
Oracle® Fusion Middleware
Developing Remote Clients for Oracle Coherence

12c (12.2.1.2.0)

E77772-01

September 2016

Documentation for Developers and Architects that describes
how to configure Coherence*Extend and how to develop
remote clients in Java, C++, and .NET. Includes instructions for
developing remote clients using Coherence REST.

Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence, 12c (12.2.1.2.0)

E77772-01

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xiii

Audience ... xiii

Documentation Accessibility ... xiii

Related Documents.. xiii

Conventions.. xiv

What's New in This Guide... xv

New and Changed Features.. xv

Other Significant Changes in This Document .. xv

Part I Getting Started

1 Introduction to Coherence*Extend

1.1 Overview of Coherence*Extend .. 1-1

1.2 Extend Clients .. 1-2

1.3 Extend Client APIs... 1-3

1.4 POF Serialization ... 1-3

1.5 Understanding Extend Client Configuration Files ... 1-3

1.6 Non-Native Client Support .. 1-4

1.6.1 REST Client Support .. 1-4

1.6.2 Memcached Client Support .. 1-5

2 Building Your First Extend Application

2.1 Overview of the Extend Example.. 2-1

2.2 Step 1: Configure the Cluster Side... 2-1

2.3 Step 2: Configure the Client Side... 2-2

2.4 Step 3: Create the Sample Client.. 2-3

2.5 Step 4: Start the Cache Server Process .. 2-5

2.6 Step 5: Run the Application.. 2-5

iii

3 Configuring Extend Proxies

3.1 Overview of Configuring Extend Proxies .. 3-1

3.2 Defining Extend Proxy Services .. 3-1

3.2.1 Defining a Single Proxy Service Instance.. 3-2

3.2.2 Defining Multiple Proxy Service Instances .. 3-2

3.2.3 Defining Multiple Proxy Services .. 3-3

3.2.4 Explicitly Configuring Proxy Addresses ... 3-3

3.2.5 Disabling Cluster Service Proxies .. 3-4

3.2.6 Specifying Read-Only NamedCache Access .. 3-5

3.3 Defining Caches for Use By Extend Clients... 3-5

3.4 Disabling Storage on a Proxy Server... 3-8

3.5 Starting a Proxy Server ... 3-9

4 Configuring Extend Clients

4.1 Overview of Configuring Extend Clients... 4-1

4.2 Defining a Remote Cache ... 4-2

4.3 Using a Remote Cache as a Back Cache ... 4-3

4.4 Defining Remote Invocation Schemes .. 4-4

4.5 Connecting to Specific Proxy Addresses.. 4-5

4.6 Detecting Connection Errors.. 4-6

4.7 Disabling TCMP Communication ... 4-7

5 Advanced Extend Configuration

5.1 Using Address Provider References for TCP Addresses ... 5-1

5.2 Using a Custom Address Provider for TCP Addresses ... 5-2

5.3 Load Balancing Connections.. 5-3

5.3.1 Using Proxy-Based Load Balancing... 5-3

5.3.2 Using Client-Based Load Balancing .. 5-6

5.4 Using Network Filters with Extend Clients... 5-6

6 Best Practices for Coherence*Extend

6.1 Do Not Run a Near Cache on a Proxy Server.. 6-1

6.2 Configure Heap NIO Space to be Equal to the Max Heap Size .. 6-1

6.3 Configure Proxy Service Thread Pooling... 6-1

6.3.1 Understanding Proxy Service Threading ... 6-2

6.3.2 Setting Proxy Service Thread Pooling Thresholds .. 6-2

6.3.3 Setting an Exact Number of Threads... 6-3

6.4 Be Careful When Making InvocationService Calls ... 6-3

6.5 Be Careful When Placing Collection Classes in the Cache .. 6-3

6.6 Configure POF Serializers for Cache Servers .. 6-4

6.7 Configuring Firewalls for Extend Clients .. 6-4

iv

Part II Creating Java Extend Clients

Part III Creating C++ Extend Clients

7 Introduction to Coherence C++ Clients

7.1 Overview of Coherence for C++.. 7-1

7.2 Setting Up C++ Application Builds .. 7-1

7.2.1 Setting up the Compiler for Coherence-Based Applications ... 7-2

7.2.2 Including Coherence Header Files... 7-2

7.2.3 Linking the Coherence Library .. 7-2

7.2.4 Setting the run-time Library and Search Path ... 7-3

7.2.5 Deploying Coherence for C++.. 7-4

8 Configuration and Usage for C++ Clients

8.1 General Instructions .. 8-1

8.2 Implement the C++ Application.. 8-2

8.3 Compile and Link the Application.. 8-2

8.4 Configure Paths.. 8-3

8.5 Obtaining a Cache Reference with C++ ... 8-3

8.6 Cleaning up Resources Associated with a Cache ... 8-3

8.7 Configuring and Using the Coherence for C++ Client Library .. 8-3

8.7.1 Setting the Configuration File Location with an Environment Variable 8-4

8.7.2 Setting the Configuration File Location Programmatically .. 8-4

8.8 Operational Configuration File (tangosol-coherence-override.xml) 8-4

8.9 Configuring a Logger .. 8-6

9 Using the Coherence C++ Object Model

9.1 Using the Object Model .. 9-1

9.1.1 Coherence Namespaces... 9-1

9.1.2 Understanding the Base Object .. 9-1

9.1.3 Automatically Managed Memory.. 9-2

9.1.4 Managed Strings... 9-3

9.1.5 Type Safe Casting ... 9-4

9.1.6 Managed Arrays ... 9-5

9.1.7 Collection Classes... 9-5

9.1.8 Managed Exceptions.. 9-6

9.1.9 Object Immutability ... 9-6

9.1.10 Integrating Existing Classes into the Object Model ... 9-7

9.2 Writing New Managed Classes ... 9-7

9.2.1 Specification-Based Managed Class Definition .. 9-7

9.2.2 Equality, Hashing, Cloning, Immutability, and Serialization 9-10

9.2.3 Threading .. 9-11

v

9.2.4 Weak References... 9-12

9.2.5 Virtual Constructors... 9-13

9.2.6 Advanced Handle Types... 9-13

9.2.7 Thread Safety .. 9-14

9.3 Diagnostics and Troubleshooting ... 9-19

9.3.1 Thread-Local Allocator Logs .. 9-19

9.3.2 Thread Dumps .. 9-19

9.3.3 Memory Leak Detection .. 9-20

9.3.4 Memory Corruption Detection... 9-20

9.4 Application Launcher - Sanka.. 9-21

9.4.1 Command line syntax.. 9-21

9.4.2 Built-in Executables.. 9-21

9.4.3 Sample Custom Executable Class .. 9-22

10 Using the Coherence for C++ Client API

10.1 CacheFactory .. 10-1

10.2 NamedCache .. 10-2

10.3 QueryMap... 10-2

10.4 ObservableMap .. 10-3

10.5 InvocableMap... 10-3

10.6 Filter .. 10-4

10.7 Value Extractors ... 10-5

10.8 Entry Processors... 10-5

10.9 Entry Aggregators ... 10-6

11 Building Integration Objects (C++)

11.1 Overview of Building Integration Objects (C++).. 11-1

11.2 POF Intrinsics ... 11-1

11.3 Serialization Options ... 11-2

11.3.1 Managed<T> (Free-Function Serialization) .. 11-3

11.3.2 PortableObject (Self-Serialization) .. 11-5

11.3.3 PofSerializer (External Serialization) .. 11-7

11.4 Using POF Object References... 11-9

11.4.1 Enabling POF Object References.. 11-10

11.4.2 Registering POF Object Identities for Circular and Nested Objects 11-10

11.5 Registering Custom C++ Types... 11-12

11.6 Implementing a Java Version of a C++ Object .. 11-13

11.7 Understanding Serialization Performance... 11-14

11.8 Using POF Annotations to Serialize Objects.. 11-14

11.8.1 Annotating Objects for POF Serialization... 11-14

11.8.2 Registering POF Annotated Objects .. 11-15

11.8.3 Enabling Automatic Indexing .. 11-15

11.8.4 Providing a Custom Codec ... 11-16

vi

12 Querying a Cache (C++)

12.1 Overview of Query Functionality ... 12-1

12.2 Performing Simple Queries .. 12-1

12.2.1 Querying Partitioned Caches.. 12-3

12.2.2 Querying Near Caches... 12-3

12.3 Understanding Query Concepts.. 12-3

12.4 Performing Queries Involving Multi-Value Attributes ... 12-4

12.5 Using a Chained Extractor in a Query.. 12-4

12.6 Using a Query Recorder ... 12-5

13 Performing Continuous Queries (C++)

13.1 Overview of Performing Continuous Queries (C++) ... 13-1

13.1.1 Understanding the Use Cases for Continuous Query Caching................................. 13-1

13.2 Understanding Continuous Query Caching Implementation .. 13-2

13.3 Defining a Continuous Query Cache.. 13-2

13.4 Cleaning up Continuous Query Cache Resources.. 13-3

13.5 Caching Only Keys Versus Keys and Values .. 13-3

13.5.1 CacheValues Property and Event Listeners ... 13-4

13.5.2 Using ReflectionExtractor with Continuous Query Caches....................................... 13-4

13.6 Listening to a Continuous Query Cache .. 13-4

13.6.1 Avoiding Unexpected Results .. 13-4

13.6.2 Achieving a Stable Materialized View .. 13-5

13.7 Making a Continuous Query Cache Read-Only ... 13-5

14 Performing Remote Invocations (C++)

14.1 Overview of Performing Remote Invocations (C++).. 14-1

14.2 Configuring and Using the Remote Invocation Service... 14-1

14.3 Registering Invocable Implementation Classes .. 14-2

15 Using Cache Events (C++)

15.1 Overview of Map Events (C++)... 15-1

15.1.1 Caches and Classes that Support Events .. 15-1

15.2 Signing Up for all Events.. 15-2

15.3 Using a Multiplexing Map Listener .. 15-3

15.4 Configuring a MapListener for a Cache ... 15-4

15.5 Signing Up for Events on Specific Identities ... 15-4

15.6 Filtering Events .. 15-4

15.7 Using Lite Events ... 15-5

15.8 Listening to Queries ... 15-6

15.9 Using Synthetic Events ... 15-8

15.10 Using Backing Map Events .. 15-9

15.11 Using Synchronous Event Listeners ... 15-9

vii

16 Performing Transactions (C++)

16.1 Using the Transaction API within an Entry Processor... 16-1

16.2 Creating a Stub Class for a Transactional Entry Processor.. 16-3

16.3 Registering a Transactional Entry Processor User Type.. 16-4

16.4 Configuring the Cluster-Side Transactional Caches... 16-4

16.5 Configuring the Client-Side Remote Cache... 16-5

16.6 Using a Transactional Entry Processor from a C++ Client.. 16-6

Part IV Creating .NET Extend Clients

17 Introduction to Coherence .NET Clients

17.1 Overview of Coherence for .NET ... 17-1

17.2 Configuration and Usage for .NET Clients.. 17-1

17.2.1 General Instructions... 17-2

17.2.2 Configuring Coherence*Extend for .NET... 17-2

17.2.3 Obtaining a Cache Reference with .NET .. 17-2

17.2.4 Cleaning Up Resources Associated with a Cache ... 17-2

17.2.5 Using Network Filters ... 17-3

18 Building Integration Objects (.NET)

18.1 Overview of Building Integration Objects (.NET) .. 18-1

18.2 Creating an IPortableObject Implementation.. 18-2

18.3 Implementing a Java Version of a .NET Object... 18-3

18.3.1 Creating a PortableObject Implementation (Java)... 18-4

18.4 Registering Custom Types on the .NET Client ... 18-4

18.5 Registering Custom Types in the Cluster... 18-6

18.6 Evolvable Portable User Types.. 18-6

18.7 Making Types Portable Without Modification.. 18-9

18.8 Using POF Object References... 18-11

18.8.1 Enabling POF Object References.. 18-12

18.8.2 Registering POF Object Identities for Circular and Nested Objects 18-13

18.9 Using POF Annotations to Serialize Objects.. 18-14

18.9.1 Annotating Objects for POF Serialization... 18-14

18.9.2 Registering POF Annotated Objects .. 18-15

18.9.3 Enabling Automatic Indexing .. 18-15

18.9.4 Providing a Custom Codec ... 18-16

19 Using the Coherence .NET Client Library

19.1 Setting Up the Coherence .NET Client Library ... 19-1

19.2 Using the Coherence .NET APIs.. 19-3

19.2.1 CacheFactory... 19-4

19.2.2 IConfigurableCacheFactory .. 19-5

viii

19.2.3 DefaultConfigurableCacheFactory .. 19-5

19.2.4 Logger .. 19-5

19.2.5 Using the Common.Logging Library .. 19-7

19.2.6 INamedCache ... 19-7

19.2.7 IQueryCache ... 19-8

19.2.8 QueryRecorder.. 19-9

19.2.9 IObservableCache... 19-9

19.2.10 IInvocableCache.. 19-11

19.2.11 Filters.. 19-11

19.2.12 Value Extractors.. 19-12

19.2.13 Entry Processors ... 19-13

19.2.14 Entry Aggregators .. 19-13

19.3 Configuring .NET Clients Programmatically .. 19-14

20 Performing Continuous Queries (.NET)

20.1 Overview of Performing Continuous Queries (.NET) ... 20-1

20.1.1 Understanding Use Cases for Continuous Query Caching 20-1

20.2 Understanding the Continuous Query Caching Implementation.. 20-2

20.3 Constructing a Continuous Query Cache .. 20-2

20.4 Cleaning Up Continuous Query Cache Resources ... 20-3

20.5 Caching Only Keys Versus Keys and Values .. 20-3

20.6 Listening to a Continuous Query Cache .. 20-4

20.6.1 Achieving a Stable Materialized View .. 20-4

20.6.2 Support for Synchronous and Asynchronous Listeners... 20-5

20.7 Making a Continuous Query Cache Read-Only ... 20-5

21 Performing Remote Invocations (.NET)

21.1 Overview of Performing Remote Invocations... 21-1

21.2 Configuring and Using the Remote Invocation Service... 21-1

22 Performing Transactions (.NET)

22.1 Using the Transaction API within an Entry Processor... 22-1

22.2 Creating a Stub Class for a Transactional Entry Processor.. 22-3

22.3 Registering a Transactional Entry Processor User Type.. 22-3

22.4 Configuring the Cluster-Side Transactional Caches... 22-4

22.5 Configuring the Client-Side Remote Cache... 22-5

22.6 Using a Transactional Entry Processor from a .NET Client .. 22-6

23 Managing ASP.NET Session State

23.1 Overview... 23-1

23.2 Setting Up Coherence Session Management ... 23-1

23.2.1 Enable the Coherence Session Provider.. 23-2

23.2.2 Configure the Cluster-Side ASP Session Caches ... 23-2

ix

23.2.3 Configure a Client-Side ASP Session Remote Cache .. 23-3

23.2.4 Overriding the Default Session Cache Name... 23-4

23.3 Selecting a Session Model... 23-4

23.3.1 Specify the Session Model... 23-5

23.4 Specifying a Serializer ... 23-7

23.4.1 Using POF for Session Serialization ... 23-7

23.5 Sharing Session State Across Applications .. 23-8

Part V Using Coherence REST

24 Introduction to Coherence REST

24.1 Overview of Coherence REST.. 24-1

24.2 Dependencies for Coherence REST... 24-1

24.3 Overview of Configuration for Coherence REST.. 24-2

24.4 Understanding Data Format Support... 24-3

24.4.1 Using XML as the Data Format .. 24-3

24.4.2 Using JSON as the Data Format ... 24-4

24.5 Authenticating and Authorizing Coherence REST Clients ... 24-5

25 Building Your First Coherence REST Application

25.1 Overview of the Basic Coherence REST Example... 25-1

25.2 Step 1: Configure the Cluster Side... 25-2

25.3 Step 2: Create a User Type.. 25-2

25.4 Step 3: Configure REST Services.. 25-3

25.5 Step 4: Start the Cache Server Process .. 25-4

25.6 Step 5: Access REST Services From a Client .. 25-5

26 Performing Grid Operations with REST

26.1 Specifying Key and Value Types... 26-1

26.2 Performing Single-Object REST Operations .. 26-2

26.3 Performing Multi-Object REST Operations ... 26-3

26.4 Performing Partial-Object REST Operations ... 26-4

26.5 Performing Queries with REST ... 26-4

26.5.1 Using Direct Queries.. 26-5

26.5.2 Using Named Queries ... 26-5

26.5.3 Specifying a Query Sort Order ... 26-6

26.5.4 Limiting Query Result Size ... 26-7

26.5.5 Retrieving Only Keys... 26-7

26.5.6 Using Custom Query Engines .. 26-8

26.6 Performing Aggregations with REST ... 26-10

26.6.1 Aggregation Syntax for REST... 26-11

26.6.2 Listing of Pre-Defined Aggregators... 26-11

26.6.3 Creating Custom Aggregators.. 26-12

x

26.7 Performing Entry Processing with REST ... 26-13

26.7.1 Entry Processor Syntax for REST ... 26-13

26.7.2 Listing of Pre-defined Entry Processors.. 26-13

26.7.3 Creating Custom Entry Processors .. 26-14

26.8 Understanding Concurrency Control ... 26-14

26.9 Specifying Cache Aliases .. 26-15

26.10 Using Server-Sent Events ... 26-16

26.10.1 Receiving Server-Sent Events ... 26-16

27 Deploying Coherence REST

27.1 Deploying with the Embedded HTTP Server.. 27-1

27.2 Deploying to WebLogic Server.. 27-2

27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST 27-2

27.2.2 Task 2: Package the Coherence REST Web Application... 27-2

27.2.3 Task 3: Package the Coherence Application... 27-3

27.2.4 Task 4: Package the Enterprise Application ... 27-4

27.2.5 Task 5: Deploy the Enterprise Application... 27-5

27.3 Deploying to a Java EE Server (Generic) .. 27-5

27.3.1 Packaging Coherence REST for Deployment ... 27-5

27.3.2 Deploying to a Servlet Container... 27-6

27.4 Configuring REST Server Access to POF-Enabled Services .. 27-7

28 Modifying the Default REST Implementation

28.1 Using the Pass-Through Resource .. 28-1

28.2 Using Custom Providers and Resources .. 28-1

28.3 Changing the Embedded HTTP Server .. 28-3

28.3.1 Using Grizzly HTTP Server .. 28-3

28.3.2 Using Simple HTTP Server ... 28-4

28.3.3 Using Jetty HTTP Server ... 28-4

A REST Configuration Elements

A.1 REST Configuration File .. A-1

A.2 Element Reference... A-2

A.2.1 aggregator ... A-2

A.2.2 aggregators ... A-3

A.2.3 engine .. A-3

A.2.4 marshaller ... A-4

A.2.5 processor ... A-4

A.2.6 processors ... A-5

A.2.7 query.. A-5

A.2.8 query-engines... A-6

A.2.9 resource ... A-6

A.2.10 resources ... A-8

xi

A.2.11 rest.. A-8

B Integrating with F5 BIG-IP LTM

B.1 Basic Concepts.. B-1

B.2 Creating Nodes .. B-2

B.3 Configuring a Load Balancing Pool .. B-3

B.3.1 Creating a Load Balancing Pool ... B-4

B.3.2 Adding a Load Balancing Pool Member... B-5

B.4 Configuring a Virtual Server.. B-6

B.5 Configuring Coherence*Extend to Use BIG-IP LTM.. B-8

B.6 Using Advanced Health Monitoring .. B-9

B.6.1 Creating a Custom Health Monitor to Ping Coherence.. B-10

B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence B-11

B.6.3 Associating a Custom Health Monitor With a Load Balancing Pool B-13

B.7 Enabling SSL Offloading .. B-14

B.7.1 Import the Server's SSL Certificate and Key .. B-15

B.7.2 Create the Client SSL Profile... B-16

B.7.3 Associate the Client SSL Profile ... B-17

Index

xii

Preface

Welcome to Developing Remote Clients for Oracle Coherence. This document describes
how to configure Coherence*Extend and how to develop remote clients in Java, C++,
and .NET. This document also includes instructions for developing remote clients
using Coherence REST.

Audience
Developing Remote Clients for Oracle Coherence is intended for the following audiences:

• Primary Audience – Application developers who want to write and deploy clients
that use C++, .NET, and REST to interact with remote caches that reside in a
Coherence cluster.

• Secondary Audience – System architects who want to understand core Oracle
Coherence concepts and want to build data grid-based solutions that include
remote clients.

The audience must be familiar with the respective client technologies as well as Java to
use this guide. In addition, the examples in this guide require the installation and use
of the Oracle Coherence product. For details about installing Coherence for Java and
the respective client technologies, see Installing Oracle Coherence. The use of an IDE is
not required to use this guide, but is recommended to facilitate working through the
examples.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents that are included in the Oracle
Coherence documentation set:

• Administering HTTP Session Management with Oracle Coherence*Web

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Administering Oracle Coherence

• Developing Applications with Oracle Coherence

• Installing Oracle Coherence

• Integrating Oracle Coherence

• Managing Oracle Coherence

• Securing Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiv

What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide and provides pointers to
additional information.

New and Changed Features

New and Changed Features for 12c (12.2.1.2)

Oracle Coherence 12c (12.2.1.2) does not contain any new and changed features for this
document.

New and Changed Features for 12c (12.2.1.1)

Oracle Coherence 12c (12.2.1.1) does not contain any new and changed features for this
document.

New and Changed Features for 12c (12.2.1)

Oracle Coherence 12c (12.2.1) includes the following new and changed features for this
document.

• Proxy addresses, which allow extend clients to connect to a cluster automatically
bind to a name service address. See "Defining a Single Proxy Service Instance."

• Remote cache addresses, which are used to connect to a proxy service do not need
to be specified if the client runs on the same network as the cluster. See "Defining a
Remote Cache."

• DNS names, which can be used to connect to a proxy server can be associated with
a list of IP addresses. See "Connecting to Specific Proxy Addresses."

• Server-Sent events, which allow Coherence REST applications to automatically
receive cache events from the Coherence cluster. See "Using Server-Sent Events."

• Jetty HTTP Server integration, which allows Coherence REST to use Jetty. See
"Using Jetty HTTP Server."

Other Significant Changes in This Document

Other Significant Changes in This Document for 12c (12.2.1.2)

For 12c (12.2.1.2), this guide has been updated in several ways. Following are the
sections that have been added or changed.

xv

• Updated the Coherence REST instructions to include steps for enabling pass-
through to caches. See "Using the Pass-Through Resource."

Other Significant Changes in This Document for 12c (12.2.1.1)

For 12c (12.2.1.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Removed recommendation for storage disabled proxies.

• Updated F5 instructions for configuring advanced health monitoring. See "Using
Advanced Health Monitoring."

Other Significant Changes in This Document for 12c (12.2.1)

For 12c (12.2.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Removed the instructions for installing Coherence C++ and .NET client
components. For details about installing Coherence client distributions, see
"Installing a Client Distribution."

• Revised the instructions for setting up Coherence*Extend. The content is now
organized into a chapter about proxy configuration and a chapter about client
configuration. See "Configuring Extend Proxies " and "Configuring Extend Clients "
respectively.

• Added a new chapter that organizes advanced configuration topics. See "Advanced
Extend Configuration ."

• Revised the proxy setup configuration instructions to use the name service over
explicit proxy address configuration, which is documented in a separate section.
See "Defining Extend Proxy Services."

• Revised the extend client setup configuration instructions to use the name service
over explicit socket address configuration, which is documented in a separate
section. See "Defining a Remote Cache."

• Added instructions for configuring firewalls. See "Configuring Firewalls for Extend
Clients."

• Revised the instructions on REST dependencies to us Apace Maven. See
"Dependencies for Coherence REST."

• Revised the instructions for deploying Coherence REST to WebLogic Server. See
"Deploying to WebLogic Server."

xvi

Part I
Getting Started

Part I contains the following chapters:

• Introduction to Coherence*Extend

• Building Your First Extend Application

• Configuring Extend Proxies

• Configuring Extend Clients

• Advanced Extend Configuration

• Best Practices for Coherence*Extend

1
Introduction to Coherence*Extend

This chapter describes Coherence*Extend and includes information about native
Coherence clients (Java, C++, and .NET) and non-native Coherence clients (REST and
Memcached).

This chapter includes the following sections:

• Overview of Coherence*Extend

• Extend Clients

• Extend Client APIs

• POF Serialization

• Understanding Extend Client Configuration Files

• Non-Native Client Support

1.1 Overview of Coherence*Extend
Coherence*Extend "extends" the reach of the core Coherence TCMP cluster to a wider
range of consumers, including desktops, remote servers, and computers located across
WAN connections. Typical uses of Coherence*Extend include providing desktop
applications with access to Coherence caches (including support for Near Cache and
Continuous Query) and linking multiple Coherence clusters connected through a
high-latency, unreliable WAN.

Coherence*Extend consists of two basic components: an extend client running outside
the cluster and an extend proxy service running in the cluster hosted by one or more
cache servers (DefaultCacheServer) that are storage disabled. The client APIs
include implementations of both the CacheService and InvocationService
interfaces which route all requests to the proxy. The proxy responds to client requests
by delegating to an actual Coherence clustered services (for example, a partitioned or
replicated cache service or an invocation service).

Coherence*Extend uses the Extend-TCP transport binding (a low-level messaging
protocol) to communicate between the client and the cluster. The protocol is a high
performance, scalable TCP/IP-based communication layer. The transport binding is
configuration-driven and is completely transparent to the client application that uses
Coherence*Extend.

Figure 1-1 provides a conceptual view of the Coherence*Extend components and
shows an extend client connecting to an extend proxy service using Extend-TCP.

Introduction to Coherence*Extend 1-1

Figure 1-1 Conceptual View of Coherence*Extend Components

Like cache clients, an extend client retrieves Coherence clustered service using a cache
factory. After a service is obtained, a client uses the service in the same way as if it
were part of the Coherence cluster. The fact that operations are being sent to a remote
cluster node is transparent to the client application.

1.2 Extend Clients
Extend clients (also referred to as real-time clients) can be created for the Java, .NET,
and C++ platforms and have access to the same API as the standard Coherence API
without being full data members of the cluster. Typically, client applications are
granted only read access to cluster data, although it is possible to enable direct read/
write access. Extend clients provide:

• Key-based cache access through the NamedCache interface

• Attribute-based cache access using filters

• Custom processing and aggregation of cluster side entries using the
InvocableMap interface

• In-Process caching through LocalCache

• Remote invocation of custom tasks in the cluster through the Invocation Service

• Event Notifications using the standard Coherence event model. Data changes that
occur within the cluster are visible to the client application. Only events that a
client application registers for are delivered over the wire. This model results in
efficient use of network bandwidth and client processing.

• Near Caching and Continuous Query Caching to maintain cache data locally. If the
server to which the client application is attached happens to fail, the connection is
automatically reestablished to another server, and any locally cached data is re-
synchronized with the cluster.

Extend Clients

1-2 Developing Remote Clients for Oracle Coherence

For a complete list of real-time client features, see Oracle Fusion Middleware Licensing
Information.

1.3 Extend Client APIs
Java, C++, and .NET (C#) native libraries are available for building extend clients.
Each API is delivered in its own distribution and must be installed separately. Extend
clients use their respective APIs to perform cache operations such as access, modify,
and query data that is in a cluster. The C++ and C# APIs follow the Java API as close
as possible to provide a consistent experience between platforms.

As an example, a Java client gets a NamedCache instance using the
CacheFactory.getCache method as follows:

NamedCache cache = CacheFactory.getCache("dist-extend");

For C++, the API is as follows:

NamedCache::Handle hCache = CacheFactory::getCache("dist-extend");

For C#, the API is as follows:

INamedCache cache = CacheFactory.GetCache("dist-extend");

This and many other API features are discussed throughout this guide:

• Java – See Creating Java Extend Clients for details on using the API and refer to
Java API Reference for Oracle Coherence for detailed API documentation.

• C++ – See Creating C++ Extend Clients for details on using the API and refer to C+
+ API Reference for Oracle Coherence for detailed API documentation.

• .NET – See Creating .NET Extend Clients for details on using the API and refer
to .NET API Reference for Oracle Coherence for detailed API documentation.

1.4 POF Serialization
Like cache clients, extend clients must serialize objects that are to be stored in the
cluster. C++ and C# clients use Coherence's Portable Object Format (POF), which is a
language agnostic binary format. Java extend clients typically use POF for serialization
as well; however, there are several other options for serializing Java objects, such as
Java native serialization and custom serialization routines. See Developing Applications
with Oracle Coherence for details.

Clients that serialize objects into the cluster can perform get and put based operations
on the objects. However, features such as queries and entry processors require Java-
based cache servers to interact with the data object, rather then simply holding onto a
serialized representation of it. To interact with the object and access its properties, a
Java version of the object must be made available to the cache servers.

See Developing Applications with Oracle Coherence for detailed information on using POF
with Java. For more information on using POF with C++ and C#, see Building
Integration Objects (C++), and Building Integration Objects (.NET) , respectively.

1.5 Understanding Extend Client Configuration Files
Extend clients are configured using several configurations files. The configuration files
are the same as the cluster configuration files. However, client configuration files are
deployed with the client. The files include:

Extend Client APIs

Introduction to Coherence*Extend 1-3

• Cache Configuration Deployment Descriptor – This file is used to define client-side
cache services and invocation services and must provide the address and port of
the cluster-side extend proxy service to which the client connects. The schema for
this file is the coherence-cache-config.xsd file for Java and C++ clients and
the cache-config.xsd file for .NET clients. See Developing Applications with
Oracle Coherence for a complete reference of the elements in this file.

At run time, the first cache configuration file that is found on the classpath is used.
The coherence.cacheconfig system property can also be used to explicitly
specify a cache configuration file. The file can also be set programmatically. See
Developing Applications with Oracle Coherence for general information about the
cache configuration deployment descriptor.

• POF Configuration Deployment Descriptor – This file is used to specify custom
data types when using POF to serialize objects. The schema for this file is the
coherence-pof-config.xsd file for Java and C++ clients and the pof-
config.xsd file for .NETclients. See Developing Applications with Oracle Coherence
for a complete reference of the elements in this file.

At run time, the first POF configuration file that is found on the classpath is used.
The coherence.pof.config system property can also be used to explicitly
specify a POF configuration file. When using POF, a client application uses a
Coherence-specific POF configuration file and a POF configuration file that is
specific to the user types used in the client. See Developing Applications with Oracle
Coherence for general information about the POF configuration deployment
descriptor.

• Operational Override File – This file is used to override the operational deployment
descriptor, which is used to specify the operational and run-time settings that are
used to create, configure and maintain clustering, communication, and data
management services. For extend clients, this file is typically used to override
member identity, logging, security, and licensing. The schema for this file is the
coherence-operational-config.xsd file for Java and C++ clients and the
coherence.xsd file for .NET clients. See Developing Applications with Oracle
Coherence for a complete reference of the elements in this file.

At run time, the first operational override file (tangosol-coherence-
override.xml) that is found on the classpath is used. The
coherence.override system property can also be used to explicitly specify an
operational override file. The file can also be set programmatically. See Developing
Applications with Oracle Coherence for general information about the operational
override file,

1.6 Non-Native Client Support
Coherence provides remote access to caches from REST-based or Memcached-based
clients. As with Coherence*Extend clients, non-native clients use the resources of a
cluster without becoming cluster members. Both REST and Memcached client APIs are
available for many popular programming languages, allowing Coherence to be used
in heterogeneous environments. Non-native clients can also be used to ease the
migration to a Coherence solution that uses the native Coherence client APIs.

1.6.1 REST Client Support
Coherence provides a REST implementation that provides access to cache operations
over the HTTP protocol. Any REST client API can use Coherence caching. REST
support is provided either through an embedded HTTP server that is configured as an

Non-Native Client Support

1-4 Developing Remote Clients for Oracle Coherence

extend-like acceptor on a proxy server, or through deployment to any Java EE-based
application server. For details about using Coherence REST, see Using Coherence
REST

1.6.2 Memcached Client Support
Coherence can be used as a drop-in replacement for memcached servers. Any
memcached client API that supports the memcached binary protocol can use
Coherence distributed caching. Memcached support is provided through a
memcached adaptor that is implemented as an extend-like acceptor that runs on a
proxy server. For details about configuring Coherence to accept memcached client
connections, see Integrating Oracle Coherence.

Non-Native Client Support

Introduction to Coherence*Extend 1-5

Non-Native Client Support

1-6 Developing Remote Clients for Oracle Coherence

2
Building Your First Extend Application

This chapter demonstrates basic tasks that are required to build and run
Coherence*Extend clients. The example client that is used in this chapter is a Java-
based extend client; however, the concepts that are demonstrated are common to both
C++ and .NET extend clients. For complete C++ and .NET examples, see the
Coherence Examples that are distributed as part of the Coherence for Java distribution.

This chapter includes the following sections:

• Overview of the Extend Example

• Step 1: Configure the Cluster Side

• Step 2: Configure the Client Side

• Step 3: Create the Sample Client

• Step 4: Start the Cache Server Process

• Step 5: Run the Application

2.1 Overview of the Extend Example
This chapter is organized into a set of steps that are used to create, configure, and run
a basic Coherence*Extend client. The steps demonstrate many fundamental
Coherence*Extend concepts, such as: configuring an extend proxy, configuring a
remote cache, configuring the remote invocation service, and using the Coherence
API.

Coherence for Java must be installed to complete the steps. For simplicity and ease of
deployment, the client and cache server in this example are run on the same computer.
Typically, extend clients and cache servers are located on separate systems.

2.2 Step 1: Configure the Cluster Side
The example extend client requires a proxy and cache to be configured in the cluster's
cache configuration deployment descriptor. The extend proxy configured in this
example is automatically assigned a proxy port to listen for client TCP/IP
communication. A distributed cache named dist-extend is defined and is used to
store client data in the cluster.

To configure the cluster side:

1. Create an XML file named example-config.xml.

2. Copy the following XML to the file.

<?xml version="1.0"?>

Building Your First Extend Application 2-1

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>extend</scheme-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpCacheService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

3. Save and close the file.

2.3 Step 2: Configure the Client Side
The example client queries a remote cache and also invokes a task which is run on a
remote cluster node. To complete these operations, the example extend client requires
a remote cache scheme and a remote invocation scheme. Invoking tasks is considered
a more advanced use case.

The remote cache scheme includes a service name that matches the service name of a
proxy service on the cluster to which the client connects. In addition, the cache name
that is used in the cluster must also be used as the name of the remote cache scheme.
For this example (based on Step 1), the remote cache scheme service name is
ExtendTcpCacheService and the cache name is dist-extend. Lastly, the remote
cache scheme includes the address and port of the cluster's name service, which is
used to find a proxy. The name service runs on the cluster port which is 7574 by
default.

The example extend client invokes a task on the remote cache and therefore requires a
remote invocation scheme. The remote invocation scheme defines the
ExtendTcpInvocationService service, which allows the client to create an
Invocable instance and send it to the cluster for processing. The remote invocation
scheme uses the name service to find a proxy and includes the name of the proxy
service to which it connects.

To configure the client side:

1. Create an XML file named example-client-config.xml.

2. Copy the following XML to the file.

<?xml version="1.0"?>

Step 2: Configure the Client Side

2-2 Developing Remote Clients for Oracle Coherence

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>remote</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>remote</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>127.0.0.1</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>

 <remote-invocation-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <proxy-service-name>ExtendTcpCacheService</proxy-service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>127.0.0.1</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-invocation-scheme>
 </caching-schemes>
</cache-config>

3. Save and close the file.

2.4 Step 3: Create the Sample Client
#unique_52/unique_52_Connect_42_CHDFDFBA is a simple client that increments an
Integer value in a remote cache using the CacheService and then retrieves the
value from the cache using the InvocationService. Lastly, the client writes the
value to the system output before exiting.

Step 3: Create the Sample Client

Building Your First Extend Application 2-3

Note:

• The client class must be on the classpath for all cache servers in the cluster.
The TestClient$1 class is an anonymous inner class that is generated
during compilation. It is serialized and sent to the InvocationService
running on a cluster member. In this example, the client and cluster
member run on a single computer. Therefore, both Java invocations use the
same classpath.

• This example could also be run on a Coherence node (that is, within the
cluster) as is. The fact that operations are being sent to a remote cluster
node over TCP/IP is completely transparent to the client application.

To create the sample application:

1. Create a text file.

2. Copy the following Java code to the file:

import com.tangosol.net.AbstractInvocable;
import com.tangosol.net.CacheFactory;
import com.tangosol.net.InvocationService;
import com.tangosol.net.NamedCache;
import java.util.Map;

public class TestClient {
 public static void main(String[] asArgs)
 throws Throwable
 {
 NamedCache cache = CacheFactory.getCache("dist-extend");
 Integer IValue = (Integer) cache.get("key");
 if (IValue == null)
 {
 IValue = new Integer(1);
 }
 else
 {
 IValue = new Integer(IValue.intValue() + 1);
 }
 cache.put("key", IValue);

 InvocationService service = (InvocationService)
 CacheFactory.getConfigurableCacheFactory()
 .ensureService("ExtendTcpInvocationService");

 Map map = service.query(new AbstractInvocable()
 {
 public void run()
 {
 System.out.println("This has been run by
 ExtendTcpInvocationService on: " +
 CacheFactory.getCluster().getLocalMember());
 setResult(CacheFactory.getCache("dist-extend").get("key"));
 }
 }, null);

 Integer IValue1 = (Integer) map.get(service.getCluster().

Step 3: Create the Sample Client

2-4 Developing Remote Clients for Oracle Coherence

 getLocalMember());
 System.out.print("The value of the key is " + IValue1);
 }
}

3. Save the file as TestClient.java and close the file.

4. Compile TestClient.java:

javac -cp .;COHERENCE_HOME\lib\coherence.jar TestClient.java

Coherence*Extend InvocationService

Since, by definition, a Coherence*Extend client has no direct knowledge of the cluster
and the members running within the cluster, the Coherence*Extend
InvocationService only allows Invocable tasks to be executed on the JVM to
which the client is connected. Therefore, you should always pass a null member set to
the query() method. As a consequence, the single result of the execution is keyed by
the local Member, which is null if the client is not part of the cluster. This Member can
be retrieved by calling service.getCluster().getLocalMember().
Additionally, the Coherence*Extend InvocationService only supports
synchronous task execution (that is, the execute() method is not supported).

2.5 Step 4: Start the Cache Server Process
Extend Proxies are started as part of a cache server process(DefaultCacheServer).
The cache server must be configured to use the cache configuration that was created in
Step 1. In addition, the cache server process must be able to find the TestClient
application on the classpath at run time.

The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the coherence.cacheconfig
system property:

java -cp COHERENCE_HOME\lib\coherence.jar;PATH_TO_CLIENT -Dcoherence.cacheconfig=PATH
\example-config.xml com.tangosol.net.DefaultCacheServer

Check the console output to verify that the proxy service is started. The output
message is similar to the following:

(thread=Proxy:ExtendTcpProxyService:TcpAcceptor, member=1): TcpAcceptor now
 listening for connections on 192.168.1.5:7077

2.6 Step 5: Run the Application
The TestClient application is started using the java command and must be
configured to use the cache configuration file that was created in Step 2.

The following command line runs the application and assumes that the TestClient
class is located in the current directory. The cache configuration file is explicitly named
using the coherence.cacheconfig system property:

java -cp .;COHERENCE_HOME\lib\coherence.jar -Dcoherence.cacheconfig=PATH\example-
client-config.xml TestClient

The output displays (among other things) that the client successfully connected to the
extend proxy TCP address and the current value of the key in the cache. Run the client
again to increment the key's value.

Step 4: Start the Cache Server Process

Building Your First Extend Application 2-5

Note:

Check the cache server process output for the message confirming that the
invocation task was executed remotely using the
ExtendTcpInvocationService service.

This has been run...

Step 5: Run the Application

2-6 Developing Remote Clients for Oracle Coherence

3
Configuring Extend Proxies

This chapter provides instructions for configuring Coherence*Extend proxies. Extend
proxies allow clients to access and use the caches that are defined in a Coherence
cluster. The instructions in this chapter provide basic setup and do not represent a
complete configuration reference.

This chapter includes the following sections:

• Overview of Configuring Extend Proxies

• Defining Extend Proxy Services

• Defining Caches for Use By Extend Clients

• Disabling Storage on a Proxy Server

• Starting a Proxy Server

3.1 Overview of Configuring Extend Proxies
Extend proxies are servers (DefaultCacheServer processes) in the cluster that
allow extend clients to access and use the caches in a Coherence cluster. Proxy servers
are not responsible for storing data and are only used to accept client requests. A
proxy server is configured with a proxy service, which is the underlying cluster
service that provide access to cache service instances and invocation service instances
that run on the cluster. A Coherence cluster must include an extend proxy service to
accept extend client connections and must include a cache that is used by clients to
retrieve and store data.

Extend proxy services are configured in a cache configuration deployment descriptor.
This deployment descriptor is often referred to as the cluster-side cache configuration
file. It is the same cache configuration file that is used to set up caches on the cluster.
See Developing Applications with Oracle Coherence for detailed information about the
cache configuration deployment descriptor.

3.2 Defining Extend Proxy Services
The extend proxy service (ProxyService) is a cluster service that allows extend
clients to access a Coherence cluster using TCP/IP. A proxy service proxies two types
of cluster services: the CacheService cluster service, which is used by clients to
access caches; and, the InvocationService cluster service, which is used by clients
to execute Invocable objects on the cluster.

The following topics are included in this section:

• Defining a Single Proxy Service Instance

• Defining Multiple Proxy Service Instances

Configuring Extend Proxies 3-1

• Defining Multiple Proxy Services

• Explicitly Configuring Proxy Addresses

• Disabling Cluster Service Proxies

• Specifying Read-Only NamedCache Access

3.2.1 Defining a Single Proxy Service Instance
Extend proxy services are configured within a <caching-schemes> node using the
<proxy-scheme> element. Example 3-1 defines a proxy service named
ExtendTcpProxyService and includes the <autostart> element that is set to
true so that the service automatically starts at a cluster node. See the <proxy-
scheme> element reference in the Developing Applications with Oracle Coherence for a
complete list and description of all <proxy-scheme> subelements.

As configured in Example 3-1, a proxy address and ephemeral port is automatically
assigned and registered with a cluster name service. Extend clients connect to the
name service, which then redirects the client to the address of the requested proxy.
The use of the name service allows proxies to run on ephemeral addresses, which
simplifies port management and configuration. For details about explicitly defining
the address and port of a proxy, see “Explicitly Configuring Proxy Addresses ”.

Example 3-1 Extend Proxy Service Configuration

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

3.2.2 Defining Multiple Proxy Service Instances
Multiple extend proxy service instances can be defined in order to support an
expected number of client connections and to support fault tolerance and load
balancing. Client connections are automatically balanced across proxy service
instances. The algorithm used to balance connections depends on the load balancing
strategy that is configured. See “Load Balancing Connections”, for more information
on load balancing.

To define multiple proxy service instances, include a proxy service definition in
multiple proxy servers and use the same service name for each proxy service. Proxy
services that share the same service name are considered peers.

The following examples define two instances of the ExtendTcpProxyService proxy
service. The proxy service definition is included in each cache server's respective cache
configuration file within the <proxy-scheme> element. The same configuration can
be used on all proxies including proxies that are co-located on the same machine.

On proxy server 1:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>

Defining Extend Proxy Services

3-2 Developing Remote Clients for Oracle Coherence

</caching-schemes>
...

On proxy server 2:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

3.2.3 Defining Multiple Proxy Services
Multiple extend proxy services can be defined in order to provide different
applications with their own proxies. Extend clients for a particular application can be
directed toward specific proxies to provide a more predictable environment.

The following example defines two extend proxy services:
ExtendTcpProxyService1 and ExtendTcpProxyService2:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService1</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService2</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

3.2.4 Explicitly Configuring Proxy Addresses
Older extend clients that predate the name service or clients that have specific firewall
constraints may require specific proxy addresses. In this case, the proxy can be
explicitly configured to listen on a specific address and port. For additional details
about firewall configuration, see “Configuring Firewalls for Extend Clients”.

The <tcp-acceptor> subelement includes the address (IP, or DNS name, and port)
that an extend proxy service listens to for TCP/IP client communication. The address
can be explicitly defined using the <address-provider> element, or the address
can be defined within an operational override configuration file and referenced using
the <address-provider> element. The latter approach decouples the address
configuration from the proxy scheme definition and allows the address to change at
runtime without having to change the proxy definition. For details on referencing an
address definition, see “Using Address Provider References for TCP Addresses”.

Example 3-2 defines a proxy service named ExtendTcpProxyService and is set up
to listen for client requests on a TCP/IP socket that is bound to 198.168.1.5 and
port 7077.

Example 3-2 Explicitly Configured Proxy Service Address

...
<caching-schemes>
 <proxy-scheme>

Defining Extend Proxy Services

Configuring Extend Proxies 3-3

 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <address-provider>
 <local-address>
 <address>192.168.1.5</address>
 <port>7077</port>
 </local-address>
 </address-provider>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

The specified port should be outside of the computer's ephemeral port range to ensure
that it is not automatically assigned to other applications. If the specified port is not
available, then the default behavior is to select the next available port. To disable
automatic port adjustment, add a <port-auto-adjust> element that includes the
value false. Or, to specify a range of ports from which the port is selected, include a
port value that represents the upper limit of the port range. The following example
sets a port range from 7077 to 8000:

<acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address-provider>
 <address>192.168.1.5</address>
 <port>7077</port>
 <port-auto-adjust>8000</port-auto-adjust>
 </address-provider>
 </local-address>
 </tcp-acceptor>
</acceptor-config>

The <address> element supports using CIDR notation as a subnet and mask (for
example 192.168.1.0/24). CIDR simplifies configuration by allowing a single
address configuration to be shared across computers on the same sub-net. Each cluster
member specifies the same CIDR address block and a local NIC on each computer is
automatically found that matches the address pattern. The /24 prefix size matches up
to 256 available addresses: from 192.168.1.0 to 192.168.1.255.

For solutions that do not require a firewall, you can omit the IP and port values which
causes the proxy to use the same IP address and port as TCMP (7574 by default). The
port can also be configured with a listen port of 0, which causes the proxy to listen on
a system assigned ephemeral port. This configuration is the same as omitting the
<acceptor-config> element as shown in “Defining a Single Proxy Service
Instance”. If the proxy is configured to use ephemeral ports, then clients must use the
cluster name service to locate the proxy.

3.2.5 Disabling Cluster Service Proxies
The cache service and invocation service proxies can be disabled within an extend
proxy service definition. Both of these proxies are enabled by default and can be
explicitly disabled if a client does not require a service.

Defining Extend Proxy Services

3-4 Developing Remote Clients for Oracle Coherence

Cluster service proxies are disabled by setting the <enabled> element to false
within the <cache-service-proxy> and <invocation-service-proxy>
respectively.

The following example disables the inovcation service proxy so that extend clients
cannot execute Invocable objects within the cluster:

<proxy-scheme>
 ...
 <proxy-config>
 <invocation-service-proxy>
 <enabled>false</enabled>
 </invocation-service-proxy>
 </proxy-config>
 ...
</proxy-scheme>

Likewise, the following example disables the cache service proxy to restrict extend
clients from accessing caches within the cluster:

<proxy-scheme>
 ...
 <proxy-config>
 <cache-service-proxy>
 <enabled>false</enabled>
 </cache-service-proxy>
 </proxy-config>
 ...
</proxy-scheme>

3.2.6 Specifying Read-Only NamedCache Access
By default, extend clients are allowed to both read and write data to proxied
NamedCache instances. The <read-only> element can be specified within a
<cache-service-proxy> element to prohibit extend clients from modifying cached
content on the cluster. For example:

<proxy-scheme>
 ...
 <proxy-config>
 <cache-service-proxy>
 <read-only>true</read-only>
 </cache-service-proxy>
 </proxy-config>
 ...
</proxy-scheme>

3.3 Defining Caches for Use By Extend Clients
Extend clients read and write data to a cache on the cluster. Any of the cache types can
store client data. For extend clients, the cache on the cluster must have the same name
as the cache that is being used on the client side; see “Defining a Remote Cache”. For
more information about defining caches, see "Using Caches" in the Developing
Applications with Oracle Coherence. This section provides basic examples of three cache
types that are commonly used be extend clients

A Basic Partitioned (distributed) Cache

The following example defines a basic partitioned cache named dist-extend.

Defining Caches for Use By Extend Clients

Configuring Extend Proxies 3-5

...
<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>dist-default</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
</caching-schemes>
...

A Basic Near Cache

A typical near cache is configured to use a local cache (thread safe, highly concurrent,
size-limited and possibly auto-expiring) as the front cache and a remote cache as a
back cache. A near ache is configured by using the near-scheme which has two child
elements: a front-scheme for configuring a local (front) cache and a back-scheme for
defining a remote (back) cache.

A Near Cache is configured by using the <near-scheme> element in the
coherence-cache-config file. This element has two required subelements:
front-scheme for configuring a local (front-tier) cache and a back-scheme for
defining a remote (back-tier) cache. While a local cache (<local-scheme>) is a
typical choice for the front-tier, you can also use non-JVM heap based caches,
(<external-scheme> or <paged-external-scheme>) or schemes based on Java
objects (<class-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A back-
tier cache can be either a distributed cache (<distributed-scheme>) or a remote
cache (<remote-cache-scheme>). The <remote-cache-scheme> element enables
you to use a clustered cache from outside the current cluster.

Optional subelements of <near-scheme> include <invalidation-strategy> for
specifying how the front-tier and back-tier objects are kept synchronized and
<listener> for specifying a listener which is notified of events occurring on the
cache.

Example 3-3 demonstrates a near cache configuration.

Example 3-3 Near Cache Configuration

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend-near</cache-name>
 <scheme-name>extend-near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>

Defining Caches for Use By Extend Clients

3-6 Developing Remote Clients for Oracle Coherence

 <near-scheme>
 <scheme-name>extend-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <high-units>1000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-cache-scheme>
 <scheme-ref>extend-dist</scheme-ref>
 </remote-cache-scheme>
 </back-scheme>
 <invalidation-strategy>all</invalidation-strategy>
 </near-scheme>
 </caching-schemes>
</cache-config>

A Basic Local Cache

A local cache is a cache that is local to (completely contained within) a particular
application. There are several attributes of a local cache that are particularly
interesting:

• A local cache implements the same interfaces that the remote caches implement,
meaning that there is no programming difference between using a local and a
remote cache.

• A local cache can be size-limited. Size-limited means that the local cache can restrict
the number of entries that it caches, and automatically evict entries when the cache
becomes full. Furthermore, both the sizing of entries and the eviction policies can
be customized, for example allowing the cache to be size-limited based on the
memory used by the cached entries. The default eviction policy uses a combination
of Most Frequently Used (MFU) and Most Recently Used (MRU) information,
scaled on a logarithmic curve, to determine what cache items to evict. This
algorithm is the best general-purpose eviction algorithm because it works well for
short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

• A local cache supports automatic expiration of cached entries, meaning that each
cache entry can be assigned a time-to-live value in the cache. Furthermore, the
entire cache can be configured to flush itself on a periodic basis or at a preset time.

• A local cache is thread safe and highly concurrent.

• A local cache provides cache "get" statistics. It maintains hit and miss statistics.
These run-time statistics accurately project the effectiveness of the cache and are
used to adjust size-limiting and auto-expiring settings accordingly while the cache
is running.

The element for configuring a local cache is <local-scheme>. Local caches are
generally nested within other cache schemes, for instance as the front-tier of a near-
scheme. The <local-scheme> provides several optional subelements that let you
define the characteristics of the cache. For example, the <low-units> and <high-
units> subelements allow you to limit the cache in terms of size. When the cache
reaches its maximum allowable size, it prunes itself back to a specified smaller size,
choosing which entries to evict according to a specified eviction-policy (<eviction-
policy>). The entries and size limitations are measured in terms of units as
calculated by the scheme's unit-calculator (<unit-calculator>).

Defining Caches for Use By Extend Clients

Configuring Extend Proxies 3-7

You can also limit the cache in terms of time. The <expiry-delay> subelement
specifies the amount of time from last update that entries are kept by the cache before
being marked as expired. Any attempt to read an expired entry results in a reloading
of the entry from the configured cache store (<cachestore-scheme>). Expired
values are periodically discarded from the cache based on the flush-delay.

If a <cache-store-scheme> is not specified, then the cached data only resides in
memory, and only reflect operations performed on the cache itself. See <local-
scheme> for a complete description of all of the available subelements.

Example 3-4 demonstrates a local cache configuration.

Example 3-4 Local Cache Configuration

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example-local-cache</cache-name>
 <scheme-name>example-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <local-scheme>
 <scheme-name>example-local</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>32000</high-units>
 <low-units>10</low-units>
 <unit-calculator>FIXED</unit-calculator>
 <expiry-delay>10ms</expiry-delay>
 <cachestore-scheme>
 <class-scheme>
 <class-name>ExampleCacheStore</class-name>
 </class-scheme>
 </cachestore-scheme>
 <pre-load>true</pre-load>
 </local-scheme>
 </caching-schemes>
</cache-config>

3.4 Disabling Storage on a Proxy Server
Proxy services run on cluster members that also store data in the cluster (cache
servers). This is generally recommended because scaling cache servers increases both
cluster storage capacity as well as aggregate proxy bandwidth. However it is also
possible to run proxies and storage nodes in two separate tiers and scale them
independently; although, this is generally not necessary and requires more careful
planning. To run separate tiers, a proxy must be explicitly configured to not store any
cache data.

Note:

Storage-enabled proxies bypass the front cache of a near cache and operate
directly against the back cache if it is a partitioned cache.

Disabling Storage on a Proxy Server

3-8 Developing Remote Clients for Oracle Coherence

To disable storage on a proxy server, use the
coherence.distributed.localstorage Java property set to false when
starting the cluster member. For example:

-Dcoherence.distributed.localstorage=false

Storage can also be disabled in the cache configuration file as part of a distributed
cache definition by setting the <local-storage> element to false. For additional
details, see the <distributed-scheme> element reference in the Developing
Applications with Oracle Coherence.

...
<distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <local-storage>false</local-storage>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>
...

3.5 Starting a Proxy Server
A proxy server can be started using the DefaultCacheServer class. To start a proxy
server:

1. Change the current directory to the Oracle Coherence library directory
(%COHERENCE_HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

2. Make sure that the paths are configured so that the Java command runs.

3. Run the DefaultCacheServer class and include the location of the cache
configuration file and the operational configuration file. For example:

java -cp path_to_configuration_files;coherence.jar
 com.tangosol.net.DefaultCacheServer

Starting a Proxy Server

Configuring Extend Proxies 3-9

Starting a Proxy Server

3-10 Developing Remote Clients for Oracle Coherence

4
Configuring Extend Clients

This chapter provides instructions for configuring Coherence*Extend. The instructions
provide basic setup and do not represent a complete configuration reference. In
addition, refer to the platform-specific parts of this guide for additional configuration
instructions.

For a complete Java example that also includes configuration and setup, see Building
Your First Extend Application.

This chapter includes the following sections:

• Overview of Configuring Extend Clients

• Defining a Remote Cache

• Using a Remote Cache as a Back Cache

• Defining Remote Invocation Schemes

• Connecting to Specific Proxy Addresses

• Detecting Connection Errors

• Disabling TCMP Communication

4.1 Overview of Configuring Extend Clients
Coherence*Extend requires configuration both on the client side and the cluster side.
On the cluster side, extend proxy services are setup to accept client requests. Proxy
services provide access to cache service instances and invocation service instances that
run on the cluster. On the client side, remote cache services and the remote invocation
services are configured and used by clients to access cluster data through the extend
proxy service. Extend clients and extend proxy services communicate using TCP/IP.

Extend proxy services are configured in a cache configuration deployment descriptor.
This deployment descriptor is often referred to as the cluster-side cache configuration
file. It is the same cache configuration file that is used to set up caches on the cluster.
Extend clients are also configured using a cache configuration deployment descriptor.
This deployment descriptor is deployed with the client and is often referred to as the
client-side cache configuration file. See Developing Applications with Oracle Coherence for
detailed information about the cache configuration deployment descriptor

Extend clients use the remote cache service and the remote invocation service to
interact with a Coherence cluster. Both remote cache services and remote invocation
services are configured in a cache configuration deployment descriptor that must be
found on the classpath when an extend client application starts.

Configuring Extend Clients 4-1

4.2 Defining a Remote Cache
A remote cache is specialized cache service that routes cache operations to a cache on
the cluster. The remote cache and the cache on the cluster must have the same cache
name. Extend clients use the NamedCache interface as normal to get an instance of the
cache. At run time, the cache operations are not executed locally but instead are sent
using TCP/IP to an extend proxy service on the cluster. The fact that the cache
operations are delegated to a cache on the cluster is transparent to the extend client.

A remote cache is defined within a <caching-schemes> node using the <remote-
cache-scheme> element. Example 4-1 creates a remote cache scheme that is named
ExtendTcpCacheService and connects to the name service, which then redirects
the request to the address of the requested proxy service. The use of the name service
simplifies port management and firewall configuration. For details about <remote-
cache-scheme> subelements, see the Developing Applications with Oracle Coherence.

Example 4-1 Remote Cache Definition

...
<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

If the <service-name> value is different than the proxy scheme <service-name>
value on the cluster, use the <proxy-service-name> element to enter the value of
the <service-name> element that is configured in the proxy scheme. For example:

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <proxy-service-name>SomeOtherProxyService</proxy-service-name>
 ...

As configured in Example 4-1, the remote cache scheme uses the <name-service-
addresses> element to define the socket address (IP, or DNS name, and port) of the

Defining a Remote Cache

4-2 Developing Remote Clients for Oracle Coherence

name service on the cluster. The name service listens on the cluster port (7574) by
default and is available on all machines running cluster nodes. If the target cluster uses
the default cluster port, then the port can be omitted from the configuration.
Moreover, extend clients by default use the cluster discovery addresses to find the
cluster and proxy. If the extend client is on the same network as the cluster, then no
specific configuration is required as long as the client uses a cache configuration file
that specifies the same cluster-side cluster name.

The <name-services-addresses> element also supports the use of the
<address-provider> element for referencing a socket address that is configured in
the operational override configuration file. For details, see “Using Address Provider
References for TCP Addresses”. For details about explicitly defining the address and
port of a proxy, see “Connecting to Specific Proxy Addresses”.

Note:

Clients that are configured to use a name service can only connect to
Coherence versions that also support the name service. In addition, for
previous Coherence releases, the name service automatically listened on a
member's unicast port instead of the cluster port.

4.3 Using a Remote Cache as a Back Cache
Extend clients typically use remote caches as part of a near cache. In such scenarios, a
local cache is used as a front cache and the remote cache is used as the back cache. The
following example creates a near cache that uses a local cache and a remote cache.

...
<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend-near</cache-name>
 <scheme-name>extend-near</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <near-scheme>
 <scheme-name>extend-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <high-units>1000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-cache-scheme>
 <scheme-ref>extend-dist</scheme-ref>
 </remote-cache-scheme>
 </back-scheme>
 <invalidation-strategy>all</invalidation-strategy>
 </near-scheme>

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>

Using a Remote Cache as a Back Cache

Configuring Extend Clients 4-3

 <address>198.168.1.5</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

4.4 Defining Remote Invocation Schemes
A remote invocation scheme defines an invocation service that is used by clients to
execute tasks on the remote Coherence cluster. Extend clients use the
InvocationService interface as normal. At run time, a TCP/IP connection is made
to an extend proxy service and an InvocationService implementation is returned
that executes synchronous Invocable tasks within the remote cluster JVM to which
the client is connected.

Remote invocation schemes are defined within a <caching-schemes> node using
the <remote-invocation-scheme> element. Example 4-2 defines a remote
invocation scheme that is called ExtendTcpInvocationService and uses the
<name-service-address> element to configure the address that the name service
is listening on. For details about the <remote-invocation-scheme> subelements,
see the Developing Applications with Oracle Coherence.

Example 4-2 Remote Invocation Scheme Definition

...
<caching-schemes>
 <remote-invocation-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-invocation-scheme>
</caching-schemes>
...

If the <service-name> value is different than the proxy scheme <service-name>
value on the cluster, then use the <proxy-service-name> element to enter the
value of the <service-name> element that is configured in the proxy scheme. For
example:

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>

Defining Remote Invocation Schemes

4-4 Developing Remote Clients for Oracle Coherence

 <service-name>ExtendTcpInvocationService</service-name>
 <proxy-service-name>SomeOtherProxyService</proxy-service-name>
 ...

4.5 Connecting to Specific Proxy Addresses
Clients can connect to specific proxy addresses if the client predates the name service
feature or if the client has specific firewall constraints. For additional details about
firewall configuration, see “Configuring Firewalls for Extend Clients”.

Example 4-1 uses the <socket-address> element to explicitly configure the address
that an extend proxy service is listening on (198.168.1.5 and port 7077). The
address can also be defined within an operational override configuration file and
referenced using the <address-provider> element. The latter approach decouples
the address configuration from the remote cache definition and allows the address to
change at runtime without having to change the remote cache definition. For details
on referencing an address definition, see “Using Address Provider References for TCP
Addresses”.

Example 4-3 Remote Cache Definition with Explicit Address

...
<caching-scheme-mapping>
 <cache-mapping>
 che-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

If multiple proxy service instances are configured, then a remote cache scheme or
invocation scheme can include each proxy service addresses to ensure a client can
always connect to the cluster. The algorithm used to balance connections depends on
the load balancing strategy that is configured. See “Load Balancing Connections”, for
more information on load balancing.

To configure multiple addresses, add additional <socket-address> child elements
within the <tcp-initiator> element of a <remote-cache-scheme> and
<remote-invocation-scheme> node as required. The following example defines
two extend proxy addresses for a remote cache scheme:

Connecting to Specific Proxy Addresses

Configuring Extend Clients 4-5

...
<caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>192.168.1.5</address>
 <port>7077</port>
 </socket-address>
 <socket-address>
 <address>192.168.1.6</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

While either an IP address or DNS name can be used, DNS names have an additional
advantage: any IP addresses that are associated with a DNS name are automatically
resolved at runtime. This allows the list of proxy addresses to be stored in a DNS
server and centrally managed and updated in real time. For example, if the proxy
address list is going to be 192.168.1.1, 192.168.1.2, and 192.168.1.3, then a
single DNS entry for hostname ExtendTcpCacheService can contain those
addresses and a single address named ExtendTcpCacheService can be specified
for the proxy address:

<tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>ExtendTcpCacheService</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
</tcp-initiator>

4.6 Detecting Connection Errors
When a Coherence*Extend service detects that the connection between the client and
cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, CacheService
or InvocationService) dispatches a MemberEvent.MEMBER_LEFT event to all
registered MemberListeners and the service is stopped. For cases where the
application calls CacheFactory.shutdown(), the service implementation
dispatches a MemberEvent.MEMBER_LEAVING event followed by a
MemberEvent.MEMBER_LEFT event. In both cases, if the client application attempts
to subsequently use the service, the service automatically restarts itself and attempts to
reconnect to the cluster. If the connection is successful, the service dispatches a
MemberEvent.MEMBER_JOINED event; otherwise, a irrecoverable error exception is
thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some mechanisms are inherit to the underlying protocol (such as TCP/IP
in Extend-TCP), whereas others are implemented by the service itself. The latter

Detecting Connection Errors

4-6 Developing Remote Clients for Oracle Coherence

mechanisms are configured by using the <outgoing-message-handler> element.
For details on this element, see Developing Applications with Oracle Coherence. In
particular, the <request-timeout> value controls the amount of time to wait for a
response before abandoning the request. The <heartbeat-interval> and
<heartbeat-timeout> values control the amount of time to wait for a response to a
ping request before the connection is closed. As a best practice, the heartbeat timeout
should be less than the heartbeat interval to ensure other members are not
unnecessarily pinged and to not have multiple pings outstanding.

The following example is taken from Example 4-1 and demonstrates setting the
request timeout to 5 seconds.

...
<initiator-config>
 ...
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
</initiator-config>
...

The following example sets the heartbeat interval to 3 seconds and the heartbeat
timeout to 2 seconds.

...
<initiator-config>
 ...
 <outgoing-message-handler>
 <heartbeat-interval>3s</heartbeat-interval>
 <heartbeat-timeout>2s</heartbeat-timeout>
 </outgoing-message-handler>
</initiator-config>
...

4.7 Disabling TCMP Communication
Java-based extend clients that are located within the network must disable TCMP
communication to exclusively connect to clustered services using extend proxies. If
TCMP is not disabled, Java-based extend clients may cluster with each other and may
even join an existing cluster. TCMP is disabled in the client-side tangosol-
coherence-override.xml file.

To disable TCMP communication, set the <enabled> element within the <packet-
publisher> element to false. For example:

...
<cluster-config>
 <packet-publisher>
 <enabled system-property="coherence.tcmp.enabled">false
 </enabled>
 </packet-publisher>
</cluster-config>
...

The coherence.tcmp.enabled system property is used to specify whether TCMP
is enabled instead of using the operational override file. For example:

-Dcoherence.tcmp.enabled=false

Disabling TCMP Communication

Configuring Extend Clients 4-7

Disabling TCMP Communication

4-8 Developing Remote Clients for Oracle Coherence

5
Advanced Extend Configuration

This is a chapter provides instructions for completing advanced configuration for
extend clients and extend proxies. The instructions in this section are not required and
are typically used to change the default configuration or to address specific use cases.

This chapter includes the following sections:

• Using Address Provider References for TCP Addresses

• Using a Custom Address Provider for TCP Addresses

• Load Balancing Connections

• Using Network Filters with Extend Clients

5.1 Using Address Provider References for TCP Addresses
Proxy service, remote cache, and remote invocation definitions can use the
<address-provider> element to reference a TCP socket address that is defined in
an operational override configuration file instead of explicitly defining an addresses in
a cache configuration file. Referencing socket address definitions allows network
addresses to change without having to update a cache configuration file.

To use address provider references for TCP addresses:

1. Edit the tangosol-coherence-override.xml file (both on the client side and
cluster side) and add a <socket-address> definition, within an <address-
provider> element, that includes the socket's address and port. Use the
<address-provider> elements's id attribute to define a unique ID for the socket
address. For details on the <address-provider> element in an operational
override configuration file, see Developing Applications with Oracle Coherence. The
following example defines an address with proxy1 ID:

...
<cluster-config>
 <address-providers>
 <address-provider id="proxy1">
 <socket-address>
 <address>198.168.1.5</address>
 <port>7077</port>
 </socket-address>
 </address-provider>
 </address-providers>
</cluster-config>
...

2. Edit the cluster-side coherence-cache-config.xml and create, or update, a
proxy service definition and reference a socket address definition by providing the
definition's ID as the value of the <address-provider> element within the

Advanced Extend Configuration 5-1

<tcp-acceptor> element. The following example defines a proxy service that
references the address that is defined in step 1:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <address-provider>proxy1</address-provider>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

3. Edit the client-side coherence-cache-config.xml and create, or update, a
remote cache or remote invocation definition and reference a socket address
definition by providing the definition's ID as the value of the <address-
provider> element within the <tcp-initiator> element. The following
example defines a remote cache that references the address that is defined in step 1:

<remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <address-provider>proxy1</address-provider>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-cache-scheme>

5.2 Using a Custom Address Provider for TCP Addresses
A custom address provider dynamically assigns TCP address and port settings when
binding to a server socket. The address provider must be an implementation of the
com.tangosol.net.AddressProvider interface. Dynamically assigning
addresses is typically used to implement custom load balancing algorithms.

Address providers are defined using the <address-provider> element, which can
be used within the <tcp-acceptor> element for extend proxy schemes and within
the <tcp-initiator> element for remote cache and remote invocation schemes.

The following example demonstrates configuring an AddressProvider
implementation called MyAddressProvider for a TCP acceptor when configuring an
extend proxy scheme.

...
<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <address-provider>
 <class-name>com.MyAddressProvider</class-name>
 </address-provider>

Using a Custom Address Provider for TCP Addresses

5-2 Developing Remote Clients for Oracle Coherence

 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>
...

The following example demonstrates configuring an AddressProvider
implementation called MyClientAddressProvider for a TCP initiator when
configuring a remote cache scheme.

...
<remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <address-provider>
 <class-name>com.MyClientAddressProvider</class-name>
 </address-provider>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-cache-scheme>
...

In addition, the <address-provider> element also supports the use of a <class-
factory-name> element to use a factory class that is responsible for creating
AddressProvider instances and a <method-name> element to specify the static
factory method on the factory class that performs object instantiation.

5.3 Load Balancing Connections
Extend client connections are load balanced across proxy service members. By default,
a proxy-based strategy is used that distributes client connections to proxy service
members that are being utilized the least. Custom proxy-based strategies can be
created or the default strategy can be modified as required. As an alternative, a client-
based load balance strategy can be implemented by creating a client-side address
provider or by relying on randomized client connections to proxy service members.
The random approach provides minimal balancing as compared to proxy-based load
balancing.

Coherence*Extend can be used with F5 BIG-IP Local Traffic Manager (LTM), which
provides hardware-based load balancing. See Integrating with F5 BIG-IP LTM, for
detailed instructions.

The following topics are included in this section:

• Using Proxy-Based Load Balancing

• Using Client-Based Load Balancing

5.3.1 Using Proxy-Based Load Balancing
Proxy-based load balancing is the default strategy that is used to balance client
connections between two or more members of the same proxy service. The strategy is

Load Balancing Connections

Advanced Extend Configuration 5-3

weighted by a proxy's existing connection count, then by its daemon pool utilization,
and lastly by its message backlog.

The proxy-based load balancing strategy is configured within a <proxy-scheme>
definition using a <load-balancer> element that is set to proxy. For clarity, the
following example explicitly specifies the strategy. However, the strategy is used by
default if no strategy is specified and is not required in a proxy scheme definition.

...
<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <load-balancer>proxy</load-balancer>
 <autostart>true</autostart>
</proxy-scheme>
...

Note:

If multiple proxy address are explicitly specified, clients are not required to
list the full set of proxy service members in their cache configuration.
However, a minimum of two proxy service members should always be
configured for redundancy sake.

5.3.1.1 Understanding the Proxy-Based Load Balancing Default Algorithm

The proxy-based load balancing algorithm distributes client connections equally
across proxy service members. The algorithm redirects clients to proxy service
members that are being utilized the least. The following factors are used to determine
a proxy's utilization:

• Connection Utilization – this utilization is calculated by adding the current
connection count and pending connection count. If a proxy has a configured
connection limit and the current connection count plus pending connection count
equals the connection limit, the utilization is considered to be infinite.

• Daemon Pool Utilization – this utilization equals the current number of active
daemon threads. If all daemon threads are currently active, the utilization is
considered to be infinite.

• Message Backlog Utilization – this utilization is calculated by adding the current
incoming message backlog and the current outgoing message backlog.

Each proxy service maintains a list of all members of the proxy service ordered by
their utilization. The ordering is weighted first by connection utilization, then by
daemon pool utilization, and then by message backlog. The list is resorted whenever a
proxy service member's utilization changes. The proxy service members send each
other their current utilization whenever their connection count changes or every 10
seconds (whichever comes first).

When a new connection attempt is made on a proxy, the proxy iterates the list as
follows:

• If the current proxy has the lowest connection utilization, then the connection is
accepted; otherwise, the proxy redirects the new connection by replying to the
connection attempt with an ordered list of proxy service members that have a
lower connection utilization. The client then attempts to connect to a proxy service
member in the order of the returned list.

Load Balancing Connections

5-4 Developing Remote Clients for Oracle Coherence

• If the connection utilizations of the proxies are equal, the daemon pool utilization
of the proxies takes precedence. If the current proxy has the lowest daemon pool
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
service members that have a lower daemon pool utilization. The client then
attempts to connect to a proxy service member in the order of the returned list.

• If the daemon pool utilization of the proxies are equal, the message backlog of the
proxies takes precedence. If the current proxy has the lowest message backlog
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
service members that have a lower message backlog utilization. The client then
attempts to connect to a proxy service member in the order of the returned list.

• If all proxies have the same utilization, then the client remains connected to the
current proxy.

5.3.1.2 Implementing a Custom Proxy-Based Load Balancing Strategy

The com.tangosol.coherence.net.proxy package includes the APIs that are
used to balance client load across proxy service members. See Java API Reference for
Oracle Coherence for details on using the proxy-based load balancing APIs that are
discussed in this section.

A custom strategy must implement the ProxyServiceLoadBalancer interface.
New strategies can be created or the default strategy
(DefaultProxyServiceLoadBalancer) can be extended and modified as required.
For example, to change which utilization factor takes precedence on the list of proxy
services, extend DefaultProxyServerLoadBalancer and pass a custom
Comparator object in the constructor that imposes the desired ordering. Lastly, the
client's Member object (which uniquely defines each client) is passed to a strategy. The
Member object provides a means for implementing client-weighted strategies. See
Developing Applications with Oracle Coherence for details on configuring a client's
member identity information.

To enable a custom load balancing strategy, include an <instance> subelement
within the <load-balancer> element and provide the fully qualified name of a class
that implements the ProxyServiceLoadBalancer interface. The following example
enables a custom proxy-based load balancing strategy that is implemented in the
MyProxyServiceLoadBalancer class:

...
<load-balancer>
 <instance>
 <class-name>package.MyProxyServiceLoadBalancer</class-name>
 </instance>
</load-balancer>
...

In addition, the <instance> element also supports the use of a <class-factory-
name> element to use a factory class that is responsible for creating
ProxyServiceLoadBalancer instances, and a <method-name> element to specify
the static factory method on the factory class that performs object instantiation. See
Developing Applications with Oracle Coherence for detailed instructions on using the
<instance> element.

Load Balancing Connections

Advanced Extend Configuration 5-5

5.3.2 Using Client-Based Load Balancing
The client-based load balancing strategy relies upon a client address provider
implementation to dictate the distribution of clients across proxy service members. If
no client address provider implementation is provided, the extend client tries each
configured proxy service in a random order until a connection is successful. See
“Using a Custom Address Provider for TCP Addresses” for more information on
providing an address provider implementation.

The client-based load balancing strategy is configured within a <proxy-scheme>
definition using a <load-balancer> element that is set to client. For example:

...
<proxy-scheme>
 <service-name>ExtendTcpProxyService1</service-name>
 <load-balancer>client</load-balancer>
 <autostart>true</autostart>
</proxy-scheme>
...

The above configuration sets the client strategy on a single proxy service and must be
repeated for all proxy services that are to use the client strategy. To set the client
strategy as the default strategy for all proxy services if no strategy is specified,
override the load-balancer parameter for the proxy service type in the operational
override file. For example:

...
<cluster-config>
 <services>
 <service id="7">
 <init-params>
 <init-param id="12">
 <param-name>load-balancer</param-name>
 <param-value>client</param-value>
 </init-param>
 </init-params>
 </service>
 </services>
</cluster-config>
...

5.4 Using Network Filters with Extend Clients
Coherence*Extend services support pluggable network filters in the same way as
Coherence clustered services. Filters modify the contents of network traffic before it is
placed on the wire. For more information on configuring filters, see the Developing
Applications with Oracle Coherence.

To use network filters with Coherence*Extend, a <use-filters> element must be
added to the <initiator-config> element in the client-side cache configuration
descriptor and to the <acceptor-config> element in the cluster-side cache
configuration descriptor.

Note:

The contents of the <use-filters> element must be the same in the client
and cluster-side cache configuration descriptors.

Using Network Filters with Extend Clients

5-6 Developing Remote Clients for Oracle Coherence

For example, to compress network traffic exchanged between an extend client and the
clustered service using the predefined gzip filter, configure the client-side <remote-
cache-scheme> and <remote-invocation-scheme> elements as follows:

<remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>
 </initiator-config>
</remote-cache-scheme>

<remote-invocation-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>
 </initiator-config>
</remote-invocation-scheme>

For the cluster side, add a <use-filters> element within the <proxy-scheme>
element that specifies a filter with the same name as the client-side configuration:

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>7077</port>
 </local-address>
 </tcp-acceptor>
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>

Using Network Filters with Extend Clients

Advanced Extend Configuration 5-7

 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Using Network Filters with Extend Clients

5-8 Developing Remote Clients for Oracle Coherence

6
Best Practices for Coherence*Extend

This chapter describes best practices and guidelines for configuring and running
Coherence*Extend.

This chapter includes the following sections:

• Do Not Run a Near Cache on a Proxy Server

• Configure Heap NIO Space to be Equal to the Max Heap Size

• Configure Proxy Service Thread Pooling

• Be Careful When Making InvocationService Calls

• Be Careful When Placing Collection Classes in the Cache

• Configure POF Serializers for Cache Servers

• Configuring Firewalls for Extend Clients

6.1 Do Not Run a Near Cache on a Proxy Server
By definition, a near cache provides local cache access to both recently and often-used
data. If a proxy server is configured with a near cache, it locally caches data accessed
by its remote clients. It is unlikely that these clients are consistently accessing the same
subset of data, thus resulting in a low hit ratio on the near cache. Running a near cache
on a proxy server results in higher heap usage and more network traffic on the proxy
nodes with little to no benefit. For these reasons, it is recommended that a near cache
not be used on a proxy server. To ensure that the proxy server is not running a near
cache, remove all near schemes from the cache configuration being used for the proxy.

6.2 Configure Heap NIO Space to be Equal to the Max Heap Size
NIO memory is used for the TCP connection into the proxy and for POF serialization
and deserialization. The amount of off-heap NIO space should be equal to the
maximum heap space. On Oracle JVMs, this can be set manually if it is not already set:

-XX:MaxDirectMemorySize=MAX_HEAP_SIZE

6.3 Configure Proxy Service Thread Pooling
Proxy services use a dynamic thread pool for daemon (worker) threads. The thread
pool automatically adds and removes threads based on the number of client requests,
total backlog of requests, and the total number of idle threads. The thread pool helps
ensure that there are enough threads to meet the demand of extend clients and that
resources are not waisted on idle threads. Change the thread pool default settings to
optimize client performance.

Best Practices for Coherence*Extend 6-1

This section includes the following topics:

• Understanding Proxy Service Threading

• Setting Proxy Service Thread Pooling Thresholds

• Setting an Exact Number of Threads

6.3.1 Understanding Proxy Service Threading
Each application has different thread requirements based on the number of clients and
the amount of operations being performed. Performance should be closely monitored
to ensure that there are enough threads to service client requests without saturating
clients with too many threads. In addition, log messages are emitted when the thread
pool is using its maximum amount of threads, which may indicate additional threads
are required.

Client applications are classified into two general categories: active applications and
passive applications. In active applications, the extend clients send many requests
(put, get, and so on) which are handled by the proxy service. The proxy service
requires a large number of threads to sufficiently handle these numerous tasks.

In passive applications, the client waits on events (such as map listeners) based on
some specified criteria. Events are handled by a distributed cache service. This service
uses worker threads to push events to the client. For these tasks, the thread pool
configuration for the distributed cache service should include enough worker threads.
See Developing Applications with Oracle Coherence for details on configuring a
distributed service thread count.

Note:

Near caches on extend clients use map listeners when performing invalidation
strategies of ALL, PRESENT, and AUTO. Applications that are write-heavy that
use near caches generate many map events.

6.3.2 Setting Proxy Service Thread Pooling Thresholds
To set thread pooling thresholds for a proxy service, add the <thread-count-max>
and <thread-count-min> elements within the <proxy-scheme> element. See
Developing Applications with Oracle Coherence for a detailed reference of these elements.
The following example changes the default pool settings.

Note:

Setting a minimum and maximum thread count of zero, forces the proxy
service thread to handle all requests; no worker threads are used. Using the
proxy service thread to handle client requests is not a best practice.

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count-max>75</thread-count-max>
 <thread-count-min>10</thread-count-min>
 <autostart>true</autostart>
</proxy-scheme>

Configure Proxy Service Thread Pooling

6-2 Developing Remote Clients for Oracle Coherence

The coherence.proxy.threads.max and coherence.proxy.threads.min
system properties specify the dynamic thread pooling thresholds instead of using the
cache configuration file. For example:

-Dcoherence.proxy.threads.max=75
-Dcoherence.proxy.threads.min=10

6.3.3 Setting an Exact Number of Threads
In most scenarios, dynamic thread pooling is the best way to ensure that a proxy
service always has enough threads to handle requests. In controlled applications
where client usage is known, an explicit number of threads can be specified by setting
the <thread-count-min> and <thread-count-max> element to the same value.
The following example sets 10 threads for use by a proxy service. Additional threads
are not created automatically.

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count-min>10</thread-count-min>
 <thread-count-max>10</thread-count-max>
 <autostart>true</autostart>
</proxy-scheme>

6.4 Be Careful When Making InvocationService Calls
InvocationService allows a member of a service to invoke arbitrary code on any node
in the cluster. On Coherence*Extend however, InvocationService calls are serviced by
the proxy that the client is connected to by default. You cannot choose the particular
node on which the code runs when sending the call through a proxy.

6.5 Be Careful When Placing Collection Classes in the Cache
If a Coherence*Extend client puts a collection object, (such as an ArrayList,
HashSet, HashMap, and so on) directly into the cache, it is deserialized as an
immutable array. If you then extract it and cast it to its original type, then a
ClassCastExceptions is returned. As an alternative, use a Java interface object
(such as a List, Set, Map, and so on) or encapsulate the collection object in another
object. Both of these techniques are illustrated in the following example:

Example 6-1 Casting an ArrayList Object

public class ExtendExample
 {
 @SuppressWarnings({ "unchecked" })
 public static void main(String asArgs[])
 {
 System.setProperty("coherence.cacheconfig", "client-config.xml");
 NamedCache cache = CacheFactory.getCache("test");

 // Create a sample collection
 List list = new ArrayList();
 for (int i = 0; i < 5; i++)
 {
 list.add(String.valueOf(i));
 }
 cache.put("list", list);

 List listFromCache = (List) cache.get("list");

Be Careful When Making InvocationService Calls

Best Practices for Coherence*Extend 6-3

 System.out.println("Type of list put in cache: " + list.getClass());
 System.out.println("Type of list in cache: " + listFromCache.getClass());

 Map map = new TreeMap();
 for (Iterator i = list.iterator(); i.hasNext();)
 {
 Object o = i.next();
 map.put(o, o);
 }
 cache.put("map", map);

 Map mapFromCache = (Map) cache.get("map");

 System.out.println("Type of map put in cache: " + map.getClass());
 System.out.println("Type of map in cache: " + mapFromCache.getClass());
 }
 }

6.6 Configure POF Serializers for Cache Servers
Proxy servers are responsible for deserializing POF data into Java objects. If you run C
++ or .NET applications and store data to the cache, then the conversion to Java objects
could be viewed as an unnecessary step. Coherence provides the option of configuring
a POF serializer for cache servers and has the effect of storing POF format data directly
in the cache.

This can have the following impact on your applications:

• .NET or C++ clients that only perform puts or gets do not require a Java version of
the object. Java versions are still required if deserializing on the server side (for
entry processors, cache stores, and so on).

• POF serializers remove the requirement to serialize/deserialze on the proxy, thus
reducing their memory and CPU requirements.

• Key manipulation within the proxy is discouraged. This could interfere with the
Object decoration used by the POF serializer causing the extend client to not
recognize the key.

Example 6-2 illustrates a fragment from a cache configuration file, which configures
the default POF serializer that is defined in the operational deployment descriptor.

Example 6-2 Configuring a POFSerializer for a Distributed Cache

...
<distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <serializer>pof</serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>
...

6.7 Configuring Firewalls for Extend Clients
Firewalls are often used between extend clients and cluster proxies. When using
firewalls, the recommended best practice is to configure the proxy to use a range of
ports and then open that range of ports in the firewall. In addition, the cluster port

Configure POF Serializers for Cache Servers

6-4 Developing Remote Clients for Oracle Coherence

(7574 by default) must be opened for TCP if the name service is used. Alternatively, a
fixed (non-ephemeral, non-range) port can be used. In this legacy configuration, only
the specific fixed port needs to be opened in the firewall, and clients need to be
configured to connect directly to the proxy's IP and port.

Configuring Firewalls for Extend Clients

Best Practices for Coherence*Extend 6-5

Configuring Firewalls for Extend Clients

6-6 Developing Remote Clients for Oracle Coherence

Part II
Creating Java Extend Clients

Coherence for Java allows Java applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses for Java extend clients include desktop and Web applications that require
access to Coherence caches.

The Coherence for Java library connects to a Coherence*Extend clustered service
instance running within the Coherence cluster using a high performance TCP/IP-
based communication layer. This library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a partitioned or
replicated cache service).

Like cache clients that are members of the cluster, Java extend clients use the
CacheFactory.getCache() API call to retrieve a NamedCache instance. After it is
obtained, a client accesses the NamedCache in the same way as it would if it were part
of the Coherence cluster. The fact that NamedCache operations are being sent to a
remote cluster node (over TCP/IP) is completely transparent to the client application.

Unlike the C++ and .NET distributions, Java does not have a separate client
distribution. The API that is delivered with Coherence for Java is used to create extend
clients. When building Java extend clients, refer to Getting Started in this guide (for
basic setup) and Developing Applications with Oracle Coherence for API details.

Part III
Creating C++ Extend Clients

Coherence for C++ contains the following chapters:

• Introduction to Coherence C++ Clients

• Configuration and Usage for C++ Clients

• Using the Coherence C++ Object Model

• Using the Coherence for C++ Client API

• Building Integration Objects (C++)

• Querying a Cache (C++)

• Performing Continuous Queries (C++)

• Performing Remote Invocations (C++)

• Using Cache Events (C++)

• Performing Transactions (C++)

7
Introduction to Coherence C++ Clients

This chapter describes Coherence for C++ and provides instructions for setting up C+
+ application builds to use Coherence for C++.

This chapter includes the following sections:

• Overview of Coherence for C++

• Setting Up C++ Application Builds

7.1 Overview of Coherence for C++
Coherence for C++ allows C++ applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for C++ include desktop and web applications that require
access to Coherence caches. For details about installing the C++ client distribution, see
Installing Oracle Coherence.

Coherence for C++ consists of a native C++ library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
partitioned or replicated cache service).

A NamedCache instance is retrieved by using the CacheFactory::getCache(...)
API call. After it is obtained, a client accesses the NamedCache in the same way as it
would if it were part of the Coherence cluster. The fact that NamedCache operations
are being sent to a remote cluster node (over TCP/IP) is completely transparent to the
client application.

Note:

The C++ client follows the interface and concepts of the Java client, and users
familiar with Coherence for Java should find migrating to Coherence for C++
straight forward.

7.2 Setting Up C++ Application Builds
This section includes instructions for setting up C++ applications to use Coherence.
This section includes the following topics:

• Setting up the Compiler for Coherence-Based Applications

• Including Coherence Header Files

• Linking the Coherence Library

Introduction to Coherence C++ Clients 7-1

• Setting the run-time Library and Search Path

• Deploying Coherence for C++

7.2.1 Setting up the Compiler for Coherence-Based Applications
When integrating Coherence for C++ into your application's build process, it is
important that certain compiler and linker settings be enabled. Some settings are
optional, but still highly recommended.

MSVC (Visual Studio)

Table 7-1 Compiler Settings for MSVC (Visual Studio)

Setting Build Type Required? Description

/EHsc All Yes Enables C++ exception support

/GR All Yes Enables C++ RTTI

/O2 Release No Enables speed optimizations

/MD Release Yes Link against multi-threaded DLLs

/MDd Debug Yes Link against multi-threaded debug DLLs

g++ / SunPro

Table 7-2 Compiler Settings for g++

Setting Build Type Required Description

-O3 Release No Enables speed optimizations

-m32 / -m64 All No Explicitly set compiler to 32 or 64 bit mode

7.2.2 Including Coherence Header Files
Coherence ships with a set of header files that uses the Coherence API and must be
compiled with your application. The header files are available under the installation's
include directory. The include directory must be part of your compiler's include
search path.

7.2.3 Linking the Coherence Library
Coherence for C++ ships with a release version of the Coherence library. This library is
also suitable for linking with debug versions of application code. The library is located
in the installation's lib directory. During linking, this directory must be part of your
linkers library path.

Table 7-3 Names of Linking Libraries for Release and Debug Versions

Operating System Library

Windows coherence.lib

Solaris libcoherence.so

Setting Up C++ Application Builds

7-2 Developing Remote Clients for Oracle Coherence

Table 7-3 (Cont.) Names of Linking Libraries for Release and Debug Versions

Operating System Library

Linux libcoherence.so

Apple OS X libcoherence.dylib

7.2.4 Setting the run-time Library and Search Path
During execution of a Coherence enabled application the Coherence for C++ shared
library must be available from your application's library search path. This is achieved
by adding the directory which contains the shared library to an operating system
dependent environment variable. The installation includes libraries in its lib
subdirectory.

Table 7-4 Name of the Coherence for C++ Library and Environment Variables

Operating System Environment Variable

Windows PATH

Solaris LD_LIBRARY_PATH

Linux LD_LIBRARY_PATH

Apple (Mac) OS X DYLD_LIBRARY_PATH

For example, to set the PATH environment variable on Windows execute:

c:\coherence\coherence-cpp\examples> set PATH=%PATH%;c:\coherence\coherence-cpp\lib

As with the Java version of Coherence, the C++ version supports a concept of System
Properties to override configuration defaults. System Properties in C++ are set by
using standard operating system environment variables, and use the same names as
their Java counterparts. The coherence.cacheconfig system property specifies the
location of the cache configuration file. You may also set the configuration location
programmatically (CacheFactory::configure()) from application code, the
examples however do not do this.

Table 7-5 Cache Configuration System Property Value for Various Operating
Systems

Operating System System Property

Windows coherence.cacheconfig

Linux CoherenceCacheConfig

Solaris CoherenceCacheConfig

Apple (Mac) OS X CoherenceCacheConfig

Setting Up C++ Application Builds

Introduction to Coherence C++ Clients 7-3

Note:

Some operating system shells, such as the UNIX bash shell, do not support
environment variables which include the '.' character. In this case, you may
specify the name in camel case, where the first letter, and every letter
following a '.' is capitalized. That is, "coherence.cacheconfig" becomes
"CoherenceCacheConfig".

For example, to set the configuration location on Windows execute:

c:\coherence\coherence-cpp\examples> set coherence.cacheconfig=config\extend-cache-
config.xml

7.2.5 Deploying Coherence for C++
Coherence for C++ requires no specialized deployment configuration. Simply link
your application with the Coherence library. See the C++ examples included in the
Coherence Examples for sample build scripts and configuration. The examples are
included as part of the Coherence for Java distribution.

Note:

When deploying to Microsoft Windows the Visual Studio 2005 SP1 C++ run-
time libraries are required. To build the samples, a version of Visual Studio
2005 SP1 or higher is required.

Setting Up C++ Application Builds

7-4 Developing Remote Clients for Oracle Coherence

http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=7B0B0339-613A-46E6-AB4D-080D4D4A8C4E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=7B0B0339-613A-46E6-AB4D-080D4D4A8C4E&displaylang=en

8
Configuration and Usage for C++ Clients

This chapter includes instructions for setting up Coherence for C++ clients.

This chapter includes the following sections:

• General Instructions

• Implement the C++ Application

• Compile and Link the Application

• Configure Paths

• Obtaining a Cache Reference with C++

• Cleaning up Resources Associated with a Cache

• Configuring and Using the Coherence for C++ Client Library

• Operational Configuration File (tangosol-coherence-override.xml)

• Configuring a Logger

8.1 General Instructions
Configuring and using Coherence for C++ requires the following steps:

1. Implement the C++ Application

2. Compile and Link the Application

3. Configure Paths

4. Defining Extend Proxy Services

5. Defining Caches for Use By Extend Clients

6. Defining a Remote Cache

7. Building Integration Objects (C++) (See also Developing Applications with Oracle
Coherence)

8. Starting a Proxy Server

9. Launch the client application.

Configuration and Usage for C++ Clients 8-1

8.2 Implement the C++ Application
Coherence for C++ provides an API that allows C++ applications to access Coherence
clustered services, including data, data events, and data processing from outside the
Coherence cluster.

Coherence for C++ API consists of:

• a set of C++ public header files

• version of static libraries build by all supported C++ compilers

• several samples

The library allows C++ applications to connect to a Coherence*Extend clustered
service instance running within the Coherence cluster using a high performance
TCP/IP-based communication layer. The library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a Partitioned or
Replicated cache service).

Using the Coherence for C++ Client API, provides an overview of the key classes in
the API. For a detailed description of the classes, see the API itself which is included in
the doc directory of the Coherence for C++ distribution.

8.3 Compile and Link the Application
The platforms on which you can compile applications that employ Coherence for C++
are listed in the Supported Platforms and Operating Systems topic.

For example, the following build.cmd file for the Windows 32-bit platform builds,
compiles, and links the files for the Coherence for C++ demo.

@echo off
setlocal

set EXAMPLE=%1%

if "%EXAMPLE%"=="" (
 echo You must supply the name of an example to build.
 goto exit
)

set OPT=/c /nologo /EHsc /Zi /RTC1 /MD /GR /DWIN32
set LOPT=/NOLOGO /SUBSYSTEM:CONSOLE /INCREMENTAL:NO
set INC=/I%EXAMPLE% /Icommon /I..\include
set SRC=%EXAMPLE%*.cpp common*.cpp
set OUT=%EXAMPLE%\%EXAMPLE%.exe
set LIBPATH=..\lib
set LIBS=%LIBPATH%\coherence.lib

echo building %OUT% ...
cl %OPT% %INC% %SRC%
link %LOPT% %LIBS% *.obj /OUT:%OUT%

del *.obj

echo To run this example execute 'run %EXAMPLE%'

:exit

Implement the C++ Application

8-2 Developing Remote Clients for Oracle Coherence

The variables in the file have the following meanings:

• OPT and LOPT point to compiler options

• INC points to the Coherence for C++ API files in the include directory

• SRC points to the C++ header and code files in the common directory

• OUT points to the file that the compiler/linker should generate when it is finished
compiling the code

• LIBPATH points to the library directory

• LIBS points to the Coherence for C++ shared library file

After setting these environment variables, the file compiles the C++ code and header
files, the API files and the OPT files, links the LOPT, the Coherence for C++ shared
library, the generated object files, and the OUT files. It finishes by deleting the object
files.

8.4 Configure Paths
Set up the configuration path to the Coherence for C++ library. This involves setting
an environment variable to point to the library. The name of the environment variable
and the file name of the library are different depending on your platform
environment. For a list of the environment variables and library names for each
platform, see Introduction to Coherence C++ Clients.

8.5 Obtaining a Cache Reference with C++
A reference to a configured cache can be obtained by name by using the
coherence::net::CacheFactory class as follows:

NamedCache::Handle hCache = CacheFactory::getCache("cache_name");

8.6 Cleaning up Resources Associated with a Cache
Instances of all NamedCache implementations should be explicitly released by calling
the NamedCache::release() method when they are no longer needed, to free up
any resources they might hold.

If the particular NamedCache is used for the duration of the application, then the
resources are cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its release()
method when finished using it.

8.7 Configuring and Using the Coherence for C++ Client Library
To use the Coherence for C++ library in your C++ applications, you must link
Coherence for C++ library with your application and provide a Coherence for C++
cache configuration and its location.

The location of the cache configuration file can be set by an environment variable
specified in the sample application section or programmatically.

Configure Paths

Configuration and Usage for C++ Clients 8-3

8.7.1 Setting the Configuration File Location with an Environment Variable
As described in “Setting the run-time Library and Search Path ”, the
coherence.cacheconfig system property specifies the location of the cache
configuration file. To set the configuration location on Windows execute:

c:\coherence_cpp\examples> set coherence.cacheconfig=config\extend-cache-config.xml

8.7.2 Setting the Configuration File Location Programmatically
You can set the location programmatically by using either
DefaultConfigurableCacheFactory::create or
CacheFactory::configure (using the CacheFactory::loadXmlFile helper
method, if needed).

The create method of the DefaultConfigurableCacheFactory class creates a
new Coherence cache factory. The vsFile parameter specifies the name and
location of the Coherence configuration file to load. For example:

static Handle coherence::net::DefaultConfigurableCacheFactory::create (String::View
vsFile = String::NULL_STRING)

The configure method configures the CacheFactory and local member. The
vXmlCache parameter specifies an XML element corresponding to a coherence-
cache-config.xsd and vXmlCoherence specifies an XML element corresponding
to coherence-operational-config.xsd. For example:

static void coherence::net::CacheFactory::configure (XmlElement::View vXmlCache,
XmlElement::View vXmlCoherence = NULL)

The loadXmlFile method reads an XmlElement from the named file. This method
does not configure the CacheFactory, but obtains a configuration which can be
supplied to the configure method. The parameter vsFile specifies the name of the
file to read from. For example:

static XmlElement::Handle coherence::net::CacheFactory::loadXmlFile (String::View
vsFile)

The CacheFactory::configure method is used to set the location of the cache
configuration files for the server/cluster (coherence-extend-config.xml) and for
the C++ client (tangosol-operation-config.xml). For example:

...
// Configure the cache
CacheFactory::configure(CacheFactory::loadXmlFile(String::create(
 "C:\coherence-extend-config.xml")), CacheFactory::loadXmlFile(String::create(
 "C:\tangosol-operation-config.xml")));
...

8.8 Operational Configuration File (tangosol-coherence-override.xml)
The operational configuration override file (called tangosol-coherence-
override.xml by default), controls the operational and run-time settings used by
Oracle Coherence to create, configure and maintain its clustering, communication, and
data management services. As with the Java client use of this file is optional for the C+
+ client. For details about the operational configuration override file, see Developing
Applications with Oracle Coherence.

Operational Configuration File (tangosol-coherence-override.xml)

8-4 Developing Remote Clients for Oracle Coherence

For a C++ client, the file specifies or overrides general operations settings for a
Coherence application that are not specifically related to caching. For a C++ client, the
key elements are for logging, the Coherence product edition, and the location and role
assignment of particular cluster members.

The operational configuration can be configured either programmatically or in the
tangosol-coherence-override.xml file. To configure the operational
configuration programmatically, specify an XML file that follows the coherence-
operational-config.xsd schema and contains an element in the
vXmlCoherence parameter of the CacheFactory::configure method
(coherence::net::CacheFactory::configure (View vXmlCache, View
vXmlCoherence)):

• license-config—The license-config element contains subelements that
allow you to configure the edition and operational mode for Coherence. The
edition-name subelement specifies the product edition (such as Grid Edition,
Enterprise Edition, Real Time Client, and so on) that the member uses. This allows
multiple product editions to be used within the same cluster, with each member
specifying the edition that it uses. Only the RTC (real time client) and DC (data
client) values are recognized for the Coherence for C++ client. The license-
config is an optional subelement of the coherence element, and defaults to
RTC.

• logging-config— The logging-config element contains subelements that
allow you to configure how messages are logged for your system. This element
enables you to specify destination of the log messages, the severity level for logged
messages, and the log message format. The logging-config is a required
subelement of the coherence element. For more information on logging, see
“Configuring a Logger”.

• member-identity—The member-identity element specifies detailed identity
information that is useful for defining the location and role of the cluster member.
You can use this element to specify the name of the cluster, rack, site, computer
name, role, and so on, to which the member belongs. The member-identity is an
optional subelement of the cluster-config element.

The following example illustrates a sample tangosol-coherence.xml file.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <site-name>extend site</site-name>
 <rack-name>rack 1</rack-name>
 <machine-name>computer 1</machine-name>
 </member-identity>
 </cluster-config>

 <logging-config>
 <destination>stderr</destination>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>

Operational Configuration File (tangosol-coherence-override.xml)

Configuration and Usage for C++ Clients 8-5

 <license-config>
 <edition-name>RTC</edition-name>
 <license-mode>prod</license-mode>
 </license-config>
</coherence>

8.9 Configuring a Logger
The Logger is configured using the logging-config element in the operational
configuration file. The element provides the following attributes that can record
detailed information about logged errors.

• destination—determines the type of LogOutput used by the Logger. Valid
values are:

– stderr for Console.Error

– stdout for Console.Out

– file path if messages should be directed to a file

• severity-level—determines the log level that a message must meet or exceed
to be logged.

• message-format—determines the log message format.

• character-limit—determines the maximum number of characters that the
logger daemon processes from the message queue before discarding all remaining
messages in the queue.

The following example illustrates an operational configuration that contains a logging
configuration. For more information on operational configuration, see “Operational
Configuration File (tangosol-coherence-override.xml) ”.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <logging-config>
 <destination>stderr</destination>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>
</coherence>

Configuring a Logger

8-6 Developing Remote Clients for Oracle Coherence

9
Using the Coherence C++ Object Model

This chapter describes the Coherence for C++ object model. The object model is the
foundation on which Coherence for C++ is built.

This chapter includes the following sections:

• Using the Object Model

• Writing New Managed Classes

• Diagnostics and Troubleshooting

• Application Launcher - Sanka

9.1 Using the Object Model
The following sections contains general information for writing code which uses the
object model.

9.1.1 Coherence Namespaces
This coherence namespace contains the following general purpose namespaces:

• coherence::lang—the essential classes that comprise the object model

• coherence::util—utility code, including collections

• coherence::net—network and cache

• coherence::stl—C++ Standard Template Library integration

• coherence::io—serialization

Although each class is defined within its own header file, you can use namespace-
wide header files to facilitate the inclusion of related classes. As a best practice include,
at a minimum, coherence/lang.ns in code that uses this object model.

9.1.2 Understanding the Base Object
The coherence::lang::Object class is the root of the class hierarchy. This class
provides the common interface for abstractly working with Coherence class instances.
Object is an instantiable class that provides default implementations for the following
functions.

• equals

• hashCode

• clone (optional)

Using the Coherence C++ Object Model 9-1

• toStream (that is, writing an Object to an std::ostream)

See coherence::lang::Object in the C++ API for more information.

9.1.3 Automatically Managed Memory
In addition to its public interface, the Object class provides several features used
internally. Of these features, the reference counter is perhaps the most important. It
provides automatic memory management for the object. This automatic management
eliminates many of the problems associated with object reference validity and object
deletion responsibility. This management reduces the potential of programming errors
which may lead to memory leaks or corruption. This results in a stable platform for
building complex systems.

The reference count, and other object "life-cycle" information, operates in an efficient
and thread-safe manner by using lock-free atomic compare-and-set operations. This
allows objects to be safely shared between threads without the risk of corrupting the
count or of the object being unexpectedly deleted due to the action of another thread.

9.1.3.1 Referencing Managed Objects

To track the number of references to a specific object, there must be a level of
cooperation between pointer assignments and a memory manager (in this case the
object). Essentially the memory manager must be informed each time a pointer is set to
reference a managed object. Using regular C++ pointers, the task of informing the
memory manager would be left up to the programmer as part of each pointer
assignment. In addition to being quite burdensome, the effects of forgetting to inform
the memory manager would lead to memory leaks or corruption. For this reason the
task of informing the memory manager is removed from the application developer,
and placed on the object model, though the use of smart pointers. Smart pointers offer a
syntax similar to normal C++ pointers, but they do the bookkeeping automatically.

The Coherence C++ object model contains a variety of smart pointer types, the most
prominent being:

• View—A smart pointer that can call only const methods on the referenced object

• Handle—A smart pointer that can call both const and non-const methods on
the referenced object.

• Holder—A special type of handle that enables you to reference an object as either
const or non-const. The holder remembers how the object was initially assigned,
and returns only a compatible form.

Other specialized smart pointers are described later in this section, but the View,
Handle, and Holder smart pointers are used most commonly.

Note:

In this documentation, the term handle (with a lowercase "h") refers to the
various object model smart pointers. The term Handle (with an uppercase
"H") refers to the specific Handle smart pointer.

Using the Object Model

9-2 Developing Remote Clients for Oracle Coherence

9.1.3.2 Using handles

By convention each managed class has these nested-types corresponding to these
handles. For instance the managed coherence::lang::String class defines
String::Handle, String::View, String::Holder.

9.1.3.2.1 Assignment of handles

Assignment of handles follows normal inheritance assignment rules. That is, a Handle
may be assigned to a View, but a View may not be assigned to a Handle, just like a
const pointer cannot be assigned to a non-const pointer.

9.1.3.2.2 Dereferencing handles

When dereferencing a handle that references NULL, the system throws a
coherence::lang::NullPointerException instead of triggering a traditional
segmentation fault.

For example, this code would throw a NullPointerException if hs == NULL:

String::Handle hs = getStringFromElsewhere();
cout << "length is " << hs->length() << end1;

9.1.3.3 Managed Object Instantiation

All managed objects are heap allocated. The reference count—not the stack—
determines when an object can be deleted. To prevent against accidental stack-based
allocations, all constructors are marked protected, and public factory methods are
used to instantiate objects.

The factory method is named create and there is one create method for each
constructor. The create method returns a Handle rather than a raw pointer. For
example, the following code creates a new instance of a string:

String::Handle hs = String::create("hello world");

By comparison, these examples are incorrect and do not compile:

String str("hello world");
String* ps = new String("hello world");

9.1.4 Managed Strings
All objects within the model, including strings, are managed and extend from Object.
Instead of using char* or std::string, the object model uses its own managed
coherence::lang::String class. The String class supports ASCII and the full
Unicode BML character set.

9.1.4.1 String Instantiation

String objects can easily be constructed from char* or std::string strings. For
example:

const char* pcstr = "hello world";
std:string stdstr(pcstr);
String::Handle hs = String::create(pcstr);
String::Handle hs2 = String::create(stdstr);

The managed string is a copy of the supplied string and contains no references or
pointers to the original. You can convert back, from a managed String to any other
string type, by using getCString() method. This returns a pointer to the original

Using the Object Model

Using the Coherence C++ Object Model 9-3

const char*. Strings can also be created using the standard C++ << operator, when
coupled with the COH_TO_STRING macro.

String::Handle hs = COH_TO_STRING("hello " << getName() << " it is currently " <<
getTime());

9.1.4.2 Auto-Boxed Strings

To facilitate the use of quoted string literals, the String::Handle and
String::View support auto-boxing from const char*, and const std::string.
Auto-boxing allows the code shown in the prior samples to be rewritten:

String::Handle hs = "hello world";
String::Handle hs2 = stdstr;

Auto-boxing is also available for other types. See coherence::lang::BoxHandle
for details.

9.1.5 Type Safe Casting
Handles are type safe, in the following example, the compiler does not allow you to
assign an Object::Handle to a String::Handle, because not all Objects are
Strings.

Object::Handle ho = getObjectFromSomewhere();
String::Handel hs = ho; // does not compile

However, the following example does compile, as all Strings are Objects.

String::Handle hs = String::create("hello world");
Object::Handle ho = hs; // does compile

9.1.5.1 Down Casting

For situations in which you want to down-cast to a derived Object type, you must
perform a dynamic cast using the C++ RTTI (run-time type information) check and
ensure that the cast is valid. The Object model provides helper functions to ease the
syntax.

• cast<H>(o)—attempt to transform the supplied handle o to type H, throwing an
ClassCastException on failure

• instanceof<H>(o)—test if a cast of o to H is allowable, returning true for
success, or false for failure

These functions are similar to the standard C++ dynamic_cast<T>, but do not
require access to the raw pointer.

The following example shows how to down cast a Object::Handle to a
String::Handle:

Object::Handle ho = getObjectFromSomewhere();
String::Handle hs = cast<String::Handle>(ho);

The cast<H> function throws a coherence::lang::ClassCastException if the
supplied object was not of the expected type. The instanceof<H> function tests if an
Object is of a particular type without risking an exception being thrown. Such checks
or generally only needed for places where the actual type is in doubt. For example:

Object::Handle ho = getObjectFromSomewhere();

Using the Object Model

9-4 Developing Remote Clients for Oracle Coherence

if (instanceof<String::Handle>(ho))
 {
 String::Handle hs = cast<String::Handle>(ho);
 }
else if (instanceof<Integer32::Handle>(ho))
 {
 Integer32::Handle hn = cast<Integer32::Handle>(ho);
 }
else
 {
 ...
 }

9.1.6 Managed Arrays
Managed arrays are provided by using the coherence::lang::Array<T> template
class. In addition to being managed and adding safe and automatic memory
management, this class includes the overall length of the array, and bounds checked
indexing.

You can index an array by using its Handle's subscript operator, as shown in this
example:

Array<int32_t>::Handle harr = Array<int32_t>::create(10);

int32_t nTotal = 0;
for (size32_t i = 0, c = harr->length; i < c; ++i)
 {
 nTotal += harr[i];
 }

The object model supports arrays of C++ primitives and managed Objects. Arrays of
derived Object types are not supported, only arrays of Object, casting must be
employed to retrieve the derived handle type. Arrays of Objects are technically
Array<MemberHolder<Object> >, and defined to ObjectArray for easier
readability.

9.1.7 Collection Classes
The coherence::util* namespace includes several collection classes and interfaces
that may be useful in your application. These include:

• coherence::util::Collection —interface

• coherence::util::List—interface

• coherence::util::Set—interface

• coherence::util::Queue—interface

• coherence::util::Map—interface

• coherence::util::Arrays—implementation

• coherence::util::LinkedList—implementation

• coherence::util::HashSet—implementation

• coherence::util::DualQueue—implementation

• coherence::util::HashMap—implementation

Using the Object Model

Using the Coherence C++ Object Model 9-5

• coherence::util::SafeHashMap—implementation

• coherence::util::WeakHashMap—implementation

• coherence::util::IdentityHashMap—implementation

These classes also appear as part of the Coherence Extend API.

Similar to ObjectArray, Collections contain Object::Holders, allowing them
to store any managed object instance type. For example:

Map::Handle hMap = HashMap::create();
String::View vKey = "hello world";

hMap->put(vKey, Integer32::create(123));

Integer32::Handle hValue = cast<Integer32::Handle>(hMap->get(vKey));

9.1.8 Managed Exceptions
In the object model, exceptions are also managed objects. Managed Exceptions allow
caught exceptions to be held as a local variable or data member without the risk of
object slicing.

All Coherence exceptions are defined by using a throwable_spec and derive from
the coherence::lang::Exception class, which derives from Object. Managed
exceptions are not explicitly thrown by using the standard C++ throw statement, but
rather by using a COH_THROW macro. This macro sets stack information and then calls
the exception's raise method, which ultimately calls throw. The resulting thrown
object may be caught an the corresponding exceptions View type, or an inherited
View type. Additionally these managed exceptions may be caught as standard const
std::exception classes. The following example shows a try/catch block with
managed exceptions:

try
 {
 Object::Handle h = NULL;
 h->hashCode(); // trigger an exception
 }
catch (NullPointerException::View e)
 {
 cerr << "caught" << e <<endl;
 COH_THROW(e); // rethrow
 }

Note:

This exception could also have been caught as Exception::View or const
std::exception&.

9.1.9 Object Immutability
In C++ the information of how an object was declared (such as const) is not available
from a pointer or reference to an object. For instance a pointer of type const Foo*,
only indicates that the user of that pointer cannot change the objects state. It does not
indicate if the referenced object was actually declared const, and is guaranteed not to
change. The object model adds a run-time immutability feature to allow the
identification of objects which can no longer change state.

Using the Object Model

9-6 Developing Remote Clients for Oracle Coherence

The Object class maintains two reference counters: one for Handles and one for
Views. If an object is referenced only from Views, then it is by definition immutable,
as Views cannot change the state, and Handles cannot be obtained from Views. The
isImmutable() method (included in the Object class) can test for this condition.
The method is virtual, allowing subclasses to alter the definition of immutable. For
example, String contains no non-const methods, and therefore has an isImmutable()
method that always returns true.

Note that when immutable, an object cannot revert to being mutable. You cannot cast
away const-ness to turn a View into a Handle as this would violate the proved
immutability.

Immutability is important with caching. The Coherence NearCache and
ContinuouQueryCache can take advantage of the immutability to determine if a
direct reference of an object can be stored in the cache or if a copy must be created.
Additionally, knowing that an object cannot change allows safe multi-threaded
interaction without synchronization.

9.1.10 Integrating Existing Classes into the Object Model
Frequently, existing classes must be integrated into the object model. A typical
example would be to store a data-object into a Coherence cache, which only supports
storage of managed objects. As it would not be reasonable to require that pre-existing
classes be modified to extend from coherence::lang::Object, the object model
provides an adapter which automatically converts a non-managed plain old C++ class
instance into a managed class instance at run time.

This is accomplished by using the coherence::lang::Managed<T> template class.
This template class extends from Object and from the supplied template parameter
type T, effectively producing a new class which is both an Object and a T. The new
class can be initialized from a T, and converted back to a T. The result is an easy to use,
yet very powerful bridge between managed and non-managed code.

See the API doc for coherence::lang::Managed for details and examples.

9.2 Writing New Managed Classes
The following section provides information necessary to write new managed classes,
that is, classes which extend from Object. The creation of new managed classes is
required when you are creating new EventListeners, EntryProcessors, or
Filter types. They are not required when you are working with existing C++ data
objects or making use of the Coherence C++ API. See the previous section for details
on integration non-managed classes into the object model.

9.2.1 Specification-Based Managed Class Definition
Specification-based definitions (specs) enable you to quickly define managed classes in
C++.

Specification-based definitions are helpful when you are writing your own
implementation of managed objects.

There are various forms of specs used to create different class types:

• class_spec—standard instantiatable class definitions

• cloneable_spec—cloneable class definitions

Writing New Managed Classes

Using the Coherence C++ Object Model 9-7

• abstract_spec—non-instantiatable class definitions, with zero or more pure
virtual methods

• interface_spec—for defining interfaces (pure virtual, multiply inheritable
classes)

• throwable_spec—managed classes capable of being thrown as exceptions

Specs automatically define these features on the class being spec'd:

• Handles, Views, Holders

• static create() methods which delegate to protected constructors

• virtual clone() method delegating to the copy constructor

• virtual sizeOf() method based on ::sizeof()

• super typedef for referencing the class from which the defined class derives

• inheritance from coherence::lang::Object, when no parent class is specified
by using extends<>

To define a class using specs, the class publicly inherits from the specs above. Each of
these specs are parametrized templates. The parameters are as follows:

• The name of the class being defined.

• The class to publicly inherit from, specified by using an extends<> statement,
defaults to extends<Object>

– This element is not supplied in interface_spec

– Except for extends<Object>, the parent class is not derived from virtually

• A list of interfaces implemented by the class, specified by using an implements<>
statement

– All interfaces are derived from using public virtual inheritance

Note that the extends<> parameter is note used in defining interfaces.

The following example illustrates using interface_spec to define a Comparable
interface:

class Comparable
 : public interface_spec<Comparable>
 {
 public:
 virtual int32_t compareTo(Object::View v) const = 0;
 };

The following example illustrates using interface_spec to define a derived
interface Number:

class Number
 : public interface_spec<Number,
 implements<Comparable> >
 {
 public:
 virtual int32_t getValue() const = 0;
 };

Writing New Managed Classes

9-8 Developing Remote Clients for Oracle Coherence

The following example uses cloneable_spec to produce an implementation.

Note:

To support the auto-generated create methods, instantiatable classes must
declare the coherence::lang::factory<> template as a friend. By
convention this is the first statement within the class body.

class Integer
 : public cloneable_spec<Integer,
 extends<Object>,
 implements<Number> >
 {
 friend class factory<Integer>;

 protected:
 Integer(int32_t n)
 : super(), m_n(n)
 {
 }

 Integer(const Integer& that)
 : super(that), m_n(that.m_n)
 {
 }

 public:
 virtual int32_t getValue() const
 {
 return m_n;
 }

 virtual int32_t compareTo(Object::View v) const
 {
 return getValue() - cast<Integer::View>(v)->getValue();
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getValue();
 }

 private:
 int32_t m_n;
 };

The class definition can also be defined without the use of specs. For example:

class Integer
 : public virtual Object, public virtual Number
 {
 public:
 typedef TypedHandle<const Integer> View; // was auto-generated
 typedef TypedHandle<Integer> Handle; // was auto-generated
 typedef TypedHolder<Integer> Holder; // was auto-generated
 typedef super Object; // was auto-generated

 // was auto-generated
 static Integer::Handle create(const int32_t& n)

Writing New Managed Classes

Using the Coherence C++ Object Model 9-9

 {
 return new Integer(n);
 }

 protected:
 Integer(int32_t n)
 : super(), m_n(n)
 {
 }

 Integer(const Integer& that)
 : super(that), m_n(that.n)
 {
 }

 public:
 virtual int32_t getValue() const
 {
 return m_n;
 }

 virtual int32_t compareTo(Object::View v) const
 {
 return getValue() - cast<Integer::View>(v)->getValue();
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getValue();
 }

 // was auto-generated
 virtual Object::Handle clone() const
 {
 return new Integer(*this);
 }

 // was auto-generated
 virtual size32_t sizeOf() const
 {
 return ::sizeof(Integer);
 }

 private:
 int32_t m_n;
 };

The following example illustrates using the spec'd class:

Integer::Handle hNum1 = Integer::create(123);
Integer::Handle hNum2 = Integer::create(456);

if (hNum1->compareTo(hNum2) > 0)
 {
 std::cout << hNum1 << " is greater then " << hNum2 << std::endl;
 }

9.2.2 Equality, Hashing, Cloning, Immutability, and Serialization
Equality, Hashing, Cloning, Immutability, and Serialization all identify the state of an
object and generally have similar implementation concerns. Simply put, all data

Writing New Managed Classes

9-10 Developing Remote Clients for Oracle Coherence

members referenced in one of these methods, are likely referenced in all of the
methods. Conversely any data members which are not referenced by one, should
likely not be referenced by any of these methods.

Consider the simple case of a HashSet::Entry, which contains the well known key
and value data members. These are to be considered in the equals method and would
likely be tested for equality by using a call to their own equals method rather than
through reference equality. If Entry also contains, as part of the implementation of
the HashSet, a handle to the next Entry within the HashSet's bucket and perhaps
also contains a handle back to the HashSet itself, should these be considered in equals
as well? Likely not, it would seem reasonable that comparing two entries consisting of
equal keys and values from two maps should be considered equal. Following this line
of thought the hashCode method on Entry would completely ignore data members
except for key and value, and hashCode would be computed using the results of its
key and value hashCode, rather then using their identity hashCode. that is, a deep
equality check in equals implies a deep hash in hashCode.

For clone, only the key and value (not all the data members) require cloning. To clone
the parent Map as part of clone, the Entry would make no sense and a similar
argument can be made for cloning the handle to the next Entry. This line of thinking
can be extended to the isImmutable method, and to serialization as well. While it is
certainly not a hard and fast rule, it is worth considering this approach when
implementing any of these methods.

9.2.3 Threading
The object model includes managed threads, which allows for easy creation of
platform independent, multi-threaded, applications. The threading abstraction
includes support for creating, interrupting, and joining threads. Thread local storage is
available from the coherence::lang::ThreadLocalreference class. Thread
dumps are also available for diagnostic and troubleshooting purposes. The managed
threads are ultimately wrappers around the system's native thread type, such as
POSIX or Windows Threads. This threading abstraction is used internally by
Coherence, but is available for the application, if necessary.

The following example illustrates how to create a Runnable instance and spawn a
thread:

class HelloRunner
 : public class_spec<HelloRunner,
 extends<Object>,
 implements<Runnable> >
 {
 friend class factory<HelloRunner>;

 protected:
 HelloRunner(int cReps)
 : super(), m_cReps(cReps)
 {
 }

 public:
 virtual void run()
 {
 for (int i = 0; i < m_Reps; ++i)
 {
 Thread::sleep(1000);
 std::cout << "hello world" << std::endl;
 }

Writing New Managed Classes

Using the Coherence C++ Object Model 9-11

 }

 protected:
 int m_cReps;
 };

...

Thread::Handle hThread = Thread::create(HelloRunner::create(10));
hThread->start();
hThread->join();

Refer to coherence::lang::Thread and coherence::lang::Runnable for
more information.

9.2.4 Weak References
The primary functional limitation of a reference counting scheme is automatic cleanup
of cyclical object graphs. Consider the simple bi-directional relationship illustrated in
Figure 9-1.

Figure 9-1 A Bi-Directional Relationship

In this picture, both A and B have a reference count of one, which keeps them active.
What they do not realize is that they are the only things keeping each other active, and
that no external references to them exist. Reference counting alone is unable to handle
these self sustaining graphs and memory would be leaked.

The provided mechanism for dealing with graphs is weak references. A weak
reference is one which references an object, but not prevent it from being deleted. As
illustrated in Figure 9-2, the A->B->A issue could be resolved by changing it to the
following.

Figure 9-2 Establishing a Weak Reference

Where A now has a weak reference to B. If B were to reach a point where it was only
referenced weakly, it would clear all weak references to itself and then be deleted. In
this simple example that would also trigger the deletion of A, as B had held the only
reference to A.

Weak references allow for construction of more complicated structures then this. But it
becomes necessary to adopt a convention for which references are weak and which are
strong. Consider a tree illustrated in Figure 9-3. The tree consists of nodes A, B, C; and
two external references to the tree X, and Y.

Writing New Managed Classes

9-12 Developing Remote Clients for Oracle Coherence

Figure 9-3 Weak and Strong References to a Tree

In this tree parent (A) use strong references to children (B, C), and children use weak
references to their parent. With the picture as it is, reference Y could navigate the
entire tree, starting at child B, and moving up to A, and then down to C. But what if
reference X were to be reset to NULL? This would leave A only being weakly
referenced and it would clear all weak references to itself, and be deleted. In deleting
itself there would no longer be any references to C, which would also be deleted. At
this point reference Y, without having taken any action would now refer to the
situation illustrated in Figure 9-4.

Figure 9-4 Artifacts after Deleting the Weak References

This is not necessarily a problem, just a possibility which must be considered when
using weak references. To work around this issue, the holder of Y would also likely
maintain a reference to A to ensure the tree did not dissolve away unexpectedly.

See the Javadoc for coherence::lang::WeakReference, WeakHandle, and
WeakView for usage details.

9.2.5 Virtual Constructors
As is typical in C++, referencing an object under construction can be dangerous.
Specifically references to this are to be avoided within a constructor, as the object
initialization has not yet completed. For managed objects, creating a handle to this
from the constructor usually causes the object to be destructed before it ever finishes
being created. Instead, the object model includes support for virtual constructors. The
virtual constructor onInit is defined by Object and can be overridden on derived
classes. This method is called automatically by the object model just after construction
completes, and just before the new object is returned from its static create method.
Within the onInit method, it is safe to reference this to call virtual functions and to
hand out references to the new object to other class instances. Any derived
implementation of onInit must include a call to super::onInit() to allow the
parent class to also initialize itself.

9.2.6 Advanced Handle Types
In addition to the Handle and View smart pointers (discussed previously), the object
model contains several other specialized variants that can be used. For the most part
use of these specialized smart pointers is limited to writing new managed classes, and
they do not appear in normal application code.

Writing New Managed Classes

Using the Coherence C++ Object Model 9-13

Table 9-1 Advanced Handle Types Supported by Coherence for C++

Type Thread-safe? View Notes

coherence:lang:TypedHandle<T> No Conditional on T The implementation of Handle
and View

coherence:lang:BoxHandle<T> No Conditional on T Allows automatic creating of
managed objects from primitive
types.

coherence:lang:TypedHolder<T> No May May act as a Handle or a View.
Basic types stored in collections

coherence:lang:Immutable<T> No Yes Ensures const-ness of referring
object.

coherence:lang:WeakHandle<T> Yes No Does not prevent destruction of
referring object.

coherence:lang:WeakView<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:WeakHolder<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:MemberHandle<T> Yes No Transfers const-ness of
enclosing object.

coherence:lang:MemberView<T> Yes Yes Thread-safe View.

coherence:lang:MemberHolder<T> Yes May May act a thread-safe Handle or
View.

coherence:lang:FinalHandle<T> Yes No Thread-safe const transferring
read-only Handle.

coherence:lang:FinalView<T> Yes Yes Thread-safe read-only View.

coherence:lang:FinalHolder<T> Yes May May act a thread-safe read-only
Handle or View.

9.2.7 Thread Safety
Although the base Object class is thread-safe, this cannot provide automatic thread
safety for the state of derived classes. As is typical it is up to each individual derived
class implementation to provide for higher level thread-safety. The object model
provides some facilities to aid in writing thread-safe code.

9.2.7.1 Synchronization and Notification

Every Object in the object model can be a point of synchronization and notification.
To synchronize an object and acquire its internal monitor, use a COH_SYNCHRONIZED
macro code block. For example:

SomeClass::Handle h = getObjectFromSomewhere();

COH_SYNCHRONIZED (h)
 {
 // monitor of Object referenced by h has been acquired

Writing New Managed Classes

9-14 Developing Remote Clients for Oracle Coherence

 if (h->checkSomeState())
 {
 h->actOnThatState();
 }
 } // monitor is automatically released

The COH_SYNCHRONIZED block performs the monitor acquisition and release. You can
safely exit the block with return, throw, COH_THROW, break, continue, and goto
statements.

The Object class includes wait(), wait(timed), notify(), and notifyAll()
methods for notification purposes. To call these methods, the caller must have
acquired the Objects's monitor. Refer to coherence::lang::Object for details.

Read-write locks are also provided, see coherence::util::ThreadGate for
details.

9.2.7.2 Thread Safe Handles

The Handle, View, and Holder nested types defined on managed classes are
intentionally not thread-safe. That is it is not safe to have multiple threads share a
single handle. There is an important distinction here: thread-safety of the handle is
being discussed not the object referenced by the handle. It is safe to have multiple
distinct handles that reference the same object from different threads without
additional synchronization.

This lack of thread-safety for these handle types offers a significant performance
optimization as the vast majority of handles are stack allocated. So long as references
to these stack allocated handles are not shared across threads, there is no thread-safety
issue to be concerned with.

Thread-safe handles are needed any time a single handle may be referenced by
multiple threads. Typical cases include:

• Global handles - using the standard handle types as global or static variable is not
safe.

• Non-managed multi-threaded application code - Use of standard handles within
data structures which may be shared across threads is unsafe.

• Managed classes with handles as data members - It should be assumed that any
instance of a managed class may be shared by multiple threads, and thus using
standard handles as data members is unsafe. Note that while it may not be strictly
true that all managed classes may be shared across threads, if an instance is passed
to code outside of your explicit control (for instance put into a cache), there is no
guarantee that the object is not visible to other threads.

The use of standard handles should be replaced with thread-safe handles in such
cases. The object model includes the following set of thread-safe handles.

• coherence::lang::MemberHandle<T>—thread-safe version of T::Handle

• coherence::lang::MemberView<T>—thread-safe version of T::View

• coherence::lang::MemberHolder<T>—thread-safe version of T::Holder

• coherence::lang::FinalHandle<T>—thread-safe final version of
T::Handle

Writing New Managed Classes

Using the Coherence C++ Object Model 9-15

• coherence::lang::FinalView<T>—thread-safe final version of T::View

• coherence::lang::FinalHolder<T>—thread-safe final version of
T::Holder

• coherence::lang::WeakHandle<T>—thread-safe weak handle to T

• coherence::lang::WeakView<T>—thread-safe weak view to T

• coherence::lang::WeakHolder<T>—thread-safe weak T::Holder

These handle types may be read and written from multiple thread without the need
for additional synchronization. They are primarily intended for use as the data-
members of other managed classes, each instance is provided with a reference to a
guardian managed Object. The guardian's internal thread-safe atomic state is used to
provide thread-safety to the handle. When using these handle types it is
recommended that they be read into a normal stack based handle if they are
continually accessed within a code block. This assignment to a standard stack based
handle is thread-safe, and, after completed, allows for essentially free dereferencing of
the stack based handle. Note that when initializing thread-safe handles a reference to a
guardian Object must be supplied as the first parameter, this reference can be
obtained by calling self() on the enclosing object.

The following example demonstrates a thread-safe handle.

class Employee
 : public class_spec<Employee>
 {
 friend class factory<Employee>;

 protected:
 Employee(String::View vsName, int32_t nId)
 : super(), m_vsName(self(), vsName), m_nId(nId)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName; // read is automatically thread-safe
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName; // write is automatically thread-safe
 }

 int32_t getId() const
 {
 return m_nId;
 }

 private:
 MemberView<String> m_vsName;
 const int32_t m_nId;
 };

The same basic technique can be applied to non-managed classes as well. Since non-
managed classes do not extend coherence::lang::Object, they cannot be used as
the guardian of thread-safe handles. It is possible to use another Object as the
guardian. However, it is crucial to ensure that the guardian Object outlives the

Writing New Managed Classes

9-16 Developing Remote Clients for Oracle Coherence

guarded thread-safe handle. When using another object as the guardian, obtain a
random immortal guardian from coherence::lang::System through a call to
System::common(). For example:

class Employee
 {
 public:
 Employee(String::View vsName, int32_t nId)
 : m_vsName(System::common(), vsName), m_nId(nId)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName;
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName;
 }

 int32_t getId() const
 {
 return m_nId;
 }

 private:
 MemberView<String> m_vsName;
 const int32_t m_nId;
 };

When writing managed classes it is preferable to obtain a guardian through a call to
self() then to System::common().

Note:

In the rare case that one of these handles is declared through the mutable
keyword, it must be informed of this fact by setting fMutable to true during
construction.

Thread-safe handles can also be used in non-class shared data as well. For example,
global handles:

MemberView<NamedCache> MY_CACHE(System::common());

int main(int argc, char** argv)
 {
 MY_CACHE = CacheFactory::getCache(argv[0]);
 }

9.2.7.3 Escape Analysis

The object model includes escape analysis based optimizations. The escape analysis is
used to automatically identify when a managed object is only visible to a single thread
and in such cases optimize out unnecessary synchronizations. The following types of
operations are optimized for non-escaped objects.

Writing New Managed Classes

Using the Coherence C++ Object Model 9-17

• reference count updates

• COH_SYNCHRONIZED acquisition and release

• reading/writing of thread-safe handles

• reading of thread-safe handles from immutables

Escape analysis is automatic and is completely safe so long as you follow the rules of
using the object model. Most specifically is that it is not safe to pass a managed object
between threads without using a provided thread-safe handle. Passing it by an
external mechanism does not allow escape analysis to identify the "escape" which
could cause memory corruption or other run-time errors.

9.2.7.3.1 Shared handles

Each managed class type includes nested definitions for a Handles, View, and Holder.
These handles are used extensively throughout the Coherence API, and is application
code. They are intended for use as stack based references to managed objects. They are
not intended to be made visible to multiple threads. That is a single handle should not
be shared between two or more threads, though it is safe to have a managed Object
referenced from multiple threads, so long as it is by distinct Handles, or a thread-safe
MemberHandle/View/Holder.

It is important to remember that global handles to managed Objects should be
considered to be "shared", and therefore must be thread-safe, as demonstrated
previously. The failure to use thread-safe handles for globals causes escaped objects to
not be properly identified leading to memory corruption.

In 3.4 these non thread-safe handles could be shared across threads so long as external
synchronization was employed, or if the handles were read-only. In 3.5 and later this
is no longer true, even when used in a read-only mode or enclosed within external
synchronization these handles are not thread-safe. This is due to a fundamental
change in implementation which drastically reduces the cost of assigning one handle
to another, which is an operation which occurs constantly. Any code which was using
handles in this fashion should be updated to make use of thread-safe handles. See
“Thread Safe Handles” for more information.

9.2.7.3.2 Const Correctness

Coherence escape analysis, among other things, leverages the computed mutability of
an object to determine if state changes on data members are still possible. Namely,
when an object is only referenced from views, it is assumed that its data members do
not undergo further updates. The C++ language provides some mechanisms to bypass
this const-only access and allow mutation from const methods. For instance, the use of
the mutable keyword in a data member declaration, or the casting away of constness.
The arguably cleaner and supported approach for the object model is the mutable
keyword. For the Coherence object model, when a thread-safe data member handle is
declared as mutable this information must be communicated to the data member. All
thread-safe data members support an optional third parameter fMutable which should
be set to true if the data member has been declared with the mutable keyword. This
informs the escape analysis routine to not consider the data member as "const" when
the enclosing object is only referenced using Views. Casting away of the constness of
managed object is not supported, and can lead to run time errors if the object model
believes that the object can no longer undergo state changes.

Writing New Managed Classes

9-18 Developing Remote Clients for Oracle Coherence

9.2.7.4 Thread-Local Allocator

Coherence for C++ includes a thread-local allocator to improve performance of
dynamic allocations which are heavily used within the API. By default, each thread
grows a pool to contain up to 64KB of reusable memory blocks to satisfy the majority
of dynamic object allocations. The pool is configurable using the following system
properties:

• coherence.heap.slot.size controls the maximum size of an object which is
considered for allocation from the pool, the default is 128 bytes. Larger objects call
through to the system's malloc routine to obtain the required memory.

• coherence.heap.slot.count controls the number of slots available to each
thread for handling allocations, the default is 512 slots. If there are no available
slots, allocations fall back on malloc.

• coherence.heap.slot.refill controls the rate at which slots misses trigger
refilling the pool. The default of 10000 causes 1/10000 pool misses to force an
allocation which is eligible for refilling the pool.

The pool allocator can be disabled by setting the size or count to 0.

9.3 Diagnostics and Troubleshooting
This section provides information which can aid in diagnosing issues in applications
which make use of the object mode.

9.3.1 Thread-Local Allocator Logs
Logs can be enabled to view the efficiency of the thread-local allocator pool. To enable
the logs, set the coherence.heap.logging system property to true.

The log entries indicate the memory location of the pool, the size of the pool, how
many allocation areas are in the pool and the fraction of successful hits on the pool
(the rate of finding a slot within the pool). The following example demonstrates a
typical allocator log entry:

(thread=main): Allocator hit: pool=0x7f8e5ac039d0, size=128, slots=512, hit
rate=0.62963

9.3.2 Thread Dumps
Thread dumps are available for diagnostic and troubleshooting purposes. These
thread dumps also include the stack trace. You can generate a thread dump by
performing a CTRL+BREAK (Windows) or a CTRL+BACKSLASH (UNIX). The following
output illustrates a sample thread dump:

Thread dump Oracle Coherence for C++ v3.4b397 (Pre-release) (Apple Mac OS X x86
debug) pid=0xf853; spanning 190ms

"main" tid=0x101790 runnable: <native>
 at coherence::lang::Object::wait(long long) const
 at coherence::lang::Thread::dumpStacks(std::ostream&, long long)
 at main
 at start

"coherence::util::logging::Logger" tid=0x127eb0 runnable:
Daemon{State=DAEMON_RUNNING, Notification=false,
StartTimeStamp=1216390067197, WaitTime=0,

Diagnostics and Troubleshooting

Using the Coherence C++ Object Model 9-19

ThreadName=coherence::util::logging::Logger}
 at coherence::lang::Object::wait(long long) const
 at coherence::component::util::Daemon::onWait()
 at coherence::component::util::Daemon::run()
 at coherence::lang::Thread::run()

9.3.3 Memory Leak Detection
While the managed object model reference counting helps prevent memory leaks they
are still possible. The most common way in which they are triggered is through
cyclical object graphs. The object model includes heap analysis support to help
identify if leaks are occurring, by tracking the number of live objects in the system.
Comparing this value over time provides a simple means of detecting if the object
count is consistently increasing, and thereby likely leaking. After a probable leak has
been detected, the heap analyzer can help track it down as well, by provided statistics
on what types of objects appeared to have leaked.

Coherence provides a pluggable coherence::lang::HeapAnalyzer interface. The
HeapAnalyzer implementation can be specified by using the
coherence.heap.analyzer system property. The property can be set to the
following values:

• none—No heap analysis is performed. This is the default.

• object—The coherence::lang::ObjectCountHeapAnalyzer is used. It
provides simple heap analysis based solely on the count of the number of live
objects in the system.

• class—The coherence::lang::ClassBasedHeapAnalyzer is used. It
provides heap analysis at the class level, that is it tracks the number of live
instances of each class, and the associated byte level usage.

• alloc —Specialization of coherence::lang::ClassBasedHeapAnalyzer
which additionally tracks the allocation counts at the class level.

• custom—Lets you define your own analysis routines. You specify the name of a
class registered with the SystemClassLoader.

Heap information is returned when you perform a CTRL+BREAK (Windows) or CTRL
+BACKSLASH (UNIX).

The following output illustrates heap analysis information returned by the class-based
analyzer. It returns the heap analysis delta resulting from the insertion of a new entry
into a Map.

Space Count Class
44 B 1 coherence::lang::Integer32
70 B 1 coherence::lang::String
132 B 1 coherence::util::SafeHashMap::Entry

Total: 246 B, 3 objects, 3 classes

9.3.4 Memory Corruption Detection
For all that the object model does to prevent memory corruption, it is typically used
along side non-managed code which could cause corruption. Therefore, the object
model includes memory corruption detection support. When enabled, the object
model's memory allocator pads the beginning and end of each object allocation by a
configurable number of pad bytes. This padding is encoded with a pattern which can

Diagnostics and Troubleshooting

9-20 Developing Remote Clients for Oracle Coherence

later be validated to ensure that the pad has not been touched. If memory corruption
occurs, and affects a pad, subsequent validations detect the corruption. Validation is
performed when the object is destroyed.

The debug version of the Coherence C++ API has padding enabled by default, using a
pad size of 2*(word size), on each side of an object allocation. In a 32-bit build, this
adds 16 bytes per object. Increasing the size of the padding increases the chances of
corruption affecting a pad, and thus the chance of detecting corruption.

The size of the pad can be configured by using the coherence.heap.padding
system property, which can be set to the number of bytes for the pre/post pad. Setting
this system property to a nonzero value enables the feature, and is available even in
release builds.

The following output illustrates the results from an instance of memory corruption
detection:

Error during ~MemberHolder: coherence::lang::IllegalStateException: memory
corruption detected in 5B post-padding at offset 4 of memory allocated at 0x132095

9.4 Application Launcher - Sanka
Coherence uses an application launcher for invoking executable classes embedded
within a shared library. The launcher allows for a shared library to contain utility or
test executables without shipping individual standalone executable binaries.

9.4.1 Command line syntax
The launcher named sanka works similar to java, in that it is provided with one or
more shared libraries to load, and a fully qualified class name to execute.

ge: sanka [-options] <native class> [args...]

available options include:
 -l <native library list> dynamic libraries to load, separated by : or ;
 -D<property>=<value> set a system property
 -version print the Coherence version
 -? print this help message
 <native class> the fully qualified class. For example,
 coherence::net::CacheFactory

The specified libraries must either be accessible from the operating system library path
(PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH), or they may be specified with an
absolute or relative path. Library names may also leave off any operating specific
prefix or suffix. For instance the UNIX libfoo.so or Windows foo.dll can be
specified simply as foo. The Coherence shared library which the application was
linked against must be accessible from the system's library path as well.

9.4.2 Built-in Executables
Several utility executables classes are included in the Coherence shared library:

• coherence::net::CacheFactory runs the Coherence C++ console

• coherence::lang::SystemClassLoader prints out the registered managed
classes

• coherence::io::pof::SystemPofContext prints out the registered POF
types

Application Launcher - Sanka

Using the Coherence C++ Object Model 9-21

The later two executables can be optionally supplied with shared libraries to inspect,
in which case they output the registration which exists in the supplied library rather
then all registrations.

Note:

The console which was formerly shipped as an example, is now shipped as a
built-in executable class.

9.4.3 Sample Custom Executable Class
Applications can of course still be made executable in the traditional C++ means using
a global main function. If desired you can make your own classes executable using
Sanka as well. The following is a simple example of an executable class:

#include "coherence/lang.ns"

COH_OPEN_NAMESPACE2(my,test)

using namespace coherence::lang;

class Echo
 : public class_spec<Echo>
 {
 friend class factory<Echo>;

 public:
 static void main(ObjectArray::View vasArg)
 {
 for (size32_t i = 0, c = vasArg->length; i < c; ++i)
 {
 std::cout << vasArg[i] << std::endl;
 }
 }
 };
COH_REGISTER_EXECUTABLE_CLASS(Echo); // must appear in .cpp

COH_CLOSE_NAMESPACE2

As you can see the specified class must have been registered as an ExecutableClass
and have a main method matching the following signature:

static void main(ObjectArray::View)

The supplied ObjectArray parameter is an array of String::View objects
corresponding to the command-line arguments which followed the executable class
name.

When linked into a shared library, for instance libecho.so or echo.dll, the Echo
class can be run as follows:

> sanka -l echo my::test::Echo Hello World
Hello
World

Application Launcher - Sanka

9-22 Developing Remote Clients for Oracle Coherence

10
Using the Coherence for C++ Client API

This chapter describes the Coherence for C++ API, which allows C++ applications to
use Coherence clustered services from outside the Coherence cluster.

Documentation of the Coherence for C++ API is available in two locations. The C++
API Reference for Oracle Coherence and also in the doc directory of the Coherence for C+
+ distribution.

This chapter includes the following sections:

• CacheFactory

• NamedCache

• QueryMap

• ObservableMap

• InvocableMap

• Filter

• Value Extractors

• Entry Processors

• Entry Aggregators

10.1 CacheFactory
CacheFactory provides several static methods for retrieving and releasing
NamedCache instances:

• NamedCache::Handle getCache(String::View vsName)—retrieves a
NamedCache implementation that corresponds to the NamedCache with the
specified name running within the remote Coherence cluster.

• void releaseCache(NamedCache::Handle hCache)—releases all local
resources associated with the specified instance of the cache. After a cache is
released, it can no longer be used. The content of the cache, however, is not
affected.

• void destroyCache(NamedCache::Handle hCache)—destroys the
specified cache across the Coherence cluster.

Using the Coherence for C++ Client API 10-1

10.2 NamedCache
A NamedCache is a map of resources shared among members of a cluster. The
NamedCache provides several methods used to retrieve the name of the cache and the
service, and to release or destroy the cache:

• String::View getCacheName()—returns the name of the cache as a String.

• CacheService::Handle getCacheService()—returns a handle to the
CacheService that this NamedCache is a part of.

• bool isActive()—specifies whether this NamedCache is active.

• void release()—releases the local resources associated with this instance of the
NamedCache. The cache is no longer usable, but the cache contents are not
affected.

• void destroy()—releases and destroys this instance of the NamedCache.

NamedCache interface also extends the following interfaces: QueryMap,
InvocableMap, ConcurrentMap, CacheMap and ObservableMap.

10.3 QueryMap
A QueryMap can be thought of as an extension of the Map class with additional query
features. These features allow the ability to query a cache using various filters. Filters
are described in “Filter ”.

• Set::View keySet(Filter::View vFilter)—returns a set of the keys
contained in this map for entries that satisfy the criteria expressed by the filter.

• Set::View entrySet(Filter::View vFilter)—returns a set of the entries
contained in this map that satisfy the criteria expressed by the filter. Each element
in the returned set is a Map::Entry object.

• Set::View entrySet(Filter::View vFilter, Comparator::View
vComparator)—returns a set of the entries contained in this map that satisfy the
criteria expressed by the filter. Each element in the returned set is a Map::Entry
object. This version of entrySet further guarantees that its iterator traverses the
set in ascending order based on the entry values which are sorted by the specified
Comparator or according to the natural ordering.

Additionally, the QueryMap class includes the ability to add and remove indexes.
Indexes are used to correlate values stored in the cache to their corresponding keys
and can dramatically increase the performance of the keySet and entrySet
methods.

• void addIndex(ValueExtractor::View vExtractor, boolean_t
fOrdered, Comparator::View vComparator)—adds an index to this
QueryMap. The index correlates values stored in this indexed Map (or attributes of
those values) to the corresponding keys in the indexed Map and increase the
performance of keySet and entrySet methods.

• void removeIndex(ValueExtractor::View vExtractor)—removes an
index from this QueryMap.

See “Querying a Cache (C++)” for a more in depth look at queries. See also the C++
examples in “Performing Simple Queries”

NamedCache

10-2 Developing Remote Clients for Oracle Coherence

10.4 ObservableMap
An ObservableMap provides an application with the ability to listen for cache
changes. Applications that implement ObservableMap can add key and filter
listeners to receive events from any cache, regardless of whether that cache is local,
partitioned, near, replicated, using read-through, write-through, write-behind,
overflow, disk storage, and so on. ObservableMap also provides methods to remove
these listeners.

• void addKeyListener(MapListener::Handle hListener,
Object::View vKey, bool fLite)—adds a map listener for a specific key.

• void removeKeyListener(MapListener::Handle hListener,
Object::View vKey)—removes a map listener that previously signed up for
events about a specific key.

• void addFilterListener(MapListener::Handle hListener,
Filter::View vFilter = NULL, bool fLite = false)—adds a map
listener that receives events based on a filter evaluation.

• void removeFilterListener(MapListener::Handle hListener,
Filter::View vFilter = NULL)—removes a map listener that previously
signed up for events based on a filter evaluation.

See the C++ examples in “Signing Up for all Events”.

10.5 InvocableMap
An InvocableMap is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
efficient in a distributed environment because it localizes processing: the processing of
the cache contents are moved to the location at which the entries-to-be-processed are
being managed. For more information about processors and aggregators, see “Entry
Processors” and “Entry Aggregators”.

• Object::Holder invoke(Object::View vKey,
EntryProcessor::Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entry (Entry) specified by the passed key,
returning the result of the invocation.

• Map::View invokeAll(Collection::View vCollKeys,
EntryProcessor::Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entries (Entry objects) specified by the passed
keys, returning the result of the invocation for each.

• Map::View invokeAll(Filter::View vFilter,
EntryProcessor::Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entries (Entry objects) that are selected by the
given filter, returning the result of the invocation for each.

• Object::Holder aggregate(Collection::View vCollKeys,
EntryAggregator::Handle hAgent)—performs an aggregating operation
against the entries specified by the passed keys.

ObservableMap

Using the Coherence for C++ Client API 10-3

• Object::Holder aggregate(Filter::View vFilter,
EntryAggregator::Handle hAgent)—performs an aggregating operation
against the entries that are selected by the given filter.

10.6 Filter
Filter provides the ability to filter results and only return objects that meet a given set
of criteria. All filters must implement Filter. Filters are commonly used with the
QueryMap API to query the cache for entries that meet a given criteria. See also
“QueryMap”.

• bool evaluate(Object::View v)—applies a test to the specified object and
returns true if the test passes, false otherwise.

Coherence for C++ includes many concrete Filter implementations in the
coherence::util::filter namespace. Below are several commonly used filters:

• EqualsFilter is used to test for equality. The following example creates an
EqualsFilter to test that an object equals 5:

EqualsFilter::View vEqualsFilter =
EqualsFilter::create(IdentityExtractor::getInstance(), Integer32::valueOf(5));

• GreaterEqualsFilter is used to test a "Greater or Equals" condition. The
following example creates a GreaterEqualsFilter that tests that an objects
value is >= 55:

GreaterEqualsFilter::View vGreaterEqualsFilter =
GreaterEqualsFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(55));

• LikeFilter is used for pattern matching. The followiung example creates a
LikeFilter that tests that the string representation of an object begins with
"Belg":

LikeFilter::View vLikeFilter =
LikeFilter::create(IdentityExtractor::getInstance(), "Belg%");

• Some filters combine two filters to create a compound
condition. AndFilter is used to combine two filters to create an "AND"
condition. The following example creates an AndFilter that tests that an objects
value is greater than 10 and less than 20:

AndFilter::View vAndFilter = AndFilter::create(
 GreaterFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(10)),
 LessFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(20)));

• OrFilter is used to combine two filters to create an "OR" condition. The following
example create an OrFilter that tests that an object's value is less than 10 or
greater than 20:

OrFilter::View vOrFilter = OrFilter::create(
 LessFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(10)),
 GreaterFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(20)));

Filter

10-4 Developing Remote Clients for Oracle Coherence

10.7 Value Extractors
A value extractor is used to extract values from an object and to provide an identity for
the extraction. All extractors must implement ValueExtractor.

Note:

All concrete extractor implementations must also explicitly implement the
hashCode and equals functions in a way that is based solely on the object's
serializable state.

• Object::Holder extract(Object::Holder ohTarget)—extracts the value
from the passed object.

• bool equals(Object::View v)—compares the ValueExtractor with
another object to determine equality. Two ValueExtractor objects, ve1 and ve2
are considered equal if and only if ve1->extract(v) equals ve2->extract(v)
for all values of v.

• size32_t hashCode()—determine a hash value for the ValueExtractor
object according to the general Object#hashCode() contract.

Coherence for C++ includes the following extractors:

• ChainedExtractor—is a composite ValueExtractor implementation based
on an array of extractors. The extractors in the array are applied sequentially left-
to-right, so a result of a previous extractor serves as a target object for a next one.

• ComparisonValueExtractor—returns a result of comparison between two
values extracted from the same target.

• IdentityExtractor—is a trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

• KeyExtractor—is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

• MultiExtractor—is a composite ValueExtractor implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extraction is a List of extracted values.

• ReflectionExtractor—extracts a value from a specified object property.

See the C++ examples in “Understanding Query Concepts”.

10.8 Entry Processors
An entry processor is an agent that operates against the entry objects within a cache.
All entry processors must implement EntryProcessor.

• Object::Holder process(InvocableMap::Entry::Handle hEntry)—
process the specified entry.

• Map::View processAll(Set::View vSetEntries)—process a collection of
entries.

Value Extractors

Using the Coherence for C++ Client API 10-5

Coherence for C++ includes several EntryProcessor implementations in the
coherence::util::processor namespace.

See the C++ examples that are part of the Coherence Java distribution.

10.9 Entry Aggregators
An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an InvocableMap, resulting in an aggregated result. Common
examples of aggregation include functions such as minimum, maximum, sum, and
average. However, the concept of aggregation applies to any process that must
evaluate a group of entries to come up with a single answer. Aggregation is explicitly
capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the EntryAggregator interface:

• Object::Holder aggregate(Collection::View vCollKeys)— processes
a collection of entries to produce an aggregate result.

Coherence for C++ includes several EntryAggregator implementations in the
coherence::util::aggregator namespace.

Note:

Like cached value objects, all custom Filter, ValueExtractor,
EntryProcessor, and EntryAggregator implementation classes must be
correctly registered in the POF context of the C++ application and cluster-side
node to which the client is connected. As such, corresponding Java
implementations of the custom C++ types must be created, compiled, and
deployed on the cluster-side node. Note that the actual execution of these
custom types is performed by the Java implementation and not the C++
implementation. See Building Integration Objects (C++), for additional details.

Entry Aggregators

10-6 Developing Remote Clients for Oracle Coherence

11
Building Integration Objects (C++)

This chapter provides instructions for using Portable Object Format (POF) serialization
when creating C++ clients.

Note:

This document assumes familiarity with the Coherence C++ Object Model,
including advanced concepts such as specification-based class definitions. For
more information on these topics, see Using the Coherence C++ Object Model.

This chapter includes the following sections:

• Overview of Building Integration Objects (C++)

• POF Intrinsics

• Serialization Options

• Using POF Object References

• Registering Custom C++ Types

• Implementing a Java Version of a C++ Object

• Understanding Serialization Performance

• Using POF Annotations to Serialize Objects

11.1 Overview of Building Integration Objects (C++)
Enabling C++ clients to successfully store C++ based objects within a Coherence
cluster relies on a platform-independent serialization format known as POF (Portable
Object Format). POF allows value objects to be encoded into a binary stream in such a
way that the platform and language origin of the object is irrelevant. The stream can
then be deserialized in an alternate language using a similar POF-based class
definition. For more information on the POF binary stream, see Developing Applications
with Oracle Coherence

While the Coherence C++ API includes several POF serializable classes, custom data
types require serialization support as described in this chapter.

11.2 POF Intrinsics
The following types are internally supported by POF, and do not require special
handling by the user:

• String

Building Integration Objects (C++) 11-1

• Integer16 .. Integer64

• Float32, Float64

• Array<> of primitives

• ObjectArray

• Boolean

• Octet

• Character16

Additionally, automatic POF serialization is provided for classes implementing these
common interfaces:

• Map

• Collection

• Exception

11.3 Serialization Options
While the Coherence C++ API offers a single serialization format (POF), it offers a
variety of APIs for making a class serializable. Ultimately whichever approach is used,
the same binary POF format is produced. The following approaches are available for
making a class serializable:

• Use the Managed<T> adapter template, and add external free-function serializers.
See “Managed<T> (Free-Function Serialization) ” for more information.

• Modify the data object to extend Object, and implement the PortableObject
interface, to allow for object to self-serialize. See “PortableObject (Self-
Serialization) ” for more information.

• Modify the data object to extend Object, and produce a PofSerializer class to
perform external serialization. See “PofSerializer (External Serialization) ” for more
information.

Table 11-1 lists some requirements and limitations of each approach.

Table 11-1 Requirements and Limitations of Serialization Options

Approach Coherence
headers in
data-object

Requires
derivation
from Object

Supports
const data-
members

External
serializatio
n routine

Requires
zero-arg
constructor

Managed<T> No No Yes Yes Yes

PortableObject Yes Yes No No Yes

PofSerializer Yes Yes Yes Yes No

All of these approaches share certain similarities:

• Serialization routines that allow the data items to be encoded to POF must be
implemented.

Serialization Options

11-2 Developing Remote Clients for Oracle Coherence

• The data object's fields are identified by using numeric indexes.

• The data object class and serialization mechanism must be registered with
Coherence.

• Data objects used as cache keys must support equality comparisons and hashing.

11.3.1 Managed<T> (Free-Function Serialization)
For most pre-existing data object classes, the use of Managed<T> offers the easiest
means of integrating with Coherence for C++.

For a non-managed class to be compatible with Managed<T> it must have the
following characteristics:

• zero parameter constructor (public or protected): CustomType::CustomType()

• copy constructor (public or protected): CustomType::CustomType(const
CustomType&)

• equality comparison operator: bool operator==(const CustomType&, const
CustomType&)

• std::ostream output function: std::ostream&
operator<<(std::ostream&, const CustomType&)

• hash function: size_t hash_value(const CustomType&)

The following example presents a simple Address class, which has no direct
knowledge of Coherence, but is suitable for use with the Managed<T> template.

Note:

In the interest of brevity, example class definitions are in-lined within the
declaration.

Example 11-1 A Non-Managed Class

#include <iostream>
#include <string>
using namespace std;

class Address
 {
 public:
 Address(const std::string& sCity, const std::string& sState, int nZip)
 : m_sCity(sCity), m_sState(sState), m_nZip(nZip) {}

 Address(const Address& that) // required by Managed<T>
 : m_sCity(that.m_sCity), m_sState(that.m_sState), m_nZip(that.m_nZip) {}

 protected:
 Address() // required by Managed<T>
 : m_nZip(0) {}

 public:
 std::string getCity() const {return m_sCity;}
 std::string getState() const {return m_sState;}
 int getZip() const {return m_nZip;}

Serialization Options

Building Integration Objects (C++) 11-3

 private:
 const std::string m_sCity;
 const std::string m_sState;
 const int m_nZip;
 };

bool operator==(const Address& addra, const Address& addrb) // required by Managed<T>
 {
 return addra.getZip() == addrb.getZip() &&
 addra.getState() == addrb.getState() &&
 addra.getCity() == addrb.getCity();
 }

std::ostream& operator<<(std::ostream& out, const Address& addr) // required by
Managed<T>
 {
 out << addr.getCity() << ", " << addr.getState() << " " << addr.getZip();
 return out;
 }

size_t hash_value(const Address& addr) // required by Managed<T>
 {
 return (size_t) addr.getZip();
 }

When combined with Managed<T>, this simple class definition becomes a true
"managed object", and is usable by the Coherence C++ API. This definition has yet to
address serialization. Serialization support is added Example 11-2:

Example 11-2 Managed Class using Serialization

#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::io::pof;

COH_REGISTER_MANAGED_CLASS(1234, Address); // type ID registration—this must
 // appear in the .cpp not the .hpp

template<> void serialize<Address>(PofWriter::Handle hOut, const Address& addr)
 {
 hOut->writeString(0, addr.getCity());
 hOut->writeString(1, addr.getState());
 hOut->writeInt32 (2, addr.getZip());
 }

template<> Address deserialize<Address>(PofReader::Handle hIn)
 {
 std::string sCity = hIn->readString(0);
 std::string sState = hIn->readString(1);
 int nZip = hIn->readInt32 (2);
 return Address(sCity, sState, nZip);
 }

Serialization Options

11-4 Developing Remote Clients for Oracle Coherence

Note:

The serialization routines must have knowledge of Coherence. However, they
are not required as part of the class definition file. They can be placed in an
independent source file, and if they are linked into the final application, they
take effect.

With the above pieces in place, Example 11-3 illustrates instances of the Address class
wrapped by using Managed<T> as Managed<Address>, and supplied to the
Coherence APIs:

Example 11-3 Instances of a Class Wrapped with Managed<T>

// construct the non-managed version as usual
Address office("Redwood Shores", "CA", 94065);

// the managed version can be initialized from the non-managed version
// the result is a new object, which does not reference the original
Managed<Address>::View vOffice = Managed<Address>::create(office);
String::View vKey = "Oracle";

// the managed version is suitable for use with caches
hCache->put(vKey, vAddr);
vOffice = cast<Managed<Address>::View>(hCache->get(vKey));

// the non-managed class's public methods/fields remain accessible
assert(vOffice->getCity() == office.getCity());
assert(vOffice->getState() == office.getState());
assert(vOffice->getZip() == office.getZip());

// conversion back to the non-managed type may be performed using the
// non-managed class's copy constructor.
Address officeOut = *vOffice;

11.3.2 PortableObject (Self-Serialization)
The PortableObject interface is similar in concept to java.io.Externalizable,
which allows an object to control how it is serialized. Any class which extends from
coherence::lang::Object is free to implement the
coherence::io::pof::PortableObject interface to add serialization support.
Note that the class must extend from Object, which then dictates its life cycle.

In Example 11-4, the above Address example can be rewritten as a managed class,
and implement the PortableObject interface, which fully embraces the Coherence
object model as part of the definition of the class. For example, using
coherence::lang::String rather then std::string for data members.

Example 11-4 A Managed Class that Implements PortableObject

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"

#include "coherence/io/pof/SystemPofContext.hpp"

using namespace coherence::lang;

Serialization Options

Building Integration Objects (C++) 11-5

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;

class Address
 : public cloneable_spec<Address,
 extends<Object>,
 implements<PortableObject> >
 {
 friend class factory<Address>;

 protected: // constructors
 Address(String::View vsCity, String::View vsState, int32_t nZip)
 : m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

 Address(const Address& that)
 : super(that), m_vsCity(self(), that.m_vsCity), m_vsState(self(),
 that.m_vsState), m_nZip(that.m_nZip) {}

 Address() // required by PortableObject
 : m_vsCity(self()),
 m_vsState(self()),
 m_nZip(0) {}

 public: // Address interface
 virtual String::View getCity() const {return m_vsCity;}
 virtual String::View getState() const {return m_vsState;}
 virtual int32_t getZip() const {return m_nZip;}

 public: // PortableObject interface virtual void
writeExternal(PofWriter::Handle hOut) const
 {
 hOut->writeString(0, getCity());
 hOut->writeString(1, getState());
 hOut->writeInt32 (2, getZip());
 }

 virtual void readExternal(PofReader::Handle hIn)
 {
 initialize(m_vsCity, hIn->readString(0));
 initialize(m_vsState, hIn->readString(1));
 m_nZip = hIn->readInt32 (2);
 }

 public: // Objectinterface virtual bool equals(Object::View that) const
 {
 if (instanceof<Address::View>(that))
 {
 Address::View vThat = cast<Address::View>(that);

 return getZip() == vThat->getZip() &&
 Object::equals(getState(), vThat->getState()) &&
 Object::equals(getCity(), vThat->getCity());
 }

 return false;
 }

 virtual size32_t hashCode() const
 {
 return (size32_t) m_nZip;

Serialization Options

11-6 Developing Remote Clients for Oracle Coherence

 }

 virtual void toStream(std::ostream& out) const
 {
 out << getCity() << ", " << getState() << " " << getZip();
 }

 private:
 FinalView<String> m_vsCity;
 FinalView<String> m_vsState;
 int32_t m_nZip;
 };
COH_REGISTER_PORTABLE_CLASS(1234, Address); // type ID registration—this must
 // appear in the .cpp not the .hpp

Example 11-5 illustrates a managed variant of the Address that does not require the
use of the Managed<T> adapter and can be used directly with the Coherence API:

Example 11-5 A Managed Class without Managed<T>

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View vKey = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

Serialization by using PortableObject is a good choice when the application has
decided to make use of the Coherence object model for representing its data objects.
One drawback to PortableObject is that it does not easily support const data members,
as the readExternal method is called after construction, and must assign these
values.

11.3.3 PofSerializer (External Serialization)
The third serialization option is also the lowest level one. PofSerializers are
classes that provide the serialization logic for other classes. For example, an
AddressSerializer is written which can serialize a non-PortableObject version
of the above managed Address class. Under the covers the prior two approaches
were delegating through PofSerializers, they were just being created
automatically rather then explicitly. Typically, it is not necessary to use this approach,
as either the Managed<T> or PortableObject approaches suffice. This approach is
primarily of interest when you have a managed object with const data members.
Consider Example 11-6, a non-PortableObject version of a managed Address.

Example 11-6 A non-PortableObject Version of a Managed Class

#include "coherence/lang.ns"

using namespace coherence::lang;

class Address
 : public cloneable_spec<Address> // extends<Object> is implied
 {
 friend class factory<Address>;

 protected: // constructors
 Address(String::View vsCity, String::View vsState, int32_t nZip)
 : m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

 Address(const Address& that)

Serialization Options

Building Integration Objects (C++) 11-7

 : super(that), m_vsCity(self(), that.getCity()), m_vsState(self(),
 that.getState()), m_nZip(that.getZip()) {}

 public: // Address interface
 virtual String::View getCity() const {return m_vsCity;}
 virtual String::View getState() const {return m_vsState;}
 virtual int32_t getZip() const {return m_nZip;}

 public: // Objectinterface
 virtual bool equals(Object::View that) const
 {
 if (instanceof<Address::View>(that))
 {
 Address::View vThat = cast<Address::View>(that);

 return getZip() == vThat->getZip() &&
 Object::equals(getState(), vThat->getState()) &&
 Object::equals(getCity(), vThat->getCity());
 }

 return false;
 }

 virtual size32_t hashCode() const
 {
 return (size32_t) m_nZip;
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getCity() << ", " << getState() << " " << getZip();
 }

 private:
 const MemberView<String> m_vsCity;
 const MemberView<String> m_vsState;
 const int32_t m_nZip;
 };

Note that this version uses const data members, which makes it not well-suited for
PortableObject. Example 11-7 illustrates an external class, AddressSerializer,
which is registered as being responsible for serialization of Address instances.

Example 11-7 An External Class Responsible for Serialization

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/io/pof/PofSerializer.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PofSerializer;

class AddressSerializer

Serialization Options

11-8 Developing Remote Clients for Oracle Coherence

 : public class_spec<AddressSerializer,
 extends<Object>,
 implements<PofSerializer> >
 {
 friend class factory<AddressSerializer>;

 protected:
 AddressSerializer();

 public: // PofSerializer interface virtual void serialize(PofWriter::Handle
hOut, Object::View v) const
 {
 Address::View vAddr = cast<Address::View>(v);
 hOut->writeString(0, vAddr->getCity());
 hOut->writeString(1, vAddr->getState());
 hOut->writeInt32 (2, vAddr->getZip());
 hOut->writeRemainder(NULL);
 }

 virtual Object::Holder deserialize(PofReader::Handle hIn) const
 {
 String::View vsCity = hIn->readString(0);
 String::View vsState = hIn->readString(1);
 int32_t nZip = hIn->readInt32 (2);
 hIn->readRemainder();

 return Address::create(vsCity, vsState, nZip);
 }
 };
COH_REGISTER_POF_SERIALIZER(1234,
TypedBarrenClass<Address>::create(),AddressSerializer::create()); // This must
appear in the .cpp not the .hpp

Usage of the Address remains unchanged:

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View vKey = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

11.4 Using POF Object References
POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its identity.

Using references avoids encoding the same object multiple times and helps reduce the
data size. References are typically used when a large number of sizeable objects are
created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the
use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The use of object identity and references has the following limitations:

• Object references are only supported for user defined object types.

• Object references are not supported for Evolvable objects.

• Object references are not supported for keys.

Using POF Object References

Building Integration Objects (C++) 11-9

• Objects that have been written out with a POF context that does not support
references cannot be read by a POF context that supports references. The opposite
is also true.

• POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the ValueExtractor API to query object values or disable
object references.

• The use of the PofNavigator and PofValue API has the following restrictions
when using object references:

– Only read operations are allowed. Write operations result in an
UnsupportedOperationException.

– User objects can be accessed in non-uniform collections but not in uniform
collections.

– For read operations, if an object appears in the data stream multiple times, then
the object must be read where it first appears before it can be read in the
subsequent part of the data. Otherwise, an IOException: missing
identity: <ID> may be thrown. For example, if there are 3 lists that all
contain the same person object, p. The p object must be read in the first list
before it can be read in the second or third list.

The following topics are included in this section:

• Enabling POF Object References

• Registering POF Object Identities for Circular and Nested Objects

11.4.1 Enabling POF Object References
Object references are not enabled by default and must be enabled using
setReferenceEnabled when creating a POF context. For example:

SystemPofContext::Handle hCtx = SystemPofContext::getInstance();
hCtx->setReferenceEnabled(true);

11.4.2 Registering POF Object Identities for Circular and Nested Objects
Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the PofReader.registerIdentity method.

The following examples demonstrate two objects (Customer and Product) that
contain a circular reference and a serializer implementation that registers an identity
on the Customer object.

The Customer object is defined as follows:

class Customer
 : public class_spec<Customer,
 extends<Object> >
 {
 friend class factory<Customer>;

 protected:
 Customer()
 : m_vsName(self(), String::null_string),

Using POF Object References

11-10 Developing Remote Clients for Oracle Coherence

 m_vProduct(self(), NULL)
 {
 }

 Customer(String::View vsName)
 : m_vsName(self(), vsName),
 m_vProduct(self(), NULL)
 {
 }

 Customer(String::View vsName, Product::View vProduct)
 : m_vsName(self(), vsName),
 m_vProduct(self(), vProduct)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName;
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName;
 }

 Product::View getProduct() const
 {
 return m_vProduct;
 }

 void setProduct(Product::View vProduct)
 {
 m_vProduct = vProduct;
 }

 private:
 MemberView<String> m_vsName;
 MemberView<Product> m_vProduct;
 };

The Product object is defined as follows:

class Product
 : public class_spec<Product,
 extends<Object> >
 {
 friend class factory<Product>;

 protected:
 Product()
 : m_vCustomer(self(), NULL)
 {
 }

 Product(Customer::View vCustomer)
 : m_vCustomer(self(), vCustomer)
 {
 }

Using POF Object References

Building Integration Objects (C++) 11-11

 public:
 Customer::View getCustomer() const
 {
 return m_vCustomer;
 }

 void setCustomer(Customer::View vCustomer)
 {
 m_vCustomer= vCustomer;
 }

 private:
 MemberView<Customer> m_vCustomer;
 };

The serializer implementation registers an identity during deserialization and is
defined as follows:

class CustomerSerializer
 : public class_spec<CustomerSerializer,
 extends<Object>,
 implements<PofSerializer> >
 {
 friend class factory<CustomerSerializer>;

 public:
 void serialize(PofWriter::Handle hOut, Object::View v) const
 {
 Customer::View vCustomer = cast<Customer::View>(v);
 hOut->writeString(0, vCustomer->getName());
 hOut->writeObject(1, vCustomer->getProduct());
 hOut->writeRemainder(NULL);
 }

 Object::Holder deserialize(PofReader::Handle hIn) const
 {
 String::View vsName = cast<String::View>(hIn->readString(0));
 Customer::Holder ohCustomer = Customer::create(vsName);

 hIn->registerIdentity(ohCustomer);
 ohCustomer->setProduct(cast<Product::View>(hIn->readObject(1)));
 hIn->readRemainder();
 return ohCustomer;
 }
 };

11.5 Registering Custom C++ Types
In addition to being made serializable, each class must also be associated with numeric
type IDs. These IDs are well-known across the cluster. Within the cluster, the ID-to-
class mapping is configured by using POF user type configuration elements; within C
++, the mapping is embedded within the class definition in the form of an ID
registration, which is placed within the class's .cpp source file.

The registration technique differs slightly with each serialization approach:

• COH_REGISTER_MANAGED_CLASS(ID, TYPE)—for use with Managed<T>

• COH_REGISTER_PORTABLE_CLASS(ID, TYPE)—for use with
PortableObject

Registering Custom C++ Types

11-12 Developing Remote Clients for Oracle Coherence

• COH_REGISTER_POF_SERIALIZER(ID, CLASS, SERIALIZER)—for use with
PofSerializer

Examples of these registrations can be found in above examples.

Note:

Registrations must appear only in the implementation (.cpp) files. A POF
configuration file is only needed on the nodes where objects are serialized and
deserialize.

11.6 Implementing a Java Version of a C++ Object
The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the PofExtractor and PofUpdater APIs add
flexibility in working with non-primitive types in Coherence. For many extend client
cases, a corresponding Java classes in the grid is not required. Because POF extractors
and POF updaters can navigate the binary, the entire key and value does not have to
be deserialized into object form. This implies that indexing can be achieved by simply
using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers
must directly interact with a data object rather then simply holding onto a serialized
representation of it. For example, a Java class is still required when using a cache store.
In this case, the deserialized version of the key and value is passed to the cache store
to write to the back end. In addition, queries, filters, entry processors, and aggregators
require a Java implementation if direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the
cache servers. The approach to making the Java version serializable over POF is
similar to the above examples, see PortableObject and PofSerializer for
details. These APIs are compatible with all three of the C++ approaches.

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using KeyAssociation. Key classes are checked on the client
side and a decorated binary is created and used by the cluster. However, existing
client implementations that do rely on a Java key class for key association must set the
defer-key-association-check parameter in order to force the use of the Java
key class. Existing client applications that use key association but want to leverage
client-side key binaries, must port the getAssociatedKey() implementation from
the existing Java class to the corresponding client class.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a
<remote-cache-scheme> element, in the client-side cache configuration to true.
For example:

<remote-cache-scheme>
 ...
 <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Implementing a Java Version of a C++ Object

Building Integration Objects (C++) 11-13

Note:

If the parameter is set to true, a Java key class implementation must be found
on the cluster even if key association is no being used.

11.7 Understanding Serialization Performance
Both Managed<T> and PortableObject behind the scenes use a PofSerializer
to perform serialization. Each of these approaches also adds some of its own overhead,
for instance the Managed<T> approach involves the creation of a temporary version of
non-managed form of the data object during deserialization. For PortableObject,
the lack of support for const data members can have a cost as it avoids optimizations
which would have been allowed for const data members. Overall the performance
differences may be negligible, but if seeking to achieve the maximum possible
performance, direct utilization of PofSerializer may be worth consideration.

11.8 Using POF Annotations to Serialize Objects
POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the PofAnnotationSerializer class which is an implementation of the
PofSerializer interface. Annotations offer an alternative to using the Managed<T>
adapter, PortableObject interface, and PofSerializer interface and reduce the
amount of time and code that is required to make objects serializable.

The following topics are included in this section:

• Annotating Objects for POF Serialization

• Registering POF Annotated Objects

• Enabling Automatic Indexing

• Providing a Custom Codec

11.8.1 Annotating Objects for POF Serialization
Two annotations are available to indicate that a class and its methods are POF
serializable:

• Portable – Marks the class as POF serializable. The annotation is only permitted
at the class level and has no members.

• PortableProperty – Marks a method accessor as a POF serialized property.
Annotated methods must conform to accessor notation (get, set, is). Members
can be used to specify POF indexes as well as custom codecs that are executed
before or after serialization or deserialization. Index values may be omitted and
automatically assigned. If a custom codec is not entered, the default codec is used.

The following example demonstrates annotating a class and method and also
explicitly assigns property index values. Note that the class must be registered with
the system class loader COH_REGISTER_CLASS.

class Person
 : public class_spec<Person>
 {
 friend class factory<Person>;

Understanding Serialization Performance

11-14 Developing Remote Clients for Oracle Coherence

 Public:
 String::View getFirstName() const
 {
 return m_vsFirstName;
 }

 void setFirstName(String::View vsFirstName)
 {
 m_vsFirstName = vsFirstName;
 }

 private: String m_firstName;
 MemberView<String> m_vsFirstName;
 MemberView<String> m_vsLastName;
 int32_t m_nAge;

 public:
 static const int32_t FIRST_NAME = 0;
 static const int32_t LAST_NAME = 1;
 static const int32_t AGE = 2;
 };

COH_REGISTER_CLASS(TypedClass<Person>::create()
 ->annotate(Portable::create())
 ->declare(COH_PROPERTY(Person, FirstName, String::View)
 ->annotate(PortableProperty::create(Person::FIRST_NAME)))
 ->declare(COH_PROPERTY(Person, LastName, String::View)
 ->annotate(PortableProperty::create(Person::LAST_NAME)))
 ->declare(COH_PROPERTY(Person, Age, BoxHandle<const Integer32>)
 ->annotate(PortableProperty::create(Person::AGE)))
);

11.8.2 Registering POF Annotated Objects
POF annotated objects must be registered as a user type using the
COH_REGISTER_POF_ANNOTATED_CLASS macro. The following example registers a
user type for an annotated Person object:

COH_REGISTER_POF_ANNOTATED_CLASS(1001, Person);

11.8.3 Enabling Automatic Indexing
POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. The index value can be omitted whenever defining
the PortableProperty annotation. Any property that does assign an explicit index
value is not assigned an automatic index value. The automatic index algorithm can be
described as follows:

Name Explicit Index Determined
Index

c 1 1

a omitted 0

b omitted 2

Using POF Annotations to Serialize Objects

Building Integration Objects (C++) 11-15

Note:

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, use the COH_REGISTER_POF_ANNOTATED_CLASS_AI
pre-processor macro when registering the user type. The following example registers a
user type for an annotated Person object that uses automatic indexing:

COH_REGISTER_POF_ANNOTATED_CLASS_AI(1001, Person);

11.8.4 Providing a Custom Codec
Codecs allow code to be executed before or after serialization or deserialization. The
codec defines how to encode and decode a portable property using the PofWriter
and PofReader interfaces. Codecs are typically used for concrete implementations
that could get lost when being deserialized or to explicitly call a specific method on the
PofWriter interface before serializing an object.

To create a codec, create a class that implements the Codec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked list
type:

class LinkedListCodec
 : public class_spec<LinkedListCodec,
 extends<Object>,
 implements<Codec> >
 {
 friend class factory<LinkedListCodec>;

 public:
 void encode(PofWriter::Handle hOut, int32_t nIndex, Object::View ovValue)
 const
 {
 hOut->writeCollection(nIndex, cast<Collection::View>(ovValue));
 }

 Object::Holder decode(PofReader::Handle hIn, int32_t nIndex) const
 {
 LinkedList::Handle hLinkeList = LinkedList::create();
 return hIn->readCollection(nIndex, hLinkeList);
 }
 };
COH_REGISTER_TYPED_CLASS(LinkedListCodec);

To assign a codec to a property, enter the codec as a member of the
PortableProperty annotation. If a codec is not specified, a default codec
(DefaultCodec) is used. The following example demonstrates assigning the above
LinkedListCodec codec:

COH_REGISTER_CLASS(TypedClass<Person>::create()
 ->annotate(Portable::create())
 ->declare(COH_PROPERTY(Person, FirstName, String::View)
 ->annotate(PortableProperty::create(Person::FIRST_NAME)))
 ->declare(COH_PROPERTY(Person, LastName, String::View)
 ->annotate(PortableProperty::create(Person::LAST_NAME)))
 ->declare(COH_PROPERTY(Person, Age, BoxHandle<const Integer32>)
 ->annotate(PortableProperty::create(Person::ALIASES,
SystemClassLoader::getInstance()->loadByType(typeid(LinkedListCodec)))))
);

Using POF Annotations to Serialize Objects

11-16 Developing Remote Clients for Oracle Coherence

12
Querying a Cache (C++)

This chapter provides instructions for querying Coherence caches from C++ clients.

This chapter includes the following sections:

• Overview of Query Functionality

• Performing Simple Queries

• Understanding Query Concepts

• Performing Queries Involving Multi-Value Attributes

• Using a Chained Extractor in a Query

• Using a Query Recorder

12.1 Overview of Query Functionality
Coherence can perform queries and indexes against currently cached data that meets a
given set of criteria. Queries and indexes can be simple, employing filters packaged
with Coherence, or they can be run against multi-value attributes such as collections
and arrays. The result set may be sorted if desired. Queries are evaluated with Read
Committed isolation.

It should be noted that queries apply only to currently cached data (and do not use the
CacheLoader interface to retrieve additional data that may satisfy the query). Thus,
the data set should be loaded entirely into cache before queries are performed. In cases
where the data set is too large to fit into available memory, it may be possible to
restrict the cache contents along a specific dimension (for example, "date") and
manually switch between cache queries and database queries based on the structure of
the query. For maintainability, this is usually best implemented inside a cache-aware
data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; For
dedicated CacheServer instances, this implies (usually) that application classes must
be installed in the CacheServer classpath.

For Local and Replicated caches, queries are evaluated locally against unindexed data.
For Partitioned caches, queries are performed in parallel across the cluster, using
indexes if available. Coherence includes a Cost-Based Optimizer (CBO). Access to
unindexed attributes requires object deserialization (though indexing on other
attributes can reduce the number of objects that must be evaluated).

12.2 Performing Simple Queries
The following example uses an a value extractor and filter to query a cache.

Querying a Cache (C++) 12-1

ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor,
Integer32::valueOf(18));

for (Iterator::Handle hIter = hCache->entrySet(vFilter)->iterator(); hIter-
>hasNext();)
 {
 Map::Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());
 Integer32::View vKey = cast<Integer32::View>(hEntry->getKey());
 Person::Handle hPerson = cast<Person::Handle>(hEntry->getValue());
 std::cout << "key=" << vKey << " person=" << hPerson;
 }

Coherence provides a wide range of filters in the coherence::util::Filter
package. A LimitFilter may be used to limit the amount of data sent to the client,
and also to provide "paging" for users:

int32_t nPageSize = 25;
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor,
Integer32::valueOf(18));

// get entries 1-25
LimitFilter::Handle hLimitFilter = LimitFilter::create(vFilter, nPageSize);
Set::View vEntries = hCache->entrySet(hLimitFilter);

// get entries 26-50
hLimitFilter->nextPage();
vEntries = hCache->entrySet(hLimitFilter);

Any queryable attribute may be indexed with the addIndex method of the QueryMap
class:

// addIndex(ValueExtractor::View vExtractor, boolean_t fOrdered, Comparator::View
vComparator)
hCache->addIndex(hExtractor, true, NULL);

The fOrdered argument specifies whether the index structure is sorted. Sorted
indexes are useful for range queries, including "select all entries that fall between two
dates" and "select all employees whose family name begins with 'S'". For "equality"
queries, an unordered index may be used, which may have better efficiency in terms
of space and time.

The comparator argument provides a custom java.util.Comparator for ordering
the index.

Note:

This method is only intended as a hint to the cache implementation, and as
such it may be ignored by the cache if indexes are not supported or if the
desired index (or a similar index) exists. It is expected that an application calls
this method to suggest an index even if the index exists, just so that the
application is certain that index has been suggested. For example, in a
distributed environment each server likely suggests the same set of indexes
when it starts, and there is no downside to the application blindly requesting
those indexes regardless of whether another server has requested the same
indexes.

Performing Simple Queries

12-2 Developing Remote Clients for Oracle Coherence

Note that queries can be combined by Coherence if necessary, and also that Coherence
includes a cost-based optimizer (CBO) to prioritize the usage of indexes. To take
advantage of an index, queries must use extractors that are equal ((Object-
>equals()) to the one used in the query.

12.2.1 Querying Partitioned Caches
The Partitioned Cache implements the QueryMap interface using the Parallel Query
feature and results in high performance queries even for large data sets.

12.2.2 Querying Near Caches
Although queries can be executed through a near cache, the query does not use the
front portion of a near cache. If using a near cache with queries, the best approach is to
use the following sequence:

Set::View vSetKeys = hCache->keySet(vFilter);
Map::View vMapResult = hCache->getAll(vSetKeys);

12.3 Understanding Query Concepts
This section goes into more detail on the design of the query interface, building up
from the core components.

The concept of querying is based on the ValueExtractor interface. A value
extractor is used to extract an attribute from a given object for querying (and similarly,
indexing). Most developers only need the ReflectionExtractor implementation
of this interface. The ReflectionExtractor uses reflection to extract an attribute from a
value object by referring to a method name, typically a "getter" method like
getName().

ReflectionExtractor::Handle hExtractor = ReflectionExtractor::create("getName");

Any void argument method can be used, including Object methods like
toString() (useful for prototyping/debugging). Indexes may be either traditional
field indexes (indexing fields of objects) or function-based indexes (indexing virtual
object attributes). For example, if a class has field accessors getFirstName and
getLastName, the class may define a function getFullName which concatenates
those names, and this function may be indexed.

To query a cache that contains objects with getName attributes, a Filter must be
used. A filter has a single method which determines whether a given object meets a
criterion.

Filter::Handle hEqualsFilter = EqualsFilter::create(hExtractor, String::create("Bob
Smith"));

To select the entries of a cache that satisfy a particular filter:

for (Iterator::Handle hIter = hCache->entrySet(hEqualsFilter)->iterator(); hIter-
>hasNext();)
 {
 Map::Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());
 Integer32::View vKey = cast<Integer32::View>(hEntry->getKey());
 Person::Handle hPerson = cast<Person::Handle>(hEntry->getValue());
 std::cout << "key=" << vKey << " person=" << hPerson;
 }

To select and also sort the entries:

Understanding Query Concepts

Querying a Cache (C++) 12-3

// entrySet(Filter::View vFilter, Comparator::View vComparator)
Iterator::Handle hIter = hCache->entrySet(hEqualsFilter, NULL)->iterator();

The additional NULL argument specifies that the result set should be sorted using the
"natural ordering" of Comparable objects within the cache. The client may explicitly
specify the ordering of the result set by providing an implementation of Comparator.
Note that sorting places significant restrictions on the optimizations that Coherence
can apply, as sorting requires that the entire result set be available before sorting.

Using the keySet form of the queries—combined with getAll()—may provide
more control over memory usage:

// keySet(Filter::View vFilter)
Set::View vSetKeys = hCache->keySet(vFilter);
Set::Handle hSetPageKeys = HashSet::create();
int32_t PAGE_SIZE = 100;
for (Iterator::Handle hIter = vSetKeys->iterator(); hIter->hasNext();)
 {
 hSetPageKeys->add(hIter->next());
 if (hSetPageKeys->size() == PAGE_SIZE || !hIter->hasNext())
 {
 // get a block of values
 Map::View vMapResult = hCache->getAll(hSetPageKeys);

 // process the block
 // ...

 hSetPageKeys->clear();
 }
 }

12.4 Performing Queries Involving Multi-Value Attributes
Coherence supports indexing and querying of multi-value attributes including
collections and arrays. When an object is indexed, Coherence verifies if it is a multi-
value type, and then indexes it as a collection rather than a singleton. The
ContainsAllFilter, ContainsAnyFilter, and ContainsFilter are used to
query against these collections.

Set::Handle hSearchTerms = HashSet::create();
hSearchTerms->add(String::create("java"));
hSearchTerms->add(String::create("clustering"));
hSearchTerms->add(String::create("books"));

// The cache contains instances of a class "Document" which has a method
// "getWords" which returns a Collection<String> containing the set of
// words that appear in the document.
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getWords");
Filter::View vFilter = ContainsAllFilter::create(hExtractor,
hSearchTerms);

Set::View vEntrySet = hCache->entrySet(vFilter);

// iterate through the search results
// ...

12.5 Using a Chained Extractor in a Query
The ChainedExtractor implementation allows chained invocation of zero-
argument (accessor) methods. In #unique_187/unique_187_Connect_42_CDEDBFDG,

Performing Queries Involving Multi-Value Attributes

12-4 Developing Remote Clients for Oracle Coherence

the extractor first uses reflection to call getName() on each cached Person object,
and then use reflection to call length() on the returned String. This extractor could
be passed into a query, allowing queries (for example) to select all people with names
not exceeding 10 letters.

ChainedExtractor::Handle hExtractor =
ChainedExtractor::create(ChainedExtractor::createExtractors("getName.length"));

Method invocations may be chained indefinitely, for example:
getName.trim.length.

POF extractors and POF updaters offer the same functionality as
ChainedExtractors through the use of the SimplePofPath class. For details
about POF extractors and POF updaters, see Developing Applications with Oracle
Coherence and refer to the C++ API Reference for Oracle Coherence.

12.6 Using a Query Recorder
The QueryRecorder class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes
in a cluster and aggregating the results. The class supports two record types: an
QueryRecorder::explain record that provides the estimated cost of evaluating a
filter as part of a query operation and a QueryRecorder::trace record that
provides the actual cost of evaluating a filter as part of a query operation. Both query
records take into account whether or not an index can be used by a filter. See
Developing Applications with Oracle Coherence for detailed information on
understanding the data provided in an explain plan record and trace record.

To create a query record, create a new QueryRecorder instance that specifies a
RecordType parameter. Include the instance and the filter to be tested as parameters
of the Aggregate method. The following example creates an explain record:

NamedCache::Handle hCache = CacheFactory::getCache("MyCache");

IdentityExtractor::View hExtract = IdentityExtractor::getInstance();
OrFilter::Handle hFilter = OrFilter::create(
 GreaterEqualsFilter::create(hExtract, Integer32::create(50)),
 LessEqualsFilter::create(hExtract, Integer32::create(20)));

QueryRecord::View vRecord = cast<QueryRecord::View>(hCache->aggregate(
 (Filter::View) hFilter, QueryRecorder::create(QueryRecorder::explain)));

cout << vRecord;

To create a trace record, change the RecordType parameter to trace:

QueryRecord::View vRecord = cast<QueryRecord::View>(hCache->aggregate(
 (Filter::View) hFilter, QueryRecorder::create(QueryRecorder::trace)));

Using a Query Recorder

Querying a Cache (C++) 12-5

Using a Query Recorder

12-6 Developing Remote Clients for Oracle Coherence

13
Performing Continuous Queries (C++)

This chapter provides instructions for using continuous query caching in a C++ client
to ensure that a query always retrieves the latest results from a cache in real-time.

This chapter includes the following sections:

• Overview of Performing Continuous Queries (C++)

• Understanding Continuous Query Caching Implementation

• Defining a Continuous Query Cache

• Cleaning up Continuous Query Cache Resources

• Caching Only Keys Versus Keys and Values

• Listening to a Continuous Query Cache

• Making a Continuous Query Cache Read-Only

13.1 Overview of Performing Continuous Queries (C++)
Queries provide the ability to obtain a point in time query result from a Coherence
cache and it is possible to receive events that would change the result of that query.
However, the continuous query feature combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times every
millisecond.

A continuous query cache is similar to a materialized view in the Oracle database. A
materialized view copies data queried from the database tables into the view. If there
are any changes to the data in the database, then the data in the view is automatically
updated. Materialized views enable you to see changes to the result set. In continuous
query, a local copy of the cache is created on the client. Filters allow you to limit the
size and content of the cache. Combined with an event listener, the cache can be
updated in real time.

For example, to monitor, in real time, all sales orders for several customers. You can
create a continuous query cache and set up an event listener that listens for any events
pertaining to the customers. Coherence queries for all of the data objects on the grid
that pertain to a particular customer and copies them to a local cache. The event
listener on the query listens for any inserts, updates, or deletes that take place on the
grid for the customer. When an event occurs, the local copy of the customer data is
updated.

13.1.1 Understanding the Use Cases for Continuous Query Caching
There are several different general use cases for Continuous Query Caching:

Performing Continuous Queries (C++) 13-1

• It is an ideal building block for Complex Event Processing (CEP) systems and event
correlation engines.

• It is ideal for situations in which an application repeats a particular query and
would benefit from always having instant access to the up-to-date result of that
query.

• A Continuous Query Cache is analogous to a materialized view and is useful for
accessing and manipulating the results of a query using the standard NamedCache
API, and receiving an ongoing stream of events related to that query.

• A Continuous Query Cache can be used in a manner similar to a Near Cache
because it maintains an up-to-date set of data locally where it is being used, for
example, on a particular server node or on a client. Note that while a Near Cache is
invalidation-based, a Continuous Query Cache actually maintains its data in an up-
to-date manner.

By combining the Coherence*Extend functionality with Continuous Query Caching,
an application can support literally tens of thousands of concurrent users.

Note:

Continuous Query Caches are useful in almost every type of application,
including both client-based and server-based applications, because they
provide the ability to very easily and efficiently maintain an up-to-date local
copy of a specified sub-set of a much larger and potentially distributed cached
data set.

13.2 Understanding Continuous Query Caching Implementation
The Coherence implementation of Continuous Query is found in the
ContinuousQueryCache class. This class, like all Coherence caches, implements the
standard NamedCache interface, which includes the following capabilities:

• Cache access and manipulation using the Map interface: NamedCache extends the
Map interface, which is based on the Map interface from the Java Collections
Framework.

• Events for all object modifications that occur within the cache: NamedCache
extends the ObservableMap interface.

• Querying the objects in the cache: NamedCache extends the QueryMap interface.

• Distributed Parallel Processing and Aggregation of objects in the cache:
NamedCache extends the InvocableMap interface.

Since the ContinuousQueryCache implements the NamedCache interface, which is
the same API provided by all Coherence caches, it is extremely simple to use, and it
can be easily substituted for another cache when its functionality is called for.

13.3 Defining a Continuous Query Cache
There are two features that define a Continuous Query Cache:

• The underlying cache that the Continuous Query is based on.

Understanding Continuous Query Caching Implementation

13-2 Developing Remote Clients for Oracle Coherence

• A query of the underlying cache that produces the sub-set that the Continuous
Query Cache caches.

The underlying cache can be any Coherence cache, including another Continuous
Query Cache. The most straight-forward way of obtaining a cache is by using the
CacheFactory class. This class enables you to create a cache simply by specifying its
name. It is created automatically and its configuration is based on the application's
cache configuration elements. For example, the following line of code creates a cache
named orders:

NamedCache::Handle hCache = CacheFactory::getCache("orders");

The query is the same type of query that would be used to query any other cache. The
following example illustrates how you can use code filters to find a given trader with a
given order status:

ValueExtractor::Handle hTraderExtractor = ReflectionExtractor::create("getTrader");
ValueExtractor::Handle hStatusExtractor = ReflectionExtractor::create("getStatus");

Filter::Handle hFilter = AndFilter::create(EqualsFilter::create(hTraderExtractor,
vTraderId),
 EqualsFilter::create(hStatusExtractor, vStatus));

Normally, to query a cache, you could use a method from the QueryMap class. For
example, to obtain a snap-shot of all open trades for this trader:

Set::View vSetOpenTrades = hCache->entrySet(hFilter);

In contrast, the Continuous Query Cache is constructed from the
ContinuousQueryCache::create method, passing the cache and the filter:

ContinuousQueryCache::Handle hCacheOpenTrades =
ContinuousQueryCache::create(hCache, hFilter);

13.4 Cleaning up Continuous Query Cache Resources
A Continuous Query Cache places one or more event listeners on its underlying cache.
If the Continuous Query Cache is used for the duration of the application, then the
resources is cleaned up when the node is shut down or otherwise stops. However, if
the Continuous Query Cache is only used for a period, then the application must call
the release() method on the Continuous Query Cache when it is done using it.

13.5 Caching Only Keys Versus Keys and Values
When constructing a Continuous Query Cache, you can specify that the cache should
only keep track of the keys that result from the query and obtain the values from the
underlying cache only when they are asked for. This feature may be useful for creating
a Continuous Query Cache that represents a very large query result set or if the values
are never or rarely requested. To specify that only the keys should be cached, pass
false when creating the ContinuousQueryCache; for example:

ContinuousQueryCache::Handle hCacheOpenTrades =
 ContinuousQueryCache::create(hCache, hFilter, false);

If necessary, the CacheValues property can be modified after the cache has been
instantiated; for example:

hCacheOpenTrades->setCacheValues(true);

Cleaning up Continuous Query Cache Resources

Performing Continuous Queries (C++) 13-3

13.5.1 CacheValues Property and Event Listeners
If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the CacheValues property is automatically set to
true. This is because the Continuous Query Cache uses the locally cached values to
filter events and to supply the old and new values for the events that it raises.

13.5.2 Using ReflectionExtractor with Continuous Query Caches
When the Continuous Query Cache is configured to cache values, the use of the
ReflectionExtractor is not supported. This is because the
ReflectionExtractor does not support reflection in C++. In this case, you must
provide a custom extractor. When the Continuous Query Cache is not caching values
locally, the ReflectionExtractor can be used since it does not perform the
extraction on the client but instead passes the necessary extraction information to the
cluster to perform the query.

13.6 Listening to a Continuous Query Cache
Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

ContinuousQueryCache::Handle hCacheOpenTrades =
ContinuousQueryCache::create(hCache, hFilter);
hCacheOpenTrades->addFilterListener(hListener);

If your application has to perform some processing against every item that is in the
cache and every item added to the cache, then provide the listener during
construction. The resulting cache receives one event for each item that is in the
Continuous Query Cache, whether it was there to begin with (because it was in the
query) or if it got added during or after the construction of the cache. One form of the
factory create method of ContinuousQueryCache enables you to specify a cache, a
filter, and a listener:

ContinuousQueryCache::Handle hCacheOpenTrades = ContinuousQueryCache::create(
 hRemoteCache, hFilter, true, hListener);

By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the ContinuousQueryCache implementation does
respect the option for synchronous events as provided by the
SynchronousListener interface.

13.6.1 Avoiding Unexpected Results
There are two alternate approaches to processing the items in the Continuous Query
Cache, both of which could yield unexpected and unwanted results. First, if you
perform the processing and then add the listener to handle any later additions, then
events that occur in the split second after the iteration and before the listener is added
are missed. For example:

ContinuousQueryCache::Handle hCacheOpenTrades =
ContinuousQueryCache::create(hCache, hFilter);

for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator(); hIter-
>hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());

Listening to a Continuous Query Cache

13-4 Developing Remote Clients for Oracle Coherence

 // .. process the cache entry
 }
hCacheOpenTrades->addFilterListener(hListener);

The second approach is to add a listener first, so that no events are missed, and then
do the processing. Although, the same entry may appear in both an event and in the
Iterator. The events can be asynchronous, so the sequence of operations cannot be
guaranteed.

ContinuousQueryCache::Handle hCacheOpenTrades =
 ContinuousQueryCache::create(hRemoteCache, hFilter);

hCacheOpenTrades->addFilterListener(hListener);
for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator(); hIter-
>hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 // .. process the cache entry
 }

13.6.2 Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence supports an option for synchronous events, which provides a set of
ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first
phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the ContinuousQueryCache allows a developer
to pass a listener during construction, thus avoiding exposing these same complexities
to the application developer.

13.7 Making a Continuous Query Cache Read-Only
The Continuous Query Cache can be made into a read-only cache by using the boolean
setReadOnly method on the ContinuousQueryCache class; for example:

hCacheOpenTrades->setReadOnly(true);

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from, or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back
to read/write.

Making a Continuous Query Cache Read-Only

Performing Continuous Queries (C++) 13-5

Making a Continuous Query Cache Read-Only

13-6 Developing Remote Clients for Oracle Coherence

14
Performing Remote Invocations (C++)

This chapter provides instructions for performing remote invocations on Coherence
caches from C++ clients.

This chapter includes the following sections:

• Overview of Performing Remote Invocations (C++)

• Configuring and Using the Remote Invocation Service

• Registering Invocable Implementation Classes

14.1 Overview of Performing Remote Invocations (C++)
An Invocable can execute any arbitrary action and can use any cluster-side services
(cache services, grid services, and so on) necessary to perform their work. The
Invocable operations can also be stateful, which means that their state is serialized and
transmitted to the grid nodes on which the Invocable is run.

Coherence for C++ provides a Remote Invocation Service which allows the execution
of Invocables within the cluster-side JVM to which the client is connected. In Java,
Invocables are simply runnable application classes that implement the
com.tangosol.net.Invocable interface. To employ an Invocable in Coherence
for C++, you must deploy a compiled Java implementation of the Invocable task on
the cluster-side node, in addition to providing a C++ implementation of Invocable:
coherence::net::Invocable. Since execution is server-side (that is, Java), the C+
+ invocable need only be concerned with state; the methods themselves can be no-
operations.

14.2 Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the remote-invocation-scheme
element in the cache configuration descriptor. The following example illustrates a
remote invocation scheme configuration.

<remote-invocation-scheme>
 <scheme-name>example-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>

 <outgoing-message-handler>

Performing Remote Invocations (C++) 14-1

 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-invocation-scheme>

A reference to a configured Remote Invocation Service can then be obtained by name
by using the coherence::net::CacheFactory class:

InvocationService::Handle hService =
hService::getService("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only
one line of code:

Map::View hResult = hService->query(myTask::create(), NULL);

The Map returned from query is keyed by the member on which the query is run. For
Extend clients, there is no concept of membership, so the result is keyed by the local
member which can be retrieved by calling
CacheFactory::getConfigurableCacheFactory()::GetLocalMember()

14.3 Registering Invocable Implementation Classes
Like cached value objects, all Invocable implementation classes must be correctly
registered in the POF context of the C++ application (see “PortableObject (Self-
Serialization) ”) and cluster-side node to which the client is connected. As such, a Java
implementation of the Invocable task (a com.tangosol.net.Invocable
implementation) must be created, compiled, and deployed on the cluster-side node.

See “Registering Custom C++ Types” for additional details.

Registering Invocable Implementation Classes

14-2 Developing Remote Clients for Oracle Coherence

15
Using Cache Events (C++)

This chapter provides C++-specific instructions for using map event listeners to
receive cache events and events from any class in Coherence that implements the
ObservableMap interface.

This chapter includes the following sections:

• Overview of Map Events (C++)

• Signing Up for all Events

• Using a Multiplexing Map Listener

• Configuring a MapListener for a Cache

• Signing Up for Events on Specific Identities

• Filtering Events

• Using Lite Events

• Listening to Queries

• Using Synthetic Events

• Using Backing Map Events

• Using Synchronous Event Listeners

15.1 Overview of Map Events (C++)
The event model is comprised of an EventListener interface that all listeners must
extend. Coherence provides a MapListener interface, which allows application logic
to receive events when data in a Coherence cache is added, modified or removed.

An application object that implements the MapListener interface can sign up for
events from any Coherence cache or class that implements the ObservableMap
interface, simply by passing an instance of the application's MapListener
implementation to an addMapListener() method.

The MapEvent object that is passed to the MapListener carries all of the necessary
information about the event that has occurred, including the source (ObservableMap)
that raised the event, the identity (key) that the event is related to, what the action was
against that identity (insert, update or delete), what the old value was and what the
new value is.

15.1.1 Caches and Classes that Support Events
All Coherence caches implement ObservableMap; in fact, the NamedCache interface
that is implemented by all Coherence caches extends the ObservableMap interface.

Using Cache Events (C++) 15-1

That means that an application can sign up to receive events from any cache,
regardless of whether that cache is local, partitioned, near, replicated, using read-
through, write-through, write-behind, overflow, disk storage, and so on.

Note:

Regardless of the cache topology and the number of servers, and even if the
modifications are being made by other servers, the events are delivered to the
application's listeners.

In addition to the Coherence caches (those objects obtained through a Coherence cache
factory), several other supporting classes in Coherence also implement the
ObservableMap interface:

• ObservableHashMap

• LocalCache

• OverflowMap

• NearCache

• ReadWriteBackingMap

• AbstractSerializationCache, SerializationCache, and
SerializationPagedCache

• WrapperObservableMap, WrapperConcurrentMap, and
WrapperNamedCache

For a full list of published implementing classes, see the Coherence API for
ObservableMap.

15.2 Signing Up for all Events
To sign up for events, simply pass an object that implements the MapListener
interface to an addMapListener method on ObservableMap:

virtual void addKeyListener(MapListener::Handle hListener, Object::View vKey, bool
fLite) = 0;
virtual void removeKeyListener(MapListener::Handle hListener, Object::View vKey) = 0;
virtual void addFilterListener(MapListener::Handle hListener, Filter::View vFilter =
NULL, bool fLite = false) = 0;
virtual void removeFilterListener(MapListener::Handle hListener, Filter::View
vFilter = NULL) = 0;

Let's create an example MapListener implementation:

#include "coherence/util/MapEvent.hpp"
#include "coherence/util/MapListener.hpp"

#include <iostream>

using coherence::util::MapEvent;
using coherence::util::MapListener;
using namespace std;

/**
* A MapListener implementation that prints each event as it receives

Signing Up for all Events

15-2 Developing Remote Clients for Oracle Coherence

* them.
*/
class EventPrinter
 : public class_spec<EventPrinter,
 extends<Object>,
 implements<MapListener> >
 {
 friend class factory<EventPrinter>;

 public:
 virtual void entryInserted(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }

 virtual void entryUpdated(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }

 virtual void entryDeleted(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }
 };

Using this implementation simplifies printing all events from any given cache (since
all caches implement the ObservableMap interface):

NamedCache::Handle hCache;
...
hCache->addFilterListener(EventPrinter::create());

Of course, to be able to later remove the listener, it is necessary to hold on to a
reference to the listener:

MapListener::Handle hListener = EventPrinter::create();
hCache->addFilterListener(hListener);
m_hListener = hListener; // store the listener in a member field

Later, to remove the listener:

MapListener::Handle hListener = m_hListener;
if (hListener != NULL)
 {
 hCache->removeFilterListener(hListener);
 m_hListener = NULL; // clean up the listener field
 }

Each add*Listener method on the ObservableMap interface has a corresponding
remove*Listener method. To remove a listener, use the remove*Listener
method that corresponds to the add*Listener method that was used to add the
listener.

15.3 Using a Multiplexing Map Listener
Another helpful base class for creating a MapListener is the
MultiplexingMapListener, which routes all events to a single method for
handling. The following example illustrates a simplified version of the
EventPrinter example:

Using a Multiplexing Map Listener

Using Cache Events (C++) 15-3

#include "coherence/util/MultiplexingMapListener.hpp"

#include <iostream>

using coherence::util::MultiplexingMapListener;

class EventPrinter
 : public class_spec<EventPrinter,
 extends<MultiplexingMapListener> >
 {
 public:
 virtual void onMapEvent(MapEventView vEvent)
 {
 std::cout << vEvent << std::endl;
 }
 };

15.4 Configuring a MapListener for a Cache
If a listener should always be on a particular cache, then place it into the cache
configuration using the <listener> element and Coherence automatically adds the
listener when it configures the cache.

15.5 Signing Up for Events on Specific Identities
Signing up for events that occur against specific identities (keys) is just as simple. The
following code in prints all events that occur against the Integer key 5:

hCache->addKeyListener(EventPrinter::create(), Integer32::create(5), false);

The following code only triggers an event when the Integer key 5 is inserted or
updated:

for (int32_t i = 0; i < 10; ++i)
 {
 Integer32::View vKey = Integer32::create(i);
 Integer32::View vValue = vKey;
 hCache->put(vKey, vValue);
 }

15.6 Filtering Events
It is possible to listen to particular events. In the following example, a listener is added
to the cache with a filter that allows the listener to only receive delete events.

// Filters used with partitioned caches must implement
coherence::io::pof::PortableObject

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/Filter.hpp"
#include "coherence/util/MapEvent.hpp"

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;
using coherence::util::Filter;
using coherence::util::MapEvent;

Configuring a MapListener for a Cache

15-4 Developing Remote Clients for Oracle Coherence

class DeletedFilter
 : public class_spec<DeletedFilter,
 extends<Object>,
 implements<Filter, PortableObject> >
 {
 public:
 // Filter interface virtual bool evaluate(Object::View v) const
 {
 MapEvent::View vEvt = cast<MapEvent::View>(v);
 return MapEvent::entry_deleted == vEvt->getId();
 }

 // PortableObject interface virtual void
readExternal(PofReader::Handle hIn)
 {
 }

 virtual void writeExternal(PofWriter::Handle hOut) const
 {
 }
 };

hCache->addFilterListener(EventPrinter::create(), DeletedFilter::create(), false);

For example, if the following sequence of calls were made:

cache::put(String::create("hello"), String::create("world"));
cache::put(String::create("hello"), String::create("again"));
cache::remove(String::create("hello"));

The result would be:

CacheEvent{LocalCache deleted: key=hello, value=again}

For more information, see “Listening to Queries ”.

Filtering Events Versus Filtering Cached Data

When building a Filter for querying, the object that is passed to the evaluate
method of the Filter is a value from the cache, or, if the Filter implements the
EntryFilter interface, the entire Map::Entry from the cache. When building a
Filter for filtering events for a MapListener, the object that is passed to the
evaluate method of the Filter is always of type MapEvent.

For more information on how to use a query filter to listen to cache events, see
Advanced: Listening to Queries.

15.7 Using Lite Events
By default, Coherence provides both the old and the new value as part of an event.
Consider the following example:

MapListener::Handle hListener = EventPrinter::create();
// add listener with the default"lite" value of falsehCache-
>addFilterListener(hListener);

// insert a 1KB value
String::View vKey = String::create("test");
hCache->put(vKey, Array<octet_t>::create(1024));

// update with a 2KB value

Using Lite Events

Using Cache Events (C++) 15-5

hCache->put(vKey, Array<octet_t>::create(2048));

// remove the value
hCache->remove(vKey);

When the above code is run, the insert event carries the new 1KB value, the update
event carries both the old 1KB value and the new 2KB value and the remove event
carries the removed 2KB value.

When an application does not require the old and the new value to be included in the
event, it can indicate that by requesting only "lite" events. When adding a listener, you
can request lite events by using either the addFilterListener or the
addKeyListener method that takes an additional boolean fLite parameter. In the
above example, the only change would be:

cache->addFilterListener(hListener, (Filter::View) NULL, true);

Note:

Obviously, a lite event's old value and new value may be NULL. However,
even if you request lite events, the old and the new value may be included if
there is no additional cost to generate and deliver the event. In other words,
requesting that a MapListener receive lite events is simply a hint to the
system that the MapListener does not require knowledge of the old and new
values for the event.

15.8 Listening to Queries
All Coherence caches support querying by any criteria. When an application queries
for data from a cache, the result is a point-in-time snapshot, either as a set of identities
(keySet) or a set of identity/value pairs (entrySet). The mechanism for
determining the contents of the resulting set is referred to as filtering, and it allows an
application developer to construct queries of arbitrary complexity using a rich set of
out-of-the-box filters (for example, equals, less-than, like, between, and so on), or to
provide their own custom filters (for example, XPath).

The same filters that are used to query a cache are used to listen to events from a
cache. For example, in a trading system it is possible to query for all open Order
objects for a particular trader.

Note:

Executing Queries in the Cluster: #unique_212/
unique_212_Connect_42_BEICHICC uses the
coherence::util::extractor::ReflectionExtractor class. While
the C++ client does not support reflection, ReflectionExtractor can be
used for queries which are executed in the cluster. In this case, the
ReflectionExtractor simply passes the necessary extraction information
to the cluster to perform the query. In cases where the
ReflectionExtractor would extract the data on the client, such as the
ContinuousQueryCache when caching values locally, the use of the
ReflectionExtractor is not supported. For these cases, you must provide
a custom extractor.

Listening to Queries

15-6 Developing Remote Clients for Oracle Coherence

NamedCache::Handle hMapTrades = ...
Filter::Handle hFilter = AndFilter::create(
 EqualsFilter::create(ReflectionExtractor::create("getTrader"), vTraderId),
 EqualsFilter::create(ReflectionExtractor::create("getStatus"),
Status::OPEN));
Set::View vSetOpenTrades = hMapTrades->entrySet(hFilter);

To receive notifications of new trades being opened for that trader, closed by that
trader or reassigned to or from another trader, the application can use the same filter:

// receive events for all trade IDs that this trader is interested in
hMapTrades->addFilterListener(hListener, MapEventFilter::create(hFilter), true);

The MapEventFilter converts a query filter into an event filter.

Note:

Filtering events versus filtering cached data: When building a Filter for
querying, the object that is passed to the evaluate method of the Filter is a
value from the cache, or, if the Filter implements the EntryFilter
interface, the entire Map::Entry from the cache. When building a Filter
for filtering events for a MapListener, the object that is passed to the
evaluate method of the Filter is always be of type MapEvent.

The MapEventFilter converts a Filter that is used to do a query into a
Filter that is used to filter events for a MapListener. In other words, the
MapEventFilter is constructed from a Filter that queries a cache, and the
resulting MapEventFilter is a filter that evaluates MapEvent objects by
converting them into the objects that a query Filter would expect.

The MapEventFilter has several very powerful options, allowing an application
listener to receive only the events that it is specifically interested in. More importantly
for scalability and performance, only the desired events have to be communicated
over the network, and they are communicated only to the servers and clients that have
expressed interest in those specific events. For example:

// receive all events for all trades that this trader is interested in
int32_t nMask = MapEventFilter::e_all;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

// receive events for all this trader's trades that are closed or
// re-assigned to a different trader
nMask = MapEventFilter::e_updated_left | MapEventFilter::e_deleted;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

// receive events for all trades as they are assigned to this trader
nMask = MapEventFilter::e_inserted | MapEventFilter::e_updated_entered;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

// receive events only for new trades assigned to this trader
nMask = MapEventFilter::e_inserted;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

Listening to Queries

Using Cache Events (C++) 15-7

For more information on the various options supported, see the API documentation
for MapEventFilter.

15.9 Using Synthetic Events
Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache; while, another server is adding several items to a
cache; while, a third server is removing an item from the same cache; while, fifty
threads on each server in the cluster is accessing data from the same cache. All the
modifying actions produce events that any server within the cluster can choose to
receive. These actions are referred to as client actions and the events as being dispatched
to clients, even though the "clients" in this case are actually servers. This is a natural
concept in a true peer-to-peer architecture, such as a Coherence cluster: Each and
every peer is both a client and a server, both consuming services from its peers and
providing services to its peers. In a typical Java Enterprise application, a "peer" is an
application server instance that is acting as a container for the application, and the
"client" is that part of the application that is directly accessing and modifying the
caches and listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the
most common cases are:

• When entries automatically expire from a cache;

• When entries are evicted from a cache because the maximum size of the cache has
been reached;

• When entries are transparently added to a cache as the result of a Read-Through
operation;

• When entries in a cache are transparently updated as the result of a Read-Ahead or
Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and
typically automatic) operations from within a cache. These events are referred to as
synthetic events.

When necessary, an application can differentiate between client-induced and synthetic
events simply by asking the event if it is synthetic. This information is carried on a
sub-class of the MapEvent, called CacheEvent. Using the previous EventPrinter
example, it is possible to print only the synthetic events:

class EventPrinter
 : public class_spec<EventPrinter,
 extends<MultiplexingMapListener> >
 {
 friend class factory<EventPrinter>;

 public:
 void onMapEvent(MapEvent::View vEvt)
 {
 if (instanceof<CacheEvent::View>(vEvt) &&
 (cast<CacheEvent::View>(vEvt)->isSynthetic()))
 {
 std::cout << vEvt;
 }
 }
 };

Using Synthetic Events

15-8 Developing Remote Clients for Oracle Coherence

For more information on this feature, see the API documentation for CacheEvent.

15.10 Using Backing Map Events
While it is possible to listen to events from Coherence caches, each of which presents a
local view of distributed, partitioned, replicated, near-cached, continuously-queried,
read-through/write-through, and write-behind data, it is also possible to peek behind
the curtains, so to speak.

For some advanced use cases, it may be necessary to peek behind the curtain—or more
correctly, to "listen to" the "map" behind the "service." Replication, partitioning and
other approaches to managing data in a distributed environment are all distribution
services. The service still has to have something in which to actually manage the data,
and that something is called a "backing map".

Backing maps are configurable. If all the data for a particular cache should be kept in
object form on the heap, then use an unlimited and non-expiring LocalCache (or a
SafeHashMap if statistics are not required). If only a small number of items should be
kept in memory, use a LocalCache. If data are to be read on demand from a
database, then use a ReadWriteBackingMap (which knows how to read and write
through an application's DAO implementation), and in turn give the
ReadWriteBackingMap a backing map such as a SafeHashMap or a LocalCache
to store its data in.

Some backing maps are observable. The events coming from these backing maps are
not usually of direct interest to the application. Instead, Coherence translates them into
actions that must be taken (by Coherence) to keep data synchronized and properly
backed up, and it also translates them when appropriate into clustered events that are
delivered throughout the cluster as requested by application listeners. For example, if
a partitioned cache has a LocalCache as its backing map, and the local cache expires
an entry, that event causes Coherence to expire all of the backup copies of that entry.
Furthermore, if any listeners have been registered on the partitioned cache, and if the
event matches their event filter(s), then that event is delivered to those listeners on the
servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where
the data are being maintained, and it must do so on the structure (backing map) that is
actually managing the data. In these cases, if the backing map is an observable map, a
listener can be configured on the backing map or one can be programmatically added
to the backing map. (If the backing map is not observable, it can be made observable
by wrapping it in an WrapperObservableMap.)

See C++ API Reference for Oracle Coherence for more information on these APIs.

15.11 Using Synchronous Event Listeners
Some events are delivered asynchronously, so that application listeners do not disrupt
the cache services that are generating the events. In some rare scenarios, asynchronous
delivery can cause ambiguity of the ordering of events compared to the results of
ongoing operations. To guarantee that the cache API operations and the events are
ordered as if the local view of the clustered system were single-threaded, a
MapListener must implement the SynchronousListener marker interface.

One example in Coherence itself that uses synchronous listeners is the Near Cache,
which can use events to invalidate locally cached data ("Seppuku").

See C++ API Reference for Oracle Coherence for more information on this API.

Using Backing Map Events

Using Cache Events (C++) 15-9

Using Synchronous Event Listeners

15-10 Developing Remote Clients for Oracle Coherence

16
Performing Transactions (C++)

This chapter provides instructions for using the Transaction Framework API to ensure
cache operations are performed within a transaction when using a C++ client. The
instructions do not provide detailed transaction API usage. See "Using the Transaction
Framework API" in Developing Applications with Oracle Coherence for detailed
transaction API usage.

The following sections are included in this chapter and are required to perform
transactions:

• Using the Transaction API within an Entry Processor

• Creating a Stub Class for a Transactional Entry Processor

• Registering a Transactional Entry Processor User Type

• Configuring the Cluster-Side Transactional Caches

• Configuring the Client-Side Remote Cache

• Using a Transactional Entry Processor from a C++ Client

16.1 Using the Transaction API within an Entry Processor
C++ clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction API is not supported natively on C++
and must be used within an entry processor. The entry processor is implemented in
Java on the cluster and an entry processor stub class is implemented in C++ on the
client. Both classes use POF to serialize between Java and C++.

Example 16-1 demonstrates an entry processor that performs a simple update
operation within a transaction using the transaction API. At run time, the class must
be located on the classpath of the extend proxy server.

Example 16-1 Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;
import com.tangosol.coherence.transaction.ConnectionFactory;
import com.tangosol.coherence.transaction.DefaultConnectionFactory;
import com.tangosol.coherence.transaction.OptimisticNamedCache;
import
com.tangosol.coherence.transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import
com.tangosol.coherence.transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;
import com.tangosol.util.InvocableMap;
import com.tangosol.util.extractor.IdentityExtractor;

Performing Transactions (C++) 16-1

import com.tangosol.util.filter.EqualsFilter;
import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject
 {
 public Object process(InvocableMap.Entry entry)
 {
 // obtain a connection and transaction cache
 ConnectionFactory connFactory = new DefaultConnectionFactory();
 Connection conn = connFactory.createConnection("TransactionalCache");
 OptimisticNamedCache cache = conn.getNamedCache("MyTxCache");

 conn.setAutoCommit(false);

 // get a value for an existing entry
 String sValue = (String) cache.get("existingEntry");

 // create predicate filter
 Filter predicate = new EqualsFilter(IdentityExtractor.INSTANCE, sValue);

 try
 {
 // update the previously obtained value
 cache.update("existingEntry", "newValue", predicate);
 }
 catch (PredicateFailedException e)
 {
 // value was updated after it was read
 conn.rollback();
 return false;
 }
 catch (UnableToAcquireLockException e)
 {
 // row is being updated by another tranaction
 conn.rollback();
 return false;
 }
 try
 {
 conn.commit();
 }
 catch (RollbackException e)
 {
 // transaction was rolled back
 return false;
 }
 return true;
 }

 public void readExternal(PofReader in)
 throws IOException
 {
 }

 public void writeExternal(PofWriter out)
 throws IOException
 {
 }
}

Using the Transaction API within an Entry Processor

16-2 Developing Remote Clients for Oracle Coherence

16.2 Creating a Stub Class for a Transactional Entry Processor
An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C++ and uses POF for serialization.
POF allows an entry processor to be serialized between C++ and Java. The entry
processor stub class does not require any transaction logic and is a skeleton of the
transactional entry processor. See Building Integration Objects (C++), for detailed
information on using POF with C++.

Example 16-2 and Example 16-3 demonstrate a stub class and associated header file for
the transactional entry processor created in Example 16-1. In the example, POF
registration is performed within the class.

Example 16-2 Transaction Entry Processor C++ Stub Class

#include "coherence/tests/MyTxProcessor.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

COH_OPEN_NAMESPACE2(coherence,tests)
COH_REGISTER_PORTABLE_CLASS(1599, MyTxProcessor);

MyTxProcessor::MyTxProcessor()
 {
 }

void MyTxProcessor::readExternal(PofReader::Handle hIn)
 {
 }

void MyTxProcessor::writeExternal(PofWriter::Handle hOut) const
 {
 }

Object::Holder MyTxProcessor::process(InvocableMap::Entry::Handle hEntry) const
 {
 return NULL;
 }

COH_CLOSE_NAMESPACE2

Example 16-3 Transaction Entry Processor C++ Stub Class Header File

#ifndef COH_TX_EP_HPP
#define COH_TX_EP_HPP

#include "coherence/lang.ns"
#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/InvocableMap.hpp"
#include "coherence/util/processor/AbstractProcessor.hpp";

COH_OPEN_NAMESPACE2(coherence,tests)

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;
using coherence::util::InvocableMap;
using coherence::util::processor::AbstractProcessor;

Creating a Stub Class for a Transactional Entry Processor

Performing Transactions (C++) 16-3

class MyTxProcessor
 : public class_spec<MyTxProcessor,
 extends<AbstractProcessor>,
 implements<PortableObject> >

 {
 friend class factory<MyTxProcessor>;

 protected:
 MyTxProcessor();

 public:
 virtual Object::Holder process(InvocableMap::Entry::Handle hEntry)
const;

 public:
 virtual void readExternal(PofReader::Handle hIn);
 virtual void writeExternal(PofWriter::Handle hOut) const;
 };

COH_CLOSE_NAMESPACE2
#endif // COH_TX_EP_HPP

16.3 Registering a Transactional Entry Processor User Type
An entry processor class must be registered as a POF user type in the cluster-side POF
configuration file. The registration must use the same type ID that was used to register
the stub class on the client side. The following example demonstrates registering the
MyTxProcessor class that was created in Example 16-1 and uses the same type ID
that was registered in Example 16-2:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>txn-pof-config.xml</include>
 <user-type>
 <type-id>1599</type-id>
 <class-name>coherence.tests.MyTxProcessor</class-name>
 </user-type>
 </user-type-list>
</pof-config>

16.4 Configuring the Cluster-Side Transactional Caches
Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See "Defining Transactional Caches" in Developing
Applications with Oracle Coherence for details on transactional caches.

The following example creates a transactional cache that is named MyTxCache, which
is the cache name that was used by the entry processor in Example 16-1. The
configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on localhost at port 7077. See Configuring

Registering a Transactional Entry Processor User Type

16-4 Developing Remote Clients for Oracle Coherence

Extend Proxies , for detailed information on configuring cluster-side caches when
using Coherence*Extend.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>MyTxCache</cache-name>
 <scheme-name>example-transactional</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>example-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <transactional-scheme>
 <scheme-name>example-transactional</scheme-name>
 <service-name>TransactionalCache</service-name>
 <thread-count-min>2</thread-count-min>
 <thread-count-max>10</thread-count-max>
 <high-units>15M</high-units>
 <task-timeout>0</task-timeout>
 <autostart>true</autostart>
 </transactional-scheme>

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

16.5 Configuring the Client-Side Remote Cache
Remote clients require a remote cache to connect to the cluster's proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Configuring Extend Proxies , for detailed information on
configuring client-side caches.

The following example configures a remote cache to connect to a proxy that is located
on localhost at port 7077. In addition, the name of the remote cache (dist-

Configuring the Client-Side Remote Cache

Performing Transactions (C++) 16-5

example) must match the name of a cluster-side cache that is used when initiating the
transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>extend</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

16.6 Using a Transactional Entry Processor from a C++ Client
A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked. The client
is unaware that the invocation has been delegated to the Java class. The following
example demonstrates a client that uses the entry processor stub class and results in an
invocation of the transactional entry processor that was created in Example 16-1:

String::View vsCacheName = "dist-example";
String::View vsKey = "AnyKey";

// retrieve the named cache
NamedCache::Handle hCache = CacheFactory::getCache(vsCacheName);

// invoke the cache
Object::View oResult = hCache->invoke(vsKey, MyTxProcessor::create());
std::cout << "Result of extend transaction execution: " << oResult << std::endl;

Using a Transactional Entry Processor from a C++ Client

16-6 Developing Remote Clients for Oracle Coherence

Part IV
Creating .NET Extend Clients

Coherence for .NET contains the following chapters:

• Introduction to Coherence .NET Clients

• Building Integration Objects (.NET)

• Using the Coherence .NET Client Library

• Performing Continuous Queries (.NET).

• Performing Remote Invocations (.NET)

• Performing Transactions (.NET)

• Managing ASP.NET Session State

17
Introduction to Coherence .NET Clients

This chapter describes Coherence for .NET and provides instructions for setting
up .NET application to use Coherence for .NET.

This chapter includes the following sections:

• Overview of Coherence for .NET

• Configuration and Usage for .NET Clients

17.1 Overview of Coherence for .NET
Coherence for .NET allows .NET applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for .NET include desktop and web applications that require
access to Coherence caches. For details about installing the .NET client distribution,
see Installing Oracle Coherence.

Coherence for .NET consists of a lightweight .NET library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
Partitioned or Replicated cache service).

An INamedCache instance is retrieved by using the
CacheFactory.GetCache(...) API call. After it is obtained, a client accesses the
INamedCache in the same way as it would if it were part of the Coherence cluster.
The fact that INamedCache operations are being sent to a remote cluster node (over
TCP/IP) is completely transparent to the client application.

17.2 Configuration and Usage for .NET Clients
This section includes instructions for setting up .NET applications to use Coherence.
This section includes the following topics:

• General Instructions

• Configuring Coherence*Extend for .NET

• Obtaining a Cache Reference with .NET

• Cleaning Up Resources Associated with a Cache

• Using Network Filters

Introduction to Coherence .NET Clients 17-1

17.2.1 General Instructions
Configuring and using Coherence for .NET requires the following steps:

1. Configuring Coherence*Extend for .NET

2. Building Integration Objects (.NET) (See also Developing Applications with Oracle
Coherence)

3. Using the Coherence .NET APIs

4. Starting a Proxy Server

5. Launching the .NET client application

17.2.2 Configuring Coherence*Extend for .NET
For details on configuring Coherence*Extend, refer to:

• Defining Extend Proxy Services

• Defining Caches for Use By Extend Clients

• Defining a Remote Cache

Coherence for .NET clients must use a specific XML schema for the Coherence cache
configuration file. Make sure the cache configuration file uses the following schema:

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 ...

17.2.3 Obtaining a Cache Reference with .NET
A reference to a configured cache can be obtained by name by using the
CacheFactory class:

INamedCache cache = CacheFactory.GetCache("example-local-cache");

17.2.4 Cleaning Up Resources Associated with a Cache
Instances of all INamedCache implementations, including LocalCache, should be
explicitly released by calling the INamedCache.Release() method when they are
no longer needed, to free up any resources they might hold.

If the particular INamedCache is used for the duration of the application, then the
resources are cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release()
method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable
and that all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release(). If you want to obtain and release a cache instance within
a single method, you can do so with a using block:

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{

Configuration and Usage for .NET Clients

17-2 Developing Remote Clients for Oracle Coherence

 // use cache as usual
}

After the using block terminates, IDisposable.Dispose() is called on the
INamedCache instance, and all resources associated with it are released.

17.2.5 Using Network Filters
A network filter is a mechanism that allows transformation of data sent through
TCP/IP sockets to be performed in a pluggable, layered fashion. Coherence for .NET
supports custom filters, thus enabling users to modify the contents of the network
traffic and is commonly used to add compression and encryption to data.

This section includes the following topics:

• Custom Filters

• Configuring Filters

17.2.5.1 Custom Filters

To create a filter, create a .NET class that implements the
Tangosol.IO.IWrapperStreamFactory interface and optionally implements the
Tangosol.Util.IXmlConfigurable interface. The IWrapperStreamFactory
interface defines two methods:

Stream GetInputStream(Stream stream);
Stream GetOutputStream(Stream stream);

that provide the I/O stream to be wrapped ("filtered") (on input—received message,
or output—sending message) and expects a stream back that wraps the original
stream. This method is called for each incoming and outgoing message.

17.2.5.2 Configuring Filters

There are two steps to configuring a filter. The first is to declare the filter in the
<filters> XML element in an operational override file. For more information on
configuring filters, see the Developing Applications with Oracle Coherence.

...
<cluster-config>
 <filters>
 <filter>
 <filter-name>gzip</filter-name>
 <filter-class>Tangosol.Net.CompressionFilter, Coherence</filter-class>
 </filter>
 </filters>
</cluster-config>
...

Note:

GZip compression filter is supported in .NET framework version 2.0 or
higher.

The second step is to attach the filter to one or more specific services. To specify the
filter for a specific service, for example the ExtendTcpCacheService service, add a

Configuration and Usage for .NET Clients

Introduction to Coherence .NET Clients 17-3

<filter-name> element to the <use-filters> element of the service declaration
in the cache configuration file.

...
<remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 ...
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>
 ...
 </initiator-config>
</remote-cache-scheme>
...

If the filter implements IXmlConfigurable, after instantiating the filter, Coherence
sets the Config property with the following XML element:

<config>
 <param1>value1</param1>
 <param2>value2</param2>
</config>

Configuration and Usage for .NET Clients

17-4 Developing Remote Clients for Oracle Coherence

18
Building Integration Objects (.NET)

This chapter provides instructions for using Portable Object Format (POF) serialization
when creating .NET clients.

The following section is included in this chapter:

• Overview of Building Integration Objects (.NET)

• Creating an IPortableObject Implementation

• Implementing a Java Version of a .NET Object

• Registering Custom Types on the .NET Client

• Registering Custom Types in the Cluster

• Evolvable Portable User Types

• Making Types Portable Without Modification

• Using POF Object References

• Using POF Annotations to Serialize Objects

18.1 Overview of Building Integration Objects (.NET)
Coherence caches are used to cache value objects. Enabling .NET clients to successfully
communicate with a Coherence JVM requires a platform-independent serialization
format that allows both .NET clients and Coherence JVMs (including
Coherence*Extend Java clients) to properly serialize and deserialize value objects
stored in Coherence caches. The Coherence for .NET client library and
Coherence*Extend clustered service use a serialization format known as Portable
Object Format (POF). POF allows value objects to be encoded into a binary stream in
such a way that the platform and language origin of the object is irrelevant. For more
information on the POF binary stream, see Developing Applications with Oracle
Coherence.

POF supports all common .NET types out-of-the-box. Custom .NET classes can also be
serialized to a POF stream by completing the following steps:

1. Create a .NET class that implements the IPortableObject interface. See
“Creating an IPortableObject Implementation.”

2. Create a matching Java class that implements the PortableObject interface in
the same way. See “Creating a PortableObject Implementation (Java).”

3. Register your custom .NET class on the client. See “Registering Custom Types on
the .NET Client.”

Building Integration Objects (.NET) 18-1

4. Register your custom Java class on each of the servers running the
Coherence*Extend clustered service. See “Registering Custom Types in the
Cluster.”

After these steps are complete, you can cache your custom .NET classes in a Coherence
cache in the same way as a built-in data type. Additionally, you can retrieve,
manipulate, and store these types from a Coherence or Coherence*Extend JVM using
the matching Java classes.

18.2 Creating an IPortableObject Implementation
Each class that implements IPortableObject can self-serialize and deserialize its
state to and from a POF data stream. This is achieved in the ReadExternal
(deserialize) and WriteExternal (serialize) methods. Conceptually, all user types
are composed of zero or more indexed values (properties) which are read from and
written to a POF data stream one by one. The only requirement for a portable class,
other than the requirement to implement the IPortableObject interface, is that it
must have a default constructor which allows the POF deserializer to create an
instance of the class during deserialization.

Example 18-1 illustrates a user-defined portable class:

Example 18-1 A User-Defined Portable Class

public class ContactInfo : IPortableObject
{
 private string name;
 private string street;
 private string city;
 private string state;
 private string zip;
 public ContactInfo()
 {}

 public ContactInfo(string name, string street, string city, string state, string
zip)
 {
 Name = name;
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }
 public void ReadExternal(IPofReader reader)
 {
 Name = reader.ReadString(0);
 Street = reader.ReadString(1);
 City = reader.ReadString(2);
 State = reader.ReadString(3);
 Zip = reader.ReadString(4);
 }
 public void WriteExternal(IPofWriter writer)
 {
 writer.WriteString(0, Name);
 writer.WriteString(1, Street);
 writer.WriteString(2, City);
 writer.WriteString(3, State);
 writer.WriteString(4, Zip);
 }

Creating an IPortableObject Implementation

18-2 Developing Remote Clients for Oracle Coherence

 // property definitions ommitted for brevity
}

18.3 Implementing a Java Version of a .NET Object
The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the PofExtractor and PofUpdater APIs add
flexibility in working with non-primitive types in Coherence. For many extend client
cases, a corresponding Java classes in the grid is not required. Because POF extractors
and POF updaters can navigate the binary, the entire key and value does not have to
be deserialized into object form. This implies that indexing can be achieved by simply
using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers
must directly interact with a data object rather then simply holding onto a serialized
representation of it. For example, a Java class is still required when using a cache store.
In this case, the deserialized version of the key and value is passed to the cache store
to write to the back end. In addition, queries, filters, entry processors, and aggregators
require a Java implementation if direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the
cache servers. The approach to making the Java version serializable over POF is
similar to the above example and is demonstrated in “Creating a PortableObject
Implementation (Java)”. See the IPortableObject and IPofSerializer APIs for
details. These APIs are compatible with the .NET approaches.

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using the IKeyAssociation interface. Key classes are checked
on the client side and a decorated binary is created and used by the cluster. However,
existing client implementations that do rely on a Java key class for key association
must set the defer-key-association-check parameter in order to force the use
of the Java key class. Existing client applications that use key association but want to
leverage client-side key binaries, must port the getAssociatedKey()
implementation from the existing Java class to the corresponding client class (see
IKeyAssociation.AssociatedKey.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a
<remote-cache-scheme> element, in the client-side cache configuration to true.
For example:

<remote-cache-scheme>
 ...
 <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Note:

If the parameter is set to true, a Java key class implementation must be found
on the cluster even if key association is no being used.

Implementing a Java Version of a .NET Object

Building Integration Objects (.NET) 18-3

18.3.1 Creating a PortableObject Implementation (Java)
An implementation of the portable class in Java is very similar to the one in .NET.
Example 18-2 illustrates the Java version of the .NET class in Example 18-1.

Example 18-2 A User-Defined Class in Java

public class ContactInfo implements PortableObject
 { private String m_sName;

 private String m_sStreet;
 private String m_sCity;
 private String m_sState;
 private String m_sZip;
 public ContactInfo()
 {
 }
 public ContactInfo(String sName, String sStreet, String sCity, String sState,
String sZip)
 {
 setName(sName);
 setStreet(sStreet);
 setCity(sCity);
 setState(sState);
 setZip(sZip);
 }
 public void readExternal(PofReader reader)
 throws IOException
 {
 setName(reader.readString(0));
 setStreet(reader.readString(1));
 setCity(reader.readString(2));
 setState(reader.readString(3));
 setZip(reader.readString(4));
 }
 public void writeExternal(PofWriter writer)
 throws IOException
 {
 writer.writeString(0, getName());
 writer.writeString(1, getStreet());
 writer.writeString(2, getCity());
 writer.writeString(3, getState());
 writer.writeString(4, getZip());
 }
 // accessor methods omitted for brevity
}

18.4 Registering Custom Types on the .NET Client
Each POF user type is represented within the POF stream as an integer value. As such,
POF requires an external mechanism that allows a user type to be mapped to its
encoded type identifier (and the opposite is true as well). This mechanism uses an
XML configuration file to store the mapping information as shown below. See
Developing Applications with Oracle Coherence for a detailed reference of the POF
configuration elements.

<?xml version="1.0"?>
<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->

Registering Custom Types on the .NET Client

18-4 Developing Remote Clients for Oracle Coherence

 <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
 </include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>My.Example.ContactInfo, MyAssembly</class-name>
 </user-type>
 </user-type-list>
</pof-config>

There are few things to note:

• Type identifiers for your custom types should start from 1001 or higher, as the
numbers below 1000 are reserved for internal use. As shown in the above example,
the <user-type-list> includes the coherence-pof-config.xml file. This is
where Coherence specific user types are defined and should be included in all of
your POF configuration files

• You need not specify a fully qualified type name within the class-name element.
The type and assembly name is enough.

After you have configured mappings between type identifiers and your custom types,
you must configure Coherence for .NET to use them by adding a serializer element to
your cache configuration descriptor. The following examples assumes that the user
type mappings are saved in the my-dotnet-pof-config.xml file:

<remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 ...
 <serializer>
 <class-name>Tangosol.IO.Pof.ConfigurablePofContext, Coherence
 </class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-dotnet-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </initiator-config>
</remote-cache-scheme>

If a serializer is not explicitly specified, the ConfigurablePofContext type is used
for the POF serializer and uses a default configuration file called pof-config.xml.
The Coherence .Net application looks for the default POF configuration file in both the
folder where the application is deployed and, for Web applications, in the root of the
Web application. If a POF configuration file is not found, it tries to located the file by
the contents of the pof-config element in the Coherence for .NET application
configuration file. For example:

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <pof-config>my-dotnet-pof-config.xml</pof-config>

Registering Custom Types on the .NET Client

Building Integration Objects (.NET) 18-5

 </coherence>
</configuration>

18.5 Registering Custom Types in the Cluster
Each Coherence node running the TCP/IP Coherence*Extend clustered service
requires a similar POF configuration for the custom types to be able to send and
receive objects of these types.

The cluster-side POF configuration file looks similar to the file created on the client.
The only difference is that instead of .NET class names, you must specify the fully
qualified Java class names within the class-name element. The following illustrates a
sample cluster-side POF configuration file called my-java-pof-config.xml:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>coherence-pof-config.xml</include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.mycompany.example.ContactInfo</class-name>
 </user-type>
 </user-type-list>
</pof-config>

After your custom types have been added, you must configure the server to use your
POF configuration when serializing objects:

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 ...
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-java-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </acceptor-config>
 ...
</proxy-scheme>

18.6 Evolvable Portable User Types
PIF-POF includes native support for both forward- and backward-compatibility of the
serialized form of portable user types. In .NET, this is accomplished by making user
types implement the IEvolvablePortableObject interface instead of the
IPortableObject interface. The IEvolvablePortableObject interface is a
marker interface that extends both the IPortableObject and IEvolvable
interfaces. The IEvolvable interface adds three properties to support type
versioning.An IEvolvable class has an integer version identifier n, where n >= 0.

Registering Custom Types in the Cluster

18-6 Developing Remote Clients for Oracle Coherence

When the contents, or semantics, or both of the serialized form of the IEvolvable
class changes, the version identifier is increased. Two versions identifiers, n1 and n2,
indicate the same version if n1 == n2; the version indicated by n2 is newer than the
version indicated by n1 if n2 > n1.

The IEvolvable interface is designed to support the evolution of types by the
addition of data. Removal of data cannot be safely accomplished if a previous version
of the type exists that relies on that data. Modifications to the structure or semantics of
data from previous versions likewise cannot be safely accomplished if a previous
version of the type exists that relies on the previous structure or semantics of the data.

When an IEvolvable object is deserialized, it retains any unknown data that has
been added to newer versions of the type, and the version identifier for that data
format. When the IEvolvable object is subsequently serialized, it includes both that
version identifier and the unknown future data.

When an IEvolvable object is deserialized from a data stream whose version
identifier indicates an older version, it must default and calculate the values for any
data fields and properties that have been added since that older version. When the
IEvolvable object is subsequently serialized, it includes its own version identifier
and all of its data. Note that there is no unknown future data in this case; future data
can only exist when the version of the data stream is newer than the version of the
IEvolvable type.

Example 18-3 demonstrates how the ContactInfo .NET type can be modified to
support class evolution:

Example 18-3 Modifying a Class to Support Class Evolution

public class ContactInfo : IEvolvablePortableObject
{
 private string name;
 private string street;
 private string city;
 private string state;
 private string zip;
 // IEvolvable members
 private int version;
 private byte[] data;
 public ContactInfo()
 {}
 public ContactInfo(string name, string street, string city, string state, string
zip)
 {
 Name = name;
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }
 public void ReadExternal(IPofReader reader)
 {
 Name = reader.ReadString(0);
 Street = reader.ReadString(1);
 City = reader.ReadString(2);
 State = reader.ReadString(3);
 Zip = reader.ReadString(4);
 }
 public void WriteExternal(IPofWriter writer)
 {
 writer.WriteString(0, Name);

Evolvable Portable User Types

Building Integration Objects (.NET) 18-7

 writer.WriteString(1, Street);
 writer.WriteString(2, City);
 writer.WriteString(3, State);
 writer.WriteString(4, Zip);
 }
 public int DataVersion
 {
 get { return version; }
 set { version = value; }
 }
 public byte[] FutureData
 {
 get { return data; }
 set { data = value; }
 }
 public int ImplVersion
 {
 get { return 0; }
 }
 // property definitions ommitted for brevity
}

Likewise, the ContactInfo Java type can also be modified to support class evolution
by implementing the EvolvablePortableObject interface:

Example 18-4 Modifying a Java Type Class to Support Class Evolution

public class ContactInfo
 implements EvolvablePortableObject
 {
 private String m_sName;
 private String m_sStreet;
 private String m_sCity;
 private String m_sState;
 private String m_sZip;

 // Evolvable members
 private int m_nVersion;
 private byte[] m_abData;

 public ContactInfo()
 {}

 public ContactInfo(String sName, String sStreet, String sCity,
 String sState, String sZip)
 {
 setName(sName);
 setStreet(sStreet);
 setCity(sCity);
 setState(sState);
 setZip(sZip);
 }

 public void readExternal(PofReader reader)
 throws IOException
 {
 setName(reader.readString(0));
 setStreet(reader.readString(1));
 setCity(reader.readString(2));
 setState(reader.readString(3));
 setZip(reader.readString(4));
 }

Evolvable Portable User Types

18-8 Developing Remote Clients for Oracle Coherence

 public void writeExternal(PofWriter writer)
 throws IOException
 {
 writer.writeString(0, getName());
 writer.writeString(1, getStreet());
 writer.writeString(2, getCity());
 writer.writeString(3, getState());
 writer.writeString(4, getZip());
 }

 public int getDataVersion()
 {
 return m_nVersion;
 }

 public void setDataVersion(int nVersion) {
 m_nVersion = nVersion;
 }

 public Binary getFutureData()
 {
 return m_binData;
 }

 public void setFutureData(Binary binFuture)
 {
 m_binData = binFuture;
 }

 public int getImplVersion()
 {
 return 0;
 }

 // accessor methods omitted for brevity
 }

18.7 Making Types Portable Without Modification
In some cases, it may be undesirable or impossible to modify an existing user type to
make it portable. In this case, you can externalize the portable serialization of a user
type by creating an implementation of the IPofSerializer in .NET, or an
implementation of the PofSerializer interface in Java, or both.

Example 18-5 illustrates, an implementation of the IPofSerializer interface for the
ContactInfo type.

Example 18-5 An Implementation of IPofSerializer for the .NET Type

public class ContactInfoSerializer : IPofSerializer
{
 public object Deserialize(IPofReader reader)
 {
 string name = reader.ReadString(0);
 string street = reader.ReadString(1);
 string city = reader.ReadString(2);
 string state = reader.ReadString(3);
 string zip = reader.ReadString(4);

 ContactInfo info = new ContactInfo(name, street, city, state, zip);

Making Types Portable Without Modification

Building Integration Objects (.NET) 18-9

 info.DataVersion = reader.VersionId;
 info.FutureData = reader.ReadRemainder();

 return info;
 }

 public void Serialize(IPofWriter writer, object o)
 {
 ContactInfo info = (ContactInfo) o;

 writer.VersionId = Math.Max(info.DataVersion, info.ImplVersion);
 writer.WriteString(0, info.Name);
 writer.WriteString(1, info.Street);
 writer.WriteString(2, info.City);
 writer.WriteString(3, info.State);
 writer.WriteString(4, info.Zip);
 writer.WriteRemainder(info.FutureData);
 }
}

An implementation of the PofSerializer interface for the ContactInfo Java type
would look similar:

Example 18-6 An Implementation of PofSerializer for the Java Type Class

public class ContactInfoSerializer
 implements PofSerializer
 {
 public Object deserialize(PofReader in)
 throws IOException
 {
 String sName = in.readString(0);
 String sStreet = in.readString(1);
 String sCity = in.readString(2);
 String sState = in.readString(3);
 String sZip = in.readString(4);

 ContactInfo info = new ContactInfo(sName, sStreet, sCity, sState, sZip);
 info.setDataVersion(in.getVersionId());
 info.setFutureData(in.readRemainder());

 return info;
 }

 public void serialize(PofWriter out, Object o)
 throws IOException
 {
 ContactInfo info = (ContactInfo) o;

 out.setVersionId(Math.max(info.getDataVersion(), info.getImplVersion()));
 out.writeString(0, info.getName());
 out.writeString(1, info.getStreet());
 out.writeString(2, info.getCity());
 out.writeString(3, info.getState());
 out.writeString(4, info.getZip());
 out.writeRemainder(info.getFutureData());
 }
 }

To register the IPofSerializer implementation for the ContactInfo .NET type,
specify the class name of the IPofSerializer within a serializer element under the

Making Types Portable Without Modification

18-10 Developing Remote Clients for Oracle Coherence

user-type element for the ContactInfo user type in the POF configuration file. For
example:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/pof
 assembly://Coherence/Tangosol.Config/pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
 </include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>My.Example.ContactInfo, MyAssembly</class-name>
 <serializer>
 <class-name>My.Example.ContactInfoSerializer, MyAssembly</class-name>
 </serializer>
 </user-type>
 </user-type-list>
</pof-config>

Similarly, you can register the PofSerializer implementation for the
ContactInfo Java type:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>example-pof-config.xml</include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.mycompany.example.ContactInfo</class-name>
 <serializer>
 <class-name>com.mycompany.example.ContactInfoSerializer</class-name>
 </serializer>
 </user-type>
 </user-type-list>
</pof-config>

18.8 Using POF Object References
POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its identity.

Using references avoids encoding the same object multiple times and helps reduce the
data size. References are typically used when a large number of sizeable objects are
created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the
use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The use of object identity and references has the following limitations:

Using POF Object References

Building Integration Objects (.NET) 18-11

• Object references are only supported for user defined object types.

• Object references are not supported for IEvolvable objects.

• Object references are not supported for keys.

• Objects that have been written out with a POF context that does not support
references cannot be read by a POF context that supports references. The opposite
is also true.

• POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the IValueExtractor API to query object values or
disable object references.

• The use of the IPofNavigator and IPofValue API has the following restrictions
when using object references:

– Only read operations are allowed. Write operations result in an
UnsupportedOperationException.

– User objects can be accessed in non-uniform collections but not in uniform
collections.

– For read operations, if an object appears in the data stream multiple times, then
the object must be read where it first appears before it can be read in the
subsequent part of the data. Otherwise, an IOException: missing
identity: <ID> may be thrown. For example, if there are 3 lists that all
contain the same person object, p. The p object must be read in the first list
before it can be read in the second or third list.

The following topics are included in this section:

• Enabling POF Object References

• Registering POF Object Identities for Circular and Nested Objects

18.8.1 Enabling POF Object References
Object references are not enabled by default and must be enabled either within a pof-
config.xml configuration file or programmatically when using the
SimplePofContext class.

To enable object references in the POF configuration file, include the <enable-
references> element, within the <pof-config> element, and set the value to
true. For example:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/pof
 assembly://Coherence/Tangosol.Config/pof-config.xsd">
 ...
 <enable-references>true</enable-references>
</pof-config>

To enable object references when using the SimplePofContext class, call the
setReferenceEnabled method and set it to true. For example:

Using POF Object References

18-12 Developing Remote Clients for Oracle Coherence

SimplePofContext ctx = new SimplePofContext();
ctx.IsReferenceEnabled = true;

18.8.2 Registering POF Object Identities for Circular and Nested Objects
Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the
Tangosol.IO.Pof.IPofReader.RegisterIdentity method.

The following examples demonstrate two objects (Customer and Product) that
contain a circular reference and a serializer implementation that registers an identity
on the Customer object.

The Customer object is defined as follows:

public class Customer
 {
 String m_name;
 Product m_product;

 public Customer(String name)
 {
 m_name = name;
 }

 public Customer(String name, Product product)
 {
 m_name = name;
 m_product = product;
 }

 public String getName()
 {
 return m_name;
 }

 public Product getProduct()
 {
 return m_product;
 }

 public void setProduct(Product product)
 {
 m_product = product;
 }
 }

The Product object is defined as follows:

public class Product
 {
 private Customer m_customer;

 public Product(Customer customer)
 {
 m_customer = customer;
 }

 public Customer getCustomer()

Using POF Object References

Building Integration Objects (.NET) 18-13

 {
 return m_customer;
 }
 }

The serializer implementation registers an identity during deserialization and is
defined as follows:

public class CustomerSerializer : IPofSerializer
 {
 public void Serialize(IPofWriter pofWriter, object o)
 {
 var c = (Customer) o;
 pofWriter.WriteString(0, c.getName());
 pofWriter.WriteObject(1, c.getProduct());
 pofWriter.WriteRemainder(null);
 }

 public object Deserialize(IPofReader pofReader)
 {
 String name = pofReader.ReadString(0);
 var customer = new Customer(name);

 pofReader.RegisterIdentity(customer);
 customer.setProduct((Product) pofReader.ReadObject(1));
 pofReader.ReadRemainder();
 return customer;
 }
 }

18.9 Using POF Annotations to Serialize Objects
POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the PofAnnotationSerializer class which is an implementation of the
IPofSerializer interface. Annotations offer an alternative to using the
IPortableObject and IPofSerializer interfaces and reduce the amount of time
and code that is required to make objects serializable.

The following topics are included in this section:

• Annotating Objects for POF Serialization

• Registering POF Annotated Objects

• Enabling Automatic Indexing

• Providing a Custom Codec

18.9.1 Annotating Objects for POF Serialization
Two annotations are available to indicate that a class and its properties are POF
serializable:

• [Portable] – Marks the class as POF serializable. The annotation is only
permitted at the class level and has no members.

• [PortableProperty] – Marks a property, accessor, or member variable as a POF
serialized property. Annotated methods must conform to accessor notation (Get,
Set, Is). Members can be used to specify POF indexes as well as custom codecs

Using POF Annotations to Serialize Objects

18-14 Developing Remote Clients for Oracle Coherence

that are executed before or after serialization or deserialization. Index values may
be omitted and automatically assigned. If a custom codec is not entered, the default
codec is used.

The following example demonstrates annotating a class, property, and member
variable. In addition PortableProperty indexes are explicitly specified.

[Portable]
public class Person
{
 [PortableProperty(0)]
 public string GetFirstName()
 {
 return m_firstName;
 }

 private String m_firstName;

 [PortableProperty(1)]
 public string LastName;
 {
 get; set;
 }

 [PortableProperty(2)]
 private int m_age;
}

18.9.2 Registering POF Annotated Objects
POF annotated objects must be registered in a pof-config.xml file within a <user-
type> element. See Developing Applications with Oracle Coherence for a detailed
reference of the POF configuration elements. POF annotated objects use the
PofAnnotationSerializer serializer if an object does not implement
IPortableObject and is annotated as Portable; however, the serializer is
automatically assumed if an object is annotated and does not need to be included in
the user type definition. The following example registers a user type for an annotated
Person object:

<?xml version='1.0'?>
<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
 <!-- User types must be above 1000 -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>My.Examples.Person, MyAssembly</class-name>
 </user-type>
 </user-type-list>
</pof-config>

18.9.3 Enabling Automatic Indexing
POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. Omit the index value when defining the
[PortableProperty] annotation. Index allocation is determined by the property
name. Any property that does assign an explicit index value is not assigned an
automatic index value. The following table demonstrates the ordering semantics of the
automatic index algorithm. Notice that automatic indexing maintains explicitly

Using POF Annotations to Serialize Objects

Building Integration Objects (.NET) 18-15

defined indexes (as shown for property c) and assigns an index value if an index is
omitted.

Name Explicit Index Determined
Index

c 1 1

a omitted 0

b omitted 2

Note:

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, the PofAnnotationSerializer serializer class must
be explicitly defined when registering the object as a user type in the POF
configuration file. The autoIndex boolean parameter in the constructor enables
automatic indexing and must be set to true. For example:

<user-type>
 <type-id>1001</type-id>
 <class-name>Examples.Person</class-name>
 <serializer>
 <class-name>Tangosol.IO.Pof.PofAnnotationSerializer, Coherence</class-name>
 <init-params>
 <init-param>
 <param-type>int</param-type>
 <param-value>{type-id}</param-value>
 </init-param>
 <init-param>
 <param-type>class</param-type>
 <param-value>{class}</param-value>
 </init-param>
 <init-param>
 <param-type>bool</param-type>
 <param-value>true</param-value>
 </init-param>
 </init-params>
 </serializer>
</user-type>

18.9.4 Providing a Custom Codec
Codecs allow code to be executed before or after serialization or deserialization. A
codec defines how to encode and decode a portable property using the IPofWriter
and IPofReader interfaces. Codecs are typically used for concrete implementations
that could get lost when being deserialized or to explicitly call a specific method on the
IPofWriter interface before serializing an object.

To create a codec, create a class that implements the ICodec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked list
type:

public class LinkedListCodec<T> : ICodec
{
 public object Decode(IPofReader reader, int index)

Using POF Annotations to Serialize Objects

18-16 Developing Remote Clients for Oracle Coherence

 {
 return reader.ReadCollection(index, (ICollection)new LinkedList<T>());
 }

 public void Encode(IPofWriter writer, int index, object value)
 {
 writer.WriteCollection(index, (ICollection)value);
 }
}

To assign a codec to a property, enter the codec as a member of the
[PortableProperty] attribute. If a codec is not specified, a default codec
(DefaultCodec) is used. The following example demonstrates assigning the above
LinkedListCodec codec:

[PortableProperty(typeof(LinkedListCodec<string>))]

Using POF Annotations to Serialize Objects

Building Integration Objects (.NET) 18-17

Using POF Annotations to Serialize Objects

18-18 Developing Remote Clients for Oracle Coherence

19
Using the Coherence .NET Client Library

This chapter provides instructions for adding the Coherence for .NET client library to
an application and describes the Coherence for .NET API, which allows .NET
applications to use Coherence clustered services from outside the Coherence cluster.

Documentation of the Coherence for .NET API is available in two locations. The .NET
API Reference for Oracle Coherence and also in the doc directory of the Coherence
for .NET distribution.

This chapter includes the following sections:

• Setting Up the Coherence .NET Client Library

• Using the Coherence .NET APIs

• Configuring .NET Clients Programmatically

19.1 Setting Up the Coherence .NET Client Library
To use the Coherence for .NET library in your .NET applications, you must add a
reference to the Coherence.dll library in your project and create the necessary
configuration files.

Creating a reference to the Coherence.dll:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference.... The Add Reference Window
displays.

2. From the Add Reference window, choose the Browse tab and find the
Coherence.dll library on your file system as shown in Figure 19-1.

Using the Coherence .NET Client Library 19-1

Figure 19-1 Add Reference Window

3. Click OK.

4. Create the necessary configuration files and specify their paths in the application
configuration settings. This is done by adding an application configuration file to
your project (if one does not exist) and adding a Coherence for .NET configuration
section (that is, <coherence/>) to it.

Note:

If these configuration files are not specified in the app.config/
web.config, Coherence looks for them in both the folder where the
application is deployed or, for Web applications, in the root of the Web
application. You can also specify the cache configuration file
programmatically as described in “Configuring .NET Clients
Programmatically.”

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <cache-factory-config>my-coherence.xml</cache-factory-config>
 <cache-config>my-cache-config.xml</cache-config>
 <pof-config>my-pof-config.xml</pof-config>
 </coherence>
</configuration>

Setting Up the Coherence .NET Client Library

19-2 Developing Remote Clients for Oracle Coherence

Elements within the Coherence for .NET configuration section are:

• cache-factory-config—contains the path to a operational configuration
descriptor used by the CacheFactory to configure
IConfigurableCacheFactory and Logger.

• cache-config—contains the path to a cache configuration file which contains the
cache configuration (see “Configuring Coherence*Extend for .NET”). This cache
configuration descriptor is used by DefaultConfigurableCacheFactory.

• pof-config—contains the path to the configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application. For
detailed instructions on using POF, see Using the Coherence .NET Client Library.

Figure 19-2 illustrates what the solution should look like after adding the
configuration files:

Figure 19-2 File System Displaying the Configuration Files

19.2 Using the Coherence .NET APIs
This section highlights the primary Coherence .NET APIs that are used to interact with
Coherence caches within a .NET application. The following topics are included in this
section:

• CacheFactory

• IConfigurableCacheFactory

• DefaultConfigurableCacheFactory

• Logger

• Using the Common.Logging Library

Using the Coherence .NET APIs

Using the Coherence .NET Client Library 19-3

• INamedCache

• IQueryCache

• QueryRecorder

• IObservableCache

• IInvocableCache

• Filters

• Value Extractors

• Entry Processors

• Entry Aggregators

19.2.1 CacheFactory
The CacheFactory is the entry point for Coherence for .NET client applications. The
CacheFactory is a factory for INamedCache instances and provides various
methods for logging. If not configured explicitly, it uses the default configuration file
coherence.xml which is an assembly embedded resource. It is possible to override
the default configuration file by adding a cache-factory-config element to the
Coherence for .NET configuration section in the application configuration file and
setting its value to the path of the desired configuration file. You can also specify the
cache configuration file programmatically as described in “Configuring .NET Clients
Programmatically.”

<?xml version="1.0"?>

<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <cache-factory-config>my-coherence.xml</cache-factory-config>
 ...
 </coherence>
</configuration>

This file contains the configuration of two components exposed by the
CacheFactory by using static properties:

• CacheFactory.ConfigurableCacheFactory—the
IConfigurableCacheFactory implementation used by the CacheFactory to
retrieve, release, and destroy INamedCache instances.

• CacheFactory.Logger—the Logger instance used to log messages and
exceptions.

When you are finished using the CacheFactory (for example, during application
shutdown), the CacheFactory should be shutdown by using the Shutdown()
method. This method terminates all services and the Logger instance.

Using the Coherence .NET APIs

19-4 Developing Remote Clients for Oracle Coherence

19.2.2 IConfigurableCacheFactory
The IConfigurableCacheFactory implementation is specified by the contents of
the <configurable-cache-factory-config> element:

• class-name—specifies the implementation type by it's assembly qualified name.

• init-params—defines parameters used to instantiate the
IConfigurableCacheFactory. Each parameter is specified by using a
corresponding param-type and param-value child element.

<coherence>
 <configurable-cache-factory-config>
 <class-name>Tangosol.Net.DefaultConfigurableCacheFactory, Coherence</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>simple-cache-config.xml</param-value>
 </init-param>
 </init-params>
 </configurable-cache-factory-config>
</coherence>

If an IConfigurableCacheFactory implementation is not defined in the
configuration, the default implementation is used
(DefaultConfigurableCacheFactory).

19.2.3 DefaultConfigurableCacheFactory
The DefaultConfigurableCacheFactory provides a facility to access caches
declared in the cache configuration descriptor. The default configuration file used by
the DefaultConfigurableCacheFactory is $AppRoot/coherence-cache-
config.xml, where $AppRoot is the working directory (for a Windows Forms
application) or the root of the application (for a Web application).

If you want to specify another cache configuration descriptor file, you can do so by
adding a cache-config element to the Coherence for .NET configuration section in
the application configuration file with its value set to the path of the configuration file.
You can also specify the cache configuration file programmatically as described in
“Configuring .NET Clients Programmatically.”

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <cache-config>my-cache-config.xml</cache-config>
 ...
 </coherence>
</configuration>

19.2.4 Logger
The Logger is configured using the logging-config element:

• destination—determines the type of LogOutput used by the Logger. Valid
values are:

Using the Coherence .NET APIs

Using the Coherence .NET Client Library 19-5

– common-logger for Common.Logging

– stderr for Console.Error

– stdout for Console.Out

– file path if messages should be directed to a file

• severity-level—specifies the log level that a message must meet or exceed to
be logged.

• logger-name—specifies the name of the logger. The default value is Coherence.

• message-format—determines the log message format.

• character-limit—determines the maximum number of characters that the
logger daemon processes from the message queue before discarding all remaining
messages in the queue.

...
<logging-config>
 <destination>common-logger</destination>
 <logger-name>Coherence</logger-name>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
</logging-config>
...

The CacheFactory provides several static methods for retrieving and releasing
INamedCache instances:

• GetCache(String cacheName)—retrieves an INamedCache implementation
that corresponds to the NamedCache with the specified cacheName running
within the remote Coherence cluster.

• ReleaseCache(INamedCache cache)—releases all local resources associated
with the specified instance of the cache. After a cache is release, it can no longer be
used.

• DestroyCache(INamedCache cache)—destroys the specified cache across the
Coherence cluster.

Methods used to log messages and exceptions are:

• IsLogEnabled(int level)—determines if the Logger would log a message
with the given severity level.

• Log(Exception e, int severity)—logs an exception with the specified
severity level.

• Log(String message, int severity)—logs a text message with the
specified severity level.

• Log(String message, Exception e, int severity)—logs a text
message and an exception with the specified severity level.

Logging levels are defined by the values of the CacheFactory.LogLevel enum
values (in ascending order):

• Always

Using the Coherence .NET APIs

19-6 Developing Remote Clients for Oracle Coherence

• Error

• Warn

• Info

• Debug—(default log level)

• Quiet

• Max

19.2.5 Using the Common.Logging Library
Common.Logging is an open source library that enables you to plug in various
popular open source logging libraries behind a well-defined set of interfaces. The
libraries currently supported are Log4Net (versions 1.2.9 and 1.2.10) and NLog.
Common.Logging is currently used by the Spring.NET framework and are likely to
be used in the future releases of IBatis.NET and NHibernate, so you might want to
consider it if you are using one or more of these frameworks in combination with
Coherence for .NET, as it allows logging to be consistently configured throughout the
application layers.

Coherence for .NET does not include the Common.Logging library. To use the
common-logger Logger configuration, download the Common.Logging assembly
and include a reference to it in your project. You can download the Common.Logging
assembly for .NET from the following location:

http://netcommon.sourceforge.net/

The Coherence for .NET Common.Logging Logger implementation was compiled
against the signed release version of these assemblies.

19.2.6 INamedCache
The INamedCache interface extends IDictionary, so it can be manipulated in ways
similar to a dictionary. When obtained, INamedCache instances expose several
properties:

• CacheName—the cache name.

• Count—the cache size.

• IsActive—determines if the cache is active (that is, it has not been released or
destroyed).

• Keys—collection of all keys in the cache mappings.

• Values—collection of all values in the cache mappings.

The value for the specified key can be retrieved by using cache[key]. Similarly, a
new value can be added, or an old value can be modified by setting this property to
the new value: cache[key] = value.

The collection of cache entries can be accessed by using GetEnumerator() which
iterates over the mappings in the cache.

The INamedCache interface provides several methods used to manipulate the
contents of the cache:

• Clear()—removes all the mappings from the cache.

Using the Coherence .NET APIs

Using the Coherence .NET Client Library 19-7

http://netcommon.sourceforge.net/

• Contains(Object key)—determines if the cache has a mapping for the
specified key.

• GetAll(ICollection keys)—returns all values mapped to the specified keys
collection.

• Insert(Object key, Object value)—places a new mapping into the cache.
If a mapping for the specified key exists, its value is overwritten by the specified
value and the old value is returned.

• Insert(Object key, Object value, long millis)—places a new
mapping into the cache, but with an expiry period specified by several
milliseconds.

• InsertAll(IDictionary dictionary)—copies all the mappings from the
specified dictionary to the cache.

• Remove(Object key)—Removes the mapping for the specified key if it is
present and returns the value it was mapped to.

INamedCache interface also extends the following three interfaces: IQueryCache,
IObservableCache, and IInvocableCache.

19.2.7 IQueryCache
The IQueryCache interface exposes the ability to query a cache using various filters.

• GetKeys(IFilter filter)—returns a collection of the keys contained in this
cache for entries that satisfy the criteria expressed by the filter.

• GetEntries(IFilter filter)—returns a collection of the entries contained in
this cache that satisfy the criteria expressed by the filter.

• GetEntries(IFilter filter, IComparer comparer)—returns a
collection of the entries contained in this cache that satisfy the criteria expressed by
the filter. It is guaranteed that the enumerator traverses the collection in the order
of ascending entry values, sorted by the specified comparer or according to the
natural ordering if the "comparer" is null.

Additionally, the IQueryCache interface includes the ability to add and remove
indexes. Indexes are used to correlate values stored in the cache to their corresponding
keys and can dramatically increase the performance of the GetKeys and GetEntries
methods.

• AddIndex(IValueExtractor extractor, bool isOrdered, IComparer
comparator)—adds an index to this cache that correlates the values extracted by
the given IValueExtractor to the keys to the corresponding entries.
Additionally, the index information can be optionally ordered.

• RemoveIndex(IValueExtractor extractor)—removes an index from this
cache.

The following example performs an efficient query of the keys of all entries that have
an age property value greater or equal to 55.

IValueExtractor extractor = new ReflectionExtractor("getAge");

cache.AddIndex(extractor, true, null);
ICollection keys = cache.GetKeys(new GreaterEqualsFilter(extractor, 55));

Using the Coherence .NET APIs

19-8 Developing Remote Clients for Oracle Coherence

19.2.8 QueryRecorder
The QueryRecorder class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes
in a cluster and aggregating the results. The class supports two record types: an
Explain record that provides the estimated cost of evaluating a filter as part of a
query operation and a Trace record that provides the actual cost of evaluating a filter
as part of a query operation. Both query records take into account whether or not an
index can be used by a filter. See Developing Applications with Oracle Coherence for
detailed information on understanding the data provided in an explain plan record
and trace record.

To create a query record, create a new QueryRecorder instance that specifies a
RecordType parameter. Include the instance and the filter to be tested as parameters
of the Aggregate method. The following example creates an explain record:

INamedCache cache = CacheFactory.GetCache(MyCache);

IFilter filter = new OrFilter(
 new GreaterFilter(IdentityExtractor.Instance, 100),
 new LessFilter(IdentityExtractor.Instance, 30));

QueryRecorder aggregator = new QueryRecorder(QueryRecorder.RecordType.Explain);
IQueryRecord record = (IQueryRecord) cache.Aggregate(filter, aggregator);

Console.WriteLine(record.ToString());

To create a trace record, change the RecordType parameter to Trace:

QueryRecorder aggregator = new QueryRecorder(QueryRecorder.RecordType.Trace);

19.2.9 IObservableCache
IObservableCache interface enables an application to receive events when the
contents of a cache changes. To register interest in change events, an application adds
a Listener implementation to the cache that receives events that include information
about the event type (inserted, updated, deleted), the key of the modified entry, and
the old and new values of the entry.

• AddCacheListener(ICacheListener listener)—adds a standard cache
listener that receives all events (inserts, updates, deletes) emitted from the cache,
including their keys, old, and new values.

• RemoveCacheListener(ICacheListener listener)—removes a standard
cache listener that was previously registered.

• AddCacheListener(ICacheListener listener, object key, bool
isLite)—adds a cache listener for a specific key. If isLite is true, the events
may not contain the old and new values.

• RemoveCacheListener(ICacheListener listener, object key)—
removes a cache listener that was previously registered using the specified key.

• AddCacheListener(ICacheListener listener, IFilter filter,
bool isLite)—adds a cache listener that receive events based on a filter
evaluation. If isLite is true, the events may not contain the old and new values.

Using the Coherence .NET APIs

Using the Coherence .NET Client Library 19-9

• RemoveCacheListener(ICacheListener listener, IFilter filter)
—removes a cache listener that previously registered using the specified filter.

Listeners registered using the filter-based method receives all event types (inserted,
updated, and deleted). To further filter the events, wrap the filter in a
CacheEventFilter using a CacheEventMask enumeration value to specify which
type of events should be monitored.

The following example filter evaluates to true if an Employee object is inserted into a
cache with an IsMarried property value set to true.

new CacheEventFilter(CacheEventMask.Inserted, new EqualsFilter("IsMarried", true));

The following example filter evaluates to true if any object is removed from a cache.

new CacheEventFilter(CacheEventMask.Deleted);

The following example filter evaluates to true when an Employee object LastName
property is changed from Smith.

new CacheEventFilter(CacheEventMask.UpdatedLeft, new EqualsFilter("LastName",
"Smith"));

19.2.9.1 Responding to Cache Events

A feature of the INamedCache interface is the ability to add cache listeners that
receive events emitted by a cache as its contents change. These events are sent from
the server and dispatched to registered listeners by a background thread.

The .NET Single-Threaded Apartment model prohibits windows form controls created
by one thread from being updated by another thread. If one or more controls should
be updated because of an event notification, you must ensure that any event handling
code that must run as a response to a cache event is executed on the UI thread. The
WindowsFormsCacheListener helper class allows end users to ignore this fact and
to handle Coherence cache events (which are always raised by a background thread)
as if they were raised by the UI thread. This class ensures that the call is properly
marshalled and executed on the UI thread.

Here is the sample of using this class:

public partial class ContactInfoForm : Form
{
 ...
 listener = new WindowsFormsCacheListener(this);
 listener.EntryInserted += new CacheEventHandler(AddRow);
 listener.EntryUpdated += new CacheEventHandler(UpdateRow);
 listener.EntryDeleted += new CacheEventHandler(DeleteRow);
 ...
 cache.AddCacheListener(listener);
 ...
}

The AddRow, UpdateRow and DeleteRow methods are called in response to a cache
event:

private void AddRow(object sender, CacheEventArgs args)
{
...
}

private void UpdateRow(object sender, CacheEventArgs args)
{

Using the Coherence .NET APIs

19-10 Developing Remote Clients for Oracle Coherence

...
}

private void DeleteRow(object sender, CacheEventArgs args)
{
...
}

The CacheEventArgs parameter encapsulates the IObservableCache instance that
raised the cache event; the CacheEventType that occurred; and the Key, NewValue
and OldValue of the cached entry.

19.2.10 IInvocableCache
An IInvocableCache is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
useful in a distributed environment, because it enables the processing to be moved to
the location at which the entries-to-be-processed are being managed, thus providing
efficiency by localization of processing.

• Invoke(object key, IEntryProcessor agent)—invokes the passed
processor against the entry specified by the passed key, returning the result of the
invocation.

• InvokeAll(ICollection keys, IEntryProcessor agent)—invokes the
passed processor against the entries specified by the passed keys, returning the
result of the invocation for each.

• InvokeAll(IFilter filter, IEntryProcessor agent)—invokes the
passed processor against the entries that are selected by the given filter, returning
the result of the invocation for each.

• Aggregate(ICollection keys, IEntryAggregator agent)—performs
an aggregating operation against the entries specified by the passed keys.

• Aggregate(IFilter filter, IEntryAggregator agent)—performs an
aggregating operation against the entries that are selected by the given filter.

19.2.11 Filters
The IQueryCache interface provides the ability to search for cache entries that meet a
given set of criteria, expressed using a IFilter implementation.

All filters must implement the IFilter interface:

• Evaluate(object o)—apply a test to the specified object and return true if the
test passes, false otherwise.

Coherence for .NET includes several IFilter implementations in the
Tangosol.Util.Filter namespace.

The following example retrieves the keys of all entries that have a value equal to 5.

EqualsFilter equalsFilter = new EqualsFilter(IdentityExtractor.Instance, 5);
ICollection keys = cache.GetKeys(equalsFilter);

The following example retrieves all keys that have a value greater or equal to 55.

Using the Coherence .NET APIs

Using the Coherence .NET Client Library 19-11

GreaterEqualsFilter greaterEquals = new
GreaterEqualsFilter(IdentityExtractor.Instance, 55);
ICollection keys = cache.GetKeys(greaterEquals);

The following example retrieves all cache entries that have a value that begins with
Belg.

LikeFilter likeFilter = new LikeFilter(IdentityExtractor.Instance, "Belg%", '\\',
true);
ICollection entries = cache.GetEntries(likeFilter);

The following example retrieves all cache entries that have a value that ends with an
(case sensitive) or begins with An (case insensitive).

OrFilter orFilter = new OrFilter(new LikeFilter(IdentityExtractor.Instance,
"%an", '\\', false), new LikeFilter(IdentityExtractor.Instance, "An%", '\\', true));
ICollection entries = cache.GetEntries(orFilter);

19.2.12 Value Extractors
Extractors are used to extract values from an object. All extractors must implement the
IValueExtractor interface:

• Extract(object target)—extract the value from the passed object.

Coherence for .NET includes the following extractors:

• IdentityExtractor is a trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

• KeyExtractor is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

• ReflectionExtractor extracts a value from a specified object property.

• MultiExtractor is composite IValueExtractor implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extraction is a IList of extracted values.

• ChainedExtractor is composite IValueExtractor implementation based on
an array of extractors. The extractors in the array are applied sequentially left-to-
right, so a result of a previous extractor serves as a target object for a next one.

POF extractors and POF updaters offer the same functionality as
ChainedExtractors through the use of the SimplePofPath class. For details
about POF extractors and POF updaters, see Developing Applications with Oracle
Coherence and refer to the .NET API Reference for Oracle Coherence.

The following example retrieves all cache entries with keys greater than 5:

IValueExtractor extractor = new KeyExtractor(IdentityExtractor.Instance);
IFilter filter = new GreaterFilter(extractor, 5);
ICollection entries = cache.GetEntries(filter);

The following example retrieves all cache entries with values containing a City
property equal to city1:

IValueExtractor extractor = new ReflectionExtractor("City");
IFilter filter = new EqualsFilter(extractor, "city1");
ICollection entries = cache.GetEntries(filter);

Using the Coherence .NET APIs

19-12 Developing Remote Clients for Oracle Coherence

19.2.13 Entry Processors
An entry processor is an agent that operates against the entry objects within a cache.

All entry processors must implement the IEntryProcessor interface:

• Process(IInvocableCacheEntry entry)—process the specified entry.

• ProcessAll(ICollection entries)—process a collection of entries.

Coherence for .NET includes several IEntryProcessor implementations in the
Tangosol.Util.Processor namespace.

The following example demonstrates a conditional put. The value mapped to key1 is
set to 680 only if the current mapped value is greater than 600.

IFilter greaterThen600 = new GreaterFilter(IdentityExtractor.Instance, 600);
IEntryProcessor processor = new ConditionalPut(greaterThen600, 680);
cache.Invoke("key1", processor);

The following example uses the UpdaterProcessor to update the value of the
Degree property on a Temperature object with key BGD to the new value 26.

cache.Insert("BGD", new Temperature(25, 'c', 12));
IValueUpdater updater = new ReflectionUpdater("setDegree");
IEntryProcessor processor = new UpdaterProcessor(updater, 26);
object result = cache.Invoke("BGD", processor);

19.2.14 Entry Aggregators
An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an IInvocableCache, resulting in an aggregated result.
Common examples of aggregation include functions such as minimum, maximum,
sum and average. However, the concept of aggregation applies to any process that
must evaluate a group of entries to come up with a single answer. Aggregation is
explicitly capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the IEntryAggregator interface:

• Aggregate(ICollection entries)—process a collection of entries to produce
an aggregate result.

Coherence for .NET includes several IEntryAggregator implementations in the
Tangosol.Util.Aggregator namespace.

The following example returns the size of the cache:

IEntryAggregator aggregator = new Count();
object result = cache.Aggregate(cache.Keys, aggregator);

The following example returns an IDictionary with keys equal to the unique values
in the cache and values equal to the number of instances of the corresponding value in
the cache:

IEntryAggregator aggregator =
GroupAggregator.CreateInstance(IdentityExtractor.Instance, new Count());
object result = cache.Aggregate(cache.Keys, aggregator);

Using the Coherence .NET APIs

Using the Coherence .NET Client Library 19-13

Note:

#unique_270/unique_270_Connect_42_CBAHGDEG and #unique_270/
unique_270_Connect_42_CBABJJCH are simple examples and not practical for
passing a large amount of keys or keys that are themselves very large. In such
scenarios, use the GroupAggregator.CreateInstance(String,
IEntryAggregator, IFilter) method and pass an AlwaysFilter
object.

Like cached value objects, all custom IFilter, IExtractor, IProcessor and
IAggregator implementation classes must be correctly registered in the POF context
of the .NET application and cluster-side node to which the client is connected. As
such, corresponding Java implementations of the custom .NET types must be created,
compiled, and deployed on the cluster-side node. Note that the actual execution of
these custom types is performed by the Java implementation and not the .NET
implementation.

See Building Integration Objects (.NET) for additional details.

19.3 Configuring .NET Clients Programmatically
Clients can load Coherence configuration files programmatically at runtime. The
configuration files overwrite any configuration files that are specified in the
application configuration file. For details about specifying Coherence configuration
files in the application configuration file, see “Setting Up the Coherence .NET Client
Library.”

The following example loads the pofConfig.xml, cacheConfig.xml, and
coherenceConfig.xml files.

using System;
using System.IO;
using Tangosol.IO.Pof;
using Tangosol.Net;
using Tangosol.Run.Xml;

namespace configExample
{
 internal class TestPofContext : ConfigurablePofContext
 {
 public TestPofContext()

 : base("config/pofConfig.xml")
 {
 }
 }

 internal class TestClient
 {
 private static void Main(string[] args)
 {
 try
 {
 CacheFactory.Configure("config/cacheConfig.xml",
 "config/coherenceConfig.xml");
 var cache = CacheFactory.GetCache("dist-test");
 cache["key"] = new TestValue(1, "Test");
 Console.Out.WriteLine("key=" + cache["key"]);

Configuring .NET Clients Programmatically

19-14 Developing Remote Clients for Oracle Coherence

 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }
 Console.ReadLine();
 }
 }
}

Configuring .NET Clients Programmatically

Using the Coherence .NET Client Library 19-15

Configuring .NET Clients Programmatically

19-16 Developing Remote Clients for Oracle Coherence

20
Performing Continuous Queries (.NET)

This chapter provides instructions for using continuous query caching in a .NET client
to ensure that a query always retrieves the latest results from a cache in real-time.

This chapter includes the following sections:

• Overview of Performing Continuous Queries (.NET)

• Understanding the Continuous Query Caching Implementation

• Constructing a Continuous Query Cache

• Cleaning Up Continuous Query Cache Resources

• Caching Only Keys Versus Keys and Values

• Listening to a Continuous Query Cache

• Making a Continuous Query Cache Read-Only

20.1 Overview of Performing Continuous Queries (.NET)
Queries provide the ability to obtain a point in time query result from a Coherence
cache and it is possible to receive events that would change the result of that query.
However, the continuous query feature combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times every
millisecond.

Coherence for .NET implements the Continuous Query functionality by materializing
the results of the query into a Continuous Query Cache, and then keeping that cache
up-to-date in real-time using event listeners on the query. In other words, a Coherence
for .NET Continuous Query is a cached query result that never gets out-of-date.

20.1.1 Understanding Use Cases for Continuous Query Caching
There are several different general use cases for Continuous Query Caching:

• It is an ideal building block for Complex Event Processing (CEP) systems and event
correlation engines.

• It is ideal for situations in which an application repeats a particular query, and
would benefit from always having instant access to the up-to-date result of that
query.

• A Continuous Query Cache is analogous to a materialized view, and is useful for
accessing and manipulating the results of a query using the standard

Performing Continuous Queries (.NET) 20-1

INamedCache API, and receiving an ongoing stream of events related to that
query.

• A Continuous Query Cache can be used in a manner similar to a near cache,
because it maintains an up-to-date set of data locally where it is being used, for
example on a particular server node or on a client desktop; note that a Near Cache
is invalidation-based, but the Continuous Query Cache actually maintains its data
in an up-to-date manner.

An example use case is a trading system desktop in which a trader's open orders and
all related information must always be maintained in an up-to-date manner. By
combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

Note:

Continuous Query Caches are useful in almost every type of application,
including both client-based and server-based applications, because they
provide the ability to very easily and efficiently maintain an up-to-date local
copy of a specified sub-set of a much larger and potentially distributed cached
data set.

20.2 Understanding the Continuous Query Caching Implementation
The Coherence for .NET implementation of Continuous Query is found in the
Tangosol.Net.Cache.ContinuousQueryCache class. This class, like all
Coherence for .NET caches, implements the standard INamedCache interface, which
includes the following capabilities:

• Cache access and manipulation using the IDictionary interface: INamedCache
extends the standard IDictionary interface from the .NET Collections
Framework, which is the same interface implemented by the .NET Hashtable
class.

• Events for all objects modifications that occur within the cache: INamedCache
extends the IObservableCache interface.

• Querying the objects in the cache: INamedCache extends the IQueryCache
interface.

• Distributed Parallel Processing and Aggregation of objects in the cache:
INamedCache extends the IInvocableCache interface.

Since the ContinuousQueryCache class implements the INamedCache interface,
which is the same API provided by all Coherence for .NET caches, it is extremely
simple to use, and it can be easily substituted for another cache when its functionality
is called for.

20.3 Constructing a Continuous Query Cache
There are two items that define a Continuous Query Cache:

• The underlying cache that it is based on;

• A query of that underlying cache that produces the sub-set that the Continuous
Query Cache caches.

Understanding the Continuous Query Caching Implementation

20-2 Developing Remote Clients for Oracle Coherence

The underlying cache is any Coherence for .NET cache, including another Continuous
Query Cache. A cache is usually obtained from a CacheFactory, which allows the
developer to simply specify the name of the cache and have it automatically
configured based on the application's cache configuration information; for example:

INamedCache cache = CacheFactory.GetCache("orders");

The query is the same type of query that would be used to query any other cache; for
example:

Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));

Normally, to query a cache, a method from the IQueryCache is used; for examples,
to obtain a snap-shot of all open trades for this trader:

ICollection setOpenTrades = cache.GetEntries(filter);

Similarly, the Continuous Query Cache is constructed from those same two pieces:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);

20.4 Cleaning Up Continuous Query Cache Resources
Instances of all INamedCache implementations, including ContinuousQueryCache,
should be explicitly released by calling the INamedCache.Release() method when
they are no longer needed, to free up any resources they might hold.

If the particular INamedCache is used for the duration of the application, then the
resources is cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release()
method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable
and that all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release(). If you want to obtain and release a cache instance within
a single method, you can do so by using a using block:

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
 // use cache as usual
}

After the using block terminates, IDisposable.Dispose() is called on the
INamedCache instance, and all resources associated with it are released.

20.5 Caching Only Keys Versus Keys and Values
When constructing a Continuous Query Cache, it is possible to specify that the cache
should only keep track of the keys that result from the query, and obtain the values
from the underlying cache only when they are asked for. This feature may be useful
for creating a Continuous Query Cache that represents a very large query result set, or
if the values are never or rarely requested. To specify that only the keys should be
cached, use the constructor that allows the IsCacheValues property to be
configured; for example:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
false);

Cleaning Up Continuous Query Cache Resources

Performing Continuous Queries (.NET) 20-3

If necessary, the IsCacheValues property can also be modified after the cache has
been instantiated; for example:

cacheOpenTrades.IsCacheValues = true;

IsCacheValues Property and Event Listeners

If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the IsCacheValues property is automatically set
to true, because the Continuous Query Cache uses the locally cached values to filter
events and to supply the old and new values for the events that it raises.

20.6 Listening to a Continuous Query Cache
Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);

Assuming some processing has to occur against every item that is in the cache and
every item added to the cache, there are two approaches. First, the processing could
occur then a listener could be added to handle any later additions:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
 {
 // .. process the cache entry
 }
cacheOpenTrades.AddCacheListener(listener);

However, that code is incorrect because it allows events that occur in the split second
after the iteration and before the listener is added to be missed! The alternative is to
add a listener first, so no events are missed, and then do the processing:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
 {
 // .. process the cache entry
 }

However, the same entry may appear in both an event an in the IEnumerator, and
the events can be asynchronous, so the sequence of operations cannot be guaranteed.

The solution is to provide the listener during construction, and it receives one event
for each item that is in the Continuous Query Cache, whether it was there to begin
with (because it was in the query) or if it was added during or after the construction of
the cache:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
listener);

20.6.1 Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence for .NET supports an option for synchronous events, which provides a set
of ordering guarantees. Secondly, the Continuous Query Cache has a two-phase

Listening to a Continuous Query Cache

20-4 Developing Remote Clients for Oracle Coherence

implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first
phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the Continuous Query Cache allows a developer to
pass a listener during construction, thus avoiding exposing these same complexities to
the application developer.

20.6.2 Support for Synchronous and Asynchronous Listeners
By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the Continuous Query Cache does respect the option for
synchronous events as provided by the
CacheListenerSupport.ISynchronousListener interface.

20.7 Making a Continuous Query Cache Read-Only
The Continuous Query Cache can be made into a read-only cache; for example:

cacheOpenTrades.IsReadOnly = true;

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back
to read/write.

Making a Continuous Query Cache Read-Only

Performing Continuous Queries (.NET) 20-5

Making a Continuous Query Cache Read-Only

20-6 Developing Remote Clients for Oracle Coherence

21
Performing Remote Invocations (.NET)

This chapter provides instructions for performing remote invocations on Coherence
caches from .NET clients.

The following section is included in this chapter:

• Overview of Performing Remote Invocations

• Configuring and Using the Remote Invocation Service

21.1 Overview of Performing Remote Invocations
Coherence for .NET provides a Remote Invocation Service which allows execution of
single-pass agents (called IInvocable objects) within the cluster-side JVM to which
the client is connected. Agents are simply runnable application classes that implement
the IInvocable interface. Agents can execute any arbitrary action and can use any
cluster-side services (cache services, grid services, and so on) necessary to perform
their work. The agent operations can also be stateful, which means that their state is
serialized and transmitted to the grid nodes on which the agent is run.

21.2 Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the <remote-invocation-
scheme> element in the cache configuration descriptor. For example:

...
<remote-invocation-scheme>
 <scheme-name>example-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-invocation-scheme>
...

A reference to a configured Remote Invocation Service can then be obtained by name
by using the CacheFactory class:

Performing Remote Invocations (.NET) 21-1

IInvocationService service = (IInvocationService)
CacheFactory.GetService("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only
one line of code:

IDictionary result = service.Query(new MyTask(), null);

The single result of the execution are keyed by the local Member, which can be
retrieved by calling
CacheFactory.ConfigurableCacheFactory.LocalMember.

Note:

Like cached value objects, all IInvocable implementation classes must be
correctly registered in the POF context of the .NET application and cluster-
side node to which the client is connected. As such, a Java implementation of
the IInvocable task (a com.tangosol.net.Invocable implementation)
must be created, compiled, and deployed on the cluster-side node. Note that
the actual execution of the task is performed by the Java Invocable
implementation and not the .NET IInvocable implementation.

See Introduction to Coherence .NET Clients for additional details.

Configuring and Using the Remote Invocation Service

21-2 Developing Remote Clients for Oracle Coherence

22
Performing Transactions (.NET)

This chapter provides instructions for using the Transaction Framework API to ensure
cache operations are performed within a transaction when using a .NET client. The
instructions do not provide detailed transaction API usage. See"Using the Transaction
Framework API" in Developing Applications with Oracle Coherence for detailed
transaction API usage.

The following sections are included in this chapter and are required to perform
transactions:

• Using the Transaction API within an Entry Processor

• Creating a Stub Class for a Transactional Entry Processor

• Registering a Transactional Entry Processor User Type

• Configuring the Cluster-Side Transactional Caches

• Configuring the Client-Side Remote Cache

• Using a Transactional Entry Processor from a .NET Client

22.1 Using the Transaction API within an Entry Processor
.NET clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction API is not supported natively on .NET
and must be used within an entry processor. The entry processor is implemented in
Java on the cluster and an entry processor stub class is implemented in C# on the
client. Both classes use POF to serialize between Java and C#.

Example 22-1 demonstrates an entry processor that performs a simple update
operation within a transaction using the transaction API. At run time, the class must
be located on the classpath of the Coherence proxy server.

Example 22-1 Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;
import com.tangosol.coherence.transaction.ConnectionFactory;
import com.tangosol.coherence.transaction.DefaultConnectionFactory;
import com.tangosol.coherence.transaction.OptimisticNamedCache;
import
com.tangosol.coherence.transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import
com.tangosol.coherence.transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;
import com.tangosol.util.InvocableMap;
import com.tangosol.util.extractor.IdentityExtractor;

Performing Transactions (.NET) 22-1

import com.tangosol.util.filter.EqualsFilter;
import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject
 {
 public Object process(InvocableMap.Entry entry)
 {
 // obtain a connection and transaction cache
 ConnectionFactory connFactory = new DefaultConnectionFactory();
 Connection conn = connFactory.createConnection("TransactionalCache");
 OptimisticNamedCache cache = conn.getNamedCache("MyTxCache");

 conn.setAutoCommit(false);

 // get a value for an existing entry
 String sValue = (String) cache.get("existingEntry");

 // create predicate filter
 Filter predicate = new EqualsFilter(IdentityExtractor.INSTANCE, sValue);

 try
 {
 // update the previously obtained value
 cache.update("existingEntry", "newValue", predicate);
 }
 catch (PredicateFailedException e)
 {
 // value was updated after it was read
 conn.rollback();
 return false;
 }
 catch (UnableToAcquireLockException e)
 {
 // row is being updated by another tranaction
 conn.rollback();
 return false;
 }
 try
 {
 conn.commit();
 }
 catch (RollbackException e)
 {
 // transaction was rolled back
 return false;
 }
 return true;
 }

 public void readExternal(PofReader in)
 throws IOException
 {
 }

 public void writeExternal(PofWriter out)
 throws IOException
 {
 }
}

Using the Transaction API within an Entry Processor

22-2 Developing Remote Clients for Oracle Coherence

22.2 Creating a Stub Class for a Transactional Entry Processor
An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C# and uses POF for serialization. POF
allows an entry processor to be serialized between C# and Java. The entry processor
stub class does not required any transaction logic and is a skeleton of the transactional
entry processor. See Building Integration Objects (.NET) , for detailed information on
using POF with .NET.

Example 22-2 demonstrate an entry processor stub class for the transactional entry
processor created in Example 22-1.

Example 22-2 Transaction Entry Processor .NET Stub Class

using Tangosol.IO.Pof;
using Tangosol.Net.Cache;
using Tangosol.Util.Processor;

namespace Coherence.Tests{
 public class MyTxProcessor : AbstractProcessor, IPortableObject
 {
 public MyTxProcessor()
 {
 }

 public override object Process(IInvocableCacheEntry entry)
 {
 return null;
 }

 public void ReadExternal(IPofReader reader)
 {
 }

 public void WriteExternal(IPofWriter writer)
 {
 }
 }
}

22.3 Registering a Transactional Entry Processor User Type
Custom user types must be registered for the Java transactional entry processor in the
cluster-side POF configuration file and for the client stub in the client-side POF
configuration file. Both registrations must use the same type ID. The following
example demonstrates registering both the MyTxProcessor class that was created in
Example 22-1 and the client stub class that was created in Example 22-2, respectively.

Cluster-side POF configuration:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>txn-pof-config.xml</include>
 <user-type>

Creating a Stub Class for a Transactional Entry Processor

Performing Transactions (.NET) 22-3

 <type-id>1599</type-id>
 <class-name>coherence.tests.MyTxProcessor</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Client-side POF configuration:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/pof
 assembly://Coherence/Tangosol.Config/pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <user-type>
 <type-id>1599</type-id>
 <class-name>Coherence.Tests.MyTxProcessor</class-name>
 </user-type>
 </user-type-list>
</pof-config>

22.4 Configuring the Cluster-Side Transactional Caches
Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See "Defining Transactional Caches" in Developing
Applications with Oracle Coherence for details on transactional caches.

The following example creates a transactional cache that is named MyTxCache, which
is the cache name that was used by the entry processor in Example 22-1. The
configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on localhost at port 7077. See Configuring
Extend Proxies , for detailed information on configuring cluster-side caches when
using Coherence*Extend.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>MyTxCache</cache-name>
 <scheme-name>example-transactional</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>example-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <transactional-scheme>
 <scheme-name>example-transactional</scheme-name>
 <service-name>TransactionalCache</service-name>
 <thread-count-min>2</thread-count-min>
 <thread-count-max>10</thread-count-max>

Configuring the Cluster-Side Transactional Caches

22-4 Developing Remote Clients for Oracle Coherence

 <high-units>15M</high-units>
 <task-timeout>0</task-timeout>
 <autostart>true</autostart>
 </transactional-scheme>

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

22.5 Configuring the Client-Side Remote Cache
Remote clients require a remote cache to connect to the cluster's proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Configuring Extend Proxies , for detailed information on
configuring client-side caches.

The following example configures a remote cache to connect to a proxy that is located
on localhost at port 7077. In addition, the name of the remote cache (dist-
example) must match the name of a cluster-side cache that is used when initiating the
transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>extend</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>

Configuring the Client-Side Remote Cache

Performing Transactions (.NET) 22-5

 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

22.6 Using a Transactional Entry Processor from a .NET Client
A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked on the
cluster. The client is unaware that the invocation has been delegated to the Java class.
The following example demonstrates a client that uses the entry processor stub class
and results in an invocation of the transactional entry processor that was created in
Example 22-1:

INamedCache cache = CacheFactory.GetCache("dist-example");
object result = cache.Invoke("AnyKey", new MyTxProcessor());

Console.Out.WriteLine("Result of extend transaction execution: " + result);

Using a Transactional Entry Processor from a .NET Client

22-6 Developing Remote Clients for Oracle Coherence

23
Managing ASP.NET Session State

This chapter provides instructions for managing ASP.NET session state in a Coherence
cluster. The instructions include how to enable and configure the Coherence session
provider.

This chapter includes the following sections:

• Overview

• Setting Up Coherence Session Management

• Selecting a Session Model

• Specifying a Serializer

• Sharing Session State Across Applications

23.1 Overview
Coherence for .NET allows ASP.NET session state to be managed in a Coherence
cluster, which has some benefits compared to out-of-the-box options offered by
Microsoft:

• Session state is stored in a highly available Coherence cluster, making sessions
resilient to Web server failures

• Sessions are stored in memory which allows for much faster access than when they
are serialized to disk using SQL Server session provider

• Unlike relational databases, Coherence cluster is easy to scale out to support
additional load

• In some cases, session data can be accessed at in-process speed by leveraging
Coherence near caching features

ASP.NET applications are configured to use Coherence for session state management
by modifying the web.config file and configuring the custom session state provider.
In addition, the Coherence session provider includes configuration options that can
significantly improve performance and scalability of applications.

23.2 Setting Up Coherence Session Management
The following steps are required to use Coherence for ASP.NET session management:

• Configure Coherence for .NET client library by specifying an operational
configuration, cache configuration, and POF configuration file (if using POF for
session serialization). For details, see “Setting Up the Coherence .NET Client
Library”.

Managing ASP.NET Session State 23-1

• Enable the Coherence Session Provider

• Configure the Cluster-Side ASP Session Caches

• Configure a Client-Side ASP Session Remote Cache

• Overriding the Default Session Cache Name

After the ASP.NET application and cluster are configured properly, start the cluster
and proxy servers to be used by the application and then start the ASP.NET Web
application. The sessions are automatically stored within the Coherence cluster.

23.2.1 Enable the Coherence Session Provider
ASP.NET uses a provider model to allow custom session state management
implementations. Coherence for .NET implements a custom provider that fulfils the
contract defined by Microsoft. To use the Coherence provider, add the following
provider configuration to an application's web.config file:

<system.web>
 <sessionState mode="Custom"
 customProvider="CoherenceSessionProvider"
 cookieless="false"
 timeout="20">
 <providers>
 <add name="CoherenceSessionProvider"
 type="Tangosol.Web.CoherenceSessionStore, Coherence"/>
 </providers>
 </sessionState>
 ...
</system.web>

The above example configures an ASP.NET application to use the
CoherenceSessionStore provider with the default settings. The Coherence session
provider can be customized, as described in this chapter, to take full advantage of its
included features.

23.2.2 Configure the Cluster-Side ASP Session Caches
The Coherence session provider requires two cache scheme definitions within the
cluster's cache configuration file: A storage cache and an overflow cache. The storage
cache is used for storing session data and the overflow cache is used if the session size
exceeds the limit specified in the externalAttributeSize attribute of the
CoherenceSessionProvider defined in the Web.config file.

When defining the session storage cache and the session overflow cache, the service
name must be AspNetSessionCache and the cache names must be aspnet-
session-storage and aspnet-session-overflow, respectively. In addition, the
storage cache must be configured to use the ConfigurablePofContext class as the
serializer. The scheme name and backing map configuration can be configured as
required.

The following cache scheme definition creates two distributed caches that are used by
the session provider: one for session storage and one for session overflow .

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache

Setting Up Coherence Session Management

23-2 Developing Remote Clients for Oracle Coherence

 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>aspnet-session-storage</cache-name>
 <scheme-name>aspnet-session-scheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>aspnet-session-overflow</cache-name>
 <scheme-name>aspnet-session-overflow-scheme</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>aspnet-session-scheme</scheme-name>
 <service-name>AspNetSessionCache</service-name>
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>coherence-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <distributed-scheme>
 <scheme-name>aspnet-session-overflow-scheme</scheme-name>
 <scheme-ref>dist-default</scheme-ref>
 <service-name>AspNetSessionCache</service-name>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

23.2.3 Configure a Client-Side ASP Session Remote Cache
The Coherence session provider requires an extend client's cache configuration file to
include remote cache schemes for the session storage and session overflow caches. As
with any remote cache, the cache on the cluster and the cache on the client must use
the same name. See “Defining a Remote Cache” for additional details.

The following example configures a client-side ASP session remote cache scheme that
is used by the Coherence session provider to store session data on the cluster.

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>aspnet-session-storage</cache-name>
 <scheme-name>extend-direct</scheme-name>
 </cache-mapping>

Setting Up Coherence Session Management

Managing ASP.NET Session State 23-3

 <cache-mapping>
 <cache-name>aspnet-session-overflow</cache-name>
 <scheme-name>extend-direct</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

23.2.4 Overriding the Default Session Cache Name
The Coherence session provider's default behavior is to use a remote session cache
named aspnet-session-storage. The remote cache example in “Configure a
Client-Side ASP Session Remote Cache” demonstrates creating a remote cache with
the default name. However, a session provider can be configured to use a remote
cache with a name other than the default.

To override the default session cache name, add a cacheName attribute within the
provider configuration. The following example specifies a cache named my-
session-cache.

<system.web>
 <sessionState mode="Custom"
 customProvider="CoherenceSessionProvider"
 cookieless="false"
 timeout="20">
 <providers>
 <add name="CoherenceSessionProvider"
 type="Tangosol.Web.CoherenceSessionStore, Coherence"/>
 cacheName="my-session-cache"
 </providers>
 </sessionState>
 ...
</system.web>

23.3 Selecting a Session Model
A session model describes how the Coherence session provider physically represents
and stores session state in the cluster. The provider includes three different session
model implementations out of the box:

Selecting a Session Model

23-4 Developing Remote Clients for Oracle Coherence

• Traditional Model – Stores all session state as a single entity but serializes and
deserializes attributes individually

• Monolithic Model – Stores all session state as a single entity, serializing and
deserializing all attributes as a single operation

• Split Model – Extends the Traditional Model but separates the larger session
attributes into independent physical entities

The traditional model is the default. It is similar to the
SessionStateItemCollection provided by ASP.NET - it deserializes session
items lazily to avoid deserialization penalty for items that are not accessed. However,
there are certain scenarios where monolithic or split model are better choices.

Refer to "Session Model" in Administering HTTP Session Management with Oracle
Coherence*Web for details about each model and their pros and cons. The discussion
can help determine which model is the best fit for a particular application. The
discussion is centered around Coherence*Web; however, the general concepts are the
same for ASP.NET Sessions.

23.3.1 Specify the Session Model
The split model is the recommended session model for most applications. However,
the traditional model may be more optimal for applications that are known to have
small HTTP session objects.

The monolithic model is designed to solve a specific class of problems related to
multiple session attributes that have references to the same shared object, and that
must maintain that object as a shared object. When migrating to the Coherence session
provider from the ASP.NET InProc provider, the monolithic model ensures that all
shared objects are serialized and deserialized properly.

To specify the Coherence session provider's session model, add a model attribute
within the provider configuration. The following example specifies a split model.

<system.web>
 <sessionState mode="Custom"
 customProvider="CoherenceSessionProvider"
 cookieless="false"
 timeout="20">
 <providers>
 <add name="CoherenceSessionProvider"
 type="Tangosol.Web.CoherenceSessionStore, Coherence"
 model="split"
 externalAttributeSize="512"/>
 </providers>
 </sessionState>
 ...
</system.web>

The valid values for the model attribute are traditional, monolithic, split, or
a fully qualified name of the class that implements
Tangosol.Web.ISessionModelManager interface and provides a constructor that
accepts a single Tangosol.IO.ISerializer argument. The interface allows custom
model implementations to be created if necessary.

In the example above, the session provider is configured to use the split model. The
split model supports externalAttributeSize attribute, which specifies the
minimum size (in bytes) of the attributes that should be stored separately. If the

Selecting a Session Model

Managing ASP.NET Session State 23-5

externalAttributeSize attribute is omitted, the default value of 1024 bytes is
used.

23.3.1.1 Registering the Backing Map Listener

Session attributes are partitioned into two regions when utilizing the split session
model. Core HTTP session attributes, such as session ID, creation time, last access, and
so on, are managed within one partition and large attributes are split out into another
partition. This allows support for very large HTTP session objects without incurring
overhead for frequently accessed small attributes.

With the .NET session provider implementation, core attributes and large attributes
are stored in separate caches. Therefore; the backing map listener
(AspNetSessionStoreProvider$SessionCleanupListener class) is
recommended to keep both caches synchronized. This ensures that if a session is
terminated explicitly by the user and removed by eviction or expiry, that both the
removal of the core and large segments of the session are coherently removed from the
two caches.

The following example demonstrates registering the
AspNetSessionStoreProvider$SessionCleanupListener backing map
listener on the cluster-side ASP .NET session cache:

<caching-schemes>
 <distributed-scheme>
 <scheme-name>aspnet-session-scheme</scheme-name>
 <service-name>AspNetSessionCache</service-name>
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>coherence-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 <backing-map-scheme>
 <local-scheme>
 <class-name>com.tangosol.net.cache.LocalCache</class-name>
 <listener>
 <class-scheme>
 <class-name>
 com.tangosol.net.internal.AspNetSessionStoreProvider$SessionCleanupListener
 </class-name>
 <init-params>
 <init-param>
 <param-type>
 com.tangosol.net.BackingMapManagerContext
 </param-type>
 <param-value>{manager-context}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </listener>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

Selecting a Session Model

23-6 Developing Remote Clients for Oracle Coherence

23.4 Specifying a Serializer
The Coherence session provider can be configured to use a specific serializer for
serializing session items. To specify a serializer, add a serializer attribute within
provider definition. The following example specifies the binary serializer.

<system.web>
 <sessionState mode="Custom"
 customProvider="CoherenceSessionProvider"
 cookieless="false"
 timeout="20">
 <providers>
 <add name="CoherenceSessionProvider"
 type="Tangosol.Web.CoherenceSessionStore, Coherence"
 model="split"
 externalAttributeSize="512"
 serializer="binary"/>
 </providers>
 </sessionState>
 ...
</system.web>

The valid values for the serializer attribute are binary (default), pof, or a fully
qualified name of the class that implements the Tangosol.IO.ISerializer
interface. The interface is used to create a custom serializer if necessary. However, the
existing serializers are sufficient more often than not.

23.4.1 Using POF for Session Serialization
Portable Object Format (POF) is the recommended serialization format when using
Coherence to manage ASP.NET sessions and provides many benefits over
standard .NET binary serialization. In particular, POF serialization is faster and has a
significantly more compact format. The compact format typically results in a binary
form that is 3 to 5 times smaller than the standard binary serializer. This translates
directly into a lower memory footprint within the cluster and can result in significant
cost savings.

To use POF, ensure that all custom classes that are stored either directly or indirectly
within the session are registered within the POF context and either implement the
IPortableObject interface or have an external IPofSerializer configured. For
detailed instructions on using POF, see Building Integration Objects (.NET) .

The following discussion summarizes some implementation details that should be
considered when using POF. For a detailed description of the POF format, see "The
PIF-POF Binary Format" in the appendix of the Developing Applications with Oracle
Coherence.

When session items are deserialized by the POF serializer, there is no guarantee that
the type of the resulting object equals the type of the original value. For example,
integer values between -1 and 22 (inclusive) are returned as Int32 values, regardless
of the original type, so they may require a cast to the appropriate type.

Collections may also be deserialized to a different type. For example, an ArrayList
might be stored within the session, but an immutable object array may be received
after the object is read back. This is expected behavior and the reason why the
IPofReader interface provides a template to read values as an argument to all
methods that read collections from the POF stream.

Specifying a Serializer

Managing ASP.NET Session State 23-7

Session items are not typed and there is no way to specify how they should be
deserialized. Therefore, a default collection type is always received. This is typically
acceptable when reading from the collection. However, if the collection must be
modified, either of the following two options can be used:

• Create an instance of a mutable collection of a desired type and add elements from
the deserialized collection to it. When using this option, do not forget to update
corresponding session items with the new collection, or the changes are not saved.

• Instead of storing "bare" collections directly, create a wrapper class that implements
necessary serialization logic and register it within the POF context. This allows full
control over collection serialization and can avoid the issues described above.

These steps do require extra work; however, the performance gains and reduced
memory footprint are likely worth the trouble.

23.5 Sharing Session State Across Applications
In some cases, it is beneficial to be able to share sessions across ASP.NET applications.
By default, a session key is determined by combining the application identifier (as
returned by the HostingEnvironment.ApplicationID property) with the session
identifier. This effectively prevents session sharing.

The Coherence session provider can be configured to use a specific application
identifier. To specify an application identifier, add an applicationId attribute
within a provider definition. The following examples specifies MyApplication as the
application ID.

<system.web>
 <sessionState mode="Custom"
 customProvider="CoherenceSessionProvider"
 cookieless="false"
 timeout="20">
 <providers>
 <add name="CoherenceSessionProvider"
 type="Tangosol.Web.CoherenceSessionStore, Coherence"
 applicationId="MyApplication"
 model="split"
 externalAttributeSize="512"
 serializer="pof"/>
 </providers>
 </sessionState>
 ...
</system.web>

To enable session sharing across the applications, configure multiple applications with
the same applicationId and ensure that they share the cookie containing the
session identifier.

Sharing Session State Across Applications

23-8 Developing Remote Clients for Oracle Coherence

Part V
Using Coherence REST

Part V contains the following chapters:

• Introduction to Coherence REST

• Building Your First Coherence REST Application

• Performing Grid Operations with REST

• Deploying Coherence REST

• Modifying the Default REST Implementation

24
Introduction to Coherence REST

This chapter provides an introduction to Coherence REST support. Users should be
familiar with Web services and JAX-RS to use Coherence REST.

This chapter includes the following sections:

• Overview of Coherence REST

• Dependencies for Coherence REST

• Overview of Configuration for Coherence REST

• Understanding Data Format Support

• Authenticating and Authorizing Coherence REST Clients

24.1 Overview of Coherence REST
Coherence REST provides easy access to Coherence caches and cache entries over the
HTTP protocol. It is similar to Coherence*Extend, as it allows remote clients to access
data stored in Coherence without being members of the cluster themselves. However,
unlike Coherence*Extend, which is a proprietary protocol, Coherence REST uses
HTTP as the underlying protocol and can marshal data in both JSON and XML
representation formats.The benefit of Coherence REST is that it allows applications
written in others languages, such as Ruby and Python (that are not natively supported
by Coherence), to interact with cached data.

Coherence REST Example

The Coherence distribution includes an end-to-end example of a REST application. For
detailed instructions on running the Coherence REST Example, see Installing Oracle
Coherence.

24.2 Dependencies for Coherence REST
The Coherence REST implementation is packaged in the COHERENCE_HOME/lib/
coherence-rest.jar library and depends on the coherence.jar library. In
addition, the Coherence REST implementation has many library dependencies and
also supports various HTTP server implementations (Grizzly HTTP Server, Simple
HTTP Server, and Jetty HTTP Server). To manage these dependencies, it is strongly
recommended that applications use Maven. If you are new to Maven, see: https://
maven.apache.org/.

To use Coherence REST with the Grizzly HTTP Server, add the following
dependencies in the in the Maven pom.xml file:

<dependencies>
 <dependency>
 <groupId>com.oracle.coherence</groupId>

Introduction to Coherence REST 24-1

https://maven.apache.org/
https://maven.apache.org/

 <artifactId>coherence</artifactId>
 <version>12.2.1-0-0</version>
 </dependency>
 <dependency>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>coherence-rest</artifactId>
 <version>12.2.1-0-0</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish.grizzly</groupId>
 <artifactId>grizzly-http-server</artifactId>
 <version>2.3.19</version>
 </dependency>
</dependencies>

All the required libraries are automatically downloaded. To see the complete list of
libraries, run the following Maven command:

mvn dependency:list

Refer to the Coherence REST examples for a complete pom.xml file.

24.3 Overview of Configuration for Coherence REST
Coherence REST is configured using two configuration files. The files include:

Note:

When deploying Coherence REST to a JavaEE server, configuration of the
web.xml file is also required. See “Deploying to a Java EE Server (Generic)”
for additional details.

• Cache Configuration Deployment Descriptor – This file is used to define client-side
cache services and the HTTP acceptor which accepts connections from remote
REST clients over HTTP. The acceptor includes the address and port of the cluster-
side HTTP server to which clients connects. The schema for this file is the
coherence-cache-config.xsd file. See Developing Applications with Oracle
Coherence for a complete reference of the <http-acceptor> element.

At run time, the first cache configuration file that is found on the classpath is used.
The coherence.cacheconfig system property can also be used to explicitly
specify a cache configuration file. The file can also be set programmatically. See
Developing Applications with Oracle Coherence for general information about the
cache configuration deployment descriptor.

• REST Configuration Deployment Descriptor – This file is used to configure the
Jersey resource configuration class as well as custom aggregators and custom entry
processors. The default name of the descriptor is coherence-rest-config.xml
and the schema is defined in the coherence-rest-config.xsd file. The file
must be found on the classpath and the name can be overridden using the
coherence.rest.config system property. See REST Configuration Elements,
for a detailed reference of REST configuration deployment descriptor.

Overview of Configuration for Coherence REST

24-2 Developing Remote Clients for Oracle Coherence

24.4 Understanding Data Format Support
Coherence REST supports both XML and JSON formats as input and output. To use
these formats, the correct bindings are required when creating a user type. Both
formats are demonstrated in this section.

The following topics are included in this section:

• Using XML as the Data Format

• Using JSON as the Data Format

24.4.1 Using XML as the Data Format
Objects that are represented in XML must have the appropriate JAXB bindings defined
in order to be stored in a cache. The following example creates an object that uses
annotations to add JAXB bindings:

@XmlRootElement(name="Address")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Address {
 private String street;
 private String city;
 private String country;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }
}

@XmlRootElement(name="Person")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Person {
 private Long id;
 private String name;
 private Address address;
 public Long getId() {
 return id;
 }

Understanding Data Format Support

Introduction to Coherence REST 24-3

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @XmlElement(name = "address")
 public AddressXml getAddr() {
 return address;
 }

 public void setAddr(AddressXml addr) {
 this.addr = addr;
 }
}

24.4.2 Using JSON as the Data Format
Objects that are represented in JSON must have the appropriate Jackson bindings or
JAXB bindings defined in order to be stored in a cache. The default Coherence REST
JSON marshaller gives priority to Jackson bindings. If Jackson bindings are not found,
JAXB bindings are used instead. Using Jackson annotations gives user more power on
controlling the output JSON format. However, in case when both XML and JSON
formats are needed, JAXB annotations can be enough for both formats.

The following example creates an object that uses annotations to add Jackson bindings:

@JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, include= JsonTypeInfo.As.PROPERTY,
 property="@type")
public class Address {
 private String street;
 private String city;
 private String country;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {

Understanding Data Format Support

24-4 Developing Remote Clients for Oracle Coherence

 this.country = country;
 }
}

@JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, include= JsonTypeInfo.As.PROPERTY,
 property="@type")
public class Person {
 private Long id;
 private String name;
 private Address address;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @JsonProperty("address")
 public AddressJson getAddr() {
 return address;
 }

 public void setAddr(AddressJson addr) {
 this.addr = addr;
 }
}

24.5 Authenticating and Authorizing Coherence REST Clients
Coherence REST provides both authentication and authorization to restrict access to
cluster resources. Authentication support includes both HTTP basic authentication
and SSL authentication. Authorization is implemented using Coherence*Extend-styled
authorization, which relies on interceptor classes that provide fine-grained access for
named cache and invocation service operations. For detailed instructions on
Coherence REST security, see Securing Oracle Coherence.

Authenticating and Authorizing Coherence REST Clients

Introduction to Coherence REST 24-5

Authenticating and Authorizing Coherence REST Clients

24-6 Developing Remote Clients for Oracle Coherence

25
Building Your First Coherence REST

Application

This chapter demonstrates basic tasks that are required to build and run Coherence
REST applications. Many of the concepts demonstrated in this chapter are detailed in
subsequent chapters.

The Coherence examples that ship with distribution also include and end-to-end
example of a REST application. For detailed instructions on running the Coherence
Examples, see Installing Oracle Coherence.

This chapter includes the following sections:

• Overview of the Basic Coherence REST Example

• Step 1: Configure the Cluster Side

• Step 2: Create a User Type

• Step 3: Configure REST Services

• Step 4: Start the Cache Server Process

• Step 5: Access REST Services From a Client

25.1 Overview of the Basic Coherence REST Example
This chapter is organized into a set of steps that are used to configure and run a basic
Coherence REST application. The steps demonstrate fundamental concepts, such as:
configuring a proxy server responsible for handling HTTP request, configuring a
remote cache, and using the Coherence REST API.

The example in this chapter uses an embedded HTTP server in order to deploy a
standalone application that does not require an application server. For details about
deployment options with application servers, such as WebLogic, see Deploying
Coherence REST .

Coherence for Java must be installed to complete the steps in this chapter. In addition,
the following user-defined variables are used in this example:

• DEV_ROOT - The path to root folder where user is performing all of the listed steps,
or in other words all of the following folders are relative to DEV_ROOT.

• COHERENCE_HOME - The path to folder containing Coherence JARs
(coherence.jar and coherence-rest.jar)

Building Your First Coherence REST Application 25-1

25.2 Step 1: Configure the Cluster Side
Coherence REST requires both a cache and a proxy scheme. The proxy scheme must
define an HTTP acceptor to handle an incoming HTTP request. The cache and proxy
are configured in the cluster-side cache configuration deployment descriptor. For this
example, the proxy is configured to accept client HTTP requests on localhost and
port 8080. A distributed cache named dist-http-example is defined and is used
to store client data in the cluster.

To configure the cluster side:

1. Create an XML file named example-server-config.xml in the DEV_ROOT
\config folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-http-example</cache-name>
 <scheme-name>dist-http</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-http</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <local-address>
 <address>localhost</address>
 <port>8080</port>
 </local-address>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

3. Save and close the file.

25.3 Step 2: Create a User Type
Create the Person user type, which is stored in the cache and used to demonstrate
basic REST operations.

To create the Person object:

Step 1: Configure the Cluster Side

25-2 Developing Remote Clients for Oracle Coherence

1. Create a text file in a DEV_ROOT\example folder.

2. Copy the following Java code to the file:

package example;
import java.io.Serializable;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name="person")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Person implements Serializable {

 public Person() {}

 public Person(String name, int age)
 {
 m_name = name;
 m_age = age;
 }

 public String getName() { return m_name; }

 public void setName(String name) { m_name = name; }

 public int getAge() { return m_age; }

 public void setAge(int age) { m_age = age; }

 protected String m_name;
 protected int m_age;
}

3. Save the file as Person.java and close the file.

4. Compile Person.java:

javac example\Person.java

25.4 Step 3: Configure REST Services
The Coherence REST services require metadata about the cache that it exposes. The
metadata includes the cache entry's key and value types as well as key converters and
value marshallers. The key and value types are required in order for Coherence to be
able to use built-in converters and marshallers (XML and JSON supported).

To configure the REST services:

1. Create an XML file named coherence-rest-config.xml in DEV_ROOT
\config folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<rest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"
 xsi:schemaLocation=
 "http://xmlns.oracle.com/coherence/coherence-rest-config
 coherence-rest-config.xsd">
 <resources>

Step 3: Configure REST Services

Building Your First Coherence REST Application 25-3

 <resource>
 <cache-name>dist-http-example</cache-name>
 <key-class>java.lang.String</key-class>
 <value-class>example.Person</value-class>
 </resource>
 </resources>
</rest>

Note:

The <key-class> and <value-class> element can either be defined
within the <resource> element or within the <cache-mapping> element in
the cache configuration file.

3. Save and close the file

25.5 Step 4: Start the Cache Server Process
REST services are exposed as part of a cache server process (DefaultCacheServer).
The cache server's classpath must be configured to find all the configuration files that
were created in the previous steps as well as the Person.class. The classpath must
also contain the required dependency libraries (see “Dependencies for Coherence
REST”). For the sake of brevity, all of the dependencies are placed in DEV_ROOT\libs
folder and are not individually listed.

The DEV_ROOT folder should appear as follows:

\
\config
\config\example-server-config.xml
\config\coherence-rest-config.xml
\example
\example\Person.class
\libs
\libs*

The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the coherence.cacheconfig
system property. In addition it sets all the needed libraries and configuration files
(replace dependencies with all the required library dependencies):

java -cp DEV_ROOT\config;DEV_ROOT;DEV_ROOT\libs\dependencies;
COHERENCE_HOME\coherence-rest.jar -Dcoherence.clusterport=8090
-Dcoherence.ttl=0
-Dcoherence.cacheconfig=DEV_ROOT\config\example-server-config.xml
com.tangosol.net.DefaultCacheServer

An example script for UNIX-based system follows:

#!/bin/bash

export CLASSPATH=${DEV_ROOT}/config:${DEV_ROOT}:
${DEVROOT}/lib/dependencies:${COHERENCE_HOME}/lib/coherence.jar:
${COHERENCE_HOME}/lib/coherence-rest.jar

java -cp ${CLASSPATH} -Dcoherence.clusterport=8090
-Dcoherence.ttl=0 -Dcoherence.cacheconfig=
${DEV_ROOT}/config/example-server-config.xml com.tangosol.net.DefaultCacheServer

Step 4: Start the Cache Server Process

25-4 Developing Remote Clients for Oracle Coherence

Check the console output to verify that the proxy service has started. The output
message should include the following:

(thread=Proxy:ExtendHttpProxyService:HttpAcceptor, member=1): Started:
HttpAcceptor{Name=Proxy:ExtendHttpProxyService:HttpAcceptor,
State=(SERVICE_STARTED),
HttpServer=com.tangosol.coherence.rest.server.DefaultHttpServer,
LocalAddress=localhost, LocalPort=8080,
ResourceConfig=com.tangosol.coherence.rest.server.DefaultResourceConfig,
RootResource=com.tangosol.coherence.rest.DefaultRootResource}

25.6 Step 5: Access REST Services From a Client
Client applications use Coherence REST services to perform cache operations. There
are many application platforms that provide client libraries to build HTTP-based
clients. For example, the Jersey project provides Java support for client-side
communication with HTTP-based REST Web services. The following sections
demonstrate the semantics for PUT, GET, and Post operations that a client would use
to access the dist-http-example cache. An example Java client built using Jersey
follows and requires the Jersey-client-2.12.jar library. See Performing Grid
Operations with REST , for complete details on the Coherence REST API.

Put Operations

PUT http://localhost:8080/dist-http-example/1
Content-Type=application/json
Request Body: {"name":"chris","age":30}

PUT http://localhost:8080/dist-http-example/2
Content-Type=application/json
Request Body: {"name":"adam","age":26}

GET Operations

GET http://localhost:8080/dist-http-example/1.json

GET http://localhost:8080/dist-http-example/1.xml

GET http://localhost:8080/dist-http-example?q=name is 'adam'

GET http://localhost:8080/dist-http-example;p=name

GET http://localhost:8080/dist-http-example/count()

GET http://localhost:8080/dist-http-example/double-average(age)

Post Operation

POST http://localhost:8080/dist-http-example/increment(age,1)

Sample Jersey REST Client

package example;

import java.io.IOException;

import java.net.MalformedURLException;

import java.net.URISyntaxException;

import javax.ws.rs.client.Client;

Step 5: Access REST Services From a Client

Building Your First Coherence REST Application 25-5

import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Entity;
import javax.ws.rs.client.WebTarget;

import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

public class RestExample {
 public static void PUT(String url, MediaType mediaType, String data) {
 process(url, "put", mediaType, data);
 }

 public static void GET(String url, MediaType mediaType) {
 process(url, "get", mediaType, null);
 }

 public static void POST(String url, MediaType mediaType, String data) {
 process(url, "post", mediaType, data);
 }

 public static void DELETE(String url, MediaType mediaType) {
 process(url, "delete", mediaType, null);
 }

 public static void process(String sUrl, String action,
 MediaType mediaType,
 String data) {
 Client client = ClientBuilder.newClient();
 Response response = null;

 WebTarget webTarget = client.target(sUrl);
 String responseType = MediaType.APPLICATION_XML;
 if (mediaType == MediaType.APPLICATION_JSON_TYPE) {
 responseType = MediaType.APPLICATION_JSON;
 }

 if (action.equalsIgnoreCase("get")) {
 response = webTarget.request(responseType).get();
 } else if (action.equalsIgnoreCase("post")) {
 Entity<String> person = Entity.entity(data, responseType);
 response = webTarget.request(responseType).post(person);
 } else if (action.equalsIgnoreCase("put")) {
 Entity<String> person = Entity.entity(data, responseType);
 response = webTarget.request(responseType).put(person);
 } else if (action.equalsIgnoreCase("delete")) {
 Entity<String> person = Entity.entity(data, responseType);
 response = webTarget.request(responseType).delete();
 }
 System.out.println(response.readEntity(String.class));
 }

 public static void main(String[] args) throws URISyntaxException,
 MalformedURLException, IOException {
 PUT("http://localhost:8080/dist-http-example/1",
 MediaType.APPLICATION_JSON_TYPE,
 "{\"name\":\"chris\",\"age\":32}");
 PUT("http://localhost:8080/dist-http-example/2",
 MediaType.APPLICATION_JSON_TYPE,
 "{\"name\":\"\ufeff\u30b8\u30e7\u30f3A\",\"age\":66}");
 PUT("http://localhost:8080/dist-http-example/3",
 MediaType.APPLICATION_JSON_TYPE,

Step 5: Access REST Services From a Client

25-6 Developing Remote Clients for Oracle Coherence

 "{\"name\":\"adm\",\"age\":88}");
 POST("http://localhost:8080/dist-http-example/increment(age,1)",
 MediaType.APPLICATION_XML_TYPE, null);
 GET("http://localhost:8080/dist-http-example/1",
 MediaType.APPLICATION_JSON_TYPE);
 GET("http://localhost:8080/dist-http-example/1",
 MediaType.APPLICATION_XML_TYPE);
 GET("http://localhost:8080/dist-http-example/count()",
 MediaType.APPLICATION_XML_TYPE);
 }
}

Step 5: Access REST Services From a Client

Building Your First Coherence REST Application 25-7

Step 5: Access REST Services From a Client

25-8 Developing Remote Clients for Oracle Coherence

26
Performing Grid Operations with REST

This chapter provides instructions for performing grid operations using the Coherence
REST API. The Coherence REST API pre-defines many operations that can be used to
interact with a cache. In addition, custom operations such aggregators and entry
processors can be created as required.

This chapter includes the following sections:

• Specifying Key and Value Types

• Performing Single-Object REST Operations

• Performing Multi-Object REST Operations

• Performing Partial-Object REST Operations

• Performing Queries with REST

• Performing Aggregations with REST

• Performing Entry Processing with REST

• Understanding Concurrency Control

• Specifying Cache Aliases

• Using Server-Sent Events

26.1 Specifying Key and Value Types
The Coherence REST services require metadata about the cache that they expose. The
metadata includes the cache entry's key and value types as well as key converters and
value marshallers. The key and value types are required in order for Coherence to be
able to use built-in converters and marshallers (both XML and JSON are supported).

To define the key and value types for a cache entry, edit the coherence-rest-
config.xml file and include the <key-class> and the <value-class> elements
within the <resource> element whose values are set to key and value types,
respectively. See “resource” for a detailed reference of the <resource> element.

Note:

The <key-class> and <value-class> element can either be defined
within the <resource> element or within the <cache-mapping> element in
the cache configuration file.

Performing Grid Operations with REST 26-1

The following example defines a String key class and a value class for a Person
user type:

<resources>
 <resource>
 <cache-name>person</cache-name>
 <key-class>java.lang.String</key-class>
 <value-class>example.Person</value-class>
 </resource>
</resources>

26.2 Performing Single-Object REST Operations
The REST API includes support for performing GET, PUT, and DELETE operations on
a single object in a cache.

GET Operation

GET http://host:port/cacheName/key

Returns a single object from the cache based on a key. A 404 (Not Found) status
code returns if the object with the specified key does not exist. The get operation
supports partial results (see “Performing Partial-Object REST Operations” for details).
Conditional gets are supported if an object implements the
com.tangosol.util.Versionsable interface. The version is added to the
response and used to determine if a client has the latest version of an object. If a client
already has the latest version of an object, a 304 (Not Modified) status code
returns.

The following sample output demonstrates the response of a GET operation:

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/xml

* Client in-bound response
< 200
< Content-Length: 212
< Content-Type: application/xml
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/json

* Client in-bound response
< 200
< Content-Type: application/json
<
{"@type":"rest.Person","address":{"@type":"rest.Address","city":"Redwood Shores",
"country":"United States","street":"500 Oracle Parkway"},"id":1,"name":"Mark"}

PUT Operations

PUT http://host:port/cacheName/key

Creates or updates a single object in the cache. A 200 (OK) status code returns if the
object was updated. If optimistic concurrency check fails, a 409 (Conflict) status

Performing Single-Object REST Operations

26-2 Developing Remote Clients for Oracle Coherence

code returns with the current object as an entity. See “Understanding Concurrency
Control” for details.

The following sample output demonstrates the response of a PUT operation:

* Client out-bound request
> PUT http://127.0.0.1:8080/dist-test-sepx/1
> Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Client in-bound response
< 200
< Content-Length: 0
<

* Client out-bound request
> PUT http://127.0.0.1:8080/dist-test-sepj/1
> Content-Type: application/json
{"@type":"rest.Person","id":1,"name":"Mark","address":{"@type":"rest.Address","str
eet":"500 Oracle Parkway","city":"Redwood Shores","country":"United States"}}

* Client in-bound response
< 200
< Content-Length: 0
<

Delete Operation

DELETE http://host:port/cacheName/key

Deletes a single object from the cache based on a key. A 200 (OK) status code returns
if the object is successfully deleted, or a 404 (Not Found) status code returns if the
object with the specified key does not exist.

26.3 Performing Multi-Object REST Operations
Multi-object operations allow users to retrieve or delete multiple objects in a single
network request and can significantly reduce the network usage and improve network
performance.

Note:

PUT operations are not supported as it may produce tainted data. Specifically,
it would require that individual objects (in serialized form) within the entity
body to be in the same order as the corresponding keys in the URL. In
addition, since updates result in a replacement, an entire object serialized form
must be provided which can lead to overhead.

GET Operations

GET http://host:port/cacheName/(key1, key2, ...)

Returns a set of objects from the cache based on the specified keys. The ordering of
returned objects is undefined and does not need to match the key order in the URL.
Missing objects are silently omitted from the results. A 200 (OK) status code always
returns. An empty result set is returned if there are no objects in the result set. The get

Performing Multi-Object REST Operations

Performing Grid Operations with REST 26-3

operation supports partial results (see “Performing Partial-Object REST Operations”
for details).

DELETE Operations

DELETE http://host:port/cacheName/(key1, key2, ...)

Deletes multiple objects from the cache based on the specified keys. A 200 (OK)
status code always returns even if no objects for the specified keys were present in the
cache.

26.4 Performing Partial-Object REST Operations
An application may not want (or need) to retrieve a whole object. For example, in
order to populate a drop down with a list of options, the application may only need
two properties of a potentially large object with many other properties. In order to
support this use case, each read operation should accept a list of object properties that
the user is interested in as a matrix parameter p.

The following example performs a get operation that retrieves just the id and name
attributes for a person:

GET http://localhost:8080/people/123;p=id,name

To include a country attribute of the address as well, the request URL is as follows:

GET http://localhost:8080/people/123;p=id,name,address:(country)

This approach allows an application to selectively retrieve only the properties that are
required using a simple, URL-friendly notation.

The following sample output demonstrates the response of a GET operation:

* Client out-bound request
> GET http://127.0.0.1:8080/dist-test-sepj/1;p=name
> Accept: application/json

* Client in-bound response
< 200
< Transfer-Encoding: chunked
< Content-Type: application/json
<
{"name":"Mark"}

26.5 Performing Queries with REST
Coherence REST allows users to query a cache. CohQL is the default query syntax;
however, additional query syntaxes can be created and used as required.

The section includes the following sections:

• Using Direct Queries

• Using Named Queries

• Specifying a Query Sort Order

• Limiting Query Result Size

• Retrieving Only Keys

Performing Partial-Object REST Operations

26-4 Developing Remote Clients for Oracle Coherence

• Using Custom Query Engines

26.5.1 Using Direct Queries
Direct queries are query expression that are submitted as the value of the parameter q
in a REST URL. By default, the query expression must be specified as a URL-encoded
CohQL expression (the predicate part of CohQL). See Developing Applications with
Oracle Coherence for details on the CohQL syntax. The syntax of a direct query is as
follows:

GET http://host:port/cacheName?q=query

For example, to query the person cache for person objects where age is less than 18:

GET http://host:port/person?q=age%3C18

Direct queries are disabled by default. To enabled direct queries, edit the coherence-
rest-config.xml file and add a <direct-query> element for each resource to be
queried and set the enabled attribute to true. For example:

<resource>
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <direct-query enabled="true"/>
</resource>

A 403 (Forbidden) response code is returned if a query is performed on a resource
that does not have direct queries enabled.

26.5.2 Using Named Queries
Named queries are query expression that are configured for a resource in the
coherence-rest-config.xml file. By default, the query expression must be
specified as a CohQL expression (the predicate part of CohQL). Since this expression is
configured in an XML file, any special characters (such as < and >) must be escaped
using the corresponding entity. See Developing Applications with Oracle Coherence for
details on the CohQL syntax. In addition, named queries can include context values as
required. The syntax of a named query is as follows:

GET http://host:port/cacheName/namedQuery?param1=value1,param2=value2...

To specify named queries, add any number of <query> elements, within a
<resource> element, that each contain a query expression and name binding. For
more information on the <query> element, see “query”. For example:

<resource>
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <query>
 <name>minors</name>
 <expression>age < 18</expression>
 </query>
 <query>
 <name>first-name</name>
 <expression>name is :name</expression>
 </query>
</resource>

Performing Queries with REST

Performing Grid Operations with REST 26-5

To use a named query, enter the name of the query within the REST URL. The
following example uses the minors named query that is defined in the above
example.

GET http://host:port/persons/minors

Parameters provide flexibility by allowing context values to be replaced in the query
expression. The following example uses the :name parameter that is defined in the
first-name query expression above to only query entries whose name property is
Mark.

http://host:port/persons/first-name?name=Mark

Parameter names must be prefixed by a colon character (:paramName). Parameter
bindings do not have access to type information, so it's possible to get a false where a
true is expected on the comparison operators. To avoid such behavior, specify type
hints as part of a query parameter (:paramName;int). Table 26-1 lists the supported
type hints.

Table 26-1 Parameter Type Hints

Hint Type

i, int java.lang.Integer

s, short java.lang.Short

l, long java.lang.Long

f, float java.lang.Float

d, double java.lang.Double

I java.math.BigInteger

D java.math.BigDecimal

date java.util.Date

uuid com.tagosol.util.UUID

uid com.tangosol.util.UID

package.MyClas
s

package.MyClass

Named queries can also be used in conjunction with aggregation and entry processing.
For more information on aggregation and entry processing, see “Performing
Aggregations with REST” and “Performing Entry Processing with REST”,
respectively. For example:

http://host:port/persons/first-name?name=Mark/long-max(age)

http://host:port/persons/first-name?name=Mark/increment(age,1)

26.5.3 Specifying a Query Sort Order
The sort matrix parameter is an optional parameter used within a REST URL that
provides the ability to order the returned results of a query. The sort parameter is
available for both direct queries and named queries. The value of the sort parameters

Performing Queries with REST

26-6 Developing Remote Clients for Oracle Coherence

is a comma-separated list of properties to sort on, each of which can have an
optional :asc (default) or :desc qualifier that determines the order of the sort. For
example, to sort a list of people by last name with family members sorted from the
oldest to the youngest, the sort parameter is defined as follows:

GET http://host:port/persons/minors;sort=lastName,age:desc

The following example uses the sort parameter as part of a direct query.

GET http://host:port/persons;sort=lastName,age:desc?q=age%3C18

26.5.4 Limiting Query Result Size
Queries against large caches can potentially return large result sets that may cause out-
of-memory errors. You should always use keys when querying large caches even
though the use of keys in queries is optional. If keys are omitted, then the query may
return all cache entries.

There are two ways to limit the number of results that are returned to a client: the
start and count matrix parameters and the max-results attribute. Both ways are
supported for direct and named queries.

The start and count parameters are optional integer arguments that determine the
subset of the results to return. The following example uses the parameters as part of a
named query and returns the first 10 entries sorted by name.

http://host:port/persons/minors;start=0;count=10;order=name:asc

The following example uses the parameters as part of a direct query.

GET http://host:port/persons;start=0;count=10?q=age%3C18

The max-results attribute is used within the coherence-rest-config.xml file
and explicitly limits how many results are returned to the client. Note that this
attribute does not limit the number of entries that are returned from a cache. The
following example sets the max-results attribute:

<resource max-results="50">
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <direct-query enabled="true" max-results="25">
 <query max-results="25">
 <name>minors</name>
 <expression>age < 18</expression>
 </query>
</resource>

The max-results value for a direct or named query overrides the resource's max-
results value if both are specified. If a query includes a count parameter and a
max-results element is also specified, the lesser value is used.

26.5.5 Retrieving Only Keys
It is possible to retrieve just keys of entries stored in cache. Key operations do not
support paging and sorting, therefore those query parameters, if submitted, are
ignored. The following key retrieval operations are supported:

GET http://host:port/cacheName/keys

Returns the keys of all entries in the cache.

Performing Queries with REST

Performing Grid Operations with REST 26-7

GET http://host:port/cacheName/keys?q=query

Returns the keys of all entries satisfying the direct query criteria.

GET http://host:port/cacheName/namedQuery/keys

Returns the keys of all entries that satisfy the named query criteria.

26.5.6 Using Custom Query Engines
A query engine executes queries for both direct and named queries. The default query
engine executes queries that are expressed using a CohQL syntax (the predicate part of
CohQL). Implementing a custom query engine allows the use of different query
expression syntaxes or the ability to execute queries against data sources other than
Coherence (for example, to query a database for entries that are not present in a
cache).

This section includes the following topics:

• Implementing Custom Query Engines

• Enabling Custom Query Engines

26.5.6.1 Implementing Custom Query Engines

Custom query engines must implement the
com.tangosol.coherence.rest.query.QueryEngine and
com.tangosol.coherence.rest.query.Query interfaces. Custom
implementations can also extend the
com.tangosol.coherence.rest.query.AbstractQueryEngine base class
which provides convenience methods for parsing query expression and handling
parameter bindings. The base class also supports parameter replacement at execution
time and type hints that are submitted as part of the query parameter value. Both
parameter names and type hints follow the CohQL specification and can be used for
other query engine implementations. For details on specifying parameters and type
hints, see “Using Named Queries”.

For details on the API, see Java API Reference for Oracle Coherence for the
AbstractQueryEngine.ParsedQuery class and the
AbstractQueryEngine.parseQueryString(String) and
AbstractQueryEngine.createBindings(Map, Map).

The following example is a simple query engine implementation that executes SQL
queries directly against a database and forces cache read-through. In reality, a query
engine implementation would probably support runtime parameter binding, which is
not shown in the example.

public class SqlQueryEngine
 extends AbstractQueryEngine
 {
 protected Connection m_con;
 private static final String DB_DRIVER = "oracle.jdbc.OracleDriver";
 private static final String DB_URL = "jdbc:oracle:thin:@localhost:1521:orcl";
 private static final String DB_USERNAME = "username";
 private static final String DB_PASSWORD = "password";

 public SqlQueryEngine()
 {
 configureConnection();
 }

Performing Queries with REST

26-8 Developing Remote Clients for Oracle Coherence

 @Override
 public Query prepareQuery(String sQuery, Map<String, Object> mapParams)
 {
 ParsedQuery parsedQuery = parseQueryString(sQuery);
 String sSQL = createSelectPKQuery(parsedQuery.getQuery());
 return new SqlQuery(sSQL);
 }

 protected void configureConnection()
 {
 try
 {
 Class.forName(DB_DRIVER);
 m_con = DriverManager.getConnection(DB_URL, DB_USERNAME, DB_PASSWORD);
 m_con.setAutoCommit(true);
 }
 catch (Exception e)
 {
 throw new RuntimeException(e);
 }
 }

 protected String createSelectPKQuery(String sSQL)
 {
 return "SELECT id,name,age FROM " +
 sSQL.substring(sSQL.toUpperCase().indexOf("FROM") + 4);
 }

 private class SqlQuery
 implements Query
 {
 protected String m_sql;

 public SqlQuery(String sql)
 {
 m_sql = sql;
 }

 @Override
 public Collection values(NamedCache cache, String sOrder, int nStart,
 int cResults)
 {
 // force read through
 Set setKeys = keySet(cache);
 return cache.getAll(setKeys).values();
 }

 @Override
 public Set keySet(NamedCache cache)
 {
 Set setKeys = new HashSet();
 try
 {
 PreparedStatement stmt = m_con.prepareStatement(m_sql);
 ResultSet result = stmt.executeQuery();
 while (result.next())
 {
 Object oKey = result.getLong(1);
 setKeys.add(oKey);
 Person person = new Person(result.getString("name"),

Performing Queries with REST

Performing Grid Operations with REST 26-9

 result.getInt("age"));
 cache.put(oKey, person);
 }
 stmt.close();
 }
 catch (SQLException e)
 {
 throw new RuntimeException(e);
 }
 return setKeys;
 }
 }
}

26.5.6.2 Enabling Custom Query Engines

Custom query engines are enabled in the coherence-rest-config.xml file. To
enable a custom query engine, first register the implementation by adding an
<engine> element, within the <query-engines> element, that includes a name for
the query engine and the fully qualified name of the implementation class. For more
information on the <engine> element, see “engine”. For example:

<query-engines>
 <engine>
 <name>SQL-ENGINE</name>
 <class-name>package.SqlQueryEngine</class-name>
 </engine>
</query-engines>

To explicitly specify a custom query engine for a named query or a direct query, add
the engine attribute, within a <direct-query> element or a <query> element, that
refers to the custom query engine's registered name. For example:

<resource>
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <query engine="SQL-ENGINE">
 <name>less-than-1000</name>
 <expression>select * from PERSONS where id < 1000</expression>
 </query>
 <direct-query enabled="true" engine="SQL-ENGINE"/>
 </resource>

To make a custom query engine the default query engine, use DEFAULT (uppercase
mandatory) as the registered name. The following definition overrides the default
CohQL-based query engine and is automatically used whenever an engine attribute
is not specified.

<query-engines>
 <engine>
 <name>DEFAULT</name>
 <class-name>package.SqlQueryEngine</class-name>
 </engine>
</query-engines>

26.6 Performing Aggregations with REST
Aggregations can be performed on data in a cache. Coherence REST includes a set of
pre-defined aggergators and custom aggregators can be created as required.

Performing Aggregations with REST

26-10 Developing Remote Clients for Oracle Coherence

The following topics are included in this section:

• Aggregation Syntax for REST

• Listing of Pre-Defined Aggregators

• Creating Custom Aggregators

26.6.1 Aggregation Syntax for REST
The following examples demonstrate how to perform aggregations using REST. If the
aggregation succeeds, a 200 (OK) status code returns with the aggregation result as
an entity.

• Aggregates all entries in the cache.

GET http://host:port/cacheName/aggregator(args, ...)

• Aggregates query results. The query must be specified as a URL-encoded CohQL
expression (the predicate part of CohQL).

GET http://host:port/cacheName/aggregator(args, ...)?q=query

GET http://host:port/cacheName/namedQuery/aggregator(args, ...)?param1=value1

• Aggregates specified entries.

GET http://host:port/cacheName/(key1, key2, ...)/aggregator(args, ...)

Coherence REST provides a simple strategy for aggregator creation (out of aggregator
related URL segments). Out-of-box, Coherence REST can resolve any registered (either
built-in or user registered) aggregator with a constructor that accepts a single
parameter of type com.tangosol.util.ValueExtractor (such as LongMax,
DoubleMax, and so on). If an aggregator call within a URL doesn't contain any
parameters, the aggregator is created using
com.tangosol.util.extractor.IdentityExtractor.

If an aggregator segment within the URL doesn't contain any parameters nor a
constructor accepting a single ValueExtractor exists, Coherence REST tries to
instantiate the aggregator using a default constructor which is the desired behavior for
some built-in aggregators (such as count).

The following example retrieves the oldest person in a cache:

GET http://host:port/people/long-max(age)

The following example calculates the max number in a cache containing only
numbers:

GET http://host:port/numbers/comparable-max()

The following example calculates the size of the people cache:

GET http://host:port/people/count()

26.6.2 Listing of Pre-Defined Aggregators
The following pre-defined aggregators are supported:

Performing Aggregations with REST

Performing Grid Operations with REST 26-11

Aggregator Name Aggregator

big-decimal-average BigDecimalAverage.class

big-decimal-max BigDecimalMax.class

big-decimal-min BigDecimalMin.class

big-decimal-sum BigDecimalSum.class

double-average DoubleAverage.class

double-max DoubleMax.class

double-min DoubleMin.class

double-sum DoubleSum.class

long-max LongMax.class

long-min LongMin.class

long-sum LongSum.class

comparable-max ComparableMax.class

comparable-min ComparableMin.class

distinct-values DistinctValues.class

count Count.class

26.6.3 Creating Custom Aggregators
Custom aggregator types can be defined by specifying a name to be used in the REST
URL and a class implementing either the
com.tangosol.util.InvocableMap.EntryAggregator interface or the
com.tangosol.coherence.rest.util.aggregator.AggregatorFactory
interface.

An EntryAggregator implementation is used for simple scenarios when
aggregation is either performed on single property or on cache value itself (as most of
the pre-defined aggregators do).

The AggregatorFactory interface is used when a more complex creation strategy is
required. The implementation must be able to resolve the URL segment containing
aggregator parameters and use the parameters to create the appropriate aggregator.

Custom aggregators are configured in the coherence-rest-config.xml file
within the <aggregators> elements. See “aggregator” for a detailed reference. The
following example configures both a custom EntryAggregator implementation and
a custom AggregatorFactory implementation:

<aggregators>
 <aggregator>
 <name>my-simple-aggr</name>
 <class-name>com.foo.MySimpleAggregator</class-name>
 </aggregator>
 <aggregator>
 <name>my-complex-aggr</name>

Performing Aggregations with REST

26-12 Developing Remote Clients for Oracle Coherence

 <class-name>com.foo.MyAggreagatorFactory</class-name>
 </aggregator>
</aggregators>

26.7 Performing Entry Processing with REST
Entry Processors can be invoked on one or more objects in a cache. Coherence REST
includes a set of pre-defined entry processors and custom entry processors can be
created as required.

The following topics are included in this section:

• Entry Processor Syntax for REST

• Listing of Pre-defined Entry Processors

• Creating Custom Entry Processors

26.7.1 Entry Processor Syntax for REST
The following examples demonstrate how to perform entry processing using REST. If
the processing succeeds, a 200 (OK) status code returns with the processing result as
an entity.

• Process all entries in the cache.

POST http://host:port/cacheName/processor(args, ...)

• Process query results.

POST http://host:port/cacheName/processor(args, ...)?q=query

POST http://host:port/cacheName/namedQuery?param1=value1/processor(args, ...)

• Process specified entries.

POST http://host:port/cacheName/(key1, key2, ...)/processor (args, ...)

Unlike aggregators, processors (even the pre-defined processors) have more diverse
creation patterns, so Coherence REST does not assume anything about processor
creation. Instead, for each entry processor implementation, there needs to be an
implementation of the
com.tangosol.coherence.rest.util.processor.ProcessorFactory
interface that can handle an input string from a URL section and instantiate the
processor instance. Out-of-box, Coherence REST provides two such factories for
NumberIncrementor and NumberMultiplier.

The following example increments each person's age in a cache by 5:

POST http://localhost:8080/people/increment(age, 5)

The following example multiplies each number in a cache containing only numbers by
the factor 10:

POST http://localhost:8080/numbers/multiply(10)

26.7.2 Listing of Pre-defined Entry Processors
The following pre-defined processors are supported:

Performing Entry Processing with REST

Performing Grid Operations with REST 26-13

Processor
Name

Processor

increment A NumberIncrementor instance that always returns the new
(incremented) value

post-
increment

A NumberIncrementor instance that always returns the old (not
incremented) value

multiply A NumberMultiplier instance that always returns the new (multiplied)
value

post-
multiply

A NumberMultiplier instance that always returns the old (not
multiplied) value

26.7.3 Creating Custom Entry Processors
Custom entry processors can be defined by specifying a name to be used in a REST
URL and a class that implements the
com.tangosol.coherence.rest.util.processor.ProcessorFactory
interface.

Custom entry processors are configured in the coherence-rest-config.xml file
within the <processors> elements. See “processors” for a detailed reference. The
following example configures a custom ProcesorFactory implementation:

<processors>
 <processor>
 <name>my-processor</name>
 <class-name>com.foo.MyProcessorFactory</class-name>
 </processor>
</processors>

26.8 Understanding Concurrency Control
Coherence REST supports optimistic concurrency only as it maps cleanly to the HTTP
protocol. When an application submits a GET request for an object that implements the
com.tangosol.util.Versionable interface, the current version identifier is
returned in an HTTP ETag (as well as in the representation of the object, assuming the
version identifier is included in the JSON/XML serialized form). If the application
then submits the same GET request for the resource, but this time with an If-None-
Match header with the same ETag value, Coherence REST returns a status of 304,
indicating that the application has the latest version of the resource.

Likewise, when an application submits a PUT request to update an object that
implements the com.tangosol.util.Versionable interface, Coherence REST
performs an update only if the existing and new object versions match; otherwise a
409 Conflict status is returned along with the current object so that the client can
reapply the changes and retry.

The following example illustrates these concepts:

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import javax.ws.rs.core.MediaType;
import org.codehaus.jettison.json.JSONObject;

Understanding Concurrency Control

26-14 Developing Remote Clients for Oracle Coherence

public class ConcurrencyTests
 {
 public static void main(String[] asArg)
 throws Exception
 {
 Client client = Client.create();
 String url = "http://localhost:" + getPort() + "/dist-test1/2";
 WebResource webResource = client.resource(url);

 // perform a GET of a server-side resource that implements Versionable
 ClientResponse response = webResource
 .accept(MediaType.APPLICATION_JSON).get(ClientResponse.class);
 assert 200 == response.getStatus(); /* OK */

 // verify that the current version of the resource is 1
 JSONObject json = new JSONObject(response.getEntity(String.class));
 String version = json.getString("versionIndicator");
 assert "1".equals(version);
 assert new EntityTag("1").equals(response.getEntityTag());

 // perform a conditional GET of the same resource and verify that we
 // get a response status of 304: Not Modified
 response = webResource
 .accept(MediaType.APPLICATION_JSON)
 .header ("If-None-Match", '"' + version + '"').get(ClientResponse.class);
 assert 304 == response.getStatus(); /* Not Modified */

 // simulate a version change on the server-side by rolling back the
 // version indicator on our representation of the resource
 json.put("versionIndicator", String.valueOf(0));

 // perform a conditional PUT of the same resource and verify that we
 // get a response status of 409: Conflict
 response = webResource
 .accept(MediaType.APPLICATION_JSON)
 .put(ClientResponse.class, json);
 assert 409 == response.getStatus(); /* Conflict */

 // retry again with the returned value and verify that we now get a
 // response status of 200: OK
 json = new JSONObject(response.getEntity(String.class));
 response = webResource
 .accept(MediaType.APPLICATION_JSON)
 .put(ClientResponse.class, json);
 assert 200 == response.getStatus(); /* OK */
 }
 }

26.9 Specifying Cache Aliases
Cache aliases are used to specify simplified cache names that are used when a cache
name is not ideal for the REST URL path segment. The simplified names are mapped
to the real cache names.

To define a cache alias, edit the coherence-rest-config.xml file and include the
<name> attribute within the <resource> element whose value is set to a simplified
cache name.

The following example creates a cache alias named people for a cache with the name
dist-extend-not-ideal-name-for-a-cache*:

Specifying Cache Aliases

Performing Grid Operations with REST 26-15

<resources>
 <resource name="people">
 <cache-name>dist-extend-not-ideal-name-for-a-cache*</cache-name>
 ...
 </resource>
</resources>

26.10 Using Server-Sent Events
Server-sent events allow Coherence REST applications to automatically receive cache
events from the Coherence cluster. For example, events can be received when cache
entries are inserted or deleted. For a complete example of using server-sent events, see
the Coherence REST examples in Installing Oracle Coherence.

Server-sent events require the use of either the Grizzly HTTP server or the Jetty HTTP
server. For details on configuring the Grizzly HTTP server with Coherence REST, see
“Using Grizzly HTTP Server.” For details about configuring the Jetty HTTP server
with Coherence REST, see “Using Jetty HTTP Server.” In addition, server-sent events
must be supported by your web browser. Refer to your browser documentation for
support details.

26.10.1 Receiving Server-Sent Events
Web pages use the EventSource object to receive server-sent events. The
EventSource object connects to a specified URI where events are generated and
custom EventListeners are added to listen and process the incoming server-sent
events. The following code from the Coherence REST example uses JavaScript to
create a new EventSource object that listens to the /cache/contacts URI and
adds event listeners for insert, update, delete, and error events.

$scope.startListeningContacts = function() {
 $scope.contacts.listening = true;
 $scope.contacts.started = true;

 if ($scope.contacts.filter == 'all') {
 query = '';
 }
 else if ($scope.contacts.filter == '>=45') {
 query = '?q=age%20>=%2045';
 $scope.contacts.filter = 'age >= 45';
 }
 else {
 query = '?q=age%20<%2045';
 $scope.contacts.filter = 'age < 45';
 }

 $scope.contacts.status = 'Listening: ' + $scope.contacts.filter;
 var eventSourceContacts = new EventSource('/cache/contacts' + query);

 eventSourceContacts.addEventListener('insert', function(event) {
 $scope.contacts.insertCount++;
 $scope.contacts.allCount++;
 $scope.updateContactEvent(JSON.parse(event.data), 'insert');
 $scope.$apply();
 });

 eventSourceContacts.addEventListener('update', function(event) {
 $scope.contacts.updateCount++;
 $scope.contacts.allCount++;
 $scope.updateContactEvent(JSON.parse(event.data), 'update');

Using Server-Sent Events

26-16 Developing Remote Clients for Oracle Coherence

 $scope.$apply();
 });

 eventSourceContacts.addEventListener('delete', function(event) {
 $scope.contacts.deleteCount++;
 $scope.contacts.allCount++;
 $scope.updateContactEvent(JSON.parse(event.data), 'delete');
 $scope.$apply();
 });

 eventSourceContacts.addEventListener('error', function(event) {
 var eventData = JSON.parse(event.data);
 alert('error');
 });
};

When an event is received, an application can choose take some meaningful action
based on the event. For example:

$scope.updateContactEvent = function(eventData, eventType) {
 $scope.contacts.eventType = eventType;
 $scope.contacts.eventKey = eventData.key.firstName + ' ' +
 eventData.key.lastName;

 $scope.contacts.eventNewValue = 'N/A';
 $scope.contacts.eventOldValue = 'N/A';

 if (eventType == 'insert' || eventType == 'update') {
 $scope.contacts.eventNewValue = $scope.getContactString(eventData.newValue);
 }
 if (eventType == 'delete' || eventType == 'update') {
 $scope.contacts.eventOldValue = $scope.getContactString(eventData.oldValue);
 }
};

Using Server-Sent Events

Performing Grid Operations with REST 26-17

Using Server-Sent Events

26-18 Developing Remote Clients for Oracle Coherence

27
Deploying Coherence REST

This chapter provides instructions for deploying Coherence REST to an embedded
HTTP server and WebLogic Server. Generic servlet container instructions are also
provided. For details on securing Coherence REST, seeSecuring Oracle Coherence .

This chapter includes the following sections:

• Deploying with the Embedded HTTP Server

• Deploying to WebLogic Server

• Deploying to a Java EE Server (Generic)

• Configuring REST Server Access to POF-Enabled Services

27.1 Deploying with the Embedded HTTP Server
Coherence provides multiple embedded HTTP server implementations that can be
used to host REST Web services:

• DefaultHttpServer (backed by Oracle's lightweight HTTP server)

• GrizzlyHttpServer (backed by Grizzly HTTP server and recommended for
production environments)

• SimpleHttpServer (backed by Simple HTTP server)

• JettyHttpServer (backed by Jetty HTTP server)

See “Changing the Embedded HTTP Server” for details on changing the default HTTP
server.

The HTTP server must be enabled on a Coherence proxy server. To enable the HTTP
server, edit the proxy's cache configuration file and add an <http-acceptor>
element, within the <proxy-scheme> element, and include the host and port for the
HTTP server.

The following example configures the HTTP server to accept requests on localhost
127.0.0.1 and port 8080. The example explicitly defines the HTTP server class and
Jersey resource configuration class and uses / as the context path for the Coherence
REST application. However; these are default values and need not be included. The
context path can be changed as required and additional Coherence REST applications
can be defined with different context paths. See Developing Applications with Oracle
Coherence for a detailed reference of all <http-acceptor> subelements.

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <class-name>

Deploying Coherence REST 27-1

 com.tangosol.coherence.rest.server.DefaultHttpServer</class-name>
 <local-address>
 <address>127.0.0.1</address>
 <port>8080</port>
 </local-address>
 <resource-config>
 <context-path>/</context-path>
 <instance>
 <class-name>
 com.tangosol.coherence.rest.server.DefaultResourceConfig
 </class-name>
 </instance>
 </resource-config>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

If you are using POF, make sure that the pof-config.xml file includes the location
of the REST POF types. For details, see “Configuring REST Server Access to POF-
Enabled Services.”

27.2 Deploying to WebLogic Server
WebLogic Server includes a Coherence integration that standardizes the way
Coherence applications are packaged, deployed, and managed within a WebLogic
Server domain. Coherence REST must follow the integration standards. For details on
configuring a Coherence cluster in a WebLogic Server domain, see Administering
Clusters for Oracle WebLogic Server. In addition, Coherence applications must be
packaged as a Grid ARchive (GAR). For details on creating a GAR, see, Developing
Oracle Coherence Applications for Oracle WebLogic Server.

This section contains the following tasks:

• Task 1: Configure a WebLogic Server Domain for Coherence REST

• Task 2: Package the Coherence REST Web Application

• Task 3: Package the Coherence Application

• Task 4: Package the Enterprise Application

• Task 5: Deploy the Enterprise Application

27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST
Create a managed Coherence server in your WebLogic Server domain that will host
Coherence REST. The server should be configured as a storage disabled member of a
Coherence cluster. If more than one managed Coherence server is required for a
Coherence REST solution, the servers should be managed as a tier in a WebLogic
Server cluster. For details on configuring managed Coherence servers, see
Administering Clusters for Oracle WebLogic Server.

27.2.2 Task 2: Package the Coherence REST Web Application
To package the Coherence REST Web application:

1. Create a Web application directory structure as follows:

Deploying to WebLogic Server

27-2 Developing Remote Clients for Oracle Coherence

/
/WEB-INF/
/WEB-INF/classes/
/WEB-INF/lib/

2. Create a Web application deployment descriptor (web.xml) and include a servlet
definition for the REST application as follows:

Note:

A default servlet context listener is included in the coherence-rest.jar
that shuts down the cluster member during the REST application shutdown.
The listener is registered as shown below. If the cluster member is not shut
down, a variety of exceptions are thrown post shutdown.

<web-app>
 ...
 <listener>
 <listener-class>
 com.tangosol.coherence.rest.servlet.DefaultServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>Coherence REST</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>
 com.tangosol.coherence.rest.server.ContainerResourceConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Coherence REST</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

3. Save the web.xml file to the /WEB-INF/ directory.

4. Create a WAR file using the jar utility. For example, issue the following command
from a command prompt at the root of the Web application directory:

jar -cvf coherence_rest.war *

27.2.3 Task 3: Package the Coherence Application
To package the Coherence application:

1. Copy the coherence-rest-config.xml file to the root of your Coherence
application. The structure should be as follows:

/
/com/myco/MyClass.class
/lib/
/META-INF/

Deploying to WebLogic Server

Deploying Coherence REST 27-3

/META-INF/coherence-application.xml
/META-INF/coherence-cache-config.xml
/META-INF/pof-config.xml
coherence-rest-config.xml

2. Edit the pof-config.xml file to include the coherence-rest-pof-
config.xml POF configuration file that contains the Coherence REST default user
types. For details, see “Configuring REST Server Access to POF-Enabled Services.”

3. Create a GAR file using the jar utility. For example, issue the following command
from a command prompt at the root of the GAR directory:

jar -cvf MyCohApp.gar *

27.2.4 Task 4: Package the Enterprise Application
To package the enterprise application:

1. Create an enterprise application directory structure and copy the Coherence REST
WAR file and the Coherence application GAR file to the root of the EAR. For
example:

/
/META-INF/
/META-INF/application.xml
/META-INF/weblogic-application.xml
/coherence_rest.war
/MyCohApp.gar

2. Edit the application.xml file and add a module definition for the Coherence
REST Web application. For example:

<application>
 <module>
 <web>
 <web-uri>coherence_rest.war</web-uri>
 <context-root>/</context-root>
 </web>
 </module>
</application>

3. Edit the weblogic-application.xml file and add a library reference for the
coherence-rest.jar shared library and a module reference for the Coherence
application GAR file. For example:

<weblogic-application>
 <module>
 <name>person</name>
 <type>GAR</type>
 <path>MyCohApp.gar</path>
 </module>
 <library-ref>
 <library-name>coherence-rest</library-name>
 </library-ref>
</weblogic-application>

4. Create the EAR file using the jar utility. For example, issue the following
command from a command prompt at the root of the EAR directory:

jar -cvf MyCohRestApp.ear *

Deploying to WebLogic Server

27-4 Developing Remote Clients for Oracle Coherence

27.2.5 Task 5: Deploy the Enterprise Application
To deploy the Enterprise application:

1. Use the WebLogic Server Administration Console or WLST tool to deploy the EAR
to the managed Coherence server created in Task 1.

2. From a browser, verify the deployment by navigating to the managed Coherence
server's listening port and include the cache name as part of the URL. For example:
http://host:port/rest/{cacheName}.

27.3 Deploying to a Java EE Server (Generic)
This section provides instructions for deploying Coherence Rest to a Java EE
environment:

The following topics are included in this section:

• Packaging Coherence REST for Deployment

• Deploying to a Servlet Container

27.3.1 Packaging Coherence REST for Deployment
To package a Coherence REST application:

1. Create a basic Web application directory structure as follows:

/
/WEB-INF
/WEB-INF/classes
/WEB-INF/lib

2. Copy the coherence.jar and coherence-rest.jar libraries from the
COHERENCE_HOME/lib directory to the /WEB-INF/lib directory.

3. Copy the Coherence REST dependencies from the ORACLE_HOME/
oracle_common/modules/ directory to the /WEB-INF/lib directory. For the
list of dependencies, see “Dependencies for Coherence REST”).

4. Create a Web application deployment descriptor (web.xml) and include a servlet
definition for the REST application as follows:

Note:

A default servlet context listener is included in the coherence-rest.jar
that shuts down the cluster member during the REST application shutdown.
The listener is registered as shown below. If the cluster member is not shut
down, a variety of exceptions are thrown post shutdown.

<web-app>
 ...
 <listener>
 <listener-class>
 com.tangosol.coherence.rest.servlet.DefaultServletContextListener
 </listener-class>
 </listener>

Deploying to a Java EE Server (Generic)

Deploying Coherence REST 27-5

 <servlet>
 <servlet-name>Coherence REST</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>
 com.tangosol.coherence.rest.server.ContainerResourceConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Coherence REST</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

5. Save the web.xml file to the /WEB-INF/ directory.

6. Copy the coherence-rest-config.xml file to the WEB-INF/classes
directory.

7. Copy your coherence-cache-config.xml file and tangosol-coherence-
override.xml file to the WEB-INF/classes directory.

8. If you are using POF, copy the pof-config.xml file to the WEB-INF/classes
directory. Make sure that the pof-config.xml file includes the location of the
REST POF types. For details, see “Configuring REST Server Access to POF-Enabled
Services.”

9. Create a Web ARchive file (WAR) using the jar utility. For example, issue the
following command from a command prompt at the root of the Web application
directory:

jar -cvf coherence_rest.war *

The archive should contain the following files:

/WEB-INF/web.xml
/WEB-INF/classes/coherence-rest-config.xml
/WEB-INF/classes/tangosol-coherence-override.xml
/WEB-INF/classes/coherence-cache-config.xml
/WEB-INF/lib/coherence.jar
/WEB-INF/lib/coherence-rest.jar
/WEB-INF/lib/coherence_dependencies

27.3.2 Deploying to a Servlet Container
Coherence REST can be deployed to any servlet container by packaging Coherence
REST as a WAR file. See “Packaging Coherence REST for Deployment” for details.
Refer to your vendors documentation for details on deploying WAR files. In addition,
See the Jersey user guide for additional servlet container deployment options:

http://jersey.java.net/nonav/documentation/latest/user-
guide.html#d4e194

Deploying to a Java EE Server (Generic)

27-6 Developing Remote Clients for Oracle Coherence

http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e194
http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e194

27.4 Configuring REST Server Access to POF-Enabled Services
POF-enabled services must include the defined Coherence REST POF user types. The
user types are defined in the coherence-rest-pof-config.xml file that is located
in the coherence-rest.jar library and is automatically loaded at runtime.

To configure the REST default user types, edit the pof-config.xml file to include
the coherence-rest-pof-config.xml POF configuration file. For example:

<pof-config>
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>coherence-rest-pof-config.xml</include>
 ...
 </user-type-list>
</pof-config>

Configuring REST Server Access to POF-Enabled Services

Deploying Coherence REST 27-7

Configuring REST Server Access to POF-Enabled Services

27-8 Developing Remote Clients for Oracle Coherence

28
Modifying the Default REST Implementation

This chapter provides instructions for changing the default behavior of the Coherence
REST implementation.

This chapter includes the following sections:

• Using the Pass-Through Resource

• Using Custom Providers and Resources

• Changing the Embedded HTTP Server

28.1 Using the Pass-Through Resource
Coherence REST includes a resource implementation that enables pass-through access
to caches. The resource allows static binaries such as graphics to be cached. The
resource is implemented in the PassThroughRootResource class and is registered
using the PassThroughResourceConfig class.

To use the pass-through resource in an application, modify the proxy service
definition in the cache configuration file and add the fully qualified name of the
PassThroughResourceConfig class within the <resource-config> element.
The resource is mapped to a specific context path or the default path (/) if no context
is defined. The following example registers the resource and uses /cache as the
context path. Any cache resources that are defined in the coherence-rest-
config.xml configuration file are prefixed with /cache/ in the URL.

<proxy-scheme>
 <service-name>HttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <resource-config>
 <context-path>/cache</context-path>
 <instance>
 <class-
name>com.tangosol.coherence.rest.server.PassThroughResourceConfig</class-name>
 </instance>
 </resource-config>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

28.2 Using Custom Providers and Resources
Custom providers and resources can be created as required. This section demonstrates
how to register custom providers, and how to override Coherence's default root
resource.

Modifying the Default REST Implementation 28-1

The com.tangosol.coherence.rest.server.DefaultResourceConfig class
supports package scanning, which can be used to register custom providers or
resources. The following example demonstrates registering a custom provider and
resource using package scanning:

public class MyResourceConfig extends DefaultResourceConfig
 {
 public MyResourceConfig()
 {
 super("com.my.providers;com.my.resources");
 }
 }

As an alternative, the following example demonstrates how to override one or more of
the register methods defined in the DefaultResourceConfig class in order to
use custom providers, a custom root resource, or to add filters and filter factories.

Note:

Never override (unregister) Coherence default Providers without overriding
the root resource class as well (the DefaultRootResource class depends on
the default providers to provide the necessary dependencies and
configuration).

public class MyResourceConfig extends DefaultResourceConfig
 {
 protected void registerRootResource()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerRootResource();
 getClasses().add(MyRootResource.class);
 }

 protected void registerProviders()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerProviders();
 getSingletons().add(new MyProvider());
 }

 protected void registerContainerRequestFilters()
 {
 // remove if you don't want Coherencedefaults to be registered
 super.registerContainerRequestFilters();
 getContainerRequestFilters().add(new MyRequestFilter());
 }

 protected void registerContainerResponseFilters()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerContainerResponseFilters();
 getContainerResponseFilters().add(new MyResponseFilter());
 }

 protected void registerResourceFilterFactories()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerResourceFilterFactories();

Using Custom Providers and Resources

28-2 Developing Remote Clients for Oracle Coherence

 getResourceFilterFactories().add(new MyResourceFilterFactory());
 }
 }

Custom resource configuration classes are enabled in the cache configuration file by
adding the fully qualified name of the class using the <resource-config> element
within an HTTP acceptor configuration. The class is mapped to a specific context path
or the default context path (/) if no context path is defined. Multiple resource
configuration class definitions can be added and mapped to different context paths.
The following example registers a custom resource called MyResourceConfig and
maps it to the /MyApplication context path.

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <resource-config>
 <context-path>/MyApplication</context-path>
 <instance>
 <class-name>package.MyResourceConfig</class-name>
 </instance>
 </resource-config>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

28.3 Changing the Embedded HTTP Server
Coherence REST uses Oracle's lightweight HTTP server by default to handle requests.
However, the implementation is not recommended for production environments and
is typically used during development and testing. For production environments,
Coherence includes implementations for the Grizzly HTTP server, the Simple HTTP
server, and the Jetty HTTP server. These servers are supported in Jersey. Refer to the
Jersey documentation for instructions on integrating additional HTTP servers, which
are beyond the scope of this documentation.

http://jersey.java.net/

The following topics are included in this section:

• Using Grizzly HTTP Server

• Using Simple HTTP Server

• Using Jetty HTTP Server

28.3.1 Using Grizzly HTTP Server
Coherence REST provides a Grizzly 2 HTTP server implementation
(com.tangosol.coherence.rest.server.GrizzlyHttpServer) that can be
used instead of the default HTTP server. For more information on the Grizzly HTTP
server see:

http://grizzly.java.net/

The Grizzly server is enabled in the cache configuration file by adding the fully
qualified name of the implementation as a value of the <class-name> element
within an HTTP acceptor configuration. For example:

Changing the Embedded HTTP Server

Modifying the Default REST Implementation 28-3

http://jersey.java.net/
http://grizzly.java.net/

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <class-name>com.tangosol.coherence.rest.server.GrizzlyHttpServer
 </class-name>
 ...
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

28.3.2 Using Simple HTTP Server
Coherence REST provides a Simple HTTP server implementation
(com.tangosol.coherence.rest.server.SimpleHttpServer) that can be
used instead of the default HTTP server. For more information on the Simple
framework see:

http://www.simpleframework.org/

The Simple HTTP server is enabled in the cache configuration file by adding the fully
qualified name of the implementation as a value of the <class-name> element
within an HTTP acceptor configuration. For example:

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <class-name>com.tangosol.coherence.rest.server.SimpleHttpServer
 </class-name>
 ...
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

28.3.3 Using Jetty HTTP Server
Coherence REST provides a Jetty HTTP server implementation
(com.tangosol.coherence.rest.server.JettyHttpServer) that can be used
instead of the default HTTP server. For more information on the Jetty HTTP server,
see:

http://www.eclipse.org/jetty/

The Jetty server is enabled in the cache configuration file by adding the fully qualified
name of the implementation as a value of the <class-name> element within an
HTTP acceptor configuration. For example:

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <class-name>com.tangosol.coherence.rest.server.JettyHttpServer
 </class-name>
 ...
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Changing the Embedded HTTP Server

28-4 Developing Remote Clients for Oracle Coherence

http://www.simpleframework.org/
http://www.eclipse.org/jetty/

A
REST Configuration Elements

This appendix provides a detailed reference of the REST configuration deployment
descriptor and includes a brief overview of the descriptor.

This appendix includes the following sections:

• REST Configuration File

• Element Reference

A.1 REST Configuration File
The REST configuration deployment descriptor specifies the configuration for the
REST implementation. The default name of the descriptor is coherence-rest-
config.xml and must be found on the classpath. The name can be overridden using
the coherence.rest.config system property. For example:

-Dcoherence.rest.config=MyConfig.xml

The REST configuration deployment descriptor schema is defined in the coherence-
rest-config.xsd file. The XSD file is located in the root of the coherence.jar
library and at the following Web URL:

http://xmlns.oracle.com/coherence/coherence-rest-config/1.1/
coherence-rest-config.xsd

The <rest> element is the root element of the configuration file and typically
includes an XSD and Coherence namespace reference and the location of the
coherence-rest-config.xsd file. For example:

<?xml version='1.0'?>

<rest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-rest-config
 coherence-rest-config.xsd">

REST Configuration Elements A-1

http://xmlns.oracle.com/coherence/coherence-rest-config/1.1/coherence-rest-config.xsd
http://xmlns.oracle.com/coherence/coherence-rest-config/1.1/coherence-rest-config.xsd

Note:

• The schema located in the coherence.jar library is always used at run
time even if the xsi:schemaLocation attribute references the Web URL.

• The xsi:schemaLocation attribute can be omitted to disable schema
validation.

• When deploying Coherence into environments where the default character
set is EBCDIC rather than ASCII, ensure that the deployment descriptor
file is in ASCII format and is deployed into its run-time environment in the
binary format.

A.2 Element Reference
Table A-1 lists all non-terminal REST configuration elements.

Table A-1 REST Configuration Elements

Element Used In

aggregator aggregators

aggregators rest

engine query-engines

marshaller resource

processor processors

processors rest

query resource

query-engines rest

resource resources

resources rest

rest root element

A.2.1 aggregator
Used in: aggregators

Description

The aggregator element is used to define custom aggregators that are used to
aggregate data in a cache. Each aggregator element must contain a single binding
between a name and an aggregator class or aggregator factory class.

Elements

Table A-2 describes the subelements of the aggregator element.

Element Reference

A-2 Developing Remote Clients for Oracle Coherence

Table A-2 aggregator Subelements

Element Required/ Optional Description

<name> Required Specifies a name to be used in a REST URL that is bound to an
aggregator class or aggregator factory class.

<class> Required Specifies the fully qualified name of a custom aggregator class or
custom aggregator factory class that is bound to a name. The class
must implement the com.tangosol.util.EntryAggregator
or
com.tangosol.coherence.rest.util.aggregator.Aggre

gatorFactory interfaces, respectively.

A.2.2 aggregators
Used in: rest

Description

The aggregators element contains any number of custom aggregator definitions.

Elements

Table A-3 describes the subelements of the aggregators element.

Table A-3 aggregators Subelements

Element Required/ Optional Description

<aggregator> Required Specifies a single binding between a name and an aggregator class
or aggregator factory class.

A.2.3 engine
Used in: query-engines

Description

The engines element contains a single binding between a name and a query engine
implementation class. Custom query engines must implement the
com.tangosol.coherence.rest.query.QueryEngine and
com.tangosol.coherence.rest.query.Query interfaces. Custom
implementations can also extend the
com.tangosol.coherence.rest.query.AbstractQueryEngine base class
which provides useful methods for parsing query expressions and handling parameter
bindings.

Elements

Table A-4 describes the subelements of the engine element.

Element Reference

REST Configuration Elements A-3

Table A-4 engine Subelements

Element Required/ Optional Description

<name> Required Specifies a name for the query engine.

<class-name> Required Specifies the fully qualified name of the query engine
implementation class.

A.2.4 marshaller
Used in: resource

Description

The marshaller element contains bindings between cache entry key/value classes and
a marshaller class that is used to marshall and unmarshall instances of those classes.

Elements

Table A-5 describes the subelements of the marshaller element.

Table A-5 marshaller Subelements

Element Required/ Optional Description

<media-type> Required Specifies the name of the medium that is used to for marshalling.
Coherence provides default implementations for XML and JSON
data output.

<class-name> Required Specifies the fully qualified name of a custom class that
implements the
com.tangosol.coherence.rest.io.Marshaller interface.
The implementation is used to marshall/unmarshall cache entry
values that are stored in the cache. Marshallers are configured for
each object type and media type.

A.2.5 processor
Used in: processors

Description

The processor element is used to define custom entry processors that are used to
process data in a cache. Each processor element must contain a single binding
between a name and the processor factory class.

Elements

Table A-6 describes the subelements of the processor element.

Element Reference

A-4 Developing Remote Clients for Oracle Coherence

Table A-6 processor Subelements

Element Required/ Optional Description

<name> Required Specifies a name to be used in a REST URL that is bound to a
processor factory class.

<class-name> Required Specifies the fully qualified name of a custom processor factory
class that is bound to a name. The class must implement the
com.tangosol.coherence.rest.util.processor.Proces

sorFactory interface.

A.2.6 processors
Used in: rest

Description

The processors element contains any number of custom processor definitions.

Elements

Table A-7 describes the subelements of the processors element.

Table A-7 processors Subelements

Element Required/ Optional Description

<processor> Required Specifies a single binding between a name and a processor factory
class.

A.2.7 query
Used in: resources

Description

The query element defines a named query for a resource. Named queries allow
configured query expressions to be executed by name in the REST URL.

GET http://host:port/cacheName/namedQuery?param1=value1,param2=value2...

A named query definition consists of a binding between a query name and the query
expression to execute. Multiple named queries can be configured for a resource. The
query element supports the following attributes:

• max-results – Specifies how many results are returned to the client. Note that
this attribute does not limit the number of entries that are returned from a cache.
This value overrides the <resource> element's max-results attribute.

• engine – Specifies a query engine implementation that is responsible for executing
query expressions against a cache. The default value if the attribute is not specified
is DEFAULT, which indicates a query expression must be specified as a URL-
encoded CohQL expression (the predicate part of CohQL). For details on
configuring a custom query engine implementation, see the <query-engines>
element.

Element Reference

REST Configuration Elements A-5

Elements

Table A-8 describes the subelements of the query element.

Table A-8 query Subelements

Element Required/ Optional Description

<name> Required Specifies a name for the query.

<expression> Required Specifies a query expression that is bound to the query name.

A.2.8 query-engines
Used in: rest

Description

The query-engines element contains any number of custom query engine
definitions. A query engine executes query expressions against a cache. Direct queries
and named queries rely on an underlying query engine to perform their queries. A
default query engine is provided for executing query expression that are specified as a
URL-encoded CohQL expression (the predicate part of CohQL). However, custom
query engines can be defined as required.

Elements

Table A-9 describes the subelements of the query-engines element.

Table A-9 query-engines Subelements

Element Required/ Optional Description

<engine> Required Specifies a single binding between a name and a query engine
implementation class.

A.2.9 resource
Used in: resources

Description

The resource element provides the metadata that is used to marshall and
unmarshall cache entries. The metadata includes a single binding between a cache
name and cache entry key and value classes.

The following attributes are available:

• name – Specifies an alias for the <cache-name> element when the name is not
ideal for the REST URL path segment. The value defaults to the value of the
<cache-name> element if a value is not specified.

• max-results – Specifies how many results are returned to the client. Note that
this attribute does not limit the number of entries that are returned from a cache.
This value is overridden if a max-results attribute is also defined within the
<query> or <direct-query> element.

Element Reference

A-6 Developing Remote Clients for Oracle Coherence

Elements

Table A-10 describes the subelements of the resource element.

Table A-10 resource Subelements

Element Required/ Optional Description

<cache-name> Required Specifies the name of the cache exposed by this resource. The cache
must be defined in the cache configuration file.

<key-class> Optional Specifies the type of the entry keys stored in this cache.

<value-class> Optional Specifies the type of the entry values stored in this cache.

<key-converter> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.coherence.rest.KeyConverter interface.
The class is used to convert cache entry keys to string and string
representations of the keys that are used in the REST URL into an
appropriate object instance that can be used to access cache entries.
The
com.tangosol.coherence.rest.DefaultKeyConverter

class is used by default if no value is provided. The default class
offers reasonable to string and from string conversions for Java
primitives, dates, and UUIDs. See Java API Reference for Oracle
Coherence for details.

<marshaller> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.coherence.rest.io.Marshaller interface.
The class is used to marshall/unmarshall cache entry values that
are stored in a cache. Coherence provides default implementations
for XML and JSON data output.

<query> Optional Specifies the configuration information for named queries, which
allow configured query expressions to be executed by name in the
REST URL.

Element Reference

REST Configuration Elements A-7

Table A-10 (Cont.) resource Subelements

Element Required/ Optional Description

<direct-query> Optional Specifies the configuration information for direct queries, which
allow query expressions to be included in the REST URL as the
value of the parameter q.

GET http://host:port/cacheName?q=query

The following attributes are available:

• enabled – Specifies whether a resource supports direct
queries. Valid values are true and false. The default value is
false.

• max-results – Specifies how many results are returned to the
client. Note that this attribute does not limit the number of
entries that are returned from a cache. This value overrides the
<resource> element's max-results attribute.

• engine – Specifies a query engine implementation that is
responsible for executing query expressions against a cache.
The default value if the attribute is not specified is DEFAULT,
which indicates a query expression must be specified as a URL-
encoded CohQL expression (the predicate part of CohQL). For
details on configuring a custom query engine implementation,
see the <query-engines> element.

A.2.10 resources
Used in: rest

Description

The resources element contains any number of resource definitions. A resource
definition provides the metadata that is used to marshall and unmarshall cache
entries.

Elements

Table A-11 describes the subelements of the resources element.

Table A-11 resources Subelements

Element Required/ Optional Description

<resource> Required Specifies a single binding between a cache name and cache entry
key and value classes.

A.2.11 rest
root element

Description

The rest element is the root element of the coherence-rest-config.xml file which
is used to configure the Coherence REST implementation. The implementation uses

Element Reference

A-8 Developing Remote Clients for Oracle Coherence

REST Web services to allow remote clients to access data in the cluster over HTTP and
does not require the use of POF serialization.

Elements

Table A-12 describes the subelements of each rest element.

Table A-12 rest Subelements

Element Required/ Optional Description

<resources> Optional Specifies any number of resource definitions that provide the
metadata that is used to marshall and unmarshall cache entries.

<processors> Optional Specifies any number of custom processor definitions that are used
to process data in a cache.

<aggregators> Optional Specifies any number of custom aggregator definitions that are
used to aggregate data in a cache.

<query-engines> Optional Specifies any number of custom query engine definitions. A query
engine is responsible for executing queries.

Element Reference

REST Configuration Elements A-9

Element Reference

A-10 Developing Remote Clients for Oracle Coherence

B
Integrating with F5 BIG-IP LTM

This appendix provides instructions for using the F5 BIG-IP Local Traffic Manager
(LTM) hardware load balancer to balance Coherence*Extend client connections.
Instructions are also included to use the BIG-IP system to off load SSL processing.

The instructions are specific to using the BIG-IP Configuration Utility as it pertains to
Coherence*Extend setup. Refer to the Help included with the utility for complete
usage instructions. In addition, the instructions were created based on BIG-IP LTM
10.2.1 and may not be accurate for future releases of BIG-IP LTM.

This appendix includes the following sections:

• Basic Concepts

• Creating Nodes

• Configuring a Load Balancing Pool

• Configuring a Virtual Server

• Configuring Coherence*Extend to Use BIG-IP LTM

• Using Advanced Health Monitoring

• Enabling SSL Offloading

B.1 Basic Concepts
The F5 BIG-IP LTM is a hardware device that sits between one or more computers
running Coherence*Extend clients (client tier) and one or more computers running
Coherence*Extend proxy servers (proxy tier). The LTM spreads client connections
across multiple clustered proxy servers using a broad range of techniques to secure,
optimize, and load balance application traffic.

Figure B-1 shows a conceptual view of the BIG-IP system that is setup between
external network clients and internal network servers.

Integrating with F5 BIG-IP LTM B-1

Figure B-1 Conceptual View of F5 BIG-IP LTM

B.2 Creating Nodes
A node is a logical object on the BIG-IP system that identifies the IP address of a
physical resource on the network. For Coherence*Extend, configure a node for each
computer on the internal network that hosts one or more proxy servers.

To create a node:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Nodes.

3. In the upper-right corner of the screen, click Create. The New Node screen
displays.

4. For the Address setting, type the IP address of the node.

5. Specify, retain, or change each of the other settings.

6. Click Finished.

Figure B-2 shows an example node configuration.

Creating Nodes

B-2 Developing Remote Clients for Oracle Coherence

Figure B-2 Example Node Configuration

B.3 Configuring a Load Balancing Pool
A load balancing pool is a group of logical devices, such as proxy servers, that receive
and process traffic. Instead of sending client traffic to the destination IP address
specified in the client request, the BIG-IP system sends the request to any of the
servers that are members of that pool. This helps efficiently distribute the load on your
server resources.

When you create a pool, you assign pool members to the pool. A pool member is a
logical object that represents a server endpoint on the network. For Coherence*Extend,
create a pool member for each proxy server JVM running on your proxy tier
computers.

The specific pool member to which the BIG-IP system chooses to send the request is
determined by the load balancing method that you have assigned to that pool. A load
balancing method is an algorithm that the BIG-IP system uses to select a pool member
for processing a request. For example, the default load balancing method is Round
Robin, which causes the BIG-IP system to send each incoming request to the next
available member of the pool, thereby distributing requests evenly across the servers
in the pool.

The following topics are included in this section:

• Creating a Load Balancing Pool

Configuring a Load Balancing Pool

Integrating with F5 BIG-IP LTM B-3

• Adding a Load Balancing Pool Member

B.3.1 Creating a Load Balancing Pool
To create a load balancing pool:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. In the upper-right corner of the screen, click Create. The New Pool screen displays.

4. From the Configuration list, select Advanced.

5. For the Name setting, type a name for the pool.

6. Specify, retain, or change each of the other settings.

7. Click Finished.

Figure B-3 demonstrates an example pool configuration.

Figure B-3 Example Pool Configuration

Configuring a Load Balancing Pool

B-4 Developing Remote Clients for Oracle Coherence

B.3.2 Adding a Load Balancing Pool Member
To add pool members to load balancing pool:

1. From the Members tab, click the number shown. This lists the existing members of
the pool.

2. In the right side of the screen, click Add. The New Pool Member screen displays.

3. In the Address box, select Node List and select an IP address.

4. In the Service Port box, type the port number on which the corresponding proxy
server is listening.

5. Retain or change each of the other settings.

6. Click Finished.

Figure B-4 shows an example pool configuration. It shows two proxy server pool
members running on the previously created node and listening on ports 7100 and
7077, respectively. Additionally, the pool is configured to use a Least Connections load
balancing policy.

Figure B-4 Example Pool Members

Configuring a Load Balancing Pool

Integrating with F5 BIG-IP LTM B-5

B.4 Configuring a Virtual Server
A virtual server is a traffic-management object on the BIG-IP system that is
represented by an IP address and port. Clients on an external network can send
application traffic to a virtual server, which then directs the traffic according to your
configuration instructions. The main purpose of a virtual server is often to balance
traffic load across a pool of servers on an internal network. Virtual servers increase the
availability of resources for processing client requests. For Coherence*Extend, you
should configure a virtual server that directs traffic to the pool of proxy servers that
you configured earlier.

To create a virtual server:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

3. From the upper right portion of the screen, click Create. The New Virtual Server
screen displays.

4. In the Name box, type a name for the virtual server.

5. In the Destination box, assign an external IP address on the BIG-IP device and in
the Service Port box, specify a listen port. This is the IP address and port to which
Coherence*Extend clients connect.

6. From the SNAT Pool list, select Automap.

7. Select the pool created earlier in the Default Pool drop-down box.

8. Retain or change each of the other settings.

9. Click Finished.

Figure B-5 shows an example virtual configuration that listens for TCP/IP connections
on 10.196.21.3:7077.

Configuring a Virtual Server

B-6 Developing Remote Clients for Oracle Coherence

Figure B-5 Example Virtual Server

Additionally, this virtual server directs traffic to the configured pool as shown in
Figure B-6.

Configuring a Virtual Server

Integrating with F5 BIG-IP LTM B-7

Figure B-6 Example Virtual Server Using a Configured Pool

B.5 Configuring Coherence*Extend to Use BIG-IP LTM
Coherence*Extend must be configured to use a BIG-IP LTM virtual server. The
configuration must be completed both on the cluster side and the client side cache
configuration files.

To configure Coherence*Extend to use BIG-IP LTM:

1. Open the proxy server's cache configuration file.

2. Edit the proxy scheme definition and specify a client load balancing strategy by
entering client within the <load-balancer> element. For example:

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <load-balancer>client</load-balancer>
 <autostart>true</autostart>
</proxy-scheme>

3. Save and close the proxy server's cache configuration file. Repeat step 2 for
additional proxy servers.

4. Open the client's cache configuration file.

Configuring Coherence*Extend to Use BIG-IP LTM

B-8 Developing Remote Clients for Oracle Coherence

5. In the <remote-cache-scheme> element, list the IP address and port of the BIG-
IP virtual server. See “Configuring a Virtual Server”. In addition, specify a
<heartbeat-interval> element within the <outgoing-message-handler>
element. This causes the client to periodically send a heartbeat message over its
TCP/IP connection at the configured time interval. This is required to prevent the
BIG-IP device from disconnecting idle clients. For example:

<remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>10.196.21.3</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <heartbeat-interval>5s</heartbeat-interval>
 </outgoing-message-handler>
 </initiator-config>
</remote-cache-scheme>

6. Save and close the client's cache configuration file.

B.6 Using Advanced Health Monitoring
A health monitor helps ensure that a server is in an operational state and able to
receive traffic. The BIG-IP system contains many different preconfigured health
monitors that you can associate with pools, depending on the type of traffic you want
to monitor.

For Coherence*Extend, you can use a TCP health monitor to monitor a pool of proxy
servers. This type of monitor marks a proxy server up if the BIG-IP device can
establish a TCP/IP connection with the proxy server. While this is a fairly decent
indication that a proxy server is functional, it does not guarantee that the proxy server
can actually process client traffic. For more detailed monitoring, BIG-IP enables you to
create custom health monitors that send a Coherence*Extend ping request to a proxy
server and validate that an appropriate response is returned. This ensures that the
proxy server is up and able to process client traffic.

Note:

BIG-IP LTM monitors do not support SSL over TCP. Health monitoring
checks, such as ping, are sent as clear text. To ensure all communication with a
proxy server is secure, use SSL offloading. For details, see Enabling SSL
Offloading

The following topics are included in this section:

• Creating a Custom Health Monitor to Ping Coherence

• Manually Creating a Custom Health Monitor to Ping Coherence

• Associating a Custom Health Monitor With a Load Balancing Pool

Using Advanced Health Monitoring

Integrating with F5 BIG-IP LTM B-9

B.6.1 Creating a Custom Health Monitor to Ping Coherence
To create a custom Coherence*Extend health monitor that sends a Coherence*Extend
ping request to a proxy server to ensure that it is operational:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

3. In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

4. Enter a name for the monitor in the Name box.

5. Select TCP in the Type drop-down box.

6. Enter the following in the Send String box:

\x07\x00\x03\x00\x00\x42\x00\x40

7. Enter the following in the Receive String box:

\x09\x00\x04\x03\x00\x42\x00\x03\x64\x40

8. Click Finished.

Figure B-7 shows an example custom Coherence*Extend health monitor configuration.

Using Advanced Health Monitoring

B-10 Developing Remote Clients for Oracle Coherence

Figure B-7 Example Coherence*Extend Ping Health Monitor

B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence
Solutions that use BIG-IP versions prior 10.2.1 must manually configure an external
health monitor. To do so, create an executable shell script called extend_ping in
the /usr/bin/monitors directory of the BIG-IP device with the following contents:

#! /bin/bash
###
EXTERNAL MONITOR FOR COHERENCE*EXTEND
INPUTS:
$1 The IPV6 formatted IP address of the pool member to test
$2 The port number of the pool member to test
$3+ White space delimited parms as listed in the monitor "args"

Using Advanced Health Monitoring

Integrating with F5 BIG-IP LTM B-11

OUTPUTS:
If null is returned, the member is "down"
If any string of one or more characters is returned, the member is "up"
###

IP=${1:-"127.0.0.1"}
IP=${IP##*:} # This removes the leading ::ffff:
PORT=${2:-"80"}
TIMEOUT=${3:-1}
SLEEP=${4:-1}

PID_FILE="/var/run/extend_ping.$IP.$PORT.pid"
HEX_REQUEST="0700030000420040"
HEX_RESPONSE="09000403004200036440"

###
Terminate existing process, if any
###
if [-f $PID_FILE]
then
 kill -9 `cat $PID_FILE` > /dev/null 2>&1
fi
echo "$$" > $PID_FILE

###
Ping the server and return a user friendly result
###
RESULT=`/bin/echo "$HEX_REQUEST" | /usr/bin/xxd -r -p | /usr/bin/nc -i \
 $SLEEP -w $TIMEOUT $IP $PORT | /usr/bin/xxd -p | /bin/grep \
 "$HEX_RESPONSE" 2> /dev/null`

if ["$RESULT" != ""] ; then
 /bin/echo "$IP:$PORT is \"UP\""
fi

rm -f $PID_FILE

To configure BIG-IP to use the extend_ping script:

1. From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

2. In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

3. Enter a name for the monitor in the Name box.

4. Select External in the Type drop-down box.

5. Enter the following in the External Program box:

/usr/bin/monitors/extend_ping

6. Click Finished.

Figure B-8 shows an example external Coherence*Extend health monitor
configuration.

Using Advanced Health Monitoring

B-12 Developing Remote Clients for Oracle Coherence

Figure B-8 Example Coherence*Extend Health Monitor Implemented in a Shell Script

B.6.3 Associating a Custom Health Monitor With a Load Balancing Pool
Custom health monitors must be associated with a load balancing pool. After creating
a custom Coherence*Extend monitor, associate it with the Coherence*Extend load
balancing pool.

To associate a custom health monitor with a load balancing pool:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. Click the name of your Coherence*Extend pool. The Pool screen displays.

4. Select the name of your custom Coherence*Extend health monitor in the Health
Monitors box.

5. Click Update.

Figure B-9 shows a Coherence*Extend pool that uses a custom health monitor.

Using Advanced Health Monitoring

Integrating with F5 BIG-IP LTM B-13

Figure B-9 Associating a Coherence*Extend Pool With a Custom Health Monitor

B.7 Enabling SSL Offloading
Coherence*Extend can be configured to use SSL to secure communication between
client and proxy server processes. However, this confidentially comes at a price.
Specifically, enabling SSL dramatically increases CPU utilization in the proxy tier and
increases the latency of each request. BIG-IP SSL Acceleration frees up proxy servers
from the difficult task of encrypting and decrypting data secured for privacy reasons.
CPU-intensive decryption is migrated onto a high-performance device designed to
handle SSL transactions more efficiently. This approach is known as SSL offloading.

The following steps are required to enable SSL offloading and should be completed in
the order presented:

1. Enable SSL in the Coherence*Extend client cache configuration file. See Securing
Oracle Coherence for details on configuring an extend client to use SSL.

2. Import the Server's SSL Certificate and Key

3. Create the Client SSL Profile

4. Associate the Client SSL Profile

Enabling SSL Offloading

B-14 Developing Remote Clients for Oracle Coherence

B.7.1 Import the Server's SSL Certificate and Key
To import the server's SSL certificate and key to the BIG-IP system:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and hover over
SSL Certificates then select Import. The SSL Certificate screen displays.

3. From the Import Type drop-down box, select PKCS12.

4. Enter a name for the certificate in the Certificate Name box.

5. Click Choose File and browse to the server's PKCS12 file.

6. Enter the password for the PKCS12 file.

7. Click Import.

Figure B-10 shows an example server SSL certificate configuration:

Figure B-10 Example SSL Certificate Configuration in BIG-IP System

Enabling SSL Offloading

Integrating with F5 BIG-IP LTM B-15

B.7.2 Create the Client SSL Profile
To create the client SSL profile:

1. From the Main tab of the navigation pane, expand Local Traffic and hover over
Profiles then SSL and select Client. The Client SSL Profiles screen displays

2. In the upper-right corner of the screen, click Create. The New Client SSL profile
screen displays.

3. Enter a name for the client SSL profile in the Name box.

4. Click the Custom check box on the right.

5. Select the name of the server certificate that you imported earlier in both the
Certificate and Key drop-down boxes.

6. Click Finished.

Figure B-11 shows an example client SSL profile configuration:

Figure B-11 Example SSL Profile Configuration

Enabling SSL Offloading

B-16 Developing Remote Clients for Oracle Coherence

B.7.3 Associate the Client SSL Profile
To modify the Coherence*Extend virtual server configuration to use the client SSL
profile:

1. From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

2. Click the name of the virtual server.

3. Select the name of the client SSL profile in the SSL Profile (Client) drop-down box.

4. Click Update.

Figure B-12 shows an example virtual server configuration that uses a client SSL
profile:

Figure B-12 Example Virtual Server Configuration That Includes a Client SSL Profile

Enabling SSL Offloading

Integrating with F5 BIG-IP LTM B-17

Enabling SSL Offloading

B-18 Developing Remote Clients for Oracle Coherence

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features
	Other Significant Changes in This Document

	Part I Getting Started
	1 Introduction to Coherence*Extend
	1.1 Overview of Coherence*Extend
	1.2 Extend Clients
	1.3 Extend Client APIs
	1.4 POF Serialization
	1.5 Understanding Extend Client Configuration Files
	1.6 Non-Native Client Support
	1.6.1 REST Client Support
	1.6.2 Memcached Client Support

	2 Building Your First Extend Application
	2.1 Overview of the Extend Example
	2.2 Step 1: Configure the Cluster Side
	2.3 Step 2: Configure the Client Side
	2.4 Step 3: Create the Sample Client
	2.5 Step 4: Start the Cache Server Process
	2.6 Step 5: Run the Application

	3 Configuring Extend Proxies
	3.1 Overview of Configuring Extend Proxies
	3.2 Defining Extend Proxy Services
	3.2.1 Defining a Single Proxy Service Instance
	3.2.2 Defining Multiple Proxy Service Instances
	3.2.3 Defining Multiple Proxy Services
	3.2.4 Explicitly Configuring Proxy Addresses
	3.2.5 Disabling Cluster Service Proxies
	3.2.6 Specifying Read-Only NamedCache Access

	3.3 Defining Caches for Use By Extend Clients
	3.4 Disabling Storage on a Proxy Server
	3.5 Starting a Proxy Server

	4 Configuring Extend Clients
	4.1 Overview of Configuring Extend Clients
	4.2 Defining a Remote Cache
	4.3 Using a Remote Cache as a Back Cache
	4.4 Defining Remote Invocation Schemes
	4.5 Connecting to Specific Proxy Addresses
	4.6 Detecting Connection Errors
	4.7 Disabling TCMP Communication

	5 Advanced Extend Configuration
	5.1 Using Address Provider References for TCP Addresses
	5.2 Using a Custom Address Provider for TCP Addresses
	5.3 Load Balancing Connections
	5.3.1 Using Proxy-Based Load Balancing
	5.3.1.1 Understanding the Proxy-Based Load Balancing Default Algorithm
	5.3.1.2 Implementing a Custom Proxy-Based Load Balancing Strategy

	5.3.2 Using Client-Based Load Balancing

	5.4 Using Network Filters with Extend Clients

	6 Best Practices for Coherence*Extend
	6.1 Do Not Run a Near Cache on a Proxy Server
	6.2 Configure Heap NIO Space to be Equal to the Max Heap Size
	6.3 Configure Proxy Service Thread Pooling
	6.3.1 Understanding Proxy Service Threading
	6.3.2 Setting Proxy Service Thread Pooling Thresholds
	6.3.3 Setting an Exact Number of Threads

	6.4 Be Careful When Making InvocationService Calls
	6.5 Be Careful When Placing Collection Classes in the Cache
	6.6 Configure POF Serializers for Cache Servers
	6.7 Configuring Firewalls for Extend Clients

	Part II Creating Java Extend Clients
	Part III Creating C++ Extend Clients
	7 Introduction to Coherence C++ Clients
	7.1 Overview of Coherence for C++
	7.2 Setting Up C++ Application Builds
	7.2.1 Setting up the Compiler for Coherence-Based Applications
	7.2.2 Including Coherence Header Files
	7.2.3 Linking the Coherence Library
	7.2.4 Setting the run-time Library and Search Path
	7.2.5 Deploying Coherence for C++

	8 Configuration and Usage for C++ Clients
	8.1 General Instructions
	8.2 Implement the C++ Application
	8.3 Compile and Link the Application
	8.4 Configure Paths
	8.5 Obtaining a Cache Reference with C++
	8.6 Cleaning up Resources Associated with a Cache
	8.7 Configuring and Using the Coherence for C++ Client Library
	8.7.1 Setting the Configuration File Location with an Environment Variable
	8.7.2 Setting the Configuration File Location Programmatically

	8.8 Operational Configuration File (tangosol-coherence-override.xml)
	8.9 Configuring a Logger

	9 Using the Coherence C++ Object Model
	9.1 Using the Object Model
	9.1.1 Coherence Namespaces
	9.1.2 Understanding the Base Object
	9.1.3 Automatically Managed Memory
	9.1.3.1 Referencing Managed Objects
	9.1.3.2 Using handles
	9.1.3.2.1 Assignment of handles
	9.1.3.2.2 Dereferencing handles

	9.1.3.3 Managed Object Instantiation

	9.1.4 Managed Strings
	9.1.4.1 String Instantiation
	9.1.4.2 Auto-Boxed Strings

	9.1.5 Type Safe Casting
	9.1.5.1 Down Casting

	9.1.6 Managed Arrays
	9.1.7 Collection Classes
	9.1.8 Managed Exceptions
	9.1.9 Object Immutability
	9.1.10 Integrating Existing Classes into the Object Model

	9.2 Writing New Managed Classes
	9.2.1 Specification-Based Managed Class Definition
	9.2.2 Equality, Hashing, Cloning, Immutability, and Serialization
	9.2.3 Threading
	9.2.4 Weak References
	9.2.5 Virtual Constructors
	9.2.6 Advanced Handle Types
	9.2.7 Thread Safety
	9.2.7.1 Synchronization and Notification
	9.2.7.2 Thread Safe Handles
	9.2.7.3 Escape Analysis
	9.2.7.3.1 Shared handles
	9.2.7.3.2 Const Correctness

	9.2.7.4 Thread-Local Allocator

	9.3 Diagnostics and Troubleshooting
	9.3.1 Thread-Local Allocator Logs
	9.3.2 Thread Dumps
	9.3.3 Memory Leak Detection
	9.3.4 Memory Corruption Detection

	9.4 Application Launcher - Sanka
	9.4.1 Command line syntax
	9.4.2 Built-in Executables
	9.4.3 Sample Custom Executable Class

	10 Using the Coherence for C++ Client API
	10.1 CacheFactory
	10.2 NamedCache
	10.3 QueryMap
	10.4 ObservableMap
	10.5 InvocableMap
	10.6 Filter
	10.7 Value Extractors
	10.8 Entry Processors
	10.9 Entry Aggregators

	11 Building Integration Objects (C++)
	11.1 Overview of Building Integration Objects (C++)
	11.2 POF Intrinsics
	11.3 Serialization Options
	11.3.1 Managed<T> (Free-Function Serialization)
	11.3.2 PortableObject (Self-Serialization)
	11.3.3 PofSerializer (External Serialization)

	11.4 Using POF Object References
	11.4.1 Enabling POF Object References
	11.4.2 Registering POF Object Identities for Circular and Nested Objects

	11.5 Registering Custom C++ Types
	11.6 Implementing a Java Version of a C++ Object
	11.7 Understanding Serialization Performance
	11.8 Using POF Annotations to Serialize Objects
	11.8.1 Annotating Objects for POF Serialization
	11.8.2 Registering POF Annotated Objects
	11.8.3 Enabling Automatic Indexing
	11.8.4 Providing a Custom Codec

	12 Querying a Cache (C++)
	12.1 Overview of Query Functionality
	12.2 Performing Simple Queries
	12.2.1 Querying Partitioned Caches
	12.2.2 Querying Near Caches

	12.3 Understanding Query Concepts
	12.4 Performing Queries Involving Multi-Value Attributes
	12.5 Using a Chained Extractor in a Query
	12.6 Using a Query Recorder

	13 Performing Continuous Queries (C++)
	13.1 Overview of Performing Continuous Queries (C++)
	13.1.1 Understanding the Use Cases for Continuous Query Caching

	13.2 Understanding Continuous Query Caching Implementation
	13.3 Defining a Continuous Query Cache
	13.4 Cleaning up Continuous Query Cache Resources
	13.5 Caching Only Keys Versus Keys and Values
	13.5.1 CacheValues Property and Event Listeners
	13.5.2 Using ReflectionExtractor with Continuous Query Caches

	13.6 Listening to a Continuous Query Cache
	13.6.1 Avoiding Unexpected Results
	13.6.2 Achieving a Stable Materialized View

	13.7 Making a Continuous Query Cache Read-Only

	14 Performing Remote Invocations (C++)
	14.1 Overview of Performing Remote Invocations (C++)
	14.2 Configuring and Using the Remote Invocation Service
	14.3 Registering Invocable Implementation Classes

	15 Using Cache Events (C++)
	15.1 Overview of Map Events (C++)
	15.1.1 Caches and Classes that Support Events

	15.2 Signing Up for all Events
	15.3 Using a Multiplexing Map Listener
	15.4 Configuring a MapListener for a Cache
	15.5 Signing Up for Events on Specific Identities
	15.6 Filtering Events
	15.7 Using Lite Events
	15.8 Listening to Queries
	15.9 Using Synthetic Events
	15.10 Using Backing Map Events
	15.11 Using Synchronous Event Listeners

	16 Performing Transactions (C++)
	16.1 Using the Transaction API within an Entry Processor
	16.2 Creating a Stub Class for a Transactional Entry Processor
	16.3 Registering a Transactional Entry Processor User Type
	16.4 Configuring the Cluster-Side Transactional Caches
	16.5 Configuring the Client-Side Remote Cache
	16.6 Using a Transactional Entry Processor from a C++ Client

	Part IV Creating .NET Extend Clients
	17 Introduction to Coherence .NET Clients
	17.1 Overview of Coherence for .NET
	17.2 Configuration and Usage for .NET Clients
	17.2.1 General Instructions
	17.2.2 Configuring Coherence*Extend for .NET
	17.2.3 Obtaining a Cache Reference with .NET
	17.2.4 Cleaning Up Resources Associated with a Cache
	17.2.5 Using Network Filters
	17.2.5.1 Custom Filters
	17.2.5.2 Configuring Filters

	18 Building Integration Objects (.NET)
	18.1 Overview of Building Integration Objects (.NET)
	18.2 Creating an IPortableObject Implementation
	18.3 Implementing a Java Version of a .NET Object
	18.3.1 Creating a PortableObject Implementation (Java)

	18.4 Registering Custom Types on the .NET Client
	18.5 Registering Custom Types in the Cluster
	18.6 Evolvable Portable User Types
	18.7 Making Types Portable Without Modification
	18.8 Using POF Object References
	18.8.1 Enabling POF Object References
	18.8.2 Registering POF Object Identities for Circular and Nested Objects

	18.9 Using POF Annotations to Serialize Objects
	18.9.1 Annotating Objects for POF Serialization
	18.9.2 Registering POF Annotated Objects
	18.9.3 Enabling Automatic Indexing
	18.9.4 Providing a Custom Codec

	19 Using the Coherence .NET Client Library
	19.1 Setting Up the Coherence .NET Client Library
	19.2 Using the Coherence .NET APIs
	19.2.1 CacheFactory
	19.2.2 IConfigurableCacheFactory
	19.2.3 DefaultConfigurableCacheFactory
	19.2.4 Logger
	19.2.5 Using the Common.Logging Library
	19.2.6 INamedCache
	19.2.7 IQueryCache
	19.2.8 QueryRecorder
	19.2.9 IObservableCache
	19.2.9.1 Responding to Cache Events

	19.2.10 IInvocableCache
	19.2.11 Filters
	19.2.12 Value Extractors
	19.2.13 Entry Processors
	19.2.14 Entry Aggregators

	19.3 Configuring .NET Clients Programmatically

	20 Performing Continuous Queries (.NET)
	20.1 Overview of Performing Continuous Queries (.NET)
	20.1.1 Understanding Use Cases for Continuous Query Caching

	20.2 Understanding the Continuous Query Caching Implementation
	20.3 Constructing a Continuous Query Cache
	20.4 Cleaning Up Continuous Query Cache Resources
	20.5 Caching Only Keys Versus Keys and Values
	20.6 Listening to a Continuous Query Cache
	20.6.1 Achieving a Stable Materialized View
	20.6.2 Support for Synchronous and Asynchronous Listeners

	20.7 Making a Continuous Query Cache Read-Only

	21 Performing Remote Invocations (.NET)
	21.1 Overview of Performing Remote Invocations
	21.2 Configuring and Using the Remote Invocation Service

	22 Performing Transactions (.NET)
	22.1 Using the Transaction API within an Entry Processor
	22.2 Creating a Stub Class for a Transactional Entry Processor
	22.3 Registering a Transactional Entry Processor User Type
	22.4 Configuring the Cluster-Side Transactional Caches
	22.5 Configuring the Client-Side Remote Cache
	22.6 Using a Transactional Entry Processor from a .NET Client

	23 Managing ASP.NET Session State
	23.1 Overview
	23.2 Setting Up Coherence Session Management
	23.2.1 Enable the Coherence Session Provider
	23.2.2 Configure the Cluster-Side ASP Session Caches
	23.2.3 Configure a Client-Side ASP Session Remote Cache
	23.2.4 Overriding the Default Session Cache Name

	23.3 Selecting a Session Model
	23.3.1 Specify the Session Model
	23.3.1.1 Registering the Backing Map Listener

	23.4 Specifying a Serializer
	23.4.1 Using POF for Session Serialization

	23.5 Sharing Session State Across Applications

	Part V Using Coherence REST
	24 Introduction to Coherence REST
	24.1 Overview of Coherence REST
	24.2 Dependencies for Coherence REST
	24.3 Overview of Configuration for Coherence REST
	24.4 Understanding Data Format Support
	24.4.1 Using XML as the Data Format
	24.4.2 Using JSON as the Data Format

	24.5 Authenticating and Authorizing Coherence REST Clients

	25 Building Your First Coherence REST Application
	25.1 Overview of the Basic Coherence REST Example
	25.2 Step 1: Configure the Cluster Side
	25.3 Step 2: Create a User Type
	25.4 Step 3: Configure REST Services
	25.5 Step 4: Start the Cache Server Process
	25.6 Step 5: Access REST Services From a Client

	26 Performing Grid Operations with REST
	26.1 Specifying Key and Value Types
	26.2 Performing Single-Object REST Operations
	26.3 Performing Multi-Object REST Operations
	26.4 Performing Partial-Object REST Operations
	26.5 Performing Queries with REST
	26.5.1 Using Direct Queries
	26.5.2 Using Named Queries
	26.5.3 Specifying a Query Sort Order
	26.5.4 Limiting Query Result Size
	26.5.5 Retrieving Only Keys
	26.5.6 Using Custom Query Engines
	26.5.6.1 Implementing Custom Query Engines
	26.5.6.2 Enabling Custom Query Engines

	26.6 Performing Aggregations with REST
	26.6.1 Aggregation Syntax for REST
	26.6.2 Listing of Pre-Defined Aggregators
	26.6.3 Creating Custom Aggregators

	26.7 Performing Entry Processing with REST
	26.7.1 Entry Processor Syntax for REST
	26.7.2 Listing of Pre-defined Entry Processors
	26.7.3 Creating Custom Entry Processors

	26.8 Understanding Concurrency Control
	26.9 Specifying Cache Aliases
	26.10 Using Server-Sent Events
	26.10.1 Receiving Server-Sent Events

	27 Deploying Coherence REST
	27.1 Deploying with the Embedded HTTP Server
	27.2 Deploying to WebLogic Server
	27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST
	27.2.2 Task 2: Package the Coherence REST Web Application
	27.2.3 Task 3: Package the Coherence Application
	27.2.4 Task 4: Package the Enterprise Application
	27.2.5 Task 5: Deploy the Enterprise Application

	27.3 Deploying to a Java EE Server (Generic)
	27.3.1 Packaging Coherence REST for Deployment
	27.3.2 Deploying to a Servlet Container

	27.4 Configuring REST Server Access to POF-Enabled Services

	28 Modifying the Default REST Implementation
	28.1 Using the Pass-Through Resource
	28.2 Using Custom Providers and Resources
	28.3 Changing the Embedded HTTP Server
	28.3.1 Using Grizzly HTTP Server
	28.3.2 Using Simple HTTP Server
	28.3.3 Using Jetty HTTP Server

	A REST Configuration Elements
	A.1 REST Configuration File
	A.2 Element Reference
	A.2.1 aggregator
	A.2.2 aggregators
	A.2.3 engine
	A.2.4 marshaller
	A.2.5 processor
	A.2.6 processors
	A.2.7 query
	A.2.8 query-engines
	A.2.9 resource
	A.2.10 resources
	A.2.11 rest

	B Integrating with F5 BIG-IP LTM
	B.1 Basic Concepts
	B.2 Creating Nodes
	B.3 Configuring a Load Balancing Pool
	B.3.1 Creating a Load Balancing Pool
	B.3.2 Adding a Load Balancing Pool Member

	B.4 Configuring a Virtual Server
	B.5 Configuring Coherence*Extend to Use BIG-IP LTM
	B.6 Using Advanced Health Monitoring
	B.6.1 Creating a Custom Health Monitor to Ping Coherence
	B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence
	B.6.3 Associating a Custom Health Monitor With a Load Balancing Pool

	B.7 Enabling SSL Offloading
	B.7.1 Import the Server's SSL Certificate and Key
	B.7.2 Create the Client SSL Profile
	B.7.3 Associate the Client SSL Profile

