ORACLE"

Oracle® Fusion Middleware

Developing Applications Using Continuous Integration
12¢(12.2.1.2)

E77584-02

November 2016

Describes how to build automation and continuous integration
for applications that you develop and deploy to a Fusion
Middleware runtime environment. It uses Subversion, Maven,
Archiva, Hudson, and Oracle Maven plug-ins to demonstrate
continuous integration.

Oracle Fusion Middleware Developing Applications Using Continuous Integration, 12¢ (12.2.1.2)
E77584-02

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Helen Grembowicz

Contributing Authors: Sreetama Ghosh

Contributors: Mark Nelson, Leon Franzen

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ...ttt Xiii
BN o <) Vel <IN xiii
Documentation AcCeSSIDILILYcccvviiimiiiiiiiiiiiiiiiic e Xiii
J RS F=RTe B D)ool b0 s 1<) o X 1< TR Xiii
(@03 0 M7= 110) 1= J0UTRT RO ORRRRRR Xiii

1 Introduction to Continuous Integration

1.1 Introducing Continuous Integration for Oracle Fusion Middlewareccccooevviiinnnnines 1-1
1.2 Version Control with SUDVEISIONccccoviviiiiiiiiiiiiiiii 1-3
1.3 Build Automation and Dependency Management with Mavenccccoooiiiiiinnicennn, 1-3
1.4 About the Oracle Maven REPOSILOIYcovvvririviriririririnrirererreeirrersee s 1-5
1.5 Repository Management with ATChivacocooviviiiiiniiiinininiicrc s 1-5
1.6 Continuous Integration with HUdSOMNcccccovviviiiiiiiiiiiiiii, 1-6
1.7 SUINIMATY oottt a et a bbb 1-7

2 Roadmap for Continuous Integration

2.1 Roadmap to Continuous Integration ..o 2-1
2.2 Overview of the Reference Continuous Integration Environmentcccocoovvvviiininnnen 2-3
2.3 Shared Disk LayOuULtccccceuririiiiiiiiiriiicirceee s 2-5

3 Installing and Configuring Subversion for Version Control

3.1 Downloading SUDVEISIONccccciuiiiiriiiiiiiiiiiririiceccr s 3-1
3.2 Installing SUDVEISION........cccccuviriiiiiiiiiiiiiciciic s 3-2
3.3 Configuring the Subversion Server as a SErvice ... 3-2
3.4 Setting Up @ REPOSITOTY ...ccuiviiiiiciic e 3-2

3.4.1 Creating @ REPOSItOIYc.civiiiiiiiiiiiiiiii e 3-3

3.4.2 Using a Consistent Subversion Layout ..o 3-3

3.4.3 Importing EXisting Projects.........ccccooviiiiiiiiniiiiiccccc s 3-5
3.5 Understanding the SVIN WOrkflow.........cc.ooiiiiiiiiii e 3-5
3.6 Working with Subversion Projects..........ccoieiiiiiiiic e 3-6
3.7 Considerations for Tagging and Branching...........cccccceeevrvvinnnnnninnrcceeeeeeeeeeenes 3-7
3.8 About SUbVersion CHENS..........ccceuiiiiiiiieiicee s 3-8

IS I V<) o1 Y4\ SR 3-8
3.8.2 TOTEOISESVIN ...ttt e e e et e e e e eaaeseaeeeeesaeesenseesenseeeennneeennneeean 3-8

3.9 More Information ADOUL SUDVEISIONoocviiiiiiiieieeceeeeeetee ettt 3-8

4 Installing and Configuring the Archiva Maven Repository Manager

4.1 OVerview Of ATChiVa ... 4-1
4.2 Downloading ATChiva........cccooiiiiiiiiiiiii s 4-1
4.3 Installing ATChivacoooiiiii 4-2
4.4 Configuring ATCRIVAcooeviiiiieii 4-2
441 Configuring the SETVETcccoiiiiiiiiiiiiiccccc e 4-2
442 Starting the SEIVET ... 4-3
443 Creating an Administrator USer............ccooeeiiiiiiiiiiiic 4-3
4.44 About Internal and Snapshot Repositories............ccoweueiiiicieieiniicicicc 4-4
4.45 About the Proxy RePOSItOIYccccevviimiiiiiiniiiiiiiii e 4-4
446 Configuring Mirror REPOSITOTIEScccciuimiiiiiiiiiiiicccccccccc e 4-5
4.4.7 Creating Development, Production, Quality Assurance, and Test Repositories 4-7
4.4.8 Creating a Deployment Capable USer............ccccoouoiiiiriiiiiiiicieceeecie 4-11
4.5 More Information About ATChivVaccooiiiiiiiiiiii s 4-11
4.6 About Maven Repository Manager Administrationccoeeeeeeeeenininincneenninenccecncceenee 4-11
4.6.1 Understanding Snapshot Cleanup............ccccooiiiiiiiiiiiiiiiiiiccccceeccceeeaes 4-12
4.6.2 About Advanced User Management.............ccccociiiiiiiiiniiiiiiicccccccceens 4-13
4.6.3 Backing Up ATChiVaccouoiiiii 4-14
4.64 About Archiva and FailOver ..., 4-14

5 Installing and Configuring Maven for Build Automation and Dependency
Management

5.1 Setting Up the Maven Distribution ... 5-1
5.2 Customizing Maven Settingsccoceueiiiiiiiiiiiiie 5-2
5.3 Populating the Maven Repository Manager.............cccoocrueiiicieiiiiicicecce i 5-3
5.3.1 Introduction to the Maven Synchronization Plug-In...........cccccooinnnnn. 5-4
5.3.2 Installing the Oracle Maven Synchronization Plug-In...........ccccoiiiinnnnn. 5-4
5.3.3 Running the Oracle Maven Synchronization Plug-In...........cccccooviiiiinnn. 5-5
5.3.4 Replacing Artifacts ... 5-6
5.3.5 Populating Your Maven RepoSitOrycooeeieiiiieieiniiiieieiici 5-6
5.3.6 Running the Push Goal on an Existing Maven Repository...........ccccooiviiioiiciinnace. 5-9
5.3.7 Things to Know About Patching...........cccoooiiiiiiiiiiiiiiiiiiiccccccccceee 5-9
5.3.8 Considerations for Archetype Catalogs........cccoeoeeiriiiiiiniiciieiccec 5-10
5.3.9 Example settings.Xml filecooiiiiiiiiiiiiii 5-10
5.3.10 Deploying a Single Artifact........cccocueiieiiieiiiiiiccee 5-14

6 Configuring the Oracle Maven Repository

6.1 Accessing the Oracle Maven Repositoryccccooirucieiiiinicieiiici e 6-1
6.2 Artifacts Provided........c.cooooviiiiiiiiii s 6-2

8

9

10

6.3 Adding the Oracle Maven Repository to Your Project POM...........cccoooeiiiiiriiiiiicice 6-2

6.4 Configure Maven to Use a Compatible HTTP Wagon.........ccccceeuvuvvvrrinnnncrrrreeeeeeenes 6-2
6.5 Configuring the HTTP WagOmn........ccccovuiiiiiiiiniiiiiiiccccre s 6-3
6.6 Considerations for Using the Oracle Maven Repository with Maven Without a POM........ 6-3
6.7 Accessing the Oracle Maven Repository from an Automated Build Toolccccccoeeee. 6-4

Installing and Configuring Hudson for Continuous Integration

7.1 Prerequisites for Installing and Configuring Hudson............c.ccooriiiiii 7-1
7.2 Downloading HUASON ...ttt 7-1
7.3 Installing HUASONocoovoiiiiiiiii s 7-2
74 Configuring the HTTP POTt......cccoviiiiiiiiiiiiiiiiinrcss s 7-2
7.5 Starting HUudSON ... 7-3
7.6 Configuring Maven After Startupccoocevreiieiiiciicc e 7-3
7.6.1 Starting Up Hudson for the First Time ..o, 7-3
7.6.2 Configuring the JDKcccooiiiiiiiiirne s 7-4
7.6.3 Specifying the Maven HOMEcccccovviiiiiiiiininiiiiiicccs 7-4
7.6.4 Setting Up Maven for Use by Hudsoncc.ooooiiiiiiiii, 7-5
7.6.5 Installing Hudson PIUg-INS...........cccooiuiiiiiiiiiiic 7-7
7.6.6 Integrating the REPOSITOTYccovviviriririririririirrereer s 7-7
7.6.7 MONItOring SUDVETSION.......cccviviiiiiiiiiiriciciciirree s 7-7
7.7 More Information About HudSOn..........cccccovviiiiiiniiiiiiiiis 7-8

About Maven Version Numbers

8.1 How Version Numbers WOrk in MAvVeIcccvevuieiinieriieieeie ettt v e v v v eve v e 8-1
8.2 About the SNAPSHOT QUALI IOcc.ccieiiieieiiciesieeieeeete ettt esa e resra e s ees 8-2
8.3 About Version Range References............c.cooooirioiiiiiiioiiiiiciccc s 8-3
8.4 How Maven Version Numbers Are Used in Oracle Provided Artifactscccceeveevrinernennne 8-4
8.4.1 About Version Numbers in Maven Coordinates...........ceceeererierierresiereeeeieneneseseseenes 8-4
8.4.2 About Version Number Ranges in Dependencies............ccccovviniininnnnnnnninnnne, 8-5

Customizing the Build Process with Maven POM Inheritance

9.1 Inheritance of POMSs and Archetypes...........ccooeuiiiiiiiiiiiciciecc s 9-1
9.2 Customizing the Build ProCessccoveueieiiiiiiiiiicci e 9-2

Building Java EE Projects for WebLogic Server with Maven

10.1 Introduction to Building a Java EE Project with Maven ... 10-1
10.2 Using the Basic WebApp Maven Archetype ... 10-1
10.2.1 Creating a Basic WEDAPP Projectccccoceiiiiiiiiiiiiiiiiecccccccceeeeeenenenas 10-2
10.2.2 Customizing the Project Object Model File to Suit Your Environment 10-4
10.2.3 Compiling Your Java EE Projectcccooiiiiiiiiccc 10-4
10.2.4 Packaging Your Java EE Project ... 10-4
10.2.5 Deploying Your Java EE Project to the WebLogic Server Using Maven.................. 10-5

10.2.6 Deploying Your Java EE Project to the WebLogic Server Using Different Options 10-5

11

12

13

14

Vi

10.2.7 Testing Your Basic WebApPp Project.........coceuoiiiiiiiiiiic e 10-5

10.3 Using the Basic WebApp with EJB Maven Archetype........ccccococeiiiiccciicceccccenenes 10-6
10.4 Using the Basic WebService Maven Archetype ... 10-10
10.5 Using the Basic MDB Maven Archetype ... 10-13
Building Oracle Coherence Projects with Maven
11.1 Introduction to Building Oracle Coherence Projects with Maven.............ccccccceiiiiiiinnnes 11-1
11.2 Creating a Coherence Project from a Maven Archetype..........cocooeeoiiiiieiiiiiciicc 11-2
11.3 Building Your Coherence Project with Maven..........cccoooiiiiiiiiii 11-4
11.4 Deploying Your Coherence Project to the WebLogic Server Coherence Container with
IMAVETL ..ottt 11-4
11.5 Building a More Complete Coherence Example............coooriioiiiiiiiiiic 11-5
Building ADF Projects with Maven
12.1 Introduction to Building Oracle ADF Projects with Maven.........c.c.cocooiiiin 12-1
12.2 Creating an ADF Application Using the Maven Archetypeccccceoeveeciicccccccnencnas 12-1
12.3 Building Your Oracle ADF Project with Maven..........cccccccoeiiiiiiiiiiiiicccccceennes 12-2
Building Oracle SOA Suite and Oracle Business Process Management

Projects with Maven

13.1 Introduction to Building Oracle SOA Suite and Oracle Business Process Management

Projects With Mavenccccciiiiiiiiiiiiiiii s 13-1
13.2 Creating a New SOA Application and Project from a Maven Archetype..........ccccccceuee 13-2
13.3 Creating a SOA Project in an Existing SOA Application from a Maven Archetype 13-5
13.4 Editing Your SOA Application in Oracle JDeveloper ... 13-8
13.5 Building Your SOA Project With Maven ... 13-9
13.6 What You May Need to Know About Building SOA Projects..........ccccoeveueieiirniniciincnennnns 13-9
13.7 Deploying Your SOA Project to the SOA Server with Maven...........c.cocoooeiiiininnnnne. 13-10
13.8 Running SCA Test Suites with Maven ... 13-11
13.9 What You May Need to Know About Deploying SOA CompoSitescccccoeeucueuecnnes 13-12
13.10 What You May Need to Know About ADF Human Task User Interface Projects 13-16
13.11 Undeploying Your SOA PIOJect ... 13-17
13.12 What You May Need to Know About the SOA Parent POM...........cccccoviiiiiiiinnnnns 13-18

Building Oracle Service Bus Projects with Maven
14.1 Introduction to Building Oracle Service Bus Projects with Maven ... 14-1
14.2 Creating an Oracle Service Bus Application from a Maven Archetypeccccovvvivinnes 14-2
14.3 Editing Your OSB Application in Oracle JDeveloper ... 14-4
14.4 Creating an Oracle Service Bus Project from a Maven Archetype........ccccccoeeiiiiiinnnns 14-5
14.5 Building Your OSB Project with Maven..........cccoociiiiiiiiiiiiiiiccccccccccccnnes 14-6
14.6 Deploying Your Project to the Oracle Service Bus Server with Maven..........c.c.ccccooeoi 14-7
14.7 What You May Need to Know About the Oracle Service Bus Parent POM........................ 14-8

15 Building a Real Application with Maven

15.1 Introducing the Maven Example Application.........ccccoueiiiuiioiiiiniciiccec 15-1
15.2 About Multi-Module Maven Projects..........ccccoiiiiiiiiiiiiiiicccccceeesnennes 15-1
15.3 Building @ Maven Project..........coiiiiiiiiiiiiicecccceeeeeeie e enenenes 15-2
15.3.1 Creating a Directory for the Projectscccoovveeeniiciiiececeecceees 15-3
15.3.2 Creating the GAR Project ..o 15-3
15.3.3 Creating the WAR Projectccouoiiiiieiiiiiicc e 15-8
15.3.4 Creating the EAR PrOject.......cooiuiiiiiiicieiiici e 15-11
15.3.5 Creating the Top-Level POM........cccccccoiiiiiiiiiiiicccccceceeecieceene e 15-15
15.3.6 Building the Application Using Maven ... 15-16

16 From Build Automation to Continuous Integration

16.1 About Dependency Managementccccuiiiiiiiiiiiiiiicecceeeeeeeeeeieesenenenes 16-1
16.1.1 About Snapshot Versioning ...t 16-2
16.1.2 About Dependency Transitivity........ccccooooiiiiiiiiicicic 16-2
16.1.3 About Dependency SCOPE.........ccuuiuuiuiiiiucieiiiiciceieeeeeieee e enenenes 16-2
16.1.4 About Multiple Module SUPPOTt.......c.cccoiiuiiiiiiiiiiiiiccceccccceececee e 16-3

16.2 Understanding Maven Configuration to Support Continuous Integration Deployment. 16-3
16.2.1 Understanding Distribution Managementccccooooriiiiniiiiiiiiice e 16-3
16.2.2 Configuring Snapshot Repository Settingsccccovoeueieiniiiniciniiecccc 16-4

16.3 Automating the Build with HUASOMN ... 16-5
16.3.1 Creating a Hudson Job to Build a Maven Project............cccccccoeiiiiiiiiiciciccnnas 16-5
16.3.2 Triggering Hudson Buildsccccoiiiiiiiiiiiiicccccccccnes 16-6
16.3.3 Managing a Multi-Module Maven Build with Hudson ... 16-7

16.4 Monitoring the BUild ... 16-8
16.4.1 Following Up on the Triggered Builds..........ccccccoiiiiiiiiiiiiiiiiiccccceeecnenes 16-8

Vii

viii

List of Figures

2-1 Reference Continuous Integration Environment Architecture
2-2 Directory Structure for a Shared Disk.........ccccoooriiiiiinine.
3-1 SVN WOTKEIOW ...

List of Tables

1-1

2-1

5-1

8-1

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
11-1
11-2
11-3
11-4
12-1
12-2
13-1
13-2
13-3
13-4
13-5
13-6
13-7
14-1
14-2
14-3
14-4

Maven Build Phases...........cciiiiiiiiiiiiiiiiiicc e 1-4
Roadmap to Attain Continuous Integration............ccceeueiiiioiiiiii, 2-1
Push Goal Parameters and Description............cccocvvviiniiinniniiiiininiiiinnnnceeecesceaes 5-5
Version Range References..........ccccccicuiiiiiiiiiiiciccceceeeeeeeeeeeeeeee e 8-3
Maven Coordinates with WebLogic Server...........coooiiiiiii, 10-1
Parameters for the Basic WebApp Project..........ooveoiiiiiii 10-2
Files Created for the Basic WEDAPP PIoJeCt......c.ccuiuiuiuiiriiiiiciiiiiiiciiiciciccceeeceeeecieeeeeens 10-4
Parameters for the Basic WebApp with EJB Project.........cccccovvvviiiininiiiiiiinns 10-6
Files Created for the Basic WebApp with EJB Project.........cccooeiiiiiiiiii 10-9
Parameters for the Basic WebService Project..........ccccoevuvviviviriiiiiiininniniiiiinccicicenne 10-10
Files Created for the Basic WebService Project..........cccocceueueeciciicccicccceeeeeenes 10-12
Parameters for the Basic MDB Project............coooeioiiiiiiiiiiciccccc 10-14
Files Created for the Basic MDB Project...........ccccocoeeioiiiiiiniicceccceccecca 10-16
Maven Coordinates with Coherence.............cccooviviiviiiiiiniiiii s 11-1
Oracle Coherence GOals...........coiiiiiiiiiiiiiiiiiii s 11-1
Parameters for the Coherence Projects...........ccooiiiiiiiiiciiiicc 11-2
Files Created for the Coherence Project...........c.ccccciiiiiiiiiiiiiiiiiicccccccceeeennes 11-3
Maven Coordinates with Oracle ADF..........cccccooiiiiiiiiiiiiiians 12-1
Parameters for the Oracle ADF Project..........oooooiiiiiiiiiicccc 12-2
Maven Coordinates with Oracle SOA Suite..........ccccceuiiiiiiiiiiiiiiiiiiicccccces 13-2
Oracle SOA Suite PIUg-IN GOals.........ccovvvviviriririiriirrrcreer s 13-2
Parameters for the Oracle SOA Suite Application..........cccocoeueieieieinininiieicccc 13-3
Files Created for the Oracle SOA Suite Application and Project............cccoooevvirininnnc. 13-5
Parameters for the Oracle SOA Suite Project........ccovvvviviiniinninininnncncccccee 13-5
Parameters for Deploying a SOA Projectccccoevveunininininiiiniciecece e 13-10
Parameters for the Undeploy Goal...........ccocueuoiiiiiiiiiiiicc 13-17
Maven Coordinates with Oracle Service Bus............cccccciuiiiiiiiiiiiiiiiciiccccccccnes 14-1
Parameters for the Oracle Service Bus Project.........cccocevvevvrinicinniiccccrcceeeeee 14-2
Files Created for the Oracle Service Bus Project...........ccccooeuiiriiiiiniieiiccieccce 14-3
Parameters for the Oracle Service Bus Project from a Maven Archetype............cccceueeue. 14-5

Xi

Xii

Preface

This book describes build automation and continuous integration for applications that
you develop and deploy to a Fusion Middleware runtime environment. This book
describes the features in Fusion Middleware 12¢ to make it easier for users to automate
application build and test and to adopt continuous integration techniques with Fusion
Middleware.

Audience

This document is intended for developers and build managers who are responsible for
building applications that will be deployed into a Fusion Middleware runtime
environment and who want to automate their build processes or adopt, or both
continuous integration techniques in the context of Fusion Middleware.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Fusion Middleware
documentation set:

¢ Developing Applications for Oracle WebLogic Server
e Developing Applications with Oracle [Developer
¢ Developing Services with Oracle Service Bus

e Developing SOA Applications with Oracle SOA Suite

Conventions

The following text conventions are used in this document:

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Xiv

Convention

Meaning

boldface

italic

nonospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Continuous Integration

Continuous integration involves applying small and frequent quality control efforts,
and automated builds, deployment, and testing. Together with a set of tools, you can
create a continuous integration environment in the context of Oracle Fusion
Middleware.

Topics:

¢ Introducing Continuous Integration for Oracle Fusion Middleware
¢ Version Control with Subversion

¢ Build Automation and Dependency Management with Maven

¢ About the Oracle Maven Repository

* Repository Management with Archiva

¢ Continuous Integration with Hudson

¢ Summary

1.1 Introducing Continuous Integration for Oracle Fusion Middleware

When enterprises develop applications to support their business needs, they typically
employ teams of developers who work together, often in small teams, with each team
building a part of the application. These parts are then assembled to create the whole
application. To improve quality and reduce the time to deliver software, apply small
and frequent quality control efforts, and automated builds, deployment, and testing.
This is known as continuous integration.

Many modern applications are based on a service-oriented architecture (SOA). This
means that developers build services (small pieces of business functionality) that can
be assembled in various ways to meet the needs of the business application. Some of
the features of SOA that make it popular today are:

¢ Loose coupling of components of the application, which reduces the impact of
change

* Reuse of services, a long time goal of Information Technology development

¢ The flexibility and agility to easily change the application's behavior as the business
need changes

In this new paradigm, many development organizations are also adopting iterative
development methodologies to replace the older waterfall-style methodologies.
Iterative, agile development methodologies focus on delivering smaller increments of
functionality more often than traditional waterfall approaches. Proponents of the new
approach claim that the impact is usually less for errors that are found sooner and that

Introduction to Continuous Integration 1-1

Introducing Continuous Integration for Oracle Fusion Middleware

the approach is especially suitable to today's environment of constant and rapid
change in business requirements.

Many of these techniques also feature the adoption of continuous integration.
Organizations have a strong interest in automating their software builds and testing,
and continuous integration can help accomplish this.

Continuous integration is a software engineering practice that attempts to improve
quality and reduce the time taken to deliver software by applying small and frequent
quality control efforts. It is characterized by these key practices:

* A version control system is used to track changes.

¢ All developers commit to the main code line, head and trunk, every day.
® The product is built on every commit operation.

® The build must be automated and fast.

® There is automated deployment to a production-like environment.

¢ Automated testing is enabled.

* Results of all builds are published, so that everyone can see if anyone breaks a
build.

® Deliverables are easily available for developers, testers, and other stakeholders.

Oracle Fusion Middleware 12c¢ provides support for enterprises that adopt continuous
integration techniques to develop applications on the Oracle Fusion Middleware
platform. Specifically, it provides the following:

¢ Integration with common version control systems from the development tool,
Oracle JDeveloper

¢ The ability to build projects from the command line using Maven, a build and
project management system, so that the build can be scripted and automated

¢ The ability to create new projects from Maven archetypes

* The ability to download necessary dependencies from the Oracle Maven
Repository, and other Maven repositories

¢ The ability to parameterize projects so that builds can be targeted to different
environments, such as Test, QA, SIT, and production

* The ability to include testing of projects in the Maven build life cycle

¢ The ability to populate a Maven repository with Oracle-provided dependencies
from an existing local Oracle home software installation directory

¢ The ability to run Maven builds under the control of a continuous integration
server like Hudson

¢ Comprehensive documentation about setting up your build or continuous
integration environment, or both, to use with Oracle Fusion Middleware

Choices are available for version control, continuous integration, and other
components that enterprises typically use in this kind of environment. Many of these
components are free and open source, and others are commercial products. This guide
presents a reference environment based on the following set of components:

1-2 Developing Applications Using Continuous Integration

Version Control with Subversion

* Apache Subversion for version control
* Apache Maven for build or project management
® Apache Archiva as the Maven repository manager

¢ Apache Hudson as the continuous integration server

Note that these are not the only choices available. You can use, for example, a different
version control system or a different continuous integration server. For most common
alternatives, you should be able to adapt the examples in this guide without much
difficulty.

1.2 Version Control with Subversion

Subversion is a popular version control system. It was originally created as a logical
successor to the Concurrent Versioning System (CVS), which is still widely used
today. It works well in various network environments.

Subversion is used as the version control system in the examples in this guide for the

following reasons:

e [tis well integrated with Oracle JDeveloper, the development tool that is most
commonly used to build applications for the Oracle Fusion Middleware platform
and with other common development tools.

¢ It works well in various network environments, including virtual private networks
and HTTP proxies. Thus, it is well suited for the kind of network environments
often encountered in enterprises and their partners, and suppliers.

e [t supports various authentication options, including strong authentication with
certificates.

* For projects using Oracle SOA Suite, it provides an atomic commit that enables
developers to update several files as part of a single check-in or commit operation.

A typical Subversion environment consists of one or more Subversion repositories that
store source code artifacts. These are accessed by developers using Subversion clients,
either included in their integrated development environments or as standalone clients.
Developers can copy artifacts to and from the repositories. When a developer changes
an artifact, a new version of the artifact is created in the repository. Developers can
view and compare versions of artifacts to see what was changed and who changed it.

1.3 Build Automation and Dependency Management with Maven

Maven is a project management and build management system and is based on the
central concept of a build life cycle. The process for building and distributing a
particular artifact or project is clearly defined.

Maven provides project management in terms of:
¢ Naming and version numbering

* Dependencies

¢ Where the source code is stored

¢ Where builds are stored

¢ Templates for project types

Introduction to Continuous Integration 1-3

Build Automation and Dependency Management with Maven

® The release process

Maven provides build management in terms of:
¢ How to execute the build

e What to do in each phase

¢ Parameterization of the build

e An extensible framework

For developers to use Maven, they must learn a small set of commands that enable
them to build any Maven project. The Maven Project Object Model (POM) ensures that
the project is built correctly.

There are three main life cycles defined:
¢ Default: To build the project
® Clean: To remove all generated artifacts from the project

® Site: To build documentation for the project

Build life cycles are further defined by a set of build phases. A build phase represents
a stage in the life cycle. Build phases are executed sequentially to complete the life
cycle. Build phases consist of goals that perform the actual tasks. There is a default set
of goal bindings for standard lifecycle phases. Maven plug-ins contribute additional
goals to a project. The following table shows the build phase and purpose of each
phase:

Table 1-1 Maven Build Phases
- - - - -]

Build Phase Purpose

val i date Ensure that the project is correct and all necessary information is
available.

conpi l e Compile the source of the project.

t est Test the compiled source code using a suitable unit testing
framework; tests should not require the code to be packaged or
deployed.

package Take the compiled code and package it in its distributable format,

such as a JAR, WAR, EAR, SAR, or GAR files.

integration-test Processand deploy the package, if necessary, into an environment
where integration tests can be run.

verify Run checks to verify whether the package is valid and meets quality
criteria.
install Install the package into the local repository for use as a dependency

in other projects locally.

depl oy For the final release, copy the final package to a remote repository
for sharing with other developers and projects.

A typical Maven environment consists of a Maven installation on each developer's
local machine, a shared Maven repository manager within the enterprise, and one or

1-4 Developing Applications Using Continuous Integration

About the Oracle Maven Repository

more public Maven repositories where dependencies are stored. The main Maven
repository is known as Maven's central repository. This repository stores many free
and open source libraries that are commonly used as dependencies during
development projects. Examples include the JUnit unit testing framework; Spring,
Struts, and other common user interface libraries; and code coverage and style-
checking libraries like Cobertura and PMD.

1.4 About the Oracle Maven Repository

The Oracle Maven Repository contains artifacts provided by Oracle that you may
require to compile, test, package, perform integration testing, or deploy reapplications.

Specifically, the Oracle Maven Repository contains the following:

¢ Client API classes

* Compilation, packaging, and deployment utilities, for example, W st
¢ Component JARs that must be embedded in the application

¢ C(lient-side runtime classes, for example, t3 and JAX-WS client runtimes

1.5 Repository Management with Archiva

When several developers are working on a project, enterprises often find it useful to
establish their own internal Maven repository and to manage it with a Maven
Repository Manager, such as Apache Archiva.

Consider establishing your own internal Maven repository to:

* To act as a proxy or cache for external Binary repositories, like Maven's central
repository or the Oracle Maven Repository, so that dependencies are downloaded
only once and cached locally so that all developers can use them.

e To store artifacts that are built by the developers so that they can be shared with
other developers or projects.

Although a Maven repository can be as simple as a file system in a particular layout
(directory structure), most organizations find that it is more convenient to use a type
of software called a Maven repository manager. This helps in addressing the purposes
previously listed. In this guide, Apache Archiva is used as the Maven Repository
Manager. Others are available, either for free and commercially.

In a typical enterprise that use Archiva, Archiva is set up on a server that is accessible
to developers and build machines. The enterprise defines the following repositories on
this server:

* A mirror of Maven's central repository

* Aninternal repository to store internally developed artifacts that are completed or
published

* A snapshot repository to store internally developed artifacts that are under
development and not completed yet

There can also be additional repositories depending on the need. For example, there
can be additional repositories for particular projects, or for different versions of
dependencies needed for different life cycle stages. For example, bug fix to production
might use different dependencies from the current version under development.

Introduction to Continuous Integration 1-5

Continuous Integration with Hudson

All developers must configure Maven installations to point to these internal
repositories instead of the external repositories, so that developers can use artifacts
already stored in the internal repositories and reduce the download and build time.
This also helps to ensure that all developers use the same version for various
dependencies.

Archiva also provides the ability to manage the expiration of artifacts from your
snapshot repository. Each time that you execute a build, artifacts are created and
stored in the snapshot repository. If you are using continuous integration, you may
want to execute builds several times each day. The best practice is to configure
Archiva to remove these stored artifacts after a certain amount of time (for example,
one week). Alternatively, you can configure Archiva to keep just the last # versions of
each artifact. Either approach helps to automatically manage the expiration and
deletion of your snapshot artifacts.

1.6 Continuous Integration with Hudson

Hudson is a common continuous integration server product that enables you to
automate the build process.

Typically, this automation includes steps such as:

¢ Initiating a build whenever a developer commits to the version control system
® Checking out the code from the version control system

¢ Compiling the code

* Running unit tests and collating results (often through JUnit)

¢ Packaging the code into a deployment archive format

* Deploying the package to a runtime environment

¢ Running integration tests and collating results

e Triggering the build to the Maven snapshot repository

¢ Alerting developers through email of any problems

However, it is also possible to use the build system to enforce compliance with
corporate standards and best practices. For example, enterprises can include the
following steps in the build process:

¢ Running code coverage checks to ensure that an appropriate number of unit tests
exist and are executed

¢ Running code quality checks to look for common problems

¢ Running checks to ensure compliance with naming conventions, namespaces, and
SO on

* Running checks to ensure that documentation is included in the code

* Running checks to ensure that the approved versions of dependencies are used and
that no other dependencies are introduced without approval

Hudson provides a web-based console that enables build managers to define, execute,
and monitor builds. Builds are executed on one or more build servers. The number of
build servers is typically defined based on the volume of builds and the expected time

1-6 Developing Applications Using Continuous Integration

Summary

for a build to complete. Hudson also provides APIs and can be extended through a
plug-in mechanism, so that additional functionality can be added, as needed.

1.7 Summary

This guide describes how to establish a continuous integration environment that
supports a large team of developers who develop applications on the Oracle Fusion
Middleware 12¢ platform.

This environment includes version control, Maven for build automation and
dependency management, Archiva as a Maven repository, and the use of a continuous
integration server like Hudson to automate the build process.

All examples in this book use Apache tools: Subversion, Maven, Archiva, and Hudson.
However, there are other commercial and open source alternatives that you can use.
The intention here is to provide an example that you can refer to and that should be
easy enough to adapt to other tools. For example, you may choose to use git for
version control or Nexus as your repository manager. The choice of tools in this
documentation does not imply that other tools will not deliver equivalent outcome.

Introduction to Continuous Integration 1-7

Summary

1-8 Developing Applications Using Continuous Integration

2

Roadmap for Continuous Integration

Oracle Fusion Middleware 12c introduces new capabilities for build automation and
continuous integration. Continuous integration is both a journey and a destination. If
you have not automated your build process before, then you may find yourself at the
beginning of the journey.

This chapter provides a roadmap to help you to understand the steps you need to take
to attain continuous integration.

If you are familiar with build automation or continuous integration already, this
chapter provides a summary of the features provided in Oracle Fusion Middleware
12c and helps you relate it to your existing experiences.

This chapter also describes a reference continuous integration environment. This is
provided as an example to help you to visualize what your environment may look like
after adopting the continuous integration approach and the tools and technologies
described in this book.

Topics:
* Roadmap to Continuous Integration
* Overview of the Reference Continuous Integration Environment

¢ Shared Disk Layout

2.1 Roadmap to Continuous Integration

When you use continuous integration, you follow a well-defined series of steps.

Table 2-1 describes the common steps that you must take to implement continuous
integration, and also provides pointers for more information in each step.

Table 2-1 Roadmap to Attain Continuous Integration
|

Step Task For More Information
1. Implement a version Installing and Configuring Subversion for Version Control
control strategy provides details on how to set up a version control

environment using Subversion.

If you are not currently using version control in your
development environment, pay particular attention to
repository layout, the Subversion workflow, and tagging
and branching, which are described in Installing and
Configuring Subversion for Version Control.

For more information about Version Control with
Subversion, see:

http://svnbook. red- bean. com

Roadmap for Continuous Integration 2-1

http://svnbook.red-bean.com

Roadmap to Continuous Integration

Table 2-1 (Cont.) Roadmap to Attain Continuous Integration
__|

Step Task For More Information
2. Implement a binary Installing and Configuring the Archiva Maven Repository
repository strategy Manager provides details on how to use Apache Archiva

to set up a repository for binary artifacts, both those that
you are building and those that your builds depend on.
Pay particular attention to understanding the need for
multiple repositories, understanding the difference
between snapshot and other repositories, and the
administration and maintenance required for repositories.

3. Implement a build Installing and Configuring Maven for Build Automation
automation and and Dependency Management provides a brief
dependency management introduction to Maven and the installation and
strategy configuration steps. If you have never used Maven before,

read material about it to get familiar with it. Start by
reading "What is Maven?" at the official Maven web site at:

http:// maven. apache. or g/ what -i s- maven. ht m
There are also a number of resources available online,
including:
® Maven By Example and Maven: The Complete Reference at:
http://ww. sonat ype. or g/ naven
e Better Builds with Maven at:
http://ww. maestrodev. coni better-buil ds-
wi t h- maven/ about - t hi s- gui de/

These resources can help you to form a comprehensive
understanding on how to use Maven, some of the
principles behind its design, and the kind of things you
can do with Maven.

4. Populate your repository ~ Populating the Maven Repository Manager provides
with Oracle artifacts details on how to populate your Maven Repository with
Oracle-provided artifacts. Pay particular attention to
understanding the Oracle Maven Synchronization plug-in,
what happens when you apply patches to your Oracle
runtime environments, the implications of patching on
your build environment, and understanding the role of

archetypes.
5. Ensure that you About Maven Version Numbers provides details on the
understand Maven important nuances of Maven version numbers. Ensure that
version numbers you understand how to use Maven version numbers and

version number ranges to specify dependencies, and how
Maven resolves dependencies based on the way you
specify version numbers.

6. Learn how to build Java Building Java EE Projects for WebLogic Server with Maven

EE applications for provides details on how to create Java EE applications

WebLogic Server using using the Oracle WebLogic Maven archetypes, and how to

Maven compile, package, and deploy your applications to a
WebLogic Server.

2-2 Developing Applications Using Continuous Integration

http://maven.apache.org/what-is-maven.html
http://www.sonatype.org/maven
http://www.maestrodev.com/better-builds-with-maven/about-this-guide/
http://www.maestrodev.com/better-builds-with-maven/about-this-guide/

Overview of the Reference Continuous Integration Environment

Table 2-1 (Cont.) Roadmap to Attain Continuous Integration
__|

Step Task

For More Information

7.

Learn how to build
Coherence applications
using Maven

Building Oracle Coherence Projects with Maven provides
details on how to create Coherence GAR applications
using the Oracle Coherence Maven archetypes, and how to
compile, package, and deploy your applications to the
Coherence container on WebLogic Server.

Learn how to build other
types of applications
using Maven

For information on building other types of applications
using Maven, see:
* Building ADF Projects with Maven

* Building Oracle SOA Suite and Oracle Business Process
Management Projects with Maven

¢ Building Oracle Service Bus Projects with Maven

Learn how to build a
whole application using
Maven

Building a Real Application with Maven describes how to
bring together many of these concepts to build a more
realistic application. The example application has multiple
component parts, each targeted to a different Oracle
Fusion Middleware runtime environment. It also has
dependencies between components, and some custom
packaging requirements.

10.

Learn how to customize
your build process using
Maven POM inheritance

Customizing the Build Process with Maven POM
Inheritance provides details on the Maven POM hierarchy
that is included with Oracle Fusion Middleware 12c. The
common Oracle parent POMs provide an easy way to
customize your build process.

11.

Implement a continuous
integration strategy

Installing and Configuring Hudson for Continuous
Integration describes how to set up Hudson to create an
environment in which to perform continuous integration.
From Build Automation to Continuous Integration
expands on this with details of the important
considerations for establishing and operating a continuous
integration environment.

2.2 Overview of the Reference Continuous Integration Environment

This guide uses a specific reference implementation of a continuous integration
environment based on Subversion, Maven, Hudson, and Archiva.

Figure 2-1 provides an overview of the recommended development environment.

Roadmap for Continuous Integration 2-3

Overview of the Reference Continuous Integration Environment

Figure 2-1 Reference Continuous Integration Environment Architecture

Maven Central
Repository
Maven Repository Subwversion Hudson (Cl) server Hudson
Manager server {master) slave
SErVers
Maven rapnslturlas I'-."Iavan rapnsﬂurlas
File server
Developers _ ,
maching 4 ' 4
arer EEIFE
I Product binaries
Subversion
client
Maven
local
repository

The following is a description of the environment:

* Maven's Central Repository and Oracle Maven Repository: These are external
Maven repositories that hold open source and Oracle dependencies, which you
may need for a build. The Maven Repository Manager is able to search these
repositories for any dependencies that it does not have in its own repository, and
obtain them if they are available.

* The Maven Repository Manager: The repository for all built artifacts and
dependencies, both for those created in your environment and those from external
sources. Typically, there are different repositories for different purposes:

— The Binary Repository Manager acts as a mirror or proxy for external Maven
repositories like Maven's central repository and the Oracle Maven Repository.
When artifacts from these repositories are needed for a build, they are
downloaded and stored in a repository managed by the Maven Repository
Manager.

— When you build an artifact (for example, a WAR, JAR, or SAR file), it is
published into a repository managed by the Maven Repository Manager. Often
there are separate repositories for SNAPSHOT (work in progress) artifacts and
release (final) artifacts.

* The Subversion server: The repository for source artifacts that are created by your
developers. Typically, there are multiple repositories. For example, there may be
one per project.

¢ The Hudson continuous integration (master) server: The server that manages
your continuous integration builds. It is responsible for running builds and
collecting and reporting results of those builds.

2-4 Developing Applications Using Continuous Integration

Shared Disk Layout

¢ Hudson slave servers: Optional additional Hudson servers that are used to
provide additional capacity. If you are running a large number of builds, you can
set up several Hudson slave servers to share or perform some of the builds.

¢ File server: A storage area network (SAN) or network-attached storage (NAS) that
hosts copies of any product binaries that are needed by the Hudson build servers.
For example, ojdeploy is required to build Oracle ADF applications. All of the
Hudson servers have access to this file server.

* Test servers (not shown): If you are performing integration tests, you may also
have a set of test servers in which you deploy built artifacts like WARs, JARs, and
SARs, and execute your integration tests.

* The developer's machine: Each developer has a workstation on which to run an
integrated development environment (Oracle JDeveloper) to create source artifacts
like Java code, deployment descriptors, BPEL processes, and ADF user interface
projects. JDeveloper includes a Subversion client. This enables the developer to
perform actions like checking code in and out of repositories on the Subversion
server, checking differences, performing merges, and resolving conflicts. Each
developer's machine also has a local Maven repository on their workstation, which
holds dependencies that are needed to perform local builds that they may want to
perform on their workstation. For example, a developer might want to check a
build and run unit tests locally before checking in code to the shared Subversion
server.

Depending on the size of your environment, these components (excluding the external
ones and the developer's machine), might be on a single server, or spread across
several machines.

2.3 Shared Disk Layout

You can use a shared disk in a continuous integration environment, but you should
use a well-thought out directory structure.

If you plan to use a shared disk, consider keeping all of your Subversion, Maven,
Hudson data, and product binaries on the shared disk.

Figure 2-2 shows a suggested directory structure. This structure shows only the high-
level directories that you would consciously consider creating.

Roadmap for Continuous Integration 2-5

Shared Disk Layout

Figure 2-2 Directory Structure for a Shared Disk

2-6 Developing Applicati

Shared Disk Layout

Note that for the product binaries, you must keep one copy for each environment
(such as production, development, and QA). Although the product binaries are on the
same version of the software, they are likely to have different patches installed. Ensure
that you can always build using the same set of artifacts, possibly patched, as the
environment to which you want to deploy.

Although you may have moved your development environment to 12.1.3 in the
example in Figure 2-2, you still must to be able to build against 12.1.2. If you find a
bug in production or QA, you must be able to build using the same versions of
artifacts as you have installed in those environments.

Your Maven Repository Manager, Archiva in this case, includes the following
repositories:

* Internal: Stores finished artifacts that you have built in your development
environment.

¢ Snapshot: Stores work-in-progress artifacts that you have built in your
development environment.

* Mirror: Stores dependencies that have been downloaded from an external
repository.

* Dev, test, qa, prod: You have one repository for storing the dependencies needed
for each target environment. You do this because it is possible that two
environments might have the same version of an artifact (for example, 12.1.3-0-0)
even though the artifact has been patched in one environment, and is therefore
different. See Things to Know About Patching to learn more about this
requirement.

The shared disk server must provide sufficient space for product binaries, Subversion
repositories, the Archiva repository, Maven binaries, Hudson binaries, configuration,
and file storage. At a minimum, Oracle recommends that you allocate at least 40
gigabytes. Factors, such as Archiva snapshot clean up rules and whether or not you
permit check-in of binaries into the source control system, can increase the required
space.

Roadmap for Continuous Integration 2-7

Shared Disk Layout

2-8 Developing Applications Using Continuous Integration

3

Installing and Configuring Subversion for
Version Control

Subversion is a version control system that keeps track of changes made to files and
folders or directories, thus facilitating data recovery and providing a history of the
changes that have been made over time.

This chapter describes how to install and configure Subversion for version control.

Topics:

Downloading Subversion

¢ Installing Subversion

¢ Configuring the Subversion Server as a Service
¢ Setting Up a Repository

¢ Understanding the SVN Workflow

¢ Working with Subversion Projects

¢ Considerations for Tagging and Branching

* About Subversion Clients

e More Information About Subversion

3.1 Downloading Subversion

Although Subversion is an Apache project, Apache does not build their own binary
files for any operating system. Third parties build binary files for all major operating
systems.

The following URL provides links to the latest stable releases of Subversion built by
third parties for all major operating systems:

htt p://subversi on. apache. or g/ packages. ht

If possible, use a package manager such as YUM or APT to manage the installation of
other software.

On Windows, Oracle recommends that you use a precompiled binary package such as
Silk SVN which is available in the following URL:

http://ww. sil ksvn. com

On Windows, if you install Subversion through the installer package, then ensure that
you choose an installer which includes the server binary files.

Installing and Configuring Subversion for Version Control 3-1

http://subversion.apache.org/packages.html
http://www.silksvn.com

Installing Subversion

3.2 Installing Subversion

You can install Subversion on any major platform.
The installation method varies depending upon the platform and distribution method.
For example, if you use YUM, the command is likely to be:

sudo yuminstall subversion

On Windows, you can change the default installation path to a shorter location:

C:\svn

Ensure that the PATHvariable is correctly set by the installer.
To obtain the version information of svnser ve, run the following command:

svnserve --version
If you cannot find the command, then do the following:

1. Open Control Panel.
2. Select System, and then Advanced System Settings.
3. Under Advanced, select Environment Variables.

4. Edit the PATHvariable in the System variables pane by adding the path to the
Subversion binary directory.

3.3 Configuring the Subversion Server as a Service

To ensure that Subversion is running when you need it, configure it as a service.

To configure the Subversion server as a service:

e On Linux

The Linux installation process automatically creates an/ et ¢/ i ni t. d/ svnserve
script. This starts the server when you start up your system.

To start the service manually, run the following command:

sudo /etc/init.d/ svnserve start

¢ On Windows

You must register svnser ve with the service manager. To register svnser ve, run
the following command:

sc create svnserver binpath= "C\svn\svnserve.exe" --service -r "REPCS_PATH'
di spl aynane="Subver si on" depend=Tcpi p start=auto

In the preceding command, REPOS_PATH s the absolute path to the local file
system.

3.4 Setting Up a Repository

A Subversion repository is a collection of versioned artifacts on the Subversion server.

This section contains the following topics:

3-2 Developing Applications Using Continuous Integration

Setting Up a Repository

¢ Creating a Repository
¢ Using a Consistent Subversion Layout

¢ Importing Existing Projects

3.4.1 Creating a Repository

After Subversion is installed, you must create a repository. The command-line utility
called svnadmi n is the primary tool for server-side administrative operations.

To create a repository:

1. Create a directory for the repository using the following command:

(Linux) nkdir -p REPOS_PATH

(Wndows) nkdir REPOS_PATH

In this command, REPOS_PATH s the absolute path to the local file system.
For example:

(Linux) nkdir —p /ciroot/subversion/repository
(Wndows) nkdir C:\ciroot\subversion\repository

2. Create a repository on a given path using the following command:

svnhadnin create REPOS_PATH

In this command REPOS_PATH s the absolute path to the local file system.
For example:

(Linux) svnadmin create /ciroot/subversion/repository
(Wndows) svnadmin create C:\ciroot\subversion\repository

Access to the repository is controlled by file permissions and the user referenced for
accessing the repository through the SVN client. Ensure that user and group
permissions for all files in the new repository reflect the type of access control that you
want to have over the repository contents.

By default, anonymous, read-only access is enabled for a new repository. This means

that anyone with SSH access, regardless of repository permissions settings, can check
out repository files. You can modify this in the REPOS_PATH conf / svnser ve. conf
file.

Now that you have created a repository, you can use the Subversion client to perform
standard operations against the new repository by using the following base URL:

svn+ssh; / | USER@GHOST/ REPOS_PATH

For example:

svn |'s svn+ssh://myconpany@ ocal host/ ci root/subversi on/ repository

In addition to svn+ssh, there are several other protocols that are supported by
Subversion. Refer to the Subversion documentation for information on how to
configure other protocols. svn+ssh might not be available on Windows by default.

3.4.2 Using a Consistent Subversion Layout

Although Subversion does not require any particular subdirectory structure within a
repository, it is a good idea to follow an established convention, as this book does.

Installing and Configuring Subversion for Version Control 3-3

Setting Up a Repository

The typical repository layout should resemble the following figure:

| root

—< project-A

— subproject-Al

e trunk

— branches

e subproject-A2

P trunk

— branches

_{ project-B

Development of the main code line occurs in the t r unk directories. When a release is
made, the current trunk source is copied into the t ags directory, to a tag
corresponding to the release. Subversion copy operations are not expensive in terms of
storage because the server tracks changes internally.

The following is an example of a tag:

my-project/tags/3.0.5

In the preceding example, 3. 0. 5 indicates the release version to which this tag
corresponds.

A tag is important for future work that might be necessary for patch creation or bug-
fix releases. Another importance of a release tag is to facilitate investigation regarding
issues in the associated release.

If a patch or subsequent change of a tag is considered necessary, you must create a
branch. A branch is a copy of a location elsewhere in the repository and does not
differ in composition from a tag. After a copy of the tag is made under the br anches
directory, you can check out the code and modify it as necessary. When changes are
complete, the new release is made from the branch and a corresponding tag is created.

The following Project-A example outlines the general workflow for patch management
of source code:

1. InProject-A, the main code line is managed under pr oj ect - A/ t r unk. The
current version developing under the t r unk directory is version 2.1. The three
previous releases of Project-A are 1.0, 1.1, and 2.0.

2. A problem is discovered in version 1.0 that requires a patch release.

3. To address the problem, the pr oj ect - A/ t ags/ 1. O tag is copied, using the svn
copy command, to pr oj ect - A/ branches/ 1. 0. 1- SNAPSHOT. The SNAPSHOT

3-4 Developing Applications Using Continuous Integration

Understanding the SVN Workflow

designation is a Maven device indicating a version that is not yet released, as
shown in the following figure:

| root

—{ project-A

— fags

1.0

1.1

20

— branches

l— 1.0.1-SNAPSHOT

—{ project-B

- trunk

— fags

I— 1.0

e branches

4. When the branch code fix is complete, the branch is copied from pr oj ect - A/
branches/ 1. 0. 1- SNAPSHOT to a pr oj ect - A/ t ags/ 1. 0. 1 tag. The release
build can then be made from the tag.

For more information on directory structure conventions, see the section about the
recommended repository layout in Version Control with Subversion at:

http://svnbook. red- bean. conf

3.4.3 Importing Existing Projects

If you have existing projects that you want to manage in your repository, you can
import them using the SVN client's i nport command:

svn inport LOCAL_PATH REPCSI TORY_URL/ REPOSI TORY_PATH

For example:
svn inport /checkouts/project-a svn+ssh://user @vn. myconpany. coni ci root/subversi on/
repository/project-a/trunk/ -m"initial inport"

3.5 Understanding the SVN Workflow

Before you start working in SVN, you should understand the typical workflow.

To modify code, you usually perform the following operations:

Installing and Configuring Subversion for Version Control 3-5

http://svnbook.red-bean.com/en/1.7/index.html
http://svnbook.red-bean.com/

Working with Subversion Projects

1. Update the working copy using the svn updat e command.

2. Make changes. Use the svn add,svn del ete,svn copy,and svn nove
commands as needed to edit your files.

3. Review changes through the svn st at us and svn di ff commands.

4. Fix mistakes. You can revert and abandon changes using the svn revert
command.

5. Resolve conflicts. When they are resolved, mark them using the svn resol ve
command.

6. Commit changes using the svn conmi t orsvn ci command.

Figure 3-1 shows the complete life cycle of an SVN operation:

Figure 3-1 SVN Workflow

Commit Update
svn commit §VN update
|'/ \IIII
| :
Make Changes
‘ Resolve Cﬂ::gh‘-ts svn add, svn delete
SV resol &VN COpY, SV move
[
Fix Problems
svn revert

In a continuous integration development process, this workflow remains largely
unchanged. Committed change sets tend to be smaller and occur more frequently than
in a noncontinuous integration process. You must commit the active trunk or branch
code for the target release so that the continuous integration system can perform an
integration build. Avoid creating a personal branch with the intention of merging back
to the main-line code base in the future. The personal branch and merge technique
defers integration and runs counter to continuous integration precepts.

3.6 Working with Subversion Projects

When you are working with Subversion projects, you check out the files into your
local file system. Then, when you are ready to commit the files to the repository, you
check the project in.

To begin working on a Subversion-managed project, you must first check out the files
into your local file system. The SVN client copies the project files to your system,
including Subversion metadata in . svn directories located in each subdirectory.

To work with Subversion projects:

3-6 Developing Applications Using Continuous Integration

Considerations for Tagging and Branching

1. Run the following command to check out files:

svn co REPGS| TORY_URL/ REPCS| TORY_PATH LOCAL_DI RECTORY

In the preceding command:

¢ REPOSI TORY_URL is the URL to the Subversion repository.

e REPCSI TORY_PATHis the path to the directory being checked out.

¢ LOCAL_DI RECTQRY is the path to the local directory in which the checked out
project is stored.

The test-project example demonstrates main-line code development on a project:

svn checkout
svn+ssh: [/ user @vn. nyconpany. conf subversi on/ repository/test-project/trunk test-
proj ect

In this case, a directory called t est - pr oj ect is created and the project contents
are recursively copied into the directory from the server.

2. You can make any number of changes to the checked out files.

After the project is checked out once on your system, there is no need to perform
subsequent checkouts on that source code. To stay synchronized with the
Subversion repository content, you can run the svn updat e command on a
checked out directory or even on individual files.

3. When you are ready to commit the changes to the repository, check in the files or
directories that you want to commit. The file or directory set being checked in does
not have to correspond to what was checked out as long as all components are
members of the checked out directory. Run the following commands to commit the
changes:

svn comrit -m"Added code and test case" test-project/src/min/java

test-project/src/test/resources/testdata.xn
svn resol ve test-project/src/test/resources/testdata.xm

After you have resolved any conflict, proceed with a normal check-in operation.

4. Before committing local changes to the repository operation, run svn updat e to
integrate any changes committed to the code by others, since your last checkout or
update, by running the following command:

svn update
5. Commit your changes by running the following command:
svn commit -m"description of the updates"

3.7 Considerations for Tagging and Branching

Tagging creates a named point-in-time copy of a branch.

Tag releases on the following occasions:
* Whenever a project is released

¢ Whenever an important milestone occurs

Installing and Configuring Subversion for Version Control 3-7

About Subversion Clients

It is important to tag releases, as tags provide a simple mechanism for patching
releases. When a bug is found in a release, you can branch from the tag for that
release, implement the fix, and then create a patch for the release. Tag this new
(patched) release as well, in case you find an issue with it later and need to fix that
new issue.

If you do not tag a release, it is very difficult to obtain the exact code line that was built
into that release.

Note:

Treat tagged releases as read-only artifacts. You must not continue merging
into a release after it is tagged.

3.8 About Subversion Clients

There are several Subversion clients that are available.

This section describes two popular Subversion clients:
¢ WebSVN

e TortoiseSVN

3.8.1 WebSVN

WebSVN provides a web-based view of a repository and supports visual differences,
blame, and search.

WebSVN can be downloaded from:

http://ww. websvn. i nf o/

3.8.2 TortoiseSVN

TortoiseSVN is a free Windows Subversion client that integrates with Windows
Explorer. All standard Subversion client operations can be performed through the
Windows user interface. Folder and file icon decorators indicate the status of
Subversion files. Command-line tools are mapped with menu items and options are
configurable through dialogs boxes. Tortoise also provides sophisticated graphical diff
and merge tools that can be helpful for resolving conflicts.

TortoiseSVN can be downloaded from:

http://tortoi sesvn. net/

3.9 More Information About Subversion

This document is meant as a quick guide for starting and running Subversion and
does not provide extensive detail on Subversion operations.

For a detailed guide, see Version Control with Subversion at:

http://svnbook. red- bean. com

3-8 Developing Applications Using Continuous Integration

http://www.websvn.info/
http://tortoisesvn.net/
http://svnbook.red-bean.com/

More Information About Subversion

Note:

Oracle strongly recommends reading Version Control with Subversion if you are
new to Subversion.

Installing and Configuring Subversion for Version Control 3-9

http://svnbook.red-bean.com

More Information About Subversion

3-10 Developing Applications Using Continuous Integration

A

Installing and Configuring the Archiva
Maven Repository Manager

Apache Archiva is one of several choices for an artifact repository, an important
component of a Maven-based continuous integration build system. Learn how to
install and perform the basic configuration of Archiva.

If you are not familiar with Maven Repository Managers or artifact repositories, see
Repository Management with Archiva for more details.

Topics:

e Overview of Archiva

* Downloading Archiva

¢ Installing Archiva

* Configuring Archiva

® More Information About Archiva

* About Maven Repository Manager Administration

After you have completed installation and configuration of Archiva (as detailed in this
chapter) and Maven (as detailed in Installing and Configuring Maven for Build
Automation and Dependency Management), populate your Archiva repository with
the Oracle-provided artifacts. Refer to Populating the Maven Repository Manager for
more details.

4.1 Overview of Archiva
Archiva is distributed as a standalone installation that is bundled with Jetty. A WAR
file distribution is also provided so that Archiva can be installed into an existing
application server.

This chapter describes the process of installing the standalone version. Instructions for
WAR file installation and configuration are available in the official Archiva
documentation in the following location:

http://archiva. apache. org/ docs/1.3.6

4.2 Downloading Archiva

You can download the latest standalone Archiva release either as a . zi p file or
tar. gz file.

Download it from the following location:

http://archiva. apache. or g/ downl oad. ht m

Installing and Configuring the Archiva Maven Repository Manager 4-1

http://archiva.apache.org/docs/1.3.6
http://archiva.apache.org/download.html

Installing Archiva

4.3 Installing Archiva

To install Archiva, unpack the distribution to the target installation directory. This
location depends on your preference and target operating system.

Oracle recommends that you create a common location for continuous integration
related workspaces. For example, unpack the distribution in the following location:

/ciroot/archiva

¢ On Linux
Run the following command:

sudo nkdir -p /ciroot/archiva ; sudo tar xzvf apache-archiva-1.3.6-bin.tar.gz
--strip-conponents 1 -C /ciroot/archiva

After you run the command, ensure that you change the owner of the files to match
your user and group. For example, if you are using or acl e as the user id and
or acl e as the group name, you would run the following command:

chown -R oracle:oracle /ciroot/archiva

* On Windows
Create a directory to create the Archiva installation files:

mkdir c:\ciroot\archiva

Extract the Archiva zip file that you downloaded into this new directory.

4.4 Configuring Archiva

This section provides details on how to configure Archiva, not just in general, but also
some specific configuration for use in an Oracle Fusion Middleware environment.

This section contains the following topics:

¢ Configuring the Server

e Starting the Server

* Creating an Administrator User

e About Internal and Snapshot Repositories

* About the Proxy Repository

¢ Configuring Mirror Repositories

* Creating Development, Production, Quality Assurance, and Test Repositories

¢ Creating a Deployment Capable User

4.4.1 Configuring the Server

The Archiva Jetty instance starts up with a default HTTP port of 8080. If you want to
change the port, before startup, modify / ci r oot / ar chi va/conf/jetty. xm .
Change the connector configuration's Syst enPr operty value forj etty. port toa
different value, for example, 8081:

4-2 Developing Applications Using Continuous Integration

Configuring Archiva

<Cal | nanme="addConnect or" >
<Arg>
<New cl ass="org. nortbay.jetty.nio.Sel ect Channel Connect or" >
<Set name="host">
<SystenProperty nanme="jetty. host"/>
</ Set>
<Set name="port">
<SystenProperty name="jetty.port" defaul t="8081"/>
</ Set>

4.4.2 Starting the Server

After the server is configured, you can start it from the command-line interface:

1. Run the following command:
/ciroot/archival/bin/archiva start

On 64-bit Linux systems, you may receive an error message similar to this:

.larchiva: /ciroot/archivalbin/./wapper-!|inux-x86-32:
[1ib/1d-1inux.so.2: bad ELF interpreter: No such file or directory

If you receive this error, install the gl i bc. i 686 package (using yum for example)
and try again.

2. Check the log output while the server is starting, to ensure that it starts as expected,
by running the following command:

tail -f /ciroot/archivallogs/*

After the startup tasks complete, the Archiva server is available in the following
location:

http://l ocal host: 8081

4.4.3 Creating an Administrator User

When you visit the Archiva home page for the first time, you are prompted to set the
administration password. Specify the full name, email address, and password of the
administration user.

Installing and Configuring the Archiva Maven Repository Manager 4-3

Configuring Archiva

¢ Apache Archiva \ Create Admin ... | dF |

< | localhost:8081/archiva/security/addadmin.action

Create Admin User

.1”*‘:.
', Username: admin
arc ’Va Full Mamea*: Cl| Admin User
Find Email Address®: adminuser@mycompany.org

Search PaEEWﬂr{j*: EREEEEEE

Browse Confirm Password®: | sessssss

4.4.4 About Internal and Snapshot Repositories

Archiva starts up with two hosted repositories configured:

e Internal

The internal repository is for maintaining fixed-version released artifacts deployed
by your organization, which includes finished versions of artifacts, versions that
are no longer in development, and released versions. Note that in-development
versions of the same artifacts may exist in the snapshot repository in the future.

* Snapshot

The snapshot repository holds the work-in-progress artifacts, which are denoted
with a version with the suffix SNAPSHOT, and artifacts that have not yet been
released.

4.4.5 About the Proxy Repository

In addition to hosting your internally deployed artifacts, the internal repository is
configured to serve as a proxy for the public Maven Central repository by default. A
proxy repository can be used instead of directly referring to a third-party repository. A
proxy caches previously requested artifacts locally. This reduces the load on public
servers, which is recommended, especially if you run builds from a clean repository. If
you place too much load on the public server, it may throttle or ban your host from
placing additional requests. For significant build performance improvement, fetch
dependencies from a less loaded, more proximate, proxy server.

If you require third-party artifacts from other public repositories, then add them to
your repository as additional Proxy Connectors.

4-4 Developing Applications Using Continuous Integration

Configuring Archiva

4.4.6 Configuring Mirror Repositories

Because you will typically want to share cached third-party proxied artifacts among
multiple repositories, separate the cached artifacts from your project artifacts by
moving them into a separate repository.

To create and configure mirror repositories:
1. Remove the proxy connections from the internal repository.
a. Under the Administration menu, click Proxy Connections.

b. Delete the Central Repository and maven2-repository.dev.java.net proxy
connectors by clicking the red X on each entry.

2. Add a new mirror repository:
a. From the Administration menu, click Repositories.
b. From the top right corner, click Add.

c. Specify the following information in the Admin: Add Managed Repository
dialog box:

e Identifier: mirror
¢ Name: Mirror
e Directory:/ ci root/ archi va/ dat a/repositories/mrror

¢ Select Releases Included, Block Re-deployment of Released Artifacts,
and Scannable.

d. Click Add Repository.

Installing and Configuring the Archiva Maven Repository Manager 4-5

Configuring Archiva

Admin: Add Managed Repository

Identifier®: [mirrar
Name*: [Mirror
Directory*®: | jcirgat/archiva/data/re positories/mirror
Index Directory:

Ty¥pe: | Maven 2.x Repository [|

Cron*®: oppQ***=7

Repository Purge By Days Older Than: [1gq

Repository Purge By Retention Count: |5

Releases Included
Block Re-deployment of Released Artifacts
"] snapshots Included
Scannable
'] pelete Released Snapshots
Add Repository

3. Add proxy connectors to the mirror repository:

a.

b.

C.

d.

e.

Under the Administration menu, click Proxy Connections.
Click Add.

Select mirror in Managed Repository.

Select central for Remote Repository.

Click Add Proxy Connector.

After completing these steps, you should see the following:

4-6 Developing Applications Using Continuous Integration

Configuring Archiva

Repository Proxy Connectors

AY: mirror
TAY Mirror

Proxy Connector

\ central
%/ Central Repository
http://repol.maven.org/mavenz

143}

etkings

Proxy Connector

v MEvenZ-repoditory.dev.java.net
_ %/ Java.net Repository for Maven 2
http://download.java.net/maven/2/

113}
i
]

4. To configure the anonymous guest user to have read privileges for the new
repository:

a. Under the Management menu, click User management.
b. Click Guest.

c. Click Edit Roles.

d. Select the Repository Observer role next to mirror.

e. Click Submit to save your changes.

To configure a mirror repository in a remote repository, complete steps 1-3. However,
select maven2-repository.dev.java.net in step 1-b.

4.4.7 Creating Development, Production, Quality Assurance, and Test Repositories

You must create a separate repository for each Oracle Fusion Middleware
environment that you want to target with a Maven build. Oracle's support for one-off
patching (see Things to Know About Patching), means that it is possible that you
could have two different environments (for example, production and test), which are
at the same version but have some different files due to different one-off patches
applied.

To ensure that your Maven builds are using the correct version of files, create and
configure a group Maven repository for each target environment:

1. Create a repository:
a. From the Administration menu, click Repositories.

b. Toadd a new repository, click Add from the top right corner.

Installing and Configuring the Archiva Maven Repository Manager 4-7

Configuring Archiva

c. Inthe Admin: Add Managed Repository dialog box, specify the following

details:

¢ Identifier: Provide an identifier, like dev, prod, ga, ort est .

¢ Name: Provide a name.

* Directory: Add a directory path like / ci r oot / ar chi va/ dat a/
reposi tories/ ${1 DENTI FI ER}, where ${ | DENTI FI ER} matches the

string that you provided in Identifier.

¢ Deselect Block Re-deployment of Released Artifacts.

¢ Select Releases Included and Scannable.

Admin: Add Managed Repository

Index Directory:

Repository Purge By Days Older Than:

Repository Purge By Retention Count:

d. Click Add Repository.

Identifier®:

dewv

Oracle Dev

‘' |/ciroot/archiva/data/repositories/dev

Mawven 2.x Repository | |

. lgpp ***7

100
2
Releases Included
"] Block Re-deployment of Released Artifacts
] snapshots Included
Scannable
] pelete Released Snapshots
Add Repository

2. To configure the anonymous guest user to have read privileges for the new

repository:

a. Under Manage, click User Management.

b. Select guest.

c. Select Edit Roles.

d. Select the Repository Observer role next to the appropriate repository entry.

e. Click Submit to save your changes.

4-8 Developing Applications Using Continuous Integration

Configuring Archiva

To create a corresponding group for the new repository:

a.

b.

From the Administration menu, click Repository Groups.
In the top right corner, click Add Group.

In the Identifier field, specify a name that matches the repository that you
created, with the addition of -group, for example, dev-group.

Click Add Group.

Select your new repository, like dev, from the drop-down menu next to Add
Repository and click Add Repository.

Repeat steps 3-a to 3-d to add mirror and snapshots.
The following figure shows the Repository Groups page.

Installing and Configuring the Archiva Maven Repository Manager 4-9

Configuring Archiva

= Administration - Repository Groups

Repository Groups

E.ﬂ"i. d
§ TAY BV-group

http://host. example com :8092/archiva/repository/dev-grc

Repository

AVYL .
T.JLT mirrar
Mirror

http://host. example.com :8092/archiva/repository/T

Repository

5.1"-"1. d

Oracle Dev

http://host. example.com :8092/archiva/repository/c

Repository

s
; $*# snapshots
Archiva Managed Snapshot Repository

http://host example. com 8092/ archiva/repository/s

4. Repeat the repository and group creation steps 1-3 for each repository type: test,
qa, and prod.

4-10 Developing Applications Using Continuous Integration

More Information About Archiva

4.4.8 Creating a Deployment Capable User

To support deployment in your internal repository, you must add at least one user
with appropriate permissions:

1. Under Management, click User Management.

2. Click Create New User to add a user. Then, specify the required details like name,
email address, and password. After the user is added, you are directed to a Role
Administration dialog box for that user.

3. In the Role Administration dialog box, under Resource Roles, select the
Repository Manager role for Snapshot and Internal Repositories.

4. Click Submit to save your changes.

Note:

The Repository Manager role, while allowing you to upload artifacts, also
allows you to change the repository configuration.

To customize or change the role, in the User Roles section, add a new more
limited role and assign it to the appropriate users.

Typically, you want to create a new user for each individual with access to the
repository. For Hudson, to publish build output to the repository, each user who
accesses the repository should have their own user ID, and you should create an
additional user with deployment permissions.

After you have completed installation and configuration of Archiva (as detailed in this
chapter) and Maven (as detailed in Installing and Configuring Maven for Build
Automation and Dependency Management), populate your Archiva repository with
the Oracle-provided artifacts, as described in Populating the Maven Repository
Manager.

4.5 More Information About Archiva

The Archiva user guide provides much more information about Archiva.
The user guide for Archiva 1.3.6 is available at:

http://archiva. apache. org/ docs/ 1. 3. 6/ user gui de/

Other releases are available in the Archiva home page at:

http://archiva. apache. org

4.6 About Maven Repository Manager Administration

Administering the Maven Repository Manager involves understanding and using
snapshot options, setting retention options, and backing up Archiva

This section contains the following topics:
¢ Understanding Snapshot Cleanup
* About Advanced User Management

e Backing Up Archiva

Installing and Configuring the Archiva Maven Repository Manager 4-11

http://archiva.apache.org/docs/1.3.6/userguide/
http://archiva.apache.org

About Maven Repository Manager Administration

e About Archiva and Failover

4.6.1 Understanding Snapshot Cleanup

Archiva retains an instance of a particular snapshot-versioned artifact for every
successfully deployed job. When you request a snapshot artifact, the most recent
snapshot is obtained. Maven examines the associated metadata in the repository to
determine the correct copy to download. The Maven Repository Manager maintains
each copy with a unique timestamp and build number.

For example, the contents of the repository directory for an artifact should look similar
to the following:

maven- net adat a. xm
test-artifact-2.1-20110928. 112713-14.j ar
test-artifact-2.1-20110928. 112713- 14. pom
test-artifact-2.1-20110924. 121415- 13. pom
test-artifact-2.1-20110924. 121415-13.j ar

The corresponding repository metadata should look similar to the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<net adat a>
<groupl d>com ny. conpany</ gr oupl d>
<artifactld>test-artifact</artifactld>
<ver si on>2. 1- SNAPSHOT</ ver si on>
<ver si oni ng>
<snapshot >
<timestanp>20110928. 112713</ ti nest anp>
<bui | dNurber >14</ bui | dNunber >
</ snapshot >
<| ast Updat ed>20110928112718</ | ast Updat ed>
<snapshot Ver si ons>
<snapshot Ver si on>
<ext ensi on>j ar </ ext ensi on>
<val ue>2. 1-20110928. 112713- 14</ val ue>
<updat ed>20110928112713</ updat ed>
</ snapshot Ver si on>
<snapshot Ver si on>
<ext ensi on>ponk/ ext ensi on>
<val ue>2. 1-20110928. 112713- 14</ val ue>
<updat ed>20110928112713</ updat ed>
</ snapshot Ver si on>
<snapshot Ver si on>
<ext ensi on>j ar </ ext ensi on>
<val ue>2. 1-20110924. 121415- 13</ val ue>
<updat ed>20110924121415</ updat ed>
</ snapshot Ver si on>
<snapshot Ver si on>
<ext ensi on>ponk/ ext ensi on>
<val ue>2. 1-20110924. 121415- 13</ val ue>
<updat ed>20110924121415</ updat ed>
</ snapshot Ver si on>

</ snapshot Ver si ons>
</ versi oni ng>
</ et adat a>

The / met adat a/ ver si oni ng/ snapshot element contains the information for the
latest snapshot that is fetched when you request the snapshot artifact for t est -
artifact-2. 1- SNAPSHOT. You can directly request a specific snapshot of your

4-12 Developing Applications Using Continuous Integration

About Maven Repository Manager Administration

requirement by referencing timestamp and build numbers in your version, for
example, 2. 1. -20110928. 112713- 14.

Usually, only the latest snapshot is required for proper operation of continuous
integration builds. Retention of older instances of a snapshot is helpful for
troubleshooting purposes when the continuous integration server indicates that a
snapshot dependency change has broken the integration process. It is sometimes
useful to pull slightly older builds from the repository, after the last working build, to
identify the problem.

If no recurring cleanup operation occurs, snapshot instances can accumulate quite
rapidly over the lifetime of a project. To keep storage requirements of the repository
manager under control, delete older snapshots. Set options regarding retention policy
according to available storage and performance requirements.

4.6.1.1 Setting Retention Options

In a continuous integration environment, where builds are often triggered by checking
in artifacts, there is the potential for a large number of builds to be executed. Each of
these builds, at least the successful ones, results in some artifacts being published into
the repository. These can start consuming a lot of space, and it is important to manage
them.

Archiva provides two different options for automatically cleaning up old snapshots on
a per-repository basis:
¢ Repository Purge by Number of Days Older

Archiva automatically deletes snapshots older than the specified number of days.
Archiva always retains the most recent snapshot, no matter how old it is.

* Repository Purge by Retention Count

To use this method, you must set the pur ge- by- days- ol der value to 0. Archiva
retains only the most recent snapshot instances up to this value. Older instances
that exceed this count are deleted.

Both of these options can be viewed and changed by clicking Repositories under the
Administration menu, and then clicking Edit for the repository you are interested in.

4.6.1.2 About Deleted Released Snapshots

Once the corresponding version is released, a snapshot of that version is no longer
needed. Not only does this save space, but it also ensures that your dependency
references are up-to-date.

Any existing continuous integration builds that refer to the snapshot fail with a
missing dependency message after the dependency is deleted from the repository
manager. This failure reminds you that a dependency reference is stale and
encourages you to fix the problem.

4.6.2 About Advanced User Management

Archiva uses Apache Redback for its user management infrastructure. To use
Archiva's authentication and role management system with your organization's
existing user management system, you must provide additional configuration with
Redback. Redback has limited support for LDAP and other authentication systems.

Complete details are available in the following location:

http://archi va. apache. or g/ r edback/

Installing and Configuring the Archiva Maven Repository Manager 4-13

http://archiva.apache.org/redback/

About Maven Repository Manager Administration

4.6.3 Backing Up Archiva

You should provide a mechanism for backing up your Archiva file store and
configuration so that you can restore it if a file system failure or corruption occurs.

The choice of backup solutions may be affected by your failover method.

4.6.4 About Archiva and Failover

Although Archiva does not provide a failover solution, it is important for you to
maintain a failover system that stays current. Depending on your preference, you can
either set up an identically configured backup system with a separate file system that
is synchronized with the primary systems or configure both systems to use the same
shared file system.

For more information, see the Archiva page:

https://cw ki .apache. org/ confl uence/ di spl ay/ ARCH VA/ H gh
+Avai |l abi | i ty+Archi va

4-14 Developing Applications Using Continuous Integration

https://cwiki.apache.org/confluence/display/ARCHIVA/High+Availability+Archiva
https://cwiki.apache.org/confluence/display/ARCHIVA/High+Availability+Archiva

5

Installing and Configuring Maven for Build
Automation and Dependency Management

Maven is a build management tool that is central to project build tasks such as
compilation, packaging, and artifact management. Maven uses a strict XML-based rule
set to promote consistency while maintaining flexibility.Because most Java-centric
continuous integration systems integrate well with Maven, it is a good choice for an
underlying build system.

This chapter describes how to install and configure Maven.
Topics:

e Setting Up the Maven Distribution

¢ Customizing Maven Settings

® Populating the Maven Repository Manager

5.1 Setting Up the Maven Distribution

A distribution of Maven 3.2.5 is included with Oracle Fusion Middleware.

After you install Oracle WebLogic Server, you can find Maven in your Oracle home in
the following location:

ORACLE_HOWE or acl e_comon/ nodul es/ or g. apache. maven_3. 2.5

This is a copy of the standard Maven 3.2.5 release, without any modifications.

Alternatively, you can download and install your own copy of Maven from the Maven
website:

http:// maven. apache. org
Oracle Fusion Middleware supports Maven 3.0.5 or higher.

After installation, add Maven to your operating system's PATH environment variable:

e On Linux:

You must update your shell startup script, your . profil e or. bash_profile,to
update the path.

For example, if you have installed Oracle WebLogic Server in / u01/ f mmhone and
you are using the bash shell, then you must add the following to the PATH
environment variable:

export M2_HOVE=/ u01/f mwhone/ or acl e_comon/ modul es/ or g. apache. maven_3. 2. 5
export PATH=${ M2_HOVE}/ bi n: $PATH

You also need to set the JAVA_HOME environment variable to point to your JDK
installation. For example:

Installing and Configuring Maven for Build Automation and Dependency Management 5-1

http://maven.apache.org

Customizing Maven Settings

export JAVA HOVE=/ u01/j dkl.7.0_45

¢ On Windows:

Edit your PATH environment variable and add the correct path to Maven at the
beginning of the PATH environment variable.

For example, if you have installed WebLogic Server in ¢c: \ f mmvhone, then you
must add the following:

C:\ f mvhone\ or acl e_conmmon\ modul es\ or g. apache. maven_3. 2.5\ bin

You also need to set the JAVA_HOME environment variable to point to your JDK
installation.

5.2 Customizing Maven Settings

You can create a Maven settings file to specify proxy servers, servers, and mirrors.

You must create a Maven settings file if:
* You are working behind a firewall or proxy server.
* Your organization has its own internal Maven Repository Manager.

* You plan to access the Oracle Maven Repository.

If you have installed Maven for the first time, either as part of the Oracle WebLogic
Server installation, or by downloading it from the Maven website, you will not have a
settings file yet. You must create it, naming it settings.xml

The following is an example of a Maven settings file:

<settings>
<pr oxi es>
<proxy>
<active>true</active>
<pr ot ocol >ht t p</ prot ocol >
<host >pr oxy. nyconpany. conx/ host >
<port >8080</ port >
<nonPr oxyHost s>myconpany. com</ nonPr oxyHost s>
</ proxy>
</ proxi es>
<servers>
<server>
<i d>maven. nyconpany. conx/ i d>
<user name>me@yconpany. conx/ user name>
<passwor d>{ COQLCE6DUBG: ¢ S5P=} </ passwor d>
</ server>
</ servers>
<mrrors>
<mrror>
<i d>ar chiva</id>
<nane>I nternal Archiva Mrror of Central </ name>
<url >http://archiva. nyconpany. coni repositories/internal </ url>
<mrrorCf >central </mrrorCf >
</mrror>
</mrrors>

</settings>

This example shows three common configuration settings that you may need to use:

5-2 Developing Applications Using Continuous Integration

Populating the Maven Repository Manager

¢ Proxy: Enables you to communicate with Maven about the HTTP proxy server that
is required to access Maven repositories on the Internet.

® Servers: Enables you to communicate with Maven about your credentials for the
Maven repository, so that you do not have to enter them every time you want to
access the repository.

® Mirrors: Informs Maven that instead of trying to access the Maven central
repository directly, it should use your internal Maven repository manager as a
mirror (cache) of Maven's central repository.

If you are not familiar with these terms, review the introduction in Introduction to
Continuous Integration. For more information about available Maven settings, see the
Maven documentation at:

http:// maven. apache. or g/ settings. htn

The Maven settings file, set t i ngs. xm , is usually kept in the . n2 directory inside
your home directory. However, if you want to point Maven to a different location, see
the Maven documentation.

If your user name is bob, then the directory path should look similar to the following;:

(Li nux) /homel/ bob/ . n2/settings.xn
(Wndows) C:\Users\bob\.n\settings.xm

5.3 Populating the Maven Repository Manager

After you have configured your Maven Repository Manager, for example, you set up
Archiva, you populate it with Oracle artifacts.

Setting up Archiva is described in Installing and Configuring the Archiva Maven
Repository Manager.

A Maven Synhronization plug-in allows you to populate a local or shared Maven
repository from an Oracle home. When you install a Fusion Middleware 12c product,
the Maven archetypes, plug-ins, and POMs are installed with the product so that the
Synchronization plug-in can find them.

This section contains the following topics:

® Introduction to the Maven Synchronization Plug-In

¢ Installing the Oracle Maven Synchronization Plug-In

® Running the Oracle Maven Synchronization Plug-In

* Replacing Artifacts

¢ Populating Your Maven Repository

¢ Running the Push Goal on an Existing Maven Repository
* Things to Know About Patching

¢ Considerations for Archetype Catalogs

* Example settings.xml file

¢ Deploying a Single Artifact

Installing and Configuring Maven for Build Automation and Dependency Management 5-3

http://maven.apache.org/settings.html

Populating the Maven Repository Manager

5.3.1 Introduction to the Maven Synchronization Plug-In

Oracle Fusion Middleware 12c provides a Maven Synchronization plug-in that
simplifies the process of setting up repositories and completely eliminates the need to
know what patches are installed in a particular environment. This plug-in enables you
to populate a Maven repository from a given Oracle home. After you patch your
Oracle home, run this plug-in to ensure that your Maven repository matches Oracle
home. This ensures that your builds use correct versions of all artifacts in that
particular environment.

The Oracle Maven Synchronization plug-in is included in the Oracle WebLogic Server,
Oracle Coherence and Oracle JDeveloper installations. To use the plug-in, you must
specify the location of the Oracle home and the location of the Maven repository. The
Maven repository can be specified using either a file system path or a URL. The plug-
in checks for all Maven artifacts in the Oracle home, ensures that all artifacts are
installed in the specified Maven repository, and that the versions match exactly. This
means that the version numbers and the files are exactly same at the binary level,
ensuring that all patched files reflect accurately in the Maven repository.

Oracle homes in 12¢ contain maven directories which contain Maven Project Object
Models (POMs) for artifacts provided by Oracle, archetypes for creating projects, and
Maven plug-ins provided by Oracle, for executing various build operations.

5.3.2 Installing the Oracle Maven Synchronization Plug-In

Before you start using the Oracle Maven Synchronization plug-in, you must install it
into your Maven repository. You can install it into your local repository on your
computer, or you can deploy it into your shared internal repository, if you have one.

The plug-in is located in your Oracle WebLogic Server 12c home and consists of two
files:

* The Maven Project Object Model (POM) file, which describes the plug-in. It is
located at:

ORACLE_HOVE/ or acl e_common/ pl ugi ns/ maven/ con or acl ¢/ maven/ or acl e- maven-sync/ 12. 2. 1/
oracl e-maven- sync-12. 2. 1. pom

¢ The JAR file, which contains the plug-in. It is located at:

ORACLE_HOVE/ or acl e_common/ pl ugi ns/ maven/ coni or acl e/ maven/ or acl e- maven-sync/ 12. 2. 1/
oracl e-maven-sync-12.2.1.jar

To install and deploy the plug-in:

1. To install the plug-in into your local Maven repository, run the following
command from the ORACLE_HOVE/ or acl e_common/ pl ugi ns/ maven/ com
or acl e/ maven/ or acl e- maven-sync/ 12. 2. 1 directory:

m/n install:install-file -DponFile=oracl e-maven-sync-12.2. 1. pom - Dfi | e=or acl e-
maven-sync-12.2. 1. ar

2. To deploy the plug-in, use one of the following methods:

¢ The simplest way deploy the plug-in into a shared internal repository is to use
the web user interface provided by your Maven Repository Manager to upload
the JAR file into the repository.

* An alternative method is to use the deploy plug-in, which you can do by using a
command like the following from the ORACLE_HOVE/ or acl e_conmon/

5-4 Developing Applications Using Continuous Integration

Populating the Maven Repository Manager

pl ugi ns/ maven/ cont or acl e/ maven/ or acl e- maven-sync/ 12. 2. 1
directory:

mvn depl oy: depl oy-file -DponFil e=oracl e- maven-sync-12.2. 1. pom - Df i | e=or acl e-
maven-sync-12.2. 1. ar
-Durl =http://servernane/ archival/repositories/internal -Drepositoryld=internal

3. To use the deploy plug-in, you must define the repository in your Maven
settings.xml file and define the credentials if anonymous publishing is not allowed.

For information about this command, refer to the Maven documentation at:
http:// maven. apache. or g/ pl ugi ns/ maven- depl oy- pl ugi n/ depl oy-
file-mojo.htm

If you would like to use the shorter name for the Oracle Maven Synchronization plug-
in, so that you do not have to provide the full coordinates when using it, add an entry
to your Maven settings.xml as follows:

<pl ugi nG oups>
<pl ugi nG oup>com or acl e. maven</ pl ugi nG oup>

</ pl ugi nG oups>

This allows you to refer to the plug-in using the name or acl e- sync.

To configure your Maven installation and download, and use the plug-in from the
Oracle Maven Repository, you must register for access in the Oracle Public Maven
Repository and add a server entry to your Maven settings.xml file, as described in
About the Oracle Maven Repository.

5.3.3 Running the Oracle Maven Synchronization Plug-In

The Oracle Maven Synchronization plug-in supports a single push goal used to
populate a repository.

To obtain usage and parameter descriptions, invoke the help:describe goal by running
the following command:

mvn hel p: descri be - Dpl ugi n=com or acl e. maven: or acl e- maven- sync - Ddet ai |

This output shows the parameters that are available for the plug-in's push goal. Table
5-1 describes the parameters.

Table 5-1 Push Goal Parameters and Description
|

Parameter Description

serverld A pointer to the server entry in your Maven settings.xml file. This is
required only if you intend to deploy to a remote repository. The
settings.xml should provide the remote artifact repository's
deployment information, such as URL, user name, and password.

oracl eHone The path to the Oracle home from which you want to populate the
Maven repository.

Installing and Configuring Maven for Build Automation and Dependency Management 5-5

http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html

Populating the Maven Repository Manager

Table 5-1 (Cont.) Push Goal Parameters and Description
|

Parameter Description

testingOnly A parameter to control whether the plug-in attempts to publish the
artifacts to the repository.

If you set this to t r ue, which is the default value, then the push goal
finds all of your POM files and prints out details of what it would have
been done if this is set to f al se. However, it does not publish any
artifacts or make any change to the system.

fail OnError If you set this property to f al se and the plug-in fails to process a
resource, it continues to process all other resources. Failures are logged
as warnings, but the process completes successfully.

If you set this property to t r ue, when it encounters the first problem,
the plug-in immediately exits with an error.This is the default.

overwriteParent If you set this property to t r ue, the plug-in overwrites POM artifacts
with ancestry to oracle-common if they exist in the target repository.
The default value of false prevents automatic overwrite of customized
POM contents. If any such POMs are encountered during plug-in
execution, an error is thrown and handled according to the failOnError
flag value. To carry over changes, save the existing POMs, run the
push goal with overwriteParent=true, and manually transfer the
changes to the newly pushed POMs.

pushDuplicates If you set this property to t r ue, the plug-in pushes all duplicate
locations. That is, if multiple POMs with different Maven coordinates
(GAV) are assigned to the same location path, the plug-in pushes them
all to the destination repository.

5.3.4 Replacing Artifacts

Some Maven Repository Managers have a setting that controls whether you can
replace an existing artifact in the repository. If your Maven Repository Manager has
such a setting, you must ensure that you have set it correctly so that the Oracle Maven
Synchronization plug-in is able to update the artifacts in your repository.

For Archiva:
1. From the Administration menu, select Repositories.
2. Click Edit to change the setting of the repository you want to change.

If you are using Archiva, you must deselect the Block Re-deployment of Released
Artifacts option in the Managed Repository settings.

Other Maven Repository Managers have similar settings. If you are using a different
tool, consult the documentation for that tool to find out how to change this setting.

5.3.5 Populating Your Maven Repository

To populate your repository, you must use the push goal. You can specify the
parameters given in Table 5-1 on the command line or in your Project Object Model
file.

5-6 Developing Applications Using Continuous Integration

Populating the Maven Repository Manager

This section contains the following topics:

About Running the Push Goal
Populating a Local Repository

Populating a Remote Repository

5.3.5.1 About Running the Push Goal

When you run the push goal, it takes the following actions:

Checks the Oracle home you have provided and makes a list of all of the Maven
artifacts inside that Oracle home. This is done by looking for Project Object Model
files in the ORACLE_HOME/ or acl e_conmon/ pl ugi ns/ maven dependencies
directory and its subdirectories, recursively, and in the ORACLE_HOVE/
PRODUCT_HOME/ pl ugi ns/ maven directory and its subdirectories recursively for
each PRODUCT _HOMVE that exists in the ORACLE_HOMVE.

Checks if the JAR file referred to by each Project Object Model file is available in
the Oracle home.

Calculates a SHA1 checksum for the JAR file.

Attempts to publish the JAR, Project Object Model, and SHA1 files to the repository
that you have provided.

The following types of Maven artifacts are installed into your repository:

Maven dependencies provided by Oracle, which include the following:

Client API classes

Compilation, packaging, and deployment utilities, for example, appc and W st

Component JARs that must be embedded in the application

Client-side runtime classes, for example, t3 and JAX-WS client runtimes

Maven plug-ins provided by Oracle that handle compilation, packaging, and
deployment

Maven archetypes provided by Oracle that provide project templates

5.3.5.2 Populating a Local Repository

You need to populate a local repository:

1.

To populate a local repository, you only need to specify or acl eHonre and
t esti ngOnl y=f al se. For example:

m/n com oracl e. maven: or acl e- maven- sync: push
- Dor acl e- maven- sync. or acl eHone=/ pat h/ t o/ or acl eHone
-DtestingOnl y=fal se

The | ocal Reposi t ory element in your settings.xml file indicates the location of
your local Maven repository. If you exclude the | ocal Reposi t ory element in
settings.xml, the default location is in the ${ HOME} / . R/ r eposi t or y directory.

If you want to override the | ocal Reposi t ory value, then you must specify the
override location on the command line as a Maven option. For example:

Installing and Configuring Maven for Build Automation and Dependency Management 5-7

Populating the Maven Repository Manager

m/n com oracl e. maven: or acl e- maven- sync: push
- Dor acl eHone=/ pat h/ t o/ or acl eHone
-Dmaven. repo. | ocal =/ al ter/nat e/ pat h

2. To specify the parameters in your Project Object Model file, you must add a plug-in
entry similar to the following:

<pl ugi n>
<gr oupl d>com or acl e. maven</ gr oupl d>
<artifactld>oracl e-maven-sync</artifact!ld>
<version>12. 2. 1- 0- 0</ ver si on>
<configuration>
<or acl eHorre>/ pat h/ t o/ or acl eHome</ or acl eHone>
<test Onl y>f al se</test Onl y>
</ configuration>
</ pl ugi n>

3. After adding the plug-in, execute Maven by running the following command:

m/n com oracl e. maven: or acl e- maven- sync: push

5.3.5.3 Populating a Remote Repository

To populate a remote repository, you must specify ser ver | d and or acl eHore on
the command-line interface or in the plug-in configuration. You must also have a
repository configuration in your settings.xml file that matches the ser ver | d you
provide to the plug-in. If authentication is required for deployment, you must also add
a server entry to your Maven settings.xml file.

For example:

m/n com oracl e. maven: or acl e- maven- sync: push
- Dor acl eHone=/ pat h/ t o/ or acl eHone
- Dserver | d=i nt ernal

The corresponding Maven settings.xml file with authentication details looks similar to
the following:

<profiles>
<profile>
<i d>def aul t </i d>
<repositories>
<repository>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>f ai | </ checksunPol i cy>
</ snapshot s>
<i d>i nternal </id>
<nanme>Team | nternal Reposi t ory</name>
<url >http://sone. host/maven/ repo/internal </ url>
<l ayout >def aul t </ | ayout >
</repository>
</repositories>
</profile>
</profiles>

5-8 Developing Applications Using Continuous Integration

Populating the Maven Repository Manager

<server>
<i d>i nternal </id>
<user name>depl oyer </ user nane>
<passwor d>wel conel</ passwor d>
</ server>

<activeProfiles>
<activeProfil e>defaul t</activeProfile>
</activeProfiles>

You must define the target repository in a profile, and activate that profile using the
activeProfiles tag as shown in the preceding example.

Note:

You should specify an encrypted password in the server section. For details on
how to encrypt the server passwords, see:

http:// maven. apache. or g/ gui des/ m ni / gui de-
encryption. ht M #How t o_encrypt _server_passwords

To specify the parameters in your Project Object Model file, you must add a plug-in
entry similar to the following:

<pl ugi n>
<gr oupl d>com or acl e. maven</ gr oupl d>
<artifactld>oracl e-maven-sync</artifact!ld>
<version>12. 2. 1- 0- 0</ ver si on>
<configuration>
<server | d>i nternal </serverld>
<or acl eHome>/ pat h/ t o/ or acl eHone</ or acl eHore>
<t est Onl y>f al se</test Onl y>
</ configuration>
</ pl ugi n>

After adding the plug-in, execute Maven by running the following command:

m/n com oracl e. maven: or acl e- maven- sync: push

After you have populated the repository you may want to perform some operations
on the repository manager, such as update indexes or update the archetype catalog.
Refer to the documentation for the repository manager to check if any such operations
are necessary or recommended.

5.3.6 Running the Push Goal on an Existing Maven Repository

When you run the push goal against a Maven repository that already has Oracle
artifacts in it, the Oracle Maven Synchronization plug-in detects that you have existing
Parent POMs in the repository. It does not overwrite these Parent POMs, in case you
have modified them, for example, by adding your own settings to them. Instead, it
prints a warning message. If you want to overwrite the Parent POMs, you need to
specify the extra parameter - Doverri t ePar ent s=t r ue on the push goal.

5.3.7 Things to Know About Patching

Patching is the practice of updating a system with minor changes, usually to fix bugs
that have been identified after the software goes into production. Oracle Fusion

Installing and Configuring Maven for Build Automation and Dependency Management 5-9

http://maven.apache.org/guides/mini/guide-encryption.html#How_to_encrypt_server_passwords
http://maven.apache.org/guides/mini/guide-encryption.html#How_to_encrypt_server_passwords

Populating the Maven Repository Manager

Middleware uses the OPatch utility to manage application of patches to installed
software in the Oracle home. When you use OPatch to apply a patch, the version
number of the installed software may not change.

Maven uses a different approach to patching which assumes that released software
will never be changed. When a patch is necessary, a new version of the artifact, with a
new version number, is created and distributed as the patch.

This difference creates an issue when you use Maven to develop applications in an
Oracle Fusion Middleware environment. Oracle Fusion Middleware provides a
mechanism to address this issue.

5.3.7.1 Oracle's Approach to Patching

If any problems are found after a release of Oracle Fusion Middleware (for example,
12.2.1) into production, a one-off patch is created to fix that problem. Between any two
releases, for example 12.2.1 and 12.2.1, a number of these patches are released. You can
apply many combinations of these patches, including all or none of these patches.

This approach gives a great deal of flexibility and you can apply only the patches that
you need, and ignore the rest. However, it can create an issue when you are using
Maven. Ensure that the artifacts you are using in your build system are the exact same
(potentially patched) versions that are used in the target environment.

The complications arises when you have a number of environments, like test, QA, SIT,
and production, which are likely to have different versions (or patches) installed.

Oracle recommends that, in such a situation, you set up one Maven repository for each
environment that you want to target. For example, a Maven test repository that
contains artifacts that matches the versions and patches installed in the test
environment and a Maven QA repository that contains artifacts that match the
versions and patches installed in the QA environment.

5.3.7.2 Run the Oracle Maven Synchronization Plug-In Push Goal After Patching

After you patch your Oracle home, run this plug-in to ensure that your Maven
repository matches the Oracle home. This ensures that your builds use correct versions
for all artifacts in that particular environment. See Running the Oracle Maven
Synchronization Plug-In.

5.3.8 Considerations for Archetype Catalogs

By running the Oracle Maven Synchronization plug-in's push goal, you may have
installed new Maven archetypes into your Maven repository. You might need to run a
command to rebuild the index of archetypes. Some Maven repository managers do
this automatically.

To rebuild your local archetype catalog, execute a command similar to the following;:

mvn archetype: crawl - Dcat al og=$HOVE/ . 2/ ar chet ype- cat al og. xnl

5.3.9 Example settings.xml file

This example settings.xml file provides a template for Maven integration with the rest
of the continuous integration system described in this book. It provides configuration
to support central Archiva repository interaction and Hudson continuous integration
server integration, as described in Installing and Configuring the Archiva Maven
Repository Manager and From Build Automation to Continuous Integration . You
must change values, such as URLs and passwords, to match your system's values:

5-10 Developing Applications Using Continuous Integration

Populating the Maven Repository Manager

<settings>
<profiles>
<profile>
<i d>defaul t</id>
<repositories>
<repository>
<i d>dev- group</i d>
<name>Dev G oup</ nane>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http: // SERVER: PORT/ ar chi va/ reposi t ory/ dev- group</url >
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>dev</i d>
<nane>Dev</ nane>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http: // SERVER PORT/ ar chi val reposi t ory/ dev</url >
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>prod- group</i d>
<name>Prod G oup</ name>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http: // SERVER PORT/ ar chi va/ reposi t ory/ prod- gr oup</ur| >
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>prod</id>
<nane>Pr od</ nane>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>

Installing and Configuring Maven for Build Automation and Dependency Management 5-11

Populating the Maven Repository Manager

<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http:// SERVER PORT/ ar chi va/ reposi t ory/ prod</url >
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>qga- group</i d>
<name>QA G oup</ nane>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url| >htt p: // SERVER: PORT/ ar chi val reposi t ory/ ga- gr oup</ ur| >
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>ga</id>
<nane>QA</ nane>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http:// SERVER PORT/ ar chi va/ reposi t ory/ qa</ url >
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>t est-group</id>
<name>Test G oup</name>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http:// SERVER PORT/ ar chi va/ reposi tory/ test - group</url>
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<id>test</id>
<nane>Test </ nane>
<rel eases>
<enabl ed>t r ue</ enabl ed>

5-12 Developing Applications Using Continuous Integration

Populating the Maven Repository Manager

<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http:// SERVER PORT/ ar chi va/ repository/test</url>
<l ayout >def aul t </ | ayout >
</repository>
<repository>
<i d>ar chi va- snapshot s</i d>
<name>Ar chi va Snapshot s</ nane>
<rel eases>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >http: // SERVER: PORT/ ar chi va/ reposi t ory/ snapshot s</ url >
<l ayout >def aul t </ | ayout >
</repository>
</repositories>

</profile>
<[profiles>
<servers>
<server>

<i d>dev</id>
<user name>hudson</ user name>
<passwor d>PASSWORD</ passwor d>
</ server>
<server>
<i d>dev- group</i d>
<user name>hudson</ user name>
<passwor d>PASSWORD</ passwor d>
</ server>
<server>
<i d>ar chi va- snapshot s</i d>
<user name>hudson</ user name>
<passwor d>PASSWORD</ passwor d>
</ server>
</ servers>
<mirrors>
<mrror>
<id>dev-mrror</id>
<name>Al | el se</ nane>
<url >http:// SERVER PORT/ ar chi va/ reposi t ory/ dev- gr oup</ ur| >
<mirrorOF>*</mrrorf >
</mrror>
</mrrors>
<activeProfiles>
<activeProfile>defaul t</activeProfile>
</ activeProfiles>
</settings>

Installing and Configuring Maven for Build Automation and Dependency Management 5-13

Populating the Maven Repository Manager

5.3.10 Deploying a Single Artifact

You can use the Maven deploy plug-in to deploy an artifact (or artifacts) and Project
Object Module to the remote artifact repository.

For example, run the following command to deploy to the ar chi va-r el eases
repository, as defined in the sample settings.xml file:

m/n depl oy: depl oy-file
-Dfile=/path/toloracl e-maven-sync-12.2.1.jar
-Drepositoryl d=archi va-rel eases
- DponFi | e=/ pat h/ t o/ or acl e- maven- sync- 12. 2. 1. pom
-Durl =http://server:port/archivalrepository/internal

5-14 Developing Applications Using Continuous Integration

6

Configuring the Oracle Maven Repository

The Oracle Maven Repository contains artifacts provided by Oracle that you may
require to compile, test, package, perform integration testing, or deploy reapplications.
Learn how to access and configure Oracle Maven Repository.

Topics:

¢ Accessing the Oracle Maven Repository

e Artifacts Provided

* Adding the Oracle Maven Repository to Your Project POM
¢ Configure Maven to Use a Compatible HTTP Wagon

¢ Configuring the HTTP Wagon

¢ Considerations for Using the Oracle Maven Repository with Maven Without a
POM

® Accessing the Oracle Maven Repository from an Automated Build Tool

6.1 Accessing the Oracle Maven Repository

To access the Oracle Maven Repository, you must first register for access on Oracle
Technology Network.

The registration application is located at:
htt ps://ww. oracl e. conf webapps/ maven/ regi ster/license. htm

This application displays the license agreement for access to the Oracle Maven
Repository. You must accept the license agreement to access the Oracle Maven
Repository.

Every time you want to access the Oracle Maven Repository, you must provide the
user name and the password you used to log in to Oracle Technology Network (OTN).
Access is only provided over HTTPS. You can store your credentials in the Maven
settings file so that you do not have to specify them manually every time. Oracle
recommends that you encrypt your password, using the utilities provided with
Maven.

To access the Oracle Maven Repository, you must use Maven 3.0.4 or later and make a
few modifications to your Maven settings and project POM, as described in Adding
the Oracle Maven Repository to Your Project POM, Configure Maven to Use a
Compatible HTTP Wagon, and Configuring the HTTP Wagon.

Note that due to changes made in Maven 3.1, some Maven plug-ins developed for
Maven 3.0.n may not work properly with Maven 3.1.n (or later). Oracle recommends
that you use the version of Maven recommended by your particular Oracle Fusion
Middleware release.

Configuring the Oracle Maven Repository 6-1

https://www.oracle.com/webapps/maven/register/license.html

Artifacts Provided

6.2 Artifacts Provided

Oracle Maven Repository provides only release-level artifacts, such as 12.1.2, 12.1.3,
and 12.2.1.

If a patch is required, please obtain the patch from Oracle Support, apply it to a local
Oracle Home installation, and use the Maven Synchronization plug-in to update your
local Maven repository.

6.3 Adding the Oracle Maven Repository to Your Project POM

You must add a repository definition to Maven.

Add a repository definition to your Maven settings.xml file or to your Maven Project
Object Model (POM) files, or both. The repository definition should look like the
following:

<repositories>
<repository>
<i d>maven. oracl e. conx/i d>
<rel eases>
<enabl ed>t r ue</ enabl ed>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
<url >https://maven. oracl e. conx/ url >
<l ayout >def aul t </ | ayout >
</repository>
</repositories>
<pl ugi nReposi tories>
<pl ugi nReposi t ory>
<i d>maven. oracl e. conx/i d>
<url >https://maven. oracl e. conx/ url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

6.4 Configure Maven to Use a Compatible HTTP Wagon

By default, Maven uses the wagon-http component to access remote repositories
including the Oracle Maven Repository.

Since the Oracle Maven Repository is protected by Oracle's Single Sign-On (550)
technology, the Oracle Maven Repository requires a version of the wagon-http
component that supports authentication with an enterprise-grade SSO solution. Prior
to wagon-http version 2.8, the wagon-http component did not support the necessary
configuration to be able to handle SSO-style authentication. As such, the Oracle Maven
Repository requires the use of wagon-http 2.8 (or later).

By default, Maven picks up the version of the wagon-http from the local Maven
installation. As of Maven 3.2.5, the wagon-http version included in the Maven
distribution is wagon-http version 2.8.

Users of older versions of Maven can configure Maven to use wagon-http version 2.8
by adding the wagon-http 2.8 version:

1. Download the wagon-http 2.8 shaded JAR file from Maven Central:

http://central.mven. org/ maven2/ or g/ apache/ maven/ wagon/ wagon- htt p/ 2. 8/
wagon- htt p- 2. 8- shaded. j ar

6-2 Developing Applications Using Continuous Integration

http://central.maven.org/maven2/org/apache/maven/wagon/wagon-http/2.8/wagon-http-2.8-shaded.jar
http://central.maven.org/maven2/org/apache/maven/wagon/wagon-http/2.8/wagon-http-2.8-shaded.jar

Configuring the HTTP Wagon

2. Move that JAR file to the following directory:

MAVEN_HOVE/ | i b ext /

6.5 Configuring the HTTP Wagon

The Maven settings.xml file requires additional settings to support the Oracle Maven
Repository and to configure the HTTP wagon.

Add the following <server> element to the <servers> section of the Maven
settings.xml:

<server>
<i d>maven. or acl e. conx/ i d>
<user name>user name</ user name>
<passwor d>passwor d</ passwor d>
<configuration>
<basi cAut hScope>
<host >ANY</ host >
<port >ANY</ port >
<real n>OAM 11g</real n»
</ basi cAut hScope>
<htt pConfi guration>
<all>
<par ans>
<property>
<name>http. protocol . al | owcircul ar-redirects</nane>
<val ue>%, t rue</ val ue>
</ property>
</ par ans>
<lall>
</ httpConfiguration>
</ confi guration>
</ server>

Replace the <username> and <password> entries with your OTN user name and
password. Oracle strongly recommends that you encrypt your password using the
standard Maven encryption mechanisms, as described in the following;:

htt p: // maven. apache. or g/ gui des/ ni ni / gui de-encryption. ht m

6.6 Considerations for Using the Oracle Maven Repository with Maven
Without a POM

When you invoke Maven from the command-line to run a plug-in goal directly,
Maven uses a standalone POM that does not use the repositories listed in the
settings.xml file unless they are part of a profile that is set to be "active by default".

For example, the typical way to generate a new project from an archetype is to invoke
the Maven's ar chet ype: gener at e goal from the command line directly without a

project POM in place. In order for this to work, the Oracle Maven Repository must be
declared within a profile that is active by default, as shown in the following example:

<profiles>
<profile>

<i d>mai n</ i d>

<activation>
<activeByDefaul t >true</activeByDefaul t>

</ activation>

<repositories>
<repository>

Configuring the Oracle Maven Repository 6-3

Accessing the Oracle Maven Repository from an Automated Build Tool

<i d>maven. or acl e. conx/i d>
<url >https://maven. oracl e. conx/ url >
<l ayout >def aul t </ | ayout >
<rel eases>
<enabl ed>t r ue</ enabl ed>
</rel eases>
</repository>
</repositories>
</profile>
</profiles>

6.7 Accessing the Oracle Maven Repository from an Automated Build
Tool

You can access the Oracle Maven Repository from an automated build tool.

To access the Oracle Maven Repository from an automated build tool, such as Hudson
Continuous Integration server, you may wish to encrypt your password and store it in
your Maven settings-security.xml file.

6-4 Developing Applications Using Continuous Integration

v

Installing and Configuring Hudson for

Continuous Integration

Hudson is a popular continuous integration server product. It enables you to define
build jobs and manages the execution of those jobs for you. If necessary, it has the
ability to scale up to a farm of build servers.

This chapter describes how to install and configure Hudson to automate the build
process and how to integrate Hudson with Maven.

Topics:

Prerequisites for Installing and Configuring Hudson
Downloading Hudson

Installing Hudson

Configuring the HTTP Port

Starting Hudson

Configuring Maven After Startup

More Information About Hudson

7.1 Prerequisites for Installing and Configuring Hudson

Before you install Hudson, you must meet the prerequistes.

Ensure that you have the following components of the continuous integration system
configured before you begin installing Hudson:

Subversion server configured and running, as directed in Installing and
Configuring Subversion for Version Control.

Archiva configured and running as directed in Installing and Configuring the
Archiva Maven Repository Manager, which implies that you have an Oracle Fusion
Middleware product installed in an Oracle home and have run the Oracle Maven
Synchronization plug-in to populate Archiva.

¢ JDK 1.6 or higher installed on the Hudson host.

Maven 3 installed on the Hudson host.

7.2 Downloading Hudson

You can download Hudson either as a WAR file or as Linux RPMs.

The latest production version of Hudson can be downloaded directly from the
following location:

Installing and Configuring Hudson for Continuous Integration 7-1

Installing Hudson

http://hudson-ci.org/

Hudson is distributed in two distinct versions:

¢ WAR file, which can either run as standalone or can be added to an existing
application server installation.

¢ Linux RPMs compiled for specific operating systems. Package management
support in the form of appropriate repositories are available to install the RPM and
necessary dependencies.

This document focuses on Oracle Linux and Windows installation. Details for the
other operating systems may vary from these. For instructions on various types of
installations, see ht t p: / / wi ki . ecl i pse. or g/ Hudson-ci /I nstal | i ng_Hudson.

7.3 Installing Hudson

You can install Hudson on Linux or Windows.

¢ On Linux:
On a Linux computer supporting YUM, run the following commands:

sudo wget -O /etc/yumrepos. d/ hudson.repo http://hudson-ci.org/redhat/hudson.repo
sudo yum check- updat e
sudo yuminstall hudson

This installs Hudson as a daemon and creates a Hudson user. This user is used by
the server to perform build job-related activities.

¢ On Windows:

You must download the Hudson WAR distribution. Then, to install it:

1. Start Hudson in standalone mode by running the following command:

java -jar hudson-3.2.1. war
2. When Hudson starts:

a. Open the following URL in a web browser:

http://1ocal host: 8080

b. Navigate to Manage Hudson, then Install as Windows Service. This
enables you to configure Hudson as a standard Windows service.

For instructions, see

http://wki.eclipse.org/Hudson-ci/
I nstalling Hudson W ndows_Service

7.4 Configuring the HTTP Port

If you are using a single host for your artifact repository and continuous integration
server, you must change the HI'TP port used by Hudson.

To change the HTTP port:

e On Linux

This value is located in the / et ¢/ sysconfi g/ hudson directory with
HUDSON_PORT.

7-2 Developing Applications Using Continuous Integration

http://hudson-ci.org/
http://wiki.eclipse.org/Hudson-ci/Installing_Hudson
http://wiki.eclipse.org/Hudson-ci/Installing_Hudson_Windows_Service
http://wiki.eclipse.org/Hudson-ci/Installing_Hudson_Windows_Service

Starting Hudson

On Windows

This value is located in the ¢: \ ci r oot \ hudson\ et c\ sysconfi g\ hudson
directory.

7.5 Starting Hudson

You can start Hudson and monitor its logs.

To start Hudson:

On Linux

If you have installed Hudson as a service, you can start the application by running
the following command:

/etc/init.d/ hudson start

You can monitor start up by checking the logs in the following directory:

[var/ | og/ hudson/ hudson. | og
Run the following command to monitor logs:
tail -f /var/log/hudson/hudson. | og

On Windows

Start Hudson on Windows as a normal service:
1. Go to Control Panel.
2. Navigate to Administrative Tools, then Services.

3. Select the Hudson service and click Start.

Hudson logs are available in the following location:

HUDSON_HOWE/ | ogs

7.6 Configuring Maven After Startup

After you install Hudson, you must take several steps to configure Maven to work
with Hudson.

This section contains the following topics:

Starting Up Hudson for the First Time
Configuring the JDK

Specifying the Maven Home

Setting Up Maven for Use by Hudson
Installing Hudson Plug-Ins
Integrating the Repository

Monitoring Subversion

7.6.1 Starting Up Hudson for the First Time

The first time you start Hudson, go to the home page to complete the installation:

Installing and Configuring Hudson for Continuous Integration 7-3

Configuring Maven After Startup

3.

4.

Open a browser and go to htt p: / /| ocal host : 8080 (change the port if you
modified it during installation).

In the list of plug-ins that is presented, scroll down to find the Subversion, Maven
3 and Maven 3 SNAPSHOT Monitor options and select these options.

Scroll down to the bottom and click Install.

Click Finish to move to the Hudson home page.

The rest of the configuration in this section is continued from the Hudson home page
and assumes that you are logged in.

7.6.2 Configuring the JDK

You must configure the JDK that you intend to use for direct Java build
configurations. To configure:

1.

3.

From the Hudson home page, navigate to Manage Hudson, then Configure
System.

In the Configure System screen, scroll down to the JDK section and click Add JDK.
Deselect the option Install automatically and then enter a name, for example,
j dk1. 7. 0 and add the complete path of your installed JDK.

For example: / ci r oot / product _bi nari es/jdkl. 7. 0.

Scroll down to the bottom of the page and click Save.

7.6.3 Specifying the Maven Home

You must specify the Maven 3 location so that Hudson knows where Maven is
located. To do so:

4.

From the Hudson home page, navigate to Manage Hudson, then Configure
System.

On the Configure System screen, scroll down to the section Maven 3.

Click Add Maven, then deselect the option Install automatically and enter a name
and the path to the Maven installation, as shown in the following image:

Maven 3
Mawven 3 installations Mawven 3
Name Maven 3.0.4 (2]
MAVEN_HOME | /i o ot/apache-maven-3.0.4 ()]
Install automatically 'E'

Delete Maven 2
Add Maven 3

List of Mawven 2 installations on this system

Scroll down to the bottom of the page and click Save.

7-4 Developing Applications Using Continuous Integration

Configuring Maven After Startup

7.6.4 Setting Up Maven for Use by Hudson

To utilize Maven settings from Hudson, embed the settings.xml content into a settings
object in Hudson's global Maven configuration:

1. From the Hudson home page, navigate to Manage Hudson, then Maven 3
Configuration.

2. Click Add.

3. For Type, select SETTINGS.

Installing and Configuring Hudson for Continuous Integration 7-5

Configuring Maven After Startup

Documents
“Z Refresh | @Add| @Remwe|

1D Type

d3d95231-81a1-4232-53494-041c3b394c30

[=]
ID | 43d95231-81a1-4232-8494-041c3b394c30
TYPE | SETTINGS [«
Name | Global
Crescription
Attributes cpeaTED 2012-08-23T13:36:07.394-0700
CREATED_BY unknown
UPDATED 2012-08-23T13:42:26.501-0700
<gettings=>
=profiles=
<profile=

<id=default=</id=
<repositories=
<repository=
<id=archiva-releases</id=
<name=Archiva Releases</name=
<releases=
<enabled=true</enabled=
<updatePolicy=always</updatePolicy =
<checksumPolicy=warn-</checksumPolicy=
</releases=>
<snapshots=
<enabled=false=/enabled=
<updatePalicy=never=/updatePolicy=
<checksumPolicy=fail</checksumPolicy=
</esnapshots=
~url~httn: fflocalhost: 8092/ archiva/repository/internal </url=
Update| Revert rdefault</layout=

4. Provide a name and optional description.

5. Find the settings.xml on your file system (that you have configured in Installing
and Configuring Maven for Build Automation and Dependency Management). It is
located at/ $HOVE/ . 2/ set ti ngs. xm . Copy the contents into the large text field
at the bottom of the page..

7-6 Developing Applications Using Continuous Integration

Configuring Maven After Startup

6. Click Save.

Note:

Oracle recommends that you replace any localhost URL references in the
settings.xml with fully qualified domain names or IP addresses because
Hudson builds can eventually occur on non-local build hosts.

7.6.5 Installing Hudson Plug-Ins

Hudson jobs may require job-specific customizations of environment variables.
Because Hudson does not support this by default, you must install an additional plug-
in. To install the plug-in:

1. From the Hudson home page, navigate to Manage Hudson, then Manage Plugins.
2. Select Available.

3. Select Hudson Setenv Plugin.

4. Click Install.

5. After the installation completes, use the restart option in Hudson to enable the

plug-in.

7.6.6 Integrating the Repository

To configure automatic builds when changes are checked in, you must configure
Hudson to monitor the artifact repository for SNAPSHOT deployment changes. Such
changes trigger builds of affected components that have dependencies on the changed
artifacts. To configure Hudson to monitor the artifact repository:

1. From the Hudson home page, navigate to Manage Hudson, then System
Configuration.

2. In the main system configuration panel under System Configuration, select Maven
3 SNAPSHOT Monitor. Enter the path to Maven repository.

Maven 3 SNAPSHOT Monitor

Maven Repository URL http://localhost: 8092/ archiva/internal
User hudson
Pazsword

3. InInstalling and Configuring the Archiva Maven Repository Manager, you created
a continuous integration specific user for continuous integration server access to
the repository. Set the User and Password for the continuous integration user.

7.6.7 Monitoring Subversion

In addition to monitoring the artifact repository for updated dependencies, the
continuous integration server must constantly check the source control system for
updates and trigger project builds accordingly. Unlike repository monitoring, software
configuration management monitoring must be uniquely configured per build

Installing and Configuring Hudson for Continuous Integration 7-7

More Information About Hudson

configuration. As you create new build configurations, you must set the Subversion
location information for the related project. For more information, see Automating the
Build with Hudson.

Subversion support comes with the base Hudson distribution. Other source control
systems may require separate Hudson plug-in installation.

7.7 More Information About Hudson

This document is meant as a quick guide for starting and running Hudson and does
not provide extensive detail on Hudson operations.

You can find the primary source of the official documentation on Hudson in the
following location:

http://wi ki . hudson-ci . org/di spl ay/ HUDSON Use+Hudson

For new users, you can find introductory guides to Hudson in the following location:
http://wi ki.eclipse.org/Hudson-ci/Usi ng_Hudson

The Hudson book is located in the following location:

http://wi ki.eclipse.org/ The_Hudson_Book

7-8 Developing Applications Using Continuous Integration

http://wiki.hudson-ci.org/display/HUDSON/Use+Hudson
http://wiki.eclipse.org/Hudson-ci/Using_Hudson
http://wiki.eclipse.org/The_Hudson_Book

8

About Maven Version Numbers

In a Maven environment, it is very important to understand the use of version
numbers. A well thought out strategy can greatly simplify your dependency
management workload. This chapter presents important concepts about how version
numbers work in Maven in general, and also some specific details of how the Oracle-
supplied artifacts use version numbers and how you should use them when referring
to Oracle artifacts.

Topics:

e How Version Numbers Work in Maven

e About the SNAPSHOT Qualifier

¢ About Version Range References

e How Maven Version Numbers Are Used in Oracle Provided Artifacts

8.1 How Version Numbers Work in Maven

It is important to understand how Maven’s version numbers work.

Maven's versioning scheme uses the following standards:
* MajorVersion

* MinorVersion

¢ IncrementalVersion

e BuildNumber

e Qualifier

For example:

* MajorVersion: 2.0

* MinorVersion: 1.2.1

¢ IncrementalVersion: 1.2-SNAPSHOT
e BuildNumber: 1.4.2-12

e Qualifier: 1.2-beta-2

All versions with a qualifier are older than the same version without a qualifier
(release version).

For example:

1.2-beta-2 is older than 1.2.

About Maven Version Numbers 8-1

About the SNAPSHOT Qualifier

Identical versions with different qualifier fields are compared by using basic string
comparison.

For example:
1.2-beta-2 is newer than 1.2-alpha-6.

If you do not follow Maven versioning standards in your project versioning scheme,
then for version comparison, Maven interprets the entire version as a simple string.
Maven and its core plug-ins use version comparison for a number of tasks, most
importantly, the release process.

If you use a nonstandard versioning scheme, Maven release and version plug-in goals
might not yield the expected results. Because basic string comparison is performed on
nonstandard versions, version comparison calculates the order of versions incorrectly
in some cases.

For example, Maven arranges the version list in the following manner:

1.0.1.0
1.0.10.1
1.0.10.2
1.09.3

Version 1. 0. 9. 3 should come before 1. 0. 10. 1 and 1. 0. 10. 2, but the unexpected
fourth field (. 3) forced Maven to evaluate the version as a string.

An example of this effect on Maven is found in the Maven Versions plug-in. The
Maven Versions plug-in provides goals to check your project dependencies for
currency in a different ways. One useful goal is ver si ons: dependency- updat es-

r epor t . This goal examines a project's dependency hierarchy and reports which ones
have newer releases available. When you are coordinating a large release, this goal can
help you to find stale references in dependency configuration. If Maven incorrectly
identifies a newer release, then it is also reported incorrectly in the plug-in. Given the
preceding example sequence, if your current reference was 1. 0. 10. 2, then the plug-
in would report 1. 0. 9. 3 as a newer release.

Version resolution is also very important if you intend to use version ranges in your
dependency references. See About Version Range References for information about
version changes.

8.2 About the SNAPSHOT Qualifier

Maven treats the SNAPSHOT qualifier differently from all others. If a version number
is followed by -SNAPSHOT, then Maven considers it the "as-yet-unreleased" version
of the associated MajorVersion, MinorVersion, or IncrementalVersion.

In a continuous integration environment, the SNAPSHOT version plays a vital role in
keeping the integration build up-to-date while minimizing the amount of rebuilding
that is required for each integration step.

SNAPSHOT version references enable Maven to fetch the most recently deployed
instance of the SNAPSHOT dependency at a dependent project build time. Note that
the SNAPSHOT changes constantly. Whenever an agent deploys the artifact, it is
updated in the shared repository. The SNAPSHOT dependency is refetched on a
developer's machine or it is updated in every build. This ensures that dependencies
are updated and integrated with the latest changes without the need for changes to the
project dependency reference configuration.

8-2 Developing Applications Using Continuous Integration

About Version Range References

Usually, only the most recently deployed SNAPSHOT, for a particular version of an
artifact, is kept in the artifact repository. Although the repository can be configured to
maintain a rolling archive with a number of the most recent deployments of a given
artifact, the older instances are typically used only for troubleshooting purposes and
do not play a role in integration.

Continuous build servers that include the ability to define and execute a job based on a
Maven project, such as Hudson, can be configured to recognize when a SNAPSHOT
artifact is updated and then rebuild projects that have a dependency on the updated
artifact.

For example, a Hudson build configuration that maps to a Maven Project Object
Model has a SNAPSHOT dependency. Hudson periodically checks the artifact
repository for SNAPSHOT updates. When it detects the update of the project's
dependency, it triggers a new build of the project to ensure that integration is
performed with the most recent version of the dependency. If other projects have a
dependency on this project, they too are rebuilt with updated dependencies.

8.3 About Version Range References

Maven enables you to specify a range of versions that are acceptable to use as
dependencies.

Table 8-1 shows a range of version specifications:

Table 8-1 Version Range References

Range Meaning
(,1.0] x <= 1.0
1.0 It generally means 1.0 or a later version, if 1.0 is not available.

Various Maven plug-ins may interpret this differently, so it is
safer to use one of the other, more specific options.

[1.0] Exactly 1.0

[1.2,1.3] 12<=x<=13
[1.0,2.0) 1.0<=x<20

[1.5) x>=1.5

(,1.0],[1.2) x<=1.00rx>=1.2.

Multiple sets are separated by a comma.

(,1.1),(1.1) This excludes 1.1 if it is known not to work in combination with
the library.

When Maven encounters multiple matches for a version reference, it uses the highest
matching version. Generally, version references should be only as specific as required
so that Maven is free to choose a new version of dependencies where appropriate, but
knows when a specific version must be used. This enables Maven to choose the most
appropriate version in cases where a dependency is specified at different points in the
transitive dependency graph, with different versions. When a conflict like this occurs,
Maven chooses the highest version from all references.

Given the option to use version ranges, you may wonder if there is still utility in using
SNAPSHOT versions. Although you can achieve some of the same results by using a

About Maven Version Numbers 8-3

How Maven Version Numbers Are Used in Oracle Provided Artifacts

version range expression, a SNAPSHOT works better in a continuous build system for
the following reasons:

* Maven artifact repository managers deal with SNAPSHOTs more efficiently than
next version ranges. Because a single artifact can be deployed multiple times in a
day, the number of unique instances maintained by the repository can increase
very rapidly.

* Non-SNAPSHOT release versions are meant to be maintained indefinitely. If you
are constantly releasing a new version and incrementing the build number or
version, the storage requirements can quickly become unmanageable. Repository
managers are designed to discard older SNAPSHOTSs to make room for new
instances so the amount of storage required stays constant.

* SNAPSHOTs are also recognized by Maven and Maven's release process, which
affords you some benefits when performing a release build.

8.4 How Maven Version Numbers Are Used in Oracle Provided Artifacts

You should understand how Maven version numbers are used in Oracle provided
artifacts.

The following are important scenarios where Maven version numbers are used in
Oracle provided artifacts:

¢ In the Maven coordinates of the artifact, that is, in the pr oj ect . ver si on of the
artifact's POM, as described in About Version Numbers in Maven Coordinates

¢ In the dependency section of POMs to refer to other artifacts, as described in About
Version Number Ranges in Dependencies

8.4.1 About Version Numbers in Maven Coordinates

The version number of the artifact defined in the POM file is the same as the version
number of the released product, for example, 12.2.1.0.0, expressed using five digits, as
described in the following:

InXx. X. X-y-2z:

® X. X. X is the release version number, for example 12.2.1.

¢ vy is the PatchSet number, for example 0, 1, 2, 3, ...with no leading zeros.

® 7 is the Bundle Patch number, for example O, 1, 2, 3, ...with no leading zeros.

® The periods and hyphens are literals.

Note:

The version numbers of artifacts (as specified in pr oj ect . ver si on in the
POM) use a different format than version number ranges used in
dependencies (as specified in

proj ect. dependenci es. dependency. ver si on in the POM).

The release version number of Oracle-owned components do not change by a one-off
patch. The release version number changes with a release and always matches the
release, even if the component has not changed from the previous release.

8-4 Developing Applications Using Continuous Integration

How Maven Version Numbers Are Used in Oracle Provided Artifacts

The PatchSet (fourth position) changes when you apply a PatchSet. The Bundle Patch
(fifth position) changes when you apply a Bundle Patch, PatchSet Update, or
equivalent (the name of this type of patch varies from product to product).

Following are examples of valid version numbers:

12.2.1-0-0 12.2.1-1-0

0
12.2.1-0-1 12.2.1-1-1 1

12.2.1-2-
12.2.1-2-
12.2.1-0-10 12.2.1-1-1 12.2.1-2-1

8.4.2 About Version Number Ranges in Dependencies

The following are important scenarios where dependencies on Oracle-provided
Maven artifacts are specified:

* Inside the POM files of artifacts that are part of the Oracle product

¢ Inside POM files that you include in your own projects

Specify the version number range in both scenarios. This section describes how
version number ranges are specified in Oracle-provided artifacts and when you are
declaring a dependency on an Oracle-provided artifact.

When specifying dependencies on other artifacts, use the most specific correct syntax
to ensure that the definition does not allow an incorrect or unsuitable version of the
dependency to be used.

In[x.X.X,y.y.y):
® X. X. X is the release version number, for example 12.1.3
® y.y.Y is the next possible release version number, for example. 12.2.1

* Brackets, periods, commands and parenthesis are literals

An example of the correct way to specify a dependency is as follows:
12.1.3,12.2.1)

As Table 8-1 shows, the previous example means that the latest available version is
12.1.3 or greater, but less than 12.2.1.

The version number scheme used by Oracle-provided artifacts ensures correct sorting
of version numbers, for example, Maven resolves the following versions in the order
shown (from oldest to newest):

0-0, 12.1.2-0-1, 12.1.2-0-2, 12.1.2-0-10, 12.1.2-1-0, 12.1.2-1-1, 12.1.2-1-2,
0-0

12.1. 2-
12.1.2-1-10, 12.1.3-0-0 12.2.1-

If it is necessary to specify a dependency which relies on a certain PatchSet or Bundle
Patch, for example, when a new APl is introduced, you must include the fourth or
fourth and fifth digits respectively.

For example:

[12.1.2-2,12.1.3) depends on 12.1.2 with PatchSet 2
[12.1.2-2-5,12.1.3) depends on 12.1.2 with PatchSet 2 and Bundle Patch 5

About Maven Version Numbers 8-5

How Maven Version Numbers Are Used in Oracle Provided Artifacts

8-6 Developing Applications Using Continuous Integration

9

Customizing the Build Process with Maven

POM Inheritance

Oracle provides a set of common parent Project Object Models (POMs) to enable easy
customization of the build process for all projects targeted at a particular product,
runtime environment, or for all projects targeted at Oracle Fusion Middleware.

Each of the Oracle-provided Maven archetypes have their parent POM set to an
Oracle-provided common parent specific to the target runtime environment that the
archetype is for, such as WebLogic Server and Coherence. The common parent POMs,
one per product or target runtime environment, in turn have their parent POM set to
an Oracle Fusion Middleware common parent.

Topics:
¢ Inheritance of POMs and Archetypes

* Customizing the Build Process

9.1 Inheritance of POMs and Archetypes

The common POMs and Oracle-provided archetypes form the following inheritance
hierarchy:

¢ Provided by 12.1.2:

com oracl e. maven: or acl e- cormon: 12. 1. 2-0-0

- comoracl e. webl ogi c: W s-conmon: 12. 1. 2-0-0
- com oracl e. webl ogi c. ar chet ype: basi c- webapp: 12. 1. 2-0- 0
- com oracl e. webl ogi c. ar chet ype: basi c- webapp- ej b: 12. 1. 2-
- com oracl e. webl ogi c. ar chet ype: basi c- webservi ce: 12. 1. 2-
- com oracl e. webl ogi c. ar chet ype: basi c-mdb: 12. 1. 2-0-0

- com oracl e. coherence: gar - common: 12. 1. 2-0-0
- com oracl e. coher ence: maven- gar - ar chet ype: 12. 1. 2-0-0

0-0
0-0

* Provided by 12.1.3:

com oracl e. maven: oracl e-conmon: 12. 1. 3-0-0

- comoracl e. webl ogi c: W s-conmon: 12. 1. 3-0-0
- com oracl e. webl ogi c. ar chet ype: basi c- webapp: 12. 1. 3-0-0
- com oracl e. webl ogi c. ar chet ype: basi ¢c- webapp-ej b: 12. 1. 3-0-0
- com oracl e. webl ogi c. ar chet ype: basi c-webservi ce: 12. 1. 3-0-0
- com oracl e. webl ogi c. ar chet ype: basi c-ndb: 12. 1. 3-0-0

- comoracl e. coherence: gar- comon: 12. 1. 3-0-0
- com oracl e. coherence: maven- gar - ar chet ype: 12. 1. 3-0-0

- comoracl e. soa: sar-common: 12. 1. 3-0-0
- comoracl e. soa. archet ype: or acl e- soa-appl i cation: 12.1.3-0-0
- comoracl e. soa. archet ype: oracl e-soa-proj ect: 12.1.3-0-0

- comoracle. servicebus: project:12.1.3-0-0
- com oracl e. servi cebus: shar - proj ect - common: 12. 1. 3-0-0
- comoracl e. servi cebus. archet ype: oracl e- servi cebus-proj ect: 12.1. 3-0-0

Customizing the Build Process with Maven POM Inheritance 9-1

Customizing the Build Process

- comoracl e. servi cebus: shar-system common: 12. 1. 3-0-0
- mssing
- comoracl e. adf . archet ype: oracl e- adf f aces-ej b: 12. 1. 3-0-0

¢ Provided by 12.2.1:

com oracl e. maven: or acl e- cormon: 12. 2. 1-0-0

- comoracl e. webl ogi c: W s-conmon: 12. 2. 1-0-0
- com oracl e. webl ogi c. ar chet ype: basi c- webapp: 12. 2. 1-0- 0
- com oracl e. webl ogi c. ar chet ype: basi c- webapp- ej b: 12. 2. 1-
- com oracl e. webl ogi c. ar chet ype: basi c- webservi ce: 12. 2. 1-
- com oracl e. webl ogi c. ar chet ype: basi c-mdb: 12. 2. 1-0-0

- com oracl e. coherence: gar - common: 12. 2. 1-0-0
- com oracl e. coher ence: maven- gar - ar chet ype: 12. 2. 1-0-0

- comoracl e. soa: sar-conmon: 12. 2. 1-0-0
- comoracl e. soa. archet ype: or acl e- soa- appl i cation: 12. 2. 1-0-0
- comoracl e. soa. archet ype: oracl e- soa- proj ect: 12. 2. 1-0-0

- comoracle. servicebus: project:12.2.1-0-0
- com oracl e. servi cebus: shar- proj ect - common: 12. 2. 1-0-0
- comoracl e. servi cebus. ar chet ype: oracl e- servi cebus-proj ect:12.2.1-0-0
- comoracl e. servi cebus: shar-system common: 12. 2. 1-0-0

- mssing
- comoracl e. adf . archet ype: oracl e- adf f aces-ej b: 12. 2. 1-0-0

0-0
0-0

9.2 Customizing the Build Process

If you want to customize your build process, for example, setting some default
properties, setting up default settings for a particular plug-in, or defining Maven
profiles, then you can add your definitions to the appropriate parent POM.

For example, if you add definitions to com or acl e. webl ogi ¢c: W s- conmon:

12. 2. 1- 0- O, all projects associated with this parent are affected, which includes all
projects that you have created from the WebLogic Maven archetypes (unless you
modify their parents) and projects that you have created manually.

Doing this minimizes the number of settings needed in each project POM. For
example, if you are going to deploy all of builds to the same test server, then you can
provide the details for the test server by adding the appropriate build, plug-ins, and
plug-in section for com or acl e. webl ogi c: W s- maven- pl ugi n: 12. 2. 1-0- 0 as
shown in the following example of a customized parent WebLogic POM:

<project xmns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance"
Xsi : schemaLocation="http://mven. apache. org/ POM 4. 0.0 http:// mven. apache. or g/ xsd/

maven- 4. 0. 0. xsd">

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>com or acl e. webl ogi c. ar chet ype</ gr oupl d>
<artifactld>w s-common</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<packagi ng>ponx/ packagi ng>
<name>w s- conmon</ nane>
<parent >
<groupl d>com or acl e. maven</ gr oupl d>
<artifactld>oracl e-common</artifact!d>
<versi on>12. 2. 1- 0- 0</ ver si on>
</ parent >
<pbui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>w s-maven-plugi n</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>

9-2 Developing Applications Using Continuous Integration

Customizing the Build Process

<executions>
<execution>
<phase>pre-integration-test</phase>
<goal s>
<goal >depl oy</ goal >
</ goal s>
<configuration>
<user >webl ogi c</ user>
<passwor d>wel conel</ passwor d>
<verbose>t rue</ ver bose>
</ confi guration>
</ execution>
</ executions>
<configuration>
<ni ddl ewar eHone>/ hone/ or acl e/ f mvhone</ m ddl ewar eHorme>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Similarly, if you want to affect all projects targeted at any Oracle Fusion Middleware
runtime, place your customizations in com or acl e. maven: or acl e- cormon:
12.2.1-0-0.

If you are using a shared internal repository, then after you customize the parent
POMs, publish them into your shared Maven repository or repositories.

To see how these customizations are brought into your projects, you can use the
following command, from your project's directory, to see the full POM that will be
used to build your project:

mn hel p: ef fective-pom

If you want to define more than one set of shared properties in the parent POM, for
example, one set for your test environment, and one for your QA environment, Oracle
encourages you to explore the use of Maven profiles. For more information, see:

http://books. sonat ype. coml nvnr ef - book/ r ef erence/ i ndex. ht n

Profiles enable you to switch various settings on for a particular build by setting a
command-line argument, or based on the presence or absence of various properties in
the POM.

Customizing the Build Process with Maven POM Inheritance 9-3

http://books.sonatype.com/mvnref-book/reference/index.html

Customizing the Build Process

9-4 Developing Applications Using Continuous Integration

10

Building Java EE Projects for WebLogic
Server with Maven

You can use the WebLogic Maven archetypes to create, build, and deploy WebLogic
Server Java EE applications.

Topics:

¢ Introduction to Building a Java EE Project with Maven

* Using the Basic WebApp Maven Archetype

e Using the Basic WebApp with EJB Maven Archetype

* Using the Basic WebService Maven Archetype

e Using the Basic MDB Maven Archetype

10.1 Introduction to Building a Java EE Project with Maven
A Maven plug-in and four archetypes are provided for Oracle WebLogic Server.

Table 10-1 describes the Maven coordinates.

Table 10-1 Maven Coordinates with WebLogic Server

Artifact groupld artifactld version
WebLogic Server plug-in com or acl e. webl ogi c webl ogi c- 12.2.1-0
maven-plugin -0
Basic WebApp archetype com oracl e. webl ogi c. arch basi c-webapp 12.2.1-0
etype -0
WebApp with EJB com or acl e. webl ogi c. arch basi c- 12.2.1-0
archetype etype webapp-ej b -0
Basic MDB archetype com or acl e. webl ogi c. arch basi c-mdb 12.2.1-0
etype -0
Basic WebServices com or acl e. webl ogi c. arch basi c- 12.2.1-0
archetype etype webservi ce -0

As with Maven archetypes in general, the Oracle WebLogic Maven archetype provides
a set of starting points and examples for building your own applications.

10.2 Using the Basic WebApp Maven Archetype

To build a Java EE project using the basic WebApp Maven archetype, you create the
basic project, then customize, compile and package it. Then you deploy it and test it.

Building Java EE Projects for WebLogic Server with Maven 10-1

Using the Basic WebApp Maven Archetype

This section contains the following topics:

¢ Creating a Basic WebApp Project

* Customizing the Project Object Model File to Suit Your Environment

¢ Compiling Your Java EE Project

* Packaging Your Java EE Project

* Deploying Your Java EE Project to the WebLogic Server Using Maven

* Deploying Your Java EE Project to the WebLogic Server Using Different Options

¢ Testing Your Basic WebApp Project

10.2.1 Creating a Basic WebApp Project

To create a new Basic WebApp project using the Maven archetype, you must issue a
command similar to the following:

nmvn ar chet ype: gener at e
- Dar chet ypeG oupl d=com or acl e. webl ogi c. ar chet ype
-DarchetypeArti fact | d=basi c- webapp
- Dar chet ypeVer si on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact|d=ny-basi c- webapp- proj ect
- Dver si on=1. 0- SNAPSHOT

This command runs Maven's ar chet ype: gener at e goal which enables you to
create a new project from an archetype. Table 10-2 describes the parameters.

Table 10-2 Parameters for the Basic WebApp Project
|

Parameter Purpose

ar chet ypeG oupl d The group ID of the archetype that you want to use to create the
new project. This must be com or acl e. webl ogi ¢ as shown in
the preceding example.

archetypeArtifact! The archetype artifact ID of the archetype that you want to use to
d create the new project. This must be basi c- webapp as shown in
the preceding example.

ar chet ypeVer si on The version of the archetype that you want to use to create the new
project. This must be 12.2.1-0-0 as shown in the preceding example.

groupld The group ID for your new project. This usually starts with your
organization's domain name in reverse format.

artifactld The artifact ID for your new project. This is usually an identifier for
this project.

ver si on The version number for your new project. This is usually 1. O-
SNAPSHOT for a new project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you
to enter the required information.

10-2 Developing Applications Using Continuous Integration

Using the Basic WebApp Maven Archetype

mvn ar chet ype: generate

If you want to limit Maven to look only into a particular repository, you can specify
the - Dar chet ypeCat al og option. Specify the value as | ocal to look only in your
local repository, or specify the ser ver | d for the repository you want Maven to look
in. This limits the number of archetypes that you are shown and makes the command
execute much faster.

After creating your project, it contains the following files:

paom.xmil

Src

i
e
L

_{ mycompany

\—{ AccountBean.java

—{ webapp
_{ WEB-INF

beans. xml

web.xml

weblogic.xmil

e C56

|— bootstrap.css

o index.xhtmi

- tempilate. xhtmi

These files make up a small sample application, which you can deploy as is. You can
use this application as a starting point for building your own application.

Table 10-3 describes the files included in the project.

Building Java EE Projects for WebLogic Server with Maven 10-3

Using the Basic WebApp Maven Archetype

Table 10-3 Files Created for the Basic WebApp project
-

File Purpose

pom xm The Maven Project Object Model (POM) file that describes your
new project. It includes the Maven coordinates that you
specified for your project. It also includes the appropriate plug-
in definitions needed to use the WebLogic Maven plug-in to

build your project.
Files under sr ¢ /mai n/ An example Enterprise Java Bean that is used by the Web
java application to store data.
All other files HTML and other files that make up the web application user
interface.

After you have written your project code, you can use Maven to build the project. It is
also possible to build the sample as is.

10.2.2 Customizing the Project Object Model File to Suit Your Environment

The Project Object Model (POM) file that is created by the archetype is sufficient in
most cases. Review the POM and update any of the settings where the provided
default values differ from what you use in your environment.

If you are using an internal Maven Repository Manager, like Archiva, add a
pl ugi nReposi t or y to the POM file. The following is an example; you can modify it
to suit your environment:

<pl ugi nReposi tories>
<pl ugi nReposi t ory>
<i d>archiva-internal </id>
<name>Ar chi va Managed | nternal Repository</nanme>
<url>http://local host: 8081/ archivalrepository/internal /</url>
<rel eases>
<enabl ed>t r ue</ enabl ed>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>

10.2.3 Compiling Your Java EE Project

To compile the source code in your project, such as Java Beans, Servlets, and JSPs, use
the following command:

m/n conpil e

This command uses the standard Maven plug-ins to compile your source artifacts into
class files. You can find the class files in the t ar get directory of your project.

10.2.4 Packaging Your Java EE Project

To build the deployment archive, for example WAR or EAR file, use the following
command:

10-4 Developing Applications Using Continuous Integration

Using the Basic WebApp Maven Archetype

m/n package

This command uses the standard Maven plug-ins to package your compiled artifacts
and metadata into a deployment archive. When you run a Maven goal like package,
Maven runs not just that goal, but all of the goals up to and including the goal you
name. This is very similar to a standard Java EE application, except that if you have
WebLogic deployment descriptors in your project, they are also packaged into the
deployment archive.

The deployment archive, in this case a WAR file, is available in the t ar get directory
of your project.

10.2.5 Deploying Your Java EE Project to the WebLogic Server Using Maven
To deploy the deployment archive using Maven, use the following command:

m/n pre-integration-test

This command executes the depl oy goal in the WebLogic Maven plug-in. This goal
supports all standard types of deployment archives.

10.2.6 Deploying Your Java EE Project to the WebLogic Server Using Different Options

After you have packaged your project, you can also deploy it to the WebLogic Server
using any of the other existing (non-Maven) mechanisms. For example, the WebLogic
Administration Console, or an ANT or WLST script.

10.2.7 Testing Your Basic WebApp Project

You can test the Basic WebApp by visiting the following URL on the WebLogic Server
where you deployed it:

1. Enter the following URL:

http://servernane: 7001/ basi c\ebapp/ i ndex. xht m

The following shows the user interface for the Basic WebApp:

Building Java EE Projects for WebLogic Server with Maven 10-5

Using the Basic WebApp with EJB Maven Archetype

Basic Webapp

This project shows a basic example of a web application working with JSF and CDI to simulate the
deposit functionality of bank system.

Please Enter Your Account Name and Amount

Account Narme
Amaunl
==

© Company 2012

2. Provide the Account Name and Amount, then select Deposit to see how the
application works.

10.3 Using the Basic WebApp with EJB Maven Archetype

To build a Java EE project using the basic WebApp with EJB Maven archetype, you
create the basic project, then customize, compile and package it. Then you deploy it
and test it.

To use the Basic WebApp with EJB project using the Maven archetype:

1. Create a new Basic WebApp project using the Maven archetype, executing a
command similar to the following:

mvn ar chet ype: generate
- Dar chet ypeG oupl d=com or acl e. webl ogi c. ar chet ype
- DarchetypeArti f act | d=basi c- webapp-¢j b
- Dar chet ypeVer si on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact!|d=ny-basi c- webapp- ej b- proj ect
- Dver si on=1. 0- SNAPSHOT

This command runs Maven's ar chet ype: gener at e goal which enables you to
create a new project from an archetype.Table 10-4 describes the parameters.

Table 10-4 Parameters for the Basic WebApp with EJB Project

Parameter Purpose

archetypeGoupld The group ID of the archetype that you want to use to create the
new project. This must be com or acl e. webl ogi ¢ as shown in
the preceding example.

archetypeArtifact The artifact ID of the archetype that you want to use to create
I d the new project. This must be basi c- webapp- ej b as shown in
the preceding example.

10-6 Developing Applications Using Continuous Integration

Using the Basic WebApp with EJB Maven Archetype

Table 10-4 (Cont.) Parameters for the Basic WebApp with EJB Project

Parameter Purpose

archetypeVersi on The version of the archetype that you want to use to create the
new project. This must be 12.2.1-0-0 as shown in the preceding
example.

groupld The group ID for your new project. This usually starts with your
organization's domain name in reverse format.

artifactld The artifact ID for your new project. This is usually an identifier
for this project.

ver si on The version number for your new project. This is usually 1. O-
SNAPSHOT for a new project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts
you to enter the required information.

nvn archetype: generate

After creating your project, it contains the following files:

Building Java EE Projects for WebLogic Server with Maven 10-7

Using the Basic WebApp with EJB Maven Archetype

10-8 Developing Applications Using Conti

nuol

Using the Basic WebApp with EJB Maven Archetype

These files make up a small sample application, which you can deploy as is. You
can use this application as a starting point for building your own application.

Table 10-5 describes the files included in the project.

Table 10-5 Files Created for the Basic WebApp with EJB Project

File Purpose

pom xmi The Maven Project Object Model (POM) file that describes
your new project. It includes the Maven coordinates that you
specified for your project. It also includes the appropriate
plug-in definitions to use the WebLogic Maven plug-in to
build your project.

Files under src/mai n/ An example Enterprise Java Bean that is used by the web

java application to store data.

All other files HTML and other files that make up the web application user
interface.

. After you have written your project code, you can use Maven to build the project. It
is also possible to build the sample as is.

. Customize the POM to suit your environment. See Customizing the Project Object
Model File to Suit Your Environment.

. Compile your Basic WebApp with EJB Project. See Compiling Your Java EE Project.
. Package your Basic WebApp with EJB Project. See Packaging Your Java EE Project.

. Deploy your Basic WebApp with E]JB Project. For information about deploying it
using Maven, see Deploying Your Java EE Project to the WebLogic Server Using
Maven. For information about deploying it using other options, see Deploying
Your Java EE Project to the WebLogic Server Using Different Options.

. Test your Basic WebApp with EJB Project.

You can test the Basic WebApp with EJB by visiting the following URL on the
WebLogic Server where you deployed it:

http://servernane: 7001/ basi cWebapp/ i ndex. xht m

The following shows the user interface for the Basic WebApp with EJB:

Building Java EE Projects for WebLogic Server with Maven 10-9

Using the Basic WebService Maven Archetype

Basic Webapp And EJB

This project shows a basic example of a web application working with JSF, EJB and JPA to
simulate the deposit functionality of bank system.

Please Enter Your Account MName and Amount

Account Name

Amaount

=3

S Company 2012

8. Provide the Account Name and Amount, then select Deposit to see how the
application works.

10.4 Using the Basic WebService Maven Archetype

To build a Java EE project using the basic WebService Maven archetype, you create the
basic project, then customize, compile and package it. Then you deploy it and test it.

To use the Basic WebService project using the Maven Archetype:

1. Create a new Basic WebService project using the Maven archetype by issuing a
command similar to the following:

m/n ar chet ype: generat e
- Dar chet ypeG oupl d=com or acl e. webl ogi c. ar chet ype
- Darchet ypeArtif act | d=basi c- webservi ce
- Dar chet ypeVer si on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact!|d=ny-basi c-webservi ce- proj ect
- Dver si on=1. 0- SNAPSHOT

This command runs Maven's ar chet ype: gener at e goal, which enables you to
create a new project from an archetype. Table 10-6 describes the parameters.

Table 10-6 Parameters for the Basic WebService Project

Parameter Purpose

archetypeGoupld The group ID of the archetype that you want to use to create the
new project. This must be com or acl e. webl ogi ¢ as shown in
the preceding example.

archetypeArtifact The artifact ID of the archetype that you want to use to create
I d the new project. This must be basi c- webser vi ce as shown in
the preceding example.

10-10 Developing Applications Using Continuous Integration

Using the Basic WebService Maven Archetype

Table 10-6 (Cont.) Parameters for the Basic WebService Project
]

Parameter Purpose

ar chet ypeVer si on The version of the archetype that you want to use to create the
new project. This must be 12.2.1-0-0 as shown in the preceding
example.

groupld The group ID for your new project. This usually starts with your
organization's domain name in reverse format.

artifactld The artifact ID for your new project. This is usually an identifier
for this project.

ver si on The version number for your new project. This is usually 1. O-
SNAPSHOT for a new project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts
you to enter the required information.

nvn ar chetype: generate

After creating your project, it contains the following files:

| my-basic-webservice-project/
—{ org
[mycompany

L | xws
—{ pom.xmil
_{

l— main
L or

‘— mycompany

\—{ SayHello.java

These files make up a small sample application, which you can deploy as is. You
can use this application as a starting point for building your own application.

Table 10-7 describes the files included in the project.

Building Java EE Projects for WebLogic Server with Maven 10-11

Using the Basic WebService Maven Archetype

Table 10-7 Files Created for the Basic WebService Project

File Purpose

pom xm The Maven Project Object Model (POM) file that describes your
new project. It includes the Maven coordinates that you specified
for your project, and it also includes the appropriate plug-in
definitions to use the WebLogic Maven plug-in to build your
project.

SayHel | 0. j ava An example Web Service.

2. After you have written your project code, you can use Maven to build the project. It
is also possible to build the sample as is.

3. Customize the POM to suit your environment. See Customizing the Project Object
Model File to Suit Your Environment.

4. Compile your Basic WebService Project. See Compiling Your Java EE Project.
5. Package your Basic WebService Project. See Packaging Your Java EE Project.

6. Deploy your Basic WebService Project. For information about deploying it using
Maven, see Deploying Your Java EE Project to the WebLogic Server Using Maven.
For information about deploying it using other options, see Deploying Your Java
EE Project to the WebLogic Server Using Different Options.

7. Test your Basic WebService Project.

You can test the Basic WebService by visiting the following URL, on the WebLogic
Server where you have deployed it:

http://servernane: 7001/ basi cWebser vi ce/ SayHel | o

The following shows the user interface for the Basic WebService:

Web Services

Endpoint Information
) | Address: http://host/mycompany.com:7001
Service 1 ip://example.orglSayHello tbasicWabsorvcas Sayhalle
Name: ' WSDL: http:/ /host/mycompany.com: 7001
;c;II'L o {http://example.org}SayHelloPort | s " /basicWebservive/SayHello?wsdl Test
' i cIl.]::Es?mm RN o g.mycompany.SayHello

8. You can access the WSDL for the web service, and you can open the WebLogic
Web Services Test Client by selecting the Test link. This enables you to invoke the
web service and observe the output.

9. To test the web service, select SayHello operation in the left hand pane, then enter
a value for arg0 as shown in the following example, and select Invoke.

10-12 Developing Applications Using Continuous Integration

Using the Basic MDB Maven Archetype

oo B g - g P g

Faimere

10. Scroll down to see the test results, as shown in the following example:

Eontl Meauita &

10.5 Using the Basic MDB Maven Archetype

To build a Java EE project using the basic MDB Maven archetype, you create the basic
project, then customize, compile and package it. Then you deploy it and test it.

To use the Basic MDB project using the Maven Archetype:

1. Create a new Basic MDB project using the Maven archetype, by running a
command similar to the following:

mvn ar chet ype: gener at e
- Dar chet ypeG oupl d=com or acl e. webl ogi c. ar chet ype
- Dar chet ypeArti fact | d=basi c- mdb
- Dar chet ypeVer si on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact|d=ny-basic- ndb- proj ect
- Dver si on=1. 0- SNAPSHOT

This command runs Maven's ar chet ype: gener at e goal which enables you to
create a new project from an archetype. Table 10-8 describes the parameters.

Building Java EE Projects for WebLogic Server with Maven 10-13

Using the Basic MDB Maven Archetype

Table 10-8 Parameters for the Basic MDB Project

Parameter

Purpose

ar chet ypeG oupl d

The group ID of the archetype that you want to use to create
the new project. This must be com or acl e. webl ogi ¢ as
shown in the preceding example.

archetypeArtifactld

The artifact ID of the archetype that you want to use to create
the new project. This must be basi c- ndb as shown in the
preceding example.

ar chet ypeVer si on

The version of the archetype that you want to use to create
the new project. This must be 12.2.1-0-0 as shown in the
preceding example.

groupld

The group ID for your new project. This usually starts with
your organization's domain name in reverse format.

artifactld

The artifact ID for your new project. This is usually an
identifier for this project.

ver si on

The version number for your new project. This is usually
1. 0- SNAPSHOT for a new project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts
you to enter the required information.

m/n ar chet ype: generat e

After creating your project, it contains the following files:

10-14 Developing Applications Using Continuous Integration

Using the Basic MDB Maven Archetype

| my-basic-mdb-project

—

—
r—

— jms

—

\—{ QueueMDE.java

— st

\—{ AccountBean.java

— scripts

I— configure_resources.py

L webapp

- WEB-INF

beans.xmil

web.xml

weblogic.xml

— C85

l— bootstrap.css

— index.xhtml

— template.xhtmi

These files make up a small sample application, which you can deploy as is. You
can use this application as a starting point for building your own application.

Table 10-9 describes the files included in the project.

Building Java EE Projects for WebLogic Server with Maven 10-15

Using the Basic MDB Maven Archetype

Table 10-9 Files Created for the Basic MDB Project

File Purpose

pom xm The Maven Project Object Model (POM) file that describes
your new project. It includes the Maven coordinates that you
specified for your project. It also includes the appropriate
plug-in definitions to use the WebLogic Maven plug-in to

build your project.
Files under sr ¢ /mai n/ An example Message Driven Bean that is used by the web
java application to store data.
All other files HTML files that make up the web application user interface.

2. After you have written your project code, you can use Maven to build the project. It
is also possible to build the sample as is.

3. Customize the POM to suit your environment. See Customizing the Project Object
Model File to Suit Your Environment.

4. Compile your Basic MDB Project. See Compiling Your Java EE Project.
5. Package your Basic MDB Project. See Packaging Your Java EE Project.

6. Deploy your Basic MDB Project. For information about deploying it using Maven,
see Deploying Your Java EE Project to the WebLogic Server Using Maven. For
information about deploying it using other options, see Deploying Your Java EE
Project to the WebLogic Server Using Different Options.

7. Test your Basic MDB Project.

You can test the Basic MDB by visiting the following URL on the WebLogic Server
where you deployed it:

http://servernane: 7001/ basi cMDB/ i ndex. xht m

The following shows the user interface for the Basic MDB:

10-16 Developing Applications Using Continuous Integration

Using the Basic MDB Maven Archetype

Basic MDB

This project shows a basic example of a web application working with JSF, CDI, JMS and M

simulate the deposit functionality of bank system.

Please Enter Your Account Name and Amount

Account Mame

Amount
0.0

Degost | Reser

© Company 2012
8. Provide the Account Name and Amount, then select Deposit:

Basic MDB

This project shows a basic example of a web application working with JSF, CDI, JMS and M
simulate the deposit functionality of bank system.

Please Enter Your Account Name and Amount

Account Nama

frank

Amount
500.0

The requast of deposit have been senl, pleass chack [he result on the window where tha sanver runs

=3z
L

© Company 2012

9. Asindicated in the user interface, you must check the WebLogic Server output to
find the message printed by the MDB. It looks like the following example:

The noney has been deposited to frank, the balance of the account is 500.0

Building Java EE Projects for WebLogic Server with Maven 10-17

Using the Basic MDB Maven Archetype

10-18 Developing Applications Using Continuous Integration

11

Building Oracle Coherence Projects with
Maven

You can use the Oracle Coherence archetypes to create, build, and deploy Oracle
Coherence applications.

Topics:

¢ Introduction to Building Oracle Coherence Projects with Maven
* Creating a Coherence Project from a Maven Archetype

¢ Building Your Coherence Project with Maven

¢ Deploying Your Coherence Project to the WebLogic Server Coherence Container
with Maven

¢ Building a More Complete Coherence Example

11.1 Introduction to Building Oracle Coherence Projects with Maven

Oracle Fusion Middleware provides a Maven plug-in and an archetype is provided for
Oracle Coherence Grid Archive (GAR) projects.

Table 11-1 describes the Maven coordinates.

Table 11-1 Maven Coordinates with Coherence
-

artifacts groupld artifactld version

GAR Plugin com oracl e. coheren gar-maven-plugin 12.2.1-0-0
ce

GAR Archetype com oracl e. coheren gar-nmaven- 12.2.1-0-0
ce. archetype ar chet ype

Table 11-2 describes the goals supported by the Oracle Coherence plug-in.

Table 11-2 Oracle Coherence Goals

Goal Purpose
generate-descriptor Generates the project's POF configuration file.
package Packages the basic GAR assets, including library dependencies

into a JAR archive.

repackage Repackages the packaged JAR archive with optional metadata
and GAR extension.

Building Oracle Coherence Projects with Maven 11-1

Creating a Coherence Project from a Maven Archetype

11.2 Creating a Coherence Project from a Maven Archetype

You can create a new Coherence project using the Coherence Maven archetype.

1. To create a new Coherence project using the Coherence Maven archetype, issue a
command similar to the following:

m/n ar chet ype: generat e
- Dar chet ypeG oupl d=com or acl e. coher ence. ar chet ype
- DarchetypeArti f act | d=gar - maven- ar chet ype
- Dar chet ypeVer si on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact!d=ny-gar-project
- Dver si on=1. 0- SNAPSHOT

This command runs Maven's ar chet ype: gener at e goal which lets you create a
new project from an archetype. Table 11-3 describes the parameters.

Table 11-3 Parameters for the Coherence Projects
- -]

Parameter Purpose

ar chetypeG oupld The group ID of the archetype that you want to use to create
the new project. This must be
com or acl e. coherence. ar chet ype.

archetypeArtifactld The artifact ID of the archetype that you want to use to create
the new project. This must be gar - maven- ar chet ype.

ar chet ypeVer si on The version of the archetype that you want to use to create
the new project. This must be 12. 2. 1- 0- 0.

groupld The group ID for your new project. This usually starts with
your organization's domain name in reverse format.

artifactld The artifact ID for your new project. This is usually an
identifier for this project.

ver si on The version for your new project. This is usually 1. 0-
SNAPSHOT for a new project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts
you to enter the required information.

nvn archetype: generate

After creating your project, it contains the following files:

11-2 Developing Applications Using Continuous Integration

Creating a Coherence Project from a Maven Archetype

| my-gar-project/

EE——

main

java

resources

-

META-INF

cache-config.xmil

coherence-application.xml

pof-config.xml

Table 11-4 describes the files included in the project.

Table 11-4 Files Created for the Coherence Project

File

Purpose

pom xmi

The Maven Project Object Model (POM) file that describes
your new project. It includes the Maven coordinates that you
specified for your project and the appropriate plug-in
definitions to use the Coherence Maven plug-in to build your
project into a gar file.

cache-config. xm

A starter Coherence cache configuration file.

coherence-
appl i cation. xm

A starter Coherence GAR deployment descriptor for your
GAR file.

pof - confi g. xm

A starter Coherence Portable Object Format (POF)
configuration file. The POF configuration file is processed
and inserted into the final GAR file if the plug-in option
gener at ePof is set to t r ue. By default, POF configuration
metadata will not be generated.

2. If you are using POF in your project, you must add the following parameter into

your project's POM file:
Parameter Purpose
gener at ePof The POF configuration file is generated and inserted into the final

GAR file if this plug-in option is t r ue. The configuration file is
generated by scanning all classes in the GAR's classpath annotated
with the class

com t angosol . i 0. pof. annot ati on. Port abl e. By default,
POF configuration metadata is not generated.

Building Oracle Coherence Projects with Maven 11-3

Building Your Coherence Project with Maven

3. To generate a GAR with correctly generated pof - confi g. xm , add the following

to your GAR plug-in configuration in the POM:

<bui I d>
<pl ugi ns>

<pl ugi n>
<groupl d>com or acl e. coher ence</ gr oupl d>
<artifact!d>gar-mven-plugi n</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
<configuration>

<gener at ePof >t r ue</ gener at ePof >

</ confi guration>

</ pl ugi n>

</ pl ugi ns>
</ bui | d>

11.3 Building Your Coherence Project with Maven

After you have written your project code, you can use Maven to build the project:

1. To compile the source code in your project, execute the following command:

m/n conpil e

2. To package the compiled source into a GAR, execute the following command. Note
that this command runs all steps up to package, including the compile.

m/n package

11.4 Deploying Your Coherence Project to the WebLogic Server

Coherence Container with Maven

To deploy your GAR to a Coherence Container in a WebLogic Server environment,
you must add some additional configuration to your project's POM file.

Take these steps:

1. Add instructions to use the Oracle WebLogic Maven plug-in to deploy the GAR, as

shown in the following example:

<pl ugi n>
<groupl d>com oracl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven-pl ugi n</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<executions>
<!--Deploy the application to the server-->
<execution>
<phase>pre-integration-test</phase>
<goal s>
<goal >depl oy</ goal >
</ goal s>
<configuration>
<admi nurl >t 3://1 ocal host: 7001</ admi nur | >
<user >webl ogi c</ user>
<passwor d>wel conel</ passwor d>

<I--The location of the file or directory to be deployed-->
<source>${proj ect. build.directory}/${project.build. final Nane}.$

{project. packagi ng} </ sour ce>

11-4 Developing Applications Using Continuous Integration

Building a More Complete Coherence Example

<!--The target servers where the application is deployed-->
<t arget s>Adm nServer</target s>
<verbose>t rue</ ver bose>
<name>${ proj ect. bui | d. fi nal Nane} </ nane>
</configuration>
</ executi on>
</ execut i ons>
</ pl ugi n>

2. After you have added this section to your POM, use the following command to
compile, package, and deploy your GAR to the WebLogic Server:

m/n verify

11.5 Building a More Complete Coherence Example

In a real application, you are likely to have not just a GAR project, but also some kind
of client project that interacts with the Coherence cache established by the GAR.

Refer to Building a Real Application with Maven to see an example that includes a
Coherence GAR and a web application (WAR) that interacts with it.

Building Oracle Coherence Projects with Maven 11-5

Building a More Complete Coherence Example

11-6 Developing Applications Using Continuous Integration

12

Building ADF Projects with Maven

You can use the Oracle Application Development Framework Maven archetypes to
create, build, and deploy Oracle Application Development Framework applications.

Topics:
¢ Introduction to Building Oracle ADF Projects with Maven
¢ Creating an ADF Application Using the Maven Archetype

¢ Building Your Oracle ADF Project with Maven

For more information about using the Oracle ADF development plug-in with Maven,
see "Building and Running with Apache Maven " in Developing Applications with Oracle
JDeveloper.

12.1 Introduction to Building Oracle ADF Projects with Maven

Oracle Fusion Middleware provides two Maven plug-ins and an archetpe for Oracle
ADF projects.

Table 12-1 describes the Maven coordinates.

Table 12-1 Maven Coordinates with Oracle ADF
- - - - " - - -

Artifact groupld artifactld Version

ADF ojmake plug-in com.oracle.adf.plugin ojmake 12.2.1-0-0
ADF ojdeploy plug-in com.oracle.adf.plugin ojdeploy 12.2.1-0-0
ADF archetype com.oracle.adf.archetype oracle-adffaces-ejb 12.2.1-0-0

JDeveloper also has extensive support for Maven. This documentation covers Maven
use outside of JDeveloper. Refer to "Building and Running with Apache Maven" in
Developing Applications with Oracle [Developer for more details about using Maven
within JDeveloper.

12.2 Creating an ADF Application Using the Maven Archetype

You can create a new Oracle ADF application using the Oracle ADF application
Maven archetype

To do so, issue a command similar to the following:

m/n ar chet ype: generat e

- Dar chet ypeG oupl d=com or acl e. adf . ar chet ype
- DarchetypeArtifact|d=oracl e-adf faces-ejb
- Dar chet ypeVersi on=12. 2. 1-0-0

- Dgr oupl d=or g. nyconpany

Building ADF Projects with Maven 12-1

Building Your Oracle ADF Project with Maven

-Dartifact!d=ny-adf -application
- Dver si on=1. 0- SNAPSHOT

This command runs Maven's ar chet ype: gener at e goal which allows you to create
a new project from an archetype. Table 12-2 describes the parameters.

Table 12-2 Parameters for the Oracle ADF Project
__|

Parameter Purpose

archetypeGroupld The groupld of the archetype that you want to use to create the new
project. This must be com.oracle.adf.archetype in the example.

archetypeArtifactld The artifactld of the archetype that you want to use to create the new
project. This must be oracle-adffaces-ejb as shown in the example.

archetypeVersion The version of the archetype that you want to use to create the new
project. This must be 12.2.1-0-0 as shown in the example.

groupld The groupld for your new project. This usually starts with your
organization's domain name in reverse format.

artifactld The artifactld for your new project. This is usually an identifier for
this project.
version The version for your new project. This is usually 1.0-SNAPSHOT for

anew project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you
to enter the required information.

mvn ar chet ype: generat e

12.3 Building Your Oracle ADF Project with Maven

After you have written your code, you can use Maven to build the project.

1. To compile your project, execute the following command:
m/n conpil e
This command runs the ojmake plug-in.

2. To package the project into an EAR file, execute the following command (note that
this actually runs all steps up to package, including the compile again):

m/n package

This command runs the ojdeploy plug-in.

12-2 Developing Applications Using Continuous Integration

13

Building Oracle SOA Suite and Oracle
Business Process Management Projects

with Maven

You can use the Oracle SOA Suite and Oracle Business Process Management Maven
archetypes to create, build, and deploy Oracle SOA Suite and Oracle Business Process
Management applications.

Topics:

Introduction to Building Oracle SOA Suite and Oracle Business Process
Management Projects with Maven

Creating a New SOA Application and Project from a Maven Archetype

Creating a SOA Project in an Existing SOA Application from a Maven Archetype
Editing Your SOA Application in Oracle JDeveloper

Building Your SOA Project with Maven

What You May Need to Know About Building SOA Projects

Deploying Your SOA Project to the SOA Server with Maven

Running SCA Test Suites with Maven

What You May Need to Know About Deploying SOA Composites

What You May Need to Know About ADF Human Task User Interface Projects
Undeploying Your SOA Project

What You May Need to Know About the SOA Parent POM

For more information about using the Oracle SOA Suite development plug-in with
Maven, see "Using the Oracle SOA Suite Development Maven Plug-In" in Developing
SOA Applications with Oracle SOA Suite.

13.1 Introduction to Building Oracle SOA Suite and Oracle Business
Process Management Projects with Maven

Oracle Fusion Middleware provides a Maven plug-in and two archetypes are
provided for Oracle SOA Suite and Oracle Business Process Management

Table 13-1 describes the Maven coordinates.

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-1

Creating a New SOA Application and Project from a Maven Archetype

Table 13-1 Maven Coordinates with Oracle SOA Suite
- - - - - - - -~ -~

Artifact groupld artifactld version
SOA plug-in com.oracle.soa.plugin oracle-soa-plugin 12.2.1-0-0
SOA Application com.oracle.soa.archetype oracle-soa-application ~ 12.2.1-0-0
archetype

SOA Project archetype ~ com.oracle.soa.archetype oracle-soa-project 12.2.1-0-0

Table 13-2 describes the goals supported by the Oracle SOA Suite plug-in.

Table 13-2 Oracle SOA Suite Plug-In Goals
___|

Goal Purpose

compile Runs the SCA composite validation routine on your project---this is somewhat
equivalent to a traditional compile operation in that it inspects the source
artifacts and produces errors and warnings. However, it does not produce any
compiled version of the source artifacts.

sar Creates a SOA archive (SAR) file from the project.

deploy Deploys the SAR file to a runtime environment. Note that this goal is mapped
to the pre-integration-test phase in the default lifecycle, not the deploy phase,
as deployment to a runtime environment is normally done in the pre-
integration-test phase in Maven.

test Executes SCA tests in the composite. Note that this goal is mapped to the
integration-test phase, not the test phase, as it depends on the composite
(SAR) having been deployed to a runtime environment.

undeploy Undeploys a composite (SAR) from a runtime environment. Note that this goal
is not mapped to any phase in the default Maven lifecycle.

The SOA Application archetype allows you to create a new SOA application with a
single SOA Project in it. This can be imported in JDeveloper for editing.

The SOA Project archetype allows you to add a new SOA Project to an existing SOA
Application.

13.2 Creating a New SOA Application and Project from a Maven
Archetype

You can create a new SOA application (containing a single SOA project) using the
SOA Maven archetype.

To do so, execute a command similar to the following:

m/n ar chet ype: generat e
- Dar chet ypeG oupl d=com or acl e. soa. ar chet ype
- Dar chet ypeArtifact | d=oracl e- soa- appl i cation
- Dar chet ypeVersi on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact!d=ny-soa-app
- Dver si on=1. 0- SNAPSHOT
- Dpr oj ect Nanme=ny- pr oj ect

13-2 Developing Applications Using Continuous Integration

Creating a New SOA Application and Project from a Maven Archetype

This command runs Maven's archetype:generate goal which allows you to create a
new SOA Application from an archetype. Table 13-3 describes the parameters.

Table 13-3 Parameters for the Oracle SOA Suite Application
]

Parameter Purpose

archetypeGroupld The groupld of the archetype that you want to use to create the new
SOA application. This must be com or acl e. soa as shown in the
previous example.

archetypeArtifactld The artifactld of the archetype that you want to use to create the new
SOA application. This must be or acl e- soa- appl i cati on as
shown in the previous example.

archetypeVersion The version of the archetype that you want to use to create the new
SOA application. This must be 12. 2. 1. 0. 0 as shown in the previous
example.

groupld The groupld for your new SOA application. This would normally start

with your organization's domain name in reverse format.

artifactld The artifactld for your new SOA application. This would normally be
an identifier for this SOA application.

version The version for your new SOA application. This would normally be
1. 0- SNAPSHOT for a new project.

projectName The name for the SOA project inside your new SOA application. This
should be different to the name of the SOA application
(artifactld).

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you
to enter the required information.

m/n ar chet ype: generat e
After creating your application, it contains the following files, assuming you named

your application my-soa-app and your project my-project, as shown in the previous
example:

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-3

Creating a New SOA Application and Project from a Maven Archetype

| composite.xmi

——| Events

——— measuraments.xml

—— SCA-INF

| classas

gen-classes

— o

| my-project.diagram.jpg

| my-project.diagram.xm|

~——— BFC

- Schamas

— testsultes

l—{ fileListxml

—— Transformations

—— WSDLs

The generated project contains files and a handful of empty directories. The files are
described in Table 13-4.

13-4 Developing Applications Using Continuous Integration

Creating a SOA Project in an Existing SOA Application from a Maven Archetype

Table 13-4 Files Created for the Oracle SOA Suite Application and Project
|

File

Purpose

pom.xml

The Maven Project Object Model (POM) file that describes your
new application. It includes the Maven coordinates that you
specified for your application, and a reference to the SOA
project inside the application.

PROJECT /pom.xml

The Maven POM file that describes your new project. It
includes the Maven coordinates that you specified for your
project, and the appropriate plug-in definitions to use the SOA
Maven Plug-in to build your project into a SAR file.

PROJECT/composite.xml

Composite metadata.

.adf/META-INF/adf-
config.xml

The definitions for MDS repositories that may be needed to
build your composites.

Others

The remainder are the standard files that are created in any new
composite. These are the same files as you would find in a new
SOA Application and SOA Project created in JDeveloper.

13.3 Creating a SOA Project in an Existing SOA Application from a Maven

Archetype

You can create a new SOA project (in an existing SOA application) using the SOA

Maven archetype.

To do so, execute a command similar to the following, while in the SOA application

directory:

nvn archetype: generate

- Dar chet ypeG oupl d=com or acl e. soa. ar chet ype
- DarchetypeArtifact | d=or acl e- soa- pr oj ect
- Dar chet ypeVer si on=12. 2. 1-0- 0

- Dgr oupl d=or g. nyconpany

-Dartifact!d=ny-second- proj ect

- Dver si on=1. 0- SNAPSHOT

This command runs Maven's archetype:generate goal which allows you to create a
new SOA Project from an archetype. Table 13-5 describes the parameters:

Table 13-5 Parameters for the Oracle SOA Suite Project
___|

Parameter Purpose

archetypeGroupld The groupld of the archetype that you want to use to create the new
SOA application. This must be com or acl e. soa as shown in the
previous example.

archetypeArtifactld The artifactld of the archetype that you want to use to create the new
SOA application. This must be or acl e- soa- pr oj ect as shown in
the previous example.

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-5

Creating a SOA Project in an Existing SOA Application from a Maven Archetype

Table 13-5 (Cont.) Parameters for the Oracle SOA Suite Project
|

Parameter Purpose

archetypeVersion The version of the archetype that you want to use to create the new
SOA application. This must be 12. 2. 1. 0. 0 as shown in the
previous example.

groupld The groupld for your new SOA project. This would normally start
with your organization's domain name in reverse format.

artifactld The artifactld for your new SOA project. This would normally be an
identifier for this SOA project.

version The version for your new SOA project. This would normally be 1. 0-
SNAPSHOT for a new project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you
to enter the required information.

nvn archetype: generate

After creating your new project, it contains the following files, assuming that you
named your project my-second-project:

13-6 Developing Applications Using Continuous Integration

Creating a SOA Project in an Existing SOA Application from a Maven Archetype

my-second-project

pom.xml

—— compositexm|

—— SCA-INF

classes

- gen-classes

I

my-sacond-projact. dlagram.jpg

- my-second-project.diagram.xml

—— BIC

—— Schemas

testsuites

s

—— Transformations

— WSDLs

The generated project contains files and a handful of empty directories. The files are
described in Table 13-4.

The mvn gener at e command also updates your SOA Application POM to add the
new project. For example, if you created this project in the application in Creating a
New SOA Application and Project from a Maven Archetype, you would see the
following list in the SOA Application POM:

<nodul es>

<nodul e>ny- proj ect </ nodul e>

<nmodul e>ny- second- pr oj ect </ nmodul e>
</ modul es>

When you have a SOA Application with multiple SOA Projects like this (a Maven
multi-module project), Maven builds your projects one by one, in the order they are
listed in the SOA Application POM.

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-7

Editing Your SOA Application in Oracle JDeveloper

13.4 Editing Your SOA Application in Oracle JDeveloper

You can edit your SOA application in Oracle JDeveloper to configure SOA composites.

To edit your application, you open the project in Oracle JDeveloper, then edit the
application:

1. Open the File menu, then select Import....
2. In the Import dialog box, select the Maven Project option and click OK.

The Import Maven Projects dialog appears:

e Import Maven Projects

Erowse to the directory that yvou want to import Maven projects from. You can then select one or more POM files
project vou want to import. Modules of any POM file are represented as children of that POM file.

Root Directory: |,|l'5cratch,|fm arnelso/soa-testing/src/soademo?2

Settings File: |,.fscratch,.fmarnelsn,.fsna—testing,ﬂrepn,ﬂsettings.xmI

Projects:

Relative Path Croup ID Artifact ID Version Type

Em_ com.test soademo 1.0-5MAPSHOT pom
..... @ projectl/pom.xml com.test projectl 1.0-5MAPSHOT sar
@ project2x fpam.xml com.otest project2x 1.0-SMAPSHOT sar

Also import source files into application.

Update existing |Developer Projects to synch with imparted POM files.

Help

3. In the Root Directory field, enter the path to the application you want to import
into JDeveloper.

13-8 Developing Applications Using Continuous Integration

Building Your SOA Project with Maven

4. In the Settings File field, enter the path to your Maven settings.xml file. The
default value is most likely correct unless you are using a non-standard location for
your Maven settings file.

5. Click Refresh to load a list of projects available at that location.

6. Select the projects that you want to import. Also, select Also import source files
into application and Update existing JDeveloper Projects to synch with imported
POM files.

7. Click OK to complete the import.

Your projects are then opened in JDeveloper.

13.5 Building Your SOA Project with Maven

After you have written your project code, you can use Maven to build the project.

To do so:

1. To run the SCA validation on your project, execute this command:
m/n conpil e
2. To build the SAR file, execute this command:

m/n package

13.6 What You May Need to Know About Building SOA Projects

Some SOA composite projects require access to an MDS repository in order to be built.
This includes all composites that contain a Human Task or Business Rule component.
These components refer to WSDL or XSD files, or both, in MDS.

To build these projects, you need to provide the build with access to an MDS
repository. This can be either a file-based or a database-based MDS repository.

The MDS repository connection details are specified in the SOA
Application/. adf/ META- 1 NF/ adf - confi g. xm file. This means that any SOA
Project which requires access to MDS must be located inside a SOA Application.

If you create a new project using the SOA Maven Application archetype or using
JDeveloper, the adf-config.xml will contain the following default MDS repository
configuration:

<net adat a- st or e- usages>
<net adat a- st or e- usage i d="nstore-usage_1">
<net adat a-store cl ass-
nanme="or acl e. mds. persi stence. stores.fil e. Fil eMet adat aSt ore">
<property name="net adat a- path" val ue="${oracl eHome}/integration"/>
<property name="partition-name" val ue="seed"/>
</ et adat a- st or e>
</ met adat a- st or e- usage>
</ met adat a- st or e- usages>

This example defines a file-based MDS repository in the location ${ or acl eHone} /

i nt egr ati on.If you run this build in Maven, the or acl eHonme variable may not be
defined. In that case, you need to specify it on the Maven command line, as shown in
the following example:

m/n conpi |l e - Doracl eHome=MN HOVE/ soa - DappHome=di r _for_application_for_proj

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-9

Deploying Your SOA Project to the SOA Server with Maven

Notice that the value of or acl eHome points to the soa directory in the Oracle Home
in which you installed the SOA Quickstart or JDeveloper. That directory contains the
seed MDS repository.

Alternatively, you can just update the adf-config.xml file to provide the full path to the
MDS repository that you want to use.

If you want to use a database-based MDS repository, you must alter the configuration
to specify the JDBC values, similar to that shown in the following example:

<net adat a- st ore- usage i d="nstore-usage_1">
<net adat a- store cl ass-name="or acl e. nds. persi st ence. st ores. db. DBMet adat aSt ore" >
<property name="jdbc-userid" val ue="your_prefix_nds"/>
<property name="jdbc-password" val ue="wel conel"/>
<property name="jdbc-url"
val ue="j dbc: oracl e: thin:// @lat abase. server: 1521/ servi ce_name"/ >
<property name="partition-name" val ue="soa-infra"/>
</ met adat a- st ore>
</ met adat a- st or e- usage>

13.7 Deploying Your SOA Project to the SOA Server with Maven

To deploy your SOA project to the SOA server with Maven, you deploy the SAR file
and edit the project POM.

To deploy the SAR file, execute the following command:

m/n pre-integration-test

Table 13-6 describes the parameters that you can specify for the deployment. These
may be specified either in the POM file for the project or on the command line.

Table 13-6 Parameters for Deploying a SOA Project
|

Parameter Purpose

serverURL The URL of the Administration Server in the SOA domain.
sarLocation The location of the SAR file.

overwrite Whether deployment should overwrite any existing composite with

the same revision.

configplan (Optional) The name of the SOA configuration plan to use, if any.

forceDefault Whether deployment should make this revision the default
revision.

regenerateRuleBase Whether the base rule dictionary should be regenerated.

composite.partition The SOA partition that the composite will be deployed into.

user User name to be used for deployment.

password Password to be used for deployment.

To specify the parameters:

¢ On the command line: Use the format -Dparameter=value, as shown in this example
(note that the whole command would be entered on one line):

13-10 Developing Applications Using Continuous Integration

Running SCA Test Suites with Maven

mn pre-integration-test -DserverURL=http://test.server: 7001
- Dsar Locat i on=depl oy/ sca_my-project _revl.0.sar
-Doverwite=true
-Df orceDef aul t =t rue
-Dconposi te. partition=test
- Duser =webl ogi ¢
- Dpasswor d=wel conmel

¢ In your project POM file: Specify replacement values for the defaults already
specified in the parameters section of the project POM:

<properties>

<I-- these paraneters are used by the conpile goal -->

<scac. i nput. di r>${proj ect . basedi r}/ SOA </ scac. i nput . di r>

<scac. out put . di r>${ proj ect . basedi r}/t arget </ scac. out put . di r>

<scac. i nput >${scac. i nput . dir}/conposite. xnl </ scac. i nput >

<scac. out put >${ scac. out put . di r}/ out . xm </ scac. out put >

<scac.error>${scac.output.dir}/error.txt</scac.error>

<scac. di spl ayLevel >1</ scac. di spl ayLevel >

<I-- if you are using a config plan, unconment the follow ng Iine and
update to point

to your config plan -->

<l--<configpl an>${scac. i nput.dir}/configplan.xm </ configpl an>- - >

<I-- these paraneters are used by the deploy and undepl oy goals -->

<conposi te. name>${ proj ect . artifact|d} </ conposi te. name>

<conposite. revi si on>1. 0</ conposi te. revi si on>

<conposite. partition>defaul t</conposite.partition>

<server Ul >${oracl eServerUrl}</serverUrl >

<user >${ or acl eUser nane} </ user >

<passwor d>${ or acl ePasswor d} </ passwor d>

<overwrite>true</overwite>

<f or ceDef aul t >t rue</f or ceDef aul t >

<regener at eRul ebase>f al se</regener at eRul ebase>

<keepl nst ancesOnRedepl oy>f al se</ keepl nst ancesOnRedepl oy>

<I-- these paraneters are used by the test goal -->

<I-- if you are using the sca-test (test) goal, you need to unconmment

the following line and point it to your jndi.properties file. -->

<l--<jndi.properties.input>${basedir}/jndi.properties</
jndi.properties.input>-->

<scatest.resul t>${scac. output.dir}/testResul t</scatest.resul t>

<I-- input is the name of the conposite to run test suites against -->

<i nput >pr oj ect 12</i nput >
</ properties>

13.8 Running SCA Test Suites with Maven

You can run SCA test suites with Maven.

To execute your SCA Test Suites as part of the Maven build process:

1. Create a jndi.properties file (as you would if you were executing SCA Test Suites
from ANT, for example) in your SOA composite project directory. This file contains
the following information:

java. naning.factory.initial =webl ogic.jndi.WlInitial ContextFactory
java. naning. provider.url=t3://test.server:7003/soa-infra

j ava. nani ng. security. princi pal =webl ogi ¢

j ava. naning. security.credential s=wel conel

dedi cat ed. connecti on=true

dedi cat ed. rni cont ext =t rue

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-11

What You May Need to Know About Deploying SOA Composites

2. Uncomment the jndi.properties entry in the SOA composite project POM
(pom.xml) and ensure that it points to the file you just created.

3. The SOA Maven Plug-in executes the SCA Tests in the integration-test phase. To
compile and package your composite, deploy it to a server and run the SCA Tests,
execute this command:

mn verify

13.9 What You May Need to Know About Deploying SOA Composites

When you create a SOA composite, you may use new resources, such as WebLogic
data sources, JMS queues, and Topics. These resources may not be present in the
runtime environment where you want to deploy your composite. This means that you
may not be able to successfully execute any instances of your composite, for example
to run test cases.

While it is possible to manually create these resources through the WebLogic console,
this would not be appropriate for an automated build environment. To address this
issue, you can create WLST scripts and execute them as part of the build to ensure that
any necessary resources are created and configured on the runtime environment. You
can execute the WLST scripts at the appropriate time in your build using the

webl ogi c- maven- pl ugi n: W st goal.

The following is an example of a WLST script to create a data source. You could add it
to your project as mi sc/ cr eat e- dat asour ce. py:

Copyright 2012, 2014 Oracle Corporation.

Al Rights Reserved.

#

Provided on an 'as is' basis, without warranties or conditions of any kind,

either express or inplied, including, without Iimtation, any warranties or

conditions of title, non-infringenment, merchantability, or fitness for a

particular purpose. You are solely responsible for determining the

appropriateness of using and assune any risks. You may not redistribute.

#

This W.ST script can be used as part of a continuous integration build process
before deploying a SCA conposite, to create any necessary Java EE data sources
on the VeblLogi c Server.

#

In addition to creating the data source, this script will also update the

resource adapter and redeploy it.

i mport time

#

These are the paraneters that you need to edit before running this script

#

adm n server url

url = 't3://1ocal host: 7001’

usernane to connect to the admin server

user nane = "webl ogi ¢’

password to connect to the admin server

password = 'nypasswor d'

the nanme for the EIS - as defined in the DB Adapter wizard in JDEV
ei sNane = 'eis/db/nyDS

the adnin or managed server to target where the DbAdapter is depl oyed
server Name = 'soa_serverl'

the nane for the data source

dsNane = 'nyDS

13-12 Developing Applications Using Continuous Integration

What You May Need to Know About Deploying SOA Composites

the JNDI name for the data source

j ndi Nane = 'j bdc/ nyDS

the database url for the data source

dbUr | = 'jdbc:oracl e:thin: @ocal host: 1521: orcl’
the database user

dbUser = 'mark'

the database password

dbPasswor d = 'nypasswor d'

the database driver to use

dbDri ver = 'oracle.jdbc. xa.client. O acl eXADat aSour ce'
the host where node manager is running

nmHost = 'l ocal host'

the port to connect to node manager (5556 is default for plain node)
nnPor t = ' 5556'
the user to connect to node manager

nmser = "webl ogi ¢

the password to connection to node manager
nnPasswor d = 'nypasswor d'

the nane of the weblogic domain

domai n = 'base_domai n'

don't change these ones
uni quesString ="
appNane = ' DbAdapt er'
modul eQver ri deNane

modul eDescri pt or Narre

appNanme+' .rar'
" META- | NF/ webl ogi c-ra. xni '

#

method definitions

#

def makeDepl oynent Pl anVari abl e(w st Pl an, name, val ue, xpath, origin='planbased"):
"""Create a variable in the Plan.
This nethod is used to create the variables that are needed in the Plan in order
to add an entry for the outbound connection pool for the new data source.

try:
vari abl eAssi gnment = wl st Pl an. creat eVari abl eAssi gnnent (name, nodul eQverri deNaneg,
modul eDescri pt or Nane)
vari abl eAssi gnment . set Xpat h(xpat h)
vari abl eAssi gnment . set Ori gin(origin)
wl st Pl an. creat eVari abl e(nane, val ue)

except :
print('--> was not able to create deploynent plan variables successfully")

def main():

print ' Copyright 2012, 2014 Oracle Corporation. '

print ' Al Rights Reserved. '

print "'

print ' Provided on an ''as is'' basis, without warranties or conditions of any
kind, '

print ' either express or inplied, including, without limtation, any warranties
or '

print ' conditions of title, non-infringenent, merchantability, or fitness for a'

print ' particular purpose. You are solely responsible for determning the '

print ' appropriateness of using and assune any risks. You may not redistribute.’

print "'

print ' This WST script can be used as part of a continuous integration build
process'

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-13

What You May Need to Know About Deploying SOA Composites

print ' before deploying a SCA conposite, to create any necessary Java EE data
sour ces'

print ' on the WebLogic Server.'

print "'

print ' In addition to creating the data source, this script will also update the '

print ' resource adapter and redeploy it.'

print "'

print " T WARNING !'!'! WARNING !'!! WARNING !'!! WARNING !'!! WARNING !!!
WARNING 1!

print "'

print ' This script will make changes to your WebLogic domain. Mke sure you know

print ' what you are doing. There is no support for this script. If sonething
bad '

print ' happens, you are on your own! You have been warned.'

#
generate a unique string to use in the nanes
#

uniqueString = str(int(time.tinme()))

#
Create a JDBC Data Source.
#
try:
print('--> about to connect to weblogic')
connect (usernane, password, url)
print('--> about to create a data source ' + dsNane)
edit()
startEdit()
cno. creat eJDBCSyst enResour ce(dsName)
cd('/JDBCSyst enResources/' + dsName + '/JDBCResource/' + dsNane)
cno. set Nane(dsNane)
cd('/ JDBCSyst enResources/' + dsName + '/JDBCResource/' + dsNane + '/
JDBCDat aSour ceParans/' + dsName)
set (' JNDI Nanes' ,jarray.array([String(jndi Name)], String))
cd('/ JDBCSyst enResources/' + dsName + '/JDBCResource/' + dsNane + '/
JDBCDri ver Parans/' + dsName)
cno. set Url (dbUrl)
cno. set Dri ver Name(dbDri ver)
cno. set Passwor d(dbPasswor d)
cd('/JDBCSyst enResources/' + dsName + '/JDBCResource/' + dsNane + '/
JDBCConnect i onPool Parans/' + dsName)
cno. set Test Tabl eNane(' DUAL')
cd('/ JDBCSyst enResources/' + dsName + '/JDBCResource/' + dsNane + '/
JDBCDri verParans/' + dsName + '/Properties/' + dsNane)
cno. creat eProperty(' user')
cd('/JDBCSyst enResources/' + dsName + '/JDBCResource/' + dsNane + '/
JDBCDri verParans/' + dsName + '/Properties/' + dsNane + '/Properties/user')
cno. set Val ue(dbUser)
cd('/ JDBCSyst enResources/' + dsName + '/JDBCResource/' + dsNane + '/
JDBCDat aSour ceParans/' + dsName)
cno. set @ obal Transacti onsProt ocol (' TwoPhaseComrit')
cd('/ JDBCSyst enResources/' + dsName)
set (' Targets',jarray.array([Object Name(' com bea: Name=' + serverNane +
", Type=Server')], OhjectName))

save()
print('--> activating changes')
activate()

13-14 Developing Applications Using Continuous Integration

What You May Need to Know About Deploying SOA Composites

print('--> done')

#
update the depl oyment plan
#

print('--> about to update the deploynent plan for the DbAdapter')

startEdit()

pl anPath = get (' /AppDepl oyment s/ DbAdapt er/ Pl anPat h')

appPath = get (' / AppDepl oyment s/ DbAdapt er/ Sour cePat h')

print('--> Using plan ' + planPath)

plan = | oadApplication(appPath, planPath)

print('--> adding variables to plan')

mekeDepl oynent Pl anVari abl e(pl an, ' Connectionl nstance_ei s/DB/" + dsName +
" _JNDI Nane_' + uniqueString, eisNanme, '/webl ogic-connector/out bound-resource-adapter/
connection-definition-group/[connection-factory-
i nterface="javax.resource. cci.ConnectionFactory"]/connection-instance/[]jndi - name=""
+ eisName + '"]/jndi-nane')

mekeDepl oynent Pl anVari abl e(pl an, ' Confi gProperty_xADat aSour ceNane_Val ue_' +
uni queString, eisNane, '/webl ogi c-connect or/out bound-resour ce-adapt er/ connect i on-
definition-group/[connection-factory-
i nterface="javax.resource. cci.ConnectionFactory"]/connection-instance/[]jndi - name=""
+ eisName + '"]/connection-properties/properties/property/[nane="xADat aSour ceNane"]/
val ue')

print('--> saving plan')

pl an. save();

save();

print('--> activating changes')

activate(block="true");

cd(' / AppDepl oynent s/ DbAdapt er/ Targets') ;

print('--> redeploying the DbAdapter')

redepl oy(appNane, planPath, targets=cno.getTargets());

print('--> done')

except :
print('--> sonething went wong, bailing out")
stopEdit('y")
rai se Systenkxit

#
di sconnect fromthe adm n server
#

print('--> disconnecting fromadnm n server now)
di sconnect ()

#
this is the main entry point

mai n()

To execute this script during the pr e-i nt egr ati on-t est phase of your build, you
would include a pl ugi n section similar to the following in your SOA Project POM:

<pl ugi n>

<groupl d>com oracl e. webl ogi c</ gr oupl d>

<artifact!d>webl ogi c- maven-pl ugi n</artifactld>

<version>12. 2. 1- 0- 0</ ver si on>

<executions>

<execution>

<i d>wl st - creat e- dat asour ce</ i d>
<phase>pre-integration-test</phase>

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-15

What You May Need to Know About ADF Human Task User Interface Projects

<goal s>
<goal >wl st </ goal >
</ goal s>
<configuration>
<ni ddl ewar eHone>c: / wl s1212</ ni ddl ewar eHone>
<fileName>${proj ect.basedir}/ m sc/create-datasource. py</fil eName>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>

13.10 What You May Need to Know About ADF Human Task User

Interface Projects

If you add an ADF Human Task User Interface project to your SOA Application in
JDeveloper, the application level POM is updated to add the new ADF project as a
module and some <plugin> definitions are added to the <build> section to build the
ADF project.

When you create an ADF Human Task project, some JDeveloper libraries are added to
the build path for that project in JDeveloper. Additionally, JDeveloper checks to see if
there are matching POMs for those libraries in your local Maven repository. If not, it
creates those POMs for you. These new library POMs (if any are needed) are created
with the Maven groupld = com oracl e. adf.library.

Note that the Maven repository used by JDeveloper can be specified in Tool s/
Pref erences/ Maven/ Reposi t or y; it may not be the default repository in
$HOVE/ . n2.

Note the following:

¢ If you want to build these ADF Human Task projects on another machine, for
example, a build server, which is using a different Maven repository (local or
remote), copy these new POMs to that Maven repository.

® The server on which you build the ADF Human Task projects must have access to a
JDeveloper installation, because the ojdeploy Maven plug-in, which is used to
package the ADF project into an EAR file, depends on the JDeveloper Oracle Home
being present.

¢ If you want to deploy the EAR file as part of the application build, you need to add
a new <plugin> section to invoke the webl ogi c- maven- pl ugi n: depl oy goal in
the appropriate phase of your build, most likely pr e-i nt egrati on-t est. Note
that the EAR file is located in the appHome/deploy directory, not in the ADF
project's directory. This is due to the fact that a single EAR file may contain
multiple ADF Human Task project WAR files.

e If you target the deployment to the SOA server (as shown in the following
example), the ADF URI is automatically registered in the appropriate MBean so
that the SOA or BPM Workspace application can find it.

<pl ugi n>
<groupl d>com oracl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<goal s>
<goal >depl oy</ goal >
</ goal s>

13-16 Developing Applications Using Continuous Integration

Undeploying Your SOA Project

<phase>pre-integration-test</phase>
<configuration>
<admi nurl >t 3://1 ocal host: 7001</ adm nur| >
<user >webl ogi c</ user>
<passwor d>passwor d</ passwor d>
<sour ce>${ proj ect . basedir}/depl oy/ adf 1. ear </ sour ce>
<ver bose>t rue</ ver hose>
<nanme>${ proj ect. bui | d. fi nal Nane} </ nane>
<target s>soa_server 1</t arget s>
</ configuration>
</ execution>
</ executi ons>
</ pl ugi n>

* To be able to deploy the EAR file, you also need to set up the appropriate MDS
configuration in appHome/.adf/META-INF/adf-config.xml. This is most likely a
database-based MDS store, as shown in What You May Need to Know About
Building SOA Projects. For the build to work correctly, and the deployed
application to function correctly, this database must be accessible from both the
build server and the runtime server. This may not be practical in production
environments, so you may need to define multiple deployment profiles for the
ADF project.

13.11 Undeploying Your SOA Project

You can undeploy your composite using the undeploy goal.

Table 13-7 describes the parameters for the undeploy command:

Table 13-7 Parameters for the Undeploy Goal
__|

Parameters Purpose

composite.name The name of the composite you want to undeploy.
composite.revision The revision of the composite you want to undeploy.
composite.partition The partition that holds the composite you want to undeploy.
user User name to be used for undeployment.

password Password to be used for undeployment.

To undeploy a SAR file, execute the following command, specifying the appropriate
values for your environment. Enter this command on one line.

m/n com oracl e. soa. pl ugi n: oracl e- soa- pl ugi n: undepl oy
-Dserver URL=http://test.server: 7001
- Dconposi t e. nane=ny- pr oj ect
-Dconposi te. revision=1.0
-Dconposi te. partition=test
- Duser =webl ogi ¢
- Dpasswor d=wel conmel

You should run the undeploy goal against a SOA Project, not a SOA Application.

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-17

What You May Need to Know About the SOA Parent POM

13.12 What You May Need to Know About the SOA Parent POM

The SOA Parent POM is provided as a point of customization. It has Maven
coordinates com.oracle.soa:sar-common:12.2.1-0-0. If you want to set some
environment-wide defaults, for example, the URL, user name, and password for your
test server, then you can put these in the SOA Parent POM. The SOA Parent POM is
provided as a point of customization. It has Maven coordinates com.oracle.soa:sar-
common:12.2.1-0-0. If you want to set some environment-wide defaults, for example,
the URL, user name, and password for your test server, then you can put these in the
SOA Parent POM.

The SOA Parent POM contains the following properties:

<properties>
<l--
These two properties are defined in com oracle. maven: oracl e-comon, you can
overwite them here.
Users who do not want to add plain text password in their properties or pom
file, should use the userConfigFile and userKeyFile options for depl oynent.
<or acl eUser nanme>USERNAME</ or acl eUser name>
<or acl ePasswor d>PASSWORD</ or acl ePasswor d>
-->

<!I-- Change the default values according to your environnent -->

<oracl eServer Ur| >http:// | ocal host: 8001</ oracl eServer Ur| >

<or acl eServer Nane>soa_ser ver 1</ or acl eSer ver Nane>

<or acl eM ddl ewar eHone>/ hore/ myhone/ Or acl e/ M ddl ewar e</ or acl eM ddl ewar eHone>
</ properties>

You can set these properties, or define any other properties that you want to have
available to SOA Projects. To refer to a property in your SOA Project POM, use the
syntax $propertyName, for example. $oracleServerName would be replaced with
soa_serverl in the previous example.

13-18 Developing Applications Using Continuous Integration

14

Building Oracle Service Bus Projects with
Maven

You can use the Oracle Service Bus Maven archetypes to create, build, and deploy
Oracle Service Bus applications.

Topics:

¢ Introduction to Building Oracle Service Bus Projects with Maven

* Creating an Oracle Service Bus Application from a Maven Archetype
e Editing Your OSB Application in Oracle JDeveloper

* Creating an Oracle Service Bus Project from a Maven Archetype

¢ Building Your OSB Project with Maven

¢ Deploying Your Project to the Oracle Service Bus Server with Maven

¢ What You May Need to Know About the Oracle Service Bus Parent POM

For more information about using the Oracle Service Bus development plug-in with
Maven, see "Using the Oracle Service Bus Development Maven Plug-In" in Developing
Services with Oracle Service Bus.

14.1 Introduction to Building Oracle Service Bus Projects with Maven

Oracle Service Bus provides a Maven plug-in and three archetypes.

The Maven coordinates are described in Table 14-1.

Table 14-1 Maven Coordinates with Oracle Service Bus

Artifact groupld artifactld version
OSB plug-in com.oracle.servicebus oracle-servicebus-plugin ~ 12.2.1-0-0
OSB Application com.oracle.servicebus oracle-servicebus- 12.2.1-0-0
archetype application

OSB Project com.oracle.servicebus oracle-servicebus-project ~ 12.2.1-0-0
archetype

OSB System com.oracle.servicebus oracle-servicebus-system 12.2.1-0-0
Resources

archetype

The Oracle Service Bus plug-in supports the following goals:

Building Oracle Service Bus Projects with Maven 14-1

Creating an Oracle Service Bus Application from a Maven Archetype

Goal Purpose
package Creates a service bus archive (SBAR) file from the project.
deploy Deploys the SBAR file to a runtime environment. Note that this goal is

mapped to the pre-integration-test phase in the default lifecycle, not the
deploy phase, as deployment to a runtime environment is usually done in the
pre-integration-test phase in Maven.

The custom packaging type sbar is defined, representing an Oracle Service Bus
archive.

14.2 Creating an Oracle Service Bus Application from a Maven Archetype

You can create a new Oracle Service Bus application (containing an OSB Project and an
OSB System Resources project) using the OSB Application Maven archetype.

To do so, execute a command similar to the following:

m/n ar chet ype: generat e
- Dar chet ypeG oupl d=com or acl e. servi cebus. ar chet ype
- Dar chet ypeArtifact| d=oracl e- servi cebus-appl i cation
- Dar chet ypeVersi on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact!d=ny-servicebus-application
- Dver si on=1. 0- SNAPSHOT
- Dpr oj ect Nanme=ny- pr oj ect
-DconfigJar=nyjar.jar

This command runs Maven's ar chet ype: gener at e goal which allows you to create
a new project from an archetype. Table 14-4 describes the parameters.

Table 14-2 Parameters for the Oracle Service Bus Project
___|

Parameter Purpose

archetypeGroupld The groupld of the archetype that you want to use to create the
new project. This must be com or acl e. ser vi cebus as
shown in the preceding example.

archetypeArtifactld The artifactld of the archetype that you want to use to create the
new project. This must be or acl e- ser vi cebus-
appl i cat i on as shown in the preceding example.

archetypeVersion The version of the archetype that you want to use to create the
new project. This must be 12. 2. 1- 0- 0, as shown in the
preceding example.

groupld The groupld for your new project. This usually starts with your
organization's domain name in reverse format.

artifactld The artifactld for your new project. This is usually an identifier
for this project.

version The version for your new project. This is usually 1. 0-
SNAPSHOT for a new project.

14-2 Developing Applications Using Continuous Integration

Creating an Oracle Service Bus Application from a Maven Archetype

Table 14-2 (Cont.) Parameters for the Oracle Service Bus Project
|

Parameter Purpose

projectName The name for the OSB project to create inside the application.
This should be different from the name of the application (that
is,artifactld), and it cannot be Syst em which is reserved
for system resources.

-DconfigJar Used to specify a precompiled sbconfig.jar or .sbar file. This

setting allows deployment of individual jar iles without
previous fresh build. It can be an absolute path.

This setting requires -DprojectName to be set as well.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you
to enter the required information.

nvn archetype: generate

After creating your application, it contains the following files:

| my-sarvicebus-application

Table 14-3 describes the files included in the project.

Table 14-3 Files Created for the Oracle Service Bus Project

File

Purpose

pom.xml

The Maven Project Object Model (POM) file that describes your
new application. It includes the Maven coordinates that you
specified for your application. This POM is used to group all of
the OSB projects that form part of this application.

my-project/pom.xml

The Maven POM file that describes your new project. It
includes the Maven coordinates that you specified for your
project, and the appropriate plug-in definitions to use the
Oracle Service Bus Maven plug-in to build your project into an
sbar file.

System/pom.xml

A Maven Project Object Model (POM) file for building OSB
system resources into a sbar file.

Building Oracle Service Bus Projects with Maven 14-3

Editing Your OSB Application in Oracle JDeveloper

14.3 Editing Your OSB Application in Oracle JDeveloper

You can edit your application in Oracle JDeveloper to define OSB resources.
To edit your application, first open the application in JDeveloper:

1. Open the File menu, then select Import....
2. In the Import dialog box, select the Maven Project option and click OK.

The Import Maven Projects dialog appears, as shown in the following figure:

s Import Maven Projects

Briowse 10 0he direchory thal you want 10 impon sayen proj@cRs from, You Can then selecl one or more FOM fleg for eact
project you want 1o ampor. Module s of uny FOM Tile are represenced ag children of tThat FOM Tile

Ract Direclory: | foeratch/soa-14sting fone fosbapp2

Settings Eile: Jreraich/coR=14z1ing oL brepo/ oarings xm|
Frajects;
Felative Fath Croup ID Amifact 1D Werzion Type
fpom.xml com fest osbapp2 1 0-SHAPSHOT pom
of| || projecdfpam xml Com e prajecel LO-SHAPSHOT char
v E System fpom.xm| COMm tes1 System LO-SHAPSHOT sbar

o Alza import source files ints applicyisn

| Update existing |Developer Frojects 1o synchwith impored POM files

Help [u]

3. In the Root Directory field, enter the path to the application you want to import
into JDeveloper.

4. In the Settings File field, enter the path to your Maven settings.xml file. The
default value is most likely correct unless you are using a non-standard location for
your Maven settings file.

14-4 Developing Applications Using Continuous Integration

Creating an Oracle Service Bus Project from a Maven Archetype

5. Click Refresh to load a list of projects available at that location.

6. Select the projects that you want to import. Also select Update existing JDeveloper
Projects to synch with imported POM files.

7. Click OK to complete the import.

Your applications are opened in JDeveloper.

When you import an Oracle Service Bus application (or project) into JDeveloper, you
have the choice of creating a new application (or project) directory, or simply creating
the JDeveloper project files (jws and jpr files) in the existing location:

* To create a new copy of the application (or project) in a new directory, select the
Also import source files into application option and provide a new directory in
the import dialog box.

¢ To create the JDeveloper files in the existing directory, do not select the Also
import source files into application option, and select the existing directory when
prompted for the project location.

14.4 Creating an Oracle Service Bus Project from a Maven Archetype

You can create a new Oracle Service Bus Project inside an existing OSB application
using the OSB Project Maven archetype.

To do so, execute a command similar to the following, from your OSB Application
root directory:

m/n ar chet ype: generat e
- Dar chet ypeG oupl d=com or acl e. servi cebus. ar chet ype
- Dar chet ypeArtifact | d=or acl e- servi cebus- proj ect
- Dar chet ypeVersi on=12. 2. 1-0-0
- Dgr oupl d=or g. nyconpany
-Dartifact! d=ny-second- proj ect
- Dver si on=1. 0- SNAPSHOT

This command runs Maven's archetype:generate goal, which allows you to create a
new project from an archetype. Table 14-4 describes the parameters.

Table 14-4 Parameters for the Oracle Service Bus Project from a Maven Archetype
|

Parameter Purpose

archetypeGroupld The groupld of the archetype that you want to use to create the
new project. This must be com or acl e. servi cebus as
shown in the preceding example.

archetypeArtifactld The artifactld of the archetype that you want to use to create the
new project. This must be or acl e- ser vi cebus- pr oj ect as
shown in the preceding example.

archetypeVersion The version of the archetype that you want to use to create the
new project. This must be 12. 2. 1- 0- 0 as shown in the
preceding example.

groupld The groupld for your new project. This usually starts with your
organization's domain name in reverse format.

Building Oracle Service Bus Projects with Maven 14-5

Building Your OSB Project with Maven

Table 14-4 (Cont.) Parameters for the Oracle Service Bus Project from a Maven
Archetype

Parameter Purpose

artifactld The artifactld for your new project. This is usually an identifier
for this project. It cannot be System, which is reserved for
system resources.

version The version for your new project. This usually is 1. O-
SNAPSHOT for a new project.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you
to enter the required information.

nvn archet ype: generat e

Note that OSB Projects must be located inside an OSB Application.
After creating your project, it contains the following files:

my- second- proj ect/
| -- pom xm

The following table describes the file included in the project,:

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your new
project, it includes the Maven coordinates that you specified for your
project, and it also includes the appropriate plug-in definitions to use
the OSB Maven Plug-in to build your project into a sbar file.

Maven also updates the OSB Application POM file to include this new project. If you
ran the preceding command in the application you created in Creating an Oracle
Service Bus Application from a Maven Archetype, you would see the following in
your OSB Application POM:

<modul es>
<modul e>ny- pr oj ect </ nodul e>
<modul e>ny- servi cebus- proj ect </ modul e>
<modul e>ny- second- pr oj ect </ modul e>

</ modul es>

14.5 Building Your OSB Project with Maven

After you have written your project code, you can use Maven to build the your OSB
project.

To build the SBAR file, execute the following command:

m/n package - Doracl eHomre=/ pat h/ t o/ osbhome

The preceding command creates a SBAR file from your project and places it in:

proj ect/ . datal/ maven/ sbconfi g. shar

14-6 Developing Applications Using Continuous Integration

Deploying Your Project to the Oracle Service Bus Server with Maven

The following parameter may be specified for the packaging. You can specify it either
in the POM file for the project or on the command line as shown in the preceding

example.
Parameter Purpose
oracleHome The location of the Oracle Home for Oracle Fusion Middleware.

14.6 Deploying Your Project to the Oracle Service Bus Server with Maven

You can deploy your OSB project to the Oracle Service Bus server with Maven.
To deploy the SBAR file, execute the following command:
m/n pre-integration-test

You can specify the following parameters for the deployment. You can specify them
either in the POM file for the project or on the command line.

Parameter Purpose

oracleHome The location of the Oracle Fusion Middleware Oracle Home where
OSB is installed.

oracleServerUrl The URL of the server in the OSB domain.

customization (optional) The name of the OSB customization file to use, if any.

oracleUsername User name to be used for deployment.

oraclePassword Password to be used for deployment.

configJar The name of the .sbar or sbconfig jar file to be deployed. Use this

parameter to specify a precompiled sbconfig.jar or .sbar file. You can
use an absolute path. This setting allows deployment of individual jar
files without needing to build the file. If you use this setting, you must
also specify the projectName parameter.

projectName The name of the project. Use this parameter to specify the project for
which the sbconfig jar set by the configJar parameter is deployed. This
parameter matches the artifactld in the POM file of the respective
project. This setting is ignored when Dconfig]ar is not present.

To specify the parameters:

* On the command line: Use the format -Dparameter=value, as shown in this example
(note that you enter the whole command on one line):

m/n pre-integration-test
- Doracl eServerUrl =http://test.server: 7001
- Dor acl eUser nane=webl ogi ¢
- Dor acl ePasswor d=wel conel
- Deonfi gJar=D:\ Servi cebusApp\ SBPr oj ect\ . dat a\ maven\ sbconfi g. shar
- Dpr oj ect Name=SBPr oj ect

* In your project POM file: Add a pl ugi n section as shown in the following
example:

Building Oracle Service Bus Projects with Maven 14-7

What You May Need to Know About the Oracle Service Bus Parent POM

<pl ugi ns>

<pl ugi n>
<groupl d>com or acl e. servi cebus</ groupl d>
<artifact!d>oracl e-servicebus-plugi n</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
<configuration>
<or acl eHome>/ u01/ osbhome</ or acl eHorme>
<oracl eServer Url >http://test.server: 7001</ oracl eServer Ul >
<or acl eUser name>webl ogi c¢</ or acl eUser name>
<or acl ePasswor d>wel comel</ or acl ePasswor d>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>

14.7 What You May Need to Know About the Oracle Service Bus Parent

POM

The OSB Parent POM is provided as a point of customization. For example, you can
use it to set some environment-wide defaults, such as the URL, user name, and
password for your test server, then you may want to put these in the OSB Parent
POM.

You can set these properties or define any other properties that you want to have
available to OSB Projects. To refer to a property in your OSB Project POM, use the
syntax $propertyName. For example, $oracleServerName would be replaced with
osb_serverl in the following example.

Projects that are created from the OSB archetypes automatically use values from the
OSB Parent POM if you do not override them.

The following is an example of an OSB Parent POM which defines some properties:

<properties>
<l--
These two properties are defined in com oracle. maven: oracl e-common, you can
overwite them here.
Users who do not want to add plain text password in their properties or
pomfile, should use the userConfigFile and userKeyFile options for deploynent.
<or acl eUser nanme>USERNAME</ or acl eUser name>
<or acl ePasswor d>PASSWORD</ or acl ePasswor d>
-->

<lI-- Change the default values according to your environment -->
<oracl eServer Url >t 3://1 ocal host: 7001</ or acl eServer Ur | >
<or acl eServer Nane>osh_ser ver 1</ or acl eSer ver Nane>
<or acl eHome>/ u01/ osbhome</ or acl eHome>
</ properties>

14-8 Developing Applications Using Continuous Integration

15

Building a Real Application with Maven

Many real world applications include modules that are targeted to be deployed on
different runtime environments. For example, you may have a web application that
uses data stored in a Coherence cache.

This chapter describes how to build such a web application.

Topics:
¢ Introducing the Maven Example Application
* About Multi-Module Maven Projects

¢ Building a Maven Project

15.1 Introducing the Maven Example Application

The example application that you build in this chapter displays a list of people, with
their names and age, on a web page. It also allows you to add a new person. The
details of the people are stored in a Coherence cache.

This application contains the following parts:

¢ A Coherence GAR project, which contains a Person POJO (Plain Old Java Object),
which you need to build into a Portable Object, a utility class to access the cache,
and Coherence cache definitions

¢ A Java EE web application, which you need to build into a WAR, which contains a
servlet and a deployment descriptor

® A project to assemble the GAR and WAR into an EAR and deploy that EAR to
WebLogic Server

In this example, you can see how to build a multi-module Maven project, with
dependencies between modules, and how to assemble our application components
into a deployable EAR file that contains the whole application.

The aim of this chapter is to show how to use Maven to build whole applications, not
to demonstrate how to write web or Coherence applications, so the content of the
example itself, in terms of the servlet and the coherence code, is quite basic. For more
information, refer to Building Java EE Projects for WebLogic Server with Maven and
Building Oracle Coherence Projects with Maven.

15.2 About Multi-Module Maven Projects

Maven lets you create projects with multiple modules. Each module is in effect
another Maven project. At the highest level, you have a POM file that tells Maven
about the modules and lets you build the whole application with one Maven
command.

Building a Real Application with Maven 15-1

Building a Maven Project

Each of the modules are placed in a subdirectory of the root of the top-level project. In
the example, the top-level project is called ny- r eal - app and the three modules are
ny-real - app- gar, my-real - app- war and nmy- r eal - app- ear . The Maven
coordinates of the projects are as follows:

Groupld Artifactld Version Packaging
or g. myconpany ny-real - app 1.0-SNAPSHOT pom

or g. myconpany ny-real - app- gar 1.0-SNAPSHOT gar

or g. myconpany ny-real - app- war 1.0-SNAPSHOT war

or g. myconpany nmy-real - app- ear 1.0-SNAPSHOT ear

The following are the files that make up the application:

pom xm

-real - app- gar/ pom xm

-real - app-gar/ src/ mai n/ resour ces/ META- | NF/ pof - confi g. xm

-real -app-gar/ src/ mai n/ resour ces/ META- | NF/ coher ence- appl i cati on. xn
-real -app-gar/ src/ mai n/ resour ces/ META- | NF/ cache- confi g. xm

-real - app-gar/ src/ main/j aval or g/ nyconpany/ CacheW apper . j ava

-real -app-gar/ src/ main/j aval or g/ nyconpany/ Person. j ava

-real - app-war/ pom xni
-real - app-war/ src/ mai n/ webapp/ VEB- | NF/ web. xm
-real -app-war/src/ main/javal org/ myconpany/ servl ets/ MyServl et. j ava

-real - app- ear/ pom xn
-real -app-ear/src/ main/application/ META- | NF/ webl ogi c-appl i cati on. xm

22 S828 238338

At the highest level, the POM file points to the three modules.

e Theny-real - app- gar directory contains the Coherence GAR project. It contains
its own POM, the Coherence configuration files, a POJO/POF class definition
(Per son. j ava) and a utility class that is needed to access the cache
(CacheW apper. j ava).

e Theny-real - app- war directory contains the web application. It contains its own
POM, a Servlet and a deployment descriptor. This project depends on the ny-
real - app- gar project.

e Theny-real - app- ear directory contains the deployment descriptor for the EAR
file and a POM file to build and deploy the EAR.

15.3 Building a Maven Project

To build the example project, you create the directory, and then create the GAR, WAR,
and EAR projects.

This section includes the following topics:
* Creating a Directory for the Projects
¢ Creating the GAR Project

¢ Creating the WAR Project

15-2 Developing Applications Using Continuous Integration

Building a Maven Project

¢ Creating the EAR Project
¢ Creating the Top-Level POM

¢ Building the Application Using Maven

15.3.1 Creating a Directory for the Projects
Create a directory to hold the projects, using the following command:

mkdir ny-real -app

Throughout the rest of this chapter, paths shown are relative to this directory.

15.3.2 Creating the GAR Project

This section includes the following topics:

* Creating the Initial GAR Project

¢ Creating or Modifying the POM File

¢ Creating or Modifying the Coherence Configuration Files
¢ Creating the Portable Objects

¢ Creating a Wrapper Class to Access the Cache

15.3.2.1 Creating the Initial GAR Project

You can create the GAR project either using an archetype, as described in Creating a
Coherence Project from a Maven Archetype, or you can create the directories and files
manually:

¢ To use the archetype, run the following command:

mvn archetype: generate
- Dar chet ypeG oupl d=com or acl e. coher ence. ar chet ype
- DarchetypeArtifact | d=gar - maven- ar chet ype
- Dar chet ypeVer si on=12. 2. 1-0- 0
- Dgr oupl d=or g. nyconpany
-Dartifactld=ny-real - app- gar
- Dver si on=1. 0- SNAPSHOT

* To create the project manually, use the following commands to create the necessary
directories:

mkdir -p my-real -app-gar/src/ min/resources/ META- | NF
mkdir -p my-real -app-gar/src/ min/javal org/ myconpany

15.3.2.2 Creating or Modifying the POM File

If you use the archetype, you already have a POM file. Modify that file to match the
following example. If you create the project manually, create the POM file (rmy- r eal -
app- gar/ pom xm) with the following contents:

<project xmns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi . schemalocation="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/
maven- 4. 0. 0. xsd">
<model Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>or g. nyconpany</ gr oupl d>

Building a Real Application with Maven 15-3

Building a Maven Project

<artifactld>ny-real -app-gar</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>gar </ packagi ng>
<parent >
<groupl d>or g. nyconpany</ gr oupl d>
<artifact!|d>my-real -app</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
</ parent >
<dependenci es>
<dependency>
<gr oupl d>com or acl e. coher ence</ gr oupl d>
<artifact|d>gar-mven-plugin</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<scope>provi ded</ scope>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>
<gr oupl d>com or acl e. coher ence</ gr oupl d>
<artifact|d>gar-mven-plugin</artifact!d>
<ver si on>${ coher ence. ver si on} </ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. coher ence</ gr oupl d>
<artifact!d>gar-mven-plugin</artifact!ld>
<ext ensi ons>t r ue</ ext ensi ons>
<configuration>
<gener at ePof >t r ue</ gener at ePof >
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ buil d>
</ proj ect>

Examine the POM file to understand each part of the file:

¢ The Maven coordinates for this project are set:

<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app-gar</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>gar </ packagi ng>

Notice that the packaging is gar because you use the Coherence Maven plug-in to

build this project into a Coherence GAR file.

® The coordinates of the parent project are set. These coordinates point back to the
top-level project. You need to create the POM for the top-level project in a later

step.

<parent >
<groupl d>or g. mycompany</ gr oupl d>
<artifactld>ny-real -app</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ parent >

15-4 Developing Applications Using Continuous Integration

Building a Maven Project

e The dependenci es section identifies any dependencies that this project has. In
this case, you depend only on the Coherence library, that is,
com or acl e. coher ence: coherence: 12. 2. 1- 0- 0. The scope pr ovi ded
means that this library is just for compilation and does not need to be packaged in
the artifact that you build (the GAR file) as it is already provided in the runtime
environment.

<dependenci es>
<dependency>
<gr oupl d>com or acl e. coher ence</ gr oupl d>
<artifact|d>gar-mven-plugin</artifact!d>
<version>12. 2. 1- 0- 0</ ver si on>
<scope>provi ded</ scope>
</ dependency>
</ dependenci es>

e The pl ugi nManagement section tells Maven to enable ext ensi ons for this plug-
in. This is necessary to allow Maven to recognize GAR files as a target artefact type.

<pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. coher ence</ gr oupl d>
<artifactld>gar-mven-plugi n</artifactld>
<ver si on>${ coher ence. ver si on} </ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >

* The pl ugi ns section includes any information that you must pass to the
Coherence GAR plug-in. In this case, you must set gener at ePof to tr ue so that
the plug-in looks for POJOs with POF annotations and generate the necessary
artifacts.

<pl ugi ns>

<pl ugi n>
<groupl d>com or acl e. coher ence</ gr oupl d>
<artifact|d>gar-mven-plugin</artifactld>
<ext ensi ons>t r ue</ ext ensi ons>
<configuration>

<gener at ePof >t r ue</ gener at ePof >

</configuration>

</ pl ugi n>

</ pl ugi ns>

15.3.2.3 Creating or Modifying the Coherence Configuration Files

There are three Coherence configuration files that you need in your GAR project. If
you use the archetype, the files already exist, but you need to modify them to match
the following examples. If you create the project manually, create these files in the
following locations:

my-real - app-gar/ src/ mai n/ resour ces/ META- | NF/ pof - confi g. xm
my-real - app-gar/ src/ mai n/ resour ces/ META- | NF/ coher ence-appl i cati on. xni
my-real - app- gar/ src/ mai n/ resour ces/ META- | NF/ cache- confi g. xn

¢ The following example shows the contents for the pof-config.xml file:

<?xm version="1.0"?>
<pof-config xm ns: xsi ="http://wwmv. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xn ns. oracl e. con coher ence/ coher ence- pof - confi g"

Building a Real Application with Maven 15-5

Building a Maven Project

xsi:schemalLocation="http://xm ns. oracl e. con coher ence/ coher ence- pof -
confi g coherence-pof-config. xsd">
<user-type-list>
<!-- by default just include coherence POF user types -->
<i ncl ude>coher ence- pof - confi g. xn </i ncl ude>
</ user-type-list>
</ pof - confi g>

This file requires little or no modification if you created it with the archetype.

¢ The following example shows the contents for the coherence-application.xml file:

<?xm version="1.0" encodi ng="1SO 8859-1"?>

<coherence-application xmns="http://xm ns. oracl e. conf webl ogi c/ coher ence-

appl i cation">
<cache- confi guration-ref >META- |1 NF/ cache- confi g. xnl </ cache- confi guration-ref>
<pof - confi gurati on-ref >META- | NF/ pof - confi g. xm </ pof - confi gurati on-ref >

</ coher ence-appl i cati on>

This file requires little or no modification if you created it with the archetype.

® The cache-config.xml file must be updated if you have used the archetype.

In this file, create a cache named People, with a caching scheme named real-
distributed-gar and a service name of RealDistributedCache, which uses the local
backing scheme and is automatically started. If you are not familiar with these
terms, see Building Oracle Coherence Projects with Maven. The following shows an
example of the file:

<?xm version="1.0"?>
<cache-config xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- config"
xsi : schemaLocation="http://xm ns. oracl e. conf coher ence/ coher ence-
cache-confi g coherence-cache-config. xsd">

<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>Peopl e</ cache- nanme>
<schene- nane>r eal - di st ri but ed- gar </ schene- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<di st ri but ed- scheme>
<schene- nane>r eal - di st ri but ed- gar </ schene- nane>
<servi ce- nane>Real Di st ri but edCache</ servi ce- name>
<backi ng- map- scheme>
<l ocal - schene/ >
</ backi ng- map- scheme>
<autostart>true</autostart>
</ distributed-scheme>
</ cachi ng- schenes>
</ cache-config>

15.3.2.4 Creating the Portable Objects

Create the Person object, which will store information in the cache. Create a new Java
class in the following location:

my-real -app-gar/ src/ main/ j aval or g/ myconpany/ Per son. j ava

The following is the content for this class:

15-6 Developing Applications Using Continuous Integration

Building a Maven Project

package org. nyconpany;

i mport com tangosol . io. pof.annotation. Portable;
i nport com tangosol . io.pof.annotation. Portabl eProperty;

@ortable

public class Person {
@ort abl eProperty(0)
public String nane;
@ort abl eProperty(1)
public int age;

public Person() {}

public Person(String nane, int age) {
this.nane = nane;
this.age = age;

}

public String getNane() { return this.nane; }
public int getAge() { return this.age; }
}

This POJO tells Coherence what to do with the class. Because the focus of this chapter
is on building applications with Maven, it does not go into the details of writing
Coherence applications. For more information on Coherence, refer to Building Oracle
Coherence Projects with Maven.

15.3.2.5 Creating a Wrapper Class to Access the Cache

Create a small wrapper class that you can use to access the cache. Create another Java
class in this location:

my-real -app-gar/ src/ main/javal/ or g/ myconpany/ CacheW apper . j ava

The following is the content for this class:
package org. nyconpany;

i mport org. nyconpany. Per son;
i nport com tangosol . net. CacheFactory;
inport java.util.Set;

public class CacheWapper {
private static CacheWapper | NSTANCE;

public Set getPeople() {
return CacheFactory. get Cache("Peopl e").entrySet();
1

public void addPerson(int personid, String nane, int age) {
CacheFact ory. get Cache(" Peopl €"). put (personi d, new Person(nane, age));

}

public static final CacheWapper getlnstance() {
i f (INSTANCE == null) I NSTANCE = new CacheW apper ();
return | NSTANCE;
1
1

Building a Real Application with Maven 15-7

Building a Maven Project

Later, you can use this class in a Servlet to get data from the cache and to add new
data to the cache.

15.3.3 Creating the WAR Project

This section includes the following topics:

* C(Creating the Initial WAR Project

Creating or Modifying the POM File

Creating the Deployment Descriptor

Creating the Servlet

15.3.3.1 Creating the Initial WAR Project

You can create the WAR project either using an archetype as described in Building
Java EE Projects for WebLogic Server with Maven, or you can create the directories
and files manually.

¢ To use the archetype, run the following command:

mv/n ar chetype: generate
- DarchetypeArtif act | d=basi c- webapp
- Dar chet ypeVer si on=12. 2. 1-0- 0
- Dgr oupl d=or g. nyconpany
-Dartifact|d=ny-real - app- war
- Dver si on=1. 0- SNAPSHOT

If you use the archetype, you must remove any unnecessary files included in the
project.

* To create the project manually, use the following commands to create the necessary
directories:

mkdir -p my-real - app-war/ src/ mai n/ webapp/ VEB- | NF
mkdir -p my-real -app-war/src/ min/javal org/ nyconpany/ servl ets

15.3.3.2 Creating or Modifying the POM File

If you use the archetype, the POM file already exists. Modify that file to match the
following example. If you created the project manually, create the POM file (rry-
real - app-war/ pom xm) with the following contents:

<proj ect >
<model Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>or g. myconpany</ gr oupl d>
<artifactld>ny-real -app-war</artifact!ld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>war </ packagi ng>
<par ent >
<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
</ parent >
<nanme>ny- r eal - app- war </ name>
<dependenci es>
<dependency>
<groupl d>or g. myconpany</ gr oupl d>
<artifactld>ny-real -app-gar</artifactld>

15-8 Developing Applications Using Continuous Integration

Building a Maven Project

<ver si on>1. 0- SNAPSHOT</ ver si on>
<scope>provi ded</ scope>

</ dependency>

<dependency>
<groupl d>j avax. servl et </ groupl d>
<artifactld>javax.servlet-api </artifactld>
<versi on>3. 0. 1</ versi on>
<scope>provi ded</ scope>

</ dependency>

</ dependenci es>
</ proj ect>

Examine the POM file to understand each part of the file:

* You must set the coordinates for this project. Notice that the packaging for this
projectis war .

<groupl d>or g. myconpany</ gr oupl d>
<artifactld>ny-real -app-war</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

<packagi ng>war </ packagi ng>

* Define the parent, as you did in the GAR project:

<par ent >
<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ parent >

¢ List the dependencies for this project. In this case, there are two dependencies: the
GAR project to access the POJO and utility classes you defined there and the
Servlet APL This sets the display-name for the web application.

<dependenci es>
<dependency>
<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app-gar</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<groupl d>j avax. servl et </ groupl d>
<artifactld>javax.servlet-api</artifactld>
<versi on>3. 0. 1</ versi on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>

15.3.3.3 Creating the Deployment Descriptor

The web application has a simple Java EE deployment descriptor that sets the
di spl ay- nane for the web application. It is located at the following location:

my-real - app-war/ src/ mai n/ webapp/ VEB- | NF/ web. xni

The following are the contents of this file:

<?xm version="1.0" encodi ng="UTF-8"?>

<web-app xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
xm ns="http://java.sun. com xn /ns/javaee"

xm ns: web="http://java. sun. com xm / ns/j avaee/ web- app_2_5. xsd"

Building a Real Application with Maven 15-9

Building a Maven Project

xsi: schemalocation="http://java.sun.conl xm /ns/javaee
http://java.sun.com xm /ns/javaee/ web-app_2_5. xsd" i d="\WebApp_I D" version="2.5">

<di spl ay- name>ny-r eal - app- war </ di spl ay- nane>
</ web- app>

15.3.3.4 Creating the Servlet
To create the servlet, locate the MyServlet.java file:

my-real - app-war/ src/ main/ j aval or g/ myconpany/ servl et s/ MyServl et . j ava

The servlet displays a list of people that are currently in the cache and allows you to
add a new person to the cache. The aim of the section is to learn how to build these
types of applications with Maven, not to learn how to write Java EE web applications,
hence the use of a simplistic servlet.

The following is the content for the servlet class:

package org.myconpany. servlets;

i nport org. nyconpany. Per son;
i mport org. nyconpany. CacheW apper ;

inmport javax.servlet.http. HtpServlet;

inmport javax.servlet.http. HtpServletRequest;
inmport javax.servlet.http. HtpServletResponse;
i mport javax.servlet.ServletException;

import javax.servlet.annotation. WbServlet;
import java.io.lCException;

inport java.io.PrintWiter;

inport java.util.Mp;

inport java.util.Set;

inport java.util.lterator;

@ebServl et (name = "MyServlet", urlPatterns = "M/Servlet")
public class MyServlet extends HtpServlet {
protected void doPost(Ht tpServl et Request request, HttpServletResponse response)
throws Servl et Exception, |COException {
String id = request.getParaneter("id");
String name = request.get Paraneter("name");
String age = request.get Paraneter("age");

if (name == null || name.isEnpty()
|| age == null || age.isEnpty()
[| id==null || id.isEnmpty()) {
/1 no need to add a new entry
} else {

/1 we have a newentry - so add it
CacheW apper . get I nstance() . addPer son(| nteger. parselnt(id), nane,
I nteger. parselnt(age));
}

render Page(request, response);

}

protected void doGet (HttpServl et Request request, HtpServletResponse response)
throws ServletException, |COException {
render Page(request, response);

}

private void renderPage(HttpServl et Request request, HttpServletResponse response)
throws Servl et Exception, |COException {

15-10 Developing Applications Using Continuous Integration

Building a Maven Project

/1 get the data

Set people = CacheW apper. get I nstance(). get Peopl e();
PrintWiter out = response.getWiter();

out.write("<htm ><head><title>WServlet</title></head><bhody>");

out.wite("<h2>Add a new person</h2>");
out.wite("<formname=\"nyform" method=\"POST\">");
out.write("ID:<input type=\"text\" name=\"id\"/>
");
out.write("Nane: <input type=\"text\" nane=\"name\"/>
");
out.write("Age:<input type=\"text\" name=\"age\"/>
");
out.write("<input type=\"submt\" nanme=\"subnit\" value=\"add\"/>");
out.wite("</form");

out.write("<h2>People in the cache now/h2>");

out.write("<tabl e><tr><th>| D</th><t h>Nane</t h><t h>Age</th></tr>");
[l for each person in data
if (people !'=null) {
Iterator i = people.iterator();
while (i.hasNext()) {
Map. Entry entry = (Map. Entry)i.next();
out.write("<tr><td>"
+ entry. get Key()
+ "</ td><td>"
+ ((Person)entry. getVal ue()). get Nane()
+ "</ td><td>"
+ ((Person)entry. get Val ue()). get Age()
+ "<ftd></tr>");
1

}
out.write("</tabl e></body></htnl >");

}
}

Check if the user has entered any data in the form. If so, add a new person to the cache
using that data. Note that this application has fairly minimal error handling. To add
the new person to the cache, use the addPerson() method in the CacheWrapper class
that you created in your GAR project.

Print out the contents of the cache in a table. In this example, assume that the cache
has a reasonably small number of entries, and read them all using the getPeople()
method in the CacheWrapper class.

15.3.4 Creating the EAR Project
The EAR project manages assembling the WAR and the GAR into an EAR.

This section includes the following topics:

¢ Creating the Initial EAR Project

¢ About the POM File for the Example Application

¢ About the Deployment Descriptor for the Example Application
15.3.4.1 Creating the Initial EAR Project

Create the EAR project manually using the following command:

mkdir -p my-real -app-ear/src/ min/application/ META- | NF

There are two files in this project: a POM file and a deployment descriptor:

my-real - app- ear/ pom xm
my-real - app-ear/src/ main/ appl i cation/ META-1 NF/ webl ogi c-appl i cation. xm

Building a Real Application with Maven 15-11

Building a Maven Project

15.3.4.2 About the POM File for the Example Application
The following are the contents of the POM file:

<project xmns="http://mven. apache. org/ POM 4. 0. 0" xnl ns: xsi ="http://ww. w3. or g/ 2001/
XM.Schena- i nstance" xsi:schemalLocation="http://maven. apache. org/POM 4.0.0 http://
maven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<model Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>or g. myconpany</ gr oupl d>
<artifactld>ny-real -app-ear</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>ear </ packagi ng>
<par ent >
<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
</ parent >
<name>ear assenbl y</ name>
<dependenci es>
<dependency>
<groupl d>or g. nyconpany</ gr oupl d>
<artifact!|d>my-real -app-gar</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<type>gar </t ype>
<scope>opti onal </ scope>
</ dependency>
<dependency>
<gr oupl d>or g. nyconpany</ gr oupl d>
<artifactld>my-real -app-war</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<type>war </t ype>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifact!|d>maven-ear-plugin</artifactld>
<configuration>
<ar chi ve>
<mani f est >
<addd asspat h>t r ue</ addd asspat h>
</ mani f est >
</ archive>
<artifact TypeMappi ngs>
<artifact TypeMappi ng type="gar" mapping="jar"/>
<lartifact TypeMappi ngs>
</ configuration>
</ pl ugi n>
<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact|d>maven- dependency-pl ugi n</artifact!|d>
<executions>
<execution>
<i d>copy-gar-1local | y</id>
<phase>pr epar e- package</ phase>
<goal s>
<goal >copy</ goal >
</ goal s>
<configuration>
<artifactltens>
<artifactltenp

15-12 Developing Applications Using Continuous Integration

Building a Maven Project

<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app-gar</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<type>gar </t ype>
<lartifactltem
<lartifactltems>
</ confi guration>
</ execution>
</ executi ons>
</ pl ugi n>
<pl ugi n>
<groupl d>com oracl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<!--Deploy the application to the server-->
<execution>
<phase>pre-integration-test</phase>
<goal s>
<goal >depl oy</ goal >
</ goal s>
<configuration>
<admi nurl>t3://127.0.0. 1: 7001</ adm nur| >
<user >webl ogi c</ user >
<passwor d>wel conel</ passwor d>
<ni ddl ewar eHone>/ hone/ mar k/ space/ maven/ wl s030213</ i ddI ewar eHone>
<I--The location of the file or directory to be depl oyed-->
<sour ce>${proj ect.build.directory}/${project.build. final Name}.$
{proj ect. packagi ng} </ sour ce>
<I--The target servers where the application is deployed-->
<t arget s>Admi nServer </ target s>
<verhose>t rue</ verbose>
<name>${ proj ect. bui | d. fi nal Name} </ nane>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ buil d>
</ project>

Examine the POM file to understand each part of the file:

¢ Set the Maven coordinates for this project, and point to the parent:

<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app-ear</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>ear </ packagi ng>
<parent >
<groupl d>or g. nyconpany</ gr oupl d>
<artifact!ld>ny-real -app</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
</ parent >

* The dependencies on the WAR and GAR projects are listed:

<dependenci es>
<dependency>
<groupl d>or g. myconmpany</ gr oupl d>
<artifactld>ny-real -app-gar</artifact!ld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

Building a Real Application with Maven 15-13

Building a Maven Project

<type>gar </ type>
<scope>opt i onal </ scope>

</ dependency>

<dependency>
<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>nmy-real -app-war</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<type>war </ type>

</ dependency>

</ dependenci es>

¢ The first of three separate plug-in configurations is for the maven- ear - pl ugi n.
You need to tell it to treat a gar file likeaj ar file by adding an
artifact TypeMappi ng, as in the following example:

<pl ugi n>
<artifact|d>maven-ear-plugin</artifactld>
<configuration>
<ar chi ve>
<mani f est >
<addd asspat h>t r ue</ addCl asspat h>
</ mani f est >
</ archive>
<artifact TypeMappi ngs>
<artifact TypeMappi ng type="gar" mapping="jar"/>
</ artifact TypeMappi ngs>
</ configuration>
</ pl ugi n>

® The second plug-in configuration is for the maven- dependency- pl ugi n.
Configure it to copy the GAR file from the my- r eal - app- gar project's output
(t ar get) directory into the EAR project:

<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact|d>maven- dependency- pl ugi n</artifact!|d>
<executions>
<execution>
<i d>copy-gar-1|ocal | y</id>
<phase>pr epar e- package</ phase>
<goal s>
<goal >copy</ goal >
</ goal s>
<configuration>
<artifactltens>
<artifactltenp
<groupl d>or g. nyconpany</ gr oupl d>
<artifactld>ny-real -app-gar</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<type>gar </ t ype>
<lartifactltem
<lartifactltems>
</configuration>
</ executi on>
</ executi ons>
</ pl ugi n>

¢ The third plug-in configuration is for the webl ogi c- maven- pl ugi n. Tell it how
to deploy the resulting EAR file. In this section, you must update the admi nur |,
user, passwor d, and t ar get parameters to match your environment. For details
on these parameters, see Table 10-1.

15-14 Developing Applications Using Continuous Integration

Building a Maven Project

<pl ugi n>
<groupl d>com oracl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<I--Deploy the application to the server-->
<execution>
<phase>pre-integration-test</phase>
<goal s>
<goal >depl oy</ goal >
</ goal s>
<configuration>
<adminurl >t 3://127.0.0.1: 7001</ adm nur | >
<user >webl ogi c</ user >
<passwor d>wel conel</ passwor d>
<I--The location of the file or directory to be depl oyed-->
<source>${proj ect. build.directory}/${project.build.final Nane}.$
{proj ect. packagi ng} </ source>
<I--The target servers where the application is deployed-->
<t ar get s>Admi nServer</targets>
<ver bose>t rue</ ver bose>
<nanme>${ proj ect. bui | d. fi nal Nane} </ nane>
</ configuration>
</ execution>
</ executi ons>
</ pl ugi n>

Once you have completed the POM project, add a deployment descriptor.

15.3.4.3 About the Deployment Descriptor for the Example Application
The WebLogic deployment descriptor for the EAR file is located in this file:
my-real - app- ear/ src/ mai n/ appl i cati on/ META- | NF/ webl ogi c- appl i cati on. xni

The following are the contents:

<webl ogi c- appl i cation>
<nodul e>
<nane>GAR</ nane>
<t ype>GAR</ t ype>
<pat h>ny-r eal - app- gar - 1. 0- SNAPSHOT. gar </ pat h>
</ modul e>
</ webl ogi c- appl i cati on>

This deployment descriptor provides the details for where in the EAR file the GAR file
should be placed, and what it should be called.

15.3.5 Creating the Top-Level POM

Create the top-level POM. This is located in the pom.xml file in the root directory of
your application and contains the following:

<proj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>or g. myconpany</ gr oupl d>
<artifactld>ny-real -app</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>ponx/ packagi ng>
<name>ny-real - app</ name>
<modul es>

<nodul e>ny-real - app- war </ modul e>

Building a Real Application with Maven 15-15

Building a Maven Project

<nodul e>ny-real - app- gar </ modul e>
<nodul e>ny-real - app- ear </ modul e>
</ modul es>
<properties>
<coherence. versi on>12. 2. 1- 0- 0</ coher ence. ver si on>
</ properties>
</ proj ect>

Set the coordinates for the project. These match the parent coordinates you specified in
each of the three projects. Note that the packaging is pom This tells Maven that this
project is an assembly of a set of sub-projects, as named in the modul es section.

There are one module entry for each of the three sub-projects.

Since this POM is the parent of the other three, and since POM's inherit from their
parents, you can add any common properties to this POM and they will be available in
all the three sub-projects. In this case, you are adding the property

coherence. version.

15.3.6 Building the Application Using Maven

You can now build the application using Maven by using one or more of the following
commands (in the top-level directory ny- r eal - app):

m/n conpil e
m/n package
mn verify

Maven executes all of the phases up to the one named. These commands have the
following effect:

Command Details

mvn compile Compiles the Java source into target class files.

mvn package
1. Compiles the Java source into target class files.

2. Creates the archive (WAR, GAR, and so on) containing compiled files
and resources (deployment descriptors, configuration files, and so
on).

mvn verify
1. Compiles the Java source into target Class files.

2. Creates the archive (WAR, GAR, and so on) containing compiled files
and resources (deployment descriptors, configuration files, and so
on).

3. Deploys the EAR file to the WebLogic Server environment.

15-16 Developing Applications Using Continuous Integration

16

From Build Automation to Continuous
Integration

There are some important considerations that you need to think about when you move
from a simple build automation to a continuous integration environment.

The examples in this book show how to use Maven to manage the build process for
projects which are targeted for deployment on Oracle Fusion Middleware
environments.The next logical step is to move towards a continuous integration
approach, so that the builds of all of your projects can be triggered, managed and
monitored in one central place.

The advantage of continuous integration comes from componentization of an
application and constant integration of those components as they are independently
modified, often by different groups of developers. Maven projects are used to
represent these components and their relationships to each other. Since Hudson
understands Maven's project relationship model, it can automatically rebuild and
retest affected components in the order that they should be built in. When Hudson
detects the changes to the code-base, the affected components are built and
reintegrated in correct order to ensure proper function of the entire application.

Topics:
e About Dependency Management

* Understanding Maven Configuration to Support Continuous Integration
Deployment

e Automating the Build with Hudson
¢ Monitoring the Build

16.1 About Dependency Management

Dependency management is a key feature of Maven and something that distinguishes
it from other build automation technologies, like ANT, which Fusion Middleware has
supported for some time.

This section explores some important dependency management topics:
* About Snapshot Versioning

* About Dependency Transitivity

* About Dependency Scope

* About Multiple Module Support

From Build Automation to Continuous Integration 16-1

About Dependency Management

16.1.1 About Snapshot Versioning

Snapshot versioning is covered more extensively in About Maven Version Numbers.
Using snapshots for components that are under development is required for the
automated continuous integration system to work properly. Note that a fixed version,
non-snapshot versioned artifact should not be modified and replaced. The best
practice is that you should not update artifacts after they are released. This is a core
assumption of the Maven approach. However, it is worth noting that often this
assumption is not correct in enterprise software development, where vendors and end
users do sometimes update "finished" artifacts without changing the version number,
for example through patching them in place. Even though it is possible to violate this
rule, every attempt should be made to comply to ensure integration stability.

16.1.2 About Dependency Transitivity

Most projects have dependencies on other artifacts. At build time, Maven obtains these
artifacts from the configured artifact repositories and use them to resolve compilation,
runtime and test dependencies.

Dependencies explicitly listed in the POM may also have dependencies of their own.
These are commonly referred to as transitive dependencies. Based on dependency
attributes such as scope and version, Maven uses rules to determine which
dependencies the build should utilize. An important part of this resolution process has
to do with version conflicts. It is possible that a project may have transitive
dependencies on multiple versions of the same artifact (identical gr oupl d and
artifactld). Insuch acase, Maven uses the nearest definition which means that it
uses the version of the closest dependency to your project in the tree of dependencies.
You can always guarantee a particular version by declaring it explicitly in your
project's POM.

Note:

If two dependency versions are at the same depth in the dependency tree,
until Maven 2.0.8 it was not defined which one would win, but since Maven
2.0.9 it is the order in the declaration that counts. Hence, the first declaration
wins.

16.1.3 About Dependency Scope

Dependencies may optionally specify a scope. In addition to determining whether or
not a dependency is made available to the classpath during a particular build phase,
scope affects how transitive dependency is propagated to the classpath.

There are six scopes available.

¢ Compile: This is the default scope, used if no scope is specified. Compile
dependencies are available in all classpaths of a project. Furthermore, these
dependencies are propagated to dependent projects.

¢ Provided: This is much like compile, but indicates you expect the JDK or a
container to provide the dependency at runtime. For example, when building a
web application for the Java Enterprise Edition, you can set the dependency on the
servlet API and related Java EE APlIs to scope provided because the web container
provides those classes. This scope is only available on the compilation and test
classpath, and is not transitive.

16-2 Developing Applications Using Continuous Integration

Understanding Maven Configuration to Support Continuous Integration Deployment

* Runtime: This scope indicates that the dependency is not required for compilation,
but is for execution. It is in the runtime and test classpaths, but not the compile
classpath.

e Test: This scope indicates that the dependency is not required for normal use of the
application, and is only available for the test compilation and execution phases.

¢ System: This scope is similar to Provided except that you have to provide the JAR
which contains it explicitly. The artifact is always available and is not looked up in
a repository.

e Import: (only available in Maven 2.0.9 or higher) This scope is only used on a
dependency of type POM. It indicates that the specified POM should be replaced
with the dependencies in that POMs. Since they are replaced, dependencies with a
scope of import do not actually participate in limiting the transitivity of a
dependency.

16.1.4 About Multiple Module Support

A series of interdependent projects, such as an application, can be aggregated by a
multi-module POM. This should not be confused with a parent POM which provides
inherited configuration. A multi-module POM may also be an inheritance parent to
sub-module projects. When a Maven build is executed upon a multi module POM,
Maven examines the tree of sub-projects and calculates the correct order of
dependency to build the modules.

Multiple module POMs can be useful for organizing multiple component builds in
Hudson.

16.2 Understanding Maven Configuration to Support Continuous
Integration Deployment

There are ome aspects of Maven that you should consider while moving to a
continuous integration environment.

This section contains the following topics:
¢ Understanding Distribution Management

¢ Configuring Snapshot Repository Settings

16.2.1 Understanding Distribution Management

Every project that is part of continuous integration must specify a
distributionManagement section in its POM. This section tells Maven where the
artifacts are going to be deployed at the end of the build process, that is, which
repository (local or remote). The examples used in this book use the Archiva
repository. Deploying artifacts to a repository makes them available for other projects
to use as dependencies.

You must define a distributionManagement section that describes which repository
to deploy snapshots and releases to. It is recommended that the
distributionManagement configuration be placed at a common inherited POM that is
shared among all projects such as the oracle-common POM, as described in
Customizing the Build Process with Maven POM Inheritance.

The following shows an example of a distributionManagement configuration:

From Build Automation to Continuous Integration 16-3

Understanding Maven Configuration to Support Continuous Integration Deployment

<di stri buti onManagenent >
<repository>
<uni queVer si on>f al se</ uni queVer si on>
<i d>rel eases</id>
<nane>Rel eases</ name>
<url>http://server:port/archivalrepository/rel eases/ </ url >
<l ayout >def aul t </ | ayout >
</repository>
<snapshot Reposi t ory>
<uni queVer si on>t r ue</ uni queVer si on>
<i d>snapshot s</i d>
<name>Snapshot s</ nane>
<url>http://server:port/archivalrepository/snapshots</url >
<l ayout >def aul t </ | ayout >
</ snapshot Reposi t ory>
</ di stributi onManagenent >

16.2.2 Configuring Snapshot Repository Settings

There are some important settings that govern how and when Maven accesses
repositories:

e Update Policy: This controls how often Maven checks with a remote repository for
updates to an artifact that it already has in its local repository. Configure your
snapshot repository in your settings.xml in Hudson to use updatePolicy as
al ways. The effect of updatePolicy is on your development systems. The default
value is dai | y. If you want to integrate the changes as they occur in Hudson,
change their updatePolicy accordingly. Dependencies may change suddenly and
without warning. While the continuous integration system should have sufficient
tests in place to reduce the occurrence of regressions, you can still run into issues
depending on up-to-the-minute snapshots while developing. One such example is
the API changes.

You should get all project snapshot dependencies up-to-date so that their local
build reflects the current state of the deployed code-base prior to check-in.

¢ Server credentials: This tells Maven the credentials that are needed to access a
remote repository; typically Maven repositories require you to authenticate before
you are allowed to make changes to the repository, for example, publishing a new
artifact). Unless you have given the Archiva guest user global upload privileges,
which is not recommended, you must specify correct credentials for the snapshot
repository in the servers section. You should have a unique Hudson user with
snapshot repository upload permissions. See Installing and Configuring the
Archiva Maven Repository Manager for details about user and role configuration.

Use Maven's password encryption for the password value. The Maven guide to
password encryption can be found here:

htt p:// maven. apache. or g/ gui des/ m ni / gui de- encryption. htnl.
The following shows a sample settings.xml configuration for the Hudson user:

<settings>
<servers>
<server>
<j d>snapshot s</i d>

<user nanme>hudson</ user name>
<passwor d>{ COQLCE6DUBG ¢ S5P=} </ passwor d>

16-4 Developing Applications Using Continuous Integration

Automating the Build with Hudson

</ server>
</ servers>
</settings>

16.3 Automating the Build with Hudson

There are various options available to build Maven projects with Hudson. This section
describes the approach recommended by Oracle.

Before proceeding, ensure that you have configured Hudson, as described in Installing
and Configuring Hudson for Continuous Integration.

This section contains the following topics:
* Creating a Hudson Job to Build a Maven Project
e Triggering Hudson Builds

¢ Managing a Multi-Module Maven Build with Hudson

16.3.1 Creating a Hudson Job to Build a Maven Project

To create a basic Maven Hudson job:

1. Open the Hudson web interface and log in. if necessary.

2. Create a new job:
a. Select New Job from the right-hand menu.
b. Provide a unique name and select Build a free-style software project.
c. Click OK.

3. Configure the source code management.

Ensure that you complete configuring the Subversion server, including the SSH
public and private key configuration.

a. Under Source Code Management, select Subversion.

b. Provide the repository URL for your project directory. For example, svn
+ssh: // subver si on-server/ ciroot/subversion/repository/
t runk/ pr oj ect s/ ny- pr oj ect

From Build Automation to Continuous Integration 16-5

Automating the Build with Hudson

Note:

This example uses a svn+ssh URL, which accesses Subversion using SSH. If
you are using a different protocol, the steps that are necessary to configure it
may vary slightly.

Hudson attempts to verify the URL and may respond with an error message
like the following:

Unabl e to access svn+ssh://hostnane/ ciroot/subversion/repository/trunk :
svn: E200015: authentication cancel |l ed(show details)
(Maybe you need to enter credential ?)

If you get this error message, do the following:

a. From the message, click enter credentials.

b. Select SSH public key authentication (svn+ssh).
c. Enter the user name.

d. Enter the SSH private-key passphrase if required.

e. Select the private-key file from the Hudson file system. It should be in a
~/ . ssh/i d_r sa format.

4. Add a Maven build step:

a. Under the Build section, select Invoke Maven 3 from the Add Build Step
drop-down menu.

b. Select Maven 3 home. Add necessary goals and properties in the appropriate
text fields.

c. If youhave a SNAPSHOT continuous integration build environment, then
configure the goals to perform a clean deploy.

d. If necessary, open the Advanced settings and ensure that the Settings entry
points to the Maven settings that you created in the Hudson web interface,
while configuring Hudson.

5. Save the configuration

Click Save at the bottom of the page.

16.3.2 Triggering Hudson Builds

Hudson provides number of ways to manage a continuous integration build's triggers
in Hudson. These include manual and automated triggers. The option to manually
start a build is always available for any job. When choosing an automated trigger, you
may consider factors like the structure of the project, the location of the source code,
the presence of any branches, and so on.

This section contains the following topics:
¢ Triggering a Manual Build
e Triggering a Subversion Repository Build

¢ Triggering a Schedule-Based Build

16-6 Developing Applications Using Continuous Integration

Automating the Build with Hudson

¢ Triggering a Build Based on Hudson Dependency Changes

¢ Maven SNAPSHOT Changes

Regardless of how the build is triggered, the job is added to the pending job queue
and completed when the resources become available.

16.3.2.1 Triggering a Manual Build

You can start all jobs from the user interface with the Build Now link.

16.3.2.2 Triggering a Subversion Repository Build

A Subversion repository build trigger is vital to establishing a healthy continuous
integration build. As changes are committed to project source, Hudson triggers builds
of the associated Hudson jobs. The trigger does this by periodically checking the
associated Subversion URL for changes.

To enable this trigger, select the Poll SCM option. You must then provide a cron
expression to determine the schedule Hudson uses to poll the repository.

16.3.2.3 Triggering a Schedule-Based Build

For some job types, you can trigger a build on a schedule. Long running system
integration tests are an example of a build that you might want to run periodically as
opposed to every time the test source is modified.

Schedule based triggers are configured with cron expressions exactly like the Poll
SCM trigger.

16.3.2.4 Triggering a Build Based on Hudson Dependency Changes

Trivial projects may contain multiple builds that produce unique artifacts that have
dependencies on each other. If Hudson rebuilds an artifact as the result of any trigger
type, it must also build and test dependent artifacts to ensure integration is still valid.
When dependencies that are also built on this Hudson server are successfully
completed, Hudson recognizes these relationships automatically and triggers the
build. In order for this trigger to work, the dependencies must also enable the post-
build action Notify that Maven dependencies have been updated by Maven 3
integration.

16.3.2.5 Maven SNAPSHOT Changes

If there are dependencies that are undergoing concurrent development and being
managed as snapshots in your common Maven repository, they should be managed
by your Hudson instance. If this is not practical, then you can use the SNAPSHOT
dependency trigger to monitor the Maven repository for changes in such
dependencies. When an updated SNAPSHOT dependency has been detected, the
build triggers and downloads the new dependency for integration.

This trigger also uses a cron expression to configure the polling interval.

16.3.3 Managing a Multi-Module Maven Build with Hudson

To manage your build dependencies correctly, you may add each project as a separate
Hudson build and configure the dependency triggers manually, or you can configure
a multi-module Maven POM as a parent Hudson job. The multi-module solution
reduces the possibility of making mistakes wiring the dependencies manually. It also
automatically stays up-to-date as the dependencies are changed in the Maven
configuration.

From Build Automation to Continuous Integration 16-7

Monitoring the Build

Configuration of a multi-module build is identical to configuration for regular
projects. To examine the results of component project builds, Hudson provides a tab in
the build results page in the Maven 3 Build Information link. At the top of the page,
the Modules tab summarizes the component build results.

To examine the log for any of the sub-project builds, use the Console Log link. All
project and sub-project builds are logged in their sequence of execution.

16.4 Monitoring the Build

Hudson should be configured to send notifications to the correct parties when the
build breaks. The continuous integration system must ensure that their changes do not
break the build and test process. If this does happen, they need to be notified of the
breakage and must address the issue as soon as possible.

Hudson should have each user registered as a unique user. The Hudson user name
must match the Subversion user name that they ordinarily commit under. Hudson
relies on this name to look up the proper contact email to send notification to.

You can configure general email notification under Manage Hudson -> Configure
System -> E-mail Notification.

You must also make sure some form of user management is enabled. You can do this
by selecting Enable Security from the Configure System panel. There are a number of
choices for user management and additional third-party plug-ins to support most
other popular solutions, such as LDAP. The best option is to use Hudson's own user
database. Select this choice from the Access Control section. There are additional
options for limiting permissions to particular users and groups.

To add a new user, the user simply needs to follow the sign up link at the top of the
Hudson home page and fill out the necessary information. The user name must match
the corresponding Subversion user name.

16.4.1 Following Up on the Triggered Builds

Normally, automated notification is sufficient to ensure the continuous build system is
kept healthy and produces effective results. However, there are conditions that can
require additional monitoring and coordination to get the system back to an
operational state. It is a good policy to designate a build coordinator to track down
such problems, coordinate solutions for broad problems and perform troubleshooting
when the system itself is suspect.

16-8 Developing Applications Using Continuous Integration

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Continuous Integration
	1.1 Introducing Continuous Integration for Oracle Fusion Middleware
	1.2 Version Control with Subversion
	1.3 Build Automation and Dependency Management with Maven
	1.4 About the Oracle Maven Repository
	1.5 Repository Management with Archiva
	1.6 Continuous Integration with Hudson
	1.7 Summary

	2 Roadmap for Continuous Integration
	2.1 Roadmap to Continuous Integration
	2.2 Overview of the Reference Continuous Integration Environment
	2.3 Shared Disk Layout

	3 Installing and Configuring Subversion for Version Control
	3.1 Downloading Subversion
	3.2 Installing Subversion
	3.3 Configuring the Subversion Server as a Service
	3.4 Setting Up a Repository
	3.4.1 Creating a Repository
	3.4.2 Using a Consistent Subversion Layout
	3.4.3 Importing Existing Projects

	3.5 Understanding the SVN Workflow
	3.6 Working with Subversion Projects
	3.7 Considerations for Tagging and Branching
	3.8 About Subversion Clients
	3.8.1 WebSVN
	3.8.2 TortoiseSVN

	3.9 More Information About Subversion

	4 Installing and Configuring the Archiva Maven Repository Manager
	4.1 Overview of Archiva
	4.2 Downloading Archiva
	4.3 Installing Archiva
	4.4 Configuring Archiva
	4.4.1 Configuring the Server
	4.4.2 Starting the Server
	4.4.3 Creating an Administrator User
	4.4.4 About Internal and Snapshot Repositories
	4.4.5 About the Proxy Repository
	4.4.6 Configuring Mirror Repositories
	4.4.7 Creating Development, Production, Quality Assurance, and Test Repositories
	4.4.8 Creating a Deployment Capable User

	4.5 More Information About Archiva
	4.6 About Maven Repository Manager Administration
	4.6.1 Understanding Snapshot Cleanup
	4.6.1.1 Setting Retention Options
	4.6.1.2 About Deleted Released Snapshots

	4.6.2 About Advanced User Management
	4.6.3 Backing Up Archiva
	4.6.4 About Archiva and Failover

	5 Installing and Configuring Maven for Build Automation and Dependency Management
	5.1 Setting Up the Maven Distribution
	5.2 Customizing Maven Settings
	5.3 Populating the Maven Repository Manager
	5.3.1 Introduction to the Maven Synchronization Plug-In
	5.3.2 Installing the Oracle Maven Synchronization Plug-In
	5.3.3 Running the Oracle Maven Synchronization Plug-In
	5.3.4 Replacing Artifacts
	5.3.5 Populating Your Maven Repository
	5.3.5.1 About Running the Push Goal
	5.3.5.2 Populating a Local Repository
	5.3.5.3 Populating a Remote Repository

	5.3.6 Running the Push Goal on an Existing Maven Repository
	5.3.7 Things to Know About Patching
	5.3.7.1 Oracle's Approach to Patching
	5.3.7.2 Run the Oracle Maven Synchronization Plug-In Push Goal After Patching

	5.3.8 Considerations for Archetype Catalogs
	5.3.9 Example settings.xml file
	5.3.10 Deploying a Single Artifact

	6 Configuring the Oracle Maven Repository
	6.1 Accessing the Oracle Maven Repository
	6.2 Artifacts Provided
	6.3 Adding the Oracle Maven Repository to Your Project POM
	6.4 Configure Maven to Use a Compatible HTTP Wagon
	6.5 Configuring the HTTP Wagon
	6.6 Considerations for Using the Oracle Maven Repository with Maven Without a POM
	6.7 Accessing the Oracle Maven Repository from an Automated Build Tool

	7 Installing and Configuring Hudson for Continuous Integration
	7.1 Prerequisites for Installing and Configuring Hudson
	7.2 Downloading Hudson
	7.3 Installing Hudson
	7.4 Configuring the HTTP Port
	7.5 Starting Hudson
	7.6 Configuring Maven After Startup
	7.6.1 Starting Up Hudson for the First Time
	7.6.2 Configuring the JDK
	7.6.3 Specifying the Maven Home
	7.6.4 Setting Up Maven for Use by Hudson
	7.6.5 Installing Hudson Plug-Ins
	7.6.6 Integrating the Repository
	7.6.7 Monitoring Subversion

	7.7 More Information About Hudson

	8 About Maven Version Numbers
	8.1 How Version Numbers Work in Maven
	8.2 About the SNAPSHOT Qualifier
	8.3 About Version Range References
	8.4 How Maven Version Numbers Are Used in Oracle Provided Artifacts
	8.4.1 About Version Numbers in Maven Coordinates
	8.4.2 About Version Number Ranges in Dependencies

	9 Customizing the Build Process with Maven POM Inheritance
	9.1 Inheritance of POMs and Archetypes
	9.2 Customizing the Build Process

	10 Building Java EE Projects for WebLogic Server with Maven
	10.1 Introduction to Building a Java EE Project with Maven
	10.2 Using the Basic WebApp Maven Archetype
	10.2.1 Creating a Basic WebApp Project
	10.2.2 Customizing the Project Object Model File to Suit Your Environment
	10.2.3 Compiling Your Java EE Project
	10.2.4 Packaging Your Java EE Project
	10.2.5 Deploying Your Java EE Project to the WebLogic Server Using Maven
	10.2.6 Deploying Your Java EE Project to the WebLogic Server Using Different Options
	10.2.7 Testing Your Basic WebApp Project

	10.3 Using the Basic WebApp with EJB Maven Archetype
	10.4 Using the Basic WebService Maven Archetype
	10.5 Using the Basic MDB Maven Archetype

	11 Building Oracle Coherence Projects with Maven
	11.1 Introduction to Building Oracle Coherence Projects with Maven
	11.2 Creating a Coherence Project from a Maven Archetype
	11.3 Building Your Coherence Project with Maven
	11.4 Deploying Your Coherence Project to the WebLogic Server Coherence Container with Maven
	11.5 Building a More Complete Coherence Example

	12 Building ADF Projects with Maven
	12.1 Introduction to Building Oracle ADF Projects with Maven
	12.2 Creating an ADF Application Using the Maven Archetype
	12.3 Building Your Oracle ADF Project with Maven

	13 Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven
	13.1 Introduction to Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven
	13.2 Creating a New SOA Application and Project from a Maven Archetype
	13.3 Creating a SOA Project in an Existing SOA Application from a Maven Archetype
	13.4 Editing Your SOA Application in Oracle JDeveloper
	13.5 Building Your SOA Project with Maven
	13.6 What You May Need to Know About Building SOA Projects
	13.7 Deploying Your SOA Project to the SOA Server with Maven
	13.8 Running SCA Test Suites with Maven
	13.9 What You May Need to Know About Deploying SOA Composites
	13.10 What You May Need to Know About ADF Human Task User Interface Projects
	13.11 Undeploying Your SOA Project
	13.12 What You May Need to Know About the SOA Parent POM

	14 Building Oracle Service Bus Projects with Maven
	14.1 Introduction to Building Oracle Service Bus Projects with Maven
	14.2 Creating an Oracle Service Bus Application from a Maven Archetype
	14.3 Editing Your OSB Application in Oracle JDeveloper
	14.4 Creating an Oracle Service Bus Project from a Maven Archetype
	14.5 Building Your OSB Project with Maven
	14.6 Deploying Your Project to the Oracle Service Bus Server with Maven
	14.7 What You May Need to Know About the Oracle Service Bus Parent POM

	15 Building a Real Application with Maven
	15.1 Introducing the Maven Example Application
	15.2 About Multi-Module Maven Projects
	15.3 Building a Maven Project
	15.3.1 Creating a Directory for the Projects
	15.3.2 Creating the GAR Project
	15.3.2.1 Creating the Initial GAR Project
	15.3.2.2 Creating or Modifying the POM File
	15.3.2.3 Creating or Modifying the Coherence Configuration Files
	15.3.2.4 Creating the Portable Objects
	15.3.2.5 Creating a Wrapper Class to Access the Cache

	15.3.3 Creating the WAR Project
	15.3.3.1 Creating the Initial WAR Project
	15.3.3.2 Creating or Modifying the POM File
	15.3.3.3 Creating the Deployment Descriptor
	15.3.3.4 Creating the Servlet

	15.3.4 Creating the EAR Project
	15.3.4.1 Creating the Initial EAR Project
	15.3.4.2 About the POM File for the Example Application
	15.3.4.3 About the Deployment Descriptor for the Example Application

	15.3.5 Creating the Top-Level POM
	15.3.6 Building the Application Using Maven

	16 From Build Automation to Continuous Integration
	16.1 About Dependency Management
	16.1.1 About Snapshot Versioning
	16.1.2 About Dependency Transitivity
	16.1.3 About Dependency Scope
	16.1.4 About Multiple Module Support

	16.2 Understanding Maven Configuration to Support Continuous Integration Deployment
	16.2.1 Understanding Distribution Management
	16.2.2 Configuring Snapshot Repository Settings

	16.3 Automating the Build with Hudson
	16.3.1 Creating a Hudson Job to Build a Maven Project
	16.3.2 Triggering Hudson Builds
	16.3.2.1 Triggering a Manual Build
	16.3.2.2 Triggering a Subversion Repository Build
	16.3.2.3 Triggering a Schedule-Based Build
	16.3.2.4 Triggering a Build Based on Hudson Dependency Changes
	16.3.2.5 Maven SNAPSHOT Changes

	16.3.3 Managing a Multi-Module Maven Build with Hudson

	16.4 Monitoring the Build
	16.4.1 Following Up on the Triggered Builds

