
Oracle® Fusion Middleware
Developing Applications with Oracle ADF Desktop Integration

12c (12.2.1.2.0)

E76682-01

October 2016

Documentation for Oracle ADF Desktop Integration developers
that describes how to extend the functionality provided by a
Fusion web application to desktop applications. It also
provides information for system administrators and end users
who work with these desktop applications.

Oracle Fusion Middleware Developing Applications with Oracle ADF Desktop Integration, 12c (12.2.1.2.0)

E76682-01

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Walter Egan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... xv

Audience .. xv

Documentation Accessibility .. xv

Related Documents... xv

Conventions... xv

1 Introduction to ADF Desktop Integration

1.1 About ADF Desktop Integration ... 1-1

1.2 About ADF Desktop Integration with Microsoft Excel.. 1-2

1.2.1 Overview of Creating an Integrated Excel Workbook ... 1-2

1.2.2 Advantages of Integrating Excel with a Fusion Web Application................................ 1-3

2 Introduction to the ADF Desktop Integration Sample Application

2.1 About the Summit Sample Application for ADF Desktop Integration 2-1

2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration ... 2-1

2.2.1 How to Download the Application Resources .. 2-1

2.2.2 How to Run the Summit Sample Application for ADF Desktop Integration 2-2

2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF

Desktop Integration .. 2-3

2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF

Desktop Integration.. 2-3

2.3.2 Downloading Integrated Excel Workbooks ... 2-4

2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF

Desktop Integration .. 2-5

2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook............. 2-5

2.4.2 Downloading Data Rows .. 2-5

2.4.3 Modify Customers and Warehouses Information in the Workbooks 2-6

2.4.4 Upload Modified Information to the Fusion Web Application..................................... 2-6

3 Setting Up Your Development Environment

3.1 About Setting Up Your Development Environment .. 3-1

3.2 Required Oracle ADF Modules and Third-Party Software ... 3-1

iii

3.3 Installing ADF Desktop Integration.. 3-2

3.3.1 How to Install ADF Desktop Integration.. 3-3

3.4 Removing ADF Desktop Integration .. 3-4

3.5 Upgrading ADF Desktop Integration... 3-5

4 Preparing Your Integrated Excel Workbook

4.1 About Preparing Your Integrated Excel Workbooks ... 4-1

4.2 Working with Page Definition Files for an Integrated Excel Workbook................................. 4-1

4.2.1 How to Create ADF Desktop Integration Page Definition File 4-2

4.2.2 What Happens When You Create a Page Definition File... 4-4

4.2.3 How to Reload a Page Definition File in an Excel Workbook 4-4

4.2.4 What You May Need to Know About Page Definition Files in an Integrated Excel

Workbook... 4-5

4.3 Adding an Integrated Excel Workbook to a Fusion Web Application 4-5

4.3.1 How to Add an Integrated Excel Workbook to a Fusion Web Application 4-5

4.3.2 How to Configure a New Integrated Excel Workbook .. 4-7

4.3.3 How to Add Additional Worksheets to an Integrated Excel Workbook 4-10

4.4 Enabling ADF Desktop Integration in an Excel Workbook... 4-11

4.4.1 How to Enable ADF Desktop Integration in an Existing Workbook.......................... 4-11

4.4.2 How to Manually Configure a New Integrated Excel Workbook 4-12

4.5 Enabling ADF Desktop Integration Manually .. 4-14

4.5.1 How to Manually Add ADF Desktop Integration In Fusion Web Application........ 4-14

4.5.2 What Happens When You Add ADF Desktop Integration to Your JDeveloper

Project ... 4-16

4.5.3 Adding ADF Library Web Application Support ... 4-16

4.6 Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration.. 4-17

5 Getting Started with the Development Tools

5.1 About Development Tools ... 5-1

5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples 5-2

5.1.2 Additional Functionality for ADF Desktop Integration Development Tools 5-3

5.2 Designer Ribbon Tab... 5-3

5.3 ADF Desktop Integration Designer Task Pane ... 5-6

5.4 Using the Bindings Palette ... 5-7

5.5 Using the Components Palette .. 5-8

5.6 Using the Property Inspector ... 5-9

5.7 Using the Binding ID Picker... 5-11

5.8 Using the Expression Builder... 5-11

5.9 Using the Web Page Picker .. 5-12

5.10 Using the File System Folder Picker ... 5-13

5.11 Using the Page Definition Picker... 5-14

5.12 Using the Collection Editors .. 5-15

5.13 Using the Cell Context Menu... 5-15

iv

5.14 Removing ADF Desktop Integration Components .. 5-16

5.15 Exporting and Importing Excel Workbook Integration Metadata 5-17

5.15.1 How to Export Workbook Integration Metadata .. 5-18

5.15.2 How to Import Workbook Integration Metadata .. 5-19

5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook

Integration Metadata.. 5-20

6 Working with ADF Desktop Integration Form-Type Components

6.1 About ADF Desktop Integration Form-Type Components... 6-1

6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples........... 6-2

6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components 6-3

6.2 Inserting an ADF Label Component... 6-3

6.3 Inserting an ADF Input Text Component .. 6-5

6.4 Inserting an ADF Output Text Component ... 6-6

6.5 Inserting an ADF Input Date Component.. 6-8

6.6 Inserting an ADF Image Component.. 6-10

6.7 Inserting an ADF Button Component... 6-12

6.8 Displaying Output from a Managed Bean in an ADF Component.. 6-13

6.8.1 How to Display Output from a Managed Bean... 6-14

6.8.2 What Happens at Runtime: How an ADF Component Displays Output from a

Managed Bean... 6-14

6.9 Displaying Concatenated or Calculated Data in Components ... 6-15

6.9.1 How to Configure a Component to Display Calculated Data..................................... 6-15

6.9.2 Using Form Components and Merged Cells.. 6-16

7 Working with ADF Desktop Integration Table-Type Components

7.1 About ADF Desktop Integration Table-Type Components .. 7-2

7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples 7-2

7.1.2 Additional Functionality of Table-Type Components.. 7-3

7.2 Page Definition Requirements for an ADF Table Component ... 7-3

7.3 Inserting an ADF Table Component into an Excel Worksheet ... 7-5

7.3.1 How to Insert an ADF Table Component... 7-5

7.3.2 How to Add a Column in an ADF Table Component .. 7-8

7.4 Downloading Data to an ADF Table Component .. 7-9

7.4.1 How to Download Data to an ADF Table Component .. 7-9

7.4.2 What Happens at Runtime: How an ADF Table Component Downloads Data 7-10

7.5 Downloading Pending Insert and Pending Update Rows to an ADF Table Component .. 7-11

7.5.1 What Happens at Runtime: Download Action is Invoked .. 7-12

7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts ... 7-12

7.5.3 What You May Need to Know About DownloadForInsert Action 7-12

7.6 Updating Existing Data in an ADF Table Component... 7-13

7.6.1 How to Configure an ADF Table Component to Update Data 7-13

7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data........... 7-14

v

7.7 Inserting Data in an ADF Table Component ... 7-14

7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's

Operations.. 7-15

7.8 Uploading Changes from an ADF Table Component ... 7-17

7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table

Component .. 7-17

7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data........... 7-19

7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated

During Upload .. 7-20

7.8.4 What Happens at Runtime: How Row Errors Are Handled During Upload 7-20

7.8.5 What You May Need to Know About Upload Options ... 7-21

7.8.6 How to Create a Custom Upload Dialog.. 7-22

7.8.7 What Happens at Runtime: Custom Upload Dialog .. 7-23

7.9 Uploading Changes from an ADF Table Component Using an UploadAllOrNothing

Action.. 7-23

7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action 7-24

7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked....................... 7-24

7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With

UploadAllOrNothing Action .. 7-25

7.10 Deleting ADF Table Component Rows in the Fusion Web Application............................. 7-26

7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web

Application .. 7-26

7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a

Fusion Web Application .. 7-27

7.11 Batch Processing in an ADF Table Component .. 7-29

7.11.1 How to Configure Batch Options for an ADF Table Component 7-29

7.11.2 Troubleshooting Errors While Uploading Data... 7-30

7.12 Special Columns in the ADF Table Component .. 7-31

7.12.1 Row Flagging in an ADF Table Component .. 7-32

7.13 Configuring ADF Table Component Key Column... 7-33

7.13.1 How to Configure the Key Column... 7-34

7.13.2 How to Manually Add the Key Column At Design Time.. 7-34

7.14 Adding a Dynamic Column to Your ADF Table Component .. 7-36

7.14.1 How to Configure a Dynamic Column ... 7-36

7.14.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic

Column... 7-37

7.14.3 How to Specify Header Labels for Dynamic Columns... 7-38

7.14.4 How to Specify Styles for Dynamic Columns ... 7-38

7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table

Component... 7-39

7.16 Configuring an ADF Table Component to Resize Columns Based on Data at Runtime.. 7-40

7.16.1 How to Configure an ADF Table Component to Resize Columns at Runtime 7-40

vi

7.16.2 How to Configure an Action Set to Resize Columns of an ADF Table Component

at Runtime.. 7-42

7.16.3 What Happens at Runtime: How the ADF Table Columns are Resized.................. 7-43

7.16.4 What You May Need to Know About Resizing Columns of an ADF Table

Component at Runtime.. 7-43

7.17 Grouping Columns Together in an ADF Table Component... 7-44

7.17.1 How to Group Columns in an ADF Table Component.. 7-45

7.17.2 How to Group Columns that Render in a Dynamic Column.................................... 7-48

7.17.3 What Happens at Runtime: How an ADF Table Component Groups Columns.... 7-50

7.18 Configuring an ADF Table Component to be Read-only .. 7-50

7.18.1 How to Configure an ADF Table Component to be Read-only 7-50

7.19 Creating an ADF Read-Only Table Component ... 7-52

7.19.1 How to Insert an ADF Read-only Table Component.. 7-52

7.20 Limiting the Number of Rows Your Table-Type Component Downloads 7-53

7.20.1 How to Limit the Number of Rows a Component Downloads 7-53

7.20.2 What Happens at Runtime: How the RowLimit Property Works 7-55

7.21 Tracking Changes in an ADF Table Component .. 7-55

7.22 Evaluating EL Expressions for ReadOnly Properties... 7-56

7.22.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data 7-56

7.22.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or

Tracking Changes ... 7-56

7.22.3 What You May Need to Know About Evaluating EL Expression While Uploading

Data or Tracking Changes ... 7-57

8 Working with Lists of Values

8.1 About List of Values in an Integrated Excel Workbook... 8-1

8.1.1 Adding Lists of Values to Integrated Excel Workbooks Use Cases and Examples.... 8-1

8.1.2 Additional Functionality for Adding List of Values to an Integrated Excel

Workbook... 8-2

8.2 Creating a List of Values in an Excel Worksheet .. 8-2

8.3 Creating a List of Values in an ADF Table Component Column ... 8-5

8.3.1 How to Create a List of Values in an ADF Table Component Column 8-5

8.3.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values. 8-7

8.4 Adding a Model-Driven List Picker to an ADF Table Component.. 8-7

8.4.1 What You May Need to Know About Model-Driven List Pickers in ADF Table

Components... 8-10

8.5 Creating Dependent Lists of Values in an Integrated Excel Workbook 8-10

8.5.1 How to Create Dependent Lists of Values in Excel Worksheets................................. 8-13

8.5.2 What Happens at Runtime: How an Excel Worksheet Renders a Dependent List of

Values ... 8-14

8.5.3 How to Create Dependent Lists of Values in ADF Table Component Columns...... 8-15

8.5.4 What Happens at Runtime: ADF Table Component Column Renders a Dependent

List of Values ... 8-16

vii

9 Adding Interactivity to Your Integrated Excel Workbook

9.1 About Adding Interactivity to an Integrated Excel Workbook .. 9-1

9.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples.......... 9-2

9.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel

Workbook... 9-3

9.2 Using Action Sets... 9-3

9.2.1 How to Invoke a Method Action Binding in an Action Set ... 9-5

9.2.2 How to Invoke Component Actions in an Action Set... 9-6

9.2.3 What You May Need to Know About an Action Set Invoking a Component Action

... 9-7

9.2.4 How to Invoke an Action Set from a Worksheet Event.. 9-8

9.2.5 How to Display a Progress Bar while an Action Set Executes....................................... 9-9

9.2.6 What Happens at Runtime: How the Action Set Displays a Status Message 9-12

9.2.7 What You May Need to Know About Progress Bars .. 9-12

9.2.8 How to Allow End Users to Continue Working in Excel While an ActionSet

Executes.. 9-13

9.2.9 What Happens at Runtime: How End Users Continue Working While an

ActionSet Executes.. 9-14

9.2.10 What You May Need to Know About Canceling an Action 9-15

9.2.11 How to Provide an Alert After the Invocation of an Action Set 9-17

9.2.12 What Happens at Runtime: How the Action Set Provides an Alert 9-18

9.2.13 How to Configure Error Handling for an Action Set.. 9-19

9.2.14 How to Prompt the User for Confirmation in an Action Set 9-20

9.2.15 What Happens at Runtime: How the Action Set Prompts the User for

Confirmation ... 9-22

9.3 Configuring the Runtime Ribbon Tab .. 9-22

9.3.1 How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab 9-24

9.3.2 How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab ... 9-25

9.3.3 What Happens at Runtime: Ribbon Commands in the Ribbon Tab........................... 9-26

9.4 Displaying Web Pages from a Fusion Web Application.. 9-28

9.4.1 How to Display a Web Page in a Popup Dialog .. 9-28

9.4.2 How to Display a Web Page Search Form in a Popup Dialog..................................... 9-30

9.4.3 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane 9-32

9.4.4 What You May Need to Know About Displaying Pages from a Fusion Web

Application .. 9-33

9.5 Using Row-Level Action Sets in a Table Column... 9-35

9.5.1 How to Enable Row-Level Action Set Model Management .. 9-35

9.5.2 What Happens at Runtime: RowActionSetModelMgmtEnabled is Set to True 9-36

9.5.3 How to Synchronize Changes from ADF Table Component Using

RowUpSyncNoFail ... 9-37

9.5.4 What Happens at Runtime: RowUpSyncNoFail Action is Invoked........................... 9-38

9.5.5 How to Add a Custom Popup Picker Dialog to an ADF Table Column 9-38

viii

9.6 Using EL Expression to Generate an Excel Formula .. 9-40

9.6.1 How to Configure a Cell to Display a Hyperlink Using EL Expression 9-40

9.6.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL

Expression.. 9-41

9.7 Using Calculated Cells in an Integrated Excel Workbook... 9-42

9.7.1 How to Calculate the Sum of a Table-Type Component Column 9-43

9.7.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type

Component Column... 9-44

9.8 Using Macros in an Integrated Excel Workbook ... 9-44

10 Configuring the Appearance of Your Integrated Excel Workbook

10.1 About Configuring the Appearance of an Integrated Excel Workbook 10-1

10.1.1 Integrated Excel Workbook Configuration Use Cases and Examples 10-2

10.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel

Workbook... 10-2

10.2 Working with Styles .. 10-2

10.2.1 Predefined Styles in ADF Desktop Integration.. 10-2

10.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options . 10-3

10.2.3 How to Apply a Style to an Oracle ADF Component... 10-5

10.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component 10-6

10.3 Applying Styles Dynamically Using EL Expressions... 10-6

10.3.1 What Happens at Runtime: How an EL Expression Is Evaluated 10-7

10.3.2 How to Write an EL Expression That Applies a Style at Runtime............................ 10-7

10.3.3 What You May Need to Know About EL Expressions That Apply Styles 10-8

10.4 Using Labels in an Integrated Excel Workbook .. 10-9

10.4.1 Retrieving the Values of String Keys from a Resource Bundle 10-9

10.4.2 Retrieving the Values of Attribute Control Hints.. 10-10

10.4.3 How an Integrated Excel Workbook Evaluates a Label Property........................... 10-10

10.5 Branding Your Integrated Excel Workbook .. 10-11

10.5.1 How to Brand an Integrated Excel Workbook... 10-11

10.5.2 What Happens at Runtime: the BrandingItems Group of Properties 10-13

10.6 Displaying Tooltips in ADF Desktop Integration Components ... 10-13

10.6.1 How to Add a Tool Tip to an ADF Table Component.. 10-15

10.6.2 How to Add a Tool Tip to a Form-Type Component ... 10-16

10.6.3 What You May Need to Know About Tooltips for Table Columns 10-18

10.7 Using Worksheet Protection .. 10-18

10.7.1 How to Enable Worksheet Protection ... 10-19

10.7.2 What Happens at Runtime: How the Locked Property Works............................... 10-19

10.7.3 What You May Need to Know About Worksheet Protection.................................. 10-20

10.8 Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties

.. 10-20

10.8.1 How to Enable Custom Attribute Properties in Integrated Excel Workbook 10-21

10.8.2 What Happens at Runtime: CustomAttributePropertiesEnabled is Set to True... 10-21

ix

10.8.3 What You May Need to Know About the CustomAttributePropertiesEnabled

Property.. 10-21

11 Internationalizing Your Integrated Excel Workbook

11.1 About Internationalizing Your Integrated Excel Workbook... 11-1

11.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples............... 11-2

11.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook......... 11-2

11.2 Using Resource Bundles in an Integrated Excel Workbook.. 11-2

11.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook................... 11-3

11.2.2 How to Override Resources That Are Not Configurable... 11-4

11.2.3 What Happens at Runtime: Override Resources That Are Not Configurable 11-5

11.2.4 What You May Need to Know About Resource Bundles .. 11-5

11.3 Localization in ADF Desktop Integration .. 11-6

11.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings..... 11-7

12 Securing Your Integrated Excel Workbook

12.1 About Security In Your Integrated Excel Workbook.. 12-1

12.1.1 Integrated Excel Workbook Security Use Cases and Examples 12-2

12.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web

Application .. 12-3

12.2 Authenticating the Excel Workbook User.. 12-3

12.2.1 What Happens at Runtime: How the Login Method Is Invoked 12-3

12.2.2 What Happens at Runtime: How the Web Application Session is Terminated 12-4

12.3 Checking the Integrity of an Integrated Excel Workbook's Metadata................................. 12-5

12.3.1 How to Reset the Workbook ID ... 12-5

12.3.2 What Happens When the Metadata Tamper-Check Is Performed 12-6

12.4 What You May Need to Know About Securing an Integrated Excel Workbook 12-6

12.5 Authorizing the Excel Workbook User .. 12-7

12.5.1 What You May Need to Know About ADF Desktop Integration-Disabled

Worksheet ... 12-8

13 Adding Validation to Your Integrated Excel Workbook

13.1 About Adding Validation to an Integrated Excel Workbook ... 13-1

13.1.1 Integrated Excel Workbook Validation Use Cases and Examples............................ 13-1

13.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook

... 13-2

13.2 Using the Status Viewer to Report Error Messages to End Users .. 13-2

13.2.1 How to Manage the Automatic Display of the Status Viewer................................... 13-4

13.3 Providing Data Entry Validation for an Integrated Excel Workbook.................................. 13-4

13.3.1 Providing Data Entry Validation Using ADF Desktop Integration.......................... 13-5

13.3.2 Providing Data Validation Using Excel .. 13-7

13.3.3 How to Upload Excel Cell Errors to the Fusion Web Application............................ 13-7

13.4 Providing Server-Side Validation for an Integrated Excel Workbook................................. 13-8

x

13.5 Providing a Row-by-Row Status on an ADF Table Component .. 13-8

13.6 Adding Detail to Error Messages in an Integrated Excel Workbook................................. 13-10

13.7 Handling Data Conflicts When Uploading Data from a Workbook.................................. 13-10

13.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data 13-11

13.7.2 What Happens at Runtime: How Data Conflicts Are Handled 13-11

14 Testing Your Integrated Excel Workbook

14.1 About Testing Your Integrated Excel Workbook.. 14-1

14.1.1 Integrated Excel Workbook Testing Use Cases and Examples 14-1

14.1.2 Additional Functionality for Testing an Integrated Excel Workbook 14-1

14.2 Testing Your Fusion Web Application ... 14-2

14.3 Validating the Integrated Excel Workbook Configuration.. 14-3

14.3.1 How to Validate the Integrated Excel Workbook Configuration.............................. 14-3

14.3.2 What Happens When You Validate the Integrated Excel Workbook

Configuration .. 14-3

14.3.3 How to Fix Validation Failures .. 14-4

14.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at

Runtime.. 14-5

14.4 Testing Your Integrated Excel Workbook.. 14-6

15 Deploying Your Integrated Excel Workbook

15.1 About Deploying Your Integrated Excel Workbook .. 15-1

15.1.1 Integrated Excel Workbook Deployment Use Cases and Examples 15-1

15.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook............ 15-2

15.2 Making ADF Desktop Integration Available to End Users .. 15-2

15.3 Publishing Your Integrated Excel Workbook.. 15-3

15.3.1 How to Publish an Integrated Excel Workbook from Excel 15-3

15.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish

Tool ... 15-4

15.3.3 What Happens When You Publish an Integrated Excel Workbook 15-5

15.4 Deploying a Published Workbook with Your Fusion Web Application............................. 15-6

15.4.1 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion

Web Application from JDeveloper... 15-7

15.4.2 What Happens at Runtime: End User Requests a Published Workbook................. 15-8

15.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook............. 15-8

15.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters.......... 15-11

15.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook...... 15-12

15.5.3 How to Configure the Page Definition File for the Worksheet to Receive

Parameters ... 15-16

15.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web

Application to the Integrated Excel Workbook.. 15-17

15.6 Customizing Workbook Integration Metadata at Runtime... 15-17

15.6.1 How to Enable Workbook Customization at Runtime... 15-18

xi

15.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized 15-18

15.6.3 What You May Need to Know About Customizing Workbook Integration

Metadata... 15-19

15.7 Integrating ADF Workbook Composer into Your Fusion Web Application 15-19

15.7.1 How to Integrate ADF Workbook Composer into Your Fusion Web Application 15-19

15.7.2 What Happens at Runtime: ADF Workbook Composer is Invoked 15-21

15.7.3 What You May Need to Know About ADF Workbook Composer 15-21

16 Using an Integrated Excel Workbook Across Multiple Web Sessions

16.1 About Using an Integrated Excel Workbook Across Multiple Web Sessions 16-1

16.1.1 Using an Integrated Excel Workbook Across Multiple Web Sessions Use Cases

and Examples .. 16-2

16.1.2 Additional Functionality for Using an Integrated Excel Workbook Across

Multiple Web Sessions ... 16-2

16.2 Restore Server Data Context Between Sessions .. 16-2

16.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context

... 16-2

16.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server

Data Context .. 16-4

16.3 Caching of Static Information in an Integrated Excel Workbook... 16-4

16.4 Caching Lists of Values for Use Across Multiple Web Sessions... 16-5

16.5 Using Explicit Worksheet Setup Action ... 16-6

16.5.1 How to Configure Explicit Worksheet Setup Action.. 16-6

16.5.2 What You May Need to Know About Explicit Worksheet Setup Action 16-7

17 Administering ADF Desktop Integration

17.1 Installing and Upgrading ADF Desktop Integration ... 17-1

17.1.1 Prerequisites for Installing ADF Desktop Integration Add-in 17-2

17.1.2 Configuring Microsoft Excel for Integrated Excel Workbooks That Use ADF

Button Components.. 17-3

17.1.3 How to Install the ADF Desktop Integration Add-in From a Web Server 17-4

17.1.4 How to Upgrade the ADF Desktop Integration Add-in... 17-5

17.1.5 How to Run ADF Desktop Integration Installer from Command Line 17-5

17.1.6 How to Manage the Display of the System Check to End Users 17-6

17.2 Running the Client Health Check Tool .. 17-7

17.3 ADF Desktop Integration Logs.. 17-9

17.4 Security in ADF Desktop Integration ... 17-10

17.4.1 End User Authentication... 17-10

17.4.2 What You May Need to Know About Configuring Security in a Fusion Web

Application ... 17-10

17.4.3 What You May Need to Know About Resource Grants for Web Pages 17-12

17.5 Verifying the Client Version of ADF Desktop Integration .. 17-12

17.5.1 How to Disable the Install Option on the Client-Server Version Check Dialog ... 17-14

xii

17.6 Verifying Integrated Excel Workbook Metadata .. 17-15

17.6.1 How to Disable the Metadata Tamper-Check in the Fusion Web Application..... 17-15

17.7 Common ADF Desktop Integration Error Messages and Problems 17-17

A ADF Desktop Integration Component Properties and Actions

A.1 Frequently Used Properties in the ADF Desktop Integration.. A-1

A.2 ADF Input Text Component Properties ... A-3

A.3 ADF Output Text Component Properties .. A-3

A.4 ADF Label Component Properties .. A-3

A.5 ADF List of Values Component Properties ... A-4

A.6 ADF Image Component Properties.. A-4

A.7 ADF Input Date Component Properties ... A-5

A.8 ModelDrivenColumnComponent Subcomponent Properties ... A-5

A.9 TreeNodeList Subcomponent Properties ... A-6

A.10 ADF Button Component Properties .. A-7

A.11 ADF Table Component Properties and Actions... A-7

A.11.1 ADF Table Component Properties ... A-7

A.11.2 ADF Table Component Column Properties .. A-13

A.11.3 ADF Table Component Actions .. A-15

A.12 ADF Read-only Table Component Properties and Actions ... A-18

A.13 Action Set Properties.. A-19

A.13.1 Confirmation Action Properties.. A-22

A.13.2 Dialog Action Properties .. A-22

A.14 Workbook Actions and Properties... A-23

A.15 Worksheet Actions and Properties... A-28

A.16 ADF Desktop Integration Compatibility Properties ... A-33

B ADF Desktop Integration EL Expressions

B.1 Guidelines for Creating EL Expressions .. B-1

B.2 EL Syntax for ADF Desktop Integration Components .. B-2

B.3 Attribute Control Hints in ADF Desktop Integration.. B-3

C Troubleshooting an Integrated Excel Workbook

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration C-1

C.2 Generating ADF Desktop Integration Diagnostic Reports ... C-2

C.2.1 How to Generate the ADF Desktop Integration Diagnostic Report C-2

C.2.2 What You May Need to Know About the ADF Desktop Integration Diagnostic

Report ... C-3

C.3 Troubleshooting Connection Problems to Fusion Web Applications..................................... C-4

C.4 Verifying End-User Authentication for Integrated Excel Workbooks.................................... C-5

C.5 Generating Log Files for an Integrated Excel Workbook.. C-5

C.5.1 About Server-Side Logging.. C-6

xiii

C.5.2 Using the Oracle Diagnostics Log Analyzer to Analyze ADF Desktop Integration

Servlet Requests .. C-6

C.5.3 About Client-Side Logging .. C-6

D ADF Desktop Integration Settings in the Web Application Deployment Descriptor

D.1 Configuring the ADF Desktop Integration Servlet.. D-1

D.2 Configuring the ADF Desktop Integration Excel Download Filter D-3

D.3 Configuring the ADF Library Filter for ADF Desktop Integration .. D-7

D.4 Examples in a Deployment Descriptor File .. D-8

E String Keys in the Overridable Resources

F Java Data Types Supported By ADF Desktop Integration

F.1 Primitive Java Types ... F-1

F.2 Object Java Types... F-1

G Using the ADF Desktop Integration Model API

G.1 About the Temporary Row Object .. G-1

G.2 About ADF Desktop Integration Model API... G-2

G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper

Project .. G-2

G.3 ADF Desktop Integration Model API Classes and Methods... G-3

G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class.................................... G-3

H End User Actions

H.1 Installing, Upgrading, and Removing ADF Desktop Integration... H-1

H.1.1 How to Install ADF Desktop Integration on Your System ... H-1

H.1.2 How to Remove ADF Desktop Integration... H-2

H.1.3 How to Upgrade ADF Desktop Integration On a Local System.................................. H-3

H.2 Removing Personal Information .. H-4

H.3 Limitations of an Integrated Excel Workbook at Runtime... H-4

H.4 Using an Integrated Excel Workbook.. H-4

H.4.1 How to Insert or Paste Rows in an ADF Table Component .. H-5

H.4.2 How to Sort ADF Table Data in an Integrated Excel Workbook H-6

H.4.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook...................... H-7

H.5 Handling Time Zone Conversion .. H-7

H.6 Providing Diagnostic and Logging Information to Technical Support.................................. H-7

xiv

Preface

Welcome to Developing Applications with Oracle ADF Desktop Integration.

Audience
This document is intended for enterprise developers who develop desktop
applications to integrate with the Oracle Application Development Framework (Oracle
ADF). It also provides information for system administrators and end users who work
with these desktop applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following:

• Developing Fusion Web Applications with Oracle Application Development Framework

• Developing Web User Interfaces with Oracle ADF Faces

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

monospace Monospace type indicates language and syntax elements, directory
and file names, URLs, text that appears on the screen, or text that you
enter.

xvi

1
Introduction to ADF Desktop Integration

This chapter introduces ADF Desktop Integration and provides an overview of the
framework. The chapter also describes the advantages of integrating Microsoft Excel
with a Fusion web application.

This chapter includes the following sections:

• About ADF Desktop Integration

• About ADF Desktop Integration with Microsoft Excel

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 About ADF Desktop Integration
Many end users of Fusion web applications use desktop applications, such as
Microsoft Excel, to manage information also used by their web application. ADF
Desktop Integration provides a framework for Oracle Application Development
Framework (Oracle ADF) developers to extend the functionality provided by a Fusion
web application to desktop applications. It allows end users to avail themselves of
Oracle ADF functionality when they are disconnected from their company network.
End users may also prefer ADF Desktop Integration because it provides Excel's
familiar user interface to undertake information management tasks, such as
performing complex calculations or uploading a large amount of data, easily and
seamlessly.

ADF Desktop Integration is a part of the Oracle ADF architecture. More information
about the Oracle ADF architecture can be found in the "Oracle ADF Architecture"
section of Developing Fusion Web Applications with Oracle Application Development
Framework.

Figure 1-1 illustrates the architecture of ADF Desktop Integration, which comprises of
the following components:

• ADF Desktop Integration

• ADF Desktop Integration remote servlet

• ADF Model layer

Introduction to ADF Desktop Integration 1-1

Figure 1-1 ADF Desktop Integration Architecture

For more information about ADF Desktop Integration, see the ADF Desktop
Integration page on Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/
index-085534.html

1.2 About ADF Desktop Integration with Microsoft Excel
Currently, ADF Desktop Integration supports integration with Microsoft Excel.

Note:

This guide uses the term integrated Excel workbook to refer to Excel workbooks
that you integrate with a Fusion web application and to distinguish these
workbooks from workbooks that have not been integrated with a Fusion web
application or configured with Oracle ADF functionality.

1.2.1 Overview of Creating an Integrated Excel Workbook
Creating an integrated Excel workbook involves the steps described in Table 1-1.

Table 1-1 Steps to Create an Integrated Excel Workbook

Use To

JDeveloper • Create a Fusion web application.

For information about creating a Fusion web application, see the
Developing Fusion Web Applications with Oracle Application Development
Framework.

• Add data controls that expose the elements you require in Microsoft
Excel.

• Create page definition files that expose the Oracle ADF bindings to use
in Excel.

For more information, see Working with Page Definition Files for an
Integrated Excel Workbook.

About ADF Desktop Integration with Microsoft Excel

1-2 Developing Applications with Oracle ADF Desktop Integration

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html

Table 1-1 (Cont.) Steps to Create an Integrated Excel Workbook

Use To

Excel • Create the Excel workbooks that you intend to configure with Oracle
ADF functionality.

For more information, see Adding an Integrated Excel Workbook to a
Fusion Web Application.

• Configure the Excel workbook using the Oracle ADF bindings that you
exposed in the page definition files and the Oracle ADF components
that ADF Desktop Integration provides.

For more information, see the following sections and chapters:

– Getting Started with the Development Tools

This chapter provides an overview of the tools that ADF Desktop
Integration provides to configure an Excel workbook with Oracle
ADF functionality.

– Working with ADF Desktop Integration Form-Type Components

This chapter describes how to insert ADF Desktop Integration form-
type components into Excel worksheets and configure their
properties to determine behavior at runtime.

– Working with ADF Desktop Integration Table-Type Components

This chapter describes how to use the ADF Table and Read-only
Table components to provide end users with a means of displaying
and editing data hosted by a Fusion web application.

– Adding Validation to Your Integrated Excel Workbook

This chapter describes how to provide validation for your integrated
Excel workbook.

• Test your integrated Excel workbook.

For more information, see Testing Your Integrated Excel Workbook.
• After completing the integration of the Excel workbook with the Fusion

web application, you deploy it to make it available to the end users.

For information about this task, see Deploying Your Integrated Excel
Workbook .

1.2.2 Advantages of Integrating Excel with a Fusion Web Application
Advantages that accrue from integrating Microsoft Excel workbooks with your Fusion
web application include:

• Providing end users with access to data and functionality hosted by a Fusion web
application through a desktop interface (Microsoft Excel) that may be more familiar
to them.

• End users can access data hosted by a Fusion web application while not connected
to the application. They must log on to the Fusion web application to download
data. Once data is downloaded to an Excel workbook, they can modify it while
disconnected from the Fusion web application.

• Bulk entry and update of data may be easier to accomplish through a spreadsheet-
style interface.

• End users can use native Excel features such as formulas and filters.

About ADF Desktop Integration with Microsoft Excel

Introduction to ADF Desktop Integration 1-3

About ADF Desktop Integration with Microsoft Excel

1-4 Developing Applications with Oracle ADF Desktop Integration

2
Introduction to the ADF Desktop Integration

Sample Application

This chapter provides an overview of the Summit sample application for ADF
Desktop Integration. The Summit sample application for ADF Desktop Integration
contains several Microsoft Excel workbooks that are integrated with the sample's
Fusion web application.

This chapter includes the following sections:

• About the Summit Sample Application for ADF Desktop Integration

• Setting Up and Running the Summit Sample Application for ADF Desktop
Integration

• Overview of the Fusion Web Application in the Summit Sample Application for
ADF Desktop Integration

• Overview of the Integrated Excel Workbooks in the Summit Sample Application
for ADF Desktop Integration

2.1 About the Summit Sample Application for ADF Desktop Integration
The Summit sample application for ADF Desktop Integration is a set of sample
demonstrations that illustrate the main capabilities from ADF Desktop Integration.
Each of the samples contain specific features that can also be identified on the
developer's guide. All of the samples use the same underlying database schema which
makes it very easy for accessing the source code, and also to experience the runtime
behavior in a standalone way.

2.2 Setting Up and Running the Summit Sample Application for ADF
Desktop Integration

Set up the development environment as described in Setting Up Your Development
Environment before you download and run the Summit sample application for ADF
Desktop Integration.

Running the Summit sample application for ADF Desktop Integration requires you to:

1. Download the application resources, as described in How to Download the
Application Resources.

2. Run the Summit sample application, as described in How to Run the Summit
Sample Application for ADF Desktop Integration.

2.2.1 How to Download the Application Resources
You download the application resources from Oracle Technology Network.

Introduction to the ADF Desktop Integration Sample Application 2-1

To download the Summit sample application for ADF Desktop Integration:

1. Download and install Oracle JDeveloper. For more information, see Installing the
Oracle JDeveloper Software of the Installing Oracle JDeveloper.

2. Install ADF Desktop Integration. For more information, see Installing ADF
Desktop Integration.

Note:

If you have an old version of ADF Desktop Integration installed on your
system, upgrade ADF Desktop Integration as described in Upgrading ADF
Desktop Integration.

3. Download and install the Summit ADF schema. For more information, see the
"How to Install the Summit ADF Schema" section in Developing Fusion Web
Applications with Oracle Application Development Framework.

4. Download and install the Summit sample application for ADF Desktop
Integration ZIP file from Oracle Technology Network.

http://www.oracle.com/pls/topic/lookup?ctx=E26099_01&id=jdevcodesamples

For more information, see How to Run the Summit Sample Application for ADF
Desktop Integration.

2.2.2 How to Run the Summit Sample Application for ADF Desktop Integration
To run the Summit sample application, extract the contents of the zip file and open
the .JWS file in JDeveloper.

To run the Summit sample application for ADF Desktop Integration:

1. Extract the contents the zip file to a local directory.

2. Open the SummitADFdi.jws file in JDeveloper.

This file is located in the Summit_ADFDI directory.

3. In the Applications window, click and expand the Model project.

4. Open Model > Application Sources > oracle.summitdi.model > Model.jpx file.

5. Expand the Connection group of the General tab, and click the Add icon to create
a database connection.

6. In the Create Database Connection dialog, add the connection information shown
in Table 2-1 for your environment.

Table 2-1 Database Connection Properties for the Summit Sample Application
for ADF Desktop Integration

Property Description

Username c##summit_adf

Password summit_adf

Setting Up and Running the Summit Sample Application for ADF Desktop Integration

2-2 Developing Applications with Oracle ADF Desktop Integration

Table 2-1 (Cont.) Database Connection Properties for the Summit Sample
Application for ADF Desktop Integration

Property Description

Host Name The host name for your database.

For example:

localhost

JDBC Port The port for your database.

For example:

1521

SID The SID of your database.

For example:

ORCL or XE

Click Test Connection to verify the connection, and then click OK to close the
dialog.

7. Save the Model.jpx file.

8. Select the ViewController project and click the Run button in JDeveloper's main
menu.

2.3 Overview of the Fusion Web Application in the Summit Sample
Application for ADF Desktop Integration

The Fusion web application in the Summit sample application for ADF Desktop
Integration enables end users to download the integrated Excel workbooks.

2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF
Desktop Integration

When the end user runs the Summit sample application for ADF Desktop Integration
in JDeveloper, the default browser opens the application home page. The end user can
download various integrated Excel workbooks from the home page.

Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration

Introduction to the ADF Desktop Integration Sample Application 2-3

Figure 2-1 Home page of Summit Sample Application for ADF Desktop Integration

2.3.2 Downloading Integrated Excel Workbooks
The Summit sample application for ADF Desktop Integration provides various
integrated Excel workbooks to meet different requirements. End users can navigate
and download different workbooks from the MainPage.jsf of the application. When
an end user clicks a link to download a workbook, a Java applet verifies that the ADF
Desktop Integration add-in is present on the end user’s machine. If the add-in is
found, the workbook download begins automatically. Otherwise, ADF Desktop
Integration prompts the end user to install the add-in. If Java is not installed on the
end user’s machine or is disabled by the end user’s security settings, the Java applet is
unable to verify the presence of the ADF Desktop Integration add-in. ADF Desktop
Integration informs the end user that the installation of the add-in cannot be verified.
It presents the end user with the option to download the workbook and/or install the
add-in.

Table 2-2 lists the menu options and the downloaded integrated Excel workbooks.

Table 2-2 Integrated Excel Workbooks of Summit sample application for ADF
Desktop Integration

Menu Option Description

Edit Customers Sample Downloads EditCustomers.xlsx workbook.

Edit Warehouse Inventory
Sample

Downloads EditWarehouseInventory.xlsx workbook.

Edit All Inventory Sample Downloads EditAllInventory.xlsx workbook.

Search Customers Sample Downloads CustomerSearch.xlsx workbook.

Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration

2-4 Developing Applications with Oracle ADF Desktop Integration

2.4 Overview of the Integrated Excel Workbooks in the Summit Sample
Application for ADF Desktop Integration

The Summit sample application for ADF Desktop Integration provides the
CustomerSearch.xlsx, EditAllInventory.xlsx, EditCustomers.xlsx,
and EditWarehouseInventory.xlsx integrated Excel workbooks.

The CustomerSearch.xlsx workbook demonstrates how a custom web page can be
used to perform a search prior to downloading data into an ADF Table component
configured to be read-only.

The EditAllInventory.xlsx workbook demonstrates how to create an editable
table with a denormalized master-detail relationship. It also demonstrates how to use
a date picker, group columns, and delete existing data records.

The EditCustomers.xlsx workbook illustrates the most commonly used ADF
Desktop Integration ADF Table component features. You can download, insert,
update and commit data. It also demonstrates multiple ways to choose a value from a
list of choices.

The EditWarehouseInventory.xlsx workbook illustrates how to use ADF
Desktop Integration form components with a detail table. You can download and
update data in a master form and its detail table. This sample also demonstrates how
to use workbook parameters to control the workbook initialization.

Subsequent sections in this chapter provide more information about the functionality
in the workbooks along with cross-references to implementation details.

2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
At runtime, the integrated Excel workbooks in the Summit sample application for
ADF Desktop Integration render an Excel ribbon tab that allows end users to log on to
the Fusion web application. Figure 2-2 shows the runtime Customers tab in the Ribbon
of the EditCustomers.xlsx workbook.

Figure 2-2 Runtime Customers Tab

2.4.2 Downloading Data Rows
Some workbooks, such as EditCustomers.xlsx workbook, use an ADF Table
component to download information from the Fusion web application. This
component allows end users to edit rows and upload modified rows to the Fusion web
application.

The following sections provide information about how to implement the download
functionality:

• Each worksheet that you integrate with a Fusion web application requires an
associated page definition file.

Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

Introduction to the ADF Desktop Integration Sample Application 2-5

For example, the Customers worksheet in the EditCustomers.xlsx workbook
is associated with the ExcelCustomers.xml page definition file. In JDeveloper,
expand the following nodes in the Applications window to view this file:

ViewController > Application Sources > oracle.summitdi.view > pageDefs

For information about how to configure a page definition file, see Working with
Page Definition Files for an Integrated Excel Workbook.

• The ADF Table component Download action downloads data from the Fusion web
application to the worksheet. For information about how you invoke this action,
see Downloading Data to an ADF Table Component.

• In the EditCustomers.xlsx workbook, the worksheet Startup event invokes
an action set that includes the ADF Table component Download action. For
information about configuring worksheet events, see How to Invoke an Action Set
from a Worksheet Event.

2.4.3 Modify Customers and Warehouses Information in the Workbooks
The EditCustomers.xlsx and EditWarehouseInventory.xlsx workbooks
enable end users to edit customers and warehouses information that the ADF Table
component and form components downloads from the Fusion web application.
Columns in the runtime ADF Table component that have an UpdateComponent
property configured permit end users to modify values and upload the changes to the
Fusion web application. For example, end users can modify the values that appear in
the Name, Phone, and Address columns in EditCustomers.xlsx.

Other columns, such as Status and Changed, appear in the ADF Table component to
provide status information about upload operations and changed columns.

The following sections provide information about how to implement this
functionality:

• For information about inserting an ADF Table component, see Inserting an ADF
Table Component into an Excel Worksheet.

• For information about special columns, such as Status and Changed, see Special
Columns in the ADF Table Component.

• For information about action sets, see Adding Interactivity to Your Integrated Excel
Workbook.

• For information about lists of values, see Working with Lists of Values.

2.4.4 Upload Modified Information to the Fusion Web Application
The integrated workbooks allow end users to upload modified data in the ADF Table
component to the Fusion web application. An action set is configured for the runtime
Upload ribbon command that invokes the ADF Table component's Upload action. For
information about implementing this functionality, see Uploading Changes from an
ADF Table Component .

Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

2-6 Developing Applications with Oracle ADF Desktop Integration

3
Setting Up Your Development Environment

This chapter describes how to set up the development environment to integrate an
Excel workbook with a Fusion web application, how to upgrade and remove ADF
Desktop Integration.

This chapter includes the following sections:

• About Setting Up Your Development Environment

• Required Oracle ADF Modules and Third-Party Software

• Installing ADF Desktop Integration

• Removing ADF Desktop Integration

• Upgrading ADF Desktop Integration

3.1 About Setting Up Your Development Environment
Setting up the development environment involves making sure that you have the
correct versions of JDeveloper and Microsoft Office installed, as described in Required
Oracle ADF Modules and Third-Party Software.

After verifying that you have the required software, complete the setup of your
development environment by:

• Configuring Microsoft Excel to work with ADF Desktop Integration

• Installing ADF Desktop Integration

Note:

The instructions in this guide assume that you are using Windows 7 operating
system and Microsoft Excel 2007. Note that the steps might be different for
different editions of Windows and Excel.

3.2 Required Oracle ADF Modules and Third-Party Software
Before you begin to integrate your Excel workbook with a Fusion web application,
ensure that you have the required Oracle ADF modules and third-party software
installed and configured:

• Oracle JDeveloper

Install the current release of JDeveloper. ADF Desktop Integration is available as a
JDeveloper feature.

Setting Up Your Development Environment 3-1

• Microsoft Windows

Microsoft Windows operating systems support the development and deployment
of Excel workbooks that integrate with Fusion web applications. For more
information about supported versions of Windows, click the "Certification
Information" link for this release on the following OTN page:

http://www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html

• Microsoft Excel

ADF Desktop Integration supports the integration of Fusion web applications with
the following types of Excel workbook:

– Excel Workbook

The default file format for Excel workbooks is the Excel XML-based file format
(.xlsx).

– Excel Macro-Enabled Workbook

Workbooks in this format (.xlsm) use the Excel XML-based file format and can
store VBA macro code.

ADF Desktop Integration does not support the use of other Excel file formats. For
more information about supported versions of Excel, click the "Certification
Information" link for this release on the following OTN page:

http://www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html

• Internet Explorer

Some features in ADF Desktop Integration use a web browser control from the
Microsoft .NET Framework. This browser control relies on the local Internet
Explorer installation to function properly.

ADF Desktop Integration uses Internet Explorer to render web pages inside Excel,
regardless of other browsers installed on the system or any other browser set as the
default browser.

Consider running the Client Health Check to determine if your environment is
configured correctly after you run the ADF Desktop Integration installer. For more
information, see Running the Client Health Check Tool.

3.3 Installing ADF Desktop Integration
When you run the ADF Desktop Integration installer, it verifies whether software in
the following list is installed on the system where you want to install the add-in. If one
or more of these pieces of software is not installed, the installer automatically
downloads and installs it in the order specified.

1. Windows Installer 3.1

2. Microsoft .NET Framework

The Microsoft .NET Framework 4.5.2 provides the runtime and associated files
required to run applications developed to target the Microsoft .NET Framework.
You can download the framework from http://www.microsoft.com/
download/.

Installing ADF Desktop Integration

3-2 Developing Applications with Oracle ADF Desktop Integration

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.microsoft.com/download/
http://www.microsoft.com/download/

Note:

• Microsoft .NET Framework 4.5.2 is the minimum required version. ADF
Desktop Integration is also compatible with Microsoft .NET Framework
4.6.

• Installation of Microsoft .NET Framework may require you to restart the
system where you install it. After the restart, the installer automatically
recommences to finalize installation.

3. Microsoft Visual Studio 2010 Tools for Office Runtime

The Microsoft Visual Studio 2010 Tools for Office Runtime (version 4) is required to
run VSTO solutions for the Microsoft Office system. You can download the
Microsoft Visual Studio 2010 Tools for Office Runtime from http://
www.microsoft.com/download/.

4. ADF Desktop Integration add-in

You can install the ADF Desktop Integration add-in from JDeveloper, or from the
adfdi-excel-addin-installer.exe installer available in the following
directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration

For more information about how to set up ADF Desktop Integration, see How to
Install ADF Desktop Integration. You can also install it from an ADF Desktop
Integration-enabled Fusion web application. For more information, see How to
Install the ADF Desktop Integration Add-in From a Web Server.

Note that the ADF Desktop Integration installation is specific to the current
Windows user profile. If you have multiple Windows user profiles on your system,
and you want to use ADF Desktop Integration integrated Excel workbooks from
some specific user profiles, you must log in to each user profile and install the ADF
Desktop Integration add-in. For more information, see How to Install ADF Desktop
Integration.

3.3.1 How to Install ADF Desktop Integration
You can install the ADF Desktop Integration add-in from JDeveloper, and then create
and test integrated Excel workbooks.

Although you do not require administrator privileges to install the ADF Desktop
Integration add-in, administrator privileges may be required to run the installer for
additional software that the installer attempts to download and install. You should
also ensure that the proxy settings for Internet Explorer are configured to allow access
to *.microsoft.com because the installer attempts to automatically download
missing prerequisite software from Microsoft's website.

Before you begin:

It may be helpful to have an understanding of ADF Desktop Integration requirements.
For more information, see Installing ADF Desktop Integration.

To install ADF Desktop Integration:

1. Open JDeveloper.

2. From the Tools menu, choose Install ADF Desktop Integration.

Installing ADF Desktop Integration

Setting Up Your Development Environment 3-3

http://www.microsoft.com/download/
http://www.microsoft.com/download/

Note:

The Install ADF Desktop Integration menu option is available only on the
Windows installation of JDeveloper.

3. In the ADF Desktop Integration Installer page of Oracle ADF Desktop Integration
12c Add-In for Excel wizard, click Install.

Follow the instructions that appear in the dialog boxes to successfully install the
required components. If you encounter an error during the installation process, an
error message with a description appears, and installation is rolled back. For more
details, check the adfdi-installer-log.txt error log file in the temp
directory of the user profile.

4. If prompted, click Yes to restart the system and complete the install of ADF
Desktop Integration.

It may also be necessary to open Microsoft Excel to accept additional prompts to
allow the installation to complete.

Note the following points about installation:

• You can also install ADF Desktop Integration by running adfdi-excel-addin-
installer.exe available in the following directory:

MW_HOME/oracle_common/modules/oracle.adf.desktopintegration

Before you run the installer, remember that the ADF Desktop Integration add-in
installer does not enable designer features by default. You must enable the designer
features in the add-in to create and edit integrated Excel workbooks.

In the ADF Desktop Integration Installer page of the wizard, click Developer
Options, and then in the Developer Options page select the Enabled option, and
click Install. If you do not select the Enabled option, the Oracle ADF tab shown in
Figure 3-1 does not appear in Microsoft Excel.

Figure 3-1 Oracle ADF Tab in Microsoft Excel

• Designer features are automatically enabled if you install ADF Desktop Integration
from JDeveloper.

• You can also install ADF Desktop Integration from the command line.

If you want to install ADF Desktop Integration for end users, see Installing,
Upgrading, and Removing ADF Desktop Integration.

3.4 Removing ADF Desktop Integration
Use the Microsoft Windows Control Panel to remove the ADF Desktop Integration
add-in from the system where you set it up. After removing ADF Desktop Integration,
you can no longer use integrated Excel workbooks on this system unless you reinstall
ADF Desktop Integration.

Removing ADF Desktop Integration

3-4 Developing Applications with Oracle ADF Desktop Integration

To remove the ADF Desktop Integration add-in:

1. Click the Windows Start button, and then choose Control Panel.

2. In the Control Panel, select and open Programs and Features.

3. Select the Oracle ADF Desktop Integration 12c Add-in for Excel program and
click Uninstall.

Note:

If you have installed ADF Desktop Integration on multiple user profiles, you
must remove it from each user profile.

3.5 Upgrading ADF Desktop Integration
To upgrade to a new version, run the ADF Desktop Integration installer from the new
version. It is not necessary to uninstall the old version first.

You can run the installer from:

• JDeveloper Tools menu

• Welcome page of the running Fusion web application (see Verifying That Your
Fusion Web Application Supports ADF Desktop Integration)

• File system (see the Notes section of How to Install ADF Desktop Integration)

Note:

• If you are upgrading from a previous release, you may receive a message
that says that ADF Desktop Integration was installed with an incompatible
installer. In this case, you must uninstall the ADF Desktop Integration add-
in prior to running the installer.

• When you test your integrated Excel workbooks, ADF Desktop Integration
may prompt you with a dialog to install the add-in version that your test
server uses. Although this dialog contains an option to skip, you, as a
developer, should never skip the installation of the add-in version that the
dialog proposes. It is important to keep the version of the add-in that the
client uses synchronized with the ADF Desktop Integration servlet version.

Upgrading ADF Desktop Integration

Setting Up Your Development Environment 3-5

Upgrading ADF Desktop Integration

3-6 Developing Applications with Oracle ADF Desktop Integration

4
Preparing Your Integrated Excel Workbook

This chapter describes how to prepare Excel workbooks and integrate them with
Fusion web applications using ADF Desktop Integration, how to use the page
definition files with an integrated Excel workbook, and how to enable ADF Desktop
Integration manually to integrate an existing workbook with the Fusion web
application.

This chapter includes the following sections:

• About Preparing Your Integrated Excel Workbooks

• Working with Page Definition Files for an Integrated Excel Workbook

• Adding an Integrated Excel Workbook to a Fusion Web Application

• Enabling ADF Desktop Integration in an Excel Workbook

• Enabling ADF Desktop Integration Manually

• Using an Integrated Excel Workbook with Older Versions of ADF Desktop
Integration

4.1 About Preparing Your Integrated Excel Workbooks
This chapter (and the guide as a whole) assumes that you have developed a
functioning Fusion web application, as described in Developing Fusion Web Applications
with Oracle Application Development Framework.

Having developed the Fusion web application, you perform the tasks described in this
chapter to configure an integrated Excel workbook with the Fusion web application.
The subsequent chapters of the guide enable you to configure the integrated
workbook with Oracle ADF components that provide the functionality you require at
runtime.

Note:

Before you start, ensure that designer tools of ADF Desktop Integration are
enabled. For more information, see Installing ADF Desktop Integration.

4.2 Working with Page Definition Files for an Integrated Excel Workbook
Page definition files define the bindings that populate the data in the Oracle ADF
components at runtime. Page definition files also reference the action bindings and
method action bindings that define the operations or actions to use on this data. You
must define a separate page definition file for each Excel worksheet that you are going
to integrate with a Fusion web application.

Preparing Your Integrated Excel Workbook 4-1

The ADF Desktop Integration task pane displays only those bindings that ADF
Desktop Integration supports in the bindings palette. If a page definition file
references a binding that ADF Desktop Integration does not support (for example, a
graph binding), it is not displayed.

Table 4-1 lists and describes the binding types that the ADF Desktop Integration
module supports.

Table 4-1 Binding Requirements for ADF Desktop Integration Components

ADF Desktop
Integration
component

Supported Binding Additional comments

ADF Input Text Attribute binding

ADF Output Text Attribute binding

ADF Label Attribute and list bindings This ADF Desktop Integration component
uses the label property of a control binding.

ADF List of
Values

List binding

ADF Read-only
Table

Tree binding

ADF Table Tree binding

For information about the bindings that components in ADF Desktop Integration use,
see ADF Desktop Integration Component Properties and Actions.

For information about the elements and attributes in page definition files, see the
"pageNamePageDef.xml" section of Developing Fusion Web Applications with Oracle
Application Development Framework.

For information about ADF data binding and page definition files in a Fusion web
application, see the "Using ADF Model in a Fusion Web Application" chapter of
Developing Fusion Web Applications with Oracle Application Development Framework.

4.2.1 How to Create ADF Desktop Integration Page Definition File
You create and configure a page definition file that determines the Oracle ADF
bindings to expose in the JDeveloper project.

Before you begin:

It may be helpful to have an understanding of page definition files. For more
information, see Working with Page Definition Files for an Integrated Excel
Workbook.

To create an ADF Desktop Integration page definition file:

1. Open the Fusion web application in JDeveloper.

2. In the Applications window, select the user interface project, such as
ViewController, to which you want to add the page definition file.

3. From the File menu, choose New > From Gallery.

Working with Page Definition Files for an Integrated Excel Workbook

4-2 Developing Applications with Oracle ADF Desktop Integration

4. In the New Gallery, expand Client Tier, select ADF Desktop Integration, then
ADF Desktop Integration Page Definition, and then click OK.

Figure 4-1 shows the New Gallery with ADF Desktop Integration category and the
ADF Desktop Integration Page Definition option.

Figure 4-1 New Gallery - ADF Desktop Integration Page Definition

Click OK.

5. In the Create ADF Desktop Integration Page Definition dialog, if required, edit the
page definition file name.

6. Click OK.

JDeveloper adds the page definition into the Fusion web application and opens the
new page definition's editor. Figure 4-2 shows the ViewController project with the
new page definition in the Applications window.

Figure 4-2 adfdiPageDefn.xml in Applications window

For information about working with page definition files, see the "Working with Page
Definition Files" section in Developing Fusion Web Applications with Oracle Application
Development Framework.

Working with Page Definition Files for an Integrated Excel Workbook

Preparing Your Integrated Excel Workbook 4-3

4.2.2 What Happens When You Create a Page Definition File
JDeveloper creates the DataBindings.cpx file the first time you add a page
definition file in the JDeveloper project using the procedure described in How to
Create ADF Desktop Integration Page Definition File.

The DataBindings.cpx file defines the binding context for the Fusion web
application and provides the configuration from which the Oracle ADF bindings are
created at runtime. Information about working with this file can be found in the
"Working with the DataBindings.cpx File" section of Developing Fusion Web Applications
with Oracle Application Development Framework. Information about the elements and
attributes in the file can be found in the "DataBindings.cpx" section of the same guide.

4.2.3 How to Reload a Page Definition File in an Excel Workbook
If you make changes in your JDeveloper desktop integration project to a page
definition file that is associated with an Excel worksheet, rebuild the JDeveloper
desktop integration project and reload the page definition file in the Excel worksheet
to ensure that the changes appear in the ADF Desktop Integration task pane. You
associate a page definition file with an Excel worksheet when you choose the page
definition file, as described in How to Configure a New Integrated Excel Workbook.

The Oracle ADF tab provides a button that reloads all page definition files in an Excel
workbook.

Errors may occur when you switch an integrated Excel workbook from design mode
to runtime if you do not rebuild the JDeveloper desktop integration project and restart
the application after making changes to a page definition file. For example, if you:

• Remove an element in a page definition file

• Do not rebuild and restart the Fusion web application

• Or do not reload the page definition file in the integrated Excel workbook

an error message such as the following may appear when you attempt to switch a
workbook to test mode:

[ADFDI-05530] unable to initialize worksheet: MyWorksheet
[ADFDI-05517] unable to find control MyBindingThatWasRemoved

Before you begin:

It may be helpful to have an understanding of page definition files. For more
information, see Working with Page Definition Files for an Integrated Excel
Workbook.

To reload page definition files in an Excel workbook:

1. Ensure that you have saved the updated page definition file in JDeveloper.

2. In the Excel workbook, click the Refresh Bindings button in the Components
group of the Oracle ADF tab.

For information about the Refresh Bindings button, see About Development Tools.

After reloading the page definition file, the ADF Desktop Integration task pane of the
worksheet displays the same bindings that are available in its associated page of the
Fusion web application. For example, Figure 4-3 shows the bindings in the

Working with Page Definition Files for an Integrated Excel Workbook

4-4 Developing Applications with Oracle ADF Desktop Integration

ExcelCustomers.xml page definition file and the same bindings in the worksheet
of the EditCustomers-DT.xlsx workbook.

Figure 4-3 Page Definition Bindings in JDeveloper and Integrated Excel Workbook

4.2.4 What You May Need to Know About Page Definition Files in an Integrated Excel
Workbook

Note the following points about page definition files in an ADF Desktop Integration
project:

• Integrating Multiple Excel Worksheets: You can integrate multiple worksheets in
an Excel workbook with a Fusion web application. You associate a separate page
definition file with each worksheet as described in How to Add Additional
Worksheets to an Integrated Excel Workbook.

• EL Expressions in a Page Definition File: Use the following syntax to write EL
expressions in a page definition file:

Dynamic (${})

Do not use the syntax Deferred (#{}) to write EL expressions. EL expressions
using this syntax generate errors because they attempt to access the ADF Faces
context, which is not available.

Note:

EL expressions that you write for ADF Desktop Integration component in the
integrated Excel workbook, such as the Input Text component, must use the
Deferred (#{}) syntax.

4.3 Adding an Integrated Excel Workbook to a Fusion Web Application
The Fusion web application is automatically enabled with ADF Desktop Integration
when you add an integrated Excel workbook to a project. An integrated Excel
workbook enables you to add ADF components and ADF data bindings.

4.3.1 How to Add an Integrated Excel Workbook to a Fusion Web Application
To add an integrated Excel workbook, open the Fusion web application in JDeveloper
and add an Excel workbook to the project from New Gallery.

Adding an Integrated Excel Workbook to a Fusion Web Application

Preparing Your Integrated Excel Workbook 4-5

Before you begin:

It may be helpful to have an understanding of adding ADF Desktop Integration to a
Fusion web application. For more information, see Adding an Integrated Excel
Workbook to a Fusion Web Application.

To add an integrated Excel workbook in JDeveloper:

1. Open the Fusion web application in JDeveloper.

2. In the Applications window, select the user interface project, such as
ViewController, to which you want to add the new integrated Excel workbook.

3. From the File menu, choose New > From Gallery.

4. In the New Gallery, expand Client Tier, select ADF Desktop Integration, then
Microsoft Excel Workbook, and then click OK.

Figure 4-4 shows the New Gallery with ADF Desktop Integration category and the
Microsoft Excel Workbook option.

Figure 4-4 New Gallery - Microsoft Excel Workbook

Click OK.

5. In the Create ADF Desktop Integration-Enabled Excel Workbook dialog, verify the
desired location and type a unique workbook name. Consider adding a suffix of -
DT to help with publishing later. For example, MyWorkbook-DT.xlsx.

By default, the integrated Excel workbook is saved as adfdi-workbook-
DT.xlsx in the <PROJECT_HOME>\src\excel directory of the selected project.
Although you can save the workbook anywhere you choose, you should save the
workbook with the other files of the Fusion web applications.

Later, ADF Desktop Integration removes suffixes, such as -DT, when you publish
the finalized integrated Excel workbook for distribution so that end users see

Adding an Integrated Excel Workbook to a Fusion Web Application

4-6 Developing Applications with Oracle ADF Desktop Integration

meaningful filenames. For example, the Summit sample application publishes the
workbook to edit customers using the EditCustomers.xlsx filename rather
than EditCustomers-DT.xlsx.

6. Click OK.

JDeveloper adds the integrated Excel workbook into the Fusion web application, and
automatically enables the project with ADF Desktop Integration. Figure 4-5 shows the
ViewController project.

Figure 4-5 adfdi-workbook-DT.xlsx in Applications window

4.3.2 How to Configure a New Integrated Excel Workbook
After adding the integrated Excel workbook, you must configure it.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Adding an Integrated Excel
Workbook to a Fusion Web Application.

To configure a new integrated Excel workbook:

1. Open the integrated Excel workbook.

• If you have saved the workbook with other files of the Fusion web application,
the Page Definition dialog automatically appears, as illustrated in Figure 4-6.

Adding an Integrated Excel Workbook to a Fusion Web Application

Preparing Your Integrated Excel Workbook 4-7

Figure 4-6 Page Definition Dialog

Select the page definition file for the active worksheet from the Page Definition
dialog, and click OK.

• If you have saved the workbook elsewhere, configure the workbook as
described in How to Manually Configure a New Integrated Excel Workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, set or verify the values for the following
properties so that you can switch between design mode and test mode as you
configure the workbook:

• ApplicationHomeFolder

The value for this property corresponds to the absolute path for the root
directory of the JDeveloper application workspace (.jws). If the workbook is
located within the JDeveloper application workspace, the value of the
ApplicationHomeFolder workbook property is assigned automatically.

Note:

If you are opening the Excel file after moving the application directory, ensure
that the ApplicationHomeFolder property's value reflects the correct path.

• Project

The value for this property corresponds to the name of the JDeveloper project
(.jpr) in the JDeveloper application workspace. To change the project, click the
browse (...) icon and choose the project from the Project dialog, which lists the
projects defined in the JDeveloper application workspace.

By default, Project is set to the name of the project that contains the Excel
document. ADF Desktop Integration loads the names of the available projects
from the application_name.jws specified as a value for
ApplicationHomeFolder.

• WebAppRoot

Adding an Integrated Excel Workbook to a Fusion Web Application

4-8 Developing Applications with Oracle ADF Desktop Integration

Set the value for this property to the fully qualified URL for the web context
root that you want to integrate the Fusion web application with. The fully
qualified URL has the following format:

http://<hostname>:<portnumber>/context-root

In JDeveloper, you specify the web context root (context-root) in the Java EE
Application page of the Project Properties dialog. Figure 4-7 shows the web
context root used for the Summit sample application for ADF Desktop
Integration in JDeveloper and integrated Excel workbook.

Figure 4-7 Setting Web Context Root in JDeveloper and Integrated Excel
Workbook

Note that the fully qualified URL is similar to the following if you set up a test
environment on your system using the Summit sample application for ADF
Desktop Integration:

http://localhost:7101/summit

Adding an Integrated Excel Workbook to a Fusion Web Application

Preparing Your Integrated Excel Workbook 4-9

For information about how to verify that the Fusion web application is online
and that it supports ADF Desktop Integration, see Verifying That Your Fusion
Web Application Supports ADF Desktop Integration.

If you are integrating an Excel file with a secure Fusion web application, you
should use the https protocol while entering the value for WebAppRoot. For
more information about securing the Fusion web application, see Securing Web
Applications of the Developing Applications with the WebLogic Security Service.

• WebPagesFolder

Set the value for this property to the directory that contains web pages for the
Fusion web application. The directory path should be relative to the value of
ApplicationHomeFolder. For example, in the EditCustomers-DT.xlsx
workbook, WebPagesFolder is set to ViewController\public_html.

Figure 4-8 shows an example of workbook properties in the Edit Workbook
Properties dialog of the Summit sample application for ADF Desktop Integration
EditCustomers-DT.xlsx workbook.

Figure 4-8 Edit Workbook Properties Dialog

4. Click OK.

Note:

In Step 1, if the fully qualified path of the selected page definition file exceeds
the Windows path length limit, a warning message appears when the
Workbook Properties dialog is closed, and the page definition will not load.

5. Save the Excel workbook.

4.3.3 How to Add Additional Worksheets to an Integrated Excel Workbook
To use Oracle ADF functionality, associate each worksheet with a page definition file.
You associate a page definition file with a worksheet when you add a worksheet to the

Adding an Integrated Excel Workbook to a Fusion Web Application

4-10 Developing Applications with Oracle ADF Desktop Integration

integrated Excel workbook. You can integrate multiple worksheets in an integrated
Excel workbook with a Fusion web application. Use a different page definition file for
each worksheet in the integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Adding an Integrated Excel
Workbook to a Fusion Web Application.

To associate a page definition file with an Excel worksheet:

1. While the Excel workbook is in design mode, click the Home tab in the Excel
ribbon, and then choose Insert > Insert Sheet in the Cells group.

2. In the Choose Page Definition dialog, select the page definition file.

This populates the bindings palette in the ADF Desktop Integration task pane with
the bindings contained in the page definition file. You can now configure the
worksheet with Oracle ADF functionality.

4.4 Enabling ADF Desktop Integration in an Excel Workbook
Workbooks that you create, as described in Adding an Integrated Excel Workbook to a
Fusion Web Application, are automatically configured to use ADF Desktop
Integration functionality. For existing Excel workbooks, you must enable ADF
Desktop Integration in the workbook to make it an integrated Excel workbook and
configure a number of properties in the newly-integrated Excel workbook.

4.4.1 How to Enable ADF Desktop Integration in an Existing Workbook
To integrate an existing workbook with the ADF Desktop Integration enabled Fusion
web application, you must manually enable ADF Desktop Integration for the
workbook. For information about the supported file formats of Excel workbooks that
you can use for integration with a Fusion web application, see Required Oracle ADF
Modules and Third-Party Software.

Before you begin:

It may be helpful to have an understanding of adding integrated Excel workbook to a
Fusion web application. For more information, see Adding an Integrated Excel
Workbook to a Fusion Web Application.

To enable ADF Desktop Integration in an existing Excel workbook:

1. In Excel, open the workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Enable Workbook dialog, click Yes, as shown in Figure 4-9.

Enabling ADF Desktop Integration in an Excel Workbook

Preparing Your Integrated Excel Workbook 4-11

Figure 4-9 Enable Workbook Dialog

ADF Desktop Integration prepares your workbook, displays the ADF Desktop
Integration Designer task pane, and opens the Browse For Folder dialog. For more
information, see How to Manually Configure a New Integrated Excel Workbook.

4. Save the workbook.

Although you can store the Excel workbooks that you integrate with Fusion web
applications anywhere you choose, there are several advantages to storing them with
the other files of the Fusion web application. Some of these advantages are:

• Source control of the workbooks

• Facilitating the download of workbooks from web pages

• The file system folder picker that appears the first time a workbook is opened
defaults to the location where you store the workbook

For example, the Summit sample application for ADF Desktop Integration stores the
Excel workbooks it integrates in the following subdirectory:

Summit_HOME\ViewController\src\oracle\summitdi\excel

where Summit_HOME is the root directory that stores the source files for the Summit
sample application for ADF Desktop Integration.

4.4.2 How to Manually Configure a New Integrated Excel Workbook
After enabling ADF Desktop Integration manually in a workbook, you would need to
configure it.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Enabling ADF Desktop
Integration Manually.

To manually configure a new integrated Excel workbook:

1. Open the integrated Excel workbook.

The Browse For Folder dialog automatically appears, as illustrated in Figure 4-10.

Enabling ADF Desktop Integration in an Excel Workbook

4-12 Developing Applications with Oracle ADF Desktop Integration

Figure 4-10 Browse For Folder Dialog

Use the Browse for Folder dialog to select the JDeveloper application home
directory. In a typical JDeveloper project, the JDeveloper application home
directory stores the application_name.jws file. The value you select is
assigned to the ApplicationHomeFolder workbook property.

Note:

The Browse for Folder dialog does not appear if the workbook is located
within the JDeveloper application workspace. In such a case, the value of the
ApplicationHomeFolder workbook property is assigned automatically.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, configure the properties as described in
Step 3 of How to Configure a New Integrated Excel Workbook.

4. Click OK.

5. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

6. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the Page
Definition input field and select a page definition file from the Page Definition
dialog, as shown in Figure 4-11.

Enabling ADF Desktop Integration in an Excel Workbook

Preparing Your Integrated Excel Workbook 4-13

Figure 4-11 Page Definition Dialog

7. Click OK.

The Excel worksheet appears with ADF Desktop Integration in the task pane. The
bindings of the page definition file that you selected in Step 6, appear in the
Bindings tab.

8. Save the Excel workbook.

4.5 Enabling ADF Desktop Integration Manually
To enable ADF Desktop Integration in the Fusion web application without adding the
integrated Excel workbook, you must add ADF Desktop Integration manually.

4.5.1 How to Manually Add ADF Desktop Integration In Fusion Web Application
Use the Project Properties dialog in JDeveloper to add ADF Desktop Integration to the
feature list of your project.

Before you begin:

It may be helpful to have an understanding of adding ADF Desktop Integration to a
Fusion web application. For more information, see Enabling ADF Desktop Integration
Manually.

To manually add ADF Desktop Integration to your project:

1. Open the project in JDeveloper.

2. In the Applications window, right-click the project to which you want to add ADF
Desktop Integration and choose Project Properties.

If the application uses the Fusion Web Application (ADF) application template,
select the user interface project, such as ViewController. If the application uses

Enabling ADF Desktop Integration Manually

4-14 Developing Applications with Oracle ADF Desktop Integration

another application template, select the project that corresponds to the web
application.

3. In the Project Properties dialog, select Features to view the list of available features.

4. Click Add Features.

5. In the Add Features dialog, select the ADF Desktop Integration feature and add it
to the Selected list, as shown in Figure 4-12.

Figure 4-12 Add Features Dialog

6. Click OK to close the Add Features dialog.

7. Click OK to close the Project Properties dialog.

For more information about what happens when you add ADF Desktop Integration,
see What Happens When You Add ADF Desktop Integration to Your JDeveloper
Project.

Note:

If you plan to distribute integrated Excel workbooks by adding them to ADF
library files through EAR and JAR files, add ADF Library Web Application
Support to your project. For more information, see Adding ADF Library Web
Application Support.

Enabling ADF Desktop Integration Manually

Preparing Your Integrated Excel Workbook 4-15

4.5.2 What Happens When You Add ADF Desktop Integration to Your JDeveloper
Project

When you add the ADF Desktop Integration feature to a project, the following events
occur:

• The project adds the ADF Desktop Integration Runtime library. This library
references the following .jar files in its class path:

– adf-desktop-integration.jar

– adf-desktop-integration-model-api.jar

– resourcebundle.jar

• The project's deployment descriptor (web.xml) is modified to include the
following entries:

– An ADF bindings filter (adfBindings)

– A servlet named adfdiRemote

Note:

The value for the url-pattern attribute of the servlet-mapping element
for adfdiRemote must match the value of the RemoteServletPath
workbook property described in Table A-20.

– A filter named adfdiExcelDownload

– A MIME mapping for Excel files (.xlsx and .xlsm)

The previous list is not exhaustive. Adding ADF Desktop Integration to a project
makes other changes to web.xml. Note that some entries in web.xml are added
only if they do not already appear in the file.

4.5.3 Adding ADF Library Web Application Support
If you want to distribute integrated workbooks by adding them to ADF library files,
add ADF Library web application support to the Fusion web application. For more
information, see the "Packaging a Reusable ADF Component into an ADF Library"
section in Developing Fusion Web Applications with Oracle Application Development
Framework.

When updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support (<filter-
name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

Figure 4-13 shows the Filters tab of the overview editor of the web.xml in JDeveloper.

Enabling ADF Desktop Integration Manually

4-16 Developing Applications with Oracle ADF Desktop Integration

Figure 4-13 Filters Tab of web.xml

You should also update the include-extension-list initialization parameter to
add the Excel file extensions (such as .xlsx and .xlsm), as shown in Figure 4-14.

Figure 4-14 ADFLibraryFilter Using include-extension-list Parameter

For more information about web.xml, see ADF Desktop Integration Settings in the
Web Application Deployment Descriptor.

4.6 Using an Integrated Excel Workbook with Older Versions of ADF
Desktop Integration

When you or your end users open an integrated Excel workbook created, or last
updated, by a newer version of ADF Desktop Integration on a system running an
older version of ADF Desktop Integration, a dialog appears if the integrated Excel
workbook contains features that are incompatible with the older version of ADF
Desktop Integration.

When you click OK on this dialog, ADF Desktop Integration disables the integrated
Excel workbook and the end user cannot interact with the ADF Desktop Integration

Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

Preparing Your Integrated Excel Workbook 4-17

features in the workbook. The data in the workbook is not removed, but ADF Desktop
Integration treats the workbook as a non-integrated workbook.

If the integrated Excel workbook does not contain incompatible features, no dialog
appears and the workbook functions normally. For integrated Excel workbooks that
contain incompatible features, upgrade the client version of ADF Desktop Integration,
as described in Upgrading ADF Desktop Integration. End users can upgrade their
client version, as described in How to Upgrade ADF Desktop Integration On a Local
System.

Integrated Excel workbooks created using 12c (12.2.1) or earlier of ADF Desktop
Integration do not have features that are incompatible with the ADF Desktop
Integration 12c (12.2.1) client. A future release of ADF Desktop Integration may
introduce features that will be incompatible with clients using 12c (12.2.1) or earlier of
ADF Desktop Integration.

Note:

When the integrated Excel workbook is not compatible with the installed
version of the ADF Desktop Integration client, a message is displayed when
you open the workbook. In such a case, you should install the newer version
of the ADF Desktop Integration client in order to interact with the newer
workbook.

Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

4-18 Developing Applications with Oracle ADF Desktop Integration

5
Getting Started with the Development Tools

This chapter describes how to use the development tools (such as the Bindings Palette,
Components Palette, Property Inspector, and Expression Builder) provided by ADF
Desktop Integration. It provides an overview of the development environment that
ADF Desktop Integration exposes in the Excel Ribbon.

This chapter includes the following sections:

• About Development Tools

• Designer Ribbon Tab

• ADF Desktop Integration Designer Task Pane

• Using the Bindings Palette

• Using the Components Palette

• Using the Property Inspector

• Using the Binding ID Picker

• Using the Expression Builder

• Using the Web Page Picker

• Using the File System Folder Picker

• Using the Page Definition Picker

• Using the Collection Editors

• Using the Cell Context Menu

• Removing ADF Desktop Integration Components

• Exporting and Importing Excel Workbook Integration Metadata

5.1 About Development Tools
ADF Desktop Integration provides several tools to configure Excel workbooks so that
they can integrate with your Fusion web application. Using these tools you configure
the workbook and corresponding worksheets to display, and edit, data from the
Fusion web application in the integrated Excel workbook. The tools are available in
the Oracle ADF tab and in the ADF Desktop Integration Designer task pane.

ADF Desktop Integration development tools include the following tools, also shown
in Figure 5-1:

• Bindings Palette

Getting Started with the Development Tools 5-1

• Components Palette

• Property Inspector

• Binding ID Picker

• Expression Builder

• Web Page Picker

• File System Folder Picker

• Page Definition Picker

• Collection Editors

Figure 5-1 ADF Desktop Integration Development Tools

ADF Desktop Integration provides two modes, design mode and the test mode, in
which you can work while you configure the Excel workbook.

In design mode, you use the tools provided by Oracle ADF in Excel to design and
configure the integrated Excel workbook. In test mode, you can view and test the
changes you made in the design mode, in the same way that the end user views the
published integrated Excel workbook.

5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples
You use the development tools to configure and design the integrated Excel
workbook. For example, as shown in Figure 5-2, in EditCustomers-DT.xlsx an
ADF Table component is inserted in the integrated Excel workbook using the
Customers binding from the Bindings palette.

About Development Tools

5-2 Developing Applications with Oracle ADF Desktop Integration

Figure 5-2 ADF Desktop Integration Components and Bindings

Other ADF Desktop Integration components, such as ADF Input Text, ADF Input Date
and ADF Label, can be inserted from the Components palette, and configured using
the Property Inspector and Expression Builder.

5.1.2 Additional Functionality for ADF Desktop Integration Development Tools
After adding the desired components and configuring your workbook, you may find
that you need additional functionality such as changing the appearance of the
workbook, and localizing it. The following sections describe other functionality that
you can use:

• Interactivity: You add one or more action sets to your integrate Excel workbook for
it to integrate with your Fusion web application. For more information, see Adding
Interactivity to Your Integrated Excel Workbook.

• Localization: You can customize the integrated Excel workbook as part of the
process to internationalize and localize with the Fusion web application. For more
information, see Internationalizing Your Integrated Excel Workbook .

• Styles: You can configure the display of your components using several predefined
Excel styles. For more information, see Working with Styles.

• EL Expressions: You can use EL expressions with the ADF Desktop Integration
components. For more information, see ADF Desktop Integration EL Expressions.

5.2 Designer Ribbon Tab
You use the Oracle ADF tab, also called as Designer Ribbon tab, for various tasks such
as configuring the integrated workbook and worksheets properties, insert Oracle ADF
components and edit their properties, run the workbook in test mode, and publish the
workbook. The Oracle ADF tab, also shown in Figure 5-3, provides various buttons in
design mode.

Figure 5-3 Oracle ADF Tab in Design Mode

Tip:

Press Alt+C to access the Oracle ADF tab and view the shortcut keys for
Oracle ADF tab ribbon commands from the keyboard.

You can use Oracle ADF tab buttons to invoke the actions described in Table 5-1.

Designer Ribbon Tab

Getting Started with the Development Tools 5-3

Table 5-1 Oracle ADF Tab Options

In this
group...

Click this button... To... Mode when the
button is
available...

Workbook Display the Edit Workbook
Properties dialog to view and
edit integrated Excel workbook
properties.

The button is also used to
enable ADF Desktop
Integration in a non-integrated
Excel workbook.

Design

Workbook Display the Edit Worksheet
Properties dialog to view and
edit the current worksheet
properties.

Design

Workbook Open the About ADF Desktop
Integration dialog that provides
version and property
information of integrated Excel
workbook. The dialog also
provides access to the
diagnostic report described in
Generating an ADF Desktop
Integration Diagnostic Report.

The button is also available in
non-integrated Excel
workbooks after ADF Desktop
Integration is installed.

Design, Test

Workbook Open the Save Workbook
Definition as dialog that
exports the current workbook
definition as .xml file.

Design

Workbook Open the Choose Workbook
Definition File to Import dialog
that imports the workbook
integration metadata from the
saved .xml file.

Design

ADF
Components

Display a dropdown list of
Oracle ADF components that
you can insert in the selected
cell.

Design

ADF
Components

Display the property inspector
window to view and edit
component properties of the
selected component.

Design

ADF
Components

Delete the selected component
from the Excel worksheet.

Design

Designer Ribbon Tab

5-4 Developing Applications with Oracle ADF Desktop Integration

Table 5-1 (Cont.) Oracle ADF Tab Options

In this
group...

Click this button... To... Mode when the
button is
available...

ADF
Components

• Reload the application
workspace file (.jws) and
project file (.jpr)
referenced by the workbook
properties of the integrated
Excel workbook.

• Refresh all information
from the page definition
files used in the active
integrated Excel workbook.

Any modifications that you
made to the page definition
files in the JDeveloper project
now become available in the
Excel workbook. For more
information, see How to Reload
a Page Definition File in an
Excel Workbook.

Design

Test Validate the Excel workbook
configuration against ADF
Desktop Integration validation
rules.

For more information about
validating a workbook, see
Validating the Integrated Excel
Workbook Configuration.

Design

Test Switch the Excel workbook
from design mode to test mode.
This button is active only when
you are in design mode.

Design

Test Switch the Excel workbook
from test mode to design mode.
This button is active only when
you are in test mode.

For more information about
switching between design
mode and test mode, see
Testing Your Integrated Excel
Workbook.

Test

Logging Display a window that shows
the most recent client-side log
entries. For more information,
see About Client-Side Logging.

Design, Test

Logging Display the Set Output Level
dialog to choose client-side log
output level. For more
information, see About Client-
Side Logging.

Design, Test

Designer Ribbon Tab

Getting Started with the Development Tools 5-5

Table 5-1 (Cont.) Oracle ADF Tab Options

In this
group...

Click this button... To... Mode when the
button is
available...

Logging Create a new temporary
logging listener to act as a
client-side log output file. For
more information, see About
Client-Side Logging.

Design, Test

Logging Reload the ADF Desktop
Integration configuration file.
For more information, see
About Client-Side Logging.

Design, Test

Publish Publish the Excel workbook
after you complete the
integration between the Excel
workbook and the Fusion web
application.

For more information about
publishing an integrated Excel
workbook, see Deploying Your
Integrated Excel Workbook .

Design

Tip:

For quick and easy access, you can add Oracle ADF tab buttons to the Excel
Quick Access toolbar.

5.3 ADF Desktop Integration Designer Task Pane
The development tools in ADF Desktop Integration Designer Task Pane are organized
in two palettes, the Bindings palette and the Component palette. You use the Bindings
palette of ADF Desktop Integration Designer task pane to insert a predefined binding
into the integrated Excel workbook. ADF Desktop Integration inserts an Oracle ADF
component that references the binding you selected, and prepopulates the properties
of the Oracle ADF component with appropriate values. Similarly, you use the
Components palette to insert an Oracle ADF component in the integrated Excel
workbook. Figure 5-4 displays the ADF Desktop Integration Designer task pane.

Figure 5-4 ADF Desktop Integration Designer Task Pane

ADF Desktop Integration Designer Task Pane

5-6 Developing Applications with Oracle ADF Desktop Integration

You can hide or show the ADF Desktop Integration Designer task pane through
launcher buttons (highlighted by the red boxes in Figure 5-5) available in the bottom-
right corner of the Workbook and ADF Components group on the Oracle ADF tab.

Figure 5-5 ADF Desktop Integration Designer Task Pane Launcher Buttons

Table 5-2 lists the view tabs and links that appear in the task pane, provides a brief
description of each item.

Table 5-2 Overview of ADF Desktop Integration Designer Task Pane

Task Pane UI Element Description

Workbook Properties Click to display the Edit Workbook Properties dialog. This
dialog enables you to view and edit properties that affect the
whole workbook. Examples include properties that reference
the directory paths to page definition files, the URL for your
Fusion web application, and so on.

Worksheet Properties Click to display the Edit Worksheet Properties dialog. This
dialog enables you to view and edit properties specific to the
active worksheet. An example is the file name of the page
definition file that you associate with the worksheet.

About Click to display the About dialog. This dialog provides the
version and property information that can be useful when
troubleshooting an integrated Excel workbook. For example, it
provides information about the underlying Microsoft .NET and
Oracle ADF frameworks that support an integrated Excel
workbook. The dialog also provides access to the diagnostic
report described in Generating an ADF Desktop Integration
Diagnostic Report. After a successful login, it also provides
access to the server's current client installer.

5.4 Using the Bindings Palette
The bindings palette presents the available Oracle ADF bindings that you can insert
into the Excel worksheet. The page definition file for the current Excel worksheet
determines what Oracle ADF bindings appear in the bindings palette. Figure 5-6
shows a bindings palette populated with Oracle ADF bindings in the ADF Desktop
Integration Designer task pane. Note that the bindings palette does not display
bindings that an integrated Excel workbook cannot use, so the bindings that appear
may differ from those that appear in the page definition file viewed in JDeveloper.
Check the log for ignored bindings (see Generating Log Files for an Integrated Excel
Workbook).

Using the Bindings Palette

Getting Started with the Development Tools 5-7

Figure 5-6 Oracle ADF Bindings Palette in the ADF Desktop Integration Designer
Task Pane

You use the bindings palette in design mode to insert a binding. When you attempt to
insert a binding, ADF Desktop Integration prompts you to select and insert an Oracle
ADF component appropriate for the binding you selected. ADF Desktop Integration
also prepopulates the properties of the Oracle ADF component with appropriate
values. For example, if you insert a binding, such as the Customers (tree) binding
illustrated in Figure 5-6, a Select Component dialog appears where you can select and
insert an ADF Table component.

To insert an Oracle ADF binding, select the cell to anchor the Oracle ADF component
that is going to reference the binding in the Excel worksheet, and then insert the
binding in one of the following ways:

• Double-click the Oracle ADF control binding you want to insert.

• Select the binding that you want to insert, and drag it to the desired cell.

• Select the control binding and click Insert Binding in the ADF Desktop Integration
Designer task pane.

A Select Component dialog appears that prompts you to select one Oracle ADF
component from a list of Oracle ADF components where multiple Oracle ADF
components can be associated with the binding. After you select an Oracle ADF
component from the list, a property inspector appears

If you choose the Oracle ADF component as ADF Input Text, ADF Output Text, or
ADF Label, the binding name is assigned to the Value property. If you choose the
Oracle ADF component as ADF Button or ADF Ribbon Command, the binding
name is assigned to the Label property. If you choose the Oracle ADF component
as ADF Table or ADF Read-only Table, the binding name is assigned to the TreeID
property.

5.5 Using the Components Palette
The components palette displays the available ADF Desktop Integration components
that you can insert into an Excel worksheet. Figure 5-7 shows the components palette
as it appears in the ADF Desktop Integration Designer task pane.

Using the Components Palette

5-8 Developing Applications with Oracle ADF Desktop Integration

Figure 5-7 Oracle ADF Components Palette in the ADF Desktop Integration
Designer Task Pane

You use the components palette in design mode to insert an Oracle ADF component.
First, select the cell to anchor the Oracle ADF component in the Excel worksheet, and
then insert the Oracle ADF component in one of the following ways:

• Double-click the Oracle ADF component you want to insert.

• Select the component that you want to insert, and drag it to the desired cell.

• Select the component and click Insert Component in the ADF Desktop Integration
Designer task pane.

In all of the above cases, the Oracle ADF component's property inspector appears. Use
the property inspector to specify values for the component before you complete its
insertion into the Excel worksheet.

Note:

The ADF Desktop Integration components are also available in the Insert
Component dropdown list of Oracle ADF tab.

5.6 Using the Property Inspector
The property inspector is a dialog that enables you to view and edit the properties of
Oracle ADF components, Excel worksheets, or the Excel workbook. You can open the
property inspector in one of the following ways:

• Select the component or binding, and click the Edit Properties icon in the Oracle
ADF tab.

• Select the component or binding, right-click and choose Edit ADF Component
Properties.

• Double-click the component or binding.

To open the property inspector of an ADF Table or ADF Read-only Table, double-
click any cell that is part of the table.

Using the Property Inspector

Getting Started with the Development Tools 5-9

The property inspector also appears automatically after you insert an Oracle ADF
binding or component into an Excel worksheet. Figure 5-8 shows a property inspector
where you can view and edit the properties of an ADF Label component.

At design time, you can edit key properties of certain Oracle ADF components by
editing the Excel cell where the component appears. For example, you can edit the
Value property of ADF Label and ADF Input Text components by editing the value
displayed in the cell.

Note:

The property inspector does not validate the values you enter for a property,
or combinations of properties. Invalid values may cause runtime errors. To
avoid runtime errors, make sure you specify valid values for properties in the
property inspector.

You can display the properties in an alphabetical list or in a list where the properties
are grouped by categories such as Behavior, Data, and so on. Table 5-3 describes the
buttons that you can use to change how properties display in the property inspector.

Table 5-3 Buttons to Configure Properties Display in Property Inspector

Button Description

Use this button to display the properties according to category.

Use this button to display the properties in an alphabetical list.

In Figure 5-8, the property inspector displays the properties grouped by category.

Figure 5-8 Property Inspector Window for ADF Label Component

Using the Property Inspector

5-10 Developing Applications with Oracle ADF Desktop Integration

5.7 Using the Binding ID Picker
The binding ID picker is a dialog that enables you to select Oracle ADF bindings at
design time to configure the behavior of Oracle ADF components at runtime. You
invoke the binding ID picker from the property inspector. The binding ID picker filters
the Oracle ADF bindings that appear, based on the type of binding that the Oracle
ADF component property accepts. For example, the ListID property for an ADF List
of Values component supports list bindings. Therefore, the binding ID picker filters
the bindings from the page definition file so that only list bindings appear, as
illustrated in Figure 5-9.

Figure 5-9 Binding ID Picker

For more information about ADF Desktop Integration component properties and the
bindings they support, see ADF Desktop Integration Component Properties and
Actions.

5.8 Using the Expression Builder
You use the expression builder to write Expression Language, or EL, expressions that
configure the behavior of components at runtime in the Excel workbook. You invoke
the expression builder from the property inspector of component properties that
support EL expressions. For example, the Label property in Figure 5-10 supports EL
expressions and, as a result, you can invoke the expression builder to set a value for
this property.

You can reference bindings in the EL expressions that you write. Note that the
expression builder does not filter bindings. It displays all bindings that the page
definition file exposes. See Table 4-1 to identify the types of bindings that each ADF
Desktop Integration component supports.

To add an expression in the Expression box, select the item and click Insert Into
Expression. You can also double-click the item to add it in the Expression box. Table
5-4 describes the folders available in the expression builder.

Using the Binding ID Picker

Getting Started with the Development Tools 5-11

Figure 5-10 Expression Builder

Table 5-4 Expression Builder Folders

Folder Name Description

Bindings Lists the bindings supported in ADF Desktop Integration from
the current worksheet's page definition.

Components Lists the ADF components available in the current worksheet.

Resources Lists the resource bundles registered in
Workbook.Resources along with the built-in resource
bundle _ADFDIres.

Styles Lists all Excel styles defined in the current workbook. For more
information, see Working with Styles.

Workbook Lists parameters defined in Workbook.Parameters.

Worksheet Lists the errors expression.

Excel Functions Lists sample Excel functions that you can use with ADF
Desktop Integration. For more information, see Excel's
documentation.

For more information about using the expression builder, see Applying Styles
Dynamically Using EL Expressions. For information about the syntax of EL
expressions in ADF Desktop Integration, and guidelines on how you write these
expressions, see ADF Desktop Integration EL Expressions.

5.9 Using the Web Page Picker
Use the web page picker to select a web page from your Fusion web application. At
runtime, an Oracle ADF component, for example a ribbon command, can invoke the
web page that you associate with the Oracle ADF component.

You can invoke the web page picker when you add a Dialog action to an action set in
the Action Collector Editor. You use the web page picker to specify a web page for the
Page property of the Dialog action, as illustrated in Figure 5-11.

Using the Web Page Picker

5-12 Developing Applications with Oracle ADF Desktop Integration

Figure 5-11 Web Page Picker Dialog

For more information about displaying web pages in your integrated Excel workbook,
see Displaying Web Pages from a Fusion Web Application.

5.10 Using the File System Folder Picker
Use the file system folder picker to navigate over the Windows file system and select
folders. You use this picker to specify values for the following workbook properties:

• ApplicationHomeFolder

• WebPagesFolder

The first time you open an Excel workbook the picker appears so that you can set
values for the previously listed properties. For more information about opening an
Excel workbook for the first time and the properties you set, see How to Configure a
New Integrated Excel Workbook.

Figure 5-12 shows the file system folder picker selecting a value for the
WebPagesFolder workbook property.

Using the File System Folder Picker

Getting Started with the Development Tools 5-13

Figure 5-12 File System Folder Picker

5.11 Using the Page Definition Picker
Use the page definition picker to select the page definition ID of a page definition file
and associate the file with a worksheet. The picker appears the first time that you
activate a non-integrated worksheet in an integrated Excel workbook. It can also be
invoked when you attempt to set a value for the worksheet property,
PageDefinition, as illustrated in Figure 5-13.

Figure 5-13 Page Definition Picker

Using the Page Definition Picker

5-14 Developing Applications with Oracle ADF Desktop Integration

For more information about page definition files, see Working with Page Definition
Files for an Integrated Excel Workbook.

5.12 Using the Collection Editors
ADF Desktop Integration uses collection editors to manage the properties of elements
in a collection. The title that appears in a collection editor's title bar describes what the
collection editor enables you to configure. Examples of titles for collection editors
include Edit CachedAttributes, Edit Columns, and the Edit Actions. These collection
editors allow you to configure collections of cached data, table columns in the ADF
Table component, and actions in an action set. Figure 5-14 shows the collection editor.

Figure 5-14 Collection Editor

Tip:

Write a description in the Annotation field for each element that you add to
the Edit Action dialog. The description you write appears in the Members list
view and, depending on the description you write, may be more meaningful
than the default entry that ADF Desktop Integration generates.

5.13 Using the Cell Context Menu
When working with ADF components at design time, right-click any cell of the
component to get menu options to edit or delete the component. Some keyboards
feature a key that invokes the context menu. Using this key, you will see the edit and
delete menu options as well. Figure 5-15 shows the context menu options of an ADF
Table component.

Using the Collection Editors

Getting Started with the Development Tools 5-15

Figure 5-15 Context Menu Options of the ADF Table Component

5.14 Removing ADF Desktop Integration Components
At design time, you can remove the inserted ADF Desktop Integration components (or
bindings) from the integrated workbooks using the Delete ribbon command, or the
Delete ADF Component context menu option (see Figure 5-15).

When you remove a component, ADF Desktop Integration prompts you to confirm
your action, as shown in Figure 5-16.

Figure 5-16 Removing ADF Desktop Integration Component

You can also remove multiple components by selecting a range of cells anchoring the
components (see Figure 5-17), or select individual component cells using the Ctrl key,
and then click the Delete ribbon button.

Removing ADF Desktop Integration Components

5-16 Developing Applications with Oracle ADF Desktop Integration

Figure 5-17 Removing Multiple ADF Desktop Integration Components

While removing the components, make a note of the following:

• To delete a component that occupies more than one cell (such as a table component,
or a component in a merged cell), you need not select the entire component. If the
selected range intersects any cell of the component, it will be removed.

• Do not delete cells or clear cells of the workbook if your selection includes one or
more ADF Desktop Integration components. Always use the Delete ribbon
command to remove a ADF Desktop Integration component.

• If you delete a cell adjacent to a cell that contains an ADF component and this shifts
the latter cell into the position of the deleted cell, ADF Desktop Integration offers to
delete the ADF component.

• ADF Desktop Integration context menu options are not available if multiple cells
are selected when the context menu is invoked.

• After removing ADF Desktop Integration components, you should validate the
integrated Excel workbook configuration in order to find any references to the
deleted components. For more information about validating the workbook, see
Validating the Integrated Excel Workbook Configuration.

5.15 Exporting and Importing Excel Workbook Integration Metadata
Workbook integration metadata, also known as the workbook definition, is a set of
information that describes how a given workbook is integrated with a particular
Fusion web application. It includes the placement and configuration of components as
well as workbook- and worksheet-level properties. Workbook integration metadata is
defined by Oracle ADF. It does not include settings of a workbook that are native to
Excel.

You can export the integration metadata of your Excel workbook to an XML file with a
name and location that you specify. The XML file contains child elements for each
worksheet in the workbook, resources such as the relative path to the remote servlet,
and so on. The exported XML file enables you to do the following actions:

• Edit or analyze the Excel workbook integration metadata. For example, you might
write a program to search the xml file for custom policy violations.

• Using an XML editor, copy or move components between worksheets and
workbooks.

• Copy action-set definitions between buttons or events.

Exporting and Importing Excel Workbook Integration Metadata

Getting Started with the Development Tools 5-17

• Perform global search and replace operations.

• Quickly rearrange, or copy, columns of table components.

5.15.1 How to Export Workbook Integration Metadata
The following procedure describes how you export XML configuration metadata from
an integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of workbook integration metadata. For
more information, see Exporting and Importing Excel Workbook Integration
Metadata.

To export workbook integration metadata from an integrated Excel workbook:

1. Open the integrated Excel workbook.

2. Click Export in the Oracle ADF tab.

The Save Workbook Definition As dialog box appears.

3. Specify the file name and location of the XML file that stores the exported
metadata, and click Save. ADF Desktop Integration writes the workbook definition
to the specified file.

4. In Export Workbook Metadata dialog, click OK to complete the export process.

Note:

The exported XML file does not contain any native Excel settings such as
named styles, named ranges, cell properties, content in unbound cells, and so
on. The file name comprises the full name of the design-time workbook
suffixed with -workbook-defintion.xml. For example, the exported XML
file name of EditCustomers-DT.xlsx is EditCustomers-DT.xlsx-
workbook-definition.xml.

Publishing a workbook also exports the workbook definition. For more
information about publishing a workbook, see Publishing Your Integrated
Excel Workbook.

After exporting the workbook definition, you can edit the XML file in any XML editor,
such as JDeveloper. Figure 5-18 shows the workbook definition of EditCustomers-
DT.xlsx in JDeveloper. While editing the workbook definition file in JDeveloper,
JDeveloper automatically validates your changes against the workbook definition
schema. It will display warnings that help you avoid problems later on.

Exporting and Importing Excel Workbook Integration Metadata

5-18 Developing Applications with Oracle ADF Desktop Integration

Figure 5-18 Editing Workbook Definition in JDeveloper

5.15.2 How to Import Workbook Integration Metadata
After editing, you can import the workbook definition file into the original workbook
from which it was exported, or into an empty integrated workbook to create a copy of
the source integrated Excel workbook. Note that the empty workbook must be enabled
with ADF Desktop Integration before you import the metadata.

The following procedure describes how to import XML configuration metadata to an
integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of workbook integration metadata. For
more information, see Exporting and Importing Excel Workbook Integration
Metadata.

Before you import the integration metadata from an XML file, perform basic XML
validations such as whether the XML code is well formed and the XML file contains
the root element. You may import the workbook definition into the same workbook
from which it was exported, or import it in a new workbook.

To import workbook integration metadata to an integrated Excel workbook:

1. Open the integrated Excel workbook.

2. Click Import in the Oracle ADF tab.

The Choose a Workbook Definition file to Import dialog box appears.

3. Select the XML file that stores the workbook integration metadata, and click Open.

4. In Import Workbook Metadata dialog, click OK to complete the import process.

Exporting and Importing Excel Workbook Integration Metadata

Getting Started with the Development Tools 5-19

The changes made in the workbook definition appear automatically in the integrated
Excel workbook. If you use this method to create a new (and independent) integrated
Excel workbook from an existing one, make sure to reset the workbook ID after the
import is complete so that the two integrated Excel workbooks do not share the same
workbook ID. For more information, see How to Reset the Workbook ID.

For example, Figure 5-19 shows the branding value of workbook changed to Edit
Customers New Workbook in the workbook definition file.

Figure 5-19 Editing Branding Value in the Workbook Definition

Figure 5-20 shows the changed branding workbook value in the Edit Workbook
Properties dialog after importing the workbook definition.

Figure 5-20 Updated Branding Value in Edit Workbook Properties Dialog

5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook
Integration Metadata

The workbook integration metadata XML file uses the adfdi-workbook-
definition.xsd XML schema document, which defines the XML namespace as
http://xmlns.oracle.com/adf/desktopintegration/workbook. The
schema is integrated into JDeveloper through the ADF Desktop Integration add-in.
You can find a copy of the schema at <MW_HOME>\jdeveloper\adfdi\etc
\adfdi-workbook-definition.xsd, where MW_HOME is the Middleware Home
directory.

While importing the workbook integration metadata, make a note of following points:

• When the import process is initiated, the schema version number (schema-
version attribute of <workbook>) of the XML file is compared against the
schema version number of the installed ADF Desktop Integration client.

If both values match, the workbook integration metadata is imported to the
workbook. If the schema version of the XML file is lower than the schema version
of the installed client, the XML file is migrated to use the installed client's schema.
No prompt appears when the file is migrated, but a log of the same is maintained.
If the schema version of the XML file is greater than the schema version of the
installed client, the import process fails and an error message appears.

Exporting and Importing Excel Workbook Integration Metadata

5-20 Developing Applications with Oracle ADF Desktop Integration

• After verifying the schema version, the imported XML file is validated against the
schema of the installed client. If the validation fails, the validation failure details
are logged, an error is reported to the user, and the import process aborts. If the
schema validation succeeds, the import process continues.

• If an element is missing in the imported XML file, the default value of the element
is used in the integrated Excel workbook.

• All pre-existing worksheet and component metadata is removed before the import.

• If the imported worksheet's name matches an existing worksheet in the integrated
workbook, that worksheet is used. Otherwise, a new worksheet is created.

• All non-integrated worksheets of the integrated Excel workbook are not affected by
the import.

• If the imported component does not have valid origin information, the import
process attempts to place that component on the first unused row in the target
integrated worksheet.

• After the XML file is imported, the integrated Excel workbook's Workbook ID is
replaced with the Workbook ID of the XML file. If the workbook ID is missing in
the XML file, a new ID is generated.

Exporting and Importing Excel Workbook Integration Metadata

Getting Started with the Development Tools 5-21

Exporting and Importing Excel Workbook Integration Metadata

5-22 Developing Applications with Oracle ADF Desktop Integration

6
Working with ADF Desktop Integration

Form-Type Components

This chapter describes how to insert and configure form components (such as labels,
input and output text, and list of values) that ADF Desktop Integration provides to
allow end users to manage data retrieved from a Fusion web application, and how to
display calculated data in these components using Excel formulae.

This chapter includes the following sections:

• About ADF Desktop Integration Form-Type Components

• Inserting an ADF Label Component

• Inserting an ADF Input Text Component

• Inserting an ADF Output Text Component

• Inserting an ADF Input Date Component

• Inserting an ADF Image Component

• Inserting an ADF Button Component

• Displaying Output from a Managed Bean in an ADF Component

• Displaying Concatenated or Calculated Data in Components

6.1 About ADF Desktop Integration Form-Type Components
The ADF Desktop Integration Form-type components allow end users to manage data
retrieved from the Fusion web application in the integrated Excel workbook. ADF
Desktop Integration uses the following components to create form-type functionality
in an integrated Excel workbook:

• ADF Input Text

• ADF Input Date

• ADF Output Text

• ADF Label

• ADF List of Values

• ADF Image

Figure 6-1 shows some of these components. Note that the ribbon commands shown in
Figure 6-1 are worksheet-level ribbon commands that appear in the Excel Ribbon of

Working with ADF Desktop Integration Form-Type Components 6-1

your integrated Excel workbook at runtime. For more information, see Configuring
the Runtime Ribbon Tab.

Use of the ADF List of Values component is described in Creating a List of Values in
an Excel Worksheet.

Figure 6-1 ADF Desktop Integration Form-Type Components

6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples
The ADF Desktop Integration form-type components are used to build forms in the
integrated Excel workbook for user input, and output from the Fusion web
application. As shown in Figure 6-2, the form-type components used in navigation
form of EditWarehouseInventory-DT.xlsx enable end users to navigate and
update data.

Figure 6-2 Using ADF Desktop Integration Form-Type Components

About ADF Desktop Integration Form-Type Components

6-2 Developing Applications with Oracle ADF Desktop Integration

6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components
After you have added a component to the worksheet, you may find that you need to
add functionality such as responding to events or end user actions. Following are links
to other functionality that form components can use:

• Lists of values: You can use an ADF List of Values component to create a list of
values in your integrated Excel workbook. For more information, see Working with
Lists of Values .

ADF Label or ADF Output Text components to display output from a managed
bean. For more information, see Displaying Output from a Managed Bean in an
ADF Component.

• Displaying output from a managed bean: You can use ADF Label or ADF Output
Text components to display output from a managed bean. For more information,
see Displaying Output from a Managed Bean in an ADF Component.

• Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Working with Styles.

• EL Expressions: You can use EL expressions with form-type components. For more
information, see ADF Desktop Integration EL Expressions.

6.2 Inserting an ADF Label Component
The ADF Label component is a component that you can insert into the active
worksheet to display a static string value. You specify a value in the input field for
Label in the property inspector or alternatively you invoke the expression builder to
write an EL expression that resolves to a string at runtime. The retrieved string can be
defined in a resource bundle or in an attribute control hint for an entity or view object.
For example, the following EL expression resolves to the value of label of CountryId
attribute binding at runtime:

#{bindings.CountryId.label}

The value that you specify for the Label property in an ADF Label component or
other Oracle ADF components is evaluated after the worksheet that hosts the Oracle
ADF component is initialized (opened for the first time).

You can configure a number of properties for the component, such as style and
position, in the worksheet using the property inspector.

Figure 6-3 shows an ADF Label component with its property inspector in the
foreground. The ADF Label component references an EL expression that resolves to
the label of CountryId attribute binding at runtime.

Inserting an ADF Label Component

Working with ADF Desktop Integration Form-Type Components 6-3

Figure 6-3 ADF Label Component in Design Mode

To insert an ADF Label component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Label and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Label from the Insert Component
dropdown list

4. Configure properties in the property inspector to determine the appearance,
design, and layout of the component.

5. Click OK.

Figure 6-4 shows an example of the ADF Label component (in black box) at runtime.

Figure 6-4 ADF Label Component at Runtime

Note:

An ADF Label component renders only once, and is not updated after a call to
Worksheet.DownSync. Consider using an ADF OutputText component
instead if you want the displayed value to change after a call to
Worksheet.DownSync.

Inserting an ADF Label Component

6-4 Developing Applications with Oracle ADF Desktop Integration

For more information about using labels in an integrated Excel workbook, see Using
Labels in an Integrated Excel Workbook.

6.3 Inserting an ADF Input Text Component
The ADF Input Text component is a component that you insert into the active
worksheet using the components palette. At runtime, the active cell in the worksheet
where you inserted the component displays the current value from the component's
binding after the worksheet DownSync action is invoked. End users can edit this value
at runtime. Configure the worksheet UpSync action to transfer changes end users
make to the value to the Fusion web application. Configure a Commit action binding
to commit the changes in the Fusion web application.

You can configure a number of properties for the component, such as its position, style
and behavior when a user double-clicks the cell (DoubleClickActionSet
properties), in the worksheet using the property inspector. For more information
about DoubleClickActionSet, see Using Action Sets.

Figure 6-5 shows an ADF Input Text component with its property inspector in the
foreground. The ADF Input Text component binds to the City attribute binding in the
Summit sample application for ADF Desktop Integration. The end user enters a city
name in this component.

Figure 6-5 ADF Input Text Component in Design Mode

To insert an ADF Input Text component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Input Text and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Input Text from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance, layout,
and behavior of the component. Table 6-1 outlines some properties that you must
specify values for. For information about the component's other properties, see
ADF Input Text Component Properties.

Inserting an ADF Input Text Component

Working with ADF Desktop Integration Form-Type Components 6-5

Table 6-1 ADF Input Text component properties

For this property... Specify...

InputText.Value An EL expression for the Value property to determine what
binding the component references.

Note that if you specify an Excel formula in the Value
property, the component behaves as if its ReadOnly
property were True. The component ignores the actual value
of the ReadOnly property.

InputText.ReadOnly An EL expression that resolves to False so that changes the
end user makes are uploaded. Write an EL expression that
resolves to True if you want the component to ignore
changes. False is the default value.

5. Click OK.

Note:

You can modify the properties of the component at a later time by selecting
the cell in the worksheet that anchors the component and then displaying the
property inspector. You can also right-click in the cell and choose Edit ADF
Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more
information, see Removing ADF Desktop Integration Components.

Figure 6-6 shows an example of the ADF Input Text component (in black box) at
runtime.

Figure 6-6 ADF Input Text Component at Runtime

6.4 Inserting an ADF Output Text Component
The ADF Output Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component's binding after
you invoke the worksheet DownSync action. The value the component displays is
read-only. Changes that the end user makes to the value in the cell that anchors the
component are ignored when changes are sent to the Fusion web application. To
prevent end users from altering the cell contents, enable automatic sheet protection in
worksheet properties, as described in Using Worksheet Protection.

Inserting an ADF Output Text Component

6-6 Developing Applications with Oracle ADF Desktop Integration

This component can also serve as a subcomponent for the ADF Table and ADF Read-
only Table components. Columns in the ADF Table and ADF Read-only Table
components can be configured to use the ADF Output Text component.

You can configure a number of properties for the component such as style, behavior
when a user double-clicks the cell (DoubleClickActionSet properties), and
position, in the worksheet using the property inspector.

Figure 6-7 shows an ADF Output Text component with its property inspector in the
foreground.

Figure 6-7 ADF Output Text Component in Design Mode

To insert an ADF Output Text component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Output Text, and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Output Text from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance, layout,
and behavior of the component.

For example, you must write or specify an EL expression for the Value property to
determine what binding the ADF Output Text component references. For more
information about the values that you specify for the properties of the ADF Output
Text component, see ADF Output Text Component Properties .

5. Click OK.

Note:

You can modify the properties of the component at a later time by selecting
the cell in the worksheet that anchors the component and then displaying the
property inspector. You can also right-click in the cell and choose Edit ADF
Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more
information, see Removing ADF Desktop Integration Components.

Inserting an ADF Output Text Component

Working with ADF Desktop Integration Form-Type Components 6-7

Figure 6-8 shows an example of the ADF Output Text component (in black box) at
runtime.

Figure 6-8 ADF Output Text Component at Runtime

6.5 Inserting an ADF Input Date Component
The ADF Input Date component displays a date picker at runtime that enables the end
user to choose a date value for a date-type field. At design-time, you can specify an
attribute binding or an EL expression that resolves to a date-time value at runtime in
the input field for Value. Other date-time values are not supported.

Figure 6-9 shows an ADF Input Date component at design-time.

Figure 6-9 ADF Input Date Component in Design Mode

You can insert the ADF Input Date component as a field in a form, or as a column in a
table component. You can also add the ADF Input Date component as a model-driven
column with date attribute.

To insert an ADF Input Date component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Input Date and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Input Date from the Insert
Component dropdown list.

Inserting an ADF Input Date Component

6-8 Developing Applications with Oracle ADF Desktop Integration

4. Configure properties in the property inspector to determine the actions the
component invokes at runtime in addition to the appearance, design, and layout of
the component. Table 6-2 outlines some properties you must specify values for. For
information about the component's other properties, see ADF Input Date
Component Properties.

Table 6-2 ADF Input Date Component Properties

For this property... Specify...

ReadOnly To upload end user's changes, set this property to (or write
an EL expression) False. To ignore end user's changes
during upload, set the property to True. If set to True, the
date picker does not appear at runtime.

False is the default value.

Value A date attribute. You can also specify an EL expression that
resolves to a date-time value at runtime. An attribute or an
EL expression that does not resolve to a date-time value at
runtime will cause an error.

If no date-time value is specified at design-time, the calendar
shows the date that corresponds to the cell's current value at
runtime. If the cell is empty (or does not contain a date
value), the calendar defaults to today's date.

5. Click OK.

Figure 6-10 shows an example of the ADF Input Date component at runtime.

Figure 6-10 ADF Input Date Component at Runtime

At runtime, when selected, the ADF Input Date component displays a calendar in a
modeless window. The end user can pick a date from the displayed month, or use the
arrow icons to navigate to other months. You can also click the month or the year to
navigate to another month, year, or decade (see Figure 6-11).

End users can enter a time manually in the cell that hosts the ADF Input Date
component. To accept this input from your end users, configure the Excel's Format
Cells properties to permit entry of a time value along with a date value in the cell that
hosts the ADF Input Date component. The ADF binding type determines whether the
time value will be used. By default, the time value defaults to 0:00.

Inserting an ADF Input Date Component

Working with ADF Desktop Integration Form-Type Components 6-9

Figure 6-11 Navigation in ADF Input Date Component at Runtime

6.6 Inserting an ADF Image Component
Using the ADF Image component, you can insert an image (for example, a company
logo) in the integrated Excel worksheet. At design time, specify the URL of the image
file in Source, and the ADF Image component renders the image at runtime. The
image is rendered at original size at runtime.

At runtime, when the ADF Image component renders, ADF Desktop Integration
determines whether the Source property value is an absolute URL or a relative URL.
The source URL is considered to be absolute if it starts with http and https, the only
supported schemes. If the URL is absolute, it is used as is to fetch the image and insert
that image into the worksheet. If the URL is not absolute, the partial URI is assumed to
be relative to the workbook's WebAppRoot. In such a case, the WebAppRoot value and
the Source value are concatenated to form the complete image URL.

If the image does not render at runtime for any reason (for example, an invalid URL),
the short description text that you configure at design time appears instead of the
image and ADF Desktop Integration creates a log entry. The technical details
regarding the failure are reported in the client logs. ADF Desktop Integrate does not
interrupt the worksheet initialization and does not present a warning or error message
to the end user. The end user sees the short description of the image in the cell location
where the image would have displayed in the case of success.

Figure 6-12 shows an ADF Image component at design time.

Figure 6-12 ADF Image Component in Design Mode

To insert an ADF Image component:

Inserting an ADF Image Component

6-10 Developing Applications with Oracle ADF Desktop Integration

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Image and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Image from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance, layout,
and behavior of the component. Table 6-3 outlines some properties that you must
specify values for. For information about the component's other properties, see
ADF Image Component Properties.

Table 6-3 ADF Image component properties

For this property... Specify...

Source The URL of the image file.

You can use absolute or relative URLs as the source of the
image. If the URL is not absolute, the partial URI is assumed
to be relative to the workbook's WebAppRoot.

Examples:

/images/myLogo.png

/resourceServlet?image=myLogo

http://www.oracle.com/ocom/groups/public/
@otn/documents/digitalasset/110224.gif

Note that the Source property does not support EL
expressions.

For the list of supported image formats, see Microsoft Excel
documentation.

ShortDesc The String message as the alternate text of the image, if the
image is not found or cannot be rendered. You can also
specify an EL expression that resolves to the alternate text of
the image component.

Note that the ShortDesc property does not support binding
expressions.

5. Click OK.

Note:

You can modify the properties of the component at a later time by selecting
the cell in the worksheet that anchors the component and then displaying the
property inspector. You can also right-click in the cell and choose Edit ADF
Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more
information, see Removing ADF Desktop Integration Components.

Figure 6-13 shows an example of the ADF Image component at runtime.

Inserting an ADF Image Component

Working with ADF Desktop Integration Form-Type Components 6-11

Figure 6-13 ADF Image Component at Runtime

Note:

If the worksheet is not protected, the end user may resize or move the image
at runtime. Depending on the size of the image, it might appear over (and
hide) other worksheet contents, including other ADF Desktop Integration
components.

6.7 Inserting an ADF Button Component
ADF Button components are deprecated. Do not add new ADF Button components to
your integrated Excel workbooks. Replace existing ADF Button components with
worksheet-level ribbon commands. For more information, see How to Configure a
Worksheet Ribbon Command for the Runtime Ribbon Tab.

The ADF Button component renders a button in the Excel worksheet at runtime. End
users click this button to invoke one or more actions specified by the
ClickActionSet group of properties.

For more information about the properties of the ADF Button component, see ADF
Button Component Properties . The follow notes describe technical limitations with
ADF Button components.

Note:

• If you change the view mode of the Excel worksheet to the Page Layout or
Page Break mode, the ADF Button components may be rendered in an
unexpected position. You must return back to Normal mode without
saving the workbook, and then Run and stop the integrated Excel
workbook to render the buttons to their original positions.

• You can modify the properties of the component at a later time by selecting
the cell in the worksheet. Click the ADF Button component to open its
property inspector.

• The ADF Button components are active at 100% zoom only, and are
disabled when the end user zooms in or out on an integrated Excel
worksheet.

• To remove the component, use the Delete ribbon command. For more
information, see Removing ADF Desktop Integration Components.

Tip:

In design mode, you can click the button, or press the spacebar when the
button is in focus, to open the property inspector. Buttons do not respond to a
mouse right-click.

Inserting an ADF Button Component

6-12 Developing Applications with Oracle ADF Desktop Integration

You need to perform the following procedure once if you plan to use ADF Button
components in your integrated Excel workbook.

To allow Excel to run an integrated Excel workbook that uses ADF Button
components:

1. Open Excel.

2. Click the Microsoft Office button, and choose Excel Options.

3. In the Excel Options dialog, choose the Trust Center tab, and then click Trust
Center Settings.

4. In the Trust Center dialog, choose the Macro Settings tab, and then click the Trust
access to the VBA project object model checkbox, as shown in Figure 6-14.

Figure 6-14 Excel Trust Center Dialog

5. Click OK.

6.8 Displaying Output from a Managed Bean in an ADF Component
You can configure an ADF component to display output from a managed bean in your
Fusion web application. Information about how to use managed beans in a Fusion
web application can be found in the "Using a Managed Bean in a Fusion Web
Application" section of Developing Fusion Web Applications with Oracle Application
Development Framework. You reference a managed bean in an integrated Excel
workbook through an EL expression. Add a method action binding to the page
definition file you associate with the Excel worksheet to retrieve the value of the
managed bean and assign it to an attribute binding. Use an EL expression to retrieve
the value of the attribute binding at runtime.

Displaying Output from a Managed Bean in an ADF Component

Working with ADF Desktop Integration Form-Type Components 6-13

6.8.1 How to Display Output from a Managed Bean
You write an EL expression for a property that supports EL expressions (for example,
the Label property).

Before you begin:

It may be helpful to have an understanding of managed beans. For more information,
see Displaying Output from a Managed Bean in an ADF Component.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for ADF Desktop Integration Form-Type Components.

To display output from a managed bean:

1. Open the integrated Excel workbook.

2. Select the ADF component to display the output from the managed bean, and open
its property inspector.

Figure 6-15 shows an example where an ADF Label component is configured to
display the output from an attribute binding that has its value populated by an
action binding.

Figure 6-15 ADF Label Component That Displays Output from a Managed Bean
at Runtime

3. Write an EL expression that gets the output from a managed bean at runtime.

The example in Figure 6-15 shows an EL expression that retrieves the value of a
string key (excel.connectionPrefix) from the res resource bundle and the
value of the loggedInUser attribute binding. This attribute binding references the
output from the managed bean.

4. Click OK.

6.8.2 What Happens at Runtime: How an ADF Component Displays Output from a
Managed Bean

The method action binding retrieves values from the managed bean and populates the
attribute binding. The EL expression that you write retrieves the value from the
attribute binding and displays it to the end user through the ADF component that you
configured to display output. For example, the ADF Label component shown in
design mode in Figure 6-16 displays a string similar to the following at runtime:

Displaying Output from a Managed Bean in an ADF Component

6-14 Developing Applications with Oracle ADF Desktop Integration

Connected as sking

Figure 6-16 Output from a Managed Bean at Runtime

In Figure 6-16, sking is the user name of the user that is logged on to the Fusion web
application through the integrated Excel workbook.

6.9 Displaying Concatenated or Calculated Data in Components
The ADF Desktop Integration module supports EL expressions within components
that allow a single component to display data that is based on a calculation or
concatenation of multiple binding expressions.

6.9.1 How to Configure a Component to Display Calculated Data
You write an EL expression for the Value property of an Input Text or Output Text
component.

Figure 6-17 shows an EL expression example where an ADF Output Text component
is configured to display the margin between two fields: List Price and Cost Price.

Figure 6-17 ADF Output Text Component Displaying Calculated Data

Before you begin:

It may be helpful to have an understanding of how to display concatenated or
calculated data in ADF components. For more information, see Displaying
Concatenated or Calculated Data in Components.

Displaying Concatenated or Calculated Data in Components

Working with ADF Desktop Integration Form-Type Components 6-15

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for ADF Desktop Integration Form-Type Components.

To create an EL expression to display calculated data

1. Open the integrated Excel workbook.

2. Select the ADF Input Text or ADF Output Text component to display calculated
data.

3. Open the property inspector and click the browse (...) icon of the Value property.

4. Write an EL expression that gets the output from two, or more, expressions.

The following example shows an EL expression that calculates the difference
between the values of two fields, List Price and Cost Price, and then divides it with
value of Cost Price column to generate a margin.

=(("#{row.bindings.ListPrice.inputValue}"-"#{row.bindings.CostPrice.inputValue}")/
"#{row.bindings.CostPrice.inputValue}")

5. Click OK.

For more information about EL expressions, see ADF Desktop Integration EL
Expressions.

Note:

If the Value property of an ADF Input Text component contains a formula,
the ADF Input Text component becomes read-only at runtime regardless of
the value of the ReadOnly property.

6.9.2 Using Form Components and Merged Cells
You can insert a form component or a binding in a merged cell, or merge cells after
inserting the form component or binding, but you cannot insert multiple form
components in a merged cell or merge cells that are occupied by different form
components.

Before you insert a component in a merged cell, make a note of the following:

• Drag-and-drop functionality is not supported for inserting component in a merged
cell.

• Do not merge a component cell with non-empty cells that are above or left to it.
When two or more cells are merged, Excel keeps the data and style of the most
upper-left cell and discards the data of the remaining cells. So, merging a
component cell with a non-empty cell above or left to itself results in the
component data being overwritten.

• Do not merge an empty component cell that has no value or binding with empty
cells above or left to it. Merging an empty component cell with empty cells above
or left to itself results in the style of that component cell being overwritten.

Displaying Concatenated or Calculated Data in Components

6-16 Developing Applications with Oracle ADF Desktop Integration

7
Working with ADF Desktop Integration

Table-Type Components

This chapter describes the table-type components that ADF Desktop Integration
provides, how to configure and use them, how to download data from Fusion web
application, how to insert, update, and delete data rows from the table-type
components in the integrated Excel workbook, how to track the changes, how to
configure special columns in the table-type components, and other tasks that you can
do with table-type components.

This chapter includes the following sections:

• About ADF Desktop Integration Table-Type Components

• Page Definition Requirements for an ADF Table Component

• Inserting an ADF Table Component into an Excel Worksheet

• Downloading Data to an ADF Table Component

• Downloading Pending Insert and Pending Update Rows to an ADF Table
Component

• Updating Existing Data in an ADF Table Component

• Inserting Data in an ADF Table Component

• Uploading Changes from an ADF Table Component

• Uploading Changes from an ADF Table Component Using an
UploadAllOrNothing Action

• Deleting ADF Table Component Rows in the Fusion Web Application

• Batch Processing in an ADF Table Component

• Special Columns in the ADF Table Component

• Configuring ADF Table Component Key Column

• Adding a Dynamic Column to Your ADF Table Component

• Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component

• Configuring an ADF Table Component to Resize Columns Based on Data at
Runtime

• Grouping Columns Together in an ADF Table Component

• Configuring an ADF Table Component to be Read-only

Working with ADF Desktop Integration Table-Type Components 7-1

• Creating an ADF Read-Only Table Component

• Limiting the Number of Rows Your Table-Type Component Downloads

• Tracking Changes in an ADF Table Component

• Evaluating EL Expressions for ReadOnly Properties

7.1 About ADF Desktop Integration Table-Type Components
ADF Desktop Integration provides the ADF Table component to display structured
data. It provides end users with the functionality to download rows of data. It also
enables end users to edit or delete downloaded data, insert new rows of data, and to
upload new and edited rows of data. For this to happen, you must expose methods on
data controls, create action bindings in your page definition file, and set properties for
the ADF Table component that an Excel worksheet hosts. Figure 7-1 shows the ADF
Table component.

Figure 7-1 ADF Desktop Integration Table-Type Components

Each ADF Table component contains a Key column. Do not remove the Key column
as it contains important information that is used by ADF Desktop Integration for the
proper functioning of the table. Removal of the Key column, or any modification in
the Key column cell, results in errors and data corruption. For more information about
the Key column, see Configuring ADF Table Component Key Column.

The other ADF Desktop Integration components that you can use with these table-type
components are described in Working with ADF Desktop Integration Form-Type
Components and Working with Lists of Values .

7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples
Tables are used to display the structured information. For example, Figure 7-2 shows
an ADF Table component of Summit sample application for ADF Desktop Integration
with data downloaded from the respective Fusion web application.

About ADF Desktop Integration Table-Type Components

7-2 Developing Applications with Oracle ADF Desktop Integration

Figure 7-2 ADF Table Component with Downloaded Data

7.1.2 Additional Functionality of Table-Type Components
After you have added a table component to your integrated Excel workbook, you may
find that you need to add additional functionality to configure your table. Following
are links to other functionality that table components can use.

• Search and Select dialog: You can configure a ModelDrivenColumnComponent
subcomponent in a table column, as described in Adding a Model-Driven List
Picker to an ADF Table Component, to display a dialog where end users can search
and select data.

• Dependent List of Values: You can add dependent list of values components in
your table component. For more information, see Creating Dependent Lists of
Values in an Integrated Excel Workbook.

• Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Working with Styles.

• Tooltips: You can configure tooltips to display additional information or
instructional text to your end users. For more information, see Displaying Tooltips
in ADF Desktop Integration Components.

• EL Expressions: You can use EL expressions with table-type components. For more
information, see ADF Desktop Integration EL Expressions.

7.2 Page Definition Requirements for an ADF Table Component
The ADF Table component is one of the Oracle ADF components that ADF Desktop
Integration exposes. It appears in the components palette of the ADF Desktop
Integration Designer task pane and, after inserted into an Excel worksheet, allows the
following operations:

• Read-only

• Insert-only

• Update-only

• Insert and update

Review the following sections for information about page definition file requirements
specific to an ADF Table component.

Before you can configure an ADF Table component to provide data-entry functionality
to your end users, you must configure the underlying page definition file for the Excel
worksheet with ADF bindings. For general information about the page definition file
requirements for an integrated Excel workbook, see Working with Page Definition
Files for an Integrated Excel Workbook.

Page Definition Requirements for an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-3

Expose the following control bindings when you create a page definition file for
authoring an ADF Table component:

• Tree binding that exposes the desired attribute bindings. Note that ADF Desktop
Integration only supports scrollable and range paging access modes for view
objects. The other access modes are not supported.

Consider using the range paging access mode when your integrated Excel
workbook has to download large amounts of data. For more information, see the
"Efficiently Scrolling Through Large Result Sets Using Range Paging" section in the
Developing Fusion Web Applications with Oracle Application Development Framework.

If you decide to use the range paging access mode, make sure that the application's
view object supports this access mode before using it with ADF Desktop
Integration. For example, the view object must work properly with TOP-N queries
described in the "Understanding How Oracle Supports "TOP-N" Queries" section in
the Developing Fusion Web Applications with Oracle Application Development
Framework.

In addition, note that view objects with range paging access mode cannot be
scrolled with unposted rows. For this reason, make sure that ADF Desktop
Integration action sets commit or roll back any pending changes as expected. If
pending changes are not committed or rolled back before invoking an ADF Table
component's Download action, the application reports the following exception:

An attempt has been made to navigate a rowset in range paging mode when the
rowset has pending changes.

Before inserting new rows, the iterator repositions to the first row, if necessary.
This is because inserting new rows after the first row can result in unexpected
scrolling. This behavior applies to the ADF Table component's Upload action as
well as double-click action sets for insert rows.

• Method action bindings and action bindings (such as Execute, Commit, and
CreateInsert) if you intend to configure values for the ADF Table component's
RowActions and BatchOptions groups of properties. Examples of procedures
where you set values for these groups of properties include:

– Inserting an ADF Table Component into an Excel Worksheet

– Inserting Data in an ADF Table Component

– Downloading Pending Insert and Pending Update Rows to an ADF Table
Component

Figure 7-3 shows the bindings that the ExcelCustomers.xml page definition file
includes. This page definition file can support the use of an ADF Table component in
the Excel worksheet that it is associated with.

Page Definition Requirements for an ADF Table Component

7-4 Developing Applications with Oracle ADF Desktop Integration

Figure 7-3 ADF Bindings Supporting Use of an ADF Table Component

7.3 Inserting an ADF Table Component into an Excel Worksheet
After you configure a page definition file correctly, you can insert an ADF Table
component into the worksheet and configure its properties to achieve the functionality
you want. The ADF Table component enables you to download, edit, and upload rows
of data.

7.3.1 How to Insert an ADF Table Component
You insert an ADF Table component using one of the following methods:

• In the bindings palette of the ADF Desktop Integration Designer task pane, select
the tree binding to use and click Insert Binding.

The following procedure describes how to insert an ADF Table component using
the bindings palette. One benefit of this method over the other two is that you do
not have to manually add each column that you want to appear in the component
at runtime.

• In the Oracle ADF tab, select ADF Table from the Insert Component dropdown
list.

• In the components palette of the ADF Desktop Integration Designer task pane,
select ADF Table and click Insert Component.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more
information, see Inserting an ADF Table Component into an Excel Worksheet.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To insert an ADF Table component into an Excel worksheet:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet into which you want to insert the ADF Table
component.

When selecting a cell, make sure that the:

Inserting an ADF Table Component into an Excel Worksheet

Working with ADF Desktop Integration Table-Type Components 7-5

• Data of two tables do not overlap at runtime

• Selected cell is not a merged cell

3. In the bindings palette of the ADF Desktop Integration Designer task pane, select
the tree binding to use and click Insert Binding.

4. In the dialog that appears, select ADF Table and click OK.

Note:

• By default, the ModelDrivenColumnComponent subcomponent is
defined as the subcomponent type for all columns when you insert an ADF
Table component using the bindings palette.

If you want a column to have a different subcomponent type, open the
ADF Table property inspector (select any cell of the ADF Table component
and click the Edit Properties button in the Oracle ADF tab), click the
browse (...) icon of the Columns property. In the Edit Columns dialog,
select the column, and click the browse (...) icon of the UpdateComponent
property. In the Select Component dialog, select the desired subcomponent
type, verify the binding and other properties, and click OK.

• For tree bindings with multiple <nodeDefinition> elements (child
nodes), attribute names used in the expressions for Value properties of
UpdateComponent and InsertComponent must be unique across all
<nodeDefinitions>.

5. Configure properties for the ADF Table component, as described in Table 7-1,
using the property inspector shown in Figure 7-4.

Inserting an ADF Table Component into an Excel Worksheet

7-6 Developing Applications with Oracle ADF Desktop Integration

Figure 7-4 ADF Table Property Inspector

Table 7-1 ADF Table Component Properties

Set this property to... This value...

BatchOptions.CommitBatchAc
tionID

The Commit action binding that the page definition
file exposes.

UniqueAttribute Specify a binding expression that uniquely identifies
each row in the iterator associated with the tree
binding. A UniqueAttribute property value
should only be specified if the tree binding's iterator
does not support row keys.

RowLimit (Optional) configure this group of properties to
determine the number of rows that the ADF Table
component downloads.

For more information, see Limiting the Number of
Rows Your Table-Type Component Downloads.

6. Click OK.

7. Choose the appropriate option in the Insert Component: ADF Table dialog:

• Yes to create default ribbon commands for the new table to download and
upload data. You can delete or edit these ribbon commands at a later time. We
recommend that you change the default ribbon command label. For more
information, see How to Configure a Worksheet Ribbon Command for the
Runtime Ribbon Tab.

• No if you want to configure the download and upload of data at a later time or
use one of the other available methods (for example, a worksheet event), as

Inserting an ADF Table Component into an Excel Worksheet

Working with ADF Desktop Integration Table-Type Components 7-7

described in Downloading Data to an ADF Table Component, and Uploading
Changes from an ADF Table Component .

Figure 7-5 shows the ADF Table component in EditCustomers-DT.xlsx in design
mode.

Figure 7-5 ADF Table Component in Design Mode

Figure 7-6 shows the ADF Table component in EditCustomers-DT.xlsx at
runtime.

Figure 7-6 ADF Table Component at Runtime

For more information about the properties that you can set for the ADF Table
component, see ADF Table Component Properties and Actions.

To remove the table component, use the Delete ribbon command. For more
information, see Removing ADF Desktop Integration Components.

7.3.2 How to Add a Column in an ADF Table Component
If you inserted the table without using the tree binding (for example, you inserted the
table from the component palette) you add columns to the table to display the data for
each attribute that you want to appear in the table. For example, a customers' table
will have columns that displays customer name, phone, credit rating, and so on.

The procedure is the same if you want to add a column to table you inserted using the
tree binding.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more
information, see Inserting an ADF Table Component into an Excel Worksheet.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

Inserting an ADF Table Component into an Excel Worksheet

7-8 Developing Applications with Oracle ADF Desktop Integration

To add a column in an ADF Table component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon of the
Columns property.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4. Click Add to add a new column. The new column is inserted at the end of the
Members list. To move the column to a specific position, select the column and use
the Up and Down arrow keys.

5. Configure the new column's properties in the right pane of the dialog.

6. Click OK.

ADF Desktop Integration does not limit the number of columns you can add to an
ADF Table component. You can add as many columns as your version of Excel
supports. However, a wide table can result in a poor user experience and slow
performance. If you experience slow performance, try to reduce the number of table
columns before investigating other causes. ADF Desktop Integration recommends
configuring less than 30 columns per table when possible to optimize performance and
user experience.

7.4 Downloading Data to an ADF Table Component
After you add an ADF Table component to a worksheet, you configure the worksheet
to download data from the Fusion web application. To achieve this, you configure an
Oracle ADF component, such as a worksheet ribbon command, to invoke an action set.
The action set that is invoked must include the ADF Table component Download
action among the actions that it invokes.

The number of rows that an ADF Table component contains expands or contracts
based on the number of rows to download from a Fusion web application. You should
not place anything to the left or right of a table-type component unless you want to
replicate it when Excel inserts rows to accommodate the data that one of the table-type
components downloads. You can place other components above or below a table-type
component as they maintain their position relative to the table-type component at
runtime.

7.4.1 How to Download Data to an ADF Table Component
Configure a ribbon command to invoke the ADF Table component Download action.

Before you begin:

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

It may be helpful to have an understanding of how to configure ADF component to
download data to an ADF Table data component. For more information, see
Downloading Data to an ADF Table Component.

To download data to an ADF Table component:

Downloading Data to an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-9

1. Open the integrated Excel workbook.

2. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command. For more information about adding a ribbon command in a worksheet,
see How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab.

Note:

Instead of adding a ribbon command, you can configure a worksheet event to
invoke the action set at runtime.

3. Open the Edit Action dialog to configure an action set. For more information about
invoking action sets, see Using Action Sets.

4. Add the following actions in the following order to the action set that invokes at
runtime:

• ADFmAction Execute action binding to execute the query on the iterator
binding referenced by the ADF Table component TreeID property. This makes
sure the binding is up-to-date before the action set invokes the ADF Table
component Download action.

• ADF Table component Download action.

The ADF Table component Download action downloads the current state of the
binding referenced by the ADF Table component TreeID property.

Figure 7-7 shows the Edit Action dialog in the EditCustomers-DT.xlsx
workbook where the action set invoked by the Download ribbon command in the
Excel ribbon is configured.

Figure 7-7 Action Set Downloading Data to an ADF Table Component

5. Click OK.

7.4.2 What Happens at Runtime: How an ADF Table Component Downloads Data
The end user invokes the action set that you configured. The action set invokes the list
of actions specified in order. These include an action that invokes the Download
action of the ADF Table component. When invoked, the Download action downloads

Downloading Data to an ADF Table Component

7-10 Developing Applications with Oracle ADF Desktop Integration

all rows from the tree binding referenced by the ADF Table component TreeID
property.

Make a note of the following points when the Download action is invoked at runtime:

• If any rows are marked as changed when the Download action is invoked, the end
user is prompted to confirm the action and to continue (see Figure 7-8). If the end
user chooses No, the action and the action set are cancelled without error.

• All existing Excel rows are removed from the table in Excel.

• The status column is cleared of all messages.

• Any criteria that has been applied to the worksheet using Excel's Filter
functionality is automatically cleared prior to the upload action.

Figure 7-8 Confirmation Prompt Before Downloading Data in ADF Table

The number of rows that the action downloads depends on the values set for the
RowLimit group of properties in the ADF Table component. For more information,
see Limiting the Number of Rows Your Table-Type Component Downloads .

7.5 Downloading Pending Insert and Pending Update Rows to an ADF
Table Component

A Pending Insert row is a worksheet table row with data that, on upload, is inserted as
a new data row in the iterator. For example, if the end user creates a new row in the
table by using the Insert option in the right click context menu, the new row is treated
as a pending insert row and is inserted to the iterator when being uploaded.

A Pending Update row is a worksheet table row with data that, on upload, updates an
existing data row in the iterator. For example, if the iterator of the tree binding
contains some rows retrieved from the database and when these rows are downloaded
to the ADF table, they are treated as pending update rows. If the end user makes
changes to these rows and uploads them, the existing rows in the iterator are updated
with new values from the ADF Table row.

In most cases, rows in the iterator of the tree binding are downloaded as pending
update rows into the ADF Table. If you want some rows to be downloaded as pending
inserts, you need to set the state of these rows to STATUS_INITIALIZED. For more

Downloading Pending Insert and Pending Update Rows to an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-11

information about how to set a row's state as STATUS_INITIALIZED, see the
setNewRowState method in Oracle Fusion Middleware Java API Reference for Oracle ADF
Model.

Note the following differences between pending insert rows and pending update
rows:

• Pending insert rows are populated with the value of the EL expression for the
insert component that is associated with each column in the ADF Table component
(if the InsertUsesUpdate column property is set to False), while pending
update rows are populated with the value of the EL expression for the update
component that is associated with each column in the ADF Table component.

• When evaluated for pending insert rows, the EL expression
#{components.componentID.currentRowMode} returns Insert. In contrast,
the same EL expression returns Update for pending update rows.

Note that the componentID part of the EL expression
#{components.componentID.currentRowMode} references the ID of the ADF
Table component.

For more information about EL expressions, see ADF Desktop Integration EL
Expressions.

7.5.1 What Happens at Runtime: Download Action is Invoked
When the Download action is invoked, it examines the state of each row in the
iterator. Rows of state STATUS_INITIALIZED are downloaded as pending insert
rows in the table, while rows of other states are downloaded as pending update rows.

7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts
You can use STATUS_INITIALIZED rows to pre-populate values for some, or all,
attributes of the pending insert rows. As a STATUS_INITIALIZED row is not
validated, you can configure an action to populate the STATUS_INITIALIZED row
partially and insert it into the iterator before the Download action is invoked. The
Download action then treats this row as a pending insert row so that a new row, based
on the pre-populated row, can be inserted.

Note that STATUS_INITIALIZED rows are not automatically removed from the
iterator during download. You can configure another action to remove
STATUS_INITIALIZED rows after download. For example, you can configure an
action set with the following actions:

1. ADFmAction that creates STATUS_INITIALIZED rows

2. Table.Download action

3. ADFmAction that cleans up STATUS_INITIALIZED rows

7.5.3 What You May Need to Know About DownloadForInsert Action
ADF Desktop Integration also supports a table action called DownloadForInsert.
DownloadForInsert is an obsolete action and can be replaced with the Download
action. DownloadForInsert continues to work as it always has worked in previous
releases. The key difference, with respect to Download, is that DownloadForInsert
only considers rows in the iterator that are in the STATUS_INITIALIZED state.

Downloading Pending Insert and Pending Update Rows to an ADF Table Component

7-12 Developing Applications with Oracle ADF Desktop Integration

7.6 Updating Existing Data in an ADF Table Component
This section describes how you configure an ADF Table component so that end users
can edit and upload changes to existing data rows in the table. Uploading Changes
from an ADF Table Component describes how you can configure the ADF Table
component so that end users can upload modified data rows.

7.6.1 How to Configure an ADF Table Component to Update Data
If you want the end user to be able to edit existing data, but want to restrict the
addition or deletion of data rows, no additional configuration is required. Make sure
that your project and the ADF Table component is configured as shown in the
following procedure.

To configure an ADF Table component to update data:

1. Open the project in JDeveloper.

2. If not present, add a Commit action binding to the page definition file that is
associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Working with Page Definition Files for an Integrated
Excel Workbook and Page Definition Requirements for an ADF Table Component.

3. Open the integrated Excel workbook.

4. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

5. Make sure that the ADF Table component RowAction properties are set, as
described in Table 7-2, and shown in Figure 7-9.

Table 7-2 RowAction Properties of ADF Table Component

Property Value

InsertRowEnabled False

DeleteRowEnabled False

UpdateRowEnabled True

Updating Existing Data in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-13

Figure 7-9 ADF Table RowActions Properties to Update Data

7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data
When the end user changes data in a row, ADF Desktop Integration marks the row
and an upward pointing triangle appears in a row of the _ADF_ChangedColumn
column. After updating the existing data, the end user initiates the upload process to
save the changes. For more information about the ADF Table component's upload
process, see Uploading Changes from an ADF Table Component.

Excel uploads modified rows from the integrated workbook in batches rather than
row by row. You can configure the number of rows uploaded for each batch as well as
the actions an ADF Table component invokes when it uploads and commits a batch of
rows. For more information about batch processing, see Batch Processing in an ADF
Table Component.

For more information about the properties that you can set for the ADF Table
component, see ADF Table Component Properties and Actions.

Note:

Any criteria that has been applied to the worksheet using Excel's Filter
functionality is automatically cleared prior to the Upload action.

7.7 Inserting Data in an ADF Table Component
You can configure an ADF Table component to allow end users to insert new data
rows. Once you complete this task, you may want to also configure the component to
allow end users to upload new and modified data rows, as described Uploading
Changes from an ADF Table Component .

Inserting Data in an ADF Table Component

7-14 Developing Applications with Oracle ADF Desktop Integration

7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's
Operations

To commit the changes that an end user makes in an ADF Table component, you add
action bindings to the page definition file that is associated with the Excel worksheet
that hosts the ADF Table component and configure a number of ADF Table
component properties.

Before you begin:

It may be helpful to have an understanding of how to configure ADF Table
component to insert data. For more information, see Inserting Data in an ADF Table
Component.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To configure an ADF Table component to insert data using a view object's operations:

1. Open the project in JDeveloper.

2. If not present, add a CreateInsert and a Commit action binding to the page
definition file that is associated with the Excel worksheet that hosts the ADF Table
component.

For more information, see Working with Page Definition Files for an Integrated
Excel Workbook and Page Definition Requirements for an ADF Table Component.

3. Open the integrated Excel workbook.

4. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

5. In the Edit Component: ADF Table dialog, configure the RowActions properties
of the ADF Table component as described in Table 7-3:

Table 7-3 RowActions properties of ADF Table component

Set this property to... This value...

AutoConvertNewRowsE
nabled

True. When True, end users can edit the rows under the
ADF Table component or paste new data directly into the
rows under the component to convert them to rows in the
ADF Table component provided that the worksheet
Protection.Mode property is set to Off (the default
value).

For more information about worksheet properties, see
Worksheet Actions and Properties.

InsertRowEnabled True

InsertBeforeRowActi
onID

The CreateInsert action binding that the page definition
file exposes.

Inserting Data in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-15

Table 7-3 (Cont.) RowActions properties of ADF Table component

Set this property to... This value...

InsertRowsAfterUplo
adEnabled

True, to upload the inserted rows again regardless of
whether they have been previously uploaded. By default,
this property is set to False.

The property is ignored if InsertRowEnabled is set to
False.

6. Configure the BatchOptions properties of the ADF Table component as
described in Table 7-4.

Table 7-4 BatchOptions Properties of the ADF Table Component

Set this property to... This value...

CommitBatchActionID The Commit action binding that the page definition file
exposes.

7. Configure the Columns property of the ADF Table component as described in
Table 7-5.

Note:

ADF Desktop Integration automatically sets the appropriate property values if
you selected a tree binding when inserting the ADF Table component, as
described in How to Insert an ADF Table Component. (Optional) Review and
adjust the other Columns property values as needed. For more information,
see ADF Table Component Column Properties.

Table 7-5 Columns property of ADF Table component

Set this property to... This value...

InsertUsesUpdate True

UpdateComponent • Set the Value field of the UpdateComponent property to
the update attribute from the page definition file. For
example,
#{row.bindings.ProductId.inputValue}.

• Verify that ReadOnly property of UpdateComponent is
set appropriately. Set ReadOnly to False if you do want
users to edit the values in the column, set to True
otherwise. The default value of the ReadOnly property is
False.

For more information, see Adding a
ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component.

8. Repeat Step 7 for each column that contains data to commit during invocation of
the Upload action.

For information about ADF Table component properties, see ADF Table
Component Properties and Actions .

Inserting Data in an ADF Table Component

7-16 Developing Applications with Oracle ADF Desktop Integration

Note:

• If you are using a polymorphic view object and want to insert a new row,
the default CreateInsert action binding is not sufficient. You must
create a custom method that also sets the discriminator value in the newly
created row.

While creating the custom method, you must expose the custom method as
an action binding in the page definition file. The action binding must be
specified as the InsertBeforeActionId rather than CreateInsert.

• If the InsertRowsAfterUploadEnabled property is set to False and
the end user tries to upload the inserted rows again, an error message in
the status column is displayed indicating that the row cannot be inserted
more than once.

7.8 Uploading Changes from an ADF Table Component
You configure the ADF Table component and the worksheet that hosts it so that end
user can upload changes they make to data in the ADF Table component to the Fusion
web application. To configure this functionality, you decide what user gesture or
worksheet event invokes the action set that invokes the ADF Table component's
Upload action.

The Upload action commits all successful rows even when some other rows have
failures. Use the UploadAllOrNothing action instead if you want no row changes to
get committed if one, or more, row failures occur (see Uploading Changes from an
ADF Table Component Using an UploadAllOrNothing Action). To provide upload
options to end users in a web page from the Fusion web application that differ from
the default upload dialog, you must specify a Dialog action in the action set before
the action that invokes the ADF Table Component's Upload action. For more
information, see How to Create a Custom Upload Dialog.

Note:

In a master-detail relationship, ADF Desktop Integration does not support
editing of the ViewLink source attributes, as the selections in the child view
object would change as a result. To prevent any accidental editing, define the
ViewLink source attributes to be read-only, or use a model configuration that
does not include a view link between master and detail.

7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table
Component

Configure an ADF component, such as a worksheet ribbon command, to invoke an
action set that, in turn, invokes the ADF Table component Upload action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Uploading Changes from an ADF Table Component .

Uploading Changes from an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-17

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To configure an ADF component to upload changed data from an ADF Table
component:

1. Open the integrated Excel workbook.

2. Open the Edit Action dialog to configure the action set that invokes the ADF Table
component Upload action.

For more information about action sets, see Using Action Sets.

3. Add the ADF Table component Upload action to the list of actions that the action
set invokes at runtime.

Figure 7-10 shows the Edit Actions dialog in the EditCustomers-DT.xlsx
workbook, where the action set invoked by the ribbon command labeled Upload at
runtime is configured.

Figure 7-10 Action Set Uploading Data from an ADF Table Component

4. Click OK.

5. If you do not want the Upload Options dialog to appear, select the cell in the Excel
worksheet that references the ADF Table component and click the Edit Properties
button in the Oracle ADF tab.

Set DisplayUploadOptions to False in the Table Properties dialog and click
OK.

Uploading Changes from an ADF Table Component

7-18 Developing Applications with Oracle ADF Desktop Integration

Note:

The action set does not include a call to a commit-type action as the ADF Table
component's batch options already include calls to Commit. For more
information, see How to Configure Batch Options for an ADF Table
Component .

7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data
At runtime, the end user invokes the action set through whatever mechanism you
configured (ADF component, worksheet ribbon command, or worksheet event). This
triggers the following sequence of events:

1. If the ADF Table component contains dynamic columns, ADF Desktop Integration
verifies whether the dynamic columns that were expanded the last time the ADF
Table component's Download action was invoked are still present in the Fusion
web application. If the columns are not present, ADF Desktop Integration
prompts the end user to determine whether to continue upload process. If the end
user decides not to continue, ADF Desktop Integration returns an abort code to
the executing action set.

2. If the ADF Table component contains no pending changes to upload, the ADF
Table component's Upload action returns a success code to the executing action
set.

3. The ADF Table component uploads modified rows in batches, rather than row by
row. You can configure the batch options using the BatchOptions group of
properties. For more information about batch options for the ADF Table
component, see Batch Processing in an ADF Table Component.

Each row of a batch is processed in the following way, and the process continues
until all changed rows of each batch are processed:

a. For inserted rows, invoke the InsertBeforeRowActionID action, if
specified.

b. For edited rows, position the tree binding iterator to the correct row.

c. Set attributes from the worksheet into the model, including any cached row
attribute values.

d. For edited rows, invoke the UpdateRowActionID action; and for inserted
rows, invoke the InsertAfterRowActionID action, if specified.

e. For each uploaded row, displays a status message indicating success or
failure in the Status column. If a row fails to upload, the Status column
displays a message (for example, Update Failed). More detailed
information about the failure is shown in the Status Viewer when the end
user clicks in any cell on the row with the failure. For more information, see
Using the Status Viewer to Report Error Messages to End Users.

For more information about the Status column, see Special Columns in the
ADF Table Component .

f. For any row failure, the ADF Table component verifies the value of
AbortOnFail. If AbortOnFail is set to False, it continues the upload

Uploading Changes from an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-19

process. Otherwise the component stops uploading data and invokes the
Commit action.

4. While uploading data, the ADF Table component returns a success or failure code
to the executing action set based on the following:

• If the ADF Table component commits all batches successfully, it returns the
success status to the executing action set. If Table.DisplayUploadOptions
property is set to True and the end user has selected the Download all rows
after successful upload option in Upload Options dialog, the ADF Table
component then downloads all rows from the Fusion web application.

• If the ADF Table component did not commit all batches successfully, the action
set invokes the action specified by the RowActions.FailureActionID
property, if an action is specified for this property. ADF Desktop Integration
returns a failure code to the action set.

If the Table.DisplayUploadOptions property is set to True and the On failure,
continue to upload subsequent rows checkbox is selected in the Upload Options
dialog, the Upload action returns a success code to the action set even if some
individual rows encountered validation failures.

Note:

When the Upload action is invoked on an ADF Table that has an Excel filter
applied, Excel filter's criteria is cleared to show any hidden Excel worksheet
rows, but the filter is not removed.

7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During
Upload

At runtime, if an ADF Table component column's ReadOnly property evaluates to
True, the ADF Table component's Upload action ignores all changes in the column's
cells.

For more information about change tracking, see Evaluating EL Expressions for
ReadOnly Properties.

7.8.4 What Happens at Runtime: How Row Errors Are Handled During Upload
When the ADF Table component starts uploading data, ADF Desktop Integration
creates a DataControlFrame savepoint before initiating the upload process (once
per batch of uploaded rows). In case of any error, ADF Desktop Integration reverts
back to the savepoint, ensuring the integrity of the server-side state of the Fusion web
application.

For each row in a batch of uploaded rows, ADF Desktop Integration does the
following:

1. Invokes configured actions, applies row attribute value changes, and performs
data validation.

2. In case of any error, reverts back to the savepoint state.

Uploading Changes from an ADF Table Component

7-20 Developing Applications with Oracle ADF Desktop Integration

Note:

A second iteration is performed, if required, to re-upload any successfully
uploaded rows whose changes were reverted due to a subsequent upload
error.

For more information about savepoints, see the "Using Trees to Display Master-Detail
Objects" section in Developing Fusion Web Applications with Oracle Application
Development Framework.

7.8.5 What You May Need to Know About Upload Options
At runtime, when the end user uploads data from the integrated Excel workbook to
the Fusion web application, ADF Desktop Integration continues to upload subsequent
data rows in case of any row failure, and does not refresh or download data of all rows
after a successful upload.

If required, you can enable or disable the Upload Options dialog, as shown in Figure
7-11, by setting the Table.DisplayUploadOptions property. When
DisplayUploadOptions is set to True, ADF Desktop Integration presents the
Upload Options dialog.

Figure 7-11 Default Upload Dialog

Note:

The Table.DisplayUploadOptions property is set to True by default in
ADF Table components of integrated Excel workbooks created with versions
of ADF Desktop Integration that did not include
Table.DisplayUploadOptions property.

Using the Upload Options dialog, end users can enable or disable the following
options:

• Continue to upload subsequent rows on failure. This is the default behavior.

When disabled, ADF Desktop Integration aborts the upload process in case of any
row failure.

• Download all data rows after a successful upload. This behavior is disabled by
default.

When enabled, ADF Desktop Integration downloads the latest data from the view
object cache after the successful upload.

Uploading Changes from an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-21

Note:

If the Download all data rows after a successful upload checkbox is selected,
ADF Desktop Integration downloads the data from the view object cache, not
from the database.

Therefore, if another user happens to update the same rows that the end user
has updated, the end user will not see the updates made by the other user
after downloading data rows.

If the end user clicks Cancel in the Upload Options dialog, ADF Desktop Integration
returns an abort code to the executing action set. If the end user clicks OK, the action
set continues executing with the options specified in the dialog for the upload
operation.

You may also create a custom upload dialog. For more information, see How to Create
a Custom Upload Dialog.

7.8.6 How to Create a Custom Upload Dialog
You display a page from Fusion web application that offers end users different options
to those presented in the default upload dialog. You add a Dialog action before the
action that invokes the ADF Table component's Upload action in the action set.

Note:

You can prevent the appearance of the standard Upload Options dialog by
setting the DisplayUploadOptions property to False, as described in
What You May Need to Know About Upload Options.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Uploading Changes from an ADF Table Component and

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To create a custom upload dialog:

1. Create a page in the JDeveloper project where you develop the Fusion web
application. For information on how to create this page, see Displaying Web Pages
from a Fusion Web Application.

2. In addition to the ADFdi_CloseWindow element (for example, a span element)
described in Displaying Web Pages from a Fusion Web Application, the page that
you create in Step 1 must include the elements described in Table 7-6.

Uploading Changes from an ADF Table Component

7-22 Developing Applications with Oracle ADF Desktop Integration

Table 7-6 Span Elements Required for Custom Upload

Name Description

ADFdi_AbortUploadOn
Failure

If you set this element to True, the action set stops uploading
if it encounters a failure. If the element references False, the
action set attempts to upload all rows and indicates if each
row succeeded or failed to upload.

ADFdi_DownLoadAfter
Upload

Set this element to True so the action set downloads data
from the Fusion web application to the ADF Table
component after the action set uploads modified data.

Note:

The page you create must include both elements to prevent ADF Desktop
Integration presenting the default upload dialog to end users.

3. Add a Dialog action to invoke the page you created in Step 1 before the action in
the action set that invokes the ADF Table component's Upload action.

For more information about displaying pages from a Fusion web application, see
Displaying Web Pages from a Fusion Web Application.

7.8.7 What Happens at Runtime: Custom Upload Dialog
When a custom dialog appears, the page from the Fusion web application that you
configure the Dialog action in the action set to display appears instead of the default
upload dialog.

Note:

If there is no server connectivity when the end user tries to upload data, the
end user gets an error when the Dialog action fails to find the custom upload
page. ADF Desktop Integration does not revert to the standard dialog when
server connectivity is not available.

For more information about displaying a page from the Fusion web application, see
Displaying Web Pages from a Fusion Web Application. Otherwise, the runtime
behavior of the action set that you configure to upload data is as described in What
Happens at Runtime: How the ADF Table Component Uploads Data.

7.9 Uploading Changes from an ADF Table Component Using an
UploadAllOrNothing Action

ADF Desktop Integration commits all row changes that are successfully uploaded
during a Table.Upload operation, even when one or more rows has failures. For
example, if 100 rows are uploaded and only three rows contain failures, 97 rows are
still committed to the database. For more information, see Uploading Changes from an
ADF Table Component .

Using the UploadAllOrNothing action, you can configure the upload process to
commit all changed rows only if all rows are successfully uploaded. For example, if
100 rows are uploaded, and if any row fails, no rows are committed to the database.

Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action

Working with ADF Desktop Integration Table-Type Components 7-23

Uploading a large number of changed worksheet rows with the
UploadAllOrNothing action can result in significant memory consumption on the
application server. This is because the UploadAllOrNothing action commits only
after all rows are processed successfully. For this reason, the UploadAllOrNothing
action is not intended for use with large data sets. You can limit the amount of data
that the UploadAllOrNothing action can upload using the
UploadAllOrNothing.ChangedDataLimit servlet parameter. For more
information about the UploadAllOrNothing.ChangedDataLimit servlet
parameter, see Limiting the Amount of Changed Data That Can Be Uploaded With
UploadAllOrNothing Action.

7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action
Configure an ADF component, such as a worksheet ribbon command, to invoke an
action set that, in turn, invokes the ADF Table component UploadAllOrNothing
action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Uploading Changes from an ADF Table Component Using an UploadAllOrNothing
Action.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To configure an ADF component to use UploadAllOrNothing action:

1. Open the integrated Excel workbook.

2. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command that the end user uses to invoke the action set at runtime. For more
information about adding a ribbon command in a worksheet, see How to
Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab.

3. Open the Edit Action dialog to configure the action set that invokes the ADF Table
component actions.

For more information about action sets, see Using Action Sets.

4. Add the ADF Table component UploadAllOrNothing action to the list of actions
that the action set invokes at runtime.

5. Click OK.

7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked
If you have chosen the UploadAllOrNothing action, ADF Desktop Integration
commits row changes only when all rows are uploaded successfully.

Note:

The UploadAllOrNothing action uploads data in the same way as the
Upload action. For more information about how data gets uploaded during
Upload as well as UploadAllOrNothing, see What Happens at Runtime:
How the ADF Table Component Uploads Data.

Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action

7-24 Developing Applications with Oracle ADF Desktop Integration

During the UploadAllOrNothing action, ADF Desktop Integration uploads all
changed worksheet rows prior to invoking the action specified by
CommitBatchActionID. If one, or more, row-level failures occur, the action
specified by FailureActionID is invoked and the action specified by
CommitBatchActionID is not invoked.

In the event of a failure, all values in the Changed column remain unchanged. The
Status column displays failure messages for the rows that contain errors, but remains
empty for all rows without errors. When all rows successfully commit, the Changed
column values are cleared and the Status column for the uploaded rows reports
success.

Note:

• The UploadAllOrNothing action is only supported for DataControls that
support database transactions.

• If CommitBatchActionID is not configured and an action set contains the
UploadAllOrNothing action, a validation error is reported.

• The UploadAllOrNothing action treats all update and insert rows as a
single batch. This means that the action bindings specified by the ADF
Table component RowData.BatchOption's StartBatchActionID and
CommitBatchActionID properties get invoked one time per operation.

7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With
UploadAllOrNothing Action

Uploading a large number of changed worksheet rows with the
UploadAllOrNothing action can result in significant memory consumption on the
application server. For this reason, it is not intended for use with large data sets. To
prevent end users from uploading too much data during the UploadAllOrNothing
action, set the UploadAllOrNothing.ChangedDataLimit servlet parameter
(specified in Kb) to limit the total amount of changed data that can get uploaded. If no
parameter value is specified, a default limit of 10,240 Kb is used. If you specify a
value for this servlet parameter larger than the default, performance and scalability
testing and analysis should be performed to measure the impact on the application
server.

If the total amount of changed data uploaded exceeds the
UploadAllOrNothing.ChangedDataLimit value, an error message is reported to
the end user, and the UploadAllOrNothing action is aborted. Note that the action
specified by Table.RowActions.FailureActionID is invoked when the changed
data limit is exceeded.

To alter the limit for the amount of changed data that can be uploaded:

1. Open the web.xml file of your Fusion web application.

2. Add the UploadAllOrNothing.ChangedDataLimit servlet parameter, as
described in Table 7-7.

Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action

Working with ADF Desktop Integration Table-Type Components 7-25

Table 7-7 Limiting the Amount of Changed Data That Can be Uploaded

Property Value

Name Enter the name of the servlet parameter as follows

UploadAllOrNothing.ChangedDataLimit

Value Specify the total amount of changed data in Kb that can be
uploaded.

3. Save the web.xml file.

4. Rebuild and restart your Fusion web application.

Example 7-1 web.xml File With UploadAllOrNothing.ChangedDataLimit Servlet Parameter

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-class>
 <init-param>
 <param-name>UploadAllOrNothing.ChangedDataLimit</param-name>
 <param-value>10240</param-value>
 </init-param>
</servlet>

Example 7-1 shows the entry for UploadAllOrNothing.ChangedDataLimit in the
Summit sample application for ADF Desktop Integration's web.xml file.

7.10 Deleting ADF Table Component Rows in the Fusion Web Application
The ADF Table component exposes an action (DeleteFlaggedRows) that, when
invoked, deletes the rows in the Fusion web application that correspond to the flagged
rows in the ADF Table component. A flagged row in an ADF Table component is a row
where the end user has double-clicked or typed a character in the cell of the
_ADF_FlagColumn column as described in Batch Processing in an ADF Table
Component. The _ADF_FlagColumn column must be present in the ADF Table
component to configure it to delete rows in the Fusion web application.

In addition, the page definition file that you associate with the worksheet that hosts
the ADF Table component must expose a Delete action binding.

7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web
Application

To delete rows from an ADF Table component, you must add the Delete action
binding to the page definition file, configure the RowActions group of ADF Table
component properties, and configure an action set to invoke the
DeleteFlaggedRows action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF Table
component to delete data rows in Fusion web application. For more information, see
Deleting ADF Table Component Rows in the Fusion Web Application.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

Deleting ADF Table Component Rows in the Fusion Web Application

7-26 Developing Applications with Oracle ADF Desktop Integration

To configure an ADF Table component to delete rows in a Fusion web application:

1. Open your Fusion web application in JDeveloper.

2. If not present, add a Delete action binding to the page definition file that is
associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Working with Page Definition Files for an Integrated
Excel Workbook.

3. Open the property inspector for the ADF Table component and set values for the
RowActions group of properties as described in Table 7-8.

Table 7-8 RowActions Properties of ADF Table component

Set this property... To...

DeleteRowActionID The Delete action binding that the page definition file
exposes. The specified Delete action binding is expected to
delete the current row in the iterator.

DeleteRowEnabled True to enable the ADF Table component to delete rows in
the Fusion web application.

False is the default value.

For more information about ADF Table component properties, see ADF Table
Component Properties and Actions .

4. Click OK.

5. Open the integrated Excel workbook.

6. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command that the end user uses to invoke the action set at runtime. For more
information about adding a ribbon command in a worksheet, see How to
Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab.

7. Add the ADF Table component's DeleteFlaggedRows action to the list of actions
that the action set invokes at runtime.

For more information about invoking action sets, see Using Action Sets.

8. (Optional) Set the DeleteFlaggedRows action's Options.AbortOnFailure
property to False if you want the action set to continue processing even if it
encounters failures. The default value is True.

9. Click OK.

7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a
Fusion Web Application

The end user flags rows to delete, as described in Row Flagging in an ADF Table
Component. The end user then invokes the action set. The following sequence of
events occurs:

1. If specified, the action binding referenced by the
BatchOptions.StartBatchActionID property is invoked.

Deleting ADF Table Component Rows in the Fusion Web Application

Working with ADF Desktop Integration Table-Type Components 7-27

Failures from this step are treated as errors. An error stops the action set invoking.
It also returns the error condition to the action set. If an action binding is specified
for the ActionSet.FailureActionID property, the action set invokes the
specified action binding.

For more information about configuring batch options, see Batch Processing in an
ADF Table Component.

2. For each flagged row in the ADF Table component, the action set positions the
tree binding iterator to the correct row, then it invokes the delete-type action
binding specified by RowActions.DeleteRowActionID.

Note:

Rows inserted since the last invocation of the ADF Table component's
Download action but not uploaded to the Fusion web application are ignored
even if flagged for deletion.

3. For each flagged row in the ADF Table component, if the delete-type action
binding specified by RowActions.DeleteRowActionID fails, the next event
depends on the value you specified for the DeleteFlaggedRows action's
Options.AbortOnFailure property. If False, the action set attempts to delete
all flagged rows without stopping at the first failure it encounters. If the action set
fails to delete a flagged row, that row:

• Remains in the ADF Table component

• Is marked as Failed in the ADF Table component's Status column

• Is skipped while the action set commits the batch of successfully deleted
flagged rows

• Remains flagged in the Flagged column cell

If the DeleteFlaggedRows action's Options.AbortOnFailure property is set
to True (the default value), the ADF Table component stops invocation of the
DeleteFlaggedRows action.

4. If an action binding is specified for the BatchOptions.CommitBatchActionID
property, the action set invokes it. If this step fails, the action set stops processing
batches. If no failures occur, the action set processes the next batch by invoking
the action binding specified by the BatchOptions.StartBatchActionID
property, and so on until the action set processes all batches.

5. If the action set processes all batches successfully, it invokes the action binding
specified by its ActionOptions.SuccessActionID property if an action
binding is specified for this property. It then removes the rows deleted in the
Fusion web application by invocation of the delete-type action binding specified
by RowActions.DeleteRowActionID from the worksheet and returns a
success code to the action set.

If failures occur while the action set processes the batches, the action set invokes
the action binding specified by its ActionOptions.FailureActionID
property if an action binding is specified for this property. This action binding
returns a failure code to the action set.

6. If an unexpected exception occurs while the action set invokes its actions, an error
code is returned to the action set. All relevant error messages are available in the

Deleting ADF Table Component Rows in the Fusion Web Application

7-28 Developing Applications with Oracle ADF Desktop Integration

Status Viewer. For more information, see Using the Status Viewer to Report Error
Messages to End Users.

Note:

When the DeleteFlaggedRows action is invoked on an ADF Table that has
an Excel filter applied, Excel filter's criteria is cleared to show any hidden
Excel worksheet rows, but the filter is not removed.

7.11 Batch Processing in an ADF Table Component
The ADF Table component's Upload and DeleteFlaggedRows actions both commit
changes in batches rather than row-by-row in order to optimize performance and
scalability. You can configure batch option properties that determine the size of
batches and what actions the ADF Table component invokes when it uploads a batch.

7.11.1 How to Configure Batch Options for an ADF Table Component
The ADF Table component has a group of properties (BatchOptions) that allow you
to configure how the ADF Table component manages batches of rows. Information
about these properties can be found in ADF Table Component Properties and Actions .

Before you begin:

It may be helpful to have an understanding of how ADF Table components upload
data, delete data, and batch process both tasks. For more information, see What
Happens at Runtime: How the ADF Table Component Uploads Data, What Happens
at Runtime: How the ADF Table Component Deletes Rows in a Fusion Web
Application, and Batch Processing in an ADF Table Component.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To configure batch options for an ADF Table component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Properties button in the Oracle ADF tab.

3. Set values for the BatchOptions group of properties in the property inspector
that appears.

Table 7-9 RowData.BatchOptions Properties

Set this property... To...

BatchSize Specify how many rows to process before an ADF Table
component action (Upload or DeleteFlaggedRows)
invokes the action binding specified by
CommitBatchActionID. Any value other than a positive
integer results in all rows being processed in a single batch.
The default value is 100 rows.

Batch Processing in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-29

Table 7-9 (Cont.) RowData.BatchOptions Properties

Set this property... To...

CommitBatchActionID The action binding to invoke after the ADF Table component
processes each batch. Typically, this is the Commit action
binding.

LimitBatchSize True

When True, the ADF Table component processes rows in
batches determined by the value of BatchSize. True is the
default value.

When False, the ADF Table component uploads all
modified rows in a single batch.

Note that it is not sufficient to set this property to False if
you want the ADF Table component to upload all rows or no
rows in the case of failure. Instead, you need to invoke the
UploadAllOrNothing action, as described in Uploading
Changes from an ADF Table Component Using an
UploadAllOrNothing Action.

StartBatchActionID (Optional) Specify the action binding to invoke at the
beginning of each batch.

4. Click OK.

Note that a failure at the entity-level is not considered a batch failure. A failure at the
commit level (for example, a wrong value for a foreign key attribute) is considered a
batch failure.

7.11.2 Troubleshooting Errors While Uploading Data
End users may see reports of errors under certain circumstances while uploading data
from ADF Table components. After posting changes from a batch, ADF Desktop
Integration runs the action specified by the CommitBatchActionID. Rows from a
batch that experiences a failure executing the action specified by the
CommitBatchActionID display the details of the failure in the Status Viewer. Any
rows in the batch that had changes posted successfully on the server before the failure
show Batch Failed in the Status column.

Errors that occur during the commit action might continue to be reported on
subsequent batch commit actions, even though subsequent batches of records do not
contain errors. This can happen when any pending model updates are not
automatically reverted when the CommitBatchActionID action fails. To avoid any
such error, you must explicitly revert pending model updates that exist after a commit
failure. For example, you could create a custom action for the
CommitBatchActionID that first attempts to commit the pending model changes.
However, if an exception occurs during commit, the custom method should first roll
back the pending model changes, so that any subsequent batch commit attempts can
succeed.

Note:

It is important that the commit exception gets thrown again after rollback so
that the commit errors are reported as expected on the client.

Batch Processing in an ADF Table Component

7-30 Developing Applications with Oracle ADF Desktop Integration

7.12 Special Columns in the ADF Table Component
By default, the ADF Table component includes some columns when you insert an
ADF Table component in a worksheet. You can retain or remove these columns, if
required. The following list describes the columns and the purpose they serve:

• _ADF_ChangedColumn

The cells in this column track changes to the rows in the ADF Table component. If a
change has been made to data in a row of the ADF Table component since
download or the last successful upload, a character that resembles an upward
pointing arrow appears in the corresponding cell of the _ADF_ChangedColumn
column. This character toggles (appears or disappears) when a user double-clicks a
cell in this column. Figure 7-12 shows an example.

Figure 7-12 Changed Column in an ADF Table Component

Note:

If the end user does not want the ADF Table component's Upload action to
upload changes in the rows marked by this column, the user must clear the
entry that appears in the corresponding cell.

When an ADF Table component invokes its Upload action, it uploads all rows
with non-empty cells in the _ADF_ChangedColumn column. For more
information, see Uploading Changes from an ADF Table Component .

• _ADF_FlagColumn

When the end user double-clicks a cell in this column, the corresponding row is
flagged for flagged-row processing. A solid circle character appears to indicate that
the row is flagged for flagged-row processing. For more information about the use
of this column, see Row Flagging in an ADF Table Component.

Note:

By default, the solid circle character indicates a row flagged for flagged-row
processing. However, any nonempty cell in a _ADF_FlagColumn flags the
corresponding row for flagged-row processing.

• _ADF_StatusColumn

This column reports the results of invocation of ADF Table component actions,
such as DeleteFlaggedRows and Upload.

Special Columns in the ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-31

A message appears in the cell of the _ADF_StatusColumn to indicate the result of
the invocation for the corresponding row. If the end user invokes a
DoubleClickActionSet defined in an ADF Table column and an error occurs,
the errors are also reported in the Status column of the corresponding row. Figure
7-13 shows an example of a Status column message for a row where an update
failed. More detailed information about status appears in the Status Viewer, as
described in Using the Status Viewer to Report Error Messages to End Users.

Figure 7-13 Status Column in an ADF Table Component

• _ADF_RowKeyColumn

This column, also referred to as the Key column, contains important information
about the ADF Table component used by ADF Desktop Integration at runtime. The
column appears both at runtime and design time. Do not remove the Key column
because it is required for the proper functioning of the ADF Table component. You
can configure its appearance-related properties.

For more information about the _ADF_RowKeyColumn, see Configuring ADF
Table Component Key Column.

The ADF Table component treats the properties of the _ADF_ChangedColumn,
_ADF_FlagColumn, _ADF_RowKeyColumn, and _ADF_StatusColumn columns
differently from the properties of other columns that it references. It ignores the values
set for properties such as InsertComponent, InsertUsesUpdate, and
UpdateComponent unless it invokes the DisplayRowErrors action described in
Table A-13. It reads the values for properties related to style and appearance, for
example CellStyleName and HeaderStyleName.

7.12.1 Row Flagging in an ADF Table Component
By default, the ADF Table component includes a column, _ADF_FlagColumn, that
facilitates the selection of rows for flagged-row processing. Double-clicking a cell of
the _ADF_FlagColumn column flags the corresponding row for processing by actions
invoked by a component action.

When the end user double clicks a cell of the _ADF_FlagColumn column, a solid
circle appears, or disappears, in the cell to indicate that the row is flagged, or not.
Figure 7-14 shows an example of a flagged column.

Special Columns in the ADF Table Component

7-32 Developing Applications with Oracle ADF Desktop Integration

Figure 7-14 Flagged Column in ADF Table Component

Note:

By default, the solid circle character indicates a row flagged for flagged-row
processing. However, any nonempty cell in a _ADF_FlagColumn column
flags the corresponding row for flagged-row processing.

The following component actions can be invoked on flagged rows:

• DeleteFlaggedRows

• DownloadFlaggedRows

You can use the FlagAllRows component action to flag all rows, and the
UnflagAllRows component action to unflag all rows of the ADF Table component.

Note:

• The ADF Table component's DownloadFlaggedRows action does not
support changes in table column structure after the last invocation of the
Download or DownloadForInsert action. The table column structure
usually changes if you are using dynamic columns, or if the table contains
columns with complex expressions in the Visible property.

• The DownloadFlaggedRows action is not applicable to inserted rows.

Use of these component actions is dependent on the appearance of the
_ADF_FlagColumn column in the ADF Table component. If you remove the
_ADF_FlagColumn column from the ADF Table component, you cannot invoke any
of these component actions. For more information about these component actions, see
ADF Table Component Actions.

At runtime, the end user can invoke any of the previously listed component actions
from an action set. The invoked component action processes all flagged rows. For
example, it downloads or deletes all flagged rows. For more information about
configuring an action set to invoke a component action, see How to Invoke
Component Actions in an Action Set.

7.13 Configuring ADF Table Component Key Column
When you add ADF Table to your integrated Excel workbook, the Key column
(column ID: _ADF_RowKeyColumn) appears automatically at design time. The Key

Configuring ADF Table Component Key Column

Working with ADF Desktop Integration Table-Type Components 7-33

column contains important information that is used by ADF Desktop Integration for
proper functioning of the table. Note that you must not remove the Key column at
runtime.

7.13.1 How to Configure the Key Column
You can configure the Key column's position, style properties, and header label. By
default, the Key Cell style is applied to it.

Before you begin:

It may be helpful to have an understanding of the Key column in the ADF Table
component. For more information, see Configuring ADF Table Component Key
Column.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To configure the Key column:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon beside the
input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4. Select the column with ID as _ADF_RowKeyColumn.

5. Change the column properties as desired, but do not change the following
properties:

• DynamicColumn

• InsertComponent

• InsertUsesUpdate

• UpdateComponent

• ID

• Visible

6. If desired, change the position of the column using the Up and Down arrow keys
and the values of properties that determine the appearance of the column (Label,
Tooltip, and Style).

7. Click OK to close Edit Columns dialog.

8. Click OK to close the Edit Component: ADF Table dialog.

7.13.2 How to Manually Add the Key Column At Design Time
If you are using the integrated Excel workbook prepared and configured using an
earlier version of ADF Desktop Integration, the Key column will not be available at

Configuring ADF Table Component Key Column

7-34 Developing Applications with Oracle ADF Desktop Integration

design time. It will appear only at runtime. To configure the Key column properties,
you can add it in the workbook at design time.

Before you begin:

It may be helpful to have an understanding of the Key column in the ADF Table
component. For more information, see Configuring ADF Table Component Key
Column.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To manually add the Key column at design time:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Properties button in the Oracle ADF tab.

3. Add a new column in the ADF Table, and specify the properties as described in
Table 7-10. For more information about adding a column, see How to Add a
Column in an ADF Table Component.

Table 7-10 Key Column Properties

Set this property... To ...

CellStyleName Key Cell

HeaderStyleName Column Header

DynamicColumn False

HeaderLabel #{_ADFDIres[COMPONENTS_TABLE_ROWKEY_COL_LABEL
]}

ID _ADF_RowKeyColumn

InsertUsesUpdate True

UpdateComponent OutputText

The Value property must be empty.

Visible True

If desired, change the position of the column using the Up and Down arrow keys
and the values of properties that determine the appearance of the column (Label,
Tooltip, and Style).

4. Click OK.

Note:

You must specify the ID property of the new column as
_ADF_RowKeyColumn; otherwise, the column will not be considered to be a
Key column, and another Key column will automatically appear at runtime.

Configuring ADF Table Component Key Column

Working with ADF Desktop Integration Table-Type Components 7-35

7.14 Adding a Dynamic Column to Your ADF Table Component
You can add dynamic columns to an ADF Table component so that the ADF Table
component expands or contracts at runtime depending on the available attributes
returned by the view object. The DynamicColumn property of the Columns group in
the TableColumn array controls this behavior. To make a column dynamic, set the
DynamicColumn property to True. A dynamic column in the TableColumn array is
a column that is bound to a tree binding or a tree node binding whose attribute names
are not known at design time. A dynamic column can expand to more than a single
worksheet column at runtime.

The ADF Table component's dynamic column supports the following subcomponent
types:

• ModelDrivenColumnComponent

• Input Text

• Output Text

Note:

ADF Desktop Integration does not support the subcomponent type
TreeNodeList in a dynamic column.

Support for Model-Driven List of Values

You can also configure a dynamic column to support the List of Values subcomponent
where the subcomponent type is determined from model configuration at runtime. At
design time, specify the subcomponent type as ModelDrivenColumnComponent for
the UpdateComponent or InsertComponent properties. At runtime, during
dynamic column expansion, the model-driven runtime component is determined
before caching the list of values. The remote servlet allows the client to retrieve Model
configuration, allowing the client to choose the desired column subcomponent type.
For more information, see Adding a ModelDrivenColumnComponent Subcomponent
to Your ADF Table Component and Creating a List of Values in an ADF Table
Component Column.

Note:

In cases where the ADF Table component uses a tree binding containing
multiple <nodeDefinition> elements, model-driven lists used in dynamic
columns must have unique names across all nodes.

7.14.1 How to Configure a Dynamic Column
You configure a dynamic column by specifying an EL expression with the following
format for the Value property of the component specified by the ADF Table
component column's InsertComponent property as a subcomponent:

#{bindings.TreeID.[TreeNodeID].AttributeNamePrefix*.inputValue}

or:

Adding a Dynamic Column to Your ADF Table Component

7-36 Developing Applications with Oracle ADF Desktop Integration

#{bindings.TreeID.AttributeNamePrefix*.inputValue}

where:

• TreeID is the ID of the tree binding used by the ADF Table component

• TreeNodeID is an optional value that specifies the tree node binding ID. If you
omit this value, all matching attributes from the tree binding display regardless of
which tree node binding the attribute belongs to.

• AttributeNamePrefix identifies a subset of attributes that exist within the tree
binding's underlying iterator. If you do not specify a value for
AttributeNamePrefix, all attributes for the tree binding or tree binding node
are returned. Always use the * character.

Note:

While adding a dynamic column, ensure that tree node attribute names are
not specified in the page definition file. At runtime, the tree node object
returns all attribute names from the underlying iterator. If there are attribute
names specified in the page definition file, the tree node object limits the list of
available attribute names based on that list.

The following example returns all attributes that begin with the name "period" in the
model.EmpView node of the EmpTree binding:

#{bindings.EmpTree.[model.EmpView].period*.inputValue}

Support for View Objects with Declarative SQL Mode

To support view objects that are configured with declarative SQL mode and
customized at runtime, expose a tree binding in the page definition file that has no
attributes defined. For example:

<tree IterBinding="DeclSQLModeIterator" id="DeclSQLModeTree">
 <nodeDefinition Name="DeclSQLModeTreeNode"/>
</tree>

At runtime, the tree binding returns the selected attributes from the underlying
declarative SQL mode view object to the integrated Excel worksheet.

7.14.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic
Column

When the ADF Table component's Download or DownloadForInsert action is
invoked, the ADF Table component automatically updates the dynamic columns so
that they contain an up-to-date set of matching attributes. For each invocation of
Download, ADF Desktop Integration requires that all rows must have the same set of
attributes for the dynamic column. It may generate errors if the set of attributes
changes from row to row during Download.

If a dynamic column supports both Insert and Update operations, you should
specify the same EL expression for the Value properties of the dynamic column's
InsertComponent and UpdateComponent subcomponents. At runtime, the ADF
Table component expands to include a dynamic column that displays the value of the
attribute binding returned by the EL expression.

Adding a Dynamic Column to Your ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-37

Typically the set of matching attributes does not change between invocation of the
ADF Table component's Download and Upload actions. However, if previously
downloaded attributes no longer exist in the tree binding when the ADF Table
component invokes the Upload action, the integrated Excel workbook prompts the
end user to determine if the end user wants to continue to upload data. For
information about how to avoid the scenario just described (downloaded attributes no
longer exist in the tree binding), see Using an Integrated Excel Workbook Across
Multiple Web Sessions.

Note:

The ADF Table component ignores the value of a column's Visible property
when you configure a column to be dynamic. For more information about
ADF Table component column properties, see Table A-12.

7.14.3 How to Specify Header Labels for Dynamic Columns
Use the following syntax to write EL expressions for the HeaderLabel property of a
dynamic column:

#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.label}

or:

#{bindings.TreeID.hints.AttributeNamePrefix*.label}

Specify the same tree binding ID, tree node binding ID, and attribute name prefix
values in the HeaderLabel property of the dynamic column as the values you specify
for the Value properties of the dynamic column's InsertComponent and
UpdateComponent if the dynamic column supports Insert and Update operations.

If you want the mandatory columns, where the end user must enter a value, to be
marked with a character or a string, you must configure the HeaderLabel property.
Use the following syntax to write EL expression to add a character or string to all
mandatory columns:

=IF(#{bindings.TreeID.[TreeNodeID].hints.*.mandatory},
"<prefix_for_mandatory_cols>", "") & "#{bindings.TreeID.
[TreeNodeID].hints.*.label}"

For example, the following EL expression adds an asterisk (*) character to the
mandatory columns label:

=IF(#{bindings.MyTree.
[myapp.model.MyChildNode].hints.*.mandatory}, "* ", "") &
"#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.label}"

7.14.4 How to Specify Styles for Dynamic Columns
If the same style can be applied for all expanded columns, specify the literal style
name for the CellStyleName property of a dynamic column.

However, if different styles are needed for different expanded columns, an EL
expression must be specified for the CellStyleName property of a dynamic column.

You can specify different styles for each attribute using a custom attribute property,
for example, adfdiCellStyle. The following syntax would be used for the
CellStyleName EL expression:

Adding a Dynamic Column to Your ADF Table Component

7-38 Developing Applications with Oracle ADF Desktop Integration

#{bindings.TreeID.[TreeNodeID].hints.*.adfdiCellStyle}

For more information about custom attribute properties, see Using ADF Desktop
Integration EL-based Properties with Custom Attribute Properties.

Alternatively, you can specify different styles for each attribute using more complex
EL expressions to compute the style name.

In the following example, the MyDateStyle style is applied to all date columns, and
MyDefaultStyle is applied to other data type columns:

=IF("#{bindings.MyTree.
[myapp.model.MyChildNode].hints.*.dataType}"="date",
"MyDateStyle", "MyDefaultStyle")

For more information about EL expressions, see ADF Desktop Integration EL
Expressions.

7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component

The ModelDrivenColumnComponent is the default subcomponent when you insert an
ADF Table component. The column subcomponent type is determined at runtime by
the column's attribute Control Type hint specified on the server.

At design time for a column, specify the subcomponent type as
ModelDrivenColumnComponent for the UpdateComponent or
InsertComponent properties. At runtime, if there is a model-driven list associated
with the attribute, then the column uses a dropdown list containing the model-driven
list items.

Note:

• To use the (optional) date picker for a model-driven column with a date
attribute, set the
Compatibility.TableComponents.ModelDrivenColumns.DatePi
ckerEnabled property to True. For more information, see ADF Desktop
Integration Compatibility Properties.

• If there is no model-driven list associated with the attribute, or if any non-
list-based control type is specified, then the column uses an Input Text
subcomponent. If there is a model-driven list whose control type is
combo_lov, then the column uses an Input Text subcomponent.

• In a dependent list of values implementation, ADF Desktop Integration
determines if each list subcomponent depends on another model-driven
list when an ADF Table component uses multiple
ModelDrivenColumnComponent subcomponents. To do this, it verifies
that the bind variable specified for a list references an attribute bound to
another list. For more information, see Table 8-1.

For more information about creating a model-driven list, see the "How to Create a
Model-Driven List" section of Developing Fusion Web Applications with Oracle Application
Development Framework.

Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-39

7.16 Configuring an ADF Table Component to Resize Columns Based on
Data at Runtime

You can configure column widths of an ADF Table component so that they are
automatically resized at runtime. The columns can be resized using Excel's AutoFit
column width feature, which determines the width based on the data values in the
column. ADF Desktop Integration can also resize the columns using explicit width
values derived from EL expressions.

The resizing behavior of ADF Table columns is configured at the table level. You can
then override them at the column level.

Resizing a column's width at runtime is a two-step process. First, you configure the
table column with the desired width-related property values. Secondly, add the ADF
Table component's ResizeColumns action to the desired action set. Typically, you
add this action after the ADF Table component's Download action in the action set.
The EditCustomers-DT.xlsx workbook in the Summit sample application,
described in Introduction to the ADF Desktop Integration Sample Application,
demonstrates this implementation.

7.16.1 How to Configure an ADF Table Component to Resize Columns at Runtime
You can use the design-time ResizeColumnsMode property to specify the common
resizing behavior for all columns of the ADF Table component. Use the
ResizeColumns table component method to control when the resizing occurs. To
override resizing behavior of a particular column, use the column's ResizeMode
property.

Before you begin:

It may be helpful to have an understanding of configuring resizing behavior of ADF
Table columns. For more information, see Configuring an ADF Table Component to
Resize Columns Based on Data at Runtime.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To configure resizing behavior of ADF Table columns:

1. Open the integrated Excel workbook.

2. Select any cell in the ADF Table component and click the Edit Properties button in
the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, configure and set the
ResizeColumnsMode property as described in Table 7-11:

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

7-40 Developing Applications with Oracle ADF Desktop Integration

Table 7-11 ResizeColumnsMode Values of the ADF Table Component

Value Description

UseColumnValue Default. All columns in the table will be resized (or not)
based on their Column.ResizeMode property values.
Columns with InheritFromTable will not be resized.
Individual columns that have Column.ResizeMode
properties set to a value other than InheritFromTable
are resized accordingly.

AutoFitAllWithHeader All columns within the table boundaries are resized to best
fit using Excel's AutoFit support. Data values in the
columns' cells, including the header cells, are used to
determine the best fit.

Individual columns that have Column.ResizeMode
properties set to a value other than InheritFromTable
are resized accordingly.

Note that values in the column's cells above or below the
table are not considered when finding the best fit.

AutoFitAllWithoutHead
er

All columns within the table boundaries are resized to best
fit using Excel's AutoFit support. Data values in the
columns' cells, excluding the header cells, are used to
determine the best fit.

Individual columns that have Column.ResizeMode
properties set to a value other than InheritFromTable
are resized accordingly.

Note that values in the column's cells above or below the
table are not considered when finding the best fit.

4. To configure the resizing behavior of a column and override the table-level resizing
behavior, set the ResizeMode property.

In the Edit Component: ADF Table dialog, expand the Columns property and set
the ResizeMode property as described in Table 7-12:

Table 7-12 ResizeMode Values of the ADF Table Column Property

Value Description

Manual The column is not resized; column width is left at the
current setting.

InheritFromTable Default. The column is resized based on the table's
ResizeColumnsMode setting.

If ResizeColumnsMode is set to UseColumnValue, then
no resizing occurs.

AutoFitWithHeader Including the header cell, the column is resized to best fit
using the Excel's AutoFit support.

AutoFitWithoutHeader Excluding the header cell, the column is resized to best fit
using the Excel's AutoFit support.

SpecifiedWidth ADF Desktop Integration uses the Width property to
determine the desired width of the column. You can
specify a numerical value, or an EL expression.

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

Working with ADF Desktop Integration Table-Type Components 7-41

5. If the ADF Table component's ResizeColumnsMode property is set to
UseColumnValue and a column's ResizeMode property is set to
SpecifiedWidth, set the Column.Width property to the number of characters
you want to display in the column.

A column's Width property may be set to a literal numerical value or an EL
expression that evaluates to a number between 1 and 255, inclusive. An example EL
expression for Width that makes use of the UI Hint displayWidth for an
attribute is:

#{bindings.Customers.hints.Name.displayWidth}

Note:

• If the expression cannot be evaluated, or if the expression evaluates to less
than 1 or greater than 255, the ResizeMode is considered to be Manual
and the column is not resized.

• Use a decimal point regardless of the environment's Region and Language
settings if you want to specify a fractional value. A 'decimal comma' (such
as is seen in French locales) is not supported.

6. Click OK.

7.16.2 How to Configure an Action Set to Resize Columns of an ADF Table Component
at Runtime

You can configure the action set in a worksheet ribbon command or a worksheet event
to invoke the ADF Table component ResizeColumns action.

Note that resizing a table with many columns and many rows might take a noticeable
amount of time.

Before you begin:

It may be helpful to have an understanding of configuring resizing behavior of ADF
Table columns. For more information, see Configuring an ADF Table Component to
Resize Columns Based on Data at Runtime and Using Action Sets.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To configure an action set to resize Columns of an ADF Table component:

1. Open the integrated Excel workbook.

2. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command. For more information about adding a ribbon command in a worksheet,
see How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab.

Note:

Instead of adding a ribbon command, you can configure a worksheet event to
invoke the action set at runtime.

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

7-42 Developing Applications with Oracle ADF Desktop Integration

3. Open the Edit Action dialog to configure an action set. For more information about
invoking action sets, see Using Action Sets.

4. Add the ADF Table component ResizeColumns action to the list of actions that
the action set invokes at runtime. Note that ResizeColumns is a component
action.

5. Click OK.

Figure 7-15 shows the ResizeColumns action at design-time that is configured in the
worksheet Events property of the EditCustomers-DT.xlsx workbook.

Note:

If you configure an action set that is invoked by the worksheet Startup event
and this action set invokes the ADF Table component's ResizeColumns
action after the Download action, make sure that the action set invokes the
ADF Table component's Initialize action before the Download action.
Figure 7-15 demonstrates this configuration.

Figure 7-15 ResizeColumns Action

7.16.3 What Happens at Runtime: How the ADF Table Columns are Resized
The ADF Table columns are resized as the result of running of
Table.ResizeColumns component action in an action set (see How to Configure an
Action Set to Resize Columns of an ADF Table Component at Runtime).

7.16.4 What You May Need to Know About Resizing Columns of an ADF Table
Component at Runtime

The entire worksheet columns containing the ADF Table component columns are
resized depending on the values in the Table.ResizeColumnsMode and
Column.ResizeMode properties. Resizing the table columns affects the contents of
the cells or any other components (such as form components) located in the same
Excel worksheet column outside of the table's boundaries.

If a worksheet contains two or more ADF Table components configured with action
sets to resize columns at runtime, all ADF Table components attempt to resize their
columns independently. However, the ADF Table component's ResizeColumns
action that runs last sets the column width.

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

Working with ADF Desktop Integration Table-Type Components 7-43

Tip:

For worksheets that contain more than one ADF Table component, call the
ResizeColumns action only on the primary table

Note:

• The Column.Width property does not support row-specific bindings.

• A common strategy is to call ResizeColumns after one of the Download
actions. See Figure 7-15 for an example.

• Resizing the columns for a large table may take a significant amount of
time. The end user may perceive a download to be slower due to this extra
work. Be sure to test your workbook with typical data loads to determine
whether resizing is worth the delay for your use case.

• Excel internally rounds the specified Width values to the nearest whole
pixel value. For example, a value of 8.5 characters rounds to 8.43, which
equates to 64 pixels.

• Using one of the AutoFit resizing modes on cells that have Wrap Text
selected in their style definition may not resize as expected. Using
SpecifiedWidth mode, explicitly setting the row height of table cells at
design time, or removing the Wrap Text setting from the style may
produce better results.

• It may help to make Excel columns wider at design time if you use one of
the AutoFit resizing modes and want to avoid text wrapping at runtime.
This is due to the way that Excel's AutoFit resizing modes work.

7.17 Grouping Columns Together in an ADF Table Component
You can render group headers for columns that render in an ADF Table component to,
for example, provide your end users with a more intuitive interface by using
descriptive labels for groups of columns. Figure 7-22 shows an example where the
EditAllInventory-DT.xlsx workbook from the Summit sample application for
ADF Desktop Integration groups the Product to Restock Date columns into an
Inventory Details group header while the Warehouse to Country columns have been
grouped into a Warehouse Details group of columns.

Grouping Columns Together in an ADF Table Component

7-44 Developing Applications with Oracle ADF Desktop Integration

Figure 7-16 Providing a Grouping Header for Columns in an ADF Table Component

ADF Desktop Integration implements the functionality shown in Figure 7-16 by
rendering an extra table header row above the ADF Table component's regular table
header row at runtime. It renders this extra table header row if you configure the
GroupHeader properties in one of the column definitions of the ADF Table
component. You can also implement this functionality for dynamic columns. If you
want to implement this functionality for dynamic columns, you must define custom
attributes, as described in How to Group Columns that Render in a Dynamic Column.
For information about how to configure the GroupHeader properties for static and
dynamic columns, see How to Group Columns in an ADF Table Component.

Leave the row above the ADF Table component empty of data and styles if you want
to render an extra table header row to group columns because, at runtime, existing
data and styles will be overwritten to render the extra table header row.

7.17.1 How to Group Columns in an ADF Table Component
You group columns in an ADF Table component by configuring the GroupHeader
properties for the start and end columns in the group of columns.

Before you begin:

It may be helpful to have an understanding of how you can group columns in an ADF
Table component. For more information, see Grouping Columns Together in an ADF
Table Component.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

Define custom attribute properties, as described in How to Group Columns that
Render in a Dynamic Column, if you want to group header columns that render in a
dynamic column. This step is not required if you want to group header columns in
static columns.

To group columns in an ADF Table component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

Grouping Columns Together in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-45

3. In the Edit Component: ADF Table dialog, click the browse (...) icon of the Columns
property.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4. In the Edit Columns dialog, select the column that you want to start the group of
columns.

5. In the right pane of the Edit Columns dialog, expand the GroupHeader property
under the Layout field and configure the properties, as described in Table 7-13.

Table 7-13 GroupHeader Properties of an ADF Table Component's Group Start
Column

Set this property to ... This value

Boundary Set to start or an EL expression that evaluates to start.

This defines the column as the start of a group of columns.

If you want to define a dynamic column as the start of a
group of columns, we recommend that you define a custom
attribute property with a value of start, as described in
How to Group Columns that Render in a Dynamic Column.
Write an EL expression that retrieves the value of this custom
attribute property.

Label Set this property to a string or to an EL expression that
evaluates to a label in the column group header at runtime.
The evaluated value renders in the cell of the start column.
The start column in the column group header requires a
value for this property. No column group header forms at
runtime if you do not specify a value. For more information
about labels, see Using Labels in an Integrated Excel
Workbook.

You can also edit this property by editing the Excel cell
where the label text appears. Editing the text in the cell
directly only affects this property. There is no effect on the
Boundary property.

StyleName Set this property to a style defined in the workbook or to an
EL expression that evaluates to a style name. The named
style is applied to the column group's header cell at runtime.
For more information about styles, see Configuring the
Appearance of Your Integrated Excel Workbook.

Tooltip (Optional) Specify a tooltip. The tooltip that you specify
renders from the extra table header cell of the end column in
the group. For more information, see What Happens at
Runtime: How an ADF Table Component Groups Columns.

For more information about tooltips, see How to Add a Tool
Tip to an ADF Table Component.

Figure 7-17 shows the values configured for the GroupHeader properties to start
the Inventory Details group of columns in EditAllInventory-DT.xlsx
workbook shown in Figure 7-16.

Grouping Columns Together in an ADF Table Component

7-46 Developing Applications with Oracle ADF Desktop Integration

Figure 7-17 Configuring the Start Column of a Group of Columns

6. In the Edit Columns dialog, select the column that you want to end the group of
columns.

Note:

If you do not configure a column to end the group of columns, the column
that you configured as the start column in Step 5 renders as a single-column
group.

7. In the right pane of the Edit Columns dialog, expand the GroupHeader property
under the Layout category and configure the following property:

• Boundary: Set to end or an EL expression that evaluates to end.

This defines the column as the end of a group of columns.

If you want to define a dynamic column as the end of a group of columns,
define a custom attribute property with a value of end, as described in How to
Group Columns in an ADF Table Component and write an EL expression that
retrieves the value of this custom attribute property.

• Do not set values for the remaining properties in GroupHeader. The values
that you set for the start column in Step 5 determine the label, style and tooltip
that render in the group of columns' header at runtime.

Grouping Columns Together in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-47

Note:

You do not need to set properties for the columns between the start and end
columns.

If, at runtime, the integrated Excel workbook does not find a start column to
the left of the column that you configure as the end column, the value that you
specify for the end column is ignored.

8. Click OK.

Note:

Remember to leave the row above the ADF Table component empty of data
and styles if you want to group columns because, at runtime, existing data
and styles will be overwritten to render the extra table header row that will
appear above the ADF Table component.

7.17.2 How to Group Columns that Render in a Dynamic Column
A dynamic column can expand to more than a single worksheet column at runtime. At
runtime, the integrated Excel workbook evaluates EL expressions defined for the
GroupHeader properties after the dynamic column expands. Depending on the
results of evaluating the GroupHeader properties, column groups form and the
integrated Excel workbook renders grouped headers for the dynamic column.

To configure GroupHeader properties for columns that render in a dynamic column,
you first define custom attribute properties on the view object attributes that render in
the dynamic column's columns at runtime.

Define custom attribute properties for the attributes that you want to render the start
and end boundaries of the grouped header in the dynamic column at runtime.
Configure custom attribute properties for the start attribute that the GroupHeader
Boundary, Label, StyleName, and Tooltip properties reference at runtime using
EL expressions. Configure a custom attribute property for the end attribute that the
GroupHeader Boundary property references at runtime using an EL expression.

For more information about defining custom attribute properties, see Using ADF
Desktop Integration EL-based Properties with Custom Attribute Properties.

Figure 7-18 shows an attribute (Address) that defines custom attribute properties to
start a grouped header.

Grouping Columns Together in an ADF Table Component

7-48 Developing Applications with Oracle ADF Desktop Integration

Figure 7-18 Custom Attribute Property to Start a Grouped Header in a Dynamic
Column

Figure 7-19 shows an attribute (Comment) that defines custom attribute property to
end a grouped header.

Figure 7-19 Custom Attribute Property to End a Grouped Header in a Dynamic
Column

At runtime, a dynamic column expands to render columns for the view object's
attributes. For this example the expanded columns are Address, City, and Comments
that are configured to render a grouped header. Figure 7-20 shows the GroupHeader
properties that you configure in the dynamic column at design time. At runtime, the
EL expressions retrieve and evaluate the values of the configured custom attribute
properties shown in Figure 7-18 and Figure 7-19. A grouped header labeled Details
forms for the Address, City, and Comments columns.

For more information about how to configure the GroupHeader properties, see How
to Group Columns in an ADF Table Component.

Grouping Columns Together in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-49

Figure 7-20 Starting a Grouped Header in a Dynamic Column

7.17.3 What Happens at Runtime: How an ADF Table Component Groups Columns
An extra table header row renders above the ADF Table component's regular table
header row at runtime if you configure values for the GroupHeader properties. The
values you specify for the Label, StyleName and Tooltip properties of the start
column in each group determines the label, style and tooltip of the group header. Any
values that you configure for those GroupHeader properties of other columns in the
column group are ignored.

The style specified by the GroupHeader.StyleName property in the column that
you configure as the start column is applied on the extra table header cells of all
columns in the group. The horizontal alignment of the group header label centers
across the extra table header cells of all columns in the group.

The tooltip defined by the GroupHeader.Tooltip property in the start column
renders on the extra table header cell of the end column in the group, as shown in
Figure 7-21.

Figure 7-21 Grouped Columns Rendering Styles and Displaying a Tooltip

Make sure that columns you configure as start and end columns render at runtime. If a
column that you configure as a start column does not render at runtime, no column
group forms. For example, if you configure Column 1 as a start column and Column 3
as an end column and Column 1 does not render at runtime because its Visible
property returns false, no column group forms. Similarly, if Column 3 does not render,
no column group forms that spans Column 1, Column 2, and Column 3. Instead,
Column 1 renders as a single-column group.

7.18 Configuring an ADF Table Component to be Read-only
The ADF Table component offers multiple features that are not available in the ADF
Read-Only Table component, described in Creating an ADF Read-Only Table
Component. Examples of features available in the ADF Table component include
dynamic columns, the ability to group columns together and the ability to resize
columns. For this reason, you may want to create an ADF Table component and
configure it to be read-only rather than creating an ADF Read-only Table component.
The CustomerSearch-DT.xlsx workbook in the Summit sample application
contains an ADF Table component that is configured to be read-only.

7.18.1 How to Configure an ADF Table Component to be Read-only
You make an ADF Table component read-only by setting the RowActions
UpdateRowEnabled and InsertRowEnabled properties to False and deleting the

Configuring an ADF Table Component to be Read-only

7-50 Developing Applications with Oracle ADF Desktop Integration

_ADF_ChangedColumn, _ADF_FlagColumn, and _ADF_StatusColumn columns
from the ADF Table component.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more
information, see Configuring an ADF Table Component to be Read-only.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

Insert an ADF Table component in your integrated Excel workbook, as described in
Inserting an ADF Table Component into an Excel Worksheet.

To configure an ADF Table component to be read-only:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, set the
RowActions.UpdateRowEnabled property of the ADF Table component to
False.

4. In the Edit Component: ADF Table dialog, click the browse (...) icon of the Columns
property.

The Edit Column dialog appears, listing all the columns of the ADF Table
component.

5. Delete the _ADF_ChangedColumn, _ADF_FlagColumn, and
_ADF_StatusColumn columns by selecting these columns and clicking Remove in
the Edit Columns dialog.

Note:

Do not remove the Key column. For more information about the Key column,
see Configuring ADF Table Component Key Column.

6. (Optional) Consider changing each column's UpdateComponent component type
value from ModelDrivenColumnComponent to OutputText.

This is not necessary if the view object is configured to be read-only. This is
because the ReadOnly property of each UpdateComponent is bound to the
corresponding readOnly attribute hint by default if you create an ADF Table
component from a tree binding. The CustomerSearch-DT.xlsx workbook
demonstrates this implementation.

7. (Optional) Consider changing each column's CellStyleName property to Read-
only Cell to visually distinguish read-only cells from editable cells.

For more information, see Working with Styles.

8. Click OK.

Configuring an ADF Table Component to be Read-only

Working with ADF Desktop Integration Table-Type Components 7-51

7.19 Creating an ADF Read-Only Table Component
At runtime, the ADF Read-only Table component renders a table across a continuous
range of cells that displays data from the tree binding that the ADF Read-only Table
component references. Use this component to display data that you do not want the
end user to edit.

Note:

The ADF Table component offers multiple features that are not available in
the ADF Read-Only Table component. For this reason, you may want to
consider creating an ADF Table component and configure it to be read-only
rather than creating an ADF Read-Only Table component. For more
information, see Configuring an ADF Table Component to be Read-only.

The ADF Read-only Table component supports several properties, such as RowLimit,
that determine how many rows the component downloads when it invokes its
Download action. It also includes a group of properties (Columns) that determine
what columns from the tree binding appear at runtime in the Excel worksheet. The
TreeID property specifies the tree binding that the component references. More
information about these properties and others that the ADF Read-only Table
component supports can be found in ADF Read-only Table Component Properties and
Actions.

Note:

• At runtime, inserting a row into the ADF Read-only Table component
results in a new Excel row that behaves as if it is part of the downloaded
data set, but the new row exists only in Excel. The data from the new row
is not uploaded to the server, and does not affect the Fusion web
application data.

• Read-only columns include double-click action sets. However, these
actions cannot reliably position on the current row. So, the results of using
row-level action sets with the ADF Read-only Table component is not
consistent. If you need to use row-level action sets with reliable row
positioning, use the ADF Table component instead of the ADF Read-only
Table component.

7.19.1 How to Insert an ADF Read-only Table Component
You use the ADF Desktop Integration Designer task pane to insert an ADF Read-only
Table component into a worksheet.

Before you begin:

It may be helpful to have an understanding of ADF Read-only Table component. For
more information, see Creating an ADF Read-Only Table Component.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

Creating an ADF Read-Only Table Component

7-52 Developing Applications with Oracle ADF Desktop Integration

To insert an ADF Read-only Table component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

When inserting a table component, you must ensure that the data of two tables
does not overlap at runtime, and the selected cell is not a merged cell

3. In the bindings palette, select the binding to create the ADF Read-only Table
component, and then click Insert Binding.

4. In the dialog that appears, select ADF Read-only Table.

Note:

You can also insert an ADF Read-only Table component by using the
components palette or Oracle ADF tab. Select ADF Read-only Table and click
Insert Component. If you use the components palette to create the
component, you would have to add each column to appear in the component
at runtime.

5. Configure properties in the property inspector that appears to determine the
columns to appear and the actions the component invokes at runtime.

6. Click OK.

Note:

You can modify the properties of the component at a later time by selecting
the cell in the worksheet that anchors the component and then displaying the
property inspector.

To remove the table component, use the Delete ribbon command. For more
information, see Removing ADF Desktop Integration Components.

7.20 Limiting the Number of Rows Your Table-Type Component
Downloads

You can configure the number of rows that an ADF Table or ADF Read-only Table
component downloads by setting values for the component's RowLimit group of
properties. You can also display a warning message, if desired, that alerts the end user
when the number of rows available to download exceeds the number of rows specified
for download.

7.20.1 How to Limit the Number of Rows a Component Downloads
Specify the number of rows that the component downloads when it invokes its
Download action as a value for the RowLimit.MaxRows property. Optionally, write
an EL expression for the RowLimit.WarningMessage property so that the end user
receives a message if the number of rows available to download exceeds the number
specified by RowLimit.MaxRows.

Before you begin:

Limiting the Number of Rows Your Table-Type Component Downloads

Working with ADF Desktop Integration Table-Type Components 7-53

It may be helpful to have an understanding of how to limit the number of rows while
downloading data in your ADF Table component. For more information, see Limiting
the Number of Rows Your Table-Type Component Downloads.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality of Table-Type Components.

To limit the number of rows a table-type component downloads:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the table-type component and
click the Edit Properties button in the Oracle ADF tab.

For more information, see Using Action Sets.

3. Configure properties for the RowLimit group of properties, as described in Table
7-14. For more information about these properties, see Frequently Used Properties
in the ADF Desktop Integration.

Table 7-14 RowLimit Group of Properties

Set this property to... This value...

RowLimit.Enabled Set to True to limit the number of rows downloaded to the
value specified by RowLimit.MaxRows.

RowLimit.MaxRows Specify an EL expression that evaluates to the maximum
number of rows to download.

RowLimit.WarningMes
sage

Write an EL expression for this property to generate a
message for the end user if the number of rows available to
download exceeds the number specified by
RowLimit.MaxRows.

If the value for this property is null, the Download action
downloads the number of rows specified by
RowLimit.MaxRows displaying the default warning
message to the end user.

4. Click OK.

Figure 7-22 shows the Edit Component dialog in the EditCustomers-DT.xlsx
workbook where the row limit of an ADF Table component is configured.

Limiting the Number of Rows Your Table-Type Component Downloads

7-54 Developing Applications with Oracle ADF Desktop Integration

Figure 7-22 Limiting Number of Rows of an ADF Table Component

7.20.2 What Happens at Runtime: How the RowLimit Property Works
When invoked, the Table-type component's Download action downloads the number
of rows that you specified as the value for RowLimit.MaxRows from the Fusion web
application. A message dialog similar to the one in Figure 7-23 appears if you specify
an EL expression for RowLimit.MaxRows or do not modify its default value.

Figure 7-23 Row Limit Exceeded Warning Message

7.21 Tracking Changes in an ADF Table Component
End users can create or modify data in the cells of an integrated Excel workbook that
hosts an ADF Table component.

If a column is updatable and not read-only, change tracking is activated. End users can
make the following changes to activate change tracking:

• Edit cell values

• Insert or delete cell values

• Paste values to cells in the ADF Table component column that they copied
elsewhere

A character that resembles an upward pointing arrow appears in a row of the
_ADF_ChangedColumn column if the end user makes a change to data in a
corresponding row. Figure 7-24 shows an example.

Tracking Changes in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-55

Figure 7-24 Changed Column in an ADF Table Component

This character appears if the end user makes a change to data hosted by a component
where the component's ReadOnly property value is False. Various subcomponents,
such as the ModelDrivenColumnComponent, have a ReadOnly property. You can
write an EL expression or a literal string for this ReadOnly property that evaluates to
True or False. If you write a static string or an EL expression that evaluates to True,
no character appears in the _ADF_ChangedColumn column. For more information
about ReadOnly EL expressions and change tracking, see Evaluating EL Expressions
for ReadOnly Properties.

7.22 Evaluating EL Expressions for ReadOnly Properties
If a table column's ReadOnly property EL expression contains a binding expression
(for example, #{row.bindings.color.inputValue}), the runtime evaluation of
that expression will be different depending on when the evaluation occurs. The
evaluation happens during the following:

• Downloading data (Download, DownloadFlaggedRows, DownloadForInsert)

• Uploading data (Upload, UploadAllOrNothing), and change tracking

7.22.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data
During Download, the EL expression is evaluated with the current binding value as
expected.

7.22.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or
Tracking Changes

During Upload, or when the end user changes values in the editable table, the EL
expression is evaluated differently than Download. Specifically, an empty string is
substituted for the binding expression prior to evaluation of the EL expression.

For example, if you have the following EL expression in an editable cell:

=IF("#{row.bindings.color.inputValue}"="RED", True, False)

During Upload, or when the end user changes values in the editable table, the EL
expression evaluates to =IF(""="RED", True, False), and always returns
False.

Evaluating EL Expressions for ReadOnly Properties

7-56 Developing Applications with Oracle ADF Desktop Integration

Note:

During change tracking, column component Value properties are not
evaluated. So, for example, cell values will be blank for newly inserted rows
regardless of the configured Value EL expression.

7.22.3 What You May Need to Know About Evaluating EL Expression While Uploading
Data or Tracking Changes

During Upload and change tracking, an extra round trip to the server would be
required to retrieve the binding values, in order to evaluate the EL expression
properly. The extra round trip to the server would impact performance negatively,
and could even require a new login if the end user did not have a currently valid
session.

Note:

The same EL expression evaluation behavior also applies to the
CellStyleName EL expression property when inserting new worksheet rows
during table change tracking.

Due to the difference in behavior, if possible, you should avoid ReadOnly EL
Expressions that contain binding expressions. However, if it is important for a given
use case to use an attribute value in the ReadOnly expression, you should consider
setting the worksheet protection to Automatic. For more information about
worksheet protection, see Using Worksheet Protection.

For example, if you have the following EL expression in a cell:

=IF("#{row.bindings.color.inputValue}"="RED", True, False)

During Download, the RED cells in this column will be set to Locked and the end user
will not be able to edit those cells.

Evaluating EL Expressions for ReadOnly Properties

Working with ADF Desktop Integration Table-Type Components 7-57

Evaluating EL Expressions for ReadOnly Properties

7-58 Developing Applications with Oracle ADF Desktop Integration

8
Working with Lists of Values

This chapter describes how to create dropdown lists of values (including dependent
lists of values) in integrated Excel workbooks, in tables within workbooks, and how to
display Search and Select list picker dialogs from Fusion web applications that users
can invoke from workbooks.

This chapter includes the following sections:

• About List of Values in an Integrated Excel Workbook

• Creating a List of Values in an Excel Worksheet

• Creating a List of Values in an ADF Table Component Column

• Adding a Model-Driven List Picker to an ADF Table Component

• Creating Dependent Lists of Values in an Integrated Excel Workbook

8.1 About List of Values in an Integrated Excel Workbook
Consider implementing list of values in your integrated Excel workbooks for scenarios
where you want to offer end users the ability to choose from a range of values or you
want to constrain the values that end users can enter in the integrated Excel workbook.
ADF Desktop Integrations provides a number of ways to address these use cases. You
can, for example, configure:

• A dropdown list of values in an Excel worksheet's cell

• A dependent list of values where the values displayed in one list (the child list of
values) depends on the selected value in another list (the parent list of values)

• Configure the display of a Search and Select list picker dialog that provides
advanced functionality for selecting values from lists

Consider configuring lists of values in the integrated Excel workbook in scenarios
where the full set of values that end users can choose is relatively small (for example,
numbers less than 30 values. The use of a Search and Select list picker dialog in a page
from the Fusion web application may offer a better user experience when you have
lists of values with more than 30 values.

8.1.1 Adding Lists of Values to Integrated Excel Workbooks Use Cases and Examples
Using the ADF List of Values component and other subcomponents from ADF
Desktop Integration, you can create a variety of interfaces that present end users with
data to view and select. Figure 8-1 shows a number of examples from the Summit
sample application workbooks that subsequent sections in this chapter discuss in more
detail.

Working with Lists of Values 8-1

Figure 8-1 List of Values Implementations in Summit Sample Application Workbooks

8.1.2 Additional Functionality for Adding List of Values to an Integrated Excel
Workbook

After you have added lists of values to your integrated Excel workbook, you may find
that you need to add additional functionality to configure your workbook. The
following sections describe other functionality that you can use:

• Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Working with Styles.

• EL Expressions: You can use EL expressions with form-type components. For more
information, see ADF Desktop Integration EL Expressions.

• Tooltips: You can configure tooltips to display additional information or
instructional text to your end users. For more information, see Displaying Tooltips
in ADF Desktop Integration Components.

• Action sets: You can configure ordered lists of one or more actions to add
interactivity to your integrated Excel workbook, as described in Adding
Interactivity to Your Integrated Excel Workbook .

8.2 Creating a List of Values in an Excel Worksheet
Use the ADF List of Values component when you want to create a dropdown list of
values in an Excel worksheet cell at runtime. The ADF List of Values component is

Creating a List of Values in an Excel Worksheet

8-2 Developing Applications with Oracle ADF Desktop Integration

intended for a short choice list, for example 20 or 30 items at most, but can display a
maximum of 250 values at runtime. You can insert the ADF List of Values component
into a cell in the Excel worksheet. Figure 8-2 shows an implementation from the
Summit sample application's EditWarehouseInventory-DT.xlsx where the user
is constrained to picking one of the valid values for a list of regions.

Figure 8-2 Runtime List of Values in an Excel Worksheet

You must specify a value for the ListID property. The ListID property references
the list binding which populates the dropdown menu with a list of values at runtime
after you invoke the worksheet DownSync action.

Figure 8-3 shows an ADF List of Values component with its property inspector in the
foreground. The ADF List of Values component references a list binding (RegionId)
that populates a dropdown menu in the Excel worksheet at runtime.

Note:

• You can display a dropdown menu in an ADF Table component's column.
For more information, see Creating a List of Values in an ADF Table
Component Column.

• ADF List of Values components using date values are not supported.

• ADF List of Values does not support multi-column list. At design-time, if
you select multiple attributes, the ADF List of Values component renders
the list with the first attribute.

Creating a List of Values in an Excel Worksheet

Working with Lists of Values 8-3

Figure 8-3 ADF List of Values Component

To insert an ADF List of Values component:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF List of Values and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF List of Values from the Insert
Component dropdown list

4. Invoke the binding ID picker by clicking the browse (...) icon beside the input field
for the ListID property and select a list binding that the page definition file
exposes.

5. Configure other properties in the property inspector to determine the appearance,
design, and layout of the component. For information about ADF List of Values
component properties, see ADF List of Values Component Properties.

6. Click OK.

Creating a List of Values in an Excel Worksheet

8-4 Developing Applications with Oracle ADF Desktop Integration

Note:

• You can modify the properties of the component at a later time by selecting
the cell in the worksheet that anchors the component and then displaying
the property inspector. You can also right-click in the cell and choose Edit
ADF Component Properties to open the property inspector.

To remove the component, use the Delete ribbon command. For more
information, see Removing ADF Desktop Integration Components.

• An Excel form cannot be configured to use ADF List of Values components
that use model-driven list bindings if the form's bound iterator is expected
to contain zero rows. As a workaround, you may configure the ADF List of
Values component to use a dynamic list binding instead.

8.3 Creating a List of Values in an ADF Table Component Column
Use the ModelDrivenColumnComponent subcomponent when you want to render a
dropdown list of values in an ADF Table component column. The list of values
component is intended for a short choice list, for example 20 or 30 items at most, but
can display a maximum of 250 values at runtime. Unlike other ADF Desktop
Integration components, the ModelDrivenColumnComponent subcomponent does not
appear in the components palette described in Using the Components Palette. Instead,
you select it as a subcomponent when you specify values for the UpdateComponent
properties of an ADF Table component column. For more information about the
properties of an ADF Table component column, see ADF Table Component Column
Properties. For more information about creating a model-driven list, see Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table Component.

After you specify the ModelDrivenColumnComponent subcomponent, you must
specify a tree binding attribute associated with a model-driven list as a value for the
ModelDrivenColumnComponent subcomponent's Value property. The model-driven
list of the tree binding attribute populates the dropdown menu in the ADF Table
component's column with a list of values at runtime. For information about creating a
model-driven list, see the "How to Create a Model-Driven List" section of Developing
Fusion Web Applications with Oracle Application Development Framework.

8.3.1 How to Create a List of Values in an ADF Table Component Column
You add a column to the ADF Table component column and select
ModelDrivenColumnComponent as the subcomponent. You then specify a tree
binding attribute as the value for the ModelDrivenColumnComponent
subcomponent's Value property. A model-driven list must be associated with the tree
binding attribute that you specify.

Creating a List of Values in an ADF Table Component Column

Working with Lists of Values 8-5

Note:

• The ModelDrivenColumnComponent subcomponent does not support a
model-driven list whose control type is combo_lov.

• Tree attributes with a control type of input_text_lov will not render as
ADF List of Values components. Instead, they expose model-driven list
picker functionality, as described in Adding a Model-Driven List Picker to
an ADF Table Component.

• ADF List of Values components using date values are not supported.

• The ModelDrivenColumnComponent subcomponent may not support
model-driven lists for EJB-based data controls in all cases.

Before you begin:

It may be helpful to have an understanding of how to create a list of values in ADF
Table component. For more information, see Creating a List of Values in an ADF Table
Component Column.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding List of Values to an Integrated Excel Workbook.

To create a list of values in an ADF Table component column:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon beside the
input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4. Click Add to add a new column.

5. Choose the appropriate option for the newly created column:

• Click the browse (...) icon beside the input field for UpdateComponent to
configure the runtime list of values for update and download operations.

• (Optional) Click the browse (...) icon beside the input field for InsertComponent
to configure the runtime list of values for insert operations. This is rare.

In both options, the Select subcomponent to create dialog appears.

6. Select ModelDrivenColumnComponent and click OK.

7. Expand the property that you selected in Step 5 and select a binding attribute
associated with a model-driven list for the Value property.

Set the ReadOnly property to False if you do want users to edit the values in the
column, set to True otherwise.

Creating a List of Values in an ADF Table Component Column

8-6 Developing Applications with Oracle ADF Desktop Integration

Figure 8-4 shows the property inspector for the Credit Rating column that renders
in the Summit sample application's EditCustomers-DT.xlsx workbook.

Figure 8-4 ADF Table Component Column Configured to Display a List of Values

8. Click OK.

8.3.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values
At runtime, the ADF Table component invokes the Download action and populates
each column. This action also populates the list of values in the column that you
configure to render a list of values. Figure 8-5 shows an example from
EditCustomers-DT.xlsx workbook in the Summit sample application, where
Credit Rating is the column configured to display a list of values.

Figure 8-5 Runtime View of an ADF Table Component Column Displaying a List of Values

8.4 Adding a Model-Driven List Picker to an ADF Table Component
You can configure an ADF Table component and use the existing model-layer
metadata of your Fusion web application to provide a Search and Select list picker
dialog in the integrated Excel workbook.

The Search and Select list picker dialog is similar to that seen when you click the
search icon or button to open the Search and Select popup of the

Adding a Model-Driven List Picker to an ADF Table Component

Working with Lists of Values 8-7

af:inputListOfValues component on an ADF Faces page. Figure 8-6 shows an
example from the EditCustomers-DT.xlsx workbook where an end user double-
clicks the cell where they want to input a new data value. They search and select the
new value in the popup that appears.

Tip:

Consider adding a column header tooltip that instructs users to double-click
column cells in order to pick a value.

Figure 8-6 Model-Driven List Picker Invoked from Table Column Cell

To add a model-driven list picker to an ADF Table component:

1. Open your Fusion web application in JDeveloper.

2. Configure your view object in the same way as you would to use an
af:inputListOfValues component.

a. Add a view accessor.

For more information about creating a view accessor, see the "How to Create
a View Accessor for an Entity Object or View Object" section of Developing
Fusion Web Applications with Oracle Application Development Framework.

b. Create a List-of-Values (LOV) for the attribute.

For more information about creating a List of Values component, see the
"Creating List of Values (LOV)" section of Developing Fusion Web Applications
with Oracle Application Development Framework

c. Set the UI Hints for the LOV. Ensure that Default List Type is set to Input
Text with List of Values.

Adding a Model-Driven List Picker to an ADF Table Component

8-8 Developing Applications with Oracle ADF Desktop Integration

For more information about setting UI Hints, see the "How to Set User
Interface Hints on a View Object LOV-Enabled Attribute" section of
Developing Fusion Web Applications with Oracle Application Development
Framework.

d. Expose the view object as a tree binding in the page definition used by your
worksheet.

3. Verify that your application's web.xml file configures the filter for ADF Library
Web Application Support (<filter-name>ADFLibraryFilter</filter-
name>).

For more information, see Configuring the ADF Library Filter for ADF Desktop
Integration.

4. Open the integrated Excel workbook.

5. For any table columns bound to LOV-backed attributes, be sure to use the
ModelDrivenColumnComponent component type in the column configuration.
Note that for table columns configured in this way, the
DoubleClickActionSet property of the UpdateComponent and
InsertComponent will be ignored at runtime.

Figure 8-7 shows the type of component of the UpdateComponent property set
to ModelDrivenColumnComponent.

Figure 8-7 UpdateComponent Property of the ADF Table Component

6. If not set already, set the
Workbook.Compatibility.TableComponents.ModelDrivenColumns.In
putListOfValuesPickerEnabled property to True.

Adding a Model-Driven List Picker to an ADF Table Component

Working with Lists of Values 8-9

For more information about the InputListOfValuesPickerEnabled
property, see ADF Desktop Integration Compatibility Properties.

7. (Optional) Configure RowData.CachedAttributes for the ADF Table
component when a different attribute on the underlying iterator should be set by
the action of the model-driven list picker. For example, in the EditCustomers-
DT.xlsx workbook, the Sales Rep. column exposes a
ModelDrivenColumnComponent subcomponent, but also defines SalesRepId
as a value for RowData.CachedAttribute.

After configuring the Fusion web application, integrated Excel workbook, and table
columns, run the workbook and double-click the table columns that expose LOV-
backed attributes to open the model-driven list picker dialog.

8.4.1 What You May Need to Know About Model-Driven List Pickers in ADF Table
Components

By default, all columns in a table are configured to use the
ModelDrivenColumnComponent subcomponent when you create an ADF Table
component by double-clicking a tree binding in the bindings palette. Any tree
attributes bound to model-driven lists with a control type of input_text_lov
automatically support the rendering of a Search and Select list picker dialog at
runtime. That is, no special configuration is needed.

If the tree attributes are not bound to model-driven lists or if you need a custom picker
user-interface, see Displaying Web Pages from a Fusion Web Application.

8.5 Creating Dependent Lists of Values in an Integrated Excel Workbook
ADF Desktop Integration provides the following components that you use to create
lists of values in an integrated Excel workbook:

• ADF List of Values

You configure properties for this component when you want to create a list of
values in the Excel worksheet.

• ModelDrivenColumnComponent subcomponent

You configure properties for this subcomponent when you want to create a list of
values in an ADF Table component column.

Using these two components, you can create a dependent list of values in your
integrated Excel workbook. A dependent list of values is a list of values component
(referred to as a child list of values) whose values are determined by another list of
values component (referred to as a parent list of values).

The server-side list bindings must be defined such that when the selected item of the
parent list of values is changed, the available child list of values items are updated
properly. Figure 8-8 shows an example with two illustrations from the
EditWarehouseInventory-DT.xlsx workbook, where the Country field (child list
of values) changes when the value in the Region field (parent list of values) changes.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-10 Developing Applications with Oracle ADF Desktop Integration

Figure 8-8 List of Values and Dependent List of Values

Table 8-1 describes the dependent list of values implementations you can create using
the previously listed components and the requirements to achieve each
implementation.

Some of the implementations described in Table 8-1 require model-driven lists. For
information about creating a model-driven list, see the "How to Create a Model-
Driven List" section of Developing Fusion Web Applications with Oracle Application
Development Framework.

Table 8-1 Dependent List of Values Configuration Options

Configuration Requirements

Render both the parent and child list of
values in the Excel worksheet using
ADF List of Values components.

Both instances of the ADF List of Values component must reference a
list binding. One or both of the list bindings that you reference can be
model-driven lists.

Both list bindings can reference model-driven lists only if the
underlying iterator has at least one row of data. At runtime, if the
underlying iterator has zero rows of data and the end user selects a
value from the parent list of values (list binding referenced by the ADF
List of Values component's DependsOnListID property), the child
list of values (list binding referenced by the ADF List of Values
component's ListID property) does not get filtered based on the value
the end user selects.

To work around this scenario, choose one of the following options:

• Ensure that the underlying iterator has at least one row of data
• Use an alternative list binding configuration where you expose

multiple iterators and all necessary iterators get refreshed
For more information, see How to Create Dependent Lists of Values in
Excel Worksheets.

Creating Dependent Lists of Values in an Integrated Excel Workbook

Working with Lists of Values 8-11

Table 8-1 (Cont.) Dependent List of Values Configuration Options

Configuration Requirements

Render both the parent and child list of
values in ADF Table component
columns using
ModelDrivenColumnComponent
subcomponents.

Both the parent and child list of values
(ModelDrivenColumnComponent subcomponents) must reference tree
binding attributes associated with model-driven lists.

Both columns (parent and child list of values) must use the same value
for the InsertUsesUpdate column property.

As server-side list binding dependencies are determined only for lists
in the same tree node, the following tree node list bindings are not
supported:

• A binding that depends on a list binding in a different tree or tree
node

• A binding that depends on a list binding in the page definition file
For more information, see How to Create Dependent Lists of Values in
ADF Table Component Columns.

Note the following points if you plan to create a dependent list of values:

• If the selection in the parent list of values changes, the child list of values is reset
without warning the user.

• The dependent list of values does not work unless the list specified in the
DependsOnList (or DependsOnListID) property is referenced by a component
in the Excel worksheet.

• If a circular dependency is defined (List A depends on List B, and List B depends
on List A), the first dependency (List A depends on List B) triggers the expected
behavior. ADF Desktop Integration considers other dependencies to be
misconfigurations.

• You can create a chain of dependencies as follows:

– List A depends on List B

– List B depends on List C

In this scenario, a change in List C (grandparent list of values) updates both Lists A
(grandchild list of values) and B (child list of values). If you create a similar
scenario, you must ensure that both the grandchild list of values and the child list
of values, get refreshed whenever the parent list of values selection is changed. You
can do this by specifying the two bind variables on the grandchild list of values to
set up an implicit dependency between the view attributes. Another way is to
declare explicit attribute dependencies between each of the view attributes that
have model-driven lists configured. For example, specify that attribute A depends
on attribute B and attribute C, and attribute B depends on attribute C.

• Caching in a dependent list of values is discussed in Caching Lists of Values for
Use Across Multiple Web Sessions.

• ADF Desktop Integration caches the values that appear in a dependent list of
values. Hence, the dependent list item values for a given parent list selection must
remain constant across all rows of an ADF Table component.

• ADF List of Values components using date values are not supported.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-12 Developing Applications with Oracle ADF Desktop Integration

8.5.1 How to Create Dependent Lists of Values in Excel Worksheets
Use two instances of the ADF List of Values component to create a dependent list of
values in an Excel worksheet.

Specify the list binding referenced by the parent ADF List of Values component as a
value for the child ADF List of Values component's
ListOfValues.DependsOnListID property.

For more information about ADF List of Values, see ADF List of Values Component
Properties.

Before you begin:

It may be helpful to have an understanding of dependent list of values. For more
information, see Creating Dependent Lists of Values in an Integrated Excel Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding List of Values to an Integrated Excel Workbook.

To create a dependent list of values in an Excel worksheet:

1. If not present, add the required list bindings to your page definition file.

For more information about adding bindings to page definition files, see Working
with Page Definition Files for an Integrated Excel Workbook.

2. Open the integrated Excel workbook.

3. Insert two ADF List of Values components into your integrated Excel workbook, as
described in Creating a List of Values in an Excel Worksheet.

4. In the property inspector for the ADF List of Values component that is to serve as
the parent in the dependent list of values, set the value of the
ListOfValues.ListID property to the list binding that is the parent.

5. In the property inspector for the ADF List of Values component that is to serve as
the child in the dependent list of values, set the following properties:

• ListOfValues.ListID

Specify the list binding that is the child in the dependent list of values.

• ListOfValues.DependsOnListID

Select the list binding that you specified for the ADF List of Values component
that serves as a parent in Step 4.

Figure 8-9 shows the property inspector for the child ADF List of Values where
the RegionId list binding is specified as the parent list of values
(DependsOnListID property) and CountryId list is the dependent list of
values (ListID property).

Creating Dependent Lists of Values in an Integrated Excel Workbook

Working with Lists of Values 8-13

Figure 8-9 Design Time Dependent List of Values in an Excel Worksheet

6. Click OK.

8.5.2 What Happens at Runtime: How an Excel Worksheet Renders a Dependent List of
Values

At runtime, ADF Desktop Integration renders both instances of the ADF List of Values
component. When the end user selects a value from the parent list of values, the
selected value determines the list of values in the child list.

Figure 8-10 shows an example where Country, a dependent list value, displays only
the states from the selected Region list value.

Figure 8-10 Runtime Dependent List of Values in an Excel Worksheet

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-14 Developing Applications with Oracle ADF Desktop Integration

8.5.3 How to Create Dependent Lists of Values in ADF Table Component Columns
Use instances of the ModelDrivenColumnComponent subcomponent to render both
lists of values in a dependent list of values in ADF Table component columns at
runtime.

Specify a tree binding attribute for the parent ModelDrivenColumnComponent
subcomponent's Value property. Also specify a tree binding attribute for the child
ModelDrivenColumnComponent subcomponent's Value property. Ensure that both
tree binding attributes are associated with model-driven lists before you add the tree
binding to your page definition file. Ensure also that the dependency between the
parent and child model-driven lists is configured on the server.

The Region and Country columns in the Summit sample application's
EditCustomers-DT.xlsx workbook demonstrate an implementation of a
dependent list of values in an ADF Table component.

The following links provide information about:

• Creating a model-driven list, see the "How to Create a Model-Driven List" section
of Developing Fusion Web Applications with Oracle Application Development Framework.

• Defining a dependent model-driven list, see the "How to Define Cascading Lists for
LOV-Enabled View Object Attributes" section of Developing Fusion Web Applications
with Oracle Application Development Framework.

• Adding a tree binding to your page definition file, see Working with Page
Definition Files for an Integrated Excel Workbook.

• For information about the ModelDrivenColumnComponent subcomponent, see
ModelDrivenColumnComponent Subcomponent Properties.

Before you begin:

It may be helpful to have an understanding of dependent list of values. For more
information, see Creating Dependent Lists of Values in an Integrated Excel Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding List of Values to an Integrated Excel Workbook.

To create a dependent list of values in an ADF Table component:

1. Open the integrated Excel workbook.

2. If not present, insert an ADF Table component.

For more information, see Inserting an ADF Table Component into an Excel
Worksheet.

3. In the property inspector for the ADF Table component, invoke the Edit Columns
dialog by clicking the browse (...) icon beside the input field for Columns.

4. Add a new column (or modify an existing column) to serve as the parent list of
values. Specify ModelDrivenColumnComponent as the column's subcomponent
type. For more information about creating a list of values, see Creating a List of
Values in an ADF Table Component Column.

5. Add a new column (or modify an existing column) to serve as the child list of
values. Specify ModelDrivenColumnComponent as the column's subcomponent

Creating Dependent Lists of Values in an Integrated Excel Workbook

Working with Lists of Values 8-15

type and specify the same value for the InsertUsesUpdate column property as the
column in the parent list of values. Both columns (parent and child list of values)
must use the same value for the InsertUsesUpdate column property. For more
information about creating a list of values, see Creating a List of Values in an ADF
Table Component Column.

6. Click OK.

8.5.4 What Happens at Runtime: ADF Table Component Column Renders a Dependent
List of Values

At runtime, the ADF Table component renders both instances of the
ModelDrivenColumnComponent subcomponent in the columns that you configured
to display these instances. When the end user selects a value from the parent list of
values, the selected value determines the list of values in the child list.

Figure 8-11 shows an example from the Summit sample application's
EditCustomers-DT.xlsx workbook where the value that the end user selects in the
Region column list of values results in the corresponding values for sub-category
appearing in the Country column list of values.

Figure 8-11 Runtime Dependent List of Values in an ADF Table Component's Columns

Note:

When the end user changes the parent list selection, the child list items are
changed for the current row only.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-16 Developing Applications with Oracle ADF Desktop Integration

9
Adding Interactivity to Your Integrated

Excel Workbook

This chapter describes how to configure action sets to allow your users invoke actions
such as Upload and Download, how to configure the ribbon tab, and how to use EL
expressions in Excel formulas.

This chapter includes the following sections:

• About Adding Interactivity to an Integrated Excel Workbook

• Using Action Sets

• Configuring the Runtime Ribbon Tab

• Displaying Web Pages from a Fusion Web Application

• Using Row-Level Action Sets in a Table Column

• Using EL Expression to Generate an Excel Formula

• Using Calculated Cells in an Integrated Excel Workbook

• Using Macros in an Integrated Excel Workbook

9.1 About Adding Interactivity to an Integrated Excel Workbook
You can make your integrated workbook interactive to the end user by using features
such as action sets, configuring the runtime ribbon tab, creating dependent list of
values, and so on. Figure 9-1 shows some of the interactive features.

Adding Interactivity to Your Integrated Excel Workbook 9-1

Figure 9-1 Interactivity Features in an Integrated Excel Workbook

Adding interactivity to an integrated Excel workbook permits end users to run action
sets that invoke Oracle ADF functionality in the workbook. It also provides status
messages, alert messages, and error handling in the integrated Excel workbook while
these action sets run. In addition to end-user gestures (double-click, click, select) on
the ADF Desktop Integration components that invoke action sets, you can configure
workbook and worksheet ribbon commands that end users use at runtime to invoke
action sets.

9.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples
To make your integrated Excel workbook interactive, you can use action sets that are
invoked by the end user's gestures. For example, as shown in Figure 9-2, the
Download All Customers ribbon command in CustomerSearch-DT.xlsx uses an
action set with two actions to reset the query values associated with the worksheet.
Figure 9-2 also shows a ribbon command (Search Customers) where end users can
invoke search functionality.

Figure 9-2 Action Sets of Download All Customers Ribbon Command

About Adding Interactivity to an Integrated Excel Workbook

9-2 Developing Applications with Oracle ADF Desktop Integration

9.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook
In addition to action sets and runtime ribbon tab, you can add additional functionality
to configure your workbook. The following sections describe other functionality that
you can use:

• Display Web Pages: You can display pages from the Fusion web application with
which you integrate your Excel workbook. For more information, see Displaying
Web Pages from a Fusion Web Application.

• Dependent List of Values: You can configure an ADF List of Values component as
a dependent list of values component whose values are determined by another list
of values component. For more information, see Creating Dependent Lists of
Values in an Integrated Excel Workbook.

• Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Working with Styles.

• Macros: Use macros and Excel formulas to manage the data that you want to
download from or upload to your Fusion web application. For more information,
see Using Calculated Cells in an Integrated Excel Workbook and Using Macros in
an Integrated Excel Workbook .

9.2 Using Action Sets
An action set is an ordered list of one or more actions that run in a specified order. The
types of actions are as follows:

• ADFmAction

• ComponentAction

• WorksheetMethod

• Confirmation

• Dialog

An action set can be invoked by an end-user's gesture (for example, clicking a ribbon
command) or an Excel worksheet event. Where an end-user gesture invokes an action
set, the name of the action set property in the ADF component's property inspector is
prefaced by the name of the gesture required. The following list describes the property
names that ADF Desktop Integration displays in property inspectors, and what user
gesture can invoke an action set:

• DoubleClickActionSet for an ADF Input Text or ADF Output Text component,
as the end user double-clicks these components to invoke the associated action set

• SelectActionSet for a worksheet ribbon command, as the end user selects a
ribbon command to invoke the associated action set

• ActionSet for a worksheet event, as no explicit end-user gesture is required to
invoke the action set

You invoke the Edit Action dialog from an ADF component, worksheet ribbon
command, or worksheet event to define or configure an action set. In addition to
defining the actions that an action set invokes, you can configure the action set's
Alert properties to provide feedback on the result of invocation of an action set. You

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-3

configure the Status properties for an action set to display a progress bar to end users
while an action set runs the actions you define. For information about opening the Edit
Action dialog, see Using the Collection Editors.

The Summit sample application for ADF Desktop Integration provides many
examples of action sets in use. One example is the ribbon command labeled Upload at
runtime in the EditCustomers-DT.xlsx workbook. An action set has been
configured for this ribbon command that invokes the ADF Table component's Upload
action illustrated by Figure 9-3 which shows the Edit Action dialog in design mode.

By default, an end user cannot open another integrated Excel workbook while an
action set runs. If you know an action set will be long running, make it non-blocking,
so your end users can do other work while they wait for the long running action set to
complete.

Figure 9-3 Action Set for Upload Ribbon Command in EditCustomers-DT.xlsx
Workbook

Tip:

Write a description in the Annotation field for each action that you add to the
Edit Action dialog. The description you write appears in the Members list
view and can help you manage multiple items more effectively.

Note:

ADF Desktop Integration invokes the actions in an action set in the order that
you specify in the Members list view.

Using Action Sets

9-4 Developing Applications with Oracle ADF Desktop Integration

9.2.1 How to Invoke a Method Action Binding in an Action Set
You can invoke multiple method action bindings in an action set. Page definition files
define what action bindings are available to invoke in a worksheet that you integrate
with your Fusion web application. For more information about page definition files
and action bindings in an integrated Excel workbook, see Working with Page
Definition Files for an Integrated Excel Workbook.

You use the Edit Action dialog to specify a method action binding to invoke.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Using Action Sets.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To invoke a method action binding in an action set:

1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and invoke the dropdown list from the Add button
illustrated here.

3. Select ADFmAction and configure its properties as described in the following list:

• ActionID

Click the browse (...) icon beside the input field for ActionID to invoke the
Binding ID picker and select the method action binding that the action set
invokes. Figure 9-4, for example, shows the Execute action binding that is the
first action the Download action set in the Summit sample application's
EditCustomers-DT.xlsx workbook invokes.

• Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

Figure 9-4 Execute Action Binding

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-5

4. Click OK.

9.2.2 How to Invoke Component Actions in an Action Set
Some components, such as the ADF Table component, expose actions that can be used
to manage the transfer of data between Excel worksheets that you integrate with a
Fusion web application. More information about the actions available for ADF
Desktop Integration components can be found in ADF Desktop Integration
Component Properties and Actions.

You configure action sets to invoke one or more component actions by adding
component actions to the array of actions in the action set. For example, Figure 9-5
shows the Choose Component Action dialog where the Download action exposed by
the ADF Table component present in the Summit sample application's
EditCustomers-DT.xlsx workbook can be selected for invocation by that
workbook's Download ribbon command's SelectActionSet action set.

Figure 9-5 Choose Component Method Dialog

Note:

The Choose Component Action dialog appears empty if the current worksheet
does not include any components that expose component actions.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Using Action Sets.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To invoke a component action from an action set:

Using Action Sets

9-6 Developing Applications with Oracle ADF Desktop Integration

1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and invoke the dropdown list from the Add button
illustrated here.

3. Select ComponentAction and configure its properties as described in the following
list:

• ComponentID

Click the browse (...) icon beside the input field for ComponentID to invoke the
Choose Component Method dialog and select the component action that the
action set invokes at runtime. This populates the ComponentID and Action
input fields.

• Action

The component's action that the action set invokes at runtime.

• Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

• DetailStatusMessage

Specify an optional literal value or EL expression that appears in the Status
Message window (see How to Display a Progress Bar while an Action Set
Executes).

4. Click OK.

9.2.3 What You May Need to Know About an Action Set Invoking a Component Action
Note the following pieces of information about the behavior of action sets in
integrated Excel workbooks.

Invoking Action Sets Before Logging In

Some component actions, such as the Download action of the ADF Table component,
require a connection to the Fusion web application to complete successfully. If the end
user invokes an action set that includes such a component action, the integrated Excel
workbook attempts to connect to the Fusion web application and, if necessary, invokes
the authentication process described in Authenticating the Excel Workbook User.

Verifying an Action Set Invokes the Correct Component Action

When creating an action set, ensure that you invoke the component action from the
correct instance of a component when a worksheet includes multiple instances of a
component. Figure 9-6 shows the Choose Component Action dialog displaying two
instances of the ADF Table component. Use the value of the ComponentID property
described in Table A-1 to correctly identify the instance of a component on which you
want to invoke a component action.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-7

Figure 9-6 Choose Component Action Dialog

9.2.4 How to Invoke an Action Set from a Worksheet Event
ADF Desktop Integration provides several worksheet events that, when triggered, can
invoke an action set. The following worksheet events can invoke an action set:

• Startup

• Shutdown

Do not invoke a Dialog action from this event if the Dialog action's Target
property is set to TaskPane.

• Activate

• Deactivate

You add an element to the array of events (WorksheetEvent list) referenced by the
Events worksheet property. You specify an event and the action set that it invokes in
the element that you add. For more information about the Events worksheet
property and the worksheet events that can invoke an action set, see Table A-21. See
Table A-16 for more information about action sets.

Use the Edit Events dialog to specify an action set to be invoked by a worksheet event.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Using Action Sets.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To invoke an action set from a worksheet event:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

Using Action Sets

9-8 Developing Applications with Oracle ADF Desktop Integration

3. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input
field for the Events property.

4. In the Edit Events dialog, click Add to add a new element that specifies an event
and a corresponding action set that the event invokes.

Figure 9-7 shows an example from the EditCustomers-DT.xlsx file where the
worksheet event, Startup, invokes an action set that invokes the ADF Table
component's Download action.

Figure 9-7 Worksheet Startup Event Invokes an Action Set

5. Click OK.

9.2.5 How to Display a Progress Bar while an Action Set Executes
You can display a status message and visual progress bars to end users while an action
set runs by specifying values for the Status properties in an action set.

While using the Status properties in an action set, you can provide a visual
indication of the progress through progress bars. The Mode attribute of the Status
properties enables you to choose the visual appearance of the progress bars at
runtime. There are two types of progress bars available: main progress bar and detail
progress bar. The main progress bar indicates the progress through the actions in an
action set, and the detail progress bar indicates the progress of the current action.

You use the property inspector for the action set where you want to configure the
Status properties in the action set. Use, for example, the Edit Ribbons Command
dialog if you want to configure Status properties in the SelectActionSet that a
ribbon command invokes at runtime.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Using Action Sets.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-9

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To display a status message:

1. Open the integrated Excel workbook.

2. Open the Edit Actions dialog of, for example, the ribbon command that invokes the
action set.

3. Set values for the properties in the Status group of properties as described in
Table 9-1.

Table 9-1 Status Group of Properties

For this property... Enter or select this value...

AllowCancel True to display the Cancel button in the status dialog box.

It indicates whether the action set execution can be canceled
by the end user.

For more information about the Cancel button, see What You
May Need to Know About Canceling an Action.

Enabled True to display a status message. True is the default value.

Message An optional EL expression or literal value that resolves to the
status message to display at runtime.

For example, the Upload ribbon command in the
EditCustomers-DT.xlsx file has the following EL
expression configured for the Message property:

#{res['excel.customers.ribbon.upload.message'
]}

Mode Choose the visual appearance of progress bars.

• Automatic: ADF Desktop Integration analyzes the
action set to determine which progress bars to display.

• BothBarsAlways: Shows both main and detail progress
bars.

• MainBarOnly: Shows one progress bar only. The bar
displays progress through the list of actions.

• DetailBarOnly: Shows one progress bar only. The bar
displays progress of the current action.

• MainMessageOnly: None of the progress bars are
shown.

Title An optional EL expression or literal value that resolves to the
title of the status message to display at runtime.

For example, the Upload ribbon command in the
EditCustomers-DT.xlsx file has the following EL
expression configured for the Title property:

#{res['excel.customers.ribbon.upload.title']}

Using Action Sets

9-10 Developing Applications with Oracle ADF Desktop Integration

Note:

ADF Desktop Integration renders generic text at runtime if you do not specify
values for the Message and Title properties described in Table 9-1. For this
reason, we recommend that you provide values for these properties that are
specific to the functional context of your action set.

Figure 9-8 shows the property values, along with their corresponding visual
elements, configured for the Status group of properties of an ADF Table
component's Upload action.

Figure 9-8 Status Message Properties in an Action Set

For more information about the Status group of properties, see the entry for
Status in Table A-16.

You can also use the optional DetailStatusMessage property to provide
additional information to the user. For more information about the
DetailStatusMessage property, see How to Invoke Component Actions in an
Action Set.

4. Click OK.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-11

9.2.6 What Happens at Runtime: How the Action Set Displays a Status Message
When an action set is invoked, a status message appears if the Status properties are
configured to display a status message. Figure 9-9 shows the status message that
appears at runtime when the action set configured for the Upload ribbon command in
the EditCustomers-DT.xlsx workbook runs.

Figure 9-9 Runtime View of Status Message

At runtime, if the value of the Message property is empty, ADF Desktop Integration
provides a default localized value. If the Title property is empty, the label from the
action set container (such as a ribbon command) is used. If the label of the container is
also empty, then the default value provided by ADF Desktop Integration is used.

9.2.7 What You May Need to Know About Progress Bars
Note the following pieces of information about the progress bars:

• The progress bar window hides automatically when an action (such as alert,
confirm, dialog, or upload options) prompts for user input.

• Some action types, such as ADFmAction, do not support the display of incremental
progress in the detail bar. For example, Figure 9-10 shows the progress bar of the
Commit action with Mode set to BothBarsAlways. Notice that the detail bar
appears, but does not show any progress.

Figure 9-10 Progress Bar for ADFmAction Type

• In the Automatic mode, if the action set has fewer than three actions, the status
message dialog shows the detail progress bar only. If the action set has three or
more actions, the dialog always shows the main bar, but the detail progress bar is
shown only if any of the actions in the action set is capable of incremental progress.
If none of the actions is capable of incremental progress, the detail bar is
suppressed.

• If required, you can display the detail progress bar without displaying the main
progress bar. Such a configuration may be useful for an action set with a few quick
actions and one long action, for example, run a query and then download data.

Using Action Sets

9-12 Developing Applications with Oracle ADF Desktop Integration

• For very quick action sets (for example, Worksheet.DownSync) or action sets that
only display a dialog, the best practice is to disable the status message.

9.2.8 How to Allow End Users to Continue Working in Excel While an ActionSet
Executes

You can configure your integrated Excel workbook so a long running action set does
not prevent end users from using other integrated Excel workbooks or worksheets.

Integrated Excel workbooks that execute long running action sets (for example, an
action set that includes a Table.Download action for 100,000 rows) block end users
from using Microsoft Excel to access other integrated Excel workbooks, worksheets
and non-integrated Excel workbooks and worksheets. You can configure action sets
that you know contain long running actions so that end users can continue to use
Excel to access other workbooks and worksheets while they wait for the action set to
complete. To do this, you set the ActionOptions.NonBlocking property for the
ActionSet to True. The default value is False.

If you set the ActionOptions.NonBlocking property to True, also consider
displaying a progress dialog with a Cancel button to allow end user to cancel the
action set. For more information, see How to Display a Progress Bar while an Action
Set Executes.

To allow end users to continue using Microsoft Excel while an ActionSet executes:

1. Open the integrated Excel workbook.

2. Open the property inspector of the component that, at runtime, invokes the long
running ActionSet and navigate to the ActionOptions group of properties.

3. Set the NonBlocking property to True.

For example, Figure 9-11 shows the property inspector where the NonBlocking
property for a Table.Download action that a ribbon command invokes has been
set to True.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-13

Figure 9-11 NonBlocking Property to Allow an End User Use Excel While an
ActionSet Executes

4. Click OK.

9.2.9 What Happens at Runtime: How End Users Continue Working While an ActionSet
Executes

At runtime, ADF Desktop Integration starts a background operation when an
integrated Excel worksheet invokes an ActionSet for which you have set the
NonBlocking property to True.

While the background operation processes the non-blocking ActionSet, an end user
can perform other operations, such as

• Switch workbooks or worksheets

• Edit cells in other worksheets, including integrated Excel worksheets

The end user cannot edit the integrated Excel worksheet that contains the non-
blocking ActionSet until the background operation completes.

If an end user performs another operation that requires communication with the ADF
Desktop Integration-enabled Fusion web application, ADF Desktop Integrations sends
a notification that a background operation is in progress. For example, the following

Using Action Sets

9-14 Developing Applications with Oracle ADF Desktop Integration

notification appears to an end user who attempts to save a worksheet while a
background operation is in progress.

Figure 9-12 Notification Message that an Operation Cannot Proceed Until
Background Operation Completes

Once the background operation completes, the end user can once again edit the
integrated Excel worksheet that invoked the background operation. If the end user's
currently active worksheet is different than the non-blocking ActionSet worksheet
when the background operation completes, he or she receives a notification message
that the background operation has completed.

9.2.10 What You May Need to Know About Canceling an Action
Each action in an action set can be categorized as non-interruptible, interruptible, or
dialog.

The non-interruptible actions are atomic and cannot be canceled, or interrupted, during
their operation. The following actions are non-interruptible:

• Worksheet actions: UpSync, DownSync

• ADFmAction

• Table actions: RowUpSync, RowUpSyncNoFail, RowDownSync,
ClearCachedRowAttributes, FlagAllRows, UnflagAllRows,
MarkAllRowsChanged, MarkAllRowsUnchanged, Initialize

If the Cancel button is clicked while a non-interruptible action is running, the
following happens:

1. The current action completes.

2. The action set is then aborted, and is not treated as a failure.

3. ActionSet.Alert is skipped.

4. The success or failure actions configured for the action set do not run.

5. The message content for the worksheet in the Status Viewer (if open) does not
change. For more information about the Status Viewer, see Using the Status
Viewer to Report Error Messages to End Users.

The interruptible actions can be canceled during their operation. The following Table
actions are interruptible:

• Upload, UploadAllOrNothing

• Download, DownloadFlaggedRows, DownloadForInsert

• DeleteFlaggedRows

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-15

If the Cancel button is clicked while an interruptible action is running, the following
happens:

1. The current operation halts without completing.

2. The table is cleaned up:

• Upload action: For rows that were successfully uploaded before the Cancel
button was clicked, the Changed column cell flags are cleared or are left as is,
and CommitBatchActionID action runs. If a row failed during upload, the
Changed column cell is not affected and error status is displayed. The rows
that did not get uploaded continue to display the changed status in the
Changed column and the Status column remains untouched.

• UploadAllOrNothing action: The CommitBatchActionID action does not
run. The Changed column flags for all rows remain set. Failed rows display
error message. Successfully uploaded rows have Status cells and error rows
unpopulated.

• Download, DownloadForInsert action: Rows that were downloaded before
the Cancel button was clicked are left as is and are not removed. The table is
then sized accordingly.

• DownloadFlaggedRows action: Flagged rows that were downloaded before
the Cancel button was clicked have their flag cells cleared. The remaining
flagged rows continue to display the flag status.

• DeleteFlaggedRows action: The rows that were deleted on server before the
Cancel button was clicked are removed from the worksheet. The remaining
flagged rows continue to display the flag status.

3. Table.FailureActionID does not run.

4. Remaining actions in the action set are skipped.

5. The Status Viewer reflects the status of the rows processed before cancelation.

The dialog actions show modal dialogs which can be canceled or closed. The Action Set
Status Message dialog is not displayed during the execution of one of these actions.
The following actions are dialog type:

• Confirmation

• Dialog

• DisplayWorksheetErrors, DisplayRowErrors, DisplayTableErrors

The appearance of a Cancel button that allows end users cancel an action set requires
you to set the AllowCancel property set to True, as described in How to Display a
Progress Bar while an Action Set Executes. If the end user cancels the action set, the
Cancel button gets disabled, a warning message appears informing the user that the
operation has been canceled, and the action set is aborted.

Tip:

To cancel the operation of an action set, the end user can press the Space Bar
key on the keyboard.

Using Action Sets

9-16 Developing Applications with Oracle ADF Desktop Integration

9.2.11 How to Provide an Alert After the Invocation of an Action Set
You can display an alert message to end users that notifies them when an action set
operation completes successfully or fails. For example, you can display a message
when all actions in an action set succeed or when there was at least one failure. The
ActionSet.Alert group of properties configures this behavior. Consider using an
alert message for action sets that execute very quickly but have no interactive actions.
In these cases, you may want to disable the ActionSet.Status group of properties
and enable the ActionSet.Alert properties.

Note:

An alert message does not appear if the end user cancels the execution of an
action set. For example, you configure an alert message to appear after an
action set that invokes a web page in a popup dialog completes execution. At
runtime, the end user cancels execution of the action set by closing the popup
dialog using the close button of the Excel web browser control that hosts the
popup dialog. In this scenario, no alert message appears. For more
information about displaying web pages, see Displaying Web Pages from a
Fusion Web Application.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Using Action Sets.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To add an alert to an action set:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, expand the Ribbon Commands node and
select the ribbon command that contains the SelectActionSet for which you
want to display an alert.

4. Expand the Alert group of properties for the action set and set values as described
in Table 9-2.

For example, Figure 9-13 shows values configured for the SuccessMessage
property in the Alert group of properties.

Table 9-2 ActionSet.Alert Group of Properties

For this property... Enter or select this value...

Enabled Select True from the dropdown list to display an alert
message once the action set completes. The default value is
False.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-17

Table 9-2 (Cont.) ActionSet.Alert Group of Properties

For this property... Enter or select this value...

FailureMessage Specify an optional EL expression or literal value that
evaluates to a message to appear in the dialog if errors occur
during execution of the action set.

For more information about error handling, see Using the
Status Viewer to Report Error Messages to End Users.

OKButtonLabel Specify an optional EL expression or literal value that
evaluates to a message to appear in the OK button of the
dialog.

SuccessMessage Specify an optional EL expression or literal value that
evaluates to a message to appear in the dialog if no errors
occur during the execution of the action set.

Figure 9-13 Alert Message Properties in an Action Set

5. Click OK.

9.2.12 What Happens at Runtime: How the Action Set Provides an Alert
Figure 9-14 shows an alert message configured for the SuccessMessage property in
the Alert group of properties that appears at runtime when the action set
successfully completes execution.

Using Action Sets

9-18 Developing Applications with Oracle ADF Desktop Integration

Figure 9-14 Runtime View of an Alert Message

At runtime, if the value of the FailureMessage, OKButtonLabel, or
SuccessMessage property is empty, ADF Desktop Integration provides a default,
localized value.

9.2.13 How to Configure Error Handling for an Action Set
You specify values for an action set's ActionOptions properties to determine what
an action set does if one of the following events occurs:

• An action in the action set fails

• All actions in the action set complete successfully

For information about how to invoke these editors, or about an ADF component's
property inspector, see Getting Started with the Development Tools . More
information about action set properties can be found in Action Set Properties.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Using Action Sets.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

Integrated Excel workbooks report status information and errors that occur at runtime
to the end user in the Status Viewer. For more information, see Using the Status
Viewer to Report Error Messages to End Users.

To configure error handling for an action set:

1. Open the integrated Excel workbook.

2. Open the appropriate editor or property inspector and configure values for the
action set's ActionOptions properties as described in the Table 9-3.

Table 9-3 ActionOptions Properties

Set this property... To...

AbortOnFailure True (default value) so that the action set does not run any
further actions if the current action fails. When set to False,
the action set runs all actions regardless of the success or
failure of previous actions.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-19

Table 9-3 (Cont.) ActionOptions Properties

Set this property... To...

FailureActionID (Optional) Specify an ADF Model action to invoke if an
action set does not complete successfully.

For example, you can specify an ADF Model action that rolls
back changes made during the unsuccessful invocation of the
action set.

Note that calling an action set that changes a record set's
currency during the execution of FailureActionID
methods is not supported. The Rollback method also should
not be specified as the FailureActionID in an action set.

SuccessActionID (Optional) Specify an ADF Model action to invoke if an
action set completes successfully.

For example, you can specify an action binding that runs a
commit action. A value for this property is optional and you
can specify a final action, such as an action binding that runs
a commit action, in the action set itself.

Note that calling an action set that changes a record set's
currency during the execution of SuccessActionID
methods is not supported.

3. Optionally, write an EL expression for the action set's FailureMessage property
that evaluates to a message to appear to the end user at runtime if the action set
fails. This message appears in the worksheet area of the Status Viewer described in
Using the Status Viewer to Report Error Messages to End Users.

4. Click OK.

9.2.14 How to Prompt the User for Confirmation in an Action Set
The Confirmation action presents the end user with a simple message dialog that
displays the title and prompt message specified in the Confirmation action properties.

The execution of the action set pauses until the end user clicks one of the two buttons
provided. If the user clicks OK, the action set proceeds with the remaining actions in
the Action Set. If the user clicks Cancel, the action set is aborted at that point and the
remaining actions are not invoked. As there is no error or success, the
FailureActionID or SuccessActionID action is not invoked.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Using Action Sets.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To invoke a Confirmation action from a component

1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and click the down arrow in the Add button to open a
dropdown list, as illustrated here.

Using Action Sets

9-20 Developing Applications with Oracle ADF Desktop Integration

3. Select Confirmation and configure its Data properties as described in the following
list:

• CancelButtonLabel

Specify an optional EL expression or literal value that evaluates to a message to
appear in the Cancel button of the dialog.

• OKButtonLabel

Specify an optional EL expression or literal value that evaluates to a message to
appear in the OK button of the dialog.

• Prompt

Specify an optional EL expression or literal value that evaluates to a message to
appear as the prompt of the dialog.

• Title

Specify an optional EL expression or literal value that evaluates to a title of the
confirmation dialog to display at runtime.

4. Optionally, enter a comment in the Annotation property about the purpose of the
action that you are configuring. The value you set for this property has no
functional impact.

5. Click OK.

Note:

We recommend that you provide values for the Title and Prompt
properties that are specific to your business use case.

Figure 9-15 shows the Edit Action dialog with default attribute values for the Delete
flagged rows ribbon command in the Summit sample application's
EditAllInventory-DT.xlsx workbook.

Figure 9-15 Confirmation Action Attributes

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 9-21

9.2.15 What Happens at Runtime: How the Action Set Prompts the User for
Confirmation

Once the action set is invoked, the user is prompted with a confirmation dialog. If the
user clicks OK, the next action operation is performed; and if the user clicks Cancel,
the Action Set execution terminates without an error.

Note:

If the user cancels a Confirmation action, the FailureActionID binding
does not run.

Figure 9-16 shows the Confirmation dialog that appears when you click the Delete
flagged rows ribbon command in the Summit sample application's
EditAllInventory-DT.xlsx workbook.

Figure 9-16 Confirmation Dialog

At runtime, if the value of the CancelButtonLabel, OKButtonLabel, or Prompt
property is empty, ADF Desktop Integration provides a default, localized value. If the
Title property is empty, the label from the action set container (such as a ribbon
command) is used. If the label of the container is also empty, then the default value
provided by ADF Desktop Integration is used.

9.3 Configuring the Runtime Ribbon Tab
You can add a runtime ribbon tab to the Excel Ribbon in your integrated Excel
workbook with ribbon commands to invoke Oracle ADF functionality. The runtime
ribbon tab groups these items into two groups: workbook and worksheet. You
configure the workbook group to display ribbon commands to invoke the workbook
actions described in Workbook Actions and Properties, while you configure the
worksheet group to invoke a range of actions on the active worksheet.

Figure 9-17 shows the Inventory runtime ribbon tab in the EditAllInventory-
DT.xlsx workbook that configures ribbon commands in both the workbook and
worksheet groups. The workbook group exposes ribbon commands to invoke the

Configuring the Runtime Ribbon Tab

9-22 Developing Applications with Oracle ADF Desktop Integration

standard default workbook actions while the worksheet group exposes ribbon
commands that invoke a number of component actions exposed by an ADF Table
component that renders in the worksheet (Upload, DeleteFlaggedRows, and so
on).

Figure 9-17 Runtime View of Ribbon Tab in EditAllInventory-DT.xlsx

Worksheet command items appear when the worksheet is active. If you remove a
workbook command, it does not appear in the runtime tab for that workbook. If you
remove all the commands for a given group, the group does not appear when the
integrated Excel workbook or worksheet is active.

You set the Visible workbook property to True to make the ribbon tab appear in the
Excel Ribbon at runtime. The value you specify for the Title property determines the
title of the tab that the end user sees at runtime, as illustrated in Figure 9-18.

Figure 9-18 Workbook Properties for Runtime Ribbon Tab

For information about how you define a workbook ribbon command, see How to
Define a Workbook Ribbon Command for the Runtime Ribbon Tab. For information

Configuring the Runtime Ribbon Tab

Adding Interactivity to Your Integrated Excel Workbook 9-23

about how you configure a worksheet ribbon command, see How to Configure a
Worksheet Ribbon Command for the Runtime Ribbon Tab.

9.3.1 How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab
You configure the Runtime Ribbon Tab group of workbook properties to define a
workbook ribbon command.

Before you begin:

It may be helpful to have an understanding of the runtime ribbon tab in Excel. For
more information, see Configuring the Runtime Ribbon Tab.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To define a workbook ribbon command:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Runtime Ribbon Tab, and select
Workbook Commands. Click the browse (...) icon beside the Workbook
Commands to display the dialog, as illustrated in Figure 9-19.

Figure 9-19 Edit Workbook Commands Dialog

4. Click Add and specify values for the properties of the workbook ribbon commands
as follows:

• Method

Specify the workbook action that you want the workbook ribbon command to
invoke. For the list of available workbook actions, see Workbook Actions and
Properties.

Configuring the Runtime Ribbon Tab

9-24 Developing Applications with Oracle ADF Desktop Integration

• Label

If no label is specified, ADF Desktop Integration uses a default label at runtime.

(Optionally) Enter a value in the input field that appears as the label at runtime.
Alternatively, invoke the expression builder by clicking the browse (...) icon and
write an EL expression that resolves to a string value in a resource bundle.

Note that the runtime value that appears in the label cannot exceed 1024
characters. A runtime value that exceeds 1024 characters is truncated so that
only 1024 characters appear.

For more information about using resource bundles, see Using Resource
Bundles in an Integrated Excel Workbook.

For more information about labels, see Using Labels in an Integrated Excel
Workbook.

5. Click OK.

9.3.2 How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab
You configure the Ribbon Command group of worksheet properties to define a
worksheet ribbon command. By default, no ribbon commands are defined for the
worksheet group in the worksheet properties.

Before you begin:

It may be helpful to have an understanding of the runtime ribbon tab in Excel. For
more information, see Configuring the Runtime Ribbon Tab.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

Make sure to set the Runtime Ribbon Tab.Visible workbook property to True.
If the Runtime Ribbon Tab.Visible is set to False, no runtime ribbon tab
appears for this workbook. For more information about workbook properties, see
Table A-20.

To define a worksheet ribbon command:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input
field for the Ribbon Commands property to invoke the editor, as illustrated in
Figure 9-20.

Configuring the Runtime Ribbon Tab

Adding Interactivity to Your Integrated Excel Workbook 9-25

Figure 9-20 Edit Ribbon Commands Dialog

4. Click Add to add a new ribbon command in the Members list of the collection
editor.

5. Configure the ribbon command properties as described in Table 9-4.

Table 9-4 Worksheet Ribbon Command Properties

Set this property to... This value...

SelectActionSet Specify the type of action(s) that the ribbon command
invokes. For more information about action sets, see Using
Action Sets.

Image Select an appropriate image for the ribbon command from
the dropdown list. For example, if the ribbon command's
action set invokes an ADF Table component's Download
action, select Download. Choose Generic if the other options
do not correspond to the action that the ribbon command
invokes.

ADF Desktop Integration provides the images that you can
use.

Label Specify text to appear as a label or an EL expression that
evaluates to a label at runtime. For information about EL
expressions in ADF Desktop Integration, see ADF Desktop
Integration EL Expressions. For information about using
labels, see Using Labels in an Integrated Excel Workbook.

Tooltip Specify text to appear as a tooltip or an EL expression that
evaluates to a tooltip at runtime.

Note that ribbon command tooltips have a maximum size of
1024 characters. If a tooltip value exceeds that limit, only the
first 1024 characters are shown.

6. Click OK.

9.3.3 What Happens at Runtime: Ribbon Commands in the Ribbon Tab
Figure 9-21 shows the Customers ribbon tab from the Summit sample application's
EditCustomers-DT.xlsx workbook. The order and grouping of the workbook-

Configuring the Runtime Ribbon Tab

9-26 Developing Applications with Oracle ADF Desktop Integration

level ribbon commands is always the same at runtime. The worksheet commands
appear in the same order as you define them in the Edit Ribbon Commands dialog.

Although the Status Viewer is configured once per workbook and appears in the
workbook commands at design time, it appears in the worksheet group at runtime.
This is because the Status Viewer is worksheet-specific and displays information about
the worksheet that is in focus. If your end users navigate to a non-integrated
worksheet and click the Status Viewer ribbon command, a message appears that tells
the end user the Status Viewer cannot be used in that worksheet.

Figure 9-21 Ribbon Commands in the Ribbon Tab

When the user hovers the mouse over the ribbon command with the tooltip, a multi-
part tooltip appears. The ribbon command label appears first in bold followed by the
text from the Tooltip property. Below this text, the add-in name appears. Figure 9-22
shows the tooltip that appears when you hover over the Download worksheet ribbon
command in the Summit sample application's EditCustomers-DT.xlsx workbook.

Figure 9-22 Ribbon Command Displaying a Tooltip

If you define 5 or fewer worksheet-level ribbon commands, each appears in the
worksheet group with a large icon. If you define 6 or more worksheet-level ribbon
commands, the first 4 ribbon commands appear with a large icon. The remaining
ribbon commands appear in a menu labelled More, as shown in Figure 9-23.

Figure 9-23 Worksheet's More Ribbon Command Displaying Dropdown List

Configuring the Runtime Ribbon Tab

Adding Interactivity to Your Integrated Excel Workbook 9-27

Note:

The ribbon controls of the toolbar are shared among all open integrated
workbooks. If you open two, or more, workbooks using different ribbon
commands occupying the same location in the toolbar, Excel always shows the
key tip of the first opened workbook in all open workbooks. This is an Excel
limitation.

9.4 Displaying Web Pages from a Fusion Web Application
You configure a Dialog action in an action set to display pages from the Fusion web
application with which you integrate your Excel workbook. These pages provide
additional functionality for your integrated Excel workbook. Examples of additional
functionality that you can provide include search dialogs that interact with your
Fusion web application.

The Dialog action in an action set can be configured to display in one of the following
two types of dialog:

• Popup dialog

• Runtime task pane

The value for the Dialog.Target property (Popup or TaskPane) of the
component's action set determines where a web page is rendered.

The value for the Dialog.Page property specifies the web page to display when the
action is invoked. Valid values include a URL relative to the value of the WebAppRoot
property or an absolute URL.

For example, the CustomerSearch-DT.xlsx workbook specifies the following
relative URL as a value for the page to invoke when a user clicks the Search
Customers ribbon command at runtime:

/faces/external/searchForm.jspx

Absolute URLs such as the following are also valid:

http://www.oracle.com/technetwork/middleware/fusion-middleware/overview/index.html

Tip:

If you want to add a model-driven list picker to a table column, see Adding a
Model-Driven List Picker to an ADF Table Component for more information.

Note:

The Dialog action does not support ADF task flows.

9.4.1 How to Display a Web Page in a Popup Dialog
You can configure a Dialog action in an action set to invoke a web page in a modal
popup dialog hosted by Excel's web browser control. This feature provides end users
with functionality that allows them to, for example, input values displayed by a page
from the Fusion web application into the integrated Excel workbook.

Displaying Web Pages from a Fusion Web Application

9-28 Developing Applications with Oracle ADF Desktop Integration

The web page that the action set invokes must contain a reserved HTML
element that has a case-sensitive ID attribute set to ADFdi_CloseWindow.

The following example shows how you can automatically set the value of the span
element using the rendered property of the f:verbatim tag.

<f:verbatim rendered="#{requestScope.searchAction eq 'search'}">
 Continue
 </f:verbatim>
<f:verbatim rendered="#{requestScope.searchAction eq 'cancel'}">
 Abort
 </f:verbatim>

Figure 9-24 shows the searchForm.jspx page hosted by the CustomerSearch-
DT.xlsx workbook's browser control.

Figure 9-24 Search Popup Dialog

In scenarios where you cannot use the rendered property of the f:verbatim tag,
you may need to:

1. Create a backing bean that exposes the Dialog action's result value as a property

2. Use an action listener to invoke the backing bean, and an EL expression in the
 element to set the value ADFdi_CloseWindow to the bean property value.

Whichever approach you take, ADF Desktop Integration monitors the value of
ADFdi_CloseWindow to determine when to close the popup dialog. If the content of
the ADFdi_CloseWindow element is:

• An empty string or is not present, the popup dialog remains open.

• Continue, the popup dialog closes and the action set invokes its next action.

The following example shows ADFdi_CloseWindow assigned a value of
"Continue":

var closeWindowSpan =
document.getElementById("ADFdi_CloseWindow");

closeWindowSpan.innerHTML = "Continue";

• Abort, the popup dialog closes and the action set stops running. No additional
actions are invoked.

• Some other string value, the popup dialog remains open.

You set the Target property for a Dialog action to Popup to display a custom web
page in a modal popup dialog using a .NET web browser control. Displaying a web
page in a modal popup dialog differs from displaying a web page in Excel's task pane
because the Dialog action that the action set invokes cannot continue execution until
it receives user input. While the popup dialog is open, the end user cannot interact
with any other part of the integrated Excel workbook, as the popup dialog retains
focus.

Displaying Web Pages from a Fusion Web Application

Adding Interactivity to Your Integrated Excel Workbook 9-29

End users can navigate between multiple web pages within the browser control until
they close the browser control, or ADF Desktop Integration closes it.

You may want to add additional actions after the Dialog action to take advantage of
user choices in your custom page. For example, a user is expected to type a country
name in a country-based search. In this scenario, the next logical actions to invoke are
Execute (a query with the country name the user entered) and the Download action
for the ADF Table component.

Note:

• If the Title property is left blank, the web page's title will be used as the
dialog's window title.

• The value of the ADFdi_CloseWindow is monitored on every
page transition in the browser control. When the value is Continue, the
popup dialog closes and the action set continues to run. When the value is
Abort, the popup dialog closes and no further actions in the action set run.
If the element is not present, or the value is other than Continue
or Abort, the popup dialog will remain open.

On each page transition, if the reserved element is present, client-
side Javascript can run and change the value of the element. If the value
changes to Continue or Abort, the popup dialog also closes and has the
same effect on the action set.

• You should avoid configuring the web page that appears in a popup dialog
so that it allows the end user to download an integrated Excel workbook.
In that case, the Oracle ADF functionality becomes disabled when the end
user opens a workbook downloaded from a popup dialog.

• If you use the HTML <select> components, such as list box or dropdown
list, note that <select> components do not follow z-order configuration
when the page displays through Dialog actions. In the .NET Web Browser
control, on a web page with layered and overlapping components, the
<select> components might appear on top of other components.

9.4.2 How to Display a Web Page Search Form in a Popup Dialog
You can use a ribbon command to invoke a page from the Fusion web application that
displays a search form to the end user. Configure the action set for the ribbon
command to invoke the Download action for the ADF Table component so that the
search results from the search operation are downloaded to the integrated Excel
workbook.

For information about creating a search form in a Fusion web application, see the
"Creating ADF Databound Search Forms" chapter in Developing Fusion Web
Applications with Oracle Application Development Framework.

Displaying Web Pages from a Fusion Web Application

9-30 Developing Applications with Oracle ADF Desktop Integration

Note:

ADF Desktop Integration does not support usage of the FindMode attribute in
page definition files. For more information about the FindMode attribute, see
the "pageNamePageDef.xml" section of Developing Fusion Web Applications with
Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how web pages render in an integrated
Excel workbook. For more information, see Displaying Web Pages from a Fusion Web
Application.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To invoke a web page from an integrated Excel workbook:

1. Open the integrated Excel workbook.

2. Create the ribbon command in the Excel worksheet, as described in How to
Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab.

3. Set the Label property of the component so that it displays a string at runtime to
indicate to end users that they can start a search operation by clicking the button.

4. Use the Edit Action dialog to configure the array of actions (Action list) in the
ClickActionSet properties (SelectActionSet properties if you are
configuring a ribbon command) of the component. Table 9-5 describes the actions
to invoke in sequence.

Table 9-5 Actions to Invoke an Advanced Search Form

Add this action... To...

Dialog Display the page from your Fusion web application that
contains the search form. For more information about
displaying pages from a Fusion web application, see How to
Display a Web Page in a Popup Dialog.

ComponentAction Invoke a Download action from the ADF Table or ADF
Read-only Table components to download the results that
match the search criteria specified.

5. Click OK.

Figure 9-25 shows an example from the CustomerSearch-DT.xlsx workbook
where the ribbon command's SelectActionSet contains a Dialog action followed
by the ADF Table component's Download action. When the end user invokes the
ribbon command, the Dialog action will show the search page (searchForm.jspx)
in a browser window. After the end user specifies search criteria in the search page
and selects the Search button there, the ADF Table component's Download action
runs. This will retrieve the rows matching the specified search criteria into the
integrated worksheet.

Displaying Web Pages from a Fusion Web Application

Adding Interactivity to Your Integrated Excel Workbook 9-31

Figure 9-25 Ribbon Command Configured to open a Web Page

Figure 9-26 shows the web page search form at runtime.

Figure 9-26 Web Page Search Form

9.4.3 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane
You can set the Dialog.Target property for an action to TaskPane to display a web
page specified by the Dialog.Page property in the ADF Desktop Integration task
pane. In contrast to displaying a web page in a popup dialog, displaying a web page in
the task pane allows an action set to continue executing actions while the web page
displays. End users can access and interact with other parts of the integrated Excel
workbook while the web page displays.

Note:

• If the Title property is left blank, the task pane's title will also remain
blank.

• If the Target property of a Dialog action is set to TaskPane, ADF
Desktop Integration ignores the value of ADFdi_CloseWindow (and other
elements).

Displaying Web Pages from a Fusion Web Application

9-32 Developing Applications with Oracle ADF Desktop Integration

9.4.4 What You May Need to Know About Displaying Pages from a Fusion Web
Application

You can keep the data an integrated Excel workbook contains synchronized with a
Fusion web application by specifying additional actions in the action set that invokes
the Dialog action. You can ensure that the Fusion web application page and the
integrated Excel worksheet both use the same data control frame by setting the
ShareFrame property of the Dialog action.

Note:

• If your custom web page is based on ADF Faces and opens a popup
window, the command component that your web page uses to launch the
popup window, must be configured with the windowEmbedStyle
attribute set to inlineDocument. For information about ADF Faces dialogs,
see About Popup Dialogs, Menus, and Windows in Developing Web User
Interfaces with Oracle ADF Faces.

• The Dialog.Page property does not accept EL expressions.

9.4.4.1 Sending Data Between an Integrated Excel Worksheet and a Fusion Web
Application Page

To ensure that data in the integrated Excel workbook and the Fusion web application
remains synchronized while end users use pages from the Fusion web application,
configure the action set that invokes the Dialog action to:

• Send changes from the integrated Excel workbook to the Fusion web application
before invoking the Dialog action.

Invoke the RowUpSync or RowUpSyncNoFail worksheet action to synchronize
changes from the current row in the ADF Table component. You may also invoke
UpSync to synchronize changes in form components.

• One way to capture data state from the web page (if necessary) is for logic in the
web page's backing bean to retrieve data from its data bindings and to transfer that
data into the bindings for the integrated Excel worksheet.

• Send changes from the Fusion web application to the integrated Excel workbook
after invoking the Dialog action.

Invoke the RowDownSync worksheet action to send changes from the Fusion web
application to the current row in the ADF Table component. You may also invoke
DownSync to synchronize changes in form components.

For a DoubleClickActionSet, the server-side model must be in the same state after
executing the action set as it was before executing the action set. To achieve this, make
sure the ADF Table component supports row-level action set model management, as
described in How to Enable Row-Level Action Set Model Management.

For more information about synchronizing data between an integrated Excel
workbook and a Fusion web application, see Using an Integrated Excel Workbook
Across Multiple Web Sessions. For information about worksheet actions and ADF
Table component actions, see ADF Desktop Integration Component Properties and
Actions.

Displaying Web Pages from a Fusion Web Application

Adding Interactivity to Your Integrated Excel Workbook 9-33

9.4.4.2 Sharing Data Control Frames Between Integrated Excel Worksheets and
Fusion Web Application Pages

Fusion web applications and integrated Excel workbooks both use data control frames
to manage the transactions and state of view objects and, by extension, the bindings
exposed in a page definition file. When you invoke a Fusion web application's page
from an integrated Excel worksheet, you can ensure that the page and the integrated
Excel worksheet both use the same data control frame by setting the ShareFrame
property of the Dialog action that invokes the page to True.

The Page property in the Dialog action specifies the page that the Dialog action
invokes. If the Dialog action invokes an absolute URL or a page that is not part of
your Fusion web application, ADF Desktop Integration ignores the value of
ShareFrame if ShareFrame is set to True.

Set ShareFrame to False in the following scenarios:

• The Dialog.Page property in the action set references an absolute URL or a page
that is not part of your Fusion web application.

• The Dialog.Page property in the action set references a page that is part of your
Fusion web application, but that does not need to share information with the
integrated Excel worksheet. For example, a page that displays online help
information.

For more information about data control frames in a Fusion web application, see the
"Sharing Data Controls Between Task Flows" section of Developing Fusion Web
Applications with Oracle Application Development Framework.

9.4.4.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame
Sharing

When you add the ADF Desktop Integration feature to your Fusion web application,
the application is automatically configured to support ADF Desktop Integration frame
sharing. Frame sharing allows each worksheet of an integrated Excel workbook to use
a dedicated DataControl frame. Web pages displayed in dialogs invoked from each
worksheet can then share the same DataControl frame as the integrated Excel
worksheet.

To verify that your Fusion web application supports frame sharing:

1. Open your Fusion web application project in JDeveloper.

2. In the Applications window, expand the Application Resources panel.

3. Open the adf-config.xml file available in Descriptors > ADF META-INF node.

4. Click the Source tab to open the source editor.

5. Confirm that the following adf-desktopintegration-servlet-config
element is present in the file before the </adf-config> tag:

<adf-desktopintegration-servlet-config xmlns="http://xmlns.oracle.com/adf/
desktopintegration/servlet/config">
 <controller-state-manager-class>
 oracle.adf.desktopintegration.controller.impl.ADFcControllerStateManager
 </controller-state-manager-class>
</adf-desktopintegration-servlet-config>

Displaying Web Pages from a Fusion Web Application

9-34 Developing Applications with Oracle ADF Desktop Integration

6. Save the adf-config.xml file and close JDeveloper.

9.5 Using Row-Level Action Sets in a Table Column
In certain cases, you may want to configure an action set that executes in the context of
the current table row whenever the end user double-clicks a column. For example, you
might configure an ADF Table component column DoubleClickActionSet to
launch a custom dialog that enables the end user to select server-side row attribute
values for the current table row, as described in How to Add a Custom Popup Picker
Dialog to an ADF Table Column.

Row-Level Action Set Model Management

You can automate the management of the server-side model state when table-based
row-level action sets that may alter the model state are invoked. ADF Desktop
Integration creates a save point before invoking the actions in the action set and
restores to the save point after the action set runs. This ensures that the model state
after the action set was invoked remains the same if the action set is aborted or
cancelled and reverts back to the same state as it was before the action set was
invoked.

For insert worksheet rows, ADF Desktop Integration automatically creates a
temporary server-side row that can be used during the action set. For both insert and
update worksheet rows, ADF Desktop Integration automatically reverts any model
changes that occur during the action set (including the temporary row in the insert
case).

This is useful if you have integrated Excel workbooks with ADF Table components
configured with row action sets that modify the server-side model. For example, a
column component double-click action set that launches a custom dialog to select
server-side row attribute values for the current worksheet row, as described in How to
Add a Custom Popup Picker Dialog to an ADF Table Column.

9.5.1 How to Enable Row-Level Action Set Model Management
To manage the server-side model state with a row-level action set, set the following
workbook property to True:

Compatibility.TableComponents.RowActionSetModelMgmtEnabled

Before you set the RowActionSetModelMgmtEnabled property to True, note that
ADF Desktop Integration creates a DataControl savepoint to capture and restore the
model state. So, make sure that the DataControl providers of your Fusion web
application support savepoints.

To enable row-level action set model management:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. If the ADF Table component supports row inserts (InsertRowEnabled row-level
action), set the InsertBeforeRowActionID action to create a temporary server-
side row during a row-level action set.

If your use case requires a separate action to create a temporary row for row-level
action sets, configure the InsertTempRowActionID property.

Using Row-Level Action Sets in a Table Column

Adding Interactivity to Your Integrated Excel Workbook 9-35

Note:

If the InsertBeforeRowActionID action is sufficient for creating a
temporary server-side row during a row-level action set,
InsertTempRowActionID should be left blank.

4. In the Edit Workbook Properties dialog, if not set already, set the
Workbook.Compatibility.TableComponents.RowActionSetModelMgmtE
nabled property to True.

Note that the RowActionSetModelMgmtEnabled property is set to False in
integrated Excel workbooks created with versions of ADF Desktop Integration that
did not include this feature.

5. Click OK to close the Edit Workbook Properties dialog.

Note:

For integrated Excel workbooks created with older versions of ADF Desktop
Integration, set the RowActionSetModelMgmtEnabled property to True
and remove any custom configuration or code that manages model state
during row-level action sets.

9.5.2 What Happens at Runtime: RowActionSetModelMgmtEnabled is Set to True
If RowActionSetModelMgmtEnabled property is set to True, ADF Desktop
Integration automatically manages the model state while the row-level action set runs.

For an insert worksheet row, a temporary server-side row is automatically created
when the action set runs and is automatically removed after a successful upload.
When the InsertTempRowActionID action is configured, it gets invoked to create
the temporary server-side row. Otherwise, the InsertBeforeRowActionID action
is invoked to create the temporary server-side row instead.

If neither the InsertTempRowActionID nor InsertBeforeRowActionID actions
are configured, no action is invoked for insert rows. The InsertTempRowActionID
action is ignored if InsertRowEnabled is set to False.

When the end-user invokes a row-level action set configured in an ADF Table
component and the row-level action set contains one or more actions that may alter
the model state, ADF Desktop Integration does the following:

1. Positions the server-side row (for update worksheet rows only)

2. Creates a data control save point

3. Invokes the InsertTempRowActionID or InsertBeforeRowActionID action
to create a temporary server-side row (for insert worksheet rows only)

4. Invokes the actions in the action set

5. Restores to the previously created save point after the action set invocation is
completed, regardless of how it terminates including:

• Upload successful

• Upload failure

Using Row-Level Action Sets in a Table Column

9-36 Developing Applications with Oracle ADF Desktop Integration

• End user clicks the Cancel button

Note:

The following actions (or action types) may alter the model state:

• Table.RowUpSync

• Table.RowDownSync—only applies to insert rows

RowDownSync for an existing row does not alter the model state.

• Table.RowUpSyncNoFail

• Worksheet.UpSync

This action is also supported in row-level action sets.

• ADFmAction

• Dialog

The Dialog action may change the model state if ShareFrame is set to
True and the web page is part of the same web application.

If the RowActionSetModelMgmtEnabled property is set to False, you must
explicitly manage the creation and deletion of the temporary server-side row while the
action set runs.

9.5.3 How to Synchronize Changes from ADF Table Component Using
RowUpSyncNoFail

A row-level action set may contain ADFmAction or Dialog actions that depend on
the current state of the model to complete successfully. The Table.RowUpSync action
sends the current value of individual table rows from the worksheet to the model layer
in the Fusion web application. The Table.RowUpSync action requires all cells in a
table row to contain valid data for the action to complete successfully. For example, in
a newly-inserted row, all required attributes must have valid values for a
Table.RowUpSync action to complete. In contrast, the Table.RowUpSyncNoFail
action synchronizes valid values from cells in a table row and ignores any validation
failures for invalid values. Like RowUpSync, the RowUpSyncNoFail action is
intended for use in the row-level action sets of table columns that supports
DoubleClickActionSet.

Enable row-level action set model management when using RowUpSyncNoFail, as
described in How to Enable Row-Level Action Set Model Management.

To synchronize changes from ADF Table Component using RowUpSyncNoFail:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the table-type component and
click the Edit Properties button in the Oracle ADF tab.

3. Click the browse (...) icon of the Columns property.

4. In the Edit Columns dialog, select the column, and click the browse (...) icon of the
UpdateComponent property.

Using Row-Level Action Sets in a Table Column

Adding Interactivity to Your Integrated Excel Workbook 9-37

5. Add the ADF Table component RowUpSyncNoFail action to the list of actions of
the column's DoubleClickActionSet.

6. Click OK.

9.5.4 What Happens at Runtime: RowUpSyncNoFail Action is Invoked
When the RowUpSyncNoFail action is invoked, data values from the current table
row are uploaded to the server and common failures, error reporting, and error
handling are ignored. Fatal errors, such as the server being unavailable, will be
reported.

The RowUpSyncNoFail action modifies the state of the model and the changes are
not reverted on error. Consequently, it is possible that a call to RowUpSyncNoFail
may leave the row in the model with values that would cause row validation to fail.
This may in turn impact the behavior of subsequent calls to other methods, such as
Table.Upload. For this reason, you should ensure that row-level action set model
management is enabled.

9.5.5 How to Add a Custom Popup Picker Dialog to an ADF Table Column
You can configure the DoubleClickActionSet of an ADF Table component's
column subcomponent (UpdateComponent or InsertComponent) to invoke a
Fusion web application page that renders a pick dialog where the end user selects a
value to insert in the ADF Table component column.

This functionality is useful when you want to constrain the values that end users can
enter in an ADF Table component. For example, you may want a runtime ADF Table
component column to be read-only in the Excel worksheet so that end users cannot
manually modify values to prevent them from introducing errors. Invoking a pick
dialog rendered by a Fusion web application page allows the end user to change
values in the ADF Table component without entering incorrect data.

In addition to configuring the DoubleClickActionSet, you may configure the ADF
Table component's RowData.CachedAttributes property to reference attribute
binding values if you want:

• End users to modify values in the Fusion web application's page that you do not
want to appear in the ADF Table component of the integrated Excel workbook

• An ADF Table component's column to be read-only in the integrated Excel
workbook

• Cache data in an ADF Table component over one or more user sessions that is not
visible to end users but is modified by a pick dialog

For example, an ADF Table component displays a list of product names to end
users. A pick dialog is invoked that refreshes the list of product names in the ADF
Table component and, as part of the process, sets the value of product IDs. In this
scenario, you specify the attribute binding value for the product ID in the ADF
Table component's RowData.CachedAttributes property. After the action set
runs, the ADF Table component displays the refreshed list of product names in the
rows of the Excel worksheet and references the associated product IDs in its
RowData.CachedAttributes property.

For information about populating values in the pick dialog, see the "Creating
Databound Selection Lists and Shuttles" chapter in Developing Fusion Web Applications
with Oracle Application Development Framework.

Using Row-Level Action Sets in a Table Column

9-38 Developing Applications with Oracle ADF Desktop Integration

Before you begin:

It may be helpful to have an understanding of using row-level action sets. For more
information, see Using Row-Level Action Sets in a Table Column.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

Make sure the ADF Table component supports row-level action set model
management, as described in How to Enable Row-Level Action Set Model
Management, if you want the custom pick dialog to function correctly in an ADF
Table component that supports an insert component. Without row-level action set
model management enabled, no temporary insert rows will be created at runtime.

To invoke a custom pick dialog from an ADF Table component column:

1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that anchors the ADF Table component and
click the Edit Properties button in the Oracle ADF tab to display the property
inspector.

3. Configure the ADF Table component's RowData.CachedAttributes property to
reference attribute binding values.

4. Click the browse (...) icon beside the input field for Columns to display the Edit
Columns dialog.

5. In the Members list, select the column from which the end user invokes the pick
dialog at runtime.

6. Configure the Actions attribute of DoubleClickActionSet of the column
subcomponent (UpdateComponent or InsertComponent), as described in Table
9-6.

Table 9-6 DoubleClickActionSet Properties

Add this action... To...

ComponentAction Invoke the ADF Table component's Table.RowUpSync
action to synchronize any pending changes in the current
row of the ADF Table component to the Fusion web
application.

Dialog Configure the Dialog action to invoke the pick dialog page
from the Fusion web application. Set the Dialog action's
ShareFrame property to True. For more information, see
Displaying Web Pages from a Fusion Web Application.

ComponentAction Invoke the ADF Table component's Table.RowDownSync
action to synchronize data from the row in the ADF Table
component's iterator in the Fusion web application that
corresponds to the current ADF Table component row in the
worksheet.

7. Click OK.

Using Row-Level Action Sets in a Table Column

Adding Interactivity to Your Integrated Excel Workbook 9-39

9.6 Using EL Expression to Generate an Excel Formula
You can use an EL expression to generate an Excel formula as the value of an ADF
component. For example, you can use an Excel HYPERLINK function in an EL
expression. If you use the Excel HYPERLINK function in an EL expression, you must
enclose the HYPERLINK function within an Excel T function if you want an Oracle
ADF component, such as an ADF Output Text component, to display a hyperlink at
runtime.

You enclose the HYPERLINK function because ADF Desktop Integration interprets the
Excel formula. To work around this, you wrap the T function around the HYERLINK
function so that the value of the HYPERLINK function is evaluated by the T function.
The resulting value is inserted into the Excel cell that the ADF component references.
Use the following syntax when writing an EL expression that invokes the HYPERLINK
Excel function:

=T("=HYPERLINK(""link_location"",""friendly_name"")")

The EL expression in Example 9-1 uses HYPERLINK function to navigate to http://
www.oracle.com/technetwork/developer-tools/adf/overview/
index-085534.html when end user clicks the component.

If you write an EL expression using the HYPERLINK function, you should select the
Locked checkbox in the Protection tab of the Format Cells dialog for the custom style
that you apply to prevent error messages appearing.

Note:

When using EL expressions in formulas, ensure that after the EL expression is
evaluated, the resulting Excel formula has no more than 255 characters. This
applies to formulas used to set conditional values to component properties in
the editor.

Example 9-1 HYPERLINK Function

=T("=HYPERLINK(""http://www.oracle.com/technetwork/developer-tools/adf/overview/
index-085534.html"", ""#{res['excel.workbook.powerby']}"")")

9.6.1 How to Configure a Cell to Display a Hyperlink Using EL Expression
You write an EL expression that uses the Excel T function to evaluate the output of the
Excel HYERLINK function. The following task illustrates how you configure an ADF
Output Text component to display a hyperlink that opens the Oracle ADF Desktop
Integration home page.

Before you begin:

It may be helpful to have an understanding of dynamic hyperlink. For more
information, see Using EL Expression to Generate an Excel Formula.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

To configure a cell to display a hyperlink using EL expression:

1. Open the integrated Excel workbook.

Using EL Expression to Generate an Excel Formula

9-40 Developing Applications with Oracle ADF Desktop Integration

2. Insert an ADF Output Text component into the Excel worksheet.

3. Write an EL expression for the Value property of the ADF Output Text
component.

The EL expression that you write invokes the Excel HYPERLINK function and uses
the Excel T function to evaluate the output. In Example 9-1, you entered the
following EL expression for the Value property:

=T("=HYPERLINK(""http://www.oracle.com/technetwork/developer-tools/adf/overview/
index-085534.html"", ""#{res['excel.workbook.powerby']}"")")

Note:

Excel requires that you write double double quotes (for example,
""#{res['excel.workbook.powerby']}"") in the EL expression so that
it can evaluate the expression correctly.

4. Click OK.

9.6.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL
Expression

ADF Desktop Integration evaluates the EL expression that you write at runtime. In the
following example, ADF Desktop Integration:

• Retrieves the value of the excel.workbook.powerby from the resource file

• Inserts the result into a hyperlinked cell that a user can click

Figure 9-27 shows the runtime view of the example configured in How to Configure a
Cell to Display a Hyperlink Using EL Expression. When the end user clicks the cell
that hosts the ADF Output Text component, the Oracle ADF Desktop Integration
home page opens in the web browser.

Using EL Expression to Generate an Excel Formula

Adding Interactivity to Your Integrated Excel Workbook 9-41

Figure 9-27 ADF Output Text Component Configured to Display a Hyperlink

9.7 Using Calculated Cells in an Integrated Excel Workbook
You can write Excel formulas that perform calculations on values in an integrated
Excel workbook. Before you write an Excel formula that calculates values in an
integrated Excel workbook, note the following points:

• Formulas can be entered in cells that reference Oracle ADF bindings and cells that
do not reference Oracle ADF bindings

• End users of an integrated Excel workbook can enter formulas at runtime

• You (developer of the integrated Excel workbook) can enter formulas at design
time

• During invocation, the ADF Table component actions Upload and RowUpSync
send the results of a formula calculation to the Fusion web application and not the
formula itself

• Excel recalculates formulas in cells that reference Oracle ADF bindings when these
cells are modified by:

– Invocation of the ADF Table component RowDownSync and Download actions

– Rendering of Oracle ADF components

• The ADF Table and ADF Read-only Table components insert or remove rows as
they expand or contract to accommodate data downloaded from the Fusion web
application. Formulas are replicated according to Excel's own rules.

• You can enter formulas above or below a cell that references an ADF Table or ADF
Read-only Table component. A formula that you enter below one of these
components maintains its position relative to the component as the component
expands or contracts to accommodate the number of rows displayed.

Using Calculated Cells in an Integrated Excel Workbook

9-42 Developing Applications with Oracle ADF Desktop Integration

For more information about Excel functions, see the Function reference section in
Excel's online help documentation.

9.7.1 How to Calculate the Sum of a Table-Type Component Column
The following task illustrates how you use the Excel functions AVERAGE and OFFSET
to calculate the average of the column labeled Salary at runtime. You use the OFFSET
function in an Excel formula that you write where you want to reference a range of
cells that expands or contracts based on the number of rows that an ADF Table or ADF
Read-only Table component downloads. The AVERAGE function calculates the average
value in a range of Excel cells.

Before you begin:

It may be helpful to have an understanding of how to use calculated cells in an
integrated Excel workbook. For more information, see Using Calculated Cells in an
Integrated Excel Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook.

Make sure that the ADF Table component's
RowActions.AutoConvertNewRowsEnabled property is set to False. For more
information about this property, see ADF Table Component Properties.

To calculate the sum of a column in an ADF Table component:

1. In design mode, select the cell in which you want to write the Excel formula. For
example, J2.

2. Write the Excel formula that performs a calculation on a range of cells at runtime.
For example:

=AVERAGE(OFFSET(J2,1,0):OFFSET(J4,-1,0))

where AVERAGE calculates the average value in the range of cells currently
referenced by J2 and J4.

Figure 9-28 shows the design time view of the Excel formula in the integrated Excel
workbook.

Figure 9-28 Design Time View of Excel Formula in an Integrated Excel Workbook

3. Save your changes and switch to runtime mode to test that the Excel formula you
entered evaluates correctly.

Using Calculated Cells in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 9-43

9.7.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type
Component Column

Figure 9-29 shows the runtime view in the integrated Excel workbook when the Excel
formula shown in Figure 9-28 is evaluated. The Excel formula calculates the average of
the values in the range of cells that you specified in design mode.

Figure 9-29 Runtime View of Excel Formula in an Integrated Excel Workbook

9.8 Using Macros in an Integrated Excel Workbook
You can define and run macros based on Excel events in an integrated Excel
workbook. ADF Desktop Integration reacts to Excel events. An example of an Excel
event is the change event that occurs when something in an Excel worksheet changes.

Excel events can occur when an end user or a macro perform an action (for example,
insert a new row). ADF Desktop Integration reacts to the Excel event. While ADF
Desktop Integration triggers code in response to the Excel event, all further Excel
events are suppressed.

Assume, for example, that you write a macro in your integrated Excel workbook that
the workbook triggers when a change event occurs in a particular cell. If an end user
changes the cell, the Excel event occurs and the macro executes. However, if ADF
Desktop Integration changes the cell, no Excel event occurs and the macro does not
execute.

For more information about Excel events, see Microsoft’s documentation.

Using Macros in an Integrated Excel Workbook

9-44 Developing Applications with Oracle ADF Desktop Integration

10
Configuring the Appearance of Your

Integrated Excel Workbook

This chapter describes how to configure the appearance of an integrated Excel
workbook using predefined and custom styles in Excel, how to use EL expressions to
dynamically apply styles to Oracle ADF components in a workbook at runtime, how
to use labels and brand the Excel workbook, and how to use Worksheet Protection
feature.

This chapter includes the following sections:

• About Configuring the Appearance of an Integrated Excel Workbook

• Working with Styles

• Applying Styles Dynamically Using EL Expressions

• Using Labels in an Integrated Excel Workbook

• Branding Your Integrated Excel Workbook

• Displaying Tooltips in ADF Desktop Integration Components

• Using Worksheet Protection

• Using ADF Desktop Integration EL-based Properties with Custom Attribute
Properties

10.1 About Configuring the Appearance of an Integrated Excel Workbook
You can configure the appearance of an integrated Excel workbook using both Excel
functionality and Oracle ADF functionality. Configuring the appearance of a
workbook may make the workbook more usable for end users. For example, applying
a particular style to cells that render ADF Output Text components at runtime may
indicate to end users that the cell is read-only. You may also want to configure the
appearance of an integrated Excel workbook so that it aligns with your company's
style sheet or the color scheme of the Fusion web application that the Excel workbook
integrates with.

Using styles to configure your data in your integrated Excel workbook gives you
many benefits. For example, you can use a particular style for ADF Output Text
components, and a different style for ADF Input Text components.

ADF Desktop Integration provides several predefined Excel styles to apply to the ADF
Desktop Integration components you configure in a workbook. You may want to
define additional styles to meet the needs of your desktop integration project. If you
do, familiarize yourself with the formats in an Excel workbook that render differently
depending on the locale, region, and language.

Configuring the Appearance of Your Integrated Excel Workbook 10-1

10.1.1 Integrated Excel Workbook Configuration Use Cases and Examples
You can customize the appearance of ADF Desktop Integration components using
styles. For example, Figure 10-1 shows various styles applied to the columns of ADF
Table in EditCustomers-DT.xlsx.

Figure 10-1 Styles Applied to Columns of ADF Table in EditCustomers-DT.xlsx

10.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook

After you have applied styles to configure the appearance of your integrated Excel
workbook, you may find that you need to add additional functionality to configure
your workbook. The following sections describe other functionality that you can use:

• Branding: In addition to styles, ADF Desktop Integration provides a collection of
properties (BrandingItems) that enable you to brand your integrated Excel
workbook with application name, application version details, and copyright
information. For more information, see Branding Your Integrated Excel Workbook.

• Localization: You can customize the integrated Excel workbook as part of the
process to internationalize and localize with the Fusion web application. For more
information, see Internationalizing Your Integrated Excel Workbook.

10.2 Working with Styles
ADF Desktop Integration provides a mechanism to apply Excel-named styles to Oracle
ADF components at runtime. The Oracle ADF components that support the
application of styles have properties with StyleName in their name. For example, the
column properties of the ADF Table component support the properties
HeaderStyleName and CellStyleName that determine styles to apply at runtime.

10.2.1 Predefined Styles in ADF Desktop Integration
Many properties have default values that are drawn from a predefined list of ADF
Desktop Integration styles. For example, the HeaderStyleName property's default
value is Column Header, one of the predefined styles in ADF Desktop Integration.
ADF Desktop Integration automatically adds these predefined styles to the Excel

Working with Styles

10-2 Developing Applications with Oracle ADF Desktop Integration

workbook when it is enabled for use with ADF Desktop Integration. The predefined
styles that ADF Desktop Integration provides are consistent with the Oracle Alta UI,
described in http://www.oracle.com/webfolder/ux/middleware/alta/
index.html.

The following is the list of predefined styles:

• Styles for forms:

– Form Header

– Form SubHeader

– Input Text

– Label

– Output Text

• Styles for tables:

– Column Header

– Data Cell

– Indicator Cell

– Key Cell

– Read-only Cell

– Status Cell

• Branding Area

Tip:

Microsoft Excel has a Merge Styles dialog (accessed from the Styles gallery in
the Home runtime ribbon) that allows you to merge all the named styles from
one workbook to another workbook.

You may create additional styles for use in your Excel workbook. For example, to add
a date-specific formatting, you can duplicate Data Cell, call it My Date Cell, and
add your date-specific formatting.

Once you have decided what styles to apply to the ADF Desktop Integration
components at runtime, you can write EL expressions to associate a style with a
component. The ADF Desktop Integration component properties that include
StyleName in their name take an EL expression as a value. The ADF Label component
and the Label property of other ADF components also support EL expressions. These
EL expressions can retrieve the values of string keys defined in resource bundles or
the values of attribute control hints defined in your Fusion web application.

For more information about creating new styles and merging styles into a workbook,
see Excel's documentation.

10.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options
Some formats in the Date category of the Number styles that Excel can apply to cells
change if a user changes the locale of the local system using the Regional and

Working with Styles

Configuring the Appearance of Your Integrated Excel Workbook 10-3

http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/index.html

Language Options dialog that is accessible from the Microsoft Windows Control
Panel. The * character precedes these formats in the Type list. Figure 10-2 shows an
example of a Date type that formats dates in a cell using French (France) conventions.

Figure 10-2 French Date Formats in Excel

If the end user changes the regional options of a system to use English (United
States), as illustrated in Figure 10-3, the cells that are formatted with the style in
Figure 10-2 use the English (United States) conventions.

Figure 10-3 US English Date Formats in Excel

Note:

In order for Excel to properly format and manipulate date values with no time
component, the form or table attributes must use the java.sql.Date data
type in the application's model definition.

Working with Styles

10-4 Developing Applications with Oracle ADF Desktop Integration

10.2.3 How to Apply a Style to an Oracle ADF Component
To apply a style to an Oracle ADF component, use the property inspector to set values
for properties with StyleName in their name.

Before you begin:

It may be helpful to have an understanding of styles. For more information, see
Working with Styles.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook.

To apply a style:

1. In the integrated Excel workbook, select the cell that references the Oracle ADF
component you want to modify and then click the Edit Properties button in the
Oracle ADF tab.

2. Select the StyleName property and click the browse (...) icon to display the Edit
Expression dialog.

3. Expand the Styles node and select the style to apply to cell at runtime.

For example, apply an Output Text style to the Binding Warehouse ID output
text field.

4. Click Insert Into Expression to insert the selected style into the Expression field.

Figure 10-4 shows the Edit Expression dialog where we define the style for the
OutputText component that displays the Warehouse ID in the Summit sample
application's EditWarehouseInventory-DT.xlsx workbook.

Figure 10-4 Edit Expression Dialog Applying a Style

5. Click OK.

Working with Styles

Configuring the Appearance of Your Integrated Excel Workbook 10-5

10.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component
The EL expression that you entered as a value for the property with StyleName in its
name is evaluated at runtime. If it corresponds to one of the predefined styles or one
that you defined, the style is applied to the ADF component that you set the property
for.

If a style is applied to a cell that references an ADF component, the ADF component
overwrites that style at runtime with any property values (font, alignment, and so on)
defined by the style referenced by its StyleName property.

For example, Figure 10-5 shows the runtime appearance of the Warehouse ID field
defined by the Output Text style in the Summit sample application's
EditWarehouseInventory-DT.xlsx workbook.

Figure 10-5 Runtime Appearance of Component with Style Applied

10.3 Applying Styles Dynamically Using EL Expressions
Oracle ADF component properties that include StyleName in their name can take an EL
expression as a value. The EL expressions that you write can resolve to a named Excel
style at runtime that is applied to the ADF component. The EL expressions that you
write are Excel formulas that may include ADF data binding expressions.

The following examples show different contexts where you can use EL expressions to
determine the behavior and appearance of ADF components at runtime. Example 10-1
applies a style dynamically during download. If the status value for binding is
Closed, apply a read-only style (MyReadOnlyStyle). Otherwise apply another style
(MyReadWriteStyle).

Example 10-2 uses a mixture of Excel formulas and ADF binding expressions to
handle errors and type conversion. Example 10-3 demonstrates how to use a custom
attribute property to specify the style. For more information about custom attribute
properties, see Using ADF Desktop Integration EL-based Properties with Custom
Attribute Properties.

Example 10-1 Applying a Style Dynamically During Download

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Example 10-2 EL Expressions to Handle Errors and Type Conversion

=IF(ISERROR(VALUE("#{bindings.DealSize}")), "BlackStyle",
IF(VALUE("#{bindings.DealSize}") > 300, "RedStyle", "BlackStyle"))

Applying Styles Dynamically Using EL Expressions

10-6 Developing Applications with Oracle ADF Desktop Integration

Example 10-3 Using a Custom Attribute Property to Specify the Style

#{bindings.EmpCompView1.hints.EmployeeId.diCellStyle}

10.3.1 What Happens at Runtime: How an EL Expression Is Evaluated
When evaluating EL expressions at runtime, ADF Desktop Integration determines the
value that the EL expression references. It then replaces the EL expression in the Excel
formula with the value. In Example 10-1, ADF Desktop Integration first determines
that value of the binding expression, #{bindings.Status}, in the following Excel
formula:

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

It then replaces the binding expression with the runtime value, as in the following
example, where the expression evaluated to Closed:

=IF("Closed" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Excel evaluates the formula and, in this example, applies the MyReadOnlyStyle
style.

10.3.2 How to Write an EL Expression That Applies a Style at Runtime
You write EL expressions for the Oracle ADF component properties that support EL
expressions in the Edit Expression dialog that is accessible from the Oracle ADF
component's property inspector. Figure 10-6 displays an Edit Expression dialog
launched from the property inspector window of a ribbon command.

Figure 10-6 Edit Expression Dialog

Before you begin:

Applying Styles Dynamically Using EL Expressions

Configuring the Appearance of Your Integrated Excel Workbook 10-7

It may be helpful to have an understanding of how to apply styles dynamically. For
more information, see Applying Styles Dynamically Using EL Expressions.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook.

To write an EL expression that applies a style at runtime:

1. Open the integrated Excel workbook.

2. Select a cell in the Excel worksheet that references the Oracle ADF component for
which you want to write an EL expression.

3. Click the Edit Properties button in the Oracle ADF tab to display the property
inspector.

4. Select the property in the property inspector with which you want to associate an
EL expression and click the browse (...) icon to display the Edit Expression dialog.

Note:

The Edit Expression dialog appears only if the Oracle ADF component that
you selected in Step 2 supports EL expressions. Depending on the context, the
browse (...) icon can launch other editors such as the Edit Action dialog.

The Edit Expression dialog, as illustrated in Figure 10-6, displays a hierarchical list
of the Oracle ADF components, bindings, styles, resources, and Excel functions that
you can reference in EL expressions. For more information about the syntax of EL
expressions that you enter in this dialog, see ADF Desktop Integration EL
Expressions.

10.3.3 What You May Need to Know About EL Expressions That Apply Styles
Note the following points about EL expressions that apply styles:

• EL expressions that evaluate to styles are applied when:

– An ADF Table component invokes its Download or DownloadForInsert
actions

– Rows are inserted into an ADF Table component

– An action set invokes a worksheet DownSync action

• EL expressions that evaluate to styles are not applied when:

– A row-level action set invokes an ADF Table component RowDownSync action

– The end user edits the format properties of a cell

– An EL expression that evaluates to a style is not reevaluated when an end user
edits a cell's value.

– The runtime value of an EL expression does not match a style defined in the end
user's integrated Excel workbook

In this scenario the style formats of the targeted cells do not change. Instead,
they retain their existing style formats. If you configured client-side logging,

Applying Styles Dynamically Using EL Expressions

10-8 Developing Applications with Oracle ADF Desktop Integration

ADF Desktop Integration generates an entry in the log file when an EL
expression evaluates to a style that is not defined in the end user's integrated
Excel workbook. For more information about client-side logging, see Generating
Log Files for an Integrated Excel Workbook.

– When a user navigates between cells or during upload. ADF Desktop
Integration does not evaluate or apply styles during these end user actions.

• In Excel, given a workbook with various custom named styles, if you save a copy of
that workbook from Excel, Excel automatically (and silently) deletes any custom
named style that is not applied to any cell.

If you have styles that are only used in EL expressions and not applied to any cell,
Excel may delete them.

• The ADF Desktop Integration Publish feature creates a copy of the workbook.
Hence, unused styles can disappear. The workaround is to apply each style once to
an unused cell on an unused worksheet.

10.4 Using Labels in an Integrated Excel Workbook
Use labels to provide end users with information about how they use the functionality
in an integrated Excel workbook. You can write EL expressions that retrieve the value
of string keys defined in a resource bundle or that retrieve the values of attribute
control hints. An integrated Excel workbook evaluates the value of a Label property
only when the workbook is initialized.

10.4.1 Retrieving the Values of String Keys from a Resource Bundle
Figure 10-7 shows a portion of the design time view of the
EditWarehouseInventory-DT.xlsx workbook in the Summit sample application
for ADF Desktop Integration. It shows an ADF Label component that uses an EL
expressions to retrieve the value of its Label property.

Figure 10-7 Design Time View of an ADF Label Component and an ADF Input Text Component with
Label Property

At runtime, this EL expression resolves to a string key defined in the res resource
bundle that is registered with the Summit sample application for ADF Desktop
Integration. You define resource bundles in the workbook properties dialog. For
information about referencing string keys from a resource bundle, see Using Resource
Bundles in an Integrated Excel Workbook.

Figure 10-8 shows the corresponding runtime view of the ADF Label component
illustrated in design mode in Figure 10-7.

Using Labels in an Integrated Excel Workbook

Configuring the Appearance of Your Integrated Excel Workbook 10-9

Figure 10-8 Runtime View of an ADF Label Component

10.4.2 Retrieving the Values of Attribute Control Hints
In addition to string keys from resource bundles, the ADF Label component and the
Label property of other ADF components can reference attribute control hints that
you define for entity objects and view objects in your JDeveloper project. Figure 10-9
shows the expression builder for the Phone column in the EditCustomers-
DT.xlsx workbook's ADF Table component. The expression builder contains an EL
expression for the HeaderLabel property of the Phone column that retrieves the
value (Phone) defined for an attribute control hint at runtime.

Figure 10-9 EL Expression That Retrieves the Value of an Attribute Control Hint for
a Label Property

Attribute control hints can be configured for both view objects and entity objects.
Information about how to add an attribute control hint to an entity object can be found
in the "Defining Attribute Control Hints for Entity Objects" section of Developing Fusion
Web Applications with Oracle Application Development Framework. Information about how
to define a UI hint for a view object can be found in the "Defining UI Hints for View
Objects" section of Developing Fusion Web Applications with Oracle Application
Development Framework.

10.4.3 How an Integrated Excel Workbook Evaluates a Label Property
An integrated Excel workbook evaluates the Label properties of ADF components
when the workbook is initialized after the end user opens the workbook for the first

Using Labels in an Integrated Excel Workbook

10-10 Developing Applications with Oracle ADF Desktop Integration

time. The integrated Excel workbook saves the retrieved values for the Label
properties when the workbook itself is saved to a directory on the system.

The retrieved values for the Label properties do not get refreshed during invocation
of actions such as the worksheet's DownSync action or the ADF Table component's
Download action. You indirectly refresh the retrieved values of the Label properties
if you invoke the workbook actions ClearAllData or EditOptions described in
Table A-19.

10.5 Branding Your Integrated Excel Workbook
ADF Desktop Integration provides several features that you can configure to brand
your integrated Excel workbook with information such as application name, version
information, and copyright information. You can use the workbook BrandingItems
group of properties to associate this information with an integrated Excel workbook.
You must configure a ribbon tab as described in Configuring the Runtime Ribbon Tab
so that the end user can view this branding information by clicking a ribbon command
that invokes the ViewAboutDialog workbook action at runtime. For more
information about workbook actions, see Table A-19.

ADF Desktop Integration also provides a style (Branding Area) to assist you in
branding your integrated Excel workbooks. The ADF Desktop Integration sample
application applies this style to the first row of each of its sample workbooks. Used
with the ADF Image and ADF Output components, as demonstrated in Figure 10-10,
the style contributes to the consistent branding of the integrated Excel workbooks in
the sample application.

Figure 10-10 Branding Area in Sample Workbook

You can also define string keys in a resource bundle to define information, such as
titles, in one location that can then be used in multiple locations in an integrated Excel
workbook at runtime when EL expressions retrieve the values of these string keys. For
information about defining string keys, see Using Resource Bundles in an Integrated
Excel Workbook.

10.5.1 How to Brand an Integrated Excel Workbook
You define values for the workbook BrandingItems group of properties.

Before you begin:

It may be helpful to have an understanding of how to customize the brand of your
integrated Excel workbook. For more information, see Branding Your Integrated Excel
Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook.

Branding Your Integrated Excel Workbook

Configuring the Appearance of Your Integrated Excel Workbook 10-11

To brand an integrated Excel workbook:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the browse (...) icon beside the input
field for BrandingItems.

4. In the Edit BrandingItems dialog, click Add and specify values for the new element
as follows:

• Name

Specify the name, or the EL expression, of the branding item to define.

• Value

Specify a literal string or click the browse (...) icon to invoke the expression
builder and write an EL expression that retrieves a value at runtime.
BrandingItems must use literal strings or resource expressions, and must not
contain any binding expression.

Figure 10-11 shows the design time view of branding items in the Summit sample
application for ADF Desktop Integration.

Figure 10-11 Design Time View of Branding Items in the Summit Sample
Application for ADF Desktop Integration

5. Click OK.

Tip:

You may also add your brand's image or logo to the integrated Excel
spreadsheets. For more information about adding an image component, see
Inserting an ADF Image Component.

Branding Your Integrated Excel Workbook

10-12 Developing Applications with Oracle ADF Desktop Integration

10.5.2 What Happens at Runtime: the BrandingItems Group of Properties
At runtime, the name-value pairs that you define for the BrandingItems group of
properties appear in the About tab of the About dialog that the end user invokes using
the About ribbon command of the runtime ribbon tab. You configure the runtime
ribbon tab to appear, as described in Configuring the Runtime Ribbon Tab. Figure
10-12 shows the runtime view of branding items in an integrated Excel workbook.

Figure 10-12 Runtime View of Branding Items in the Summit Sample Application for
ADF Desktop Integration

Note:

No About tab appears in the About dialog at runtime if you do not specify
properties for the BrandingItems group of workbook properties.

10.6 Displaying Tooltips in ADF Desktop Integration Components
You can use tooltips to display a hint or instruction text for ADF Desktop Integration
components and table column headers. The tooltip appears in the Comment window
of the cell that anchors the component or in the column header cell in the case of table
column headers.

Tooltips can be defined as literal strings or EL expressions. You enter the literal string
in the Tooltip property of the component or the column. You can also specify the EL
expression (including a resource expression) as a value for the Tooltip property. At
runtime, the EL expression resolves to the tooltip to display.

Displaying Tooltips in ADF Desktop Integration Components

Configuring the Appearance of Your Integrated Excel Workbook 10-13

Note:

ADF Desktop Integration also supports toolTip attribute control hint in EL
expressions. The support is similar to the mandatory control hint described
in Table B-3 of ADF Desktop Integration EL Expressions.

If you create a component from a binding element, the tooltip is automatically set to
the model-driven tooltip, otherwise it is empty. Note that the tooltip is always initially
empty for the ADF Label component. For table column headers, the default value that
it renders is the value of the Fusion web application's attribute control Tooltip
property, as shown in Figure 10-13, if you created the ADF Table component from a
tree binding. The Special columns (Changed, Flagged, Status) are an exception. By
default, they do not render a tooltip.

Attribute control hints can be configured for view objects. Information about how to
define a UI hint for a view object can be found in the "Defining UI Hints for View
Objects" section of Developing Fusion Web Applications with Oracle Application
Development Framework. For information about how to retrieve the value of an attribute
control hint in an integrated Excel workbook, see Retrieving the Values of Attribute
Control Hints.

For more information, see How to Add a Tool Tip to an ADF Table Component and
How to Add a Tool Tip to a Form-Type Component.

Figure 10-13 Attribute Control Hint Tooltip that Renders Tooltip in ADF Table Column Header

Displaying Tooltips in ADF Desktop Integration Components

10-14 Developing Applications with Oracle ADF Desktop Integration

Note:

In Figure 10-13, notice the small red arrow at the top-right of the Zip Code
column header cell in the EditCustomers-DT.xlsx workbook. It indicates
that the header cell has a comment. Hover your mouse pointer over the cell to
see the tooltip message.

10.6.1 How to Add a Tool Tip to an ADF Table Component
You configure the Tooltip property of the column in the ADF Table component that
you want to render a tooltip.

Before you begin:

It may be helpful to have an understanding of tooltips. For more information, see
Displaying Tooltips in ADF Desktop Integration Components.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook.

To add a tooltip to a table column header:

1. Open the integrated Excel workbook.

2. If the Table-type component has already been inserted in the Excel worksheet, click
any cell of the table, and click Edit Properties in the Oracle ADF tab.

To insert a Table-type to the worksheet, select the cell where you want to anchor
the component. In the components palette or the bindings palette, select the Table-
type component or the binding, and click Insert Component or Insert Binding.

3. In the Edit Component: ADF Table dialog, expand the Columns property. Click the
browse (...) icon of the Tooltip property of the desired column, and enter the
tooltip message. You can enter a literal string or an EL expression.

Figure 10-14 shows the tooltip EL expression for the ADF Table column header in
the Summit sample application's EditCustomers-DT.xlsx workbook that
renders the runtime tooltip shown in Figure 10-13.

Displaying Tooltips in ADF Desktop Integration Components

Configuring the Appearance of Your Integrated Excel Workbook 10-15

Figure 10-14 Tooltip for ADF Table Column Header at Design-time

4. Click OK.

10.6.2 How to Add a Tool Tip to a Form-Type Component
You configure the Tooltip property of component that you want to render a tooltip.

Before you begin:

It may be helpful to have an understanding of tooltips. For more information, see
Displaying Tooltips in ADF Desktop Integration Components.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook.

To add a tooltip to an inserted form-type component:

1. Open the integrated Excel workbook.

2. If the form-type component has already been inserted in the Excel worksheet, select
the component, and click Edit Properties in the Oracle ADF tab.

To insert a component to the worksheet, select the cell where you want to anchor
the component. In the components palette or the bindings palette, select the form-
type component or the binding, and click Insert Component or Insert Binding.

3. In the Property Inspector, click the browse (...) icon of the Tooltip property, and
enter the tooltip message.

If a component is created from a binding element, the Tooltip property would be
set to the model-driven tooltip. If required, you can configure and change the
tooltip message or the EL expression. The property would be empty if the
component is not created from a binding element.

Figure 10-15 shows the Tooltip property of an Input Text component.

Displaying Tooltips in ADF Desktop Integration Components

10-16 Developing Applications with Oracle ADF Desktop Integration

Figure 10-15 Tooltip Property of Input Text Component

4. Click OK.

Figure 10-16 shows the tooltip message at the runtime. Notice the small red arrow at
the top-right of the Input Text component. It indicates the component, or the cell, has a
comment. Hover mouse pointer over the component to see the tooltip message.

Figure 10-16 Tooltip Message of Input Text Component at Runtime

10.6.2.1 What You May Need to Know About Tooltips for Form-Type Components

The tooltips are rendered once only, and are not updated after a call to
Worksheet.DownSync.

Any Excel comment added manually at design time to a cell (or merged area)
containing an ADF component is removed at runtime and replaced by the ADF
component's tooltip. Similarly, any Excel comment added manually to an ADF
component's cell during test mode is removed when the integrated Excel workbook
returns to design-time mode. Excel comments added to cells with no ADF
components, or to ADF components that do not support tooltips remain unchanged.

At runtime, if the Tooltip property is non-empty, the expression is evaluated and
the resulting text is trimmed of whitespace. If the final value is non-empty, it is
inserted into the target cell as an Excel comment.

When a component is positioned on a merged range of cells, the tooltip appears on the
top-right corner of the merged range.

You can also add tooltips to table columns (see What You May Need to Know About
Tooltips for Table Columns) and Worksheet Ribbon commands (see How to Configure
a Worksheet Ribbon Command for the Runtime Ribbon Tab).

Displaying Tooltips in ADF Desktop Integration Components

Configuring the Appearance of Your Integrated Excel Workbook 10-17

Note:

• Tooltips are not editable in a protected worksheet.

• Ribbon command tooltips have a maximum size of 1024 characters. If a
tooltip value exceeds that limit, only the first 1024 characters are shown.

• If Excel Comments are disabled, tooltips for form components and table
headers are not rendered.

• Extensive usage of tooltips may impact runtime performance.

10.6.3 What You May Need to Know About Tooltips for Table Columns
The tooltips for column headers are evaluated and rendered when the table column
headers are rendered including first time table initialization, Table.Initialize,
and Table.Download actions.

If the Tooltip property of a column is set to a non-empty EL expression, the text that
the EL expression evaluates to is trimmed of whitespace, and inserted into the target
cell as an Excel comment.

To get a unique tooltip for each expanded dynamic column at runtime, enter the
expression in the following syntax in the ToolTip property:

#{bindings.<TreeID>.hints.*.tooltip}

At runtime, the dynamic column expands to the available set of attributes in the
specified tree or the node. ADF Desktop Integration also retrieves the corresponding
tooltip values and applies each one to the appropriate column using the rules
described above.

For more information about tooltips, see What You May Need to Know About
Tooltips for Form-Type Components. You can also add tooltips to the headers of
special columns of the table components (see Special Columns in the ADF Table
Component) and the dynamic columns (see Adding a Dynamic Column to Your ADF
Table Component)

10.7 Using Worksheet Protection
By default, end users can edit the values of locked cells and ADF Desktop Integration
components that have implied read-only behavior, such as ADF Label, ADF Output
Text and ADF Table component's header rows, at runtime. While uploading data,
ADF Desktop Integration ignores these changes and overwrites them when it next
refreshes the component.

Various ADF Desktop Integration components, (for example, ADF InputText
component) and subcomponents (for example, ModelDrivenColumnComponent
subcomponent) include a ReadOnly property.

To prevent editing of locked cells at runtime, enable ADF Desktop Integration
worksheet protection. Optionally, you can also provide a password to prevent the end
user from turning off worksheet protection.

Do not use the Excel's Protect Sheet or Protect Workbook features directly in an
integrated Excel workbook. Also, ensure that end users do not use these features.

Using Worksheet Protection

10-18 Developing Applications with Oracle ADF Desktop Integration

10.7.1 How to Enable Worksheet Protection
Worksheet protection enables true read-only mode for locked and read-only cells, and
prevents any editing at runtime.

Before you begin:

It may be helpful to have an understanding worksheet protection. For more
information, see Using Worksheet Protection.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook.

To enable Worksheet Protection:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, expand the Protection property and
configure values as follows:

• To enable worksheet protection at runtime, set the Mode to Automatic.

• If desired, provide a value in the Password field. The end user cannot turn off
sheet protection at runtime without knowing this value.

Note that the password is not encrypted and that the maximum password
length allowed by Excel is 255 characters. If you specify a longer password, it
will be truncated silently at runtime when sheet protection is toggled.

Figure 10-17 shows the design time view of worksheet protection in the Summit
sample application for ADF Desktop Integration.

Figure 10-17 Design Time View of Worksheet Protection in the Summit Sample
Application for ADF Desktop Integration

4. Click OK.

10.7.2 What Happens at Runtime: How the Locked Property Works
At runtime, if the end user tries to edit a read-only cell or a ADF Desktop Integration
read-only component, Excel displays the warning message, as shown in Figure 10-18.

Using Worksheet Protection

Configuring the Appearance of Your Integrated Excel Workbook 10-19

Figure 10-18 Worksheet Protection Warning at Runtime

When worksheet protection is enabled, ADF Desktop Integration controls the Locked
property for cells that are within the bounds of ADF Desktop Integration components.
ADF Desktop Integration does not alter the Locked property of cells outside the
bounds of ADF Desktop Integration components.

At runtime, ADF Desktop Integration evaluates the read-only behavior of its
components. Some components such as ADF Label and ADF Output Text, are always
read-only, and other components, such as ADF Input Text, have a read-only property.
At runtime, the Locked property is set to true when read-only for the component
evaluates to true. The header labels of ADF Table components are always read-only,
but column subcomponents may or may not be read-only depending on their
configuration. At runtime, each component's read-only behavior is evaluated and the
corresponding cell's Locked property is set to the appropriate value.

10.7.3 What You May Need to Know About Worksheet Protection
Worksheet protection is not enabled by default. You enable it at design time if you
want to use it for a particular worksheet. Also, after worksheet protection is enabled,
the Locked property for cells is set at runtime.

It is important to note that the password used for worksheet protection is itself not
encrypted or stored in a safe location. Worksheet protection is used to improve
worksheet usability, not to protect sensitive data.

After worksheet protection is enabled, Excel behaves differently. Here are some
differences that you can expect:

• The ADF Table components cannot be sorted, as they include read-only cells in the
Key column.

• The end user can insert a full row or column. However, once inserted, they cannot
be deleted.

• The end user cannot insert partial rows or columns.

10.8 Using ADF Desktop Integration EL-based Properties with Custom
Attribute Properties

You can use custom attribute properties defined in view objects on the server with
ADF Desktop Integration EL-based properties of the integrated Excel workbook. By
default, ADF Desktop Integration EL evaluation does not support custom attribute
properties defined on the server.

To enable the support, you must set the
Worksheet.CustomAttributePropertiesEnabled property to True.

Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties

10-20 Developing Applications with Oracle ADF Desktop Integration

After enabling the support, you can reference custom attribute property names in EL-
based property values.

10.8.1 How to Enable Custom Attribute Properties in Integrated Excel Workbook
Before you enable custom attribute properties, configure one (or more) custom
attribute properties in your Fusion web application. For more information about how
to define a UI hint for a view object, see the "Defining UI Hints for View Objects"
section of Developing Fusion Web Applications with Oracle Application Development
Framework.

To enable custom attribute properties in integrated Excel workbook:

1. Open the integrated Excel Workbook.

2. In the Oracle ADF tab, click Worksheet Properties.

3. Set CustomAttributePropertiesEnabled to True.

4. Click OK.

After setting CustomAttributePropertiesEnabled to True, you can reference
custom attribute properties within EL expressions using one of the following formats:

• For attribute hint, use this format: "#{bindings.{attr id}.hints.{custom
property}}"

• For tree attribute hint, use this format: "#{bindings.{tree id}.hints.{attr
id}.{custom property}}"

• For dynamic column hint, use this format: "#{bindings.{tree id}.[{node
id}].hints.*.{custom property}}"

In the following examples, diCellStyle is a custom attribute property that the
developer added to the relevant model attribute:

• static column example:
#{bindings.EmpCompView1.hints.EmployeeId.diCellStyle}

• dynamic column example: #{bindings.EmpCompDeclSqlView1.
[model.EmpCompDeclSqlView].hints.*.diCellStyle}

10.8.2 What Happens at Runtime: CustomAttributePropertiesEnabled is Set to True
When a worksheet's CustomAttributePropertiesEnabled is set to True, ADF
Desktop Integration EL-based properties start evaluating custom attribute property
values returned from the server.

Tip:

For best performance, whenever possible, ensure that the custom property
value should be a literal value (for example: an Excel style name).

10.8.3 What You May Need to Know About the CustomAttributePropertiesEnabled
Property

Note the following points about the CustomAttributePropertiesEnabled
property and its behavior:

Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties

Configuring the Appearance of Your Integrated Excel Workbook 10-21

• Custom property names are case-sensitive.

• If the custom property value is itself an EL expression (rather than a literal value),
the returned property value gets re-evaluated as EL.

Note: If the custom property value is an EL expression evaluated for a
column's ReadOnly property, see Evaluating EL Expressions for ReadOnly
Properties for information about evaluating this EL expression.

• EL re-evaluation does not apply to standard attribute hint values.

• When CustomAttributePropertiesEnabled is True, configuration validation
does not report a validation error for custom property names in EL.

When CustomAttributePropertiesEnabled is False, configuration
validation does report a validation error for custom property names in EL.

• If a custom property name matches a reserved hint name (for example, label), the
custom property is ignored.

Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties

10-22 Developing Applications with Oracle ADF Desktop Integration

11
Internationalizing Your Integrated Excel

Workbook

This chapter describes internationalization issues to consider when developing an
integrated Excel workbook, how to use resource bundles, and how to localize the
integrated Excel workbook.

This chapter includes the following sections:

• About Internationalizing Your Integrated Excel Workbook

• Using Resource Bundles in an Integrated Excel Workbook

• Localization in ADF Desktop Integration

11.1 About Internationalizing Your Integrated Excel Workbook
ADF Desktop Integration provides several features that allow you to deliver
integrated Excel workbooks as part of an internationalized Fusion web application.
One of the principal features is the use of resource bundles to manage the localization
of user-visible strings that appear in Oracle ADF components at runtime.

Note the following points about internationalization and localization in an integrated
Excel workbook:

• Internationalized Data

ADF Desktop Integration supports both single- and double-byte character sets. It
marshals data transmitted between an Excel worksheet and a Fusion web
application into XML payloads. These XML payloads use UTF-8 encoding with
dates, times, and numbers in canonical formats.

• Locale

The locale of the system where the Excel workbook is used determines the format
for dates, times, and numbers. These settings (formats and the locale of the system)
may differ from the settings used by the Fusion web application. ADF Desktop
Integration does not attempt to synchronize these settings, but it ensures that the
data retains its integrity. ADF Desktop Integration does not provide a mechanism
for end users to change the language or display settings of the Oracle ADF
components in an integrated Excel workbook at runtime.

When configuring or applying styles to ADF components in an integrated Excel
workbook, configure or choose styles that are locale-sensitive. For more
information, see Working with Styles.

For more information about internationalizing Fusion web applications, see the
"Internationalizing and Localizing Pages" chapter in Developing Web User Interfaces with
Oracle ADF Faces.

Internationalizing Your Integrated Excel Workbook 11-1

11.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples
You can create integrated Excel workbooks for your internationalized Fusion web
application. Designing your integrated Excel workbook as part of the internationalized
Fusion web application helps in its easy adaptation to specific local languages and
cultures. Using resource bundles, you can configure your integrated Excel workbook
for a specific local language or culture by providing translations of the user-visible
strings that appear to end users at runtime. For more information, see Localization in
ADF Desktop Integration.

Figure 11-1 shows an example of an integrated Excel workbook configured for the
Japanese language.

Figure 11-1 Integrated Excel Workbook in Japanese

11.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook
After you have internationalized your integrated Excel workbook, you may find that
you need to add additional functionality to configure your workbook. The following
sections describe other functionality that you can use:

• Security: Whether you are using a secure Fusion web application or not, you must
be aware of security implementations in your integrated Excel workbook. For more
information, see Securing Your Integrated Excel Workbook.

• Validating integrated Excel workbook: You can configure server-side and client-
side data entry validation for the Fusion web application and the integrated Excel
workbook. For more information, see Adding Validation to Your Integrated Excel
Workbook .

• Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Deploying Your Integrated Excel Workbook .

11.2 Using Resource Bundles in an Integrated Excel Workbook
ADF Desktop Integration uses resource bundles to manage user-visible strings that
appear in the ADF components of an integrated Excel workbook at design time and

Using Resource Bundles in an Integrated Excel Workbook

11-2 Developing Applications with Oracle ADF Desktop Integration

runtime. You can use JDeveloper to create and manage resource bundles in your
Fusion web application.

You can register multiple resource bundles with an integrated Excel workbook. At
runtime, ADF Desktop Integration downloads only those string key values that the
integrated Excel workbook uses from registered resource bundles during workbook
initialization. Assume, for example, that you register resource bundle A with an
integrated Excel workbook that references three string key values from resource
bundle A. During workbook initialization, ADF Desktop Integration downloads the
three string key values that the workbook references from resource bundle A.

Note:

If you register more than 20 resource bundles with an integrated Excel
workbook, ADF Desktop Integration logs a warning message. For information
about client-side logging, see About Client-Side Logging.

The Resources workbook property specifies what resource bundles an integrated
Excel workbook can use. This property specifies an array of resource bundles
(Resources list) in the integrated Excel workbook. Each element in the array has a
property that uniquely identifies a resource bundle (Alias) and a property that
identifies the path to the resource bundle in the JDeveloper desktop integration project
(Class). For example, EditCustomers-DT.xlsx in the Summit sample application
for ADF Desktop Integration references the res resource bundle that has the
following value for the Class property:

oracle.summitdi.resources.UIResources

More information about the Resources workbook property can be found in
Workbook Actions and Properties.

By default, ADF Desktop Integration provides a reserved resource bundle that supplies
string key values used by many component properties at runtime. ADF Desktop
Integration uses the value _ADFDIres to uniquely identify this resource bundle.
Many EL expressions reference string values in this resource bundle.

11.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
You register a resource bundle by adding an element to the Resources list using the
Edit Resources dialog.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more
information, see Using Resource Bundles in an Integrated Excel Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Internationalizing Integrated Excel Workbook.

To register a resource bundle:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the browse (...) icon beside the input
field for Resources to display the Edit Resources dialog shown in Figure 11-2.

Using Resource Bundles in an Integrated Excel Workbook

Internationalizing Your Integrated Excel Workbook 11-3

Figure 11-2 Edit Resources Dialog

4. Specify values for the resource bundle and then click OK.

For information about the values to specify for a resource bundle, see the entry for
Resources in Table A-20.

Tip:

While registering a resource bundle class, do not include the file extension.

11.2.2 How to Override Resources That Are Not Configurable
The overridable resources contains several user-visible runtime strings that you cannot
replace by configuring the properties of the ADF Desktop Integration components.
Examples include the strings that appear in the default upload dialog illustrated in
Figure 7-11.

To replace these user-visible runtime strings, you create a resource bundle in your
Fusion web application that contains the string keys from the overridable resource that
ADF Desktop Integration supports. String Keys in the Overridable Resources lists
these string keys. You define values for the string keys listed in String Keys in the
Overridable Resources to override in the resource bundle you create.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more
information, see Using Resource Bundles in an Integrated Excel Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Internationalizing Integrated Excel Workbook.

To override resources that are not configurable:

1. Create a resource bundle in your Fusion web application.

Using Resource Bundles in an Integrated Excel Workbook

11-4 Developing Applications with Oracle ADF Desktop Integration

For information about creating a resource bundle, see the "Manually Defining
Resource Bundles and Locales" section in Developing Web User Interfaces with Oracle
ADF Faces.

2. Define the string key values you want to appear at runtime in the resource bundle
for the string keys listed in String Keys in the Overridable Resources.

3. Set _ADFDIres as the value of the Alias property when you register the resource
bundle you created in Step 1.

For information about how to register a resource bundle, see How to Register a
Resource Bundle in an Integrated Excel Workbook.

Table E-1 describes the string keys in the overridable resources that ADF Desktop
Integration supports. Supply an alternative value to the value listed in the English
value column for each string key in the overridable resource. Note that override
resources should not be used in component properties, they are only intended for the
original usages.

11.2.3 What Happens at Runtime: Override Resources That Are Not Configurable
ADF Desktop Integration retrieves the values of string keys listed in Table E-1 that you
defined in the resource bundle you created. It retrieves the values of other string keys
that you did not define in the resource bundle you created from the reserved resource
bundle.

11.2.4 What You May Need to Know About Resource Bundles
See the following sections for additional information about resource bundles in an
integrated Excel workbook.

Resource Bundle Types

ADF Desktop Integration supports use of the following types of resource bundle:

• Properties bundle (.properties)

• List resource bundle (.rts)

• Xliff resource bundle (.xlf)

For more information about resource bundles, see the "Manually Defining Resource
Bundles and Locales" section in Developing Web User Interfaces with Oracle ADF Faces.

Caching of Resource Bundles in an Integrated Excel Workbook

ADF Desktop Integration caches the values of string keys from the resource bundles
that an integrated Excel workbook retrieves when it first connects to the Fusion web
application. If you change a string key value in a resource bundle after an integrated
Excel workbook has cached the previous value, the modified value does not appear in
the workbook unless the ClearAllData workbook action is invoked and the end
user closes and reopens the workbook so that it retrieves the modified value from the
Fusion web application. For more information about the ClearAllData workbook
action, see Table A-19.

EL Expression Syntax for Resource Bundles

ADF Desktop Integration requires that you enclose the string key name in EL
expressions using the [] characters, as in the following example:

#{res['StringKey']}

Using Resource Bundles in an Integrated Excel Workbook

Internationalizing Your Integrated Excel Workbook 11-5

Note that ADF Desktop Integration does not support the following syntax:

#{res.StringKey}

11.3 Localization in ADF Desktop Integration
ADF Desktop Integration integrates several diverse sets of technologies. Each of these
technologies provides various options for controlling the choice of natural human
language when you localize your Fusion web application.

When the end user interacts with an integrated Excel workbook, various elements are
involved. Each of these elements has its own set of supported languages and resource
translations. In such a scenario, the translation of language is the responsibility of the
respective publisher.

Table 11-1 presents a summary of elements involved and their role in translation:

Table 11-1 Summary of Localization

Area subject to
localization

Determination of language to use

Microsoft operating system Operating system language settings. You can choose the
language through Regional Settings on Control Panel.

Microsoft Office Microsoft Office language settings

Web pages displayed in
ADF Desktop Integration
Dialog actions

Usually controlled by Microsoft Internet Explorer's Language
Preferences.

ADF Desktop Integration
client resources

Microsoft Office language settings

ADF Desktop Integration
server resources

Microsoft Internet Explorer language preferences

ADF Desktop Integration
custom resource bundles

Microsoft Internet Explorer language preferences

Figure 11-3 illustrates how various elements involved in a Fusion web application play
their role in translation.

Localization in ADF Desktop Integration

11-6 Developing Applications with Oracle ADF Desktop Integration

Figure 11-3 Localization in ADF Desktop Integration

For more information about localization in ADF Desktop Integration, see the "Oracle
ADF Desktop Integration Localization whitepaper" on OTN at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/
index-085534.html

11.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings
The server-side localization comprises of ADF Desktop Integration server resources
and Application Custom Resources. By default, ADF Desktop Integration uses the
client-side Internet Explorer's language preference to determine server-side
localization, but you can configure the Fusion web application to determine the server-
side locale. To do that, you would need to create a user preference handler and
register it by adding a UserPreferences.Handler initialization parameter for ADF
Desktop Integration servlet.

11.3.1.1 How to Create a User Preference Handler

To create a user preference handler, create a public java class with a public method of
java.util.Locale getLocale() signature that determines the ADF Desktop
Integration server-side resources locale and returns the locale as a
java.util.Locale object.

Example 11-1 shows a sample implementation of a user preference handler.

Note:

The handler class must have a constructor with no arguments, or uses the
default Java constructor.

Example 11-1 Implementation of a User Preference Handler

public class CustomUserPrefsHandler
{

Localization in ADF Desktop Integration

Internationalizing Your Integrated Excel Workbook 11-7

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html

 public Locale getLocale ()
 {
 UserPref info = (UserPref)
 ADFContext.getCurrent().getSessionScope().map.get("User_Pref_Info");
 return info.getLocale();
 }
}

11.3.1.2 How to Register the User Preference Handler

To register a user preference handler, add the UserPreferences.Handler
initialization parameter for ADF Desktop Integration in web.xml.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more
information, see Localization in ADF Desktop Integration.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Internationalizing Integrated Excel Workbook.

To register a User Preference Handler:

1. Open the web.xml file of your Fusion web application.

2. Add an initialization parameter to configure the user preference handler, as
described in Table 11-2.

Table 11-2 Configuring Locale User Preference

Property Value

Name Enter the name of the initialization parameter as follows

UserPreferences.Handler

Value Complete path of the handler class.

3. Save the web.xml file.

4. Rebuild and restart your Fusion web application.

Example 11-2 web.xml File With UserPreferences.Handler

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>
 oracle.adf.desktopintegration.servlet.DIRemoteServlet
 </servlet-class>
 <init-param>
 <param-name>UserPreferences.Handler</param-name>
 <param-value>myCompany.XYZ.CustomUserPrefsHandler</param-value>
 </init-param>
</servlet>

Example 11-2 shows the web.xml file with UserPreferences.Handler.

In Example 11-2, myCompany.XYZ.CustomUserPrefsHandler is the complete path
of the handler class.

Localization in ADF Desktop Integration

11-8 Developing Applications with Oracle ADF Desktop Integration

12
Securing Your Integrated Excel Workbook

This chapter describes security related features in ADF Desktop Integration.

This chapter includes the following sections:

• About Security In Your Integrated Excel Workbook

• Authenticating the Excel Workbook User

• Checking the Integrity of an Integrated Excel Workbook's Metadata

• What You May Need to Know About Securing an Integrated Excel Workbook

• Authorizing the Excel Workbook User

12.1 About Security In Your Integrated Excel Workbook
If you are using a Fusion web application that does not enforce authentication, the
integrated Excel workbook verifies and creates a valid user session when it connects to
the Fusion web application before downloading any data. The session that is
established is used for each and every data transfer between the integrated Excel
workbook and Fusion web application. The session is also used for web pages
displayed from the integrated Excel workbook.

In a Fusion web application that is enforcing authentication, the integrated Excel
workbook ensures that a valid, authenticated user session is established before
transferring data to or from the web application.

For both authenticated and non-authenticated Fusion web applications, ADF Desktop
Integration relies on the establishment of cookie-based sessions. With no
authentication mechanism in place, your Fusion web application is not completely
safe. Hence, you should enable ADF Security in your Fusion web application before
you deploy your web application with integrated Excel workbooks. For information
about ADF Security, see the "Enabling ADF Security in a Fusion Web Application"
chapter in Developing Fusion Web Applications with Oracle Application Development
Framework.

When you open the integrated Excel workbook, ADF Desktop Integration detects if
the Fusion web application that the workbook runs against is a secure application and
enforces authentication automatically. For authenticated web applications, the end
user will always be prompted for credentials, even though the workbooks are
downloaded from an authenticated web browser. Since the web browser and Excel are
different operating system processes, they cannot share credentials (unless some form
of Integrated Windows Authentication is used, such as Kerberos or NTLM). For more
information about Microsoft Kerberos, see http://msdn.microsoft.com/en-us/
library/aa378747%28v=vs.85%29.aspx.

Securing Your Integrated Excel Workbook 12-1

http://msdn.microsoft.com/en-us/library/aa378747%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa378747%28v=vs.85%29.aspx

12.1.1 Integrated Excel Workbook Security Use Cases and Examples
When you open the integrated Excel workbook of a secure Fusion web application, a
connection confirmation dialog appears and prompts you to connect to the Fusion
web application, as shown in Figure 12-1. Note that the connection confirmation
dialog also appears when the Fusion web application is not secure.

Figure 12-1 Dialog to Verify Connection

If you click Yes to connect, another dialog appears that prompts you to enter user
credentials. The dialog that appears depends on how the Fusion web application is
configured to enforce authentication. Figure 12-2, for example, shows the dialog that
appears when the Fusion web application enforces form-based login using Oracle
Access Management.

Figure 12-2 Form-Based Login Dialog

About Security In Your Integrated Excel Workbook

12-2 Developing Applications with Oracle ADF Desktop Integration

12.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web
Application

After you have secured your integrated Excel workbook, you may find that you need
to add additional functionality for your workbook. The following sections describe
other functionality that you can use:

• Validating integrated Excel workbook: You can configure server-side and client-
side data entry validation for the Fusion web application and the integrated Excel
workbook. For more information, see Adding Validation to Your Integrated Excel
Workbook .

• Testing integrated Excel workbook: Before publishing and deploying your
integrated Excel workbook, you must test it. For more information, see Testing
Your Integrated Excel Workbook.

• Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Deploying Your Integrated Excel Workbook .

12.2 Authenticating the Excel Workbook User
The integration of an Excel workbook with a secure Fusion web application requires
an authenticated web session established between the integrated Excel workbook and
the server that hosts the Fusion web application. ADF Security determines the
mechanism used to authenticate the user.

If the end user opens an Excel workbook without a valid authenticated session, a login
mechanism is invoked to authenticate the end user.

12.2.1 What Happens at Runtime: How the Login Method Is Invoked
A modal dialog appears that contains a web browser control after the login method is
invoked. The web browser control displays whatever login mechanism the Fusion web
application uses. For example, if the Fusion web application uses HTTP Basic
Authentication, the web browser control displays the dialog shown in Figure 12-3. If
the end-user successfully logs in, a new session between the integrated Excel
workbook and the Fusion web application is created.

Authenticating the Excel Workbook User

Securing Your Integrated Excel Workbook 12-3

Figure 12-3 Dialog That Appears When a Fusion Web Application Uses Basic
Authentication

The end user enters user credentials and, assuming these are valid, an authenticated
session is created.

Note:

If the Login method is invoked when a session has already been established,
it first invokes the Logout action internally to terminate that session.

12.2.2 What Happens at Runtime: How the Web Application Session is Terminated
After the logout method is invoked, a dialog appears informing users that they have
logged out of the current session. The user is automatically logged out when the
workbook is closed, or when the Clear All Data option is selected from the runtime
custom tab in Excel ribbon.

Figure 12-4 Dialog That Appears When a User Logs Out

After logging out, the end user may continue to work with data in the spreadsheet.
When the end user next attempts to interact with the server (for example, invoke an
Upload action), the end user will be prompted to log in again.

If two or more workbooks are open (in test or runtime mode) and running against the
same Fusion web application, closing one workbook does not initiate the logout
mechanism. The user continues to stay logged in and may continue to work on
remaining open workbooks, and can open the closed workbook without being asked
for credentials again. The user is logged out when all workbooks running against the
same Fusion web application are closed.

Authenticating the Excel Workbook User

12-4 Developing Applications with Oracle ADF Desktop Integration

12.3 Checking the Integrity of an Integrated Excel Workbook's Metadata
ADF Desktop Integration provides a mechanism to verify that the metadata it uses to
integrate an Excel workbook with a Fusion web application is not tampered with after
you publish the Excel workbook for end users. It generates a hash code value and
inserts the value into the ADF Desktop Integration client registry file (adfdi-
client-registry.xml) that it also creates when you publish the integrated Excel
workbook as described in Publishing Your Integrated Excel Workbook. ADF Desktop
Integration stores the adfdi-client-registry.xml file in the WEB-INF directory
of the Fusion web application.

If you republish the integrated Excel workbook, ADF Desktop Integration generates a
new hash code value and replaces the value in the adfdi-client-registry.xml
file. ADF Desktop Integration creates the adfdi-client-registry.xml file if it
does not exist.

The ApplicationHomeFolder and WebPagesFolder workbook properties allow
the integrated Excel workbook to identify the location of the Fusion web application's
WEB-INF directory. You must set valid values for these properties before you can
publish the integrated Excel workbook and ADF Desktop Integration can generate a
hash code value.

ADF Desktop Integration generates the hash code value using most of the elements in
the metadata for the workbook and the value of the WorkbookID workbook property.
The WorkbookID workbook property is read-only and uniquely identifies the
integrated Excel workbook. You must reset the WorkbookID workbook property if
you create a new integrated Excel workbook by copying an existing integrated Excel
workbook. ADF Desktop Integration excludes the WebAppRoot property from the
hash code calculation since its value is expected to change at runtime.

For more information about the workbook properties discussed here, see Table A-20.

Note:

Tamper-check is not performed for customization-enabled workbooks.

12.3.1 How to Reset the Workbook ID
The value of the WorkbookID workbook property is unique to each workbook and
cannot be modified by you. You can, however, reset the WorkbookID workbook
property. You must do this when you create a new integrated Excel workbook by
copying an existing integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of how to verify the integrity of integrated
Excel workbook's metadata. For more information, see Checking the Integrity of an
Integrated Excel Workbook's Metadata.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Integrated Excel Workbook in a Secure Fusion Web Application.

To reset a workbook ID:

1. Open the integrated Excel workbook.

Checking the Integrity of an Integrated Excel Workbook's Metadata

Securing Your Integrated Excel Workbook 12-5

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the Reset WorkbookID link.

4. Click Yes to confirm and reset the WorkbookID workbook property in the dialog
that appears., as shown in Figure 12-5.

Figure 12-5 Reset Workbook ID Dialog

5. Click OK.

12.3.2 What Happens When the Metadata Tamper-Check Is Performed
At runtime, the integrated Excel workbook regenerates the metadata hash code and
provides it to the Fusion web application with the first server request. If the Fusion
web application cannot get a match on this hash code, it returns an error to the
integrated Excel workbook. On receiving an error from the tamper check process, the
integrated Excel workbook reports this failure to the end user and closes the
integration framework.

12.4 What You May Need to Know About Securing an Integrated Excel
Workbook

Note the following points about securing an integrated Excel workbook with a Fusion
web application:

• Data security

If you save an Excel workbook containing data downloaded from a Fusion web
application to a location, such as a network directory, where other users can access
the Excel workbook, the data stored in the Excel workbook is accessible to other
users.

• Security in Microsoft Excel

You can enhance the security of an integrated Excel workbook using Excel's
functionality to set a password on a workbook. It prevents unauthorized users

What You May Need to Know About Securing an Integrated Excel Workbook

12-6 Developing Applications with Oracle ADF Desktop Integration

from opening or modifying the workbook. For more information about Excel
security features, see Excel's documentation.

• Integrated Excel workbooks can be configured to cache data, as described in
Restore Server Data Context Between Sessions. Make sure that you do not cache
sensitive data in the integrated Excel workbook.

• If the Fusion web application is running on the https protocol, you may receive a
certificate error while connecting from an integrated Excel workbook. You can
either install the required certificate using Microsoft Internet Explorer, or choose to
continue to log in and connect to the web application.

• End users that download integrated Excel workbooks using Microsoft Internet
Explorer may be prompted unexpectedly for credentials before the Excel
application is visible, and then prompted again once the workbook opens. This
may occur when the web application is configured to use certain authentication
methods like Basic or Digest. The extra prompt is due to Excel making an
OPTIONS request on the web directory containing the workbook.

To avoid the extra login prompt, end users can choose to save the workbook locally
instead of opening it directly from the browser.

• For a non-authenticated Fusion web application, end-users will not be prompted to
log in. However if the application uses the https protocol, then end users may
briefly see a connection confirmation dialog appear when the first connection is
established to the web application. Workbook developers can control the size of the
dialog with the Workbook.Login.WindowSize property.

If you are an administrator, you should also see What You May Need to Know About
Configuring Security in a Fusion Web Application .

12.5 Authorizing the Excel Workbook User
ADF Desktop Integration enforces view permission for integrated Excel worksheets
through page definition authorization. At runtime, end users without proper
permissions for a page definition (binding container) are prevented from interacting
with the associated integrated Excel worksheet. Any attempt to interact with an
unauthorized binding container (for example, download or submit data) is aborted,
the end user is informed of the authorization failure, and all ADF Desktop Integration
activity on the worksheet is disabled. No further interaction with the ADF Desktop
Integration-disabled worksheet is possible until a new user session is established. To
allow end users to interact with the integrated Excel worksheet, assign them the roles
that have been granted access to the page definition.

You may need to review the resource grants for all of the page definitions that are
used with integrated Excel worksheets. For example, if your Fusion web application
supports authorization, and you have a page definition myWorksheetPageDef.xml
that has no resource grants and is used by one (or more) integrated Excel worksheets,
then you need to assign end users the roles that have been granted access to the page
definition. During early development, you may find it helpful to temporarily create
resource grants for the worksheet page definitions that are granted to authenticated-
role, or some other generic role, allowing you to run those worksheets while you fine
tune your roles and resource associations.

For more information about authorization, roles, and resource grants, see the
"Enabling ADF Security in a Fusion Web Application" chapter in Developing Fusion
Web Applications with Oracle Application Development Framework.

Authorizing the Excel Workbook User

Securing Your Integrated Excel Workbook 12-7

Note:

ADF Desktop Integration only enforces authorization for resource grants that
have the Web Page (page definition) resource type. Other resource types are
not supported.

You can configure resources and grants from the Resource Grants page of the
overview editor for the jazn-data.xml file. For more information, see the "Defining
ADF Security Policies" section in Developing Fusion Web Applications with Oracle
Application Development Framework.

On an authorization failure, the end user receives an error message, such as the
following, and ADF Desktop Integration in the worksheet is disabled:

ADFDI-05589 You are not authorized to use this worksheet for
interacting with the web application.

12.5.1 What You May Need to Know About ADF Desktop Integration-Disabled
Worksheet

The following limitations apply to an ADF Desktop Integration-disabled worksheet:

• All ADF buttons, worksheet-level ribbon commands, and worksheet-level events
are disabled.

• If the authorization failure occurs during worksheet initialization, no form labels,
table column headers, or buttons are drawn on the worksheet.

• If the authorization failure occurs for an initialized worksheet, all ADF buttons are
disabled, but other worksheet components (such as ADF Input Text and ADF
Table) are not affected and are left visually unchanged.

• End user can perform standard Excel interactions on the disabled worksheet. The
user may alter the data in an ADF Table component in the worksheet, but the
Changed column will not be updated.

• There is no impact on workbook-level commands. End users can continue to use
the following commands: Login, Logout, About, Edit Options, and Clear All Data.

An ADF Desktop Integration-disabled worksheet is automatically enabled when the
end user reopens the integrated Excel workbook and establishes a new session,
provided the new session is authorized. Logging out, and then logging in again, also
re-enables ADF Desktop Integration in a disabled integrated Excel worksheet.

Authorizing the Excel Workbook User

12-8 Developing Applications with Oracle ADF Desktop Integration

13
Adding Validation to Your Integrated Excel

Workbook

This chapter describes how to provide server-side and data entry validation for your
integrated Excel workbook, how to report errors such as validation failures and data
conflict, and how to configure error reports using custom error handler.

This chapter includes the following sections:

• About Adding Validation to an Integrated Excel Workbook

• Using the Status Viewer to Report Error Messages to End Users

• Providing Data Entry Validation for an Integrated Excel Workbook

• Providing Server-Side Validation for an Integrated Excel Workbook

• Providing a Row-by-Row Status on an ADF Table Component

• Adding Detail to Error Messages in an Integrated Excel Workbook

• Handling Data Conflicts When Uploading Data from a Workbook

13.1 About Adding Validation to an Integrated Excel Workbook
You configure server-side and data entry validation for the Fusion web application
and the integrated Excel workbook to make use of the validation options offered by
the ADF Model layer, ADF Desktop Integration, and Microsoft Excel. In addition to
these validation options, you can make use of components in ADF Desktop
Integration to return error messages from the Fusion web application, to provide
status on the results of component actions, and to manage errors that may occur when
data modification in an integrated Excel workbook conflicts with data hosted by the
Fusion web application.

Adding validation to your integrated Excel workbook gives you several benefits. You
can create validation rules in your Fusion web application and in your integrated
Excel workbook to validate data entry by the end user.

13.1.1 Integrated Excel Workbook Validation Use Cases and Examples
Validation rules protect the server by preventing the upload of invalid data. ADF
Desktop Integration provides both data entry validation and server-side validation
capabilities. Figure 13-1 shows an example of server-side validation from the Summit
sample application's EditCustomers-DT.xlsx workbook where an invalid zip code
(12345x) fails an entity validation rule. This failure appears in the Status Viewer entry
for the row that contains the invalid zip code.

Adding Validation to Your Integrated Excel Workbook 13-1

Figure 13-1 Status Viewer Displaying Entity Validation Rule Failure

Figure 13-2 shows an example of a data entry validation failure from the same
workbook where no value appears in a cell that requires a value.

Figure 13-2 Data Entry Validation Message

13.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook
After you have applied validation rules in your integrated Excel workbook, you may
find that you need to add additional functionality to configure your workbook. The
following sections describe other functionality that you can use:

• Testing integrated Excel workbook: Before publishing and deploying your
integrated Excel workbook, you must test it. For more information, see Testing
Your Integrated Excel Workbook.

• Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Deploying Your Integrated Excel Workbook .

13.2 Using the Status Viewer to Report Error Messages to End Users
The Status Viewer displays information to end users in Excel's task pane. End users
can use the information that appears to review and correct errors at the same time.
Information that the Status Viewer always displays includes the worksheet-level
status of the current integrated worksheet. In addition, if the worksheet includes an
ADF Table component and the currently selected cell is a row in the ADF Table
component, the Status Viewer displays the status of the row.

Using the Status Viewer to Report Error Messages to End Users

13-2 Developing Applications with Oracle ADF Desktop Integration

Information about the result of action set invocation also appears in the Status Viewer.
For example, an end user enters a value that violates a declarative validation rule in
the Fusion web application's ADF Model layer. When the end user attempts to upload
the change, a failure is reported for the failed row. In this scenario, the Status Viewer
appears and displays a message about the validation failure.

Figure 13-3 shows the Status Viewer that appears in the EditCustomers-DT.xlsx
workbook when an end user enters a zip code (12345x) that fails an entity validation
rule defined in the Fusion web application's ADF Model layer. Selecting a cell
anywhere in the table row that contains the validation failure causes the validation
failure message to appear in the Status Viewer. The worksheet-level status that
appears in the Status Viewer in Figure 13-3 indicates that the most recent action set
from this worksheet completed successfully.

Figure 13-3 Status Viewer

Integrated Excel workbooks that you create using this release of ADF Desktop
Integration display the Status Viewer ribbon command in the Excel ribbon by default,
as shown in Figure 13-4.

Figure 13-4 Status Viewer Ribbon Command in Excel Ribbon

End users click the Status Viewer ribbon command to display or hide the Status
Viewer in Excel's task pane. By default, the Status Viewer appears automatically when
integrated Excel workbooks encounter errors at runtime. You can configure this
behavior for integrated Excel workbooks created using earlier releases so that they
automatically display the Status Viewer when errors occur. For more information, see
How to Manage the Automatic Display of the Status Viewer.

You add the Status Viewer ribbon command to the Excel ribbon by adding the
ToggleStatusViewer workbook action, as described in How to Define a Workbook
Ribbon Command for the Runtime Ribbon Tab. For more information about workbook
actions, see Workbook Actions and Properties.

Although you add the Status Viewer ribbon command the Excel ribbon as a workbook
command, the Status Viewer is worksheet specific and displays information for the
integrated Excel worksheet that is in focus. If your end users navigate to a non-

Using the Status Viewer to Report Error Messages to End Users

Adding Validation to Your Integrated Excel Workbook 13-3

integrated worksheet and click the Status Viewer ribbon command, a message appears
that tells the end user the Status Viewer cannot be used in that worksheet.

13.2.1 How to Manage the Automatic Display of the Status Viewer
You set the value of the AutoDisplayStatusViewerEnabled workbook property
to True or False to manage the automatic display of the Status Viewer in Excel's task
pane.

Before you begin:

It may be helpful to have an understanding of the Status Viewer provided by ADF
Desktop Integration. For more information, see Using the Status Viewer to Report
Error Messages to End Users.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Validation to an Integrated Excel Workbook.

To manage the automatic display of the Status Viewer:

1. Open the integrated Excel workbook.

2. From the Excel Ribbon, in the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Behavior and set the
AutoDisplayStatusViewerEnabled property appropriately:

• True: Status Viewer automatically appears when an error occurs.

• False: End user must click the Status Viewer ribbon command in the Excel
ribbon to display the Status Viewer.

4. Click OK.

13.3 Providing Data Entry Validation for an Integrated Excel Workbook
ADF Desktop Integration automatically performs basic data entry validation after end
users modify cells bound to ADF components. Basic data entry validation includes
verifying the expected data type (for example, user entered a number for a numerical
attribute) and that required fields are not empty. ADF Desktop Integration performs
this validation as soon as end users leave the cell.

Metadata from the ADF Model layer is used to perform basic data entry validation. No
additional workbook configuration is needed. You can disable this validation using
the Compatibility.DataEntryValidationEnabled workbook properties
described in How to Enable or Disable ADF Desktop Integration Data Entry
Validation. ADF Desktop Integration enables basic data validation by default.

ADF Desktop Integration performs additional validation during upload. For more
information, see Providing Server-Side Validation for an Integrated Excel Workbook.

One other validation that ADF Desktop Integration performs is to reject Excel cell
error values that the integrated Excel workbook sends to the Fusion web application.
An example of an Excel cell error is the #DIV/0! error that occurs when a number is
divided either by zero (0) or by a cell that contains no value. Excel cell error values
return large negative numbers. The #DIV/0! error, for example, returns
-2146826281. ADF Desktop Integration rejects these values because they are
unlikely to be appropriate for upload and, in the absence of ADF Model layer data
validation, can be committed to the Fusion web application’s database.

Providing Data Entry Validation for an Integrated Excel Workbook

13-4 Developing Applications with Oracle ADF Desktop Integration

An ADF Table component displays an Update failed message in its Status column
when an ADF Table component performs an Upload, RowUpSync, or
RowUpSyncNoFail action on a row with a cell containing an Excel cell error value.
Similarly, a worksheet’s UpSync action fails to synchronize pending changes from
cells that contains Excel cell error values.

Apart from the #DIV/0! error, other error cell values that ADF Desktop Integration
rejects include #NULL!, #REF!, #N/A, #NAME?, #NUM!, and #VALUE! For more
information about Excel cell error values, see Microsoft's documentation.

You can enable an integrated Excel workbook to upload Excel cell error values to the
Fusion web application by having ADF Desktop Integration accept Excel cell error
values. You do this by setting the Workbook
Compatibility.RejectExcelErrorsEnabled property to False. The default
value is True for workbooks created using this release of ADF Desktop Integration.
For more information, see How to Upload Excel Cell Errors to the Fusion Web
Application.

13.3.1 Providing Data Entry Validation Using ADF Desktop Integration
ADF Desktop Integration performs data entry validation to verify that:

• Mandatory fields contain a value. ADF Desktop Integration reports a validation
failure if an Excel cell that contains an ADF component which requires a
mandatory value (for example, ADF Input Text component) is blank.

• The correct data type is entered. If, for example, you enter a string ("Bob") in an
input field where the required data type is a date or a number, ADF Desktop
Integration reports a validation failure.

ADF Desktop Integration performs the above types of validation without making a
request to the Fusion web application.

ADF Desktop Integration performs data entry validation on the ADF Input Text, ADF
Input Date and ADF Table components. It does not perform data entry validation on
read-only cells, label or headers cells, locked cells or cells in the columns described in
Special Columns in the ADF Table Component . It also does not perform data entry
validation on cells in the ADF Read-only Table or ADF List of Values components.

Data entry validation performed by ADF Desktop Integration identifies failures upon
editing a single cell or multiple cells (simultaneously). Examples of edits that span
multiple cells include a selection of a column in an ADF Table component or an end
user pasting one or more rows of data into in an ADF Table component. ADF Desktop
Integration performs data entry validation only after an end user edits a single cell or
multiple cells and leaves edit mode for the cell(s). If a validation failure occurs, ADF
Desktop Integration applies a red border to the cell that failed validation after the end
user exits edit mode by pressing Enter, tabbing away, or selecting a different cell.

Once ADF Desktop Integration reports a validation failure, the end user can view a
non-modal popup message by selecting the cell without entering edit mode. This non-
modal popup message describes the validation failure and may suggest an action to
resolve the validation failure. It remains visible as long as the end user selects the cell
and the validation failure is present. No non-modal popup message appears if end
users select multiple cells with validation failures. In ADF Table component cells, a
message also appears in the Status column to indicate that a row contains at least one
cell with a validation failure. ADF Table component actions such as Download and
Upload clear this latter message. The ADF Table component's Download action also
clears the red border around cells that contain validation failures. For more

Providing Data Entry Validation for an Integrated Excel Workbook

Adding Validation to Your Integrated Excel Workbook 13-5

information about the Status column, see Special Columns in the ADF Table
Component.

The Status Viewer displays a message for a row with cells that contain validation
failures. It displays this message ("Row contains invalid pending changes")
until the end user resolves the validation failures. In addition to data entry validation
errors, the Status Viewer might display other messages, such as failure messages from
the last Upload operation. For more information about the Status Viewer, see Using
the Status Viewer to Report Error Messages to End Users.

Figure 13-1 shows a cell with a data entry validation failure in the Summit sample
application's EditCustomers-DT.xlsx workbook. The end user has not entered a
value in an ADF Table component cell that requires a value. The non-modal popup
message and the Status Viewer both display information about this failure.

Figure 13-5 ADF Desktop Integration Data Entry Validation

ADF Desktop Integration applies a red border to a cell that fails validation until the
end user resolves the issue that causes the validation failure. If you or an end user set a
cell border to red, ADF Desktop Integration does not consider the cell invalid until a
validation error occurs (missing mandatory value, for example). To prevent visual
confusion for end users, avoid the use of red borders on cells in your integrated Excel
workbook so that its use is reserved to ADF Desktop Integration reporting validation
failures.

Validation failures do not prevent end users from continuing to edit or enter data in
the integrated Excel workbook nor does the presence of data entry validation failures
prevent the upload of data from the integrated Excel workbook.

Note:

If an end user modifies a large number of cells at the same time, data
validation can take a significant amount of time. In such cases, a progress bar
may appear to provide the end user with an indication of progress. If the end
user clicks Cancel, the validation stops at that point.

13.3.1.1 How to Enable or Disable ADF Desktop Integration Data Entry Validation

Integrated Excel workbooks enable ADF Desktop Integration data entry validation by
default. You enable or disable ADF Desktop Integration data entry validation by
configuring the DataEntryValidationEnabled workbook property, described in
ADF Desktop Integration Compatibility Properties.

Before you begin:

Providing Data Entry Validation for an Integrated Excel Workbook

13-6 Developing Applications with Oracle ADF Desktop Integration

It may be helpful to have an understanding of ADF Desktop Integration data entry
validation. For more information, see Providing Data Entry Validation Using ADF
Desktop Integration.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Validation to an Integrated Excel Workbook.

To enable or disable ADF Desktop Integration Data Entry Validation:

1. Open the integrated Excel workbook.

2. From the Excel Ribbon, in the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Behavior > Compatibility and set
the DataEntryValidationEnabled property appropriately:

• True: Enables ADF Desktop Integration data entry validation.

• False: Disables ADF Desktop Integration data entry validation.

4. Click OK.

13.3.2 Providing Data Validation Using Excel
You can use Excel's data validation features to control the type of data or the values
that end users enter into a cell. These features allow you to restrict data entry to a
certain range of dates, limit choices by using a list, or ensure that only positive whole
numbers are entered in a cell. For example, you could configure the ZipCode field in
the EditWarehouseInventory-DT.xlsx workbook so that users can enter only
whole numbers in the cells of this field.

If you apply custom validation to cells that render lists of values, the validation is
propagated when ADF Desktop Integration populates cells with lists of values at
runtime. Note, however, that ADF Desktop Integration overwrites at runtime any
custom validation applied for components with lists of values. This is because ADF
Desktop Integration applies its own list-constraint validation, which is invoked at
runtime. For more information about lists of values, see Working with Lists of Values .

For more information about data validation in Excel, see Excel's documentation.

13.3.3 How to Upload Excel Cell Errors to the Fusion Web Application
By default, ADF Desktop Integration rejects Excel cell error values that integrated
Excel workbooks send to the Fusion web application. As a result, you cannot
successfully upload these values from your integrated Excel workbook. You change
this default behavior by configuring the RejectExcelErrorsEnabled workbook
property.

The RejectExcelErrorsEnabled workbook property is one of a number of
properties that you can configure in integrated Excel workbooks if you want to use a
feature that was not available in ADF Desktop Integration when you originally created
your integrated Excel workbook. For more information, see ADF Desktop Integration
Compatibility Properties.

Before you begin:

It may be helpful to have an understanding of the data entry validation options that
you can provide for an integrated Excel workbook. For more information, see
Providing Data Entry Validation for an Integrated Excel Workbook.

Providing Data Entry Validation for an Integrated Excel Workbook

Adding Validation to Your Integrated Excel Workbook 13-7

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Adding Validation to an Integrated Excel Workbook.

To successfully upload Excel cell error values:

1. Open the integrated Excel workbook.

2. From the Excel Ribbon, in the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Behavior > Compatibility and set
the RejectExcelErrorsEnabled property appropriately:

• True: ADF Desktop Integration rejects the Excel cell error value so that it is not
committed to the Fusion web application's database. This is the default value.

• False: ADF Desktop Integration accepts the Excel cell error value and commits it
to the Fusion web application’s database if server-side data validation permits.

4. Click OK.

13.4 Providing Server-Side Validation for an Integrated Excel Workbook
ADF Desktop Integration uses the validation rules that the ADF Model layer sets for a
binding's attributes. Data that the end user enters or edits in one of the ADF Desktop
Integration components, such as the ADF Table component, can be validated against
set rules and conditions in the Fusion web application's ADF Model layer. For general
information about defining validation rules in Oracle ADF, see the "Defining
Validation and Business Rules Declaratively" chapter in Developing Fusion Web
Applications with Oracle Application Development Framework.

For information about adding ADF Model layer validation, see the "Defining
Validation Rules in the ADF Model Layer" section in Developing Fusion Web
Applications with Oracle Application Development Framework.

Note:

ADF Desktop Integration does not support server-side validation warnings.
Validation warnings, set for rules defined in the Fusion web application, are
not displayed by the integrated Excel workbook.

13.5 Providing a Row-by-Row Status on an ADF Table Component
The Status Viewer, described in Using the Status Viewer to Report Error Messages to
End Users, appears by default if errors occur during the attempted invocation of the
following ADF Table component actions:

• DeleteFlaggedRows

• Upload

• UploadAllOrNothing

• DoubleClickActionSet invoked from an ADF Table component's column

End users can view a status message in the Status Viewer for each row in the ADF
Table component by selecting a cell in the ADF Table component row that interests
them.

Providing Server-Side Validation for an Integrated Excel Workbook

13-8 Developing Applications with Oracle ADF Desktop Integration

In addition, the ADF Table component populates the _ADF_StatusColumn column
with the status for each row following the invocation of the ADF Table component
action. For example, it populates the _ADF_StatusColumn column with the upload
status for each row following the invocation of the ADF Table component's Upload
action.

Figure 13-6 shows rows in an ADF Table component where the values in those rows
have been changed, as indicated by the upward pointing arrows in the Changed
column. In the ZipCode column, a value 12345x has been entered in one row where
12345 or 12345-6789 is expected.

Figure 13-6 ADF Table Component with Changed Rows Before Upload

Figure 13-7 shows the same rows in the ADF Table component after invocation of the
ADF Table component's Upload action. The ADF Table component populates the
_ADF_StatusColumn column (labeled Status in this example at runtime) with a
message indicating whether the row updated successfully or not. If a row fails to
update, the Status Viewer appears automatically, as shown in Figure 13-7 and displays
a message describing why the row failed to update.

Note:

A number of columns have been hidden in order to display the Status Viewer
in Figure 13-7.

Figure 13-7 ADF Table Component with Changed Rows After Upload

By default, the _ADF_StatusColumn column's DoubleClickActionSet is
configured to invoke the ADF Table component's DisplayRowErrors action. When
end users double-click a row in this column at runtime, the ADF Table component
invokes the DisplayRowErrors action. This action displays a dialog with a list of
errors for that row if errors exist. If no errors exist, the dialog displays a message to
indicate that no errors occurred. Figure 13-8 shows the dialog that appears if the end
user double-clicks the cell in Figure 13-7 that displays Update failed in the Status
column.

Providing a Row-by-Row Status on an ADF Table Component

Adding Validation to Your Integrated Excel Workbook 13-9

Figure 13-8 Dialog Displaying Row Error Message

For more information about the _ADF_StatusColumn column, see Special Columns
in the ADF Table Component .

13.6 Adding Detail to Error Messages in an Integrated Excel Workbook
You can configure your Fusion web application to report errors using a custom error
handler to provide more detail to the error messages displayed to end users in an
integrated Excel workbook.

To implement this functionality, the custom error handler must override the
getDetailedDisplayMessage method to return a DCErrorMessage object. At
runtime, ADF Desktop Integration detects the custom error handler and invokes the
getHtmlText method on the DCErrorMessage object. ADF Desktop Integration
includes the HTML returned by the getHtmlText method in the error message list as
detail.

For more information about creating a custom error handler, see the "Customizing
Error Handling" section of Developing Fusion Web Applications with Oracle Application
Development Framework.

13.7 Handling Data Conflicts When Uploading Data from a Workbook
If one of your end users (User X) makes changes to a row of data downloaded from a
Fusion web application to an Excel workbook, and another end user (User Y) in a
different session modifies the same row in the Fusion web application after User X
downloads the row, User X may encounter an error while uploading the modified
row, as the changes conflict with those that User Y made. Depending on the
configuration of your Fusion web application, User X may receive
RowInconsistentException type error messages. For information about how to
configure your Fusion web application to protect your data, see the "How to Protect
Against Losing Simultaneously Updated Data" section in Developing Fusion Web
Applications with Oracle Application Development Framework.

To resolve this conflict in the integrated Excel workbook, User X needs to download
the most recent version of data from the Fusion web application. However, invoking
the ADF Table component's Download action causes the component to refresh all data
that the component hosts in the Excel workbook. This may overwrite other changes
that User X made that do not generate conflict error messages. To resolve this scenario,
you can expose the ADF Table component's DownloadFlaggedRows action. When
invoked, this action downloads data only for the rows that the end user flags for
download. Using this action, User X can resolve the conflict issues and upload his
modified data.

Using an Integrated Excel Workbook Across Multiple Web Sessions provides
information about using an integrated Excel workbook across multiple sessions. For
information about flagging rows, see Row Flagging in an ADF Table Component. For

Adding Detail to Error Messages in an Integrated Excel Workbook

13-10 Developing Applications with Oracle ADF Desktop Integration

information about invoking component actions, see How to Invoke Component
Actions in an Action Set. For more information about the components that the ADF
Table component supports, see ADF Table Component Properties and Actions.

13.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
You specify a row-specific attribute of the tree binding for the
RowData.ChangeIndicatorAttribute property to determine whether a row has
been modified by another user since the row was last downloaded by the ADF Table
component.

To configure a workbook to handle data conflicts:

1. Open the integrated Excel workbook.

2. Select any cell of the ADF Table component and click Edit Properties in the Oracle
ADF tab.

3. In Edit Component: ADF Table dialog, for the
RowData.ChangeIndicatorAttribute property, specify the row-specific
attribute of the tree binding that you use to determine whether a row has been
modified by another user since the row was last downloaded by the ADF Table
component in your integrated Excel workbook.

4. Click OK.

13.7.2 What Happens at Runtime: How Data Conflicts Are Handled
The ADF Table component caches the original value of the row-specific attribute of the
tree binding that you specified as a value for
RowData.ChangeIndicatorAttribute when it invokes the RowDownSync action.
When the ADF Table component invokes the RowUpSync action, it checks if the value
of the binding hosted by the Fusion web application and the original value cached by
the ADF Table component differ. If they differ, it indicates data conflict, as changes
have been made to the value of the binding hosted by the Fusion web application since
the ADF Table component downloaded the value of the binding.

Handling Data Conflicts When Uploading Data from a Workbook

Adding Validation to Your Integrated Excel Workbook 13-11

Handling Data Conflicts When Uploading Data from a Workbook

13-12 Developing Applications with Oracle ADF Desktop Integration

14
Testing Your Integrated Excel Workbook

This chapter describes how to test and validate the integrated Excel workbooks as you
configure it, and how to run a server ping test.

This chapter includes the following sections:

• About Testing Your Integrated Excel Workbook

• Testing Your Fusion Web Application

• Validating the Integrated Excel Workbook Configuration

• Testing Your Integrated Excel Workbook

14.1 About Testing Your Integrated Excel Workbook
Testing an integrated Excel workbook before you publish and deploy it to your end
users enables you to verify that the functionality you configure behaves as you intend.
Before you test your integrated Excel workbook, test the Fusion web application with
which you integrate the Excel workbook.

Before you deploy the integrated Excel workbook, you should validate it and test its
integration with your Fusion web application. Testing an integrated Excel workbook
includes the following processes:

• Validating the integrated Excel workbook

• Running the integrated Excel workbook in test mode

14.1.1 Integrated Excel Workbook Testing Use Cases and Examples
To test your integrated Excel Workbook, click the Run button on the Oracle ADF tab,
and click the Stop button to return to the design mode. Figure 14-1 shows the buttons
of the Oracle ADF tab in design mode and in test mode.

Figure 14-1 Run and Stop buttons in Oracle ADF tab

14.1.2 Additional Functionality for Testing an Integrated Excel Workbook
After you have validated and tested your integrated Excel workbook, you may need to
perform additional steps to make your workbook available to end users.

Testing Your Integrated Excel Workbook 14-1

• Publishing your integrated Excel workbook: After you test and validate your
workbook, you must publish it. For more information see, Publishing Your
Integrated Excel Workbook.

• Deploying your integrated Excel workbook: After you publish your workbook,
you may wish to deploy it with your Fusion web application. For more
information, see Deploying a Published Workbook with Your Fusion Web
Application.

14.2 Testing Your Fusion Web Application
Test the Fusion web application that you integrate your Excel workbook with before
you start testing the integrated Excel workbook. For information about testing a
Fusion web application, see the Developing Fusion Web Applications with Oracle
Application Development Framework. Verify that the Fusion web application you want to
integrate an Excel workbook with, supports ADF Desktop Integration by carrying out
the procedure described in Verifying That Your Fusion Web Application Supports
ADF Desktop Integration. You may also want to test the view instances of the ADF
application module before you test the Fusion web application. For more information
about testing ADF application module, see the "Using the Oracle ADF Model Tester
for Testing and Debugging" section of Developing Fusion Web Applications with Oracle
Application Development Framework.

If the integrated Excel workbooks are not saved in Application Sources directory of
the Fusion web application, then before you run the Fusion web application in
JDeveloper, ensure that all integrated Excel workbooks and the Excel application are
closed. The application deployment may fail if it encounters locked files as Excel locks
the files that it opens.

Tip:

If you plan to test integrated Excel workbooks that you downloaded from web
pages of the Fusion web application, you should republish them before
redeploying the application. Republishing the workbooks ensures that you
have their latest versions.

If you make changes to the Fusion web application to resolve problems identified by
testing the application, you need to:

• Close Excel and all integrated Excel workbooks. The application deployment may
fail if it encounters locked files, as Excel locks the files that it opens.

• Rebuild the JDeveloper project where you develop the Fusion web application.

• Run the Fusion web application.

• Reload the page definition files that are associated with the integrated Excel
workbook. Click the Refresh Bindings button in Oracle ADF tab of the integrated
Excel workbook to reload the page definition files.

These steps make sure that the changes in the Fusion web application are available to
the integrated Excel workbook. For information about how to reload a page definition
file, see How to Reload a Page Definition File in an Excel Workbook.

Testing Your Fusion Web Application

14-2 Developing Applications with Oracle ADF Desktop Integration

14.3 Validating the Integrated Excel Workbook Configuration
ADF Desktop Integration provides a set of validation rules for the integrated Excel
workbook configuration. After creating your integrated Excel workbook, you may
validate the workbook before you proceed for testing or deployment.

14.3.1 How to Validate the Integrated Excel Workbook Configuration
You should validate the integrated Excel workbook configuration before testing or
deploying the workbook.

To validate the integrated Excel workbook configuration:

1. Open the integrated Excel workbook.

2. In your integrated Excel workbook, click the Oracle ADF tab.

3. In the Test group, click Validate.

The Configuration Validation dialog appears listing all your warnings and errors.

4. If any warning or error is displayed, click to select it. A description of the warning
or error message is displayed in the dialog.

For example, Figure 14-2 illustrates a validation failure message of an invalid EL
expression.

Figure 14-2 Invalid EL Expression Resulting in a Validation Failure

If no warning or error appears, click Close to close the dialog.

Note:

You may continue to keep the Configuration Validation dialog open while
you resolve the validation failures. To verify whether you have resolved an
error or a warning, click Revalidate to run the validation rules again.

14.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration
When you validate the workbook at design time, ADF Desktop Integration validates
all workbook configuration properties, including worksheet and worksheet
component properties, against defined validation rules. Any and all validation failures
(errors and warnings) are listed in the Configuration Validation dialog. Each

Validating the Integrated Excel Workbook Configuration

Testing Your Integrated Excel Workbook 14-3

validation failure, when selected, provides contextual information about the failure,
and provides enough detail to locate and fix each validation failure.

The Configuration Validation dialog provides the following information for each
validation failure:

• Severity type (error or warning)

• Name of the worksheet. The word Workbook is displayed if the validation failure
does not correspond to a particular worksheet.

• Worksheet component ID ("Workbook" or "Worksheet" if the validation failure
does not correspond to a particular worksheet component)

• Property containing the validation failure

• Description of the validation failure (error or warning)

When you select a specific failure entry in the dialog, the dialog displays additional
details about the failure including:

• Full property context path

• Property value

Certain validation rules may result in multiple distinct failures. For example, when an
expression is being validated, different validation failures occur based on expression
type, expression syntax, or the location in which the property is exposed in the
workbook configuration.

For example, consider the following expression value:

#{bindings.EmpView1.hints.Empno.label}

The expression value is legal when used within a column header label inside of a table
component, but the same expression value is illegal when specified as part of the
Worksheet.Title expression.

Note:

If Enabled is set to False for a group of workbook configuration properties,
validation of other property values within the same group is skipped.

14.3.3 How to Fix Validation Failures
When you validate your workbook, you might get validation failures or warning
messages, which you can fix easily by following these steps:

1. Identify the component that gave the error or warning message.

In Figure 14-2, note the component location and other details (for example,
property name) that the Configuration Validation dialog provides.

2. Open the property editor of the component.

3. Navigate to the invalid property value identified by the full property context path.

4. Edit the property value to resolve the validation failure.

Validating the Integrated Excel Workbook Configuration

14-4 Developing Applications with Oracle ADF Desktop Integration

Figure 14-3 illustrates the property editor for the ADF Table component with a
valid value for the RowLimit.MaxRows property.

Figure 14-3 Resolving Validation Failure

5. Revalidate the workbook to verify whether the validation failure has been resolved.
Click Revalidate to run the validation rules again.

6. After fixing all validation failures, click Close to close the Configuration Validation
dialog.

Figure 14-4 illustrates the Configuration Validation dialog with no warnings or
error messages.

Figure 14-4 Configuration Validation Dialog with No Validation Failure
Messages

14.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at
Runtime

By default, there is no runtime validation of integrated Excel workbook configuration.
However, you may log validation failures at runtime by setting the client log level to
Verbose. For more information about enabling client-side logging, see About Client-
Side Logging.

Validating the Integrated Excel Workbook Configuration

Testing Your Integrated Excel Workbook 14-5

14.4 Testing Your Integrated Excel Workbook
As you configure your Excel workbook to integrate with a Fusion web application,
you can switch to test mode from design mode to test the functionality that you add to
the workbook. You use the Oracle ADF tab to switch to test mode from design mode
and from design mode to test mode.

Test mode enables you to test the functionality of your integrated Excel workbook as
you configure it incrementally. It also enables you to view the integrated Excel
workbook from the end user's perspective, as test mode corresponds to what end
users see when they view and run the published integrated Excel workbook. The
difference between an integrated Excel workbook in test mode and a published
integrated Excel workbook is that the ADF Desktop Integration task pane is not
available to users of the published integrated Excel workbook.

For more information about test mode and design mode, see About Development
Tools.

There are some differences between the test mode and the runtime mode when you
run the integrated Excel workbook. Table 14-1 lists these differences.

Table 14-1 Differences between Test mode and Runtime mode

Test mode Runtime mode

Does not perform tamper check Performs tamper check, if enabled by the
server

Does not display the connection
confirmation dialog

Displays the connection confirmation dialog

Displays the Oracle ADF ribbon tab Does not display Oracle ADF tab

Allows you to switch back to design mode Does not allow you to switch back to design
mode

ADF Desktop Integration can generate log files that capture information based on
events triggered by an integrated Excel workbook. For more information about these
log files, see Troubleshooting an Integrated Excel Workbook.

Note:

Before you start testing the integrated Excel workbook, ensure that:

• The Fusion web application is running.

• The ping to server is successful, and the server is configured for ADF
Desktop Integration.

• The ADF Desktop Integration version of the server and the client are the
same.

To run an integrated Excel workbook in test mode:

• To test and run an integrated Excel workbook, click the Run button on the Oracle
ADF tab.

Testing Your Integrated Excel Workbook

14-6 Developing Applications with Oracle ADF Desktop Integration

The integrated Excel workbook switches to test mode from design mode. Before
starting the test mode, ADF Desktop Integration clears all design time component
placeholders.

To stop test mode and return the integrated Excel workbook to design mode:

• In the integrated Excel workbook that you are testing, click the Stop button on the
Oracle ADF tab.

The integrated Excel workbook switches to design mode from test mode. Before
switching back to design mode, ADF Desktop Integration removes all visible and
cached data from all parts of the workbook, and then redraws the design time
component placeholders.

Testing Your Integrated Excel Workbook

Testing Your Integrated Excel Workbook 14-7

Testing Your Integrated Excel Workbook

14-8 Developing Applications with Oracle ADF Desktop Integration

15
Deploying Your Integrated Excel Workbook

This chapter describes how to publish and deploy a workbook integrated with a
Fusion web application to end users, how to pass parameters from the Fusion web
application to the integrated Excel workbook, and how to integrate the ADF
Workbook Composer into your Fusion web application.

This chapter includes the following sections:

• About Deploying Your Integrated Excel Workbook

• Making ADF Desktop Integration Available to End Users

• Publishing Your Integrated Excel Workbook

• Deploying a Published Workbook with Your Fusion Web Application

• Passing Parameter Values from a Fusion Web Application Page to a Workbook

• Customizing Workbook Integration Metadata at Runtime

• Integrating ADF Workbook Composer into Your Fusion Web Application

15.1 About Deploying Your Integrated Excel Workbook
After you finish development of your integrated Excel workbook, you make the final
integrated Excel workbook available to end users by deploying the resulting Fusion
web application to an application server. Before you deploy a finalized Excel
workbook that integrates with the Fusion web application, you must publish it as
described in Publishing Your Integrated Excel Workbook. After you have published
the Excel workbook, you can deploy it using one of the methods outlined in the
"Deploying Fusion Web Applications" chapter of Developing Fusion Web Applications
with Oracle Application Development Framework.

You should make ADF Desktop Integration's adfdi-excel-addin-
installer.exe available to end users so that they can install the ADF Desktop
Integration add-in. For more information, see Making ADF Desktop Integration
Available to End Users.

The end users that you deploy an integrated Excel workbook to must install the ADF
Desktop Integration add-in for Excel on their Windows-based computers.

15.1.1 Integrated Excel Workbook Deployment Use Cases and Examples
You use the Publish button of the Oracle ADF tab to save a published copy of the
workbook. Figure 15-1 shows the Publish button and the Publish Workbook dialog
that opens when you click the Publish button to save a copy of the integrated Excel
workbook ready to be published and deployed with the Fusion web application.

Deploying Your Integrated Excel Workbook 15-1

Figure 15-1 Publish Workbook Dialog

15.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook
After you have published and deployed your integrated Excel workbook, you may
find that you need to add additional functionality for your workbook. The following
sections describe other functionality that you can use:

• Passing Parameters: You can configure a page in your Fusion web application to
pass parameter values to an integrated Excel workbook when the end user
downloads the workbook from the page. For more information, see Passing
Parameter Values from a Fusion Web Application Page to a Workbook.

15.2 Making ADF Desktop Integration Available to End Users
End users who want to use the functionality that you configure in an integrated Excel
workbook must install ADF Desktop Integration, as described in How to Install ADF
Desktop Integration on Your System.

For information about how to make the installer available to end users, see How to
Install the ADF Desktop Integration Add-in From a Web Server.

The installation program (adfdi-excel-addin-installer.exe) is available in
the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration

where MW_HOME is the Middleware Home directory.

By default, ADF Desktop Integration-enabled web applications display a system check
that verifies the end user’s environment when the end user attempts to download an
integrated Excel workbook. A Java applet performs this system check to verify that the
ADF Desktop Integration add-in is present on the end user’s machine. If the add-in is
found, the workbook download begins automatically. Otherwise, ADF Desktop
Integration prompts the end user to install the add-in. If Java is not installed on the
end user’s machine or is disabled by the end user’s security settings, the Java applet is
unable to verify the presence of the ADF Desktop Integration add-in. ADF Desktop
Integration informs the end user that the installation of the add-in cannot be verified.
It presents the end user with the option to download the workbook and/or install the
add-in.

Making ADF Desktop Integration Available to End Users

15-2 Developing Applications with Oracle ADF Desktop Integration

15.3 Publishing Your Integrated Excel Workbook
After you finish configuring the Excel workbook with Oracle ADF functionality, you
must publish it. Publishing a workbook prepares the integrated Excel workbook for
use by end users at runtime.

ADF Desktop Integration provides you with two methods to publish your workbook.
You can publish your integrated Excel workbook directly from Excel, or you can use
the publish tool available in JDeveloper to publish the workbook from the command
line. The command-line publish tool enables you to use scripts, such as an Ant script,
to publish an integrated Excel workbook from your Fusion web application.

Note:

• After publishing one or more workbooks, you should restart the Fusion
web application in order for those workbooks to be downloaded and
opened successfully in Microsoft Excel. If the web application is not
restarted, you might get errors, such as the following:

TampercheckErrorException: ADFDI-05537: The integrity
of the workbook integration could not be determined.

• Customization-enabled workbooks can only be published to a target
location that is under the public_html directory (or its sub-directories) of
the associated project.

15.3.1 How to Publish an Integrated Excel Workbook from Excel
You publish a workbook by clicking a button on the Oracle ADF tab and specifying
values in the dialogs that appear.

Before you begin:

It may be helpful to have an understanding about how to publish your integrated
Excel workbook. For more information, see Publishing Your Integrated Excel
Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Deploying Your Integrated Excel Workbook.

To publish a workbook from Excel:

1. Open the integrated Excel workbook.

2. Ensure that the ApplicationHomeFolder and WebPagesFolder properties in
the Edit Workbook Properties dialog are correct. If these properties are not set,
ADF Desktop Integration prompts to set them when you publish the integrated
Excel workbook.

For more information, see How to Configure a New Integrated Excel Workbook.

3. In the Oracle ADF tab, click the Publish button.

4. Specify the directory and file name for the published workbook in the Publish
Workbook dialog that appears, as shown in Figure 15-1. The directory and file

Publishing Your Integrated Excel Workbook

Deploying Your Integrated Excel Workbook 15-3

name that you specify for the published workbook must be different from the
directory and file name for the design time workbook.

ADF Desktop Integration prompts you to save the workbook in the
ViewController\public_html directory of the JDeveloper application
workspace. Remove any suffixes, such as –DT, that may have been appended to the
workbook when it was in design mode so that end users see a meaningful
filename. For example, the Summit sample application publishes the workbook to
edit customers using the EditCustomers.xlsx filename rather than
EditCustomers-DT.xlsx filename that it used in design mode.

5. Click Save to save changes.

15.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish
Tool

The publish tool is run from the command line, and is available in the MW_HOME
\jdeveloper\adfdi\bin\excel\tools\publish directory as publish-
workbook.exe. Before you run the publish tool, open the source integrated Excel
workbook and ensure that the ApplicationHomeFolder and WebPagesFolder
properties in the Edit Workbook Properties dialog are correct.

Note:

You cannot publish a workbook that is already published, or is in runtime
mode.

Before you begin:

It may be helpful to have an understanding about how to publish your integrated
Excel workbook. For more information, see Publishing Your Integrated Excel
Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Deploying Your Integrated Excel Workbook.

Now, navigate to MW_HOME\jdeveloper\adfdi\bin\excel\tools\publish
directory and run the publish tool using the following syntax:

publish-workbook -workbook (-w) <source-workbook-path> -out (-o)
<destination-workbook-path>

where source-workbook-path is the full path of the source workbook, and
destination-workbook-path is the full path where the published workbook is
saved.

For example:

publish-workbook -workbook D:
\Application1\Project1\ViewController\src\oracle\sampledemo
\excel\workbook-DT.xlsx -out D:
\Application1\Project1\ViewController\public_html\excel
\published\workbook.xlsx

Publishing Your Integrated Excel Workbook

15-4 Developing Applications with Oracle ADF Desktop Integration

Tip:

For more information about the arguments required by the publish tool, run
the following command:

publish-workbook -help (-h)

Note:

• Always specify the absolute paths of the source and destination
workbooks. The publish tool does not support relative paths of the
workbooks.

• The destination workbook cannot have the same name as the source, even
if the workbook paths are different.

After publishing the integrated Excel workbook successfully, the publish tool displays
a success message. If there is any error while publishing the workbook, the publish
tool aborts the process and the error messages are displayed on the command line
console.

Using the Publish Tool with ANT

You can create ANT scripts to run the publish tool from JDeveloper when you build
your Fusion web application. You can use either of the following methods to run the
utility using ANT:

• Generate an ANT build script for the project and add a target to run the workbook
command line publish tool

• Generate or create a separate ANT build script for running the workbook
command line publish tool

A sample ANT build script (publish-workbook.xml) to run the publish tool is
available in the MW_HOME\jdeveloper\adfdi\bin\excel\samples directory.
The sample ANT script demonstrates the invocation of the command-line workbook
publishing tool.

15.3.3 What Happens When You Publish an Integrated Excel Workbook
When you click the Publish button in design mode, ADF Desktop Integration
performs the following actions:

1. Validates the mandatory workbook settings.

2. Updates the client registry. For more information, see Checking the Integrity of an
Integrated Excel Workbook's Metadata.

3. Creates the published workbook with the specified file name in the specified
directory.

Publish also exports the workbook definition. The published workbook definition
XML file is saved at the same location as the design-time copy of the workbook.
For more information about workbook definition, see Exporting and Importing
Excel Workbook Integration Metadata.

4. Clears the ApplicationHomeFolder, WebAppRoot, and WebPagesFolder
properties from the workbook settings of the published workbook.

Publishing Your Integrated Excel Workbook

Deploying Your Integrated Excel Workbook 15-5

5. Clears all design time component placeholders.

6. Changes the mode of the workbook to runtime mode.

7. Inserts a Publishing Timestamp property into the workbook. This property is
visible in the Properties tab of About dialog.

15.4 Deploying a Published Workbook with Your Fusion Web Application
If you published your integrated Excel workbook, as described in Publishing Your
Integrated Excel Workbook, your Fusion web application automatically includes the
published integrated Excel workbook when you build and deploy the web application.
Otherwise, add the integrated Excel workbook to the JDeveloper project for your
Fusion web application if it is not packaged with the other files that constitute your
JDeveloper project. This makes sure that the Excel workbooks you integrate with your
Fusion web application get deployed when you deploy your finalized Fusion web
application. For example, the Summit sample application for ADF Desktop Integration
stores the deployed Excel workbooks that it integrates at the following location:

<Summit_HOME>\ViewController\public_html\excel

where Summit_HOME is the installation directory for the Summit sample application
for ADF Desktop Integration.

After you decide on a location to store your integrated Excel workbooks, you can
configure web pages in your Fusion web application allowing end users to access the
integrated Excel workbooks. For example, Figure 15-2 shows Internet Explorer's File
Download dialog, which was invoked by clicking the Download Workbook button
for the Edit Customers Sample workbook on the MainPage.jsf page of the Summit
sample application for ADF Desktop Integration.

Figure 15-2 Invoking an Integrated Excel Workbook from a Fusion Web Application

To enable the functionality illustrated in Figure 15-2, the HTTP filter parameters for
your Fusion web application must be configured to recognize Excel workbooks.
JDeveloper automatically configures these parameters for you when ADF Desktop
Integration is enabled in the Fusion web application. If you want to manually
configure the HTTP filter parameters, see ADF Desktop Integration Settings in the
Web Application Deployment Descriptor.

Deploying a Published Workbook with Your Fusion Web Application

15-6 Developing Applications with Oracle ADF Desktop Integration

After you have configured the HTTP filter for your Fusion web application, you
configure the web pages that the Fusion web application displays to end users to
allow them to invoke Excel workbooks. A basic method of invoking an Excel
workbook that you have integrated with a Fusion web application is to provide a
hyperlink that invokes the workbook. For example, you could write the following
ADF code in a web page:

<af:link text="Editable Table Sample" destination="/excel/
EditCustomers.xlsx"/>

where excel is a subdirectory of the directory specified by the WebPagesFolder
workbook property and EditCustomers.xlsx is the Excel workbook that the end
user invokes.

You can provide functionality that allows end users to download integrated Excel
workbooks from web page buttons and menus. The following list provides some
examples:

• Button

Display a button on the web page that, when clicked, invokes the integrated Excel
workbook. For example, the Download Workbook button in Figure 15-2 is a
button component that the MainPage.jsf page exposes.

• Selection list

Use the ADF Faces selectOneChoice component with a button to invoke an
integrated Excel workbook.

• Menu

Use the ADF Faces goMenuItem component.

For more information about creating web pages for a Fusion web application, see
Getting Started with ADF Faces and JDeveloper in Developing Web User Interfaces with
Oracle ADF Faces.

15.4.1 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion
Web Application from JDeveloper

When you deploy the ADF Desktop Integration-enabled Fusion web application from
JDeveloper, references to the ADF Desktop Integration shared libraries are added to
the appropriate descriptor files. For any Fusion web application that contains one or
more projects referencing the ADF Desktop Integration Model API library or the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Model API shared library is added during deployment.

For any web application module (WAR) project that contains a reference to the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Runtime shared library is added during deployment.

15.4.1.1 Fusion Web Application is Deployed on Oracle WebLogic Server

When you deploy the Fusion web application on Oracle WebLogic Server, the
following happens:

• The META-INF/weblogic-application.xml file of the deployed application
EAR file contains a library reference to
oracle.adf.desktopintegration.model.

For example:

Deploying a Published Workbook with Your Fusion Web Application

Deploying Your Integrated Excel Workbook 15-7

<library-ref>
 <library-name>oracle.adf.desktopintegration.model</library-name>
</library-ref>

The shared library is delivered in MW_HOME/oracle_common/modules/
oracle.adf.desktopintegration.model, in the
oracle.adf.desktopintegration.model.ear file.

• The WEB-INF/weblogic.xml file of the deployed web application WAR file
contains a library reference to oracle.adf.desktopintegration.

For example:

<library-ref>
 <library-name>oracle.adf.desktopintegration</library-name>
</library-ref>

The shared library is delivered in MW_HOME/oracle_common/modules/
oracle.adf.desktopintegration, in the
oracle.adf.desktopintegration.war file.

15.4.2 What Happens at Runtime: End User Requests a Published Workbook
When web.xml is configured for a Fusion web application that uses ADF Desktop
Integration,

The following events occur when you configure a Fusion web application to use ADF
Desktop Integration:

• The DIExcelDownloadFilter filter is defined.

• Filter mappings are defined for *.xlsx and *.xlsm files.

At runtime, when the end user makes an http request for a workbook (for example,
user clicks a link in a web page from the application), the DIExcelDownloadFilter
filter embeds the WebAppRoot property into the workbook as it gets streamed back as
the http response. The WebAppRoot property is later used by the ADF Desktop
Integration client to connect to the Fusion web application, establish a user session,
and send data back and forth. Parameter values can also be passed from the web
application to the workbook, as described in Passing Parameter Values from a Fusion
Web Application Page to a Workbook.

The DIExcelDownloadFilter filter constructs the WebAppRoot value from the
current HttpServletRequest object that is passed in to the doFilter() entry
point. The filter code calls HttpServletRequest.getRequestURL()and gets the
"root" portion of the full URL by removing everything after the context path portion
(uses HttpServletRequest.getContextPath()).

15.5 Passing Parameter Values from a Fusion Web Application Page to a
Workbook

A Fusion web application page can be configured to pass parameter values to an
integrated Excel workbook when the end user downloads the workbook from the
page. Workbook parameters can be used to pass context from the user's web page to
the integrated workbook. The passed context may be sent back to the web application
from the integrated workbook to affect application state (for example, what data
renders in the workbook). The Summit sample application, for example, displays a list
of warehouses to the end user, as shown in Figure 15-3. When an end user clicks a

Passing Parameter Values from a Fusion Web Application Page to a Workbook

15-8 Developing Applications with Oracle ADF Desktop Integration

Download Workbook button, the Summit sample application passes the value of the
WarehouseID parameter to the workbook to download. The passed WarehouseID
parameter controls which warehouse's data renders in the worksheet for editing.

Figure 15-3 Downloading Workbooks According to Parameter Value

To pass parameters from the Fusion web application page to the integrated Excel
workbook, follow these steps:

1. Verify that the HTTP filter is configured to allow end users to download
integrated Excel workbooks from the Fusion web application. By default,
JDeveloper configures the HTTP filter with appropriate values when you enable
ADF Desktop Integration in a project. To verify the parameter values of the HTTP
filter, see Configuring the ADF Desktop Integration Excel Download Filter .

2. Use Name/Value pairs as URL arguments in the web page of the Fusion web
application that allows end user to download the workbook. For more
information, see How to Configure the Fusion Web Application's Page to Pass
Parameters.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 15-9

Note:

The runtime URL-encoded value of the entire query string to the right of ?
must be less than 2048 bytes. If the runtime value exceeds 2048 bytes, the
integrated Excel workbook will contain only the URL arguments that fit in
2048 bytes. Subsequent URL arguments do not get included with the
integrated Excel workbook. Instead, the Fusion web application writes log
entries for these URL arguments identifying them as having not been
included.

For example, the total size of the string result to the right of ? when the
following EL expression is evaluated and then URL-encoded must be less than
2048 bytes.

"/excel/EditWarehouseInventory.xlsx?
WarehouseId=#{item.bindings.Id.inputValue}"

If you need to pass information that exceeds this limit, consider storing it
temporarily in a (custom) database table and only pass a unique token to look
up that information later. This technique also protects the context information
from undesirable exposure.

3. Define the parameter name in the Edit Workbook Properties dialog and in the
Edit Worksheet Properties dialog. For more information, see How to Configure
Parameters Properties in the Integrated Excel Workbook.

4. Configure the page definition file associated with the worksheet in the integrated
Excel workbook by adding <parameter> elements. For more information, see
How to Configure the Page Definition File for the Worksheet to Receive
Parameters.

Figure 15-4 Illustrates the steps implemented in the Summit sample application to pass
a parameter from the web application to the EditWarehouseInventory-DT.xlsx
workbook. For more information about the Summit sample application, see
Introduction to the ADF Desktop Integration Sample Application.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

15-10 Developing Applications with Oracle ADF Desktop Integration

Figure 15-4 Configuring Workbook and Fusion Web Application to Pass Parameters

15.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters
A component, such as <af:button>, can be used to allow end users to download a
published copy of an integrated workbook. The component's destination URL
references the integrated workbook, and in its query portion, the URL parameter
names and values correspond to the workbook's parameter names and values. You
also specify the commands on the page that, when invoked, require the Fusion web
application to refresh the values referenced by the component and its property values.

For more information about downloading files using action components, see the "How
to Use an Action Component to Download Files" section in Developing Web User
Interfaces with Oracle ADF Faces.

Before you begin:

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 15-11

It may be helpful to have an understanding of how to pass parameter values from the
Fusion web application to the integrated Excel workbook. For more information, see
Passing Parameter Values from a Fusion Web Application Page to a Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Deploying Your Integrated Excel Workbook.

To configure the page in the Fusion web application:

1. In JDeveloper, insert the component or tag (such as af:button) into the page
from which the end user downloads the integrated Excel workbook.

2. In the Structure window, right-click the component and choose Go to Properties.

3. Expand the Common section and set values for the properties.

Table 15-1 describes the properties of af:button component.

Table 15-1 Properties for af:button Tag

Property Value

Text Write the text that appears to end users at runtime.

For example, write text such as the following to appear at
runtime:

Download Workbook

Destination Invoke the expression builder to write an EL expression that
specifies the integrated Excel workbook and the values to
download as a URL argument:

For example, write an EL expression such as the following:

destination="/excel/EditWarehouseInventory.xlsx?
WarehouseId=#{item.bindings.Id.inputValue}"

4. (Optional) Expand the Behavior section and specify component IDs for the
partialTriggers property that, when invoked, update the values of the
af:button tag and its Destination property.

For example, if you have navigation buttons with the IDs NextButton,
PreviousButton, FirstButton, and LastButton, specify them as follows:

:NextButton :PreviousButton :FirstButton :LastButton

5. Save the page.

The following example shows the entries that JDeveloper generates in a JSF page
using the required examples in this procedure:

<af:button text="Download Workbook" id="b2"
 destination="/excel/EditWarehouseInventory.xlsx
 ?WarehouseId=#{item.bindings.Id.inputValue}"/>

15.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook
You configure the workbook Parameters property and the worksheet Parameters
property so that the integrated Excel workbook that the end user downloads from the
Fusion web application receives parameter values included in the query string of the
workbook download URL.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

15-12 Developing Applications with Oracle ADF Desktop Integration

Before you begin:

It may be helpful to have an understanding of how to pass parameter values from the
Fusion web application to the integrated Excel workbook. For more information, see
Passing Parameter Values from a Fusion Web Application Page to a Workbook.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Deploying Your Integrated Excel Workbook.

To configure the workbook Parameters property:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. Click the browse (...) icon beside the input field for Parameters to invoke the Edit
Parameters dialog.

4. Click Add to add a new workbook parameter and configure its properties as
follows:

• In the Parameter field, define the parameter name that you plan to use as a
URL argument for the af:button tag's Destination property and later
bind to a page definition parameter, as described in How to Configure the
Fusion Web Application's Page to Pass Parameters.

For example, the EditWarehouseInventory-DT.xlsx workbook defines
the WarehouseID parameter value, as illustrated in Figure 15-5.

Tip:

Make sure that the value you define will be valid for use in a standard URL
query string. The parameter name you use should be a simple identifier so
that it functions properly when referenced in EL expressions.

Figure 15-5 Workbook Parameters

• (Optional) In the Annotation field, enter a description of the workbook
parameter.

5. Repeat Step 4 as necessary to add other workbook parameters.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 15-13

6. Click OK.

For more information about the workbook Parameters property, see Table A-20.

To configure the worksheet Parameters property:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. Click the browse (...) icon beside the input field for Parameters to invoke the Edit
Parameters dialog.

4. Click Add to add a new worksheet parameter and configure it, as illustrated in
Figure 15-6 from the EditWarehouseInventory-DT.xlsx workbook:

• In the Parameter field, specify a parameter element that you added to the page
definition file associated with the worksheet, as described in How to Configure
the Page Definition File for the Worksheet to Receive Parameters.

• In the Value field, write an EL expression that references the value of the
Parameter property you specified for the workbook parameter (workbook
Parameters array). Use the following syntax when writing the EL expression:

#{workbook.params.parameter}

where parameter references the value of the Parameter property you
specified for the workbook parameter.

• (Optional) In the Annotation field, enter a description of the worksheet
parameter.

Figure 15-6 Worksheet Parameters

5. Repeat Step 4 as necessary to add other workbook parameters.

6. Click OK.

For more information about the worksheet Parameters property, see Table A-21.

For use cases where the workbook parameter values are necessary to set up the initial
server state on each new user session, set the SendParameters property to True.
Additionally, you should specify a method action binding to invoke for the

Passing Parameter Values from a Fusion Web Application Page to a Workbook

15-14 Developing Applications with Oracle ADF Desktop Integration

worksheet's SetupActionID that initializes the server state using the workbook
parameter values.

To configure the worksheet SendParameters and SetupActionID properties:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, set the values of SendParameters and
SetupActionID as shown in the Table 15-2 and Figure 15-7:

Table 15-2 SendParameters and SetupActionID Properties

Set this property to... This value...

SendParameters True to make sure that the worksheet parameters are set in
the binding container for the worksheet. When set to True,
parameters are sent every time when the metadata is
requested and the first time when data is requested, during
each user session. When set to False (the default value), the
explicit sending of worksheet parameters does not take place.

SetupActionID Specify a method action binding to invoke that initializes the
server state using the workbook parameter values.

For more information, see Using Explicit Worksheet Setup
Action.

Figure 15-7 SendParameters and SetupActionID Properties

4. Click OK.

When entering the Test mode, the Workbook Parameter dialog prompts you to enter
test parameter values. Figure 15-8 shows the Workbook Parameters dialog that accepts
test values for the workbook.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 15-15

Figure 15-8 Workbook Parameters dialog

While testing, the values entered here are used for the workbook parameter values. If
you have bound the workbook parameters to page definition parameters in the
worksheet, the values you enter here will be sent to the binding container. You are not
required to enter values for any, or all, parameters. If you enter test parameter values,
they are not cleared when you exit the test mode and return to design mode. When
you run the integrated Excel workbook again, the workbook parameter values are
displayed in the Workbook Parameters dialog from the cache.

The provided test values are stored in the workbook in the same way as the ADF
Desktop Integration Excel download filter stores the parameter values. When you
publish the workbook, the test parameter values are cleared before the workbook is
published.

Note:

In the above example from the EditWarehouseInventory-DT.xlsx
workbook, the FilterWarehouseMasterById method action can be used
as the worksheet's setup action (SetupActionID). This causes the method to
be called automatically when the worksheet is initialized at runtime (or
whenever a new instance of the worksheet's binding container is created). For
more information about SetupActionID, see Using Explicit Worksheet
Setup Action.

The same method action could also be configured as a part of an action set,
such as one for a ribbon command or Startup event, depending on the use
case. In the case of a ribbon command, its execution will be triggered by the
end user. For more information about ribbon commands and Startup event,
see How to Configure a Worksheet Ribbon Command for the Runtime Ribbon
Tab and How to Invoke an Action Set from a Worksheet Event.

Workbook parameter values can be used as arguments for any method
exposed by the page definition.

15.5.3 How to Configure the Page Definition File for the Worksheet to Receive
Parameters

The page definition file associated with the worksheet in the integrated Excel
workbook can be configured as follows:

• Add one or more parameter elements that initialize the worksheet's binding
container. The values for these parameters will be supplied from URL arguments,
as specified in How to Configure the Fusion Web Application's Page to Pass
Parameters.

The following example shows the WarehouseIdParam parameter defined in the
ExcelWarehouseInventory.xml page definition file that is associated with the
EditWarehouseInventory-DT.xlsx workbook:

Passing Parameter Values from a Fusion Web Application Page to a Workbook

15-16 Developing Applications with Oracle ADF Desktop Integration

<parameters>
 <parameter id="WarehouseIdParam" value="value"/>
 </parameters>

• Add a method action binding that invokes an application module method. The
following example shows an implementation in the
ExcelWarehouseInventory.xml page definition file that is associated with the
EditWarehouseInventory-DT.xlsx workbook.

<methodAction id="FilterWarehouseMasterById" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="FilterWarehouseMasterById"
 IsViewObjectMethod="false" DataControl="SummitAppModuleDataControl"
 InstanceName="data.SummitAppModuleDataControl.dataProvider">
 <NamedData NDName="warehouseId" NDValue="${bindings.WarehouseIdParam}"
 NDType="java.lang.String"/>
</methodAction>

For more information about configuring a page definition file, see Working with Page
Definition Files for an Integrated Excel Workbook and the "Working with Page
Definition Files" section in Developing Fusion Web Applications with Oracle Application
Development Framework.

15.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web
Application to the Integrated Excel Workbook

When the end user downloads the integrated Excel workbook from the Fusion web
application, the component tag that triggered the download (such as af:button tag)
is evaluated, the current parameter value (for example, warehouseID) is captured
and included on the URL. The adfdiExcelDownload filter embeds the names and
values of all the parameters from the URL into the downloaded integrated Excel
workbook.

The parameters are set into BindingContainer DCParameters before the binding
container is refreshed. For more information about how worksheet parameters are
mapped to binding containers, see How to Configure the Page Definition File for the
Worksheet to Receive Parameters.

For use cases where workbook parameter values are necessary to set up the initial
server state on each new user session, set the
Worksheet.ServerContext.SendParameters property to True. Additionally,
you should specify a method action binding to invoke for the worksheet's
SetupActionID that initializes the server state using the workbook parameter
values. For more information about the worksheet SetupActionID property, see
Using Explicit Worksheet Setup Action.

In the EditWarehouseInventory.xlsx workbook, the
FilterWarehouseMasterById method is invoked on each user session to set up
the correct server state using the workbook WarehouseId parameter value stored in
the downloaded workbook.

To reset the initialization state for all worksheets in the workbook, invoke the
ClearAllData action. For more information about the ClearAllData action, see
Table A-19.

15.6 Customizing Workbook Integration Metadata at Runtime
ADF Desktop Integration also supports Oracle Metadata Services (MDS) based
runtime customization. For more information about MDS, see the "Customizing

Customizing Workbook Integration Metadata at Runtime

Deploying Your Integrated Excel Workbook 15-17

Applications with MDS" chapter in Developing Fusion Web Applications with Oracle
Application Development Framework.

Workbook integration metadata defines how ADF Desktop Integration components
appear and behave in the workbook, and how the workbook is integrated with its
Fusion web application. When the workbook is published, its workbook integration
metadata XML file is saved at the same location as the design-time copy of the
workbook. For more information about publishing a customization-enabled
workbook, see Publishing Your Integrated Excel Workbook.

The workbook integration metadata files for customization-enabled workbooks need
to be deployed to MDS metadata repositories so that they can be managed by MDS.
For more information about Metadata Repository, see the "Managing the Metadata
Repository" chapter in Administering Oracle Fusion Middleware.

15.6.1 How to Enable Workbook Customization at Runtime
To enable customization of workbook integration metadata, open the Workbook
Properties dialog, and set CustomizationEnabled to True.

Before you begin:

It may be helpful to have an understanding of customizing workbook integration
metadata. For more information, see Customizing Workbook Integration Metadata at
Runtime.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Deploying Your Integrated Excel Workbook.

To enable runtime customization for a workbook:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. Set CustomizationEnabled to True.

4. Click OK.

5. Publish the customization-enabled workbook.

15.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized
A customization-enabled workbook obtains its metadata from the server when the
workbook is initialized.

The integration metadata is managed by MDS on the server end and can be accessed
by the application through MDS APIs. At runtime, the application can provide means
for users to customize the workbook integration metadata. When a customization-
enabled workbook is being initialized, it requests the server for workbook integration
metadata. MDS applies all the customizations based on current customization context
and returns the customized metadata to the workbook for its initialization.

An application developer might include seeded customizations with the application
and/or integrate the ADF Workbook Composer, as described in Integrating ADF
Workbook Composer into Your Fusion Web Application. For example, an application
can provide a web page where users can customize the columns of a table in a
customization-enabled workbook. Users can remove certain columns from the table on
the web page and then download the customization-enabled workbook and see
changes takes effect in the workbook.

Customizing Workbook Integration Metadata at Runtime

15-18 Developing Applications with Oracle ADF Desktop Integration

15.6.3 What You May Need to Know About Customizing Workbook Integration Metadata
Customization-enabled workbooks can only be published to a directory under the
public_html directory of the associated project. When you deploy your application,
make sure that the corresponding workbook integration metadata file can be found by
MDS using the metadata path generated when the workbook is published.

Each customization-enabled workbook has its own workbook integration metadata
file. When the workbook is published, its workbook integration metadata XML file is
saved at the same location as the design-time copy of the workbook. This workbook
integration metadata file should be deployed to MDS metadata repositories so that it
can be managed by MDS at runtime. In MDS terms, a workbook integration metadata
file is a base document and is referenced by MDS using a metadata path. The metadata
path is determined when the customization-enabled workbook is published.

For example, if a design-time customization-enabled workbook is published to
<PROJECT_HOME>/public_html/myCompany/myPackage/myWorkbook.xlsx
and its workbook integration metadata file name is myWorkbook-DT.xlsx-
workbook-definition.xml, then the metadata path for this workbook is /
myCompany/myPackage/myWorkbook-DT.xlsx-workbook-defintion.xml. At
runtime, MDS looks for the workbook integration metadata using this metadata path
in the repositories configured with the application. The metadata path must be unique
across the application.

By default, if no MDS repository is configured for the workbook integration metadata
files, MDS will look up the metadata files on the classpath using the metadata path
mentioned. To avoid configuring MDS, you may host the workbook integration
metadata files on the classpath of the Fusion web application.

15.7 Integrating ADF Workbook Composer into Your Fusion Web
Application

The ADF Workbook Composer is an ADF Task Flow that enables an authorized user
to customize an integrated Excel workbook from the runtime web user interface of the
Fusion web application.

To use the ADF Workbook Composer, you must have a customization-enabled
workbook integrated into your Fusion web application and have its metadata
managed by MDS. For more information about customization-enabled workbook, see
Customizing Workbook Integration Metadata at Runtime.

Using the ADF Workbook Composer, the end user may perform the following actions
at runtime:

• Edit or delete ADF components of the integrated Excel workbook

• Reposition components in the worksheet

• Edit tooltips, labels, and source of ADF components

• Delete worksheets

15.7.1 How to Integrate ADF Workbook Composer into Your Fusion Web Application
The ADF Workbook Composer task flow is available in the adf-workbook-
composer.jar file as an ADF Library. The jar file is available in the MWHOME/
oracle_common/modules/oracle.adf.desktopintegration directory.

Integrating ADF Workbook Composer into Your Fusion Web Application

Deploying Your Integrated Excel Workbook 15-19

To integrate ADF Workbook Composer in your Fusion web application:

1. Open your Fusion web application in JDeveloper.

2. Add the adf-workbook-composer.jar file as an ADF Library jar to your
Fusion web application.

a. In the Applications window, select and right-click the project
(ViewController, for example) and choose Project Properties.

b. In the Project Properties dialog, select Libraries and Classpath.

c. In the Libraries and Classpath page, click Add Library.

d. In the Add Library dialog, click New.

e. In the Create Library dialog, enter ADF Workbook Composer Runtime as
Library Name.

f. Click Add Entry.

g. Navigate to the MWHOME/oracle_common/modules/
oracle.adf.desktopintegration directory, select the adf-workbook-
composer.jar file, and click Open.

Note:

Make sure to clear the Deployed by Default checkbox to avoid duplicate
copies of the adf-workbook-composer.jar file appearing on the class
path at runtime. The oracle.adf.desktopintegration shared library
includes the adf-workbook-composer.jar file, as described in What
Happens at Runtime: ADF Workbook Composer is Invoked.

3. Select and expand the ADF Workbook Composer Runtime Library in the
Applications window.

If libraries are not visible, select View > Application Projects > Show Libraries.

4. Locate the workbook-customization-task-flow.xml file under WEB-INF
\oracle\adf\workbookcomposer\view\taskflows and drag-and-drop the
file to import the task flow within the host page.

5. If necessary, set up the desired customization context.

6. Configure the MDS repository in adf-config.xml and make sure that
workbook metadata files are accessible on the metadata path.

7. Provide the required workbook metadata path and workbook name parameters
for the task flow.

8. If the Fusion web application is authorization-enabled, you would need to
configure security policies to grant resource access to users for the following task
flows available in the /WEB-INF/oracle/adf/workbookcomposer/view/
taskflows/ directory of the workbook composer jar file.

• button-customization-task-flow.xml

• form-component-customization-task-flow.xml

Integrating ADF Workbook Composer into Your Fusion Web Application

15-20 Developing Applications with Oracle ADF Desktop Integration

• image-customization-task-flow.xml

• not-supported-task-flow.xml

• read-only-table-customization-task-flow.xml

• ribbon-command-customization-task-flow.xml

• table-customization-task-flow.xml

• workbook-customization-task-flow.xml

9. Run the host web page to make sure that the workbook composer renders
correctly.

15.7.2 What Happens at Runtime: ADF Workbook Composer is Invoked
The ADF Workbook Composer task flow is available in the adf-workbook-
composer.jar as an ADF Library jar file. This jar is included in the
oracle.adf.desktopintegration shared library. The
oracle.adf.desktopintegration shared library is installed as part of the
Application Development Runtime installation process and is included in the JRF
domain extension template. If you have installed the Application Development
Runtime, the ADF Workbook Composer task flow will be available at runtime when
the Fusion web application runs on WebLogic Server. For information about the
installation of the Application Development Runtime, see the "Deploying ADF
Applications" chapter in Administering Oracle ADF Applications.

At runtime, the customization made from the ADF Workbook Composer takes effect
immediately without restarting the Fusion web application. End users that match the
customization context associated with the workbook customization will see the
customization after they download and open a new copy of the integrated Excel
workbook, or invoke the ClearAllData workbook action on an initialized workbook
and then log in.

15.7.3 What You May Need to Know About ADF Workbook Composer
The ADF Workbook Composer task flow requires two parameters:

• WorkbookName – The name of the published workbook that the users will be
customizing at runtime. The name will be displayed in the composer.

• WorkookMetadataPath – The path to the workbook metadata file. This is the
path used by MDS to locate the metadata file for the workbook to be customized.
The workbook metadata file is generated when the design-time workbook is
published. The metadata path is determined by the location to which the workbook
is published.

Integrating ADF Workbook Composer into Your Fusion Web Application

Deploying Your Integrated Excel Workbook 15-21

Integrating ADF Workbook Composer into Your Fusion Web Application

15-22 Developing Applications with Oracle ADF Desktop Integration

16
Using an Integrated Excel Workbook

Across Multiple Web Sessions

This chapter describes how to configure the integrated Excel workbook so that your
use cases work properly across multiple web application sessions.

This chapter includes the following sections:

• About Using an Integrated Excel Workbook Across Multiple Web Sessions

• Restore Server Data Context Between Sessions

• Caching of Static Information in an Integrated Excel Workbook

• Caching Lists of Values for Use Across Multiple Web Sessions

• Using Explicit Worksheet Setup Action

16.1 About Using an Integrated Excel Workbook Across Multiple Web
Sessions

End users can open an integrated Excel workbook and log on to a Fusion web
application from the workbook ribbon command that you configure. The Fusion web
application assigns a session to the user. After a connection to the Fusion web
application is established and a valid session assigned, end users can download data
from the Fusion web application to the workbook. They can then log off from the
Fusion web application using the workbook ribbon command or otherwise disconnect
from the Fusion web application by, for example, disconnecting from the network that
hosts the Fusion web application.

If the user logs off from the Fusion web application using a workbook command, the
Fusion web application terminates the session immediately. If the user allows the
session to time out by leaving the workbook open and idle, the Fusion web application
terminates the session assigned to the user after session timeout expires.

Using integrated Excel workbooks disconnected from the Fusion web application, end
users can perform the following actions:

• Modify data downloaded from the Fusion web application

• Insert new data into the appropriate ADF Table component contained in the
workbook

• Save changes to data and close and reopen the workbook without having to upload
data to the Fusion web application

• Track and update changes in the ADF Table component

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-1

Test your integrated Excel workbook's behavior across multiple web application
sessions. To do this, run the integrated Excel workbook. As you go through the steps
of your use case, click the Logout workbook ribbon command at various points to end
the current web application session. Make a special point of ending the current session
between invocations of the ADF Table component's Download and Upload actions.
New web application sessions will be created as needed. If the results are not what
you expect, you may need to configure the properties described in subsequent sections
of this chapter.

16.1.1 Using an Integrated Excel Workbook Across Multiple Web Sessions Use Cases
and Examples

When end users open a published integrated Excel workbook, the workbook
downloads required data. Then, if they disconnect from the server, they can continue
to edit and update the data in the integrated Excel workbook, and save and close it.

16.1.2 Additional Functionality for Using an Integrated Excel Workbook Across Multiple
Web Sessions

After you have validated and tested your integrated Excel workbook across multiple
web sessions, you may find that you need to add additional functionality for your
workbook. The following sections describe other functionality that you can use:

• Troubleshooting integrated Excel workbook: You might encounter some
problems while developing or deploying an integrated Excel workbook. For more
information, see Troubleshooting an Integrated Excel Workbook.

• Installing ADF Desktop Integration: You must install ADF Desktop Integration to
enable end users to use ADF Desktop Integration and integrated Excel workbooks.
For more information, see End User Actions.

16.2 Restore Server Data Context Between Sessions
For use cases where the behavior of one or more action sets in a worksheet rely on the
current model state of the Fusion web application, you must configure your integrated
Excel workbook and page definition file to capture and restore the correct model state
whenever a new session is established.

A new session can occur whenever:

• The user saves, closes, and re-opens the integrated Excel workbook

• The user invokes the workbook Logout action

• The time between invocation of action sets that contact the Fusion web application
exceeds the session timeout value specified for a Fusion web application session

16.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
You specify the attribute bindings that you want to cache in an integrated Excel
workbook between sessions as values for the worksheet's ServerContext group of
properties. This group of properties also enables you to specify the action binding that
uses the cached attribute binding data to restore server-side context when a Fusion
web application assigns a new session to the integrated Excel workbook.

Before you can specify values for the ServerContext group of properties, the page
definition file that is associated with the worksheet must expose the attribute bindings

Restore Server Data Context Between Sessions

16-2 Developing Applications with Oracle ADF Desktop Integration

and action bindings for which you want to restore server context. For information
about adding attribute bindings and action bindings to a page definition file, see
Working with Page Definition Files for an Integrated Excel Workbook. For information
about the ServerContext group of properties, see the entry for ServerContext in
Table A-21.

Before you begin:

It may be helpful to have an understanding of how to restore server data context. For
more information, see Restore Server Data Context Between Sessions.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Using an Integrated Excel Workbook Across Multiple Web Sessions.

To configure an integrated Excel workbook to restore server data context:

1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, configure values for the ServerContext
group of properties as described by Table 16-1.

Table 16-1 ServerContext Properties to Restore Server Data Context

For this property... Enter or select this value...

CacheDataContexts Typically, you add an element to this collection to restore a
non-trivial query that you cannot configure directly in the
page definition file. Adding an element to this collection is
optional if you do not have to address this scenario. If you
add an element to the collection of CacheDataContexts,
configure it as follows:

• RestoreDataContextActionID

Specify the action binding (for example, the Execute
action binding) that connects to the Fusion web
application to restore the data specified by
CachedServerContexts.

• CachedServerContexts

An array that identifies the attribute binding values to
cache and set before the action binding specified by
RestoreDataContextActionID is invoked. Each
element in the array (CachedServerContext) supports
the CachedAttributeID and RestoredAttributeID
properties.

For more information about the CacheDataContexts
property and its subproperties, see Worksheet Actions and
Properties.

IDAttributeID Specify the attribute binding that uniquely identifies the row
displayed in the current worksheet. At runtime, the value
that this property references determines if the server data
context has been correctly restored. Typically, you use this
property to handle a form. It may be optional otherwise.

For more information about this property and its
subproperties, see Worksheet Actions and Properties.

Restore Server Data Context Between Sessions

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-3

If your integrated Excel workbook uses parameters and you have deployed it by
downloading it from your Fusion web application, see How to Configure
Parameters Properties in the Integrated Excel Workbook.

4. Click OK.

Note:

For integrated Excel workbooks that use a worksheet setup action (or a
Parameters and <invokeAction> executable), you may not need to
configure RestoreDataContextActionID and CachedServerContexts,
if the worksheet setup action can restore server data context when a new
session is created.

16.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server
Data Context

During the initial session (for example, session ID 1), the worksheet caches data
using the ServerContext group of properties. In a later session with a different
session ID (for example, session ID 2), where the ADF Table component's Upload
action is invoked, the data cached in the ServerContext group of properties is sent
to the Fusion web application.

16.3 Caching of Static Information in an Integrated Excel Workbook
Certain types of relatively static data are cached in the integrated Excel workbook to
allow end users to use the workbook while disconnected from the Fusion web
application. Table 16-2 describes the types of data that an integrated Excel workbook
caches.

Invoking the ClearAllData workbook action described in Workbook Actions and
Properties, refreshes all types of cached data described in Table 16-2. Table 16-2 also
describes other scenarios where an integrated Excel workbook refreshes cached data.

Table 16-2 Types of Data an Integrated Excel Workbook Caches

This type of data... Is cached when... And refreshed when...

Page definition metadata that
is not expected to change
between user sessions such as
control binding types, IDs,
and labels.

An integrated Excel
worksheet bound to a page
definition file is activated and
no cache of the page
definition file's metadata
exists.

The page definition metadata
is not refreshed unless you
download a new copy of the
integrated Excel workbook.

ADF List of Values
component list items

The ADF List of Values
component first downloads
the list items from the Fusion
web application.

The values of the list items
hosted by the Fusion web
application differ from those
cached by the integrated
Excel workbook. The cached
list items are refreshed only
once per workbook session
and only if a workbook
session exists.

Caching of Static Information in an Integrated Excel Workbook

16-4 Developing Applications with Oracle ADF Desktop Integration

Table 16-2 (Cont.) Types of Data an Integrated Excel Workbook Caches

This type of data... Is cached when... And refreshed when...

Resource bundle strings The integrated Excel
workbook is first initialized.
A workbook is initialized
when it is opened for the first
time after publishing.

The cache of resource bundle
strings is not refreshed unless
you download a new copy of
the integrated Excel
workbook.

16.4 Caching Lists of Values for Use Across Multiple Web Sessions
ADF Desktop Integration caches the values referenced by the ADF List of Values
components that you use to create lists of values and dependent lists of values so that
these components do not send a request to the Fusion web application when the end
user selects a value at runtime.

ADF Desktop Integration caches up to two hundred and fifty values for each
component. If a component references a list of values with more than two hundred
and fifty values, ADF Desktop Integration caches the first two hundred and fifty
values and writes a warning message to the client-side log file for subsequent values.
Consider configuring your integrated Excel workbook to use a model-driven list
picker, as described in Adding a Model-Driven List Picker to an ADF Table
Component, where a list of values references more than two hundred and fifty values.
For more information about client-side log files, see Generating Log Files for an
Integrated Excel Workbook.

Cached lists of values in an integrated Excel workbook get refreshed once per
workbook session. This refresh occurs after the user reestablishes a web session with
the Fusion web application and if the values referenced by the Fusion web application
have changed since the integrated Excel workbook last cached the list of values.

The upload of a selected value from a list of values causes the upload to fail if the
selected value no longer exists in the Fusion web application. This may occur if, for
example, one end user deletes the value in the Fusion web application while another
end user modifies the selected value in the cached list of values of an integrated Excel
workbook and attempts to upload the modified value to the Fusion web application.

Note that if you change the Fusion web application configuration after you have
deployed the Fusion web application and the end users have started using the
published integrated Excel workbooks, you must inform the end users to download a
fresh copy of the integrated Excel workbook, or invoke the ClearAllData workbook
action. For more information about the ClearAllData workbook action, see
Workbook Actions and Properties.

The changes in your Fusion web application might include changing the definitions of
the list bindings associated with the ADF List of Values components exposed in the
worksheet. Changing list binding configuration can cause unexpected exceptions in
workbooks that have been downloaded and run prior to the change.

Note:

An integrated Excel workbook never caches the values that a
ModelDrivenColumnComponent subcomponent displays in a model-driven
list picker. For more information about model-driven list pickers, see Adding
a Model-Driven List Picker to an ADF Table Component.

Caching Lists of Values for Use Across Multiple Web Sessions

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-5

For more information about lists of values, see Working with Lists of Values .

16.5 Using Explicit Worksheet Setup Action
ADF Desktop Integration provides several features for configuring a worksheet after
the binding container's metadata has been obtained from the server at runtime.
However, at times, you might want to configure the data or the binding container
before the client retrieves the binding container metadata. For example, at design time,
you might want to add a table to the worksheet, but without specifying the view object
that will drive that table, until runtime. This would be desirable if the view object to be
used depends on some parameter values or settings that are not known until runtime.
In addition, you might want to configure the view object based on runtime parameter
values (such as add attributes, or indicate which attributes to display). Similarly, you
may also want to configure the binding container based on runtime parameter values.
Such use cases require performing setup tasks before the binding container metadata
is sent from the sever to the worksheet.

Using the Explicit Worksheet Setup Action feature of ADF Desktop Integration, you
can specify a setup action that is invoked before the client retrieves the binding
container metadata. The EditWarehouseInventory-DT.xlsx workbook in the
Summit sample application demonstrates an implementation of this feature where the
Warehouse Inventory worksheet invokes a method action binding named
FilterWarehouseMasterById.

16.5.1 How to Configure Explicit Worksheet Setup Action
Using the SetupActionID property of the worksheet, you can specify a method that
is invoked before the binding container metadata is sent to the worksheet. In the
method, you can implement the logic necessary for any configuration on the data and
binding container.

Before you begin:

It may be helpful to have an understanding of the Explicit Worksheet Setup Action
feature. For more information, see Using Explicit Worksheet Setup Action.

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Additional
Functionality for Using an Integrated Excel Workbook Across Multiple Web Sessions.

To use the worksheet SetupActionID property:

1. Open the worksheet in the integrated Excel workbook.

2. From the Excel Ribbon, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, expand Data and click the browse icon (...)
beside the input field for the SetupActionID property

4. In the Select Binding dialog, select the action that you want to invoke before the
binding container metadata is sent to the worksheet, and click OK.

Note:

The SetupActionID property accepts ADFmAction only. A validation error
is reported if an invalid method is set for the property.

Using Explicit Worksheet Setup Action

16-6 Developing Applications with Oracle ADF Desktop Integration

5. Click OK to close the Edit Worksheet Properties dialog.

Figure 16-1 shows the configuration in the EditWarehouseInventory-DT.xlsx
workbook.

Figure 16-1 SetupActionID Property in Edit Worksheet Properties Dialog

16.5.2 What You May Need to Know About Explicit Worksheet Setup Action
After the action specified in the SetupActionID property runs, the binding container
metadata that is sent to worksheet reflects the changes configured in the method. ADF
Desktop Integration ensures that the setup action runs only once for any binding
container instance. If, for any reason, a new binding container instance becomes
associated with the worksheet, the setup action will be invoked again, to ensure it is
configured.

If any kind of failure occurs during the invoking of the setup action, ADF Desktop
Integration is automatically disabled in the worksheet. Logging out, and then logging
in, will not enable ADF Desktop Integration in the worksheet. Running Clear All Data
command from the Excel Ribbon re-enables ADF Desktop Integration in the
worksheet, the setup action runs again on subsequent requests.

Using Explicit Worksheet Setup Action

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-7

Using Explicit Worksheet Setup Action

16-8 Developing Applications with Oracle ADF Desktop Integration

17
Administering ADF Desktop Integration

This chapter describes system administration tasks for ADF Desktop Integration such
as running the ADF Desktop Integration client installer from a web server and
adjusting server configuration settings.

Note that before an end user can use the integrated Excel workbook, the ADF Desktop
Integration add-in must be installed on the end user's system.

This chapter includes the following sections:

• Installing and Upgrading ADF Desktop Integration

• Running the Client Health Check Tool

• ADF Desktop Integration Logs

• Security in ADF Desktop Integration

• Verifying the Client Version of ADF Desktop Integration

• Verifying Integrated Excel Workbook Metadata

• Common ADF Desktop Integration Error Messages and Problems

ADF Desktop Integration also provides connection failure reports to help diagnose the
cause of connection failures from integrated Excel workbooks to Fusion web
applications. For more information, see Troubleshooting Connection Problems to
Fusion Web Applications.

17.1 Installing and Upgrading ADF Desktop Integration
End users must have the ADF Desktop Integration add-in installed on their Windows
machine to use Excel workbooks that are integrated with Fusion web applications.
When an end user attempts to download an integrated Excel workbook from an ADF
Desktop Integration-enabled Fusion web application, a Java applet verifies that the
add-in is present on their machine. If the add-in is found, the workbook download
begins automatically. Otherwise, ADF Desktop Integration prompts the end user to
install the add-in, as shown in Figure 17-1. If Java is not installed on the end user’s
machine or is disabled by the end user’s security settings, the Java applet is unable to
verify the presence of the ADF Desktop Integration add-in. ADF Desktop Integration
informs the end user that the installation of the add-in cannot be verified. It presents
the end user with the option to download the workbook and/or install the add-in.

An ADF Desktop Integration-enabled Fusion web application is a web application
where you have added an integrated Excel workbook, as described in Adding an
Integrated Excel Workbook to a Fusion Web Application.

Administering ADF Desktop Integration 17-1

Figure 17-1 Dialog Prompting End Users to Install ADF Desktop Integration Add-in

You can control the display of this system check message (show or hide it) by setting
the appropriate value for the <param-name>SystemCheck.Enabled</param-
name> in the application’s web.xml file. For more information, see How to Manage
the Display of the System Check to End Users.

If you disable the display of the system check message, you can make the ADF
Desktop Integration installer available to end users to install, as described in How to
Install the ADF Desktop Integration Add-in From a Web Server.

Note:

Installation of the ADF Desktop Integration add-in is specific to the current
Windows user profile. If you have multiple Windows user profiles on a
system, and you want to use ADF Desktop Integration integrated Excel
workbooks in more than one of these user profiles, you must log in to each
user profile and install the ADF Desktop Integration add-in.

When the ADF Desktop Integration installer runs, it verifies whether the required
software is installed on the system. For more information about the required software,
see the Prerequisites for Installing ADF Desktop Integration Add-in.

Post-installation, you or your end users can use the Client Health Check tool,
described in Running the Client Health Check Tool, to determine if the end user’s
environment is configured correctly. See also the “How to use ADF Desktop
Integration Client Health Check Tool” document that you can retrieve from My Oracle
Support (https://support.oracle.com) if you search for Doc ID 2010222.1.

17.1.1 Prerequisites for Installing ADF Desktop Integration Add-in
Before you install the ADF Desktop Integration add-in, make sure that you have the
required Oracle ADF modules and third-party software installed and configured:

• Microsoft Windows

Microsoft Windows operating systems support the development and deployment
of Excel workbooks that integrate with Fusion web applications. For more
information about supported versions of Windows, see the "Oracle JDeveloper and
Application Development Framework Certification Information" page on OTN at:

Installing and Upgrading ADF Desktop Integration

17-2 Developing Applications with Oracle ADF Desktop Integration

https://support.oracle.com/

http://www.oracle.com/technetwork/developer-tools/jdev/
documentation/jdev-088164.html

• Microsoft Excel

For information about supported versions of Excel, see the "Oracle JDeveloper and
Application Development Framework Certification Information" page on OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/
documentation/jdev-088164.html

• Internet Explorer

Some features in ADF Desktop Integration use a web browser control from the
Microsoft .NET Framework. This browser control relies on the local Internet
Explorer installation to function properly.

ADF Desktop Integration uses Internet Explorer to render web pages inside Excel,
regardless of other browsers installed on the system or any other browser set as the
default browser.

The following software is required before ADF Desktop Integration add-in is installed.
If this software is missing, the ADF Desktop Integration installer automatically
downloads and installs it before installing the ADF Desktop Integration add-in.

• Microsoft .NET Framework 4.5.2

The Microsoft .NET Framework 4.5.2 provides the runtime and associated files
required to run applications developed to target the Microsoft .NET Framework.
You can download the framework from http://www.microsoft.com/
download/.

• Microsoft Visual Studio 2010 Tools for Office Runtime

The Microsoft Visual Studio 2010 Tools for Office Runtime (Version 4) is required
to run VSTO solutions for the Microsoft Office system. You can download the
Microsoft Visual Studio 2010 Tools for Office Runtime from http://
www.microsoft.com/download/.

17.1.2 Configuring Microsoft Excel for Integrated Excel Workbooks That Use ADF
Button Components

Perform the following procedure once if the integrated Excel workbook(s) that end
users will use contain ADF Button components.

To allow Excel to run an integrated Excel workbook that contains ADF Button
components:

1. Open Excel.

2. Click the Microsoft Office button, and choose Excel Options.

3. In the Excel Options dialog, choose the Trust Center tab, and then click Trust
Center Settings.

4. In the Trust Center dialog, choose the Macro Settings tab, and then click the Trust
access to the VBA project object model checkbox, as shown in Figure 17-2.

Installing and Upgrading ADF Desktop Integration

Administering ADF Desktop Integration 17-3

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/jdev-088164.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/jdev-088164.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/jdev-088164.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/jdev-088164.html
http://www.microsoft.com/download/
http://www.microsoft.com/download/
http://www.microsoft.com/download/
http://www.microsoft.com/download/

Figure 17-2 Excel Trust Center Dialog

5. Click OK.

17.1.3 How to Install the ADF Desktop Integration Add-in From a Web Server
You can make the ADF Desktop Integration installer available from the web server
where your Fusion web application is running. The installer is embedded in the
oracle.adf.desktopintegration.war file and can be downloaded by the end
user from the ADF Desktop Integration-enabled Fusion web application.

To download the installer from a web server:

1. Provide your end users with a URL in the following format that they can open in a
web browser:

http://<hostname>:<portnumber>/<context-root>/
adfdiRemoteServlet?excel-addin-installer

For example:

http://127.0.0.1:7101/summit/adfdiRemoteServlet?excel-addin-
installer

2. Depending upon the browser, the end user will be prompted to download, or
download and run, the adfdi-excel-addin-installer.exe installer file.

For more information about running the installer on a Windows system, see
Installing ADF Desktop Integration.

Installing and Upgrading ADF Desktop Integration

17-4 Developing Applications with Oracle ADF Desktop Integration

Note:

Making the ADF Desktop Integration add-in installer available for download
only works if the Fusion web application is an ADF Desktop Integration-
enabled Fusion web application. The developer of a Fusion web application
can implicitly enable ADF Desktop Integration by adding an integrated Excel
workbook to the Fusion web application, as described in Adding an
Integrated Excel Workbook to a Fusion Web Application, or explicitly, by
configuring the application's web.xml file, as described in ADF Desktop
Integration Settings in the Web Application Deployment Descriptor. Adding
an integrated Excel workbook to the Fusion web application may be
preferable to configuring the web.xml file directly because JDeveloper makes
many of the required configuration changes when the developer adds an
integrated Excel workbook to the Fusion web application.

17.1.4 How to Upgrade the ADF Desktop Integration Add-in
An end user can upgrade ADF Desktop Integration in two ways.

• Run the ADF Desktop Integration installer to upgrade.

For more information about downloading the installer, see How to Install the ADF
Desktop Integration Add-in From a Web Server.

• Open and run the integrated Excel workbook.

Each time the end user logs into the Fusion web application from an integrated
Excel workbook, ADF Desktop Integration checks whether the version installed on
the client matches the version on the server. If the versions do not match, the end
user will be prompted to download the latest version of ADF Desktop Integration.
If the end user accepts the prompt to install the latest version, the end user must
also restart the Excel application after the installation completes for the change to
take effect. For more information, see Verifying the Client Version of ADF Desktop
Integration.

17.1.5 How to Run ADF Desktop Integration Installer from Command Line
The ADF Desktop Integration installer also supports optional command line switches.
Table 17-1 lists switches that you can specify with the installer executable file.

Table 17-1 ADF Desktop Integration Installer Command Line Switches

Switch Description

/help Displays a list of supported switches with description.

/quiet Suppresses the interactive mode of the installer and does not
install any missing prerequisite software.

Before you install ADF Desktop Integration using the quiet
mode, make sure that prerequisite software is installed on the
end user's system. For more information about prerequisite
software, see Prerequisites for Installing ADF Desktop
Integration Add-in.

Installing and Upgrading ADF Desktop Integration

Administering ADF Desktop Integration 17-5

Table 17-1 (Cont.) ADF Desktop Integration Installer Command Line Switches

Switch Description

/designer <0|1> Installs the add-in with designer tools enabled.

Application developers use the designer tools to configure
integrated Excel workbooks. The designer tools are not
intended for end users. For this reason, do not enable designer
tools if installing the ADF Desktop Integration add-in for end
users.

By default, the ADF Desktop Integration add-in for end users is
installed with designer tools disabled unless enabled during a
previous installation.

Use the following switch to disable the designer tools that have
been enabled by a prior installation:

/designer 0

/log <path> Runs the installer and directs the log output to the specified log
file. The default log file location is %TEMP%\adfdi-
installer-log.txt. For more information, see ADF
Desktop Integration Logs.

/roaming <0|1> Use this switch as follows:

• 0 to install the add-in to the local application data folder
(%localappdata%\Oracle\Oracle ADF Desktop
Integration 12c Add-In for Excel). This is the
default installation location. Use /roaming 0 to install to
the local application data folder during an upgrade from a
prior installation that was installed to the roaming
application data folder.

• 1 to install the add-in to the end user’s roaming application
data folder (%appdata%\Oracle\Oracle ADF Desktop
Integration 12c Add-In for Excel).

17.1.6 How to Manage the Display of the System Check to End Users
ADF Desktop Integration-enabled web applications display a system check if the end
user attempts to download an integrated Excel workbook.

The system check informs the end user if their system meets the requirements to use
integrated Excel workbooks.

You can prevent the display of the system check if, for example, your end users do not
have the permissions to download and execute the installer.

ADF Desktop Integration-enabled web applications created using this release and later
of Oracle ADF display the system check by default. Applications created using prior
releases of Oracle ADF do not. You can change this behavior using the appropriate
value for the SystemCheck.Enabled parameter, as discussed in the following
procedure.

To manage the display of the system check message to end users:

1. Open the web.xml file of your Fusion web application.

2. Add an initialization parameter to the adfdiExcelDownload filter, as described
in the following table.

Installing and Upgrading ADF Desktop Integration

17-6 Developing Applications with Oracle ADF Desktop Integration

Table 17-2 Initialization Parameter Name-Value Pair

Property Description

Name Enter the name of the initialization
parameter as follows:

SystemCheck.Enabled

Note that the initialization parameter name
is case sensitive.

Value Set to:

• False so that no system check message
appears.

• True to display the system check
message to end users where a link to
download the ADF Desktop Integration
add-in installer appears.

ADF Desktop Integration interprets any
value other than True as False. If you do
not specify a value, no system check
appears.

3. Save the web.xml file.

4. Rebuild and restart your Fusion web application.

The following example shows the entry that appears in an application’s web.xml file
when you disable the system check.

<filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-
class>
 <init-param>
 <param-name>SystemCheck.Enabled</param-name>
 <param-value>False</param-value>
 </init-param>
 </filter>

Application developers can exempt individual integrated Excel workbooks from the
system check by passing the skip_adfdi_check parameter to the download URL
that the Fusion web application page renders. For example, the following URL
downloads the EditCustomers.xlsx workbook from the Summit sample
application without displaying the system check to the end user:

http://127.0.0.1:7101/summit/excel/EditCustomers.xlsx?
skip_adfdi_check

For more information about passing parameters, see Passing Parameter Values from a
Fusion Web Application Page to a Workbook.

17.2 Running the Client Health Check Tool
Use the Client Health Check tool to determine whether an end user’s environment is
configured correctly to use integrated Excel workbooks and ADF Desktop Integration.

The Client Health Check tool is an executable (.EXE) that reviews the end user’s
environment, and, in some cases, offers the opportunity to fix problems it identifies. It

Running the Client Health Check Tool

Administering ADF Desktop Integration 17-7

also produces a report that end users can save to a location they choose, as shown in
Figure 17-3.

Figure 17-3 Client Health Check Tool

End users can download the Client Health Check tool from an ADF Desktop
Integration-enabled Fusion web application. The URL that end users download the
Client Health Check tool from has the following format:

<protocol>://<hostname>:<portnumber>/<context-root>/adfdiRemoteServlet?excel-addin-
health-check

End users can also download the tool by clicking the Run client health check tool link
that appears in <protocol>://<hostname>:<portnumber>/<context-root>/
adfdiRemoteServlet.

If, for example, the Summit sample application for ADF Desktop Integration runs on
your machine, the Client Health Check tool can be downloaded from http://
127.0.0.1:7101/summit/adfdiRemoteServlet?excel-addin-health-
check.

Once the tool has been downloaded to the end user’s machine, run it to determine if
the ADF Desktop Integration add-in is installed and properly configured. Review the
result of each item in the report to verify that it passes verification. Click any item that
the tool flags as a problem to view additional information. Consider clicking the Fix

Running the Client Health Check Tool

17-8 Developing Applications with Oracle ADF Desktop Integration

Problems button so that the tool attempts to resolve identified problems. If the tool
resolves all problems, quit the tool.

The tool also produces a report that you can save to the end user’s machine by clicking
the Save Report As button. This report contains technical information that may assist
in resolving issues that the tool did not resolve using the Fix Problems button. Attach
the report that the tool produces with any request that you submit for technical
support.

See also the document that you can retrieve from My Oracle Support (https://
support.oracle.com) if you search for Doc ID 2010222.1.

17.3 ADF Desktop Integration Logs
ADF Desktop Integration generates log files during installation and in response to
various client and server activity. See the “How To Obtain Log Files For ADF Desktop
Integration” document that you can retrieve from My Oracle Support (https://
support.oracle.com) if you search for Doc ID 2012985.1.

Installation Log File

The default location of the ADF Desktop Integration installation log file is %TEMP%
\adfdi-installer-log.txt. For example, C:\Users\UserID\AppData\Local
\Temp\adfdi-installer-log.txt. You can redirect the location of the install log
file using the /log <path> command-line switch described in How to Run ADF
Desktop Integration Installer from Command Line.

Server-side Log Files

You configure the generation of server-side log files for ADF Desktop Integration the
same way as for other Oracle ADF modules. For more information, see theAbout
Server-Side Logging.

For more general information about logging in an Oracle Fusion Middleware
environment, see the "Managing Log Files and Diagnostic Data" chapter in
Administering Oracle Fusion Middleware.

Client-side Log Files

ADF Desktop Integration, by default, enables logging at an Information level on the
client. This level of logging is always on. Verbose logging can be enabled for one user
session using a menu that ADF Desktop Integration adds to integrated Excel
workbooks. A log level different to the Information level can be configured for
logging that spans multiple user sessions. For more information, see About Client-Side
Logging.

See also the documents that you can retrieve from My Oracle Support (https://
support.oracle.com) if you search for Doc IDs 2094378.1 and 2094434.1.

Diagnostic Reports

Diagnostic reports collect information about the end user environment where the ADF
Desktop Integration add-in is installed. This report can be generated at any time by the
end user. For information about how an end user can generate a diagnostic report, see
Generating ADF Desktop Integration Diagnostic Reports. See also the “ADFdi
Diagnostic Report” document that you can retrieve from My Oracle Support (https://
support.oracle.com) if you search for Doc ID 2012576.1.

ADF Desktop Integration Logs

Administering ADF Desktop Integration 17-9

https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/

17.4 Security in ADF Desktop Integration
If your Fusion web application enforces authentication, the integrated Excel
workbooks help the end user authenticate properly before data transfer happens
between the workbooks and application. For more information, see About Security In
Your Integrated Excel Workbook.

17.4.1 End User Authentication
If end users are not prompted for user credentials while using integrated Excel
workbooks and interacting with a secure Fusion web application, you need to
investigate the security configuration of the Fusion web application. For more
information, see Verifying End-User Authentication for Integrated Excel Workbooks.

End users who have difficulty connecting to a Fusion web application may see the
Connection Failure dialog shown in Figure C-3. Ask these users to save the connection
failure report by clicking the Save Report button in the dialog. The report contains
diagnostic information that may help resolve the connection failure. As an
administrator, you may want to review the connection failure report for clues to
solving the problem. See the documents that you can retrieve from My Oracle Support
(https://support.oracle.com) if you search for Doc IDs 2014348.1 and 2094772.1.

For more information about ADF Desktop Integration security, see the "Oracle ADF
Desktop Integration Security whitepaper" on OTN at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/
index-085534.html

17.4.2 What You May Need to Know About Configuring Security in a Fusion Web
Application

Note the following points before you secure your application:

• In order for the end-user login sequence to complete successfully, the
authentication provider must redirect the browser back to the originally requested
ADF Desktop Integration servlet URL after a successful login.

• For applications running in an environment using Oracle Access Manager, the
system administrator should make sure that the URL for the ADF Desktop
Integration Remote servlet is configured as a protected resource for Oracle Access
Manager.

For more information, see Introducing Oracle Access Management in Oracle Fusion
Middleware Administrator's Guide for Oracle Access Management.

• Make sure that applications using ADF Desktop Integration have a security
constraint configured in web.xml that protects the ADF Desktop Integration
remote servlet.

The following code extract from web.xml shows an example security constraint
protecting the remote servlet:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>adfdiRemote</web-resource-name>
 <url-pattern>/adfdiRemoteServlet</url-pattern>
 </web-resource-collection>
 <auth-constraint>

Security in ADF Desktop Integration

17-10 Developing Applications with Oracle ADF Desktop Integration

https://support.oracle.com/
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-085534.html

 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>

• When using Oracle WebGate and a SSL URL to access the Fusion web application
(such as https:// ...) it may be necessary to configure WebGate's
mod_wl_ohs.conf configuration file as follows:

<IfModule mod_weblogic.c>
 WLProxySSLPassThrough ON
 WLProxySSL ON
 MatchExpression /TestApp
 WebLogicHost=test.host.com|WebLogicPort=7101|
</IfModule>

where /TestApp is the context root of your application, test.host.com is the
host name and domain, and 7101 is the port number for the web application.

• When opening an integrated Excel workbook, or any Microsoft Office document,
directly (without downloading the file) from a link in the Fusion web application,
the Windows Login dialog may appear twice asking for user credentials. This
happens because Microsoft Office sends its own authentication request to the web
server, making the Login dialog appear twice. End users may click Cancel and
ignore the first authentication request.

• Applications secured via a digital certificate where clients use https URLs to
access the application should make sure that the certificate is valid. Valid
certificates have host names that match the host to which they are deployed, have
not expired, and have a valid path to a trusted issuing authority. In the case where
the certificate is invalid, the client will be prompted during login to accept the
invalid certificate.

• ADF uses chunked encoding for some requests to the server. If you have any
network devices between Excel and the web application server configured to block
requests that do not contain a content length header, you should configure them to
allow chunked encoding (no content length header). Some network devices such as
content caching servers may have a default configuration that blocks requests with
no content length header. For more information, see the “ADFDI-07528
WebException During TamperCheck” document that you can retrieve from My
Oracle Support (https://support.oracle.com) if you search for Doc ID
2013517.1.

• Before you secure your application, note that the HTTPS communication that the
ADF Desktop Integration add-in initiates during the login sequence requires a
successful SSL/TLS protocol handshake. This handshake can fail if the server and
ADF Desktop Integration add-in cannot agree on a protocol to use. For example, if
the client computer supports SSL 3.0 and TLS 1.0, but the server only supports TSL
1.1 and TLS 1.2. The ADF Desktop Integration add-in makes HTTPS connections
using portions of the Microsoft Internet Explorer technology stack as well as the
Microsoft .NET Framework. For best results, ensure that:

– Client computers have Microsoft .NET Framework 4.5.2 (or higher) installed

– Microsoft Internet Explorer is configured on the client computer to support TLS
1.1 and TLS 1.2. For more information, see the "ADFDI-00500: unable to execute
Wininet method HttpSendRequest; error code: 12029" During Login" document
that you can retrieve from My Oracle Support (https://support.oracle.com) if
you search for Doc ID 2025331.1.

Security in ADF Desktop Integration

Administering ADF Desktop Integration 17-11

https://support.oracle.com/
https://support.oracle.com/

– Ensure that the Oracle Weblogic Server that hosts the web application is
configured to support TLS 1.1 and TLS 1.2. For more information, see the
"Specifying the SSL Protocol Version" section in the Oracle WebLogic Server
security guide for the release of Oracle WebLogic Server that you use.

The ADF Desktop Integration add-in may initiate HTTPS communication by
offering the TLS 1.2 protocol for the SSL/TLS protocol handshake. While ADF
Desktop Integration does not require TLS 1.2, servers (such as Oracle WebLogic
Server, Oracle HTTP Server, and Oracle Application Server WebCache) must
successfully negotiate a mutually agreed-upon protocol when offered the TLS
1.2 protocol. Some older versions of servers are known to reject TLS 1.2 offers
rather than negotiate to use a lower version (for example, TLS 1.0). Such server
versions are not supported. If older versions of server are in use, please make
sure that the most recent Critical Patch Updates are applied. See also the
"WebException: The request was aborted: Could not create SSL/TLS secure
channel - during or right after ADFdi login sequence" document that you can
retrieve from My Oracle Support (https://support.oracle.com) if you search for
Doc ID 2087746.1.

For more information about securing integrated Excel workbooks, see What You May
Need to Know About Securing an Integrated Excel Workbook.

17.4.3 What You May Need to Know About Resource Grants for Web Pages
In an integrated Excel workbook, each worksheet is bound to a specific page
definition. Users' access to pages may be controlled by resource grants. If an end user
is not authorized to work with a page definition, ADF Desktop Integration disallows
all data transactions in worksheets bound to that page definition, displays a failure
message, and disables those integrated worksheets. The end user can alter any existing
data in the worksheet, but cannot download or upload it. The tracking of changes in
ADF Table components is also disabled. The end user can continue to use ADF
Desktop Integration features in other worksheets in the same workbook, provided
those worksheets are bound to page definitions that the end user is authorized to work
with.

The worksheet is re-enabled when the end user reopens the workbook and establishes
a new session, provided that the end user has obtained the necessary resource grants
for the corresponding page definition.

For more information about securing your Fusion web application, see the "Enabling
ADF Security in a Fusion Web Application" chapter in Developing Fusion Web
Applications with Oracle Application Development Framework.

17.5 Verifying the Client Version of ADF Desktop Integration
ADF Desktop Integration verifies whether the client and the server versions match
each time that an end user establishes a session with the Fusion web application from
the runtime integrated Excel workbook. If the versions do not match, ADF Desktop
Integration displays the dialog shown in Figure 17-4. If the versions match, no dialog
appears to the end users.

Verifying the Client Version of ADF Desktop Integration

17-12 Developing Applications with Oracle ADF Desktop Integration

http://www.oracle.com/technetwork/topics/security/alerts-086861.html#CriticalPatchUpdates
https://support.oracle.com/

Figure 17-4 Client-Server Version Check Dialog

If the end user clicks:

• Install: ADF Desktop Integration initiates the download of the installer from the
server to update the client to the matching server version

• Skip: ADF Desktop Integration attempts to continue to function normally. The
dialog appears the next time the end user starts a session with the integrated Excel
workbook that connects to the Fusion web application unless the end user chooses
a later reminder time from the Remind Me dropdown list, as shown in Figure 17-4.

Always using a client version that matches the server version is highly recommended
to avoid unexpected behavior or errors. If end users skip the installation of a newer
client version of ADF Desktop Integration, they can install at a later time by clicking
the Check for updates link that appears in the About dialog of the integrated Excel
workbook, as shown in Figure 17-5.

Figure 17-5 Check for Updates Link for End Users

Verifying the Client Version of ADF Desktop Integration

Administering ADF Desktop Integration 17-13

For scenarios where you do not want end users to install a newer client version or they
cannot because they do not have the required privileges to install software on their
machines, the default behavior where ADF Desktop Integration displays an option to
install a newer version can be disabled. When you disable the option to install a newer
client version, the Client-Server Version Check dialog appears and informs the end
user of the mismatch, but does not present an option to install a newer version. Figure
17-6 shows this dialog. Furthermore, the About dialog shown in Figure 17-5 will no
longer have a Check for updates link to start an install process. For more information
about how to disable the option to upgrade, see How to Disable the Install Option on
the Client-Server Version Check Dialog.

Figure 17-6 Client-Server Version Check Dialog without Install Option

Note that:

• ADF Desktop Integration performs the client-server version verification every time
that the integrated Excel workbook establishes a session with the Fusion web
application.

• The version of ADF Desktop Integration running on the server can change at any
time (for example, server upgrade), but ADF Desktop Integration only performs
the client-server version verification when the user session is re-established.

• Consider employing other mechanisms for situations where end users cannot
install a version that matches the server version. For example, automatically push
out software updates from a centrally-managed IT source to make sure that the
matching version of the client software is installed.

17.5.1 How to Disable the Install Option on the Client-Server Version Check Dialog
By default, ADF Desktop Integration displays an option to end users to install a newer
client version from the Client-Server Version check dialog. You can disable this option
so that ADF Desktop Integration informs end users of the mismatch, as shown in
Figure 17-6, but does not permit end users to install a newer client version. Disabling
this option is not recommended. However, it may be useful in cases where end users
do not have permission to install software.

Before you begin:

It may be helpful to have an understanding of how ADF Desktop Integration verifies if
the client and server versions match. For more information, see Verifying the Client
Version of ADF Desktop Integration.

To disable the install option on the Client-Server Version Check dialog:

Verifying the Client Version of ADF Desktop Integration

17-14 Developing Applications with Oracle ADF Desktop Integration

1. Open the web.xml file of your Fusion web application.

2. Add an initialization parameter to the adfdiRemote servlet to disable the option
to install from the Client-Server Version Check dialog, as described in Table 17-3.

Table 17-3 Disabling the install option on the Client-Server Version Check
dialog

Property Value

Name Enter the name of the initialization parameter as follows:

ClientUpgradePrompt.Enabled

Note that the name is case-sensitive.

Value Set the value of ClientUpgradePrompt.Enabled to
False.

Note that any value other than False will be interpreted as
True.

3. Save the web.xml file.

The web.xml file of your Fusion web application will now have the
ClientUpgradePrompt.Enabled entry:

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-class>
 <init-param>
 <param-name>ClientUpgradePrompt.Enabled</param-name>
 <param-value>False</param-value>
 </init-param>
 </servlet>

4. Restart your Fusion web application.

17.6 Verifying Integrated Excel Workbook Metadata
To give end users the confidence that the workbook configuration has not been altered
maliciously, ADF Desktop Integration verifies the integrity of the workbook metadata
automatically using the Tamper-Check feature. For more information, see Checking the
Integrity of an Integrated Excel Workbook's Metadata.

17.6.1 How to Disable the Metadata Tamper-Check in the Fusion Web Application
By default, ADF Desktop Integration verifies that the workbook configuration
metadata is not tampered with after the workbook's developer publishes the Excel
workbook for end users. You can disable the metadata tamper-check by configuring a
parameter in the deployment descriptor file (web.xml) of the Fusion web application.

Before you begin:

It may be helpful to have an understanding of how ADF Desktop Integration verifies
the integrity of an integrated Excel workbook's metadata. For more information, see
Verifying Integrated Excel Workbook Metadata.

To disable the metadata tamper-check in the Fusion web application:

1. Open the web.xml file of your Fusion web application.

Verifying Integrated Excel Workbook Metadata

Administering ADF Desktop Integration 17-15

2. Add an initialization parameter to the adfdiRemote servlet to disable the
metadata tamper-check, as described in Table 17-4.

Table 17-4 Disabling Metadata Tamper-Check

Property Value

Name Enter the name of the initialization parameter as follows:

TamperingCheck.Enabled

Note that the name is case-sensitive.

Value Set the value of TamperingCheck.Enabled to False.

Note that any value other than False will be interpreted as
True.

Figure 17-7 shows the web.xml editor in JDeveloper.

Figure 17-7 Disabling the Metadata Tamper Check In JDeveloper

3. Save the web.xml file.

The web.xml file of your Fusion web application will now have the
TamperingCheck.Enabled entry:

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>...</servlet-class>
 <init-param>
 <param-name>TamperingCheck.Enabled</param-name>
 <param-value>False</param-value>
 </init-param>
</servlet>

4. Restart your Fusion web application.

If the TamperingCheck.Enabled parameter is not present in web.xml, tamper
check is enabled. For more information about the web.xml file, see ADF Desktop
Integration Settings in the Web Application Deployment Descriptor.

Verifying Integrated Excel Workbook Metadata

17-16 Developing Applications with Oracle ADF Desktop Integration

17.7 Common ADF Desktop Integration Error Messages and Problems
While using or configuring the ADF Desktop Integration-enabled Fusion web
application or workbooks, end users might see error messages or encounter problems.
The following information may assist you in resolving these problems for your end
users:

• The "Troubleshooting Oracle ADF Desktop Integration" document that you can
retrieve from My Oracle Support (https://support.oracle.com) if you search
for Doc ID 2012600.2.

• The "ADFDI-00100 to ADFDI-55516" chapter in Oracle Fusion Middleware Error
Messages.

ADF Desktop Integration also provides the Client Health Check tool that determines if
an end user’s machine is configured correctly to use integrated Excel workbooks. Ask
end users who encounter problems using integrated Excel workbooks to download
and run this tool, as described in Providing Diagnostic and Logging Information to
Technical Support.

Common ADF Desktop Integration Error Messages and Problems

Administering ADF Desktop Integration 17-17

https://support.oracle.com/

Common ADF Desktop Integration Error Messages and Problems

17-18 Developing Applications with Oracle ADF Desktop Integration

A
ADF Desktop Integration Component

Properties and Actions

This appendix lists and describes the properties of ADF Desktop Integration
components. It also describes the actions that certain components expose.

This appendix includes the following sections:

• Frequently Used Properties in the ADF Desktop Integration

• ADF Input Text Component Properties

• ADF Output Text Component Properties

• ADF Label Component Properties

• ADF List of Values Component Properties

• ADF Image Component Properties

• ADF Input Date Component Properties

• ModelDrivenColumnComponent Subcomponent Properties

• TreeNodeList Subcomponent Properties

• ADF Button Component Properties

• ADF Table Component Properties and Actions

• ADF Read-only Table Component Properties and Actions

• Action Set Properties

• Workbook Actions and Properties

• Worksheet Actions and Properties

• ADF Desktop Integration Compatibility Properties

A.1 Frequently Used Properties in the ADF Desktop Integration
Table A-1 lists alphabetically properties in ADF Desktop Integration that many
components reference.

ADF Desktop Integration Component Properties and Actions A-1

Table A-1 Frequently Used Properties in ADF Desktop Integration

Name Type EL Description

ActionSet N For information about action sets, see Action Set
Properties.

Annotation String N Use this field to enter a comment about the
component's use in the worksheet. Comments you
enter have no effect on the behavior of the
workbook. They are the equivalent of code
comments.

ComponentID String N ADF Desktop Integration generates this string to
uniquely identify each instance of an ADF
component in an integrated Excel workbook.

Label String Y Specify an EL expression that is evaluated at
runtime. For information about EL expressions in
ADF Desktop Integration, see ADF Desktop
Integration EL Expressions. For information about
using labels, see Using Labels in an Integrated Excel
Workbook.

Position N This property defines the upper-left corner of the
Oracle ADF component in the integrated Excel
workbook.

ReadOnly Boolean Y Set this property to True so that ADF Desktop
Integration ignores changes a user makes to a cell
that references a component which uses this
property. The cells can also be locked if this setting
is used in combination with automatic worksheet
protection, as described in Using Worksheet
Protection.

To avoid end user confusion, apply styles to the
cells where you set ReadOnly to True that provide
a visual clue to users that they cannot modify the
cell's contents. For information about applying
styles, see Working with Styles.

StyleName String Y Specifies the style in the current Excel workbook to
apply when the Oracle ADF component is
rendered. For more information, see Working with
Styles.

Tooltip String Y Specify the hint message about the content or
function of the ADF form component, or table
column, to appear when the mouse hovers the
component, or the column.

For more information, see Displaying Tooltips in
ADF Desktop Integration Components.

Value Varies Y This property typically references an EL binding
value expression that gets evaluated during the
invocation of the ADF Table component's
Download and RowDownSync actions or a
worksheet's DownSync action. The resulting data
value gets displayed in the worksheet at runtime.

Frequently Used Properties in the ADF Desktop Integration

A-2 Developing Applications with Oracle ADF Desktop Integration

Many label-type properties are optional and default to empty. At runtime, if the value
of such properties is empty, ADF Desktop Integration provides a default, localized
value. If you want the value of the property to appear as empty, set its value to a
single space character, or provide an EL expression that evaluates to an empty string.

A.2 ADF Input Text Component Properties
Table A-2 lists alphabetically the properties of the ADF Input Text component.

Table A-2 ADF Input Text Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

InputText.DoubleClickActio
nSet

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Action Set Properties .

InputText.ReadOnly For information about this property, see Table A-1.

InputText.Value For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

StyleName For information about this property, see Table A-1.

Tooltip For information about this property, see Table A-1.

A.3 ADF Output Text Component Properties
Table A-3 lists alphabetically the properties of the ADF Output Text component.

Table A-3 ADF Output Text Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

OutputText.DoubleClickActio
nSet

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Action Set Properties .

OutputText.Value For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

StyleName For information about this property, see Table A-1.

Tooltip For information about this property, see Table A-1.

A.4 ADF Label Component Properties
The ADF Label component displays a static string value at runtime. ADF Desktop
Integration generates the value when the EL expression that the Label property

ADF Input Text Component Properties

ADF Desktop Integration Component Properties and Actions A-3

references is evaluated. For information about using labels, see Using Labels in an
Integrated Excel Workbook.

Table A-4 lists alphabetically the properties that the ADF Label component references.

Table A-4 ADF Label Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

Label For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

StyleName For information about this property, see Table A-1.

Tooltip For information about this property, see Table A-1.

A.5 ADF List of Values Component Properties
Table A-5 lists the properties of the ADF List of Values component. For information
about creating lists of values in your integrated Excel workbook, see Working with
Lists of Values .

Table A-5 ADF List of Values Component Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

ListOfValues.DependsOnLi
stID

List
binding

N Select the list binding whose value at runtime determines
the choices available in the dependent list of values at
runtime.

The list binding that you select can be a model-driven list.

For more information about dependent list of values, see
Creating Dependent Lists of Values in an Integrated Excel
Workbook.

ListOfValues.ListID List
binding

N Select the list binding that defines the values available in the
list of values. The list binding that you select can be a model-
driven list.

ListOfValues.ReadOnly Boolean N For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

StyleName For information about this property, see Table A-1.

Tooltip String Y For information about this property, see Table A-1.

A.6 ADF Image Component Properties
The ADF Image component displays an image at runtime. For more information about
adding an ADF Image component, see Inserting an ADF Image Component.

ADF List of Values Component Properties

A-4 Developing Applications with Oracle ADF Desktop Integration

Table A-6 ADF Label Component Properties

Name Description

Source Enter the absolute, or relative, URL of the image file.

ShortDesc Enter the EL expression that resolves to the alternate text of the image component.

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

A.7 ADF Input Date Component Properties
Table A-7 lists alphabetically the properties of the ADF Input Date component. For
more information about the ADF Input Date component, see Inserting an ADF Input
Date Component.

Table A-7 ADF Input Date Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

InputDate.ReadOnly For information about this property, see Table A-1.

InputDate.Value Specify an EL expression that resolves to a date-time value at runtime. For
more information about ADF Input Date component, see Inserting an
ADF Input Date Component.

Position For information about this property, see Table A-1.

StyleName For information about this property, see Table A-1.

Tooltip For information about this property, see Table A-1.

A.8 ModelDrivenColumnComponent Subcomponent Properties
The ModelDrivenColumnComponent subcomponent does not appear in the
components palette of the ADF Desktop Integration task pane. Instead, you configure
properties for this subcomponent when you specify
ModelDrivenColumnComponent as the subcomponent to invoke for the ADF Table
component's UpdateComponent or InsertComponent table column properties
described in ADF Table Component Column Properties.

The column subcomponent type is determined at runtime by the column's attribute
Control Type hint specified on the server. For example, if there is a model-driven list
associated with the attribute, then the column uses a dropdown list containing the
model-driven list items at runtime. For more information, see Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table Component.

Table A-8 describes the properties that you configure for the
ModelDrivenColumnComponent subcomponent.

ADF Input Date Component Properties

ADF Desktop Integration Component Properties and Actions A-5

Table A-8 ModelDrivenColumnComponent Subcomponent Properties

Name Type EL Description

DoubleClickActionSet Specifies the action set invoked when a user double-
clicks the cell. For information about action sets, see
Action Set Properties .

ReadOnly Boolean Y Set the ReadOnly property to False if you do want
users to edit the values in the column, set to True
otherwise. The default value is False.

If you create the ADF Table component by double-
clicking a tree binding in the Bindings palette, the
property's value is set to an EL expression in the
following format that evaluates to True or False at
runtime:

#{bindings.{tree-id}.hints.{attr-
id}.readOnly}

For example,
#{bindings.Customers.hints.Address.readOn
ly}

For more information about this property, see Table
A-1.

Value Varies Y For information about this property, see Table A-1.

A.9 TreeNodeList Subcomponent Properties

Note:

The ModelDrivenColumnComponent subcomponent also renders
dropdown menus for tree binding attributes that have a model-driven list.
Consider using a ModelDrivenColumnComponent subcomponent rather
than a TreeNodeList subcomponent. For more information, see
ModelDrivenColumnComponent Subcomponent Properties.

The TreeNodeList is an ADF Table subcomponent that renders dropdown menus in
columns of the ADF Table component at runtime. It provides the same functionality to
end users as the ADF List of Values component. For information about creating lists of
values in your integrated Excel workbook, see Working with Lists of Values .

The TreeNodeList subcomponent does not appear in the components palette of the
ADF Desktop Integration task pane. Instead, you configure properties for this
subcomponent when you specify TreeNodeList as the subcomponent to invoke for
the ADF Table component's UpdateComponent or InsertComponent table column
properties described in ADF Table Component Column Properties.

Table A-9 describes the properties that you configure for the TreeNodeList
subcomponent.

TreeNodeList Subcomponent Properties

A-6 Developing Applications with Oracle ADF Desktop Integration

Table A-9 TreeNodeList Subcomponent Properties

Name Type EL Description

DependsOnList Tree
binding
attribute
or List
binding

Y Specify the tree binding attribute or list binding that serves as the
parent list of values in a dependent list of values.

Note that the tree binding attribute you specify must be associated
with a model-driven list.

For more information about dependent list of values, see Creating
Dependent Lists of Values in an Integrated Excel Workbook.

List Tree
binding
attribute

Y Specify the tree binding attribute associated with a model-driven
list that defines the values available in the runtime dropdown
menu to appear in the ADF Table component's column.

ReadOnly Boolean Y Always set this property's value to True because it is obsolete
when used with this subcomponent. For read-only columns,
consider using the ModelDrivenColumnComponent
subcomponent or the OutputText component.

A.10 ADF Button Component Properties
Table A-10 lists alphabetically the properties of the ADF Button component. For more
information about the ADF Button component, see Inserting an ADF Button
Component.

Table A-10 ADF Button Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ClickActionSe
t

Specify the action set to invoke when a user clicks the button. For information about action
sets, see Action Set Properties .

ComponentID For information about this property, see Table A-1.

Label For information about this property, see Table A-1.

LowerRightCor
ner

This property is an Excel cell reference. Used with Position, it specifies the area that the
button occupies on the Excel worksheet.

Position For information about this property, see Table A-1.

A.11 ADF Table Component Properties and Actions
The ADF Table component uses the properties and component actions listed here.

A.11.1 ADF Table Component Properties
Table A-11 lists alphabetically the properties the ADF Table component uses.

ADF Button Component Properties

ADF Desktop Integration Component Properties and Actions A-7

Table A-11 ADF Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table
A-1.

BatchOptions This group of properties enables you to configure
batch options for the ADF Table component. For
more information about how you use these
properties, see Batch Processing in an ADF Table
Component.

BatchOptions.BatchSize Integer N Specifies how many rows to process before an
ADF Table component action (Upload or
DeleteFlaggedRows) invokes
CommitBatchActionID. Any value other than a
positive integer results in all rows being
processed in a single batch. The default value is
100 rows.

A value for this property is required.

BatchOptions.CommitBatchActio
nID

Action
binding

N Specify an action binding to invoke when the
number of rows specified by BatchSize have
been processed. The action binding is expected to
be a commit-type action.

BatchOptions.LimitBatchSize Boolean N Set this property to True to process rows in
batches where each batch contains the number of
rows specified by BatchSize. If set to False, all
rows are processed in a single batch.

BatchOptions.StartBatchAction
ID

Action
binding

N Specify an action binding to invoke at the
beginning of each batch. For example, this
property might be used for an operation like
"start transaction", if required by a particular
database.

A value for this property is optional.

DisplayUploadOptions Boolean N Set to True to display the Upload Options dialog
when uploading data from ADF Table
component.

For more information, see What You May Need to
Know About Upload Options.

Columns An array of columns. For information about the
properties that each column in the array supports,
see ADF Table Component Column Properties.

ComponentID For information about this property, see Table
A-1.

Position For information about this property, see Table
A-1.

ADF Table Component Properties and Actions

A-8 Developing Applications with Oracle ADF Desktop Integration

Table A-11 (Cont.) ADF Table Component Properties

Name Type EL Description

ResizeColumnsMode Controls whether and how the columns in the
entire table are resized.

For more information, see Configuring an ADF
Table Component to Resize Columns Based on
Data at Runtime.

RowActions This group of properties allows you specify
which actions are enabled and can be invoked.

RowActions.AutoConvertNewRows
Enabled

Boolean N When True, end users can insert new data from
non-integrated Excel workbooks directly into the
row under the ADF Table component or edit the
row under the ADF Table component to convert it
to a row in the ADF Table component. For more
information, see How to Insert or Paste Rows in
an ADF Table Component . True is the default
value.

Set to False for ADF Table components that do
not support row inserts or that need to have a
calculated row under the table.

RowActions.DeleteRowActionID Action
binding

N Specify an action binding to invoke for each row
flagged for deletion.

A value for this property is optional.

RowActions.DeleteRowEnabled Boolean N Set to True to allow a user to delete existing
rows. False is the default value.

A value for this property is required.

RowActions.FailureActionID Action
binding

N Specify an action binding to invoke if failures
occur during the processing of rows.

A value for this property is optional.

RowActions.InsertAfterRowActi
onID

Action
binding

N Specify an action binding to invoke for each row
inserted using the ADF Table component Upload
action. The action binding is invoked after the
attributes are set. Use of this property is suitable
with a custom action where a variable iterator is
employed along with the main iterator.

A value for this property is optional.

RowActions.InsertBeforeRowAct
ionID

Action
binding

N Specify an action binding to invoke for each row
inserted using the Upload component action. The
action binding specified is invoked before the
attributes are set.

A value for this property is optional.

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-9

Table A-11 (Cont.) ADF Table Component Properties

Name Type EL Description

RowActions.InsertRowEnabled Boolean N Set to True to allow the end user insert new rows
in the ADF Table component. False is the
default value.

If you set this property to True, you must specify
a value for
RowActions.InsertBeforeRowActionID.

Typically, a Fusion web application uses the
CreateInsert action binding to create and
insert a new row. In this scenario, you specify the
CreateInsert action binding as the value for
InsertBeforeRowActionID.

For more information about inserting rows in an
ADF Table component, see Inserting Data in an
ADF Table Component.

RowActions.InsertRowsAfterUpl
oadEnabled

Boolean N Set to True to allow the end user to reinsert
changed rows regardless of whether they have
been previously uploaded. False is the default
value.

The property is ignored if InsertRowEnabled is
set to False.

RowActions.InsertTempRowActio
nID

Action
binding

N When configured, this action is invoked to create
a temporary row during row-level action set
execution for insert rows.

For more information, see Using Row-Level
Action Sets in a Table Column.

RowActions.UpdateRowActionID Action
binding

N Specify an action binding to invoke for each row
updated.

A value for this property is optional.

RowActions.UpdateRowEnabled Boolean N Set to True to allow a user update an existing
row. True is the default value.

A value for this property is required.

RowData Set values for the CachedAttributes property
when you want to cache data in an integrated
Excel workbook across multiple sessions with the
Fusion web application.

Set a value for the
ChangeIndicatorAttributeID property to
determine whether a row has been modified by
another user since you downloaded it from the
Fusion web application.

ADF Table Component Properties and Actions

A-10 Developing Applications with Oracle ADF Desktop Integration

Table A-11 (Cont.) ADF Table Component Properties

Name Type EL Description

RowData.CachedAttributes Array N Specify values for the properties in this array to
determine the attributes for which data is cached.
Each CachedTreeAttribute element in this
array supports the following properties:

• Value

Select the tree binding attribute for which data
is to be cached.

• Annotation

For more information about this property, see
Table A-1.

The table RowDownSync action caches the row
attribute values for the configured
RowData.CachedAttributes. The table
RowUpSync,Upload, and
UploadAllOrNothing actions send any cached
row attribute values to the Fusion web
application.

Note: A cached attribute value will override any
edits the end user makes to the same attribute
binding exposed in a column component.
Therefore, you should not configure the same
attribute in CachedAttributes and in a table
column component.

For information about using the
RowData.CachedAttributes array to cache
data in an ADF Table component, see Adding a
Model-Driven List Picker to an ADF Table
Component and How to Add a Custom Popup
Picker Dialog to an ADF Table Column.

RowData.ChangeIndicatorAttrib
uteID

Attribute
Binding

Y Specify an EL expression that evaluates to a row-
specific tree attribute binding value. The attribute
value is used to determine if a row has been
modified by another user since the row was last
downloaded to your integrated Excel workbook.

For more information, see Handling Data
Conflicts When Uploading Data from a
Workbook.

RowLimit This group of properties allows you configure the
number of rows that the ADF Table component or
ADF Read-only Table component download and
display.

For more information, see Limiting the Number
of Rows Your Table-Type Component
Downloads .

RowLimit.Enabled Boolean N Set to True to limit the number of rows
downloaded to the value specified by
RowLimit.MaxRows. True is the default value.

A value for this property is required.

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-11

Table A-11 (Cont.) ADF Table Component Properties

Name Type EL Description

RowLimit.MaxRows Integer Y Specify an EL expression that evaluates to the
maximum number of rows to download. The
component evaluates the EL expression when it
invokes its Download action. The default value is
500. If MaxRows is not a positive integer, the
component attempts to download as many rows
as possible. An invalid expression such as "ABC"
is interpreted as -1 (negative integer). As a result,
the component attempts to download as many
rows as possible.

Note that setting the value of MaxRows to 0
results in a message where the user is asked if
they want to download the first 0 rows. To avoid
this, set MaxRows to a positive integer other than
0.

RowLimit.WarningMessage String Y (Optional) Write an EL expression to generate a
message to display to the end user if the number
of rows available to download exceeds the
number specified by RowLimit.MaxRows. This
expression is evaluated each time the Table's
Download action is invoked. The maximum
number of rows that a Excel 2007, or a higher
version, worksheet can contain is approximately 1
million. If this property is left blank, ADF
Desktop Integration displays a message similar to
"Too many rows available. Do you want
to download the first {0} rows?" that is
translated for the current culture settings.

You can specify a string key from a custom
resource bundle to use, instead of the default
value. If desired, you may supply a custom
message to replace the default one. Any custom
message must contain {0}. {0} will be replaced
by the MaxRows value.

For more information about resource bundles, see
Using Resource Bundles in an Integrated Excel
Workbook.

TreeID Binding N Specify a tree binding from the current
worksheet's page definition file. You must specify
a value for this property so that row downloads
and uploads function properly. For more
information about the page definition
requirements for an integrated Excel workbook,
see Table 4-1.

ADF Table Component Properties and Actions

A-12 Developing Applications with Oracle ADF Desktop Integration

Table A-11 (Cont.) ADF Table Component Properties

Name Type EL Description

UniqueAttribute Attribute
binding

Y Specify an EL expression that evaluates to a
unique row-specific tree attribute binding value.
The value of this attribute is cached in the
integrated Excel workbook during the ADF Table
component's Download action. ADF Desktop
Integration uses this value to ensure that the tree
binding's iterator is positioned correctly before
setting or getting data for a given ADF Table
component row.

Note that this value is required only when the
underlying tree binding iterator does not expose a
rowKey.

This value is optional when:

• The tree binding iterator exposes a rowKey, in
which case the rowKey value is used for
positioning OR

• The ADF Table component is configured to be
insert-only
(RowActions.InsertRowEnabled is set to
True and
RowActions.UpdateRowEnabled is set
False)

A.11.2 ADF Table Component Column Properties
Table A-12 describes the properties that a column in the TableColumn array can use.

Table A-12 ADF Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

CellStyleName String Y Write an EL expression that resolves to an Excel style name
that is applied to each cell in the column.

Tooltip String Y For information about this property, see Table A-1.

DynamicColumn Boolean N Set to True to make a column dynamic. False is the default
value. For more information about dynamic columns, see
Adding a Dynamic Column to Your ADF Table Component.

HeaderLabel String Y Write an EL expression that, when evaluated at runtime,
displays a label in the column header.

GroupedHeader Configure the GroupHeader properties to group together
columns that render in an ADF Table component by
displaying an extra table header row above the ADF Table
component's regular table header row at runtime. For more
information, see Grouping Columns Together in an ADF Table
Component.

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-13

Table A-12 (Cont.) ADF Table Component Column Properties

Name Type EL Description

GroupedHeader.Bound
ary

String Y Set to start or end to specify a column as the start or end
column in a grouped header. Write an EL expression that
evaluates to start or end if you want to create a grouped
header for dynamic columns.

GroupedHeader.Label String Y Write an EL expression that, when evaluated at runtime,
displays a label in the grouped header.

GroupedHeader.Style
Name

String Y Write an EL expression that resolves to an Excel style name
that is applied to each cell in the grouped header.

GroupedHeader.Toolt
ip

For information about the tooltip property, see Table A-1.

HeaderStyleName String Y Write an EL expression that resolves to an Excel style name
that is applied to each cell in the column header.

ID String N Assign a name to the column to identify it and its purpose. The
value that you assign for this property has no functional
impact. However, you must specify a value and the value that
you specify must be unique within the list of columns. It
serves to help you keep track of columns in the ADF Table
component. The following IDs are reserved to the default
columns in the ADF Table component:

• _ADF_ChangedColumn

• _ADF_FlagColumn

• _ADF_RowKeyColumn

• _ADF_StatusColumn

For more information about these columns, see Special
Columns in the ADF Table Component .

InsertComponent ADF
component

N Specifies the properties of the component that represents the
binding for insert operations. This component can be one of
the following:

• ModelDrivenColumnComponent

For information about the properties that this component
supports, see ModelDrivenColumnComponent
Subcomponent Properties.

• InputDate component

For information about the properties that this component
supports, see ADF Input Date Component Properties.

• Input Text component

For information about the properties that this component
supports, see ADF Input Text Component Properties .

• Output Text component

For information about the properties that this component
supports, see ADF Output Text Component Properties .

When InsertUsesUpdate is set to True, the ADF Table
component ignores the value of the InsertComponent
property. Typically, you will rarely use the
InsertComponent property.

ADF Table Component Properties and Actions

A-14 Developing Applications with Oracle ADF Desktop Integration

Table A-12 (Cont.) ADF Table Component Column Properties

Name Type EL Description

InsertUsesUpdate Boolean N Set to True if insert and update operations use the same
component type. When True, the ADF Table component
ignores the values of the InsertComponent property and
reads the value of the UpdateComponent property.

The default value is True.

ResizeMode Specifies how ADF Desktop Integration changes the column
width at runtime when the ResizeColumns action is
invoked.

For more information, see Configuring an ADF Table
Component to Resize Columns Based on Data at Runtime.

UpdateComponent ADF
component

N Specifies the properties of the component that represents the
binding for update and download operations. This component
can be one of the following:

• ModelDrivenColumnComponent

For information about the properties that this component
supports, see ModelDrivenColumnComponent
Subcomponent Properties.

• Input Date component

For information about the properties that this component
supports, see ADF Input Date Component Properties.

• Input Text component

For information about the properties that this component
supports, see ADF Input Text Component Properties .

• Output Text component

For information about the properties that this component
supports, see ADF Output Text Component Properties .

Visible Boolean Y Write an EL expression that resolves to True or False. If
True, the column appears in the ADF Table component. If
False, the column does not appear. True is the default value.

If you make a column dynamic, the ADF Table component
ignores the value of the Visible property. For more
information about dynamic columns, see Adding a Dynamic
Column to Your ADF Table Component.

Width Double Y Specify the width of the column in number of characters. You
can specify an EL expression that evaluates to a number or a
literal numerical value to determine the width of the column.
The value can be a fractional value using a decimal point. A
character is the unit of the width. The value is used when
ResizeMode is SpecifiedWidth.

For more information, see Configuring an ADF Table
Component to Resize Columns Based on Data at Runtime.

A.11.3 ADF Table Component Actions
Table A-13 describes the component actions available for use with the ADF Table
component.

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-15

Table A-13 ADF Table Component Actions

Component Action Description

ClearCachedRowAttributes Clears the values of cached attributes for the current row of the ADF Table
component. Only a DoubleClickActionSet in an ADF Table component's
column should invoke this action.

DeleteFlaggedRows Invokes a specified action on each of a set of flagged rows in the ADF Table
component and then removes these rows from the ADF Table component.

The Actions' Options.AbortOnFailure property lets you determine if
the DeleteFlaggedRow component action continues execution after it
encounters an error.

For more information, see Deleting ADF Table Component Rows in the Fusion
Web Application.

DisplayRowErrors Displays error details for the current row in the ADF Table component if error
details are available. This action should only be invoked from a column's
action set in an ADF Table component. By default, the _ADF_StatusColumn
described in Special Columns in the ADF Table Component is configured with
an action set that invokes this action.

DisplayTableErrors Displays a list of errors that occurred during batch processing. This action is
deprecated. It is no longer necessary. All relevant error messages can be
viewed using the Status Viewer described in Using the Status Viewer to
Report Error Messages to End Users.

Download Download the rows corresponding to the current state of TreeID. For
information about TreeID, see ADF Table Component Properties.

DownloadFlaggedRows Downloads the flagged rows from the tree binding specified by TreeID. For
information about TreeID, see Table A-11.

This action applies to the downloaded rows only, and inserted rows are
ignored. For more information, see Handling Data Conflicts When Uploading
Data from a Workbook.

DownloadForInsert This action is obsolete. For more information, see What You May Need to
Know About DownloadForInsert Action.

FlagAllRows Sets the flag for all rows.

Invoke this action to set a flag character in all rows of the _ADF_FlagColumn
column. The flag character has the following properties:

Character Code 25CF, Unicode(hex)

It appears as a solid circle.

For more information about the _ADF_FlagColumn column, see Special
Columns in the ADF Table Component .

ADF Table Component Properties and Actions

A-16 Developing Applications with Oracle ADF Desktop Integration

Table A-13 (Cont.) ADF Table Component Actions

Component Action Description

Initialize This action performs the following actions:

• Removes all rows of data from the ADF Table component
• Clears the values of cached attributes from rows in the ADF Table

component
• Creates the placeholder row
• Recalculates how many dynamic columns to render in the ADF Table

component
• Redraws column headers
If the ADF Table component contains pending changes that have not been
saved in the integrated Excel workbook, a dialog appears to the end user that
allows cancellation of invocation of this action.

MarkAllRowsChanged Specify this component action to mark all rows in the table as changed in
_ADF_ChangeColumn.

MarkAllRowsUnchanged Specify this component action to clear all flags from the
_ADF_ChangedColumn column.

ResizeColumns Resizes the table columns depending on the values of the
Table.ResizeColumnsMode and Column.ResizeMode properties.

For more information, see Configuring an ADF Table Component to Resize
Columns Based on Data at Runtime.

RowDownSync Synchronizes data from the row in the ADF Table component's iterator in the
Fusion web application that corresponds to the current worksheet row to the
worksheet. As this action acts upon the current worksheet row, only a
DoubleClickActionSet associated with a column in the ADF Table
component should invoke this action.

The ADF Table component does not evaluate or apply the value of a column's
Visible property when invoking RowDownSync. The ADF Table component
evaluates and applies the value of a column's CellStyleName property when
invoking RowDownSync. For more information about column properties, see
ADF Table Component Column Properties.

RowUpSync Synchronizes any pending changes in the current worksheet row that the ADF
Table component references to the Fusion web application. RowUpSync acts
upon the current worksheet row so only a DoubleClickActionSet
associated with a column in the ADF Table component should invoke this
action. The DoubleClickActionSet that invokes RowUpSync also changes
the position of the ADF Table component's iterator on the Fusion web
application to the current worksheet row (assuming it exists in the Fusion web
application).

For more information, see Using Row-Level Action Sets in a Table Column..

RowUpSyncNoFail It is a variant of RowUpSync that tolerates failures. Like RowUpSync,
RowUpSyncNoFail is only intended for use in a row-level action set. For
more information, see How to Synchronize Changes from ADF Table
Component Using RowUpSyncNoFail.

UnflagAllRows Removes flags from cells in the _ADF_FlagColumn column.

For more information about the _ADF_FlagColumn, see Special Columns in
the ADF Table Component .

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-17

Table A-13 (Cont.) ADF Table Component Actions

Component Action Description

Upload Uploads to the Fusion web application all rows marked as changed for this
table.

For more information, see Uploading Changes from an ADF Table
Component .

For more information about resolving data conflict between the Excel
workbook and the Fusion web application, see Handling Data Conflicts When
Uploading Data from a Workbook.

UploadAllOrNothing Uploads to the Fusion web application all rows marked as changed for this
table. Commits successful rows only if none of the rows fail.

For more information about UploadAllOrNothing action, see Uploading
Changes from an ADF Table Component Using an UploadAllOrNothing
Action.

A.12 ADF Read-only Table Component Properties and Actions
The ADF Read-only Table component exposes one action, Download. This action
downloads the current rows in the table identified by the ADF Read-only Table
property, TreeID. Table A-14 describes TreeID and the other properties that the
ADF Read-only Table component supports.

For more information about the ADF Read-only Table component, see Creating an
ADF Read-Only Table Component.

Table A-14 ADF Read-only Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

Columns Array N References an array of read-only columns. For information about the properties
that a column in this array can support, see Table A-15.

ComponentI
D

For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

RowLimit For information about this group of properties, see Table A-11.

TreeID Tree
binding

N References a tree binding ID from the page definition file associated with the
current worksheet if the ADF Read-only Table component was created by
inserting a tree binding into the worksheet.

Table A-15 lists alphabetically the properties that a column in the ReadOnlyColumn
array can use.

Table A-15 ADF Read-only Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

ADF Read-only Table Component Properties and Actions

A-18 Developing Applications with Oracle ADF Desktop Integration

Table A-15 (Cont.) ADF Read-only Table Component Column Properties

Name Type EL Description

CellStyleName String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column.

HeaderLabel String Y Write an EL expression that resolves to a label for the column header.

HeaderStyleNam
e

String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column header.

ID String N Assign a name to the column to identify it and its purpose. The value
that you assign for this property has no functional impact. However,
you must specify a value and the value that you specify must be
unique within the list of columns. It serves to help you keep track of
columns in the ADF Read-only Table component.

OutputText ADF
Component

For information about the properties that this component supports,
see ADF Output Text Component Properties .

A.13 Action Set Properties
Table A-16 lists alphabetically the properties that you can configure for an action set.
For more information about action sets, see Using Action Sets.

Table A-16 Action Set Properties

Name Type EL Description

ActionOptions This group of properties specifies options for invoking local
and remote actions.

ActionOptions.AbortOnFai
lure

Boolean N When set to True, the remaining actions in the array are not
invoked if an action fails. If False, all actions are invoked
regardless of the success or failure of previous actions. The
default value is True.

ActionOptions.FailureAct
ionID

Action
binding

N Specify the action binding to invoke if an action set does not
complete successfully. For example, you could specify an
action binding that rolls back changes made during the
unsuccessful invocation of the action set.

ActionOptions.NonBlockin
g

Boolean N Set to True so that the associated ActionSet does not block the
user from using other Excel features while the user waits for
the ActionSet to complete. The default value is False. For
more information, see How to Allow End Users to Continue
Working in Excel While an ActionSet Executes.

ActionOptions.SuccessAct
ionID

Action
binding

N Specify an action binding to invoke if an action set completes
successfully.

A value for this property is optional.

Action Set Properties

ADF Desktop Integration Component Properties and Actions A-19

Table A-16 (Cont.) Action Set Properties

Name Type EL Description

Actions Array N Specifies an ordered array of actions. An action can be one of
the following:

• ADFmAction

Invokes an action binding or method action binding in the
underlying page definition file. The
ADFmAction.ActionID property identifies the action
binding or method action binding to invoke. For
information about page definition files, see Working with
Page Definition Files for an Integrated Excel Workbook.

• ComponentAction

Invokes an action that a component on the worksheet
exposes. ComponentAction.ComponentID identifies the
component that exposes the action while
ComponentAction.Method identifies the action to
invoke.

The ADF Table component is the only component in ADF
Desktop Integration that expose actions. For information
about these actions, see ADF Table Component Properties
and Actions . For information about invoking component
actions, see How to Invoke Component Actions in an
Action Set.

• WorksheetMethod

Invokes a worksheet action. For information about
worksheet actions, see Worksheet Actions and Properties.

• Confirmation

Invokes a confirmation dialog. For more information about
the properties that this action uses, see Confirmation
Action Properties.

• Dialog

Invokes a web page in a popup dialog or Excel's task pane.
For more information, see Displaying Web Pages from a
Fusion Web Application.

Alert This group of properties determines if and how an alert-style
dialog appears to the user to indicate that the action set is
complete. The dialog that appears contains one button that
allows the user to acknowledge the message and dismiss the
dialog. For information about how to display an alert message,
see How to Provide an Alert After the Invocation of an Action
Set.

Many properties in this group make use of EL expressions to
retrieve string values from resource bundles. For more
information about using EL expressions, see Using Resource
Bundles in an Integrated Excel Workbook.

Alert.Enabled Boolean N Set to True to display an alert message to end users that
notifies them when an action set operation completes
successfully or includes one or more failures.

For more information, see How to Provide an Alert After the
Invocation of an Action Set.

Action Set Properties

A-20 Developing Applications with Oracle ADF Desktop Integration

Table A-16 (Cont.) Action Set Properties

Name Type EL Description

Alert.FailureMessage String Y (Optional) Specify an EL expression that evaluates to a
message to appear in the dialog if errors occur during
execution of the action set.

Alert.OKButtonLabel String Y (Optional) Specify an EL expression that evaluates to a
message to appear in the OK button of the dialog.

Alert.SuccessMessage String Y (Optional) Specify an EL expression that evaluates to a
message to appear in the dialog if no errors occur during the
execution of the action set.

Alert.Title String Y (Optional) Specify an EL expression that evaluates to a
message to appear in the title area of the dialog.

Annotation For information about Annotation, see Table A-1.

FailureMessage String Y (Optional) Specify an EL expression that evaluates to a
message to appear to the end user if the action set fails. A
default message appears if you do not specify an EL
expression.

For more information, see How to Configure Error Handling
for an Action Set.

Status This group of properties determines if and how a status
message appears during the execution of an action set. For
information about how to display a status message, see How to
Display a Progress Bar while an Action Set Executes.

Many properties in this group make use of EL expressions that
reference string keys defined in resource bundles. For more
information, see Using Resource Bundles in an Integrated
Excel Workbook.

Status.AllowCancel Boolean N If True, a Cancel button is displayed in the status dialog box.

For more information, see How to Display a Progress Bar while
an Action Set Executes.

Status.Enabled Boolean N If True (default), a status window appears during the
execution of the action set. If False, no status window
appears.

Status.Message String Y Specify an EL expression to evaluate and display in the status
window while the action set runs.

Status.Title String Y Specify an EL expression to evaluate and display in the title
area of the status window while the action set runs.

Status.Mode String N Choose the visual appearance of progress bars. The valid
values are Automatic, BothBarsAlways, MainBarOnly,
DetailBarOnly, and MainMessageOnly.

Status.DetailStatusMessa
ge

String Y Specify an optional EL expression or literal value that
evaluates to a status message to appear as the associated action
progresses.

Action Set Properties

ADF Desktop Integration Component Properties and Actions A-21

A.13.1 Confirmation Action Properties
Table A-17 lists alphabetically the properties that the Confirmation action in the
array of Actions of an action set supports. For information about the other properties
the array of Actions and action sets use, see Table A-16.

For more information, see How to Invoke a Confirmation Action in an Action Set.

Table A-17 Confirmation Action Properties

Name Type EL Description

Annotation (Optional) For information about Annotation, see Table A-1.

CancelButtonLabe
l

Strin
g

Y (Optional) An EL expression that is evaluated and displayed in the Cancel
button at runtime. By default, no value is specified.

OKButtonLabel Strin
g

Y (Optional) An EL expression that is evaluated and displayed in the OK
button at runtime. By default, no value is specified.

Prompt Strin
g

Y (Optional) An EL expression that is evaluated and displayed in the main
area of the confirmation dialog at runtime. By default, no value is specified.

Title Strin
g

Y (Optional) An EL expression that is evaluated and displayed in the title area
of the confirmation dialog at runtime. By default, no value is specified.

A.13.2 Dialog Action Properties
Table A-18 describes the properties that the Dialog action in the array of Actions of
an action set supports. For information about the other properties the array of
Actions and action sets use, see Table A-16.

For information about how to use the properties in Table A-18 to invoke a web page
from a Fusion web application, see Displaying Web Pages from a Fusion Web
Application.

Table A-18 Dialog Action Properties

Name Type EL Description

Annotatio
n

String N For information about this property, see Table A-1.

Page String N Specify the web page that the action invokes. Relative and absolute URLs are valid
values.

ShareFram
e

Boolean N Set to True (default) to run the web page specified by the Dialog.Page property
in the same data control frame as the Excel worksheet. If you specify an absolute
URL, ADF Desktop Integration ignores the value of the Dialog.ShareFrame
property.

Target List N Specifies how the web page the action invokes is rendered. Select:

• Popup to render the web page in a modal dialog within an embedded web
browser.

• TaskPane to render the web page in runtime task pane.

Title String Y Write an EL expression that resolves to the title of the Dialog at runtime or write
a literal string.

Action Set Properties

A-22 Developing Applications with Oracle ADF Desktop Integration

Table A-18 (Cont.) Dialog Action Properties

Name Type EL Description

WindowSiz
e

Integer N Specify the initial size in pixels of the dialog that appears to the user. Valid values
range from 0 to 2147483647. Values will be revised upwards or downwards as
appropriate at runtime if the specified values are too large or too small. The default
value for Height is 625 and 600 for Width.

A.14 Workbook Actions and Properties
Table A-19 describes the actions that a workbook can invoke. For information about
configuring ribbon commands to invoke these actions, see How to Define a Workbook
Ribbon Command for the Runtime Ribbon Tab.

Table A-19 Workbook Actions

Action Description

Login When invoked, this action creates a new session between the integrated Excel workbook
and the Fusion web application.

If invoked when a session has already been established, it first invokes the Logout action
internally to free that session. For a workbook running against a web application that is
enforcing authentication, the Login action prompts the end user to provide valid user
credentials.

For more information, see About Security In Your Integrated Excel Workbook.

Logout When invoked, ADF Desktop Integration sends a request to the Fusion web application to
invalidate the session between the integrated Excel workbook and the Fusion web
application. After invoking this action, the end user must be authenticated the next time
the Excel workbook accesses the Fusion web application.

ClearAllData When invoked, this action clears all data entered by the user from cells that reference
Oracle ADF bindings. Tables, such as those created by the ADF Table component, will be
truncated so that they only display header rows with labels cleared. Values in cells that
reference the Input Text or Output Text components are cleared. Column headers and
labels are cleared as well. References to all resource bundles that the integrated Excel
workbook uses are cleared. Worksheets that do not contain bindings or reference a page
definition file remain unchanged. A dialog prompts the end user to confirm invocation of
this action. Once the end user confirms invocation, ADF Desktop Integration runs the
following events after invocation of the action:

• Invokes the integrated Excel workbook's Logout action
• Terminates the runtime session and clears all data from the integrated Excel workbook

and all caches
• Reinitializes the integrated Excel workbook and invokes the workbook's Login action
Invocation of the ClearAllData action does not change data hosted by the Fusion web
application.

Workbook Actions and Properties

ADF Desktop Integration Component Properties and Actions A-23

Table A-19 (Cont.) Workbook Actions

Action Description

EditOptions When invoked, this action launches a dialog that shows the current value of the
WebAppRoot property and allows the end user to enter a new value.

If the end user chooses to change the value of WebAppRoot, a confirmation dialog appears
after the end user clicks OK. Once the change is confirmed, the following events occur:

• Workbook ClearAllData action is invoked
• Workbook Logout action is invoked
• All data referenced by bindings in the workbook is removed
• References to WebAppRoot are updated in the Excel workbook's configuration
• Workbook Login action is invoked to authenticate the user with the Fusion web

application that is specified as the value for WebAppRoot

ViewAboutDialo
g

When invoked, this action launches a dialog called About that displays information
defined in the BrandingItems workbook property and other information such as the
versions of supporting software. The dialog also allows end users to generate a diagnostic
report and, if logged in, check for an upgrade of the ADF Desktop Integration add-in. For
more information, see Generating an ADF Desktop Integration Diagnostic Report and How
to Upgrade ADF Desktop Integration On a Local System.

ToggleStatusVi
ewer

When invoked, this action shows or hides a Status Viewer in Excel's task pane to display
status information to end users. The ribbon command that end users click to invoke this
action shows and hides the Status Viewer. For more information, see Using the Status
Viewer to Report Error Messages to End Users.

Table A-20 lists alphabetically the ADF Desktop Integration properties that an Excel
workbook can use.

Table A-20 Workbook Properties

Name Type EL Description

ApplicationHomeFolder String N Specify the absolute path to the directory that is the root for
the JDeveloper application workspace (.jws) where you
developed the desktop integration project. The path must be
less than the Windows maximum path length of 260
characters.

For example, the value of this property in a workbook
integrated with the Summit sample application for ADF
Desktop Integration could be something similar to the
following:

D:\Oracle\Applications\Summit_ADFdi

ADF Desktop Integration may prompt you to specify a value
for this property the first time that you open an integrated
Excel workbook.

For more information, see How to Configure a New
Integrated Excel Workbook.

Workbook Actions and Properties

A-24 Developing Applications with Oracle ADF Desktop Integration

Table A-20 (Cont.) Workbook Properties

Name Type EL Description

AutoDisplayStatusViewerEn
abled

Boolea
n

N Set to True to display the Status Viewer automatically if an
error occurs. Set to False to require end users to click the
Status Viewer ribbon command in the Excel ribbon to display
the Status Viewer. The default value is True.

For more information, see Using the Status Viewer to Report
Error Messages to End Users.

BrandingItems Array N An array of name-value pairs of literal string or EL resources
expressions (for example, #{res['myAppName']}).

For information about branding your integrated Excel
workbook, see Branding Your Integrated Excel Workbook.

Compatibility Array N Ensures that workbooks created with a different release of
ADF Desktop Integration version that did not include a
particular feature do not change their behavior in another
release.

For more information about compatibility properties, see
ADF Desktop Integration Compatibility Properties.

CustomizationEnabled Boolea
n

N Specify whether the workbook is customizable. If True, the
published workbook will obtain its metadata from the server,
which can be customized at runtime.

For more information about enabling customization, see
Customizing Workbook Integration Metadata at Runtime.

Login.WindowSize Integer N Specify the initial size in pixels of the login dialog that
appears to the user. Valid values range from 0 to screen
width or height. Values will be revised upwards or
downwards as appropriate at runtime if the specified values
are too large or too small. The default value for Height is
625 and Width is 600.

Parameters Array N An array of workbook parameters that you configure to pass
the parameters from a page in a Fusion web application to an
integrated Excel workbook. You can define multiple
workbook parameters in the Fusion web application's page.
Each workbook parameter (parameter that matches a URL
argument) that you define in a page must be specified in a
Parameter property of this array, otherwise it is ignored.

Each element in the array supports the following properties:

• Annotation

For more information about this property, see Table A-1.
• Parameter

You specify the name of the workbook parameter you
defined in the page of the Fusion web application from
which the end user downloads the integrated Excel
workbook.

For information about using this property, see Passing
Parameter Values from a Fusion Web Application Page to a
Workbook.

Workbook Actions and Properties

ADF Desktop Integration Component Properties and Actions A-25

Table A-20 (Cont.) Workbook Properties

Name Type EL Description

Project String N Specify the name of a JDeveloper project in the current
JDeveloper workspace. ADF Desktop Integration attempts to
load the .jpr file that corresponds to the project that you
specify. An error appears if the .jpr file is not available or is
not in the expected format.

When you open an integrated Excel workbook for the first
time in design mode, ADF Desktop Integration searches for
a .jpr file in the parent folder hierarchy. If it finds a .jpr
file, it sets the value of Project to the name of the project
that corresponds to the .jpr file.

ADF Desktop Integration loads the names of the available
projects from the application_name.jws file specified by
ApplicationHomeFolder.

RemoteServletPath String N Specify the path to the ADF Desktop Integration remote
servlet. This path must be relative to the value specified for
WebAppRoot. Note that the value you specify for
RemoteServletPath must match the value that is specified
in the web application's deployment descriptor file
(web.xml). The default value for this property is:

/adfdiRemoteServlet

Resources Array N Specifies an array of resource bundles to register with the
workbook. Each element in the array supports the following
properties:

• Alias

Specify a string value that is unique within
Workbook.Resources. EL expressions use this string to
reference the resource bundle.

• Annotation

For more information about this property, see Table A-1.
• Class

Specify a fully qualified class name, but do not include
the file extension. The class name that you specify is
expected to be a Java resource bundle class that the
Fusion web application you integrate your workbook
with uses.

For example, the EditCustomers-DT.xlsx workbook
in the Summit sample application for ADF Desktop
Integration references the following resource bundle:

oracle.summitdi.resources.UIStrings

For more information, see Using Resource Bundles in an
Integrated Excel Workbook.

Runtime Ribbon Tab - - This group of properties defines whether and how a ribbon
tab appears in Excel at runtime. The following entries in this
table describe the properties in the Runtime Ribbon Tab
group. For more information about the ribbon tab and its
commands, see Configuring the Runtime Ribbon Tab.

Runtime Ribbon
Tab.Annotation

String N For information about this property, see Frequently Used
Properties in the ADF Desktop Integration.

Workbook Actions and Properties

A-26 Developing Applications with Oracle ADF Desktop Integration

Table A-20 (Cont.) Workbook Properties

Name Type EL Description

Runtime Ribbon
Tab.Visible

Boolea
n

N If True, the ribbon tab appears at runtime. The ribbon tab
does not appear if you set Enabled to False. True is the
default value.

Runtime Ribbon Tab.Title String Y Specify an EL expression that evaluates to the title that
appears for the ribbon tab in the title area. Excel imposes a
maximum limit of 1024 characters for ribbon tab titles. Ensure
that the runtime value of the EL expression you specify does
not exceed 1024 characters as ADF Desktop Integration
truncates the value so that Excel does not generate an error
message.

If you choose to assign a key tip character using the &
character, consider avoiding the letter K for the Runtime
Ribbon Tab.Title. Excel does not allow the letter K to be
used here when the workbook is running in the ar_SA
culture.

Runtime Ribbon
Tab.Workbook Commands

Array N Each element in this array corresponds to a workbook
command at runtime. Each element in the array uses the
following properties:

• Annotation

For more information about this property, see Table A-1.
• Label

For more information about this property, see Table A-1.

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
workbook command at runtime.

• Method

Specify the workbook action that the workbook ribbon
command invokes. For more information about workbook
actions, see Table A-19.

WebAppRoot String N A fully qualified URL to the Fusion web application's root.

WebPagesFolder String N Specify the path to the directory that contains the web pages
that you intend to use with your integrated Excel workbooks.
The value that you specify for the path must be relative to the
value of ApplicationHomeFolder and must be less than
the Windows maximum path length of 260 characters.

WorkbookID String N A unique identifier for the integrated Excel workbook. ADF
Desktop Integration generates the unique identifier when you
open the workbook for the first time in design mode.

The value cannot be modified. However, ADF Desktop
Integration can generate a new value if you use the Reset
WorkbookID link in the Edit Workbook Properties dialog.

The value of this property is used during tamper check, as
described in Checking the Integrity of an Integrated Excel
Workbook's Metadata.

Workbook Actions and Properties

ADF Desktop Integration Component Properties and Actions A-27

A.15 Worksheet Actions and Properties
Action sets, as described in Using Action Sets, can invoke the following worksheet-
level actions:

• UpSync

Synchronizes any pending changes from the ADF Input Text and ADF List of
Values components in the worksheet to the Fusion web application.

• DownSync

Downloads data values from the Fusion web application to the ADF Input Text,
ADF Output Text, and ADF List of Values components in the worksheet.

• DisplayWorksheetErrors

Displays a list of error messages from the most recent action set invocation.

Note:

This action is deprecated. It is no longer necessary. All relevant error messages
are available via the Status Viewer, as described in Using the Status Viewer to
Report Error Messages to End Users.

When you configure a ribbon command to invoke an action binding or method action
binding, the action set to invoke when a user clicks the ribbon command at runtime is
populated as follows by default:

1. UpSync

2. Action or method action binding that you specify for the ribbon command

3. DownSync

If the first action that you invoke on a worksheet with an empty form is the UpSync
worksheet action, you may encounter errors. For this reason, ensure that the first
action invoked is the DownSync worksheet action. You can configure the ribbon
command's action set or one of the worksheet events (Startup or Activate)
described in Table A-21 to invoke the DownSync worksheet action first.

For more information about configuring ribbon commands, see Configuring the
Runtime Ribbon Tab.

Table A-21 describes the ADF Desktop Integration properties that an Excel worksheet
can use.

Table A-21 Worksheet Properties

Name Type EL Description

Annotation String N For information about this property, see Table A-1.

Worksheet Actions and Properties

A-28 Developing Applications with Oracle ADF Desktop Integration

Table A-21 (Cont.) Worksheet Properties

Name Type EL Description

CustomAttributePropertiesEnab
led

Boolean N Specifies whether custom attribute properties defined
in a view object on the server are supported in EL
expressions.

The default value of this property is False.

For more information, see Using ADF Desktop
Integration EL-based Properties with Custom
Attribute Properties.

Events Array N Each element in this array specifies an action set to
invoke if the associated worksheet event occurs. For
information about action sets, see Action Set
Properties. For information about worksheet events,
see the entry in this table for Events.n.Event.

The following entries in this table prefaced by Events.n
describe the properties that an element in this array
supports where n refers to a specific element in the
array.

Events.n.ActionSet ActionS
et

N For more information about the properties of action
sets, see Action Set Properties .

Events.n.InvokeOnceOnly Boolean N The default value of this property is False.

When set to True, the workbook stores information
about whether the worksheet invoked the action set
for this event and, if so, prevents the worksheet from
invoking the action set a second time. Note that if the
workbook is not saved, this information is lost. This
means that the worksheet can invoke the event again
the next time that the workbook opens.

Events.n.Annotation String N For information about the annotation property, see
Table A-1.

Events.n.Event List N The worksheet supports the following events that you
can configure to invoke an action set:

• Startup

Excel workbook opens and the worksheet is
activated for the first time.

• Shutdown

Excel workbook closes or Excel application exits.
• Activate

User navigates to the current worksheet.
• Deactivate

User navigates away from the current worksheet or
Shutdown event triggered.

Note that the worksheet events complete execution
even if the action sets that they invoke fail.

For more information about worksheet events and
action sets, see How to Invoke an Action Set from a
Worksheet Event.

Worksheet Actions and Properties

ADF Desktop Integration Component Properties and Actions A-29

Table A-21 (Cont.) Worksheet Properties

Name Type EL Description

Protection.Mode List N The worksheet provides two options:

• Off

Worksheet protection is not used at runtime.
• Automatic

Worksheet protection is enabled automatically at
runtime.

The default value for this property is Off.

Protection.Password String N Specify a password to prevent end-users from turning
off sheet protection at runtime. The maximum
password length allowed by Excel is 255 characters.

Ribbon Commands Array N Specify one or more actions that appear as worksheet
ribbon commands at runtime. Each command is an
element in the WorksheetMenuItem array. Entries in
this array support the following properties:

• Annotation

• Image

Specifies the image to display as the worksheet-
level ribbon command at runtime. ADF Desktop
Integration provides the images that you can use.

• Label

• SelectActionSet

For more information about the Annotation and
Label properties, see Table A-1. For more information
about the SelectActionSet property, see Action Set
Properties .

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
worksheet command at runtime.

For more information, see How to Configure a
Worksheet Ribbon Command for the Runtime Ribbon
Tab.

Page Definition String N Specify the page definition file to associate with the
worksheet. The fully qualified path to the page
definition file must be less than the Windows
maximum path length of 260 characters. For
information about page definition files, see Working
with Page Definition Files for an Integrated Excel
Workbook.

Worksheet Actions and Properties

A-30 Developing Applications with Oracle ADF Desktop Integration

Table A-21 (Cont.) Worksheet Properties

Name Type EL Description

Parameters Array N An array of parameters defined in this worksheet's
page definition file and bound here to workbook
parameters. Each element in the array supports the
following properties:

• Annotation

For more information about this property, see
Table A-1.

• Parameter

Specify the ID of a parameter element that you
added to the page definition file associated with
the worksheet.

• Value

Write an EL expression that references the value of
the Parameter property you specified for the
workbook parameter (workbook
Parameters.Parameter property).

For information about using this property, see Passing
Parameter Values from a Fusion Web Application
Page to a Workbook.

RowData Set values for the CachedAttributes property when
you want to cache data in an integrated Excel
workbook across a multiple sessions with the Fusion
web application.

Set a value for the ChangeIndicatorAttributeID
property to determine if a row has been modified by
another user since you downloaded it from the Fusion
web application.

For more information, see Using an Integrated Excel
Workbook Across Multiple Web Sessions.

RowData.CachedAttributes Array N Specify values for the properties in this array to
determine the attributes for which data is cached. Each
CachedAttribute element in this array supports the
following properties:

• AttributeID

This property references the attribute binding for
which data is to be cached. Do not specify an
attribute binding for AttributeID and as an
editable field in a form (for example, in an ADF
Input Text component) in the same worksheet.

• Annotation

For more information about this property, see
Table A-1.

RowData.ChangeIndicatorAttrib
uteID

Binding N Specify the row-specific attribute of the tree binding
used to determine if a row has been modified by
another user since the row was last downloaded by to
your integrated Excel workbook.

For more information, see Handling Data Conflicts
When Uploading Data from a Workbook.

Worksheet Actions and Properties

ADF Desktop Integration Component Properties and Actions A-31

Table A-21 (Cont.) Worksheet Properties

Name Type EL Description

ServerContext This group of properties references the attribute
bindings that uniquely identify the row displayed in
the current worksheet so that you can reestablish
server data context across multiple sessions.

For more information, see Restore Server Data Context
Between Sessions.

ServerContext.CacheDataContex
ts

Array N Add elements to the CacheDataContexts array for
cases where there is more than one iterator defined in
the binding container whose server-side context must
be reestablished. The CacheDataContexts array
supports the following properties to store the
worksheet's cached data context:

• RestoreDataContextActionID

References an action binding to invoke.
• CachedServerContexts

An array that identifies the attribute binding
values to cache and set before the action binding
specified by RestoreDataContextActionID is
invoked. Each element in the
CachedServerContext array supports the
CachedAttributeID and
RestoredAttributeID properties.
CachedAttributeID identifies the attribute
binding value to cache in the worksheet.
RestoredAttributeID is an optional property
for which you specify a value when the destination
attribute binding value is different from the source
attribute binding value. If you do not specify a
value for RestoredAttributeID, the value of
CachedAttributeID is used as the destination
attribute binding value and its value is set before
invoking the action set.

• Annotation

For more information about this property, see
Frequently Used Properties in the ADF Desktop
Integration.

ServerContext.IDAttributeID Binding N Specifies an attribute binding that uniquely identifies
the row displayed in the current worksheet. This
property is used at runtime to determine whether the
server context has been reestablished properly for non-
table type components in the worksheet.

ServerContext.SendParameters Boolean N The default value of this property is False.

When set to True, the workbook sends initialization
parameters for this worksheet when reestablishing
context across multiple sessions.

Worksheet Actions and Properties

A-32 Developing Applications with Oracle ADF Desktop Integration

Table A-21 (Cont.) Worksheet Properties

Name Type EL Description

SetupActionID Binding N Specify the ADFmAction binding to be invoked before
the binding container metadata is retrieved.

A value for this property is optional.

If two, or more, worksheets are using the same page
definition, the action binding specified for the last
worksheet will be invoked. Hence, create a page
definition for each worksheet and do not specify a
page definition to multiple worksheets.

For more information, see Using Explicit Worksheet
Setup Action.

Title String Y Specifies an EL expression that resolves to a string and
sets the name of the worksheet. At design time, the EL
expression can be of any length and can include the
following special characters:

[] \ / * ?

At runtime, the evaluated string can display a
maximum of 31 characters and ignores the above
special characters. If the length of the evaluated string
exceeds 31 characters, the extra characters are
truncated and are not displayed.

Note that the Title property does not support
binding parts in the EL expression. The expected usage
is a resource-type expression.

Ensure that the EL expressions you write for the
Title property generate unique values for each
worksheet at runtime and contain fewer than 31
characters.

A.16 ADF Desktop Integration Compatibility Properties
Various ADF Desktop Integration features have been added in different releases of the
product. The compatibility properties ensure that workbooks created with ADF
Desktop Integration versions that did not include a given feature do not change their
behavior.

Table A-22 lists the ADF Desktop Integration compatibility properties. Integrated
Excel workbook developers may want to review these properties and the associated
feature to determine whether to enable them. To access these properties in your
integrated Excel workbook, click Workbook Properties in the Workbook group of the
Oracle ADF tab to display the Edit Workbook Properties and expand the Behavior
and Compatibility properties.

Table A-22 ADF Desktop Integration Compatibility Properties

Name Type EL Description

DataEntryValidationEnable
d

Boolea
n

N Specifies whether ADF Desktop Integration performs data
entry validation.

For more information, see Providing Data Entry Validation
for an Integrated Excel Workbook.

ADF Desktop Integration Compatibility Properties

ADF Desktop Integration Component Properties and Actions A-33

Table A-22 (Cont.) ADF Desktop Integration Compatibility Properties

Name Type EL Description

RejectExcelErrorsEnabled Boolea
n

N Specifies whether ADF Desktop Integration rejects Excel cell
error values that integrated Excel workbooks send to the
Fusion web application. The default value is True.

For more information, see Providing Data Entry Validation
for an Integrated Excel Workbook.

TableComponents.ModelDriv
enColumns.DatePickerEnabl
ed

Boolea
n

N Specifies whether the date picker can be used in model-
driven columns.

For more information, see Inserting an ADF Input Date
Component and Adding a ModelDrivenColumnComponent
Subcomponent to Your ADF Table Component.

TableComponents.ModelDriv
enColumns.InputListOfValu
esPickerEnabled

Boolea
n

N Specifies whether model-driven columns can leverage
existing Model layer metadata and provide a Search and
Select user interface in a picker dialog.

For more information, see Adding a Model-Driven List Picker
to an ADF Table Component.

TableComponents.RowAction
SetModelMgmtEnabled

Boolea
n

N Specifies whether row-level action sets can manage the
server-side model state.

For more information, see Using Row-Level Action Sets in a
Table Column.

TableComponents.SmartRowF
ailureReportingEnabled

Boolea
n

N The default value (True) enables enhanced error reporting
for the ADF Table component Upload and
DeleteFlaggedRows actions.

ADF Desktop Integration Compatibility Properties

A-34 Developing Applications with Oracle ADF Desktop Integration

B
ADF Desktop Integration EL Expressions

This appendix describes the syntax for EL expressions in ADF Desktop Integration,
provides guidelines for writing EL expressions, and how to use attribute control hints
in EL expressions.

This appendix includes the following sections:

• Guidelines for Creating EL Expressions

• EL Syntax for ADF Desktop Integration Components

• Attribute Control Hints in ADF Desktop Integration

B.1 Guidelines for Creating EL Expressions
EL expressions that you write in your integrated Excel workbook can include:

• Literal values that evaluate correctly to the type expected for the Oracle ADF
component property. The following list describes some examples:

– Boolean values true and false

– Integer values such as -1, 0, and 100

– String values such as hello world

• Binding expressions to evaluate control binding values or hints. For example,
#{row.bindings.ProductId.inputValue}.

• Component expressions to evaluate component properties. For example,
#{components.TAB416222534.rowCount}.

• Resource bundle expressions to evaluate locale specific resources defined on the
server. For example: #{res['excel.saveButton.label']}

For more information about the supported binding, component, and resource
bundle expression syntax, see EL Syntax for ADF Desktop Integration
Components.

• A valid Excel formula. An Excel formula string must start with the = character. If
the literal string includes an #{...} expression, ADF Desktop Integration
evaluates this expression first and inserts the resulting value into the Excel formula
string. Excel then evaluates the Excel formula.

Note the following points if you write an EL expression:

– Excel formula elements must not be used inside an #{...} expression.

– EL expressions should not contain references to Excel cells because EL
expressions are managed within ADF configuration. Excel cannot update the

ADF Desktop Integration EL Expressions B-1

ADF configuration if the referenced cell moves. A better strategy is to define a
named cell reference or range using the Name box in the Excel Formula Bar.
You can reference the named cell reference or named cell range reference from
an EL expression. For information about defining named cell references or
ranges, see Excel's documentation.

– Excel formulas that include EL expressions

Ensure that any Excel formula that includes EL expression has no more than 255
characters. This also applies to formulas used to set conditional values to
component properties.

B.2 EL Syntax for ADF Desktop Integration Components
Table B-1 lists supported expression properties for the ADF Desktop Integration
components that support EL expressions.

The EL expressions use the following syntax to reference these properties:

#{components.componentID.property}

where componentID references the ID of the component and property references
the property (for example, rowCount).

Table B-1 Expression Properties for ADF Desktop Integration Components

Property Component Type Property Type Expected Runtime Values Value at Design Time

rowCount Table

Read-only Table

Int >=0 0

currentRowInde
x

Table

Read-only Table

Int >= 0 AND < RowCount
(zero based index)

-1

currentRowMode Table String "insert"

"update"

"unknown"

readOnly Table.Column Boolean True

False

False

Write EL expressions with the following syntax to retrieve:

• Workbook parameters

#{workbook.params.parameterName}

where parameterName is the name of the workbook parameter. For information
about using these parameters, see Passing Parameter Values from a Fusion Web
Application Page to a Workbook.

• Resource bundle string key values

#{resourceBundleAlias['resourceBundleKey']}

where resourceBundleAlias is the alias of the resource bundle and
resourceBundleKey is the string key value. For more information about
resource bundles, see Using Resource Bundles in an Integrated Excel Workbook.

EL Syntax for ADF Desktop Integration Components

B-2 Developing Applications with Oracle ADF Desktop Integration

Table B-2 describes the supported syntax and properties for Oracle ADF control
bindings. For information about the attribute control hints (controlHint) that ADF
Desktop Integration supports, see Table B-3.

You can use the expression builder described in Using the Expression Builder to
generate some of the EL expressions described in Table B-2.

Table B-2 Expression Properties and Syntax for Oracle ADF Control Bindings

Syntax Component
Type

Object Property Value at
Design
Time

Use the expression builder to generate EL expressions with the
following syntax:

#{bindings.attributeID}
#{bindings.attributeID.label}
#{bindings.attributeID.hints.controlHint}

You can also write the previous EL expressions in addition to the
following EL expression:

#{bindings.attributeID.inputValue}

Attribute Attribute control
hint ""

Use the expression builder to generate EL expressions with the
following syntax:

#{bindings.ListID}
#{bindings.ListID.label}
#{bindings.ListID.hints.controlHint}

List Attribute control
hint ""

Write EL expressions with the following syntax for a column in a
table-type component

#{row.bindings.attributeID.inputValue}

Write an EL expression with the following syntax when adding a
dynamic column to an ADF Table component as described in
Adding a Dynamic Column to Your ADF Table Component:

#{bindings.TreeID.
[TreeNodeID].AttributeNamePrefix*.inputValue}
#{bindings.TreeID.AttributeNamePrefix*.inputValue}
#{bindings.TreeID.
[TreeNodeID].hints.AttributeNamePrefix*.controlHint}
#{bindings.TreeID.
[TreeNodeID].hints.AttributeNamePrefix*.label}

A value for AttributeNamePrefix and [TreeNodeID] is
optional while * is required.

Table.Colu
mn

inputValue
""

B.3 Attribute Control Hints in ADF Desktop Integration
ADF Desktop Integration can read the values of the attribute control hint names
described in Table B-3. You write EL expressions that ADF Desktop Integration uses to
retrieve the value of an attribute control hint from your Fusion web application. Table
B-2 describes the EL expression syntax that retrieves the values of attribute control
hints at runtime.

Attribute Control Hints in ADF Desktop Integration

ADF Desktop Integration EL Expressions B-3

You configure attribute control hints in your Fusion web application. Information
about how to add an attribute control hint to an entity object can be found in the
"Defining Attribute Control Hints for Entity Objects" section of Developing Fusion Web
Applications with Oracle Application Development Framework. Information about how to
add an attribute control hint to a view object can be found in the "Defining UI Hints
for View Objects" section of the Developing Fusion Web Applications with Oracle
Application Development Framework.

Table B-3 Attribute Control Hints Used by ADF Desktop Integration

Attribute Control
Hint

Type Value to configure in the Fusion web application

label String Returns the value of the label attribute control hint configured for an entity or
view object.

updateable Boolean Returns true if the associated attribute binding is updatable.

readOnly Boolean This attribute control hint is unique to ADF Desktop Integration. Returns true
if the associated attribute binding is not updatable.

To optimize the performance of an integrated Excel workbook when it
evaluates Excel formulas in EL expressions, you should write an EL expression
with the following syntax for a component's ReadOnly property:

#{bindings.attributeID.hints.readOnly}

rather than:

=NOT(#{bindings.attributeID.hints.updateable})

Note that the attribute control hint readOnly property differs to the
ReadOnly property of ADF Desktop Integration components described in
Frequently Used Properties in the ADF Desktop Integration.

mandatory Boolean Returns true if a value for the associated attribute binding is required.

dataType String Returns the data type of the attribute control hint. A Fusion web application
can support many data types with complex names. The dataType attribute
control hint was introduced in ADF Desktop Integration to simplify the writing
of EL expressions. It maps the data types that a Fusion web application
supports to the values supported by ADF Desktop Integration listed here:

• string

• number

• date

• boolean

• other

tooltip String Returns the message value of the Tooltip attribute control hint configured for
an entity or view object.

displayWidth String Returns the value of the Width attribute control hint configured for an entity
or the view object. The value represents the width in number of characters.

The displayWidth hint can be used in a table column's Width property
when ResizeMode for that column is set to SpecifiedWidth.

For more information about display width, see the "How to Set User Interface
Hints on View Criteria to Support Search Forms" section in Developing Fusion
Web Applications with Oracle Application Development Framework.

Attribute Control Hints in ADF Desktop Integration

B-4 Developing Applications with Oracle ADF Desktop Integration

The ADF Desktop Integration attribute control hints are based on information
available in the web application's model configuration. ADF Desktop Integration
supports view object or entity object hint values, but does not support programmatic
overrides of hint values if they are calculated at a row-by-row level at runtime.

ADF Desktop Integration also supports custom attribute properties in table EL-based
properties. For more information, see Using ADF Desktop Integration EL-based
Properties with Custom Attribute Properties.

Attribute Control Hints in ADF Desktop Integration

ADF Desktop Integration EL Expressions B-5

Attribute Control Hints in ADF Desktop Integration

B-6 Developing Applications with Oracle ADF Desktop Integration

C
Troubleshooting an Integrated Excel

Workbook

This appendix describes how to troubleshoot an integrated Excel workbook and
generate log files when you encounter problems during development.

This appendix includes the following sections:

• Verifying That Your Fusion Web Application Supports ADF Desktop Integration

• Generating an ADF Desktop Integration Diagnostic Report

• Troubleshooting Connection Problems to Fusion Web Applications

• Verifying End-User Authentication for Integrated Excel Workbooks

• Generating Log Files for an Integrated Excel Workbook

Note:

The property inspector does not validate that values you enter for a property
or combinations of properties are valid. Invalid values may cause runtime
errors. To avoid runtime errors, make sure you specify valid values for
properties in the property inspector. For more information about the property
inspector, see Using the Property Inspector.

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop
Integration

Using a server ping test, you can verify that the Fusion web application is running the
ADF Desktop Integration remote servlet (adfdiRemote), and the version of ADF
Desktop Integration. This information can be useful if you encounter errors with an
integrated Excel workbook. For example, you can determine whether the ADF
Desktop Integration remote servlet is running when you are troubleshooting an
integrated Excel workbook.

For Fusion web applications that enforce authentication, you can use the server ping
test to confirm that the proper authentication configuration is in place for the ADF
Desktop Integration servlet URL.

ADF Desktop Integration relies on various Internet Explorer specific settings. For this
reason, please perform the verification test using Internet Explorer.

To verify that the ADF Desktop Integration remote servlet is running:

Troubleshooting an Integrated Excel Workbook C-1

1. Type the concatenated values of the workbook properties WebAppRoot and
RemoteServletPath into the address bar of your web browser. This corresponds
to a URL similar to the following:

http://hostname:7101/summit/adfdiRemoteServlet

If the ADF Desktop Integration remote servlet is running, a web page returns
displaying a message similar to Figure C-1.

Figure C-1 ADF Desktop Integration Remote Servlet

C.2 Generating ADF Desktop Integration Diagnostic Reports
ADF Desktop Integration provides a number of tools so that you and end users can
diagnose and resolve issues that may occur in the client-side environment. These
include the Client Health Check Tool, described in Running the Client Health Check
Tool. This determines if the client environment is configured correctly and provides
options to resolve some commonly-encountered issues. You or end users can also
generate a diagnostic report (adfdi-diagnostic-report.txt) from an integrated
Excel workbook, as described in the following section.

C.2.1 How to Generate the ADF Desktop Integration Diagnostic Report
You or your end users can generate the diagnostic report by clicking the Save
Diagnostic Report menu entry that ADF Desktop Integration adds to Microsoft
Excel’s File > Add-Ins menu, as shown in Figure C-2.

Generating ADF Desktop Integration Diagnostic Reports

C-2 Developing Applications with Oracle ADF Desktop Integration

Figure C-2 File Menu to Save Diagnostic Report

The location of this menu entry depends on the version of Microsoft Excel that you
use. Figure C-2 shows the location of this menu entry in Microsoft Excel 2013.

Alternatively, you or end users can generate the diagnostic report from the About
dialog.

To generate the ADF Desktop Integration diagnostic report from the About dialog:

1. Open the integrated Excel workbook.

2. If you have opened the integrated Excel workbook in the design mode, click the
About button in the Workbook group of the Oracle ADF tab.

If you have opened the integrated Excel workbook in runtime mode, click the
About button of the runtime ribbon tab.

3. Click the Diagnostic Report button of the About dialog.

4. Save the diagnostic report text file. By default, the file is saved as adfdi-
diagnostic-report.txt in the Desktop directory (for example, C:\Users
\<USER_NAME>\Desktop).

5. The Diagnostic Report dialog opens describing the location of the saved file. Click
OK to open the file in the default text editor.

C.2.2 What You May Need to Know About the ADF Desktop Integration Diagnostic
Report

The diagnostic report is a text file and includes a variety of information such as:

• ADF Desktop Integration add-in version

• Microsoft Windows version

Generating ADF Desktop Integration Diagnostic Reports

Troubleshooting an Integrated Excel Workbook C-3

• Microsoft Excel version

• Values of all properties from the Version tab of the About dialog

• Values of all properties listed in the Properties tab of the About dialog

• List of Excel COM add-ins

• Branding items from the About tab, if the report is generated at runtime

• ADF Desktop Integration servlet version, if the report is generated after a valid
login

You can open and edit the text file in any text editor, or Excel. Each row in the file
consists of a key-value pair separated by tabs.

Before end users send the diagnostic file to you, ask them to review the report and
remove any sensitive information that they do not want to share.

C.3 Troubleshooting Connection Problems to Fusion Web Applications
ADF Desktop Integration provides end users with connection failure reports to help
diagnose the cause of connection failures from integrated Excel workbooks to Fusion
web applications.

A connection failure report contains information that ADF Desktop Integration
generates when an attempt to connect to a Fusion web application fails or the end user
cancels the connection attempt. Figure C-3 shows the dialog that appeared when the
EditCustomers.xlsx workbook failed to connect to the Summit sample application
because the latter application was offline. End users click Save Report to save the
report to a directory on their machine.

Figure C-3 End User’s Dialog to Save a Connection Report

Before end users send the connection failure report file to you, ask them to review the
report and remove any sensitive information that they do not want to share. The
following example shows an extract of the report generated in Figure C-3.

Report: Oracle ADF Desktop Integration (ADFdi) Connection Failure Report
Generated: (UTC) 04/12/2015 09:47:13

Troubleshooting Connection Problems to Fusion Web Applications

C-4 Developing Applications with Oracle ADF Desktop Integration

Language: en-US

*** NOTE: this file contains detailed diagnostic information. Review the contents
and edit out any information you do not wish to share with third parties. ***

=== Summary ===

Failure Phase
 AuthenticationTest

Failure Reason
 UnexpectedHttpStatusException - ADFDI-00501: An unexpected status: 404
(NotFound) was returned from the server while requesting the URL: http://
127.0.0.1:7101/summit/adfdiRemoteServlet

ADFdi servlet URL
 http:// 127.0.0.1:7101/summit/adfdiRemoteServlet
...

For more information, see the documents that you can retrieve from My Oracle
Support (https://support.oracle.com) if you search for Doc IDs 2014348.1 and
2094772.1.

C.4 Verifying End-User Authentication for Integrated Excel Workbooks
If end users of an integrated Excel workbook do not get prompted for user credentials
when they invoke an action that interacts with the Fusion web application configured
with ADF security, it may mean that security is not configured correctly for either the
integrated Excel workbook or the Fusion web application. You can verify that your
secure Fusion web application authenticates end users and that it is security-enabled
by carrying out the following procedure.

To verify that a secure Fusion web application authenticates end users, in the web
browser's address bar, enter the URL that you used to verify whether ADF Desktop
Integration remote servlet is running. For more information, see Verifying That Your
Fusion Web Application Supports ADF Desktop Integration. If the Fusion web
application is security-enabled, it will request that you enter user credentials.

For more information about securing your integrated Excel workbook, see Securing
Your Integrated Excel Workbook.

C.5 Generating Log Files for an Integrated Excel Workbook
ADF Desktop Integration can generate log files that capture information based on
events triggered by the following pieces of software within ADF Desktop Integration:

• HTTP filter and the ADF Desktop Integration remote servlet on the web server
(server-side logging)

For more information about server-side logging, see About Server-Side Logging.

• Excel workbook which you integrate with your Fusion web application (client-side
logging)

For more information about client-side logging, see About Client-Side Logging.

Verifying End-User Authentication for Integrated Excel Workbooks

Troubleshooting an Integrated Excel Workbook C-5

https://support.oracle.com/

C.5.1 About Server-Side Logging
You configure the generation of server-side log files for ADF Desktop Integration the
same way as for other Oracle ADF modules. This involves setting values that specify
the verbosity level and output location in a configuration file named logging.xml.
You can also use Oracle Diagnostic Logging Configuration of JDeveloper to configure
the logging levels specified in the logging.xml file. For more information about
using the JDeveloper debugging tools and ADF Logger, see the "Using the ADF
Logger" section in the Developing Fusion Web Applications with Oracle Application
Development Framework.

Table C-1 describes the package names that you supply as attribute parameters to the
<logger> elements in the logging.xml file to configure log file generation in ADF
Desktop Integration.

Table C-1 Package Names for Log File Configuration

To generate log file
entries for this
component...

Enter this package name...

All ADF Desktop
Integration server logic

oracle.adf.desktopintegration

ADF Desktop Integration
HTTP filter

oracle.adf.desktopintegration.filter

C.5.2 Using the Oracle Diagnostics Log Analyzer to Analyze ADF Desktop Integration
Servlet Requests

Using the Oracle Diagnostics Log Analyzer, you can view a hierarchical breakdown of
elapsed time spent performing each ADF Desktop Integration servlet request. The
hierarchical breakdown also includes the time spent in other ADF components, such
as the ADF Model layer. For more information about using the log analyzer for
viewing web requests, see the "How to Use the Log Analyzer to View Log Messages"
section in the Developing Fusion Web Applications with Oracle Application Development
Framework.

Tip:

The hierarchical breakdown can be helpful in identifying performance
bottlenecks due to unusually long execution times.

In order to log a complete hierarchy tree of ADF event messages, including ADF
Desktop Integration events, specify log level CONFIG for the
oracle.adfdiagnostics package. For more information about the
oracle.adfdiagnostics logger, see the "How to Create an Oracle ADF Debugging
Configuration" section in Developing Fusion Web Applications with Oracle Application
Development Framework.

C.5.3 About Client-Side Logging
ADF Desktop Integration provides a number of methods to create log files of activity
that occur within the ADF Desktop Integration add-in. Logging is always enabled at a
high level, the Information level. These logs are in plain text format and include the

Generating Log Files for an Integrated Excel Workbook

C-6 Developing Applications with Oracle ADF Desktop Integration

basic user steps as well as any errors and warning. For more information, see What
You May Need To Know About Always-On Logging.

In some cases, you may need more detailed logs to troubleshoot a particular problem.
There are several methods for producing detailed logs at the Verbose level. The
simplest method is to enable transient verbose logging by selecting Enable Logging...
from the Excel add-in menu that ADF Desktop Integration adds to Microsoft Excel.
These logs are in XML format and include a very detailed account of client-side
activity. For more information, see Enabling Transient Verbose Logging for One User
Session.

Additionally, there are two other methods for controlling client logs:

• Using the Logging options that the Oracle ADF tab exposes, as described in How to
Configure Logging in the Oracle ADF Tab.

• Using the ADF Desktop Integration Configuration file, as described in About the
ADF Desktop Integration Configuration File.

• Configuring environment variables, as described in How to Configure Logging
Using User Environment Variables .

Consider using one of the latter two options if you want to capture log information
that spans one or more integrated Excel workbook restarts and/or you want to
configure a lower logging level than verbose.

Table C-2describes the different log levels that you can enable for client-side logging.

C.5.3.1 What You May Need To Know About Always-On Logging
By default, ADF Desktop Integration enables logging at the Information level to a
text file in the adfdi-logs sub-directory of one of the following directories, listed in
order of preference:

• %TEMP%\oracle\adfdi-logs

• %TMP%\oracle\adfdi-logs

• %LocalAppData%\temp\oracle\adfdi-logs

• %SystemDrive%\oracle\adfdi-logs

To determine which of the above directories ADF Desktop Integration uses to store log
file information, see the Log Files property that you can view from the About dialog of
your integrated Excel workbook, as shown in Figure C-4.

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-7

Figure C-4 Directory Location of Always-on Log Files

ADF Desktop Integration creates a new log file each time you start a new user session
with an integrated Excel workbook. It uses the convention adfdi-log-
timestamp.txt when naming log files where timestamp is the time at which you
start the integrated Excel workbook (for example, adfdi-
log-2015-11-25-191209.txt).

Note: ADF Desktop Integration purges the oldest always-on log file(s) in the
folder when the folder reaches a certain size.

For more information, see the document that you can retrieve from My Oracle Support
(https://support.oracle.com) if you search for Doc ID 2094378.1.

C.5.3.2 Enabling Transient Verbose Logging for One User Session
You or your end users can enable verbose logging from a menu in the active
integrated Excel workbook. ADF Desktop Integration writes verbose log information
to a file in a directory you specify when you enable the logger from the menu.

The filename that ADF Desktop Integration creates when you enable this logging has
the following format:

adfdi-log-timestamp.xml

Where timestamp is the time at which you enable logging. For example, adfdi-
log-2015-11-24-145055.xml.

The menu options you choose to enable this logging depend on the version of
Microsoft Excel that you use. Figure C-5shows the location of this menu entry in
Microsoft Excel 2013.

Generating Log Files for an Integrated Excel Workbook

C-8 Developing Applications with Oracle ADF Desktop Integration

https://support.oracle.com/

Figure C-5 Excel File Menu to Enable Verbose Logging

Once you quit Microsoft Excel, ADF Desktop Integration stops logging information to
the log file.

To enable transient verbose logging for one user session:

1. Launch Microsoft Excel from the Windows menu but do not open the integrated
Excel workbook with the issue for which you want to capture verbose log data.

2. From the Office or File menu of Excel, select Add-Ins > ADF Desktop Integration
> Enable Logging, as shown in Figure C-5.

3. Save the log file to a location of your choosing or use the default Desktop location
that the Save Logging Data As dialog proposes. Note the log file name and
location for later reference.

4. Open the integrated Excel workbook and repeat the steps to reproduce the issue
for which you want to capture verbose log data.

5. Once you have completed the steps, you can quit Microsoft Excel. Once you quit
Microsoft Excel, ADF Desktop Integration stops logging verbose data to the log
file you created in Step 3.

Tip: Save a diagnostic report with information about the environment where
ADF Desktop Integration runs that you can submit to Technical Support with
the verbose log data that you have captured for your issue. From the Office or
File menu of Excel, select Add-Ins > ADF Desktop Integration > Save
Diagnostic Report, as shown in Figure C-5.

For more information, see the document that you can retrieve from My Oracle Support
(https://support.oracle.com) if you search for Doc ID 2094434.1.

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-9

https://support.oracle.com/

C.5.3.3 How to Configure Logging in the Oracle ADF Tab

The Oracle ADF Tab, shown in Figure C-6, provides a Logging group of menu options
that are available in both design mode and test mode.

Figure C-6 Logging Tools in Oracle ADF Tab

The Logging group provides the following buttons:

• Console

Displays the Logging Console window, which enables you to review the recent log
entries while you are developing and testing the integrated Excel workbook. The
console displays entries that are logged while the console is open. Figure C-7
illustrates the Logging Console window with error log entries.

The console is a resizable, non-modal window with a buffer size of 64,000
characters. When the buffer is full, the old entries are removed.

Figure C-7 Logging Console Window

The dialog has the following buttons:

– Set Level: Click to set the log output level. The button opens the Logging
Output Level dialog, where you can choose the desired log output level.

– Clear: Click to clear the log buffer.

– Close: Click to close the dialog.

Note:

A common Logging Console window logs entries for all open integrated Excel
workbooks.

• Set Output Level

Generating Log Files for an Integrated Excel Workbook

C-10 Developing Applications with Oracle ADF Desktop Integration

Prompts you to choose the log output level. Table C-2 describes the log levels that
client-side logging supports. The log levels are cumulative as you read down the
list in Table C-2. That is, the Information level includes the data logged in the
Critical, Error, and Warning levels, but not the Verbose level.

Figure C-8 Logging Output Level Dialog

Table C-2 Client-Side Logging Levels

Level Description

Critical Captures critical information.

Error Captures information about severe errors and exceptions.

Warning Captures information about warnings.

Information Captures lifecycle and control flow events. This is the default
value.

Verbose Captures detailed information about the execution flow of
the application.

Note:

The log output level applies to all listeners for a given logger.

• Add Log Output File

Creates a new temporary logging listener to direct logging output to the specified
file or format. In the Add New Temporary Logging Output File dialog, choose the
desired file output type (text or XML), and specify the path and file name of the log
output file.

Figure C-9 Add New Temporary Logging Output File Dialog

The temporary listener directs the logging output for the current Excel session
only, and is not registered in the ADF Desktop Integration configuration file. After
you exit Excel, the temporary listener is removed.

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-11

Note:

When you click the Add Log Output File button, a new listener is created. The
new listener does not replace any existing listener defined in the ADF Desktop
Integration configuration file, or any other temporary listener.

• Refresh Config

Reloads the ADF Desktop Integration configuration file. The ADF Desktop
Integration configuration file can determine the level of information logged by the
ADF Desktop Integration add-in.

For more information about the creation and configuration of the ADF Desktop
Integration configuration file, see About the ADF Desktop Integration
Configuration File.

C.5.3.4 About the ADF Desktop Integration Configuration File

The ADF Desktop Integration configuration file is saved as adfdi-excel-
addin.dll.config. To determine the correct file name and location, click the About
button in the Workbook group of the Oracle ADF tab. In the dialog that opens, click
the Properties tab, and consult the Configuration entry for file name and location of
configuration file.

For more information about elements of the configuration file, see the "Configuration
File Schema for the .NET Framework" section in Microsoft Developer Network
documentation. For more information about trace and debug settings, see the "Trace
and Debug Settings Schema" section in Microsoft Developer Network documentation.

Example C-1 shows a sample configuration file, one of many valid ways to configure
client-side logging, that generates an .xml log file. The file captures different types of
information such as ThreadId, ProcessId, and DateTime at a Verbose logging
level.

Example C-1 Sample Configuration File

<?xml version="1.0"?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="adfdi-common" switchValue="Verbose">
 <listeners>
 <add type="System.Diagnostics.XmlWriterTraceListener"
 name="adfdi-common-excel.xml"
 initializeData="c:\logs\adfdi-common-excel.xml"
 traceOutputOptions="ThreadId, ProcessId, DateTime"/>
 </listeners>
 </source>
 </sources>
 </system.diagnostics>
</configuration>

C.5.3.5 How to Configure Logging Using User Environment Variables

Users who do not have access to the directory that stores the ADF Desktop Integration
configuration file can change the location where log files are saved, and the logging
level by setting values for user environment variables. You can add two user
environment variables to configure the logging level and location for XML log files.

Generating Log Files for an Integrated Excel Workbook

C-12 Developing Applications with Oracle ADF Desktop Integration

http://msdn.microsoft.com/en-us/library/ms123401.aspx
http://msdn.microsoft.com/en-us/library/ms123401.aspx

For more information, see the “How To Obtain Log Files For ADF Desktop
Integration” document that you can retrieve from My Oracle Support (https://
support.oracle.com) if you search for Doc ID 2012985.1.

Tip: Be sure to exit Excel completely prior to configuring the environment
variables.

To add or configure user environment variables on Windows:

1. Click the Windows Start button and then click Control Panel.

2. In the Control Panel, click System, and then Advanced System Settings.

3. In the Advanced tab of System Properties dialog, click Environment Variables.

4. In the Environment Variables dialog, click New under the User variables for
username input field, and add variables as described in the Table C-3.

Table C-3 User Environment Variables to Configure Logging

Enter a variable named... With a value...

adfdi-common-file That defines the directory path and file name for the XML file
that captures logging information.

The directory that you specify here must exist before you add
the adfdi-common-file variable. The generated log file
will be in XML format.

adfdi-common-level That specifies the level of logging. Table C-2 lists valid
values.

5. Click OK.

C.5.3.6 What You May Need to Know About the adfdi-common Object

The adfdi-common object is an instance of the TraceSource class from the
System.Diagnostics namespace in the Microsoft .NET Framework. This object is
used to generate log files that capture information about events triggered by the Excel
workbook that you integrate with your Fusion web application. To know the location
of the log file, check the Log Files attribute in the Properties tab of the About dialog.

For more information about the TraceSource class, see Microsoft Developer
Network documentation.

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-13

https://support.oracle.com/
https://support.oracle.com/
http://msdn.microsoft.com/en-us/default.aspx
http://msdn.microsoft.com/en-us/default.aspx

Generating Log Files for an Integrated Excel Workbook

C-14 Developing Applications with Oracle ADF Desktop Integration

D
ADF Desktop Integration Settings in the
Web Application Deployment Descriptor

This appendix describes the values that you set for the ADF Desktop Integration
servlet (adfdiRemote) so that the Fusion web application can use it. The appendix
also describes the values in the deployment descriptor file that determine the behavior
of the HTTP filter that ADF Desktop Integration provides, and provides a code sample
from a deployment descriptor file that shows these values in use.

This appendix includes the following sections:

• Configuring the ADF Desktop Integration Servlet

• Configuring the ADF Desktop Integration Excel Download Filter

• Configuring the ADF Library Filter for ADF Desktop Integration

• Examples in a Deployment Descriptor File

D.1 Configuring the ADF Desktop Integration Servlet
A Fusion web application with integrated Excel workbooks must contain entries in its
deployment descriptor file (web.xml) to use the adfdiRemote servlet. The Excel
workbooks that you integrate with a Fusion web application call this servlet to
synchronize data with the Fusion web application. The adf-desktop-
integration.jar file that contains the servlet is in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration

where MW_HOME is the Middleware Home directory.

When you add ADF Desktop Integration to your project as described in Adding an
Integrated Excel Workbook to a Fusion Web Application, ADF Desktop Integration
automatically configures your deployment descriptor with the necessary entries to
enable the servlet (DIRemoteServlet) on your Fusion web application. If required,
then you can configure the servlet manually.

To configure the ADF Desktop Integration servlet:

1. In JDeveloper, locate and open the deployment descriptor file (web.xml) for your
ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

2. Click the Servlets page, and then click the Add icon to create a row entry in the
Servlets table. The icon is in the top-right corner of the servlets table.

Enter the values as described in Table D-1 to enable the adfdiRemote servlet on
the Fusion web application.

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-1

Table D-1 Values to Enable adfdiRemote Servlet

For this property... Enter this value...

Name adfdiRemote

Type Servlet Class

Servlet Class/JSP file oracle.adf.desktopintegration.servlet.DIRemot
eServlet

3. In Servlets page, click the Servlet Mappings tab, and then click the Add icon to
create a row in the Servlet Mapping table.

Enter the value as described in Table D-2 to add a URL pattern for the
adfdiRemote servlet in the Fusion web application. The value that you enter must
match the value that you specify in the integrated Excel workbook for the
RemoteServletPath workbook property. Note that values are case sensitive.

Table D-2 Values to Add A URL Pattern to adfdiRemote Servlet

For this property... Enter this value...

URL Patterns /adfdiRemoteServlet

Figure D-1 displays the Servlets page of web.xml of Summit sample application
for ADF Desktop Integration.

Figure D-1 Servlets Page of Deployment Descriptor

4. Click the Filters page, and verify that whether a adfBindings filter exists in the
Filters table. If an entry exists, select it and proceed to the next step. If there is no
such entry, then click the Add icon to create a row entry in the Filters table. The
icon is available in the top-right corner of the filters table.

Enter the values as described in Table D-3 to add the ADF binding filter to the
adfdiRemote servlet.

Configuring the ADF Desktop Integration Servlet

D-2 Developing Applications with Oracle ADF Desktop Integration

Table D-3 Values to Add Binding Filter to adfdiRemote Servlet

For this property... Enter this value...

Name adfBindings

Class oracle.adf.model.servlet.ADFBindingFilter

5. In Filters page, click the Filter Mappings tab, and then click the Add icon to create
a row in the Filter Mapping table.

Enter the values as described in Table D-4 to add the mapping filter to the
adfdiRemote servlet. The filter mapping must match with the Servlet name in
Step 2.

Table D-4 Values to Add Mapping Filter to adfdiRemote Servlet

For this property... Enter this value...

Mapping Type Servlet

Mapping adfdiRemote

Figure D-2 displays the Filters page of web.xml of Summit sample application for
ADF Desktop Integration.

Figure D-2 Filters Page of Deployment Descriptor

6. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

D.2 Configuring the ADF Desktop Integration Excel Download Filter
ADF Desktop Integration includes an HTTP filter in the adf-desktop-
integration.jar stored in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration

where MW_HOME is the Middleware Home directory.

Configuring the ADF Desktop Integration Excel Download Filter

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-3

You configure an entry in the deployment descriptor file (web.xml) of your Fusion
web application so that the application invokes the HTTP filter to make changes in an
integrated Excel workbook before the integrated Excel workbook is downloaded by
the end user from the Fusion web application. These changes ensure that the
integrated Excel workbook functions correctly when the end user opens it. The HTTP
filter makes the following changes:

• WebAppRoot

Sets the value for this property to the fully qualified URL for the Fusion web
application from which the end user downloads the integrated Excel workbook.

• Workbook mode

Changes the integrated Excel workbook mode to runtime mode in case the
workbook was inadvertently left in design mode or test mode.

By default, JDeveloper adds the HTTP filter to your ADF Desktop Integration project
when ADF Desktop Integration is enabled in your project.

To configure the HTTP filter:

1. In JDeveloper, locate and open the deployment descriptor file (web.xml) for your
ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

2. Click the Filters page, and verify that an adfBindings filter exists in the Filters
table. If an entry exists, select it and proceed to the next step. If there is no such
entry, then click the Add icon to create a row entry in the Filters table.

Enter the values as described in Table D-5 to create a filter, or configure the values
to modify the existing HTTP filter.

Table D-5 Properties to Configure HTTP Filter

For this property... Enter this value...

Name adfdiExcelDownload

Class oracle.adf.desktopintegration.filter.DIExcelD
ownloadFilter

Display Name (Optional) In General Filter tab, enter a display name for the
filter that appears in JDeveloper.

Description (Optional) In General Filter tab, enter a description of the
filter.

3. In the Filters page, click the Filter Mappings tab, and then click the Add icon to
create a row in Filter Mapping table.

Add a filter mapping for integrated Excel workbooks that use the default file
format (.xlsx) by entering values as described in Table D-6.

Table D-6 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Configuring the ADF Desktop Integration Excel Download Filter

D-4 Developing Applications with Oracle ADF Desktop Integration

Table D-6 (Cont.) Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping *.xlsx

Dispatcher Type No value is required for this property.

4. Add another filter mapping for integrated Excel workbooks that use the macro-
enabled workbook format (.xlsm) by entering values as described in Table D-7.

Table D-7 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsm

Dispatcher Type No value is required for this property.

Figure D-3 displays the Filters page of web.xml of Summit sample application for
ADF Desktop Integration.

Figure D-3 Filters Page of Deployment Descriptor

5. Click the Application page, expand MIME Mappings section, and click the Add
icon.

Add a MIME type for integrated Excel workbooks that use the default file format
(.xlsx) by entering values as described in Table D-8.

Table D-8 Properties to Add MIME Mappings

For this property... Enter this value...

Extension *.xlsx

MIME Type application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet

Configuring the ADF Desktop Integration Excel Download Filter

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-5

6. Add another MIME type for integrated Excel workbooks that use the macro-
enabled workbook format (.xlsm) by entering values as described in Table D-9.

Table D-9 Properties to Add MIME Mappings

For this property... Enter this value...

Extension *.xlsm

MIME Type application/vnd.ms-excel.sheet.macroEnabled.
12

Figure D-4 displays the Application page of web.xml of Summit sample
application for ADF Desktop Integration.

Figure D-4 Application Page of Deployment Descriptor

7. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

While updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support (<filter-
name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

ADF Desktop Integration-enabled web applications can also display a system check
that verifies the end user’s environment when the end user attempts to download an
integrated Excel workbook. You can manage the display of this system check by
configuring the SystemCheck.Enabled initialization parameter for the
adfdiExcelDownload filter. For more information, see How to Manage the Display
of the System Check to End Users.

Configuring the ADF Desktop Integration Excel Download Filter

D-6 Developing Applications with Oracle ADF Desktop Integration

D.3 Configuring the ADF Library Filter for ADF Desktop Integration
Using a model-driven list picker, as described in Adding a Model-Driven List Picker to
an ADF Table Component, requires you to configure the filter for ADF Library Web
Application Support (<filter-name>ADFLibraryFilter</filter-name>) for
your web application.

You configure an entry in the deployment descriptor file (web.xml) of your Fusion
web application so that the application references the ADF Library Filter.

To configure the ADF Library Web Application Support filter:

1. In JDeveloper, locate and open the deployment descriptor file (web.xml) for your
ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

2. Click the Filters page and then click the Add icon to create a row entry in the
Filters table.

Enter the values as described in Table D-10 to configure the ADF Library Web
Application Support filter.

Table D-10 Properties to Configure the ADF Library Web Application Support
Filter

For this property... Enter this value...

Name ADFLibraryFilter

Class oracle.adf.library.webapp.LibraryFilter

Display Name (Optional) In General Filter tab, enter a display name for the
filter that appears in JDeveloper.

Description (Optional) In General Filter tab, enter a description of the
filter.

3. In the Filters page, click the Filter Mappings tab, and then click the Add icon to
create a row in Filter Mapping table.

Add a filter mapping by entering values as described in Table D-11.

Table D-11 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping /*

Dispatcher Type No value is required for this property.

4. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

While updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support (<filter-
name>ADFLibraryFilter</filter-name>) appears below the

Configuring the ADF Library Filter for ADF Desktop Integration

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-7

adfdiExcelDownload filter entries, as demonstrated in Example D-1, so that
integrated Excel workbooks can be downloaded from the Fusion web application.

Example D-1 Entries in web.xml File for ADF Library Web Application Support

<filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-class>
 </filter>

<filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
 </filter>

D.4 Examples in a Deployment Descriptor File
The following extracts from the web.xml file of a Fusion web application with ADF
Desktop Integration shows the entries that you configure for a desktop integration
project. For more information ordering of filters, see What Happens When You Add
ADF Desktop Integration to Your JDeveloper Project.

 . . .
 <filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 </filter>
 <filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-class>
 </filter>
 <filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
 <init-param>
 <param-name>include-extension-list</param-name>
 <param-value>png,jpg,jpeg,gif,js,css,htm,html,xlsx,xlsm</param-value>
 </init-param>
 </filter>
 . . .
 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsx</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsm</url-pattern>
 </filter-mapping>
 . . .
 <filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 . . .

Examples in a Deployment Descriptor File

D-8 Developing Applications with Oracle ADF Desktop Integration

 <servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-class>
 </servlet>
 . . .
 <servlet-mapping>
 <servlet-name>adfdiRemote</servlet-name>
 <url-pattern>/adfdiRemoteServlet</url-pattern>
 </servlet-mapping>
 . . .
 <mime-mapping>
 <extension>xlsx</extension>
 <mime-type>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>xlsm</extension>
 <mime-type>application/vnd.ms-excel.sheet.macroEnabled.12</mime-type>
 </mime-mapping>
 . . .

Examples in a Deployment Descriptor File

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-9

Examples in a Deployment Descriptor File

D-10 Developing Applications with Oracle ADF Desktop Integration

E
String Keys in the Overridable Resources

This appendix describes the string keys in the reserved resource bundle that you can
override.

Table E-1 lists the string keys and their current English values. If you want to provide
custom strings for one or more keys, create a resource bundle where you define the
string keys in Table E-1 and the values that you want to appear at runtime. For
information about how to override the reserved resource bundle, see How to Override
Resources That Are Not Configurable.

Table E-1 String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears
at runtime

String key English value in the ADF
Desktop Integration reserved
resource bundle

Comments

Upload Options UPLOAD_OPTIONS_TITLE Upload Options

Upload Options UPLOAD_OPTIONS_PROMPT Specify options to use during
the Upload operation

Upload Options UPLOAD_OPTIONS_CONTINUE_ON_FAIL
_LABEL

On failure, continue to upload
subsequent rows

Upload Options UPLOAD_OPTIONS_DOWNLOAD_AFTER_L
ABEL

Download all rows after
successful upload

Table.Download DOWNLOAD_OVERWRITE_TITLE Download

Table.Download DOWNLOAD_OVERWRITE_PROMPT Do you wish to discard the
pending changes?

Table.Download ROWLIMIT_WARNINGS_TITLE Row limit exceeded

Table.Initializ
e

INITIALIZE_OVERWRITE_TITLE Initialize

Table.Initializ
e

INITIALIZE_OVERWRITE_PROMPT Do you wish to discard the
pending changes?

Workbook.ClearA
llData

CLEARDATA_CONFIRM_TITLE Clear all data

Workbook.ClearA
llData

CLEARDATA_CONFIRM_PROMPT This command will log you out
of your current session and
clear all the data from all
worksheets in the workbook.
Are you sure?

Workbook.Logout LOGOUT_STATUS_TITLE Logout

String Keys in the Overridable Resources E-1

Table E-1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears
at runtime

String key English value in the ADF
Desktop Integration reserved
resource bundle

Comments

Workbook.Logout LOGOUT_STATUS_PROMPT You have been logged out from
your current session.

Table.Upload COMPONENTS_TABLE_DYN_COLS_NOT_A
VAIL_TITLE

Upload

Table.Upload COMPONENTS_TABLE_DYN_COLS_NOT_A
VAIL_PROMPT

One or more dynamic columns
is no longer available, do you
wish to continue?

Table status UPLOAD_STATUS_NO_UPDATES No updates detected

Table status TABLE_UPLOAD_RECORD_NOT_FOUND Record not found

Table status TABLE_UPLOAD_CANNOT_INSERT_MORE
_THAN_ONCE

Cannot insert record more than
once

Table status TABLE_COMMIT_FAILED_1 See Error Detail {0} {0} is a
batch
number

Table status TABLE_COMMIT_FAILURE_DETAILS_2 Error Detail {0}:{1} {0} is a
batch
number

{1} is an
error
message

Table status TABLE_UPLOAD_ROW_UPDATE_SUCCESS Row updated successfully

Table status TABLE_UPLOAD_ROW_INSERT_SUCCESS Row inserted successfully

Table status TABLE_UPLOAD_ROW_UPDATE_FAILURE Update failed

Table status TABLE_UPLOAD_ROW_INSERT_FAILURE Insert failed

Table status TABLE_DELETE_ROW_FAILURE Delete failed

Table status TABLE_ROW_KEY_VALUE_INVALID Key value invalid

Table status TABLE_DOWNLOAD_FAILURE Download failed

Table status TABLE_DOWNLOAD_ROW_FAILURE Row download failed

Table status TABLE_DOWNLOAD_FLAGGED_FAILURE Download flagged rows failed

Table status TABLE_DOWNLOAD_FOR_INSERT_FAILU
RE

Download for insert failed

Table status MESSAGE_DETAILS_NONE No error.

Table status MESSAGE_DETAILS_ROW_TITLE Row Status

Table status MESSAGE_DETAILS_ROW_PROMPT Messages for this table row are
listed below

E-2 Developing Applications with Oracle ADF Desktop Integration

Table E-1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears
at runtime

String key English value in the ADF
Desktop Integration reserved
resource bundle

Comments

Table status MESSAGE_DETAILS_TABLE_TITLE Table Errors

Table status MESSAGE_DETAILS_TABLE_PROMPT Messages for this table are listed
below

Table status

Table errors

Worksheet errors

MESSAGE_DETAILS_HELP_LABEL Click on each error to reveal
additional information

Appears in
the error
list.

Table status

Table errors

Worksheet errors

MESSAGE_LABEL_DEFAULT_CONTEXT Action

Worksheet errors MESSAGE_DETAILS_WORKSHEET_TITLE Worksheet Errors

Worksheet errors MESSAGE_DETAILS_WORKSHEET_PROMP
T

Messages for this worksheet are
listed below

Worksheet errors MESSAGE_DETAILS_PARSE_FAILURE A problem has occurred while
retrieving the error details. The
information is no longer
available.

Worksheet errors MESSAGE_LABEL_FAILED_1 {0} failed {0} is a
context
label

Workbook.EditOp
tions

SETTINGS_EDIT_TITLE Edit Options

Workbook.EditOp
tions

SETTINGS_EDIT_PROMPT Enter a value for WebAppRoot.
For example: http://
localhost:1234/MyApp.

Workbook.EditOp
tions

SETTINGS_CONFIRM_TITLE Web App Root

Workbook.EditOp
tions

SETTINGS_CONFIRM_PROMPT Changing the Web App Root
will log you out of your current
session and clear all the data
from all worksheets in the
workbook. Are you sure?

Note:

The keys listed in Table E-1 cannot be used in EL expressions of the following
syntax:

#{_ADFDIres['key']}

String Keys in the Overridable Resources E-3

E-4 Developing Applications with Oracle ADF Desktop Integration

F
Java Data Types Supported By ADF

Desktop Integration

This appendix lists the Java data types that an ADF Desktop Integration project
supports.

This appendix includes the following sections:

• Primitive Java Types

• Object Java Types

Note:

Using data types not listed in this appendix will generate errors at runtime.

F.1 Primitive Java Types
• boolean

• double

• float

• int

• long

• short

F.2 Object Java Types
• java.lang.Boolean

• java.lang.Double

• java.lang.Float

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.String

• java.math.BigDecimal

Java Data Types Supported By ADF Desktop Integration F-1

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

• java.util.Date

• oracle.jbo.domain.Date

• oracle.jbo.domain.Number

• oracle.jbo.domain.RowID

• oracle.jbo.domain.Timestamp

• oracle.jbo.domain.TimestampLTZ

• oracle.jbo.domain.TimestampTZ

Object Java Types

F-2 Developing Applications with Oracle ADF Desktop Integration

G
Using the ADF Desktop Integration Model

API

There may be certain use cases where you want to allow uploading ADF Table data
even when there are no rows available in a tree binding. This appendix describes how
to use the ADF Desktop Integration Model API library in custom Java code to access
the attribute values sent from the client during the upload process when there are no
actual rows available.

This appendix includes the following sections:

• About the Temporary Row Object

• About ADF Desktop Integration Model API

• ADF Desktop Integration Model API Classes and Methods

G.1 About the Temporary Row Object
Each ADF Table component is bound to a tree binding defined within a page
definition. Each tree control binding has one (or more) tree nodes defined. For parent-
child relationships, the tree binding has two nodes, one for parent table and another
for child table. At runtime, the ADF Table component displays both parent and child
attributes within each worksheet row. On upload, ADF Desktop Integration sets
attribute values to both the parent and child nodes.

In certain situations, a particular tree node may not have actual data rows available
during Table.Upload request processing. Two common scenarios where a tree node
may not have data are:

• The tree node's iterator result set does not have any data rows available. This could
be because of a query returning zero rows.

• In a parent-child relationship, if the foreign key has not been populated in the
parent table, the link between parent and child tree node may not contain actual
rows.

There may be certain cases when, even though there is no actual row available on the
server, you still want to allow the end user to enter values in the worksheet and
upload them to the server. During upload, ADF Desktop Integration creates a
temporary row object and stores the values uploaded from the worksheet row. Using
the ADF Desktop Integration Model API, you can write custom Java code to access the
temporary row object and collect its values.

To call your custom Java code during upload, you must expose your custom Java code
through a pageDef action binding and then configure the ADF Table component's
UpdateRowActionID or InsertAfterRowActionID to point to the pageDef
action binding.

Using the ADF Desktop Integration Model API G-1

G.2 About ADF Desktop Integration Model API
While data is being uploaded, if a tree node of the ADF Table component contains no
actual rows, the ADF Desktop Integration remote servlet creates a temporary row
object to store the attribute values. If you want to access the temporary row object and
its attribute values, you must write custom Java code that uses the ADF Desktop
Integration Model API library.

Note:

The ADF Desktop Integration Model API is not supported for EJB or Toplink
data controls.

For more information about the classes and methods available in the API, see ADF
Desktop Integration Model API Classes and Methods.

G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper
Project

You typically add the ADF Desktop Integration Model API Library to your
application's data model project. The library is an independent library, not included
with any feature. You can add it through Project Properties dialog box.

To add ADF Desktop Integration Model API library to your project:

1. In the Applications window, right-click the data model project and choose Project
Properties.

2. In the Project Properties dialog, select Libraries and Classpath to view the list of
libraries available.

3. Click Add Library and in the Add Library dialog, select the ADF Desktop
Integration Model API library.

About ADF Desktop Integration Model API

G-2 Developing Applications with Oracle ADF Desktop Integration

Figure G-1 Add Library Dialog

4. Click OK. The library name adds to the Classpath Entries list.

5. Click OK to close the Project Properties dialog box.

G.3 ADF Desktop Integration Model API Classes and Methods
The ADF Desktop Integration Model API library contains one public class that
contains APIs for retrieving temporary row objects.

G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
The ModelHelper class is a public class that exposes Model APIs. The following
sections describe the methods available in the class.

G.3.1.1 The getAdfdiTempChildRow Method

The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular master row. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any
attribute values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempChildRow(ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters

• masterRow – master row object

ADF Desktop Integration Model API Classes and Methods

Using the ADF Desktop Integration Model API G-3

• childAccessor – child attribute name

G.3.1.2 The getAdfdiTempRowForView Method

The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular view. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any
attribute values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempRowForView(ApplicationModuleImpl
am,java.lang.String viewDefName)

Parameters

• am – application module instance

• viewDefName – view definition name

G.3.1.3 The getChildViewDef Method

The method is used to lookup polymorphic child view definition if the view link
destination attributes specify one or more child discriminator attributes. The master
row source attributes lookup the correct polymorphic child view definition through
ViewObjectImpl.findViewDefFromDiscrValues API. If no child discriminator
attributes are defined, or the child view is non-polymorphic, the default child
ViewDefImpl object is returned.

The method returns the temporary child ViewRowImpl object containing any
attribute values sent from worksheet, or returns null if the object is not found.

Method Syntax

public static final ViewDefImpl getChildViewDef(ViewRowImpl
masterRow,java.lang.String childAccessor)

Parameters

• masterRow – master row object

• childAccessor – child attribute name

ADF Desktop Integration Model API Classes and Methods

G-4 Developing Applications with Oracle ADF Desktop Integration

H
End User Actions

This appendix describes the actions end users perform while using a Fusion web
application and integrated Excel workbook, such as installing ADF Desktop
Integration, importing data from non-integrated Excel workbooks, making changes in
the workbook at runtime, and handling time zone conversion of date-time values in
the workbook.

The audience for this appendix are end users of integrated Excel workbooks at
runtime. References to "you" in this appendix are directed to these end users.

This appendix includes the following sections:

• Installing, Upgrading, and Removing ADF Desktop Integration

• Removing Personal Information

• Limitations of an Integrated Excel Workbook at Runtime

• Using an Integrated Excel Workbook

• Handling Time Zone Conversion

• Providing Diagnostic and Logging Information to Technical Support

H.1 Installing, Upgrading, and Removing ADF Desktop Integration
You can install ADF Desktop Integration by downloading the installer file from the
Fusion web application. Your system administrator can make this installer available as
described in Installing and Upgrading ADF Desktop Integration. When the installer
runs, it verifies whether the required software is installed on the your system. For
more information about the required software, see Required Oracle ADF Modules and
Third-Party Software.

Note:

You do not require JDeveloper to install ADF Desktop Integration.

H.1.1 How to Install ADF Desktop Integration on Your System
The first time that you attempt to download an integrated Excel workbook from a
Fusion web application, ADF Desktop Integration runs a system check to verify that
your system meets the requirements to run integrated Excel workbooks. You can
install ADF Desktop Integration by clicking the Install Add-in button, as shown in
Figure H-1.

End User Actions H-1

Figure H-1 Installing ADF Desktop Integration

If you do not see the system check because, for example, your system administrator
has disabled it you can still install ADF Desktop Integration by downloading the
installer from the Fusion web application. If you cannot locate the URL, ask your
system administrator. The URL has the following format:

http://<hostname>:<portnumber>/<context-root>/
adfdiRemoteServlet?excel-addin-installer

Assume, for example, that a system administrator at your company has deployed the
Summit sample application for ADF Desktop Integration to an application server
named acme-corp-intranet using port 7101. In this scenario, you enter the
following URL in your web browser to download the installer file:

http://acme-corp-intranet:7101/summit/adfdiRemoteServlet?excel-
addin-installer

To install ADF Desktop Integration:

1. After downloading the adfdi-excel-addin-installer.exe file, run it.

2. In the installation wizard, click Install.

Follow the instructions that appear in the dialog boxes to successfully install the
required components. If you encounter an error during the installation process, an
error message with a description appears, and installation is rolled back. For more
details, check the adfdi-installer-log.txt error log file in the temp
directory of the user profile.

3. Click Close.

H.1.2 How to Remove ADF Desktop Integration
Use the Microsoft Windows Control Panel to remove ADF Desktop Integration from
the system.

To remove the ADF Desktop Integration add-in:

1. Click the Windows Start button, and then choose Control Panel.

2. In the Control Panel, select and open Programs and Features.

3. Select Oracle ADF Desktop Integration 12c Add-in for Excel in the Uninstall or
change a program window, and click Uninstall.

Installing, Upgrading, and Removing ADF Desktop Integration

H-2 Developing Applications with Oracle ADF Desktop Integration

Note:

The specific steps may vary depending on the version of Windows used.
Please refer to the Windows documentation for more details.

H.1.3 How to Upgrade ADF Desktop Integration On a Local System
When you establish a connection with the Fusion web application from the runtime
integrated workbook, ADF Desktop Integration verifies whether the client and the
server versions are same. If the versions do not match, a message appears asking you
to upgrade to the client version that matches the server version. You can skip this
upgrade for the current session and choose to be reminded at a later time that you
select from the Remind Me Later dropdown list (for example, Next Week).

Note:

Using a client version that matches the server version is highly recommended
to avoid unexpected behavior or errors in integrated Excel workbooks.

You can check for a newer version of the client at any time. To do this, you establish a
session with the Fusion web application and then click the Check for updates link in
the About dialog of the integrated Excel workbook, as shown in Figure H-2. A dialog
then appears that shows you the current client and server versions. The dialog also
allows you to install a newer client version if the versions do not match.

Figure H-2 Check for Updates Link

For more information about the upgrade process, see Verifying the Client Version of
ADF Desktop Integration.

Installing, Upgrading, and Removing ADF Desktop Integration

End User Actions H-3

H.2 Removing Personal Information
If the Fusion web application that the application developer integrated an Excel
workbook with uses a security mechanism, such as single sign-on, personally
identifying information may be stored in cookies on the system where you access the
integrated Excel workbook. You can remove this information using Microsoft Internet
Explorer. You must log out and close all integrated Excel workbooks to invalidate all
active cookie-based web sessions.

For information about removing personal information, see Microsoft Internet Explorer
documentation.

H.3 Limitations of an Integrated Excel Workbook at Runtime
There are some known limitations on changing ADF Desktop Integration components
at runtime.

• Avoid this operation because using Excel cut-insert operations on worksheet
columns that render in an ADF Table component may produce unexpected results
during subsequent interaction with the component.

• Avoid moving or deleting columns that render in an ADF Table component's
group of columns as this may produce unexpected results and/or affect the
grouping of columns.

Additional known limitations:

• Excel's Conditional Formatting feature cannot be used effectively with ADF
Desktop Integration table components.

• The ADF Button components are disabled when you zoom in or out on an
integrated Excel worksheet. The ADF Button components are active at 100% zoom
only.

• You should not sort tables containing dependent lists of values.

• You cannot use Microsoft Excel's Undo or Redo commands to undo or redo
changes made while using ADF Desktop Integration.

• Excel's Track Changes and Share Workbook features are not compatible with ADF
Desktop Integration. You cannot use these Excel features with integrated Excel
workbooks.

• If you see a message while viewing a web page in a popup dialog that your session
or page has timed out or expired, close the popup dialog without completing the
action and then retry the action.

H.4 Using an Integrated Excel Workbook
If you are new to the ADF Desktop Integration technology and integrated Excel
workbooks, please be aware of the following common actions:

• Before uploading the changes, ensure that the Changed column of all modified
rows is marked with an upward pointing triangle. A double-click on the upward
pointing triangle character removes it, and the data of the relevant row is not
uploaded.

Removing Personal Information

H-4 Developing Applications with Oracle ADF Desktop Integration

• Do not delete, edit, or clear any cells in the Key column of the table. Any change to
these values can lead to upload failures and data corruption.

• Do not change Excel's settings for Protect Sheet or Protect Workbook. These
settings are available in the Changes group of the Review tab.

• To erase a value from a cell that is integrated with the web application, clear the
cell value instead of deleting the Excel cell.

• If the Fusion web application is running on the https protocol and you have not
installed the security certificate on the client, the integrated Excel workbook gives
an error on login and the connection is not established. To establish a connection,
you must install the security certificate. If you cannot install the certificate from
Excel, open Internet Explorer and navigate to the same website. You will be
prompted to install the certificate.

• Some ADF components may have cells that are configured to respond to a double-
click to perform some action. For example, the Status column cells of the ADF Table
component. You can also right-click in these cells and select Invoke Action.

• To have Excel retain the format of a numeric or date value in a cell formatted with a
text style while uploading data, add an apostrophe symbol (') before entering the
value. The apostrophe symbol acts as an escape character and is not displayed with
the value.

• When you try to close the integrated Excel workbook, Microsoft Excel prompts you
with a dialog to save the workbook even if you have not modified it after opening
it. This behavior is expected because ADF Desktop Integration modifies an
integrated Excel workbook each time you open it.

Some common actions, such as inserting or deleting a row, and sorting data in ADF
Table, are described in the subsequent sections.

H.4.1 How to Insert or Paste Rows in an ADF Table Component
To insert rows in the middle of an ADF Table component, insert a full row or rows in
the worksheet, and add data in all mandatory columns. For more information, see
Inserting Data in an ADF Table Component.

Data that you manage in another Excel workbook (for example, a non-integrated Excel
workbook) can also be pasted into an ADF Table component.

To paste data from another worksheet into ADF Table component rows:

1. Arrange the data in the Excel workbook from which you plan to copy the data to
match the layout of the ADF Table component in the integrated Excel workbook.

For example, if the first column in the ADF Table component where you want to
enter data is Column D, make Column D the first column where you arrange data
in the Excel workbook. Also, make sure to provide data for all mandatory
columns that the ADF Table component specifies.

2. In the Excel workbook, copy the rows of data.

3. To paste the copied rows into the middle of an ADF Table component:

a. Select the entire row above which you want to paste the data from the Excel
workbook.

b. With the row selected, right-click and choose Insert Copied Cells.

Using an Integrated Excel Workbook

End User Actions H-5

c. In the Insert Paste dialog that appears, select Shift cells down.

4. To paste the copied rows after the last row of an ADF Table component:

a. Select the entire row above which you want to paste the data from the Excel
workbook.

b. With the row selected, right-click and choose Insert Copied Cells.

To insert a row in an ADF Table component between the header and last row:

1. In the ADF Table component, select the entire row above which you want to insert
the new row.

2. With the row selected, right-click and choose Insert.

A new row is inserted above the selected row.

To insert rows in an ADF Table component after the last row:

1. Type data in an empty row immediately after the last row in the ADF Table
component.

The ADF Table component automatically converts the edited row to a row in the
ADF Table component.

Note:

• If the ADF Table has no data rows, the first row under the column header
row acts as a placeholder data row.

• You cannot enter data directly under the table's data rows if ADF Desktop
Integration worksheet protection is enabled (Protection.Mode property
set to Automatic), as described in Using Worksheet Protection. You can
disable this protection for individual cells or rows by clearing the Locked
checkbox in the Protection page of Excel's Format Cells dialog that you
access from the Format Cells context menu.

H.4.2 How to Sort ADF Table Data in an Integrated Excel Workbook
To sort table data, choose Excel's Sort and Filter command.

To sort ADF Table data based on a particular column:

1. Select the header, or any cell, of the column you want to sort.

2. In the Editing group of the Home tab, click Sort and Filter. Choose the desired
sort order from the dropdown list options.

To sort table data based on multiple columns:

1. Select any cell of the table.

2. In the Editing group of the Home tab, click Sort and Filter, and choose Custom
Sort.

3. In the Sort dialog, add the columns, and their order preference. Ensure that the My
data has headers checkbox is enabled.

Using an Integrated Excel Workbook

H-6 Developing Applications with Oracle ADF Desktop Integration

4. Click OK.

Note:

While sorting the columns in an ADF Table component, ensure that you
always choose Expand the selection in the Sort Warning dialog, when
prompted, in order to maintain the integrity of the data in all the table rows.

H.4.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook
Clearing the cell values of a row does not remove the row, and deleting the row from
the Excel worksheet does not delete the row from the web application.

To delete a row in an ADF Table component, flag the row by double-clicking the
respective cell of the Flagged column, and click the respective delete button. For more
information about row flagging, see Row Flagging in an ADF Table Component.

Note:

If your table does not contain a Flagged column, you will not be able to delete
rows from that table.

H.5 Handling Time Zone Conversion
Integrated Excel workbooks can be configured to retrieve, edit, and submit data values
that represent dates and times. As Excel does not provide native support for managing
date or time data when the system time zone changes, ADF Desktop Integration tracks
and detects the time zone changes for a workbook. It informs you about the time zone
update when the workbook is opened, and then converts the date-time data of the
workbook to the current time zone setting of the system.

For example, assume you are in Arizona (GMT -07:00) and you download data from
the server to the integrated Excel workbook, edit the date-time data in the workbook,
save the data, but do not upload it. Later, you travel to Seoul and change the time zone
preference of your computer to GMT +09:00. When you open the workbook after
changing to the Seoul time zone, you receive a message, and then all date-time data
values in the ADF components are converted from GMT -07:00 (Arizona) to GMT
+09:00 (Seoul).

H.6 Providing Diagnostic and Logging Information to Technical Support
ADF Desktop Integration provides a number of features and tools to assist you in
generating information that may resolve or assist in the resolution of technical issues
you encounter while using an integrated Excel workbook. These include:

• Client Health Check tool that determines if your environment is configured
correctly and, in some cases, offers you the opportunity to fix problems it identifies.
It also produces a client health check report that you can save to a location you
choose.

• Logging information that ADF Desktop Integration automatically captures as you
use integrated Excel workbooks.

• Diagnostic reports and a verbose log report file that you can generate from an
integrated Excel Workbook.

Handling Time Zone Conversion

End User Actions H-7

The client health check report, default log files, verbose log file and diagnostic report
may contain information that may assist your Technical Support department in
resolving issues you encounter. Before you send these reports to a third party, review
to remove any sensitive information that you do not want to share.

Using the Client Health Check Tool

Use the Client Health Check tool to determine if your environment is configured
correctly to use integrated Excel workbooks and ADF Desktop Integration. The tool is
an executable (.EXE) that you download from an ADF Desktop Integration-enabled
Fusion web application. If you cannot locate the download URL, ask your system
administrator. The URL has the following format:

<protocol>://<hostname>:<portnumber>/<context-root>/
adfdiRemoteServlet?excel-addin-health-check

Assume, for example, that a system administrator at your company has deployed the
Summit sample application for ADF Desktop Integration to an application server
named acme-corp-intranet using port 7101. In this scenario, you enter the
following URL in your web browser to download the Client Health Check tool:

http://acme-corp-intranet:7101/summit/adfdiRemoteServlet?excel-
addin-health-check

You can also download the tool by clicking the Run client health check tool link that
appears in <protocol>://<hostname>:<portnumber>/<context-root>/
adfdiRemoteServlet.

After you download the ClientHealthCheck.exe file, run it to generate a report
for your environment.

Figure H-3 shows a Client Health Check tool where the end user can click Fix
Problems to enable the add-in that is currently disabled plus save a report that the
Client Health Check tool generates.

Providing Diagnostic and Logging Information to Technical Support

H-8 Developing Applications with Oracle ADF Desktop Integration

Figure H-3 Client Health Check Tool

Locating the Log Files that Integrated Excel Workbooks Automatically Generate

By default, ADF Desktop Integration creates a log file in a directory on your machine
each time that you open and use an integrated Excel workbook. This log file captures
information about the integrated Excel workbook, such as the filename of the
workbook, and the actions that you complete using the workbook. ADF Desktop
Integration uses the convention adfdi-log-timestamp.txt when naming these
log files where timestamp is the time at which you open the integrated Excel
workbook. The following list shows a number of log files that ADF Desktop
Integration created in a directory:

adfdi-log-2015-11-25-191209.txt
adfdi-log-2015-11-25-214526.txt
adfdi-log-2015-11-25-185635.txt
adfdi-log-2015-11-24-140541.txt
adfdi-log-2015-11-24-103238.txt
adfdi-log-2015-11-23-232952.txt

To determine which directory ADF Desktop Integration uses to store log file
information on your machine, see the Log Files property that you can view from the
About dialog of an integrated Excel workbook, as shown in Figure H-4.

Providing Diagnostic and Logging Information to Technical Support

End User Actions H-9

Figure H-4 Directory Location of Log Files

Generating Diagnostic Report and Verbose Log File

The diagnostic report is a text file (.TXT) that contains various pieces of information,
such as your Microsoft Windows version and ADF Desktop Integration add-in
version. The verbose log file is an XML file that captures more detailed information
than the default log files about the actions that you perform, and the events that occur
while you use the integrated Excel workbook. If you encounter an issue, enable
logging and redo your task to reproduce the issue. ADF Desktop Integration logs the
information to the log file that you created when you enabled logging. Once you exit
Microsoft Excel, ADF Desktop Integration stops verbose logging until you enable it
once again using the Enable Logging menu option shown in Figure H-5.

You generate the diagnostic report and enable logging from the same menu. The
location of this menu depends on the version of Microsoft Excel that you use. Figure
H-5shows the location of this menu entry in Microsoft Excel 2013.

Providing Diagnostic and Logging Information to Technical Support

H-10 Developing Applications with Oracle ADF Desktop Integration

Figure H-5 Menu to Enable Logging and Save Diagnostic Report

Providing Diagnostic and Logging Information to Technical Support

End User Actions H-11

Providing Diagnostic and Logging Information to Technical Support

H-12 Developing Applications with Oracle ADF Desktop Integration

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to ADF Desktop Integration
	1.1 About ADF Desktop Integration
	1.2 About ADF Desktop Integration with Microsoft Excel
	1.2.1 Overview of Creating an Integrated Excel Workbook
	1.2.2 Advantages of Integrating Excel with a Fusion Web Application

	2 Introduction to the ADF Desktop Integration Sample Application
	2.1 About the Summit Sample Application for ADF Desktop Integration
	2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration
	2.2.1 How to Download the Application Resources
	2.2.2 How to Run the Summit Sample Application for ADF Desktop Integration

	2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.2 Downloading Integrated Excel Workbooks

	2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration
	2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
	2.4.2 Downloading Data Rows
	2.4.3 Modify Customers and Warehouses Information in the Workbooks
	2.4.4 Upload Modified Information to the Fusion Web Application

	3 Setting Up Your Development Environment
	3.1 About Setting Up Your Development Environment
	3.2 Required Oracle ADF Modules and Third-Party Software
	3.3 Installing ADF Desktop Integration
	3.3.1 How to Install ADF Desktop Integration

	3.4 Removing ADF Desktop Integration
	3.5 Upgrading ADF Desktop Integration

	4 Preparing Your Integrated Excel Workbook
	4.1 About Preparing Your Integrated Excel Workbooks
	4.2 Working with Page Definition Files for an Integrated Excel Workbook
	4.2.1 How to Create ADF Desktop Integration Page Definition File
	4.2.2 What Happens When You Create a Page Definition File
	4.2.3 How to Reload a Page Definition File in an Excel Workbook
	4.2.4 What You May Need to Know About Page Definition Files in an Integrated Excel Workbook

	4.3 Adding an Integrated Excel Workbook to a Fusion Web Application
	4.3.1 How to Add an Integrated Excel Workbook to a Fusion Web Application
	4.3.2 How to Configure a New Integrated Excel Workbook
	4.3.3 How to Add Additional Worksheets to an Integrated Excel Workbook

	4.4 Enabling ADF Desktop Integration in an Excel Workbook
	4.4.1 How to Enable ADF Desktop Integration in an Existing Workbook
	4.4.2 How to Manually Configure a New Integrated Excel Workbook

	4.5 Enabling ADF Desktop Integration Manually
	4.5.1 How to Manually Add ADF Desktop Integration In Fusion Web Application
	4.5.2 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project
	4.5.3 Adding ADF Library Web Application Support

	4.6 Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

	5 Getting Started with the Development Tools
	5.1 About Development Tools
	5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples
	5.1.2 Additional Functionality for ADF Desktop Integration Development Tools

	5.2 Designer Ribbon Tab
	5.3 ADF Desktop Integration Designer Task Pane
	5.4 Using the Bindings Palette
	5.5 Using the Components Palette
	5.6 Using the Property Inspector
	5.7 Using the Binding ID Picker
	5.8 Using the Expression Builder
	5.9 Using the Web Page Picker
	5.10 Using the File System Folder Picker
	5.11 Using the Page Definition Picker
	5.12 Using the Collection Editors
	5.13 Using the Cell Context Menu
	5.14 Removing ADF Desktop Integration Components
	5.15 Exporting and Importing Excel Workbook Integration Metadata
	5.15.1 How to Export Workbook Integration Metadata
	5.15.2 How to Import Workbook Integration Metadata
	5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook Integration Metadata

	6 Working with ADF Desktop Integration Form-Type Components
	6.1 About ADF Desktop Integration Form-Type Components
	6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples
	6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components

	6.2 Inserting an ADF Label Component
	6.3 Inserting an ADF Input Text Component
	6.4 Inserting an ADF Output Text Component
	6.5 Inserting an ADF Input Date Component
	6.6 Inserting an ADF Image Component
	6.7 Inserting an ADF Button Component
	6.8 Displaying Output from a Managed Bean in an ADF Component
	6.8.1 How to Display Output from a Managed Bean
	6.8.2 What Happens at Runtime: How an ADF Component Displays Output from a Managed Bean

	6.9 Displaying Concatenated or Calculated Data in Components
	6.9.1 How to Configure a Component to Display Calculated Data
	6.9.2 Using Form Components and Merged Cells

	7 Working with ADF Desktop Integration Table-Type Components
	7.1 About ADF Desktop Integration Table-Type Components
	7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples
	7.1.2 Additional Functionality of Table-Type Components

	7.2 Page Definition Requirements for an ADF Table Component
	7.3 Inserting an ADF Table Component into an Excel Worksheet
	7.3.1 How to Insert an ADF Table Component
	7.3.2 How to Add a Column in an ADF Table Component

	7.4 Downloading Data to an ADF Table Component
	7.4.1 How to Download Data to an ADF Table Component
	7.4.2 What Happens at Runtime: How an ADF Table Component Downloads Data

	7.5 Downloading Pending Insert and Pending Update Rows to an ADF Table Component
	7.5.1 What Happens at Runtime: Download Action is Invoked
	7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts
	7.5.3 What You May Need to Know About DownloadForInsert Action

	7.6 Updating Existing Data in an ADF Table Component
	7.6.1 How to Configure an ADF Table Component to Update Data
	7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data

	7.7 Inserting Data in an ADF Table Component
	7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's Operations

	7.8 Uploading Changes from an ADF Table Component
	7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table Component
	7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data
	7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During Upload
	7.8.4 What Happens at Runtime: How Row Errors Are Handled During Upload
	7.8.5 What You May Need to Know About Upload Options
	7.8.6 How to Create a Custom Upload Dialog
	7.8.7 What Happens at Runtime: Custom Upload Dialog

	7.9 Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action
	7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action
	7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked
	7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With UploadAllOrNothing Action

	7.10 Deleting ADF Table Component Rows in the Fusion Web Application
	7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web Application
	7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion Web Application

	7.11 Batch Processing in an ADF Table Component
	7.11.1 How to Configure Batch Options for an ADF Table Component
	7.11.2 Troubleshooting Errors While Uploading Data

	7.12 Special Columns in the ADF Table Component
	7.12.1 Row Flagging in an ADF Table Component

	7.13 Configuring ADF Table Component Key Column
	7.13.1 How to Configure the Key Column
	7.13.2 How to Manually Add the Key Column At Design Time

	7.14 Adding a Dynamic Column to Your ADF Table Component
	7.14.1 How to Configure a Dynamic Column
	7.14.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic Column
	7.14.3 How to Specify Header Labels for Dynamic Columns
	7.14.4 How to Specify Styles for Dynamic Columns

	7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component
	7.16 Configuring an ADF Table Component to Resize Columns Based on Data at Runtime
	7.16.1 How to Configure an ADF Table Component to Resize Columns at Runtime
	7.16.2 How to Configure an Action Set to Resize Columns of an ADF Table Component at Runtime
	7.16.3 What Happens at Runtime: How the ADF Table Columns are Resized
	7.16.4 What You May Need to Know About Resizing Columns of an ADF Table Component at Runtime

	7.17 Grouping Columns Together in an ADF Table Component
	7.17.1 How to Group Columns in an ADF Table Component
	7.17.2 How to Group Columns that Render in a Dynamic Column
	7.17.3 What Happens at Runtime: How an ADF Table Component Groups Columns

	7.18 Configuring an ADF Table Component to be Read-only
	7.18.1 How to Configure an ADF Table Component to be Read-only

	7.19 Creating an ADF Read-Only Table Component
	7.19.1 How to Insert an ADF Read-only Table Component

	7.20 Limiting the Number of Rows Your Table-Type Component Downloads
	7.20.1 How to Limit the Number of Rows a Component Downloads
	7.20.2 What Happens at Runtime: How the RowLimit Property Works

	7.21 Tracking Changes in an ADF Table Component
	7.22 Evaluating EL Expressions for ReadOnly Properties
	7.22.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data
	7.22.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or Tracking Changes
	7.22.3 What You May Need to Know About Evaluating EL Expression While Uploading Data or Tracking Changes

	8 Working with Lists of Values
	8.1 About List of Values in an Integrated Excel Workbook
	8.1.1 Adding Lists of Values to Integrated Excel Workbooks Use Cases and Examples
	8.1.2 Additional Functionality for Adding List of Values to an Integrated Excel Workbook

	8.2 Creating a List of Values in an Excel Worksheet
	8.3 Creating a List of Values in an ADF Table Component Column
	8.3.1 How to Create a List of Values in an ADF Table Component Column
	8.3.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values

	8.4 Adding a Model-Driven List Picker to an ADF Table Component
	8.4.1 What You May Need to Know About Model-Driven List Pickers in ADF Table Components

	8.5 Creating Dependent Lists of Values in an Integrated Excel Workbook
	8.5.1 How to Create Dependent Lists of Values in Excel Worksheets
	8.5.2 What Happens at Runtime: How an Excel Worksheet Renders a Dependent List of Values
	8.5.3 How to Create Dependent Lists of Values in ADF Table Component Columns
	8.5.4 What Happens at Runtime: ADF Table Component Column Renders a Dependent List of Values

	9 Adding Interactivity to Your Integrated Excel Workbook
	9.1 About Adding Interactivity to an Integrated Excel Workbook
	9.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples
	9.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook

	9.2 Using Action Sets
	9.2.1 How to Invoke a Method Action Binding in an Action Set
	9.2.2 How to Invoke Component Actions in an Action Set
	9.2.3 What You May Need to Know About an Action Set Invoking a Component Action
	9.2.4 How to Invoke an Action Set from a Worksheet Event
	9.2.5 How to Display a Progress Bar while an Action Set Executes
	9.2.6 What Happens at Runtime: How the Action Set Displays a Status Message
	9.2.7 What You May Need to Know About Progress Bars
	9.2.8 How to Allow End Users to Continue Working in Excel While an ActionSet Executes
	9.2.9 What Happens at Runtime: How End Users Continue Working While an ActionSet Executes
	9.2.10 What You May Need to Know About Canceling an Action
	9.2.11 How to Provide an Alert After the Invocation of an Action Set
	9.2.12 What Happens at Runtime: How the Action Set Provides an Alert
	9.2.13 How to Configure Error Handling for an Action Set
	9.2.14 How to Prompt the User for Confirmation in an Action Set
	9.2.15 What Happens at Runtime: How the Action Set Prompts the User for Confirmation

	9.3 Configuring the Runtime Ribbon Tab
	9.3.1 How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab
	9.3.2 How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab
	9.3.3 What Happens at Runtime: Ribbon Commands in the Ribbon Tab

	9.4 Displaying Web Pages from a Fusion Web Application
	9.4.1 How to Display a Web Page in a Popup Dialog
	9.4.2 How to Display a Web Page Search Form in a Popup Dialog
	9.4.3 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane
	9.4.4 What You May Need to Know About Displaying Pages from a Fusion Web Application
	9.4.4.1 Sending Data Between an Integrated Excel Worksheet and a Fusion Web Application Page
	9.4.4.2 Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion Web Application Pages
	9.4.4.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame Sharing

	9.5 Using Row-Level Action Sets in a Table Column
	9.5.1 How to Enable Row-Level Action Set Model Management
	9.5.2 What Happens at Runtime: RowActionSetModelMgmtEnabled is Set to True
	9.5.3 How to Synchronize Changes from ADF Table Component Using RowUpSyncNoFail
	9.5.4 What Happens at Runtime: RowUpSyncNoFail Action is Invoked
	9.5.5 How to Add a Custom Popup Picker Dialog to an ADF Table Column

	9.6 Using EL Expression to Generate an Excel Formula
	9.6.1 How to Configure a Cell to Display a Hyperlink Using EL Expression
	9.6.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL Expression

	9.7 Using Calculated Cells in an Integrated Excel Workbook
	9.7.1 How to Calculate the Sum of a Table-Type Component Column
	9.7.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type Component Column

	9.8 Using Macros in an Integrated Excel Workbook

	10 Configuring the Appearance of Your Integrated Excel Workbook
	10.1 About Configuring the Appearance of an Integrated Excel Workbook
	10.1.1 Integrated Excel Workbook Configuration Use Cases and Examples
	10.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook

	10.2 Working with Styles
	10.2.1 Predefined Styles in ADF Desktop Integration
	10.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options
	10.2.3 How to Apply a Style to an Oracle ADF Component
	10.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component

	10.3 Applying Styles Dynamically Using EL Expressions
	10.3.1 What Happens at Runtime: How an EL Expression Is Evaluated
	10.3.2 How to Write an EL Expression That Applies a Style at Runtime
	10.3.3 What You May Need to Know About EL Expressions That Apply Styles

	10.4 Using Labels in an Integrated Excel Workbook
	10.4.1 Retrieving the Values of String Keys from a Resource Bundle
	10.4.2 Retrieving the Values of Attribute Control Hints
	10.4.3 How an Integrated Excel Workbook Evaluates a Label Property

	10.5 Branding Your Integrated Excel Workbook
	10.5.1 How to Brand an Integrated Excel Workbook
	10.5.2 What Happens at Runtime: the BrandingItems Group of Properties

	10.6 Displaying Tooltips in ADF Desktop Integration Components
	10.6.1 How to Add a Tool Tip to an ADF Table Component
	10.6.2 How to Add a Tool Tip to a Form-Type Component
	10.6.2.1 What You May Need to Know About Tooltips for Form-Type Components

	10.6.3 What You May Need to Know About Tooltips for Table Columns

	10.7 Using Worksheet Protection
	10.7.1 How to Enable Worksheet Protection
	10.7.2 What Happens at Runtime: How the Locked Property Works
	10.7.3 What You May Need to Know About Worksheet Protection

	10.8 Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties
	10.8.1 How to Enable Custom Attribute Properties in Integrated Excel Workbook
	10.8.2 What Happens at Runtime: CustomAttributePropertiesEnabled is Set to True
	10.8.3 What You May Need to Know About the CustomAttributePropertiesEnabled Property

	11 Internationalizing Your Integrated Excel Workbook
	11.1 About Internationalizing Your Integrated Excel Workbook
	11.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples
	11.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook

	11.2 Using Resource Bundles in an Integrated Excel Workbook
	11.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
	11.2.2 How to Override Resources That Are Not Configurable
	11.2.3 What Happens at Runtime: Override Resources That Are Not Configurable
	11.2.4 What You May Need to Know About Resource Bundles

	11.3 Localization in ADF Desktop Integration
	11.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings
	11.3.1.1 How to Create a User Preference Handler
	11.3.1.2 How to Register the User Preference Handler

	12 Securing Your Integrated Excel Workbook
	12.1 About Security In Your Integrated Excel Workbook
	12.1.1 Integrated Excel Workbook Security Use Cases and Examples
	12.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web Application

	12.2 Authenticating the Excel Workbook User
	12.2.1 What Happens at Runtime: How the Login Method Is Invoked
	12.2.2 What Happens at Runtime: How the Web Application Session is Terminated

	12.3 Checking the Integrity of an Integrated Excel Workbook's Metadata
	12.3.1 How to Reset the Workbook ID
	12.3.2 What Happens When the Metadata Tamper-Check Is Performed

	12.4 What You May Need to Know About Securing an Integrated Excel Workbook
	12.5 Authorizing the Excel Workbook User
	12.5.1 What You May Need to Know About ADF Desktop Integration-Disabled Worksheet

	13 Adding Validation to Your Integrated Excel Workbook
	13.1 About Adding Validation to an Integrated Excel Workbook
	13.1.1 Integrated Excel Workbook Validation Use Cases and Examples
	13.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook

	13.2 Using the Status Viewer to Report Error Messages to End Users
	13.2.1 How to Manage the Automatic Display of the Status Viewer

	13.3 Providing Data Entry Validation for an Integrated Excel Workbook
	13.3.1 Providing Data Entry Validation Using ADF Desktop Integration
	13.3.1.1 How to Enable or Disable ADF Desktop Integration Data Entry Validation

	13.3.2 Providing Data Validation Using Excel
	13.3.3 How to Upload Excel Cell Errors to the Fusion Web Application

	13.4 Providing Server-Side Validation for an Integrated Excel Workbook
	13.5 Providing a Row-by-Row Status on an ADF Table Component
	13.6 Adding Detail to Error Messages in an Integrated Excel Workbook
	13.7 Handling Data Conflicts When Uploading Data from a Workbook
	13.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
	13.7.2 What Happens at Runtime: How Data Conflicts Are Handled

	14 Testing Your Integrated Excel Workbook
	14.1 About Testing Your Integrated Excel Workbook
	14.1.1 Integrated Excel Workbook Testing Use Cases and Examples
	14.1.2 Additional Functionality for Testing an Integrated Excel Workbook

	14.2 Testing Your Fusion Web Application
	14.3 Validating the Integrated Excel Workbook Configuration
	14.3.1 How to Validate the Integrated Excel Workbook Configuration
	14.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration
	14.3.3 How to Fix Validation Failures
	14.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at Runtime

	14.4 Testing Your Integrated Excel Workbook

	15 Deploying Your Integrated Excel Workbook
	15.1 About Deploying Your Integrated Excel Workbook
	15.1.1 Integrated Excel Workbook Deployment Use Cases and Examples
	15.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook

	15.2 Making ADF Desktop Integration Available to End Users
	15.3 Publishing Your Integrated Excel Workbook
	15.3.1 How to Publish an Integrated Excel Workbook from Excel
	15.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool
	15.3.3 What Happens When You Publish an Integrated Excel Workbook

	15.4 Deploying a Published Workbook with Your Fusion Web Application
	15.4.1 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion Web Application from JDeveloper
	15.4.1.1 Fusion Web Application is Deployed on Oracle WebLogic Server

	15.4.2 What Happens at Runtime: End User Requests a Published Workbook

	15.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook
	15.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters
	15.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook
	15.5.3 How to Configure the Page Definition File for the Worksheet to Receive Parameters
	15.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web Application to the Integrated Excel Workbook

	15.6 Customizing Workbook Integration Metadata at Runtime
	15.6.1 How to Enable Workbook Customization at Runtime
	15.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized
	15.6.3 What You May Need to Know About Customizing Workbook Integration Metadata

	15.7 Integrating ADF Workbook Composer into Your Fusion Web Application
	15.7.1 How to Integrate ADF Workbook Composer into Your Fusion Web Application
	15.7.2 What Happens at Runtime: ADF Workbook Composer is Invoked
	15.7.3 What You May Need to Know About ADF Workbook Composer

	16 Using an Integrated Excel Workbook Across Multiple Web Sessions
	16.1 About Using an Integrated Excel Workbook Across Multiple Web Sessions
	16.1.1 Using an Integrated Excel Workbook Across Multiple Web Sessions Use Cases and Examples
	16.1.2 Additional Functionality for Using an Integrated Excel Workbook Across Multiple Web Sessions

	16.2 Restore Server Data Context Between Sessions
	16.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
	16.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server Data Context

	16.3 Caching of Static Information in an Integrated Excel Workbook
	16.4 Caching Lists of Values for Use Across Multiple Web Sessions
	16.5 Using Explicit Worksheet Setup Action
	16.5.1 How to Configure Explicit Worksheet Setup Action
	16.5.2 What You May Need to Know About Explicit Worksheet Setup Action

	17 Administering ADF Desktop Integration
	17.1 Installing and Upgrading ADF Desktop Integration
	17.1.1 Prerequisites for Installing ADF Desktop Integration Add-in
	17.1.2 Configuring Microsoft Excel for Integrated Excel Workbooks That Use ADF Button Components
	17.1.3 How to Install the ADF Desktop Integration Add-in From a Web Server
	17.1.4 How to Upgrade the ADF Desktop Integration Add-in
	17.1.5 How to Run ADF Desktop Integration Installer from Command Line
	17.1.6 How to Manage the Display of the System Check to End Users

	17.2 Running the Client Health Check Tool
	17.3 ADF Desktop Integration Logs
	17.4 Security in ADF Desktop Integration
	17.4.1 End User Authentication
	17.4.2 What You May Need to Know About Configuring Security in a Fusion Web Application
	17.4.3 What You May Need to Know About Resource Grants for Web Pages

	17.5 Verifying the Client Version of ADF Desktop Integration
	17.5.1 How to Disable the Install Option on the Client-Server Version Check Dialog

	17.6 Verifying Integrated Excel Workbook Metadata
	17.6.1 How to Disable the Metadata Tamper-Check in the Fusion Web Application

	17.7 Common ADF Desktop Integration Error Messages and Problems

	A ADF Desktop Integration Component Properties and Actions
	A.1 Frequently Used Properties in the ADF Desktop Integration
	A.2 ADF Input Text Component Properties
	A.3 ADF Output Text Component Properties
	A.4 ADF Label Component Properties
	A.5 ADF List of Values Component Properties
	A.6 ADF Image Component Properties
	A.7 ADF Input Date Component Properties
	A.8 ModelDrivenColumnComponent Subcomponent Properties
	A.9 TreeNodeList Subcomponent Properties
	A.10 ADF Button Component Properties
	A.11 ADF Table Component Properties and Actions
	A.11.1 ADF Table Component Properties
	A.11.2 ADF Table Component Column Properties
	A.11.3 ADF Table Component Actions

	A.12 ADF Read-only Table Component Properties and Actions
	A.13 Action Set Properties
	A.13.1 Confirmation Action Properties
	A.13.2 Dialog Action Properties

	A.14 Workbook Actions and Properties
	A.15 Worksheet Actions and Properties
	A.16 ADF Desktop Integration Compatibility Properties

	B ADF Desktop Integration EL Expressions
	B.1 Guidelines for Creating EL Expressions
	B.2 EL Syntax for ADF Desktop Integration Components
	B.3 Attribute Control Hints in ADF Desktop Integration

	C Troubleshooting an Integrated Excel Workbook
	C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration
	C.2 Generating ADF Desktop Integration Diagnostic Reports
	C.2.1 How to Generate the ADF Desktop Integration Diagnostic Report
	C.2.2 What You May Need to Know About the ADF Desktop Integration Diagnostic Report

	C.3 Troubleshooting Connection Problems to Fusion Web Applications
	C.4 Verifying End-User Authentication for Integrated Excel Workbooks
	C.5 Generating Log Files for an Integrated Excel Workbook
	C.5.1 About Server-Side Logging
	C.5.2 Using the Oracle Diagnostics Log Analyzer to Analyze ADF Desktop Integration Servlet Requests
	C.5.3 About Client-Side Logging
	C.5.3.1 What You May Need To Know About Always-On Logging
	C.5.3.2 Enabling Transient Verbose Logging for One User Session
	C.5.3.3 How to Configure Logging in the Oracle ADF Tab
	C.5.3.4 About the ADF Desktop Integration Configuration File
	C.5.3.5 How to Configure Logging Using User Environment Variables
	C.5.3.6 What You May Need to Know About the adfdi-common Object

	D ADF Desktop Integration Settings in the Web Application Deployment Descriptor
	D.1 Configuring the ADF Desktop Integration Servlet
	D.2 Configuring the ADF Desktop Integration Excel Download Filter
	D.3 Configuring the ADF Library Filter for ADF Desktop Integration
	D.4 Examples in a Deployment Descriptor File

	E String Keys in the Overridable Resources
	F Java Data Types Supported By ADF Desktop Integration
	F.1 Primitive Java Types
	F.2 Object Java Types

	G Using the ADF Desktop Integration Model API
	G.1 About the Temporary Row Object
	G.2 About ADF Desktop Integration Model API
	G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

	G.3 ADF Desktop Integration Model API Classes and Methods
	G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
	G.3.1.1 The getAdfdiTempChildRow Method
	G.3.1.2 The getAdfdiTempRowForView Method
	G.3.1.3 The getChildViewDef Method

	H End User Actions
	H.1 Installing, Upgrading, and Removing ADF Desktop Integration
	H.1.1 How to Install ADF Desktop Integration on Your System
	H.1.2 How to Remove ADF Desktop Integration
	H.1.3 How to Upgrade ADF Desktop Integration On a Local System

	H.2 Removing Personal Information
	H.3 Limitations of an Integrated Excel Workbook at Runtime
	H.4 Using an Integrated Excel Workbook
	H.4.1 How to Insert or Paste Rows in an ADF Table Component
	H.4.2 How to Sort ADF Table Data in an Integrated Excel Workbook
	H.4.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook

	H.5 Handling Time Zone Conversion
	H.6 Providing Diagnostic and Logging Information to Technical Support

