

[1] Oracle® Fusion Middleware
Developing Oracle ADF Mobile Browser Applications

12c (12.2.1.2.0)

E76685-01

September 2016

Documentation for Oracle Application Development
Framework (Oracle ADF) developers that describes how to
use Oracle JDeveloper to create mobile browser-based
applications comprised of Apache MyFaces Trinidad
web-client components.

Oracle Fusion Middleware Developing Oracle ADF Mobile Browser Applications 12c (12.2.1.2.0)

E76685-01

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Krithika Gangadhar

Contributing Author: Ralph Gordon, Mamallan Uthaman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Audience.. vii
Related Documents .. vii
Conventions .. vii

1 Overview of Oracle ADF Mobile Browser

1.1 About ADF Mobile Browser.. 1-1
1.1.1 How ADF Mobile Browser Improves Application Performance 1-1
1.1.2 About Java Server Faces and the Application Development Framework 1-2
1.1.3 Developing Mobile Applications Using ADF Mobile Browser 1-3
1.2 Supported Mobile Browser Features.. 1-3

2 Configuring the ADF Mobile Browser Environment

2.1 About ADF Mobile Browser Application Development... 2-1
2.2 Configuring the ADF Mobile Browser Development Environment 2-2
2.2.1 How to Create a Mobile Application and Project .. 2-2
2.2.2 What Happens When You Create a Mobile Application and Project.......................... 2-6
2.3 Developing an ADF Mobile Browser Application... 2-7
2.3.1 How to Develop a Mobile JSF Page .. 2-7
2.4 Testing an ADF Mobile Browser Application .. 2-9
2.4.1 How to Test ADF Mobile Browser Applications on Simulators................................ 2-10
2.4.2 What You May Need to Know About Browser Settings... 2-11

3 Component Support

3.1 About Apache My Faces Trinidad Components.. 3-1
3.1.1 Supported Features ... 3-1
3.1.2 Partial Page Rendering.. 3-1
3.1.3 Dialogs... 3-2
3.1.4 Rendering Specific to the BlackBerry Browser 4.5 and Earlier Versions..................... 3-2
3.2 Input Components .. 3-2
3.2.1 Creating Input Text Fields.. 3-2
3.2.2 Creating Lists.. 3-3
3.3 Output Components... 3-3
3.3.1 Displaying Text .. 3-3

iv

3.3.2 Displaying Images ... 3-4
3.3.3 Showing (or Hiding) Components.. 3-4
3.4 Layout Components ... 3-4
3.4.1 Managing the Page .. 3-5
3.4.2 Laying Out Sections of the Page.. 3-5
3.4.3 Inserting Spaces ... 3-6
3.5 Navigation Components.. 3-6
3.5.1 Creating Buttons .. 3-6
3.5.2 Creating Links .. 3-7
3.5.3 Navigation Components... 3-7
3.6 Data Visualization (Graphs and Gauges).. 3-8
3.7 Tables and Trees... 3-10
3.7.1 Creating Tables ... 3-10
3.7.2 Creating Trees ... 3-10
3.8 Generating HTML <meta> Tags.. 3-11
3.8.1 Using <trh:meta> to Generate HTML <meta> Tags ... 3-11
3.8.1.1 About Default Viewport Size on Mobile Devices .. 3-11
3.9 Unsupported Components and Attributes .. 3-12
3.9.1 Unsupported Components.. 3-12
3.9.2 Unsupported Attributes .. 3-13

4 Skinning ADF Mobile Browser Applications

4.1 About ADF Mobile Browser Skinning... 4-1
4.2 Implementing ADF Mobile Browser Skinning... 4-1
4.2.1 Extending the ADF Mobile Skins .. 4-3
4.3 Applying ADF Mobile Browser Skinning ... 4-3
4.3.1 Headers ... 4-3
4.3.1.1 Creating a Title-Only Header ... 4-4
4.3.1.2 Creating Headers with Titles and Links ... 4-4
4.3.2 Table Components... 4-5
4.3.2.1 Multi-Column Tables ... 4-5
4.3.2.2 Adding Images and Primary Details with Links ... 4-7
4.3.2.3 Creating Primary Details with Links... 4-9
4.3.2.4 Creating Primary Details Without Links ... 4-10
4.3.3 Panel List Components ... 4-12
4.3.4 PanelFormLayout ... 4-13
4.3.5 Panel Accordion.. 4-15

5 Supporting Basic HTML Mobile Browsers

5.1 About Basic HTML Mobile Browser Support... 5-1
5.1.1 Requirements for Basic HTML Mobile Browser Support.. 5-1
5.2 Developing Applications for Basic HTML Mobile Browsers ... 5-1
5.3 Styling Basic HTML Mobile Browsers ... 5-2

6 Design Guidelines for BlackBerry 4.2 to 4.5

6.1 About BlackBerry Browser Display Behavior... 6-1

v

6.2 Formatting Tables to Prevent Wrapping... 6-1
6.2.1 How to Prevent Fields from Wrapping in Tables ... 6-1
6.3 Formatting Label and Message Panels .. 6-2
6.4 Formatting Column Width.. 6-2
6.5 What You May Need to Know About Display Variations on BlackBerry Smartphones . 6-2
6.5.1 Changing the Minimum Font Size .. 6-2
6.5.2 Form Factor Variations ... 6-3

7 Narrow Screen Support and User Agent Details Support

7.1 Determining Narrow Screen Support .. 7-1
7.1.1 How Trinidad Determines Narrow-Screen Optimization... 7-1
7.2 Determining User Agent Capabilities Using EL Expressions .. 7-2
7.2.1 How To Determine User Agent Details ... 7-2
7.2.2 How to Determine Browser Capabilities ... 7-2

8 Extending ADF Mobile Browser Applications

8.1 Introduction to Extending Applications for E-Mail, Telephony, and Google Maps 8-1
8.2 Integrating an E-Mail Client.. 8-1
8.2.1 Adding Mail Properties .. 8-1
8.3 Integrating Telephony.. 8-2
8.4 Integrating Google Maps ... 8-2
8.4.1 Programming Driving Directions ... 8-3
8.4.2 Supporting Google Maps on iPhone... 8-4
8.5 What You May Need to Know About Page Display Dimensions 8-4
8.5.1 Setting the Viewports for iPhone .. 8-4

vi

vii

Preface

Welcome to Developing Oracle ADF Mobile Browser Applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Audience
This document is intended for developers of browser applications for mobile devices.

Related Documents
For more information, see the following related documents:

■ Oracle Fusion Middleware Understanding Oracle Application Development Framework

■ Developing Applications with Oracle JDeveloper

■ Oracle Fusion Middleware Developing Fusion Web Applications with Oracle Application
Development Framework

■ Oracle Fusion Middleware Developing Web User Interfaces with Oracle ADF Faces

■ Oracle Fusion Middleware Administering Oracle ADF Applications

■ Oracle JDeveloper 12c Release Notes, included with your JDeveloper 12c installation,
and on Oracle Technology Network

■ Oracle JDeveloper online help

Conventions
The following text conventions are used in this document:

viii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Overview of Oracle ADF Mobile Browser 1-1

1 Overview of Oracle ADF Mobile Browser

[2] This chapter provides an overview of Oracle Application Development Framework
Mobile (ADF Mobile) browser.

This chapter includes the following sections:

■ Section 1.1, "About ADF Mobile Browser"

■ Section 1.2, "Supported Mobile Browser Features"

1.1 About ADF Mobile Browser
Oracle Application Development Framework Mobile (ADF Mobile) browser enables
you to create browser-based, enterprise mobile applications that adapt to the
requirements of the mobile browsers used on different types of smartphones and
feature phones. Using ADF Mobile's standards-based framework, you can, for
example, create web applications that enable users to approve expense reports, or
search corporate contact information using a smartphone. Because ADF Mobile
browser provides automatic detection and delivery of content based on both the form
factor of the mobile phone itself and the capabilities of its mobile browser, you need
only build the application once before you deploy it. In other words, because ADF
Mobile browser applications are compatible with many mobile browsers, you do not
have to focus on the limitations of any particular mobile browser.

The ADF Mobile browser renderer ensures that contents can be consumed correctly by
the target browser. It not only handles variations in browser-specific implementations
of HTML, JavaScript, CSS (Cascading Style Sheets), DOM (Document Object Model),
and the XMLHttpRequest (XHR) API, but variations in system performance as well. If,
for example, a browser does not support the XMLHttpRequest interface and is
incapable of posting a partial-page request to a server, ADF Mobile browser enables
the application to revert automatically to a full-page submit so that the page functions
properly.

1.1.1 How ADF Mobile Browser Improves Application Performance
The ADF Mobile browser renderer is optimized to improve performance by
minimizing the payload of the web page that is sent over the wireless network to the
mobile phone. In mobile environments with high-latency and low-bandwidth wireless

Note: To learn more about ADF Mobile browser and Oracle's mobile
strategy, see the Oracle ADF Mobile browser page on Oracle
Technology Network
(http://www.oracle.com/technetwork/index.html).

About ADF Mobile Browser

1-2 Developing Oracle ADF Mobile Browser Applications

networks, Partial Page Rendering (PPR) is essential in providing an optimal end user
experience. For mobile browsers that support AJAX (Asynchronous JavaScript and
XML), ADF Mobile browser supports PPR for certain components, which minimizes
the amount of data requested from the server and improves application
responsiveness. See also Section 3.1.2, "Partial Page Rendering."

1.1.2 About Java Server Faces and the Application Development Framework
Java Server Faces (JSF) is a standard specified by JSR-127 that enables you to create
applications using pre-built components that define functionality and behavior. As
illustrated in Figure 1–1, JSF provides a Model-View-Controller (MVC) mechanism
that simplifies the development of web applications. Its renderkit converts
components both to, and from, a specific markup language. The kit's renderers
generate markup that represents components and how they interpret browser
requests.

JSF development focuses on components, not markup. Using JSF, you create a JSP page
containing JSF component tags. When a user visits this page (through the
FacesServlet), JSF uses the renderkit specified by the user's device to encode the
markup to the appropriate output. For example, if the user's device specifies HTML
for a desktop browser, then the renderkit's markup encoding results in an HTML page.
In addition to rendering appropriate content, JSF supports user interaction.

Figure 1–1 ADF Mobile Architecture

Application Development Framework (ADF) is built on the standard JSF technology
and provides the following:

■ A large component set (because JSF provides only basic components).

Note: Although ADF Mobile leverages AJAX features in smartphone
browsers, it also degrades gracefully to support plain HTML
browsers.

Supported Mobile Browser Features

Overview of Oracle ADF Mobile Browser 1-3

■ Renderers that support these components in HTML browsers, including a rich
renderkit for applications using AJAX technologies.

■ Converters, validators, and events.

1.1.3 Developing Mobile Applications Using ADF Mobile Browser
Because ADF Mobile browser is built upon the component model of Java Server Faces
(JSF), you can quickly develop applications for mobile browsers. Its mobile-specific
extensions to JSF enable you to develop mobile applications using the same
methodologies for developing JSF applications for the desktop (or tablet), as described
in "Introduction to ADF Faces" chapter of the Oracle Fusion Middleware Developing Web
User Interfaces with Oracle ADF Faces.

ADF Mobile browser application development is almost identical to ADF web
application development, except that you construct the application's JSF pages from
Apache MyFaces Trinidad components1. ADF Mobile provides a rich component set
by supporting more than 60 Apache MyFaces Trinidad components.

The mobile-optimized style sheets that are automatically included in the ADF Mobile
browser project ensure that each of the components render appropriately to the
device's browser. You can extend a desktop browser application to run on a
smartphone or feature phone by reusing its model and controller layers and
assembling a new view layer using the Apache MyFaces Trinidad counterparts to the
ADF Faces components. For more information, see Section 2.2, "Configuring the ADF
Mobile Browser Development Environment" and Section 4.2, "Implementing ADF
Mobile Browser Skinning."

1.2 Supported Mobile Browser Features
ADF Mobile supports different types of touch-screen user interfaces, such as those
used on Android- and iOS-powered smartphones. For the latter, ADF Mobile's support
of Apple standards provides a native iOS user experience. Table 1–1 lists the mobile
browsers and features that ADF Mobile supports.

Note: ADF Mobile browser applications are intended to run on the
mobile browsers used by smartphones or feature phones. They are not
intended to run on desktop browsers.

1 The Apache MyFaces Trinidad component set is the first-generation set of ADF Faces
components that were donated to the Apache Software Foundation.

Note: You cannot use ADF Faces Rich Client components to develop
an ADF Mobile browser application. You must use Apache MyFaces
Trinidad components.

Note: ADF Mobile browser requires HTML and JavaScript support.
See Chapter 5, "Supporting Basic HTML Mobile Browsers."

Supported Mobile Browser Features

1-4 Developing Oracle ADF Mobile Browser Applications

Table 1–1 Supported Browsers and Supported Mobile Features

Browser JavaScript Support CSS Support PPR Support

Android Webkit Yes Yes Yes

Apple iPhone Safari Yes Yes Yes

Blackberry versions 4.2 through
4.5

No Yes No

BlackBerry version 4.6 and later Yes Yes Yes

Microsoft Windows Mobile 5 Yes Yes Yes (with nuances)

Microsoft Windows Mobile 6 Yes Yes Yes

Nokia s60 series Yes Yes No

Plain HTML (such as Opera Mini,
Opera Mobile and Skyfire)

No Yes No

2

Configuring the ADF Mobile Browser Environment 2-1

2Configuring the ADF Mobile Browser
Environment

[3] This chapter describes how to configure the ADF Mobile browser development
environment, how to create ADF Mobile browser views, and how to build and test
applications.

This chapter includes the following sections:

■ Section 2.1, "About ADF Mobile Browser Application Development"

■ Section 2.2, "Configuring the ADF Mobile Browser Development Environment"

■ Section 2.3, "Developing an ADF Mobile Browser Application"

■ Section 2.4, "Testing an ADF Mobile Browser Application"

2.1 About ADF Mobile Browser Application Development
An ADF Mobile browser application is an ADF Faces application that is optimized for
mobile devices. As such, a mobile browser application can use the model project
created for a standard ADF Faces application. Alternatively, you can add the ADF
Mobile browser view controller project to an existing ADF faces application. After you
create the ADF Mobile browser view controller project, you can construct the mobile
browser application from JSF pages built from Apache MyFaces Trinidad components.

To create an ADF Mobile browser application:

■ Configure the environment by creating an application and model project.

■ Add an ADF Mobile browser view controller project.

■ Create an ADF task flow or ADF page flow.

■ Add the JSF pages populated with Apache MyFaces Trinidad components.

■ Optimize the page layout with ADF Mobile browser skinning.

Tip: You can use the business logic components from an existing
ADF application.

Note: ADF task flows used in ADF Mobile browser applications only
support whole pages. They do not support page fragments, pop-ups
in dialogs, or regions. ADF Mobile browser applications that use the
ADF page flow only support the trinidad-simple skin family.

Configuring the ADF Mobile Browser Development Environment

2-2 Developing Oracle ADF Mobile Browser Applications

■ Test the application on a smartphone or smartphone simulator.

2.2 Configuring the ADF Mobile Browser Development Environment
ADF Mobile browser application development requires a mobile-optimized view
controller project. Note that the project must include the Apache MyFaces Trinidad
components that you add explicitly to the project by selecting Trinidad from the list of
available technologies presented in the Create Custom Project wizard.

2.2.1 How to Create a Mobile Application and Project
To configure the environment, first create an ADF Mobile browser application that
includes a project with the ADF Mobile browser technology. Note that the project must
include the Apache MyFaces Trinidad components that you add explicitly to the
project by selecting Trinidad from the list of available technologies presented in the
Create Custom Project wizard.

Before you begin:
If needed, create an ADF model project. Otherwise, the ADF Mobile browser
application can share a model project with an existing ADF application.

To create the ADF Mobile browser application and the ADF Mobile browser
project:
1. Choose File, then New, and then Application.

Figure 2–1 The New Gallery

2. In the New Gallery, select Applications and then choose ADF Fusion Web
Application. Click OK.

3. In the Name your application page of the Create ADF Fusion Web Application
wizard, enter a name and, if needed, a location for the application in the Directory
field, as shown in Figure 2–2.

Configuring the ADF Mobile Browser Development Environment

Configuring the ADF Mobile Browser Environment 2-3

Figure 2–2 Naming the ADF Mobile Browser Application

4. Click Finish.

Selecting ADF Fusion Web Application creates the model project used by the
mobile view project. Figure 2–3 shows the application's model and its generated
view controller projects that appear in the Applications window.

Figure 2–3 The Fusion Web Application and its Projects in the Applications Window

5. Create the mobile view controller project as follows:

a. Choose File, then New, and then Project.

b. Select Custom Project and then click OK.

c. In the Create Custom Project wizard, complete the wizard by first entering a
name for the project, as shown in Figure 2–4. For example, enter mvc (a short
name for mobile view controller).

Note: Do not use the generated view controller project to design the
business logic in the model project. Instead, create a mobile view
controller project as described in the following steps.

Tip: To create a short URL string that is more easily accommodated
by the browsers on mobile devices, use lower-case characters and
short names for ADF Mobile browser projects and their .jspx pages.
See also Section 2.4, "Testing an ADF Mobile Browser Application."

Configuring the ADF Mobile Browser Development Environment

2-4 Developing Oracle ADF Mobile Browser Applications

d. Select the ADF Mobile browser feature for the project by moving ADF Mobile
Browser from the Available list to the Selected list.

Figure 2–4 Selecting the ADF Mobile Browser Technology for an ADF Mobile Browser
Project

Figure 2–4 shows the ADF Mobile Browser feature in the Available window.
After you move the ADF Mobile Browser feature to the Selected window, the
Java, JSF (JavaServer Faces), JSP and Servlets, and XML technologies are made
available to the project and also appear in the Selected window, as shown in
Figure 2–5.

Configuring the ADF Mobile Browser Development Environment

Configuring the ADF Mobile Browser Environment 2-5

Figure 2–5 ADF Mobile Browser and Supporting Features Selected for an ADF Mobile
Browser Project

e. Select the Apache MyFaces Trinidad components for the project by moving
Trinidad from the Available list, as shown in Figure 2–6, to the Selected list.

Figure 2–6 Adding Apache MyFaces Trinidad Components to the ADF Mobile Browser
Project

f. If the application uses an ADF task flow, add the ADF Page Flow feature to
the Selected window. As shown in Figure 2–7, the ADF Page Flow feature
adds other technologies, including ADF Faces and ADF Page Flow.

Configuring the ADF Mobile Browser Development Environment

2-6 Developing Oracle ADF Mobile Browser Applications

Figure 2–7 Adding ADF Page Flow Feature to the ADF Mobile Browser Project

6. Click Next to navigate through the Configure Java settings page and then click
Finish.

2.2.2 What Happens When You Create a Mobile Application and Project
As shown in Figure 2–8, the mobile view controller project (mvc) appears in the
Applications window within the Fusion web application (adfm).

Figure 2–8 The Mobile ADF Mobile Browser View Controller Project in the Applications
Window

The creation of the view controller project also results in the creation of the mobile
application's page-flow definition file, faces-config.xml. For information on creating
a page flow, see "Defining Page Flows" in Oracle Fusion Middleware Developing Web User
Interfaces with Oracle ADF Faces.

Adding the ADF Mobile Browser and ADF Page Flow technologies to the ADF Mobile
custom view project results in the creation of the following ADF skin-related
configuration files and style sheets, which ensure that the components render
appropriately to the target mobile browser. Table 2–1 describes these files, which are
located in the ADF Mobile browser view controller project's Web Content folder.

Developing an ADF Mobile Browser Application

Configuring the ADF Mobile Browser Environment 2-7

2.3 Developing an ADF Mobile Browser Application
For mobile browser applications, you develop an application by creating web pages
within the web project. Typically, you create a web project within the application to
implement a user interface and the ADF Business Components, or an Oracle
EclipseLink project, to implement a business layer.

2.3.1 How to Develop a Mobile JSF Page
You develop ADF Mobile browser application pages by first creating a JSF page and
then by populating it with the Apache My Faces Trinidad components. Typically, you
first create the navigation rules using the faces-config.xml file before creating the JSF
page for the mobile application.

To create a mobile JSF page:
1. Select the mobile view controller project in the Applications window, then select

New and then Page.

2. Enter a name for the JSF page in the Create JSF Page dialog, as shown in
Figure 2–9. If needed, enter a directory location for the page. You can select either
Facelets or JSP XML.

Table 2–1 Skinning-Related Artifacts

Skinning File Location Description

mobile.css Styles node of the mobile
view controller project

Used for basic HTML browsers
and browsers used in older
versions of smartphones. See also
Section 4.2, "Implementing ADF
Mobile Browser Skinning."

richmobile.css Styles node of the mobile
view controller project

Used for smartphones, such as
those powered by iOS or
BlackBerry. See also Section 4.2,
"Implementing ADF Mobile
Browser Skinning."

Developing an ADF Mobile Browser Application

2-8 Developing Oracle ADF Mobile Browser Applications

Figure 2–9 The Create JSF Page Dialog

Figure 2–10 shows the designer for a mobile JSF page called page1.jsf.

3. From the Components window, select Trinidad, as shown in Figure 2–10, and then
create the page using the Apache MyFaces Trinidad components. To optimize the
display of these components, refer to the styles and patterns described in
Chapter 4, "Skinning ADF Mobile Browser Applications." Figure 2–10 illustrates
applying the af_m_toolbar style class to the tr:panelHeader component, which
renders the page header as a toolbar-like element on smartphones.

Testing an ADF Mobile Browser Application

Configuring the ADF Mobile Browser Environment 2-9

Figure 2–10 Using Trinidad Components

2.4 Testing an ADF Mobile Browser Application
You can test an ADF Mobile browser application on a smartphone, a smartphone
simulator, or a desktop browser. Testing on an actual smartphone or simulator
provides more accurate results than does testing on a desktop browser.

Testing an ADF Mobile browser application with a desktop browser produces only
approximate results because it provides a fairly uniform testing environment; in
desktop browsers, web pages appear and behave similarly and business logic executes
identically. Testing an application on an actual smartphone, however, produces more
accurate results, because the capabilities of mobile browsers may cause controls to
behave differently than they do on a desktop browser. Mobile browsers, which are
usually smaller than desktop browsers, render pages differently because web servers
optimize the look and feel by generating mobile browser-specific pages.

Testing ADF Mobile browser applications directly on smartphones has limitations as
well, in that you may not have access to all of the devices that you must test.
Furthermore, firewalls can complicate testing, as many mobile devices can access only
the internet and cannot reach development environments behind firewalls. In such
cases, smartphone simulators provide an alternative testing method. For example, to
test applications on BlackBerry smartphone simulators or Windows Mobile device
emulators (shown in Figure 2–11 and Figure 2–13, respectively), download
smartphone simulators from the RIM developer site (http://us.blackberry.com) and
device emulators from the Microsoft developer site (http://www.microsoft.com). You
must then configure them and connect them to the web server. For information on

Testing an ADF Mobile Browser Application

2-10 Developing Oracle ADF Mobile Browser Applications

downloading and configuring simulators and emulators for ADF Mobile browser,
refer to Running Mobile Device Simulators with ADF Mobile and JDeveloper, available
through the Mobile Application Development with Oracle ADF Mobile page of the Oracle
Technology Network. You can access this page by selecting Oracle ADF Mobile from
the Oracle Technology Network's Oracle Application Development Framework
overview page
(http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html)
.

Figure 2–11 Testing an ADF Mobile Browser Application on a BlackBerry Smartphone
Simulator

2.4.1 How to Test ADF Mobile Browser Applications on Simulators
After you test an application on a desktop browser, you can then test it on a simulator.
You can use the URL displayed in the desktop browser, but if it uses the localhost IP
address (127.0.0.1), you must change it to the network IP address of your computer.

Tip: To obtain the network IP address, use the ipconfig command
interface on Windows systems and the ifconfig command on
Linux/UNIX systems.

Testing an ADF Mobile Browser Application

Configuring the ADF Mobile Browser Environment 2-11

Figure 2–12 Testing an ADF Mobile Browser Application on a Desktop Browser

For example, to test an application using a Windows Mobile 6 emulator, change the
address from the desktop's localhost IP address (127.0.0.1, shown in Figure 2–12) to
that of the computer's network IP address (192.0.2.253, shown in Figure 2–13).

Figure 2–13 Testing an ADF Mobile Browser Application on a Windows Mobile Device
Emulator

In addition, you must remove the session specification that follows the page name.
The page name is typically appended with either .jspx or .jsp. In Figure 2–12, the
page name, home, is appended with .jspx.

In general, you debug an application by repeating cycles of code and then by testing
the application. When you test an application that has been modified, you must do one
or both of the following:

■ Refresh the page.

■ Clear the browser's cache.

2.4.2 What You May Need to Know About Browser Settings
Viewing ADF Mobile browser applications properly requires adjustments to the
browser settings for Windows Mobile and BlackBerry browsers.

Tip: Because the URL does not change if you develop the same
application, you are not required to enter it again.

Testing an ADF Mobile Browser Application

2-12 Developing Oracle ADF Mobile Browser Applications

Microsoft Windows Mobile 5 and 6, Microsoft Pocket Internet Explorer
For optimal viewing, select the Fit to Screen view (accessed by selecting Menu, View
and then Fit to Screen).

BlackBerry Browser 4.n
ADF Mobile browser only works if JavaScript support is enabled. To ensure that
JavaScript support is enabled:

1. Select Options and then Browser Configuration.

2. Ensure that the following tables are selected:

■ Support JavaScript

■ Allow JavaScript Popup

■ Support HTML Tables

Note: Selecting the One Column view option results in layout
problems. Do not select this option.

3

Component Support 3-1

3Component Support

[4] This chapter describes the Apache MyFaces Trinidad components that are supported
by ADF Mobile browser.

This chapter includes the following sections:

■ Section 3.1, "About Apache My Faces Trinidad Components"

■ Section 3.2, "Input Components"

■ Section 3.3, "Output Components"

■ Section 3.4, "Layout Components"

■ Section 3.5, "Navigation Components"

■ Section 3.6, "Data Visualization (Graphs and Gauges)"

■ Section 3.7, "Tables and Trees"

■ Section 3.8, "Generating HTML <meta> Tags"

■ Section 3.9, "Unsupported Components and Attributes"

3.1 About Apache My Faces Trinidad Components
ADF Mobile browser supports more than 60 of the Apache MyFaces Trinidad
components, enabling you to build applications with a rich component set that renders
appropriately to the screens of mobile devices. For more information, refer to the
Apache MyFaces Trinidad site (http://myfaces.apache.org/trinidad/).

3.1.1 Supported Features
ADF Mobile browser supports the following renderer-specific features:

■ Partial Page Rendering

■ Dialogs

3.1.2 Partial Page Rendering
The high-latency and low-bandwidth of networks in mobile environments decrease
application responsiveness for mobile users. Screens refresh slowly, diminishing the
mobile user experience. ADF Mobile browser's support of Partial Page Rendering
(PPR) compensates for the negative impact that slow connections have on screen
updates by minimizing the amount of data requested from the server; using PPR,
mobile device screen updates do not require a full refresh. Browsers that do not
support AJAX (Asynchronous JavaScript and XML) use full-page rendering instead of

Input Components

3-2 Developing Oracle ADF Mobile Browser Applications

PPR. For example, a page submission on basic HTML browsers (which do not support
JavaScript) results in the refresh of a full page.

3.1.3 Dialogs
ADF Mobile browser supports dialogs, pages used by applications to obtain user
input. Because mobile browsers cannot open a new window that contains a dialog (a
pop-up window), they present dialogs as new pages within the main browser window
after they automatically preserve the state of the current page.

3.1.4 Rendering Specific to the BlackBerry Browser 4.5 and Earlier Versions
On browsers for BlackBerry 4.5 and earlier versions, the bullets in a list sublevel (such
as those in a tr:panelList component) appear large and are not indented.
BlackBerry's table handling may affect complex layouts, as its browser does not allow
horizontal scrolling. Instead, it wraps a table row onto multiple display lines which
may disturb the layout. For more information, see Chapter 6, "Design Guidelines for
BlackBerry 4.2 to 4.5."

3.2 Input Components
ADF Mobile browser supports input text fields and lists, core components that support
user input.

3.2.1 Creating Input Text Fields
You can create input fields using the following components:

■ tr:inputColor

■ tr:inputDate

■ tr:inputHidden

■ tr:inputText

Note: Browsers for BlackBerry 4.5 (and earlier versions) do not
support PPR. Specifying the autosubmit attribute on certain
form-related components results in the submission of the page after
the user exits the field. A full, not partial, refresh of the page then
follows.

Note: Mobile browsers do not support an inline chooseColor or a
color dialog for the tr:inputColor component.

Note: Basic HTML browsers do not support the autosubmit attribute
of the tr:inputText component.

Note: Trinidad optimizes the tr:inputText component for
narrow-screen devices (that is, devices with screen width measuring
less than 240 pixels). For more information see Chapter 7, "Narrow
Screen Support and User Agent Details Support."

Output Components

Component Support 3-3

3.2.2 Creating Lists
You can create lists using the following components:

■ tr:panelChoice

■ tr:panelList

■ tr:selectBooleanCheckBox

■ tr:selectBooleanRadio

■ tr:selectItem

■ tr:selectManyCheckBox

■ tr:selectManyListBox

■ tr:selectOneChoice

■ tr:selectOneListBox

■ tr:selectOneRadio

■ tr:resetButton

3.3 Output Components
ADF Mobile browser uses the Apache MyFacesTrinidad core components that support
output on mobile device applications. These components include those for displaying
text and images and also components for displaying, or hiding, text.

3.3.1 Displaying Text
The following components enable you to display text:

■ tr:iterator

■ tr:message

■ tr:messages

■ tr:outputDocument

■ tr:outputForwarded

■ tr:outputLabel

■ tr:outputText

Note: Mobile browsers do not support the disabled attribute for the
tr:selectItem component.

Note: Basic HTML browsers do not support the autosubmit attribute
for the tr:resetButton component.

Note: Component-specific messages do not display on a mobile
browser in the same manner as they do in a desktop browser. Instead,
they display in the region where the message component (tr:message
or tr:messages) is placed on the web page.

Layout Components

3-4 Developing Oracle ADF Mobile Browser Applications

3.3.2 Displaying Images
The following components enable you to display images:

■ tr:icon

■ tr:image

■ tr:panelTip

3.3.3 Showing (or Hiding) Components
The following components enable showing or hiding items:

■ tr:panelAccordion

■ tr:panelTabbed

■ tr:showDetail

■ tr:showDetailHeader

■ tr:showDetailItem

3.4 Layout Components
The layout components supported by ADF Mobile browser include those for
managing the page itself (such as tr:document and tr:form) as well as components for
laying out the sections of a page, such as tr:group, tr:panelFormLayout, and
tr:panelGroupLayout.

Note: Mobile browsers only support a full-page update; they do not
support the partialTriggers attribute of the tr:panelAccordion
component.

Note: To conserve space within mobile browsers, the renderer
intentionally prevents the display of tab bars on both the top and
bottom of the tr:panelTabbed component. Valid values for the
attribute positions are top and bottom. If both is specified, then the
renderer displays the tabs on top.

Note: For the tr:showDetail component, the disclosure arrow does
not display; the [+] and [-] symbols display instead.

Note: For the tr:showDetailHeader component, the disclosure
arrow does not appear on mobile browsers.

Note: For the tr:showDetailItem component, the disclosure arrow
does not appear on mobile browsers its flex attribute is not
supported.

Layout Components

Component Support 3-5

3.4.1 Managing the Page
The following components enable you to manage the page:

■ tr:document

■ tr:form

■ tr:page

3.4.2 Laying Out Sections of the Page
The following ADF Faces core tags support page layout for mobile device applications:

■ tr:group

■ tr:panelBorderLayout

■ tr:panelBox

■ tr:panelFormLayout

■ tr:panelGroupLayout

■ tr:panelHeader

■ tr:panelHorizontalLayout

Note: ADF Mobile browser does not support the defaultCommand
attribute of the tr:form component.

Note: ADF Mobile browser does not support the tr:page facet of the
tr:page component.

Note: Only the top and bottom facets are supported for the
tr:panelBorderLayout component. ADF Mobile browser does not
support the following facets:

■ left

■ right

■ start

■ end

■ innerLeft

■ innerRight

■ innerStart

■ innerEnd

The tr:panelBorderLayout component does not render if you use any
of these unsupported facets.

Note: ADF Mobile browser does not support the halign=end
attribute definition for the tr:panelHorizontalLayout component.

Navigation Components

3-6 Developing Oracle ADF Mobile Browser Applications

■ tr:panelLabelAndMessage

■ tr:panelPage

■ tr:panelPageHeader

■ tr:panelRadio

■ tr:panelCaptionGroup

3.4.3 Inserting Spaces
The following components control the space allocation on pages:

■ tr:separator

■ tr:spacer

■ tr:subform

3.5 Navigation Components
ADF Mobile browser supports such components as buttons, links, and breadcrumbs
that enable users to navigate to other pages of the application, or to external locations.

3.5.1 Creating Buttons
ADF Mobile browser supports the following button types:

■ tr:commandButton

Note: Trinidad optimizes the tr:panelLabelAndMessage component
for narrow-screen devices (that is, devices with a screen width
measuring less than 240 pixels). For more information see Section 7.1,
"Determining Narrow Screen Support."

Note: ADF Mobile browser only supports the following facets of the
tr:panelPageHeader component:

■ branding

■ brandingApp

■ navigation1

■ navigation2

Note: Trinidad optimizes the tr:panelRadio component for
narrow-screen devices (that is, devices with a screen width measuring
less than 240 pixels). For more information see Section 7.1,
"Determining Narrow Screen Support."

Navigation Components

Component Support 3-7

■ tr:goButton

See Chapter 8, "Extending ADF Mobile Browser Applications" for information on how
to use the tr:goButton component to integrate e-mail, telephony, and Google maps
into an application.

3.5.2 Creating Links
ADF Mobile browser supports the following components for creating hyper-links:

■ tr:commandLink

■ tr:goLink

See Chapter 8, "Extending ADF Mobile Browser Applications" for information on how
to use the tr:goLink component to integrate e-mail, telephony, and Google maps into
an application.

3.5.3 Navigation Components
ADF Mobile browser supports the following navigation components:

■ tr:breadcrumbs

■ tr:commandNavigationItem

Note: Because the text attribute cannot display if the icon attribute
has been set, you can define buttons as text or as an image, but not
both. If you set the disabled attribute to true, then a
tr:commandButton component with an icon attribute renders as a
static image with no links.

Note: Because the tr:commandLink component renders as an input
element in basic mobile HTML browsers, its child components cannot
render. For more information on input elements in basic mobile
HTML browsers, see Section 5.2, "Developing Applications for Basic
HTML Mobile Browsers."

Note: Trinidad optimizes the tr:breadcrumbs component for
narrow-screen devices (that is, devices with a screen width measuring
less than 240 pixels). For more information see Chapter 7.1,
"Determining Narrow Screen Support."

Note: tr:commandNavigationItem does not render when you set the
disabled attribute to true for the following:

■ tr:selectOneListBox

■ tr:selectOneChoice

■ tr:processChoiceBar

■ tr:navigationPane with hint, "choice"

■ tr:selectRangeChoiceBar

Data Visualization (Graphs and Gauges)

3-8 Developing Oracle ADF Mobile Browser Applications

■ tr:navigationPane

■ tr:train

■ tr:processChoiceBar

■ tr:selectRangeChoiceBar

3.6 Data Visualization (Graphs and Gauges)
ADF Mobile browser supports data visualization tools (DVTs), described in the
"Creating Databound ADF Data Visualization Components" section in Oracle Fusion
Middleware Developing Fusion Web Applications with Oracle Application Development
Framework.

ADF Mobile browser supports the following types of graphs:

■ area

■ bar

■ bar (horizontal)

■ bubble

■ combination (horizontal bar and line)

■ funnel

Note: tr:navigationPane hint = "choice" with a destination
value is not supported for basic HTML browsers.

Note: Trinidad optimizes the tr:navigationPane component for
narrow-screen devices (that is, devices with a screen width measuring
less than 240 pixels). For more information see Chapter 7.1,
"Determining Narrow Screen Support."

Note: The tr:train component appears as x of y instead of listing
each item. This is a display-only component for ADF Mobile browser;
users cannot navigate through the application by clicking the x of y
component. To enable navigation, you must add a separate link or
button.

Note: Trinidad optimizes the tr:processChoiceBar component for
narrow-screen devices (that is, devices with a screen width measuring
less than 240 pixels). For more information see Section 7.1,
"Determining Narrow Screen Support."

Note: Trinidad optimizes the tr:selectRangeChoiceBar component
for narrow-screen devices (that is, devices with a screen width
measuring less than 240 pixels). For more information see Chapter 7.1,
"Determining Narrow Screen Support."

Data Visualization (Graphs and Gauges)

Component Support 3-9

■ line

■ pareto

■ pie

■ radar

■ scatter/polar

■ spark

■ stock

ADF Mobile browser supports the following types of gauges:

■ dial

■ status meter

■ status meter (vertical)

■ LED

Because Oracle JDeveloper incorporates DVTs, you can quickly add graphs and
gauges. To add these components to an application, first move a data control into the
editor window using a drag-and-drop operation and then select Trinidad Gauges or
Trinidad Graphs from the context menu. For example, Figure 3–1 illustrates the
context menu that appears when you drag a collection into the editor.

Figure 3–1 Creating a DVT by Dragging and Dropping a Data Control

After you select either the Trinidad Graphs or Trinidad Gauges options, the DVT
wizard appears and opens to the Component Gallery page, shown in Figure 3–2. You
select the DVT type from this page.

Note: ADF Mobile browser supports only static graphs and gauges,
which are rendered as PNG images. Any mobile device that supports
this image format can display graphs and gauges.

Tables and Trees

3-10 Developing Oracle ADF Mobile Browser Applications

Figure 3–2 The Component Gallery for the DVT Wizard

3.7 Tables and Trees
ADF Mobile browser applications can display structured data in the rows and
columns of a table or hierarchically in and trees.

3.7.1 Creating Tables
ADF Mobile browser supports tables comprised of the following components:

■ tr:table

■ tr:column

Creating a single-column table optimizes how tables display on mobile devices.

3.7.2 Creating Trees
ADF Mobile browser supports the tr:tree component.

Note: ADF Mobile browser does not support the allDetailsEnabled
attribute for the tr:table component; this attribute is always set to
false.

Note: When you nest tr:column tags to create column groups, the
header facets do not render for the column groups.

Generating HTML <meta> Tags

Component Support 3-11

3.8 Generating HTML <meta> Tags
The <meta> tag designates how pages display within a browser. Example 3–1
illustrates examples of <meta> tag usage that include setting an application to display
in full-screen mode and setting the viewport width for such devices as the Apple
iPhone and iPad. This example also includes a <meta> tag used to designate how a
page reloads after a given number of sections.

Example 3–1 Using the <meta> Tag to Set Page Behavior

<meta name="viewport"
content="width=device-width, user-scalable=no">

<meta name="apple-mobile-web-app-capable"
content="yes">

<meta http-equiv="refresh"
content="2;url=./test/index.jspx">

For more information on the use of the <meta> tag in applications running on Apple
devices, see the descriptions of the Apple-specific meta tag keys in the "Supported
Meta Tags" section of Safari HTML Reference, which is available through the iOS
Developer Library (http://developer.apple.com/library/ios/navigation/).

3.8.1 Using <trh:meta> to Generate HTML <meta> Tags
The <trh:meta> component tag generates an HTML <meta> tag. Example 3–2 shows
using this component to:

■ Configure the viewport dimensions on mobile devices.

■ Disable user resizing of the viewport on mobile devices.

■ Enable the home screen bookmark of the web page to launch it in its own process
rather than in Safari on iOS devices.

■ Configure the page to navigate to another page after two seconds.

Example 3–2 Using <trh:meta> to Generate Several HTML <meta> Tags

<af:document ...>
 <f:facet name="metaContainer">
 <af:group id="metaContainer">
 <trh:meta name="viewport"

content="width=device-width, user-scalable=no"/>
 <trh:meta name="apple-mobile-web-app-capable"

content="yes"/>
 <trh:meta type="httpEquiv"

name="refresh"
content="2;url=./test/index.jspx"/>

 </af:group>
 </f:facet>
</af:document>

3.8.1.1 About Default Viewport Size on Mobile Devices
Web pages commonly have a hard-coded width that leaves white space on both sides
of the page. While this does not interfere with pages displaying on desktop browsers,

Note: tr:tree may not render on basic HTML browsers.

Unsupported Components and Attributes

3-12 Developing Oracle ADF Mobile Browser Applications

it can make the same pages appear too small on mobile devices. In addition, the
display of the page controls can be too small for a user's finger tips as well, forcing the
users to zoom in to interact with the page. Operating systems for Apple (iOS), Google
(Android), and Microsoft (Windows Phone 7) assume a standard viewport width and
render the page to fit the smaller screens, thereby causing this scaling to occur when
web pages display on mobile devices .

To enable a page to display properly at the native resolution of a mobile device, you
can specify the viewport dimension using the viewport meta key within the
<trh:meta> tag, as illustrated in Example 3–3.

Example 3–3 Setting the Viewport Dimensions

<af:document ...>
 <f:facet name="metaContainer">
 <trh:meta name="viewport"

content="width=device-width"/>
 </f:facet>
 ...
 </af:document>

You can set a specific numeric value for pixels for the width property of the viewport
meta key or you can use the device-width constant as shown in Example 3–3. On
Apple (iOS) systems, the value set for the page's width in both the portrait and
landscape orientations is the same (that is, for the landscape width, the Safari browser
uses the value set for the portrait width).

3.9 Unsupported Components and Attributes
ADF Mobile browser does not support some Apache MyFaces Trinidad components or
certain component attributes.

3.9.1 Unsupported Components
ADF Mobile browser does not support the following components:

■ tr:chart

■ tr:chooseColor

■ tr:chooseDate

■ tr:inputFile

■ tr:inputListOFVariables

■ tr:inputNumberSpinbox

■ tr:legend

■ tr:media

■ tr:navigationTree

Note: The pixels on high-resolution displays, such as Retina on
iPhone 4, do not have a one-to-one match to pixels on a
lower-resolution devices such as iPhone 3GS. Despite this, the number
of pixels defined for the width property for an iPhone 3GS equates to
the same physical length on the iPhone 4, even though the iPhone 4
has more display pixels.

Unsupported Components and Attributes

Component Support 3-13

■ tr:panelButtonBar

■ tr:panelPopup

■ tr:panelSideBar

■ tr:poll

■ tr:progressIndicator

■ tr:selectManyShuttle

■ tr:selectOrderShuttle

■ tr:singleStepButtonBar

■ tr:statusIndicator

■ tr:switcher

■ tr:treeTable

3.9.2 Unsupported Attributes
ADF Mobile browser does not support the following attributes on any Apache
MyFaces Trinidad component.

■ accessKey

■ shortDesc (tooltip)

Unsupported Components and Attributes

3-14 Developing Oracle ADF Mobile Browser Applications

4

Skinning ADF Mobile Browser Applications 4-1

4Skinning ADF Mobile Browser Applications

[5] This chapter describes skinning for ADF Mobile browser applications.

This chapter includes the following sections:

■ Section 4.1, "About ADF Mobile Browser Skinning"

■ Section 4.2, "Implementing ADF Mobile Browser Skinning"

■ Section 4.3, "Applying ADF Mobile Browser Skinning"

4.1 About ADF Mobile Browser Skinning
Skinning enables a page to display consistently on a variety of devices through the
automatic delivery of device-dependent style sheets. These style sheets enable the
optimal display of pages that share the same page definitions on various mobile
browsers. Within these style sheets, which enable you to set the look and feel of an
application, you not only tailor a component to a specific browser by setting its size,
location, and appearance, but you also specify the types of browsers in which
components can be displayed or hidden.

4.2 Implementing ADF Mobile Browser Skinning
As noted in Section 2.2.2, "What Happens When You Create a Mobile Application and
Project," JDeveloper creates two mobile-specific sytlesheets, mobile.css and
richmobile.css within the ADF Mobile browser-specific view controller project, as
shown in Figure 4–1.

Note: Browsers must support the Cascading Style Sheet (CSS)
syntax.

Implementing ADF Mobile Browser Skinning

4-2 Developing Oracle ADF Mobile Browser Applications

Figure 4–1 CSS Files in the ADF Mobile Browser Project

Table 4–1 lists the skinning files provided to ADF Mobile pages.

Creating an ADF Mobile browser view controller project populates the <skin-family>
element of the trinidad-config.xml file with the following EL expression that selects
the renderkit appropriate to the browser's user agent.

#{requestContext.agent.type == 'desktop'?'richmobile': 'mobile'}

The ADF Mobile browser framework then applies the style defined for the renderkit.
This expression, which is shown in Example 4–1, must be added to the
trinidad-config.xml file to enable ADF Mobile browser applications to use the
mobile and richmobile skin families.

Example 4–1 The Skin Family Selection Logic within Trinidad-config.xml

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>#{requestContext.agent.type == 'desktop'? 'richmobile': 'mobile'}</skin-family>
</trinidad-config>

The trinidad-skins.xml file, shown in Example 4–2, defines the default skin families
that are applied using the EL expression.

Example 4–2 trinidad-skins.xml Populated with ADF Mobile browser <skin> Definitions

<?xml version="1.0" encoding="windows-1252"?>

Table 4–1 The ADF Mobile Browser Skins

CSS File Skin Family Use

mobile.css mobile Used for basic HTML browsers. This
family is used for rendering on
Windows Mobile and BlackBerry,
Version 4.6 and higher. See Chapter 5,
"Supporting Basic HTML Mobile
Browsers."

richmobile.css richmobile Used for smartphone browsers that
use the Webkit rendering engine. The
Nokia S60 and also iOS- and
Android-powered devices use these
browsers.

Note: Ensure that the trinidad-config.xml file includes this
statement.

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-3

 <skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>richmobile</id>
 <family>richmobile</family>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>styles/richmobile.css</style-sheet-name>
 <extends>trinidad-simple.desktop</extends>
 </skin>
 <skin>
 <id>mobile</id>
 <family>mobile</family>
 <render-kit-id>org.apache.myfaces.trinidad.pda</render-kit-id>
 <style-sheet-name>styles/mobile.css</style-sheet-name>
 <extends>trinidad-simple.pda</extends>
 </skin>
 </skins>

4.2.1 Extending the ADF Mobile Skins
You can configure the trinidad-config.xml file and the trinidad-skins.xml file to
call CSS files other than richmobile.css and mobile.css. You can also modify the
richmobile.css and mobile.css files to render to a specific mobile device or platform
using at-rules.

To add mobile features to a non-mobile project:

1. Create a skin. This includes creating the trinidad-skins.xml file within the
WEB-INF node of the ADF Mobile browser view project.

2. Create a style sheet.

3. Set the skin family in the trinidad-config.xml file (located in the WEB-INF
node).

For more information, see "Create a Skin—An Overview" in Development Guidelines
for Apache MyFaces Trinidad
(http://myfaces.apache.org/trinidad/devguide/skinning.html).

Skin families in Apache MyFaces Trinidad are associated with a renderkit and a
unique CSS file. Because Trinidad uses the desktop renderkit for Webkit-based mobile
browsers and the PDA renderkit for all other mobile browsers, you can support all
mobile browsers by creating two skin families, both of which reference one of these
renderkits and a CSS file. Use the @agent and @platform selector rules to enable
rendering based on the browser's name, version, or platform. For more information,
see "Skinning CSS Features" in Development Guidelines for Apache MyFaces Trinidad
(http://myfaces.apache.org/trinidad/devguide/skinning.html).

4.3 Applying ADF Mobile Browser Skinning
Although CSS styles are applied automatically for many components, you can
optimize the rendering of a component by defining its styleClass attribute.

4.3.1 Headers
Augmenting the <tr:panelHeader> component with the styleClass attribute enables
the application to display title-only headers, as well as headers with both a title and
links.

Applying ADF Mobile Browser Skinning

4-4 Developing Oracle ADF Mobile Browser Applications

4.3.1.1 Creating a Title-Only Header
To create a title-only header, add styleClass="af_m_toolbar" to the
<tr:panelHeader> component, as illustrated in Example 4–3.

Example 4–3 Adding Attributes to Create a Title-Only Header

<tr:panelHeader styleClass="af_m_toolbar" text="Welcome"/>

Figure 4–2 shows how this ADF Mobile browser attribute creates a title-only header on
an Apple iPhone.

Figure 4–2 A Title-Only Header on the Apple iPhone

Table 4–2 lists examples of how title-only headers display on Windows Mobile devices,
BlackBerry smartphones, and the Nokia Webkit.

4.3.1.2 Creating Headers with Titles and Links
As illustrated in Figure 4–3, you can add links and a title within a header. Figure 4–3
shows such a header as it displays in on the Apple iPhone.

Figure 4–3 Title and Links Within a Header on Apple iPhone

As described in Section 4.3.1.1, "Creating a Title-Only Header," you define the title for
the header (in Figure 4–3, a title called Transfer) by adding styleClass="af_m_
toolbar" within the <tr:panelHeader> element. The links are defined as buttons
(styleClass="af_m_backButton" and styleClass="af_m_button", respectively)
within the child <tr:commandLink> element as illustrated in Example 4–4. In
Example 4–4, the <tr:panelHeader> element includes these attributes (in bold).

Example 4–4 Adding Titles and Links to Headers

<tr:panelHeader styleClass="af_m_toolbar"
text="Transfer">

Table 4–2 Title-Only Header Displays on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Nokia Webkit

BlackBerry 4.2

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-5

 <tr:commandLink styleClass="af_m_backButton"
text="Back"
action="back"/>

 <tr:spacer rendered="#{requestContext.agent.skinFamilyType eq
'blackberryminimal'}"

height="5" width="105"/>
 <tr:spacer rendered="#{requestContext.agent.skinFamilyType eq
'windowsmobile'}"

height=""
width="28"/>

 <tr:commandLink styleClass="af_m_button"
text="Sign Off"
action="signoff"/>

 </tr:panelHeader>

Table 4–3 lists examples of how the <tr:panelHeader> that includes a title and links
display on Windows Mobile devices, BlackBerry smartphones, and the Nokia Webkit.

4.3.2 Table Components
Using the styleClass attribute enables table components within ADF Mobile browser
application to render appropriately on various browsers.

4.3.2.1 Multi-Column Tables
Unlike panel headers, which require that you include the styleClass attribute to
apply the style appropriately on the target platform, the table column headers do not
require any attributes. Instead, you use the <tr:columns> component described in
Section 3.7.1, "Creating Tables." Figure 4–4 illustrates how column headers render on
the Apple iPhone.

Figure 4–4 Column Headers and Cells on Apple iPhone

Table 4–3 Title and Link Headers on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Nokia Webkit

BlackBerry 4.2

Applying ADF Mobile Browser Skinning

4-6 Developing Oracle ADF Mobile Browser Applications

Example 4–5 illustrates how to define the <tr:columns> element (in bold).

Example 4–5 Creating Column Headers

<tr:table var="row" …./>
 <tr:column headerText="LastName">
 <tr:outputText value="#{row.bindings.LastName.inputValue}"/>
 </tr:column>
 <tr:column headerText="FirstName">
 <tr:outputText value="#{row.bindings.FirstName.inputValue} "/>
 </tr:column>
 <tr:column headerText="Phone">
 <tr:outputText value="#{row.bindings.Phone.inputValue}"/>
 </tr:column>
</tr:table>

Table 4–4 shows examples of how column headers display on Windows Mobile
devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4–4 Column Headers on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Nokia Webkit

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-7

4.3.2.2 Adding Images and Primary Details with Links
Figure 4–5 demonstrates creating the links and details within a table using the
styleClass values af_m_listingLink and af_m_listingDetails.

Figure 4–5 Images, Links and Details as Rendered on the Apple iPhone

As illustrated in Example 4–6, you create these features by adding a
<tr:panelGroupLayout> component as a child of a <tr:column> component. You then
add the styleClass="af_m_listingLink" and styleClass="af_m_listingDetails"
attributes to the panelGroupLayout's <tr:commandLink> and <tr:outputText>
subcomponents. See Chapter 3, "Component Support" for information on the
tr:panelGroupLayout, tr:commandLink, and tr:outputText.

Example 4–6 Adding Links with Details

<tr:table horizontalGridVisible="false"
var="row"
width="100%">

 <tr:column>
 <tr:image source="#{row.bindings.TypeIconUrl.inputValue}"/>1
 </tr:column>
 <tr:column inlineStyle="width:100%;">
 <tr:panelGroupLayout layout="vertical">
 <tr:commandLink text="#{row.bindings.DescShort.inputValue}"

action="detail"

BlackBerry 4.2

Table 4–4 (Cont.) Column Headers on Various Platforms

Platform Example

Applying ADF Mobile Browser Skinning

4-8 Developing Oracle ADF Mobile Browser Applications

styleClass="af_m_listingLink">
 </tr:commandLink>
 <tr:outputText value="#{row.bindings.Balance.inputValue}"

styleClass="af_m_listingDetails">
 </tr:outputText>
 </tr:panelGroupLayout>
 </tr:column>
 </tr:table>

Table 4–5 shows examples of how images, links, and details display on Windows
Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4–5 Images, Links, and Details on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Nokia Webkit

BlackBerry 4.2

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-9

4.3.2.3 Creating Primary Details with Links
Figure 4–6 illustrates how to create primary details and links within a table.

Figure 4–6 Primary Details with Links as Rendered on Apple iPhone

Similar to adding the primary links and details with images described in
Section 4.3.2.2, "Adding Images and Primary Details with Links," you create these
features by adding a <tr:panelGroupLayout> component as a child of a <tr:column>
component. As illustrated in Example 4–7, you then add the styleClass="af_m_
listingLink" and styleClass="af_m_listingDetails" attributes to the
panelGroupLayout's <tr:commandLink> and <tr:outputText> subcomponents. See
Chapter 3, "Component Support" for information on the tr:panelGroupLayout,
tr:commandLink, and tr:outputText.

Example 4–7 Primary Details and Links

<tr:table horizontalGridVisible="false"
var="row"
width="100%">

 <tr:column>
 <tr:panelGroupLayout layout="vertical">
 <tr:commandLink text="#{row.bindings.Email.inputValue}"
 styleClass=" af_m_listingLink">
 </tr:commandLink>
 <tr:outputText value="#{row.bindings.FirstName.inputValue}"
 styleClass="af_m_listingDetails"/>
 </tr:panelGroupLayout>
 </tr:column>
</tr:table>

Table 4–6 shows examples of how links and details display on Windows Mobile
devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4–6 Images and Links on Various Platforms

Platform Example

BlackBerry 4.6

Applying ADF Mobile Browser Skinning

4-10 Developing Oracle ADF Mobile Browser Applications

4.3.2.4 Creating Primary Details Without Links
As illustrated in Figure 4–7, af_m_listingPrimaryDetails and af_m_listingDetails
style classes enable you to create details that do not function as links; their behavior is
different from the primary details described in Section 4.3.2.2, "Adding Images and
Primary Details with Links."

Windows Mobile

Nokia Webkit

BlackBerry 4.2

Table 4–6 (Cont.) Images and Links on Various Platforms

Platform Example

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-11

Figure 4–7 Primary Details without Links on Apple iPhone

As illustrated in Example 4–8, you create non-linking primary details by adding
styleClass="af_m_listingPrimaryDetails" and styleClass="af_m_
listingDetails" to the <tr:outputText> element. This element is a child of the
<tr:panelGroupLayout> element (which is itself a child of the <tr:column> element).

Example 4–8 Adding Non-Linking Primary Details

tr:table horizontalGridVisible="false"
var="row"
width="100%">

 <tr:column>
 <tr:panelGroupLayout layout="vertical">
 <tr:outputText value="#{row.bindings.Amount.inputValue}
 styleClass="af_m_listingPrimaryDetails">
 </tr:outputText>
 <tr:outputText value="#{row.bindings.FromAccountName.inputValue} "
 styleClass="af_m_listingDetails"/>
 </tr:panelGroupLayout>
 </tr:column>
</tr:table>

Table 4–7 shows examples of how non-linking details display on Windows Mobile
devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4–7 Non-Linking Details on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Applying ADF Mobile Browser Skinning

4-12 Developing Oracle ADF Mobile Browser Applications

4.3.3 Panel List Components
Defining the value of the styleClass as af_m_panelBase within the
<tr:panelGroupLayout> component applies padding to the <tr:panelList>
components, as shown in Figure 4–8.

Figure 4–8 Rendering Padding on an Apple iPhone

As illustrated in Example 4–9, you do not have to include a styleClass attribute in the
child <tr:panelList> component. For more information on using <tr:panelList>
and <tr:panelGroupLayout>, see Section 3.2.2, "Creating Lists" and Section 3.4,
"Layout Components," respectively.

Example 4–9 Adding Padding to panelList Components

<tr:panelGroupLayout styleClass="af_m_panelBase">
 <tr:panelList>
 <tr:commandLink text="Welcome" action="welcome"/>
 <tr:commandLink text="Branch" action="branch"/>
 </tr:panelList>
</tr:panelGroupLayout>

Table 4–8 shows examples of padding in the <tr:panelList> component on Windows
Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Nokia Webkit

BlackBerry 4.2

Table 4–7 (Cont.) Non-Linking Details on Various Platforms

Platform Example

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-13

4.3.4 PanelFormLayout
Defining the value of the styleClass attribute as af_m_panelBase within the
<tr:panelGroupLayout> component applies padding to the child
<tr:panelFormLayout> components, as shown in Figure 4–9.

Figure 4–9 Padding Rendered in panelFormLayout on Apple iPhone

As illustrated in Example 4–10, you do not need to add styleClass to the
<tr:panelFormLayout> component.

Example 4–10 Applying Padding to the PanelFormLayout Component

<tr:panelGroupLayout styleClass="af_m_panelBase">
 <tr:panelFormLayout labelWidth="35%" fieldWidth="65%">
 <tr:selectOneChoice value="#{transferBean.transferFromAccount}"
 label="From:" showRequired="false">
 <f:selectItems value="#{bindings.AccountView1.items}"/>
 </tr:selectOneChoice>

Table 4–8 Padding Applied to <tr:panelList> on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Nokia Webkit

BlackBerry 4.2

Applying ADF Mobile Browser Skinning

4-14 Developing Oracle ADF Mobile Browser Applications

 <tr:selectOneChoice value="#{transferBean.transferToAccount}"
showRequired="false"
unselectedLabel="- select -"
label="To:">

 <f:selectItems value="#{bindings.AccountView1.items}"/>
 </tr:selectOneChoice>
 <tr:inputText id="amount"

columns="#{requestContext.agent.capabilities.narrowScreen ? '8' : '12'}"
required="false" showRequired="false"
value="#{transferBean.transferAmount}"
label="Amount:">

 <f:converter converterId="Bank10.amountConverter"/>
 </tr:inputText>
 <tr:panelLabelAndMessage label="Date: ">
 <tr:outputText value="#{transferBean.transferDate}"/>
 </tr:panelLabelAndMessage>
 <f:facet name="footer">
 <tr:panelGroupLayout>
 <tr:spacer rendered="#{requestContext.agent.skinFamilyType eq

'blackberryminimal'}"
height="5"
width="75"/>

 <tr:commandButton text="Submit"
action="#{transferBean.validateTransferRequest}"/>

 </tr:panelGroupLayout>
 </f:facet>
 </tr:panelFormLayout>
</tr:panelGroupLayout>

Table 4–9 shows examples of padding in the <tr:panelList> component on Windows
Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4–9 Padding Applied to <tr:panelFormLayout> Component on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-15

4.3.5 Panel Accordion
Defining the value of the styleClass attribute as af_m_panelBase within the
<tr:panelGroupLayout> component applies padding to its <tr:panelAccordion>
component, as shown in Figure 4–10.

Figure 4–10 Padding Applied to the Panel Accordion on Apple iPhone

As illustrated in Example 4–11, you do not need to add the styleClass attribute to the
<tr:panelAccordion> component.

Example 4–11 Applying Padding to the <tr:panelAccordion> Component

<tr:panelGroupLayout styleClass="af_m_panelBase">
 <tr:panelAccordion discloseMany="true">
 <tr:showDetailItem text="Name" disclosed="true">
 <tr:panelFormLayout fieldWidth="70%" labelWidth="30%">
 ...
 </tr:panelFormLayout>

Nokia Webkit

BlackBerry 4.2

Table 4–9 (Cont.) Padding Applied to <tr:panelFormLayout> Component on Various

Platform Example

Applying ADF Mobile Browser Skinning

4-16 Developing Oracle ADF Mobile Browser Applications

 </tr:showDetailItem>
 <tr:showDetailItem text="Contact" disclosed="true">
 <tr:panelFormLayout fieldWidth="70%" labelWidth="30%">
 ...
 </tr:panelFormLayout>
 </tr:showDetailItem>
 <tr:showDetailItem text="Address">
 <tr:panelFormLayout fieldWidth="70%" labelWidth="30%">
 ...
 </tr:panelFormLayout>
 </tr:showDetailItem>
 </tr:panelAccordion>
</tr:panelGroupLayout>

Example 4–10 shows examples of padding in the <tr:panelAccordion> component on
Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4–10 <tr:panelAccordion> on Various Platforms

Platform Example

BlackBerry 4.6

Windows Mobile

Applying ADF Mobile Browser Skinning

Skinning ADF Mobile Browser Applications 4-17

Nokia Webkit

BlackBerry 4.2

Table 4–10 (Cont.) <tr:panelAccordion> on Various Platforms

Platform Example

Applying ADF Mobile Browser Skinning

4-18 Developing Oracle ADF Mobile Browser Applications

5

Supporting Basic HTML Mobile Browsers 5-1

5Supporting Basic HTML Mobile Browsers

[6] This chapter describes ADF Mobile browser's support for basic HTML mobile
browsers.

This chapter includes the following sections:

■ Section 5.1, "About Basic HTML Mobile Browser Support"

■ Section 5.2, "Developing Applications for Basic HTML Mobile Browsers"

■ Section 5.3, "Styling Basic HTML Mobile Browsers"

5.1 About Basic HTML Mobile Browser Support
Because basic HTML browsers for mobile devices do not support JavaScript, they are
less robust than the other browsers supported by ADF Mobile browser, such as those
for BlackBerry smartphones or the Apple iPhone. Aside from the browsers listed in
Section 1.2, "Supported Mobile Browser Features," ADF Mobile browser considers
most common browsers as basic HTML mobile browsers. (ADF Mobile browser may
not recognize certain mobile browsers, however.)

5.1.1 Requirements for Basic HTML Mobile Browser Support
The minimum requirement for ADF Mobile browser's support is XHTML Basic, or the
XHTML Mobile Profile that includes WAP2.n browsers.

5.2 Developing Applications for Basic HTML Mobile Browsers
Because the ADF Mobile browser serves pages to mobile browsers that are appropriate
to a browser's capabilities or limitations, you do not have to create user interfaces that
are specific to basic HTML mobile browsers. However, the absence of JavaScript
support by these browsers limits the functionality of certain HTML elements.

■ Basic HTML mobile browsers do not support the autosubmit attribute. Add a
submit button to the form only if the form submission responds to a component's
autosubmit feature. For composite components with built-in autosubmit features,
ADF Mobile browser adds a submit button to enable users to submit the form.

■ Basic HTML mobile browsers do not support form-submitting links. All
submitting elements are rendered as buttons. Basic HTML mobile browsers do not

Note: ADF Mobile browser does not support the WAP1.n browsers
that do not support either XHTML Basic or the XHTML Mobile
Profile.

Styling Basic HTML Mobile Browsers

5-2 Developing Oracle ADF Mobile Browser Applications

support the child components of such input elements. As a consequence, the child
components of the tr:commandLink component cannot render in a basic HTML
mobile browser. For more information on tr:commandLink, see Section 3.5.2,
"Creating Links."

5.3 Styling Basic HTML Mobile Browsers
ADF Mobile browser provides basic CSS support for basic HTML mobile browsers.
Although most of these browsers support CSS, ADF Mobile browser applications can
even run on the browsers that do not support CSS. In these cases, however, the user
interface may be difficult to use. As a precaution, you should test the ADF Mobile
browser application on as many browsers as possible.

6

Design Guidelines for BlackBerry 4.2 to 4.5 6-1

6Design Guidelines for BlackBerry 4.2 to 4.5

[7] This chapter describes how to accommodate the behavior of BlackBerry browsers 4.2
to 4.5.

This chapter includes the following sections:

■ Section 6.1, "About BlackBerry Browser Display Behavior"

■ Section 6.2, "Formatting Tables to Prevent Wrapping"

■ Section 6.3, "Formatting Label and Message Panels"

■ Section 6.4, "Formatting Column Width"

■ Section 6.5, "What You May Need to Know About Display Variations on
BlackBerry Smartphones"

6.1 About BlackBerry Browser Display Behavior
The BlackBerry browser behaves differently than other browsers in that it does not
display pages using horizontal scrolling. Instead, it fits a page to the width of the
screen.

6.2 Formatting Tables to Prevent Wrapping
Because browsers wrap long words between fields, avoid long words on lines that
contain multiple fields when formatting tables.

Because the default mode of the BlackBerry browser limits the browser width to that
of the physical screen, any field that cannot fit within a line is displayed on the next
line. If the intent of an application is to display multiple elements in one line, then you
must ensure that the total width of the fields are within the width of the browser. Like
other browsers, the BlackBerry browser wraps multiple lines when needed. The
column width cannot be reduced beyond the size of the longest word in the field.

6.2.1 How to Prevent Fields from Wrapping in Tables
To prevent fields from wrapping, ensure that the total of the size attribute values in a
table's row satisfies the following formula when all of the fields in a row are input
fields.

Note: Within this chapter, a word refers to a series of characters. In
this context, a word does not include white space.

Formatting Label and Message Panels

6-2 Developing Oracle ADF Mobile Browser Applications

3*Number of columns + the Sum of the size attributes in all columns <=X, when X=48

In general, field sizes in table columns should satisfy the following formula:

3 * Number of Columns +
Sum of size attributes in all input field columns +
Sum of number of characters in longest words in all output field columns <=X, when X=48

If the field still wraps, decrease the value of X until it fits.

6.3 Formatting Label and Message Panels
To preserve the intended programming flexibility, nowrap attributes are supported and
inserted when they are explicitly programmed for the Trinidad component. You may
encounter problems if you add nowrap to a component definition when you program
pages.

6.4 Formatting Column Width
When formatting columns, set the percentage width specification for both the label
and the field in the tr:panelFormLayout component so that the total width is 100%.

6.5 What You May Need to Know About Display Variations on BlackBerry
Smartphones

The same application can display differently on different devices because of such
factors as:

■ Changing the Minimum Font Size

■ Form Factor Variations

6.5.1 Changing the Minimum Font Size
Changing the minimum font size through user preferences affects the formatting
ability of the ADF Mobile browser renderer. For example, input fields and their
corresponding labels align properly when the font is set to its default size of 6 pt., as
shown in Figure 6–1.

Figure 6–1 Application Display Using the Default Font Size of 6 pt.

Increasing the font size to 10 pt., however, disrupts the display by shifting the input
fields beneath their corresponding labels. As a result, the page is difficult to read.

Figure 6–2 shows a page that is too large for the display screen.

What You May Need to Know About Display Variations on BlackBerry Smartphones

Design Guidelines for BlackBerry 4.2 to 4.5 6-3

Figure 6–2 Increasing the Font Size

6.5.2 Form Factor Variations
Differing screen sizes can affect display. Even if the font size is at the default of 6 pt.
(illustrated in Figure 6–1), the same application appears differently on other devices. In
Figure 6–3, the input fields barely fit the device's screen, even though they are easily
accommodated on other devices running the same application, as shown in Figure 6–1.

Figure 6–3 Difficulty Displaying Input Fields and Labels with Font Size at 6 pt.

In addition, input fields may display properly on the screen of one device, but may
appear crowded on the screen of another type of device.

Figure 6–4 shows an application whose table cells are not wide enough to
accommodate the text, causing it to wrap.

Figure 6–4 Wrapping Text

What You May Need to Know About Display Variations on BlackBerry Smartphones

6-4 Developing Oracle ADF Mobile Browser Applications

7

Narrow Screen Support and User Agent Details Support 7-1

7Narrow Screen Support and User Agent Details
Support

[8] This chapter describes how the Trinidad infrastructure determines narrow screen
support and how it uses EL expressions to expose user agent details.

This chapter includes the following sections:

■ Section 7.1, "Determining Narrow Screen Support"

■ Section 7.2, "Determining User Agent Capabilities Using EL Expressions"

7.1 Determining Narrow Screen Support
Mobile devices have a wide range of screen widths. As a result, the UI components of
a web application may render properly on a device with a screen width measuring 240
pixels, but not align correctly when the application runs on a device that has a screen
width of only 100 pixels. In such a situation, Trinidad optimizes its rendering for
narrow-screen devices. Trinidad considers any device with a screen width of less than
240 pixels as a narrow screen and optimizes the rendering for the following
components accordingly:

■ tr:breadcrumbs

■ tr:inputText

■ tr:navigationPane

■ tr:panelFormLayout

■ tr:panelLabelAndMessage

■ tr:panelRadio

■ tr:processChoiceBar

■ tr:selectRangeChoiceBar

7.1.1 How Trinidad Determines Narrow-Screen Optimization
Because Trinidad only considers a device with a screen width that measures less than
240 pixels as a narrow screen, it does not consider iPods (Safari browsers) or
BlackBerry smartphones (BlackBerry browsers), which usually have screens that are
greater than 240 pixels, as such. For a Windows Mobile browser, Trinidad determines
the screen width from the UA-pixels request header and only applies narrow screen
optimization if the screen-width is less than 240 pixels. For all other user agents,
however, Trinidad optimizes its rendering for a narrow screen device.

Determining User Agent Capabilities Using EL Expressions

7-2 Developing Oracle ADF Mobile Browser Applications

7.2 Determining User Agent Capabilities Using EL Expressions
Trinidad exposes a requesting user agent's details using the EL expression,
#{requestContext.agent}, which returns an agent object that describes the
requesting user agent. By adding the detail name or capability name properties to this
expression, you enable Trinidad to return details that include the user agent's name,
version, platform, the version of the platform, the model (which is applicable only to
BlackBerry), and the browser's support for JavaScript and PPR (Partial Page
Rendering). For information on exposing user agent details, see Section 7.2.1, "How To
Determine User Agent Details." For information on determining browser capabilities,
see Section 7.2.2, "How to Determine Browser Capabilities."

7.2.1 How To Determine User Agent Details
When Trinidad receives a request, it parses user agent strings for a variety of user
agent details (listed in Table 7–1) that include type, the name and version of the agent,
and the agent's platform name and platform version. Trinidad uses the EL expression
#{requestContext.agent.<detail-name>} to expose these details. For example, to
retrieve the category appropriate to the user agent type (that is, desktop for a desktop
browser, or PDA for mobile browsers), Trinidad uses the type detail in the EL
expression as follows:

#{requestContext.agent.type}

7.2.2 How to Determine Browser Capabilities
Trinidad sends its response to a user agent's request based on the capabilities it assigns
to a user agent. These capabilities include a user agent's support for JavaScript and
PPR. Some of these capabilities (listed in Table 7–2) are exposed through the EL
expression #{requestContext.agent.capabilities}.

Use the EL expression #{requestContext.agent.capabilities.<capability-name>}
to determine the specific capability assigned to a user agent by Trinidad. For example,
to determine whether Trinidad assigns JavaScript capability to a user agent, use the
following EL expression:

{requestContext.agent.capabilities.scriptingSpeed!='none'}

Note: Trinidad may return a null value for such details as
PlatformName and PlatformVersion if it cannot parse them from the
user agent string.

Table 7–1 Browser Details Exposed through EL Expressions

Detail Name Description

type Identifies a user agent type. For desktop and mobile browsers,
the values are desktop and PDA, respectively. Because Safari
provides all desktop browser features when it runs in a mobile
device, the agent object exposes this detail as a desktop type.

agentName The name of the agent

agentVersion The version of the agent

platformName The platform on which the agent runs

platformVersion The version of the platform on which the agent runs

hardwareMakeModel The model of the mobile device

Determining User Agent Capabilities Using EL Expressions

Narrow Screen Support and User Agent Details Support 7-3

Table 7–2 Browser Capabilities Exposed through EL Expressions

Capability Name Detail

narrowScreen Indicates whether Trinidad optimizes is rendering for a
narrow-screen device. It returns true (a boolean type) if Trinidad
optimizes its rendering for a narrow-screen device.

scriptingSpeed Indicates JavaScript support for a user agent. Returns none (a
String type) if the user agent does not support JavaScript.

partialRendering Indicates PPR support for a user agent. Returns true (a boolean
type) if the browser supports PPR.

Determining User Agent Capabilities Using EL Expressions

7-4 Developing Oracle ADF Mobile Browser Applications

8

Extending ADF Mobile Browser Applications 8-1

8Extending ADF Mobile Browser Applications

[9] This chapter describes how to add e-mail, telephony, and Google Maps functionality to
ADF Mobile browser applications.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Extending Applications for E-Mail, Telephony, and
Google Maps"

■ Section 8.2, "Integrating an E-Mail Client"

■ Section 8.3, "Integrating Telephony"

■ Section 8.4, "Integrating Google Maps"

■ Section 8.5, "What You May Need to Know About Page Display Dimensions"

8.1 Introduction to Extending Applications for E-Mail, Telephony, and
Google Maps

In addition to using the style sheets described in Chapter 4, "Skinning ADF Mobile
Browser Applications", you can further tailor an ADF Mobile browser application to
include support for e-mail, telephony, and Google Maps by defining the tr:goButton
and tr:goLink components with EL (Expression Language) expressions.

8.2 Integrating an E-Mail Client
To invoke an e-mail application from a web application:

1. Use either the tr:goButton or the tr:goLink components.

2. Prepend the mailto: protocol in an HTML link.

3. Set the destination property to the HTML link (represented as the Expression
Language statement #{sessionScope.empDetails.Email} in Example 8–1).

Example 8–1 Integrating the iPhone E-Mail Client Using the mailto: Protocol

<tr:goLink styleClass="messageText"
text="#{sessionScope.empDetails.Email}"
destination="mailto:#{sessionScope.empDetails.Email}"/>

8.2.1 Adding Mail Properties
The mailto: protocol enables you to add the mail properties that are listed in
Table 8–1.

Integrating Telephony

8-2 Developing Oracle ADF Mobile Browser Applications

To specify these properties, append the e-mail address with question mark (?) as
illustrated by #{sessionScope.empDetails.Email}? in Example 8–2 and then add the
properties, separating each with an ampersand (&).

Example 8–2 Adding E-Mail Properties

<tr:goLink styleClass="messageText"
text="#{sessionScope.empDetails.Email}"
destination="mailto:#{sessionScope.empDetails.Email}?subject=hello

&cc=myboss@oracle.com
&bcc=me@oracle.com
&body=good morning!"/>

8.3 Integrating Telephony
To invoke a call dialog box for a phone number:

1. Use either the tr:goButton or the tr:goLink component.

2. Prepend the phone number with the tel: protocol.

3. Set the destination property to the telephone number (represented as the EL
expression, #{sessionScope.empDetails.PhoneNumber} in Example 8–3).

Example 8–3 Enabling the Call Dialog Box

<tr:goLink styleClass="messageText"
text="#{sessionScope.empDetails.PhoneNumber}"
destination="tel:#{ sessionScope.empDetails.PhoneNumber}"/>

8.4 Integrating Google Maps
To create a link that displays a map that shows the data available in the application,
specify the destination property of the tr:goLink component as follows:

1. Use either the tr:goButton or the tr:goLink component.

Table 8–1 Mail Properties

Property Syntax

Multiple Recipients A comma (,) separating each e-mail address

Message Subject subject =<subject text>

cc Recipients cc=<name@address.com>

bcc Recipients bcc=<name@address.com>

Message Text body=<Message Text>

Note: The phone number must support the portion of the RFC 2806
protocol (http://www.ietf.org/rfc/rfc2806.txt) which enables you
to add pauses or dial extensions after an end user dials the primary
phone number. Because Apple does not specify which portions of RFC
2086 that it supports, you must test each portion.

Integrating Google Maps

Extending ADF Mobile Browser Applications 8-3

2. Define destination= as the URL of Google Maps.
(destination=http://maps.google.com/maps, as illustrated in Example 8–4.)

3. To search for a location, append the Google Maps URL with ?q=.

4. Define q= using the address string of the target location. This value can be a full
street address, a city, landmark, or any item that Google Maps can search for and
locate. If multiple items are found, Google Maps drops multiple pins
automatically.

Example 8–4 illustrates how to define the tr:goLink component to invoke a Google
Maps application and then drop a pin on 200 Oracle Parkway.

Example 8–4 Specifying Locations in Google Maps

<tr:goLink styleClass="messageAddrText"
text="200 Oracle Parkway, Redwood City, CA, USA"
destination="http://maps.google.com/maps?q=200+Oracle+Parkway,+Redwood+City,+CA,+USA"/>

Example 8–5 illustrates specifying a location using an address represented by EL
expressions.

Example 8–5 Specifying Locations in Google Maps Using EL Expressions

<tr:goLink styleClass="messageAddrText"
text="#{sessionScope.empDetails.StreetAddress},

#{sessionScope.empDetails.City},
#{sessionScope.empDetails.StateProvince},
#{sessionScope.empDetails.CountryName}"

destination=" http://maps.google.com/maps?q=#{sessionScope.empDetails.StreetAddress},
+#{sessionScope.empDetails.City},
+#{sessionScope.empDetails.StateProvince},
+#{sessionScope.empDetails.CountryName}"/>

You must join each EL expression in the address string with a plus sign (+), as
illustrated in Example 8–5. Do not include spaces between the EL expressions.

8.4.1 Programming Driving Directions
Google Maps also supports driving directions. Modify the string following the
question mark (?) in the Google Maps URL with the starting and destination addresses
(saddr=<starting address>&daddr=<destination address>). Using this format, the
directions from Oracle headquarters at 200 Oracle Parkway in Redwood City,
California, to 1 Telegraph Hill in San Francisco, California, are as follows:

http://maps.google.com/maps?
saddr=200+Oracle+Parkway,+Redwood+City,+CA,+USA
&daddr=1+Telegraph+Hill,+San+Francisco,+CA,+USA

Note: The address described in the text string must be
well-formatted and include commas between words. For the
destination string, replace spaces with plus sign (+) characters.

Note: Apple and Google have not yet published other APIs.

What You May Need to Know About Page Display Dimensions

8-4 Developing Oracle ADF Mobile Browser Applications

8.4.2 Supporting Google Maps on iPhone
iPhone Safari supports both Google Maps and YouTube applications in that it
automatically intercepts certain URL calls and invokes a native application rather than
opening the URL for the target web site. For example, when a user clicks an HTML
link to Google Maps (http://maps.google.com), Safari invokes a native Google Maps
application rather than navigating to the Google Maps web site. Because the native
Google maps application accepts URL parameters supported by maps.google.com,
users can specify a location and drop a pin.

8.5 What You May Need to Know About Page Display Dimensions
To control the correct zoom ratio, add a viewport meta tag in the header of a page. The
viewport is a device-specific meta tag used to ensure that a page displays at the correct
scale. Example 8–6, illustrates setting the viewports for both iPhones and BlackBerry
smartphones. For more information on the viewport, see iOS Human Interface
Guidelines, available from the iOS Developer Library
(http://developer.apple.com/library/ios/navigation/).

Example 8–6 Setting Viewports

<trh:head title="Online Banking Demo">
<meta http-equiv="Content-Type"

content="text/html; charset=windows-1252"/>
<f:verbatim rendered="#{requestContext.agent.skinFamilyType eq 'blackberry'}">
<meta name="viewport"

content="width=device-width;
height=device-height;
initial-scale=1.0;
maximum-scale=1.0;
user-scalable=0;"/>

</f:verbatim>
<f:verbatim rendered="#{requestContext.agent.skinFamilyType eq 'iPhonewebkit'}">
<meta name="viewport"

content="width=device-width;
initial-scale=1.0;
maximum-scale=1.0;
user-scalable=0;"/>

</f:verbatim>
</trh:head>

8.5.1 Setting the Viewports for iPhone
While some mobile browser applications may display correctly on desktop Safari
browsers, they may not scale not correctly for the smaller screen of the iPhone and
may appear too large. As a result, the iPhone shrinks pages until they are too small to
read. The following line from Example 8–6, illustrates how to set the iPhone viewport
specifications in the <head> element to ensure that applications display properly on
iPhones.

Note: Versions 4.6 and later of BlackBerry support the
HandheldFriendly meta tag which is similar to viewport. Include the
following line in the header to enable the page to scale appropriately:

<meta name="HandheldFriendly" content="True">

What You May Need to Know About Page Display Dimensions

Extending ADF Mobile Browser Applications 8-5

<f:verbatim rendered="#{requestContext.agent.skinFamilyType eq 'iPhonewebkit'}">
<meta name="viewport"

content="width=device-width;
initial-scale=1.0;
maximum-scale=1.0;
user-scalable=0;"/>

What You May Need to Know About Page Display Dimensions

8-6 Developing Oracle ADF Mobile Browser Applications

	Contents
	Preface
	Documentation Accessibility
	Audience
	Related Documents
	Conventions

	1 Overview of Oracle ADF Mobile Browser
	1.1 About ADF Mobile Browser
	1.1.1 How ADF Mobile Browser Improves Application Performance
	1.1.2 About Java Server Faces and the Application Development Framework
	1.1.3 Developing Mobile Applications Using ADF Mobile Browser

	1.2 Supported Mobile Browser Features

	2 Configuring the ADF Mobile Browser Environment
	2.1 About ADF Mobile Browser Application Development
	2.2 Configuring the ADF Mobile Browser Development Environment
	2.2.1 How to Create a Mobile Application and Project
	2.2.2 What Happens When You Create a Mobile Application and Project

	2.3 Developing an ADF Mobile Browser Application
	2.3.1 How to Develop a Mobile JSF Page

	2.4 Testing an ADF Mobile Browser Application
	2.4.1 How to Test ADF Mobile Browser Applications on Simulators
	2.4.2 What You May Need to Know About Browser Settings

	3 Component Support
	3.1 About Apache My Faces Trinidad Components
	3.1.1 Supported Features
	3.1.2 Partial Page Rendering
	3.1.3 Dialogs
	3.1.4 Rendering Specific to the BlackBerry Browser 4.5 and Earlier Versions

	3.2 Input Components
	3.2.1 Creating Input Text Fields
	3.2.2 Creating Lists

	3.3 Output Components
	3.3.1 Displaying Text
	3.3.2 Displaying Images
	3.3.3 Showing (or Hiding) Components

	3.4 Layout Components
	3.4.1 Managing the Page
	3.4.2 Laying Out Sections of the Page
	3.4.3 Inserting Spaces

	3.5 Navigation Components
	3.5.1 Creating Buttons
	3.5.2 Creating Links
	3.5.3 Navigation Components

	3.6 Data Visualization (Graphs and Gauges)
	3.7 Tables and Trees
	3.7.1 Creating Tables
	3.7.2 Creating Trees

	3.8 Generating HTML <meta> Tags
	3.8.1 Using <trh:meta> to Generate HTML <meta> Tags
	3.8.1.1 About Default Viewport Size on Mobile Devices

	3.9 Unsupported Components and Attributes
	3.9.1 Unsupported Components
	3.9.2 Unsupported Attributes

	4 Skinning ADF Mobile Browser Applications
	4.1 About ADF Mobile Browser Skinning
	4.2 Implementing ADF Mobile Browser Skinning
	4.2.1 Extending the ADF Mobile Skins

	4.3 Applying ADF Mobile Browser Skinning
	4.3.1 Headers
	4.3.1.1 Creating a Title-Only Header
	4.3.1.2 Creating Headers with Titles and Links

	4.3.2 Table Components
	4.3.2.1 Multi-Column Tables
	4.3.2.2 Adding Images and Primary Details with Links
	4.3.2.3 Creating Primary Details with Links
	4.3.2.4 Creating Primary Details Without Links

	4.3.3 Panel List Components
	4.3.4 PanelFormLayout
	4.3.5 Panel Accordion

	5 Supporting Basic HTML Mobile Browsers
	5.1 About Basic HTML Mobile Browser Support
	5.1.1 Requirements for Basic HTML Mobile Browser Support

	5.2 Developing Applications for Basic HTML Mobile Browsers
	5.3 Styling Basic HTML Mobile Browsers

	6 Design Guidelines for BlackBerry 4.2 to 4.5
	6.1 About BlackBerry Browser Display Behavior
	6.2 Formatting Tables to Prevent Wrapping
	6.2.1 How to Prevent Fields from Wrapping in Tables

	6.3 Formatting Label and Message Panels
	6.4 Formatting Column Width
	6.5 What You May Need to Know About Display Variations on BlackBerry Smartphones
	6.5.1 Changing the Minimum Font Size
	6.5.2 Form Factor Variations

	7 Narrow Screen Support and User Agent Details Support
	7.1 Determining Narrow Screen Support
	7.1.1 How Trinidad Determines Narrow-Screen Optimization

	7.2 Determining User Agent Capabilities Using EL Expressions
	7.2.1 How To Determine User Agent Details
	7.2.2 How to Determine Browser Capabilities

	8 Extending ADF Mobile Browser Applications
	8.1 Introduction to Extending Applications for E-Mail, Telephony, and Google Maps
	8.2 Integrating an E-Mail Client
	8.2.1 Adding Mail Properties

	8.3 Integrating Telephony
	8.4 Integrating Google Maps
	8.4.1 Programming Driving Directions
	8.4.2 Supporting Google Maps on iPhone

	8.5 What You May Need to Know About Page Display Dimensions
	8.5.1 Setting the Viewports for iPhone

