ORACLE"

Oracle® Fusion Middleware

Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server

12c¢(12.2.1.2.0)

E77996-04

January 2017

This document is a resource for software developers who
develop Web applications and components such as HTTP
servlets and JavaServer Pages (JSPs) for deployment on
WebLogic Server.

Oracle Fusion Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server, 12c
(12.2.1.2.0)

E77996-04
Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACEooo xiii
Documentation AccesSIbilitycooiiriiiiiiiiiii e Xiii
CONVENIONS ..ottt Xiii

1 Introduction and Roadmap
1.1 Document Scope and AUIENCE. ... 11
1.2 Guide To This DOCUINENLcoueviviiiiiiiiiciiiiccte e 1-1
1.3 Related DOCUMENEATIONc.oviiiiiiiiiciiiiccceee et e 1-3
1.4 Examples for the Web Application Developer ..o 1-3

141 Avitek Medical Records Application (MedRec)cccovuiuiiiiiiiiiiiiiiiiiiiiicceceiens 1-3
1.4.2 Web Application Examples in the WebLogic Server Distribution...........ccccccccccucucueneee 1-4
1.5 New and Changed Features In This Releaseccccccovvinnninnnnnnniiiiiinnnccccne, 1-4

2 Understanding Web Applications, Servlets, and JSPs

2.1 The Web Applications CONtAINETccccceuvuririiiiiiiiiniriiiiicrce s 2-1
2.1.1 Web Applications and Java EE..........ccccoiiiiiiiics 2-1
2.1.2 Web Application Development Key Points..........ccccouoioiiiiiiiiiiicce, 2-2

2.2 SEIVIEES ...ttt s 2-2
2.2.1 Servlets and Java EE........ccccoiiiriirieieieeieectete ettt en e es e e 2-3
2.2.2 What You Can Do With SErvi1ets ... 2-3
2.2.3 Servlet Development Key POINts...........ccouoiiiiiiiiiiiii e, 2-4

2.3 JAVASEIVET PAZESoucviieiiiiiicect s 2-4
2.3.1 JSPS and Java EEccvociiieiieieieceeseeeseee sttt st s eena e seensennaens 2-4
2.3.2 What You Can Do With JSPS.....ccecerieieieieieieieteteee ettt sse e 2-5
2.3.3 Overview of How JSP Requests Are Handledccoooiiiiiiiiiiic, 2-5

2.4 Web Application Developer TOOIScoooruiiiiiiieiiicie 2-5
241 Other TOOIS ...cuouiviiiiiiiiiiiiiccc e 2-6

2.5 Web APPLication SECUTILYccovuiiiiiiriririeicieieieeeeeeeeeeee ettt eees 2-6
2.5.1 Limiting the Number of Parameters in an HTTP Request.........ccccceoiiiiiiiiinnnnne. 2-6

2.6 Avoiding Redirection Attacks...........ccooiiiiiiiiiiiiiii s 2-7

2.7 P3P Privacy ProtoCol ... 2-7

2.8 Displaying Special Characters on Linux Browsers...........ccccccoviiiiiiiiiiciiiiccce 2-8

3 Creating and Configuring Web Applications

3.1
3.2

3.3

3.4
3.5

3.6
3.7
3.8
3.9

WebLogic Web Applications and Java EEcccooi 3-1
Directory SEIUCTUTEvvieee e 3-1
3.2.1 Accessing Information in WEB-INF ... 3-2
3.2.2 Directory Structure EXample ... 3-2
Main Steps to Create and Configure a Web Application..........cccoovoiriieiiiiiiiieinicccc, 3-3
3.3.1 Step One: Create the Enterprise Application Wrapper ..o, 3-3
3.3.2 Step Two: Create the Web Application ..., 3-3
3.3.3 Step Three: Creating the build.xml Fileccccooiiiiiiiiiiiiiicccccceeee 3-4
3.3.4 Step Four: Execute the Split Development Directory Structure Ant Tasks.................. 3-4
Configuring How a Client Accesses a Web Applicationcccoouoeiiieiiiiiiininiiccc, 3-4
Configuring Virtual Hosts for Web Applications...........cccoueueiiiiiiiiiiicic, 3-5
3.5.1 Configuring a Channel-based Virtual HOSt..........cccocoviviiiiiiiiiii, 3-5
3.5.2 Configuring a Host-based Virtual HOSt ... 3-5
Targeting Web Applications to Virtual HOStScccoviiiieieiiii, 3-5
Loading Servlets, Context Listeners, and Filters............cccooiiiiiiiie, 3-6
Shared Java EE Web Application Libraries...........ccccoooiiiiiiiiiiiiiiiicc 3-6
Enabling GZIP Compression for Web Applications...........ccccccceiriiiiiiicciiiecceeeeenene 3-6

4 Creating and Configuring Servlets

4.1

4.2

43
44
4.5
4.6
4.7
4.8

What's New and Changed in SETVIEtS ... 4-1
4.1.1 What's New and Changed in Servlet 3.1........cccoiiiiiiiiiiiiiiiicccccccccces 4-1
4.1.2 What Was New and Changed in Servlet 3.0ccccoovoeiiiiiiiicc, 4-2
Configuring SEIVIEtS........cocuiiiiiiiieie e 4-3
4.2.1 Servlet ANNOtAtIONS........coiviiiiimiiiiiii e 4-4
4.2.2 ServIet MaPPINGccceiuiiiiiiiiicccecccccee ettt 4-4
Setting Up a Default Serviet ... 4-6
Servlet Initialization AtrIDULESc.ciiiiiiiii e 4-6
Writing a Simple HTTP Servlet ..o 4-7
Advanced Features ... 4-8
Complete HelloWorldServlet EXample ... 4-9
Debugging Servlet CONtainers...........cccccuiiiiiiiiiiiiiiiiciciiii s 4-10
4.8.1 Disabling Access LOZGINGcccouviiuriiiiiiieieiccee e 4-10
4.8.2 Tracking a Request Handle FOOtprintccoooiiiiiiiiiii 4-11

5 Creating and Configuring JSPs

5.1
52
53
54
5.5
5.6

WebLogic JSP and Java EE ... 5-1
Configuring JavaServer Pages (JSPS)ccoiiiiiiiiieeecrreeeenseeseesssec e ssseeens 5-1
Registering a JSP as @ Servlet ..o 5-2
Configuring JSP Tag LIDIaries ... 5-2
Configuring Welcome Files............cooiiiiiiiiiii 5-3
Customizing HTTP Error ReSponses ..ottt 5-4

5.7 Determining the Encoding of an HTTP Request...........ccccoooeuviiiiiiiiiiiiininiccccc e 5-4

5.8 Mapping IANA Character Sets to Java Character Setscccocevvrvrrrnrrnnrrreeeeeeenes 5-4
5.9 Configuring Implicit Includes at the Beginning and End of JSPs..........cccccccevviivnnnnnnnnne. 5-5
5.10 Configuring JSP Property Groups. ... 5-5
5.10.1 JSP Property Group Rules.........cccooiiiiiiiiiiii 5-6
5.10.2 What You Can Do with JSP Property Groups..........cccococvvveiiiiiniiiiiiinnn, 5-6
511 Writing JSP Documents Using XML SyntaX.........cccccoviiiiniiiininiceecnennes 5-6
5.11.1 HowW to Use JSP DOCUMENLES.......cccviiiiiiciiieiieeieecieeeteecteesreeveeseeeeveesenesbeesaesseesssesseesseeas 5-7
5.11.2 Important Information about JSP Documents ..., 5-7

6 Using JSF and JSTL

6.1 Using JSF and JSTL With Web Applicationsccccouiimiiiiiiiiiecccc e 6-1
6.1.1 JavaServer Faces (JSF) ...ttt ettt s 6-1
6.1.2 JavaServer Pages Standard Tag Libraries (JSTL)cccccocvvrrvrrnnrnrcrrrreceene 6-2

6.2 JSF Backward Compatibilitycccccevriiiiiiiiririiiiiirccccrreee s 6-2
6.2.1 Deploying JSF and JSTL LibTaries.........ccccoceovvviiiniiininiiiniiininiiiicinnsssirsssseseseens 6-3
6.2.2 Referencing a JSF or JSTL LibTaryccooeoceioiiiiiieiiicicieccec e 6-3

7 Configuring Resources in a Web Application

7.1 Configuring Resources in a Web Applicationcoouevoioiiiiiiiiiiciccce e 7-1
7.2 Configuring RESOUICES.........cuoiuiiiiiiiiciici s 7-1
7.3 Referencing EXternal EJBSccocoviiirniiniiirrrnrrrreer e 7-2
7.4 More about the ejb-ref* EIEMENtSccccouviviririiininiiiiiiiiiccrrssrr s 7-3
7.5 Referencing Application-Scoped EJBS ..o 7-3
7.6 Serving Resources from the CLASSPATH with the ClasspathServlet ..o 7-5
7.7 Using CGI with WebLOZIC SEIVET ..ottt 7-6

7.7.1 Configuring WebLogic Server to Use CGIcccocouvrrviiinrniirrrccceeeeeeeeeenes 7-6

7.7.2 Requesting @ CGL SCIiPtcccvviiiiiiiiiiiiiiiiiiicccc s 7-7

7.7.3 CGI Best PractiCes.ccoeoiviviiiiuiiiiiiiiiiicictccc s 7-7

8 WebLogic Annotation for Web Components

8.1 Servlet Annotation and Dependency Injectioncccoeieiiiiiiiiiiiice 8-1
8.1.1 Web Component Classes That Support AnNnotationsccccceevviieieininicciciciccie, 8-2
8.1.2 Annotations Supported By a Web Container............cccoovvviviiiiviniinniiiinn, 8-3

8.2 ANNOLAtING SETVIEScooviiiiiiiiiicicic s 8-4
8.2.1 WLSEIVIEL ... 8-4
8.2.2 WLFIIET ..ot 8-6
8.2.3 WLINItPAram.......coiiieiciiic s 8-7

9 Servlet Programming Tasks

9.1 InitialiZing @ SEIVIet........c.oiieiiii e 9-1
9.1.1 Initializing a Servlet when WebLogic Server Startsccoeoviiioeciiinneccccnnenen. 9-2
9.1.2 Opverriding the init() Method ... 9-2

10

Vi

9.2 Providing an HTTP RESPONSE.........cccceiiuiiiiiiiiiicieici e 9-3

9.3 Retrieving CHENt INPULccccoiiiiiiircceee e 9-4
9.3.1 Methods for Using the HTTP Requestcccocooiiimiiiiiiiiiiiiiicccccccccceeee 9-6
9.3.2 Example: Retrieving Input by Using Query Parameters............ccooviiiiiiiniinnnnne. 9-6

9.4 Securing Client Input in Serviets..........oooi e 9-7
9.4.1 Using a WebLogic Server Utility Method............cooooiii, 9-8

9.5 Using CoOKIES IN @ SETVIELc.cueviviiiriririiiiciriricceeeeereeeee e 9-8
9.5.1 Setting Cookies in an HTTP Servlet ... 9-9
9.5.2 Retrieving Cookies in an HTTP Servlet ..., 9-9
9.5.3 Using Cookies That Are Transmitted by Both HTTP and HTTPS.............................. 9-10
9.5.4 Application Security and COOKIES ..o, 9-10

9.6 ReSPONSE CACKINGcuiviiiiiicicieicieeeeee et 9-10
9.6.1 Initialization Parameterscccoevueueioiniriecinniecirecccee e 9-11

9.7 Using WebLogic Services from an HTTP Servlet...........cccoooiiiiiiiiice 9-12

9.8 Accessing Databases...........ccccueiiiiiiiiiiici e 9-12
9.8.1 Connecting to a Database Using a DataSource Object............cccoouvviviiinniniinininnnns 9-12
9.8.2 Connecting Directly to a Database Using a JDBC Driver.........cccooooiiinnincincnncnnnee. 9-13

9.9 Threading Issues in HTTP Servlets..........cccccooviiiiiiiiiiniiiiiiiiiriiiiiicncccecseeeees 9-13

9.10 Dispatching Requests to Another Resource...........ccccouorrieiiiiiieiciicecc e 9-13
9.10.1 Forwarding a ReqUeSt.........cceviiiiiiiiic 9-14
9.10.2 Including @ REQUESL........ccciuiuimiiiiiiiicccrccctc e 9-15
9.10.3 RequestDispatcher and Filters...........cccoooiiiiiiiiiiiiiiicaee 9-15

9.11 Proxying Requests to Another Web Server...........cccccoovivviiiiiiniiiiiccce, 9-15
9.11.1 Overview of Proxying Requests to Another Web Server ..o 9-15
9.11.2 Sample Deployment Descriptor for the Proxy Servlet............cccoorvrniiiniiiniinninnnnn. 9-16

9.12 ClUSEETING SEIVIEES......oviiiiiiieicecee e eaes 9-18

9.13 Referencing a Servlet in a Web Applicationccccocucuiiviviriiiiiiinnniiiiiirccicceeeceees 9-18

9.14 URL Pattern MatChingcccccoviiiiiiininiiiniiiiiiiiiccc s 9-19

9.15 The SimpleApacheURLMatchMap Utilitycccoooriiiiiiiiiii e 9-19

9.16 A Future Response Model for HTTP Servlets ..., 9-19
9.16.1 Abstract ASynchronous Serviet ... 9-19
9.16.2 Future ReSpONSse SEIVIEt ... 9-21

Using Sessions and Session Persistence

10.1 Overview of HTTP SESSIONS........cccoiimimiiimiiiiiiiiiiiicicicicciccecieesesese e 10-1
10.2 Setting Up Session Managementccceuiimieieiiiicieieicce et 10-1
10.2.1 HTTP Session PrOperties ...ttt 10-1
10.2.2 Session TimMEOUL.......cvuiuiuiiiiiiiiiiititcicrctccc s 10-2
10.2.3 Configuring WebLogic Server Session Cookies...........ccccoeiiuiiuiicciiiiccceecenenas 10-2
10.2.4 Configuring Application Cookies That Outlive a Sessionccccccciiiiiiiinnnes 10-2
10.2.5 LOGEING OUt w.eeiiii e e 10-3
10.2.6 Enabling Web Applications to Share the Same Session...........ccccooeiriciiirnicne. 10-3
10.2.7 Limiting Number of Concurrent Requests for a Session...........cccccccccucccccccccnenns 10-3

11

12

10.3 Configuring Session Persistence..........ccccoerieiiirieiciiiiieicicc e 10-4

10.3.1 Attributes Shared by Different Types of Session Persistence..........c.cccccccoccucuccccnnns 10-4
10.3.2 Using Memory-based, Single-server, Non-replicated Persistent Storage.................. 10-5
10.3.3 Using File-based Persistent StOrageccccoceiiiuiiiiiiiiiiiiiicicccccccieeeennes 10-5
10.4 Using a Database for Persistent Storage (JDBC Persistence)..........ccccoovocueieieiiriciiiiicicienne, 10-5
10.4.1 Configuring JDBC-based Persistent Storageccccooevvieinieinicinicieicecece 10-5
10.4.2 Caching and Database Updates for JDBC Session Persistence...........c.cccccocucueueucncneeee 10-8
10.4.3 Using Cookie-Based Session Persistenceccooeeviveriieieiiceiinccceecceenes 10-8
10.5 Using URL Rewriting Instead of COOKIEScccoiimimiiiiiiiiiiiiiiiicccccccccies 10-9
10.5.1 Coding Guidelines for URL ReWTitingcccovoiiriiiiiiiiiiie e 10-9
10.5.2 URL Rewriting and Wireless Access Protocol (WAP) ..o 10-10
10.6 Session Tracking from @ SETVIEt...........cccooiiiiiiiiiiiicceccccecece e 10-10
10.6.1 A History of Session Tracking...........ccccoiiiiiiiiiiiiiiiiiciicccccecceeceennes 10-11
10.6.2 Tracking a Session with an HttpSession Object..........cccooeviiiiiiiiiiiiie 10-11
10.6.3 Lifetime of @ SESSION........ciiiiiiiiiiiiiici s 10-12
10.6.4 How Session Tracking WOTKS.........ccccoooviviviiiniiiiiiiiccnes 10-13
10.6.5 Detecting the Start of @ SESSIONcccccuiuiuiuiiiiiiiiieicccccccce e 10-13
10.6.6 Setting and Getting Session Name/Value Attributes ..o 10-13
10.6.7 Logging Out and Ending a Sessioncccceueiiiriiiiiicicieiccccc 10-14
10.6.8 Configuring Session Trackingccccccoeviriririiiiiiniiciee e 10-15
10.6.9 Using URL Rewriting Instead of COOKIES..........ccccceueuiuiiiiiiiiicccccccccceenenes 10-15
10.6.10 URL Rewriting and Wireless Access Protocol (WAP)ccccoeeeiiiiiciciicnnns 10-16
10.6.11 Making Sessions Persistent ... 10-16
10.6.12 Configuring a Maximum Limit on In-memory Servlet Sessions............cccccoee.c. 10-17
10.6.13 Enabling Session Memory Overload Protection..........ccccooviiiiiiiiiciinie 10-18
Application Events and Event Listener Classes
11.1 Overview of Application Event Listener Classes..........cccccoouvviviinniiiiniiiiniininns 11-1
11.2 Servlet Context EVENLSccccoviiviiiiiiiiiiiicc s 11-2
11.3 HTTP Session EVENtS........cccoeuiuiiiiiiiiiiiiiciinin e 11-2
11.4 Servlet Request EVENLS........cccoiiiiiiiiiii e 11-3
11.5 Configuring an Event Listener Classc.cccooriioiiiiiiiiiiicecce i 11-4
11.6 Writing an Event Listener Classcooorueiiiiiiiiiii i 11-4
11.7 Templates for Event Listener Classesccciiiiiiiiiiiiiiieeeecceeeeeeeeeeenenenes 11-5
11.7.1 Servlet Context Event Listener Class Example ... 11-5
11.7.2 HTTP Session Attribute Event Listener Class Exampleccocooooeiiiiinieieinnne. 11-5
11.8 Additional RESOUICEScoiviiimiimiiiiiiiiii e 11-6
Using the HTTP Publish-Subscribe Server
12.1 Overview of HTTP Publish-Subscribe SEIVers...........cccoviiiiiiiiiiniiiiiniiiieiceinns 12-1
12.1.1 How the Pub-Sub Server Workscccccoviiiiiiiiiiiiiiiiicceces 12-2
12.1.2 CRANDNELS ..o s 12-3
12.1.3 Message Delivery and Order of Delivery Guarantee..............ccccoeeveernierneccenennincnnn. 12-3

Vii

13

viii

12.2 Examples of Using the HTTP Publish-Subscribe Server............ccccooovviiiiiiinniciicicne, 12-4

12.3 Using the HTTP Publish-Subscribe Server: Typical Steps........cccccoeeiiecccccccccecccnenes 12-4
12.3.1 Creating the weblogic-pubsub.xml File.........c.cccccccoeiiiiiiiiiiicccccccnes 12-6
12.3.2 Programming Using the Server-Side Pub-Sub APIscccccccoiiiiiiiiiiiiiiicnnns 12-8
12.3.3 Configuring and Programming Message Filter Chains...........cccccocoooriiiirnnnnne. 12-11
12.3.4 Updating a Browser Client to Communicate with the Pub-Sub Server.................. 12-13
12.3.5 Overriding the Default Servlet Mapping of the pubsub Java EE Library............... 12-14

12.4 Getting Run-time Information about the Pub-Sub Server and Channels........................... 12-14

12.5 ENabling SECUTILYccoiiiiiiiiiiiii e 12-15
12.5.1 Use Pub-Sub Constraints...........ccceiiiiiiiiiiiiiiiccccccccssnnes 12-15
12.5.2 Map Roles t0 Principals.........cccceiiiiiiiiiiiiiiiicicncccccvcescsessescsnnna 12-17
12.5.3 Configure SSL for Pub-Sub Commumnicationc.cccccoeeeiuimiicieiiiccecceenenes 12-18
12.5.4 Additional Security Considerationscccccoeiiiiiiiiiiiiiiiicccceeceennes 12-19

12.6 Advanced Topic: Using JMS as a Provider to Enable Cluster Supportcccoeueuenee. 12-20
12.6.1 Configuring JMS as a Handlerc..ccooriiriiiiiiiiiiccs 12-21
12.6.2 Configuring Client Session Failover ..o, 12-23

12.7 Advanced Topic: Persisting Messages to Physical Storage ... 12-23
12.7.1 Configuring Persistent Channels ... 12-24

WebLogic JSP Reference

131 JSP TAZS ottt 13-1
13.2 Defining JSP VEISIONScccocuriiiiiiiiieieiicicie it 13-3
13.2.1 Rules for Defining a JSP File VeISIONcccccoeuviueiiieiniieiiieiicicic s 13-3
13.2.2 Rules for Defining a Tag File Version ... 13-3
13.3 Reserved Words for Implicit ODJECtScccciuiiiiiiiiiiiiiicccccccececceeeeeennes 13-4
13.4 Directives for WebLogic JSP.........ccccoiiiiiiiiiiiiiicccc e 13-5
13.4.1 Using the page Directive to Set Character Encodingcococoeeieiiiniiniiciene. 13-5
13.4.2 Using the taglib DirectiVe........coooeueiiiiiiiiiiici e 13-6
13.5 DeClarationsccovuevviimiiiiiiiiiie s 13-6
13.6 SCIIPHIELS c.eeeee s 13-6
13.7 EXPIESSIONS ..ottt 13-7
13.8 Example of a JSP with HTML and Embedded Java........ccccooiiiiiiiiiiiiiiiicis 13-7
13.9 ACHONS .ottt 13-8
13.9.1 Using JavaBeans in JSP ... 13-8
13.9.2 Forwarding ReqUESEScccccuiuiiiiiiiiiiiiiiiciccccccccce e 13-10
13.9.3 Including ReqUESES..........cccoviiiiiieiicic e 13-10
13.10 JSP Expression Languagecccoecueueiiiiricieiiiicie et 13-10
13.10.1 Expressions and Attribute Values..........cccooovviviiiiinniiiice, 13-11
13.10.2 Expressions and Template TexXt.........ccooiiiiiiiiiiiiiiiiiecceccccceeeeenenes 13-12
13.11 JSP Expression Language Implicit Objects...........cccccooiiiiiiiiiiiiiiicccciccccccnes 13-12
13.12 JSP Expression Language Literals and Operators.............cccocoeeueieiiicieiniiiicieicccee 13-13
13121 LHETalS..ocviieiiiiiciiciii s 13-14
13.12.2 Errors, Warnings, Default ValUues ... 13-14

14

15

16

13.12.3 OPETAtOrS ..ottt e 13-14

13.12.4 Operator PreCedenCe...........ccciueuiuiuiuiuiuiiiiieicieicieieiccieeieieeenese e enenes 13-14
13.13 JSP Expression Language Reserved Words ... 13-15
13.14 JSP Expression Language Named Variables............cccoiiiiiiiiiiiiiiiiicccnns 13-16
13.15 Securing User-Supplied Data in JSPs........ccocooiiiiiiiiiiiccc 13-16

13.15.1 Using a WebLogic Server Utility Method...........c.ccooiii 13-17
13.16 Using Sessions With JSPcoiiiiiiiiiiicccccccccceeeeee e 13-17
13.17 Deploying Applets from JSP ... 13-18
13.18 Using the WebLogic JSP Compiler...........ccoiiiiiiiiiiiiiiiiccccicccccccccnnes 13-19

13.18.1 JSP Compiler SYNtaXcceueviiieiieieiicieie et e 13-19

13.18.2 JSP Compiler OPtiONScceiuivimiiiiiiiiiiniiiiciicct s 13-20

13.18.3 Precompiling JSPS......ccccoiiiimiiiiiiiieiiiiecieceecceeieeese e 13-22

Filters
14.1 OVerview Of FIItersSccoiiiiiiiiiiiii s 14-1

14.1.1 HOW FIlters WOTK ...c.oooviiiiiiiiiiiiicciec ettt 14-1

14.1.2 UseS fOr FIIEETSoviiiiiiiiiici e 14-2
14.2 Writing @ Filter Class.........ccouirieiiiiiiiece sttt 14-2
14.3 ConfigUring FIIEETScoiiiiiiiiiiiiiicccccccce e 14-2

14.3.1 Configuring a FIlter.........cccoooiiiiiiiiiiiicccccccecccce e 14-3

14.3.2 Configuring a Chain of FIlters..........cccccociiiiiiiiiiiiiiicccccccccccccenne 14-4
14.4 Filtering the Servlet Response Objectcooriiiiiiiiiiiic 14-4
14.5 Additional RESOUICESccoiuiiimimimiiiiicc s 14-5

Using WebLogic JSP Form Validation Tags
15.1 Overview of WebLogic JSP Form Validation Tags..........cccecoveuiueirmninieiiiccieceecs 15-1
15.2 Validation Tag Attribute Reference ... 15-2

1521 SWLSUIMNIMATY>..oviiiiiiiiciiec s 15-2

15.2.2 SWEEOIIIIS Lo 15-3

15.2.3 <WLvalidators> ... 15-3
15.3 Using WebLogic JSP Form Validation Tags in a JSPccoeoiiiiiiiiii 15-4
15.4 Creating HTML Forms Using the <wl:form> Tag........ccccccoeiiiiiiiiiiiicicccceeceenenes 15-5

15.4.1 Defining a Single FOIM.......cccccoiiiiiiiiiiiiiiiiiccceecee e 15-5

15.4.2 Defining Multiple FOImMS..........cooiiiiiiiiiiiice e 15-5

15.4.3 Re-Displaying the Values in a Field When Validation Returns Errors 15-5
15.5 Using a Custom Validator Class...........cccoiviiiimiiiiiiiiiiiiiiis s 15-6

15.5.1 Extending the CustomizableAdapter Class...........cccoeeiuiiiiiiiicccecceeceeeenenes 15-7

15.5.2 Sample User-Written Validator Classcccccoevueeeniniciieicccecee s 15-7
15.6 Sample JSP with Validator Tagscccooeeueiiirieiicic i 15-7

Using Custom WebLogic JSP Tags (cache, process, repeat)
16.1 Overview of WebLogic Custom JSP Tagsc.ccoeeuiiiiieieiiiicieccc i 16-1
16.2 Using the WebLogic Custom Tags in a Web Applicationccocooiiiieiiiiciiiiiic 16-1

16.3 CAChE TAG..eviiieii s 16-2

16.3.1 Refreshing a Cache ..o 16-2
16.3.2 Flushing a Cache........cccccociiiiiiiiiiiicccccc e 16-2
16.4 Process Tagcooueuiuiiiiiiiiiiiicc s 16-7
16.5 RePeat TAG ...ouiuiiieiiiiiiiiit i 16-8

17 Using the WebLogic EJB to JSP Integration Tool

17.1 Overview of the WebLogic EJB-to-JSP Integration Tool............cccoeeiiiiiiiiiiiiic 17-1
17.2 Basic OPeration ...ttt 17-2
17.3 Interface SOUTCE Files.........ccooiiiiiiiiiiiiiiiiic s 17-2
17.4 Build Options Pamel...........cccccoiiiiiiiiiiiiiiicccee e 17-3
17.5 TroubleShOOtINGcoovuiiiiiiciei s 17-3
17.6 Using EJB Tags on a JSP Pageccceueuiiirieiiicie et 17-4
17.7 EJB HOME MEROAS ...oouiiiiiiiiiieieeeeeteete ettt ettt et 17-4
17.8 Stateful Session and Entity BEans...........cccccciiiiiiiiiiiiiiiiicceccceeeeeeeeeeenenenes 17-4
17.9 Default AtTIDULEScooveviiiiicciec ettt 17-5

A web.xml Deployment Descriptor Elements

A.1 web.xml Namespace Declaration and Schema Locationccccocoveieieiriiniicniiccnne, A-2
A2 CONEXE-PATAIN ..ot A-2
A3 deSCIIPHION ..ot A-4
A4 dISPLAY-NAIMNE ..o A-4
A5 dIStrIDULADIE.......oiiiiiii s A-5
A6 ED-LOCAL-TEf ... A-5
A7 DTef oo A-6
A8 BNV-CNETY o A-7
AL EITOT-PAZE ..o A-8
AT FIEET e A-9
A1l fer-MAPPING .o A-9
ALT2 0O it s A-10
AL JSP-CONEIG.co.viiviiiiiiiii s A-11

AT tAGLD e A-11

A13.2 JSP-PIOPEItY-ZIOUP...cviiiiiriiiiitiniiiteict s A-12
ALTA BESEEIET ... A-14
A5 10GIN-CONTIG ...viiieiiiiiicicic s A-14

A15.1 form-login-CoNfigcccoiiiiiiiiiiiiiiiiiiii A-15
A.16 message-destination-Tefcccceuruiiiiiiiiiiiiiiii s A-16
A7 MIME-TNAPPING ...cvitiriiiiiiiriiiietc e A-17
A8 TeSOUICE-ENV-TEf ..o A-17
ALD TESOUICE-TES ...ttt ettt ettt A-18
A.20 security-CONSIAINT ..o A-19

A.20.1 web-1esource-colleCtion.. ...t A-20

A20.2 aUEh-CONSEIAINL....c.eviuiiiiciiiiicc e A-20

AL G TR V1<) e 1 vz Bt a0) 0 1<) 0 =1 1 4 | SR A-21

A2] SECUTIEY-TOLE ..o aes A-21
A22 SETVIEL e A-22
A 22T BCOM ceiiiiiiiiic e A-23
A22.2 INIE-PATAIN ..ottt A-24
A22.3 SeCUIItY-TOlE-Tefoooviiiiiii A-24
A.23 SErVIEE-TNAPPINGcvevieiiicicicieiccee s A-25
A24 SESSION-CONTIGovrvviiiiiiieieiicee s A-25
A25 WED-APP i A-26
A26 welcome-file-liSt ... A-26

B weblogic.xml Deployment Descriptor Elements

B.1 weblogic.xml Namespace Declaration and Schema Locationcccccoeeviireiniiiiiiennne B-2
B.2 AaSYNC-deSCIIPtOrcceveviiiiiieiiiiee s B-2
B.3 aSYNC-WOTK-IMANAZETcooviviiiiiiiiiiriciece et B-2
B4 QUER-IIEET ...ttt B-3
B.5 Charset-Paramis. ...t s B-3
B.5.1 charset-mapping ... B-3
B.5.2 INPUE-ChATSEE ...t B-3
B.6 cONtaiNer-deSCriPIOr......cuoviiiiiiiiiiiicicicic s B-4
B.6.1 access-logging-disabled ... B-4
B.6.2 @lloW-all-T0olesc.couimimiiiiiiiiiiiii e B-4
B.6.3 check-auth-on-fOrward ... B-4
B.6.4 client-cert-proxXy-enabled ... B-5
B.6.5 container-initializer-enabled ... B-5
B.6.6 default-mime-tyPeccccoviviiiiiiiiiiiiiiiiii s B-6
B.6.7 disable-implicit-servlet-mappings..........c.cccocorueieiiiieiiiiiiicie B-6
B.6.8 filter-dispatched-requests-enabled...........coooovvviiiiiiiii, B-6
B.6.9 gZIP-COMPTIESSIONciviuiiiieiiiiniciitictce e ren e B-6
B.6.10 index-directory-enabled............ccccoooiiiiiiiiiiiii B-8
B.6.11 index-directory-sort-bycccccoviiiiiiiiiiiiiii B-8
B.6.12 1angtag-reviSion.......c.cooiiiiiiiiciecc B-8
B.6.13 minimum-native-file-size ... B-8
B.6.14 native-io-enabled ... B-9
B.6.15 optimistic-serialiZation...........cocovviriiiriiiniiiniiiiiii s B-9
B.6.16 prefer-application-packages...........cocoeeuriimiiiiiiiiicieecc B-9
B.6.17 prefer-application-TeSOUICESccooiiuririeiiiicieieecete s B-10
B.6.18 prefer-forward-qUery-string...........ccocoveiviiiiininiiii B-10
B.6.19 prefer-web-inf-classes...........cocoiiiiiiiiiiiiicc e B-10
B.6.20 redirect-with-absolute-url..........c.cccoeiiiiniiiiiiiccec s B-11
B.6.21 relogin-enabled...........cooiii B-11
B.6.22 require-admin-traffic.........cccocoooiiiiiiiiiii B-11
B.6.23 resource-reload-check-Secs ..o B-11

Xi

B.6.24 5ave-SeSSiONS-€Nabled.ccouviiiuiiiiiiiieciieeeee e B-12

B.6.25 servlet-reload-check-5€cs ... B-12

B.6.26 session-monitoring-enabled ... B-12

B.6.27 show-archived-real-path-enabledcccoviiiiiiiiinii, B-12

B.6.28 single-threaded-servlet-pool-sizeccccooiiuiieiiiiiiciiiiic B-12

B.6.29 t@MP-Ail...couiiiiiiiiiiiiici s B-12
B.7 CONEXE-TOOL ..o s B-13
B.8 deSCIIPHIONcvviiiiiiiiccc s B-13
B.9 ejb-reference-description.........ccccociiiiiiiiiiiiiiniiiiiii s B-13
B.10 faSt-SWaD ..viieiecic e B-14
B.11 JSP-d@SCIIPIOL c.oviiiiiiiicec s B-14
B.12 HDTArY-Tef....c.coiiiiiiiiiiciciciceeeee e B-17
B.13 LOZGINE ..ot B-18
B.14 ready-registration ...t e B-20
B.15 resource-desCription.........cc i e B-20
B.16 resource-env-desCription.........cococeiiiiiiiniiieiiiiiiicc s B-21
B.17 run-as-role-assigNImMent.........ccccooiiuiiiiriiiiiiiiiiiricicicieiee s B-21
B.18 security-permiSSion ..o B-22
B.19 security-role-assignmentcccouoiirieiiiiiciciiec e B-22
B.20 service-reference-description..........cccoceiriiiieiiiciiieiie e B-23
B.21 SerVIEt-deSCIiPIOT.cuiiiiiiicicicicicictcteiee et B-24
B.22 S€SSI0N-AESCIIPLOTeiiiiiiiicicicc s B-25
B.23 url-matCh-Iapcccccoviiiiiiiiiiiiii s B-32
B.24 virtual-directory-mappingccccceeimieioiiicicieece s B-32
B.25 WeblOGIC-VEISIONoviiiiiiiiit e B-33
B.26 WI-diSpatCh-POLiCYc.cueviiiiiiiiieiicicccce s B-33
B.27 WOIK-INANAGET ..ottt B-33
B.28 Backwards Compatibility Flagsccccccecvviiiiiiiiiiiniiiiiiiiicccccs B-35

B.28.1 Compatibility with JSP 2.0 Web Applications.........cccooooeriiieiiiiniiiiiicicc B-35
B.29 Web Container Global Configurationccccoeeuieiniciiieiniccec e B-36

C Support for GlassFish Deployment Descriptors

D Web Application Best Practices

D.1 CGI BESt PTaCHCES . ecvvevieeieeieeiieteeieetete ettt et et eteste et e steeaesteebessaesaesssessesssasseessanseessesssensenseensenses D-1

D.2 Serviet BESt PractiCeS......cccoiiieiiiiisieriiieieierietet et ttee et steetestessessesessessessessessessassaseesessessessessessessens D-1

DD.3 JSP BESEt PracCiCeS ...uveeeueiieiieeiieeieeciteecteeieeeteeeteesteesteeete e taeesbeeteesveeseesasaesssaesseesssesnseeassesnseenseennses D-2

D.4 Best Practice When Subclassing ServletResponseWrapper...........c.cocooveveiniiinicinccncenen, D-2
Index

Xii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. conl pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Deuveloping Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

This chapter includes the following sections:

® Document Scope and Audience

® Guide To This Document

* Related Documentation

* Examples for the Web Application Developer

* New and Changed Features In This Release

1.1 Document Scope and Audience

This document is a resource for software developers who develop Web applications
and components such as HTTP servlets and JavaServer Pages (JSPs) for deployment
on WebLogic Server. This document is also a resource for Web application users and
deployers. It also contains information that is useful for business analysts and system
architects who are evaluating WebLogic Server or considering the use of WebLogic
Server Web applications for a particular application.

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning topics. For links to WebLogic Server documentation and resources
for these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and Web application concepts.
This document emphasizes the value-added features provided by WebLogic Server
Web applications and key information about how to use WebLogic Server features
and facilities to get a Web application up and running .

1.2 Guide To This Document

¢ This chapter, Introduction and Roadmap, introduces the organization of this guide.

* Understanding Web Applications, Servlets, and JSPs, provides an overview of
WebLogic Server Web applications, servlets, and JavaServer Pages (JSPs).

* Creating and Configuring Web Applications, describes how to create and configure
Web application resources.

Introduction and Roadmap 1-1

Guide To This Document

Creating and Configuring Servlets, describes how to create and configure servlets.
Creating and Configuring JSPs, describes how to create and configure JSPs.

Using JSF and JSTL, describes how to configure JavaServer Faces (JSF) and the JSP
Tag Standard Library (JSTL).

Configuring Resources in a Web Application, describes how to configure Web
application resources.

WebLogic Annotation for Web Components, describes how to simplify
development by using annotations and resource injection with Web components.

Servlet Programming Tasks, describes how to write HTTP servlets in a WebLogic
Server environment.

Using Sessions and Session Persistence, describes how to set up sessions and
session persistence.

Application Events and Event Listener Classes, discusses application events and
event listener classes.

Using the HTTP Publish-Subscribe Server, provides an overview of the HTTP
Publish-Subscribe server and information on how you can use it in your Web
applications

WebLogic JSP Reference, provides reference information for writing JavaServer
Pages (JSPs).

Filters, provides information about using filters in a Web application.

Using WebLogic JSP Form Validation Tags, describes how to use WebLogic JSP
form validation tags.

Using Custom WebLogic JSP Tags (cache, process, repeat), describes the use of
three custom JSP tags—cache, r epeat, and pr ocess—provided with the
WebLogic Server distribution.

Using the WebLogic E]B to JSP Integration Tool, describes how to use the
WebLogic E]B-to-JSP integration tool to create JSP tag libraries that you can use to
invoke EJBs in a JavaServer Page (JSP). This document assumes at least some
familiarity with both EJB and JSP.

web.xml Deployment Descriptor Elements, describes the deployment descriptor
elements defined in the web. xm schema under the root element <web- app>.

weblogic.xml Deployment Descriptor Elements, provides a complete reference for
the schema for the WebLogic Server-specific deployment descriptor
webl ogi ¢c. xm .

Support for GlassFish Deployment Descriptors, provides a list of the GlassFish
deployment descriptors that are supported in WebLogic Server.

Web Application Best Practices, contains Oracle best practices for designing,
developing, and deploying WebLogic Server Web applications and application
resources.

1-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Related Documentation

1.3 Related Documentation

This document contains Web application-specific design and development
information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

* Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

* Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

e Upgrading Oracle WebLogic Server contains information about Web applications, JSP,
and servlet compatibility with previous WebLogic Server releases.

® Servlet product overview at htt p: / / www. or acl e. conl t echnet wor k/ j ava/
j avaeel/ servl et /i ndex. ht

* JavaServer Pages (JSP) product overview at ht t p: / / www. or acl e. com
t echnet wor k/ j ava/ j avaee/ j sp/i ndex. ht m

® JavaServer Faces (JSF) product overview at ht t p: / / ww. or acl e. cont
t echnet wor k/ j aval j avaee/ j avaser verfaces-139869. ht

¢ JavaServer Pages Standard Tag Library (JSTL) product overview athtt p: //
www. or acl e. com' t echnet wor k/ j ava/ i ndex-j sp-135995. ht m

¢ For more information in general about Java application development, refer to
http://ww. oracl e. com t echnet wor k/ j ava/ j avaee/ over vi ew
i ndex. ht m

1.4 Examples for the Web Application Developer

In addition to this document, Oracle provides examples for software developers
within the context of the Avitek Medical Records Application (MedRec) sample,
discussed in the next section.

1.4.1 Avitek Medical Records Application (MedRec)

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOVE\ user _pr oj ects

\ domai ns\ medr ec directory, where ORACLE_HOME is the directory you specified as
Oracle Home when you installed Oracle WebLogic Server. For more information, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

The sample application, MedRec (Spring) demonstrates Spring Framework application
development practices.

Introduction and Roadmap 1-3

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.htm
http://www.oracle.com/technetwork/java/javaee/jsp/index.htm
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

New and Changed Features In This Release

1.4.2 Web Application Examples in the WebLogic Server Distribution

When you install WebLogic Server complete with the examples, the examples source
code is placed in the ORACLE_HOME\ Wl ser ver\ sanpl es\ server\ exanpl es\src
\ exanpl es directory. From this directory, you can access the source code and
instruction files for the examples without having to set up the samples domain.

The ORACLE_HOME\ user _pr oj ect s\ donmai ns\w _ser ver directory contains the
WebLogic Server examples domain; it contains your applications and the XML
configuration files that define how your applications and Oracle WebLogic Server will
behave, as well as startup and environment scripts. For more information about the
WebLogic Server code examples, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Oracle provides several Web application, servlet, and JSP examples with this release of
WebLogic Server. Oracle recommends that you run these Web application examples
before developing your own Web applications.

1.5 New and Changed Features In This Release

This release of WebLogic Server adds support for:

e HTTP content-encoding GZIP compression across the domain or for a specific Web
application. For more information, see

¢ Servlet 3.1, including support of HTTP 1.1 protocol upgrade processing, non-
blocking I/0 for asynchronous reads and writes, session ID change, and handling
uncovered HTTP methods.

® Java Server Pages 2.3, including support for static data that can be expressed in any
text-based format (HTML or XML) and JSP elements, which determine how the
page constructs dynamic content.

¢ Java Server Faces 2.2, including support of HTML5-friendly markup, Faces Flows,
and Resource library contracts.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.2.0.

1-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

2

Understanding Web Applications, Servlets,
and JSPs

This chapter provides an overview of WebLogic Server Web applications, servlets, and
JavaServer Pages (JSPs).

This chapter includes the following sections:
¢ The Web Applications Container

¢ Servlets

* JavaServer Pages

¢ Web Application Developer Tools

e Web Application Security

* Avoiding Redirection Attacks

e P3P Privacy Protocol

¢ Displaying Special Characters on Linux Browsers

2.1 The Web Applications Container

A Web application contains an application's resources, such as servlets, JavaServer
Pages (JSPs), JSP tag libraries, and any static resources such as HTML pages and image
files. A Web application adds service-refs (Web services) and message-destination-refs
(JMS destinations/queues) to an application. It can also define links to outside
resources such as Enterprise JavaBeans (E]Bs).

2.1.1 Web Applications and Java EE

The Java EE programming model employs metadata annotations which simplify the
application development process by allowing a developer to specify within the Java
class itself how the application component behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment
descriptors that were required by older versions of enterprise applications (Java EE 1.4
and earlier).

With Java EE annotations, the standard appl i cati on. xm and web. xm
deployment descriptors are optional. The Java EE programming model uses the JDK
annotations feature for Web containers, such as EJBs, servlets, Web applications, and
JSPs. See WebLogic Annotation for Web Components and htt p: //

docs. oracl e. com j avaee/ 7/ api / . For more information about Java EE 7 Web
application technologies, see ht t p: / / www. or acl e. coni t echnet wor k/ j ava/

j avaeel/ tech/ i ndex. htm .

Understanding Web Applications, Servlets, and JSPs 2-1

http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Servlets

However, Web applications deployed on WebLogic Server can still use a standard
Java EE deployment descriptor file and a WebLogic-specific deployment descriptor
file to define their resources and operating attributes.

2.1.2 Web Application Development Key Points

JSPs and HTTP servlets can access all services and APIs available in WebLogic Server.
These services include EJBs, database connections by way of Java Database
Connectivity (JDBC), Java Messaging Service (JMS), XML, and more.

A Web archive (WAR file) contains the files that make up a Web application. A WAR
file is deployed as a unit on one or more WebLogic Server instances. A WAR file
deployed to WebLogic Server always includes the following files:

® One servlet or JavaServer Page (JSP), along with any helper classes.

¢ Anoptional web. xm deployment descriptor, which is a Java EE standard XML
document that describes the contents of a WAR file.

e Awebl ogi c. xm deployment descriptor, which is an XML document containing
WebLogic Server-specific elements for Web applications.

¢ A WAR file can also include HTML or XML pages and supporting files such as
image and multimedia files.

The WAR file can be deployed alone or packaged in an enterprise application archive
(EAR file) with other application components. If deployed alone, the archive must end
with a . war extension. If deployed in an EAR file, the archive must end with an . ear
extension.

Oracle recommends that you package and deploy your standalone Web applications
as part of an enterprise application. This is an Oracle best practice which allows for
easier application migration, additions, and changes. Also, packaging your
applications as part of an enterprise application allows you to take advantage of the
split development directory structure, which provides a number of benefits over the
traditional single directory structure.

Note:

If you are deploying a directory in exploded format (not archived), do not
name the directory . ear, . j ar, and so on. For more information on archived
format, see Web Application Developer Tools.

2.2 Servlets

A servlet is a Java class that runs in a Java-enabled server. An HTTP servlet is a special
type of servlet that handles an HTTP request and provides an HTTP response, usually
in the form of an HTML page. The most common use of WebLogic HTTP servlets is to
create interactive applications using standard Web browsers for the client-side
presentation while WebLogic Server handles the business logic as a server-side
process. WebLogic HTTP servlets can access databases, Enterprise JavaBeans,
messaging APIs, HTTP sessions, and other facilities of WebLogic Server.

2-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Servlets

2.2.1 Servlets and Java EE

WebLogic Server fully supports HTTP servlets as defined in the Servlet 3.1
specificationathttp: //j cp. org/en/jsr/detail ?i d=340. HTTP servlets form
an integral part of the Java EE standard.

With Java EE metadata annotations, the standard web. xm deployment descriptor is
optional. The servlet specification states annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are
used to declare dependencies on external resources. The container will detect
annotations on such components and inject necessary dependencies before the
component's life cycle methods are invoked. See WebLogic Annotation for Web
Components.

The servlet specification defines the implementation of the servlet API and the method
by which servlets are deployed in enterprise applications. Deploying servlets on a Java
EE-compliant server, such as WebLogic Server, is accomplished by packaging the
servlets and other resources that make up an enterprise application into a single unit,
the Web application. A Web application utilizes a specific directory structure to
contain its resources and a deployment descriptor that defines how these resources
interact and how the application is accessed by a client. See The Web Applications
Container.

2.2.2 What You Can Do with Servlets

¢ Create dynamic Web pages that use HTML forms to get end-user input and
provide HTML pages that respond to that input. Examples of this utilization
include online shopping carts, financial services, and personalized content.

¢ Create collaborative systems such as online conferencing.

* Have access to a variety of APIs and features by using servlets running in
WebLogic Server. For example:

— Session tracking—Allows a Web site to track a user's progress across multiple
Web pages. This functionality supports Web sites such as e-commerce sites that
use shopping carts. WebLogic Server supports session persistence to a database,
providing failover between server down time and session sharing between
clustered servers. For more information see Session Tracking from a Servlet.

— JDBC drivers—JDBC drivers provide basic database access. With WebLogic
Server's multi-tier JDBC implementations, you can take advantage of connection
pools, server-side data caching, and transactions. For more information see
Accessing Databases.

— Enterprise JavaBeans—Servlets can use Enterprise JavaBeans (E]JB) to
encapsulate sessions, data from databases, and other functionality. See
Referencing External EJBs, More about the ejb-ref* Elements, and Referencing
Application-Scoped EJBs.

- Java Messaging Service (JMS)—JMS allows your servlets to exchange messages
with other servlets and Java programs. See Developing JMS Applications for Oracle
WebLogic Server.

— Java JDK APIs—Servlets can use the standard Java JDK APIs.

Understanding Web Applications, Servlets, and JSPs 2-3

http://jcp.org/en/jsr/detail?id=340

JavaServer Pages

— Forwarding requests—Servlets can forward a request to another servlet or other
resource. Forwarding a Request.

¢ Easily deploy servlets written for any Java EE-compliant servlet engine to
WebLogic Server.

2.2.3 Servlet Development Key Points

The following are a few key points relating to servlet development:

¢ Programmers of HTTP servlets utilize a standard Java API,
j avax. servl et . http, to create interactive applications.

e HTTP servlets can read HTTP headers and write HTML coding to deliver a
response to a browser client.

¢ Servlets are deployed to WebLogic Server as part of a Web application. A Web
application is a grouping of application components such as servlet classes,
JavaServer Pages (JSPs), static HTML pages, images, and security.

2.3 JavaServer Pages

JavaServer Pages (JSPs) are defined by a specification for combining Java with HTML
to provide dynamic content for Web pages. When you create dynamic content, J[SPs
are more convenient to write than HTTP servlets because they allow you to embed
Java code directly into your HTML pages, in contrast with HTTP servlets, in which
you embed HTML inside Java code.

JSPs are Web pages coded with an extended HTML that makes it possible to embed
Java code in a Web page. JSPs can call custom Java classes, called t agl i bs, using
HTML-like tags. The WebLogic appc compiler webl ogi c. appc generates JSPs and
validates descriptors. You can also precompile JSPs into the VEB- | NF/ cl asses/
directory or as a JAR file under WEB- | NF/ | i b/ and package the servlet class in the
Web archive to avoid compiling in the server. Servlets and JSPs may require
additional helper classes to be deployed with the Web application.

JSPs enable you to separate the dynamic content of a Web page from its presentation.
It caters to two different types of developers: HTML developers, who are responsible
for the graphical design of the page, and Java developers, who handle the
development of software to create the dynamic content.

2.3.1 JSPs and Java EE

WebLogic JSP supports the JSP 2.3 specificationat ht t p: // j cp. org/ en/ j sr/

det ai | ?i d=245. The main theme for Java EE is ease of development. The platform's
Web tier contributes significantly to ease of development in two ways. First, the
platform now includes the JavaServer Pages Standard Tag Library (JSTL) and
JavaServer Faces technology. Second, all the Web-tier technologies offer a set of
features that make development of Web applications on Java EE much easier, such as:

¢ An expression language (EL) syntax that allows deferred evaluation of expressions,
enables using expressions to both get and set data and to invoke methods, and
facilitates customizing the resolution of a variable or property referenced by an
expression.

® Support for resource injection through annotations to simplify configuring access
to resources and environment data.

2-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=245

Web Application Developer Tools

* Complete alignment of JavaServer Faces technology tags and JavaServer Pages
(JSP) software code.

Because JSPs are part of the Java EE standard, you can deploy JSPs on a variety of
platforms, including WebLogic Server. In addition, third-party vendors and
application developers can provide JavaBean components and define custom JSP tags
that can be referenced from a JSP page to provide dynamic content.

2.3.2 What You Can Do with JSPs

¢ Combine Java with HTML to provide dynamic content for Web pages.
¢ (Call custom Java classes, called t agl i bs, using HTML-like tags.

¢ Embed Java code directly into your HTML pages, in contrast with HTTP servlets,
in which you embed HTML inside Java code.

® Separate the dynamic content of a Web page from its presentation.

2.3.3 Overview of How JSP Requests Are Handled

WebLogic Server handles JSP requests in the following sequence:
1. A browser requests a page with a . j sp file extension from WebLogic Server.
2. WebLogic Server reads the request.

3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet class that
implements the j avax. servl et . j sp. JspPage interface. The JSP file is
compiled only when the page is first requested, or when the JSP file has been
updated and has a more recent timestamp. Otherwise, the previously compiled
JSP servlet class is re-used, making subsequent responses much quicker.

4. The generated JspPage ser vl et class is invoked to handle the browser request.

It is also possible to invoke the JSP compiler directly without making a request from a
browser. For details, see Using the WebLogic JSP Compiler.

Because the JSP compiler creates a Java servlet as its first step, you can look at the Java
files it produces, or even register the generated JspPage ser vl et class as an HTTP
servlet. See Servlets.

2.4 Web Application Developer Tools

Oracle provides several tools to help simplify the creating, testing, debugging, and
deploying of servlets, JSP, JSF-based Web applications.

* Oracle JDeveloper is an enterprise IDE providing a unified development
experience for Oracle Fusion Middleware products.

¢ Oracle Enterprise Pack for Eclipse is an Eclipse-based development environment
with pre-packaged tooling for Web applications targeting the Oracle platform.

Both tools provide advanced code editor features, collaborative teamwork
development, visual development and debugging, and streamlined deployment
capabilities.

Understanding Web Applications, Servlets, and JSPs 2-5

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html

Web Application Security

2.4.1 Other Tools

You can use the WebLogic Ant utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
Ant task looks at a directory containing a Web application and creates deployment
descriptors based on the files it finds in the Web application. Because the Ant utility
does not have information about all desired configurations and mappings for your
Web application, the skeleton deployment descriptors the utility creates are
incomplete. After the utility creates the skeleton deployment descriptors, you can use
a text editor, an XML editor, or the WebLogic Server Administration Console to edit
the deployment descriptors and complete the configuration of your Web application.

2.5 Web Application Security

You can secure a Web application by restricting access to certain URL patterns in the
Web application or programmatically using security calls in your servlet code.

At run time, your user name and password are authenticated using the applicable
security realm for the Web application. Authorization is verified according to the
security constraints configured in web. xm or the external policies that might have
been created for the Web application using the WebLogic Server Administration
Console.

At run time, the WebLogic Server active security realm applies the Web application
security constraints to the specified Web application resources. Note that a security
realm is shared across multiple virtual hosts.

For detailed instructions and an example on configuring security in Web applications,
see Securing Resources Using Roles and Policies for Oracle WebLogic Server. For more
information on WebLogic security, refer to Developing Applications with the WebLogic
Security Service.

Developing Applications with the WebLogic Security Service also includes information on
using the Java Authentication Service Provider Interface for Containers (JASPIC)
specification (ht t p: // www. j cp. org/ en/j sr/ detai | ?i d=196) to implement
authentication mechanisms.

2.5.1 Limiting the Number of Parameters in an HTTP Request

You can prevent overloading the WebLogic Server domain with excessive parameters
in HTTP requests by setting the MaxRequest Par anmet er Count attribute on the
WebSer ver MBean. This attribute limits the number of parameters allowed in a
request. The default value of MaxRequest Par anmet er Count is 10,000. If the number
of parameters on an incoming HTTP request exceeds the maximum value set in the
MaxRequest Par anet er Count attribute, then the following error is logged:

<Error> <Servl et Cont ext > <BEA-000000> <Rej ecting request since max request paraneter
limt exceeded 10000>

You can set this parameter either on the WebSer ver MBean or on the Vi r t ual Host
MBean. Use WLST online to set this attribute as shown in the following examples:

¢ Using the WebSer ver MBean

connect (' <admi n_user>', "' <adm n_pwd>', ' <admi n_url>")
edit()

startEdit()

cd(" Servers/ <server_nane>")

2-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=196

Avoiding Redirection Attacks

cno. get WebSer ver () . set MaxRequest Par anet er Count (1000)
save()

activate()

exit()

¢ Using the Vi rt ual Host MBean

connect (' <admi n_user>', "' <adm n_pwd>', "' <admi n_ur|>")
edit()

startEdit()

cd(' Virtual Host s/ <virtual _host>")

cno. set MaxRequest Par anet er Count (1000)

save()

activate()

exit()

Note:

If you have set MaxRequest Par amet er Count on the WebAppCont ai ner
MBean, Oracle recommends setting the attribute on the WebSer ver MBean
instead.

2.6 Avoiding Redirection Attacks

When a request on a Web application is redirected to another location, the Host header
contained in the request is used by default in the Location header that is generated for
the response. Because the Host header can be spoofed—that is, corrupted to contain a
different host name and other parameters—this behavior can be exploited to launch a
redirection attack on a third party.

To prevent the likelihood of this occurrence, set the Fr ont endHost attribute on either
the WebServerMBean or ClusterMBean to specify the host to which all redirected
URLs are sent. The host specified in the Fr ont endHost attribute will be used in the
Location header of the response instead of the one contained in the original request.

For more information, see Fr ont endHost in MBean Reference for Oracle WebLogic
Server.

2.7 P3P Privacy Protocol

The Platform for Privacy Preferences (P3P) provides a way for Web sites to publish
their privacy policies in a machine-readable syntax. The WebLogic Server Web
application container can support P3P.

There are three ways to tell the browser about the location of the p3p. xmi file:

¢ Place a policy reference file in the "well-known location" (at the location / w3c/
p3p. xm on the site).

* Add an extra HTTP header to each response from the Web site giving the location
of the policy reference file.

¢ Place a link to the policy reference file in each HTML page on the site.

For more detailed information, see htt p: / / www. w3. or g/ TR/
p3pdepl oynment #Locat i ng_PRF.

Understanding Web Applications, Servlets, and JSPs 2-7

http://www.w3.org/TR/p3pdeployment#Locating_PRF
http://www.w3.org/TR/p3pdeployment#Locating_PRF

Displaying Special Characters on Linux Browsers

2.8 Displaying Special Characters on Linux Browsers

To display special characters on Linux browsers, set the JVM's fi | e. encodi ng
system property to | SOB859_1. For example, j ava -
Df i | e. encodi ng=1 SO8859_1 webl ogi c. Ser ver . For a complete listing, see

http://docs. oracl e. conl j avase/ 8/ docs/t echnot es/ gui des/intl/
encodi ng. doc. htnl .

2-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

3

Creating and Configuring Web Applications

This chapter describes how to create and configure Web applications in WebLogic
Server.

This chapter includes the following sections:

¢ WebLogic Web Applications and Java EE

* Directory Structure

e Main Steps to Create and Configure a Web Application
¢ Configuring How a Client Accesses a Web Application
¢ Configuring Virtual Hosts for Web Applications

¢ Targeting Web Applications to Virtual Hosts

* Loading Servlets, Context Listeners, and Filters

® Shared Java EE Web Application Libraries

3.1 WebLogic Web Applications and Java EE

The Java EE programming model employs metadata annotations which simplify the
application development process by allowing a developer to specify within the Java
class itself how the application component behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment
descriptors that were required by older versions of enterprise applications (Java EE 1.4
and earlier).

With Java EE annotations, the standard appl i cati on. xm and web. xni
deployment descriptors are optional. The Java EE programming model uses the JDK
annotations feature for Web containers, such as E]Bs, servlets, Web applications, and
JSPs. See WebLogic Annotation for Web Components and ht t p: //

docs. oracl e. com j avaee/ 7/ api / . For more information about Java EE 7 Web
application technologies, see ht t p: / / www. or acl e. coni t echnet wor k/ j ava/

j avaeel/ tech/index. htm .

However, Web applications deployed on WebLogic Server can still use a standard
Java EE deployment descriptor file and a WebLogic-specific deployment descriptor
file to define their resources and operating attributes.

3.2 Directory Structure

Web applications use a standard directory structure defined in the Java EE
specification. You can deploy a Web application as a collection of files that use this
directory structure, known as exploded directory format, or as an archived file called a
WAR file. Oracle recommends that you package and deploy your exploded Web

Creating and Configuring Web Applications 3-1

http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Directory Structure

application as part of an enterprise application. This is an Oracle best practice which
allows for easier application migration, additions, and changes. Also, packaging your
Web application as part of an enterprise application allows you to take advantage of
the split development directory structure, which provides a number of benefits over
the traditional single directory structure.

The WEB- | NF directory contains the deployment descriptors for the Web application
(web. xm and webl ogi c. xm) and two subdirectories for storing compiled Java
classes and library JAR files. These subdirectories are respectively named cl asses
and | i b. JSP taglibs are stored in the VEEB- | NF directory at the top level of the staging
directory. The Java classes include servlets, helper classes and, if desired, precompiled
JSPs.

All servlets, classes, static files, and other resources belonging to a Web application are
organized under a directory hierarchy.

The entire directory, once staged, is bundled into a WAR file using the j ar command.
The WAR file can be deployed alone or as part of an enterprise application
(recommended) with other application components, including other Web applications,
EJB components, and WebLogic Server components.

JSP pages and HTTP servlets can access all services and APIs available in WebLogic
Server. These services include E]JBs, database connections through Java Database
Connectivity (JDBC), JavaMessaging Service (JMS), XML, and more.

3.2.1 Accessing Information in WEB-INF

The VEEB- | NF directory is not part of the public document tree of the application. No
file contained in the VEB- | NF directory can be served directly to a client by the
container. However, the contents of the WEB- | NF directory are visible to servlet code
using the get Resour ce and get Resour ceAsSt r ean() method calls on the

Ser vl et Cont ext or includes/forwards using the RequestDispatcher. Hence, if the
application developer needs access, from servlet code, to application specific
configuration information that should not be exposed directly to the Web client, the
application developer may place it under this directory.

Since requests are matched to resource mappings in a case-sensitive manner, client
requests for "/ WEB- | NF/ f 00", "/ Eb- i Nf / f 00", for example, should not result in
contents of the Web application located under / VEB- | NF being returned, nor any
form of directory listing thereof.

3.2.2 Directory Structure Example

The following is an example of a Web application directory structure, in which
nyWWebApp/ is the staging directory:

Example 3-1 Web Application Directory Structure

myVebApp/
VAEB- | NF/
web. xm
webl ogi ¢. xn
I'ib/
MyLib.jar
cl asses/
MyPackage/
MyServl et . cl ass
i ndex. ht m
i ndex. j sp

3-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Main Steps to Create and Configure a Web Application

3.3 Main Steps to Create and Configure a Web Application

The following steps summarize the procedure for creating a Web application as part of
an enterprise application using the split development directory structure. See Creating
a Split Development Directory Environment, Building Applications In a Split
Development Directory, and Deploying and Packaging From a Split Development
Directory in Developing Applications for Oracle WebLogic Server.

You may want to use developer tools included with WebLogic Server for creating and
configuring Web applications. See Web Application Developer Tools.

3.3.1 Step One: Create the Enterprise Application Wrapper

1.

Create a directory for your root EAR file:

\'src\ nyEAR

Set your environment as follows:

On Windows, execute the set W.SEnv. cnd command, located in the directory
W._HOVE\ ser ver\ bi n\, where W._ HOVE is the top-level directory in which
WebLogic Server is installed.

On UNIX, execute the set W.SEnv. sh command, located in the directory
W._HOVE/ server/ bi n/ , where W._HOVE is the top-level directory in which
WebLogic Server is installed.

Note:

On UNIX operating systems, the set W.SEnv. sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

Package your enterprise application in the \ sr c\ myEAR\ directory as follows:

a.

Place the enterprise applications descriptors (appl i cati on. xm and

webl ogi c-appl i cati on. xm) in the META- | NF\ directory. See Enterprise
Application Deployment Descriptors in Developing Applications for Oracle
WebLogic Server.

Edit the deployment descriptors as needed to fine-tune the behavior of your
enterprise application. See Web Application Developer Tools.

Place the enterprise application . j ar files in:

\'src\ nyEAR APP- I NF\ | i b\

3.3.2 Step Two: Create the Web Application

1.

2.

Create a directory for your Web application in the root of your EAR file:

\'src\ myEAR nmyWebApp

Package your Web application in the \ sr c\ myEAR\ mnyWebApp\ directory as
follows:

Creating and Configuring Web Applications 3-3

Configuring How a Client Accesses a Web Application

a. Place the Web application descriptors (web. xm and webl ogi c. xm) in the
\ src\ nyEAR\ nyWebApp\ VEB- | NF\ directory. See weblogic.xml
Deployment Descriptor Elements.

b. Edit the deployment descriptors as needed to fine-tune the behavior of your
enterprise application. See Web Application Developer Tools.

c. Place all HTML files, JSPs, images and any other files referenced by the Web
application pages in the root of the Web application:

\'src\ nyEAR myVWebApp\ i mages\ nyi nage. j pg
\'src\ nyEAR nmyWebApp\ | ogi n. j sp
\'src\ nyEAR myVebApp\ i ndex. ht m

d. Place your Web application Java source files (servlets, tag libs, other classes
referenced by servlets or tag libs) in:

\'src\ nyEAR myWebApp\ VEB- | NF\ st ¢\

3.3.3 Step Three: Creating the build.xml File

Once you have set up your directory structure, you create the bui | d. xim file using
the webl ogi c. Bui | dXM_Gen utility.

3.3.4 Step Four: Execute the Split Development Directory Structure Ant Tasks

1. Execute the W conpi | e Ant task to invoke the j avac compiler. This compiles
your Web application Java components into an output directory: / bui | d/ my EAR/
VEEB- | NF/ cl asses.

2. Execute W appc Ant task to invoke the appc compiler. This compiles any JSPs and
container-specific E]JB classes for deployment.

3. Execute the w depl oy Ant task to deploy your Web application as part of an
archived or exploded EAR to WebLogic Server.

4. If this is a production environment (rather than development), execute the
W package Ant task to package your Web application as part of an archived or
exploded EAR.

Note:

The Wl package Ant task places compiled versions of your Java source files in
the build directory. For example: / bui | d/ my EAR/ myWebApp/ cl asses.

3.4 Configuring How a Client Accesses a Web Application

You construct the URL that a client uses to access a Web application using the
following pattern:

http://hoststring/ ContextPath/servletPath/pathlnfo
Where

* hoststringis either a host name that is mapped to a virtual host or
host name: port Nunber.

3-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Configuring Virtual Hosts for Web Applications

¢ Cont ext Pat h is the name of your Web application.
e servl et Pat h is a servlet that is mapped to the ser vl et Pat h.

e pat hl nf o is the remaining portion of the URL, typically a file name.

If you are using virtual hosting, you can substitute the virtual host name for the
hoststring portion of the URL.

3.5 Configuring Virtual Hosts for Web Applications

WebLogic Server supports two methods for configuring virtual hosts for Web
applications:

* Configuring a Channel-based Virtual Host

¢ Configuring a Host-based Virtual Host

3.5.1 Configuring a Channel-based Virtual Host
The following is an example of how to configure a channel-based virtual host:

<Virtual Host Nane="channel 1vh" Networ kAccessPoi nt =" Channel 1" Tar get s="nyserver"/>
<Virtual Host Name="channel 2vh" Net wor kAccessPoi nt =" Channel 2" Tar get s="nyserver"/>

Where Channel 1 and Channel 2 are the names of Net wor kAccessPoi nt
configured in the conf i g. xm file. Net wor kAccessPoi nt represents the dedicated
server channel name for which the virtual host serves HTTP requests. If the

Net wor kAccessPoi nt for a given HTTP request does not match the

Net wor kAccessPoi nt of any virtual host, the incoming HOST header is matched
with the Vi r t ual Host Nanes in order to resolve the correct virtual host. If an
incoming request does not match a virtual host, the request will be served by the
default Web server.

3.5.2 Configuring a Host-based Virtual Host
The following is an example of how to configure a host-based virtual host:

<Virtual Host Name="cokevh" Targets="nyserver" Virtual Host Nanes="coke"/>
<Virtual Host Name="pepsivh" Targets="myserver" Virtual Host Names="pepsi"/>

3.6 Targeting Web Applications to Virtual Hosts

A Web application component can be targeted to servers and virtual hosts using the
WebLogic Server Administration Console.

If you are migrating from previous versions of WebLogic Server, note that in the
confi g. xnl file, all Web application targets must be specified in the targets attribute.
The targets attribute has replaced the virtual hosts attribute and a virtual host cannot
have the same name as a server or cluster in the same domain. The following is an
example of how to target a Web application to a virtual host:

<AppDepl oyment name="t est-app" Sour cepat h="/nyapps/test-app.ear">
<SubDepl oynent Nane="t est - webappl. war" Targets="virutal host-1"/>
<SubDepl oynment Nane="t est - webapp2. war" Target s="virtual host-2"/>

</Abbbepl oynent >

Creating and Configuring Web Applications 3-5

Loading Servlets, Context Listeners, and Filters

3.7 Loading Servlets, Context Listeners, and Filters

Servlets, context listeners, and filters are loaded and destroyed in the following order:

Order of loading;:
1. Context listeners
2. Filters

3. Servlets

Order of destruction:
1. Servlets
2. Filters

3. Context listeners

Servlets and filters are loaded in the same order they are defined in the web. xni file
and unloaded in reverse order. Context listeners are loaded in the following order:

1. All context listeners in the web. xni file in the order as specified in the file
2. Packaged JAR files containing tag library descriptors

3. Tag library descriptors in the WEB- | NF directory

3.8 Shared Java EE Web Application Libraries

A Java EE Web application library is a standalone Web application module registered
with the Java EE application container upon deployment. With WebLogic Server,
multiple Web applications can easily share a single Web application module or
collection of modules.

A Web application may reference one or more Web application libraries, but cannot
reference other library types (EJBs, EAR files, plain JAR files). Web application
libraries are Web application modules deployed as libraries. They are referenced from
the webl ogi c. xm file using the same syntax that is used to reference application
libraries in the webl ogi c- appl i cati on. xm file, except that the <cont ext - r oot >
element is ignored.

At deployment time, the classpath of each referenced library is appended to the Web
application's classpath. Therefore, the search for all resources and classes occurs first
in the original Web application and then in the referenced library.

The deployment tools, appc, wlcompile, and BuildXMLGen support libraries at the
Web application level in the same way they support libraries at the application level.
For more information about shared Java EE libraries and their deployment, see
Creating Shared Java EE Libraries and Optional Packages in Developing Applications for
Oracle WebLogic Server.

3.9 Enabling GZIP Compression for Web Applications

The WebLogic Server Web container supports HTTP content-encoding GZIP
compression, which is part of HTTP/1.1. With GZIP compression, you can reduce the
size of the data that a Web browser has to download, improving network bandwidth.

3-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Enabling GZIP Compression for Web Applications

For general information about content-encoding and GZIP compression, see
the Hypertext Transfer Protocol HTTP /1.1 Specification.

You can enable and configure content-encoding GZIP compression at the domain level
or Web application level.

To set domain-wide values for GZIP compression support, use WLST to configure the
following attributes of the Gzi pConpr essi onMBean under the
WebAppCont ai ner MBean:

Table 3-1 Domain-Level GZIP Compression Attributes

Attribute Description Default Value

Gzi pConpr essi onEnabl ed Enables GZIP compression fal se
for all Web applications in
the domain.

Gzi pConpr essi onM nConp Specifies the minimum file 2048
ressi onCont ent Lengt h size to trigger compression in
Web applications.

This attribute allows you to
bypass small-sized resources
where compression would
not yield a great return but
use unnecessary CPU.

Gzi pConpr essi onCont ent Specifies the type of content ~ "text/htm , text/xnl,
Type to be included compression. text/plain"

To configure GZIP compression for a specific Web application, use the gzip-
compression element in the weblogic.xml deployment descriptor container-
descriptor element. For more information, see .

Application-level values override domain-level values. Therefore, any gzi p-
conpr essi on values set in webl ogi c. xnl take precedence over domain-wide
values set in the Gzi pConpr essi onMBean or default values.

WebLogic Server determines the GZIP compression attribute value to use based on the
following override hierarchy:

¢ If you do not configure GZIP compression in the individual Web
application webl ogi c. xm file or in the domain-wide Gzi pConpr essi onMBean,
then the domain default value is used.

¢ If you configure GZIP compression in the domain-
wide Gzi pConpr essi onMBean, then the MBean value overrides the default
value. The Gzi pConpr essi onMBeanval ue is used.

e If you configure GZIP compression in the individual Web
application webl ogi c. xr file, then the webl ogi c. xri file overrides
the Gzi pConpr essi onMBean value and the default value. The Web
application webl ogi c. xm value is used.

You can track compression statistics, such as CPUs used, original content length, GZIP
content length, and the compression ratio, by enabling the HTTPDebugLogger debug
flag, which tracks information about these statistics in existing server log files.

If HTTPDebugLogger is not enabled, these statistics are not tracked. To

enabl eHTTPDebugLogger, set -

Dwebl ogi c. debug. DebugHt t p=t r ue in JAVA_COPTI ONS in the server start script.

Creating and Configuring Web Applications 3-7

http://tools.ietf.org/html/rfc7231#section-3.1.2

Enabling GZIP Compression for Web Applications

3-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

A

Creating and Configuring Servlets

This chapter describes what is new and changed in recent servlet specifications, and
how to create and configure servlets

This chapter includes the following sections:

What's New and Changed in Servlets
Configuring Servlets

Setting Up a Default Servlet

Servlet Initialization Attributes
Writing a Simple HTTP Servlet
Advanced Features

Complete HelloWorldServlet Example

Debugging Servlet Containers

4.1 What's New and Changed in Servlets

These sections summarize the changes in the Servlet programming model and
requirements between Servlet 3.1 and 3.0.

4.1.1 What's New and Changed in Servlet 3.1

WebLogic Server supports the servlet 3.1 specification (see http:/ /jcp.org/en/jsr/
detail?id=340), which introduces the following new features:

Support added for non-blocking I/O reads and writes—Servlet 3.0 allowed
asynchronous request processing but only traditional I/O was permitted, which
restricted scalability of your applications since threads associated with client
requests could be sitting idle because of input/output considerations. Servlet 31.
supports non-blocking I/O for read and write listeners, which allows you to build
scalable applications.

Supports HTTP protocol upgrade processing—HTTP /1.1 allows the client to
specify additional communication protocols that it supports and would like to use.
Servlet 3.1 supports the HTTP protocol upgrade functionality in servlets.

Enhanced security by handling uncovered HTTP methods—The deny-

uncover ed- ht t p- net hods flag can be set in an application's web. xnl file,
which forces the container to deny any HTTP protocol method when it is used with
a request URL for which the HTTP method is uncovered at the combined security
constraint that applies to the url-pattern that is the best match for the request URL.

Creating and Configuring Servlets 4-1

http://jcp.org/en/jsr/detail?id=340
http://jcp.org/en/jsr/detail?id=340

What's New and Changed in Servlets

* New Java EE 7 servlet examples—When you install WebLogic Server complete
with the examples, the examples source code is placed in the
EXAMPLES_HOMEexanpl es\ sr c\ exanpl es directory. The default path
is ORACLE_HOVE\ Wl ser ver\ sanpl es\ ser ver . From this directory, you can
access the source code and instruction files for the Servlet 3.1 examples without
having to set up the samples domain.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the
WebLogic Server examples domain; it contains your applications and the XML
configuration files that define how your applications and Oracle WebLogic Server
will behave, as well as startup and environment scripts. For more information
about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

— Using HTTP Protocol Upgrade API — demonstrates how to use the HTTP
Protocol Upgrade API that allows the client to specify additional
communication protocols.

EXAMPLES_HOMVE/ exanpl es/ sr ¢/ exanpl es/ j avaee7/ servl et/ http-upgrade

— Using the Non-Blocking I/0 ReadListener — demonstrates how to use
the ReadLi st ener interface in servlets for reading from a request in a non-
blocking manner.

EXAMPLES_HOME/ exanpl es/ sr ¢/ exanpl es/ j avaee7/ servl et/ non- bl ocki ng-i o-read

— Using the Non-Blocking I/O WriteListener — demonstrates how to use
the Wi t eLi st ener interface in servlets for writing to a request in a non-
blocking manner.

EXAMPLES_HOME/ exanpl es/ src/ exanpl es/ j avaee7/ servl et/ non- bl ocking-io-wite

— Changing the Session ID — demonstrates how to change the session ID using
the Ht t pSer vl et Request APL

EXAMPLES_HOME/ exanpl es/ sr ¢/ exanpl es/ j avaee7/ servl et/ sessi on-i d- change

- Handling Uncovered HTTP Methods — demonstrates how to deny uncovered
HTTP methods:

EXAMPLES_HOMVE/ exanpl es/ sr ¢/ exanpl es/ j avaee7/ servl et/ uncover ed- ht t p- net hod

4.1.2 What Was New and Changed in Servlet 3.0

The Servlet 3.0 specification (see ht t p: //j cp. org/ en/j sr/ detai | ?i d=315)
introduced the following features:

® Asynchronous processing—a servlet no longer has to wait for a response from a
resource, such as a database, before its thread can continue. In other words, the
thread is not blocked.

* Web module deployment descriptor fragments (web fragments)—The web-
fragment . xnl file enhances pluggability of library JARs which are packaged
under VEB- | NF/ | i b. A web fragment is a part or all of the web. xm file that can
be specified and included in a library or framework JAR's META- | NF directory.

e New Java EE 6 servlet examples—When you install WebLogic Server complete
with the examples, the examples source code is placed in the EXAMPLES_HOVE
\ exanpl es\ src\ exanpl es directory. The default path is ORACLE_HOVE
\'W server\ sanpl es\ server. From this directory, you can access the source

4-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=315

Configuring Servlets

code and instruction files for the Servlet 3.0 examples without having to set up the
samples domain

The ORACLE_HOME\ user _pr oj ect s\ dormai ns\ W _ser ver directory contains
the WebLogic Server examples domain; it contains your applications and the XML
configuration files that define how your applications and Oracle WebLogic Server
will behave, as well as startup and environment scripts. For more information
about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

Using Annotations for Servlets, Filters and Listeners — demonstrates how to
define Web application components solely from annotations, such as
@\ebSer vl et , @\ebLi st ener, and @\ebFi | t er, no longer requiring
definition and mapping entries within the web.xml descriptor.

EXAMPLES_HOME/ exanpl es/ sr ¢/ exanpl es/ j avaee6/ servl et/ annot ati on

Asynchronous Servlet and Request Handling — demonstrates asynchronous
processing in servlet 3.0, in which a servlet is marked as being capable of
handling asynchronous requests.

EXAMPLES_HOME/ exanpl es/ sr ¢/ exanpl es/ j avaee6/ servl et/ asyncSer vl et 30

Handling File Uploads with Multipart File - demonstrates the use of
the @l ti part Confi g annotation to handle the uploading of files from the
browser client.

EXAMPLES_HOME/ exanpl es/ src/ exanpl es/ j avaee6/ servl et/ nul tipartFil eHandling

Using Programmatic Security — demonstrates the use of the

new | ogi n() and aut hent i cat e() methods of

the Ht t pSer vl et Request interface, which enable applications to
programmatically control security.

EXAMPLES_HOME/ exanpl es/ sr ¢/ exanpl es/ j avaee6/ servl et/ programmati cSecurity

Servlet Web Fragments — demonstrates the pluggable nature of servlet 3.0, in
which modular, self-contained extensions can be easily added to Web
applications.

EXAMPLES_HOME/ exanpl es/ sr ¢/ exanpl es/ j avaee6/ ser vl et/ webFr agnent

Note:

As of WebLogic Server 12.1.3, WebLogic Server-specific annotations have been
deprecated and will be removed in a future release: @ WLServlet, @ WLFilter,
and @WLInitParam, in favor of the standard annotations defined in the
Servlet 3.1 specification. In addition, instead of

weblogic.servlet.http. AbstractAsyncServlet, you should use the standard
asynchronous processing model defined in the Servlet 3.1 specification. For
information on configuring Servlet 3.1 asynchronous processing, see async-
descriptor in web.xml Deployment Descriptor Elements.

4.2 Configuring Servlets

This section describes configuring servlets using Java EE metadata annotations versus
in deployment descriptors, and how to use servlet mapping in a Web application.

Creating and Configuring Servlets 4-3

Configuring Servlets

4.2.1 Servlet Annotations

With Java EE metadata annotations, the standard web. xm deployment descriptor is
optional. The servlet specification states annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are
used to declare dependencies on external resources. The container will detect
annotations on such components and inject necessary dependencies before the
component's life cycle methods are invoked. See WebLogic Annotation for Web
Components.

However, you can also define servlets as a part of a Web application in several entries
in the standard Web application deployment descriptor, web. xim . The web. xm file
is located in the VEEB- | NF directory of your Web application.

The first entry, under the root ser vl et element in web. xm , defines a name for the
servlet and specifies the compiled class that executes the servlet. (Or, instead of
specifying a servlet class, you can specify a JSP.) The ser vl et element also contains
definitions for initialization attributes and security roles for the servlet.

The second entry in web. xm , under the ser vl et - mappi ng element, defines the
URL pattern that calls this servlet.

4.2.2 Servlet Mapping

Servlet mapping controls how you access a servlet. The following examples
demonstrate how you can use servlet mapping in your Web application. In the
examples, a set of servlet configurations and mappings (from the web. xmi
deployment descriptor) is followed by a table (see Table 4-1) showing the URLs used
to invoke these servlets.

Example 4-1 Servlet Mapping Example

<servlet>
<servl et - nanme>wat er nel on</ servl et - nane>
<servl et-cl ass>nyservl ets. wat ernel on</ servl et - cl ass>
</servlet>
<servlet>
<servl et - nanme>gar den</ ser vl et - nane>
<servl et-cl ass>nyservl ets. garden</servl et -cl ass>
</servlet>
<servlet>
<servl et - nanme>| i st </ servl et - nane>
<servl et-class>nyservlets.list</servlet-class>
</servlet>
<servlet>
<servl et - nanme>ki wi </ servl et - nane>
<servl et-cl ass>nyservl ets. ki wi </servl et-class>
</servlet>
<servl et - mppi ng>
<servl et - nanme>wat er nel on</ servl et - nane>
<url-pattern>/fruit/sumer/*</url-pattern>
</ servl et - mappi ng>
<servl et - mppi ng>
<servl et - nanme>gar den</ servl et - nane>
<url-pattern>/seeds/*</url-pattern>
</ servl et - mappi ng>
<servl et - mppi ng>
<servl et - name>| i st </ servl et - nane>
<url-pattern>/seedlist</url-pattern>
</ servl et - mappi ng>

4-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Configuring Servlets

<servl et - mppi ng>
<servl et - nanme>ki wi </ servl et - nane>
<url-pattern>*. abc</url-pattern>
</ servl et - mappi ng>

Table 4-1 url-patterns and Servlet Invocation
]

URL Servlet Invoked
http://host: port/mywebapp/fruit/sumer/index. htm watermel on
http://host: port/mywebapp/ fruit/sumrer/index.abc waternmelon
http://host: port/mywebapp/ seedl i st list

The default servlet, if configured, or
an HTTP 404 File Not Found error
message.

http://host: port/mywebapp/ seedlist/index. htm

If the mapping for the | i st servlet
had been/ seedl i st*,thel i st
servlet would be invoked.

http://host: port/mywebapp/ seedl i st/ pear. abc ki wi

If the mapping for the list servlet
had been/ seedl| i st *, the list
servlet would be invoked.

http://host: port/mywebapp/ seeds garden
http://host: port/mywebapp/ seeds/i ndex. ht m garden
http://host: port/mywebapp/index. abc ki wi

Ser vl et Ser vl et can be used to create a default mappings for servlets. For example,
to create a default mapping to map all servlets to/ nyser vl et/ *, so the servlets can
be called using ht t p: / / host : port/web- app- name/ nyser vl et/ conl f oo/
FooSer vl et , add the following to your web. xnl file. (The web. xnl file is located in
the VWEB- | NF directory of your Web application.)

<servl et >
<servl et - name>Ser vl et Servl et </ servl et - nane>
<servl et -cl ass>webl ogi c. servl et. Servl et Servl et </ servl et -cl ass>
</servlet>
<servl et - mppi ng>
<servl et - name>Ser vl et Servl et </ servl et - nane>
<url-pattern>/ nyservlet/*</url-pattern>
</ servl et - mappi ng>

Creating and Configuring Servlets 4-5

Setting Up a Default Servlet

4.3 Setting Up a Default Servlet

Each Web application has a default servlet. This default servlet can be a servlet that you
specify, or, if you do not specify a default servlet, WebLogic Server uses an internal
servlet called the Fi | eSer vl et as the default servlet.

You can register any servlet as the default servlet. Writing your own default servlet
allows you to use your own logic to decide how to handle a request that falls back to
the default servlet.

Setting up a default servlet replaces the Fi | eSer vl et and should be done carefully
because the Fi | eSer vl et is used to serve most files, such as text files, HTML file,
image files, and more. If you expect your default servlet to serve such files, you will
need to write that functionality into your default servlet.

To set up a user-defined default servlet:

1. Define your servlet as described in Configuring How a Client Accesses a Web
Application.

2. Add a servlet-mapping with url-pattern ="/ " as follows:

<servl et - mappi ng>

<servl et - name>MyOmnDef aul t Ser vl et </ ser vl et - nane>
<url-pattern>/ nyservlet/*(</url-pattern>

</ servl et - mappi ng>

3. Ifyoustill want the Fi | eSer vl et to serve files with other extensions:

a. Define a servlet and give it a <ser vl et - name>, for example
nmyFi |l eServl et.

b. Define the <servl et -cl ass>aswebl ogi c. servlet.Fil eServlet.

c. Using the <ser vl et - mappi ng> element, map file extensions to the
nyFi | eSer vl et (in addition to the mappings for your default servlet). For
example, if you want the nyFi | eServl et to serve. gif files, map
*.gif tothenyFil eServl et.

Note:

The Fi | eSer vl et includes the SERVLET_PATH when determining the
source filename if the docHome parameter (deprecated in this release) is not
specified. As a result, it is possible to explicitly serve only files from specific
directories by mapping the Fi | eServl et to /dir/*,etc.

4.4 Servlet Initialization Attributes

You define initialization attributes for servlets in the Web application deployment
descriptor, web. xm , in the i ni t - par amelement of the ser vl et element, using
par am nanme and par am val ue tags. The web. xim file is located in the VEB- | NF
directory of your Web application. For example:

Example 4-2 Example of Configuring Servlet Initialization Attributes in web.xml

<servlet>
<servl et - nanme>Hel | oWor | d2</ ser vl et - nane>
<servl et -cl ass>exanpl es. servl ets. Hel | oWor | d2</ servl et - cl ass>

4-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Writing a Simple HTTP Servlet

<init-paranp

<par am name>gr eet i ng</ par am nane>
<par am val ue>\\él cone</ par am val ue>

</init-paranp
<init-paranp

<par am name>per son</ par am nane>
<par am val ue>WebLogi ¢ Devel oper </ param val ue>

</init-paranp

</servlet>

4.5 Writing a Simple HTTP Servlet

The section provides a procedure for writing a simple HTTP servlet, which prints out
the message Hel | o Wor | d. A complete code example (the Hel | oWor | dSer vl et)
illustrating these steps is included at the end of this section. Additional information
about using various Java EE and WebLogic Server services such as JDBC, RMI, and
JMS, in your servlet are discussed later in this document.

1.

Import the appropriate package and classes, including the following;:

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

Extend j avax. servl et. http. Htt pSer vl et . For example:

public class Hel | oWorldServlet extends HtpServlet{

Implement a ser vi ce() method.

The main function of a servlet is to accept an HTTP request from a Web browser,
and return an HTTP response. This work is done by the ser vi ce() method of
your servlet. Service methods include response objects used to create output and
request objects used to receive data from the client.

You may have seen other servlet examples implement the doPost () and/or
doGet () methods. These methods reply only to POST or GET requests; if you
want to handle all request types from a single method, your servlet can simply
implement the ser vi ce() method. (However, if you choose to implement the
servi ce() method, you cannot implement the doPost () or doGet () methods,
unless you call super. servi ce() at the beginning of the ser vi ce() method.)
The HTTP servlet specification describes other methods used to handle other
request types, but all of these methods are collectively referred to as service
methods.

All the service methods take the same parameter arguments. An

Ht t pSer vl et Request provides information about the request, and your servlet
uses an Ht t pSer vl et Response to reply to the HTTP client. The service method
looks like the following:

public void service(HttpServl et Request req,
Ht t pSer vl et Response res) throws | CException
{

Set the content type, as follows:

res. setContent Type("text/htm");

Get a reference toaj ava. i 0. Pri nt Wit er object to use for output, as follows:

PrintWiter out = res.getWiter();

Creating and Configuring Servlets 4-7

Advanced Features

Create some HTML using the pri nt | n() method on the Pri nt Wi t er object,
as shown in the following example:

out.println("<htn ><head><title>Hello World!</title></head>");
out. println("<body><hl>Hel | o Wrl d! </ h1></body></htm >");

}

Compile the servlet, as follows:

a.

Set up a development environment shell with the correct classpath and path
settings.

From the directory containing the Java source code for your servlet, compile
your servlet into the WEB- | NF/ cl asses directory of the Web application
that contains your servlet. For example:

javac -d /nyWebApplication/ WEB- I NF/ cl asses myServlet.java

Deploy the servlet as part of a Web application hosted on WebLogic Server.

Call the servlet from a browser.

The URL you use to call a servlet is determined by:

The name of the Web application containing the servlet and

The name of the servlet as mapped in the deployment descriptor of the Web
application. Request parameters can also be included in the URL used to call a
servlet.

Generally the URL for a servlet conforms to the following:

http://host: port/webApplicationNanme/ mappedSer vl et Name?par anet er

The components of the URL are defined as follows:

host is the name of the machine running WebLogic Server.
port is the port at which the above machine is listening for HTTP requests.

webAppl i cat i onNare is the name of the Web application containing the
servlet.

par amet er s are one or more name-value pairs containing information sent
from the browser that can be used in your servlet.

For example, to use a Web browser to call the Hel | oWor | dSer vl et (the
example featured in this document), which is deployed in the exanpl esWWebApp
and served from a WebLogic Server running on your machine, enter the following
URL:

http:// 1 ocal host: 7001/ exanpl esWebApp/ Hel | oWor | dSer vl et

The host : port portion of the URL can be replaced by a DNS name that is
mapped to WebLogic Server.

4.6 Advanced Features

The preceding steps create a basic servlet. You will probably also use more advanced
features of servlets:

4-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Complete HelloWorldServlet Example

¢ Handling HTML form data—HTTP servlets can receive and process data received
from a browser client in HTML forms.

— Retrieving Client Input

* Application design—HTTP servlets offer many ways to design your application.
The following sections provide detailed information about writing servlets:

— Providing an HTTP Response
— Threading Issues in HTTP Servlets
— Dispatching Requests to Another Resource

¢ Initializing a servlet—if your servlet needs to initialize data, accept initialization
arguments, or perform other actions when the servlet is initialized, you can
override the i ni t () method.

— Initializing a Servlet

* Use of sessions and persistence in your servlet—sessions and persistence allow you
to track your users within and between HTTP sessions. Session management
includes the use of cookies. For more information, see the following sections:

— Session Tracking from a Servlet
— Using Cookies in a Servlet
— Configuring Session Persistence

¢ Use of WebLogic services in your servlet—WebLogic Server provides a variety of
services and APIs that you can use in your Web applications. These services
include Java Database Connectivity (JDBC) drivers, JDBC database connection
pools, Java Messaging Service (JMS), Enterprise JavaBeans (EJB), and Remote
Method Invocation (RMI). For more information, see the following sections:

- Using WebLogic Services from an HTTP Servlet

— Accessing Databases

4.7 Complete HelloWorldServlet Example

This section provides the complete Java source code for the example used in the
preceding procedure. The example is a simple servlet that provides a response to an
HTTP request. Later in this document, this example is expanded to illustrate how to
use HTTP parameters, cookies, and session tracking.

Example 4-3 HelloWorldServlet.java

import javax.servlet.*;
i mport javax.servlet.http.*;
inport java.io.*;
public class Hel | oWrldServlet extends HitpServlet {
public void service(HtpServl et Request req,
Ht t pSer vl et Response res)
throws | OException
{
/1 Must set the content type first
res. set Content Type("text/htm");
/] Now obtain a PrintWiter to insert HTM. into

Creating and Configuring Servlets 4-9

Debugging Servlet Containers

PrintWiter out = res.getWiter();
out.println("<htm ><head><title>" +
"Hel lo Wrld!</title></head>");
out. println("<body><hl>Hello Wrl d! </ h1></body></htm >");

}
}

You can find the source code and instructions for compiling and running examples in
the ORACLE_HOVE\ W ser ver\ sanpl es\ server\ exanpl es\ src\ exanpl es
\'splitdir\hell oWrl dEar directory of your WebLogic Server distribution,
whereORACLE_HOVE represents the directory in which you installed WebLogic Server.
For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

4.8 Debugging Servlet Containers

The following sections provide information on debugging options available in the
WebLogic Server servlet container:

¢ Disabling Access Logging
¢ Debugging Specific Sessions

¢ Tracking a Request Handle Footprint

4.8.1 Disabling Access Logging

Logging access for servlets can be expensive with regard to server performance.
Therefore, in cases where access logging is not required, you can improve
performance by disabling logging to the access log file.

4.8.1.1 Usage

The optional access- | oggi ng- di sabl ed property in the cont ai ner -
descri pt or inwebl ogi c. xm can be used to specify whether access logging for an
underlying Web application is disabled.

o [f the property is set as t r ue, then application accesses are not logged.

o If the property is not defined or is set as f al se, then application accesses are
logged.

Note:

The access- | oggi ng- di sabl ed property functions at the Web application
level. Therefore, if it is defined in a Web application, it does not affect other
Web applications. This property works under both development mode and
production mode.

4.8.1.2 Example

The following example demonstrates how to disable access logging:

<?xm version="1.0" encodi ng="1SO 8859- 1" ?>

<webl ogi c-web-app xm ns="http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c- web- app" >
<cont ai ner - descri pt or >

<access- | 0ggi ng- di sabl ed>t r ue</ access- | oggi ng- di sabl ed>

4-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Debugging Servlet Containers

</ cont ai ner - descri pt or>
</ webl ogi c- web- app>
4.8.1.3 Debugging Specific Sessions

Tracking session change is very helpful when developing applications, especially for
replicated sessions. Although you can utilize Ht t pSessi onAt t ri but eLi st ener to
track session changes at the Web application level, developers need a finer-grained
debugging option to track session changes during a specific request.

4.8.1.4 Usage

The W _debug_sessi on request attribute or a same-named session attribute can log
attribute changes in the current session. When either flag is used, the container logs
the modifications of the underlying session in the server log.

You can enable specific session debugging by using either of the following methods:
e Setthew _debug_sessi on attribute to the current session, as follows:
e session.setAttribute('w _debug_session', Bool ean. TRUE);

e Usethew _debug_sessi on attribute in the request query string as the indicator.
The container adds awl _debug_sessi on session attribute to the current session,
as shown in the following example:

http://1ocal host/foocontext/foo?w _debug_sessi on

To stop debugging a session, you can simply remove the W _debug_sessi on
attribute.

Note:

This feature is available only in development mode. The severity of the debug
message is at the debug level. You need to adjust the severity of the logger to
debug or lower for the system logger to output the debug message to the
server log file.

4.8.2 Tracking a Request Handle Footprint

Tracking a request handle footprint is very helpful while in application development
mode. For example, when debugging an application, you need to know many pieces
of information. This includes such information as: what request is received, how it is
dispatched, what session it is bound to it, when the servlet is invoked, and what
response is sent. Finally, when a Ser vl et Except i on occurs, you need a way to link
the exception to corresponding request to find the root cause of the error.

4.8.2.1 Usage

The WebLogic Server servlet container provides more detailed log messages during
request handling to better describe each milestone in a request flow. No additional
configuration changes are required other than enabling the DebugHt t p logger.

You can then find the footprint of a request handle in the server log. Once in
production mode, you should disable DebugHt t p logger to maximize server
performance.

Creating and Configuring Servlets 4-11

Debugging Servlet Containers

4-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

5

Creating and Configuring JSPs

This chapter describes how to create and configure JavaServer Pages (JSPs).

This chapter includes the following sections:

WebLogic JSP and Java EE

Configuring JavaServer Pages (JSPs)

® Registering a JSP as a Servlet

* Configuring JSP Tag Libraries

¢ Configuring Welcome Files

¢ Customizing HTTP Error Responses

¢ Determining the Encoding of an HTTP Request

* Mapping IANA Character Sets to Java Character Sets

¢ Configuring Implicit Includes at the Beginning and End of JSPs
¢ Configuring JSP Property Groups

* Writing JSP Documents Using XML Syntax

5.1 WebLogic JSP and Java EE

WebLogic Server supports the JSP 2.3 specificationatht t p: //j cp. org/ en/j sr/
det ai | ?i d=245. The main theme for Java EE is ease of development. The platform's
Web tier contributes significantly to ease of development in two ways. First, the
platform includes the JavaServer Pages Standard Tag Library (JSTL) and JavaServer
Faces technology. Second, all the Web-tier technologies offer a set of features that
make development of Web applications on Java EE much easier, such as complete
alignment of JavaServer Faces technology tags and JavaServer Pages (JSP) software
code. For more information about the Java EE 7 Web application technologies, see
http://ww. oracl e.com technet work/ | aval/javaee/tech/index. htn .

5.2 Configuring JavaServer Pages (JSPs)

In order to deploy JavaServer Pages (JSP) files, you must place them in the root (or in a
subdirectory below the root) of a Web application. You define JSP configuration
parameters in subelements of the j sp- descri pt or element in the WebLogic-specific
deployment descriptor, webl ogi c. xm . These parameters define the following
functionality:

¢ Options for the JSP compiler

Creating and Configuring JSPs 5-1

http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=245
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Registering a JSP as a Servlet

¢ Debugging
* How often WebLogic Server checks for updated JSPs that need to be recompiled

¢ Character encoding

For a complete description of these subelements, see jsp-descriptor.

5.3 Registering a JSP as a Servlet

You can register a JSP as a servlet using the ser vl et element of the Java EE standard
deployment descriptor web. xm . (The web. xm file is located in the VVEB- | NF
directory of your Web application.) A servlet container maintains a map of the servlets
known to it. This map is used to resolve requests that are made to the container.
Adding entries into this map is known as "registering” a servlet. You add entries to
this map by referencing a ser vl et element in web. xm through the ser vl et -

mappi ng entry.

A JSP is a type of servlet; registering a JSP is a special case of registering a servlet.
Normally, JSPs are implicitly registered the first time you invoke them, based on the
name of the JSP file. Therefore, the myJSPfi | e. j sp file would be registered as
nyJSPfi | e. j sp in the mapping table. You can implicitly register JSPs, as illustrated
in the following example. In this example, you request the JSP with the name / mai n
instead of the implicit name nyJSPfi |l e. j sp.

In this example, a URL containing / mai n will invoke nyJSPfi | e. j sp:

<servlet>
<servl et - nanme>nyFoo</ ser vl et - nane>
<jsp-file>nyJSPfile.jsp</jsp-file>
</servlet>
<servl et - mappi ng>
<servl et - nanme>nyFoo</ ser vl et - nane>
<url-pattern>/ main</url-pattern>
</ servl et - mappi ng>

Registering a JSP as a servlet allows you to specify the load order, initialization
attributes, and security roles for a JSP, just as you would for a servlet.

5.4 Configuring JSP Tag Libraries

WebLogic Server lets you create and use custom JSP tags. Custom JSP tags are Java
classes you can call from within a JSP page. To create custom JSP tags, you place them
in a tag library and define their behavior in a tag library descriptor (TLD) file. You
make this TLD available to the Web application containing the JSP by defining it in the
Web application deployment descriptor. It is a good idea to place the TLD file in the
VEB- | NF directory of your Web application, because that directory is never available
publicly.

In the Web application deployment descriptor, you define a URI pattern for the tag
library. This URI pattern must match the value in the taglib directive in your JSP
pages. You also define the location of the TLD. For example, if the taglib directive in
the JSP page is:

<Y@dtaglib uri="nyTaglib" prefix="taglib" %

and the TLDis located in the WEB- | NF directory of your Web application, you would
create the following entry in the Web application deployment descriptor:

5-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Configuring Welcome Files

<j sp-config>

<taglib>

<taglib-uri>nyTaglib</taglib-uri>
<tablig-Iocation>WEB- | NF/ nyTLD. t| d</taglib-1Iocation>
</taglib>

</jsp-config>

You can also deploy a tag library as a . j ar file.

For more information on creating custom JSP tag libraries, see Developing JSP Tag
Extensions for Oracle WebLogic Server.

WebLogic Server also includes several custom JSP tags that you can use in your
applications. These tags perform caching, facilitate query attribute-based flow control,
and facilitate iterations over sets of objects. For more information, see:

* Using Custom WebLogic JSP Tags (cache, process, repeat)

* Using WebLogic JSP Form Validation Tags

5.5 Configuring Welcome Files

Web application developers can define an ordered list of partial URIs called welcome
files in the Web application deployment descriptor. The purpose of this mechanism is
to allow the deployer to specify an ordered list of partial URISs for the container to use
for appending to URIs when there is a request for a URI that corresponds to a
directory entry in the WAR not mapped to a Web component. This feature can make
your site easier to use, because the user can type a URL without giving a specific
filename.

Note:

Welcome files can be JSPs, static pages, or servlets.

Welcome files are defined at the Web application level. If your server is hosting
multiple Web applications, you need to define welcome files separately for each Web
application. You define welcome files using the wel conme-fil e-1i st elementin
web. xm . (The web. xm file is located in the WEB- | NF directory of your Web
application.) The following is an example welcome file configuration:

Example 5-1 Welcome File Example

<servlet>

<servl et - name>Wél coneSer vl et </ ser vl et - name>

<servl et -cl ass>f 0o. bar. Wl comeSer vl et </ servl et - cl ass>
</servlet>

<servl et - mppi ng>
<servl et - name>Wel coneSer vl et </ servl et - nane>
<url-pattern>*. foo</url-pattern>

</ servl et - mappi ng>

<wel cone-file-list>

<wel cone-fil e>/ wel cone. f oo</ wel cone-file>
</wel come-file-list>

Creating and Configuring JSPs 5-3

Customizing HTTP Error Responses

For more information on welcome files, see the servlet 3.1 specification, section 10.10
athttps://jcp. org/ about Java/ comuni t yprocess/final /jsr340/
i ndex. htmi .

5.6 Customizing HTTP Error Responses

You can configure WebLogic Server to respond with your own custom Web pages or
other HTTP resources when particular HTTP errors or Java exceptions occur, instead
of responding with the standard WebLogic Server error response pages.

You define custom error pages in the er r or - page element of the Java EE standard
Web application deployment descriptor, web. xm . (The web. xm file is located in the
WEB- | NF directory of your Web application.)

5.7 Determining the Encoding of an HTTP Request

WebLogic Server converts binary (bytes) data contained in an HTTP request to the
correct encoding expected by the servlet. The incoming post data might be encoded in
a particular encoding that must be converted to the correct encoding on the server side
for use in methods such as r equest . get Paranmeter (..).

There are two ways you can define the code set:

¢ For a POST operation, you can set the encoding in the HTML <f or n® tag. For
example, this form tag sets SJI S as the character set for the content:

<formaction="http://sone. host.com nmyWebApp/ f oo/ i ndex. ht m ">
<input type="application/x-wm«formurlencoded; charset=SJIS">
</fornmp

When the form is read by WebLogic Server, it processes the data using the SJI S
character set.

® Because all Web clients do not transmit the information after the semicolon in the
above example, you can set the code set to be used for requests by using the
i nput - char set element in the WebLogic-specific deployment descriptor,
webl ogi ¢c. xm .

The j ava- char set - name subelement defines the encoding used to convert data
when the URL of the request contains the path specified with the r esour ce- pat h
subelement.

This following example ensures that all request parameters that map to the
pattern / f 0o/ * are encoded using the Java character set SJIS.

<i nput - char set >

<resour ce- pat h>/ f oo/ *</ r esour ce- pat h>

<j ava- char set - nane>SJ| S</ j ava- char set - nane>
</input-charset>

This method works for both GET and POST operations.

5.8 Mapping IANA Character Sets to Java Character Sets

The names assigned by the Internet Assigned Numbers Authority (IANA) to describe
character sets are sometimes different from the names used by Java. Because all HTTP
communication uses the JANA character set names and these names are not always
the same, WebLogic Server internally maps IANA character set names to Java
character set names and can usually determine the correct mapping. However, you

5-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

https://jcp.org/aboutJava/communityprocess/final/jsr340/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr340/index.html

Configuring Implicit Includes at the Beginning and End of JSPs

can resolve any ambiguities by explicitly mapping an IANA character set to the name
of a Java character set.

To map on IANA character set to a Java character, set the character set names in the
char set - mappi ng element of the WebLogic-specific deployment descriptor,

webl ogi c. xm . Define the IANA character set name in the i ana- char set - nane
element and the Java character set name in the j ava- char set - nane element. See
charset-mapping.

For example:

<char set - mappi ng>
<i ana- char set - name>Shi f t - JI S</ i ana- char set - name>
<j ava- char set - name>SJ| S</ j ava- char set - nane>

</ char set - mappi ng>

5.9 Configuring Implicit Includes at the Beginning and End of JSPs

You can implicitly include preludes (also called headers) and codas (also called
footers) for a group of JSP pages by adding <i ncl ude- pr el ude> and <i ncl ude-
coda> elements respectively within a <j sp- pr oper t y- gr oup> element in the Web
application web. xm deployment descriptor. Their values are context-relative paths
that must correspond to elements in the Web application. When the elements are
present, the given paths are automatically included (as in an include directive) at the
beginning and end of each JSP page in the property group respectively. When there is
more than one include or coda element in a group, they are included in the order they
appear. When more than one JSP property group applies to a JSP page, the
corresponding elements will be processed in the same order as they appear in the JSP
configuration section.

Consider the following files: / t enpl at e/ pr el ude. j spf and/t enpl at e/
coda. j spf . These files are used to include code at the beginning and end of each file
in the following example:

Example 5-2 Implicit Includes

<j sp-config>
<j sp- property-group>
<di spl ay- nanme>WebLogi cServer </ di spl ay- nane>
<url-pattern>*.jsp</url-pattern>
<el -i gnored>f al se</ el -i gnored>
<scripting-invalid>fal se</scripting-invalid>
<i s-xm >fal se</is-xm >
<i ncl ude- prel ude>/ t enpl at e/ pr el ude. j spf </ i ncl ude- prel ude>
<i ncl ude- coda>/ t enpl at e/ coda. j spf </i ncl ude- coda>
</j sp-property-group>
</jsp-config>

5.10 Configuring JSP Property Groups

A JSP property group is a collection of properties that apply to a set of files
representing JSP pages. You define these properties in one or more subelements of the
j sp- property-group element in the web. xm deployment descriptor.

Most properties defined in a JSP property group apply to an entire translation unit,
that is, the requested JSP file that is matched by its URL pattern and all the files it
includes by way of the include directive. The exception is the page- encodi ng
property, which applies separately to each JSP file matched by its URL pattern. The
applicability of a JSP property group is defined through one or more URL patterns.
URL patterns use the same syntax as defined in chapter 12, "Mapping Requests to

Creating and Configuring JSPs 5-5

Writing JSP Documents Using XML Syntax

Servlets" of the Servlet 3.1 specification, but are bound at translation time. All the
properties in the property group apply to the resources in the Web application that
match any of the URL patterns. There is an implicit property—that of being a JSP file.
JSP property groups do not affect tag files.

5.10.1 JSP Property Group Rules

The following are some rules that apply to JSP property groups:

e If a resource matches a URL pattern in both a ser vl et - mappi ng and aj sp-
property-group, the pattern that is most specific applies (following the same
rules as the servlet specification).

¢ If the URL patterns are identical, the j sp- property- gr oup takes precedence
over the ser vl et - mappi ng.

e If at least one j Sp- property- gr oup contains the most specific matching URL
pattern, the resource is considered to be a JSP file, and the properties in that j sp-

property-group apply.

e If a resource is considered to be a JSP file, all i ncl ude- pr el ude and i ncl ude-
coda properties apply from all the j sp- propert y- gr oup elements with
matching URL patterns. See Configuring Implicit Includes at the Beginning and
End of JSPs.

5.10.2 What You Can Do with JSP Property Groups

You can configure the j Sp- property- gr oup to do the following:

Indicate that a resource is a JSP file (implicit).

¢ Control disabling of JSP expression language (JSP EL) evaluation.
¢ Control disabling of Scripting elements.

¢ Indicate page Encoding information.

e Prelude and Coda automatic includes.

Indicate that a resource is a JSP document.

For more information on JSP property groups, see chapter 3, "JSP Configuration," of
the JSP 2.2 specification at ht t p: / / j cp. or g/ about Java/ communi t ypr ocess/
nrel/jsr245/index. htm .

5.11 Writing JSP Documents Using XML Syntax

The JSP 2.3 specification has improved upon the concept of JSP documents by
allowing them to leverage XML syntax. Also, JSP documents have been extended to
use property groups. A JSP document is a JSP page written using XML syntax. JSP
documents need to be described as such, either implicitly or explicitly, to the JSP
container, which then processes them as XML documents, checking for well-
formedness and applying requests like entity declarations, if present. JSP documents
are used to generate dynamic content using the standard JSP semantics.

The following is an example of a simple JSP document that generates, using the JSP
standard tag library, an XML document that has t abl e as the root element. The table
element has three r owsubelements containing values 1, 2, and 3. For more details and
other examples, see section 6.4, "Examples of JSP Documents," of the JSP 2.3

5-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html

Writing JSP Documents Using XML Syntax

specification at ht t p: / / j cp. or g/ about Java/ conmuni t ypr ocess/ nrel /
j sr245/index. htnl .

Example 5-3 Simple JSP Document

<t abl e>

<c: forEach
xmns:c="http://java.sun.contjsp/jstl/core"
var="counter" begin="1" end="3">

<row>${ count er}</row>

</c:forEach>

</tabl e>

5.11.1 How to Use JSP Documents

You can use JSP documents in a number of ways including the following:

® JSP documents can be passed directly to the JSP container. This is becoming more
important as more and more content is authored in XML. The generated content
may be sent directly to a client or it may be part of some XML processing pipeline.

¢ JSP documents can be manipulated by XML-aware tools.

® JSP documents can be generated from textual representations by applying an XML
transformation, such as XSLT.

¢ AJSP document can be generated automatically, for example, by serializing some
objects.

5.11.2 Important Information about JSP Documents

The following are some important pieces of information pertaining to JSP documents:

* By default, files with the filename extension . j Spx or . t agx are treated as JSP
documents in the XML syntax.

e]JSP property groups defined in the web. xnl deployment descriptor can control
which files in the Web application can be treated as being in the XML syntax. See
Configuring JSP Property Groups.

o If aJSP file starts with <j sp: r oot >, then it is used in the XML syntax.

¢ XML namespaces are used instead of <%@ agl i b% taglib tags
(xm ns:prefix="...").

* The<jsp:scriptlet> <jsp:declaration>and<jsp: expr essi on> tags
are used instead of <% . . %, <% . . . %, and <%=. . . %.

e The<jsp:directive. page>and<j sp: directive.incl ude> tags are used
instead of <%@age¥%> and <%@ ncl ude%.

¢ Inside of attribute values, instead of using <%. . . % to denote an expression, only
"% . . % is used.

For more information on JSP documents, see chapter 6, "JSP Documents," of the JSP 2.3
specificationathttp: //j cp. org/ en/jsr/detail ?i d=245.

Creating and Configuring JSPs 5-7

http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/en/jsr/detail?id=245

Writing JSP Documents Using XML Syntax

5-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

6

Using JSF and JSTL

This chapter describes how to use JavaServer Faces (JSF) and JSP Standard Tag Library
(JSTL) with WebLogic Server.

This chapter includes the following sections:
e Using JSF and JSTL With Web Applications

* JSF Compatibility with Previous Releases

6.1 Using JSF and JSTL With Web Applications

JSF and JSTL are an integral part of Java EE 7 and, as such, are incorporated directly
into WebLogic Server. All Java EE 7 technologies are present on the WebLogic Server
classpath. No additional configuration is required to use any of the Java EE 7
technologies in your applications. Applications deployed to WebLogic Server can
seamlessly make use of JSF 2.2 and JSTL 1.2 without requiring you to deploy and
reference separate shared libraries, as needed in previous releases.

The Java EE 7 API JAR file is included in W._ HOVE\ Wl server\server\lib
\j avax.j avaee- api . j ar, where W._ HOVE represents the top-level installation
directory for WebLogic Server.

For information about referencing these shared libraries with your Web applications,
see Creating Shared Java EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Server.

6.1.1 JavaServer Faces (JSF)

JavaServer Faces technology simplifies building user interfaces for JavaServer
applications. Developers of various skill levels can quickly build Web applications by:
assembling reusable Ul components in a page, connecting these components to an
application data source, and wiring client-generated events to server-side event
handlers.

WebLogic Server supports the JSF 2.2 specification at ht t ps: //j cp. org/ en/j sr/
det ai | ?i d=344. For general information about JSF technology, see the product
overview at htt p: / / www. or acl e. com t echnet wor k/ j aval/ j avaee/

j avaserverfaces-139869. html .

If you selected to install the server examples with your WebLogic Server installation,
you can use the following JSF 2.2 code examples:

e "Using JSF Contracts"
¢ "Using JSF File Upload"
* "Using JSF Flows"

Using JSF and JSTL 6-1

https://jcp.org/en/jsr/detail?id=344
https://jcp.org/en/jsr/detail?id=344
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

JSF Backward Compatibility

e "Using JSF HTML5"

The JSF 2.2 examples are located in the ORACLE_HOMVE\ Wl ser ver \ sanpl es\ ser ver
\ exanpl es\ src\ exanpl es\j avaee7\j sf directory, where ORACLE_HOME
represents the directory in which you installed WebLogic Server.

For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

6.1.2 JavaServer Pages Standard Tag Libraries (JSTL)

The JavaServer Pages Standard Tag Library (JSTL) encapsulates as simple tags the core
functionality common to many Web applications. JSTL has support for common,
structural tasks, such as:

¢ iteration and conditionals
* tags for manipulating XML documents

¢ internationalization tags

SQL tags
JSTL also provides a framework for integrating existing custom tags with JSTL tags.

WebLogic Server supports the JSTL 1.2 specificationat ht t p: //j cp. org/ en/ j sr/
det ai | ?i d=52. For general information about JSTL technology, see the product
overview at htt p: / / www. or acl e. com t echnet wor k/ j ava/

jstl1-137486. htm .

6.2 JSF Backward Compatibility

JSF is developed using the Java Community Process, and therefore, should be
backward compatible through JSF 1.0 when compiling and at runtime.

Applications built for JSF 1.2 should run unmodified on WebLogic Server 12.2.1,
assuming you remove any bundled JSF implementation from the application
configuration. If you follow this process and applications do not run, WebLogic Server
provides JSF and JSTL libraries that can be deployed and referenced by applications.
See the following sections:

* Deploying JSF and JSTL Libraries

* Referencing a JSF or JSTL Library

Note:

The j sf-2. 0. war deployable library, included in WebLogic Server, is
empty, as applications built for JSF 2.0 will continue to run unmodified using
the built-in JSF 2.2 implementation of WebLogic Server 12.2.1.

WebLogic Server includes the empty j sf - 2. 0. war library to avoid any
software that depends on its existence. You can leave references to the library
unchanged without harm. However, Oracle recommends removing any
references to this empty library, as these references add no functionality.

6-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=52
http://jcp.org/en/jsr/detail?id=52
http://www.oracle.com/technetwork/java/jstl-137486.html
http://www.oracle.com/technetwork/java/jstl-137486.html

JSF Backward Compatibility

6.2.1 Deploying JSF and JSTL Libraries

Note:

In this release of WebLogic Server, you can deploy JSF 2.2 and JSTL 1.2
applications directly. For backward compatibility, use the following directions
when deploying JSF 1.x and JSTL 1.1 applications.

When deploying JSF 1.2 applications, use the JSF and JSTL libraries which are
provided as Web application libraries. You must deploy the libraries before deploying
the Web application that is using JSF 1.2 or JSTL functionality. You can deploy the
libraries using the WebLogic Server Administration Console or the command-line
webl ogi c. Depl oyer utility.

Here's an example of deploying a JSF 1.2 library using the webl ogi c. Depl oyer
command-line:

java webl ogi c. Depl oyer -adminurl t3://1ocal host: 7001
-user webl ogi c -password webl ogic
-deploy -library
d: /oracl e_hone/ w server/ common/ depl oyabl e-li braries/jsf-1.2. war

This command deploys the JSF 1.2 library using the default | i br ar y- nane,
specification-versionandinpl ementati on-ver si on defined by the
MANI FEST. MF in the library.

After a library is deployed, the ext ensi on- nane, speci fi cati on-versi on and

i npl enent at i on-ver si on of the library can be found in the WebLogic Server
Administration Console. This information can also be found in the MANI FEST. M file
of the library WAR file.

For more information about deploying a Web module, see Preparing Applications and
Modules for Deployment in Deploying Applications to Oracle WebLogic Server.

6.2.2 Referencing a JSF or JSTL Library

To reference a JSF or JSTL library, a standard Web application can define a
<l'i brary-ref > descriptor in the application's webl ogi c. xni file. Here is an
example:

<library-ref>
<l'ibrary-nanme>j sf</|ibrary-name>
<speci fi cation-version>1. 2</ speci fi cati on-versi on>
<i npl enent ati on-versi on>1. 2</i npl ement at i on- ver si on>
<exact - mat ch>f al se</ exact - mat ch>

</library-ref>

For more information on referencing a Web application library, see Creating Shared

Java EE Libraries and Optional Packages in Developing Applications for Oracle WebLogic
Server.

Using JSF and JSTL 6-3

JSF Backward Compatibility

6-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

v

Configuring Resources in a Web
Application

This chapter describes how to configure Web application resources in WebLogic
Server.

This chapter includes the following sections:

¢ Configuring Resources in a Web Application

¢ Configuring Resources

* Referencing External E]Bs

* More about the ejb-ref* Elements

¢ Referencing Application-Scoped E]Bs

* Serving Resources from the CLASSPATH with the ClasspathServlet

¢ Using CGI with WebLogic Server

7.1 Configuring Resources in a Web Application

The resources that you use in a Web application are generally deployed externally to
the Web application. JDBC data sources can optionally be deployed within the scope
of the Web application as part of an EAR file.

To use external resources in the Web application, you resolve the JNDI resource name
that the application uses with the global JNDI resource name using the web. xm and
webl ogi c. xm deployment descriptors. (The web. xnl file is located in the WEB- | NF
directory of your Web application.) See Configuring Resources for more information.

You can also deploy JDBC data sources as part of the Web application EAR file by
configuring those resources in the webl ogi c- appl i cati on. xm deployment
descriptor. Resources deployed as part of the EAR file with their scope defined as
application are referred to as application-scoped resources. These resources remain
private to the application, and application components can access the resource names
by adding <r esour ce- r ef > elements as explained in Configuring Resources.

7.2 Configuring Resources

When accessing resources such as a data source from a Web application through Java
Naming and Directory Interface (JNDI), you can map the JNDI name you look up in
your code to the actual JNDI name as bound in the global JNDI tree. This mapping is
made using both the web. xm and webl ogi c. xm deployment descriptors and
allows you to change these resources without changing your application code. You
provide a name that is used in your Java code, the name of the resource as bound in
the JNDI tree, and the Java type of the resource, and you indicate whether security for

Configuring Resources in a Web Application 7-1

Referencing External EJBs

the resource is handled programmatically by the servlet or from the credentials
associated with the HTTP request. You can also access J]MS module resources, such as
queues, topics, and connection factories. For more information see, Configuring JMS
Application Modules for Deployment in Administering [MS Resources for Oracle
WebLogic Server.

To configure resources:

1. Enter the resource name in the deployment descriptor as you use it in your code,
the Java type, and the security authorization type.

2. Map the resource name to the JNDI name.

The following example illustrates how to use an external data source. It assumes
that you have defined a data source called account Dat aSour ce. For more
information, see Create JDBC generic data sources in Oracle WebLogic Server
Administration Console Online Help.

Example 7-1 Using an External DataSource

servl et code:

javax. sql . DataSource ds = (javax.sql.DataSource) ctx.|ookup
(" nyDat aSource");
web. xm entries:

<resource-ref>

<res-ref - name>nyDat aSour ce</ r es-r ef - name>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>CONTAI NER</ r es- aut h>

</resource-ref>
webl ogi c. xm entries:
<resource-description>
<res-ref - name>nyDat aSour ce</ r es-r ef - name>
<j ndi - nanme>account Dat aSour ce</ j ndi - name>
</resource-description>

7.3 Referencing External EJBs

Web applications can access E]Bs that are deployed as part of a different application (a
different EAR file) by using an external reference. The EJB being referenced exports a
name to the global JNDI tree in its webl ogi c- ej b-j ar. xm deployment descriptor.
An EJB reference in the Web application module can be linked to this global JNDI
name by adding an ej b-r ef er ence- descri pti on element to its webl ogi c. xm
deployment descriptor.

This procedure provides a level of indirection between the Web application and an
EJB and is useful if you are using third-party E]Bs or Web applications and cannot
modify the code to directly call an EJB. In most situations, you can call the EJB directly
without using this indirection. For more information, see Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

To reference an external EJB for use in a Web application:
1. Enter the E]B reference name you use to look up the EJB in your code, the Java class
name and the class name of the home and remote interfaces of the EJB in the ej b-

r ef element of the Java EE standard deployment descriptor, web. xmi . (The
web. xm file is located in the WEB- | NF directory of your Web application.)

7-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

More about the ejb-ref* Elements

2. Map the reference name in the ej b- r ef er ence- descri pt i on element of the
WebLogic-specific deployment descriptor, webl ogi c. xm , to the JNDI name
defined in the webl ogi c- ej b-j ar. xnl file.

If the Web application is part of an Enterprise Application Archive (EAR file), you
can reference an E]B by the name used in the EAR with the ej b- 1 i nk element of
the Java EE standard deployment descriptor, web. xm .

7.4 More about the ejb-ref* Elements

The ej b-r ef element in the web. xm deployment descriptor declares that either a
servlet or JSP is going to be using a particular EJB. The ej b-r ef er ence-

descri pti on element in the webl ogi ¢. xm deployment descriptor binds that
reference to an EJB, which is advertised in the global JNDI tree.

The ej b-r ef er ence-descri pt or element indicates which ej b- r ef element it is
resolving with the ej b- r ef - nanme element. That is, the ej b-r ef er ence-

descri ptor and ej b-r ef elements with the same €] b-r ef - nane element go
together.

With the addition of the ej b- | i nk syntax, the ej b-r ef er ence- descri pt or
element is no longer required if the EJB being used is in the same application as the
servlet or JSP that is using the EJB.

The ej b-r ef - nae element serves two purposes in the web. xm deployment
descriptor:

e [t is the name that the user code (servlet or JSP) uses to look up the EJB. Therefore,
if your €] b-r ef - nane element is ej b1, you would perform a JNDI name lookup
for ej bl relative to j ava: conp/ env. The ej b-r ef - nane element is bound into
the component environment (j ava: conp/ env) of the Web application containing
the servlet or JSP.

Assuming the ej b-r ef - name element is ej b1, the code in your servlet or JSP
should look like:

Context ctx = new Initial Context();

ctx = (Context)ctx.lookup("java: conp/env");

Object o = ctx.lookup("ejbl");

Ej bl1Home home = (Ej blHome) Portabl eRenot e(bj ect. narrow(o, Ej blHone. cl ass);

e Itlinks the ej b-ref and ej b-ref er ence-descri pt or elements together.

7.5 Referencing Application-Scoped EJBs

Within an application, WebLogic Server binds any EJBs referenced by other
application components to the environments associated with those referencing
components. These resources are accessed at run time through a JNDI name lookup
relative to j ava: conp/ env.

The following is an example of an application deployment descriptor

(appl i cati on. xm) for an application containing an EJB and a Web application, also
called an Enterprise Application. (For the sake of brevity, the XML header is not
included in this example.)

Example 7-2 Example Deployment Descriptor

<appl i cation>
<di spl ay- name>MyApp</ di spl ay- nane>
<modul e>

Configuring Resources in a Web Application 7-3

Referencing Application-Scoped EJBs

<web>
<web- uri >nyapp. war </ web- uri >
<cont ext - r oot >myapp</ cont ext - r oot >
</ web>
</ nmodul e>
<modul e>
<ejb>ejbl.jar</ejb>
</ nmodul e>
</ application>

To allow the code in the Web application to use an EJB in ej bl. j ar, the Java EE
standard Web application deployment descriptor, web. xm , must include an ej b-
r ef stanza that contains an ej b- | i nk referencing the JAR file and the name of the
EJB that is being called.

The format of the ej b- 1 i nk entry must be as follows:

fil ename#ej bnanme

where f i | enane is the name of the JAR file, relative to the Web application, and
ej bnanme is the EJB within that JAR file. The €] b- | i nk element should look like the
following:

<ej b-link>. ./ejbl.jar#nyejb</ejb-link>

Note that since the JAR path is relative to the WAR file, it begins with ". . / ". Also, if
the ej bnane is unique across the application, the JAR path may be dropped. As a
result, your entry may look like the following:

<ej b- i nk>nyej b</ ej b-1i nk>

The ej b-1i nk element is a sub-element of an ej b-r ef element contained in the Web
application's web. xm descriptor. The ej b-r ef element should look like the
following:

Example 7-3 <ejb-ref> Element

<web- app>

<ej b-ref>
<ej b-ref - nanme>ej b1</ ej b-ref - nane>
<ej b-ref-type>Session</ej b-ref-type>
<home>nypackage. ej b1. MyHone</ home>
<r enot e>nmypackage. ej b1. M/Renot e</ r enot e>
<ej b-link>../ejbl.jar#nyejb</ejb-Iink>
</ejb-ref>

</ web- app>

Referring to the syntax for the ej b-1i nk element in the above example,

<ej b-link>. ./ejbl.jar#ejbl</ejb-link>,

the portion of the syntax to the left of the # is a relative path to the EJB module being
referenced. The syntax to the right of # is the particular EJB being referenced in that
module. In the above example, the EJB JAR and WAR files are at the same level.

The name referenced in the ej b- | i nk (in this example, myej b) corresponds to the
ej b- name element of the referenced EJB's descriptor. As a result, the deployment
descriptor (ej b-j ar. xm) of the EJB module that this ej b-r ef element is
referencing should have an entry similar to the following:

7-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Serving Resources from the CLASSPATH with the ClasspathServiet

Example 7-4 <ejb-jar> Element
<ejb-jar>

<enterprise-beans>
<sessi on>
<ej b- nanme>nyej b</ j b- nane>
<home>nypackage. ej bl. MyHome</ hone>
<r enot e>mypackage. ej b1l. M/Renot e</ r enot e>
<ej b- cl ass>nypackage. ej bl. MyBean</ gj b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
</ sessi on>
</ enterprise-beans>

</ejb-jar>
Notice the ej b- nane element is set to myej b.

At run time, the Web application code looks up the E]B's JNDI name relative to
j ava: / conp/ env. The following is an example of the servlet code:

MyHone honme = (MyHore) ct x. | ookup("j ava: / conp/ env/ ej b1");

The name used in this example (ejbl) is the ejb-ref-name defined in the ej b- r ef
element of the web. xnl segment above.

7.6 Serving Resources from the CLASSPATH with the ClasspathServlet

If you need to serve classes or other resources from the system CLASSPATH, or from
the WEB- | NF/ cl asses directory of a Web application, you can use a special servlet
called the Cl asspat hSer vl et . The Cl asspat hSer vl et is useful for applications
that use applets or RMI clients and require access to server-side classes. The

d asspat hSer vl et is implicitly registered and available from any application.

The O asspat hSer vl et is always enabled by default. To disable it, set the
Ser ver MBean parameter Cl assPat hSer vl et Di sabl ed totrue (default =
fal se).

The O asspat hSer vl et returns the classes or resources from the system
CLASSPATH in the following order:

1. WVEB-I NF/cl asses
2. JAR files under VEB- | NF/ | i b/ *

3. system CLASSPATH

To serve a resource from the WEB- | NF/ cl asses directory of a Web application, call
the resource with a URL such as:

http://server:port/nyWebApp/ cl asses/ ny/ resour ce/ myd ass. cl ass

In this case, the resource is located in the following directory, relative to the root of the
Web application:

VEB- | NF/ ¢l asses/ ny/ resour ce/ myd ass. cl ass

Configuring Resources in a Web Application 7-5

Using CGI with WebLogic Server

Note:

Because the Cl asspat hSer vl et serves any resource located in the system
CLASSPATH, do not place resources that should not be publicly available in
the system CLASSPATH.

7.7 Using CGI with WebLogic Server

Note:

WebLogic Server provides functionality to support your legacy Common
Gateway Interface (CGI) scripts. For new projects, Oracle recommends that
you use HTTP servlets or JavaServer Pages.

WebLogic Server supports all CGI scripts through an internal WebLogic servlet called
the CA Ser vl et . To use CGI, register the CA Ser vl et in the Web application
deployment descriptor. See Configuring How a Client Accesses a Web Application.

7.7.1 Configuring WebLogic Server to Use CGI

To configure CGI in WebLogic Server:

1. Declare the CA Ser vl et in your Web application by using the ser vl et and
ser vl et - mappi ng elements in the Java EE standard Web application deployment
descriptor, web. xmi . (The web. xm file is located in the WEB- | NF directory of
your Web application.) The class name for the C3 Ser vl et is
webl ogi c. servl et. CQA Servl et. You do not need to package this class in your
Web application.

2. Register the following initialization attributes for the CG@ Ser vl et by defining the
following i ni t - par amelements:

cgi Di r —The path to the directory containing your CGI scripts. You can
specify multiple directories, separated by a "; " (Windows) ora ": " (UNIX). If
you do not specify cgi Di r, the directory defaults to a directory named cgi -
bi n under the Web application root.

useByt eSt r eam—By default, character streams are used to read the output of
CGI scripts. When scripts produce binary data, the stream may become
corrupted due to character encoding. Use the useByteStream parameter to keep
the stream from becoming corrupted. Using this parameter for ascii output also
improves performance.

ext ensi on mappi ng—Maps a file extension to the interpreter or executable
that runs the script. If the script does not require an executable, this
initialization attribute may be omitted.

The par am nane for extension mappings must begin with an asterisk followed
by a dot, followed by the file extension, for example, *. pl .

The par am val ue contains the path to the interpreter or executable that runs
the script. You can create multiple mappings by creating a separate i ni t -
par amelement for each mapping.

7-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Using CGI with WebLogic Server

Example 7-5 Example Web Application Deployment Descriptor Entries for
Registering the CGlIServlet

<servl et>
<servl et - nane>CQ Ser vl et </ servl et - name>
<servl et -cl ass>webl ogi c. servl et. Cd Servl et </ servl et -cl ass>
<init-paranp
<par am name>cgi Di r </ par am name>
<param val ue>
/ bea/ W server 6. 0/ confi g/ nydomai n/ appl i cati ons/ myWebApp/ cgi - bi n
</ param val ue>
</init-paran>
<init-paranp
<par am name>*. pl </ par am nanme>
<par am val ue>/ bi n/ per| . exe</ param val ue>
</init-paranp
</servlet>

<servl et - mppi ng>
<servl et - name>C3 Ser vl et </ servl et - name>
<url-pattern>/cgi-bin/*</url-pattern>
</ servl et - mappi ng>

7.7.2 Requesting a CGl Script

The URL used to request a Perl script must follow the pattern:
http://host: port/myWebApp/ cgi - bi n/ myscript. pl

Where

host : por t —Host name and port number of WebLogic Server.
myWebApp—Name of your Web application.

cgi - bi n—ur | - pat t er n name mapped to the CA Ser vl et .

nmyscri pt. pl —Name of the Perl script that is located in the directory specified by
the cgi Di r initialization attribute.

7.7.3 CGl Best Practices

For a list of CGI Best Practices, see CGI Best Practices.

Configuring Resources in a Web Application 7-7

Using CGI with WebLogic Server

7-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

8

WebLogic Annotation for Web Components

This chapter describes how to annotate Web components in WebLogic Server.

This chapter includes the following sections:
¢ Servlet Annotation and Dependency Injection

* Annotating Servlets

8.1 Servlet Annotation and Dependency Injection

The servlet 3.1 specification (see ht t p: / / j cp. org/ en/j sr/ det ai | ?i d=340)
provides annotations to enable declarative-style programming.

Note:

As of WebLogic Server 12.1.3, WebLogic Server-specific annotations have been
deprecated and will be removed in a future release: @ NLServlet, @ WLFilter,
and @WLInitParam, in favor of the standard annotations defined in the
Servlet 3.1 specification. Also, instead of

webl ogi c. servl et. http. Abstract AsyncSer vl et, you should use the
standard asynchronous processing model defined in the Servlet 3.1
specification.

The servlet specification states that annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are
used to declare dependencies on external resources. The container will detect
annotations on such components and inject necessary dependencies before the
component's life cycle methods are invoked. Dependency Injection (DI) will only be
done on certain components, as described in Web Component Classes That Support
Annotations.

Annotation processing and DI will be performed on all Web applications that have the
version set to 2.5 or higher. However, annotation processing is expensive and it can
increase the deployment time for Web applications depending on the size of the
included classes. Set the met adat a- conpl et e attribute to t r ue in the web. xni
descriptor if your Web application does not have any annotations and if you have the
version set to 2.5 or higher to avoid unnecessary scanning of the Web applications
classes for annotations. Alternatively, you can turn off annotation processing and DI
for all the Web applications by setting - Dwebl ogi c. servl et . DI Di sabl ed=true
flag when starting WebLogic Server.

For more information about using Java EE annotations and dependency injection with
WebLogic Server applications, see Using Java EE Annotations and Dependency
Injection and Using Contexts and Dependency Injection for the Java EE Platform in
Developing Applications for Oracle WebLogic Server. For detailed information about EJB-

WebLogic Annotation for Web Components 8-1

http://jcp.org/en/jsr/detail?id=340

Servlet Annotation and Dependency Injection

specific annotations for WebLogic Server Enterprise JavaBeans, see Developing
Enterprise JavaBeans for Oracle WebLogic Server.

If you selected to install the server examples, you will find this Servlet 3.x annotation
code example, "Using Annotations for Servlets, Filters and Listeners," in the

ORACLE _HOVE\ W server\sanpl es\ server\ exanpl es\ exanpl es\ src

\ exanpl es\ j avaee7\ servl et\ annot at i on directory of your WebLogic Server
distribution, where ORACLE_HOVME represents the directory in which you installed the
WebLogic Server. For more information about the WebLogic Server code examples,
see Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

8.1.1 Web Component Classes That Support Annotations

This section describes the behavior of annotations and dependency injection (DI) of
resources in a Java EE compliant Web container.

The Web container only processes annotations for the types of classes listed in
Table 8-1.

Table 8-1 Web Components and Interfaces Supporting Annotations and

Dependency Injection
- __|

Component Type Interfaces

Servlets)
j avax. servl et. Servl et

Filters . .
javax.servlet.Filter

Listeners . .
javax. servl et. Servl et Cont ext Li st ener

javax. servl et. Servl et Cont ext Attri but eLi st ener
javax. servl et. Servl et Request Li st ener

javax. servl et. Servl et Request At tri but eLi st ener
javax. servlet. http. H t pSessi onLi st ener
javax.servlet.http. HtpSessi onAttributeLi stener
j avax. servl et. AsynclLi st ener

Tag handlers)) !
javax.servlet.jsp.tagext.SinpleTag

javax.servlet.jsp.tagext.BodyTag

The Web container will not process annotations on classes like Java Beans and other
helper classes. The Web container follows these steps to achieve DI:

1. Annotation Processing—The Web container processes annotations during the
Web application deployment phase. As annotations are processed, the container
figures out the relevant entries in the descriptor that get affected by the annotation
and updates the descriptor tree. The servlet specification indicates that all
annotations can be declared in the descriptor by defining an injection target. The
Web container updates the descriptor tree with the injection targets so that as
deployment continues the JNDI tree is updated with the necessary entries.

2. Dependency Injection (DI)—DI is done when instances are created (for the types
listed in Table 8-1). For listeners and filters, this occurs during the deployment
phase, and for servlets it can occur during deployment or run time.

8-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Servlet Annotation and Dependency Injection

Note:

In any Web application component, if one DI fails, it will cause all subsequent
DIs upon the same component to be ignored.

8.1.2 Annotations Supported By a Web Container

Table 8-2 lists all the annotations that must be supported by the Web container.

Table 8-2 List of Supported Annotations

@Annotation Specification Reference
DeclaresRoles 15.5.1
EJB 15.5.2
E]Bs 15.5.3
PersistenceContext 155.5
PersistenceUnit 15.5.7
PersistenceUnits 15.5.8
PersistenceContexts 15.5.6
PostConstruct 1559
PreDestroy 15.5.10
Resource 15.5.4
Resources 15.5.11
WebServiceRef 15.5.13
WebServiceRefs 15.5.14
RunAs 15.5.12

The Web container makes use of the Java EE container's annotation processing and
dependency injection mechanisms to achieve this functionality.

The specification states that the Web container should not process annotations when
met adat a- conpl et e attributes are set to t r ue in the web. xm descriptor. If
annotations are properly defined and annotation processing succeeds and
dependencies are properly injected, the annotated fields are initialized properly and
annotated methods are invoked at the proper phase in the life cycle. If DI fails, these
annotated fields will be nul | .

WebLogic Annotation for Web Components 8-3

Annotating Servlets

Note:

If multiple methods in a Web component class, such as a servlet, filter, and
such, are annotated with Post Const r uct or PreDest r oy, then the Web
component will fail to deploy such an application. Similarly, if an EJB
component class, such as a session bean, is annotated with Post Const r uct
or Pr eDest r oy, or an E]B interceptor is annotated with Post Const r uct,
PreDest r oy, Post Act i vat e, or Pr ePassi vat e, then the EJB component
will also fail to deploy such an application.

8.1.2.1 Fault Detection and Recovery

Any failure during annotation processing will yield a deployment exception that will
prevent deployment of the Web application. If a failure happens during DI, the
container will log a warning message in the server logs indicating the reason for the
failure. The annotated fields in the instance of the class will be nul | and any life cycle
annotated methods will not be invoked in case of DI failure.

8.1.2.2 Limitations

The WebLogic servlet container supports annotations on Web components that are
declared in the web. xm descriptor. Any listeners, filters or servlets registered
dynamically via the webl ogi c. ser vl et. Webl ogi cSer vl et Cont ext method will
not have their annotations processed and no DI will be done for such components.

8.2 Annotating Servlets

Note:

As of WebLogic Server 12.1.3, WebLogic Server-specific annotations have been
deprecated and will be removed in a future release: @ WLServlet, @ WLFilter,
and @WLInitParam, in favor of the standard annotations defined in the
Servlet 3.1 specification.

The WebLogic servlet container provides the @\ Ser vl et annotation for servlets and
the WLFi | t er annotation for filters that you develop in a Web application without
having to declare them in a web. xm descriptor. The WebLogic servlet container also
provides the W.I ni t Par amannotation to specify the initial parameters for servlets
and filters declared using the W.Ser vl et and W.Fi | t er annotations.

All the required metadata can be annotated in the servlet or filter and the container
will detect them and update the descriptor tree so that the annotated servlet or filter is
deployed.

8.2.1 WLServlet

You can annotate a servlet class with W.Ser vl et annotation

(webl ogi c. servl et. annot ati on. W.Ser vl et). This annotation defines various
attributes for declaring parameters for the servlet. All attributes on this annotation are
optional.

8-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Annotating Servlets

8.2.1.1 Attributes

Table 8-3 Attributes of WLServlet Annotation
- - -

Name Description Data Type Required?

displayName Display name for the servlet after String No
deployment

description Servlet description String No

icon Icon location String No

name Servlet name String No

initParams Initialization parameters for the servlet ~ WLInitPara No

m(]

loadOnStartup Whether the servlet should load on int No
startup

runAs The run-as user for the servlet String No

mapping The url-pattern for the servlet String|] No

Example 8-1 illustrates the usage of the annotation in a servlet class.
Example 8-1 WLServlet Annotation

@\LServlet (
nane = "FQOO',
runAs = "SuperUser"
initParams = { @I nitParam (nane="one", value="1") }
mappi ng = {"/fool*"}

The WebLogic servlet container detects the annotation and installs this servlet for
deployment. During the annotation processing phase of the Web applications
deployment, the descriptor bean corresponding to web. xm descriptor is updated
with the relevant entries corresponding to the annotation.

Example 8-2 shows how the descriptor bean looks after being updated.
Example 8-2 Updated web.xml Descriptor

<web- app>

<servlet>
<servl et - name>FOO</ ser vl et - nane>
<servl et-cl ass>ny. Test Servl et </ servl et - cl ass>
<init-paran
<par am name>one</ par am nanme>
<par am val ue>1</ param val ue>
</init-paranp
</servlet>
<servl et - mappi ng>
<servl et - name>FOO</ ser vl et - nane>
<url-pattern>/foo/*</url-pattern>
</ servl et - mappi ng>

WebLogic Annotation for Web Components 8-5

Annotating Servlets

.</ web app>
8.2.1.2 Fault Detection And Recovery

Any error during the processing of this annotation will result in a deployment error
with a proper message in the server logs.

8.2.2 WLFilter

You can annotate a filter class with WLFi | t er annotation

(webl ogi c. servl et. annot ati on. W.Fi | t er). This annotation defines various
attributes for declaring parameters for the filter. All attributes on this annotation are
optional.

8.2.2.1 Attributes

Table 8-4 Attributes of WLFilter Annotation
|

Name Description Data Type Required?
displayName Display name for the filter after String No
deployment
description Filter description String No
icon Icon location String No
name Filter name String No
initParams Initialization parameters for the filter WLInitPara No
m(]
mapping The url-pattern for the filter String|[] No

Example 8-3 illustrates the usage of the annotation in a filter class.
Example 8-3 WLFilter Annotation

@ULFilter (
name = "BAR',
initParams = { @I nitParam (name="one", value="1") }
Mapping = {"/bar/*"}

The WebLogic servlet container detects the annotation and installs this filter for
deployment. During the annotation processing phase of the Web application
deployment, the descriptor bean corresponding to web. xm descriptor is updated
with the relevant entries corresponding to the annotation.

Example 8-4 shows how the descriptor bean looks after being updated.
Example 8-4 Updated web.xml Descriptor

<web- app>

<filter>
<filter-name>BAR</filter-nanme>
<filter-class>ny. TestFilter</filter-class>
<init-paranm

8-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Annotating Servlets

<par am name>one</ par am nanme>
<par am val ue>1</ par am val ue>
</init-paranp
<filter>
<filter-mppi ng>
<filter-name>BAR</filter-name>
<url-pattern>/bar/*</url-pattern>
</filter-mppi ng>

.</ Web app>
8.2.2.2 Fault Detection and Recovery

Any error during the processing of this annotation will result in a deployment error
with a proper message in the server logs.

8.2.3 WLInitParam

You can use the @\LI ni t Par amannotation
(webl ogi c. servl et. annot ati on. W.I ni t Par am) to specify the initial parameters
for servlets and filters declared using the @\LSer vl et and @\LFi | t er annotations.

8.2.3.1 Attributes

Table 8-5 Attributes of WLFilter Annotation

Name Description Data Type Required?
name The initial parameter name. String No
value The initial parameter value. String No

Example 8-5 provides an example of W.I ni t Par amannotation.
Example 8-5 Example WLInitParam Annotation

initParams = {@\WI nitParan(name="one", value="1"),
@N\LI ni t Param(name="two", val ue="2")}

Annotating a servlet or filter class with the above annotation is equivalent to declaring
the init params in Example 8-6 in the web. xm descriptor.

Example 8-6 Init Params In web.xml

<init-paranp
<par am name>one</ par am name>
<par am val ue>1</ par am val ue>
</init-paranm
<init-paranp
<par am name>t wo</ par am name>
<par am val ue>2</ par am val ue>
</init-paranm

WebLogic Annotation for Web Components 8-7

Annotating Servlets

8-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

9

Servilet Programming Tasks

This chapter describes how to write HTTP servlets in a WebLogic Server environment.

This chapter includes the following sections:

Initializing a Servlet

Providing an HTTP Response

Retrieving Client Input

Securing Client Input in Servlets

Using Cookies in a Servlet

Response Caching

Using WebLogic Services from an HTTP Servlet
Accessing Databases

Threading Issues in HTTP Servlets
Dispatching Requests to Another Resource
Proxying Requests to Another Web Server
Clustering Servlets

Referencing a Servlet in a Web Application
URL Pattern Matching

The SimpleApacheURLMatchMap Utility

A Future Response Model for HTTP Servlets

9.1 Initializing a Servlet

Normally, WebLogic Server initializes a servlet when the first request is made for the
servlet. Subsequently, if the servlet is modified, the dest r oy() method is called on
the existing version of the servlet. Then, after a request is made for the modified
servlet, the i ni t () method of the modified servlet is executed. For more information,
see Servlet Best Practices.

When a servlet is initialized, WebLogic Server executes the i ni t () method of the
servlet. Once the servlet is initialized, it is not initialized again until you restart
WebLogic Server or modify the servlet code. If you choose to override the i ni t ()
method, your servlet can perform certain tasks, such as establishing database
connections, when the servlet is initialized. (See Overriding the init() Method.)

Servlet Programming Tasks 9-1

Initializing a Servlet

9.1.1 Initializing a Servlet when WebLogic Server Starts

Rather than having WebLogic Server initialize a servlet when the first request is made
for it, you can first configure WebLogic Server to initialize a servlet when the server
starts. You do this by specifying the servlet class in the | oad- on- st art up element in
the Java EE standard Web application deployment descriptor, web. xm . The order in
which resources within a Web application are initialized is as follows:

1. Servl et Cont ext Li st ener s—the cont ext Cr eat ed() callback for
Ser vl et Cont ext Li st ener s registered for this Web application.

2. ServletFilters init() method.

3. Servlet init() method, marked as| oad-on-startupinweb. xn .

You can pass parameters to an HTTP servlet during initialization by defining these
parameters in the Web application containing the servlet. You can use these
parameters to pass values to your servlet every time the servlet is initialized without
having to rewrite the servlet.

For example, the following entries in the Java EE standard Web application
deployment descriptor, web. xmi , define two initialization parameters: gr eet i ng,
which has a value of V| cone and per son, which has a value of WebLogi ¢

Devel oper.

<servl et>

<init-paran
<description>The sal ut ation</description>
<par am name>gr eet i ng</ par am nane>
<par am val ue>\él cone</ par am val ue>
</init-paranp
<init-paranp
<descri pti on>nanme</ descri ption>
<par am name>per son</ par am nane>
<par am val ue>WebLogi ¢ Devel oper </ param val ue>
</init-paranp
</ servlet>

To retrieve initialization parameters, call the get | ni t Par amet er (St ri ng nare)
method from the parent j avax. servl et . Generi cSer vl et class. When passed the
name of the parameter, this method returns the parameter's value as a St ri ng.

9.1.2 Overriding the init() Method

You can have your servlet execute tasks at initialization time by overriding the

i ni t () method. The following code fragment reads the <i ni t - par anp tags that
define a greeting and a name in the Java EE standard Web application deployment
descriptor, web. xm :

String defaul t G eeting;
String defaul t Nane;

public void init(ServletConfig config)
throws ServletException {
if ((defaultGeeting = getlnitParaneter("greeting")) == null)
defaultGreeting = "Hell 0";

if ((defaultName = getlnitParaneter("person")) == null)

9-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Providing an HTTP Response

}

defaul t Nanme = "World";

The values of each parameter are stored in the class instance variables
def aul t G eeti ng and def aul t Name. The first code tests whether the parameters
have null values, and if null values are returned, provides appropriate default values.

You can then use the ser vi ce() method to include these variables in the response.
For example:

out. print("<body><h1>");
out.println(defaultGreeting + " " + defaultName + "1");
out. println("</hl></body></htm >");

The i ni t () method of a servlet does whatever initialization work is required when
WebLogic Server loads the servlet. The defaulti ni t () method does all of the initial
work that WebLogic Server requires, so you do not need to override it unless you have
special initialization requirements. If you do override i ni t (), first call
super.init() so thatthe default initialization actions are done first.

9.2 Providing an HTTP Response

This section describes how to provide a response to the client in your HTTP servlet.
Deliver all responses by using the Ht t pSer vl et Response object that is passed as a
parameter to the ser vi ce() method of your servlet.

1.

Configure the Ht t pSer vl et Response.

Using the Ht t pSer vl et Response object, you can set several servlet properties
that are translated into HTTP header information:

At a minimum, set the content type using the set Cont ent Type() method
before you obtain the output stream to which you write the page contents. For
HTML pages, set the content type to t ext / ht m . For example:

res. set Content Type(“"text/htm");

(optional) You can also use the set Cont ent Type() method to set the
character encoding. For example:

res. set Content Type("text/htnl ;SO 88859-4");

Set header attributes using the set Header () method. For dynamic responses,
it is useful to set the "Pr agma" attribute to no- cache, which causes the
browser to always reload the page and ensures the data is current. For
example:

res. set Header ("Pragma”, "no-cache");

Compose the HTML page.

The response that your servlet sends back to the client must look like regular
HTTP content, essentially formatted as an HTML page.Your servlet returns an
HTTP response through an output stream that you obtain using the response
parameter of the ser vi ce() method. To send an HTTP response:

a.

Obtain an output stream by using the Ht t pSer vl et Response object and
one of the methods shown in the following two examples:

e PrintWiter out = res.getWiter();

Servlet Programming Tasks 9-3

Retrieving Client Input

e ServletQutputStream out = res.getQutputStream);

b. Write the contents of the response to the output stream using the pri nt ()
method. You can use HTML tags in these statements. For example:

out.print("<htn ><head><title>M Servlet</title>");
out. print("</ head><body><h1>");
out.print("Wlcome");

out. print("</hl></body></htm >");

Any time you print data that a user has previously supplied, Oracle
recommends that you remove any HTML special characters that a user might
have entered. If you do not remove these characters, your Web site could be
exploited by cross-site scripting. For more information, refer to Securing
Client Input in Servlets.

Do not close the output stream by using the cl ose() method, and avoid
flushing the contents of the stream. If you do not close or flush the output
stream, WebLogic Server can take advantage of persistent HTTP connections,
as described in the next step.

3. Optimize the response.

By default, WebLogic Server attempts to use HTTP persistent connections
whenever possible. A persistent connection attempts to reuse the same HTTP
TCP/IP connection for a series of communications between client and server.
Application performance improves because a new connection need not be opened
for each request. Persistent connections are useful for HTML pages containing
many in-line images, where each requested image would otherwise require a new
TCP/IP connection.

Using the WebLogic Server Administration Console, you can configure the
amount of time that WebLogic Server keeps an HTTP connection open.

WebLogic Server must know the length of the HTTP response in order to establish
a persistent connection and automatically adds a Cont ent - Lengt h property to
the HTTP response header. In order to determine the content length, WebLogic
Server must buffer the response. However, if your servlet explicitly flushes the
Ser vl et Qut put St r eam WebLogic Server cannot determine the length of the
response and therefore cannot use persistent connections. For this reason, you
should avoid explicitly flushing the HTTP response in your servlets.

You may decide that, in some cases, it is better to flush the response early to
display information in the client before the page has completed; for example, to
display a banner advertisement while some time-consuming page content is
calculated. Conversely, you may want to increase the size of the buffer used by
the servlet engine to accommodate a larger response before flushing the response.
You can manipulate the size of the response buffer by using the related methods
of the j avax. servl et . Ser vl et Response interface. For more information, see
the Servlet 3.1 specification at ht t p: / /j cp. org/ en/j sr/ det ai | ?i d=340.

The default value of the WebLogic Server response buffer is 12K and the buffer
size is internally calculated in terms of CHUNK_SI ZE where CHUNK_SI ZE =
4088 byt es; if the user sets 5Kb the server rounds the request up to the nearest
multiple of CHUNK_SI ZE which is 2 and the buffer is set to 8176 bytes.

9.3 Retrieving Client Input

The HTTP servlet API provides a interface for retrieving user input from Web pages.

9-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=340

Retrieving Client Input

An HTTP request from a Web browser can contain more than the URL, such as
information about the client, the browser, cookies, and user query parameters. Use
query parameters to carry user input from the browser. Use the GET method appends
parameters to the URL address, and the POST method includes them in the HTTP
request body.

HTTP servlets need not deal with these details; information in a request is available
through the Ht t pSer vl et Request object and can be accessed using the
request . get Par anet er () method, regardless of the send method.

Read the following for more detailed information about the ways to send query
parameters from the client:

* Encode the parameters directly into the URL of a link on a page. This approach
uses the GET method for sending parameters. The parameters are appended to the
URL after a ? character. Multiple parameters are separated by a & character.
Parameters are always specified in name=value pairs so the order in which they are
listed is not important. For example, you might include the following link in a Web
page, which sends the parameter color with the value pur pl e to an HTTP servlet
called Col or Ser vl et :

<a href=
“http://1ocal host: 7001/ ny\WebApp/ Col or Ser vl et ?col or =pur pl ">
Cick Here For Purple!

* Manually enter the URL, with query parameters, into the browser location field.
This is equivalent to clicking the link shown in the previous example.

* Query the user for input with an HTML form. The contents of each user input field
on the form are sent as query parameters when the user clicks the form's Submit
button. Specify the method used by the form to send the query parameters (POST
or GET) in the <FORM> tag using the METHOD="GET| PCST" attribute.

Query parameters are always sent in name=value pairs, and are accessed through the
Ht t pSer vl et Request object. You can obtain an Enumner at i on of all parameter
names in a query, and fetch each parameter value by using its parameter name. A
parameter usually has only one value, but it can also hold an array of values.
Parameter values are always interpreted as St r i ngs, so you may need to cast them to
a more appropriate type.

The following sample from a ser vi ce() method examines query parameter names
and their values from a form. Note that r equest is the Ht t pSer vl et Request
object.

Enuneration parans = request. get Paranet er Nanes();
String paramNane = nul | ;
String[] paranVal ues = null;

whi | e (params. hasMoreEl ements()) {
paramNane = (String) parans. nextEl ement();
paranVal ues = request. get Paranet er Val ues(par anNane) ;
Systemout. printIn("\nParaneter name is " + paranName);
for (int i =0; i < paranValues.length; i++) {
Systemout.printIn(", value " +i +" is " +
paranVal ues[i].toString());

Servlet Programming Tasks 9-5

Retrieving Client Input

Note:

Any time you print data that a user has supplied, Oracle recommends that
you remove any HTML special characters that a user might have entered. If
you do not remove these characters, your Web site could be exploited by
cross-site scripting. For more information, refer to Securing Client Input in
Servlets.

9.3.1 Methods for Using the HTTP Request

This section defines the methods of the j avax. servl et. Ht t pSer vl et Request
interface that you can use to get data from the request object. You should keep the
following limitations in mind:

9.3.2 Example:

You cannot read request parameters using any of the get Par anet er () methods
described in this section and then attempt to read the request with the
get | nput St r ean) method.

You cannot read the request with get | nput St r ean() and then attempt to read
request parameters with one of the get Par anet er () methods.

If you attempt either of the preceding procedures, an | | | egal St at eExcepti onis
thrown.

You can use the following methods of j avax. servl et. H t pSer vel et Request to
retrieve data from the request object:

Ht t pSer vl et Request . get Met hod() —Allows you to determine the request
method, such as GET or PCST.

Ht t pSer vl et Request . get Quer ySt ri ng() —Allows you to access the query
string. (The remainder of the requested URL, following the ? character.)

Ht t pSer vl et Request . get Par anet er () —Returns the value of a parameter.

Ht t pSer vl et Request . get Par anet er Nanmes() —Returns an array of
parameter names.

Ht t pSer vl et Request . get Par amet er Val ues() —Returns an array of values
for a parameter.

Ht t pSer vl et Request . get | nput St r ean() —Reads the body of the request as
binary data. If you call this method after reading the request parameters with

get Par anet er (), get Par anet er Nanes(), or get Par anet er Val ues(), an
II'l egal St at eExcepti on is thrown.

Retrieving Input by Using Query Parameters

In Example 9-1, the Hel | oWbr 1 d2. j ava servlet example is modified to accept a user
name as a query parameter, in order to display a more personal greeting. The
servi ce() method is shown here.

Example 9-1 Retrieving Input with the service() Method

public void service(HtpServl et Request req,

Ht t pSer vl et Response res)
throws | CException

9-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Securing Client Input in Servlets

String name, paranNane[];
if ((paramNane = req. get Paranet er Val ues("nane"))

= null) {
nane = paranmNane[0] ;
1
el se {
name = defaul t Nane;
1

I/ Set the content type first

res. set Content Type("text/htm");

I/ Cbtain a PrintWiter as an output stream
PrintWiter out = res.getWiter();

out.print("<htn ><head><title>" +
"Hello World!" + </title></head>");
out. print("<body><h1>");
out.print(defaultGeeting +" " + name + "!");
out. print("</hl1></body></htm >");
}

The get Par arret er Val ues() method retrieves the value of the nane parameter
from the HTTP query parameters. You retrieve these values in an array of type

St ri ng. A single value for this parameter is returned and is assigned to the first
element in the name array. If the parameter is not present in the query data, nul | is
returned; in this case, nane is assigned to the default name that was read from the
<i ni t - par an® by thei ni t () method.

Do not base your servlet code on the assumption that parameters are included in an
HTTP request. The get Par anmet er () method has been deprecated; as a result, you
might be tempted to shorthand the get Par anmet er Val ues() method by tagging an
array subscript to the end. However, this method can return nul | if the specified
parameter is not available, resulting in a Nul | Poi nt er Except i on.

For example, the following code triggers a Nul | Poi nt er Except i on:

String nyStr = req. get Paranet er Val ues(" paranmNane")[0] ;

Instead, use the following code:

if ((String nyStr[] =
req. get Par anet er Val ues(" paramName"))!=nul |) {
/1 Now you can use the nmyStr[0];

}
el se {
/| paramNane was not in the query paraneters!

}

9.4 Securing Client Input in Servlets

The ability to retrieve and return user-supplied data can present a security
vulnerability called cross-site scripting, which can be exploited to steal a user's security
authorization. For a detailed description of cross-site scripting, refer to “Understanding
Malicious Content Mitigation for Web Developers” (a CERT security advisory) at
http://ww. cert.org/tech_tips/malicious_code_nmitigation.htmn.

To remove the security vulnerability, before you return data that a user has supplied,
scan the data for any of the HTML special characters in Table 9-1. If you find any
special characters, replace them with their HTML entity or character reference.

Servlet Programming Tasks 9-7

http://www.cert.org/tech_tips/malicious_code_mitigation.html

Using Cookies in a Servlet

Replacing the characters prevents the browser from executing the user-supplied data
as HTML.

Table 9-1 HTML Special Characters that Must Be Replaced

Replace this special character With this entity/character reference
< <
> > ;
(&40;
) &41;
&35;
& &38;

9.4.1 Using a WebLogic Server Utility Method

WebLogic Server provides the

webl ogi c. servl et.security. Utils.encodeXSS() method to replace the
special characters in user-supplied data. To use this method, provide the user-
supplied data as input. For example, to secure the user-supplied data in Example 9-1,
replace the following line:

out.print(defaultGeeting +" " + nane + "!");
with the following;:
out.print(defaultGeeting +" " +

webl ogi c. security.servlet.encodeXSS(nane) + "!");

To secure an entire application, you must use the encodeXSS() method each time you
return user-supplied data. While the previous example in Example 9-1 is an obvious
location in which to use the encodeXSS() method, Table 9-2 describes other locations
to consider.

Table 9-2 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid An error page that says user name is
URL, user name not permitted access.

Status page User name, summary of input from A summary page that asks a user to
previous pages confirm input from previous pages.

Database Data presented from a database A page that displays a list of

display database entries that have been

previously entered by a user.

9.5 Using Cookies in a Servlet

A cookie is a piece of information that the server asks the client browser to save locally
on the user's disk. Each time the browser visits the same server, it sends all cookies

9-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Using Cookies in a Servlet

relevant to that server with the HTTP request. Cookies are useful for identifying
clients as they return to the server.

Each cookie has a name and a value. A browser that supports cookies generally allows
each server domain to store up to 20 cookies of up to 4k per cookie.

9.5.1 Setting Cookies in an HTTP Servlet

To set a cookie on a browser, create the cookie, give it a value, and add it to the
Ht t pSer vl et Response object that is the second parameter in your servlet's service
method. For example:

Cooki e nyCooki e = new Cooki e("Chocol at eChi p", "100");
myCooki e. set MaxAge(| nt eger . MAX_VALUE) ;
response. addCooki e(nyCooki €) ;

This examples shows how to add a cookie called Chocol at eChi p with a value of 100
to the browser client when the response is sent. The expiration of the cookie is set to
the largest possible value, which effectively makes the cookie last forever. Because
cookies accept only string-type values, you should cast to and from the desired type
that you want to store in the cookie. When using E]JBs, a common practice is to use the
home handle of an EJB instance for the cookie value and to store the user's details in the
EJB for later reference.

9.5.2 Retrieving Cookies in an HTTP Servlet

You can retrieve a cookie object from the Ht t pSer vl et Request that is passed to
your servlet as an argument to the ser vi ce() method. The cookie itself is presented
asaj avax. servl et. http. Cooki e object.

In your servlet code, you can retrieve all the cookies sent from the browser by calling
the get Cooki es() method. For example:

Cooki e[] cookies = request. get Cookies();

This method returns an array of all cookies sent from the browser, or nul | if no
cookies were sent by the browser. Your servlet must process the array in order to find
the correct named cookie. You can get the name of a cookie using the

Cooki e. get Nanme() method. It is possible to have more that one cookie with the
same name, but different path attributes. If your servlets set multiple cookies with the
same names, but different path attributes, you also need to compare the cookies by
using the Cooki e. get Pat h() method. The following code illustrates how to access
the details of a cookie sent from the browser. It assumes that all cookies sent to this
server have unique names, and that you are looking for a cookie called

Chocol at eChi p that may have been set previously in a browser client.

Cooki e[] cookies = request. get Cookies();
bool ean cooki eFound = fal se;

for(int i=0; i < cookies.length; i++) {
t hi sCooki e = cookies[i];
i f (thisCookie.get Nane().equal s("Chocol at eChi p")) {
cooki eFound = true;
br eak;
}
}

i f (cookieFound) {
/1 e found the cookie! Now get its value

Servlet Programming Tasks 9-9

Response Caching

int cookieOder = String.parselnt(thisCookie.getValue());
}

9.5.3 Using Cookies That Are Transmitted by Both HTTP and HTTPS

Because HTTP and HTTPS requests are sent to different ports, some browsers may not
include the cookie sent in an HTTP request with a subsequent HTTPS request (or vice-
versa). This may cause new sessions to be created when servlet requests alternate
between HTTP and HTTPS. To ensure that all cookies set by a specific domain are sent
to the server every time a request in a session is made, set the cooki e- donai n
element to the name of the domain. The cooki e- donai n element is a sub-element of
the sessi on- descri pt or element in the WebLogic-specific deployment descriptor
webl ogi c. xm . For example:

<sessi on-descri pt or>
<cooki e- domai n>nydomai n. conx/ cooki e- domai n>
</ sessi on-descri pt or>

The cooki e- domai n element instructs the browser to include the proper cookie(s) for
all requests to hosts in the domain specified by mydonai n. com For more information
about this property or configuring session cookies, see Setting Up Session
Management .

9.5.4 Application Security and Cookies

Using cookies that enable automatic account access on a machine is convenient, but
can be undesirable from a security perspective. When designing an application that
uses cookies, follow these guidelines:

¢ Do not assume that a cookie is always correct for a user. Sometimes machines are
shared or the same user may want to access a different account.

* Allow your users to make a choice about leaving cookies on the server. On shared
machines, users may not want to leave automatic logins for their account. Do not
assume that users know what a cookie is; instead, ask a question like:

Automatically login fromthis computer?

* Always ask for passwords from users logging on to obtain sensitive data. Unless a
user requests otherwise, you can store this preference and the password in the
user's session data. Configure the session cookie to expire when the user quits the
browser.

9.6 Response Caching

The cache filter works similarly to the cache tag with the following exceptions:
e [t caches on a page level (or included page) instead of a JSP fragment level.

* Instead of declaring the caching parameters inside the document you can declare
the parameters in the configuration of the Web application.

The cache filter has some default behavior that the cache tag does not for pages that
were not included from another page. The cache filter automatically caches the
response headers Content-Type and Last-Modified. When it receives a request that
results in a cached page it compares the If-Modified-Since request header to the Last-
Modified response header to determine whether it needs to actually serve the content
or if it can send an 302 SC_NOT_MODI FED status with an empty content instead.

9-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Response Caching

The following example shows how to register a cache filter to cache all the HTML
pages in a Web application using the fi | t er element of the Java EE standard
deployment descriptor, web. xm .

<filter>
<filter-name>HTM.</filter-name>
<filter-class>webl ogic.cache.filter.CacheFilter</filter-class>
</filter>
<filter-mpping>
<filter-name>HTM.</filter-name>
<url-pattern>*. htm </url-pattern>
</filter-mapping>

The cache system uses soft references for storing the cache. So the garbage collector
might or might not reclaim the cache depending on how recently the cache was
created or accessed. It will clear the soft references in order to avoid throwing an
OutOfMemoryError.

9.6.1 Initialization Parameters

To make sure that if the Web pages were updated at some point you got the new
copies into the cache, you could add a timeout to the filter. Using the init-params you
can set many of the same parameters that you can set for the cache tag:

The initialization parameters are

¢ Nare—The name of the cache. It defaults to the request URI for compatibility with
*.extension URL patterns.

¢ Ti meout —The amount of time since the last cache update that the filter waits until
trying to update the content in the cache again. The default unit is seconds but you
can also specify it in units of ms (milliseconds), s (seconds), m (minutes), h (hours),
or d (days).

e Scope—The scope of the cache can be any one of request, session, application, or
cluster. Request scope is sometimes useful for looping constructs in the page and
not much else. The scope defaults to application. To use cluster scope you must set
up the ClusterListener.

* Key—Specifies that the cache is further specified not only by the name but also by
values of various entries in scopes. These are specified just like the keys in the
CacheTag although you do not have page scope available.

e Var s—The variables calculated by the page that you want to cache. Typically this
is used with servlets that pull information out of the database based on input
parameters.

* Si ze—Limits the number of different unique key values cached. It defaults to
infinity.
The following example shows where the i ni t - par amet er is located in the filter
code.

<filter>
<filter-name>HTM.</filter-name>
<filter-class>webl ogic.cache.filter.CacheFilter</filter-class>
<init-paranm

e Max- cache- si ze—This limits the size of an element added to the cache. It
defaults to 64k.

Servlet Programming Tasks 9-11

Using WebLogic Services from an HTTP Servlet

9.7 Using WebLogic Services from an HTTP Servlet

When you write an HTTP servlet, you have access to many rich features of WebLogic
Server, such as JNDI, EJB, JDBC, and JMS.

The following documents provide additional information about these features:
® Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server

* Developing [DBC Applications for Oracle WebLogic Server

* Developing [NDI Applications for Oracle WebLogic Server

* Developing [MS Applications for Oracle WebLogic Server

9.8 Accessing Databases

WebLogic Server supports the use of Java Database Connectivity (JDBC) from server-
side Java classes, including servlets. JDBC allows you to execute SQL queries from a
Java class and to process the results of those queries. For more information on JDBC
and WebLogic Server, see Developing JDBC Applications for Oracle WebLogic Server.

You can use JDBC in servlets as described in the following sections:
* Connecting to a Database Using a DataSource Object.

e Connecting Directly to a Database Using a JDBC Driver.

9.8.1 Connecting to a Database Using a DataSource Object

A Dat aSour ce is a server-side object that references a connection pool. The
connection pool registration defines the JDBC driver, database, login, and other
parameters associated with a database connection. You create Dat aSour ce objects
and connection pools through the Administration Console.

Note:

Using a Dat aSour ce object is recommended when creating Java EE-
compliant applications.

9.8.1.1 Using a DataSource in a Servlet

1. Register a connection pool using the Administration Console. For more
information, see JDBC Data Source: Configuration: Connection Pool in Oracle
WebLogic Server Administration Console Online Help.

2. Register a Dat aSour ce object that points to the connection pool.

3. Look up the Dat aSour ce object in the JNDI tree. For example:

Context ctx = null;
/1 Get a context for the JNDI |ook up
ctx = new Initial Context(ht);
/1 Look up the DataSource object
j avax. sql . DataSource ds
= (javax.sql.DataSource) ctx.|ookup ("myDataSource");

9-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Threading Issues in HTTP Servlets

4. Use the Dat aSour ce to create a JDBC connection. For example:
j ava. sql . Connection conn = ds. get Connection();
5. Use the connection to execute SQL statements. For example:

Statement stnt = conn.createStatenment();
stnt.execute("select * fromenp");

9.8.2 Connecting Directly to a Database Using a JDBC Driver

Connecting directly to a database is the least efficient way of making a database
connection because a new database connection must be established for each request.
You can use any JDBC driver to connect to your database. Oracle provides JDBC
drivers for Oracle and Microsoft SQL Server. For more information, see Developing
JDBC Applications for Oracle WebLogic Server.

9.9 Threading Issues in HTTP Servlets

When you design a servlet, you should consider how the servlet is invoked by
WebLogic Server under high load. It is inevitable that more than one client will hit
your servlet simultaneously. Therefore, write your servlet code to guard against
sharing violations on shared resources or instance variables.

It is recommended that shared-resource issues be handled on an individual servlet
basis. Consider the following guidelines:

¢ Wherever possible, avoid synchronization, because it causes subsequent servlet
requests to bottleneck until the current thread completes.

¢ Define variables that are specific to each servlet request within the scope of the
service methods. Local scope variables are stored on the stack and, therefore, are
not shared by multiple threads running within the same method, which avoids the
need to be synchronized.

® Access to external resources should be synchronized on a Class level, or
encapsulated in a transaction.

9.10 Dispatching Requests to Another Resource

This section provides an overview of commonly used methods for dispatching
requests from a servlet to another resource.

A servlet can pass on a request to another resource, such as a servlet, JSP, or HTML
page. This process is referred to as request dispatching. When you dispatch requests,

you use either the i ncl ude() or f or war d() method of the Request Di spat cher
interface.

For a complete discussion of request dispatching, see section 9.2 of the servlet 3.1
specification (see ht t p: //j cp. org/ en/ j sr/ det ai | ?i d=340).

By using the Request Di spat cher, you can avoid sending an HTTP-redirect
response back to the client. The Request Di spat cher passes the HTTP request to the
requested resource.

To dispatch a request to a particular resource:

1. Getareferencetoa Servl et Cont ext:

Servlet Programming Tasks 9-13

http://jcp.org/en/jsr/detail?id=340

Dispatching Requests to Another Resource

Servl et Context sc = get Servl et Config().getServletContext();
2. Look up the Request Di spat cher object using one of the following methods:

e RequestDi spatcher rd = sc. get Request Di spat cher (String
pat h) ;

* where pat h should be relative to the root of the Web application.

e Request Di spatcher rd = sc. get NanmedDi spatcher (String nane);

Replace nanme with the name assigned to the servlet in the Java EE standard
Web application deployment descriptor, web. xm , with the <ser vl et - nane>
element.

e RequestDi spatcher rd =
Servl et Request . get Request Di spat cher (String path);

This method returns a Request Di spat cher object and is similar to the

Ser vl et Cont ext . get Request Di spat cher (String path) method
except that it allows the pat h specified to be relative to the current servlet. If the
path begins with a/ character it is interpreted to be relative to the Web
application.

You can obtain a Request Di spat cher for any HTTP resource within a Web
application, including HTTP Servlets, JSP pages, or plain HTML pages by
requesting the appropriate URL for the resource in the

get Request Di spat cher () method. Use the returned Request Di spat cher
object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:
* rd.forward(request, response); See Forwarding a Request.

e rd.include(request, response); SeeIncluding a Request.

9.10.1 Forwarding a Request

Once you have the correct Request Di spat cher, your servlet forwards a request
using the Request Di spat cher. f orwar d() method, passing

HTTPSer vl et Request and HTTPSer vl et Response as arguments. If you call this
method when output has already been sent to the client an

Il egal St at eExcepti on is thrown. If the response buffer contains pending output
that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the
servlet retrieves the Ser vl et Qut put St r eamor the Pri nt Wi t er for the response
before forwarding the request, an | | | egal St at eExcept i on is thrown.

All other output from the original servlet is ignored after the request has been
forwarded.

If you are using any type of authentication, a forwarded request, by default, does not
require the user to be re-authenticated. You can change this behavior to require
authentication of a forwarded request by adding the check- aut h- on- f or war d/
element to the cont ai ner - descri pt or element of the WebLogic-specific
deployment descriptor, webl ogi c¢. xm . For example:

<cont ai ner - descri pt or>
<check- aut h- on-f orwar d/ >
</ cont ai ner - descri pt or>

9-14 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Proxying Requests to Another Web Server

9.10.2 Including a Request

Your servlet can include the output from another resource by using the

Request Di spat cher . i ncl ude() method, and passing HTTPSer vl et Request
and HTTPSer vl et Response as arguments. When you include output from another
resource, the included resource has access to the request object.

The included resource can write data back to the Ser vl et Qut put St reamor Wit er
objects of the response object and then can either add data to the response buffer or
call the f | ush() method on the response object. Any attempt to set the response
status code or to set any HTTP header information from the included servlet response
is ignored.

In effect, you can use the i ncl ude() method to mimic a "server-side-include" of
another HTTP resource from your servlet code.

9.10.3 RequestDispatcher and Filters

Servlet 2.3 and older specifications did not specify whether filters should be applied
on forwards and includes. The Servlet 2.4 specification clarifies this by introducing a
new di spat cher element in the web. xm deployment descriptor. Using this

di spat cher element, you can configureafil t er - mappi ng to be applied on
REQUEST/ FORWARD/ | NCLUDE/ ERROR. In WebLogic Server 8.1, the default was
REQUEST+FORWARD+I NCLUDE. For the old DTD-based deployment descriptors, the
default value has not been changed in order to preserve backward compatibility. For
the new descriptors (schema based) the default is REQUEST.

You can change the default behavior of dispatched requests by setting the fi | t er -
di spat ched-r equest s- enabl ed element in webl ogi c. xm . This element
controls whether or not filters are applied to dispatched (include/forward) requests.
The default value for old DTD-based deployment descriptors is t r ue. The default for
the new schema-based descriptors is f al se.

For more information about RequestDispatcher and filters, see the servlet 3.1
specificationathtt p: //j cp. or g/ en/ j sr/ det ai | ?i d=340. For more information
about writing and configuring filters for WebLogic Server, see Filters.

9.11 Proxying Requests to Another Web Server

The following sections discuss how to proxy HTTP requests to another Web server:
¢ Overview of Proxying Requests to Another Web Server
* Setting Up a Proxy to a Secondary Web Server

¢ Sample Deployment Descriptor for the Proxy Servlet

9.11.1 Overview of Proxying Requests to Another Web Server

When you use WebLogic Server as your primary Web server, you may also want to
configure WebLogic Server to pass on, or proxy, certain requests to a secondary Web
server, such as Netscape Enterprise Server, Apache, or Microsoft Internet Information
Server. Any request that gets proxied is redirected to a specific URL.You can even
proxy to another Web server on a different machine.You proxy requests based on the
URL of the incoming request.

The Ht t pPr oxySer vl et (provided as part of the distribution) takes an HTTP
request, redirects it to the proxy URL, and sends the response to the client's browser

Servlet Programming Tasks 9-15

http://jcp.org/en/jsr/detail?id=340

Proxying Requests to Another Web Server

back through WebLogic Server. To use the Ht t pPr oxySer vl et , you must configure
it in a Web application and deploy that Web application on the WebLogic Server that
is redirecting requests.

9.11.1.1 Setting Up a Proxy to a Secondary Web Server

To set up a proxy to a secondary HTTP server:

1. Register the pr oxy servlet in your Web application deployment descriptor (see
Example 9-2). The Web application must be the default Web application of the
server instance that is responding to requests. The class name for the proxy servlet
iswebl ogi c. servl et. proxy. H t pProxyServl et.

2. Define an initialization parameter for the Pr oxySer vl et with a <par am nanme>
of redi rect URL and a <par am val ue> containing the URL of the server to
which proxied requests should be directed.

3. Optionally, define the following <Key St or e> initialization parameters to use two-
way SSL with your own identity certificate and key. If no <Key St or e> is specified
in the deployment descriptor, the proxy will assume one-way SSL.

e <KeySt or e>—The key store location in your Web application.

* <KeySt or eType>—The key store type. If it is not defined, the default type will
be used instead.

e <Privat eKeyAl i as>—The private key alias.

* <KeySt or ePasswor dPr operti es>— A property file in your Web
application that defines encrypted passwords to access the key store and private
key alias. The file contents looks like this:

KeySt or ePasswor d={ 3DES} i 4+50LCKenQO8BBv| sXTr g\ =\ =
Pri vat eKeyPasswor d={ 3DES} a4 Tc GAnt VWBRKt ZwH3p7yA\ =\ =

You must use the webl ogi c. security. Encrypt command-line utility to
encrypt the password. For more information on the Encr ypt utility, as well as
the Cert Gen, and der 2pemutilities, see Using the WebLogic Server Java
Utilities in the Command Reference for Oracle WebLogic Server.

4. Map the ProxySer vl et toa<url - patt er n>. Specifically, map the file
extensions you wish to proxy, for example *. j sp, or *. ht m . Use the <ser vl et -
mappi ng> element in the web. xm Web application deployment descriptor.

If you set the <ur | - pat t er n>to "/", then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also
specifically map the following extensions: *. j sp,*. ht m ,and *. ht nl if you
want to proxy files ending with those extensions.

5. Deploy the Web application on the WebLogic Server instance that redirects
incoming requests.

9.11.2 Sample Deployment Descriptor for the Proxy Servlet

The following is an sample of a Web application deployment descriptor for using the
Pr oxyServl et .

9-16 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Proxying Requests to Another Web Server

Example 9-2 Sample web.xml for Use with ProxyServlet

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://ww. w3. or g/ 2001/ XM.Schena"
target Nanespace="http://java. sun. com xnl / ns/ j 2ee"
xm ns:j2ee="http://java.sun. com xm /ns/ | 2ee"
xn ns: xsd="htt p: // www. w3. or g/ 2001/ XM_Schena"
el ement For nDef aul t ="qual i fi ed"
attribut eFornDef aul t ="unqual i fi ed"
version="2.4">

<web- app>

<servlet>
<servl et - nanme>Pr oxySer vl et </ ser vl et - name>
<servl et -cl ass>webl ogi c. servl et. proxy. H t pProxyServl et </ servl et - cl ass>

<init-paranp
<par am name>r edi r ect URL</ par am nanme>
<paramval ue>http://server: port</paramval ue>
</init-paranp

<init-paranp

<par am name>Key St or e</ par am nanme>

<par am val ue>/ nykeyst or e</ par am val ue>
</init-paranp

<init-paranp
<par am name>Key St or eType</ par am nane>
<par am val ue>j ks</ par am val ue>
</init-paranp

<init-paranp
<par am name>Pri vat eKeyAl i as</ par am nane>
<par am val ue>passal i as</ par am val ue>
</init-paranp

<init-paranp
<par am nane>Key St or ePasswor dPr oper ti es</ par am nane>
<par am val ue>nykeyst or e. properti es</ param val ue>
</init-paranp

</servlet>

<servl et - mppi ng>
<servl et - name>Pr oxySer vl et </ ser vl et - name>
<url-pattern>/</url-pattern>

</ servl et - mappi ng>

<servl et - mppi ng>
<servl et - name>Pr oxySer vl et </ ser vl et - name>
<url-pattern>*.jsp</url-pattern>

</ servl et - mappi ng>

<servl et - mppi ng>
<servl et - name>Pr oxySer vl et </ ser vl et - name>
<url-pattern>*. htnx/url-pattern>

</ servl et - mappi ng>

<servl et - mppi ng>

Servlet Programming Tasks 9-17

Clustering Servlets

<servl et - nanme>Pr oxySer vl et </ ser vl et - name>
<url-pattern>*. htm </url-pattern>
</ servl et - mappi ng>

</ web- app>

9.12 Clustering Servlets

Clustering servlets provides failover and load balancing benefits. To deploy a servlet
in a WebLogic Server cluster, deploy the Web application containing the servlet on all
servers in the cluster.

For information on requirements for clustering servlets, and to understand the
connection and failover processes for requests that are routed to clustered servlets, see
Replication and Failover for Servlets and JSPs in Administering Clusters for Oracle
WebLogic Server.

Note:

Automatic failover for servlets requires that the servlet session state be
replicated in memory. For instructions, see Configure In-Memory HTTP
Replication in Administering Clusters for Oracle WebLogic Server.

For information on the load balancing support that a WebLogic Server cluster
provides for servlets, and for related planning and configuration considerations for
architects and administrators, see Load Balancing for Servlets and JSPs in
Administering Clusters for Oracle WebLogic Server.

9.13 Referencing a Servlet in a Web Application

The URL used to reference a servlet in a Web application is constructed as follows:

http:// myHost Nare: port / myCont ext Pat h/ myRequest / myRequest Par anmet er s
The components of this URL are defined as follows:

* nyHost Name—The DNS name mapped to the Web Server defined in the WebLogic
Server Administration Console. This portion of the URL can be replaced with
host : port, where host is the name of the machine running WebLogic Server
and port is the port at which WebLogic Server is listening for requests.

* port—The port at which WebLogic Server is listening for requests. The servlet can
communicate with the proxy only through the listenPort on the Server MBean and
the SSL MBean.

¢ nyCont ext Pat h—The name of the context root which is specified in the
webl ogi c. xm file, or the URI of the Web module which is specified in the
config.xm file.

e myRequest —The name of the servlet as defined in the web. xmi file.

* nyRequest Par amet er s—Optional HTTP request parameters encoded in the
URL, which can be read by an HTTP servlet.

9-18 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

URL Pattern Matching

9.14 URL Pattern Matching

WebLogic Server provides the user with the ability to implement a URL matching
utility which does not conform to the Java EE rules for matching. The utility must be
configured in the webl ogi c. xm deployment descriptor rather than the web. xni
deployment descriptor used for the configuration of the default implementation of
URLMat chMap.

To be used with WebLogic Server, the URL matching utility must implement the
following interface:

Package webl ogic.servlet.utils;
public interface URLMapping {
public void put(String pattern, oject value);
public Cbject get(String uri);
public void renove(String pattern)
public void setDefaul t (hject defaultbject);
public Object getDefault();
public void setCasel nsensitive(boolean ci);
publ i c bool ean isCaselnsensitive();
public int size();
public Object[] values();
public String[] keys();
}

9.15 The SimpleApacheURLMatchMap Utility

The included Si npl eApacheURLMat chMap utility is not Java EE specific. It can be
configured in the webl ogi ¢. xm deployment descriptor file and allows the user to
specify Apache style pattern matching rather than the default URL pattern matching
provided in the web. xm deployment descriptor. For more information, see url-
match-map.

9.16 A Future Response Model for HTTP Servlets

In general, WebLogic Server processes incoming HTTP requests and the response is
returned immediately to the client. Such connections are handled synchronously by
the same thread. However, some HTTP requests may require longer processing time.
Database connection, for example, may create longer response times. Handling these
requests synchronously causes the thread to be held, waiting until the request is
processed and the response sent.

To avoid this hung-thread scenario, WebLogic Server provides two classes that handle
HTTP requests asynchronously by de-coupling the response from the thread that
handles the incoming request. The following sections describe these classes.

9.16.1 Abstract Asynchronous Serviet

Note:

As of WebLogic Server 12.1.3, Oracle recommends that instead of the
WebLogic Server Abstract Asynchronous Servlet, you should use the standard
asynchronous processing model defined in the Servlet 3.1 specification.

Servlet Programming Tasks 9-19

A Future Response Model for HTTP Servlets

The Abstract Asynchronous Servlet enables you to handle incoming requests and
servlet responses with different threads. This class explicitly provides a better general
framework for handling the response than the Future Response Servlet, including
thread handling.

You implement the Abstract Asynchronous Servlet by extending the

webl ogi c. servlet. http. Abstract AsyncServl et . j ava class. This class
provides the following abstract methods that you must override in your extended
class .

9.16.1.1 doRequest

This method processes the servlet request. The following code example demonstrates
how to override this method.

Example 9-3 Overriding doRequest in AbstractAsynchServlet.java

public bool ean doRequest (Request ResponseKey rrk)
throws Servl et Exception, |CException {
Ht t pServl et Request req = rrk. get Request () ;
Ht t pSer vl et Response res = rrk. get Response();

if (req.getParaneter("imediate") !=null) {
res. setContent Type("text/htm");
PrintWiter out = res.getWiter();
out.printin("Hello Wrld Imediatel y!");
return fal se ;

1
el se {
Ti mer Manager Fact ory. get Ti mer Manager Fact ory()
. get Def aul t Ti mer Manager () . schedul e
(new TinerlListener() {
public void timerExpired(Timer tiner)
{try {
Abstract AsyncServlet.notify(rrk, null);
}
catch (Exception e) {
e.printStackTrace();
}
1
}, 2000);
return true;
1

}
9.16.1.2 doResponse

This method processes the servlet response.

Note:

The servlet instance that processed the doRequest () method used to handle
the original incoming request method will not necessarily be the one to
process the doResponse() method.

If an exception occurs during processing, the container returns an error to the client.
The following code example demonstrates how to override this method.

9-20 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

A Future Response Model for HTTP Servlets

Example 9-4 Overriding doResponse() in AbstractAsyncServlet.java

public void doResponse (RequestResponseKey rrk, GChject context)
throws ServletException, |CException

{
Ht t pServl et Request req = rrk. get Request () ;
Ht t pSer vl et Response res = rrk. get Response();

res. set Content Type("text/htm");
PrintWiter out = res.getWiter();
out.printin("Hello Wrld");

}

9.16.1.3 doTimeOut

This method sends a servlet response error when the not i f y() method is not called
within the timeout period.

Note:

The servlet instance that processed the doRequest () method used to handle
the original incoming request method will not necessarily be the one to
process the doTi meCut () method.

Example 9-5 Overriding doTimeOut() in AbstractAsyncServlet.java

public void doTimeout (RequestResponseKey rrk)
throws ServletException, |CException

{
Ht t pServl et Request req = rrk. get Request () ;
Ht t pSer vl et Response res = rrk. get Response();
res. set Content Type("text/htm");
PrintWiter out = res.getWiter();
out.println("Timout!");

}

9.16.2 Future Response Servlet

Note:

As of WebLogic Server 12.1.3, Oracle recommends that you use the standard
asynchronous processing model defined in the Servlet 3.1 specification.

You can also use the Future Response Servlet to handle servlet responses with a
different thread than the one that handles the incoming request. You enable this
servlet by extending webl ogi c. servl et. Fut ur eResponseSer vl et . j ava, which
gives you full control over how the response is handled and allows more control over
thread handling. However, using this class to avoid hung threads requires you to
provide most of the code.

The exact implementation depends on your needs, but you must override the
servi ce() method of this class at a minimum. The following example shows how
you can override the service method.

Servlet Programming Tasks 9-21

A Future Response Model for HTTP Servlets

Example 9-6 Overriding the service() method of FutureResponseServlet.java

public void service(HtpServl et Request req, FutureServletResponse rsp)
throws | CException, ServletException {

i f(req.getParaneter("imediate") != null){
PrintWiter out = rsp.getWiter();
out.printin("lnmediate response!");
rsp.send();

} else {

Timer nyTinmer = new Tiner();
M/Ti mer Task mt = new MyTi mer Task(rsp, nyTiner);
myTi mer. schedul e(nt, 100);
}
1

private static class MyTinerTask extends Timer Task{
private FutureServl et Response rsp;
Timer timer;
MyTi mer Task(Fut ur eSer vl et Response rsp, Tiner tiner){
this.rsp = rsp;
this.timer = tinmer;
}
public void run(){
try{
PrintWiter out = rsp.getWiter();
out.println("Delayed Response");
rsp.send();
timer.cancel ();
1
catch(I CException e){
e.printStackTrace();
1
}
1

9-22 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

10

Using Sessions and Session Persistence

This chapter describes how to set up and use HTTP sessions and session persistence in
WebLogic Server.

This chapter includes the following sections:

* Overview of HTTP Sessions

e Setting Up Session Management

¢ Configuring Session Persistence

* Using a Database for Persistent Storage (JDBC Persistence)
e Using URL Rewriting Instead of Cookies

¢ Session Tracking from a Servlet

10.1 Overview of HTTP Sessions

Session tracking enables you to track a user's progress over multiple servlets or HTML
pages, which, by nature, are stateless. A session is defined as a series of related browser
requests that come from the same client during a certain time period. Session tracking
ties together a series of browser requests—think of these requests as pages—that may
have some meaning as a whole, such as a shopping cart application.

10.2 Setting Up Session Management

WebLogic Server is set up to handle session tracking by default. You need not set any
of these properties to use session tracking. However, configuring how WebLogic
Server manages sessions is a key part of tuning your application for best performance.
When you set up session management, you determine factors such as:

¢ How many users you expect to hit the servlet
* How long each session lasts
* How much data you expect to store for each user

¢ Heap size allocated to the WebLogic Server instance

You can also store data permanently from an HTTP session. See Configuring Session
Persistence.

10.2.1 HTTP Session Properties

You configure WebLogic Server session tracking by defining properties in the
WebLogic-specific deployment descriptor, webl ogi ¢. xm . For a complete list of
session attributes, see session-descriptor.

Using Sessions and Session Persistence 10-1

Setting Up Session Management

In a previous WebLogic Server release, a change was introduced to the SessionlD
format that caused some load balancers to lose the ability to retain session stickiness.
A server startup flag, -

Dwebl ogi c. servl et . useExt endedSessi onFor nat =t r ue, retains the
information that the load-balancing application needs for session stickiness. The
extended session ID format will be part of the URL if URL rewriting is activated, and
the startup flag is set to true.

10.2.2 Session Timeout

You can specify an interval of time after which HTTP sessions expire. When a session
expires, all data stored in the session is discarded. You can set the interval in either
web. xm orwebl ogi c. xm :

* Settheti meout - secs parameter value in the sessi on- descri pt or element of
the WebLogic-specific deployment descriptor, webl ogi c¢. xri . This value is set in
seconds. For more information, see session-descriptor.

