WSDL File

When you run the jwsc file on a JAX-RPC web service, a WSDL file is generated in the
specified output directory. For JAX-WS web services, the WSDL file is generated when
the service endpoint is deployed. In order to generate a WSDL file in the output
directory, you must specify the wsdlOnly attribute of the <jws> child element of the
jwsc Ant task. For more information, see "jwsc" in the WebLogic Web Services Reference
for Oracle WebLogic Server.

C.4 Using JAXB Custom Types

JAX-WS uses Java Architecture for XML Binding (JAXB), described at htt p: //
jcp.org/en/jsr/detail ?i d=222, to manage all of the data binding tasks. If your
application supports custom types using XMLBeans or Tylar, you will need to modify
them to use JAXB. For more information about using JAXB, see Using JAXB Data
Binding.

C.5 Using EJB 3.0
JAX-WS supports EJB 3.0. JAX-RPC supports EJB 2.1 only.

EJB 3.0 introduced metadata annotations that enable you to automatically generate,
rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB.

C-2 Developing JAX-WS Web Services for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222

Migrating from RPC Style SOAP Binding

For more information about EJB 3.0 bean class requirements and changes from 2.x, see
"Programming the Bean File: Requirements and Changes from 2.X" in Developing
Enterprise JavaBeans for Oracle WebLogic Server.

C.6 Migrating from RPC Style SOAP Binding

Use of the SOAPBinding.Style.RPC style, although supported, is not recommended
with JAX-WS. It is recommended that you change the style to
SOAPBinding.Style DOCUMENT.

C.7 Updating SOAP Message Handlers

Although the SOAP APIs are similar, JAX-RPC SOAP handlers will need to be
modified to run with JAX-WS. For more information, see Sending and Receiving
SOAP Headers.

C.8 Invoking JAX-WS Clients

JAX-RPC clients will need to be re-written as the JAX-RPC and JAX-WS client APIs are
completely different. For more information about writing JAX-WS clients, see
"Developing Web Service Clients" in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Migrating JAX-RPC Web Services and Clients to JAX-WS C-3

Invoking JAX-WS Clients

C-4 Developing JAX-WS Web Services for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.1.0)

	Part I Introduction
	1 Introduction to JAX-WS Web Services
	1.1 Overview of JAX-WS Web Service Development
	1.1.1 The Programming Model—Metadata Annotations
	1.1.2 The Development Model—Bottom-up and Top-down
	1.1.2.1 Bottom-up Approach: Starting from Java
	1.1.2.2 Top-down Approach: Starting from WSDL

	1.2 Roadmap for Implementing JAX-WS Web Services

	2 Examples for JAX-WS Web Service Developers

	Part II Developing Basic JAX-WS Web Services
	3 Developing JAX-WS Web Services
	3.1 Overview of the WebLogic Web Service Programming Model
	3.2 Configuring Your Domain For Advanced Web Services Features
	3.2.1 Resources Required by Advanced Web Service Features
	3.2.2 Configuring a Domain for Advanced Web Service Features Using the Configuration Wizard
	3.2.2.1 Creating a Domain With the Web Services Extension Template
	3.2.2.2 Extending a Domain With the Web Services Extension Template

	3.2.3 Using WLST to Extend a Domain With the Web Services Extension Template
	3.2.4 Updating Resources Added After Extending Your Domain

	3.3 Developing WebLogic Web Services Starting From Java: Main Steps
	3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps
	3.5 Creating the Basic Ant build.xml File
	3.6 Running the jwsc WebLogic Web Services Ant Task
	3.6.1 Specifying the Transport Used to Invoke the Web Service
	3.6.2 Defining the Context Path of a WebLogic Web Service
	3.6.3 Examples of Using jwsc

	3.7 Running the wsdlc WebLogic Web Services Ant Task
	3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc
	3.9 Deploying and Undeploying WebLogic Web Services
	3.9.1 Using the wldeploy Ant Task to Deploy Web Services
	3.9.2 Using the Administration Console to Deploy Web Services

	3.10 Browsing to the WSDL of the Web Service
	3.11 Configuring the Server Address Specified in the Dynamic WSDL
	3.11.1 Web service is not a callback service and can be invoked using HTTP/S
	3.11.2 Web service is a callback service
	3.11.3 Web service is invoked using a proxy server

	3.12 Testing the Web Service
	3.13 Integrating Web Services Into the WebLogic Split Development Directory Environment

	4 Programming the JWS File
	4.1 Overview of JWS Files and JWS Annotations
	4.2 Java Requirements for a JWS File
	4.3 Programming the JWS File: Typical Steps
	4.3.1 Example of a JWS File
	4.3.2 Specifying that the JWS File Implements a Web Service (@WebService Annotation)
	4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol (@SOAPBinding Annotation)
	4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and @OneWay Annotations)
	4.3.5 Customizing the Mapping Between Operation Parameters and WSDL Elements (@WebParam Annotation)
	4.3.6 Customizing the Mapping Between the Operation Return Value and a WSDL Element (@WebResult Annotation)
	4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType Annotation)

	4.4 Accessing Runtime Information About a Web Service
	4.4.1 Accessing the Protocol Binding Context
	4.4.2 Accessing the Web Service Context
	4.4.3 Using the MessageContext Property Values

	4.5 Should You Implement a Stateless or Singleton Session EJB?
	4.6 Programming the User-Defined Java Data Type
	4.7 Invoking Another Web Service from the JWS File
	4.8 Using SOAP 1.2
	4.9 Validating the XML Schema
	4.9.1 Enabling Schema Validation on the Server
	4.9.2 Enabling Schema Validation on the Client

	4.10 JWS Programming Best Practices

	5 Using JAXB Data Binding
	5.1 Overview of Data Binding Using JAXB
	5.2 Developing the JAXB Data Binding Artifacts
	5.3 Standard Data Type Mapping
	5.3.1 Supported Built-In Data Types
	5.3.1.1 XML-to-Java Mapping for Built-in Data Types
	5.3.1.1.1 XML Schema
	5.3.1.1.2 Default Java Binding

	5.3.1.2 Java-to-XML Mapping for Built-In Data Types

	5.3.2 Supported User-Defined Data Types
	5.3.2.1 Supported XML User-Defined Data Types
	5.3.2.2 Supported Java User-Defined Data Types

	5.4 Customizing Java-to-XML Schema Mapping Using JAXB Annotations
	5.4.1 Example of JAXB Annotations
	5.4.2 Specifying Default Serialization of Fields and Properties (@XmlAccessorType Annotation)
	5.4.3 Mapping Properties to Local Elements (@XmlElement)
	5.4.4 Specifying the MIME Type (@XmlMimeType Annotation)
	5.4.5 Mapping a Top-level Class to a Global Element (@XmlRootElement)
	5.4.6 Binding a Set of Classes (@XmlSeeAlso)
	5.4.7 Mapping a Value Class to a Schema Type (@XmlType)

	5.5 Customizing XML Schema-to-Java Mapping Using Binding Declarations
	5.5.1 Creating an External Binding Declarations File
	5.5.1.1 Creating an External Binding Declarations File Using JAX-WS Binding Declarations
	5.5.1.1.1 Specifying the Root Element
	5.5.1.1.2 Specifying Child Elements

	5.5.1.2 Creating an External Binding Declarations File Using JAXB Binding Declarations
	5.5.1.2.1 Specifying the Root Element
	5.5.1.2.2 Specifying Child Elements

	5.5.2 Embedding Binding Declarations
	5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL File
	5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema

	5.5.3 JAX-WS Custom Binding Declarations
	5.5.4 JAXB Custom Binding Declarations

	5.6 Using the Glassfish RI JAXB Data Binding and JAXB Providers
	5.6.1 Configuring Global Server-Level Data Binding and JAXB Providers
	5.6.2 Configuring Application-Level Data Binding and JAXB Providers
	5.6.3 Configuring Java System Properties for JAXB

	6 Examples of Developing JAX-WS Web Services
	6.1 Creating a Simple HelloWorld Web Service
	6.1.1 Sample HelloWorldImpl.java JWS File
	6.1.2 Sample Ant Build File for HelloWorldImpl.java

	6.2 Creating a Web Service With User-Defined Data Types
	6.2.1 Sample BasicStruct JavaBean
	6.2.2 Sample ComplexImpl.java JWS File
	6.2.3 Sample Ant Build File for ComplexImpl.java JWS File

	6.3 Creating a Web Service from a WSDL File
	6.3.1 Sample WSDL File
	6.3.2 Sample TemperatureService_TemperaturePortImpl Java Implementation File
	6.3.3 Sample Ant Build File for TemperatureService

	Part III Developing Basic JAX-WS Web Service Clients
	7 Roadmap for Developing JAX-WS Web Service Clients
	8 Developing Web Service Clients
	8.1 Overview of WebLogic Web Services Client Development
	8.2 Invoking a Web Service from a Java SE Client
	8.2.1 Using the clientgen Ant Task To Generate Client Artifacts
	8.2.2 Getting Information About a Web Service
	8.2.3 Writing the Java Client Application Code to Invoke a Web Service
	8.2.4 Compiling and Running the Client Application
	8.2.5 Sample Ant Build File for a Java Client

	8.3 Invoking a Web Service from a Standalone Java SE Client
	8.4 Invoking a Web Service from Another WebLogic Web Service
	8.4.1 Sample build.xml File for a Web Service Client
	8.4.2 Sample JWS File That Invokes a Web Service

	8.5 Configuring Web Service Clients
	8.6 Defining a Web Service Reference Using the @WebServiceRef Annotation
	8.7 Managing Client Identity
	8.7.1 Defining the Client ID During Port Initialization
	8.7.2 Accessing the Server-generated Client ID
	8.7.3 Client Identity Lifecycle

	8.8 Using a Proxy Server When Invoking a Web Service
	8.8.1 Using the ClientProxyFeature API to Specify the Proxy Server
	8.8.2 Using System Properties to Specify the Proxy Server

	8.9 Client Considerations When Redeploying a Web Service
	8.10 Client Considerations When Web Service and Client Are Deployed to the Same Managed Server

	9 Examples of Developing JAX-WS Web Service Clients
	9.1 Developing a JAX-WS Java SE Client
	9.1.1 Sample Java Client Application
	9.1.2 Sample Ant Build File For Building Java Client Application

	9.2 Invoking a Web Service from a WebLogic Web Service
	9.2.1 Sample ClientServiceImpl.java JWS File
	9.2.2 Sample Ant Build File For Building ClientService

	Part IV Developing Advanced Features of JAX-WS Web Services
	10 Using Web Services Addressing
	10.1 Overview of WS-Addressing
	10.2 Enabling WS-Addressing on the Web Service
	10.2.1 Enabling WS-Addressing on the Web Service (Starting From Java)
	10.2.2 Enabling WS-Addressing on the Web Service (Starting from WSDL)

	10.3 Enabling WS-Addressing on the Web Service Client
	10.3.1 Explicitly Enabling WS-Addressing on the Web Service Client
	10.3.2 Implicitly Enabling WS-Addressing on the Web Service Client
	10.3.3 Disabling WS-Addressing on the Web Service Client

	10.4 Associating WS-Addressing Action Properties
	10.4.1 Explicitly Associating WS-Addressing Action Properties (Starting from Java)
	10.4.2 Explicitly Associating WS-Addressing Action Properties (Starting from WSDL)
	10.4.3 Implicitly Associating WS-Addressing Action Properties

	10.5 Configuring Anonymous WS-Addressing

	11 Roadmap for Developing Asynchronous Web Service Clients
	12 Developing Asynchronous Clients
	12.1 Overview of Asynchronous Web Service Invocation
	12.2 Steps to Invoke Web Services Asynchronously
	12.3 Configuring Your Servers for Asynchronous Web Service Invocation
	12.4 Building the Client Artifacts for Asynchronous Web Service Invocation
	12.5 Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)
	12.5.1 Enabling and Configuring the Asynchronous Client Transport Feature
	12.5.1.1 Configuring the Address of the Asynchronous Response Endpoint
	12.5.1.2 Configuring the ReplyTo and FaultTo Headers of the Asynchronous Response Endpoint
	12.5.1.3 Configuring the Context Path of the Asynchronous Response Endpoint
	12.5.1.4 Publishing the Asynchronous Response Endpoint
	12.5.1.5 Configuring Asynchronous Client Transport for Synchronous Operations

	12.5.2 Developing the Asynchronous Handler Interface
	12.5.3 Propagating User-defined Request Context to the Response

	12.6 Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)
	12.6.1 Enabling and Configuring Make Connection on a Web Service
	12.6.1.1 Creating the Web Service Make Connection WS-Policy File (Optional)
	12.6.1.2 Programming the JWS File to Enable Make Connection

	12.6.2 Enabling and Configuring Make Connection on a Web Service Client
	12.6.2.1 Configuring the Expiration Time for Sending Make Connection Messages
	12.6.2.2 Configuring the Polling Interval
	12.6.2.3 Configuring the Exponential Backoff
	12.6.2.4 Configuring Make Connection as the Transport for Synchronous Methods

	12.7 Using the JAX-WS Reference Implementation
	12.8 Propagating Request Context to the Response
	12.9 Monitoring Asynchronous Web Service Invocation
	12.10 Clustering Considerations for Asynchronous Web Service Messaging

	13 Roadmap for Developing Reliable Web Services and Clients
	13.1 Roadmap for Developing Reliable Web Service Clients
	13.2 Roadmap for Developing Reliable Web Services
	13.3 Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make Connection)
	13.4 Roadmap for Securing Reliable Web Services

	14 Using Web Services Reliable Messaging
	14.1 Overview of Web Services Reliable Messaging
	14.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions
	14.1.2 Supported Transport Types for Reliable Messaging
	14.1.3 The Life Cycle of the Reliable Message Sequence
	14.1.4 Reliable Messaging Failure Recovery Scenarios
	14.1.4.1 RM Destination Down Before Request Arrives
	14.1.4.2 RM Source Down After Request is Made
	14.1.4.3 RM Destination Down After Request Arrives
	14.1.4.4 Failure Scenarios with Non-buffered Reliable Web Services

	14.2 Steps to Create and Invoke a Reliable Web Service
	14.3 Configuring the Source and Destination WebLogic Server Instances
	14.4 Creating the Web Service Reliable Messaging WS-Policy File
	14.4.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Versions 1.2 and 1.1
	14.4.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Version 1.0 (Deprecated)
	14.4.3 Using Multiple Policy Alternatives

	14.5 Programming Guidelines for the Reliable JWS File
	14.6 Invoking a Reliable Web Service from a Web Service Client
	14.7 Configuring Reliable Messaging
	14.7.1 Configuring Reliable Messaging on WebLogic Server
	14.7.1.1 Using the Administration Console
	14.7.1.2 Using WLST

	14.7.2 Configuring Reliable Messaging on the Web Service Endpoint
	14.7.3 Configuring Reliable Messaging on Web Service Clients
	14.7.4 Configuring the Base Retransmission Interval
	14.7.4.1 Configuring the Base Retransmission Interval on WebLogic Server or the Web Service Endpoint
	14.7.4.2 Configuring the Base Retransmission Interval on the Web Service Client

	14.7.5 Configuring the Retransmission Exponential Backoff
	14.7.5.1 Configuring the Retransmission Exponential Backoff on WebLogic Server or Web Service Endpoint
	14.7.5.2 Configuring the Retransmission Exponential Backoff on the Web Service Client

	14.7.6 Configuring the Sequence Expiration
	14.7.6.1 Configuring the Sequence Expiration on WebLogic Server or Web Service Endpoint
	14.7.6.2 Configuring the Sequence Expiration on the Web Service Client

	14.7.7 Configuring Inactivity Timeout
	14.7.7.1 Configuring the Inactivity Timeout on WebLogic Server or Web Service Endpoint
	14.7.7.2 Configuring the Inactivity Timeout on the Web Service Client

	14.7.8 Configuring a Non-buffered Destination for a Web Service
	14.7.9 Configuring the Acknowledgement Interval

	14.8 Implementing the Reliability Error Listener
	14.9 Managing the Life Cycle of a Reliable Message Sequence
	14.9.1 Managing the Reliable Sequence
	14.9.1.1 Getting and Setting the Reliable Sequence ID
	14.9.1.2 Accessing the State of the Reliable Sequence

	14.9.2 Managing the Client ID
	14.9.3 Managing the Acknowledged Requests
	14.9.4 Accessing Information About a Message
	14.9.5 Identifying the Final Message in a Reliable Sequence
	14.9.6 Closing the Reliable Sequence
	14.9.7 Terminating the Reliable Sequence
	14.9.8 Resetting a Client to Start a New Message Sequence

	14.10 Monitoring Web Services Reliable Messaging
	14.11 Grouping Messages into Business Units of Work (Batching)
	14.12 Client Considerations When Redeploying a Reliable Web Service
	14.13 Interoperability with WebLogic Web Service Reliable Messaging

	15 Using Web Services Atomic Transactions
	15.1 Overview of Web Services Atomic Transactions
	15.2 Configuring the Domain Resources Required for Web Service Advanced Features
	15.3 Enabling Web Services Atomic Transactions on Web Services
	15.3.1 Using the @Transactional Annotation in Your JWS File
	15.3.1.1 Example: Using @Transactional Annotation on a Web Service Class
	15.3.1.2 Example: Using @Transactional Annotation on a Web Service Method
	15.3.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

	15.3.2 Enabling Web Services Atomic Transactions Starting From WSDL

	15.4 Enabling Web Services Atomic Transactions on Web Service Clients
	15.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation
	15.4.2 Passing the TransactionalFeature to the Client

	15.5 Configuring Web Services Atomic Transactions Using the Administration Console
	15.5.1 Securing Messages Exchanged Between the Coordinator and Participant
	15.5.2 Enabling and Configuring Web Services Atomic Transactions

	15.6 Using Web Services Atomic Transactions in a Clustered Environment
	15.7 More Examples of Using Web Services Atomic Transactions

	16 Optimizing XML Transmission Using Fast Infoset
	16.1 Overview of Fast Infoset
	16.2 Enabling Fast Infoset on Web Services
	16.3 Enabling and Configuring Fast Infoset on Web Services Clients
	16.3.1 Configuring the Content Negotiation Strategy
	16.3.2 Example Using @FastInfosetClient Annotation at Design Time
	16.3.3 Example Using FastInfosetClientFeature Feature Class at Design Time

	16.4 Disabling Fast Infoset on Web Services and Clients

	17 Using SOAP Over JMS Transport
	17.1 Overview of SOAP Over JMS Transport
	17.2 Configuring the WebLogic Server Domain for JMS Transport
	17.3 Developing Web Services Using JMS Transport—Starting From Java
	17.3.1 Using the @JMSTransportService Annotation
	17.3.2 Using the <jmstransportservice> Child Element in the Ant build.xml File

	17.4 Developing Web Services Using JMS Transport—Starting From WSDL
	17.4.1 Updating the WSDL to Use JMS Transport
	17.4.1.1 Enabling JMS Transport at the WSDL Binding Level
	17.4.1.2 Configuring JMS Transport Properties in the WSDL
	17.4.1.3 Example of Enabling JMS Transport in WSDL

	17.5 Invoking a WebLogic Web Service Using JMS Transport
	17.5.1 Using the <jmstransportclient> Element in the Ant build.xml File
	17.5.2 Using the @JMSTransportClient Annotation
	17.5.3 Using the JMSTransportClientFeature Client API
	17.5.4 Configuring the JMS URI as the Target Endpoint Address
	17.5.5 Using AsyncClientTransportFeature to Configure Asynchronous Clients

	17.6 Configuring JMS Transport Properties
	17.6.1 Summary of JMS Transport Configuration Properties
	17.6.2 Configuration Methods and Order of Precedence
	17.6.3 Configuring JMS Transport Using the Administration Console
	17.6.4 Configuring JMS Transport Using WLST
	17.6.5 Configuring the JMS URI
	17.6.6 Configuring the JMS Request URI
	17.6.7 Configuring the WS-Addressing Headers
	17.6.8 Configuring the JMS Response Queue
	17.6.9 Configuring the JMS Message Type
	17.6.10 Configuring HTTP Access to the WSDL File

	17.7 Monitoring SOAP Over JMS Transport

	18 Creating and Using SOAP Message Handlers
	18.1 Overview of SOAP Message Handlers
	18.2 Adding Server-side SOAP Message Handlers: Main Steps
	18.3 Adding Client-side SOAP Message Handlers: Main Steps
	18.4 Designing the SOAP Message Handlers and Handler Chains
	18.4.1 Server-side Handler Execution
	18.4.2 Client-side Handler Execution

	18.5 Creating the SOAP Message Handler
	18.5.1 Example of a SOAP Handler
	18.5.2 Example of a Logical Handler
	18.5.3 Implementing the Handler.handleMessage() Method
	18.5.4 Implementing the Handler.handleFault() Method
	18.5.5 Implementing the Handler.close() Method
	18.5.6 Using the Message Context Property Values and Methods
	18.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
	18.5.7.1 The SOAPPart Object
	18.5.7.2 The AttachmentPart Object
	18.5.7.3 Manipulating Image Attachments in a SOAP Message Handler

	18.6 Configuring Handler Chains in the JWS File
	18.7 Creating the Handler Chain Configuration File
	18.8 Compiling and Rebuilding the Web Service
	18.9 Configuring the Client-side SOAP Message Handlers

	19 Handling Exceptions Using SOAP Faults
	19.1 Overview of Exception Handling Using SOAP Faults
	19.2 Contents of the SOAP Fault Element
	19.2.1 SOAP 1.2 <Fault> Element Contents
	19.2.2 SOAP 1.1 <Fault> Element Contents

	19.3 Using Modeled Faults
	19.3.1 Creating and Using a Custom Exception
	19.3.2 How Modeled Faults are Mapped in the WSDL File
	19.3.3 How the Fault is Communicated in the SOAP Message
	19.3.4 Creating the Web Service Client
	19.3.4.1 Reviewing the Generated Java Exception Class
	19.3.4.2 Reviewing the Generated Java Fault Bean Class
	19.3.4.3 Reviewing the Client-side Service Implementation
	19.3.4.4 Creating the Client Implementation Class

	19.4 Using Unmodeled Faults
	19.5 Customizing the Exception Handling Process
	19.6 Disabling the Stack Trace from the SOAP Fault
	19.7 Other Exceptions

	20 Optimizing Binary Data Transmission
	20.1 Optimizing Binary Data Transmission Optimization Using MTOM/XOP
	20.1.1 Annotating the Data Types
	20.1.1.1 Annotating the Data Types: Start From Java
	20.1.1.2 Annotating the Data Types: Start From WSDL

	20.1.2 Enabling MTOM on the Web Service
	20.1.2.1 Enabling MTOM on the Web Service Using Annotation
	20.1.2.2 Enabling MTOM on the Web Services by Attaching a WS-Policy File

	20.1.3 Enabling MTOM on the Client
	20.1.4 Setting the Attachment Threshold
	20.1.5 Enabling HTTP Chunking

	20.2 Streaming SOAP Attachments
	20.2.1 Client Side Example
	20.2.2 Server Side Example
	20.2.3 Configuring Streaming SOAP Attachments
	20.2.3.1 Configuring Streaming SOAP Attachments on the Server
	20.2.3.2 Configuring Streaming SOAP Attachments on the Client

	20.3 Sending SOAP Messages With Attachments Using swaRef

	21 Managing Web Service Persistence
	21.1 Overview of Web Service Persistence
	21.2 Roadmap for Configuring Web Service Persistence
	21.3 Configuring Web Service Persistence
	21.3.1 Configuring the Logical Store
	21.3.2 Configuring Web Service Persistence for a Web Service Endpoint
	21.3.3 Configuring Web Service Persistence for Web Service Clients

	21.4 Using Web Service Persistence in a Cluster
	21.5 Cleaning Up Web Service Persistence

	22 Configuring Message Buffering for Web Services
	22.1 Overview of Message Buffering
	22.2 Configuring Messaging Buffering
	22.2.1 Configuring the Request Queue
	22.2.2 Configuring the Response Queue
	22.2.3 Configuring Message Retry Count and Delay

	23 Managing Web Services in a Cluster
	23.1 Overview of Web Services Cluster Routing
	23.2 Cluster Routing Scenarios
	23.2.1 Scenario 1: Routing a Web Service Response to a Single Server
	23.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing Information
	23.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID

	23.3 How Web Service Cluster Routing Works
	23.3.1 Adding Routing Information to Outgoing Requests
	23.3.2 Detecting Routing Information in Incoming Requests
	23.3.3 Routing Requests Within the Cluster
	23.3.4 Maintaining the Routing Map on the Front-end SOAP Router
	23.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header
	23.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header

	23.4 Configuring Web Services in a Cluster
	23.4.1 Setting Up the WebLogic Cluster
	23.4.2 Configuring the Domain Resources Required for Web Service Advanced Features in a Clustered Environment
	23.4.3 Extending the Front-end SOAP Router to Support Web Services
	23.4.4 Enabling Routing of Web Services Atomic Transaction Messages
	23.4.5 Enabling Routing of Web Services Make Connection Messages
	23.4.6 Configuring the Identity of the Front-end SOAP Router
	23.4.7 Configuring the Identity of the Front-end SOAP Router Using Network Channels

	23.5 Monitoring Cluster Routing Performance

	24 Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages
	24.1 Overview of Web Service Provider-based Endpoints and Dispatch Clients
	24.2 Usage Modes and Message Formats for Operating at the XML Level
	24.3 Developing a Web Service Provider-based Endpoint (Starting from Java)
	24.3.1 Developing a Synchronous Provider-based Endpoint
	24.3.2 Developing an Asynchronous Provider-based Endpoint
	24.3.3 Specifying the Message Format
	24.3.4 Specifying that the JWS File Implements a Web Service Provider (@WebServiceProvider Annotation)
	24.3.5 Specifying the Usage Mode (@ServiceMode Annotation)
	24.3.6 Defining the invoke() Method for a Synchronous Provider-based Endpoints
	24.3.7 Defining the invoke() Method for an Asynchronous Provider-based Endpoints
	24.3.8 Defining the Callback Handler for the Asynchronous Provider-based Endpoint

	24.4 Developing a Web Service Provider-based Endpoint (Starting from WSDL)
	24.5 Using SOAP Handlers with Provider-based Endpoints
	24.6 Developing a Web Service Dispatch Client
	24.6.1 Example of a Web Service Dispatch Client
	24.6.2 Creating a Dispatch Instance
	24.6.3 Invoking a Web Service Operation

	25 Sending and Receiving SOAP Headers
	25.1 Overview of Sending and Receiving SOAP Headers
	25.2 Sending SOAP Headers Using WSBindingProvider
	25.3 Receiving SOAP Headers Using WSBindingProvider

	26 Using Callbacks
	26.1 Overview of Callbacks
	26.2 Example Callback Implementation
	26.3 Steps to Program Callbacks
	26.4 Programming Guidelines for Target Web Service
	26.5 Programming Guidelines for the Callback Client Web Service
	26.6 Programming Guidelines for the Callback Web Service
	26.7 Updating the build.xml File for the Target Web Service

	27 Developing Dynamic Proxy Clients
	27.1 Overview of Static Versus Dynamic Proxy Clients
	27.2 Steps to Develop a Dynamic Proxy Client
	27.3 Additional Considerations When Specifying WSDL Location

	28 Publishing a Web Service Endpoint
	29 Using XML Catalogs
	29.1 Overview of XML Catalogs
	29.2 Defining and Referencing XML Catalogs
	29.2.1 Defining an External XML Catalog
	29.2.1.1 Creating an External XML Catalog File
	29.2.1.2 Referencing the External XML Catalog File

	29.2.2 Embedding an XML Catalog
	29.2.2.1 Creating an Embedded XML Catalog
	29.2.2.2 Referencing an Embedded XML Catalog

	29.3 Disabling XML Catalogs in the Client Runtime
	29.4 Getting a Local Copy of XML Resources

	30 Programming Web Services Using XML Over HTTP
	30.1 About Programming Web Services Using XML Over HTTP
	30.2 Programming Guidelines for the Web Service Using XML Over HTTP
	30.3 Accessing the Web Service from a Client
	30.4 Securing Web Services that Use XML Over HTTP

	31 Programming Stateful JAX-WS Web Services Using HTTP Session
	31.1 Overview of Stateful Web Services
	31.2 Accessing HTTP Session on the Server
	31.3 Enabling HTTP Session on the Client
	31.4 Developing Stateful Services in a Cluster Using Session State Replication
	31.5 A Note About the JAX-WS RI @Stateful Extension

	32 Testing and Monitoring Web Services
	32.1 Testing Web Services
	32.2 Monitoring Web Services and Clients
	32.2.1 Monitoring Web Services
	32.2.2 Monitoring Web Service Clients

	32.3 Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

	Part V Reference
	A Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make Connection
	A.1 DefaultReliability1.2.xml (WS-Policy File)
	A.2 DefaultReliability1.1.xml (WS-Policy File)
	A.3 DefaultReliability.xml WS-Policy File (WS-Policy) [Deprecated]
	A.4 LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated]
	A.5 Mc1.1.xml (WS-Policy File)
	A.6 Mc.xml (WS-Policy File)
	A.7 Reliability1.2_ExactlyOnce_WithMC1.1.xml (WS-Policy File)
	A.8 Reliability1.2_SequenceSTR.xml (WS-Policy File)
	A.9 Reliability1.1_SequenceSTR.xml (WS-Policy File)
	A.10 Reliability1.2_SequenceTransportSecurity.xml (WS-Policy File)
	A.11 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)
	A.12 Reliability1.0_1.2.xml (WS-Policy File)
	A.13 Reliability1.0_1.1.xml (WS-Policy.xml File)

	B Example Client Wrapper Class for Batching Reliable Messages
	C Migrating JAX-RPC Web Services and Clients to JAX-WS
	C.1 Setting the Final Context Root of a WebLogic Web Service
	C.2 Using WebLogic-specific Annotations
	C.3 Generating a WSDL File
	C.4 Using JAXB Custom Types
	C.5 Using EJB 3.0
	C.6 Migrating from RPC Style SOAP Binding
	C.7 Updating SOAP Message Handlers
	C.8 Invoking JAX-WS Clients

