
Oracle® Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle

WebLogic Server

12c (12.2.1.2.0)

E77996-04

January 2017

This document is a resource for software developers who
develop Web applications and components such as HTTP
servlets and JavaServer Pages (JSPs) for deployment on
WebLogic Server.

Oracle Fusion Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server, 12c
(12.2.1.2.0)

E77996-04

Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xiii

Documentation Accessibility ... xiii

Conventions.. xiii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1

1.2 Guide To This Document .. 1-1

1.3 Related Documentation ... 1-3

1.4 Examples for the Web Application Developer... 1-3

1.4.1 Avitek Medical Records Application (MedRec) ... 1-3

1.4.2 Web Application Examples in the WebLogic Server Distribution................................. 1-4

1.5 New and Changed Features In This Release .. 1-4

2 Understanding Web Applications, Servlets, and JSPs

2.1 The Web Applications Container ... 2-1

2.1.1 Web Applications and Java EE.. 2-1

2.1.2 Web Application Development Key Points... 2-2

2.2 Servlets ... 2-2

2.2.1 Servlets and Java EE.. 2-3

2.2.2 What You Can Do with Servlets ... 2-3

2.2.3 Servlet Development Key Points... 2-4

2.3 JavaServer Pages ... 2-4

2.3.1 JSPs and Java EE .. 2-4

2.3.2 What You Can Do with JSPs.. 2-5

2.3.3 Overview of How JSP Requests Are Handled .. 2-5

2.4 Web Application Developer Tools ... 2-5

2.4.1 Other Tools ... 2-6

2.5 Web Application Security.. 2-6

2.5.1 Limiting the Number of Parameters in an HTTP Request .. 2-6

2.6 Avoiding Redirection Attacks... 2-7

2.7 P3P Privacy Protocol .. 2-7

2.8 Displaying Special Characters on Linux Browsers .. 2-8

iii

3 Creating and Configuring Web Applications

3.1 WebLogic Web Applications and Java EE .. 3-1

3.2 Directory Structure ... 3-1

3.2.1 Accessing Information in WEB-INF ... 3-2

3.2.2 Directory Structure Example .. 3-2

3.3 Main Steps to Create and Configure a Web Application.. 3-3

3.3.1 Step One: Create the Enterprise Application Wrapper ... 3-3

3.3.2 Step Two: Create the Web Application .. 3-3

3.3.3 Step Three: Creating the build.xml File ... 3-4

3.3.4 Step Four: Execute the Split Development Directory Structure Ant Tasks 3-4

3.4 Configuring How a Client Accesses a Web Application .. 3-4

3.5 Configuring Virtual Hosts for Web Applications.. 3-5

3.5.1 Configuring a Channel-based Virtual Host... 3-5

3.5.2 Configuring a Host-based Virtual Host ... 3-5

3.6 Targeting Web Applications to Virtual Hosts .. 3-5

3.7 Loading Servlets, Context Listeners, and Filters.. 3-6

3.8 Shared Java EE Web Application Libraries... 3-6

3.9 Enabling GZIP Compression for Web Applications.. 3-6

4 Creating and Configuring Servlets

4.1 What's New and Changed in Servlets ... 4-1

4.1.1 What's New and Changed in Servlet 3.1.. 4-1

4.1.2 What Was New and Changed in Servlet 3.0 ... 4-2

4.2 Configuring Servlets... 4-3

4.2.1 Servlet Annotations... 4-4

4.2.2 Servlet Mapping .. 4-4

4.3 Setting Up a Default Servlet .. 4-6

4.4 Servlet Initialization Attributes .. 4-6

4.5 Writing a Simple HTTP Servlet .. 4-7

4.6 Advanced Features ... 4-8

4.7 Complete HelloWorldServlet Example ... 4-9

4.8 Debugging Servlet Containers .. 4-10

4.8.1 Disabling Access Logging .. 4-10

4.8.2 Tracking a Request Handle Footprint .. 4-11

5 Creating and Configuring JSPs

5.1 WebLogic JSP and Java EE .. 5-1

5.2 Configuring JavaServer Pages (JSPs) ... 5-1

5.3 Registering a JSP as a Servlet .. 5-2

5.4 Configuring JSP Tag Libraries .. 5-2

5.5 Configuring Welcome Files... 5-3

5.6 Customizing HTTP Error Responses ... 5-4

iv

5.7 Determining the Encoding of an HTTP Request.. 5-4

5.8 Mapping IANA Character Sets to Java Character Sets ... 5-4

5.9 Configuring Implicit Includes at the Beginning and End of JSPs.. 5-5

5.10 Configuring JSP Property Groups.. 5-5

5.10.1 JSP Property Group Rules .. 5-6

5.10.2 What You Can Do with JSP Property Groups... 5-6

5.11 Writing JSP Documents Using XML Syntax ... 5-6

5.11.1 How to Use JSP Documents... 5-7

5.11.2 Important Information about JSP Documents .. 5-7

6 Using JSF and JSTL

6.1 Using JSF and JSTL With Web Applications .. 6-1

6.1.1 JavaServer Faces (JSF) ... 6-1

6.1.2 JavaServer Pages Standard Tag Libraries (JSTL) .. 6-2

6.2 JSF Backward Compatibility ... 6-2

6.2.1 Deploying JSF and JSTL Libraries... 6-3

6.2.2 Referencing a JSF or JSTL Library... 6-3

7 Configuring Resources in a Web Application

7.1 Configuring Resources in a Web Application .. 7-1

7.2 Configuring Resources... 7-1

7.3 Referencing External EJBs ... 7-2

7.4 More about the ejb-ref* Elements ... 7-3

7.5 Referencing Application-Scoped EJBs ... 7-3

7.6 Serving Resources from the CLASSPATH with the ClasspathServlet 7-5

7.7 Using CGI with WebLogic Server .. 7-6

7.7.1 Configuring WebLogic Server to Use CGI .. 7-6

7.7.2 Requesting a CGI Script ... 7-7

7.7.3 CGI Best Practices.. 7-7

8 WebLogic Annotation for Web Components

8.1 Servlet Annotation and Dependency Injection .. 8-1

8.1.1 Web Component Classes That Support Annotations .. 8-2

8.1.2 Annotations Supported By a Web Container.. 8-3

8.2 Annotating Servlets .. 8-4

8.2.1 WLServlet ... 8-4

8.2.2 WLFilter .. 8-6

8.2.3 WLInitParam.. 8-7

9 Servlet Programming Tasks

9.1 Initializing a Servlet.. 9-1

9.1.1 Initializing a Servlet when WebLogic Server Starts ... 9-2

9.1.2 Overriding the init() Method... 9-2

v

9.2 Providing an HTTP Response... 9-3

9.3 Retrieving Client Input .. 9-4

9.3.1 Methods for Using the HTTP Request ... 9-6

9.3.2 Example: Retrieving Input by Using Query Parameters... 9-6

9.4 Securing Client Input in Servlets.. 9-7

9.4.1 Using a WebLogic Server Utility Method.. 9-8

9.5 Using Cookies in a Servlet .. 9-8

9.5.1 Setting Cookies in an HTTP Servlet ... 9-9

9.5.2 Retrieving Cookies in an HTTP Servlet .. 9-9

9.5.3 Using Cookies That Are Transmitted by Both HTTP and HTTPS............................... 9-10

9.5.4 Application Security and Cookies .. 9-10

9.6 Response Caching... 9-10

9.6.1 Initialization Parameters .. 9-11

9.7 Using WebLogic Services from an HTTP Servlet... 9-12

9.8 Accessing Databases... 9-12

9.8.1 Connecting to a Database Using a DataSource Object... 9-12

9.8.2 Connecting Directly to a Database Using a JDBC Driver.. 9-13

9.9 Threading Issues in HTTP Servlets .. 9-13

9.10 Dispatching Requests to Another Resource.. 9-13

9.10.1 Forwarding a Request... 9-14

9.10.2 Including a Request... 9-15

9.10.3 RequestDispatcher and Filters... 9-15

9.11 Proxying Requests to Another Web Server... 9-15

9.11.1 Overview of Proxying Requests to Another Web Server .. 9-15

9.11.2 Sample Deployment Descriptor for the Proxy Servlet... 9-16

9.12 Clustering Servlets.. 9-18

9.13 Referencing a Servlet in a Web Application ... 9-18

9.14 URL Pattern Matching ... 9-19

9.15 The SimpleApacheURLMatchMap Utility.. 9-19

9.16 A Future Response Model for HTTP Servlets .. 9-19

9.16.1 Abstract Asynchronous Servlet... 9-19

9.16.2 Future Response Servlet ... 9-21

10 Using Sessions and Session Persistence

10.1 Overview of HTTP Sessions.. 10-1

10.2 Setting Up Session Management ... 10-1

10.2.1 HTTP Session Properties .. 10-1

10.2.2 Session Timeout... 10-2

10.2.3 Configuring WebLogic Server Session Cookies.. 10-2

10.2.4 Configuring Application Cookies That Outlive a Session .. 10-2

10.2.5 Logging Out ... 10-3

10.2.6 Enabling Web Applications to Share the Same Session... 10-3

10.2.7 Limiting Number of Concurrent Requests for a Session... 10-3

vi

10.3 Configuring Session Persistence... 10-4

10.3.1 Attributes Shared by Different Types of Session Persistence 10-4

10.3.2 Using Memory-based, Single-server, Non-replicated Persistent Storage................. 10-5

10.3.3 Using File-based Persistent Storage ... 10-5

10.4 Using a Database for Persistent Storage (JDBC Persistence).. 10-5

10.4.1 Configuring JDBC-based Persistent Storage ... 10-5

10.4.2 Caching and Database Updates for JDBC Session Persistence................................... 10-8

10.4.3 Using Cookie-Based Session Persistence ... 10-8

10.5 Using URL Rewriting Instead of Cookies ... 10-9

10.5.1 Coding Guidelines for URL Rewriting .. 10-9

10.5.2 URL Rewriting and Wireless Access Protocol (WAP) .. 10-10

10.6 Session Tracking from a Servlet.. 10-10

10.6.1 A History of Session Tracking... 10-11

10.6.2 Tracking a Session with an HttpSession Object .. 10-11

10.6.3 Lifetime of a Session.. 10-12

10.6.4 How Session Tracking Works.. 10-13

10.6.5 Detecting the Start of a Session ... 10-13

10.6.6 Setting and Getting Session Name/Value Attributes ... 10-13

10.6.7 Logging Out and Ending a Session .. 10-14

10.6.8 Configuring Session Tracking .. 10-15

10.6.9 Using URL Rewriting Instead of Cookies.. 10-15

10.6.10 URL Rewriting and Wireless Access Protocol (WAP) ... 10-16

10.6.11 Making Sessions Persistent ... 10-16

10.6.12 Configuring a Maximum Limit on In-memory Servlet Sessions............................ 10-17

10.6.13 Enabling Session Memory Overload Protection... 10-18

11 Application Events and Event Listener Classes

11.1 Overview of Application Event Listener Classes... 11-1

11.2 Servlet Context Events ... 11-2

11.3 HTTP Session Events.. 11-2

11.4 Servlet Request Events ... 11-3

11.5 Configuring an Event Listener Class ... 11-4

11.6 Writing an Event Listener Class ... 11-4

11.7 Templates for Event Listener Classes .. 11-5

11.7.1 Servlet Context Event Listener Class Example ... 11-5

11.7.2 HTTP Session Attribute Event Listener Class Example .. 11-5

11.8 Additional Resources ... 11-6

12 Using the HTTP Publish-Subscribe Server

12.1 Overview of HTTP Publish-Subscribe Servers... 12-1

12.1.1 How the Pub-Sub Server Works ... 12-2

12.1.2 Channels ... 12-3

12.1.3 Message Delivery and Order of Delivery Guarantee... 12-3

vii

12.2 Examples of Using the HTTP Publish-Subscribe Server... 12-4

12.3 Using the HTTP Publish-Subscribe Server: Typical Steps.. 12-4

12.3.1 Creating the weblogic-pubsub.xml File ... 12-6

12.3.2 Programming Using the Server-Side Pub-Sub APIs .. 12-8

12.3.3 Configuring and Programming Message Filter Chains... 12-11

12.3.4 Updating a Browser Client to Communicate with the Pub-Sub Server.................. 12-13

12.3.5 Overriding the Default Servlet Mapping of the pubsub Java EE Library............... 12-14

12.4 Getting Run-time Information about the Pub-Sub Server and Channels........................... 12-14

12.5 Enabling Security .. 12-15

12.5.1 Use Pub-Sub Constraints.. 12-15

12.5.2 Map Roles to Principals .. 12-17

12.5.3 Configure SSL for Pub-Sub Communication .. 12-18

12.5.4 Additional Security Considerations ... 12-19

12.6 Advanced Topic: Using JMS as a Provider to Enable Cluster Support 12-20

12.6.1 Configuring JMS as a Handler .. 12-21

12.6.2 Configuring Client Session Failover... 12-23

12.7 Advanced Topic: Persisting Messages to Physical Storage .. 12-23

12.7.1 Configuring Persistent Channels .. 12-24

13 WebLogic JSP Reference

13.1 JSP Tags .. 13-1

13.2 Defining JSP Versions .. 13-3

13.2.1 Rules for Defining a JSP File Version ... 13-3

13.2.2 Rules for Defining a Tag File Version .. 13-3

13.3 Reserved Words for Implicit Objects ... 13-4

13.4 Directives for WebLogic JSP.. 13-5

13.4.1 Using the page Directive to Set Character Encoding ... 13-5

13.4.2 Using the taglib Directive... 13-6

13.5 Declarations ... 13-6

13.6 Scriptlets ... 13-6

13.7 Expressions ... 13-7

13.8 Example of a JSP with HTML and Embedded Java... 13-7

13.9 Actions ... 13-8

13.9.1 Using JavaBeans in JSP ... 13-8

13.9.2 Forwarding Requests .. 13-10

13.9.3 Including Requests.. 13-10

13.10 JSP Expression Language .. 13-10

13.10.1 Expressions and Attribute Values... 13-11

13.10.2 Expressions and Template Text... 13-12

13.11 JSP Expression Language Implicit Objects.. 13-12

13.12 JSP Expression Language Literals and Operators.. 13-13

13.12.1 Literals... 13-14

13.12.2 Errors, Warnings, Default Values ... 13-14

viii

13.12.3 Operators .. 13-14

13.12.4 Operator Precedence... 13-14

13.13 JSP Expression Language Reserved Words .. 13-15

13.14 JSP Expression Language Named Variables... 13-16

13.15 Securing User-Supplied Data in JSPs... 13-16

13.15.1 Using a WebLogic Server Utility Method.. 13-17

13.16 Using Sessions with JSP ... 13-17

13.17 Deploying Applets from JSP ... 13-18

13.18 Using the WebLogic JSP Compiler... 13-19

13.18.1 JSP Compiler Syntax ... 13-19

13.18.2 JSP Compiler Options .. 13-20

13.18.3 Precompiling JSPs.. 13-22

14 Filters

14.1 Overview of Filters ... 14-1

14.1.1 How Filters Work .. 14-1

14.1.2 Uses for Filters ... 14-2

14.2 Writing a Filter Class.. 14-2

14.3 Configuring Filters ... 14-2

14.3.1 Configuring a Filter... 14-3

14.3.2 Configuring a Chain of Filters ... 14-4

14.4 Filtering the Servlet Response Object .. 14-4

14.5 Additional Resources ... 14-5

15 Using WebLogic JSP Form Validation Tags

15.1 Overview of WebLogic JSP Form Validation Tags.. 15-1

15.2 Validation Tag Attribute Reference ... 15-2

15.2.1 <wl:summary>... 15-2

15.2.2 <wl:form>... 15-3

15.2.3 <wl:validator> ... 15-3

15.3 Using WebLogic JSP Form Validation Tags in a JSP ... 15-4

15.4 Creating HTML Forms Using the <wl:form> Tag ... 15-5

15.4.1 Defining a Single Form... 15-5

15.4.2 Defining Multiple Forms.. 15-5

15.4.3 Re-Displaying the Values in a Field When Validation Returns Errors 15-5

15.5 Using a Custom Validator Class... 15-6

15.5.1 Extending the CustomizableAdapter Class... 15-7

15.5.2 Sample User-Written Validator Class .. 15-7

15.6 Sample JSP with Validator Tags ... 15-7

16 Using Custom WebLogic JSP Tags (cache, process, repeat)

16.1 Overview of WebLogic Custom JSP Tags ... 16-1

16.2 Using the WebLogic Custom Tags in a Web Application .. 16-1

ix

16.3 Cache Tag... 16-2

16.3.1 Refreshing a Cache.. 16-2

16.3.2 Flushing a Cache.. 16-2

16.4 Process Tag .. 16-7

16.5 Repeat Tag ... 16-8

17 Using the WebLogic EJB to JSP Integration Tool

17.1 Overview of the WebLogic EJB-to-JSP Integration Tool... 17-1

17.2 Basic Operation ... 17-2

17.3 Interface Source Files.. 17-2

17.4 Build Options Panel.. 17-3

17.5 Troubleshooting .. 17-3

17.6 Using EJB Tags on a JSP Page ... 17-4

17.7 EJB Home Methods .. 17-4

17.8 Stateful Session and Entity Beans... 17-4

17.9 Default Attributes ... 17-5

A web.xml Deployment Descriptor Elements

A.1 web.xml Namespace Declaration and Schema Location ... A-2

A.2 context-param .. A-2

A.3 description .. A-4

A.4 display-name.. A-4

A.5 distributable.. A-5

A.6 ejb-local-ref ... A-5

A.7 ejb-ref ... A-6

A.8 env-entry ... A-7

A.9 error-page ... A-8

A.10 filter.. A-9

A.11 filter-mapping .. A-9

A.12 icon... A-10

A.13 jsp-config... A-11

A.13.1 taglib... A-11

A.13.2 jsp-property-group... A-12

A.14 listener ... A-14

A.15 login-config... A-14

A.15.1 form-login-config ... A-15

A.16 message-destination-ref .. A-16

A.17 mime-mapping... A-17

A.18 resource-env-ref ... A-17

A.19 resource-ref ... A-18

A.20 security-constraint ... A-19

A.20.1 web-resource-collection... A-20

A.20.2 auth-constraint.. A-20

x

A.20.3 user-data-constraint ... A-21

A.21 security-role .. A-21

A.22 servlet .. A-22

A.22.1 icon ... A-23

A.22.2 init-param.. A-24

A.22.3 security-role-ref .. A-24

A.23 servlet-mapping... A-25

A.24 session-config ... A-25

A.25 web-app... A-26

A.26 welcome-file-list... A-26

B weblogic.xml Deployment Descriptor Elements

B.1 weblogic.xml Namespace Declaration and Schema Location ... B-2

B.2 async-descriptor ... B-2

B.3 async-work-manager ... B-2

B.4 auth-filter ... B-3

B.5 charset-params.. B-3

B.5.1 charset-mapping ... B-3

B.5.2 input-charset .. B-3

B.6 container-descriptor... B-4

B.6.1 access-logging-disabled ... B-4

B.6.2 allow-all-roles .. B-4

B.6.3 check-auth-on-forward .. B-4

B.6.4 client-cert-proxy-enabled... B-5

B.6.5 container-initializer-enabled ... B-5

B.6.6 default-mime-type .. B-6

B.6.7 disable-implicit-servlet-mappings.. B-6

B.6.8 filter-dispatched-requests-enabled... B-6

B.6.9 gzip-compression.. B-6

B.6.10 index-directory-enabled... B-8

B.6.11 index-directory-sort-by .. B-8

B.6.12 langtag-revision... B-8

B.6.13 minimum-native-file-size .. B-8

B.6.14 native-io-enabled .. B-9

B.6.15 optimistic-serialization... B-9

B.6.16 prefer-application-packages .. B-9

B.6.17 prefer-application-resources ... B-10

B.6.18 prefer-forward-query-string.. B-10

B.6.19 prefer-web-inf-classes... B-10

B.6.20 redirect-with-absolute-url.. B-11

B.6.21 relogin-enabled.. B-11

B.6.22 require-admin-traffic .. B-11

B.6.23 resource-reload-check-secs .. B-11

xi

B.6.24 save-sessions-enabled... B-12

B.6.25 servlet-reload-check-secs ... B-12

B.6.26 session-monitoring-enabled .. B-12

B.6.27 show-archived-real-path-enabled .. B-12

B.6.28 single-threaded-servlet-pool-size ... B-12

B.6.29 temp-dir.. B-12

B.7 context-root ... B-13

B.8 description... B-13

B.9 ejb-reference-description... B-13

B.10 fast-swap.. B-14

B.11 jsp-descriptor .. B-14

B.12 library-ref... B-17

B.13 logging ... B-18

B.14 ready-registration... B-20

B.15 resource-description... B-20

B.16 resource-env-description... B-21

B.17 run-as-role-assignment.. B-21

B.18 security-permission.. B-22

B.19 security-role-assignment ... B-22

B.20 service-reference-description.. B-23

B.21 servlet-descriptor.. B-24

B.22 session-descriptor... B-25

B.23 url-match-map .. B-32

B.24 virtual-directory-mapping .. B-32

B.25 weblogic-version .. B-33

B.26 wl-dispatch-policy.. B-33

B.27 work-manager... B-33

B.28 Backwards Compatibility Flags ... B-35

B.28.1 Compatibility with JSP 2.0 Web Applications .. B-35

B.29 Web Container Global Configuration .. B-36

C Support for GlassFish Deployment Descriptors

D Web Application Best Practices

D.1 CGI Best Practices .. D-1

D.2 Servlet Best Practices ... D-1

D.3 JSP Best Practices ... D-2

D.4 Best Practice When Subclassing ServletResponseWrapper... D-2

Index

xii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

This chapter includes the following sections:

• Document Scope and Audience

• Guide To This Document

• Related Documentation

• Examples for the Web Application Developer

• New and Changed Features In This Release

1.1 Document Scope and Audience
This document is a resource for software developers who develop Web applications
and components such as HTTP servlets and JavaServer Pages (JSPs) for deployment
on WebLogic Server. This document is also a resource for Web application users and
deployers. It also contains information that is useful for business analysts and system
architects who are evaluating WebLogic Server or considering the use of WebLogic
Server Web applications for a particular application.

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning topics. For links to WebLogic Server documentation and resources
for these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and Web application concepts.
This document emphasizes the value-added features provided by WebLogic Server
Web applications and key information about how to use WebLogic Server features
and facilities to get a Web application up and running .

1.2 Guide To This Document
• This chapter, Introduction and Roadmap, introduces the organization of this guide.

• Understanding Web Applications, Servlets, and JSPs, provides an overview of
WebLogic Server Web applications, servlets, and JavaServer Pages (JSPs).

• Creating and Configuring Web Applications, describes how to create and configure
Web application resources.

Introduction and Roadmap 1-1

• Creating and Configuring Servlets, describes how to create and configure servlets.

• Creating and Configuring JSPs, describes how to create and configure JSPs.

• Using JSF and JSTL, describes how to configure JavaServer Faces (JSF) and the JSP
Tag Standard Library (JSTL).

• Configuring Resources in a Web Application, describes how to configure Web
application resources.

• WebLogic Annotation for Web Components, describes how to simplify
development by using annotations and resource injection with Web components.

• Servlet Programming Tasks, describes how to write HTTP servlets in a WebLogic
Server environment.

• Using Sessions and Session Persistence, describes how to set up sessions and
session persistence.

• Application Events and Event Listener Classes, discusses application events and
event listener classes.

• Using the HTTP Publish-Subscribe Server, provides an overview of the HTTP
Publish-Subscribe server and information on how you can use it in your Web
applications

• WebLogic JSP Reference, provides reference information for writing JavaServer
Pages (JSPs).

• Filters, provides information about using filters in a Web application.

• Using WebLogic JSP Form Validation Tags, describes how to use WebLogic JSP
form validation tags.

• Using Custom WebLogic JSP Tags (cache, process, repeat), describes the use of
three custom JSP tags—cache, repeat, and process—provided with the
WebLogic Server distribution.

• Using the WebLogic EJB to JSP Integration Tool, describes how to use the
WebLogic EJB-to-JSP integration tool to create JSP tag libraries that you can use to
invoke EJBs in a JavaServer Page (JSP). This document assumes at least some
familiarity with both EJB and JSP.

• web.xml Deployment Descriptor Elements, describes the deployment descriptor
elements defined in the web.xml schema under the root element <web-app>.

• weblogic.xml Deployment Descriptor Elements, provides a complete reference for
the schema for the WebLogic Server-specific deployment descriptor
weblogic.xml.

• Support for GlassFish Deployment Descriptors, provides a list of the GlassFish
deployment descriptors that are supported in WebLogic Server.

• Web Application Best Practices, contains Oracle best practices for designing,
developing, and deploying WebLogic Server Web applications and application
resources.

Guide To This Document

1-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

1.3 Related Documentation
This document contains Web application-specific design and development
information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

• Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

• Upgrading Oracle WebLogic Server contains information about Web applications, JSP,
and servlet compatibility with previous WebLogic Server releases.

• Servlet product overview at http://www.oracle.com/technetwork/java/
javaee/servlet/index.html

• JavaServer Pages (JSP) product overview at http://www.oracle.com/
technetwork/java/javaee/jsp/index.htm

• JavaServer Faces (JSF) product overview at http://www.oracle.com/
technetwork/java/javaee/javaserverfaces-139869.html

• JavaServer Pages Standard Tag Library (JSTL) product overview at http://
www.oracle.com/technetwork/java/index-jsp-135995.html

• For more information in general about Java application development, refer to
http://www.oracle.com/technetwork/java/javaee/overview/
index.html

1.4 Examples for the Web Application Developer
In addition to this document, Oracle provides examples for software developers
within the context of the Avitek Medical Records Application (MedRec) sample,
discussed in the next section.

1.4.1 Avitek Medical Records Application (MedRec)
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects
\domains\medrec directory, where ORACLE_HOME is the directory you specified as
Oracle Home when you installed Oracle WebLogic Server. For more information, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

The sample application, MedRec (Spring) demonstrates Spring Framework application
development practices.

Related Documentation

Introduction and Roadmap 1-3

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.htm
http://www.oracle.com/technetwork/java/javaee/jsp/index.htm
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

1.4.2 Web Application Examples in the WebLogic Server Distribution
When you install WebLogic Server complete with the examples, the examples source
code is placed in the ORACLE_HOME\wlserver\samples\server\examples\src
\examples directory. From this directory, you can access the source code and
instruction files for the examples without having to set up the samples domain.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the
WebLogic Server examples domain; it contains your applications and the XML
configuration files that define how your applications and Oracle WebLogic Server will
behave, as well as startup and environment scripts. For more information about the
WebLogic Server code examples, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Oracle provides several Web application, servlet, and JSP examples with this release of
WebLogic Server. Oracle recommends that you run these Web application examples
before developing your own Web applications.

1.5 New and Changed Features In This Release
This release of WebLogic Server adds support for:

• HTTP content-encoding GZIP compression across the domain or for a specific Web
application. For more information, see

• Servlet 3.1, including support of HTTP 1.1 protocol upgrade processing, non-
blocking I/O for asynchronous reads and writes, session ID change, and handling
uncovered HTTP methods.

• Java Server Pages 2.3, including support for static data that can be expressed in any
text-based format (HTML or XML) and JSP elements, which determine how the
page constructs dynamic content.

• Java Server Faces 2.2, including support of HTML5-friendly markup, Faces Flows,
and Resource library contracts.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.2.0.

New and Changed Features In This Release

1-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

2
Understanding Web Applications, Servlets,

and JSPs

This chapter provides an overview of WebLogic Server Web applications, servlets, and
JavaServer Pages (JSPs).

This chapter includes the following sections:

• The Web Applications Container

• Servlets

• JavaServer Pages

• Web Application Developer Tools

• Web Application Security

• Avoiding Redirection Attacks

• P3P Privacy Protocol

• Displaying Special Characters on Linux Browsers

2.1 The Web Applications Container
A Web application contains an application's resources, such as servlets, JavaServer
Pages (JSPs), JSP tag libraries, and any static resources such as HTML pages and image
files. A Web application adds service-refs (Web services) and message-destination-refs
(JMS destinations/queues) to an application. It can also define links to outside
resources such as Enterprise JavaBeans (EJBs).

2.1.1 Web Applications and Java EE
The Java EE programming model employs metadata annotations which simplify the
application development process by allowing a developer to specify within the Java
class itself how the application component behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment
descriptors that were required by older versions of enterprise applications (Java EE 1.4
and earlier).

With Java EE annotations, the standard application.xml and web.xml
deployment descriptors are optional. The Java EE programming model uses the JDK
annotations feature for Web containers, such as EJBs, servlets, Web applications, and
JSPs. See WebLogic Annotation for Web Components and http://
docs.oracle.com/javaee/7/api/. For more information about Java EE 7 Web
application technologies, see http://www.oracle.com/technetwork/java/
javaee/tech/index.html.

Understanding Web Applications, Servlets, and JSPs 2-1

http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

However, Web applications deployed on WebLogic Server can still use a standard
Java EE deployment descriptor file and a WebLogic-specific deployment descriptor
file to define their resources and operating attributes.

2.1.2 Web Application Development Key Points
JSPs and HTTP servlets can access all services and APIs available in WebLogic Server.
These services include EJBs, database connections by way of Java Database
Connectivity (JDBC), Java Messaging Service (JMS), XML, and more.

A Web archive (WAR file) contains the files that make up a Web application. A WAR
file is deployed as a unit on one or more WebLogic Server instances. A WAR file
deployed to WebLogic Server always includes the following files:

• One servlet or JavaServer Page (JSP), along with any helper classes.

• An optional web.xml deployment descriptor, which is a Java EE standard XML
document that describes the contents of a WAR file.

• A weblogic.xml deployment descriptor, which is an XML document containing
WebLogic Server-specific elements for Web applications.

• A WAR file can also include HTML or XML pages and supporting files such as
image and multimedia files.

The WAR file can be deployed alone or packaged in an enterprise application archive
(EAR file) with other application components. If deployed alone, the archive must end
with a .war extension. If deployed in an EAR file, the archive must end with an .ear
extension.

Oracle recommends that you package and deploy your standalone Web applications
as part of an enterprise application. This is an Oracle best practice which allows for
easier application migration, additions, and changes. Also, packaging your
applications as part of an enterprise application allows you to take advantage of the
split development directory structure, which provides a number of benefits over the
traditional single directory structure.

Note:

If you are deploying a directory in exploded format (not archived), do not
name the directory .ear, .jar, and so on. For more information on archived
format, see Web Application Developer Tools.

2.2 Servlets
A servlet is a Java class that runs in a Java-enabled server. An HTTP servlet is a special
type of servlet that handles an HTTP request and provides an HTTP response, usually
in the form of an HTML page. The most common use of WebLogic HTTP servlets is to
create interactive applications using standard Web browsers for the client-side
presentation while WebLogic Server handles the business logic as a server-side
process. WebLogic HTTP servlets can access databases, Enterprise JavaBeans,
messaging APIs, HTTP sessions, and other facilities of WebLogic Server.

Servlets

2-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

2.2.1 Servlets and Java EE
WebLogic Server fully supports HTTP servlets as defined in the Servlet 3.1
specification at http://jcp.org/en/jsr/detail?id=340. HTTP servlets form
an integral part of the Java EE standard.

With Java EE metadata annotations, the standard web.xml deployment descriptor is
optional. The servlet specification states annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are
used to declare dependencies on external resources. The container will detect
annotations on such components and inject necessary dependencies before the
component's life cycle methods are invoked. See WebLogic Annotation for Web
Components.

The servlet specification defines the implementation of the servlet API and the method
by which servlets are deployed in enterprise applications. Deploying servlets on a Java
EE-compliant server, such as WebLogic Server, is accomplished by packaging the
servlets and other resources that make up an enterprise application into a single unit,
the Web application. A Web application utilizes a specific directory structure to
contain its resources and a deployment descriptor that defines how these resources
interact and how the application is accessed by a client. See The Web Applications
Container.

2.2.2 What You Can Do with Servlets

• Create dynamic Web pages that use HTML forms to get end-user input and
provide HTML pages that respond to that input. Examples of this utilization
include online shopping carts, financial services, and personalized content.

• Create collaborative systems such as online conferencing.

• Have access to a variety of APIs and features by using servlets running in
WebLogic Server. For example:

– Session tracking—Allows a Web site to track a user's progress across multiple
Web pages. This functionality supports Web sites such as e-commerce sites that
use shopping carts. WebLogic Server supports session persistence to a database,
providing failover between server down time and session sharing between
clustered servers. For more information see Session Tracking from a Servlet.

– JDBC drivers—JDBC drivers provide basic database access. With WebLogic
Server's multi-tier JDBC implementations, you can take advantage of connection
pools, server-side data caching, and transactions. For more information see
Accessing Databases.

– Enterprise JavaBeans—Servlets can use Enterprise JavaBeans (EJB) to
encapsulate sessions, data from databases, and other functionality. See
Referencing External EJBs, More about the ejb-ref* Elements, and Referencing
Application-Scoped EJBs.

– Java Messaging Service (JMS)—JMS allows your servlets to exchange messages
with other servlets and Java programs. See Developing JMS Applications for Oracle
WebLogic Server.

– Java JDK APIs—Servlets can use the standard Java JDK APIs.

Servlets

Understanding Web Applications, Servlets, and JSPs 2-3

http://jcp.org/en/jsr/detail?id=340

– Forwarding requests—Servlets can forward a request to another servlet or other
resource. Forwarding a Request.

• Easily deploy servlets written for any Java EE-compliant servlet engine to
WebLogic Server.

2.2.3 Servlet Development Key Points
The following are a few key points relating to servlet development:

• Programmers of HTTP servlets utilize a standard Java API,
javax.servlet.http, to create interactive applications.

• HTTP servlets can read HTTP headers and write HTML coding to deliver a
response to a browser client.

• Servlets are deployed to WebLogic Server as part of a Web application. A Web
application is a grouping of application components such as servlet classes,
JavaServer Pages (JSPs), static HTML pages, images, and security.

2.3 JavaServer Pages
JavaServer Pages (JSPs) are defined by a specification for combining Java with HTML
to provide dynamic content for Web pages. When you create dynamic content, JSPs
are more convenient to write than HTTP servlets because they allow you to embed
Java code directly into your HTML pages, in contrast with HTTP servlets, in which
you embed HTML inside Java code.

JSPs are Web pages coded with an extended HTML that makes it possible to embed
Java code in a Web page. JSPs can call custom Java classes, called taglibs, using
HTML-like tags. The WebLogic appc compiler weblogic.appc generates JSPs and
validates descriptors. You can also precompile JSPs into the WEB-INF/classes/
directory or as a JAR file under WEB-INF/lib/ and package the servlet class in the
Web archive to avoid compiling in the server. Servlets and JSPs may require
additional helper classes to be deployed with the Web application.

JSPs enable you to separate the dynamic content of a Web page from its presentation.
It caters to two different types of developers: HTML developers, who are responsible
for the graphical design of the page, and Java developers, who handle the
development of software to create the dynamic content.

2.3.1 JSPs and Java EE
WebLogic JSP supports the JSP 2.3 specification at http://jcp.org/en/jsr/
detail?id=245. The main theme for Java EE is ease of development. The platform's
Web tier contributes significantly to ease of development in two ways. First, the
platform now includes the JavaServer Pages Standard Tag Library (JSTL) and
JavaServer Faces technology. Second, all the Web-tier technologies offer a set of
features that make development of Web applications on Java EE much easier, such as:

• An expression language (EL) syntax that allows deferred evaluation of expressions,
enables using expressions to both get and set data and to invoke methods, and
facilitates customizing the resolution of a variable or property referenced by an
expression.

• Support for resource injection through annotations to simplify configuring access
to resources and environment data.

JavaServer Pages

2-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=245

• Complete alignment of JavaServer Faces technology tags and JavaServer Pages
(JSP) software code.

Because JSPs are part of the Java EE standard, you can deploy JSPs on a variety of
platforms, including WebLogic Server. In addition, third-party vendors and
application developers can provide JavaBean components and define custom JSP tags
that can be referenced from a JSP page to provide dynamic content.

2.3.2 What You Can Do with JSPs

• Combine Java with HTML to provide dynamic content for Web pages.

• Call custom Java classes, called taglibs, using HTML-like tags.

• Embed Java code directly into your HTML pages, in contrast with HTTP servlets,
in which you embed HTML inside Java code.

• Separate the dynamic content of a Web page from its presentation.

2.3.3 Overview of How JSP Requests Are Handled
WebLogic Server handles JSP requests in the following sequence:

1. A browser requests a page with a .jsp file extension from WebLogic Server.

2. WebLogic Server reads the request.

3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet class that
implements the javax.servlet.jsp.JspPage interface. The JSP file is
compiled only when the page is first requested, or when the JSP file has been
updated and has a more recent timestamp. Otherwise, the previously compiled
JSP servlet class is re-used, making subsequent responses much quicker.

4. The generated JspPage servlet class is invoked to handle the browser request.

It is also possible to invoke the JSP compiler directly without making a request from a
browser. For details, see Using the WebLogic JSP Compiler.

Because the JSP compiler creates a Java servlet as its first step, you can look at the Java
files it produces, or even register the generated JspPage servlet class as an HTTP
servlet. See Servlets.

2.4 Web Application Developer Tools
Oracle provides several tools to help simplify the creating, testing, debugging, and
deploying of servlets, JSP, JSF-based Web applications.

• Oracle JDeveloper is an enterprise IDE providing a unified development
experience for Oracle Fusion Middleware products.

• Oracle Enterprise Pack for Eclipse is an Eclipse-based development environment
with pre-packaged tooling for Web applications targeting the Oracle platform.

Both tools provide advanced code editor features, collaborative teamwork
development, visual development and debugging, and streamlined deployment
capabilities.

Web Application Developer Tools

Understanding Web Applications, Servlets, and JSPs 2-5

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html

2.4.1 Other Tools
You can use the WebLogic Ant utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
Ant task looks at a directory containing a Web application and creates deployment
descriptors based on the files it finds in the Web application. Because the Ant utility
does not have information about all desired configurations and mappings for your
Web application, the skeleton deployment descriptors the utility creates are
incomplete. After the utility creates the skeleton deployment descriptors, you can use
a text editor, an XML editor, or the WebLogic Server Administration Console to edit
the deployment descriptors and complete the configuration of your Web application.

2.5 Web Application Security
You can secure a Web application by restricting access to certain URL patterns in the
Web application or programmatically using security calls in your servlet code.

At run time, your user name and password are authenticated using the applicable
security realm for the Web application. Authorization is verified according to the
security constraints configured in web.xml or the external policies that might have
been created for the Web application using the WebLogic Server Administration
Console.

At run time, the WebLogic Server active security realm applies the Web application
security constraints to the specified Web application resources. Note that a security
realm is shared across multiple virtual hosts.

For detailed instructions and an example on configuring security in Web applications,
see Securing Resources Using Roles and Policies for Oracle WebLogic Server. For more
information on WebLogic security, refer to Developing Applications with the WebLogic
Security Service.

Developing Applications with the WebLogic Security Service also includes information on
using the Java Authentication Service Provider Interface for Containers (JASPIC)
specification (http://www.jcp.org/en/jsr/detail?id=196) to implement
authentication mechanisms.

2.5.1 Limiting the Number of Parameters in an HTTP Request
You can prevent overloading the WebLogic Server domain with excessive parameters
in HTTP requests by setting the MaxRequestParameterCount attribute on the
WebServer MBean. This attribute limits the number of parameters allowed in a
request. The default value of MaxRequestParameterCount is 10,000. If the number
of parameters on an incoming HTTP request exceeds the maximum value set in the
MaxRequestParameterCount attribute, then the following error is logged:

<Error> <ServletContext> <BEA-000000> <Rejecting request since max request parameter
limit exceeded 10000>

You can set this parameter either on the WebServer MBean or on the VirtualHost
MBean. Use WLST online to set this attribute as shown in the following examples:

• Using the WebServer MBean

connect('<admin_user>','<admin_pwd>','<admin_url>')
edit()
startEdit()
cd('Servers/<server_name>')

Web Application Security

2-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=196

cmo.getWebServer().setMaxRequestParameterCount(1000)
save()
activate()
exit()

• Using the VirtualHost MBean

connect('<admin_user>','<admin_pwd>','<admin_url>')
edit()
startEdit()
cd('VirtualHosts/<virtual_host>')
cmo.setMaxRequestParameterCount(1000)
save()
activate()
exit()

Note:

If you have set MaxRequestParameterCount on the WebAppContainer
MBean, Oracle recommends setting the attribute on the WebServer MBean
instead.

2.6 Avoiding Redirection Attacks
When a request on a Web application is redirected to another location, the Host header
contained in the request is used by default in the Location header that is generated for
the response. Because the Host header can be spoofed—that is, corrupted to contain a
different host name and other parameters—this behavior can be exploited to launch a
redirection attack on a third party.

To prevent the likelihood of this occurrence, set the FrontendHost attribute on either
the WebServerMBean or ClusterMBean to specify the host to which all redirected
URLs are sent. The host specified in the FrontendHost attribute will be used in the
Location header of the response instead of the one contained in the original request.

For more information, see FrontendHost in MBean Reference for Oracle WebLogic
Server.

2.7 P3P Privacy Protocol
The Platform for Privacy Preferences (P3P) provides a way for Web sites to publish
their privacy policies in a machine-readable syntax. The WebLogic Server Web
application container can support P3P.

There are three ways to tell the browser about the location of the p3p.xml file:

• Place a policy reference file in the "well-known location" (at the location /w3c/
p3p.xml on the site).

• Add an extra HTTP header to each response from the Web site giving the location
of the policy reference file.

• Place a link to the policy reference file in each HTML page on the site.

For more detailed information, see http://www.w3.org/TR/
p3pdeployment#Locating_PRF.

Avoiding Redirection Attacks

Understanding Web Applications, Servlets, and JSPs 2-7

http://www.w3.org/TR/p3pdeployment#Locating_PRF
http://www.w3.org/TR/p3pdeployment#Locating_PRF

2.8 Displaying Special Characters on Linux Browsers
To display special characters on Linux browsers, set the JVM's file.encoding
system property to ISO8859_1. For example, java -
Dfile.encoding=ISO8859_1 weblogic.Server. For a complete listing, see
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/
encoding.doc.html.

Displaying Special Characters on Linux Browsers

2-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

3
Creating and Configuring Web Applications

This chapter describes how to create and configure Web applications in WebLogic
Server.

This chapter includes the following sections:

• WebLogic Web Applications and Java EE

• Directory Structure

• Main Steps to Create and Configure a Web Application

• Configuring How a Client Accesses a Web Application

• Configuring Virtual Hosts for Web Applications

• Targeting Web Applications to Virtual Hosts

• Loading Servlets, Context Listeners, and Filters

• Shared Java EE Web Application Libraries

3.1 WebLogic Web Applications and Java EE
The Java EE programming model employs metadata annotations which simplify the
application development process by allowing a developer to specify within the Java
class itself how the application component behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment
descriptors that were required by older versions of enterprise applications (Java EE 1.4
and earlier).

With Java EE annotations, the standard application.xml and web.xml
deployment descriptors are optional. The Java EE programming model uses the JDK
annotations feature for Web containers, such as EJBs, servlets, Web applications, and
JSPs. See WebLogic Annotation for Web Components and http://
docs.oracle.com/javaee/7/api/. For more information about Java EE 7 Web
application technologies, see http://www.oracle.com/technetwork/java/
javaee/tech/index.html.

However, Web applications deployed on WebLogic Server can still use a standard
Java EE deployment descriptor file and a WebLogic-specific deployment descriptor
file to define their resources and operating attributes.

3.2 Directory Structure
Web applications use a standard directory structure defined in the Java EE
specification. You can deploy a Web application as a collection of files that use this
directory structure, known as exploded directory format, or as an archived file called a
WAR file. Oracle recommends that you package and deploy your exploded Web

Creating and Configuring Web Applications 3-1

http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

application as part of an enterprise application. This is an Oracle best practice which
allows for easier application migration, additions, and changes. Also, packaging your
Web application as part of an enterprise application allows you to take advantage of
the split development directory structure, which provides a number of benefits over
the traditional single directory structure.

The WEB-INF directory contains the deployment descriptors for the Web application
(web.xml and weblogic.xml) and two subdirectories for storing compiled Java
classes and library JAR files. These subdirectories are respectively named classes
and lib. JSP taglibs are stored in the WEB-INF directory at the top level of the staging
directory. The Java classes include servlets, helper classes and, if desired, precompiled
JSPs.

All servlets, classes, static files, and other resources belonging to a Web application are
organized under a directory hierarchy.

The entire directory, once staged, is bundled into a WAR file using the jar command.
The WAR file can be deployed alone or as part of an enterprise application
(recommended) with other application components, including other Web applications,
EJB components, and WebLogic Server components.

JSP pages and HTTP servlets can access all services and APIs available in WebLogic
Server. These services include EJBs, database connections through Java Database
Connectivity (JDBC), JavaMessaging Service (JMS), XML, and more.

3.2.1 Accessing Information in WEB-INF
The WEB-INF directory is not part of the public document tree of the application. No
file contained in the WEB-INF directory can be served directly to a client by the
container. However, the contents of the WEB-INF directory are visible to servlet code
using the getResource and getResourceAsStream() method calls on the
ServletContext or includes/forwards using the RequestDispatcher. Hence, if the
application developer needs access, from servlet code, to application specific
configuration information that should not be exposed directly to the Web client, the
application developer may place it under this directory.

Since requests are matched to resource mappings in a case-sensitive manner, client
requests for "/WEB-INF/foo", "/WEb-iNf/foo", for example, should not result in
contents of the Web application located under /WEB-INF being returned, nor any
form of directory listing thereof.

3.2.2 Directory Structure Example
The following is an example of a Web application directory structure, in which
myWebApp/ is the staging directory:

Example 3-1 Web Application Directory Structure

myWebApp/
 WEB-INF/
 web.xml
 weblogic.xml
 lib/
 MyLib.jar
 classes/
 MyPackage/
 MyServlet.class
 index.html
 index.jsp

Directory Structure

3-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

3.3 Main Steps to Create and Configure a Web Application
The following steps summarize the procedure for creating a Web application as part of
an enterprise application using the split development directory structure. See Creating
a Split Development Directory Environment, Building Applications In a Split
Development Directory, and Deploying and Packaging From a Split Development
Directory in Developing Applications for Oracle WebLogic Server.

You may want to use developer tools included with WebLogic Server for creating and
configuring Web applications. See Web Application Developer Tools.

3.3.1 Step One: Create the Enterprise Application Wrapper

1. Create a directory for your root EAR file:

\src\myEAR\

2. Set your environment as follows:

• On Windows, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin\, where WL_HOME is the top-level directory in which
WebLogic Server is installed.

• On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin/, where WL_HOME is the top-level directory in which
WebLogic Server is installed.

Note:

On UNIX operating systems, the setWLSEnv.sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

3. Package your enterprise application in the \src\myEAR\ directory as follows:

a. Place the enterprise applications descriptors (application.xml and
weblogic-application.xml) in the META-INF\ directory. See Enterprise
Application Deployment Descriptors in Developing Applications for Oracle
WebLogic Server.

b. Edit the deployment descriptors as needed to fine-tune the behavior of your
enterprise application. See Web Application Developer Tools.

c. Place the enterprise application .jar files in:

\src\myEAR\APP-INF\lib\

3.3.2 Step Two: Create the Web Application

1. Create a directory for your Web application in the root of your EAR file:

\src\myEAR\myWebApp

2. Package your Web application in the \src\myEAR\myWebApp\ directory as
follows:

Main Steps to Create and Configure a Web Application

Creating and Configuring Web Applications 3-3

a. Place the Web application descriptors (web.xml and weblogic.xml) in the
\src\myEAR\myWebApp\WEB-INF\ directory. See weblogic.xml
Deployment Descriptor Elements.

b. Edit the deployment descriptors as needed to fine-tune the behavior of your
enterprise application. See Web Application Developer Tools.

c. Place all HTML files, JSPs, images and any other files referenced by the Web
application pages in the root of the Web application:

\src\myEAR\myWebApp\images\myimage.jpg
\src\myEAR\myWebApp\login.jsp
\src\myEAR\myWebApp\index.html

d. Place your Web application Java source files (servlets, tag libs, other classes
referenced by servlets or tag libs) in:

\src\myEAR\myWebApp\WEB-INF\src\

3.3.3 Step Three: Creating the build.xml File
Once you have set up your directory structure, you create the build.xml file using
the weblogic.BuildXMLGen utility.

3.3.4 Step Four: Execute the Split Development Directory Structure Ant Tasks

1. Execute the wlcompile Ant task to invoke the javac compiler. This compiles
your Web application Java components into an output directory: /build/myEAR/
WEB-INF/classes.

2. Execute wlappc Ant task to invoke the appc compiler. This compiles any JSPs and
container-specific EJB classes for deployment.

3. Execute the wldeploy Ant task to deploy your Web application as part of an
archived or exploded EAR to WebLogic Server.

4. If this is a production environment (rather than development), execute the
wlpackage Ant task to package your Web application as part of an archived or
exploded EAR.

Note:

The wlpackage Ant task places compiled versions of your Java source files in
the build directory. For example: /build/myEAR/myWebApp/classes.

3.4 Configuring How a Client Accesses a Web Application
You construct the URL that a client uses to access a Web application using the
following pattern:

http://hoststring/ContextPath/servletPath/pathInfo

Where

• hoststring is either a host name that is mapped to a virtual host or
hostname:portNumber.

Configuring How a Client Accesses a Web Application

3-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• ContextPath is the name of your Web application.

• servletPath is a servlet that is mapped to the servletPath.

• pathInfo is the remaining portion of the URL, typically a file name.

If you are using virtual hosting, you can substitute the virtual host name for the
hoststring portion of the URL.

3.5 Configuring Virtual Hosts for Web Applications
WebLogic Server supports two methods for configuring virtual hosts for Web
applications:

• Configuring a Channel-based Virtual Host

• Configuring a Host-based Virtual Host

3.5.1 Configuring a Channel-based Virtual Host
The following is an example of how to configure a channel-based virtual host:

<VirtualHost Name="channel1vh" NetworkAccessPoint="Channel1" Targets="myserver"/>
<VirtualHost Name="channel2vh" NetworkAccessPoint="Channel2" Targets="myserver"/>

Where Channel1 and Channel2 are the names of NetworkAccessPoint
configured in the config.xml file. NetworkAccessPoint represents the dedicated
server channel name for which the virtual host serves HTTP requests. If the
NetworkAccessPoint for a given HTTP request does not match the
NetworkAccessPoint of any virtual host, the incoming HOST header is matched
with the VirtualHostNames in order to resolve the correct virtual host. If an
incoming request does not match a virtual host, the request will be served by the
default Web server.

3.5.2 Configuring a Host-based Virtual Host
The following is an example of how to configure a host-based virtual host:

<VirtualHost Name="cokevh" Targets="myserver" VirtualHostNames="coke"/>
<VirtualHost Name="pepsivh" Targets="myserver" VirtualHostNames="pepsi"/>

3.6 Targeting Web Applications to Virtual Hosts
A Web application component can be targeted to servers and virtual hosts using the
WebLogic Server Administration Console.

If you are migrating from previous versions of WebLogic Server, note that in the
config.xml file, all Web application targets must be specified in the targets attribute.
The targets attribute has replaced the virtual hosts attribute and a virtual host cannot
have the same name as a server or cluster in the same domain. The following is an
example of how to target a Web application to a virtual host:

<AppDeployment name="test-app" Sourcepath="/myapps/test-app.ear">
 <SubDeployment Name="test-webapp1.war" Targets="virutalhost-1"/>
 <SubDeployment Name="test-webapp2.war" Targets="virtualhost-2"/>
 ...
</AppDeployment>

Configuring Virtual Hosts for Web Applications

Creating and Configuring Web Applications 3-5

3.7 Loading Servlets, Context Listeners, and Filters
Servlets, context listeners, and filters are loaded and destroyed in the following order:

Order of loading:

1. Context listeners

2. Filters

3. Servlets

Order of destruction:

1. Servlets

2. Filters

3. Context listeners

Servlets and filters are loaded in the same order they are defined in the web.xml file
and unloaded in reverse order. Context listeners are loaded in the following order:

1. All context listeners in the web.xml file in the order as specified in the file

2. Packaged JAR files containing tag library descriptors

3. Tag library descriptors in the WEB-INF directory

3.8 Shared Java EE Web Application Libraries
A Java EE Web application library is a standalone Web application module registered
with the Java EE application container upon deployment. With WebLogic Server,
multiple Web applications can easily share a single Web application module or
collection of modules.

A Web application may reference one or more Web application libraries, but cannot
reference other library types (EJBs, EAR files, plain JAR files). Web application
libraries are Web application modules deployed as libraries. They are referenced from
the weblogic.xml file using the same syntax that is used to reference application
libraries in the weblogic-application.xml file, except that the <context-root>
element is ignored.

At deployment time, the classpath of each referenced library is appended to the Web
application's classpath. Therefore, the search for all resources and classes occurs first
in the original Web application and then in the referenced library.

The deployment tools, appc, wlcompile, and BuildXMLGen support libraries at the
Web application level in the same way they support libraries at the application level.
For more information about shared Java EE libraries and their deployment, see
Creating Shared Java EE Libraries and Optional Packages in Developing Applications for
Oracle WebLogic Server.

3.9 Enabling GZIP Compression for Web Applications
The WebLogic Server Web container supports HTTP content-encoding GZIP
compression, which is part of HTTP/1.1. With GZIP compression, you can reduce the
size of the data that a Web browser has to download, improving network bandwidth.

Loading Servlets, Context Listeners, and Filters

3-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

For general information about content-encoding and GZIP compression, see
the Hypertext Transfer Protocol HTTP/1.1 Specification.

You can enable and configure content-encoding GZIP compression at the domain level
or Web application level.

To set domain-wide values for GZIP compression support, use WLST to configure the
following attributes of the GzipCompressionMBean under the
WebAppContainerMBean:

Table 3-1 Domain-Level GZIP Compression Attributes

Attribute Description Default Value

GzipCompressionEnabled Enables GZIP compression
for all Web applications in
the domain.

false

GzipCompressionMinComp
ressionContentLength

Specifies the minimum file
size to trigger compression in
Web applications.

This attribute allows you to
bypass small-sized resources
where compression would
not yield a great return but
use unnecessary CPU.

2048

GzipCompressionContent
Type

Specifies the type of content
to be included compression.

"text/html, text/xml,
text/plain"

To configure GZIP compression for a specific Web application, use the gzip-
compression element in the weblogic.xml deployment descriptor container-
descriptor element. For more information, see .

Application-level values override domain-level values. Therefore, any gzip-
compression values set in weblogic.xml take precedence over domain-wide
values set in the GzipCompressionMBean or default values.

WebLogic Server determines the GZIP compression attribute value to use based on the
following override hierarchy:

• If you do not configure GZIP compression in the individual Web
application weblogic.xml file or in the domain-wide GzipCompressionMBean,
then the domain default value is used.

• If you configure GZIP compression in the domain-
wide GzipCompressionMBean, then the MBean value overrides the default
value. The GzipCompressionMBeanvalue is used.

• If you configure GZIP compression in the individual Web
application weblogic.xml file, then the weblogic.xml file overrides
the GzipCompressionMBean value and the default value. The Web
application weblogic.xml value is used.

You can track compression statistics, such as CPUs used, original content length, GZIP
content length, and the compression ratio, by enabling the HTTPDebugLoggerdebug
flag, which tracks information about these statistics in existing server log files.
If HTTPDebugLogger is not enabled, these statistics are not tracked. To
enableHTTPDebugLogger, set -
Dweblogic.debug.DebugHttp=true in JAVA_OPTIONS in the server start script.

Enabling GZIP Compression for Web Applications

Creating and Configuring Web Applications 3-7

http://tools.ietf.org/html/rfc7231#section-3.1.2

Enabling GZIP Compression for Web Applications

3-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

4
Creating and Configuring Servlets

This chapter describes what is new and changed in recent servlet specifications, and
how to create and configure servlets

This chapter includes the following sections:

• What's New and Changed in Servlets

• Configuring Servlets

• Setting Up a Default Servlet

• Servlet Initialization Attributes

• Writing a Simple HTTP Servlet

• Advanced Features

• Complete HelloWorldServlet Example

• Debugging Servlet Containers

4.1 What's New and Changed in Servlets
These sections summarize the changes in the Servlet programming model and
requirements between Servlet 3.1 and 3.0.

4.1.1 What's New and Changed in Servlet 3.1
WebLogic Server supports the servlet 3.1 specification (see http://jcp.org/en/jsr/
detail?id=340), which introduces the following new features:

• Support added for non-blocking I/O reads and writes—Servlet 3.0 allowed
asynchronous request processing but only traditional I/O was permitted, which
restricted scalability of your applications since threads associated with client
requests could be sitting idle because of input/output considerations. Servlet 31.
supports non-blocking I/O for read and write listeners, which allows you to build
scalable applications.

• Supports HTTP protocol upgrade processing—HTTP/1.1 allows the client to
specify additional communication protocols that it supports and would like to use.
Servlet 3.1 supports the HTTP protocol upgrade functionality in servlets.

• Enhanced security by handling uncovered HTTP methods—The deny-
uncovered-http-methods flag can be set in an application's web.xml file,
which forces the container to deny any HTTP protocol method when it is used with
a request URL for which the HTTP method is uncovered at the combined security
constraint that applies to the url-pattern that is the best match for the request URL.

Creating and Configuring Servlets 4-1

http://jcp.org/en/jsr/detail?id=340
http://jcp.org/en/jsr/detail?id=340

• New Java EE 7 servlet examples—When you install WebLogic Server complete
with the examples, the examples source code is placed in the
EXAMPLES_HOMEexamples\src\examples directory. The default path
is ORACLE_HOME\wlserver\samples\server. From this directory, you can
access the source code and instruction files for the Servlet 3.1 examples without
having to set up the samples domain.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the
WebLogic Server examples domain; it contains your applications and the XML
configuration files that define how your applications and Oracle WebLogic Server
will behave, as well as startup and environment scripts. For more information
about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

– Using HTTP Protocol Upgrade API – demonstrates how to use the HTTP
Protocol Upgrade API that allows the client to specify additional
communication protocols.

EXAMPLES_HOME/examples/src/examples/javaee7/servlet/http-upgrade

– Using the Non-Blocking I/O ReadListener – demonstrates how to use
the ReadListener interface in servlets for reading from a request in a non-
blocking manner.

EXAMPLES_HOME/examples/src/examples/javaee7/servlet/non-blocking-io-read

– Using the Non-Blocking I/O WriteListener – demonstrates how to use
the WriteListener interface in servlets for writing to a request in a non-
blocking manner.

EXAMPLES_HOME/examples/src/examples/javaee7/servlet/non-blocking-io-write

– Changing the Session ID – demonstrates how to change the session ID using
the HttpServletRequest API.

EXAMPLES_HOME/examples/src/examples/javaee7/servlet/session-id-change

– Handling Uncovered HTTP Methods – demonstrates how to deny uncovered
HTTP methods:

EXAMPLES_HOME/examples/src/examples/javaee7/servlet/uncovered-http-method

4.1.2 What Was New and Changed in Servlet 3.0
The Servlet 3.0 specification (see http://jcp.org/en/jsr/detail?id=315)
introduced the following features:

• Asynchronous processing—a servlet no longer has to wait for a response from a
resource, such as a database, before its thread can continue. In other words, the
thread is not blocked.

• Web module deployment descriptor fragments (web fragments)—The web-
fragment.xml file enhances pluggability of library JARs which are packaged
under WEB-INF/lib. A web fragment is a part or all of the web.xml file that can
be specified and included in a library or framework JAR's META-INF directory.

• New Java EE 6 servlet examples—When you install WebLogic Server complete
with the examples, the examples source code is placed in the EXAMPLES_HOME
\examples\src\examples directory. The default path is ORACLE_HOME
\wlserver\samples\server. From this directory, you can access the source

What's New and Changed in Servlets

4-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=315

code and instruction files for the Servlet 3.0 examples without having to set up the
samples domain

The ORACLE_HOME\user_projects\domains\wl_server directory contains
the WebLogic Server examples domain; it contains your applications and the XML
configuration files that define how your applications and Oracle WebLogic Server
will behave, as well as startup and environment scripts. For more information
about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

– Using Annotations for Servlets, Filters and Listeners – demonstrates how to
define Web application components solely from annotations, such as
@WebServlet, @WebListener, and @WebFilter, no longer requiring
definition and mapping entries within the web.xml descriptor.

EXAMPLES_HOME/examples/src/examples/javaee6/servlet/annotation

– Asynchronous Servlet and Request Handling – demonstrates asynchronous
processing in servlet 3.0, in which a servlet is marked as being capable of
handling asynchronous requests.

EXAMPLES_HOME/examples/src/examples/javaee6/servlet/asyncServlet30

– Handling File Uploads with Multipart File – demonstrates the use of
the @MultipartConfig annotation to handle the uploading of files from the
browser client.

EXAMPLES_HOME/examples/src/examples/javaee6/servlet/multipartFileHandling

– Using Programmatic Security – demonstrates the use of the
new login() and authenticate() methods of
the HttpServletRequest interface, which enable applications to
programmatically control security.

EXAMPLES_HOME/examples/src/examples/javaee6/servlet/programmaticSecurity

– Servlet Web Fragments – demonstrates the pluggable nature of servlet 3.0, in
which modular, self-contained extensions can be easily added to Web
applications.

EXAMPLES_HOME/examples/src/examples/javaee6/servlet/webFragment

Note:

As of WebLogic Server 12.1.3, WebLogic Server-specific annotations have been
deprecated and will be removed in a future release: @WLServlet, @WLFilter,
and @WLInitParam, in favor of the standard annotations defined in the
Servlet 3.1 specification. In addition, instead of
weblogic.servlet.http.AbstractAsyncServlet, you should use the standard
asynchronous processing model defined in the Servlet 3.1 specification. For
information on configuring Servlet 3.1 asynchronous processing, see async-
descriptor in web.xml Deployment Descriptor Elements.

4.2 Configuring Servlets
This section describes configuring servlets using Java EE metadata annotations versus
in deployment descriptors, and how to use servlet mapping in a Web application.

Configuring Servlets

Creating and Configuring Servlets 4-3

4.2.1 Servlet Annotations
With Java EE metadata annotations, the standard web.xml deployment descriptor is
optional. The servlet specification states annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are
used to declare dependencies on external resources. The container will detect
annotations on such components and inject necessary dependencies before the
component's life cycle methods are invoked. See WebLogic Annotation for Web
Components.

However, you can also define servlets as a part of a Web application in several entries
in the standard Web application deployment descriptor, web.xml. The web.xml file
is located in the WEB-INF directory of your Web application.

The first entry, under the root servlet element in web.xml, defines a name for the
servlet and specifies the compiled class that executes the servlet. (Or, instead of
specifying a servlet class, you can specify a JSP.) The servlet element also contains
definitions for initialization attributes and security roles for the servlet.

The second entry in web.xml, under the servlet-mapping element, defines the
URL pattern that calls this servlet.

4.2.2 Servlet Mapping
Servlet mapping controls how you access a servlet. The following examples
demonstrate how you can use servlet mapping in your Web application. In the
examples, a set of servlet configurations and mappings (from the web.xml
deployment descriptor) is followed by a table (see Table 4-1) showing the URLs used
to invoke these servlets.

Example 4-1 Servlet Mapping Example

<servlet>
 <servlet-name>watermelon</servlet-name>
 <servlet-class>myservlets.watermelon</servlet-class>
</servlet>
<servlet>
 <servlet-name>garden</servlet-name>
 <servlet-class>myservlets.garden</servlet-class>
</servlet>
<servlet>
 <servlet-name>list</servlet-name>
 <servlet-class>myservlets.list</servlet-class>
</servlet>
<servlet>
 <servlet-name>kiwi</servlet-name>
 <servlet-class>myservlets.kiwi</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>watermelon</servlet-name>
 <url-pattern>/fruit/summer/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>garden</servlet-name>
 <url-pattern>/seeds/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>list</servlet-name>
 <url-pattern>/seedlist</url-pattern>
</servlet-mapping>

Configuring Servlets

4-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

<servlet-mapping>
 <servlet-name>kiwi</servlet-name>
 <url-pattern>*.abc</url-pattern>
</servlet-mapping>

Table 4-1 url-patterns and Servlet Invocation

URL Servlet Invoked

http://host:port/mywebapp/fruit/summer/index.html watermelon

http://host:port/mywebapp/fruit/summer/index.abc watermelon

http://host:port/mywebapp/seedlist list

http://host:port/mywebapp/seedlist/index.html
The default servlet, if configured, or
an HTTP 404 File Not Found error
message.

If the mapping for the list servlet
had been /seedlist*, the list
servlet would be invoked.

http://host:port/mywebapp/seedlist/pear.abc kiwi

If the mapping for the list servlet
had been /seedlist*, the list
servlet would be invoked.

http://host:port/mywebapp/seeds garden

http://host:port/mywebapp/seeds/index.html garden

http://host:port/mywebapp/index.abc kiwi

ServletServlet can be used to create a default mappings for servlets. For example,
to create a default mapping to map all servlets to /myservlet/*, so the servlets can
be called using http://host:port/web-app-name/myservlet/com/foo/
FooServlet, add the following to your web.xml file. (The web.xml file is located in
the WEB-INF directory of your Web application.)

<servlet>
 <servlet-name>ServletServlet</servlet-name>
 <servlet-class>weblogic.servlet.ServletServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ServletServlet</servlet-name>
 <url-pattern>/myservlet/*</url-pattern>
</servlet-mapping>

Configuring Servlets

Creating and Configuring Servlets 4-5

4.3 Setting Up a Default Servlet
Each Web application has a default servlet. This default servlet can be a servlet that you
specify, or, if you do not specify a default servlet, WebLogic Server uses an internal
servlet called the FileServlet as the default servlet.

You can register any servlet as the default servlet. Writing your own default servlet
allows you to use your own logic to decide how to handle a request that falls back to
the default servlet.

Setting up a default servlet replaces the FileServlet and should be done carefully
because the FileServlet is used to serve most files, such as text files, HTML file,
image files, and more. If you expect your default servlet to serve such files, you will
need to write that functionality into your default servlet.

To set up a user-defined default servlet:

1. Define your servlet as described in Configuring How a Client Accesses a Web
Application.

2. Add a servlet-mapping with url-pattern = "/" as follows:

<servlet-mapping>
<servlet-name>MyOwnDefaultServlet</servlet-name>
<url-pattern>/myservlet/*(</url-pattern>
</servlet-mapping>

3. If you still want the FileServlet to serve files with other extensions:

a. Define a servlet and give it a <servlet-name>, for example
myFileServlet.

b. Define the <servlet-class> as weblogic.servlet.FileServlet.

c. Using the <servlet-mapping> element, map file extensions to the
myFileServlet (in addition to the mappings for your default servlet). For
example, if you want the myFileServlet to serve.gif files, map
*.gif to the myFileServlet.

Note:

The FileServlet includes the SERVLET_PATH when determining the
source filename if the docHome parameter (deprecated in this release) is not
specified. As a result, it is possible to explicitly serve only files from specific
directories by mapping the FileServlet to /dir/*, etc.

4.4 Servlet Initialization Attributes
You define initialization attributes for servlets in the Web application deployment
descriptor, web.xml, in the init-param element of the servlet element, using
param-name and param-value tags. The web.xml file is located in the WEB-INF
directory of your Web application. For example:

Example 4-2 Example of Configuring Servlet Initialization Attributes in web.xml

<servlet>
 <servlet-name>HelloWorld2</servlet-name>
 <servlet-class>examples.servlets.HelloWorld2</servlet-class>

Setting Up a Default Servlet

4-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

 <init-param>
 <param-name>greeting</param-name>
 <param-value>Welcome</param-value>
 </init-param>
 <init-param>
 <param-name>person</param-name>
 <param-value>WebLogic Developer</param-value>
 </init-param>
</servlet>

4.5 Writing a Simple HTTP Servlet
The section provides a procedure for writing a simple HTTP servlet, which prints out
the message Hello World. A complete code example (the HelloWorldServlet)
illustrating these steps is included at the end of this section. Additional information
about using various Java EE and WebLogic Server services such as JDBC, RMI, and
JMS, in your servlet are discussed later in this document.

1. Import the appropriate package and classes, including the following:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

2. Extend javax.servlet.http.HttpServlet. For example:

public class HelloWorldServlet extends HttpServlet{

3. Implement a service() method.

The main function of a servlet is to accept an HTTP request from a Web browser,
and return an HTTP response. This work is done by the service() method of
your servlet. Service methods include response objects used to create output and
request objects used to receive data from the client.

You may have seen other servlet examples implement the doPost() and/or
doGet() methods. These methods reply only to POST or GET requests; if you
want to handle all request types from a single method, your servlet can simply
implement the service() method. (However, if you choose to implement the
service() method, you cannot implement the doPost() or doGet() methods,
unless you call super.service() at the beginning of the service() method.)
The HTTP servlet specification describes other methods used to handle other
request types, but all of these methods are collectively referred to as service
methods.

All the service methods take the same parameter arguments. An
HttpServletRequest provides information about the request, and your servlet
uses an HttpServletResponse to reply to the HTTP client. The service method
looks like the following:

public void service(HttpServletRequest req,
 HttpServletResponse res) throws IOException
{

4. Set the content type, as follows:

res.setContentType("text/html");

5. Get a reference to a java.io.PrintWriter object to use for output, as follows:

PrintWriter out = res.getWriter();

Writing a Simple HTTP Servlet

Creating and Configuring Servlets 4-7

6. Create some HTML using the println() method on the PrintWriter object,
as shown in the following example:

out.println("<html><head><title>Hello World!</title></head>");
out.println("<body><h1>Hello World!</h1></body></html>");
 }
}

7. Compile the servlet, as follows:

a. Set up a development environment shell with the correct classpath and path
settings.

b. From the directory containing the Java source code for your servlet, compile
your servlet into the WEB-INF/classes directory of the Web application
that contains your servlet. For example:

javac -d /myWebApplication/WEB-INF/classes myServlet.java

8. Deploy the servlet as part of a Web application hosted on WebLogic Server.

9. Call the servlet from a browser.

The URL you use to call a servlet is determined by:

• The name of the Web application containing the servlet and

• The name of the servlet as mapped in the deployment descriptor of the Web
application. Request parameters can also be included in the URL used to call a
servlet.

Generally the URL for a servlet conforms to the following:

http://host:port/webApplicationName/mappedServletName?parameter

The components of the URL are defined as follows:

• host is the name of the machine running WebLogic Server.

• port is the port at which the above machine is listening for HTTP requests.

• webApplicationName is the name of the Web application containing the
servlet.

• parameters are one or more name-value pairs containing information sent
from the browser that can be used in your servlet.

For example, to use a Web browser to call the HelloWorldServlet (the
example featured in this document), which is deployed in the examplesWebApp
and served from a WebLogic Server running on your machine, enter the following
URL:

http://localhost:7001/examplesWebApp/HelloWorldServlet

The host:port portion of the URL can be replaced by a DNS name that is
mapped to WebLogic Server.

4.6 Advanced Features
The preceding steps create a basic servlet. You will probably also use more advanced
features of servlets:

Advanced Features

4-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• Handling HTML form data—HTTP servlets can receive and process data received
from a browser client in HTML forms.

– Retrieving Client Input

• Application design—HTTP servlets offer many ways to design your application.
The following sections provide detailed information about writing servlets:

– Providing an HTTP Response

– Threading Issues in HTTP Servlets

– Dispatching Requests to Another Resource

• Initializing a servlet—if your servlet needs to initialize data, accept initialization
arguments, or perform other actions when the servlet is initialized, you can
override the init() method.

– Initializing a Servlet

• Use of sessions and persistence in your servlet—sessions and persistence allow you
to track your users within and between HTTP sessions. Session management
includes the use of cookies. For more information, see the following sections:

– Session Tracking from a Servlet

– Using Cookies in a Servlet

– Configuring Session Persistence

• Use of WebLogic services in your servlet—WebLogic Server provides a variety of
services and APIs that you can use in your Web applications. These services
include Java Database Connectivity (JDBC) drivers, JDBC database connection
pools, Java Messaging Service (JMS), Enterprise JavaBeans (EJB), and Remote
Method Invocation (RMI). For more information, see the following sections:

– Using WebLogic Services from an HTTP Servlet

– Accessing Databases

4.7 Complete HelloWorldServlet Example
This section provides the complete Java source code for the example used in the
preceding procedure. The example is a simple servlet that provides a response to an
HTTP request. Later in this document, this example is expanded to illustrate how to
use HTTP parameters, cookies, and session tracking.

Example 4-3 HelloWorldServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
public class HelloWorldServlet extends HttpServlet {
 public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {
 // Must set the content type first
 res.setContentType("text/html");
 // Now obtain a PrintWriter to insert HTML into

Complete HelloWorldServlet Example

Creating and Configuring Servlets 4-9

 PrintWriter out = res.getWriter();
 out.println("<html><head><title>" +
 "Hello World!</title></head>");
 out.println("<body><h1>Hello World!</h1></body></html>");
 }
}

You can find the source code and instructions for compiling and running examples in
the ORACLE_HOME\wlserver\samples\server\examples\src\examples
\splitdir\helloWorldEar directory of your WebLogic Server distribution,
whereORACLE_HOME represents the directory in which you installed WebLogic Server.
For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

4.8 Debugging Servlet Containers
The following sections provide information on debugging options available in the
WebLogic Server servlet container:

• Disabling Access Logging

• Debugging Specific Sessions

• Tracking a Request Handle Footprint

4.8.1 Disabling Access Logging
Logging access for servlets can be expensive with regard to server performance.
Therefore, in cases where access logging is not required, you can improve
performance by disabling logging to the access log file.

4.8.1.1 Usage

The optional access-logging-disabled property in the container-
descriptor in weblogic.xml can be used to specify whether access logging for an
underlying Web application is disabled.

• If the property is set as true, then application accesses are not logged.

• If the property is not defined or is set as false, then application accesses are
logged.

Note:

The access-logging-disabled property functions at the Web application
level. Therefore, if it is defined in a Web application, it does not affect other
Web applications. This property works under both development mode and
production mode.

4.8.1.2 Example

The following example demonstrates how to disable access logging:

<?xml version="1.0" encoding="ISO-8859-1"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
<container-descriptor>
<access-logging-disabled>true</access-logging-disabled>

Debugging Servlet Containers

4-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

</container-descriptor>
</weblogic-web-app>

4.8.1.3 Debugging Specific Sessions

Tracking session change is very helpful when developing applications, especially for
replicated sessions. Although you can utilize HttpSessionAttributeListener to
track session changes at the Web application level, developers need a finer-grained
debugging option to track session changes during a specific request.

4.8.1.4 Usage

The wl_debug_session request attribute or a same-named session attribute can log
attribute changes in the current session. When either flag is used, the container logs
the modifications of the underlying session in the server log.

You can enable specific session debugging by using either of the following methods:

• Set the wl_debug_session attribute to the current session, as follows:

• session.setAttribute('wl_debug_session', Boolean.TRUE);

• Use the wl_debug_session attribute in the request query string as the indicator.
The container adds a wl_debug_session session attribute to the current session,
as shown in the following example:

http://localhost/foocontext/foo?wl_debug_session

To stop debugging a session, you can simply remove the wl_debug_session
attribute.

Note:

This feature is available only in development mode. The severity of the debug
message is at the debug level. You need to adjust the severity of the logger to
debug or lower for the system logger to output the debug message to the
server log file.

4.8.2 Tracking a Request Handle Footprint
Tracking a request handle footprint is very helpful while in application development
mode. For example, when debugging an application, you need to know many pieces
of information. This includes such information as: what request is received, how it is
dispatched, what session it is bound to it, when the servlet is invoked, and what
response is sent. Finally, when a ServletException occurs, you need a way to link
the exception to corresponding request to find the root cause of the error.

4.8.2.1 Usage

The WebLogic Server servlet container provides more detailed log messages during
request handling to better describe each milestone in a request flow. No additional
configuration changes are required other than enabling the DebugHttp logger.

You can then find the footprint of a request handle in the server log. Once in
production mode, you should disable DebugHttp logger to maximize server
performance.

Debugging Servlet Containers

Creating and Configuring Servlets 4-11

Debugging Servlet Containers

4-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

5
Creating and Configuring JSPs

This chapter describes how to create and configure JavaServer Pages (JSPs).

This chapter includes the following sections:

• WebLogic JSP and Java EE

• Configuring JavaServer Pages (JSPs)

• Registering a JSP as a Servlet

• Configuring JSP Tag Libraries

• Configuring Welcome Files

• Customizing HTTP Error Responses

• Determining the Encoding of an HTTP Request

• Mapping IANA Character Sets to Java Character Sets

• Configuring Implicit Includes at the Beginning and End of JSPs

• Configuring JSP Property Groups

• Writing JSP Documents Using XML Syntax

5.1 WebLogic JSP and Java EE
WebLogic Server supports the JSP 2.3 specification at http://jcp.org/en/jsr/
detail?id=245. The main theme for Java EE is ease of development. The platform's
Web tier contributes significantly to ease of development in two ways. First, the
platform includes the JavaServer Pages Standard Tag Library (JSTL) and JavaServer
Faces technology. Second, all the Web-tier technologies offer a set of features that
make development of Web applications on Java EE much easier, such as complete
alignment of JavaServer Faces technology tags and JavaServer Pages (JSP) software
code. For more information about the Java EE 7 Web application technologies, see
http://www.oracle.com/technetwork/java/javaee/tech/index.html.

5.2 Configuring JavaServer Pages (JSPs)
In order to deploy JavaServer Pages (JSP) files, you must place them in the root (or in a
subdirectory below the root) of a Web application. You define JSP configuration
parameters in subelements of the jsp-descriptor element in the WebLogic-specific
deployment descriptor, weblogic.xml. These parameters define the following
functionality:

• Options for the JSP compiler

Creating and Configuring JSPs 5-1

http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=245
http://www.oracle.com/technetwork/java/javaee/tech/index.html

• Debugging

• How often WebLogic Server checks for updated JSPs that need to be recompiled

• Character encoding

For a complete description of these subelements, see jsp-descriptor.

5.3 Registering a JSP as a Servlet
You can register a JSP as a servlet using the servlet element of the Java EE standard
deployment descriptor web.xml. (The web.xml file is located in the WEB-INF
directory of your Web application.) A servlet container maintains a map of the servlets
known to it. This map is used to resolve requests that are made to the container.
Adding entries into this map is known as "registering" a servlet. You add entries to
this map by referencing a servlet element in web.xml through the servlet-
mapping entry.

A JSP is a type of servlet; registering a JSP is a special case of registering a servlet.
Normally, JSPs are implicitly registered the first time you invoke them, based on the
name of the JSP file. Therefore, the myJSPfile.jsp file would be registered as
myJSPfile.jsp in the mapping table. You can implicitly register JSPs, as illustrated
in the following example. In this example, you request the JSP with the name /main
instead of the implicit name myJSPfile.jsp.

In this example, a URL containing /main will invoke myJSPfile.jsp:

<servlet>
 <servlet-name>myFoo</servlet-name>
 <jsp-file>myJSPfile.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>myFoo</servlet-name>
 <url-pattern>/main</url-pattern>
</servlet-mapping>

Registering a JSP as a servlet allows you to specify the load order, initialization
attributes, and security roles for a JSP, just as you would for a servlet.

5.4 Configuring JSP Tag Libraries
WebLogic Server lets you create and use custom JSP tags. Custom JSP tags are Java
classes you can call from within a JSP page. To create custom JSP tags, you place them
in a tag library and define their behavior in a tag library descriptor (TLD) file. You
make this TLD available to the Web application containing the JSP by defining it in the
Web application deployment descriptor. It is a good idea to place the TLD file in the
WEB-INF directory of your Web application, because that directory is never available
publicly.

In the Web application deployment descriptor, you define a URI pattern for the tag
library. This URI pattern must match the value in the taglib directive in your JSP
pages. You also define the location of the TLD. For example, if the taglib directive in
the JSP page is:

<%@ taglib uri="myTaglib" prefix="taglib" %>

and the TLD is located in the WEB-INF directory of your Web application, you would
create the following entry in the Web application deployment descriptor:

Registering a JSP as a Servlet

5-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

<jsp-config>
<taglib>
<taglib-uri>myTaglib</taglib-uri>
<tablig-location>WEB-INF/myTLD.tld</taglib-location>
</taglib>
</jsp-config>

You can also deploy a tag library as a .jar file.

For more information on creating custom JSP tag libraries, see Developing JSP Tag
Extensions for Oracle WebLogic Server.

WebLogic Server also includes several custom JSP tags that you can use in your
applications. These tags perform caching, facilitate query attribute-based flow control,
and facilitate iterations over sets of objects. For more information, see:

• Using Custom WebLogic JSP Tags (cache, process, repeat)

• Using WebLogic JSP Form Validation Tags

5.5 Configuring Welcome Files
Web application developers can define an ordered list of partial URIs called welcome
files in the Web application deployment descriptor. The purpose of this mechanism is
to allow the deployer to specify an ordered list of partial URIs for the container to use
for appending to URIs when there is a request for a URI that corresponds to a
directory entry in the WAR not mapped to a Web component. This feature can make
your site easier to use, because the user can type a URL without giving a specific
filename.

Note:

Welcome files can be JSPs, static pages, or servlets.

Welcome files are defined at the Web application level. If your server is hosting
multiple Web applications, you need to define welcome files separately for each Web
application. You define welcome files using the welcome-file-list element in
web.xml. (The web.xml file is located in the WEB-INF directory of your Web
application.) The following is an example welcome file configuration:

Example 5-1 Welcome File Example

<servlet>
 <servlet-name>WelcomeServlet</servlet-name>
 <servlet-class>foo.bar.WelcomeServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>WelcomeServlet</servlet-name>
 <url-pattern>*.foo</url-pattern>
</servlet-mapping>

<welcome-file-list>
 <welcome-file>/welcome.foo</welcome-file>
</welcome-file-list>

Configuring Welcome Files

Creating and Configuring JSPs 5-3

For more information on welcome files, see the servlet 3.1 specification, section 10.10
at https://jcp.org/aboutJava/communityprocess/final/jsr340/
index.html.

5.6 Customizing HTTP Error Responses
You can configure WebLogic Server to respond with your own custom Web pages or
other HTTP resources when particular HTTP errors or Java exceptions occur, instead
of responding with the standard WebLogic Server error response pages.

You define custom error pages in the error-page element of the Java EE standard
Web application deployment descriptor, web.xml. (The web.xml file is located in the
WEB-INF directory of your Web application.)

5.7 Determining the Encoding of an HTTP Request
WebLogic Server converts binary (bytes) data contained in an HTTP request to the
correct encoding expected by the servlet. The incoming post data might be encoded in
a particular encoding that must be converted to the correct encoding on the server side
for use in methods such as request.getParameter(..).

There are two ways you can define the code set:

• For a POST operation, you can set the encoding in the HTML <form> tag. For
example, this form tag sets SJIS as the character set for the content:

<form action="http://some.host.com/myWebApp/foo/index.html">
 <input type="application/x-www-form-urlencoded; charset=SJIS">
</form>

When the form is read by WebLogic Server, it processes the data using the SJIS
character set.

• Because all Web clients do not transmit the information after the semicolon in the
above example, you can set the code set to be used for requests by using the
input-charset element in the WebLogic-specific deployment descriptor,
weblogic.xml.

The java-charset-name subelement defines the encoding used to convert data
when the URL of the request contains the path specified with the resource-path
subelement.

This following example ensures that all request parameters that map to the
pattern /foo/* are encoded using the Java character set SJIS.

<input-charset>
<resource-path>/foo/*</resource-path>
<java-charset-name>SJIS</java-charset-name>
</input-charset>

This method works for both GET and POST operations.

5.8 Mapping IANA Character Sets to Java Character Sets
The names assigned by the Internet Assigned Numbers Authority (IANA) to describe
character sets are sometimes different from the names used by Java. Because all HTTP
communication uses the IANA character set names and these names are not always
the same, WebLogic Server internally maps IANA character set names to Java
character set names and can usually determine the correct mapping. However, you

Customizing HTTP Error Responses

5-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

https://jcp.org/aboutJava/communityprocess/final/jsr340/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr340/index.html

can resolve any ambiguities by explicitly mapping an IANA character set to the name
of a Java character set.

To map on IANA character set to a Java character, set the character set names in the
charset-mapping element of the WebLogic-specific deployment descriptor,
weblogic.xml. Define the IANA character set name in the iana-charset-name
element and the Java character set name in the java-charset-name element. See
charset-mapping.

For example:

<charset-mapping>
 <iana-charset-name>Shift-JIS</iana-charset-name>
 <java-charset-name>SJIS</java-charset-name>
</charset-mapping>

5.9 Configuring Implicit Includes at the Beginning and End of JSPs
You can implicitly include preludes (also called headers) and codas (also called
footers) for a group of JSP pages by adding <include-prelude> and <include-
coda> elements respectively within a <jsp-property-group> element in the Web
application web.xml deployment descriptor. Their values are context-relative paths
that must correspond to elements in the Web application. When the elements are
present, the given paths are automatically included (as in an include directive) at the
beginning and end of each JSP page in the property group respectively. When there is
more than one include or coda element in a group, they are included in the order they
appear. When more than one JSP property group applies to a JSP page, the
corresponding elements will be processed in the same order as they appear in the JSP
configuration section.

Consider the following files: /template/prelude.jspf and /template/
coda.jspf. These files are used to include code at the beginning and end of each file
in the following example:

Example 5-2 Implicit Includes

<jsp-config>
 <jsp-property-group>
 <display-name>WebLogicServer</display-name>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>false</el-ignored>
 <scripting-invalid>false</scripting-invalid>
 <is-xml>false</is-xml>
 <include-prelude>/template/prelude.jspf</include-prelude>
 <include-coda>/template/coda.jspf</include-coda>
 </jsp-property-group>
</jsp-config>

5.10 Configuring JSP Property Groups
A JSP property group is a collection of properties that apply to a set of files
representing JSP pages. You define these properties in one or more subelements of the
jsp-property-group element in the web.xml deployment descriptor.

Most properties defined in a JSP property group apply to an entire translation unit,
that is, the requested JSP file that is matched by its URL pattern and all the files it
includes by way of the include directive. The exception is the page-encoding
property, which applies separately to each JSP file matched by its URL pattern. The
applicability of a JSP property group is defined through one or more URL patterns.
URL patterns use the same syntax as defined in chapter 12, "Mapping Requests to

Configuring Implicit Includes at the Beginning and End of JSPs

Creating and Configuring JSPs 5-5

Servlets" of the Servlet 3.1 specification, but are bound at translation time. All the
properties in the property group apply to the resources in the Web application that
match any of the URL patterns. There is an implicit property—that of being a JSP file.
JSP property groups do not affect tag files.

5.10.1 JSP Property Group Rules
The following are some rules that apply to JSP property groups:

• If a resource matches a URL pattern in both a servlet-mapping and a jsp-
property-group, the pattern that is most specific applies (following the same
rules as the servlet specification).

• If the URL patterns are identical, the jsp-property-group takes precedence
over the servlet-mapping.

• If at least one jsp-property-group contains the most specific matching URL
pattern, the resource is considered to be a JSP file, and the properties in that jsp-
property-group apply.

• If a resource is considered to be a JSP file, all include-prelude and include-
coda properties apply from all the jsp-property-group elements with
matching URL patterns. See Configuring Implicit Includes at the Beginning and
End of JSPs.

5.10.2 What You Can Do with JSP Property Groups
You can configure the jsp-property-group to do the following:

• Indicate that a resource is a JSP file (implicit).

• Control disabling of JSP expression language (JSP EL) evaluation.

• Control disabling of Scripting elements.

• Indicate page Encoding information.

• Prelude and Coda automatic includes.

• Indicate that a resource is a JSP document.

For more information on JSP property groups, see chapter 3, "JSP Configuration," of
the JSP 2.2 specification at http://jcp.org/aboutJava/communityprocess/
mrel/jsr245/index.html.

5.11 Writing JSP Documents Using XML Syntax
The JSP 2.3 specification has improved upon the concept of JSP documents by
allowing them to leverage XML syntax. Also, JSP documents have been extended to
use property groups. A JSP document is a JSP page written using XML syntax. JSP
documents need to be described as such, either implicitly or explicitly, to the JSP
container, which then processes them as XML documents, checking for well-
formedness and applying requests like entity declarations, if present. JSP documents
are used to generate dynamic content using the standard JSP semantics.

The following is an example of a simple JSP document that generates, using the JSP
standard tag library, an XML document that has table as the root element. The table
element has three row subelements containing values 1, 2, and 3. For more details and
other examples, see section 6.4, "Examples of JSP Documents," of the JSP 2.3

Writing JSP Documents Using XML Syntax

5-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html

specification at http://jcp.org/aboutJava/communityprocess/mrel/
jsr245/index.html.

Example 5-3 Simple JSP Document

<table>
<c:forEach
xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">
<row>${counter}</row>
</c:forEach>
</table>

5.11.1 How to Use JSP Documents
You can use JSP documents in a number of ways including the following:

• JSP documents can be passed directly to the JSP container. This is becoming more
important as more and more content is authored in XML. The generated content
may be sent directly to a client or it may be part of some XML processing pipeline.

• JSP documents can be manipulated by XML-aware tools.

• JSP documents can be generated from textual representations by applying an XML
transformation, such as XSLT.

• A JSP document can be generated automatically, for example, by serializing some
objects.

5.11.2 Important Information about JSP Documents
The following are some important pieces of information pertaining to JSP documents:

• By default, files with the filename extension .jspx or .tagx are treated as JSP
documents in the XML syntax.

• JSP property groups defined in the web.xml deployment descriptor can control
which files in the Web application can be treated as being in the XML syntax. See
Configuring JSP Property Groups.

• If a JSP file starts with <jsp:root>, then it is used in the XML syntax.

• XML namespaces are used instead of <%@taglib%> taglib tags
(xmlns:prefix="...").

• The <jsp:scriptlet>, <jsp:declaration> and <jsp:expression> tags
are used instead of <%...%>, <%!...%>, and <%=...%>.

• The <jsp:directive.page> and <jsp:directive.include> tags are used
instead of <%@page%> and <%@include%>.

• Inside of attribute values, instead of using <%=...%> to denote an expression, only
"%...%" is used.

For more information on JSP documents, see chapter 6, "JSP Documents," of the JSP 2.3
specification at http://jcp.org/en/jsr/detail?id=245.

Writing JSP Documents Using XML Syntax

Creating and Configuring JSPs 5-7

http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/en/jsr/detail?id=245

Writing JSP Documents Using XML Syntax

5-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

6
Using JSF and JSTL

This chapter describes how to use JavaServer Faces (JSF) and JSP Standard Tag Library
(JSTL) with WebLogic Server.

This chapter includes the following sections:

• Using JSF and JSTL With Web Applications

• JSF Compatibility with Previous Releases

6.1 Using JSF and JSTL With Web Applications
JSF and JSTL are an integral part of Java EE 7 and, as such, are incorporated directly
into WebLogic Server. All Java EE 7 technologies are present on the WebLogic Server
classpath. No additional configuration is required to use any of the Java EE 7
technologies in your applications. Applications deployed to WebLogic Server can
seamlessly make use of JSF 2.2 and JSTL 1.2 without requiring you to deploy and
reference separate shared libraries, as needed in previous releases.

The Java EE 7 API JAR file is included in WL_HOME\wlserver\server\lib
\javax.javaee-api.jar, where WL_HOME represents the top-level installation
directory for WebLogic Server.

For information about referencing these shared libraries with your Web applications,
see Creating Shared Java EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Server.

6.1.1 JavaServer Faces (JSF)
JavaServer Faces technology simplifies building user interfaces for JavaServer
applications. Developers of various skill levels can quickly build Web applications by:
assembling reusable UI components in a page, connecting these components to an
application data source, and wiring client-generated events to server-side event
handlers.

WebLogic Server supports the JSF 2.2 specification at https://jcp.org/en/jsr/
detail?id=344. For general information about JSF technology, see the product
overview at http://www.oracle.com/technetwork/java/javaee/
javaserverfaces-139869.html.

If you selected to install the server examples with your WebLogic Server installation,
you can use the following JSF 2.2 code examples:

• "Using JSF Contracts"

• "Using JSF File Upload"

• "Using JSF Flows"

Using JSF and JSTL 6-1

https://jcp.org/en/jsr/detail?id=344
https://jcp.org/en/jsr/detail?id=344
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

• "Using JSF HTML5"

The JSF 2.2 examples are located in the ORACLE_HOME\wlserver\samples\server
\examples\src\examples\javaee7\jsf directory, where ORACLE_HOME
represents the directory in which you installed WebLogic Server.

For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

6.1.2 JavaServer Pages Standard Tag Libraries (JSTL)
The JavaServer Pages Standard Tag Library (JSTL) encapsulates as simple tags the core
functionality common to many Web applications. JSTL has support for common,
structural tasks, such as:

• iteration and conditionals

• tags for manipulating XML documents

• internationalization tags

• SQL tags

JSTL also provides a framework for integrating existing custom tags with JSTL tags.

WebLogic Server supports the JSTL 1.2 specification at http://jcp.org/en/jsr/
detail?id=52. For general information about JSTL technology, see the product
overview at http://www.oracle.com/technetwork/java/
jstl-137486.html.

6.2 JSF Backward Compatibility
JSF is developed using the Java Community Process, and therefore, should be
backward compatible through JSF 1.0 when compiling and at runtime.

Applications built for JSF 1.2 should run unmodified on WebLogic Server 12.2.1,
assuming you remove any bundled JSF implementation from the application
configuration. If you follow this process and applications do not run, WebLogic Server
provides JSF and JSTL libraries that can be deployed and referenced by applications.
See the following sections:

• Deploying JSF and JSTL Libraries

• Referencing a JSF or JSTL Library

Note:

The jsf-2.0.war deployable library, included in WebLogic Server, is
empty, as applications built for JSF 2.0 will continue to run unmodified using
the built-in JSF 2.2 implementation of WebLogic Server 12.2.1.

WebLogic Server includes the empty jsf-2.0.war library to avoid any
software that depends on its existence. You can leave references to the library
unchanged without harm. However, Oracle recommends removing any
references to this empty library, as these references add no functionality.

JSF Backward Compatibility

6-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=52
http://jcp.org/en/jsr/detail?id=52
http://www.oracle.com/technetwork/java/jstl-137486.html
http://www.oracle.com/technetwork/java/jstl-137486.html

6.2.1 Deploying JSF and JSTL Libraries

Note:

In this release of WebLogic Server, you can deploy JSF 2.2 and JSTL 1.2
applications directly. For backward compatibility, use the following directions
when deploying JSF 1.x and JSTL 1.1 applications.

When deploying JSF 1.2 applications, use the JSF and JSTL libraries which are
provided as Web application libraries. You must deploy the libraries before deploying
the Web application that is using JSF 1.2 or JSTL functionality. You can deploy the
libraries using the WebLogic Server Administration Console or the command-line
weblogic.Deployer utility.

Here's an example of deploying a JSF 1.2 library using the weblogic.Deployer
command-line:

 java weblogic.Deployer -adminurl t3://localhost:7001
 -user weblogic -password weblogic
 -deploy -library
 d:/oracle_home/wlserver/common/deployable-libraries/jsf-1.2.war

This command deploys the JSF 1.2 library using the default library-name,
specification-version and implementation-version defined by the
MANIFEST.MF in the library.

After a library is deployed, the extension-name, specification-version and
implementation-version of the library can be found in the WebLogic Server
Administration Console. This information can also be found in the MANIFEST.MF file
of the library WAR file.

For more information about deploying a Web module, see Preparing Applications and
Modules for Deployment in Deploying Applications to Oracle WebLogic Server.

6.2.2 Referencing a JSF or JSTL Library
To reference a JSF or JSTL library, a standard Web application can define a
<library-ref> descriptor in the application's weblogic.xml file. Here is an
example:

 <library-ref>
 <library-name>jsf</library-name>
 <specification-version>1.2</specification-version>
 <implementation-version>1.2</implementation-version>
 <exact-match>false</exact-match>
 </library-ref>

For more information on referencing a Web application library, see Creating Shared
Java EE Libraries and Optional Packages in Developing Applications for Oracle WebLogic
Server.

JSF Backward Compatibility

Using JSF and JSTL 6-3

JSF Backward Compatibility

6-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

7
Configuring Resources in a Web

Application

This chapter describes how to configure Web application resources in WebLogic
Server.

This chapter includes the following sections:

• Configuring Resources in a Web Application

• Configuring Resources

• Referencing External EJBs

• More about the ejb-ref* Elements

• Referencing Application-Scoped EJBs

• Serving Resources from the CLASSPATH with the ClasspathServlet

• Using CGI with WebLogic Server

7.1 Configuring Resources in a Web Application
The resources that you use in a Web application are generally deployed externally to
the Web application. JDBC data sources can optionally be deployed within the scope
of the Web application as part of an EAR file.

To use external resources in the Web application, you resolve the JNDI resource name
that the application uses with the global JNDI resource name using the web.xml and
weblogic.xml deployment descriptors. (The web.xml file is located in the WEB-INF
directory of your Web application.) See Configuring Resources for more information.

You can also deploy JDBC data sources as part of the Web application EAR file by
configuring those resources in the weblogic-application.xml deployment
descriptor. Resources deployed as part of the EAR file with their scope defined as
application are referred to as application-scoped resources. These resources remain
private to the application, and application components can access the resource names
by adding <resource-ref> elements as explained in Configuring Resources.

7.2 Configuring Resources
When accessing resources such as a data source from a Web application through Java
Naming and Directory Interface (JNDI), you can map the JNDI name you look up in
your code to the actual JNDI name as bound in the global JNDI tree. This mapping is
made using both the web.xml and weblogic.xml deployment descriptors and
allows you to change these resources without changing your application code. You
provide a name that is used in your Java code, the name of the resource as bound in
the JNDI tree, and the Java type of the resource, and you indicate whether security for

Configuring Resources in a Web Application 7-1

the resource is handled programmatically by the servlet or from the credentials
associated with the HTTP request. You can also access JMS module resources, such as
queues, topics, and connection factories. For more information see, Configuring JMS
Application Modules for Deployment in Administering JMS Resources for Oracle
WebLogic Server.

To configure resources:

1. Enter the resource name in the deployment descriptor as you use it in your code,
the Java type, and the security authorization type.

2. Map the resource name to the JNDI name.

The following example illustrates how to use an external data source. It assumes
that you have defined a data source called accountDataSource. For more
information, see Create JDBC generic data sources in Oracle WebLogic Server
Administration Console Online Help.

Example 7-1 Using an External DataSource

servlet code:

javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup
 ("myDataSource");
web.xml entries:

<resource-ref>
. . .
 <res-ref-name>myDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>CONTAINER</res-auth>
. . .
</resource-ref>
weblogic.xml entries:
<resource-description>
 <res-ref-name>myDataSource</res-ref-name>
 <jndi-name>accountDataSource</jndi-name>
</resource-description>

7.3 Referencing External EJBs
Web applications can access EJBs that are deployed as part of a different application (a
different EAR file) by using an external reference. The EJB being referenced exports a
name to the global JNDI tree in its weblogic-ejb-jar.xml deployment descriptor.
An EJB reference in the Web application module can be linked to this global JNDI
name by adding an ejb-reference-description element to its weblogic.xml
deployment descriptor.

This procedure provides a level of indirection between the Web application and an
EJB and is useful if you are using third-party EJBs or Web applications and cannot
modify the code to directly call an EJB. In most situations, you can call the EJB directly
without using this indirection. For more information, see Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

To reference an external EJB for use in a Web application:

1. Enter the EJB reference name you use to look up the EJB in your code, the Java class
name and the class name of the home and remote interfaces of the EJB in the ejb-
ref element of the Java EE standard deployment descriptor, web.xml. (The
web.xml file is located in the WEB-INF directory of your Web application.)

Referencing External EJBs

7-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

2. Map the reference name in the ejb-reference-description element of the
WebLogic-specific deployment descriptor, weblogic.xml, to the JNDI name
defined in the weblogic-ejb-jar.xml file.

If the Web application is part of an Enterprise Application Archive (EAR file), you
can reference an EJB by the name used in the EAR with the ejb-link element of
the Java EE standard deployment descriptor, web.xml.

7.4 More about the ejb-ref* Elements
The ejb-ref element in the web.xml deployment descriptor declares that either a
servlet or JSP is going to be using a particular EJB. The ejb-reference-
description element in the weblogic.xml deployment descriptor binds that
reference to an EJB, which is advertised in the global JNDI tree.

The ejb-reference-descriptor element indicates which ejb-ref element it is
resolving with the ejb-ref-name element. That is, the ejb-reference-
descriptor and ejb-ref elements with the same ejb-ref-name element go
together.

With the addition of the ejb-link syntax, the ejb-reference-descriptor
element is no longer required if the EJB being used is in the same application as the
servlet or JSP that is using the EJB.

The ejb-ref-name element serves two purposes in the web.xml deployment
descriptor:

• It is the name that the user code (servlet or JSP) uses to look up the EJB. Therefore,
if your ejb-ref-name element is ejb1, you would perform a JNDI name lookup
for ejb1 relative to java:comp/env. The ejb-ref-name element is bound into
the component environment (java:comp/env) of the Web application containing
the servlet or JSP.

Assuming the ejb-ref-name element is ejb1, the code in your servlet or JSP
should look like:

Context ctx = new InitialContext();
ctx = (Context)ctx.lookup("java:comp/env");
Object o = ctx.lookup("ejb1");
Ejb1Home home = (Ejb1Home) PortableRemoteObject.narrow(o, Ejb1Home.class);

• It links the ejb-ref and ejb-reference-descriptor elements together.

7.5 Referencing Application-Scoped EJBs
Within an application, WebLogic Server binds any EJBs referenced by other
application components to the environments associated with those referencing
components. These resources are accessed at run time through a JNDI name lookup
relative to java:comp/env.

The following is an example of an application deployment descriptor
(application.xml) for an application containing an EJB and a Web application, also
called an Enterprise Application. (For the sake of brevity, the XML header is not
included in this example.)

Example 7-2 Example Deployment Descriptor

 <application>
 <display-name>MyApp</display-name>
 <module>

More about the ejb-ref* Elements

Configuring Resources in a Web Application 7-3

 <web>
 <web-uri>myapp.war</web-uri>
 <context-root>myapp</context-root>
 </web>
 </module>
 <module>
 <ejb>ejb1.jar</ejb>
 </module>
 </application>

To allow the code in the Web application to use an EJB in ejb1.jar, the Java EE
standard Web application deployment descriptor, web.xml, must include an ejb-
ref stanza that contains an ejb-link referencing the JAR file and the name of the
EJB that is being called.

The format of the ejb-link entry must be as follows:

filename#ejbname

where filename is the name of the JAR file, relative to the Web application, and
ejbname is the EJB within that JAR file. The ejb-link element should look like the
following:

<ejb-link>../ejb1.jar#myejb</ejb-link>

Note that since the JAR path is relative to the WAR file, it begins with "../". Also, if
the ejbname is unique across the application, the JAR path may be dropped. As a
result, your entry may look like the following:

<ejb-link>myejb</ejb-link>

The ejb-link element is a sub-element of an ejb-ref element contained in the Web
application's web.xml descriptor. The ejb-ref element should look like the
following:

Example 7-3 <ejb-ref> Element

 <web-app>
 ...
 <ejb-ref>
 <ejb-ref-name>ejb1</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>mypackage.ejb1.MyHome</home>
 <remote>mypackage.ejb1.MyRemote</remote>
 <ejb-link>../ejb1.jar#myejb</ejb-link>
 </ejb-ref>
 ...
 </web-app>

Referring to the syntax for the ejb-link element in the above example,

<ejb-link>../ejb1.jar#ejb1</ejb-link>,

the portion of the syntax to the left of the # is a relative path to the EJB module being
referenced. The syntax to the right of # is the particular EJB being referenced in that
module. In the above example, the EJB JAR and WAR files are at the same level.

The name referenced in the ejb-link (in this example, myejb) corresponds to the
ejb-name element of the referenced EJB's descriptor. As a result, the deployment
descriptor (ejb-jar.xml) of the EJB module that this ejb-ref element is
referencing should have an entry similar to the following:

Referencing Application-Scoped EJBs

7-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Example 7-4 <ejb-jar> Element

 <ejb-jar>
 ...
 <enterprise-beans>
 <session>
 <ejb-name>myejb</ejb-name>
 <home>mypackage.ejb1.MyHome</home>
 <remote>mypackage.ejb1.MyRemote</remote>
 <ejb-class>mypackage.ejb1.MyBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 ...
 </ejb-jar>

Notice the ejb-name element is set to myejb.

At run time, the Web application code looks up the EJB's JNDI name relative to
java:/comp/env. The following is an example of the servlet code:

MyHome home = (MyHome)ctx.lookup("java:/comp/env/ejb1");

The name used in this example (ejb1) is the ejb-ref-name defined in the ejb-ref
element of the web.xml segment above.

7.6 Serving Resources from the CLASSPATH with the ClasspathServlet
If you need to serve classes or other resources from the system CLASSPATH, or from
the WEB-INF/classes directory of a Web application, you can use a special servlet
called the ClasspathServlet. The ClasspathServlet is useful for applications
that use applets or RMI clients and require access to server-side classes. The
ClasspathServlet is implicitly registered and available from any application.

The ClasspathServlet is always enabled by default. To disable it, set the
ServerMBean parameter ClassPathServletDisabled to true (default =
false).

The ClasspathServlet returns the classes or resources from the system
CLASSPATH in the following order:

1. WEB-INF/classes

2. JAR files under WEB-INF/lib/*

3. system CLASSPATH

To serve a resource from the WEB-INF/classes directory of a Web application, call
the resource with a URL such as:

http://server:port/myWebApp/classes/my/resource/myClass.class

In this case, the resource is located in the following directory, relative to the root of the
Web application:

WEB-INF/classes/my/resource/myClass.class

Serving Resources from the CLASSPATH with the ClasspathServlet

Configuring Resources in a Web Application 7-5

Note:

Because the ClasspathServlet serves any resource located in the system
CLASSPATH, do not place resources that should not be publicly available in
the system CLASSPATH.

7.7 Using CGI with WebLogic Server

Note:

WebLogic Server provides functionality to support your legacy Common
Gateway Interface (CGI) scripts. For new projects, Oracle recommends that
you use HTTP servlets or JavaServer Pages.

WebLogic Server supports all CGI scripts through an internal WebLogic servlet called
the CGIServlet. To use CGI, register the CGIServlet in the Web application
deployment descriptor. See Configuring How a Client Accesses a Web Application.

7.7.1 Configuring WebLogic Server to Use CGI
To configure CGI in WebLogic Server:

1. Declare the CGIServlet in your Web application by using the servlet and
servlet-mapping elements in the Java EE standard Web application deployment
descriptor, web.xml. (The web.xml file is located in the WEB-INF directory of
your Web application.) The class name for the CGIServlet is
weblogic.servlet.CGIServlet. You do not need to package this class in your
Web application.

2. Register the following initialization attributes for the CGIServlet by defining the
following init-param elements:

• cgiDir—The path to the directory containing your CGI scripts. You can
specify multiple directories, separated by a ";" (Windows) or a ":" (UNIX). If
you do not specify cgiDir, the directory defaults to a directory named cgi-
bin under the Web application root.

• useByteStream—By default, character streams are used to read the output of
CGI scripts. When scripts produce binary data, the stream may become
corrupted due to character encoding. Use the useByteStream parameter to keep
the stream from becoming corrupted. Using this parameter for ascii output also
improves performance.

• extension mapping—Maps a file extension to the interpreter or executable
that runs the script. If the script does not require an executable, this
initialization attribute may be omitted.

• The param-name for extension mappings must begin with an asterisk followed
by a dot, followed by the file extension, for example, *.pl.

• The param-value contains the path to the interpreter or executable that runs
the script. You can create multiple mappings by creating a separate init-
param element for each mapping.

Using CGI with WebLogic Server

7-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Example 7-5 Example Web Application Deployment Descriptor Entries for
Registering the CGIServlet

<servlet>
 <servlet-name>CGIServlet</servlet-name>
 <servlet-class>weblogic.servlet.CGIServlet</servlet-class>
 <init-param>
 <param-name>cgiDir</param-name>
 <param-value>
 /bea/wlserver6.0/config/mydomain/applications/myWebApp/cgi-bin
 </param-value>
 </init-param>
 <init-param>
 <param-name>*.pl</param-name>
 <param-value>/bin/perl.exe</param-value>
 </init-param>
</servlet>
...
<servlet-mapping>
 <servlet-name>CGIServlet</servlet-name>
 <url-pattern>/cgi-bin/*</url-pattern>
</servlet-mapping>

7.7.2 Requesting a CGI Script
The URL used to request a Perl script must follow the pattern:

http://host:port/myWebApp/cgi-bin/myscript.pl

Where

host:port—Host name and port number of WebLogic Server.

myWebApp—Name of your Web application.

cgi-bin—url-pattern name mapped to the CGIServlet.

myscript.pl—Name of the Perl script that is located in the directory specified by
the cgiDir initialization attribute.

7.7.3 CGI Best Practices
For a list of CGI Best Practices, see CGI Best Practices.

Using CGI with WebLogic Server

Configuring Resources in a Web Application 7-7

Using CGI with WebLogic Server

7-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

8
WebLogic Annotation for Web Components

This chapter describes how to annotate Web components in WebLogic Server.

This chapter includes the following sections:

• Servlet Annotation and Dependency Injection

• Annotating Servlets

8.1 Servlet Annotation and Dependency Injection
The servlet 3.1 specification (see http://jcp.org/en/jsr/detail?id=340)
provides annotations to enable declarative-style programming.

Note:

As of WebLogic Server 12.1.3, WebLogic Server-specific annotations have been
deprecated and will be removed in a future release: @WLServlet, @WLFilter,
and @WLInitParam, in favor of the standard annotations defined in the
Servlet 3.1 specification. Also, instead of
weblogic.servlet.http.AbstractAsyncServlet, you should use the
standard asynchronous processing model defined in the Servlet 3.1
specification.

The servlet specification states that annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are
used to declare dependencies on external resources. The container will detect
annotations on such components and inject necessary dependencies before the
component's life cycle methods are invoked. Dependency Injection (DI) will only be
done on certain components, as described in Web Component Classes That Support
Annotations.

Annotation processing and DI will be performed on all Web applications that have the
version set to 2.5 or higher. However, annotation processing is expensive and it can
increase the deployment time for Web applications depending on the size of the
included classes. Set the metadata-complete attribute to true in the web.xml
descriptor if your Web application does not have any annotations and if you have the
version set to 2.5 or higher to avoid unnecessary scanning of the Web applications
classes for annotations. Alternatively, you can turn off annotation processing and DI
for all the Web applications by setting -Dweblogic.servlet.DIDisabled=true
flag when starting WebLogic Server.

For more information about using Java EE annotations and dependency injection with
WebLogic Server applications, see Using Java EE Annotations and Dependency
Injection and Using Contexts and Dependency Injection for the Java EE Platform in
Developing Applications for Oracle WebLogic Server. For detailed information about EJB-

WebLogic Annotation for Web Components 8-1

http://jcp.org/en/jsr/detail?id=340

specific annotations for WebLogic Server Enterprise JavaBeans, see Developing
Enterprise JavaBeans for Oracle WebLogic Server.

If you selected to install the server examples, you will find this Servlet 3.x annotation
code example, "Using Annotations for Servlets, Filters and Listeners," in the
ORACLE_HOME\wlserver\samples\server\examples\examples\src
\examples\javaee7\servlet\annotation directory of your WebLogic Server
distribution, where ORACLE_HOME represents the directory in which you installed the
WebLogic Server. For more information about the WebLogic Server code examples,
see Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

8.1.1 Web Component Classes That Support Annotations
This section describes the behavior of annotations and dependency injection (DI) of
resources in a Java EE compliant Web container.

The Web container only processes annotations for the types of classes listed in
Table 8-1.

Table 8-1 Web Components and Interfaces Supporting Annotations and
Dependency Injection

Component Type Interfaces

Servlets
javax.servlet.Servlet

Filters
javax.servlet.Filter

Listeners
javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
javax.servlet.AsyncListener

Tag handlers
javax.servlet.jsp.tagext.SimpleTag
javax.servlet.jsp.tagext.BodyTag

The Web container will not process annotations on classes like Java Beans and other
helper classes. The Web container follows these steps to achieve DI:

1. Annotation Processing—The Web container processes annotations during the
Web application deployment phase. As annotations are processed, the container
figures out the relevant entries in the descriptor that get affected by the annotation
and updates the descriptor tree. The servlet specification indicates that all
annotations can be declared in the descriptor by defining an injection target. The
Web container updates the descriptor tree with the injection targets so that as
deployment continues the JNDI tree is updated with the necessary entries.

2. Dependency Injection (DI)—DI is done when instances are created (for the types
listed in Table 8-1). For listeners and filters, this occurs during the deployment
phase, and for servlets it can occur during deployment or run time.

Servlet Annotation and Dependency Injection

8-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Note:

In any Web application component, if one DI fails, it will cause all subsequent
DIs upon the same component to be ignored.

8.1.2 Annotations Supported By a Web Container
Table 8-2 lists all the annotations that must be supported by the Web container.

Table 8-2 List of Supported Annotations

@Annotation Specification Reference

DeclaresRoles 15.5.1

EJB 15.5.2

EJBs 15.5.3

PersistenceContext 15.5.5

PersistenceUnit 15.5.7

PersistenceUnits 15.5.8

PersistenceContexts 15.5.6

PostConstruct 15.5.9

PreDestroy 15.5.10

Resource 15.5.4

Resources 15.5.11

WebServiceRef 15.5.13

WebServiceRefs 15.5.14

RunAs 15.5.12

The Web container makes use of the Java EE container's annotation processing and
dependency injection mechanisms to achieve this functionality.

The specification states that the Web container should not process annotations when
metadata-complete attributes are set to true in the web.xml descriptor. If
annotations are properly defined and annotation processing succeeds and
dependencies are properly injected, the annotated fields are initialized properly and
annotated methods are invoked at the proper phase in the life cycle. If DI fails, these
annotated fields will be null.

Servlet Annotation and Dependency Injection

WebLogic Annotation for Web Components 8-3

Note:

If multiple methods in a Web component class, such as a servlet, filter, and
such, are annotated with PostConstruct or PreDestroy, then the Web
component will fail to deploy such an application. Similarly, if an EJB
component class, such as a session bean, is annotated with PostConstruct
or PreDestroy, or an EJB interceptor is annotated with PostConstruct,
PreDestroy, PostActivate, or PrePassivate, then the EJB component
will also fail to deploy such an application.

8.1.2.1 Fault Detection and Recovery

Any failure during annotation processing will yield a deployment exception that will
prevent deployment of the Web application. If a failure happens during DI, the
container will log a warning message in the server logs indicating the reason for the
failure. The annotated fields in the instance of the class will be null and any life cycle
annotated methods will not be invoked in case of DI failure.

8.1.2.2 Limitations

The WebLogic servlet container supports annotations on Web components that are
declared in the web.xml descriptor. Any listeners, filters or servlets registered
dynamically via the weblogic.servlet.WeblogicServletContext method will
not have their annotations processed and no DI will be done for such components.

8.2 Annotating Servlets

Note:

As of WebLogic Server 12.1.3, WebLogic Server-specific annotations have been
deprecated and will be removed in a future release: @WLServlet, @WLFilter,
and @WLInitParam, in favor of the standard annotations defined in the
Servlet 3.1 specification.

The WebLogic servlet container provides the @WLServlet annotation for servlets and
the WLFilter annotation for filters that you develop in a Web application without
having to declare them in a web.xml descriptor. The WebLogic servlet container also
provides the WLInitParam annotation to specify the initial parameters for servlets
and filters declared using the WLServlet and WLFilter annotations.

All the required metadata can be annotated in the servlet or filter and the container
will detect them and update the descriptor tree so that the annotated servlet or filter is
deployed.

8.2.1 WLServlet
You can annotate a servlet class with WLServlet annotation
(weblogic.servlet.annotation.WLServlet). This annotation defines various
attributes for declaring parameters for the servlet. All attributes on this annotation are
optional.

Annotating Servlets

8-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

8.2.1.1 Attributes

Table 8-3 Attributes of WLServlet Annotation

Name Description Data Type Required?

displayName Display name for the servlet after
deployment

String No

description Servlet description String No

icon Icon location String No

name Servlet name String No

initParams Initialization parameters for the servlet WLInitPara
m[]

No

loadOnStartup Whether the servlet should load on
startup

int No

runAs The run-as user for the servlet String No

mapping The url-pattern for the servlet String[] No

Example 8-1 illustrates the usage of the annotation in a servlet class.

Example 8-1 WLServlet Annotation

@WLServlet (
 name = "FOO",
 runAs = "SuperUser"
 initParams = { @WLInitParam (name="one", value="1") }
 mapping = {"/foo/*"}
)
. . .

The WebLogic servlet container detects the annotation and installs this servlet for
deployment. During the annotation processing phase of the Web applications
deployment, the descriptor bean corresponding to web.xml descriptor is updated
with the relevant entries corresponding to the annotation.

Example 8-2 shows how the descriptor bean looks after being updated.

Example 8-2 Updated web.xml Descriptor

<web-app>
. . .
 <servlet>
 <servlet-name>FOO</servlet-name>
 <servlet-class>my.TestServlet</servlet-class>
 <init-param>
 <param-name>one</param-name>
 <param-value>1</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>FOO</servlet-name>
 <url-pattern>/foo/*</url-pattern>
 </servlet-mapping>

Annotating Servlets

WebLogic Annotation for Web Components 8-5

. . .
</web-app>

8.2.1.2 Fault Detection And Recovery

Any error during the processing of this annotation will result in a deployment error
with a proper message in the server logs.

8.2.2 WLFilter
You can annotate a filter class with WLFilter annotation
(weblogic.servlet.annotation.WLFilter). This annotation defines various
attributes for declaring parameters for the filter. All attributes on this annotation are
optional.

8.2.2.1 Attributes

Table 8-4 Attributes of WLFilter Annotation

Name Description Data Type Required?

displayName Display name for the filter after
deployment

String No

description Filter description String No

icon Icon location String No

name Filter name String No

initParams Initialization parameters for the filter WLInitPara
m[]

No

mapping The url-pattern for the filter String[] No

Example 8-3 illustrates the usage of the annotation in a filter class.

Example 8-3 WLFilter Annotation

@WLFilter (
 name = "BAR",
 initParams = { @WLInitParam (name="one", value="1") }
 Mapping = {"/bar/*"}
)
. . .

The WebLogic servlet container detects the annotation and installs this filter for
deployment. During the annotation processing phase of the Web application
deployment, the descriptor bean corresponding to web.xml descriptor is updated
with the relevant entries corresponding to the annotation.

Example 8-4 shows how the descriptor bean looks after being updated.

Example 8-4 Updated web.xml Descriptor

<web-app>
. . .
 <filter>
 <filter-name>BAR</filter-name>
 <filter-class>my.TestFilter</filter-class>
 <init-param>

Annotating Servlets

8-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

 <param-name>one</param-name>
 <param-value>1</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>BAR</filter-name>
 <url-pattern>/bar/*</url-pattern>
 </filter-mapping>
. . .
</web-app>

8.2.2.2 Fault Detection and Recovery

Any error during the processing of this annotation will result in a deployment error
with a proper message in the server logs.

8.2.3 WLInitParam
You can use the @WLInitParam annotation
(weblogic.servlet.annotation.WLInitParam) to specify the initial parameters
for servlets and filters declared using the @WLServlet and @WLFilter annotations.

8.2.3.1 Attributes

Table 8-5 Attributes of WLFilter Annotation

Name Description Data Type Required?

name The initial parameter name. String No

value The initial parameter value. String No

Example 8-5 provides an example of WLInitParam annotation.

Example 8-5 Example WLInitParam Annotation

initParams = {@WLInitParam(name="one", value="1"),
 @WLInitParam(name="two", value="2")}

Annotating a servlet or filter class with the above annotation is equivalent to declaring
the init params in Example 8-6 in the web.xml descriptor.

Example 8-6 Init Params In web.xml

. . .
<init-param>
 <param-name>one</param-name>
 <param-value>1</param-value>
</init-param>
<init-param>
 <param-name>two</param-name>
 <param-value>2</param-value>
</init-param>
. . .

Annotating Servlets

WebLogic Annotation for Web Components 8-7

Annotating Servlets

8-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

9
Servlet Programming Tasks

This chapter describes how to write HTTP servlets in a WebLogic Server environment.

This chapter includes the following sections:

• Initializing a Servlet

• Providing an HTTP Response

• Retrieving Client Input

• Securing Client Input in Servlets

• Using Cookies in a Servlet

• Response Caching

• Using WebLogic Services from an HTTP Servlet

• Accessing Databases

• Threading Issues in HTTP Servlets

• Dispatching Requests to Another Resource

• Proxying Requests to Another Web Server

• Clustering Servlets

• Referencing a Servlet in a Web Application

• URL Pattern Matching

• The SimpleApacheURLMatchMap Utility

• A Future Response Model for HTTP Servlets

9.1 Initializing a Servlet
Normally, WebLogic Server initializes a servlet when the first request is made for the
servlet. Subsequently, if the servlet is modified, the destroy() method is called on
the existing version of the servlet. Then, after a request is made for the modified
servlet, the init() method of the modified servlet is executed. For more information,
see Servlet Best Practices.

When a servlet is initialized, WebLogic Server executes the init() method of the
servlet. Once the servlet is initialized, it is not initialized again until you restart
WebLogic Server or modify the servlet code. If you choose to override the init()
method, your servlet can perform certain tasks, such as establishing database
connections, when the servlet is initialized. (See Overriding the init() Method.)

Servlet Programming Tasks 9-1

9.1.1 Initializing a Servlet when WebLogic Server Starts
Rather than having WebLogic Server initialize a servlet when the first request is made
for it, you can first configure WebLogic Server to initialize a servlet when the server
starts. You do this by specifying the servlet class in the load-on-startup element in
the Java EE standard Web application deployment descriptor, web.xml. The order in
which resources within a Web application are initialized is as follows:

1. ServletContextListeners—the contextCreated() callback for
ServletContextListeners registered for this Web application.

2. ServletFilters init() method.

3. Servlet init() method, marked as load-on-startup in web.xml.

You can pass parameters to an HTTP servlet during initialization by defining these
parameters in the Web application containing the servlet. You can use these
parameters to pass values to your servlet every time the servlet is initialized without
having to rewrite the servlet.

For example, the following entries in the Java EE standard Web application
deployment descriptor, web.xml, define two initialization parameters: greeting,
which has a value of Welcome and person, which has a value of WebLogic
Developer.

<servlet>
 ...
 <init-param>
 <description>The salutation</description>
 <param-name>greeting</param-name>
 <param-value>Welcome</param-value>
 </init-param>
 <init-param>
 <description>name</description>
 <param-name>person</param-name>
 <param-value>WebLogic Developer</param-value>
 </init-param>
</servlet>

To retrieve initialization parameters, call the getInitParameter(String name)
method from the parent javax.servlet.GenericServlet class. When passed the
name of the parameter, this method returns the parameter's value as a String.

9.1.2 Overriding the init() Method
You can have your servlet execute tasks at initialization time by overriding the
init() method. The following code fragment reads the <init-param> tags that
define a greeting and a name in the Java EE standard Web application deployment
descriptor, web.xml:

String defaultGreeting;
String defaultName;

public void init(ServletConfig config)
 throws ServletException {
 if ((defaultGreeting = getInitParameter("greeting")) == null)
 defaultGreeting = "Hello";

 if ((defaultName = getInitParameter("person")) == null)

Initializing a Servlet

9-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

 defaultName = "World";
}

The values of each parameter are stored in the class instance variables
defaultGreeting and defaultName. The first code tests whether the parameters
have null values, and if null values are returned, provides appropriate default values.

You can then use the service() method to include these variables in the response.
For example:

out.print("<body><h1>");
out.println(defaultGreeting + " " + defaultName + "!");
out.println("</h1></body></html>");

The init() method of a servlet does whatever initialization work is required when
WebLogic Server loads the servlet. The default init() method does all of the initial
work that WebLogic Server requires, so you do not need to override it unless you have
special initialization requirements. If you do override init(), first call
super.init() so that the default initialization actions are done first.

9.2 Providing an HTTP Response
This section describes how to provide a response to the client in your HTTP servlet.
Deliver all responses by using the HttpServletResponse object that is passed as a
parameter to the service() method of your servlet.

1. Configure the HttpServletResponse.

Using the HttpServletResponse object, you can set several servlet properties
that are translated into HTTP header information:

• At a minimum, set the content type using the setContentType() method
before you obtain the output stream to which you write the page contents. For
HTML pages, set the content type to text/html. For example:

res.setContentType("text/html");

• (optional) You can also use the setContentType() method to set the
character encoding. For example:

res.setContentType("text/html;ISO-88859-4");

• Set header attributes using the setHeader() method. For dynamic responses,
it is useful to set the "Pragma" attribute to no-cache, which causes the
browser to always reload the page and ensures the data is current. For
example:

res.setHeader("Pragma", "no-cache");

2. Compose the HTML page.

The response that your servlet sends back to the client must look like regular
HTTP content, essentially formatted as an HTML page.Your servlet returns an
HTTP response through an output stream that you obtain using the response
parameter of the service() method. To send an HTTP response:

a. Obtain an output stream by using the HttpServletResponse object and
one of the methods shown in the following two examples:

• PrintWriter out = res.getWriter();

Providing an HTTP Response

Servlet Programming Tasks 9-3

• ServletOutputStream out = res.getOutputStream();

b. Write the contents of the response to the output stream using the print()
method. You can use HTML tags in these statements. For example:

out.print("<html><head><title>My Servlet</title>");
out.print("</head><body><h1>");
out.print("Welcome");
out.print("</h1></body></html>");

Any time you print data that a user has previously supplied, Oracle
recommends that you remove any HTML special characters that a user might
have entered. If you do not remove these characters, your Web site could be
exploited by cross-site scripting. For more information, refer to Securing
Client Input in Servlets.

Do not close the output stream by using the close() method, and avoid
flushing the contents of the stream. If you do not close or flush the output
stream, WebLogic Server can take advantage of persistent HTTP connections,
as described in the next step.

3. Optimize the response.

By default, WebLogic Server attempts to use HTTP persistent connections
whenever possible. A persistent connection attempts to reuse the same HTTP
TCP/IP connection for a series of communications between client and server.
Application performance improves because a new connection need not be opened
for each request. Persistent connections are useful for HTML pages containing
many in-line images, where each requested image would otherwise require a new
TCP/IP connection.

Using the WebLogic Server Administration Console, you can configure the
amount of time that WebLogic Server keeps an HTTP connection open.

WebLogic Server must know the length of the HTTP response in order to establish
a persistent connection and automatically adds a Content-Length property to
the HTTP response header. In order to determine the content length, WebLogic
Server must buffer the response. However, if your servlet explicitly flushes the
ServletOutputStream, WebLogic Server cannot determine the length of the
response and therefore cannot use persistent connections. For this reason, you
should avoid explicitly flushing the HTTP response in your servlets.

You may decide that, in some cases, it is better to flush the response early to
display information in the client before the page has completed; for example, to
display a banner advertisement while some time-consuming page content is
calculated. Conversely, you may want to increase the size of the buffer used by
the servlet engine to accommodate a larger response before flushing the response.
You can manipulate the size of the response buffer by using the related methods
of the javax.servlet.ServletResponse interface. For more information, see
the Servlet 3.1 specification at http://jcp.org/en/jsr/detail?id=340.

The default value of the WebLogic Server response buffer is 12K and the buffer
size is internally calculated in terms of CHUNK_SIZE where CHUNK_SIZE =
4088 bytes; if the user sets 5Kb the server rounds the request up to the nearest
multiple of CHUNK_SIZE which is 2 and the buffer is set to 8176 bytes.

9.3 Retrieving Client Input
The HTTP servlet API provides a interface for retrieving user input from Web pages.

Retrieving Client Input

9-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=340

An HTTP request from a Web browser can contain more than the URL, such as
information about the client, the browser, cookies, and user query parameters. Use
query parameters to carry user input from the browser. Use the GET method appends
parameters to the URL address, and the POST method includes them in the HTTP
request body.

HTTP servlets need not deal with these details; information in a request is available
through the HttpServletRequest object and can be accessed using the
request.getParameter() method, regardless of the send method.

Read the following for more detailed information about the ways to send query
parameters from the client:

• Encode the parameters directly into the URL of a link on a page. This approach
uses the GET method for sending parameters. The parameters are appended to the
URL after a ? character. Multiple parameters are separated by a & character.
Parameters are always specified in name=value pairs so the order in which they are
listed is not important. For example, you might include the following link in a Web
page, which sends the parameter color with the value purple to an HTTP servlet
called ColorServlet:

<a href=
 "http://localhost:7001/myWebApp/ColorServlet?color=purple">
 Click Here For Purple!

• Manually enter the URL, with query parameters, into the browser location field.
This is equivalent to clicking the link shown in the previous example.

• Query the user for input with an HTML form. The contents of each user input field
on the form are sent as query parameters when the user clicks the form's Submit
button. Specify the method used by the form to send the query parameters (POST
or GET) in the <FORM> tag using the METHOD="GET|POST" attribute.

Query parameters are always sent in name=value pairs, and are accessed through the
HttpServletRequest object. You can obtain an Enumeration of all parameter
names in a query, and fetch each parameter value by using its parameter name. A
parameter usually has only one value, but it can also hold an array of values.
Parameter values are always interpreted as Strings, so you may need to cast them to
a more appropriate type.

The following sample from a service() method examines query parameter names
and their values from a form. Note that request is the HttpServletRequest
object.

Enumeration params = request.getParameterNames();
String paramName = null;
String[] paramValues = null;

while (params.hasMoreElements()) {
 paramName = (String) params.nextElement();
 paramValues = request.getParameterValues(paramName);
 System.out.println("\nParameter name is " + paramName);
 for (int i = 0; i < paramValues.length; i++) {
 System.out.println(", value " + i + " is " +
 paramValues[i].toString());
 }
}

Retrieving Client Input

Servlet Programming Tasks 9-5

Note:

Any time you print data that a user has supplied, Oracle recommends that
you remove any HTML special characters that a user might have entered. If
you do not remove these characters, your Web site could be exploited by
cross-site scripting. For more information, refer to Securing Client Input in
Servlets.

9.3.1 Methods for Using the HTTP Request
This section defines the methods of the javax.servlet.HttpServletRequest
interface that you can use to get data from the request object. You should keep the
following limitations in mind:

• You cannot read request parameters using any of the getParameter() methods
described in this section and then attempt to read the request with the
getInputStream() method.

• You cannot read the request with getInputStream() and then attempt to read
request parameters with one of the getParameter() methods.

If you attempt either of the preceding procedures, an IllegalStateException is
thrown.

You can use the following methods of javax.servlet.HttpServeletRequest to
retrieve data from the request object:

• HttpServletRequest.getMethod()—Allows you to determine the request
method, such as GET or POST.

• HttpServletRequest.getQueryString()—Allows you to access the query
string. (The remainder of the requested URL, following the ? character.)

• HttpServletRequest.getParameter()—Returns the value of a parameter.

• HttpServletRequest.getParameterNames()—Returns an array of
parameter names.

• HttpServletRequest.getParameterValues()—Returns an array of values
for a parameter.

• HttpServletRequest.getInputStream() —Reads the body of the request as
binary data. If you call this method after reading the request parameters with
getParameter(), getParameterNames(), or getParameterValues(), an
IllegalStateException is thrown.

9.3.2 Example: Retrieving Input by Using Query Parameters
In Example 9-1, the HelloWorld2.java servlet example is modified to accept a user
name as a query parameter, in order to display a more personal greeting. The
service() method is shown here.

Example 9-1 Retrieving Input with the service() Method

public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
{

Retrieving Client Input

9-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

 String name, paramName[];
 if ((paramName = req.getParameterValues("name"))
 != null) {
 name = paramName[0];
 }
 else {
 name = defaultName;
 }

 // Set the content type first
 res.setContentType("text/html");
 // Obtain a PrintWriter as an output stream
 PrintWriter out = res.getWriter();

 out.print("<html><head><title>" +
 "Hello World!" + </title></head>");
 out.print("<body><h1>");
 out.print(defaultGreeting + " " + name + "!");
 out.print("</h1></body></html>");
}

The getParameterValues() method retrieves the value of the name parameter
from the HTTP query parameters. You retrieve these values in an array of type
String. A single value for this parameter is returned and is assigned to the first
element in the name array. If the parameter is not present in the query data, null is
returned; in this case, name is assigned to the default name that was read from the
<init-param> by the init() method.

Do not base your servlet code on the assumption that parameters are included in an
HTTP request. The getParameter() method has been deprecated; as a result, you
might be tempted to shorthand the getParameterValues() method by tagging an
array subscript to the end. However, this method can return null if the specified
parameter is not available, resulting in a NullPointerException.

For example, the following code triggers a NullPointerException:

String myStr = req.getParameterValues("paramName")[0];

Instead, use the following code:

if ((String myStr[] =
 req.getParameterValues("paramName"))!=null) {
 // Now you can use the myStr[0];
}
else {
 // paramName was not in the query parameters!
}

9.4 Securing Client Input in Servlets
The ability to retrieve and return user-supplied data can present a security
vulnerability called cross-site scripting, which can be exploited to steal a user's security
authorization. For a detailed description of cross-site scripting, refer to "Understanding
Malicious Content Mitigation for Web Developers" (a CERT security advisory) at
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

To remove the security vulnerability, before you return data that a user has supplied,
scan the data for any of the HTML special characters in Table 9-1. If you find any
special characters, replace them with their HTML entity or character reference.

Securing Client Input in Servlets

Servlet Programming Tasks 9-7

http://www.cert.org/tech_tips/malicious_code_mitigation.html

Replacing the characters prevents the browser from executing the user-supplied data
as HTML.

Table 9-1 HTML Special Characters that Must Be Replaced

Replace this special character With this entity/character reference

< <

> >

(&40;

) &41;

&35;

& &38;

9.4.1 Using a WebLogic Server Utility Method
WebLogic Server provides the
weblogic.servlet.security.Utils.encodeXSS() method to replace the
special characters in user-supplied data. To use this method, provide the user-
supplied data as input. For example, to secure the user-supplied data in Example 9-1,
replace the following line:

out.print(defaultGreeting + " " + name + "!");

with the following:

out.print(defaultGreeting + " " +
weblogic.security.servlet.encodeXSS(name) + "!");

To secure an entire application, you must use the encodeXSS() method each time you
return user-supplied data. While the previous example in Example 9-1 is an obvious
location in which to use the encodeXSS() method, Table 9-2 describes other locations
to consider.

Table 9-2 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid
URL, user name

An error page that says user name is
not permitted access.

Status page User name, summary of input from
previous pages

A summary page that asks a user to
confirm input from previous pages.

Database
display

Data presented from a database A page that displays a list of
database entries that have been
previously entered by a user.

9.5 Using Cookies in a Servlet
A cookie is a piece of information that the server asks the client browser to save locally
on the user's disk. Each time the browser visits the same server, it sends all cookies

Using Cookies in a Servlet

9-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

relevant to that server with the HTTP request. Cookies are useful for identifying
clients as they return to the server.

Each cookie has a name and a value. A browser that supports cookies generally allows
each server domain to store up to 20 cookies of up to 4k per cookie.

9.5.1 Setting Cookies in an HTTP Servlet
To set a cookie on a browser, create the cookie, give it a value, and add it to the
HttpServletResponse object that is the second parameter in your servlet's service
method. For example:

Cookie myCookie = new Cookie("ChocolateChip", "100");
myCookie.setMaxAge(Integer.MAX_VALUE);
response.addCookie(myCookie);

This examples shows how to add a cookie called ChocolateChip with a value of 100
to the browser client when the response is sent. The expiration of the cookie is set to
the largest possible value, which effectively makes the cookie last forever. Because
cookies accept only string-type values, you should cast to and from the desired type
that you want to store in the cookie. When using EJBs, a common practice is to use the
home handle of an EJB instance for the cookie value and to store the user's details in the
EJB for later reference.

9.5.2 Retrieving Cookies in an HTTP Servlet
You can retrieve a cookie object from the HttpServletRequest that is passed to
your servlet as an argument to the service() method. The cookie itself is presented
as a javax.servlet.http.Cookie object.

In your servlet code, you can retrieve all the cookies sent from the browser by calling
the getCookies() method. For example:

Cookie[] cookies = request.getCookies();

This method returns an array of all cookies sent from the browser, or null if no
cookies were sent by the browser. Your servlet must process the array in order to find
the correct named cookie. You can get the name of a cookie using the
Cookie.getName() method. It is possible to have more that one cookie with the
same name, but different path attributes. If your servlets set multiple cookies with the
same names, but different path attributes, you also need to compare the cookies by
using the Cookie.getPath() method. The following code illustrates how to access
the details of a cookie sent from the browser. It assumes that all cookies sent to this
server have unique names, and that you are looking for a cookie called
ChocolateChip that may have been set previously in a browser client.

Cookie[] cookies = request.getCookies();
boolean cookieFound = false;

for(int i=0; i < cookies.length; i++) {
 thisCookie = cookies[i];
 if (thisCookie.getName().equals("ChocolateChip")) {
 cookieFound = true;
 break;
 }
}

if (cookieFound) {
 // We found the cookie! Now get its value

Using Cookies in a Servlet

Servlet Programming Tasks 9-9

 int cookieOrder = String.parseInt(thisCookie.getValue());
}

9.5.3 Using Cookies That Are Transmitted by Both HTTP and HTTPS
Because HTTP and HTTPS requests are sent to different ports, some browsers may not
include the cookie sent in an HTTP request with a subsequent HTTPS request (or vice-
versa). This may cause new sessions to be created when servlet requests alternate
between HTTP and HTTPS. To ensure that all cookies set by a specific domain are sent
to the server every time a request in a session is made, set the cookie-domain
element to the name of the domain. The cookie-domain element is a sub-element of
the session-descriptor element in the WebLogic-specific deployment descriptor
weblogic.xml. For example:

<session-descriptor>
 <cookie-domain>mydomain.com</cookie-domain>
</session-descriptor>

The cookie-domain element instructs the browser to include the proper cookie(s) for
all requests to hosts in the domain specified by mydomain.com. For more information
about this property or configuring session cookies, see Setting Up Session
Management .

9.5.4 Application Security and Cookies
Using cookies that enable automatic account access on a machine is convenient, but
can be undesirable from a security perspective. When designing an application that
uses cookies, follow these guidelines:

• Do not assume that a cookie is always correct for a user. Sometimes machines are
shared or the same user may want to access a different account.

• Allow your users to make a choice about leaving cookies on the server. On shared
machines, users may not want to leave automatic logins for their account. Do not
assume that users know what a cookie is; instead, ask a question like:

Automatically login from this computer?

• Always ask for passwords from users logging on to obtain sensitive data. Unless a
user requests otherwise, you can store this preference and the password in the
user's session data. Configure the session cookie to expire when the user quits the
browser.

9.6 Response Caching
The cache filter works similarly to the cache tag with the following exceptions:

• It caches on a page level (or included page) instead of a JSP fragment level.

• Instead of declaring the caching parameters inside the document you can declare
the parameters in the configuration of the Web application.

The cache filter has some default behavior that the cache tag does not for pages that
were not included from another page. The cache filter automatically caches the
response headers Content-Type and Last-Modified. When it receives a request that
results in a cached page it compares the If-Modified-Since request header to the Last-
Modified response header to determine whether it needs to actually serve the content
or if it can send an 302 SC_NOT_MODIFED status with an empty content instead.

Response Caching

9-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

The following example shows how to register a cache filter to cache all the HTML
pages in a Web application using the filter element of the Java EE standard
deployment descriptor, web.xml.

<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>HTML</filter-name>
 <url-pattern>*.html</url-pattern>
</filter-mapping>

The cache system uses soft references for storing the cache. So the garbage collector
might or might not reclaim the cache depending on how recently the cache was
created or accessed. It will clear the soft references in order to avoid throwing an
OutOfMemoryError.

9.6.1 Initialization Parameters
To make sure that if the Web pages were updated at some point you got the new
copies into the cache, you could add a timeout to the filter. Using the init-params you
can set many of the same parameters that you can set for the cache tag:

The initialization parameters are

• Name—The name of the cache. It defaults to the request URI for compatibility with
*.extension URL patterns.

• Timeout—The amount of time since the last cache update that the filter waits until
trying to update the content in the cache again. The default unit is seconds but you
can also specify it in units of ms (milliseconds), s (seconds), m (minutes), h (hours),
or d (days).

• Scope—The scope of the cache can be any one of request, session, application, or
cluster. Request scope is sometimes useful for looping constructs in the page and
not much else. The scope defaults to application. To use cluster scope you must set
up the ClusterListener.

• Key—Specifies that the cache is further specified not only by the name but also by
values of various entries in scopes. These are specified just like the keys in the
CacheTag although you do not have page scope available.

• Vars—The variables calculated by the page that you want to cache. Typically this
is used with servlets that pull information out of the database based on input
parameters.

• Size—Limits the number of different unique key values cached. It defaults to
infinity.

The following example shows where the init-parameter is located in the filter
code.

<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
 <init-param>

• Max-cache-size—This limits the size of an element added to the cache. It
defaults to 64k.

Response Caching

Servlet Programming Tasks 9-11

9.7 Using WebLogic Services from an HTTP Servlet
When you write an HTTP servlet, you have access to many rich features of WebLogic
Server, such as JNDI, EJB, JDBC, and JMS.

The following documents provide additional information about these features:

• Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server

• Developing JDBC Applications for Oracle WebLogic Server

• Developing JNDI Applications for Oracle WebLogic Server

• Developing JMS Applications for Oracle WebLogic Server

9.8 Accessing Databases
WebLogic Server supports the use of Java Database Connectivity (JDBC) from server-
side Java classes, including servlets. JDBC allows you to execute SQL queries from a
Java class and to process the results of those queries. For more information on JDBC
and WebLogic Server, see Developing JDBC Applications for Oracle WebLogic Server.

You can use JDBC in servlets as described in the following sections:

• Connecting to a Database Using a DataSource Object.

• Connecting Directly to a Database Using a JDBC Driver.

9.8.1 Connecting to a Database Using a DataSource Object
A DataSource is a server-side object that references a connection pool. The
connection pool registration defines the JDBC driver, database, login, and other
parameters associated with a database connection. You create DataSource objects
and connection pools through the Administration Console.

Note:

Using a DataSource object is recommended when creating Java EE-
compliant applications.

9.8.1.1 Using a DataSource in a Servlet

1. Register a connection pool using the Administration Console. For more
information, see JDBC Data Source: Configuration: Connection Pool in Oracle
WebLogic Server Administration Console Online Help.

2. Register a DataSource object that points to the connection pool.

3. Look up the DataSource object in the JNDI tree. For example:

Context ctx = null;
// Get a context for the JNDI look up
ctx = new InitialContext(ht);
// Look up the DataSource object
javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

Using WebLogic Services from an HTTP Servlet

9-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

4. Use the DataSource to create a JDBC connection. For example:

java.sql.Connection conn = ds.getConnection();

5. Use the connection to execute SQL statements. For example:

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");
. . .

9.8.2 Connecting Directly to a Database Using a JDBC Driver
Connecting directly to a database is the least efficient way of making a database
connection because a new database connection must be established for each request.
You can use any JDBC driver to connect to your database. Oracle provides JDBC
drivers for Oracle and Microsoft SQL Server. For more information, see Developing
JDBC Applications for Oracle WebLogic Server.

9.9 Threading Issues in HTTP Servlets
When you design a servlet, you should consider how the servlet is invoked by
WebLogic Server under high load. It is inevitable that more than one client will hit
your servlet simultaneously. Therefore, write your servlet code to guard against
sharing violations on shared resources or instance variables.

It is recommended that shared-resource issues be handled on an individual servlet
basis. Consider the following guidelines:

• Wherever possible, avoid synchronization, because it causes subsequent servlet
requests to bottleneck until the current thread completes.

• Define variables that are specific to each servlet request within the scope of the
service methods. Local scope variables are stored on the stack and, therefore, are
not shared by multiple threads running within the same method, which avoids the
need to be synchronized.

• Access to external resources should be synchronized on a Class level, or
encapsulated in a transaction.

9.10 Dispatching Requests to Another Resource
This section provides an overview of commonly used methods for dispatching
requests from a servlet to another resource.

A servlet can pass on a request to another resource, such as a servlet, JSP, or HTML
page. This process is referred to as request dispatching. When you dispatch requests,
you use either the include() or forward() method of the RequestDispatcher
interface.

For a complete discussion of request dispatching, see section 9.2 of the servlet 3.1
specification (see http://jcp.org/en/jsr/detail?id=340).

By using the RequestDispatcher, you can avoid sending an HTTP-redirect
response back to the client. The RequestDispatcher passes the HTTP request to the
requested resource.

To dispatch a request to a particular resource:

1. Get a reference to a ServletContext:

Threading Issues in HTTP Servlets

Servlet Programming Tasks 9-13

http://jcp.org/en/jsr/detail?id=340

ServletContext sc = getServletConfig().getServletContext();

2. Look up the RequestDispatcher object using one of the following methods:

• RequestDispatcher rd = sc.getRequestDispatcher(String
path);

• where path should be relative to the root of the Web application.

• RequestDispatcher rd = sc.getNamedDispatcher(String name);

Replace name with the name assigned to the servlet in the Java EE standard
Web application deployment descriptor, web.xml, with the <servlet-name>
element.

• RequestDispatcher rd =
ServletRequest.getRequestDispatcher(String path);

This method returns a RequestDispatcher object and is similar to the
ServletContext.getRequestDispatcher(String path) method
except that it allows the path specified to be relative to the current servlet. If the
path begins with a / character it is interpreted to be relative to the Web
application.

You can obtain a RequestDispatcher for any HTTP resource within a Web
application, including HTTP Servlets, JSP pages, or plain HTML pages by
requesting the appropriate URL for the resource in the
getRequestDispatcher() method. Use the returned RequestDispatcher
object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:

• rd.forward(request,response); See Forwarding a Request.

• rd.include(request,response); See Including a Request.

9.10.1 Forwarding a Request
Once you have the correct RequestDispatcher, your servlet forwards a request
using the RequestDispatcher.forward() method, passing
HTTPServletRequest and HTTPServletResponse as arguments. If you call this
method when output has already been sent to the client an
IllegalStateException is thrown. If the response buffer contains pending output
that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the
servlet retrieves the ServletOutputStream or the PrintWriter for the response
before forwarding the request, an IllegalStateException is thrown.

All other output from the original servlet is ignored after the request has been
forwarded.

If you are using any type of authentication, a forwarded request, by default, does not
require the user to be re-authenticated. You can change this behavior to require
authentication of a forwarded request by adding the check-auth-on-forward/
element to the container-descriptor element of the WebLogic-specific
deployment descriptor, weblogic.xml. For example:

<container-descriptor>
 <check-auth-on-forward/>
</container-descriptor>

Dispatching Requests to Another Resource

9-14 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

9.10.2 Including a Request
Your servlet can include the output from another resource by using the
RequestDispatcher.include() method, and passing HTTPServletRequest
and HTTPServletResponse as arguments. When you include output from another
resource, the included resource has access to the request object.

The included resource can write data back to the ServletOutputStream or Writer
objects of the response object and then can either add data to the response buffer or
call the flush() method on the response object. Any attempt to set the response
status code or to set any HTTP header information from the included servlet response
is ignored.

In effect, you can use the include() method to mimic a "server-side-include" of
another HTTP resource from your servlet code.

9.10.3 RequestDispatcher and Filters
Servlet 2.3 and older specifications did not specify whether filters should be applied
on forwards and includes. The Servlet 2.4 specification clarifies this by introducing a
new dispatcher element in the web.xml deployment descriptor. Using this
dispatcher element, you can configure a filter-mapping to be applied on
REQUEST/FORWARD/INCLUDE/ERROR. In WebLogic Server 8.1, the default was
REQUEST+FORWARD+INCLUDE. For the old DTD-based deployment descriptors, the
default value has not been changed in order to preserve backward compatibility. For
the new descriptors (schema based) the default is REQUEST.

You can change the default behavior of dispatched requests by setting the filter-
dispatched-requests-enabled element in weblogic.xml. This element
controls whether or not filters are applied to dispatched (include/forward) requests.
The default value for old DTD-based deployment descriptors is true. The default for
the new schema-based descriptors is false.

For more information about RequestDispatcher and filters, see the servlet 3.1
specification at http://jcp.org/en/jsr/detail?id=340. For more information
about writing and configuring filters for WebLogic Server, see Filters.

9.11 Proxying Requests to Another Web Server
The following sections discuss how to proxy HTTP requests to another Web server:

• Overview of Proxying Requests to Another Web Server

• Setting Up a Proxy to a Secondary Web Server

• Sample Deployment Descriptor for the Proxy Servlet

9.11.1 Overview of Proxying Requests to Another Web Server
When you use WebLogic Server as your primary Web server, you may also want to
configure WebLogic Server to pass on, or proxy, certain requests to a secondary Web
server, such as Netscape Enterprise Server, Apache, or Microsoft Internet Information
Server. Any request that gets proxied is redirected to a specific URL.You can even
proxy to another Web server on a different machine.You proxy requests based on the
URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP
request, redirects it to the proxy URL, and sends the response to the client's browser

Proxying Requests to Another Web Server

Servlet Programming Tasks 9-15

http://jcp.org/en/jsr/detail?id=340

back through WebLogic Server. To use the HttpProxyServlet, you must configure
it in a Web application and deploy that Web application on the WebLogic Server that
is redirecting requests.

9.11.1.1 Setting Up a Proxy to a Secondary Web Server

To set up a proxy to a secondary HTTP server:

1. Register the proxy servlet in your Web application deployment descriptor (see
Example 9-2). The Web application must be the default Web application of the
server instance that is responding to requests. The class name for the proxy servlet
is weblogic.servlet.proxy.HttpProxyServlet.

2. Define an initialization parameter for the ProxyServlet with a <param-name>
of redirectURL and a <param-value> containing the URL of the server to
which proxied requests should be directed.

3. Optionally, define the following <KeyStore> initialization parameters to use two-
way SSL with your own identity certificate and key. If no <KeyStore> is specified
in the deployment descriptor, the proxy will assume one-way SSL.

• <KeyStore>—The key store location in your Web application.

• <KeyStoreType>—The key store type. If it is not defined, the default type will
be used instead.

• <PrivateKeyAlias>—The private key alias.

• <KeyStorePasswordProperties>— A property file in your Web
application that defines encrypted passwords to access the key store and private
key alias. The file contents looks like this:

KeyStorePassword={3DES}i4+50LCKenQO8BBvlsXTrg\=\=
PrivateKeyPassword={3DES}a4TcG4mtVVBRKtZwH3p7yA\=\=

You must use the weblogic.security.Encrypt command-line utility to
encrypt the password. For more information on the Encrypt utility, as well as
the CertGen, and der2pem utilities, see Using the WebLogic Server Java
Utilities in the Command Reference for Oracle WebLogic Server.

4. Map the ProxyServlet to a <url-pattern>. Specifically, map the file
extensions you wish to proxy, for example *.jsp, or *.html. Use the <servlet-
mapping> element in the web.xml Web application deployment descriptor.

If you set the <url-pattern> to "/", then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also
specifically map the following extensions: *.jsp, *.html, and *.html if you
want to proxy files ending with those extensions.

5. Deploy the Web application on the WebLogic Server instance that redirects
incoming requests.

9.11.2 Sample Deployment Descriptor for the Proxy Servlet
The following is an sample of a Web application deployment descriptor for using the
ProxyServlet.

Proxying Requests to Another Web Server

9-16 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Example 9-2 Sample web.xml for Use with ProxyServlet

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://java.sun.com/xml/ns/j2ee"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2.4">

<web-app>

<servlet>
 <servlet-name>ProxyServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>

 <init-param>
 <param-name>redirectURL</param-name>
 <param-value>http://server:port</param-value>
 </init-param>

 <init-param>
 <param-name>KeyStore</param-name>
 <param-value>/mykeystore</param-value>
 </init-param>

 <init-param>
 <param-name>KeyStoreType</param-name>
 <param-value>jks</param-value>
 </init-param>

 <init-param>
 <param-name>PrivateKeyAlias</param-name>
 <param-value>passalias</param-value>
 </init-param>

 <init-param>
 <param-name>KeyStorePasswordProperties</param-name>
 <param-value>mykeystore.properties</param-value>
 </init-param>

</servlet>

<servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.jsp</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>

<servlet-mapping>

Proxying Requests to Another Web Server

Servlet Programming Tasks 9-17

 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

</web-app>

9.12 Clustering Servlets
Clustering servlets provides failover and load balancing benefits. To deploy a servlet
in a WebLogic Server cluster, deploy the Web application containing the servlet on all
servers in the cluster.

For information on requirements for clustering servlets, and to understand the
connection and failover processes for requests that are routed to clustered servlets, see
Replication and Failover for Servlets and JSPs in Administering Clusters for Oracle
WebLogic Server.

Note:

Automatic failover for servlets requires that the servlet session state be
replicated in memory. For instructions, see Configure In-Memory HTTP
Replication in Administering Clusters for Oracle WebLogic Server.

For information on the load balancing support that a WebLogic Server cluster
provides for servlets, and for related planning and configuration considerations for
architects and administrators, see Load Balancing for Servlets and JSPs in
Administering Clusters for Oracle WebLogic Server.

9.13 Referencing a Servlet in a Web Application
The URL used to reference a servlet in a Web application is constructed as follows:

http://myHostName:port/myContextPath/myRequest/myRequestParameters

The components of this URL are defined as follows:

• myHostName—The DNS name mapped to the Web Server defined in the WebLogic
Server Administration Console. This portion of the URL can be replaced with
host:port, where host is the name of the machine running WebLogic Server
and port is the port at which WebLogic Server is listening for requests.

• port—The port at which WebLogic Server is listening for requests. The servlet can
communicate with the proxy only through the listenPort on the Server MBean and
the SSL MBean.

• myContextPath—The name of the context root which is specified in the
weblogic.xml file, or the URI of the Web module which is specified in the
config.xml file.

• myRequest—The name of the servlet as defined in the web.xml file.

• myRequestParameters—Optional HTTP request parameters encoded in the
URL, which can be read by an HTTP servlet.

Clustering Servlets

9-18 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

9.14 URL Pattern Matching
WebLogic Server provides the user with the ability to implement a URL matching
utility which does not conform to the Java EE rules for matching. The utility must be
configured in the weblogic.xml deployment descriptor rather than the web.xml
deployment descriptor used for the configuration of the default implementation of
URLMatchMap.

To be used with WebLogic Server, the URL matching utility must implement the
following interface:

Package weblogic.servlet.utils;
public interface URLMapping {
 public void put(String pattern, Object value);
 public Object get(String uri);
 public void remove(String pattern)
 public void setDefault(Object defaultObject);
 public Object getDefault();
 public void setCaseInsensitive(boolean ci);
 public boolean isCaseInsensitive();
 public int size();
 public Object[] values();
 public String[] keys();
}

9.15 The SimpleApacheURLMatchMap Utility
The included SimpleApacheURLMatchMap utility is not Java EE specific. It can be
configured in the weblogic.xml deployment descriptor file and allows the user to
specify Apache style pattern matching rather than the default URL pattern matching
provided in the web.xml deployment descriptor. For more information, see url-
match-map.

9.16 A Future Response Model for HTTP Servlets
In general, WebLogic Server processes incoming HTTP requests and the response is
returned immediately to the client. Such connections are handled synchronously by
the same thread. However, some HTTP requests may require longer processing time.
Database connection, for example, may create longer response times. Handling these
requests synchronously causes the thread to be held, waiting until the request is
processed and the response sent.

To avoid this hung-thread scenario, WebLogic Server provides two classes that handle
HTTP requests asynchronously by de-coupling the response from the thread that
handles the incoming request. The following sections describe these classes.

9.16.1 Abstract Asynchronous Servlet

Note:

As of WebLogic Server 12.1.3, Oracle recommends that instead of the
WebLogic Server Abstract Asynchronous Servlet, you should use the standard
asynchronous processing model defined in the Servlet 3.1 specification.

URL Pattern Matching

Servlet Programming Tasks 9-19

The Abstract Asynchronous Servlet enables you to handle incoming requests and
servlet responses with different threads. This class explicitly provides a better general
framework for handling the response than the Future Response Servlet, including
thread handling.

You implement the Abstract Asynchronous Servlet by extending the
weblogic.servlet.http.AbstractAsyncServlet.java class. This class
provides the following abstract methods that you must override in your extended
class .

9.16.1.1 doRequest

This method processes the servlet request. The following code example demonstrates
how to override this method.

Example 9-3 Overriding doRequest in AbstractAsynchServlet.java

public boolean doRequest(RequestResponseKey rrk)
 throws ServletException, IOException {
 HttpServletRequest req = rrk.getRequest();
 HttpServletResponse res = rrk.getResponse();

 if (req.getParameter("immediate") != null) {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("Hello World Immediately!");
 return false ;
 }
 else {
 TimerManagerFactory.getTimerManagerFactory()
 .getDefaultTimerManager().schedule
 (new TimerListener() {
 public void timerExpired(Timer timer)
 {try {
 AbstractAsyncServlet.notify(rrk, null);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }, 2000);
 return true;
 }
}

9.16.1.2 doResponse

This method processes the servlet response.

Note:

The servlet instance that processed the doRequest() method used to handle
the original incoming request method will not necessarily be the one to
process the doResponse() method.

If an exception occurs during processing, the container returns an error to the client.
The following code example demonstrates how to override this method.

A Future Response Model for HTTP Servlets

9-20 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Example 9-4 Overriding doResponse() in AbstractAsyncServlet.java

public void doResponse (RequestResponseKey rrk, Object context)
 throws ServletException, IOException
 {
 HttpServletRequest req = rrk.getRequest();
 HttpServletResponse res = rrk.getResponse();

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("Hello World!");
}

9.16.1.3 doTimeOut

This method sends a servlet response error when the notify() method is not called
within the timeout period.

Note:

The servlet instance that processed the doRequest() method used to handle
the original incoming request method will not necessarily be the one to
process the doTimeOut() method.

Example 9-5 Overriding doTimeOut() in AbstractAsyncServlet.java

public void doTimeout (RequestResponseKey rrk)
 throws ServletException, IOException
{
 HttpServletRequest req = rrk.getRequest();
 HttpServletResponse res = rrk.getResponse();

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("Timeout!");
}

9.16.2 Future Response Servlet

Note:

As of WebLogic Server 12.1.3, Oracle recommends that you use the standard
asynchronous processing model defined in the Servlet 3.1 specification.

You can also use the Future Response Servlet to handle servlet responses with a
different thread than the one that handles the incoming request. You enable this
servlet by extending weblogic.servlet.FutureResponseServlet.java, which
gives you full control over how the response is handled and allows more control over
thread handling. However, using this class to avoid hung threads requires you to
provide most of the code.

The exact implementation depends on your needs, but you must override the
service() method of this class at a minimum. The following example shows how
you can override the service method.

A Future Response Model for HTTP Servlets

Servlet Programming Tasks 9-21

Example 9-6 Overriding the service() method of FutureResponseServlet.java

 public void service(HttpServletRequest req, FutureServletResponse rsp)
 throws IOException, ServletException {
 if(req.getParameter("immediate") != null){
 PrintWriter out = rsp.getWriter();
 out.println("Immediate response!");
 rsp.send();
 } else {
 Timer myTimer = new Timer();
 MyTimerTask mt = new MyTimerTask(rsp, myTimer);
 myTimer.schedule(mt, 100);
 }
 }

 private static class MyTimerTask extends TimerTask{
 private FutureServletResponse rsp;
 Timer timer;
 MyTimerTask(FutureServletResponse rsp, Timer timer){
 this.rsp = rsp;
 this.timer = timer;
 }
 public void run(){
 try{
 PrintWriter out = rsp.getWriter();
 out.println("Delayed Response");
 rsp.send();
 timer.cancel();
 }
 catch(IOException e){
 e.printStackTrace();
 }
 }
 }

A Future Response Model for HTTP Servlets

9-22 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

10
Using Sessions and Session Persistence

This chapter describes how to set up and use HTTP sessions and session persistence in
WebLogic Server.

This chapter includes the following sections:

• Overview of HTTP Sessions

• Setting Up Session Management

• Configuring Session Persistence

• Using a Database for Persistent Storage (JDBC Persistence)

• Using URL Rewriting Instead of Cookies

• Session Tracking from a Servlet

10.1 Overview of HTTP Sessions
Session tracking enables you to track a user's progress over multiple servlets or HTML
pages, which, by nature, are stateless. A session is defined as a series of related browser
requests that come from the same client during a certain time period. Session tracking
ties together a series of browser requests—think of these requests as pages—that may
have some meaning as a whole, such as a shopping cart application.

10.2 Setting Up Session Management
WebLogic Server is set up to handle session tracking by default. You need not set any
of these properties to use session tracking. However, configuring how WebLogic
Server manages sessions is a key part of tuning your application for best performance.
When you set up session management, you determine factors such as:

• How many users you expect to hit the servlet

• How long each session lasts

• How much data you expect to store for each user

• Heap size allocated to the WebLogic Server instance

You can also store data permanently from an HTTP session. See Configuring Session
Persistence.

10.2.1 HTTP Session Properties
You configure WebLogic Server session tracking by defining properties in the
WebLogic-specific deployment descriptor, weblogic.xml. For a complete list of
session attributes, see session-descriptor.

Using Sessions and Session Persistence 10-1

In a previous WebLogic Server release, a change was introduced to the SessionID
format that caused some load balancers to lose the ability to retain session stickiness.
A server startup flag, -
Dweblogic.servlet.useExtendedSessionFormat=true, retains the
information that the load-balancing application needs for session stickiness. The
extended session ID format will be part of the URL if URL rewriting is activated, and
the startup flag is set to true.

10.2.2 Session Timeout
You can specify an interval of time after which HTTP sessions expire. When a session
expires, all data stored in the session is discarded. You can set the interval in either
web.xml or weblogic.xml:

• Set the timeout-secs parameter value in the session-descriptor element of
the WebLogic-specific deployment descriptor, weblogic.xml. This value is set in
seconds. For more information, see session-descriptor.

• Set the session-timeout element in the Java EE standard Web application
deployment descriptor, web.xml.

10.2.3 Configuring WebLogic Server Session Cookies
WebLogic Server uses cookies for session management when cookies are supported by
the client browser.

The cookies that WebLogic Server uses to track sessions are set as transient by default
and do not outlive the session. When a user quits the browser, the cookies are lost and
the session ends. This behavior is in the spirit of session usage and it is recommended
that you use sessions in this way.

You can configure session-tracking parameters of cookies in the WebLogic-specific
deployment descriptor, weblogic.xml. A complete list of session and cookie-related
parameters is available in session-descriptor.

10.2.4 Configuring Application Cookies That Outlive a Session
For longer-lived client-side user data, you program your application to create and set
its own cookies on the browser via the HTTP servlet API. The application should not
attempt to use the cookies associated with the HTTP session. Your application might
use cookies to auto-login a user from a particular machine, in which case you would
set a new cookie to last for a long time. Remember that the cookie can only be sent
from that particular client machine. Your application should store data on the server if
it must be accessed by the user from multiple locations.

You cannot directly connect the age of a browser cookie with the length of a session. If
a cookie expires before its associated session, that session becomes orphaned. If a
session expires before its associated cookie, the servlet is not be able to find a session.
At that point, a new session is automatically assigned when the
request.getSession(true) method is called.

You can set the maximum life of a cookie with the cookie-max-age-secs element
in the session descriptor of the weblogic.xml deployment descriptor. See session-
descriptor.

Setting Up Session Management

10-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

10.2.5 Logging Out
User authentication information is stored both in the user's session data and in the
context of a server or virtual host that is targeted by a Web application. The
session.invalidate() method, which is often used to log out a user, only
invalidates the current session for a user—the user's authentication information still
remains valid and is stored in the context of the server or virtual host. If the server or
virtual host is hosting only one Web application, the session.invalidate()
method, in effect, logs out the user.

There are several Java methods and strategies you can use when using authentication
with multiple Web applications. For more information see Logging Out and Ending a
Session.

10.2.6 Enabling Web Applications to Share the Same Session
By default, Web applications do not share the same session. If you would like Web
applications to share the same session, you can configure the session descriptor at the
application level in the weblogic-application.xml deployment descriptor. To
enable Web applications to share the same session, set the sharing-enabled
attribute in the session descriptor to true in the weblogic-application.xml
deployment descriptor. See "sharing-enabled" in session-descriptor.

The session descriptor configuration that you specify at the application level overrides
any session descriptor configuration that is specified at the individual Web application
level. If you set the sharing-enabled attribute to true at the Web application level,
it will be ignored.

All Web applications in an application are automatically started using the same
session instance if you specify the session descriptor in the weblogic-
application.xml deployment descriptor and set the sharing-enabled attribute
to true as in the following example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<weblogic-application xmlns="http://xmlns.oracle.com/weblogic/weblogic-
application";;>
 ...
 <session-descriptor>
 <persistent-store-type>memory</persistent-store-type>
 <sharing-enabled>true</sharing-enabled>
 ...
 </session-descriptor>
...
</weblogic-application>

10.2.7 Limiting Number of Concurrent Requests for a Session
The weblogic.http.session.maxConcurrentRequest property limits the
number of concurrent requests for a session. If the number of concurrent requests for a
given session exceeds the specified value, the servlet container will start rejecting
requests. By default, this property is set to -1, which indicates the servlet container
does not impose any restrictions.

Setting Up Session Management

Using Sessions and Session Persistence 10-3

10.3 Configuring Session Persistence
You use session persistence to permanently store data from an HTTP session object to
enable failover and load balancing across a cluster of WebLogic Servers. When your
applications stores data in an HTTP session object, the data must be serializable.

The following session persistence implementations are supported:

• Memory (single-server, non-replicated)

• File system persistence

• JDBC persistence

• Cookie-based session persistence

• In-memory replication using either WebLogic Server clusters or Coherence clusters

The first four are discussed here; in-memory replication is discussed in HTTP Session
State Replication in Administering Clusters for Oracle WebLogic Server. For detailed
information on using Coherence for session state replication, see Administering HTTP
Session Management with Oracle Coherence*Web.

File, JDBC, cookie-based, and memory (single-server, non-populated) session
persistence have some common properties. Each persistence method has its own set of
configurable parameters, as discussed in the following sections. These parameters are
subelements of the session-descriptor element in the weblogic.xml
deployment descriptor file.

10.3.1 Attributes Shared by Different Types of Session Persistence
This section describes parameters common to file and JDBC-based persistence. You
can configure the number of sessions that are held in memory by defining the
following parameters in the session-descriptor element in the weblogic.xml
deployment descriptor file. These parameters are only applicable if you are using
session persistence:

• cache-size—Limits the number of cached sessions that can be active in memory
at any one time. If you expect high volumes of simultaneous active sessions, you do
not want these sessions to soak up the RAM of your server because this may cause
performance problems swapping to and from virtual memory. When the cache is
full, the least recently used sessions are stored in the persistent store and recalled
automatically when required. If you do not use persistence, this property is
ignored, and there is no soft limit to the number of sessions allowed in main
memory. By default, the number of cached sessions is 1028. To turn off caching, set
this to 0. See "cache-size" in session-descriptor.

Note:

cache-size is used by JDBC and file-based sessions only for maintaining the
in-memory bubbling cache. It is not applicable for other persistence types.

• invalidation-interval-secs—Sets the time, in seconds, that WebLogic
Server waits between doing house-cleaning checks for timed-out and invalid
sessions, and deleting the old sessions and freeing up memory. Use this element to

Configuring Session Persistence

10-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

tune WebLogic Server for best performance on high traffic sites. See "invalidation-
interval-secs" in session-descriptor.

The minimum value is every second (1). The maximum value is once a week
(604,800 seconds). If not set, the attribute defaults to 60 seconds.

10.3.2 Using Memory-based, Single-server, Non-replicated Persistent Storage
When you use memory-based storage, all session information is stored in memory and
is lost when you stop and restart WebLogic Server. To use memory-based, single-
server, non-replicated persistent storage, set the persistent-store-type
parameter in the session-descriptor element in the weblogic.xml deployment
descriptor file to memory. See session-descriptor.

Note:

If you do not allocate sufficient heap size when running WebLogic Server,
your server may run out of memory under heavy load.

10.3.3 Using File-based Persistent Storage
To configure file-based persistent storage for sessions:

• In the deployment descriptor file weblogic.xml, set the persistent-store-
type parameter in the session-descriptor element in the weblogic.xml
deployment descriptor file to file. See "persistent-store-type" in session-
descriptor.

• Set the directory where WebLogic Server stores the sessions. See "persistent-store-
dir" in session-descriptor.

Note:

You must create this directory and make sure appropriate access privileges
have been assigned to the directory.

10.4 Using a Database for Persistent Storage (JDBC Persistence)
JDBC persistence stores session data in a database table using a schema provided for
this purpose. You can use any database for which you have a JDBC driver. You
configure database access by using connection pools.

Because WebLogic Server uses the system time to determine the session life time when
using JDBC session persistence, you must be sure to synchronize the system clock on
all of the machines on which servers are running in the same cluster.

10.4.1 Configuring JDBC-based Persistent Storage
To configure JDBC-based persistent storage for sessions:

• Set the persistent-store-type parameter in the session-descriptor
element in the weblogic.xml deployment descriptor file to jdbc. See session-
descriptor.

Using a Database for Persistent Storage (JDBC Persistence)

Using Sessions and Session Persistence 10-5

• Set a JDBC connection pool to be used for persistence storage with the
persistent-store-pool or persistent-data-source-jndi-name
parameter in the session-descriptor element in the weblogic.xml
deployment descriptor file. Use the name of a connection pool that is defined in the
WebLogic Server Administration Console. See session-descriptor.

With asynchronous JDBC persistence for HTTP sessions in an application or Web
application, the persistent-store-pool parameter is ignored. To set a JDBC
connection pool for async-jdbc-based persistence, you must specify the
persistent-data-source-jndi-name parameter in the session-
desciptor element in the weblogic.xml deployment descriptor file. See
session-descriptor.

• Set up a database table named wl_servlet_sessions for JDBC-based
persistence. The connection pool that connects to the database needs to have read/
write access for this table.

Note:

Create indexes on wl_id and wl_context_path, if the database does not
create them automatically. Some databases create indexes automatically for
primary keys.

Set up column names and data types as follows:

Table 10-1 Creating wl_servlet_sessions

Column Name Data Type

wl_id
Variable-width alphanumeric column, up to 100 characters; for
example, Oracle VARCHAR2(100).

The primary key must be set as follows:

wl_id + wl_context_path

wl_context_path
Variable-width alphanumeric column, up to 100 characters; for
example, Oracle VARCHAR2(100). This column is used as part of the
primary key. (See the wl_id column description.)

wl_is_new
Single char column; for example, Oracle CHAR(1)

wl_create_time
Numeric column, 20 digits; for example, Oracle NUMBER(20)

wl_is_valid
Single char column; for example, Oracle CHAR(1)

wl_session_values
Large binary column; for example, Oracle LONG RAW

wl_access_time
Numeric column, 20 digits; for example, NUMBER(20)

Using a Database for Persistent Storage (JDBC Persistence)

10-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table 10-1 (Cont.) Creating wl_servlet_sessions

Column Name Data Type

wl_max_inactive_int
erval

Integer column; for example, Oracle Integer. Number of seconds
between client requests before the session is invalidated. A negative
time value indicates that the session should never time out.

If you are using an Oracle DBMS, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

Example 10-1 Creating wl_servlet_sessions table with Oracle DBMS

create table wl_servlet_sessions
 (wl_id VARCHAR2(100) NOT NULL,
 wl_context_path VARCHAR2(100) NOT NULL,
 wl_is_new CHAR(1),
 wl_create_time NUMBER(20),
 wl_is_valid CHAR(1),
 wl_session_values LONG RAW,
 wl_access_time NUMBER(20),
 wl_max_inactive_interval INTEGER,
 PRIMARY KEY (wl_id, wl_context_path));

Example 10-2 Creating wl_servlet_sessions table with SqlServer 2000

If you are using SqlServer2000, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

create table wl_servlet_sessions
 (wl_id VARCHAR2(100) NOT NULL,
 wl_context_path VARCHAR2(100) NOT NULL,
 wl_is_new VARCHAR(1),
 wl_create_time DECIMAL,
 wl_is_valid VARCHAR(1),
 wl_session_values IMAGE,
 wl_access_time DECIMAL,
 wl_max_inactive_interval INTEGER,
 PRIMARY KEY (wl_id, wl_context_path));

Example 10-3 Creating wl_servlet_sessions table with DB2

If you are using DB2, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

CREATE TABLE WL_SERVLET_SESSIONS
(
 WL_ID VARCHAR(100) not null,
 WL_CONTEXT_PATH VARCHAR(100) not null,
 WL_IS_NEW SMALLINT,
 WL_CREATE_TIME DECIMAL(16),
 WL_IS_VALID SMALLINT,
 wl_session_values BLOB(10M) NOT LOGGED,
 WL_ACCESS_TIME DECIMAL(16),
 WL_MAX_INACTIVE_INTERVAL INTEGER,
 PRIMARY KEY (WL_ID,WL_CONTEXT_PATH)
);

Using a Database for Persistent Storage (JDBC Persistence)

Using Sessions and Session Persistence 10-7

If you are using Sybase, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

Example 10-4 Creating wl_servlet_sessions table with Sybase

create table WL_SERVLET_SESSIONS (
WL_ID varchar(100) not null ,
WL_CONTEXT_PATH varchar(100) not null ,
WL_IS_NEW CHAR(1) null ,
WL_CREATE_TIME decimal(16,0) null ,
WL_IS_VALID CHAR(1) null ,
WL_SESSION_VALUES image null ,
WL_ACCESS_TIME decimal(16,0) null ,
WL_MAX_INACTIVE_INTERVAL int null ,
)
go

alter table WL_SERVLET_SESSIONS
add PRIMARY KEY CLUSTERED (WL_ID, WL_CONTEXT_PATH)
go

10.4.2 Caching and Database Updates for JDBC Session Persistence
WebLogic Server does not write the HTTP session state to disk if the request is read-
only, meaning the request does not modify the HTTP session. Only the
wl_access_time column is updated in the database, if the session is accessed.

For non read-only requests, the Web application container updates the database for
the changes to session state after every HTTP request. This is done so that any server
in the cluster can handle requests upon failovers and retrieve the latest session state
from the database.

To prevent multiple database queries, WebLogic Server caches recently used sessions.
Recently used sessions are not refreshed from the database for every request. The
number of sessions in cache is governed by the cache-size parameter in the
session-descriptor element of the WebLogic Server-specific deployment
descriptor, weblogic.xml. See session-descriptor.

10.4.3 Using Cookie-Based Session Persistence
Cookie-based session persistence provides a stateless solution for session persistence
by storing all session data in a cookie in the user's browser. Cookie-based session
persistence is most useful when you do not need to store large amounts of data in the
session. Cookie-based session persistence can make managing your WebLogic Server
installation easier because clustering failover logic is not required. Because the session
is stored in the browser, not on the server, you can start and stop WebLogic Servers
without losing sessions.

There are some limitations to cookie-based session persistence:

• You can store only string attributes in the session. If you store any other type of
object in the session, an IllegalArgument exception is thrown.

• You cannot flush the HTTP response (because the cookie must be written to the
header data before the response is committed).

• If the content length of the response exceeds the buffer size, the response is
automatically flushed and the session data cannot be updated in the cookie. (The
buffer size is, by default, 8192 bytes. You can change the buffer size with the
javax.servlet.ServletResponse.setBufferSize() method.

Using a Database for Persistent Storage (JDBC Persistence)

10-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• You can only use basic (browser-based) authentication.

• Session data is sent to the browser in clear text.

• The user's browser must be configured to accept cookies.

• You cannot use commas (,) in a string when using cookie-based session persistence
or an exception occurs.

To set up cookie-based session persistence:

• Set the persistent-store-type parameter in the session-descriptor
element in the weblogic.xml deployment descriptor file to cookie. See session-
descriptor.

• Optionally, set a name for the cookie using the persistent-store-cookie-
name element. The default is WLCOOKIE. See session-descriptor.

10.5 Using URL Rewriting Instead of Cookies
In some situations, a browser or wireless device may not accept cookies, which makes
session tracking with cookies impossible. URL rewriting is a solution to this situation
that can be substituted automatically when WebLogic Server detects that the browser
does not accept cookies. URL rewriting involves encoding the session ID into the
hyperlinks on the Web pages that your servlet sends back to the browser. When the
user subsequently clicks these links, WebLogic Server extracts the ID from the URL
address and finds the appropriate HttpSession when your servlet calls the
getSession() method.

Enable URL rewriting in WebLogic Server by setting the url-rewriting-enabled
parameter in the WebLogic-specific deployment descriptor, weblogic.xml, under
the session-descriptor element. The default value for this attribute is true. See
session-descriptor.

10.5.1 Coding Guidelines for URL Rewriting
Here are general guidelines for supporting URL rewriting.

• Avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method, for example:

out.println("<a href=\"
 + response.encodeURL("myshop/catalog.jsp")
 + "\">catalog");

Calling the encodeURL() method determines whether the URL needs to be
rewritten. If it does need to be rewritten, WebLogic Server rewrites the URL by
appending the session ID to the URL, with the session ID preceded by a semicolon.

• In addition to URLs that are returned as a response to WebLogic Server, also
encode URLs that send redirects. For example:

if (session.isNew())
 response.sendRedirect (response.encodeRedirectUrl(welcomeURL));

Using URL Rewriting Instead of Cookies

Using Sessions and Session Persistence 10-9

WebLogic Server uses URL rewriting when a session is new, even if the browser
does accept cookies, because the server cannot tell whether a browser accepts
cookies in the first visit of a session.

When a plug-in is used (Apache, NSAPI, ISAPI, HttpClusterServlet, or
HttpProxyServlet) and URL rewriting is used at the back-end server using
response.sendRedirect(url) or response.encodeRedirectURL(url),
then the PathTrim and PathPrepend parameters will be applied to the URL
under the following condition: PathTrim will only be applied to the URL if
PathPrepend is null or PathPrepend has been applied.

• Your servlet can determine whether a given session ID was received from a cookie
by checking the Boolean returned from the
HttpServletRequest.isRequestedSessionIdFromCookie() method.
Your application may respond appropriately, or simply rely on URL rewriting by
WebLogic Server.

Note:

The CISCO Local Director load balancer expects a question mark "?" delimiter
for URL rewriting. Because the WebLogic Server URL-rewriting mechanism
uses a semicolon ";" as the delimiter, our URL rewriting is incompatible with
this load balancer.

10.5.2 URL Rewriting and Wireless Access Protocol (WAP)
If you are writing a WAP application, you must use URL rewriting because the WAP
protocol does not support cookies. In addition, some WAP devices have a 128-
character limit on the length of a URL (including attributes), which limits the amount
of data that can be transmitted using URL rewriting. To allow more space for
attributes, you can limit the size of the session ID that is randomly generated by
WebLogic Server.

In particular, to use the WAPEnabled attribute, use the WebLogic Server
Administration Console at Server > Protocols > HTTP > Advanced Options. The
WAPEnabled attribute restricts the size of the session ID to 52 characters and
disallows special characters, such as ! and #. You can also use the IDLength
parameter of weblogic.xml to further restrict the size of the session ID. For
additional details, see "id-length" in session-descriptor.

Note:

If the id-length subelement of the session-descriptor element of the
WebLogic Server-specific deployment descriptor, weblogic.xml, contains a
value of less than 32, WebLogic Server automatically increases the value to 32
and displays the following message:

The IDLength is too short. It is not secure. WLS will raise the length to 32.

10.6 Session Tracking from a Servlet
Session tracking enables you to track a user's progress over multiple servlets or HTML
pages, which, by nature, are stateless. A session is defined as a series of related browser
requests that come from the same client during a certain time period. Session tracking

Session Tracking from a Servlet

10-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

ties together a series of browser requests—think of these requests as pages—that may
have some meaning as a whole, such as a shopping cart application.

The following sections discuss various aspects of tracking sessions from an HTTP
servlet:

• A History of Session Tracking

• Tracking a Session with an HttpSession Object

• Lifetime of a Session

• How Session Tracking Works

• Detecting the Start of a Session

• Setting and Getting Session Name/Value Attributes

• Logging Out and Ending a Session

• Configuring Session Tracking

• Using URL Rewriting Instead of Cookies

• URL Rewriting and Wireless Access Protocol (WAP)

• Making Sessions Persistent

10.6.1 A History of Session Tracking
Before session tracking matured conceptually, developers tried to build state into their
pages by stuffing information into hidden fields on a page or embedding user choices
into URLs used in links with a long string of appended characters. You can see good
examples of this at most search engine sites, many of which still depend on CGI. These
sites track user choices with URL parameter name=value pairs that are appended to the
URL, after the reserved HTTP character ?. This practice can result in a very long URL
that the CGI script must carefully parse and manage. The problem with this approach
is that you cannot pass this information from session to session. Once you lose control
over the URL—that is, once the user leaves one of your pages—the user information is
lost forever.

Later, Netscape introduced browser cookies, which enable you to store user-related
information about the client for each server. However, some browsers still do not fully
support cookies, and some users prefer to turn off the cookie option in their browsers.
Another factor that should be considered is that most browsers limit the amount of
data that can be stored with a cookie.

Unlike the CGI approach, the HTTP servlet specification defines a solution that allows
the server to store user details on the server beyond a single session, and protects your
code from the complexities of tracking sessions. Your servlets can use an HttpSession
object to track a user's input over the span of a single session and to share session
details among multiple servlets. Session data can be persisted using a variety of
methods available with WebLogic Service.

10.6.2 Tracking a Session with an HttpSession Object
According to the Java Servlet API, which WebLogic Server implements and supports,
each servlet can access a server-side session by using its HttpSession object. You can

Session Tracking from a Servlet

Using Sessions and Session Persistence 10-11

access an HttpSession object in the service() method of the servlet by using the
HttpServletRequest object with the variable request variable, as shown:

HttpSession session = request.getSession(true);

An HttpSession object is created if one does not already exist for that client when
the request.getSession(true)method is called with the argument true. The
session object lives on WebLogic Server for the lifetime of the session, during which
the session object accumulates information related to that client. Your servlet adds or
removes information from the session object as necessary. A session is associated with
a particular client. Each time the client visits your servlet, the same associated
HttpSession object is retrieved when the getSession() method is called.

For more details on the methods supported by the HttpSession, refer to the
HttpServlet API at http://docs.oracle.com/javaee/7/api/javax/
servlet/http/HttpSession.html.

In the following example, the service() method counts the number of times a user
requests the servlet during a session.

public void service(HttpServletRequest request,
 HttpServletResponse, response)
 throws IOException
{
 // Get the session and the counter param attribute
 HttpSession session = request.getSession (true);
 Integer ival = (Integer)
 session.getAttribute("simplesession.counter");
 if (ival == null) // Initialize the counter
 ival = new Integer (1);
 else // Increment the counter
 ival = new Integer (ival.intValue () + 1);
 // Set the new attribute value in the session
 session.setAttribute("simplesession.counter", ival);
 // Output the HTML page
 out.print("<HTML><body>");
 out.print("<center> You have hit this page ");
 out.print(ival + " times!");
 out.print("</body></html>");
}

10.6.3 Lifetime of a Session
A session tracks the selections of a user over a series of pages in a single transaction. A
single transaction may consist of several tasks, such as searching for an item, adding it
to a shopping cart, and then processing a payment. A session is transient, and its
lifetime ends when one of the following occurs:

• A user leaves your site and the user's browser does not accept cookies.

• A user quits the browser.

• The session is timed out due to inactivity.

• The session is completed and invalidated by the servlet.

• The user logs out and is invalidated by the servlet.

For more persistent, long-term storage of data, your servlet should write details to a
database using JDBC or EJB and associate the client with this data using a long-lived
cookie and/or user name and password.

Session Tracking from a Servlet

10-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html

Note:

Although this document states that sessions use cookies and persistence
internally, you should not use sessions as a general mechanism for storing data about
a user.

10.6.4 How Session Tracking Works
How does WebLogic Server know which session is associated with each client? When
an HttpSession is created in a servlet, it is associated with a unique ID. The browser
must provide this session ID with its request in order for the server to find the session
data again. The server attempts to store this ID by setting a cookie on the client. Once
the cookie is set, each time the browser sends a request to the server it includes the
cookie containing the ID. The server automatically parses the cookie and supplies the
session data when your servlet calls the getSession() method.

If the client does not accept cookies, the only alternative is to encode the ID into the
URL links in the pages sent back to the client. For this reason, you should always use
the encodeURL() method when you include URLs in your servlet response.
WebLogic Server detects whether the browser accepts cookies and does not
unnecessarily encode URLs. WebLogic automatically parses the session ID from an
encoded URL and retrieves the correct session data when you call the getSession()
method. Using the encodeURL() method ensures no disruption to your servlet code,
regardless of the procedure used to track sessions. For more information, see Using
URL Rewriting Instead of Cookies.

10.6.5 Detecting the Start of a Session
After you obtain a session using the getSession(true) method, you can tell
whether the session has just been created by calling the HttpSession.isNew()
method. If this method returns true, then the client does not already have a valid
session, and at this point it is unaware of the new session. The client does not become
aware of the new session until a reply is posted back from the server.

Design your application to accommodate new or existing sessions in a way that suits
your business logic. For example, your application might redirect the client's URL to a
login/password page if you determine that the session has not yet started, as shown in
the following code example:

HttpSession session = request.getSession(true);
if (session.isNew()) {
 response.sendRedirect(welcomeURL);
}

On the login page, provide an option to log in to the system or create a new account.
You can also specify a login page in your Web application using the login-config
element of the Java EE standard Web application deployment descriptor, web.xml.

10.6.6 Setting and Getting Session Name/Value Attributes
You can store data in an HttpSession object using name=value pairs. Data stored in a
session is available through the session. To store data in a session, use these methods
from the HttpSession interface:

getAttribute()
getAttributeNames()
setAttribute()

Session Tracking from a Servlet

Using Sessions and Session Persistence 10-13

removeAttribute()
The following code fragment shows how to get all the existing name=value pairs:
Enumeration sessionNames = session.getAttributeNames();
String sessionName = null;
Object sessionValue = null;

while (sessionNames.hasMoreElements()) {
 sessionName = (String)sessionNames.nextElement();
 sessionValue = session.getAttribute(sessionName);
 System.out.println("Session name is " + sessionName +
 ", value is " + sessionValue);
}

To add or overwrite a named attribute, use the setAttribute() method. To remove
a named attribute altogether, use the removeAttribute() method.

Note:

You can add any Java descendant of Object as a session attribute and
associate it with a name. However, if you are using session persistence, your
attribute value objects must implement java.io.Serializable.

10.6.7 Logging Out and Ending a Session
If your application deals with sensitive information, consider offering the ability to log
out of the session. This is a common feature when using shopping carts and Internet
email accounts. When the same browser returns to the service, the user must log back
in to the system.

10.6.7.1 Using session.invalidate() for a Single Web Application

User authentication information is stored both in the users's session data and in the
context of a server or virtual host that is targeted by a Web application. Using the
session.invalidate() method, which is often used to log out a user, only
invalidates the current session for a user—the user's authentication information still
remains valid and is stored in the context of the server or virtual host. If the server or
virtual host is hosting only one Web application, the
session.invalidate()method, in effect, logs out the user.

Do not reference an invalidated session after calling session.invalidate(). If you
do, an IllegalStateException is thrown. The next time a user visits your servlet
from the same browser, the session data will be missing, and a new session will be
created when you call the getSession(true) method. At that time you can send the
user to the login page again.

10.6.7.2 Implementing Single Sign-On for Multiple Applications

If the server or virtual host is targeted by many Web applications, another means is
required to log out a user from all Web applications. Because the servlet specification
does not provide an API for logging out a user from all Web applications, the
following methods are provided.

• weblogic.servlet.security.ServletAuthentication.logout()—
Removes the authentication data from the users's session data, which logs out a
user but allows the session to remain alive.

Session Tracking from a Servlet

10-14 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• weblogic.servlet.security.ServletAuthentication.invalidateAl
l()—Invalidates all the sessions and removes the authentication data for the
current user. The cookie is also invalidated.

• weblogic.servlet.security.ServletAuthentication.killCookie()
—Invalidates the current cookie by setting the cookie so that it expires immediately
when the response is sent to the browser. This method depends on a successful
response reaching the user's browser. The session remains alive until it times out.

10.6.7.3 Exempting a Web Application for Single Sign-on

If you want to exempt a Web application from participating in single sign-on, define a
different cookie name for the exempted Web application. For more information, see
Configuring WebLogic Server Session Cookies.

10.6.8 Configuring Session Tracking
WebLogic Server provides many configurable attributes that determine how
WebLogic Server handles session tracking. For details about configuring these session
tracking attributes, see session-descriptor.

10.6.9 Using URL Rewriting Instead of Cookies
In some situations, a browser may not accept cookies, which means that session
tracking with cookies is not possible. URL rewriting is a workaround to this scenario
that can be substituted automatically when WebLogic Server detects that the browser
does not accept cookies. URL rewriting involves encoding the session ID into the
hyperlinks on the Web pages that your servlet sends back to the browser. When the
user subsequently clicks these links, WebLogic Server extracts the ID from the URL
and finds the appropriate HttpSession. Then you use the getSession() method
to access session data.

To enable URL rewriting in WebLogic Server, set the URL-rewriting-enabled
parameter to true in the session-descriptor element of the WebLogic Server-
specific deployment descriptor, weblogic.xml. See session-descriptor.

To make sure your code correctly handles URLs in order to support URL rewriting,
consider the following guidelines:

• You should avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method. For example:

out.println("<a href=\""
 + response.encodeURL("myshop/catalog.jsp")
 + "\">catalog");

• Calling the encodeURL() method determines if the URL needs to be rewritten
and, if necessary, rewrites the URL by including the session ID in the URL.

• Encode URLs that send redirects, as well as URLs that are returned as a response to
WebLogic Server. For example:

if (session.isNew())
 response.sendRedirect(response.encodeRedirectUrl(welcomeURL));

Session Tracking from a Servlet

Using Sessions and Session Persistence 10-15

WebLogic Server uses URL rewriting when a session is new, even if the browser
accepts cookies, because the server cannot determine, during the first visit of a session,
whether the browser accepts cookies.

Your servlet may determine whether a given session was returned from a cookie by
checking the Boolean returned from the
HttpServletRequest.isRequestedSessionIdFromCookie() method. Your
application may respond appropriately, or it may simply rely on URL rewriting by
WebLogic Server.

Note:

The CISCO Local Director load balancer expects a question mark "?" delimiter
for URL rewriting. Because the WebLogic Server URL-rewriting mechanism
uses a semicolon ";" as the delimiter, our URL rewriting is incompatible with
this load balancer.

10.6.10 URL Rewriting and Wireless Access Protocol (WAP)
If you are writing a WAP application, you must use URL rewriting because the WAP
protocol does not support cookies. In addition, some WAP devices impose a 128-
character limit (including parameters) on the length of a URL, which limits the amount
of data that can be transmitted using URL rewriting. To allow more space for
parameters, you can limit the size of the session ID that is randomly generated by
WebLogic Server by specifying the number of bytes with the id-length parameter in
the session-descriptor element of the WebLogic Server-specific deployment
descriptor, weblogic.xml. See session-descriptor.

The minimum value is 32 bytes; the default value is 52 bytes; the maximum value is
Integer.MAX_VALUE. (See the note in URL Rewriting and Wireless Access Protocol
(WAP)).

10.6.11 Making Sessions Persistent
You can set up WebLogic Server to record session data in a persistent store. If you are
using session persistence, you can expect the following characteristics:

• Good failover, because sessions are saved when servers fail.

• Better load balancing, because any server can handle requests for any number of
sessions, and use caching to optimize performance. For more information, see the
cache-size property, at Configuring Session Persistence.

• Sessions can be shared across clustered WebLogic Servers. Note that session
persistence is no longer a requirement in a WebLogic Cluster. Instead, you can use
in-memory replication of state. For more information, see Administering Clusters for
Oracle WebLogic Server.

• For customers who want the highest in servlet session persistence, JDBC-based
persistence is the best choice. For customers who want to sacrifice some amount of
session persistence in favor of drastically better performance, in-memory
replication is the appropriate choice. JDBC-based persistence is noticeably slower
than in-memory replication. In some cases, in-memory replication has
outperformed JDBC-based persistence for servlet sessions by a factor of eight.

Session Tracking from a Servlet

10-16 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• You can put any kind of Java object into a session, but for file, JDBC, and in-
memory replication, only objects that are java.io.Serializable can be stored
in a session. For more information, see Configuring Session Persistence.

10.6.11.1 Scenarios to Avoid When Using Sessions

Do not use session persistence for storing long-term data between sessions. In other
words, do not rely on a session still being active when a client returns to a site at some
later date. Instead, your application should record long-term or important information
in a database.

Sessions are not a convenience wrapper around cookies. Do not attempt to store long-
term or limited-term client data in a session. Instead, your application should create
and set its own cookies on the browser. Examples include an auto-login feature that
allows a cookie to live for a long period, or an auto-logout feature that allows a cookie
to expire after a short period of time. Here, you should not attempt to use HTTP
sessions. Instead, you should write your own application-specific logic.

10.6.11.2 Use Serializable Attribute Values

When you use persistent sessions, all attribute value objects that you add to the
session must implement java.io.Serializable.

If you add your own serializable classes to a persistent session, make sure that each
instance variable of your class is also serializable. Otherwise, you can declare it as
transient, and WebLogic Server does not attempt to save that variable to persistent
storage. One common example of an instance variable that must be made transient
is the HttpSession object. (See the notes on using serialized objects in sessions in the
section Making Sessions Persistent.)

The HttpServletRequest, ServletContext, and HttpSession attributes will be
serialized when a WebLogic Server instance detects a change in the Web application
classloader. The classloader changes when a Web application is redeployed, when
there is a dynamic change in a servlet, or when there is a cross Web application
forward or include.

To avoid having the attribute serialized, during a dynamic change in a servlet, turn off
servlet-reload-check-secs in weblogic.xml. There is no way to avoid
serialization of attributes for cross Web application dispatch or redeployment. See
servlet-reload-check-secs.

10.6.11.3 Configuring Session Persistence

For details about setting up persistent sessions, see Configuring Session Persistence.

10.6.12 Configuring a Maximum Limit on In-memory Servlet Sessions
Without the ability to configure in-memory servlet session use, as new sessions are
continually created, the server eventually throws out of memory. To protect against
this, WebLogic Server provides a configurable bound on the number of sessions
created. When this number is exceeded, the
weblogic.servlet.SessionCreationException occurs for each attempt to
create a new session. This feature applies to both replicated and non-replicated in-
memory sessions.

To configure bound in-memory servlet session use, you set the limitation in the max-
in-memory-sessions element in the weblogic.xml deployment descriptor. See
session-descriptor.

Session Tracking from a Servlet

Using Sessions and Session Persistence 10-17

10.6.13 Enabling Session Memory Overload Protection
When memory is overloaded, a
weblogic.servlet.SessionCreationException (RuntimeException) for
any getSession(true) attempts occurs. As the person developing the servlet, you
should handle this exception as follows:

• Return the appropriate error message to the user when the exception occurs,
explaining the situation.

• Map weblogic.servlet.SessionCreationException to an error page in the
Java EE standard Web application deployment descriptor, web.xml.

By default, memory overload protection is turned off. You can enable it with a
domain-level flag:

weblogic.management.configuration.WebAppContainerMBean.OverloadProtectionEnabled

Session Tracking from a Servlet

10-18 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

11
Application Events and Event Listener

Classes

This chapter describes Web application events and event listener classes for WebLogic
Server.

This chapter includes the following sections:

• Overview of Application Event Listener Classes

• Servlet Context Events

• HTTP Session Events

• Servlet Request Events

• Configuring an Event Listener Class

• Writing an Event Listener Class

• Templates for Event Listener Classes

• Additional Resources

11.1 Overview of Application Event Listener Classes
Application events provide notifications of a change in state of the servlet context (each
Web application uses its own servlet context) or of an HTTP session object. You write
event listener classes that respond to these changes in state, and you configure and
deploy them in a Web application. The servlet container generates events that cause
the event listener classes to do something. In other words, the servlet container calls
the methods on a user's event listener class.

The following is an overview of this process:

1. The user creates an event listener class that implements one of the listener
interfaces.

2. This implementation is registered in the deployment descriptor.

3. At deployment time, the servlet container constructs an instance of the event
listener class. (This is why the public constructor must exist, as discussed in
Writing an Event Listener Class.)

4. At run time, the servlet container invokes on the instance of the listener class.

For servlet context events, the event listener classes can receive notification when the
Web application is deployed or undeployed (or when WebLogic Server shuts down),
and when attributes are added, removed, or replaced.

Application Events and Event Listener Classes 11-1

For HTTP session events, the event listener classes can receive notification when an
HTTP session is activated or is about to be passivated, and when an HTTP session
attribute is added, removed, or replaced.

Use Web application event listener classes to:

• Manage database connections when a Web application is deployed or shuts down

• Create standard counter utilities

• Monitor the state of HTTP sessions and their attributes

11.2 Servlet Context Events
The following table lists the types of Servlet context events, the interface your event
listener class must implement to respond to each Servlet context event, and the
methods invoked when the Servlet context event occurs.

Table 11-1 Servlet Context Events

Type of Event Interface Method

Servlet context is created.
javax.servlet.ServletConte
xtListener

contextInitialized()

Servlet context is about to be
shut down. javax.servlet.ServletConte

xtListener
contextDestroyed()

An attribute is added.
javax.servlet.
ServletContextAttributesLi
stener

attributeAdded()

An attribute is removed.
javax.servlet.
ServletContextAttributesLi
stener

attributeRemoved()

An attribute is replaced.
javax.servlet.
ServletContextAttributesLi
stener

attributeReplaced()

11.3 HTTP Session Events
The HTTP Session Events contains a list of event types, interfaces and methods that
are used to indicate the activation and deactivation of a HTTP session along with the
addition and removal of attributes during a HTTP session.

The following table lists the types of HTTP session events your event listener class
must implement to respond to the HTTP session events and the methods invoked
when the HTTP session events occur.

Servlet Context Events

11-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table 11-2 HTTP Session Events

Type of Event Interface Method

An HTTP session is activated.
javax.servlet.http.HttpSess
ionListener

sessionCreated()

An HTTP session is about to be
passivated. javax.servlet.http.HttpSess

ionListener
sessionDestroyed()

An attribute is added.
javax.servlet.http.HttpSess
ionAttributeListener

attributeAdded()

An attribute is removed.
javax.servlet.http.HttpSess
ionAttributeListener

attributeRemoved()

An attribute is replaced.
javax.servlet.http.HttpSess
ionAttributeListener

attributeReplaced()

Note:

The Servlet 3.1 specification also contains the
javax.servlet.http.HttpSessionBindingListener and the
javax.servlet.http.HttpSessionActivationListener interfaces.
These interfaces are implemented by objects that are stored as session
attributes and do not require registration of an event listener in web.xml.

11.4 Servlet Request Events
The following table lists the types of servlet request events, the interface your event
listener class must implement to manage state across the life cycle of servlet requests
and the methods invoked when the request events occur.

Table 11-3 Servlet Request Events

Type of Event Interface Method

The request is about to go out of
scope of the Web application. javax.servlet.ServletRequestList

ener
requestDestroye
d()

The request is about to come into
scope of the Web application. javax.servlet.ServletRequestList

ener
requestInitiali
zed()

Notification that a new attribute
was added to the servlet request.
Called after the attribute is added.

javax.servlet.ServletRequestAttr
ibuteListener

attributeAdded(
)

Servlet Request Events

Application Events and Event Listener Classes 11-3

Table 11-3 (Cont.) Servlet Request Events

Type of Event Interface Method

Notification that a new attribute
was removed from the servlet
request. Called after the attribute is
removed.

javax.servlet.ServletRequestAttr
ibuteListener

attributeRemove
d()

Notification that an attribute was
replaced on the servlet request.
Called after the attribute is
replaced.

javax.servlet.ServletRequestAttr
ibuteListener

attributeReplac
ed()

11.5 Configuring an Event Listener Class
To configure an event listener class:

1. Open the web.xml deployment descriptor of the Web application for which you
are creating an event listener class in a text editor. The web.xml file is located in
the WEB-INF directory of your Web application.

2. Add an event declaration using the listener element of the web.xml
deployment descriptor. The event declaration defines the event listener class that is
invoked when the event occurs. The listener element must directly follow the
filter and filter-mapping elements and directly precede the servlet
element. You can specify more than one event listener class for each type of event.
WebLogic Server invokes the event listener classes in the order that they appear in
the deployment descriptor (except for shutdown events, which are invoked in the
reverse order). For example:

<listener>
 <listener-class>myApp.MyContextListenerClass</listener-class>
</listener>
<listener>
 <listener-class>myApp.MySessionAttributeListenerClass</listener-class>
</listener>

3. Write and deploy the event listener class. For details, see the section, Writing an
Event Listener Class.

11.6 Writing an Event Listener Class
To write an event listener class:

1. Create a new event listener class that implements the appropriate interface for the
type of event to which your class responds. For a list of these interfaces, see Servlet
Context Events or HTTP Session Events. See Templates for Event Listener Classes
for sample templates you can use to get started.

2. Create a public constructor that takes no arguments. For example:

public class MyListener {
// public constructor
public MyListener() { /* ... */ }
}

Configuring an Event Listener Class

11-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

3. Implement the required methods of the interface. See the Java EE 7 API Reference
(Javadocs) at http://docs.oracle.com/javaee/7/api/ for more
information.

4. Copy the compiled event listener classes into the WEB-INF/classes directory of
the Web application, or package them into a JAR file and copy the JAR file into the
WEB-INF/lib directory of the Web application.

The following useful classes are passed into the methods in an event listener class:

• javax.servlet.http.HttpSessionEvent—provides access to the HTTP
session object

• javax.servlet.ServletContextEvent—provides access to the servlet
context object.

• javax.servlet.ServletContextAttributeEvent—provides access to
servlet context and its attributes

• javax.servlet.http.HttpSessionBindingEvent—provides access to an
HTTP session and its attributes

11.7 Templates for Event Listener Classes
The following examples provide some basic templates for event listener classes.

11.7.1 Servlet Context Event Listener Class Example
package myApp;
import javax.servlet.http.*;
public final class MyContextListenerClass implements
 ServletContextListener {
 public void contextInitialized(ServletContextEvent event) {

 /* This method is called prior to the servlet context being
 initialized (when the Web application is deployed).
 You can initialize servlet context related data here.
 */

 }
 public void contextDestroyed(ServletContextEvent event) {

 /* This method is invoked when the Servlet Context
 (the Web application) is undeployed or
 WebLogic Server shuts down.
 */

 }
}

11.7.2 HTTP Session Attribute Event Listener Class Example
package myApp;
import javax.servlet.*;

public final class MySessionAttributeListenerClass implements
 HttpSessionAttributeListener {

 public void attributeAdded(HttpSessionBindingEvent sbe) {

Templates for Event Listener Classes

Application Events and Event Listener Classes 11-5

http://docs.oracle.com/javaee/7/api/

 /* This method is called when an attribute
 is added to a session.
 */
 }
 public void attributeRemoved(HttpSessionBindingEvent sbe) {
 /* This method is called when an attribute
 is removed from a session.
 */
 }
 public void attributeReplaced(HttpSessionBindingEvent sbe) {
 /* This method is invoked when an attibute
 is replaced in a session.
 */
 }
}

11.8 Additional Resources
• Servlet 3.1 specification at http://jcp.org/en/jsr/detail?id=340

• Java EE 7 API Reference (Javadocs) at http://docs.oracle.com/
javaee/7/api/index.html

• The Java EE 7 tutorial at http://docs.oracle.com/javaee/7/tutorial/
index.html

Additional Resources

11-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=340
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html

12
Using the HTTP Publish-Subscribe Server

This chapter describes how to use the HTTP Publish-Subscribe Server, included in
WebLogic Server, with your Web applications.

This chapter includes the following sections:

• Overview of HTTP Publish-Subscribe Servers

• Examples of Using the HTTP Publish-Subscribe Server

• Using the HTTP Publish-Subscribe Server: Typical Steps

• Getting Run-time Information about the Pub-Sub Server and Channels

• Enabling Security

• Advanced Topic: Using JMS as a Provider to Enable Cluster Support

• Advanced Topic: Persisting Messages to Physical Storage

12.1 Overview of HTTP Publish-Subscribe Servers
An HTTP Publish-Subscribe Server (for simplicity, also called pub-sub server in this
document) is a mechanism whereby Web clients subscribe to channels and then
publish messages to these channels using asynchronous messages over HTTP.

The simple request/response nature of a standard Web application requires that all
communication be initiated by the client; this means that the server can only push
updated data to its clients if it receives an explicit request. This mechanism is adequate
for traditional applications, such as shopping carts, in which data from the server is
required only when a client requests it, but inadequate for dynamic real-time
applications such as chat rooms and auction updates in which the server must send
data even if a client has not explicitly requested it. The client can use the traditional
HTTP pull approach to check and retrieve the latest data at regular intervals, but this
approach is lacking in scalability and leads to high network traffic because of
redundant checks. The HTTP Publish-Subscribe Server solves this problem by
allowing clients to subscribe to a channel (similar to a topic in JMS) and receive
messages as they become available.

The pub-sub server is based on the Bayeux protocol, see http://archive.is/
http://svn.cometd.com/trunk/bayeux/bayeux.html. The Bayeux protocol
defines a contract between the client and the server for communicating with
asynchronous messages over HTTP. It allows clients to register and subscribe to
channels, which are named destinations or sources of events. Registered clients, or the
pub-sub server itself, then publishes messages to these channels which in turn any
subscribed clients receive.

The pub-sub server can communicate with any client that can understand the Bayeux
protocol. The pub-sub server is responsible for identifying clients, negotiating trust,

Using the HTTP Publish-Subscribe Server 12-1

http://archive.is/http://svn.cometd.com/trunk/bayeux/bayeux.html
http://archive.is/http://svn.cometd.com/trunk/bayeux/bayeux.html

exchanging Bayeux messages, and, most importantly, pushing event messages to
subscribed clients.

The following figure describes the basic architecture of the pub-sub server included in
WebLogic Server.

Figure 12-1 HTTP Publish-Subscribe Server of WebLogic Server

12.1.1 How the Pub-Sub Server Works
There is a one-to-one relationship between a Web application and a pub-sub server; in
other words, each Web application has access to one unique pub-sub server. Each pub-
sub server has its own list of channels, which means that there can be channels with
the same name used in different Web applications within the same enterprise
application. The Web application uses a context object to get a handle to its associated
pub-sub server.

The pub-sub server itself is implemented as a Java EE library that its associated Web
application references in its weblogic.xml deployment descriptor.

The pub-sub server has its own deployment descriptor, called weblogic-
pubsub.xml, that lives in the same directory as other Web application descriptors
(WEB-INF). Developers use the descriptor to configure initial channels for the pub-sub
server, specify the transport and message handlers, and set up user authentication and
authorization.

Web application developers can optionally use server-side pub-sub APIs in their
servlets or Java classes to get the pub-sub server context, manage channels, and
manage the incoming and outgoing messages to and from the clients. It is not
required, however, to use server-side pub-sub APIs. For example, developers can use
the pub-sub server to implement a chat feature in their Web application. In a typical
chat application, clients perform all the subscribe and publish tasks themselves
without any need for additional server-side coding. If, however, developers need the
pub-sub server to perform additional steps, such as monitoring, collecting, or
interpreting incoming messages from clients, then they must use the server-side pub-
sub server APIs to program this functionality.

For Web 2.0 Ajax clients to communicate with the pub-sub server, the clients need a
JavaScript library that supports the Bayeux protocol. The pub-sub server provides the
Dojo JavaScript library implementation as part of its distribution sample. The Dojo
JavaScript library provides four different transports, of which two are supported by
the WebLogic pub-sub server: long-polling and callback-polling.

The pub-sub server can run in a clustered environment by using JMS to make the
messages shareable between nodes of the cluster. In this case, the pub-sub server
essentially delegates message handling to a JMS provider.

Overview of HTTP Publish-Subscribe Servers

12-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

You can also specify that messages be persisted to physical storage such as a file
system or database. By default messages are not persisted.

The following sections provide additional information about the pub-sub server:

• Channels

• Message Delivery and Order of Delivery Guarantee

12.1.2 Channels
Channels are named destinations to which clients subscribe and publish messages.
Programmers define initial channels, channel mapping, and security by creating the
weblogic-pubsub.xml deployment descriptor file and packaging it in the WEB-INF
directory of the Web application, alongside the standard web.xml and
weblogic.xml files. Programmers can optionally use the pub-sub server APIs in
servlets to further find, create, and destroy channels dynamically.

It is up to the programmer to decide whether clients can create and destroy channels.
This means that the programmer, if required, will have to constrain the use of the
create and destroy methods based on client authorization. Any attempt by an
unauthorized client to create or destroy a channel generates an error message.

When the pub-sub server destroys an existing channel, all the clients subscribed to that
channel and sub-channels of that channel are automatically unsubscribed.
Unsubscribed clients receive a disconnect response message from the pub-sub server
when it destroys the channel so that clients can try to reconnect and resubscribe to the
other channels.

The channel namespace is hierarchical. This means that a set of channels can be
specified for subscriptions by a channel gobbling pattern with wildcards like * and **.
The client is automatically registered with any channels that are created after the client
subscribed with a wildcard pattern.

12.1.3 Message Delivery and Order of Delivery Guarantee
The order of delivery of messages is not guaranteed between the client and the pub-
sub server. This means that if the pub-sub server publishes message1 and then
message2, the client may receive the messages in that order, or it may also receive
them in reverse order.

On the Web, clients are by definition loosely connected and it is possible that a
subscriber is inactive or not connected when the pub-sub server publishes a message.
The following rules govern the behavior of message delivery in this case:

• Messages published by the pub-sub server when a client is unreachable are not
delivered to the client.

• When the clients reconnects back, it will continue to receive newly published
messages.

• In order to recover already-published messages, the pub-sub server must be
configured for persistent messages and the channel be configured as a persistent
channel.0

Overview of HTTP Publish-Subscribe Servers

Using the HTTP Publish-Subscribe Server 12-3

12.2 Examples of Using the HTTP Publish-Subscribe Server
The information in this topic uses a very simple example to describe the basic
functionality and required tasks of using the HTTP pub-sub server. The example is a
Web application that consists of only the following components:

• A web.xml deployment descriptor to configure the pub-sub Java EE library.

• A weblogic-pubsub.xml deployment descriptor that configures the pub-sub
server itself.

• An HTML file that allows users to subscribe and publish messages; the HTML file
uses the DOJO client JavaScript libraries as its programming model.

This example does not use any server-side programming using the pub-sub APIs.

A more complicated example is optionally provided in the WebLogic Server
distribution. The example describes a real-world scenario based on stock trading, and
makes extensive use of the pub-sub APIs in both the server and client components.
The example uses Dojo as its client-side programming framework and provides some
of the Dojo JavaScript libraries for your own testing use. The example also shows how
to add security to the pub-sub server and client. The example is in the following
directory:

ORACLE_HOME\wlserver\samples\server\examples\src\examples\webapp\pubsub\stock

where ORACLE_HOME represents the directory in which you installed WebLogic
Server. For more information about the WebLogic Server code examples, see Sample
Applications and Code Examplesin Understanding Oracle WebLogic Server.

12.3 Using the HTTP Publish-Subscribe Server: Typical Steps
The following procedure describes the high-level steps to use the HTTP Publish-
Subscribe Server.

Note:

In the procedure, it is assumed that you have already created a basic Web
application, along with its web.xml and weblogic.xml deployment
descriptor files, JSPs, and servlets. For general details about creating Web
applications, see Creating and Configuring Web Applications.

1. Update the weblogic.xml deployment descriptor of the Web application, located
in the WEB-INF directory, by adding a reference to the shared Java EE library
(always called pubsub) in which the pub-sub server is bundled, as shown in bold
below:

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <library-ref>
 <library-name>pubsub</library-name>
 <specification-version>1.0</specification-version>
 </library-ref>
</weblogic-web-app>

Examples of Using the HTTP Publish-Subscribe Server

12-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

See Creating Shared Java EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Serverfor additional child elements of <library-
ref> as well as additional general information about shared Java EE libraries.

2. Create the weblogic-pubsub.xml file to configure initial channels, specify the
transport and message handlers, and set up user authentication and authorization.
See Creating the weblogic-pubsub.xml File.

3. Optionally add Java code to a component of your Web application, such as a
servlet, if you want the pub-sub server to publish messages to the channels, filter
messages from clients, or dynamically create or destroy channels. This step is not
necessary. See Programming Using the Server-Side Pub-Sub APIs.

4. Optionally program and configure a message filter chain if you want to pre-process
the messages you receive from a client. See Configuring and Programming
Message Filter Chains.

5. Update the browser client, such as an HTML file or JSP, to allow users to subscribe
to channels and send and receive messages. See Updating a Browser Client to
Communicate with the Pub-Sub Server.

6. Reassemble the Web application with new and updated deployment description
files and browser clients, and optionally recompile the servlet if you added pub-
sub server code.

Put the new weblogic-pubsub.xml deployment descriptor in the same WEB-
INF directory of the Web application that contains the web.xml and
weblogic.xml files.

See Creating and Configuring Web Applications for general information about
assembling Web applications.

7. If you have not already done so, deploy the shared Java EE library WAR file in
which the pub-sub server is bundled; you must perform this step before you re-
deploy the Web application that uses the pub-sub server, although you only have
to perform the step once for the entire WebLogic Server.

The pub-sub shared Java EE library WAR file is called pubsub-1.0.war and is
located in the following directory:

WL_HOME/common/deployable-libraries

where WL_HOME is the main WebLogic Server installation directory.

You can use either the WebLogic Server Administration Console or the
weblogic.Deployer command line tool. See Install a Java EE Library for
instructions on using the WebLogic Server Administration Console or Deploying
Shared Java EE Libraries and Dependent Applications for details about using
weblogic.Deployer.

8. Redeploy your updated Web application using the WebLogic Server
Administration Console or the weblogic.Deployer command-line tool.

See Install a Web Application for instructions on using the WebLogic Server
Administration Console or Deploying Applications and Modules with
weblogic.Deployer for details about using weblogic.Deployer.

You can now start using the browser client to subscribe to a channel configured in the
weblogic-pubsub.xml file and then send or receive messages.

Using the HTTP Publish-Subscribe Server: Typical Steps

Using the HTTP Publish-Subscribe Server 12-5

After you have programmed your pub-sub application, you might want to start
monitoring it for run-time information; for details, see Getting Run-time Information
about the Pub-Sub Server and Channels.

See the following sections for more advanced features of the pub-sub server that you
might want to implement:

• Enabling Security

• Advanced Topic: Using JMS as a Provider to Enable Cluster Support

• Advanced Topic: Persisting Messages to Physical Storage

12.3.1 Creating the weblogic-pubsub.xml File
The weblogic-pubsub.xml deployment descriptor is an XML file that configures
the pub-sub server, in particular by specifying the initial channels, configuration
properties of the pub-sub server, and security specifications for the clients that
subscribe to the channels. Some of this information can be updated at run time by the
pub-sub server using the server-side APIs.

The root element of the deployment descriptor is <wlps:weblogic-pubsub>, where
the wlps namespace is http://xmlns.oracle.com/weblogic/weblogic-
pubsub.

For a full description of the elements of the weblogic-pubsub.xml file, see the
schema. The following list includes some of the more commonly used elements; see
the end of this section for a typical example of a weblogic-pubsub.xml file:

• <wlps:server-config>: Configures the pub-sub server. Child elements of this
element include:

– <wlps:work-manager>: Specifies the name of the work manager that delivers
messages to clients.

– <wlps:publish-without-connect-allowed>: Specifies whether clients
can publish messages without having explicitly connected to the pub-sub
server.

– <wlps:supported-transport>: Specifies the supported transports.
Currently, the two supported transports are long-polling and callback-
polling.

– <wlps:client-timeout-secs>: Specifies the number of seconds after which
the pub-sub server disconnects a client if the client does has not sent back a
connect/reconnect message

• <wlps:channel>: Defines and configures the initial channels. Child elements of
this element include:

– <wlps:channel-pattern>: Specifies the channel pattern, similar to the way
servlet URL patterns are specified, such as /foo/
bar, /foo/bar/*, /foo/bar/**.

• <wlps:channel-persistence>: Specifies whether the channel is persistent. For
details, sees Advanced Topic: Persisting Messages to Physical Storage.

Using the HTTP Publish-Subscribe Server: Typical Steps

12-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

– <wlps:jms-handler-name>: Specifies that this channel uses a JMS handler,
rather than the default. For details, see Advanced Topic: Using JMS as a
Provider to Enable Cluster Support.

– <wlps:message-filter>: Configures a message filter chain. For details, see
Configuring and Programming Message Filter Chains.

• <wlps:channel-constraints>: Configures security for the channel, such
which roles are allowed to perform which operations for a given channel. For
details, see Enabling Security.

• <wlps:jms-handler-mapping>: Configures a JMS handler. For details, see
Advanced Topic: Using JMS as a Provider to Enable Cluster Support.

The following sample weblogic-pubsub.xml file shows a simple configuration for
an application that uses the pub-sub server; see the explanation after the example for
details:

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub
 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 <wlps:publish-without-connect-allowed>true</wlps:publish-without-connect-allowed>
 <wlps:supported-transport/>
 <wlps:client-timeout-secs>100</wlps:client-timeout-secs>
 <wlps:persistent-client-timeout-secs>400</wlps:persistent-client-timeout-secs>
 <wlps:interval-millisecs>1000</wlps:interval-millisecs>
 <wlps:multi-frame-interval-millisecs>2000</wlps:multi-frame-interval-millisecs>
 </wlps:server-config>
 <wlps:channel>
 <wlps:channel-pattern>/chatrooms/**</wlps:channel-pattern>
 </wlps:channel>
 <wlps:channel-constraint>
 <wlps:channel-resource-collection>
 <wlps:channel-resource-name>all-permissions</wlps:channel-resource-name>
 <wlps:description>Grant all permissions for everything by everyone</
wlps:description>
 <wlps:channel-pattern>/chatrooms/*</wlps:channel-pattern>
 </wlps:channel-resource-collection>
 </wlps:channel-constraint>
</wlps:weblogic-pubsub>

In the preceding example:

• The <wlps:server-config> element configures the pub-sub server itself. In
particular, it specifies that clients can publish messages to the pub-sub server
without explicitly connecting to it and that the server disconnects the client after
100 seconds if the client has not sent a reconnect message during that time. The
<wlps:persistent-client-timeout-secs> element specifies that, in the
case of persistent channels, the client has up to 400 seconds to be disconnected to
still receive messages published during that time after it reconnects. The
<wlps:interval-milliseconds> element specifies that the client can delay up
to 1000 milliseconds subsequent requests to the /meta/connect channel. Finally,
the <wlps:multi-frame-interval-millisecs> element specifies that the
client can delay up to 2000 milliseconds subsequent requests to the /meta/connect
channel when multi-frame is detected.

Using the HTTP Publish-Subscribe Server: Typical Steps

Using the HTTP Publish-Subscribe Server 12-7

• The <wlps:channel> element configures a single initial channel to which users
can subscribe. This channel is identified with the pattern /chatrooms/**; this
pattern is the top of the channel hierarchy.

• The <wlps:channel-constraints> element provides security constraints
about how the /chatrooms/** channel can be used. In this case, all permissions
are granted to all users for all channels for all operations.

12.3.2 Programming Using the Server-Side Pub-Sub APIs
The pub-sub server itself might sometimes need to get messages from a channel so as
to monitor information or intercept incoming data before it gets published to
subscribed clients. The server might also want to publish messages to a channel
directly to, for example, make an announcement to all subscribed clients or provide
additional services. The pub-sub server might also need to perform maintenance on
the channels, such as create new ones or destroy existing ones.

WebLogic Server provides a pub-sub API in the com.bea.httppubsub package to
perform all of these tasks. Pub-sub programmers use the API in servlets or POJOs
(plain old Java objects) of the Web application that contains the pub-sub application.
Programming with the API is optional and needed only if the pub-sub server must
perform tasks additional to the standard publish and subscribe on the client side.

12.3.2.1 Overview of the Main API Classes and Interfaces

The following list describes the main interfaces and classes of the pub-sub server API:

• com.bea.httppubsub.PubSubServer—This is the most important interface of
the pub-sub server API. It represents an instance of the pub-sub server that is
associated with the current Web application; you use the context path of the
current servlet to get the associated pub-sub server. Using this interface,
programmers can manage channels, configure the pub-sub server, and create local
clients that are used to publish to and subscribe to channels.

• com.bea.httppubsub.LocalClient—After a programmer has instanciated an
instance of the current pub-sub server using the PubSubServer interface, the
programmer must then create a LocalClient, which is the client representative
on the server side. This client is always connected to the pub-sub server. Using this
client, programmers can publish and subscribe to channels. Remote clients, such as
browser-based clients, are represented with the com.bea.httppubsub.Client
interface.

• com.bea.httppubsub.ClientManager—Interface for creating a new
LocalClient.

• com.bea.httppubsub.Channel—Interface that represents a channel and all its
subchannels. With this interface, programmers can get the list of clients currently
subscribed to a channel and its subchannels, publish messages to a channel, get a
list of all subchannels, subscribe or unsubscribe to a channel, and destroy a
channel.

• com.bea.httppubsub.MessageFilter—Interface for creating message filters
that intercept the messages that a client publishes to a channel. See Configuring
and Programming Message Filter Chains for details.

• com.bea.httppubsub.DeliveredMessageListener—Interface that
programmers use to create an object that listens to a channel and is notified every
time a client (remote or local) publishes a message to the channel.

Using the HTTP Publish-Subscribe Server: Typical Steps

12-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• com.bea.httppubsub.BayeuxMessage—Interface that represents the messages
that are exchanged between the pub-sub server and a Bayeux client.

There are additional supporting classes, interfaces, enums, and exceptions in the
com.bea.httppubsub package; see the HTTP Pub-Sub API Javadoc for the complete
documentation.

The following sections describe how to perform the most common server-side tasks
using the pub-sub API, such as publishing messages to and subscribing to a channel.
The sample snippets are taken from the Java source files of the pub-sub server sample
on the distribution kit: ORACLE_HOME\wlserver\samples\server\examples
\src\examples\webapp\pubsub\stock\src\stockWar, where ORACLE_HOME
represents the directory in which you installed WebLogic Server. For more
information about the WebLogic Server code examples, see Sample Applications and
Code Examples in Understanding Oracle WebLogic Server.

12.3.2.2 Getting a Pub-Sub Server Instance and Creating a Local Client

Before you can perform any server-side tasks on the pub-sub server and its channels,
you must first instantiate a PubSubServer object which represents the pub-sub
server and then create a local client which you use to manipulate the channels on
behalf of the pub-sub server.

The following code snippet shows an example:

import com.bea.httppubsub.FactoryFinder;
import com.bea.httppubsub.LocalClient;
import com.bea.httppubsub.PubSubSecurityException;
import com.bea.httppubsub.PubSubServer;
import com.bea.httppubsub.PubSubServerException;
import com.bea.httppubsub.PubSubServerFactory;
import org.json.JSONObject;
public class ApiBasedClient implements Client {
 private PubSubServer pubSubServer;
 private LocalClient localClient;
 public ApiBasedClient(String serverName) throws PubSubServerException {
 PubSubServerFactory pubSubServerFactory =

(PubSubServerFactory)FactoryFinder.getFactory(FactoryFinder.PUBSUBSERVER_FACTORY);
 pubSubServer = pubSubServerFactory.lookupPubSubServer(serverName);
 localClient = pubSubServer.getClientManager().createLocalClient();
 }
 ...
}

The FactoryFinder class searches for an implementation of the
PubSubServerFactory which in turn is used to create PubSubServer instances.
The lookupPubSubServer() method of PubSubServerFactory returns a
PubSubServer instance based the context path of the servlet from which the method
is run. Finally, the createLocalClient() method of the ClientManager of the
PubSubServer instance returns a LocalClient object; this is the object that the
pub-sub server uses to subscribe and publish to a channel.

12.3.2.3 Publishing Messages to a Channel

To publish a message to a channel, use the PubSubServer.publishToChannel()
method, passing it the LocalClient object, the name of the channel, and the text of
the message, as shown in the following code snippet:

public void publish(String channel, JSONObject data) throws IOException {
 try {

Using the HTTP Publish-Subscribe Server: Typical Steps

Using the HTTP Publish-Subscribe Server 12-9

 pubSubServer.publishToChannel(localClient, channel, data.toString());
 } catch (PubSubSecurityException e) {
 throw new IOException(e);
 }
}

In the example, the channel variable would contain the name of a channel, such
as /my/channel/**.

The publishToChannel() method is asynchronous and returns immediately, or in
other words, the method does not wait for the subscribed clients to receive the
message.

12.3.2.4 Subscribing to a Channel

Subscribing to a channel from the server-side is a two step process:

1. Create a message listener and register it with the LocalClient

2. Explicitly subscribe to the channel.

The message listener is a class that implements the DeliveredMessageListener
interface. This interface defines a single callback method, onPublish(), which is
notified whenever the local client receives a message. The callback method is sent a
DeliveredMessageEvent instance which represents the message sent to the local
client.

To subscribe to a channel, use the PubSubServer.subscribeToChannel()
method, passing it the LocalClient object and the name of the channel.

The following code snippet shows an example of both of these steps; see a description
of the example directly after the code snippet:

pubSubServer.subscribeToChannel(localClient, "/management/publisher");
localClient.registerMessageListener(new DeliveredMessageListener() {
 private InWebPublisher publisher = new InWebPublisher(contextPath);
 private boolean publishing = false;
 public void onPublish(DeliveredMessageEvent event) {
 Object payLoad = event.getMessage().getPayLoad();
 if (payLoad instanceof String) {
 String command = (String)payLoad;
 if ("start".equals(command) && !publishing) {
 publisher.startup();
 publishing = true;
 } else if ("halt".equals(command) && publishing) {
 publisher.halt();
 publishing = false;
 }
 }
 }
 });

In the preceding example:

• The pub-sub server subscribes to a channel called /management/publisher.

• The message listener class is implemented directly in the
LocalClient.registerMessageListener() method call.

Using the HTTP Publish-Subscribe Server: Typical Steps

12-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

12.3.3 Configuring and Programming Message Filter Chains
Pub-sub server application developers can program one or more message filters and
configure them for a channel so as to intercept the incoming messages from clients and
transform or additionally process the messages in some way. A message filter chain
refers to more than one filter attached to a channel, where the first configured filter
pre-processes the message and then passes it to the second configured filter, and so on.
This feature is similar to the filters that were introduced in the servlet 2.3 specification.

Message filters are useful for a variety of reasons. First, they provide the ability to
encapsulate recurring tasks in reusable units, which is good programming practice.
Second, they provide an easy and consistent way to pre-process an incoming message
from a client before the pub-sub server gets it and subsequently sends it out to the
subscribers to the channel. Reasons for pre-processing the messages include validating
incoming data, gathering monitoring information, tracking the users of the pub-sub
application, caching, and so on.

There are two major steps to implementing message filter chains:

• Programming the Message Filter Class

• Configuring the Message Filter Chain

12.3.3.1 Programming the Message Filter Class

Each filter in the chain must have its own user-programmed filter class. The filter class
must implement the com.bea.httppubsub.MessageFilter interface. The
MessageFilter interface includes a single method,
handleMessage(EventMessage); its signature is as follows:

boolean handleMessage(EventMessage message);

The com.bea.httppubsub.EventMessage interface extends BayeaxMessage,
which is a JavaScript Object Notation (JSON) (see http://www.json.org/) encoded
object. JSON is a lightweight data-interchange format used by the Bayeux protocol.
The EventMessage interface defines two methods, getPayload() and
setPayload(), that programmers use to access and process the incoming messages.

Because the handleMessage() method returns boolean, a programmer can
interrupt all further processing in the message filter chain by returning false in any
of the filter classes in the chain. This action not only interrupts the filter processing,
but also immediately returns the message back to the client that published it, without
sending it on to channel subscribers. This is a great way for programmers to ensure
that there is no problem identified in the incoming messages, and, if a problem is
found, to prevent the messages to be published to subscribers.

The following example shows a simple implementation of the MessageFilter
interface:

package msgfilters;
public static class Filter1 implements MessageFilter {
 public boolean handleMessage(EventMessage message) {
 String msg = (String) message.getPayLoad();
 message.setPayLoad("[" + msg.substring(1, msg.length()-1));
 return true;
 }
}

Using the HTTP Publish-Subscribe Server: Typical Steps

Using the HTTP Publish-Subscribe Server 12-11

http://www.json.org/

In the example, the getPayload() method gets the String message from the
inputted message parameter; this message either comes directly from the client (if
Filter1 is the first configured filter in the chain) or is the result of another filter class
if Filter1 is not the first in the chain. The setPayLoad() method resets the
message while performing some data manipulation; in the example, the first character
of the message is replaced with a [.

12.3.3.2 Configuring the Message Filter Chain

You configure the message filters in the weblogic-pubsub.xml deployment
descriptor of the pub-sub server.

First, you declare the message filters using the <wlps:message-filter> child
element of the root <wlps:weblogic-pubsub> element. Then you configure a
specific channel by adding a <wlps:message-filter> element for each filter in the
chain. The order in which the filters are configured in the <wlps:channel> element
is the order in which they execute.

The following example shows how to configure message filters in the weblogic-
pubsub.xml deployment descriptor; only relevant information is shown. See the text
after the example for an explanation:

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub
 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 ...
 </wlps:server-config>
 <wlps:message-filter>
 <wlps:message-filter-name>filter1</wlps:message-filter-name>
 <wlps:message-filter-class>msgfilters.Fiter1</wlps:message-filter-class>
 </wlps:message-filter>
 <wlps:message-filter>
 <wlps:message-filter-name>filter2</wlps:message-filter-name>
 <wlps:message-filter-class>msgfilters.Filter2</wlps:message-filter-class>
 </wlps:message-filter>
 <wlps:channel>
 <wlps:channel-pattern>/firstchannel/*</wlps:channel-pattern>
 <wlps:message-filter>filter1</wlps:message-filter>
 </wlps:channel>
 <wlps:channel>
 <wlps:channel-pattern>/secondchannel/*</wlps:channel-pattern>
 <wlps:message-filter>filter2</wlps:message-filter>
 <wlps:message-filter>filter1</wlps:message-filter>
 </wlps:channel>
</wlps:weblogic-pubsub>

In the example, two filters are declared using the <wlps:message-filter>
element: filter1 implemented by the msgfilters.Filter1 class and filter2
implemented by the msgfilters.Filter2 class.

The channel with pattern /firstchannel/* is then configured with filter1. At
run time, this means that all messages published to the direct subchannels of /
firstchannel are first pre-processed by the msgfilters.Filter1 class.

The channel with pattern /secondchannel/* is configured with two filters:
filter2 and filter1. The order in which these two filters are configured is
important. At run time, all messages published to the direct subchannels of /
secondchannel are first intercepted and processed by the msgfilters.Filter2

Using the HTTP Publish-Subscribe Server: Typical Steps

12-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

class, then the result of this processing is sent to msgfilters.Filter1 which then
does its own processing, and then the result is sent to the subscribers of the channel.

12.3.4 Updating a Browser Client to Communicate with the Pub-Sub Server
To update a browser, or any other Web-based client, to communicate with the pub-sub
server, you use a JavaScript library that supports the Bayeux protocol. You can use any
client-side programming framework of your choosing, provided that it supports the
Bayeux protocol. Typically you add the JavaScript to your JSP or HTML file, or
whatever implements the Web client.

This section shows an example of using Dojo as the client-side programming
framework and updating a JSP. Dojo is a JavaScript-based toolkit that supports the
Bayeux protocol as well as AJAX. Although WebLogic Server does not provide the
toolkit as an integral feature, it does include a subset of the libraries as part of the
installed pub-sub example; see Examples of Using the HTTP Publish-Subscribe Server
for details.

There are three main tasks you must perform when programming the Web client to
communicate with the pub-sub server:

• Initialize the Dojo cometd environment.

The following example shows a typical way to perform this step:

dojo.io.cometd.init({}, "/context/cometd");

where context refers to the context path of the Web application that hosts the
pub-sub application. This initialization step creates a handshake with the pub-sub
server so as to determine the transport type for the connection. If the handshake is
successful, the client connects to the pub-sub server.

The cometd part of the initialization string is required, unless you specifically
override the default servlet mappings of the pubsub Java EE library that are
defined in the web.xml file of the library itself. For details of how to do this, see
Overriding the Default Servlet Mapping of the pubsub Java EE Library.

• Publish a message to a channel.

The message can be a simple string message or a JSON message. The following
example shows how to publish a simple message:

dojo.io.cometd.publish("/a/channel", "message content");

where /a/channel refers to the name of the channel to which you want to publish
the message and the second parameter is the text of the message. The following
example shows how to publish a JSON message:

dojo.io.cometd.publish("/a/channel", {"data": "content"});

• In this example, the second parameter can be any JSON object.

• Subscribe to a channel.

Before you can actually subscribe to a channel, you must first implement a callback
JavaScript function. This function can have any name; you will later reference the
function when you subscribe to a channel. The following example shows how to
implement a JavaScript function called onUpdate:

function onUpdate(message) {
 if (!message.data) {

Using the HTTP Publish-Subscribe Server: Typical Steps

Using the HTTP Publish-Subscribe Server 12-13

 alert("bad message format "+message);
 return;
 }
 // fetch the data published by other clients
 var data = message.data;
}

To actually subscribe to a channel, use the following JavaScript:

dojo.io.cometd.subscribe("/a/channel", null, "onUpdate");

where /a/channel refers to the channel to which you want to subscribe and
onUpdate is the name of the callback JavaScript function you previously defined.

This section covers only the minimal information on using the Dojo toolkit to update a
Web based client to communicate with the WebLogic pub-sub server; for additional
details, see http://www.dojotoolkit.org/documentation.

12.3.5 Overriding the Default Servlet Mapping of the pubsub Java EE Library
The web.xml of the pubsub Java EE library defines the internal servlet (called
PubSubServlet) that implements the pub-sub server as follows:

<web-app>
 <servlet>
 <servlet-name>PubSubServlet</servlet-name>
 <servlet-class>com.bea.httppubsub.servlet.ControllerServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>PubSubServlet</servlet-name>
 <url-pattern>/cometd/*</url-pattern>
 </servlet-mapping>
</web-app>

As shown by the code in bold, the URL pattern for the PubSubServlet is /cometd/*;
this is why by default you must use a string such as /mywebapp/cometd when
initializing a Web client that communicates with the pub-sub server.

If you need to override this default URL pattern, then update the web.xml file of your
Web application with something like the following:

<servlet-mapping>
 <servlet-name>PubSubServlet</servlet-name>
 <url-pattern>/web2/*</url-pattern>
</servlet-mapping>

Now you can specify this new URL pattern, rather than cometd, when using Dojo to
initialize a Web client:

dojo.io.cometd.init({}, "/context/web2");

12.4 Getting Run-time Information about the Pub-Sub Server and
Channels

The pub-sub server exposes all run-time monitoring information using Java
Management Extensions (JMX) MBeans. Examples of the type of information you can
gather at run time include details about registered clients, channel subscriptions, and
message counts.

Getting Run-time Information about the Pub-Sub Server and Channels

12-14 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.dojotoolkit.org/documentation

The pub-sub server uses two kinds of run-time MBeans:

• weblogic.management.runtime.WebPubSubRuntimeMBean—Encapsulates
run-time information about the pub-sub server itself. Examples of information you
can get about a pub-sub server using this MBean include the context root of the
associated Web application and a handle to a configured channel.

• weblogic.management.runtime.ChannelRuntimeMBean—Encapsulates
information about the channels configured for the pub-sub server. Examples of
information you can get about a channel using the MBean include the number of
published messages to this channel, the number of current subscribers, and the list
of subscribers.

Both MBeans are registered in the WebLogic Server MBean tree and can be reached by
navigating through the tree. In particular, WebPubSubRuntimeMBean is registered
under WebAppComponentRuntimeMBean of the current Web application and all
ChannelRuntimeMBeans are registered under WebPubSubRuntimeMBean.

For complete information on these MBeans, go to the MBean Reference for Oracle
WebLogic Server, open the Runtime MBeans node in the left pane; the run-time MBeans
are listed in alphabetical order.

For general information about programming JMX MBeans, see Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

12.5 Enabling Security
The pub-sub server offers the following security features:

• Use Pub-Sub Constraints

• Map Roles to Principals

• Configure SSL for Pub-Sub Communication

• Additional Security Considerations

The use of these features is described in the sections that follow.

12.5.1 Use Pub-Sub Constraints
The pub-sub server provides the capability to secure a channel via a combination of
two mechanisms: a channel constraint and an authorization constraint.

Conceptually, a channel constraint is a container that includes a collection of resources
to be protected and, optionally, authorization constraints on the specific resources in
the resource collection. The authorization constraints represent WebLogic Server roles
and policies, and answer the question "Who can perform a given operation on the
resources in the collection?"

You specify the pub-sub constraints in a configuration file, weblogic-pub-sub.xml.
The pub-sub server uses the channel constraint and any authorization constraints in
the weblogic-pub-sub.xml configuration file to set up roles and policies on the
channels.

Consider the example shown in Example 12-1. Significant sections are shown in bold.

Example 12-1 Pub/Sub Constraints

<wlps:channel-constraint>
<wlps:channel-resource-collection>

Enabling Security

Using the HTTP Publish-Subscribe Server 12-15

 <wlps:channel-resource-name>publish</wlps:channel-resource-name>
 <wlps:description>publish channel constraint</wlps:description>
 <wlps:channel-pattern>/stock/* *</wlps:channel-pattern>
 <wlps:channel-pattern>/management/publisher</wlps:channel-pattern>
 <wlps:channel-operation>publish</wlps:channel-operation>
 </wlps:channel-resource-collection>

 <wlps:auth-constraint>
 <wlps:description>publisher</wlps:description>
 <wlps:role-name>publisher</wlps:role-name>
 </wlps:auth-constraint>

 </wlps:channel-constraint>

In this example, the operation publish for the /stock/* * and /management/
publisher channels is available only to users with the WebLogic Server role
publisher.

12.5.1.1 Specify Access to Channel Operations

Four types of actions (operations) are allowed on channels:

• create

• delete

• subscribe

• publish

By default (with no channel constraints defined), subscribe operations are open for all
users on all channels.

Similarly, create, delete, and publish operations are restricted for all users on all
channels by default. Create, delete, and publish operations are allowed only if
explicitly configured in channel constraints.

You use a combination of <wlps:channel-operation> and <wlps:auth-
constraint> to specify access to a channel operation for a given role.

For example, in Example 12-2, the publish operation is permitted for authenticated
subjects with the publisher role, and denied to all other roles.

Example 12-2 Publisher Role Constraint

<wlps:channel-constraint>

 <wlps:channel-resource-collection>
 <wlps:channel-resource-name>publish</wlps:channel-resource-name>
 <wlps:description>publish channel constraint</wlps:description>
 <wlps:channel-pattern>/stock/* *</wlps:channel-pattern>
 <wlps:channel-pattern>/management/publisher</wlps:channel-pattern>
 <wlps:channel-operation>publish</wlps:channel-operation>
 </wlps:channel-resource-collection>

 <wlps:auth-constraint>
 <wlps:description>publisher</wlps:description>
 <wlps:role-name>publisher</wlps:role-name>
 </wlps:auth-constraint>

 </wlps:channel-constraint>

Enabling Security

12-16 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

12.5.1.2 Restricting Access to All Channel Operations

The presence of an empty authorization constraint (<wlps:auth-constraint> </
wlps:auth-constraint>) means that all access is prohibited for the specified
channel operations, or all channel operations if <wlps:channel-operation> is not
specified.

Therefore, to restrict all channel operations for the channel for all users, set up your
weblogic-pub-sub.xml configuration file with an empty <wlps:auth-
constraint> element, as follows:

<wlps:channel-constraint>
 <wlps:channel-resource-collection>
 <wlps:description>Restrict All Acesss</wlps:description>
 <wlps:channel-pattern>/**</wlps:channel-pattern>
 </wlps:channel-resource-collection>
 <wlps:auth-constraint> </wlps:auth-constraint>
 </wlps:channel-constraint>

12.5.1.3 Opening Access to All Channel Operations

The absence of an authorization constraint within a channel constraint means that
access is not limited for the specified channel operations, or all channel operations if
<wlps:channel-operation> is not specified.

(In contrast, the presence of an empty authorization constraint (<wlps:auth-
constraint> </wlps:auth-constraint>) means that all access is prohibited for
the specified channel operations, or all channel operations for that channel if
<wlps:channel-operation> is not specified.)

Therefore, to open up all channel operations for the channel for all users, set up your
weblogic-pub-sub.xml configuration file without <wlps:channel-operation>
or <wlps:auth-constraint> elements, as follows:

<wlps:channel-constraint>
 <wlps:channel-resource-collection>
 <wlps:description>All Acesss</wlps:description>
 <wlps:channel-pattern>/**</wlps:channel-pattern>
 </wlps:channel-resource-collection>
 <!-- Not defining an auth-constraint will open up access to everyone -->
 </wlps:channel-constraint>

12.5.1.4 Updating a Constraint Requires Redeploy of Web Application

Constraints cannot be updated dynamically. You must redeploy the Web application
for new settings to take effect.

12.5.2 Map Roles to Principals

Note:

The pub-sub server does not directly perform authentication. Rather, the pub-
sub server runs on top of WebLogic Server (the servlet container) and
leverages the WebLogic authentication services. Specifically, the pub-sub
server uses the currently-authenticated user (or anonymous) for requests
originating from a given client.

Enabling Security

Using the HTTP Publish-Subscribe Server 12-17

The primary pub-sub security mechanism is authorization. As previously described,
the pub-sub server uses the a combination of <wlps:channel-operation> and
<wlps:auth-constraint> elements to set up roles and policies on the channels.
Each bayeux packet corresponds to one bayeux request. One HTTP request can
translate to one or more bayeux requests. WebLogic Server (the servlet container)
performs authorization checks for the HTTP request, and the pub-sub server performs
one authorization check for each bayeux request.

To set up the pub-sub authorization, you must map the role names, which you specify
as <wlps:role-name>some-role-name</wlps:role-name> in your
weblogic-pub-sub.xml file, to principal names using the security-role-
assignment element configured in your weblogic.xml file.

Note:

The absence of such a mapping in the weblogic.xml file will cause the role
to be used implicitly; this generates a warning.

As described in security-role-assignment, the security-role-assignment
element declares a mapping between a security role and one or more principals in the
WebLogic Server security realm.

Example 12-3 shows how to use the security-role-assignment element to assign
principals to the publisher role.

Example 12-3 security-role-assignment Element

<weblogic-web-app>
 <security-role-assignment>
 <role-name>publisher</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>

</weblogic-web-app>

12.5.3 Configure SSL for Pub-Sub Communication
By default, all pub-sub communication is via HTTP. However, you can configure the
pub-sub server to require SSL by modifying the web.xml file. Requiring SSL ensures
that all communication between the pub-sub server and the Web 2.0 clients happens
over SSL.

WebLogic Server establishes an SSL connection when the user is authenticated using
the INTEGRAL or CONFIDENTIAL transport guarantee, as specified in the web.xml
file. In Example 12-4, the transport guarantee is set to integral.

Example 12-4 Requiring SSL Via web.xml

<security-constraint>

<web-resource-collection>
<web-resource-name>Success</web-resource-name>
<url-pattern>/cometd/*</url-pattern>

<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>

Enabling Security

12-18 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

<user-data-constraint>
<transport-guarantee>INTEGRAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

12.5.4 Additional Security Considerations
This section describes the following additional pub-sub security considerations:

• Use AuthCookieEnabled to Access Resources

• Locking Down the Pub-Sub Server

12.5.4.1 Use AuthCookieEnabled to Access Resources

WebLogic Server allows a user to securely access HTTPS resources in a session that
was initiated using HTTP, without loss of session data. To enable this feature, add
AuthCookieEnabled="true" to the WebServer element in config.xml:

<WebServer Name="myserver" AuthCookieEnabled="true"/>

Setting AuthCookieEnabled to true, which is the default setting, causes the WebLogic
Server instance to send a new secure cookie, _WL_AUTHCOOKIE_JSESSIONID, to
the browser when authenticating via an HTTPS connection. Once the secure cookie is
set, the session is allowed to access other security-constrained HTTPS resources only if
the cookie is sent from the browser.

Note:

This feature will work even when cookies are disabled because WebLogic
Server will use URL rewriting over secure connections to rewrite secure URLs
in order to encode the authCookieID in the URL along with the JSESSIONID.

12.5.4.2 Locking Down the Pub-Sub Server

This section describes how to lock down the pub-sub server to prevent unauthorized
access. The steps described here offer additional security at the cost of reduced access.
It is up to you to decide which level of security is appropriate for your environment.

To lock down the pub-sub server, perform the following steps:

1. Configure SSL for pub-sub communication, as described in Configure SSL for Pub-
Sub Communication.

2. Require authentication (BASIC, FORM, and so forth.)

WebLogic Server sets the required authentication method for the Web application
in the web.xml file.

In the following example, HTTP BASIC authentication is required:

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>default</realm-name>
</login-config>

Enabling Security

Using the HTTP Publish-Subscribe Server 12-19

3. Ensure auth-cookie is enabled for the Web applications, as described in Use
AuthCookieEnabled to Access Resources.

4. Ensure that all the channels are constrained in the weblogic-pubsub.xml file.

5. Lock subscribe operations, which are allowed by default.

<wlps:channel-constraint>
<wlps:channel-resource-collection>
<wlps:channel-resource-name>publish</wlps:channel-resource-name>
<wlps:description>publish channel constraint</wlps:description>
<wlps:channel-pattern>/stock/*</wlps:channel-pattern>

<wlps:channel-pattern>/management/publisher</wlps:channel-pattern>
<wlps:channel-operation>publish</wlps:channel-operation>
</wlps:channel-resource-collection>

<wlps:auth-constraint>
<wlps:description>publisher</wlps:description>
<wlps:role-name>publisher</wlps:role-name>
</wlps:auth-constraint>
</wlps:channel-constraint>

<wlps:channel-constraint>
<wlps:channel-resource-collection>
<wlps:channel-resource-name>subscribe</wlps:channel-resource-name>
<wlps:description>subscribe channel constraint</wlps:description>
<wlps:channel-pattern>/stock/*</wlps:channel-pattern>
<wlps:channel-operation>subscribe</wlps:channel-operation>
</wlps:channel-resource-collection>

<wlps:auth-constraint>
<wlps:description>subscriber</wlps:description>
<wlps:role-name>subscriber</wlps:role-name>
</wlps:auth-constraint>

</wlps:channel-constraint>

12.6 Advanced Topic: Using JMS as a Provider to Enable Cluster Support
Pub-sub server applications can run in a WebLogic Server clustered environment so as
to provide scalability and server failover. However, pub-sub applications behave
differently depending on the message handler (pub-sub server itself or a JMS
provider) that is handling the published messages. In the default non-JMS case, the
pub-sub server handles all messages and each instance of the pub-sub server on each
node of the cluster is independent and isolated. This means that event messages
cannot be shared between different server instances. For example, if a client subscribes
to channel /chat on node A of the cluster, it cannot receive messages published to
channel /chat on node B of the cluster.

If, for a given channel, you want all messages published to all nodes of a cluster to be
shareable by all clients subscribed to the channel, then you must configure the channel
for JMS. You do this by updating the appropriate <wlps:channel> element in the
weblogic-pubsub.xml deployment descriptor of your application.

When a client publishes a message to a JMS-configured channel, the pub-sub server re-
sends the message to a JMS topic. JMS message listeners running on each node of the
cluster retrieve the messages from the JMS topics and then deliver them to the
subscribed clients on their node.

Advanced Topic: Using JMS as a Provider to Enable Cluster Support

12-20 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

12.6.1 Configuring JMS as a Handler
You configure the JMS as the message handler for an application in the weblogic-
pubsub.xml deployment descriptor of the pub-sub server.

First, you declare the configuration of the JMS handler using the <wlps:jms-
handler-mapping> child element of the root <wlps:weblogic-pubsub> element.
This is where you specify the URL of the JMS provider, the connection factory JNDI
name, and the JMS topic JNDI name. Then you configure a specific channel to be a
JMS channel by adding a <wlps:jms-handler-name> child element.

The following example shows how to configure a JMS handler and channel in the
weblogic-pubsub.xml deployment descriptor; only relevant information is shown
in bold. See the text after the example for an explanation.

Note:

It is assumed in this section that you have already configured your JMS
provider and created the connection factory and topic that will be used for the
pub-sub JMS channel. See Developing JMS Applications for Oracle WebLogic
Server for information about WebLogic JMS or your provider's documentation
for details.

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub
 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 ...
 </wlps:server-config>
 <wlps:jms-handler-mapping>
 <wlps:jms-handler-name>DefaultJmsHandler</wlps:jms-handler-name>
 <wlps:jms-handler>
 <wlps:jms-provider-url>t3://localhost:7001</wlps:jms-provider-url>
 <wlps:connection-factory-jndi-name>ConnectionFactoryJNDI</wlps:connection-
factory-jndi-name>
 <wlps:topic-jndi-name>TopicJNDI</wlps:topic-jndi-name>
 </wlps:jms-handler>
 </wlps:jms-handler-mapping>
 <wlps:channel>
 <wlps:channel-pattern>/chat/**</wlps:channel-pattern>
 <wlps:jms-handler-name>DefaultJmsHandler</wlps:jms-handler-name>
 </wlps:channel>
</wlps:weblogic-pubsub>

In the preceding example:

• The <wlps:jms-handler-mapping> element defines a JMS handler named
DefaultJmsHandler. The <wlps:jms-handler> child element configures
specific properties of DefaultJmsHandler that the pub-sub server uses to
delegate messages to the JMS topic; in particular, the JMS provider URL that the
pub-sub server uses to access the JNDI tree of the JMS provider is t3://
localhost:7001, the connection factory JNDI name is
ConnectionFactoryJNDI, and the JNDI name of the topic to which the
messages will be delegated is TopicJNDI.

Advanced Topic: Using JMS as a Provider to Enable Cluster Support

Using the HTTP Publish-Subscribe Server 12-21

• The <wlps:jms-handler-name> child element of <wlps:channel> specifies
that the channel with pattern /chat is actually a JMS channel, with JMS
configuration options specified by the DefaultJmsHandler.

If you do not define jms-provider-url in weblogic-pubsub.xml, the Pub-Sub
Server uses the connection-factory-jndi-name and topic-jndi-name
elements configured in weblogic-pubsub.xml to look up the reference to the
connection factory and topic, as defined by the resource-ref element in web.xml
and the res-ref-name element in weblogic.xml.

The following code example demonstrates:

• defining resource-ref in web.xml (Example 12-5)

• mapping res-ref-name to the actual JNDI name of the JMS resources in
weblogic.xml (Example 12-6)

• using the connection-factory-jndi-name and topic-jndi-name elements
in weblogic-pubsub.xml to reference the connection factory and topic without
specifying jms-provider-url (Example 12-7)

Example 12-5 Defining resource-ref for the connection factory and topic in web.xml

<resource-ref>
 <res-ref-name>web20/connectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
</resource-ref>
<resource-ref>
 <res-ref-name>web20/topic</res-ref-name>
 <res-type>javax.jms.Topic</res-type>
</resource-ref>

Example 12-6 Mapping res-ref-name to the JNDI name in weblogic.xml

<resource-description>
 <res-ref-name>web20/connectionFactory</res-ref-name>
 <jndi-name> weblogic.web20.jms.TopicConnectionFactory</jndi-name>
</resource-description>

<resource-description>
 <res-ref-name>web20/topic</res-ref-name>
 <jndi-name>weblogic.web20.jms.chatTopic</jndi-name>
</resource-description>

Example 12-7 Using connection-factory-jndi-name and topic-jndi-name in
weblogic-pubsub.xml

<jms-handler-mapping>
 <jms-handler-name>jms-fortest</jms-handler-name>
 <jms-handler>
 <connection-factory-jndi-name>
 web20/connectionFactory
 </connection-factory-jndi-name>
 <topic-jndi-name>
 web20/topic
 </topic-jndi-name>
 </jms-handler>
</jms-handler-mapping>

Advanced Topic: Using JMS as a Provider to Enable Cluster Support

12-22 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

For the full list of JMS handler-related XML elements you can include in the
weblogic-pubsub.xml deployment descriptor, see the weblogic-pubsub.xsd
schema at http://xmlns.oracle.com/weblogic/weblogic-pubsub.

12.6.2 Configuring Client Session Failover
In addition to server failover, the pub-sub server also supports client session failover
in clustered environments. In client failover, whenever the status of the client changes,
such as when it subscribes or unsubscribes to a channel, the latest client status is
stored into a replicated HTTP session. If one node of the cluster crashes, WebLogic
Server attempts to recover the clients on the crashed node by moving them to other
available nodes using the replicated HTTP sessions.

To configure client session failover, update the weblogic.xml deployment
descriptor file of the Web application that hosts the pub-sub application by adding a
<session-descriptor> child element of the root <weblogic-web-app> element
and specify that the persistent store type is replicated_if_clustered, as shown
below; only relevant sections of the file are shown in bold:

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 ...
 <session-descriptor>
 <persistent-store-type>replicated_if_clustered</persistent-store-type>
 </session-descriptor>
</weblogic-web-app>

12.7 Advanced Topic: Persisting Messages to Physical Storage
If you require that messages published to a particular channel be persisted, then you
should configure the channel as a persistent channel. In this case, all messages
published to this channel will be persisted to physical storage such as a database or the
file system. In particular, this physical storage must be a pre-configured WebLogic
persistent store. The WebLogic persistent store provides a built-in, high-performance
storage solution for WebLogic Server subsystems and services that require persistence.
The persistent store supports persistence to a file-based store or to a JDBC-enabled
database. For additional details, see Administering the WebLogic Persistent Store.

Oracle recommends that you create your own file or JDBC store to store the persistent
messages and configure this store for the persistent channel. If, however, the pub-sub
server does not find a store with the configured name, then the server attempts to use
the default WebLogic persistent store to store the messages, and logs a warning
message to the log file.

The pub-sub server does not allow messages to live in the persistent store indefinitely;
rather, it uses a configured maximum duration property to regularly delete old
messages from the store after they have been in the store longer than the max
duration. By default, this maximum duration is 3600 seconds, but it can be configured
differently for each persistent channel.

A client that subscribes to a persistent channel is called a persistent client. The main
difference between normal clients and persistent clients is how the pub-sub server
handles timeouts. There are two different timeout configuration options when
configuring the pub-sub server; the following elements are children of
<wlps:server-config> in the weblogic-pubsub.xml file:

Advanced Topic: Persisting Messages to Physical Storage

Using the HTTP Publish-Subscribe Server 12-23

http://xmlns.oracle.com/weblogic/weblogic-pubsub

• <wlps:client-timeout-secs>—Specifies the number of seconds after which
normal (non-persistent) clients are deleted and persistent clients are deactivated by
the pub-sub server, if during that time the client does not send a connect or re-
connect message. When deactivating, the server keeps all subscribed persistent
channels for the client and unsubscribes the non-persistent channels. The default
value is 60 seconds.

• <wlps:persistent-client-timeout-secs>—Specifies the number of
seconds after which persistent clients are disconnected and deleted by the pub-sub
server, if during that time the persistent client does not send a connect or re-
connect message. This value must be larger than client-timeout-secs. If the
persistent client reconnects before the persistent timeout is reached, the client
receives all messages that have been published to the persistent channel during
that time; if the client reconnects after the timeout, then it does not get the
messages. The default value is 600 seconds.

12.7.1 Configuring Persistent Channels
You configure a persistent channel in the weblogic-pubsub.xml deployment
descriptor file of the pub-sub server.

First configure the pub-sub by adding a <wlps:persistent-client-timeout-
secs> child element of <wlps:server-config> if you want to change the default
persistent timeout value of 600 seconds. Then you configure a persistent channel by
adding a <wlps:channel-persistence> child element of <wlps:channel> and
specify the maximum amount of time that messages for that channel should be
persisted and the name of the persistent store to which the messages should be
persisted. The following example shows the relevant sections of the weblogic-
pubsub.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub
 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 ...
 <wlps:persistent-client-timeout-secs>400</wlps:persistent-client-timeout-secs>
 </wlps:server-config>
 <wlps:channel>
 <wlps:channel-pattern>/chat/**</wlps:channel-pattern>
 <wlps:channel-persistence>
 <wlps:max-persistent-message-duration-secs>3000</wlps:max-persistent-message-
duration-secs>
 <wlps:persistent-store>PubSubFileStore</wlps:persistent-store>
 </wlps:channel-persistence>
 </wlps:channel>
</wlps:weblogic-pubsub>

In the preceding example:

• The persistent client timeout value is 400 seconds. This value applies to all
persistent channels of this pub-sub server.

• The channel with pattern /chat, and all its subchannels, has been configured as a
persistent channel. The messages will be persisted to a WebLogic persistent store
called PubSubFileStore and they will live for a maximum of 3000 seconds in the
store.

Advanced Topic: Persisting Messages to Physical Storage

12-24 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

It is assumed that you have already created and configured the
PubSubFileStore using the WebLogic Server Administration Console; for
details, see Administering the WebLogic Persistent Store.

Advanced Topic: Persisting Messages to Physical Storage

Using the HTTP Publish-Subscribe Server 12-25

Advanced Topic: Persisting Messages to Physical Storage

12-26 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

13
WebLogic JSP Reference

This chapter provides reference information for writing WebLogic JavaServer Pages
(JSPs).

This chapter includes the following sections:

• JSP Tags

• Defining JSP Versions

• Reserved Words for Implicit Objects

• Directives for WebLogic JSP

• Declarations

• Scriptlets

• Expressions

• Example of a JSP with HTML and Embedded Java

• Actions

• JSP Expression Language

• JSP Expression Language Implicit Objects

• JSP Expression Language Literals and Operators

• JSP Expression Language Reserved Words

• JSP Expression Language Named Variables

• Securing User-Supplied Data in JSPs

• Using Sessions with JSP

• Deploying Applets from JSP

• Using the WebLogic JSP Compiler

13.1 JSP Tags
The following table describes the basic tags that you can use in a JSP page. Each
shorthand tag has an XML equivalent.

WebLogic JSP Reference 13-1

Table 13-1 Basic Tags for JSP Pages

JSP Tag Syntax Description

Scriptlet <% java_code %>

. . . or use the XML
equivalent:

<jsp:scriptlet>

java_code

</jsp:scriptlet>

Embeds Java source code scriptlet
in your HTML page. The Java code
is executed and its output is
inserted in sequence with the rest of
the HTML in the page. For details,
see Scriptlets.

Directive
<%@ dir-type dir-
attr %>

. . . or use the XML
equivalent:

<jsp:directive.dir_
type dir_attr />

Directives contain messages to the
application server.

A directive can also contain name/
value pair attributes in the form
attr="value", which provides
additional instructions to the
application server. See Directives
for WebLogic JSP.

Declarations <%! declaration %>

. . . or use XML
equivalent...

<jsp:declaration>
 declaration;
</jsp:declaration>

Declares a variable or method that
can be referenced by other
declarations, scriptlets, or
expressions in the page. See
Declarations.

Expression <%= expression %>

. . . or use XML
equivalent...

<jsp:expression>
expression
</expression>

Defines a Java expression that is
evaluated at page request time,
converted to a String, and sent
inline to the output stream of the
JSP response. See Expressions.

Actions <jsp:useBean ... >

JSP body is included if the
bean is instantiated here

</jsp:useBean>
<jsp:setProperty ... >
<jsp:getProperty ... >
<jsp:include ... >
<jsp:forward ... >
<jsp:plugin ... >

Provide access to advanced features
of JSP, and only use XML syntax.
These actions are supported as
defined in the JSP 2.2 specification.
See Actions .

JSP Tags

13-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table 13-1 (Cont.) Basic Tags for JSP Pages

JSP Tag Syntax Description

Comments <%/* comment */%>
Ensure that your comments are
removed from the viewable source
of your HTML files by using only
JSP comment tags. HTML
comments remain visible when the
user selects view source in the
browser.

13.2 Defining JSP Versions
JSP 2.2 (http://jcp.org/aboutJava/communityprocess/mrel/jsr245/
index.html) is a maintenance release for JSP 2.1. The JSP 2.2 specification uses the
servlet 3.1 specification for its Web semantics.

Because JSP 2.1 imported some new features, the same syntax could hold different
meanings between JSP 2.1 and JSP 2.0, so the JSP version must be defined to attain the
expected behavior. For example:

• <%@ page deferredSyntaxAllowedAsLiteral="true" %> is not allowed
in JSP 2.0.

• # {expr} is valid in JSP 2.0 template text, but is invalid in JSP 2.1 by default.

13.2.1 Rules for Defining a JSP File Version
Since there is no explicit method of specifying a JSP page's version, its version is
eventually determined by the Web application version, as follows:

• If <jsp:root> appears in a JSP document, its attribute version value will
determine that JSP document's version; otherwise, the Web application version will
determine it.

• If the Web application version is determining the JSP version, then 2.5 indicates the
version is JSP 2.1 and 2.4 means the version is JSP 2.0.

• If a JSP document contains <jsp:root>, and if Web application version is 2.4, the
<jsp:root> version must not be higher than 2.0. However, if the Web application
version is 2.5, then the <jsp:root> version could be less than 2.1.

• All Referred JSP tag versions must not be higher than current JSP file's version.

13.2.2 Rules for Defining a Tag File Version
All JSP tag file versions are defined by the version of the tag library they belong to.

• Since an implicit tag library will be created for each directory, including tag files,
the implicit tag library's version is 2.0 by default. However, the version can be
configured by the implicit.tld file in same directory in JSP 2.1.

• A .tagx file's <jsp:root> attribute version value must be same as the tag file's
version.

• All Referred JSP tag versions must not be higher than current tag file's version.

Defining JSP Versions

WebLogic JSP Reference 13-3

http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html

13.3 Reserved Words for Implicit Objects
JSP reserves words for implicit objects in scriptlets and expressions. These implicit
objects represent Java objects that provide useful methods and information for your
JSP page. WebLogic JSP implements all implicit objects defined in the JSP 2.2
specification. The JSP API is described in the Javadocs available at http://
docs.oracle.com/javaee/7/api/.

Note:

Use these implicit objects only within scriptlets or expressions. Using these
keywords from a method defined in a declaration causes a translation-time
compilation error because such usage causes your page to reference an
undefined variable.

Table 13-2 Reserved Words for Implicit Objects

Reserved Word Description

request
Represents the HttpServletRequest object. It contains
information about the request from the browser and has several
useful methods for getting cookie, header, and session data.

response
Represents the HttpServletResponse object and several useful
methods for setting the response sent back to the browser from your
JSP page. Examples of these responses include cookies and other
header information.

Note: You cannot use the response.getWriter() method from
within a JSP page; if you do, a run-time exception is thrown. Use the
out keyword to send the JSP response back to the browser from
within your scriptlet code whenever possible. The WebLogic Server
implementation of javax.servlet.jsp.JspWriter uses
javax.servlet.ServletOutputStream, which implies that you
can use response.getServletOutputStream(). Keep in mind,
however, that this implementation is specific to WebLogic Server. To
keep your code maintainable and portable, use the out keyword.

out
An instance of javax.jsp.JspWriter that has several methods
you can use to send output back to the browser.

If you are using a method that requires an output stream, then
JspWriter does not work. You can work around this limitation by
supplying a buffered stream and then writing this stream to out. For
example, the following code shows how to write an exception stack
trace to out:

 ByteArrayOutputStream ostr = new ByteArrayOutputStream();
 exception.printStackTrace(new PrintWriter(ostr));
 out.print(ostr);

pageContext
Represents a javax.servlet.jsp.PageContext object. It is a
convenience API for accessing various scoped namespaces and
servlet-related objects, and provides wrapper methods for common
servlet-related functionality.

Reserved Words for Implicit Objects

13-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/

Table 13-2 (Cont.) Reserved Words for Implicit Objects

Reserved Word Description

session
Represents a javax.servlet.http.HttpSession object for the
request. The session directive is set to true by default, so the session
is valid by default. The JSP 2.1 specification states that if the session
directive is set to false, then using the session keyword results in
a fatal translation time error.

application
Represents a javax.servlet.ServletContext object. Use it to
find information about the servlet engine and the servlet
environment.

When forwarding or including requests, you can access the servlet
requestDispatcher using the ServletContext, or you can use
the JSP forward directive for forwarding requests to other servlets,
and the JSP include directive for including output from other
servlets.

config
Represents a javax.servlet.ServletConfig object and provides
access to the servlet instance initialization parameters.

page
Represents the servlet instance generated from this JSP page. It is
synonymous with the Java keyword this when used in your
scriptlet code.

To use page, you must cast it to the class type of the servlet that
implements the JSP page, because it is defined as an instance of
java.lang.Object. By default, the servlet class is named after the
JSP filename. For convenience, we recommend that you use the Java
keyword this to reference the servlet instance and get access to
initialization parameters, instead of using page.

13.4 Directives for WebLogic JSP
Use directives to instruct WebLogic JSP to perform certain functions or interpret the
JSP page in a particular way. You can insert a directive anywhere in a JSP page. The
position is generally irrelevant (except for the include directive), and you can use
multiple directive tags. A directive consists of a directive type and one or more
attributes of that type.

You can use either of two types of syntax: shorthand or XML:

• Shorthand: <%@ dir_type dir_attr %>

• XML: <jsp:directive.dir_type dir_attr />

Replace dir_type with the directive type, and dir_attr with a list of one or more
directive attributes for that directive type.

There are three types of directives page, taglib, or include.

13.4.1 Using the page Directive to Set Character Encoding
To specify a character encoding set, use the following directive at the top of the page:

<%@ page contentType="text/html; charset=custom-encoding" %>

Directives for WebLogic JSP

WebLogic JSP Reference 13-5

The character set you specify with a contentType directive specifies the character set
used in the JSP as well as any JSP included in that JSP.

You can specify a default character encoding by specifying it in the WebLogic-specific
deployment descriptor for your Web application.

13.4.2 Using the taglib Directive
Use a taglib directive to declare that your JSP page uses custom JSP tag extensions
that are defined in a tag library. For details about writing and using custom JSP tags,
see Developing JSP Tag Extensions for Oracle WebLogic Server.

13.5 Declarations
Use declarations to define variables and methods at the class-scope level of the
generated JSP servlet. Declarations made between JSP tags are accessible from other
declarations and scriptlets in your JSP page. For example:

<%!
 int i=0;
 String foo= "Hello";
 private void bar() {
 // ...java code here...
 }
%>

Remember that class-scope objects are shared between multiple threads being
executed in the same instance of a servlet. To guard against sharing violations,
synchronize class scope objects. If you are not confident writing thread-safe code, you
can declare your servlet as not-thread-safe by including the following directive:

<%@ page isThreadSafe="false" %>

By default, this attribute is set to true. Setting isThreadSafe to false consumes
additional memory and can cause performance to degrade.

13.6 Scriptlets
JSP scriptlets make up the Java body of your JSP servlet's HTTP response. To include a
scriptlet in your JSP page, use the shorthand or XML scriptlet tags shown here:

Shorthand:

<%
 // Your Java code goes here
%>

XML:

<jsp:scriptlet>
 // Your Java code goes here
</jsp:scriptlet>

Note the following features of scriptlets:

• You can have multiple blocks of scriptlet Java code mixed with plain HTML.

• You can switch between HTML and Java code anywhere, even within Java
constructs and blocks. In Example of a JSP with HTML and Embedded Java the
example declares a Java loop, switches to HTML, and then switches back to Java to

Declarations

13-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

close the loop. The HTML within the loop is generated as output multiple times as
the loop iterates.

• You can use the predefined variable out to print HTML text directly to the servlet
output stream from your Java code. Call the print() method to add a string to the
HTTP page response.

• Any time you print data that a user has previously supplied, Oracle recommends
that you remove any HTML special characters that a user might have entered. If
you do not remove these characters, your Web site could be exploited by cross-site
scripting. For more information, refer to JSP Expression Language.

• The Java tag is an inline tag; it does not force a new paragraph.

13.7 Expressions
To include an expression in your JSP file, use the following tag:

<%= expr %>

Replace expr with a Java expression. When the expression is evaluated, its string
representation is placed inline in the HTML response page. It is shorthand for

<% out.print(expr); %>

This technique enables you to make your HTML more readable in the JSP page. Note
the use of the expression tag in the example in the next section.

Expressions are often used to return data that a user has previously supplied. Any
time you print user-supplied data, Oracle recommends that you remove any HTML
special characters that a user might have entered. If you do not remove these
characters, your Web site could be exploited by cross-site scripting. For more
information, refer to JSP Expression Language.

13.8 Example of a JSP with HTML and Embedded Java
The following example shows a JSP with HTML and embedded Java:

<html>
 <head><title>Hello World Test</title></head>
<body bgcolor=#ffffff>
<center>
<h1> Hello World Test </h1>

<%
 out.print("Java-generated Hello World");
%>

<p> This is not Java!
<p><i>Middle stuff on page</i>
<p>

<%
 for (int i = 1; i<=3; i++) {
%>
 <h2>This is HTML in a Java loop! <%= i %> </h2>
<%
 }
%>

Expressions

WebLogic JSP Reference 13-7

</center>
</body>
</html>

After the code shown here is compiled, the resulting page is displayed in a browser as
follows:

13.9 Actions
You use JSP actions to modify, use, or create objects that are represented by JavaBeans.
Actions use XML syntax exclusively.

13.9.1 Using JavaBeans in JSP
The <jsp:useBean> action tag allows you to instantiate Java objects that comply
with the JavaBean specification, and to refer to them from your JSP pages.

To comply with the JavaBean specification, objects need:

• A public constructor that takes no arguments

• A setVariable() method for each variable field

• A getVariable() method for each variable field

13.9.1.1 Instantiating the JavaBean Object

The <jsp:useBean> tag attempts to retrieve an existing named Java object from a
specific scope and, if the existing object is not found, may attempt to instantiate a new
object and associate it with the name given by the id attribute. The object is stored in a
location given by the scope attribute, which determines the availability of the object.
For example, the following tag attempts to retrieve a Java object of type
examples.jsp.ShoppingCart from the HTTP session under the name cart.

<jsp:useBean id="cart"
 class="examples.jsp.ShoppingCart" scope="session"/>

If such an object does not currently exist, the JSP attempts to create a new object, and
stores it in the HTTP session under the name cart. The class should be available in

Actions

13-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

the CLASSPATH used to start WebLogic Server, or in the WEB-INF/classes directory
of the Web application containing the JSP.

It is good practice to use an errorPage directive with the <jsp:useBean> tag
because there are run-time exceptions that must be caught. If you do not use an
errorPage directive, the class referenced in the JavaBean cannot be created, an
InstantiationException is thrown, and an error message is returned to the
browser.

You can use the type attribute to cast the JavaBean type to another object or interface,
provided that it is a legal type cast operation within Java. If you use the attribute
without the class attribute, your JavaBean object must already exist in the scope
specified. If it is not legal, an InstantiationException is thrown.

13.9.1.2 Doing Setup Work at JavaBean Instantiation

The <jsp:useBean> tag syntax has another format that allows you to define a body
of JSP code that is executed when the object is instantiated. The body is not executed if
the named JavaBean already exists in the specified scope. This format allows you to set
up certain properties when the object is first created. For example:

<jsp:useBean id="cart" class="examples.jsp.ShoppingCart"
 scope=session>
 Creating the shopping cart now...
 <jsp:setProperty name="cart"
 property="cartName" value="music">
</jsp:useBean>

Note:

If you use the type attribute without the class attribute, a JavaBean object is
never instantiated, and you should not attempt to use the tag format to
include a body. Instead, use the single tag format. In this case, the JavaBean
must exist in the specified scope, or an InstantiationException is
thrown. Use an errorPage directive to catch the potential exception.

13.9.1.3 Using the JavaBean Object

After you instantiate the JavaBean object, you can refer to it by its id name in the JSP
file as a Java object. You can use it within scriptlet tags and expression evaluator tags,
and you can invoke its setXxx() or getXxx() methods using the
<jsp:setProperty> and <jsp:getProperty> tags, respectively.

13.9.1.4 Defining the Scope of a JavaBean Object

Use the scope attribute to specify the availability and life-span of the JavaBean object.
The scope can be one of the following:

Table 13-3 Defining the Scope attribute of a JavaBean Object

Scope Description

page
This is the default scope for a JavaBean, which stores the object in the
javax.servlet.jsp.PageContext of the current page. It is
available only from the current invocation of this JSP page. It is not
available to included JSP pages, and it is discarded upon completion
of this page request.

Actions

WebLogic JSP Reference 13-9

Table 13-3 (Cont.) Defining the Scope attribute of a JavaBean Object

Scope Description

request
When the request scope is used, the object is stored in the current
ServletRequest, and it is available to other included JSP pages
that are passed the same request object. The object is discarded when
the current request is completed.

session
Use the session scope to store the JavaBean object in the HTTP
session so that it can be tracked across several HTTP pages. The
reference to the JavaBean is stored in the page's HttpSession object.
Your JSP pages must be able to participate in a session to use this
scope. That is, you must not have the page directive session set to
false.

application
At the application-scope level, your JavaBean object is stored in
the Web application. Use of this scope implies that the object is
available to any other servlet or JSP page running in the same Web
application in which the object is stored.

For more information about using JavaBeans, see http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-138795.html.

13.9.2 Forwarding Requests
If you are using any type of authentication, a forwarded request made with the
<jsp:forward> tag, by default, does not require the user to be re-authenticated. You
can change this behavior to require authentication of a forwarded request by adding
the <check-auth-on-forward/> element to the <container-descriptor> element of the
WebLogic-specific deployment descriptor, weblogic.xml. For example:

<container-descriptor>
 <check-auth-on-forward/>
</container-descriptor>

13.9.3 Including Requests
You can use the <jsp:include> tag to include another resource in a JSP. This tag takes
two attributes:

page—Use the page attribute to specify the included resource. For example:

<jsp:include page="somePage.jsp"/>

flush—Setting this boolean attribute to true buffers the page output and then
flushes the buffer before including the resource. Setting flush="false" can be
useful when the <jsp:include> tag is located within another tag on the JSP page
and you want the included resource to be processed by the tag.

13.10 JSP Expression Language
The JSP expression language is inspired by both ECMAScript and the XPath
expression languages. The JSP EL is available in attribute values for standard and
custom actions and within template text. In both cases, the JSP EL is invoked
consistently by way of the construct #{expr} or ${expr}.

JSP Expression Language

13-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html

The #{expr} syntax refers to deferred expressions introduced in JSP EL 2.1.
Expressions delimited by "#{}" use "deferred evaluation" because the expression is
not evaluated until its value is needed by the system, and so can be processed by the
underlying mechanism at the appropriate moment within its life cycle. Whereas,
expressions delimited by "${}" use "immediate evaluation" because the expression is
compiled when the JSP page is compiled and it is executed when the JSP page is
executed. The deferred expression includes deferred ValueExpression and deferred
MethodExpression. The ${expr} syntax is supported in JSP EL 2.1.

The addition of the JSP EL to the JSP technology better facilitates the writing of
scriptlets JSP pages. These pages can use JSP EL expressions but cannot use Java
scriptlets, Java expressions, or Java declaration elements. You can enforce this usage
pattern through the scripting-invalid JSP configuration element of the web.xml
deployment descriptor.

WebLogic Server now supports EL 2.2 which is a maintenance release for EL 2.1. For
more information on the JSP expression language, see http://jcp.org/
aboutJava/communityprocess/mrel/jsr245/index.html.

13.10.1 Expressions and Attribute Values
You can use JSP EL expressions in any attribute that can accept a run-time expression,
whether it is a standard action or a custom action. The following are use-cases for
expressions in attribute values:

• The attribute value contains a single expression construct of either <some:tag
value="${expr}"/> or <some:tag value="#{expr}"/>. In this case, the
expression is evaluated and the result is coerced to the attribute's expected type
according to the type conversion rules described in "Type Conversions," at
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/
index.html.

• The attribute value contains one or more expressions separated or surrounded by
text of either: <some:tag value="some${expr}${expr}text${expr}"/> or
<some:tag value="some#{expr}#{expr}text#{expr}"/>. In this case, the
expressions are evaluated from left to right, coerced to Strings (according to the
type conversion rules described later), and concatenated with any intervening text.
The resulting String is then coerced to the attribute's expected type according to the
type conversion rules described in "Type Conversions," at http://jcp.org/
aboutJava/communityprocess/mrel/jsr245/index.html.

• The attribute value contains only text: <some:tag value="sometext"/>. In
this case, the attribute's String value is coerced to the attribute's expected type
according to the type conversion rules described in "Type Conversions," at
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/
index.html.

Note:

These rules are equivalent to the JSP 2.1 conversions, except that empty strings
are treated differently.

The following two conditions must be satisfied when using JSPX:

• web.xml – The web-app must define the servlet version attribute as 2.4 or
higher; otherwise, all EL functions are ignored.

JSP Expression Language

WebLogic JSP Reference 13-11

http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html

• TLD file – Namespace declaration is required for the jsp prefix, as follows:

<html xmlns:jsp="http://java.sun.com/JSP/Page";

The following shows a conditional action that uses the JSP EL to test whether a
property of a bean is less than 3.

<c:if test="${bean1.a < 3}">
...
</c:if>

Note that the normal JSP coercion mechanism already allows for: <mytags:if
test="true" />. There may be literal values that include the character sequence ${. If
this is the case, a literal with that value can be used as shown here:

<mytags:example code="an expression is ${'${'}expr}" />

The resulting attribute value would then be the string an expression is ${expr}.

13.10.2 Expressions and Template Text
You can use the JSP EL directly in template text; this can be inside the body of custom
or standard actions or in template text outside of any action. An exception to this use
is if the body of the tag is tag dependent or if the JSP EL is turned off (usually for
compatibility issues) explicitly through a directive or implicitly.

The semantics of a JSP EL expression are the same as with Java expressions: the value
is computed and inserted into the current output. In cases where escaping is desired
(for example, to help prevent cross-site scripting attacks), you can use the JSTL core
tag <c:out>. For example:

<c:out value="${anELexpression}" />

The following shows a custom action where two JSP EL expressions are used to access
bean properties:

<c:wombat>
One value is ${bean1.a} and another is ${bean2.a.c}.
</c:wombat>

13.11 JSP Expression Language Implicit Objects
There are several implicit objects that are available to JSP EL expressions used in JSP
pages. These objects are always available under these names:

• pageContext—Represents the pageContext object.

• pageScope—Represents a Map that maps page-scoped attribute names to their
values.

• requestScope—Represents a Map that maps request-scoped attribute names to
their values.

• sessionScope—Represents a Map that maps session-scoped attribute names to
their values.

• applicationScope—Represents a Map that maps application-scoped attribute
names to their values.

• param—Represents a Map that maps parameter names to a single String parameter
value (obtained by calling ServletRequest.getParameter(String name)).

JSP Expression Language Implicit Objects

13-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• paramValues—Represents a Map that maps parameter names to a single
String[] of all values for that parameter (obtained by calling
ServletRequest.getParameterValues(String name)).

• header—Represents a Map that maps header names to a single String header
value (obtained by calling ServletRequest.getHeader(string name)).

• headerValues—Represents a Map that maps header names to a String[] of all
values for that header (obtained by calling
ServletRequest.getHeaders(String name)).

• cookie—Represents a Map that maps cookie names to a single Cookie object.
Cookies are retrieved according to the semantics of
HttpServletRequest.getCookies(). If the same name is shared by multiple
cookies, an implementation must use the first one encountered in the array of
Cookie objects returned by the getCookies() method. However, users of the
cookie implicit objects must be aware that the ordering of cookies is currently
unspecified in the servlet specification.

• initParam—Represents a Map that maps context initialization parameter names
to their String parameter value (obtained by calling
ServletRequest.getInitParameter(String name)).

Table 13-4 shows some examples of using these implicit objects:

Table 13-4 Example Uses of Implicit Objects

Expression Description

$
{pageContext.reques
t.requestURI}

The request's URI (obtained from HttpServletRequest)

$
{sessionScope.profi
le}

The session-scoped attribute named profile (null if not found)

${param.productId}
The String value of the productId parameter (null if not found).

$
{paramValues.produc
tId}

The String[] containing all values of the productId parameter
(null if not found).

13.12 JSP Expression Language Literals and Operators
These sections discuss JSP EL expression literals and operators. The JSP EL syntax is
pretty straightforward. Variables are accessed by name. A generalized [] operator can
be used to access maps, lists, arrays of objects and properties of JavaBean objects; the
operator can be nested arbitrarily. The . operator can be used as a convenient
shorthand for property access when the property name follows the conventions of
Java identifies. However the [] operator allows for more generalized access.

JSP Expression Language Literals and Operators

WebLogic JSP Reference 13-13

Relational comparisons are allowed using the standard Java relational operators.
Comparisons may be made against other values, or against boolean (for equality
comparisons only), String, integer, or floating point literals. Arithmetic operators can
be used to compute integer and floating point values. Logical operators are available.

13.12.1 Literals
Literals exist for boolean, integer, floating point, string, null.

• Boolean - true and false

• Integer - As defined by the IntegerLiteral construct in "Collected Syntax," in
the JSP 2.1 EL specification.

• Floating point - As defined by the FloatingPointLiteral construct in
"Collected Syntax," in the JSP 2.1 EL specification.

• String -With single and double quotes - " is escaped as \", ' is escaped as \', and \ is
escaped as \\. Quotes only need to be escaped in a string value enclosed in the
same type of quote.

• Null - null

13.12.2 Errors, Warnings, Default Values
JSP pages are mostly used in presentation, and in that usage, experience suggests that
it is most important to be able to provide as good a presentation as possible, even
when there are simple errors in the page. To meet this requirement, the JSP EL does
not provide warnings, just default values and errors. Default values are typecorrect
values that are assigned to a subexpression when there is some problem. An error is
an exception thrown (to be handled by the standard JSP machinery).

13.12.3 Operators
The following is a list of operators provided by the JSP expression language:

• . and []

• Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

• Logical: and, &&, or, ||, not, !

• Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can be made
against other values, or against boolean, string, integer, or floating point literals.

• Empty: The empty operator is a prefix operation that can be used to determine
whether a value is null or empty.

• Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of
A.

For more information about the operators and their functions, see the JSP 2.2
specification.

13.12.4 Operator Precedence
The following is operator precedence, from highest to lowest, left-to-right.

• [] .

JSP Expression Language Literals and Operators

13-14 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• ()

• - (unary) not ! empty

• * / div % mod

• + - (binary)

• < > <= >= lt gt le ge

• == != eq ne

• && and

• || or

• ? :

13.13 JSP Expression Language Reserved Words
The following words are reserved for the language and should not be used as
identifiers.

• and

• eq

• gt

• true

• instanceof

• or

• ne

• le

• false

• empty

• not

• lt

• ge

• null

• div

• mod

Note:

Many of these words are not in the language now, but they may be in the
future, so developers should avoid using these words now.

JSP Expression Language Reserved Words

WebLogic JSP Reference 13-15

13.14 JSP Expression Language Named Variables
A core concept in the JSP EL is the evaluation of a variable name into an object. The
JSP EL API provides a generalized mechanism, a VariableResolver, that will resolve
names into objects. The default resolver is what is used in the evaluation of JSP EL
expressions in template and attributes. This default resolver provides the implicit
objects discussed in JSP Expression Language Implicit Objects.

The default resolver also provides a map for other identifiers by looking up its value
as an attribute, according to the behavior of
PageContext.findAttribute(String) on the pageContext object. For
example: ${product}.

This expression looks for the attribute named product, searching the page, request,
session, and application scopes, and returns its value. If the attribute is not found, null
is returned. See "Expression Language API," of the JSP 2.2 specification. for further
details on the VariableResolver and how it fits with the evaluation API.

13.15 Securing User-Supplied Data in JSPs
Expressions and scriptlets enable a JSP to receive data from a user and return the user
supplied data. For example, the sample JSP in Example 13-1 prompts a user to enter a
string, assigns the string to a parameter named userInput, and then uses the <%=
javax.servlet.ServletRequest.getParameter("userInput")%>
expression to return the data to the browser.

Example 13-1 Using Expressions to Return User-Supplied Content

<html>
 <body>
 <h1>My Sample JSP</h1>
 <form method="GET" action="mysample.jsp">
 Enter string here:
 <input type="text" name="userInput" size=50>
 <input type=submit value="Submit">
 </form>

 <hr>

 Output from last command:
 <%= javax.servlet.ServletRequest.getParameter("userInput")%>
 </body>
</html>

This ability to return user-supplied data can present a security vulnerability called
cross-site scripting, which can be exploited to steal a user's security authorization. For
a detailed description of cross-site scripting, refer to "Understanding Malicious
Content Mitigation for Web Developers" (a CERT security advisory) at http://
www.cert.org/tech_tips/malicious_code_mitigation.html.

To remove the security vulnerability, before you return data that a user has supplied,
scan the data for any of the HTML special characters in Table 13-5. If you find any
special characters, replace them with their HTML entity or character reference.
Replacing the characters prevents the browser from executing the user-supplied data
as HTML.

JSP Expression Language Named Variables

13-16 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html

Table 13-5 HTML Special Characters that Must Be Replaced

Replace this special character: With this entity/character reference:

< <

> >

(&40;

) &41;

&35;

& &38;

13.15.1 Using a WebLogic Server Utility Method
WebLogic Server provides the
weblogic.servlet.security.Utils.encodeXSS() method to replace the
special characters in user-supplied data. To use this method, provide the user-
supplied data as input. For example:

<%= weblogic.servlet.security.Utils.encodeXSS(
javax.servlet.ServletRequest.getParameter("userInput"))%>

To secure an entire application, you must use the encodeXSS() method each time
you return user-supplied data. While the previous example is an obvious location in
which to use the encodeXSS() method, Table 13-6 describes other locations to
consider using the encodeXSS() method.

Table 13-6 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid
URL, user name

An error page that says "user name
is not permitted access."

Status page User Name, summary of input from
previous pages

A summary page that asks a user to
confirm input from previous pages.

Database
display

Data presented from a database A page that displays a list of
database entries that have been
previously entered by a user.

13.16 Using Sessions with JSP
Sessions in WebLogic JSP perform according to the JSP 2.2 specification. The following
suggestions pertain to using sessions:

• Store small objects in sessions. For example, a session should not be used to store
an EJB, but an EJB primary key instead. Store large amounts of data in a database.
The session should hold only a simple string reference to the data.

• When you use sessions with dynamic reloading of servlets or JSPs, the objects
stored in the servlet session must be serializable. Serialization is required because

Using Sessions with JSP

WebLogic JSP Reference 13-17

the servlet is reloaded in a new class loader, which results in an incompatibility
between any classes loaded previously (from the old version of the servlet) and any
classes loaded in the new class loader (for the new version of the servlet classes).
This incompatibility causes the servlet to return ClassCastException errors.

• If session data must be of a user-defined type, the data class should be serializable.
Furthermore, the session should store the serialized representation of the data
object. Serialization should be compatible across versions of the data class.

13.17 Deploying Applets from JSP
Using the JSP provides a convenient way to include the Java Plug-in a Web page, by
generating HTML that contains the appropriate client browser tag. The Java Plug-in
allows you to use a Java Runtime Environment (JRE) instead of the JVM implemented
by the client Web browser. This feature avoids incompatibility problems between your
applets and specific types of Web browsers. The Java Plug-in is available at http://
www.oracle.com/technetwork/java/index-jsp-141438.html.

Because the syntax used by Internet Explorer and Netscape is different, the servlet
code generated from the <jsp:plugin> action dynamically senses the type of
browser client and sends the appropriate <OBJECT> or <EMBED> tags in the HTML
page.

The <jsp:plugin> tag uses many attributes similar to those of the <APPLET> tag,
and some other attributes that allow you to configure the version of the Java Plug-in to
be used. If the applet communicates with the server, the JVM running your applet
code must be compatible with the JVM running WebLogic Server.

In the following example, the plug-in action is used to deploy an applet:

<jsp:plugin type="applet" code="examples.applets.PhoneBook1"
 codebase="/classes/" height="800" width="500"
 jreversion="2.0"
 nspluginurl=
 "http://java.sun.com/products/plugin/1.1.3/plugin-install.html"
 iepluginurl=
"http://java.sun.com/products/plugin/1.1.3/
 jinstall-113-win32.cab#Version=1,1,3,0" >
<jsp:params>
 <param name="weblogic_url" value="t3://localhost:7001">
 <param name="poolname" value="demoPool">
</jsp:params>
<jsp:fallback>
 Sorry, cannot run java applet!!
</jsp:fallback>

</jsp:plugin>

The sample JSP syntax shown here instructs the browser to download the Java Plug-in
version 1.3.1 (if it has not been downloaded previously), and run the applet identified
by the code attribute from the location specified by codebase.

The jreversion attribute identifies the spec version of the Java Plug-in that the
applet requires to operate. The Web browser attempts to use this version of the Java
Plug-in. If the plug-in is not already installed on the browser, the nspluginurl and
iepluginurl attributes specify URLs where the Java Plug-in can be downloaded
from http://www.oracle.com/technetwork/java/index-
jsp-141438.html. Once the plug-in is installed on the Web browser, it is not
downloaded again.

Deploying Applets from JSP

13-18 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/index-jsp-141438.html
http://www.oracle.com/technetwork/java/index-jsp-141438.html
http://www.oracle.com/technetwork/java/index-jsp-141438.html
http://www.oracle.com/technetwork/java/index-jsp-141438.html

Because WebLogic Server uses the Java 1.3.x VM, you must specify the Java Plug-in
version 1.3.x in the <jsp:plugin> tag. To specify the 1.3 JVM in the previous
example code, replace the corresponding attribute values with the following:

jreversion="1.3"
nspluginurl=
"http://java.sun.com/products/plugin/1.3/plugin-install.html"
iepluginurl=
"http://java.sun.com/products/plugin/1.3/jinstall-131-win32.cab"

The other attributes of the plug-in action correspond with those of the <APPLET> tag.
You specify applet parameters within a pair of <params> tags, nested within the
<jsp:plugin> and </jsp:plugin> tags.

The <jsp:fallback> tags allow you to substitute HTML for browsers that are not
supported by the <jsp:plugin> action. The HTML nested between the
<fallback> and </jsp:fallback> tags is sent instead of the plug-in syntax.

13.18 Using the WebLogic JSP Compiler

Note:

The WebLogic JSP compiler is deprecated. Oracle recommends that you use
the WebLogic appc compiler, weblogic.appc, to compile EAR files, WAR
files and EJBs. See appc Reference in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

For better compilation performance, the WebLogic JSP compiler transforms a JSP
directly into a class file on the disk instead of first creating a java file on the disk and
then compiling it into a class file. The java file only resides in memory.

To see the generated java file, turn on the -keepgenerated flag which dumps the in-
memory java file to the disk.

Note:

During JSP compilation, neither the command line flag (compilerclass) nor the
descriptor element is invoked.

13.18.1 JSP Compiler Syntax
The JSP compiler works in much the same way that other WebLogic compilers work
(including the RMI and EJB compilers). To start the JSP compiler, enter the following
command.

$ java weblogic.jspc -options fileName

Replace fileName with the name of the JSP file that you want to compile. You can
specify any options before or after the target fileName. The following example uses
the -d option to compile myFile.jsp into the destination directory, weblogic/
classes:

$ java weblogic.jspc -d /weblogic/classes myFile.jsp

Using the WebLogic JSP Compiler

WebLogic JSP Reference 13-19

Note:

If you are precompiling JSPs that are part of a Web application and that
reference resources in the Web application (such as a JSP tag library), you
must use the -webapp flag to specify the location of the Web application. The
-webapp flag is described in the following listing of JSP compiler options.

13.18.2 JSP Compiler Options
Use any combination of the following options:

Table 13-7 JSP Compiler Options

Option Description

-classpath
Add a list (separated by semi-colons on Windows NT/2000 platforms
or colons on UNIX platforms) of directories that make up the desired
CLASSPATH. Include directories containing any classes required by
the JSP. For example (to be entered on one line):

$ java weblogic.jspc -classpath java/classes.zip;/weblogic/
classes.zip myFile.JSP

-charsetMap
Specifies mapping of IANA or unofficial charset names used in JSP
contentType directives to java charset names. For example:

-charsetMap x-sjis=Shift_JIS,x-big5=Big5

The most common mappings are built into the JSP compiler. Use this
option only if a desired charset mapping is not recognized.

-commentary
Causes the JSP compiler to include comments from the JSP in the
generated HTML page. If this option is omitted, comments do not
appear in the generated HTML page.

-compileAll
Recursively compiles all JSPs in the current directory, or in the
directory specified with the -webapp flag. (See the listing for -
webapp in this list of options.). JSPs in subdirectories are also
compiled.

-compileFlags
Passes one or more command-line flags to the compiler. Enclose
multiple flags in quotes, separated by a space. For example:

java weblogic.jspc -compileFlags "-g -v" myFile.jsp

-compiler
Specifies the Java compiler to be used to compile the class file from
the generated Java source code. The default compiler used is jdt. The
Java compiler program should be in your PATH unless you specify the
absolute path to the compiler explicitly.

-compilerclass
Runs a Java compiler as a Java class and not as a native executable.

-
compressHtmlTemplat
e

Compress the HTML in the JSP template blocks to improve run-time
performance.

If the JSP's HTML template block contains the <pre> tag, do not
enable this option.

Using the WebLogic JSP Compiler

13-20 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.eclipse.org/jdt/

Table 13-7 (Cont.) JSP Compiler Options

Option Description

-d <dir>
Specifies the destination of the compiled output (that is, the class file).
Use this option as a shortcut for placing the compiled classes in a
directory that is already in your CLASSPATH.

-depend
If a previously generated class file for a JSP has a more recent date
stamp than the JSP source file, the JSP is not recompiled.

-debug
Compile with debugging on.

-deprecation
Warn about the use of deprecated methods in the generated Java
source file when compiling the source file into a class file.

-docroot directory
See -webapp.

-encoding default|
named character
encoding

Valid arguments include (a) default which specifies using the
default character encoding of your JDK, (b) a named character
encoding, such as 8859_1. If the -encoding flag is not specified, an
array of bytes is used.

-g
Instructs the Java compiler to include debugging information in the
class file.

-help
Displays a list of all the available flags for the JSP compiler.

-J
Takes a list of options that are passed to your compiler.

-k
When compiling multiple JSPs with a single command, the compiler
continues compiling even if one or more of the JSPs failed to compile.

-keepgenerated
Keeps the Java source code files that are created as an intermediary
step in the compilation process. Normally these files are deleted after
compilation.

-noTryBlocks
If a JSP file has numerous or deeply nested custom JSP tags and you
receive a java.lang.VerifyError exception when compiling, use
this flag to allow the JSPs to compile correctly.

-nowarn
Turns off warning messages from the Java compiler.

-noPrintNulls
Shows "null" in jsp expressions as "".

-O
Compiles the generated Java source file with optimization turned on.
This option overrides the -g flag.

Using the WebLogic JSP Compiler

WebLogic JSP Reference 13-21

Table 13-7 (Cont.) JSP Compiler Options

Option Description

-
optimizeJavaExpress
ion

Optimize Java expressions to improve run-time performance.

-package
packageName

Sets the package name that is prepended to the package name of the
generated Java HTTP servlet. Defaults to jsp_servlet.

-superclass
classname

Sets the classname of the superclass extended by the generated
servlet. The named superclass must be a derivative of HttpServlet
or GenericServlet.

-verbose
Passes the verbose flag to the Java compiler specified with the
compiler flag. See the compiler documentation for more
information. The default is off.

-verboseJavac
Prints messages generated by the designated JSP compiler.

-version
Prints the version of the JSP compiler.

-webapp directory
Name of a directory containing a Web application in exploded
directory format. If your JSP contains references to resources in a Web
application such as a JSP tag library or other Java classes, the JSP
compiler will look for those resources in this directory. If you omit
this flag when compiling a JSP that requires resources from a Web
application, the compilation will fail.

13.18.3 Precompiling JSPs
You can configure WebLogic Server to precompile your JSPs when a Web application
is deployed or re-deployed or when WebLogic Server starts up by setting the
precompile parameter to true in the <jsp-descriptor> element of the
weblogic.xml deployment descriptor. To avoid recompiling your JSPs each time the
server restarts and when you target additional servers, precompile them using
weblogic.jspc and place them in the WEB-INF/classes folder and archive them in
a .war file. Keeping your source files in a separate directory from the archived .war
file will eliminate the possibility of errors caused by a JSP having a dependency on one
of the class files.

13.18.3.1 Using the JSPClassServlet

Another way to prevent your JSPs from recompiling is to use the JSPClassServlet in
place of JSPServlet and to place your precompiled JSPs into the WEB-INF/classes
directory. This will remove any possibility of the JSPs being recompiled, as the server
will not look at the source code. The server will not note any changes to the JSPs and
recompile them if you choose this option. This option allows you to completely
remove the JSP source code from your application after precompiling.

Using the WebLogic JSP Compiler

13-22 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

This is an example of how to add the JSPClassServlet to your Web application's
web.xml file.

<servlet>
 <servlet-name>JSPClassServlet</servlet-name>
 <servlet-class>weblogic.servlet.JSPClassServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>JSPClassServlet</servlet-name>
 <url-pattern>*.jsp</url-pattern>
 </servlet-mapping>

As when using virtual hosting, you must have physical directories that correspond to
the mappings you create to allow your files to be found by the server.

Using the WebLogic JSP Compiler

WebLogic JSP Reference 13-23

Using the WebLogic JSP Compiler

13-24 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

14
Filters

This chapter describes how to use Java classes known as filters in WebLogic Web
applications.

This chapter includes the following sections:

• Overview of Filters

• Writing a Filter Class

• Configuring Filters

• Filtering the Servlet Response Object

• Additional Resources

14.1 Overview of Filters
A filter is a Java class that is invoked in response to a request for a resource in a Web
application. Resources include Java servlets, JavaServer pages (JSP), and static
resources such as HTML pages or images. A filter intercepts the request and can
examine and modify the response and request objects or execute other tasks.

Filters are an advanced Java EE feature primarily intended for situations where the
developer cannot change the coding of an existing resource and needs to modify the
behavior of that resource. Generally, it is more efficient to modify the code to change
the behavior of the resource itself rather than using filters to modify the resource. In
some situations, using filters can add unnecessary complexity to an application and
degrade performance.

14.1.1 How Filters Work
You define filters in the context of a Web application. A filter intercepts a request for a
specific named resource or a group of resources (based on a URL pattern) and
executes the code in the filter. For each resource or group of resources, you can specify
a single filter or multiple filters that are invoked in a specific order, called a chain.

When a filter intercepts a request, it has access to the
javax.servlet.ServletRequest and javax.servlet.ServletResponse
objects that provide access to the HTTP request and response, and a
javax.servlet.FilterChain object. The FilterChain object contains a list of
filters that can be invoked sequentially. When a filter has completed its work, the filter
can either call the next filter in the chain, block the request, throw an exception, or
invoke the originally requested resource.

After the original resource is invoked, control is passed back to the filter at the bottom
of the list in the chain. This filter can then examine and modify the response headers
and data, block the request, throw an exception, or invoke the next filter up from the

Filters 14-1

bottom of the chain. This process continues in reverse order up through the chain of
filters.

Note:

The filter can modify the headers only if the response has not already been
committed.

14.1.2 Uses for Filters
Filters can be useful for the following functions:

• Implementing a logging function

• Implementing user-written security functionality

• Debugging

• Encryption

• Data compression

• Modifying the response sent to the client. (However, post processing the response
can degrade the performance of your application.)

14.2 Writing a Filter Class
To write a filter class, implement the javax.servlet.Filter interface (see
http://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html).
You must implement the following methods of this interface:

• init()

• destroy()

• doFilter()

You use the doFilter() method to examine and modify the request and response
objects, perform other tasks such as logging, invoke the next filter in the chain, or
block further processing.

Several other methods are available on the FilterConfig object for accessing the
name of the filter, the ServletContext and the filter's initialization attributes. For
more information see the Java EE javadocs for javax.servlet.FilterConfig at
http://docs.oracle.com/javaee/7/api/javax/servlet/
FilterConfig.html.

To access the next item in the chain (either another filter or the original resource, if that
is the next item in the chain), call the FilterChain.doFilter() method.

14.3 Configuring Filters
You configure filters as part of a Web application, using the application's web.xml
deployment descriptor. In the deployment descriptor, you specify the filter and then
map the filter to a URL pattern or to a specific servlet in the Web application. You can
specify any number of filters.

Writing a Filter Class

14-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html
http://docs.oracle.com/javaee/7/api/javax/servlet/FilterConfig.html
http://docs.oracle.com/javaee/7/api/javax/servlet/FilterConfig.html

14.3.1 Configuring a Filter
To configure a filter:

1. Open the web.xml deployment descriptor in a text editor or use the WebLogic
Server Administration Console. For more information, see Web Application
Developer Tools. The web.xml file is located in the WEB-INF directory of your
Web application.

2. Add a filter declaration. The filter element declares a filter, defines a name for
the filter, and specifies the Java class that executes the filter. The filter element
must directly follow the context-param element and directly precede the
listener and servlet elements. For example:

<context-param>Param</context-param>
<filter>
 <icon>
 <small-icon>MySmallIcon.gif</small-icon>
 <large-icon>MyLargeIcon.gif</large-icon>
 </icon>
 <filter-name>myFilter</filter-name>
 <display-name>My Filter</display-name>
 <description>This is my filter</description>
 <filter-class>examples.myFilterClass</filter-class>
</filter>
<listener>Listener</listener>
<servlet>Servlet</servlet>

The icon, description, and display-name elements are optional.

3. Specify one or more initialization attributes inside a filter element. For example:

<filter>
 <icon>
 <small-icon>MySmallIcon.gif</small-icon>
 <large-icon>MyLargeIcon.gif</large-icon>
 </icon>
 <filter-name>myFilter</filter-name>
 <display-name>My Filter</display-name>
 <description>This is my filter</description>
 <filter-class>examples.myFilterClass</filter-class>
 <init-param>
 <param-name>myInitParam</param-name>
 <param-value>myInitParamValue</param-value>
 </init-param>
</filter>

Your Filter class can read the initialization attributes using the
FilterConfig.getInitParameter() or
FilterConfig.getInitParameters() methods.

4. Add filter mappings. The filter-mapping element specifies which filter to
execute based on a URL pattern or servlet name. The filter-mapping element
must immediately follow the filter element(s).

• To create a filter mapping using a URL pattern, specify the name of the filter
and a URL pattern. URL pattern matching is performed according to the rules
specified in the Servlet 3.1 specification at http://jcp.org/en/jsr/

Configuring Filters

Filters 14-3

http://jcp.org/en/jsr/detail?id=340

detail?id=340. For example, the following filter-mapping maps
myFilter to requests that contain /myPattern/.

<filter-mapping>
 <filter-name>myFilter</filter-name>
 <url-pattern>/myPattern/*</url-pattern>
</filter-mapping>

• To create a filter mapping for a specific servlet, map the filter to the name of a
servlet that is registered in the Web application. For example, the following
code maps the myFilter filter to a servlet called myServlet:

<filter-mapping>
 <filter-name>myFilter</filter-name>
 <servlet-hame>myServlet</servlet-name>
</filter-mapping>

5. To create a chain of filters, specify multiple filter mappings. For more information,
see Configuring a Chain of Filters.

14.3.2 Configuring a Chain of Filters
WebLogic Server creates a chain of filters by creating a list of all the filter mappings
that match an incoming HTTP request. The ordering of the list is determined by the
following sequence:

1. Filters where the filter-mapping element contains a url-pattern that
matches the request are added to the chain in the order they appear in the
web.xml deployment descriptor.

2. Filters where the filter-mapping element contains a servlet-name that
matches the request are added to the chain after the filters that match a URL
pattern.

3. The last item in the chain is always the originally requested resource.

In your filter class, use the FilterChain.doFilter() method to invoke the next
item in the chain.

14.4 Filtering the Servlet Response Object
You can use filters to post-process the output of a servlet by appending data to the
output generated by the servlet. However, in order to capture the output of the servlet,
you must create a wrapper for the response. (You cannot use the original response
object, because the output buffer of the servlet is automatically flushed and sent to the
client when the servlet completes executing and before control is returned to the last
filter in the chain.) When you create such a wrapper, WebLogic Server must
manipulate an additional copy of the output in memory, which can degrade
performance.

For more information on wrapping the response or request objects, see
javax.servlet.http.HttpServletResponseWrapper and
javax.servlet.http.HttpServletRequestWrapper at http://
docs.oracle.com/javaee/7/api/javax/servlet/http/package-
summary.html.

Filtering the Servlet Response Object

14-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=340
http://docs.oracle.com/javaee/7/api/javax/servlet/http/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/package-summary.html

14.5 Additional Resources
• Servlet 3.1 specification at http://jcp.org/en/jsr/detail?id=340

• Java EE 7 API Reference (Javadocs) at http://docs.oracle.com/
javaee/7/api/index.html

• The Java EE tutorial at http://docs.oracle.com/javaee/7/tutorial/
index.html

Additional Resources

Filters 14-5

http://jcp.org/en/jsr/detail?id=340
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html

Additional Resources

14-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

15
Using WebLogic JSP Form Validation Tags

This chapter describes how to use WebLogic JavaServer Pages (JSP) form validation
tags in WebLogic Server.

This chapter includes the following sections:

• Overview of WebLogic JSP Form Validation Tags

• Validation Tag Attribute Reference

• Using WebLogic JSP Form Validation Tags in a JSP

• Creating HTML Forms Using the <wl:form> Tag

• Using a Custom Validator Class

• Sample JSP with Validator Tags

15.1 Overview of WebLogic JSP Form Validation Tags
WebLogic JSP form validation tags provide a convenient way to validate the entries an
end user makes to HTML form text fields generated by JSP pages. Using the WebLogic
JSP form validation tags prevents unnecessary and repetitive coding of commonly
used validation logic. The validation is performed by several custom JSP tags that are
included with the WebLogic Server distribution. The tags can

• Verify that required fields have been filled in (Required Field Validator
class).

• Validate the text in the field against a regular expression (Regular Expression
Validator class).

• Compare two fields in the form (Compare Validator class).

• Perform custom validation by means of a Java class that you write (Custom
Validator class).

• WebLogic JSP form validation tags include:

• <wl:summary>

• <wl:form>

• <wl:validator>

When a validation tag determines that data in a field is not been input correctly, the
page is re-displayed and the fields that need to be re-entered are flagged with text or
an image to alert the end user. Once the form is correctly filled out, the end user's
browser displays a new page specified by the validation tag.

Using WebLogic JSP Form Validation Tags 15-1

15.2 Validation Tag Attribute Reference
This section describes the WebLogic form validation tags and their attributes. Note
that the prefix used to reference the tag can be defined in the taglib directive on
your JSP page. For clarity, the wl prefix is used to refer to the WebLogic form
validation tags throughout this document.

15.2.1 <wl:summary>
<wl:summary> is the parent tag for validation. Place the opening <wl:summary> tag
before any other element or HTML code in the JSP. Place the closing </wl:summary>
tag anywhere after the closing </wl:form> tag(s).

• name—(Optional) Name of a vector variable that holds all validation error
messages generated by the <wl:validator> tags on the JSP page. If you do not
define this attribute, the default value, errorVector, is used. The text of the error
message is defined with the errorMessage attribute of the <wl:validator>
tag.

To display the values in this vector, use the <wl:errors/> tag. To use the
<wl:errors/> tag, place the tag on the page where you want the output to
appear. For example:

<wl:errors color="red"/>

Alternately, you can use a scriptlet. For example:

<% if (errorVector.size() > 0) {
 for (int i=0; i < errorVector.size(); i++) {
 out.println((String)errorVector.elementAt(i));
 out.println("
");
 }
} %>

Where errorVector is the name of the vector assigned using the name attribute of the
<wl:summary> tag.

The name attribute is required when using multiple forms on a page.

• headerText—A variable that contains text that can be displayed on the page. If
you only want this text to appear when errors occur on the page, you can use a
scriptlet to test for this condition. For example:

<% if(summary.size() >0) {
 out.println(headerText);
 }
%>

Where summary is the name of the vector assigned using the name attribute of the
<wl:summary> tag.

• redirectPage—URL for the page that is displayed if the form validation does
not return errors. This attribute is not required if you specify a URL in the action
attribute of the <wl:form> tag.

Do not set the redirectPage attribute to the same page containing the
<wl:summary> tag—you will create an infinite loop causing a StackOverFlow
exception.

Validation Tag Attribute Reference

15-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

15.2.2 <wl:form>
The <wl:form> tag is similar to the HTML <form> tag and defines an HTML form
that can be validated using the WebLogic JSP form validation tags. You can define
multiple forms on a single JSP by uniquely identifying each form using the name
attribute.

• method—Enter GET or POST. Functions exactly as the method attribute of the
HTML <form> tag.

• action—URL for the page that is displayed if the form validation does not return
errors. The value of this attribute takes precedence over the value of the
redirectPage attribute of the <wl:summary> tag and is useful if you have multiple
forms on a single JSP page.

Do not set the action attribute to the same page containing the <wl:form> tag—
you will create an infinite loop causing a StackOverFlow exception.

• name—Functions exactly as the name attribute of the HTML <form> tag. Identifies
the form when multiple forms are used on the same page. The name attribute is
also useful for JavaScript references to a form.

15.2.3 <wl:validator>
Use one or more <wl:validator> tags for each form field. If, for instance, you want
to validate the input against a regular expression and also require that something be
entered into the field you would use two <wl:validator> tags, one using the
RequiredFieldValidator class and another using the RegExpValidator class.
(You need to use both of these validators because blank values are evaluated by the
Regular Expression Field Validator as valid.)

• errorMessage—A string that is stored in the vector variable defined by the name
attribute of the <wl:summary> tag.

• expression—When using the RegExpValidator class, the regular expression
to be evaluated. If you are not using RegExpValidator, you can omit this
attribute.

• fieldToValidate—Name of the form field to be validated. The name of the field
is defined with the name attribute of the HTML <input> tag.

• validatorClass—The name of the Java class that executes the validation logic.
Three classes are provided for your use. You can also create your own custom
validator class. For more information, see Using a Custom Validator Class.

The available validation classes are:

– weblogicx.jsp.tags.validators.RequiredFieldValidator—
Validates that some text has been entered in the field.

– weblogicx.jsp.tags.validators.RegExpValidator—Validates the
text in the field using a standard regular expression. Note: A blank value is
evaluated as valid.

– weblogicx.jsp.tags.validators.CompareValidator—Checks to see if
two fields contain the same string. When using this class, set the
fieldToValidate attribute to the two fields you want to compare. For
example:

Validation Tag Attribute Reference

Using WebLogic JSP Form Validation Tags 15-3

fieldToValidate="field_1,field_2"

If both fields are blank, the comparison is evaluated as valid.

– myPackage.myValidatorClass—Specifies a custom validator class.

15.3 Using WebLogic JSP Form Validation Tags in a JSP
To use a validation tag in a JSP:

1. Write the JSP.

a. Enter a taglib directive to reference the tag library containing the WebLogic
JSP Form Validation Tags. For example:

<%@ taglib uri="tagl" prefix="wl" %>

Note that the prefix attribute defines the prefix used to reference all tags in
your JSP page. Although you may set the prefix to any value you like, the
tags referred to in this document use the wl prefix.

b. Enter the <wl:summary> ... </wl:summary> tags.

Place the opening <wl:summary ...> tag before any HTML code, JSP tag,
scriptlet, or expression on the page.

Place the closing </wl:summary> tag anywhere after the </wl:form> tag(s).

c. Define an HTML form using the <wl:form> JSP tag that is included with the
supplied tag library. For more information, see <wl:form> and Creating
HTML Forms Using the <wl:form> Tag. Be sure to close the form block with
the </wl:form> tag. You can create multiple forms on a page if you
uniquely define the name attribute of the <wl:form> tag for each form.

d. Create the HTML form fields using the HTML <input> tag.

2. Add <wl:validator> tags. For the syntax of the tags, see <wl:validator>. Place
<wl:validator> tags on the page where you want the error message or image
to appear. If you use multiple forms on the same page, place the
<wl:validator> tag inside the <wl:form> block containing the form fields
you want to validate.

The following example shows a validation for a required field:

<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">

<wl:validator
 errorMessage="Field_1 is required" expression=""
 fieldToValidate="field_1"
 validatorClass=
 "weblogicx.jsp.tags.validators.RequiredFieldValidator"
>

 Field 1 is a required field
</wl:validator>
<p> <input type="text" name = "field_1"> </p>
<p> <input type="text" name = "field_2"> </p>
<p> <input type="submit" value="Submit FirstForm"> </p>
</wl:form>

Using WebLogic JSP Form Validation Tags in a JSP

15-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

If the user fails to enter a value in field_1, the page is redisplayed, showing a
warning.gif image, followed by the text (in red) "Field 1 is a required
field," followed by the blank field for the user to re-enter the value.

3. Copy the weblogic-vtags.jar file from the ext directory of your WebLogic
Server installation into the WEB-INF/lib directory of your Web application. You
may need to create this directory.

4. Configure your Web application to use the tag library by adding a taglib
element to the web.xml deployment descriptor for the Web application. For
example:

<taglib>
 <taglib-uri>tagl</taglib-uri>
 <taglib-location>
 /WEB-INF/lib/weblogic-vtags.jar
 </taglib-location>
</taglib>

15.4 Creating HTML Forms Using the <wl:form> Tag
This section contains information on creating HTML forms in your JSP page. You use
the <wl:form> tag to create a single form or multiple forms on a page.

15.4.1 Defining a Single Form
Use the <wl:form> tag that is provided in the weblogic-vtags.jar tag library:
For example:

<wl:form method="POST" action="nextPage.jsp">
<p> <input type="text" name ="field_1"> </p>
<p> <input type="text" name ="field_2"> </p>
<p> <input type="submit" value="Submit Form"> </p>
</wl:form>

For information on the syntax of this tag see <wl:form>.

15.4.2 Defining Multiple Forms
When using multiple forms on a page, use the name attribute to identify each form.
For example:

<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">
<p> <input type="text" name="field_1"> </p>
<p> <input type="text" name="field_2"> </p>
<p> <input type="submit" value="Submit FirstForm"> </p>
</wl:form>
<wl:form name="SecondForm" method="POST" action="thisJSP.jsp">
<p> <input type="text" name="field_1"> </p>
<p> <input type="text" name="field_2"> </p>
<p> <input type="submit" value="Submit SecondForm"> </p>
</wl:form>

15.4.3 Re-Displaying the Values in a Field When Validation Returns Errors
When the JSP page is re-displayed after the validator tag has found errors, it is useful
to re-display the values that the user already entered, so that the user does not have to
fill out the entire form again. Use the value attribute of the HTML <input> tag or

Creating HTML Forms Using the <wl:form> Tag

Using WebLogic JSP Form Validation Tags 15-5

use a tag library available from the Apache Jakarta Project. Both procedures are
described next.

15.4.3.1 Re-Displaying a Value Using the <input> Tag

You can use the javax.servlet.ServletRequest.getParameter() method
together with the value attribute of the HTML <input> tag to re-display the user's
input when the page is re-displayed as a result of failed validation. For example:

<input type="text" name="field_1"
 value="<%= request.getParameter("field_1") %>" >

To prevent cross-site scripting security vulnerabilities, replace any HTML special
characters in user-supplied data with HTML entity references. For more information,
refer to JSP Expression Language.

15.4.3.2 Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

You can also use a JSP tag library available free from the Apache Jakarta Project, which
provides the <input:text> tag as a replacement for the HTML <input> tag. For
example, the following HTML tag:

<input type="text" name="field_1">

could be entered using the Apache tag library as:

<input:text name="field_1">

For more information and documentation, download the Input Tag library, available
at http://attic.apache.org/projects/jakarta-taglibs.html.

To use the Apache tag library in your JSP:

1. Copy the input.jar file from the Input Tag Library distribution file into the WEB-
INF/lib directory of your Web application.

2. Add the following directive to your JSP:

<%@ taglib uri="input" prefix="input" %>

3. Add the following entry to the web.xml deployment descriptor of your Web
application:

<taglib>
 <taglib-uri>input</taglib-uri>
 <taglib-location>/WEB-INF/lib/input.jar</taglib-location>
</taglib>

15.5 Using a Custom Validator Class
To use your own validator class:

1. Write a Java class that extends the
weblogicx.jsp.tags.validators.CustomizableAdapter abstract class.
For more information, see Extending the CustomizableAdapter Class.

2. Implement the validate() method. In this method:

a. Look up the value of the field you are validating from the ServletRequest
object. For example:

String val = req.getParameter("field_1");

Using a Custom Validator Class

15-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://attic.apache.org/projects/jakarta-taglibs.html

b. Return a value of true if the field meets the validation criteria.

3. Compile the validator class and place the compiled .class file in the WEB-INF/
classes directory of your Web application.

4. Use your validator class in a <wl:validator> tag by specifying the class name
in the validatorClass attribute. For example:

<wl:validator errorMessage="This field is required" fieldToValidate="field_1"
validatorClass="mypackage.myCustomValidator">

15.5.1 Extending the CustomizableAdapter Class
The CustomizableAdapter class is an abstract class that implements the
Customizable interface and provides the following helper methods:

• getFieldToValidate()—Returns the name of the field being validated (defined
by the fieldToValidate attribute in the <wl:validator> tag)

• getErrorMessage()—Returns the text of the error message defined with the
errorMessage attribute in the <wl:validator> tag.

• getExpression()—Returns the text of the expression attribute defined in the
<wl:validator> tag.

Instead of extending the CustomizableAdapter class, you can implement the
Customizable interface.

15.5.2 Sample User-Written Validator Class
Example 15-1 Example of a User-written Validator Class

import weblogicx.jsp.tags.validators.CustomizableAdapter;

public class myCustomValidator extends CustomizableAdapter{

 public myCustomValidator(){
super();
 }

 public boolean validate(javax.servlet.ServletRequest req)
throws Exception {
String val = req.getParameter(getFieldToValidate());
 // perform some validation logic
 // if the validation is successful, return true,
 // otherwise return false
if (true) {
 return true;
}
return false;
 }

}

15.6 Sample JSP with Validator Tags
This sample code shows the basic structure of a JSP that uses the WebLogic JSP form
validation tags. A complete functioning code example is also available if you installed
the examples with your WebLogic Server installation. Instructions for running the

Sample JSP with Validator Tags

Using WebLogic JSP Form Validation Tags 15-7

example are available at samples/examples/jsp/tagext/form_validation/
package.html, in your WebLogic Server installation.

Example 15-2 JSP with WebLogic JSP Form Validation Tags

<%@ taglib uri="tagl" prefix="wl" %>
<%@ taglib uri="input" prefix="input" %>

<wl:summary
name="summary"
headerText="Some fields have not been filled out correctly."
redirectPage="successPage.jsp"
>

<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#FFFFFF">

<% if(summary.size() >0) {
 out.println("<h3>" + headerText + "</h3>");
} %>

<% if (summary.size() > 0) {
out.println("<H2>Error Summary:</h2>");
for (int i=0; i < summary.size(); i++) {
out.println((String)summary.elementAt(i));
out.println("
");
}
} %>

<wl:form method="GET" action="successPage.jsp">

 User Name: <input:text name="username"/>
 <wl:validator
 fieldToValidate="username"
 validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValidator"
 errorMessage="User name is a required field!"
 >
 This is a required field!
 </wl:validator>

<p>

 Password: <input type="password" name="password">
 <wl:validator
 fieldToValidate="password"
 validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValidator"
 errorMessage="Password is a required field!"
 >
 This is a required field!
 </wl:validator>

 <p>

Sample JSP with Validator Tags

15-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

 Re-enter Password: <input type="password" name="password2">
 <wl:validator
 fieldToValidate="password,password2"
 validatorClass="weblogicx.jsp.tags.validators.CompareValidator"
 errorMessage="Passwords don't match"
 >
 Passwords don't match.
 </wl:validator>

 <p>

 <input type="submit" value="Submit Form"> </p>

</wl:form>

</wl:summary>

</body>
</html>

Sample JSP with Validator Tags

Using WebLogic JSP Form Validation Tags 15-9

Sample JSP with Validator Tags

15-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

16
Using Custom WebLogic JSP Tags (cache,

process, repeat)

This chapter describes the use of three custom JSP tags—cache, repeat, and
process—provided with the WebLogic Server distribution.

This chapter includes the following sections:

• Overview of WebLogic Custom JSP Tags

• Using the WebLogic Custom Tags in a Web Application

• Cache Tag

• Process Tag

• Repeat Tag

16.1 Overview of WebLogic Custom JSP Tags
Oracle provides three specialized JSP tags that you can use in your JSP pages: cache,
repeat, and process. These tags are packaged in a tag library jar file called
weblogic-tags.jar. This jar file contains classes for the tags and a tag library
descriptor (TLD). To use these tags, you copy this jar file to the Web application that
contains your JSPs and reference the tag library in your JSP.

16.2 Using the WebLogic Custom Tags in a Web Application
Using the WebLogic custom tags requires that you include them within a Web
application.

To use these tags in your JSP:

1. Copy the weblogic-tags.jar file from the ext directory of your WebLogic
Server installation to the WEB-INF/lib directory of the Web application
containing the JSPs that will use the WebLogic Custom Tags.

2. Reference this tag library descriptor in the <taglib> element of the Java EE
standard Web application deployment descriptor, web.xml. For example:

<taglib>
 <taglib-uri>weblogic-tags.tld</taglib-uri>
 <taglib-location>
 /WEB-INF/lib/weblogic-tags.jar
 </taglib-location>
</taglib>

3. Reference the tag library in your JSP with the taglib directive. For example:

<%@ taglib uri="weblogic-tags.tld" prefix="wl" %>

Using Custom WebLogic JSP Tags (cache, process, repeat) 16-1

16.3 Cache Tag
The cache tag enables caching the work that is done within the body of the tag. It
supports both output (transform) data and input (calculated) data. Output caching
refers to the content generated by the code within the tag. Input caching refers to the
values to which variables are set by the code within the tag. Output caching is useful
when the final form of the content is the important thing to cache. Input caching is
important when the view of the data can vary independently of the data calculated
within the tag.

If one client is already recalculating the contents of a cache and another client requests
the same content it does not wait for the completion of the recalculation, instead it
shows whatever information is already in the cache. This is to make sure that the Web
site does not come to a halt for all your users because a cache is being recalculated.
Additionally, the async attribute means that no one, not even the user that initiates the
cache recalculation waits.

Two versions of the cache tag are available. Version 2 has additional scopes available.

16.3.1 Refreshing a Cache
You can force the refresh of a cache by setting the _cache_refresh object to true in
the scope that you want affected. For example, to refresh a cache at session scope,
specify the following:

<% request.setAttribute("_cache_refresh", "true"); %>

If you want all caches to be refreshed, set the cache to the application scope. If you
want all the caches for a user to be refreshed, set it in the session scope. If you want
all the caches in the current request to be refreshed, set the _cache_refresh object
either as a parameter or in the request.

The <wl:cache> tag specifies content that must be updated each time it is displayed.
The statements between the <wl:cache> and </wl:cache> tags are only executed if
the cache has expired or if any of the values of the key attributes (see Table 16-1) have
changed.

16.3.2 Flushing a Cache
Flushing a cache forces the cached values to be erased; the next time the cache is
accessed, the values are recalculated. To flush a cache, set its flush attribute to true.
The cache must be named using the name attribute. If the cache has the size attribute
set, all values are flushed. If the cache sets the key attribute but not the size attribute,
you can flush a specific cache by specifying its key along with any other attributes
required to uniquely identify the cache (such as scope or vars).

For example:

1. Define the cache.

<wl:cache name="dbtable" key="parameter.tablename"
scope="application">
// read the table and output it to the page
</wl:cache>

2. Update the cached table data.

Cache Tag

16-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

3. Flush the cache using the flush attribute in an empty tag (an empty tag ends
with / and does not use a closing tag). For example

<wl:cache name="dbtable" key="parameter.tablename" scope="application"
flush="true"/>

Table 16-1 Cache Tag Attributes

Attribute Required Default
Value

Description

timeout no
-1 Cache timeout property. The amount of time, in

seconds, after which the statements within the
cache tag are refreshed. This is not proactive; the
value is refreshed only if it is requested. If you
prefer to use a unit of time other than seconds,
you can specify an alternate unit by postfixing the
value with desired unit:

• ms = milliseconds

• s = seconds (default)

• m = minutes

• h = hours

• d = days

scope no applicatio
n

Specifies the scope in which the data is cached.
Valid scopes include:

• parameter, (versions 1,2)requests the HTTP
servlet request parameters

• page, (versions 1,2)requests the JSP page
context attributes (This scope does not exist for
the cache filter.)

• request, (versions 1,2)requests the servlet
request attributes. Request attributes are valid
for the entire request, including any forwarded
or included pages.

• cookie, (version 2)requests the cookie values
found in the request. If there are multiple
cookies with the same name, this request
returns only the first value.

• requestHeader, (version 2)requests the values
from the request Headers. If there are multiple
Headers with the same name, only the value of
the first is returned.

Cache Tag

Using Custom WebLogic JSP Tags (cache, process, repeat) 16-3

Table 16-1 (Cont.) Cache Tag Attributes

Attribute Required Default
Value

Description

scope

(cont.)

• responseHeader, (version 2)requests the values
from the response Headers. If there are
multiple Headers with the same name, only
the value of the first is returned. If you set a
response header, all response headers are
replaced with the value you have set. This
scope should not be used for storing content.

• session, (versions 1,2)requests the values from
the session attributes of the current user. If
there is no session then one will not be created
by accessing the scope. The caches can become
very large if you are caching content.

• application, (versions 1,2)requests the values
found in the servlet context attributes.

• cluster, (versions 1,2)requests the values from
the application scope, and when written to
replicates the information across the cluster.

Most caches will be either session or application
scope.

Cache Tag

16-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table 16-1 (Cont.) Cache Tag Attributes

Attribute Required Default
Value

Description

key no --
Specifies additional values to be used when
evaluating whether to cache the values contained
within the tags. Typically a given cache is
identified by the cache name that you configured
in web.xml. If that is not specified the request uri
is used as a cache name. Using keys you can
specify additional values to identify a tag. For
example, if you want to separate out the cache for
a given end user, then in addition to the cache
name you can specify the keys as the userid,
values for which you want to pick it up from the
request parameter scope (query param/post
params) plus perhaps a client ip. So you will
specify your keys as:
"parameter.userid,parameter.clientip"
Here "parameter" is the scope (request parameter
scope) and "userid"/"clientip" are the parameters/
attributes. This means the primary key for the
cache becomes the cache name (request uri in this
case) + value of userid request param + value of
clientip request param.

The list of keys is comma-separated. The value of
this attribute is the name of the variable whose
value you wish to use as a key into the cache. You
can additionally specify a scope by prepending
the name of the scope to the name. For example:

parameter.key | page.key | request.key |
application.key | session.key

It defaults to searching through the scopes in the
order shown in the preceding list. Each named key
is available in the cache tag as a scripting variable.
A list of keys is comma-separated.

async no false
If the async parameter is set to true, the cache
will be updated asynchronously, if possible. The
user that initiates the cache hit sees the old data.

Cache Tag

Using Custom WebLogic JSP Tags (cache, process, repeat) 16-5

Table 16-1 (Cont.) Cache Tag Attributes

Attribute Required Default
Value

Description

name no --
A unique name for the cache that allows caches to
be shared across multiple JSP pages. This same
buffer is used to store the data for all pages using
the named cache. This attribute is useful for
textually included pages that need cache sharing.
If this attribute is not set, a unique name is chosen
for the cache.

We recommended that you avoid manually
calculating the name of the tag; the key
functionality can be used equivalently in all cases.
The name is calculated as
weblogic.jsp.tags.CacheTag. plus the URI
plus a generated number representing the tag in
the page you are caching. If different URIs reach
the same JSP page, the caches are not shared in the
default case. Use named caches in this case.

System named caches can not be flushed and
refreshed automatically.

size no
-1

(unlimited)
For caches that use keys, the number of entries
allowed. The default is an unlimited cache of keys.
With a limited number of keys the tag uses a least-
used system to order the cache. Changing the value
of the size attribute of a cache that has already
been used does not change the size of that cache.

vars no
-- In addition to caching the transformed output of

the cache, you can also cache calculated values
within the block. These variables are specified
exactly the same way as the cache keys. This type
of caching is called Input caching.

Variables are used to do input caching. When the
cache is retrieved the variables are restored to the
scope you specified. For example, for retrieving
results from a database you used var1 from
request parameter and var2 from session. When
the cache is created the value of these variables are
stored with the cache. The next time the cache is
accessed these values are restored so you will be
able to access them from their respective scopes.
For example, var1 will be available from request
and var2 from session.

flush no none When set to true, the cache is flushed. This
attribute must be set in an empty tag (ends
with /).

Additional properties of the cache system for version 2

Cache Tag

16-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• Each cache also has additional arbitrary attributes associated with it that the end
user can manipulate and expect to be populated when the cache is retrieved.

• Cache listeners can be registered by putting an object that implements
weblogicx.cache.CacheListener in a java.util.List that is present in
any scope in the cache system under the "weblogicx.cache.CacheListener"
key. If there is a List present in the scope, add your listener to the end.

The following examples show how you can use the <wl:cache> tag.

Example 16-1 Examples of Using the cache Tag

<wl:cache>
<!--the content between these tags will only be
 refreshed on server restart-->
</wl:cache>

<wl:cache key="request.ticker" timeout="1m">
<!--get stock quote for whatever is in the request parameter ticker
 and display it, only update it every minute-->
</wl:cache>

<!--incoming parameter value isbn is the number used to lookup the
 book in the database-->
<wl:cache key="parameter.isbn" timeout="1d" size="100">
<!--retrieve the book from the database and display
the information -- the tag will cache the top 100
most accessed book descriptions-->
</wl:cache>

<wl:cache timeout="15m" async="true">
<!--get the new headlines from the database every 15 minutes and
 display them-->
<!--do not let anyone see the pause while they are retrieved-->
</wl:cache>

16.4 Process Tag
Use the <wl:process> tag for query parameter-based flow control. By using a
combination of the tag's four attributes, you can selectively execute the statements
between the <wl:process> and </wl:process> tags. The process tag may also be
used to declaratively process the results of form submissions. By specifying conditions
based on the values of request parameters you can include or not include JSP syntax
on your page.

Table 16-2 Process Tag Attributes

Tag Attribute Required Description

name no Name of a query parameter.

notname no Name of a query parameter.

value no Value of a query parameter.

notvalue no Value of a query parameter.

The following examples show how you can use the <wl:process> tag:

Process Tag

Using Custom WebLogic JSP Tags (cache, process, repeat) 16-7

Example 16-2 Examples of Using the process tag:

<wl:process notname="update">
<wl:process notname="delete">
<!--Only show this if there is no update or delete parameter-->
<form action="<%= request.getRequestURI() %>">
 <input type="text" name="name"/>
 <input type="submit" name="update" value="Update"/>
 <input type="submit" name="delete" value="Delete"/>
</form>
</wl:process>
</wl:process>
<wl:process name="update">
<!-- do the update -->
</wl:process>

<wl:process name="delete">
<!--do the delete-->
</wl:process>
<wl:process name="lastBookRead" value="A Man in Full">
<!--this section of code will be executed if lastBookRead exists
 and the value of lastBookRead is "A Man in Full"-->
</wl:process>

16.5 Repeat Tag
Use the <wl:repeat> tag to iterate over many different types of sets, including
Enumerations, Iterators, Collections, Arrays of Objects, Vectors, ResultSets,
ResultSetMetaData, and the keys of a Hashtable. You can also just loop a certain
number of times by using the count attribute. Use the set attribute to specify the type
of Java objects.

Table 16-3 Repeat Tag Attributes

Tag Attribute Required Type Description

set No Object The set of objects that includes:

• Enumerations
• Iterators
• Collections
• Arrays
• Vectors
• Result Sets
• Result Set MetaData
• Hashtable keys

count No Int Iterate over first count entries in the
set.

id No String Variable used to store current object
being iterated over.

type No String Type of object that results from
iterating over the set you passed in.
Defaults to Object. This type must
be fully qualified.

The following example shows how you can use the <wl:repeat> tag.

Repeat Tag

16-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Example 16-3 Examples of Using the repeat Tag

<wl:repeat id="name" set="<%= new String[] { "sam", "fred", "ed" } %>">
 <%= name %>
</wl:repeat>

<% Vector v = new Vector();%>
<!--add to the vector-->

<wl:repeat id="item" set="<%= v.elements() %>">
<!--print each element-->
</wl:repeat>

Repeat Tag

Using Custom WebLogic JSP Tags (cache, process, repeat) 16-9

Repeat Tag

16-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

17
Using the WebLogic EJB to JSP Integration

Tool

This chapter describes how to use the WebLogic EJB-to-JSP integration tool to create
JSP tag libraries that you can use to invoke EJBs in a JavaServer Page (JSP) for
WebLogic Server. This document assumes at least some familiarity with both EJB and
JSP.

This chapter includes the following sections:

• Overview of the WebLogic EJB-to-JSP Integration Tool

• Basic Operation

• Interface Source Files

• Build Options Panel

• Troubleshooting

• Using EJB Tags on a JSP Page

• EJB Home Methods

• Stateful Session and Entity Beans

• Default Attributes

17.1 Overview of the WebLogic EJB-to-JSP Integration Tool
Given an EJB jar file, the WebLogic EJB-to-JSP integration tool will generate a JSP tag
extension library whose tags are customized for calling the EJB(s) of that jar file. From
the perspective of a client, an EJB is described by its remote interface. For example:

public interface Trader extends javax.ejb.EJBObject {
 public TradeResult buy(String stockSymbol, int shares);
 public TradeResult sell(String stockSymbol, int shares);
}

For Web applications that call EJBs, the typical model is to invoke the EJB using Java
code from within a JSP scriptlet (<% ... %>). The results of the EJB call are then
formatted as HTML and presented to the Web client. This approach is both tedious
and error-prone. The Java code required to invoke an EJB is lengthy, even in the
simplest of cases, and is typically not within the skill set of most Web designers
responsible for HTML presentation.

The EJB-to-JSP tool simplifies the EJB invocation process by removing the need for
java code. Instead, you invoke the EJB is invoked using a JSP tag library that is custom
generated for that EJB. For example, the methods of the Trader bean above would be
invoked in a JSP like this:

Using the WebLogic EJB to JSP Integration Tool 17-1

<%@ taglib uri="/WEB-INF/trader-tags.tld" prefix="trade" %>
invoking trade:

<trade:buy stockSymbol="BEAS" shares="100"/>

<trade:sell stockSymbol="MSFT" shares="200"/>

The resulting JSP page is cleaner and more intuitive. A tag is (optionally) generated for
each method on the EJB. The tags take attributes that are translated into the
parameters for the corresponding EJB method call. The tedious machinery of invoking
the EJB is hidden, encapsulated inside the handler code of the generated tag library.
The generated tag libraries support stateless and stateful session beans, and entity
beans. The tag usage scenarios for each of these cases are slightly different, and are
described below.

17.2 Basic Operation
You can run the WebLogic EJB-to-JSP integration tool in command-line mode using
the following command:

java weblogic.servlet.ejb2jsp.Main

or graphical mode. For all but the simplest EJBs, the graphical tool is preferable.

Invoke the graphical tool as follows:

java weblogic.servlet.ejb2jsp.gui.Main

Initially, no ejb2jsp project is loaded by the Web application. Create a new project by
selecting the File > New menu item, browsing in the file chooser to an EJB jar file, and
selecting it. Once initialized, you can modify, save, and reload ejb2jsp projects for
future modification.

The composition of the generated tag library is simple: for each method, of each EJB, in
the jar file, a JSP tag is generated, with the same name as the method. Each tag expects
as many attributes as the corresponding method has parameters.

17.3 Interface Source Files
When a new EJB jar is loaded, the tool also tries to find the Java source files for the
home and remote interfaces of your EJB(s). The reason is that, although the tool can
generate tags only by introspecting the EJB classes, it cannot assign meaningful
attribute names to the tags whose corresponding EJB methods take parameters. In the
Trader example in Overview of the WebLogic EJB-to-JSP Integration Tool, when the
EJB jar is loaded, the tool tries to find a source file called Trader.java. This file is
then parsed and detects that the buy() method takes parameters called
stockSymbol and shares. The corresponding JSP tag will then have appropriately
named attributes that correspond to the parameters of the buy() method.

When a new EJB jar is loaded, the tool operates on the premise that the source
directory is the same directory where the EJB jar is located. If that is not the case, the
error is not fatal. After the new project is loaded, under the Project Build Options
panel, you can adjust the EJB Source Path element to reflect the correct directory. You
can then select the File -> Resolve Attributes menu to re-run the resolve process.

When looking for java source files corresponding to an interface class, the tool
searches in both the directory specified, and in a sub-directory implied by the
interface's java package. For example, for my.ejb.Trader, if the directory given is

Basic Operation

17-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

C:/src, the tool will look for both C:/src/Trader.java and C:/src/my/ejb/
Trader.java.

Access to the source files is not strictly necessary. You can always modify attribute
names for each tag in a project by using the tool. However, parsing the source files of
the EJB's public interface was developed as the quickest way to assign meaningful
attribute names.

17.4 Build Options Panel
Use this panel to set all parameters related to the local file system that are needed to
build the project. Specify the Java compiler, the Java package of the generated JSP tag
handlers, and whether to keep the generated Java code after a project build, which can
be useful for debugging.

You can also use this panel to specify the type of tag library output you want. For use
in a Java EE Web application, a tag library should be packaged one of two ways: as
separate class files and a Tag Library Descriptor (.tld) file, or as a single taglib jar
file. Either output type is chosen with the Output Type pull-down. For development
and testing purposes, DIRECTORY output is recommended, because a Web
application in WebLogic Server must be re-deployed before a jar file can be
overwritten.

For either DIRECTORY or JAR, the output locations must be chosen appropriately so
that the tag library will be found by a Web application. For example, if you wish to use
the tag library in a Web application rooted in directory C:/mywebapp, then the
DIRECTORY classes field should be specified as:

C:/mywebapp/WEB-INF/classes

and the DIRECTORY .tld File field should be something like:

C:/mywebapp/WEB-INF/trader-ejb.tld

The Source Path, described earlier, is edited in the Build Options panel as well. The
Extra Classpath field can be used if your tag library depends on other classes not in
the core WebLogic Server or Java EE API. Typically, nothing will need to be added to
this field.

17.5 Troubleshooting
Sometimes, a project fails to build because of errors or conflicts. This section describes
the reasons for those errors, and how they may be resolved.

• Missing build information: One of the necessary fields in the Build Options panel is
unspecified, like the java compiler, the code package name, or a directory where
the output can be saved. The missing field(s) must be filled in before the build can
succeed.

• Duplicate tag names: When an EJB jar is loaded, the tool records a tag for each
method on the EJB, and the tag name is the same as the method name. If the EJB
has overloaded methods (methods with the same name but different signatures),
the tag names conflict. Resolve the conflict by renaming one of the tags or by
disabling one of the tags. To rename a tag, navigate to the tag in question using the
tree hierarchy in the left window of the tool. In the tag panel that appears in the
right window, modify the Tag Name field. To disable a tag, navigate to the tag in
question using the tree hierarchy in the left window of the tool. In the tag panel

Build Options Panel

Using the WebLogic EJB to JSP Integration Tool 17-3

that appears in the right window, deselect the Generate Tag box. For EJB jars that
contain multiple EJBs, you can disable tags for an entire bean may as well.

• Meaningless attribute names arg0, arg1...: This error occurs when
reasonable attribute names for a tag could not be inferred from the EJB's interface
source files. To fix this error, navigate to the tag in question in the project hierarchy
tree. Select each of the attribute tree leaves below the tag, in order. For each
attribute, assign a reasonable name to the Attribute Name field, in the panel that
appears on the right side of the tool.

• Duplicate attribute names: This occurs when a single tag expecting multiple
attributes has two attributes with the same name. Navigate to the attribute(s) in
question, and rename attributes so that they are all unique for the tag.

17.6 Using EJB Tags on a JSP Page
Using the generated EJB tags on a JSP page is simply a matter of declaring the tag
library on the page, and then invoking the tags like any other tag extension:

<% taglib uri="/WEB-INF/trader-ejb.tld"
 prefix="trade" %>
<trade:buy stockSymbol="XYZ" shares="100"/>

For EJB methods that have a non-void return type, a special, optional tag attribute
"_return", is built-in. When present, the value returned from the method is made
available on the page for further processing:

<% taglib uri="/WEB-INF/trader-ejb.tld"
 prefix="trade" %>
<trade:buy stockSymbol="XYZ"
 shares="100" _return="tr"/>
<% out.println("trade result: " + tr.getShares()); %>

For methods that return a primitive numeric type, the return variable is a Java object
appropriate for that type (for example, "int" -> java.lang.Integer, and such).

17.7 EJB Home Methods
EJB 2.0 allows for methods on the EJB home interface that are neither create() or
find() methods. Tags are generated for these home methods as well. To avoid
confusion, the tool prepends "home-" to the tags for each method on an EJB's home,
when a new project is loaded. These methods may be renamed, if desired.

17.8 Stateful Session and Entity Beans
Typical usage of a "stateful" bean is to acquire an instance of the bean from the bean's
Home interface, and then to invoke multiple methods on a single bean instance. This
programming model is preserved in the generated tag library as well. Method tags for
stateful EJB methods are required to be inside a tag for the EJB home interface that
corresponds to a find() or create() on the home. All EJB method tags contained
within the find/create tag operate on the bean instance found or created by the
enclosing tag. If a method tag for a stateful bean is not enclosed by a find/create tag
for its home, a run-time exception occurs. For example, given the following EJB:

public interface AccountHome extends EJBHome {

 public Account create(String accountId, double initialBalance);
 public Account findByPrimaryKey(String accountID);

Using EJB Tags on a JSP Page

17-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

 /* find all accounts with balance above some threshold */
 public Collection findBigAccounts(double threshold);
}

public interface Account extends EJBObject {
 public String getAccountID();
 public double deposit(double amount);
 public double withdraw(double amount);
 public double balance();
}
Correct tag usage might be as follows:
<% taglib uri="/WEB-INF/account-ejb.tld" prefix="acct" %>
<acct:home-create accountId="103"
 initialBalance="450.0" _return="newAcct">
 <acct:deposit amount="20"/>
 <acct:balance _return="bal"/>
 Your new account balance is: <%= bal %>
</acct:home-create>

If the "_return" attribute is specified for a find/create tag, a page variable will be
created that refers to the found/created EJB instance. Entity beans finder methods may
also return a collection of EJB instances. Home tags that invoke methods returning a
collection of beans will iterate (repeat) over their tag body, for as many beans as are
returned in the collection. If "_return" is specified, it is set to the current bean in the
iteration:

Accounts above $500:

<acct:home-findBigAccounts threshold="500" _return="acct">
Account <%= acct.getAccountID() %>
 has balance $<%= acct.balance() %>
</acct:home-findBigAccounts>

The preceding example will display an HTML list of all Account beans whose balance
is over $500.

17.9 Default Attributes
By default, the tag for each method requires that all of its attributes (method
parameters) be set on each tag instance. However, the tool will also allow "default"
method parameters to be specified, in case they are not given in the JSP tag. You can
specify default attributes/parameters in the Attribute window of the EJB-to-JSP tool.
The parameter default can come from an simple EXPRESSION, or if more complex
processing is required, a default METHOD body may be written. For example, in the
Trader example in Overview of the WebLogic EJB-to-JSP Integration Tool, suppose
you want the "buy" tag to operate on stock symbol "XYZ" if none is specified. In the
Attribute panel for the "stockSymbol" attribute of the "buy" tag, you set the "Default
Attribute Value" field to EXPRESSION, and enter "XYZ" (quotes included!) in the
Default Expression field. The buy tag then acts as if the stockSymbol="XYZ" attribute
were present, unless some other value is specified.

Or if you want the shares attribute of the "buy" tag to be a random number between
0-100, we would set "Default Attribute Value" to METHOD, and in the Default
Method Body area, you write the body of a Java method that returns int (the expected
type for the "shares" attribute of the "buy" method):

long seed = System.currentTimeMillis();
java.util.Random rand = new java.util.Random(seed);

Default Attributes

Using the WebLogic EJB to JSP Integration Tool 17-5

int ret = rand.nextInt();
/* ensure that it is positive...*/
ret = Math.abs(ret);
/* and < 100 */
return ret % 100;

Because your default method bodies appear within a JSP tag handler, your code has
access to the pageContext variable. From the JSP PageContext, you can gain access to
the current HttpServletRequest or HttpSession, and use session data or request
parameters to generate default method parameters. For example, to pull the "shares"
parameter for the "buy" method out of a ServletRequest parameter, you could write
the following code:

HttpServletRequest req =
 (HttpServletRequest)pageContext.getRequest();
String s = req.getParameter("shares");
if (s == null) {
 /* webapp error handler will redirect to error page
 * for this exception
 */
 throw new BadTradeException("no #shares specified");
}
int ret = -1;
try {
 ret = Integer.parseInt(s);
} catch (NumberFormatException e) {
 throw new BadTradeException("bad #shares: " + s);
}
if (ret <= 0)
 throw new BadTradeException("bad #shares: " + ret);
return ret;

The generated default methods are assumed to throw exceptions. Any exceptions
raised during processing will be handled by the JSP's errorPage, or else by the
registered exception-handling pages of the Web application.

Default Attributes

17-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

A
web.xml Deployment Descriptor Elements

This appendix describes the standard Java EE deployment descriptor elements for
WebLogic Server.

With Java EE annotations, the standard web.xml deployment descriptor is optional.
According to the servlet 3.1 specification at http://jcp.org/en/jsr/detail?
id=340, annotations can be defined on certain Web components, such as servlets,
filters, listeners, and tag handlers. The annotations are used to declare dependencies
on external resources. See WebLogic Annotation for Web Components.

This appendix includes the following sections:

• web.xml Namespace Declaration and Schema Location

• context-param

• description

• display-name

• distributable

• ejb-local-ref

• ejb-ref

• env-entry

• error-page

• filter

• filter-mapping

• icon

• jsp-config

• listener

• login-config

• message-destination-ref

• mime-mapping

• resource-env-ref

• resource-ref

• security-constraint

web.xml Deployment Descriptor Elements A-1

http://jcp.org/en/jsr/detail?id=340
http://jcp.org/en/jsr/detail?id=340

• security-role

• servlet

• servlet-mapping

• session-config

• web-app

• welcome-file-list

A.1 web.xml Namespace Declaration and Schema Location
The correct text for the namespace declaration and schema location for the web.xml
file is as follows.

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
id="WebApp_ID" version="3.0">

To view the schema for web.xml, go to http://www.oracle.com/webfolder/
technetwork/jsc/xml/ns/javaee/web-app_3_0.xsd.

A.2 context-param
The optional context-param element contains the declaration of a Web application's
servlet context initialization parameters.

web.xml Namespace Declaration and Schema Location

A-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_0.xsd

Table A-1 context-parameter Elements

Element Required/
Optional

Description

weblogic.httpd.
clientCertProxy

optional This attribute specifies that certifications from
clients of the Web application are provided in
the special WL-Proxy-Client-Cert header
sent by a proxy plug-in or
HttpClusterServlet.

This setting is useful if user authentication is
performed on a proxy server—setting
clientCertProxy causes the proxy server
to pass on the certs to the cluster in a special
header, WL-Proxy-Client-Cert.

A WL-Proxy-Client-Cert header could
be provided by any client with access to
WebLogic Server. WebLogic Server takes the
certificate information from that header,
trusting that is came from a secure source
(the plug-in) and uses that information to
authenticate the user.

For this reason, if you set
clientCertProxy, use a connection filter to
ensure that WebLogic Server accepts
connections only from the machine on which
the plug-in is running.

In addition to setting this attribute for an
individual Web application, you can define
this attribute:

For all Web applications hosted by a server
instance, on the Server > Configuration >
General page in the WebLogic Server
Administration Console. For all Web
applications hosted by server instances in a
cluster, on the Cluster > Configuration >
General page.

The following table describes the reserved context parameters used by the Web
application container, which have been deprecated and have replacements in
weblogic.xml.

Table A-2 Deprecated context-param Elements

Deprecated Parameter Description Replacement Element in weblogic.xml

weblogic.httpd.inputCha
rset

Defines code set
behavior for
non-unicode
operations.

input-charset (defined within charset-
param) in weblogic.xml. See input-charset.

context-param

web.xml Deployment Descriptor Elements A-3

Table A-2 (Cont.) Deprecated context-param Elements

Deprecated Parameter Description Replacement Element in weblogic.xml

weblogic.httpd.servlet.
reloadCheckSecs

Define how
often WebLogic
Server checks
whether a
servlet has been
modified, and if
so, reloads it. A
value of -1 is
never reload, 0
is always reload.
The default is set
to 1 second.

servlet-reload-check-secs (defined
within container-descriptor) in
weblogic.xml. See auth-filter.

weblogic.httpd.servlet.
classpath

When this
values has been
set, the container
appends this
path to the Web
application
classpath. This is
not a
recommended
method and is
supported only
for backward
compatibility.

No replacement. Use other means such as
manifest classpath or WEB-INF/lib or WEB-
INF/classes or virtual directories.

weblogic.httpd.defaultS
ervlet

Sets the default
servlet for the
Web application.
This is not a
recommended

method and is
supported only
for backward
compatibility.

No replacement. Instead use the servlet
and servlet-mapping elements in
web.xml to define a default servlet. The URL
pattern for default-servlet should be
"/". See servlet-mapping. For additional
examples of servlet mapping, see Servlet
Mapping.

A.3 description
The optional description element provides descriptive text about the Web application.

Table A-3 description Elements

Element Required/
Optional

Description

<description>
Optional Currently, this element is not used by

WebLogic Server.

A.4 display-name
The optional display-name element specifies the Web application display name, a
short name that can be displayed by GUI tools.

description

A-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-4 display-name Elements

Element Required/
Optional

Description

<display-name>
Optional Currently, this element is not used by

WebLogic Server.

A.5 distributable
The distributable element is not used by WebLogic Server.

Table A-5 description Elements

Element Required/
Optional

Description

<distributable>
Optional Currently, this element is not used by

WebLogic Server.

A.6 ejb-local-ref
The ejb-local-ref element is used for the declaration of a reference to an
enterprise bean's local home. The declaration consists of:

• An optional description

• The EJB reference name used in the code of the Web application that references the
enterprise bean. The expected type of the referenced enterprise bean

• The expected local home and local interfaces of the referenced enterprise bean

• Optional ejb-link information, used to specify the referenced enterprise bean

The following table describes the elements you can define within an ejb-local-ref
element.

Table A-6 ejb-local-ref Elements

Element Required/
Optional

Description

<description>
Optional A text description of the reference.

<ejb-ref-name>
Required Contains the name of an EJB reference. The

EJB reference is an entry in the Web
application's environment and is relative to
the java:comp/env context. The name must
be unique within the Web application. It is
recommended that name is prefixed with
ejb/.

For example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

distributable

web.xml Deployment Descriptor Elements A-5

Table A-6 (Cont.) ejb-local-ref Elements

Element Required/
Optional

Description

<ejb-ref-type>
Required The ejb-ref-type element contains the

expected type of the referenced enterprise
bean. The ejb-ref-type element must be
one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

<local-home>
Required Contains the fully-qualified name of the

enterprise bean's local home interface.

<local>
Required Contains the fully-qualified name of the

enterprise bean's local interface.

<ejb-link>
Optional The ejb-link element is used in the ejb-

ref or ejb-local-ref elements to specify
that an EJB reference is linked to an EJB.

The name in the ejb-link element is
composed of a path name. This path name
specifies the ejb-jar containing the
referenced EJB with the ejb-name of the
target bean appended and separated from the
path name by #.

The path name is relative to the WAR file
containing the Web application that is
referencing the EJB. This allows multiple EJBs
with the same ejb-name to be uniquely
identified.

Used in: ejb-local-ref and ejb-ref
elements.

Examples:

<ejb-link>EmployeeRecord</ejb-link>
<ejb-link>../products/
product.jar#ProductEJB</ejb-link>

<lookup-name>
Optional The JNDI name to be looked up to resolve a

resource reference.

A.7 ejb-ref
The optional ejb-ref element defines a reference to an EJB resource. This reference is
mapped to the actual location of the EJB at deployment time by defining the mapping
in the WebLogic-specific deployment descriptor file, weblogic.xml. Use a separate
<ejb-ref> element to define each reference EJB name.

The following table describes the elements you can define within an ejb-ref
element.

ejb-ref

A-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-7 ejb-ref Elements

Element Required/
Optional

Description

<description>
Optional A text description of the reference.

<ejb-ref-name>
Required The name of the EJB used in the Web

application. This name is mapped to the JNDI
tree in the WebLogic-specific deployment
descriptor weblogic.xml. For more
information, see ejb-reference-description.

<ejb-ref-type>
Required The expected Java class type of the referenced

EJB.

<home>
Required The fully qualified class name of the EJB

home interface.

<remote>
Required The fully qualified class name of the EJB

remote interface.

<ejb-link>
Optional The <ejb-name> of an EJB in an

encompassing Java EE application package.

<run-as>
Optional A security role whose security context is

applied to the referenced EJB. Must be a
security role defined with the <security-
role> element.

<lookup-name>
Optional The JNDI name to be looked up to resolve a

resource reference.

A.8 env-entry
The optional env-entry element declares an environment entry for an application.
Use a separate element for each environment entry.

The following table describes the elements you can define within an env-entry
element.

Table A-8 env-entry Elements

Element Required/
Optional

Description

<description>
Optional A textual description.

<env-entry-name>
Required The name of the environment entry.

<env-entry-value>
Required The value of the environment entry.

env-entry

web.xml Deployment Descriptor Elements A-7

Table A-8 (Cont.) env-entry Elements

Element Required/
Optional

Description

<env-entry-type>
Required The type of the environment entry.

Can be set to one of the following Java types:

java.lang.Boolean
java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Float

<lookup-name>
Optional The JNDI name to be looked up to resolve a

resource reference.

A.9 error-page
The optional error-page element specifies a mapping between an error code or
exception type to the path of a resource in the Web application.

When an error occurs—while WebLogic Server is responding to an HTTP request, or
as a result of a Java exception—WebLogic Server returns an HTML page that displays
either the HTTP error code or a page containing the Java error message. You can
define your own HTML page to be displayed in place of these default error pages or in
response to a Java exception.

For more information, see Customizing HTTP Error Responses.

The following table describes the elements you can define within an error-page
element.

Note:

Define either an <error-code> or an <exception-type> but not both.

Table A-9 error-page Elements

Element Required/
Optional

Description

<error-code>
Optional A valid HTTP error code, for example, 404.

<exception-type>
Optional A fully-qualified class name of a Java

exception type, for example,
java.lang.string

<location>
Required The location of the resource to display in

response to the error. For example, /
myErrorPg.html.

error-page

A-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

A.10 filter
The filter element defines a filter class and its initialization attributes. For more
information on filters, see Configuring Filters.

The following table describes the elements you can define within a filter element.

Table A-10 filter Elements

Element Required/
Optional

Description

<icon>
Optional Specifies the location within the Web

application for a small and large image used
to represent the filter in a GUI tool. Contains
a small-icon and large-icon element.

Currently, this element is not used by
WebLogic Server.

<filter-name>
Required Defines the name of the filter, used to

reference the filter definition elsewhere in the
deployment descriptor.

<display-name>
Optional A short name intended to be displayed by

GUI tools.

<description>
Optional A text description of the filter.

<filter-class>
Required The fully-qualified class name of the filter.

<init-param>
Optional Contains a name/value pair as an

initialization attribute of the filter.

Use a separate set of <init-param> tags for
each attribute.

A.11 filter-mapping
The following table describes the elements you can define within a filter-mapping
element.

filter

web.xml Deployment Descriptor Elements A-9

Table A-11 filter-mapping Elements

Element Required/
Optional

Description

<dispatcher>
Optional Indicates whether filters should be invoked

under request dispatcher forward() and
include() calls. You can use the
<dispatcher> element to indicate for a
filter-mapping whether a filter should be
applied to various types of requests.

Possible values include:

• REQUEST

• FORWARD

• INCLUDE

• ERROR

• ASYNC

If the <dispatcher> element is absent, the
filter is applied to requests when the request
comes directly from the client.

For more information, see "Filters and the
RequestDispatcher" in the Servlet 3.1
specification at https://
jcp.org/en/jsr/detail?id=340.

<filter-name>
Required The name of the filter to which you are

mapping a URL pattern or servlet. This name
corresponds to the name assigned in the
<filter> element with the <filter-
name> element.

<servlet>
Required - or
map by <url-
pattern>

The name of a servlet which, if called, causes
this filter to execute.

<url-pattern>
Required - or
map by
<servlet>

Describes a pattern used to resolve URLs. The
portion of the URL after the http://
host:port + ContextPath is compared to
the <url-pattern> by WebLogic Server. If
the patterns match, the filter mapped in this
element is called.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in
the Servlet 3.1 specification.

A.12 icon
The icon element specifies the location within the Web application for a small and
large image used to represent the Web application in a GUI tool. (The servlet
element also has an element called the icon element, used to supply an icon to
represent a servlet in a GUI tool.)

icon

A-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

https://jcp.org/en/jsr/detail?id=340
https://jcp.org/en/jsr/detail?id=340

The following table describes the elements you can define within an icon element.

Table A-12 Icon Elements

Element Required/
Optional

Description

<small-icon>
Optional Location for a small (16x16 pixel) .gif

or .jpg image used to represent the Web
application in a GUI tool. Currently, this is
not used by WebLogic Server.

<large-icon>
Optional Location for a large (32x32 pixel) .gif

or .jpg image used to represent the Web
application in a GUI tool. Currently, this
element is not used by WebLogic Server.

A.13 jsp-config
The jsp-config element is used to provide global configuration information for the
JSP files in a Web application. It has two sub-elements, taglib and jsp-property-
group.

The following table describes the elements you can define within a jsp-config
element.

Table A-13 jsp-config Elements

Element Required/
Optional

Description

<taglib>
Optional Provides information on a tag library that is

used by a JSP page within the Web
application.

<jsp-property-group>
Optional Used to group a number of files so they can

be given global property information. All
files so described are deemed to be JSP files.

A.13.1 taglib
This is an element within the jsp-config.

The required taglib element provides information on a tag library that is used by a
JSP page within the Web application.

This element associates the location of a JSP Tag Library Descriptor (TLD) with a URI
pattern. Although you can specify a TLD in your JSP that is relative to the WEB-INF
directory, you can also use the <taglib> tag to configure the TLD when deploying
your Web application. Use a separate element for each TLD.

The following table describes the elements you can define within a taglib element.

jsp-config

web.xml Deployment Descriptor Elements A-11

Table A-14 taglib Elements

Element Required/
Optional

Description

<taglib-location>
Optional Gives the file name of the tag library

descriptor relative to the root of the Web
application. It is a good idea to store the tag
library descriptor file under the WEB-INF
directory so it is not publicly available over
an HTTP request.

<taglib-uri>
Optional Describes a URI, relative to the location of the

web.xml document, identifying a Tag
Library used in the Web application.

If the URI matches the URI string used in the
taglib directive on the JSP page, this taglib is
used.

A.13.2 jsp-property-group
This is an element within the jsp-config.

The required jsp-property-group element is used to group a number of files so
they can be given global property information. All files so described are deemed to be
JSP files.

The following table describes the elements you can define within a jsp-property-
group element.

Table A-15 jsp-property-group Elements

Element Required/
Optional

Description

<el-ignored>
Optional Controls whether EL is ignored. By default,

the EL evaluation is enabled for Web
applications using a Servlet 2.4 or greater
web.xml, and disabled otherwise.

<scripting-invalid>
Optional Controls whether scripting elements are

invalid in a group of JSP pages. By default,
scripting is enabled.

<page-encoding>
Optional Indicates pageEncoding information. It is a

translation-time error to name different
encodings in the pageEncoding attribute of
the page directive of a JSP page and in a JSP
configuration element matching the page. It
is also a translation-time error to name
different encodings in the prolog or text
declaration of a document in XML syntax and
in a JSP configuration element matching the
document. It is legal to name the same
encoding through multiple mechanisms.

jsp-config

A-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-15 (Cont.) jsp-property-group Elements

Element Required/
Optional

Description

<is-xml>
Optional Indicates that a resource is a JSP document

(XML). If true, denotes that the group of
resources that match the URL pattern are JSP
documents, and thus must be interpreted as
XML documents. If false, the resources are
assumed to not be JSP documents, unless
there is another property group that indicates
otherwise.

<include-prelude>
Optional A context-relative path that must correspond

to an element in the Web application. When
the element is present, the given path will be
automatically included (as in an include
directive) at the beginning of each JSP page in
this jsp-property-group.

<include-coda>
Optional A context-relative path that must correspond

to an element in the Web application. When
the element is present, the given path will be
automatically included (as in an include
directive) at the end of each JSP page in this
jsp-property-group.

<deferred-syntax-
allowed-as-literal>

Optional Controls whether the character sequence
#{ is allowed when used as a String literal.

<trim-directive-
whitespaces>

Optional Controls whether template text containing
only white spaces must be removed from the
response output.

<url-pattern>
Required Describes a pattern used to resolve URLs. The

portion of the URL after the http://
host:port + ContextPath is compared to
the <url-pattern> by WebLogic Server.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in
the Servlet 3.1 specification.

default-content-type
Optional Specifies the default contentType property.

Valid values are those of the contentType
page directive. If the page directive does not
include a contentType attribute, it specifies
the default response contentType.

jsp-config

web.xml Deployment Descriptor Elements A-13

Table A-15 (Cont.) jsp-property-group Elements

Element Required/
Optional

Description

buffer
Optional Specifies the default buffering model for

JspWriter. Valid values are those of the
buffer attribute of the page directive.
Specifies if buffering should be used for the
output to response, and if so, the size of the
buffer to use.

error-on-undeclared-
namespace

Optional Controls whether an error should be raised
for the use of an undeclared tag in a JSP
document.

If set to true, when an undeclared tag is used
in a JSP document, an error must be raised
during the translation time. Disabled (false)
by default.

A.14 listener
Define an application listener using the listener element.

Table A-16 listener Elements

Element Required/
Optional

Description

<listener-class>
Optional Name of the class that responds to a Web

application event.

For more information, see Configuring an Event Listener Class.

A.15 login-config
Use the optional login-config element to configure how the user is authenticated;
the realm name that should be used for this application; and the attributes that are
needed by the form login mechanism.

If this element is present, the user must be authenticated in order to access any
resource that is constrained by a <security-constraint> defined in the Web
application. Once authenticated, the user can be authorized to access other resources
with access privileges.

The following table describes the elements you can define within a login-config
element.

listener

A-14 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-17 config

Element Required/
Optional

Description

<auth-method>
Optional Specifies the method used to authenticate the

user. Possible values:

BASIC—uses browser authentication. (This is
the default value.)

FORM—uses a user-written HTML form.

CLIENT-CERT

You can define multiple authentication
methods as a comma separated list to provide
a fall-back mechanism. Authentication will be
attempted in the order the values are defined
in the auth-method list. See Providing a
Fallback Mechanism for Authentication
Methods in Developing Applications with the
WebLogic Security Service.

<realm-name>
Optional The name of the realm that is referenced to

authenticate the user credentials. If omitted,
the realm defined with the Auth Realm Name
field on the Web application > Configuration
> Other tab of the WebLogic Server
Administration Console is used by default.

The <realm-name> element does not refer
to system security realms within WebLogic
Server. This element defines the realm name
to use in HTTP Basic authorization. The
system security realm is a collection of
security information that is checked when
certain operations are performed in the
server. The servlet security realm is a
different collection of security information
that is checked when a page is accessed and
basic authentication is used.

<form-login-
config>

Optional Use this element if you configure the <auth-
method> to FORM. See form-login-config.

A.15.1 form-login-config
This is an element within the login-config.

Use the <form-login-config> element if you configure the <auth-method> to
FORM.

login-config

web.xml Deployment Descriptor Elements A-15

Table A-18 form-login-config Elements

Element Required/
Optional

Description

<form-login-page>
Required The URI of a Web resource relative to the

document root, used to authenticate the user.
This can be an HTML page, JSP, or HTTP
servlet, and must return an HTML page
containing a FORM-based authentication that
conforms to a specific naming convention.

<form-error-page>
Required The URI of a Web resource relative to the

document root, sent to the user in response to
a failed authentication login.

A.16 message-destination-ref
The optional message-destination-ref element specifies a reference to a message
destination associated with a resource. The logical destination described by this
element is mapped to a physical destination in the deployment descriptor.

The following table describes the elements you can define within an message-
destination-ref element.

Table A-19 message-destination-ref Elements

Element Required/
Optional

Description

description
Optional Provides a description of the message

destination reference.

message-destination-
name

Required Specifies a name for a message destination.
This name must be unique among the names
of message destinations within the
deployment descriptor.

mapped-name
Optional Maps this message destination to a "logical"

name.

lookup-name
Optional The JNDI name to be looked up to resolve the

message destination.

message-destination-
type

Required Specifies the type of the destination. The type
is specified by the Java interface expected to
be implemented by the destination.

Must be supplied unless an injection target is
specified, in which case the type of the target
is used. If both are specified, the type must be
assignment compatible with the type of the
injection target.

message-destination-ref

A-16 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-19 (Cont.) message-destination-ref Elements

Element Required/
Optional

Description

message-destination-
usage

Optional Specifies the use of the message destination
indicated by the reference. The value
indicates whether messages are consumed
from the message destination, produced for
the destination, or both.

Valid values are one of the following:

• Consumes

• Produces

• ConsumesProduces

If not specified, ConsumesProduces is
assumed.

message-destination-
link

Optional Links a message destination reference or
message-driven bean to a message
destination.

A.17 mime-mapping
The mime-mapping element defines a mapping between an extension and a mime
type.

The following table describes the elements you can define within a mime-mapping
element.

Table A-20 mime-mapping Elements

Element Required/
Optional

Description

<extension>
Required A string describing an extension, for example:

txt.

<mime-type>
Required A string describing the defined mime type,

for example: text/plain.

A.18 resource-env-ref
The resource-env-ref element contains a declaration of a Web application's
reference to an administered object associated with a resource in the Web application's
environment. It consists of an optional description, the resource environment reference
name, and an indication of the resource environment reference type expected by the
Web application code.

For example:

<resource-env-ref>
 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

mime-mapping

web.xml Deployment Descriptor Elements A-17

The following table describes the elements you can define within a resource-env-
ref element.

Table A-21 resource-env-ref

Element Required/
Optional

Description

<description>
Optional Provides a description of the resource

environment reference.

<resource-env-ref-name>
Required Specifies the name of a resource environment

reference; its value is the environment entry
name used in the Web application code. The
name is a JNDI name relative to the
java:comp/env context and must be
unique within a Web application.

<resource-env-ref-type>
Required Specifies the type of a resource environment

reference. It is the fully qualified name of a
Java language class or interface.

<lookup-name>
Optional The JNDI name to be looked up to resolve a

resource reference.

A.19 resource-ref
The optional resource-ref element defines a reference lookup name to an external
resource. This allows the servlet code to look up a resource by a "virtual" name that is
mapped to the actual location at deployment time.

Use a separate <resource-ref> element to define each external resource name. The
external resource name is mapped to the actual location name of the resource at
deployment time in the WebLogic-specific deployment descriptor weblogic.xml.

The following table describes the elements you can define within a resource-ref
element.

Table A-22 resource-ref Elements

Element Required/
Optional

Description

<description>
Optional A text description.

<res-ref-name>
Required The name of the resource used in the JNDI

tree. Servlets in the Web application use this
name to look up a reference to the resource.

<res-type>
Required The Java type of the resource that

corresponds to the reference name. Use the
full package name of the Java type.

resource-ref

A-18 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-22 (Cont.) resource-ref Elements

Element Required/
Optional

Description

<res-auth>
Required Used to control the resource sign on for

security.

If set to APPLICATION, indicates that the
application component code performs
resource sign on programmatically. If set to
Container, WebLogic Server uses the
security context established with the login-
config element. See login-config.

<res-sharing-scope>
Optional Specifies whether connections obtained

through the given resource manager
connection factory reference can be shared.

Valid values:

Shareable

Unshareable

<lookup-name>
Optional The JNDI name to be looked up to resolve a

resource reference.

A.20 security-constraint
The security-constraint element defines the access privileges to a collection of
resources defined by the <web-resource-collection> element.

For detailed instructions and an example on configuring security in Web applications,
see Securing Resources Using Roles and Policies for Oracle WebLogic Server. Also, for more
information on WebLogic Security, refer to Developing Applications with the WebLogic
Security Service.

The following table describes the elements you can define within a security-
constraint element.

Table A-23 security-constraint Elements

Element Required/
Optional

Description

<web-resource-
collection>

Required Defines the components of the Web
application to which this security constraint
is applied.

<auth-constraint>
Optional Defines which groups or principals have

access to the collection of Web resources
defined in this security constraint. See also
auth-constraint.

<user-data-
constraint>

Optional Defines how the client should communicate
with the server.

See also user-data-constraint.

security-constraint

web.xml Deployment Descriptor Elements A-19

A.20.1 web-resource-collection
Each <security-constraint> element must have one or more <web-resource-
collection> elements. These define the area of the Web application to which this
security constraint is applied.

This is an element within the security-constraint.

The following table describes the elements you can define within a web-resource-
collection element.

Table A-24 web-resource-collection Elements

Element Required/
Optional

Description

<web-resource-
name>

Required The name of this Web resource collection.

<description>
Optional A text description of this security constraint.

<url-pattern>
Optional Use one or more of the <url-pattern>

elements to declare to which URL patterns
this security constraint applies. If you do not
use at least one of these elements, this <web-
resource-collection> is ignored by
WebLogic Server.

<http-method>
Optional Use one or more of the <http-method>

elements to declare which HTTP methods
(usually, GET or POST) are subject to the
authorization constraint. If you omit the
<http-method> element, the default
behavior is to apply the security constraint to
all HTTP methods.

A.20.2 auth-constraint
This is an element within the security-constraint.

The optional auth-constraint element defines which groups or principals have
access to the collection of Web resources defined in this security constraint.

The following table describes the elements you can define within an auth-
constraint element.

Table A-25 auth-constraint Elements

Element Required/
Optional

Description

<description>
Optional A text description of this security constraint.

security-constraint

A-20 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-25 (Cont.) auth-constraint Elements

Element Required/
Optional

Description

<role-name>
Optional Defines which security roles can access

resources defined in this security-constraint.
Security role names are mapped to principals
using the security-role-ref.

A.20.3 user-data-constraint
This is an element within the security-constraint.

The user-data-constraint element defines how the client should communicate
with the server.

The following table describes the elements you may define within a user-data-
constraint element.

Table A-26 user-data-constraint Elements

Element Required/
Optional

Description

<description>
Optional A text description.

<transport-
guarantee>

Required Specifies that the communication between
client and server.

WebLogic Server establishes a Secure Sockets
Layer (SSL) connection when the user is
authenticated using the INTEGRAL or
CONFIDENTIAL transport guarantee.

Range of values:

NONE—The application does not require any
transport guarantees.

INTEGRAL—The application requires that the
data be sent between the client and server in
such a way that it cannot be changed in
transit.

CONFIDENTIAL—The application requires
that data be transmitted so as to prevent
other entities from observing the contents of
the transmission.

A.21 security-role
The following table describes the elements you can define within a security-role
element.

security-role

web.xml Deployment Descriptor Elements A-21

Table A-27 security-role Elements

Element Required/
Optional

Description

<description>
Optional A text description of this security role.

<role-name>
Required The role name. The name you use here must

have a corresponding entry in the WebLogic-
specific deployment descriptor,
weblogic.xml, which maps roles to
principals in the security realm. For more
information, see security-role-assignment.

A.22 servlet
The servlet element contains the declarative data of a servlet.

If a jsp-file is specified and the <load-on-startup> element is present, then the
JSP is precompiled and loaded when WebLogic Server starts.

The following table describes the elements you can define within a servlet element.

Table A-28 servlet Elements

Element Required/
Optional

Description

<icon>
Optional Location within the Web application for a

small and large image used to represent the
servlet in a GUI tool. Contains a small-icon
and large-icon element.

Currently, this element is not used by
WebLogic Server.

<servlet-name>
Required Defines the canonical name of the servlet,

used to reference the servlet definition
elsewhere in the deployment descriptor.

<display-name>
Optional A short name intended to be displayed by

GUI tools.

<description>
Optional A text description of the servlet.

<servlet-class>
Optional The fully-qualified class name of the servlet.

As of servlet 3.1, <servlet-class> and
<jsp-file> are optional. Servlet
configuration without <servlet-class>
and <jsp-file> is considered preliminary;
you should use the programmatical Servlet
API to register the servlet dynamically,
otherwise, deployment will fail.

servlet

A-22 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-28 (Cont.) servlet Elements

Element Required/
Optional

Description

<jsp-file>
Optional The full path to a JSP file within the Web

application, relative to the Web application
root directory.

As of servlet 3.1, <servlet-class> and
<jsp-file> are optional. Servlet
configuration without <servlet-class>
and <jsp-file> is considered preliminary;
you should use the programmatical Servlet
API to register the servlet dynamically,
otherwise, deployment will fail.

<init-param>
Optional Contains a name/value pair as an

initialization attribute of the servlet.

Use a separate set of <init-param> tags for
each attribute.

<load-on-startup>
Optional WebLogic Server initializes this servlet when

WebLogic Server starts up. The optional
content of this element must be a positive
integer indicating the order in which the
servlet should be loaded. Lower integers are
loaded before higher integers. If no value is
specified, or if the value specified is not a
positive integer, WebLogic Server can load
the servlet in any order during application
startup.

<run-as>
Optional Specifies the run-as identity to be used for the

execution of the Web application. It contains
an optional description and the name of a
security role.

<security-role-
ref>

Optional Used to link a security role name defined by
<security-role> to an alternative role
name that is hard coded in the servlet logic.
This extra layer of abstraction allows the
servlet to be configured at deployment
without changing servlet code.

A.22.1 icon
This is an element within the servlet.

The icon element specifies the location within the Web application for small and large
images used to represent the servlet in a GUI tool.

The following table describes the elements you can define within an icon element.

servlet

web.xml Deployment Descriptor Elements A-23

Table A-29 icon Elements

Element Required/
Optional

Description

<small-icon>
Optional Specifies the location within the Web

application for a small (16x16 pixel) .gif
or .jpg image used to represent the servlet
in a GUI tool.

Currently, this element is not used by
WebLogic Server.

<large-icon>
Optional Specifies the location within the Web

application for a small (32x32 pixel) .gif
or.jpg image used to represent the servlet in
a GUI tool.

Currently, this element is not used by
WebLogic Server.

A.22.2 init-param
This is an element within the servlet.

The optional init-param element contains a name/value pair as an initialization
attribute of the servlet. Use a separate set of init-param tags for each attribute.

You can access these attributes with the
javax.servlet.ServletConfig.getInitParameter() method.

The following table describes the elements you can define within a init-param
element.

Table A-30 init-param Elements

Element Required/
Optional

Description

<param-name>
Required Defines the name of this attribute.

<param-value>
Required Defines a String value for this attribute.

<description>
Optional Text description of the initialization attribute.

A.22.3 security-role-ref
This is an element within the servlet.

The security-role-ref element links a security role name defined by
<security-role> to an alternative role name that is hard-coded in the servlet logic.
This extra layer of abstraction allows the servlet to be configured at deployment
without changing servlet code.

The following table describes the elements you can define within a security-role-
ref element.

servlet

A-24 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table A-31 security-role-ref Elements

Element Required/
Optional

Description

<description>
Optional Text description of the role.

<role-name>
Required Defines the name of the security role or

principal that is used in the servlet code.

<role-link>
Required Defines the name of the security role that is

defined in a <security-role> element
later in the deployment descriptor.

A.23 servlet-mapping
The servlet-mapping element defines a mapping between a servlet and a URL
pattern.

The following table describes the elements you can define within a servlet-
mapping element.

Table A-32 servlet-mapping Elements

Element Required/
Optional

Description

<servlet-name>
Required The name of the servlet to which you are

mapping a URL pattern. This name
corresponds to the name you assigned a
servlet in a <servlet> declaration tag.

<url-pattern>
Required Describes a pattern used to resolve URLs. The

portion of the URL after the http://
host:port + WebAppName is compared to
the <url-pattern> by WebLogic Server. If
the patterns match, the servlet mapped in this
element will be called.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in
the servlet 3.1 specification.

For additional examples of servlet mapping,
see Servlet Mapping.

A.24 session-config
The session-config element defines the session attributes for this Web application.

The following table describes the element you can define within a session-config
element.

servlet-mapping

web.xml Deployment Descriptor Elements A-25

Table A-33 session-config Elements

Element Required/
Optional

Description

<session-timeout>
Optional The number of minutes after which sessions

in this Web application expire. The value set
in this element overrides the value set in the
TimeoutSecs attribute of the <session-
descriptor> element in the WebLogic-
specific deployment descriptor
weblogic.xml, unless one of the special
values listed here is entered.

Default value: 60

Maximum value: Integer.MAX_VALUE ÷ 60

Special values:

-1 = Sessions do not timeout. The value set in
<session-descriptor> element of
weblogic.xml is ignored.

For more information, see session-descriptor.

A.25 web-app
The XML schema for the servlet 3.1 deployment descriptor. WebLogic Server fully
supports HTTP servlets as defined at https://jcp.org/en/jsr/detail?
id=340. However, the version attributed must be set to 3.1 in order to enforce 3.1
behavior.

The following table describes the elements you can define within an web-app
element.

Table A-34 web-app Elements

Element Required/
Optional

Description

<version>
Required All servlet deployment descriptors must

indicate the 3.1 version of the schema in order
to enforce servlet 3.1 behavior.

A.26 welcome-file-list
The optional welcome-file-list element contains an ordered list of welcome-
file elements.

When the URL request is a directory name, WebLogic Server serves the first file
specified in this element. If that file is not found, the server then tries the next file in
the list.

For more information, see Configuring Welcome Files.

The following table describes the element you can define within a welcome-file-
list element.

web-app

A-26 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

https://jcp.org/en/jsr/detail?id=340
https://jcp.org/en/jsr/detail?id=340

Table A-35 welcome-file-list

Element Required/
Optional

Description

<welcome-file>
Optional File name to use as a default welcome file,

such as index.html

welcome-file-list

web.xml Deployment Descriptor Elements A-27

welcome-file-list

A-28 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

B
weblogic.xml Deployment Descriptor

Elements

This appendix provides a complete reference for the elements in the WebLogic Server-
specific deployment descriptor weblogic.xml. If your Web application does not
contain a weblogic.xml deployment descriptor, WebLogic Server automatically
selects the default values of the deployment descriptor elements.

This appendix includes the following sections, which describe the complex
deployment descriptor elements that can be defined in the weblogic.xml
deployment descriptor under the root element weblogic-web-app:

• weblogic.xml Namespace Declaration and Schema Location

• description

• weblogic-version

• security-role-assignment

• run-as-role-assignment

• ready-registration

• resource-description

• resource-env-description

• ejb-reference-description

• service-reference-description

• session-descriptor

• jsp-descriptor

• auth-filter

• container-descriptor

• charset-params

• virtual-directory-mapping

• url-match-map

• security-permission

• context-root

• wl-dispatch-policy

weblogic.xml Deployment Descriptor Elements B-1

• servlet-descriptor

• work-manager

• logging

• library-ref

• fast-swap

• async-descriptor

• async-work-manager

• Backwards Compatibility Flags

• Web Container Global Configuration

B.1 weblogic.xml Namespace Declaration and Schema Location
The correct text for the namespace declaration and schema location for the WebLogic
Server weblogic.xml file is as follows.

<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">

To view the schema for weblogic.xml, go to http://xmlns.oracle.com/
weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd.

B.2 async-descriptor
Use the async-descriptor element to configure the asynchronous processing
behavior of Web applications. The following table describes the elements you can
define within an async-descriptor element.

Table B-1 async-descriptor Elements

Element Required/Optional Description

timeout-secs
Optional Sets the time, in seconds, that WebLogic

Server waits before timing out an
asynchronous job. The default value is 120
seconds.

Setting the timeout to -1 indicates that the
asynchronous job never times out.

timeout-check-
interval-secs

Optional Sets the time, in seconds, that WebLogic
Server waits between doing checks for timed-
out jobs. The default value is 30 seconds.

B.3 async-work-manager
Use the async-work-manager element to specify a Work Manager for asynchronous
jobs, including asynchronous dispatches initiated using the AsyncContext
dispatch methods and runnable jobs started using the AsyncContext start
method. If no Work Manager is specified, the asynchronous jobs will be executed in
the current request Work Manager.

weblogic.xml Namespace Declaration and Schema Location

B-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd
http://docs.oracle.com/javaee/7/api/javax/servlet/AsyncContext.html

B.4 auth-filter
The auth-filter element specifies an authentication filter HttpServlet class.

Note:

This is a deprecated element for the current release. Instead, use servlet
authentication filters.

B.5 charset-params
The charset-params element is used to define code set behavior for non-unicode
operations. For example:

<charset-params>
 <input-charset>
 <resource-path>/*</resource-path>
 <java-charset-name>UTF-8</java-charset-name>
 </input-charset>
</charset-params>

B.5.1 charset-mapping
Use the charset-mapping element to map an IANA character set name to a Java
character set name. For example:

<charset-mapping>
 <iana-charset-name>Shift-JIS</iana-charset-name>
 <java-charset-name>SJIS</java-charset-name>
</charset-mapping>

For more information, see Mapping IANA Character Sets to Java Character Sets.

The following table describes the elements you can define within a charset-
mapping element.

Table B-2 charset-mapping Elements

Element Required/
Optional

Description

iana-charset-name
Required Specifies the IANA character set name that is

to be mapped to the Java character set
specified by the java-charset-name
element.

java-charset-name
Required Specifies the Java characters set to use.

B.5.2 input-charset
Use the input-charset element to define which character set is used to read GET
and POST data. For example:

<input-charset>
 <resource-path>/foo</resource-path>

auth-filter

weblogic.xml Deployment Descriptor Elements B-3

 <java-charset-name>SJIS</java-charset-name>
</input-charset>

For more information, see Determining the Encoding of an HTTP Request.

The following table describes the elements you can define within a input-charset
element.

Table B-3 input-charset Elements

Element Required/
Optional

Description

resource-path
Required A path which, if included in the URL of a

request, signals WebLogic Server to use the
Java character set specified by java-
charset-name.

java-charset-name
Required Specifies the Java characters set to use.

B.6 container-descriptor
The container-descriptor element specifies a list of parameters that affect the
behavior of the Web application.

B.6.1 access-logging-disabled
The access-logging-disabled element defines whether to eliminate access
logging of the underlying Web application. Setting this property to true improves
server throughput by reducing the logging overhead. If the property is not specified or
a false value is set, application accesses are logged.

B.6.2 allow-all-roles
In the security-constraints elements defined in the web.xml descriptor of a Web
application, the auth-constraint element indicates the user roles that should be
permitted access to this resource collection. Here role-name = "*" is a compact syntax
for indicating all roles in the Web application. In past releases, role-name = "*" was
treated as all users/roles defined within the realm.

This allow-all-roles element is a backward compatibility switch to restore old
behavior. The default behavior is to allow all roles defined in the Web application. The
value specified in weblogic.xml takes precedence over the value defined in the
WebAppContainerMBean.

B.6.3 check-auth-on-forward
Add the check-auth-on-forward element when you want to require
authentication of forwarded requests from a servlet or JSP. Omit the tag if you do not
want to require re-authentication. For example:

<container-descriptor>
 <check-auth-on-forward/>
</container-descriptor>

container-descriptor

B-4 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Note:

As a best practice, Oracle recommends that you do not enable the check-
auth-on-forward property.

B.6.4 client-cert-proxy-enabled
The client-cert-proxy-enabled element default value is true. When set to
true, WebLogic Server passes identity certificates from the clients to the backend
servers. Also, WebLogic Server is notified whether to honor or discard the incoming
WL-Proxy-Client-Cert header.

A proxy-server plugin encodes each identity certification in the WL-Proxy-Client-Cert
header and passes it to the backend WebLogic Server instances. Each WebLogic Server
instance takes the certificate information from the header, ensures it came from a
secure source, and uses that information to authenticate the user. For the background
WebLogic Server instances, this parameter must be set to true (either at the cluster/
server level or at the Web application level).

If you set this element to true, use a weblogic.security.net.ConnectionFilter to ensure
that each WebLogic Server instance accepts connections only from the machine on
which the proxy-server plugin is running. If you specify true without using a
connection filter, a potential security vulnerability is created because the WL-Proxy-
Client-Cert header can be spoofed.

B.6.5 container-initializer-enabled
The container-initializer-enabled element controls whether or not to enable
the servlet container initializer.

In Servlet 3.x applications, ServletContainerInitializer is enabled by default.
For performance considerations, you can explicitly disable the servlet container
initializer by configuring the container-initializer-enabled element in the
weblogic.xml deployment descriptor in the targeted Web application. For example:

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3.0.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd">
 ...
 <container-descriptor>
 <container-initializer-enabled>false</container-initializer-enabled>
 </container-descriptor>
 ...
</weblogic-web-app>

In pre-servlet 3.x applications, you can explicitly enable the servlet container initializer
by setting the container-initializer-enabled element in the weblogic.xml
deployment descriptor to true. For example:

<container-descriptor>
 <container-initializer-enabled>true</container-initializer-enabled>
</container-descriptor>

container-descriptor

weblogic.xml Deployment Descriptor Elements B-5

B.6.6 default-mime-type
The default-mime-type element default value is null. This element allows the
user to specify the default mime type for a content-type for which the extension is not
mapped.

B.6.7 disable-implicit-servlet-mappings
When the disable-implicit-servlet-mappings flag is set to true, the Web
application container does not create implicit mappings for internal servlets (*.jsp,
*.class, and so on); only for the default servlet mapping. A typical use case for
turning off implicit servlet mappings would be when configuring
HttpClusterServlet or HttpProxyServlet.

The default value is false.

B.6.8 filter-dispatched-requests-enabled
The filter-dispatched-requests-enabled element controls whether or not
filters are applied to dispatched requests. The default value is false.

Note:

Because 2.4 servlets are backward compatible with 2.3 servlets (per the 2.4
specification), when 2.3 descriptor elements are detected by WebLogic Server,
the filter-dispatched-requests-enabled element defaults to true.

B.6.9 gzip-compression
The gzip-compression element controls GZIP compression support for a specified
Web application.

Table B-4 gzip-compression sub-elements

Element Description Default Value

enabled
Enables GZIP compression
for the specified Web
application. If set to true,
only the current application
is affected.

If specified, the
weblogic.xml value
overrides the domain-level
value.

false

container-descriptor

B-6 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-4 (Cont.) gzip-compression sub-elements

Element Description Default Value

min-content-length
Specifies the minimum file
size to trigger compression
for the specified Web
application. This element
allows you to bypass small-
sized resources where
compression would not yield
a great return but use
unnecessary CPUs.

If specified, the
weblogic.xml value
overrides the domain-level
value.

2048

content-type
Specifies the type of content
to be included in
compression. You can specify
more than one content type
by using separate content-
type sub-elements for each
type.

If specified, the
weblogic.xml value
overrides the domain-level
value.

text/html, text/xml, text/
plain

If the gzip-compression element and all of its sub-elements are present, these
values override any default values at the domain level. If one of the sub-elements is
absent, then the default domain value for that attribute is used.

The following example demonstrates setting the gzip-compression element and its
sub-elements:

<weblogic-web-app>
 <container-descriptor>
 <gzip-compression>
 <enabled>true</enabled>
 <min-content-length>4096</min-content-length>
 <content-type>text/html</content-type>
 <content-type>text/xml</content-type>
 </gzip-compression>
 </container-descriptor>
</weblogic-web-app>

Section Title

(Optional) Enter reference information in this section.

Syntax

(Optional) Enter syntax information here.

container-descriptor

weblogic.xml Deployment Descriptor Elements B-7

Example B-1 Example Title

(Optional) Enter an example to illustrate your reference here.

B.6.10 index-directory-enabled
The index-directory-enabled element controls whether or not to automatically
generate an HTML directory listing if no suitable index file is found.

The default value is false (does not generate a directory). Values are true or false.

B.6.11 index-directory-sort-by
The index-directory-sort-by element defines the order in which the directory
listing generated by weblogic.servlet.FileServlet is sorted. Valid sort-by
values are NAME, LAST_MODIFIED, and SIZE. The default sort-by value is NAME.

B.6.12 langtag-revision
The langtag-revision element determines the language tag specification version
that the HttpServletRequest getLocale and getLocales methods should obey.

Currently, WebLogic Server supports RFC5646 and RFC3066. If you do not set a value,
the HttpServletRequest getLocale and getLocales methods return a
language tag for locale according to RFC5646. The value 3066 means that the
HttpServletRequest getLocale and getLocales methods return a language
tag for locale according to RFC3066. For example, if using RFC3066:

<container-descriptor>
 <langtag-revision>3066</langtag-revision>
</container-descriptor>

The system property -Dweblogic.servlet.langtagRevision can also determine
the locale parsing mechanism. However, explicit configuration for the langtag-
revision element in weblogic.xml takes precedence over configuration in -
Dweblogic.servlet.langtagRevision. If you do not set a value in
weblogic.xml, then the system property configuration takes effect.

The following table describes the relationship between the langtag-revision
element in weblogic.xml, the system property -
Dweblogic.servlet.langtagRevision, and RFC3066 behavior.

System Property weblogic.xml Uses RFC3066 behavior

not set/5646 not set/5646 off

not set/5646 3066 on

3066 not set on

3066 5646 off

3066 3066 on

B.6.13 minimum-native-file-size
The minimum-native-file-size element applies only when native-io-
enabled is set to true. It sets the minimum file size in Bytes for using native I/O. If

container-descriptor

B-8 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

the file being served is larger than this value, native I/O is used. If you do not set this
value, the default value used is 4000.

B.6.14 native-io-enabled
To use native I/O while serving static files with weblogic.servlet.FileServlet,
which is implicitly registered as the default servlet, set native-io-enabled to
true. (The default value is false.) native-io-enabled element applies only on
Windows.

B.6.15 optimistic-serialization
When optimistic-serialization is turned on, WebLogic Server does not
serialize-deserialize context and request attributes upon getAttribute(name)
when the request is dispatched across servlet contexts.

This means that you must make sure that the attributes common to Web applications
are scoped to a common parent classloader (application scoped) or you must place
them in the system classpath if the two Web applications do not belong to the same
application.

When optimistic-serialization is turned off (default value), WebLogic Server
serialize-deserializes context and request attributes upon getAttribute(name) to
avoid the possibility of ClassCastExceptions.

The optimistic-serialization value can also be specified at domain level in the
WebAppContainerMBean, which applies for all Web applications. The value in
weblogic.xml, if specified, overrides the domain-level value.

The default value is false.

B.6.16 prefer-application-packages
The prefer-application-packages element specifies a list of packages for
classes that must always be loaded from the application. For more information, see
prefer-application-packages in Developing Applications for Oracle WebLogic
Server.

<?xml version="1.0" encoding="UTF-8"?>

<wls:weblogic-web-app
xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd">

 <wls:weblogic-version>12.2.1</wls:weblogic-version>
 <wls:context-root>FilterWeb</wls:context-root>
 <wls:container-descriptor>
 <wls:prefer-application-packages>
 <wls:package-name>com.oracle.foo</wls:package-name>
 </wls:prefer-application-packages>
 </wls:container-descriptor>
</wls:weblogic-web-app>

Note that in order to use prefer-application-packages or prefer-
application-resources, prefer-web-inf-classes must be set to false.

container-descriptor

weblogic.xml Deployment Descriptor Elements B-9

B.6.17 prefer-application-resources
The prefer-application-resources element specifies a list of resources that
must always be loaded from the application, even if the resources are found in the
system classloader. For more information, see prefer-application-resources in
Developing Applications for Oracle WebLogic Server.

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <container-descriptor>
 <prefer-web-inf-classes>false</prefer-web-inf-classes>
 <prefer-application-packages>
 <package-name>javax.faces.*</package-name>
 <package-name>com.sun.faces.*</package-name>
 <package-name>com.bea.faces.*</package-name>
 </prefer-application-packages>

 <prefer-application-resources>
 <resource-name>javax.faces.*</resource-name>
 <resource-name>com.sun.faces.*</resource-name>
 <resource-name>com.bea.faces.*</resource-name>
 <resource-name>META-INF/services/javax.servlet.ServletContainerInitializer</
resource-name>
 </prefer-application-resources>
 </container-descriptor>
</weblogic-web-app>

Note that in order to use prefer-application-packages or prefer-
application-resources, prefer-web-inf-classes must be set to false.

B.6.18 prefer-forward-query-string
When HttpServletRequest.getQueryString() is invoked in a forwarding
request, WebLogic Server returns the queryString sent by the forwarding servlet via
RequestDispatcher and the original ones sent by the client.

When the prefer-forward-query-string flag is set to true, WebLogic Server
returns only the forwarded query string, if it is specified. The default value is false.

B.6.19 prefer-web-inf-classes
The prefer-web-inf-classes element, if set to true, will cause classes located in
the WEB-INF directory of a Web application to be loaded in preference to classes
loaded in the application or system classloader. The default value is false. A value
specified in the WebLogic Server Administration Console will take precedence over a
value set manually.

Note:

Neither prefer-application-packages nor prefer-application-
resources can be specified when prefer-web-inf-classes is turned on
in weblogic.xml.

container-descriptor

B-10 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

B.6.20 redirect-with-absolute-url
The redirect-with-absolute-url element controls whether the
javax.servlet.http.HttpServletResponse.SendRedirect() method
redirects using a relative or absolute URL. Set this element to false if you are using a
proxy HTTP server and do not want the URL converted to a non-relative link.

The default behavior is to convert the URL to a non-relative link.

Note:

User readable data used in a redirect.

B.6.21 relogin-enabled
The relogin-enabled element is a backward compatibility parameter. If a user has
logged in already and tries to access a resource for which s/he does not have
privileges, a FORBIDDEN (403) response occurs.

B.6.22 require-admin-traffic
The require-admin-trafffic element defines whether traffic should go through
the administration channel. When set to true traffic is allowed to go through the
administration channel. Otherwise, traffic can only go through administration channel
when the Web application is in administrative mode. For example:

<container-descriptor>
 <require-admin-traffic>true</require-admin-traffic>
</container-descriptor>

B.6.23 resource-reload-check-secs
The resource-reload-check-secs element is used to perform metadata caching
for cached resources that are found in the resource path in the Web application scope.
This parameter identifies how often WebLogic Server checks whether a resource has
been modified and if so, it reloads it.

• The value -1 means never reload. This is the default value in a production
environment.

• The value 0 means always reload.

• The value 1 means reload every second. This is the default value in a development
environment.

Values specified for this parameter using the WebLogic Server Administration
Console are given precedence.

Note:

If the resource is a JSP, and if page-check-secondsis specified in the jsp-
descriptor element, the page-check-seconds value is used to determine
reload time for the JSP file.

container-descriptor

weblogic.xml Deployment Descriptor Elements B-11

B.6.24 save-sessions-enabled
The save-sessions-enabled element controls whether session data is cleaned up
during redeploy or undeploy. It affects memory and replicated sessions. Setting the
value to true means session data is saved. Setting to false means session data will be
destroyed when the Web application is redeployed or undeployed. The default is
false.

B.6.25 servlet-reload-check-secs
The servlet-reload-check-secs element defines whether a WebLogic Server
will check to see if a servlet has been modified, and if it has been modified, reloads it.

• The value -1 means never check the servlets. This is the default value in a
production environment.

• The value 0 means always check the servlets.

• The value 1 means check the servlets every second. This is the default value in a
development environment.

A value specified in the WebLogic Server WebLogic Server Administration Console
will always take precedence over a manually specified value.

B.6.26 session-monitoring-enabled
The session-monitoring-enabled element, if set to true, allows run-time MBeans
to be created for sessions. When set to false, the default value, run-time MBeans are
not created. A value specified in the WebLogic Server Administration Console takes
precedence over a value set manually.

B.6.27 show-archived-real-path-enabled
The show-archived-real-path-enabled element specifies the behavior of
getRealPath() for archived Web applications.

When set to true, getRealPath() returns the canonical path of the resource files.

If the show-archived-real-path-enabled element is set to false, the servlet
container will return the real path of files in archived Web applications as null.

The default value is false.

B.6.28 single-threaded-servlet-pool-size
The single-threaded-servlet-pool-size element defines the size of the pool
used for SingleThreadMode instance pools. The default value is 5.

Note:

SingleThreadMode instance pools are deprecated in this release.

B.6.29 temp-dir
The temp-dir element specifies the location of the temporary directory for the Web
application, as returned by the "javax.servlet.context.tempDir" attribute.

container-descriptor

B-12 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

B.7 context-root
The context-root element defines the context root of this standalone Web
application. If the Web application is part of an EAR, not standalone, specify the
context root in the EAR's META-INF/application.xml file. A context-root
setting in application.xml takes precedence over context-root setting in
weblogic.xml.

Note that this weblogic.xml element only acts on deployments using the two-phase
deployment model.

The order of precedence for context root determination for a Web application is as
follows:

• Check context-root and web-uri in application.xml for context root; if
found, use as Web application's context root.

• If context root is not set in application.xml, and the Web application is being
deployed as part of an EAR, check whether context root is defined in
weblogic.xml. If found, use as Web application's context root. If the Web
application is deployed standalone, application.xml does not come into play
and the determination for context-root starts at weblogic.xml and defaults to
URI if it is not defined there.

• If context root is not defined in weblogic.xml or application.xml, then infer
the context path from the URI, giving it the name of the value defined in the URI
minus the WAR suffix. For instance, a URI MyWebApp.war would be named
MyWebApp.

Note:

The context-root element cannot be set for individual Web applications in
EAR libraries. It can only bet set for Web application libraries.

B.8 description
The description element is a text description of the Web application.

B.9 ejb-reference-description
The following table describes the elements you can define within a ejb-reference-
description element.

Table B-5 ejb-reference-description Elements

Element Required/
Optional

Description

ejb-ref-name
Required Specifies the name of an EJB reference used in

your Web application.

jndi-name
Required Specifies a JNDI name for the reference.

context-root

weblogic.xml Deployment Descriptor Elements B-13

B.10 fast-swap
The following table describes the elements you can define within a fast-swap
element.

For more information about FastSwap Deployment, see Using FastSwap Deployment
to Minimize Redeployment in Deploying Applications to Oracle WebLogic Server.

Table B-6 fast-swap Elements

Element Required/
Optional

Description

enabled
Optional Set to true to enable FastSwap deployment

in your application.

refresh-interval
Optional FastSwap checks for changes in application

classes when an incoming HTTP request is
received. Subsequent HTTP requests arriving
within the refresh-interval seconds will
not trigger a check for changes. The first
HTTP request arriving after the refresh-
interval seconds have passed, will cause
FastSwap to perform a class-change check
again.

redefinition-task-limit
Optional FastSwap class redefinitions are performed

asynchronously by redefinition tasks. They
can be controlled and inspected using JMX
interfaces.

Specifies the number of redefinition tasks that
will be retained by the FastSwap system. If
the number of tasks exceeds this limit, older
tasks are automatically removed.

B.11 jsp-descriptor
The jsp-descriptor element specifies a list of configuration parameters for the JSP
compiler. The following table describes the elements you can define within a jsp-
descriptor element.

fast-swap

B-14 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-7 jsp-descriptor Elements

Element Default Value Description

page-check-seconds 1
Sets the interval, in seconds, at which
WebLogic Server checks to see if JSP files
have changed and need recompiling.
Dependencies are also checked and
recursively reloaded if changed.

• The value -1 means never check the
pages. This is the default value in a
production environment.

• The value 0 means always check the
pages.

• The value 1 means check the pages every
second. This is the default value in a
development environment.

In a production environment where changes
to a JSP are rare, consider changing the value
of pageCheckSeconds to 60 or greater,
according to your tuning requirements.

strict-stale-check true
Applies to exploded WARs only.

Checks for updated JSP files, in other words,
whether the timestamp on the file is later
(more recent) than the one in the build. Only
newer files can replace older ones.

When set to false, just checks whether the
timestamp has changed. If so, the file is
replaced.

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://
xmlns.oracle.com/weblogic/weblogic-web-
app">
 <jsp-descriptor>
 <strict-stale-check>false
 </strict-stale-check>
 </jsp-descriptor>
</weblogic-web-app>

precompile false
When set to true, WebLogic Server
automatically precompiles all JSPs when the
Web application is deployed or re-deployed
or when starting WebLogic Server.

precompile-continue false
When set to true, WebLogic Server continues
precompiling all JSPs even if some of those
JSPs fail during compilation. Only takes effect
when precompile is set to true.

keepgenerated false
Saves the Java files that are generated as an
intermediary step in the JSP compilation
process. Unless this parameter is set to true,
the intermediate Java files are deleted after
they are compiled.

jsp-descriptor

weblogic.xml Deployment Descriptor Elements B-15

Table B-7 (Cont.) jsp-descriptor Elements

Element Default Value Description

debug false
When set to true, WebLogic Server enables
the debugging feature of the JSP compiler.

The default value is false.

verbose true
When set to true, debugging information is
printed out to the browser, the command
prompt, and WebLogic Server log file.

working-dir internally
generated
directory

The name of a directory where WebLogic
Server saves the generated Java and compiled
class files for a JSP.

Note: If weblogic.xml defines a working-
dir, WebLogic Server does not delete this
directory when the Web application is
undeployed.

print-nulls null
When set to false, this parameter ensures that
expressions with "null" results are printed as
" ".

backward-compatible true
When set to true, backward compatibility is
enabled.

For more information, see Backwards
Compatibility Flags.

encoding UTF-8 for JSP
and JSPX pages

Specifies the default character set used in the
JSP page. Use standard Java character set
names (see http://docs.oracle.com/
javase/8/docs/technotes/guides/
intl/).

If not set, this attribute defaults to the
encoding for your platform.

A JSP page directive (included in the JSP
code) overrides this setting. For example:

<%@ page contentType="text/html;
charset=custom-encoding"%>

package-prefix jsp_servlet
Specifies the package prefix into which all JSP
pages are compiled.

exact-mapping true
When true, upon the first request for a JSP the
newly created JspStub is mapped to the exact
request. If exactMapping is set to false, the
Web application container generates non-
exact url mapping for JSPs. exactMapping
allows path info for JSP pages.

default-file-name true
The default file name in which WebLogic
Server saves the generated Java and compiled
class files for a JSP.

jsp-descriptor

B-16 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://docs.oracle.com/javase/8/docs/technotes/guides/intl/
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/

Table B-7 (Cont.) jsp-descriptor Elements

Element Default Value Description

rtexprvalue-jsp-param-
name

false
Allows run-time expression values in the
name attribute of the jsp:param tag. It is set
to false by default.

optimize-java-
expression

false
When set to true, the JSP compiler optimizes
Java expressions to improve run-time
performance.

compress-html-template false
When set to true, compresses the HTML in
the JSP template blocks to improve run-time
performance.

If the JSP's HTML template block contains the
<pre> HTML tag, do not enable this feature.

B.12 library-ref
The library-ref element references a library module, which is intended to be used
as a Web application library in the current Web application.

Example:

<library-ref>
 <library-name>WebAppLibraryFoo</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>8.1beta</implementation-version>
 <exact-match>false</exact-match>
</library-ref>

Only the following sub-elements are relevant to Web applications: library-name,
specification-version, implementation-version, and exact-match.

You can define the following elements within the library-ref element.

Table B-8 library-ref Elements

Element Required/
Optional

Description

library-name
Required Provides the library name for the library

module reference. The default value is null.

specification-version
Optional Provides the specification version for the

library module reference. The default value is
0. (This is a float.)

implementation-version
Optional Provides the implementation version for the

library module reference. The default value is
null.

exact-match
Optional The default value is false.

library-ref

weblogic.xml Deployment Descriptor Elements B-17

B.13 logging
The logging element is a sub-element of the weblogic-web-app element. You can
define the following elements within the logging element.

Table B-9 logging Elements

Element Required/
Optional

Description

log-filename
Required Specifies the name of the log file. The full

address of the filename is required.

logging-enabled
Optional Indicates whether or not the log writer is set

for either the
ManagedConnectionFactory or
ManagedConnection. If this element is set
to true, output generated from either the
ManagedConnectionFactory or
ManagedConnection will be sent to the file
specified by the log-filename element.

Failure to specify this value will result in
WebLogic Server using its defined default
value.

Value Range: true | false

Default Value: false

rotation-type
Optional Sets the file rotation type.

Values are bySize, byTIme, none

• bySize—When the log file reaches the
size that you specify in file-size-
limit, the server renames the file as
FileName.n.

• byTIme—At each time interval that you
specify in file-time-span, the server
renames the file as FileName.n. After
the server renames a file, subsequent
messages accumulate in a new file with
the name that you specified in log-
filename.

• none—Messages accumulate in a single
file. You must erase the contents of the file
when the size is unwieldy.

Default Value: bySize

logging

B-18 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-9 (Cont.) logging Elements

Element Required/
Optional

Description

number-of-files-limited
Optional Specifies whether the number of files that this

server instance creates to store old messages
should be limited. (Requires that you specify
a rotation-type of bySize). After the
server reaches this limit, it overwrites the
oldest file. If you do not enable this option,
the server creates new files indefinitely and
you must clean up these files as you require.

If you enable number-of-files-limited
by setting it to true, the server refers to your
rotationType variable to determine how to
rotate the log file. Rotate means that you
override your existing file instead of creating
a new file. If you specify false for number-
of-files-limited, the server creates
numerous log files rather than overriding the
same one.

Value Range: true | false

Default Value: false

file-count
Optional The maximum number of log files that the

server creates when it rotates the log. This
number does not include the file that the
server uses to store current messages.
(Requires that you enable number-of-
files-limited.)

Default Value: 7

file-size-limit
Optional The size that triggers the server to move log

messages to a separate file. (Requires that you
specify a rotation-type of bySize.)
After the log file reaches the specified
minimum size, the next time the server
checks the file size, it will rename the current
log file as FileName.n and create a new one
to store subsequent messages.

Default Value: 500

rotate-log-on-startup
Optional Specifies whether a server rotates its log file

during its startup cycle.

Value Range: true | false

Default Value: true

log-file-rotation-dir
Optional Specifies the directory path where the rotated

log files will be stored.

logging

weblogic.xml Deployment Descriptor Elements B-19

Table B-9 (Cont.) logging Elements

Element Required/
Optional

Description

rotation-time
Optional The start time for a time-based rotation

sequence of the log file, in the format k:mm,
where k is 1-24. (Requires that you specify a
rotation-type of byTime.) At the
specified time, the server renames the current
log file. Thereafter, the server renames the log
file at an interval that you specify in file-
time-span.

If the specified time has already past, then the
server starts its file rotation immediately.

By default, the rotation cycle begins
immediately.

file-time-span
Optional The interval (in hours) at which the server

saves old log messages to another file.
(Requires that you specify a rotation-
type of byTime.)

Default Value: 24

B.14 ready-registration
To use the ReadyApp framework, register a WAR-based application with the
framework by adding the following code to the application's WebLogic deployment
descriptor (META-INF\weblogic-application.xml):

<wls:ready-registration>true</wls:ready-registration>

When the application starts, the state of the application is set to NOT READY.

Note: The prefix wls: may or may not be required depending on the
contents of the weblogic-application.xml file. If the rest of the tags do
not have the prefix, you can ignore the prefix.

For more information, see Configuring the ReadyApp Framework with EAR or WAR-
based Applications in Deploying Applications to Oracle WebLogic Server.

B.15 resource-description
The resource-description element is used to map the JNDI name of a server
resource to an EJB resource reference in WebLogic Server.

The following table describes the elements you can define within a resource-
description element.

ready-registration

B-20 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-10 resource-description Elements

Element Required/
Optional

Description

res-ref-name
Required Specifies the name of a resource reference.

jndi-name
Required Specifies a JNDI name for the resource.

B.16 resource-env-description
The resource-env-description element maps a resource-env-ref, declared
in the ejb-jar.xml deployment descriptor, to the JNDI name of the server resource
it represents.

The following table describes the elements you can define within a resource-env-
description element.

Table B-11 resource-env-description Elements

Element Required/
Optional

Description

res-env-ref-name
Required Specifies the name of a resource environment

reference.

jndi-name
Required Specifies a JNDI name for the resource

environment reference.

B.17 run-as-role-assignment
The run-as-role-assignment element maps a run-as role name (a sub-element
of the servlet element) in web.xml to a valid user name in the system. The value
can be overridden for a given servlet by the run-as-principal-name element in
the servlet-descriptor. If the run-as-role-assignment is absent for a given
role name, the Web application container uses the first principal-name defined in
the security-role-assignment. The following example illustrates how to use the
run-as-role-assignment element.

<run-as-role-assignment>
 <role-name>RunAsRoleName</role-name>
 <run-as-principal-name>joe</run-as-principal-name>
</run-as-role-assignment>

The following table describes the elements you can define within a run-as-role-
assignment element.

resource-env-description

weblogic.xml Deployment Descriptor Elements B-21

Table B-12 run-as-role-assignment Elements

Element Required/
Optional

Description

role-name
Required Specifies the name of a security role.

run-as-principal-name
Required Specifies the name of a principal.

B.18 security-permission
The security-permission element specifies a single security permission based on
the security policy file syntax. Refer to the following URL for the implementation of
the security permission specification: http://docs.oracle.com/javase/8/
docs/technotes/guides/security/PolicyFiles.html.

Disregard the optional codebase and signedBy clauses.

For example:

<security-permission-spec>
 grant { permission java.net.SocketPermission "*", "resolve" };
</security-permission-spec>

where:

• permission java.net.SocketPermission is the permission class name.

• "*" represents the target name.

• resolve indicates the action.

B.19 security-role-assignment
The security-role-assignment element declares a mapping between a Web
application security role and one or more principals in WebLogic Server, as shown in
the following example.

<security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
</security-role-assignment>

You can also use it to mark a given role as an externally defined role, as shown in the
following example:

<security-role-assignment>
 <role-name>roleadmin</role-name>
 <externally-defined/>
</security-role-assignment>

security-permission

B-22 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

Note:

In the security-role-assignment element, either principal-name or
externally-defined must be defined. Both cannot be omitted.

The following table describes the elements you can define within a security-role-
assignment element.

Table B-13 security-role-assignment Elements

Element Required/
Optional

Description

role-name
Required Specifies the name of a security role.

principal-name
Required if
externally-
defined is not
defined.

Specifies the name of a principal that is
defined in the security realm. You can use
multiple principal-name elements to map
principals to a role. For more information on
security realms, see Administering Security for
Oracle WebLogic Server.

externally-defined
Required if
principal-
name is not
defined.

Specifies that a particular security role is
defined globally in a security realm;
WebLogic Server uses this security role as the
principal name, rather than looking it up in a
global realm. When the security role and its
principal-name mapping are defined
elsewhere, this is used as an indicative
placeholder.

If you do not define a security-role-assignment element and its sub-elements,
the Web application container implicitly maps the role name as a principal name and
logs a warning. The EJB container does not deploy the module if mappings are not
defined.

Consider the following usage scenarios for the role name is "role_xyz"

• If you map "role_xyz" to user "joe" in weblogic.xml, role_xyz becomes a local
role.

• If you specify role_xyz as an externally defined role, it becomes global (it refers to
the role defined at the realm level).

• If you do not define a security-role-assignment element, role_xyz becomes
a local role, and the Web application container creates an implicit mapping to it
and logs a warning.

B.20 service-reference-description
The following table describes the elements you can define within a service-
reference-description element.

service-reference-description

weblogic.xml Deployment Descriptor Elements B-23

Table B-14 service-reference-description Elements

Element Required/
Optional

Description

service-ref-name

wsdl-url

call-property
The call-property element has the
following sub-elements:

name

value

port-info
The port-info element has the following
sub-elements:

port-name

stub-property

call-property

B.21 servlet-descriptor
Use the servlet-descriptor element to aggregate the servlet-specific elements.

The following table describes the elements you can define within the servlet-
descriptor element.

Table B-15 servlet-descriptor Elements

Element Required/
Optional

Description

servlet-name
Required Specifies the servlet name as defined in the

servlet element of the web.xml deployment
descriptor file.

run-as-principal-name
Optional Contains the name of a principal against the

run-as-role-name defined in the
web.xml deployment descriptor.

init-as-principal-name
Optional Equivalent to run-as-principal-name for

the init method for servlets. The identity
specified here should be a valid user name in
the system. If init-as-principal-name
is not specified, the container uses the run-
as-principal-name element.

destroy-as-principal-
name

Optional Equivalent to run-as-principal-name for
the destroy method for servlets. The
identity specified here should be a valid user
name in the system. If destroy-as-
principal-name is not specified, the
container uses the run-as-principal-
name element.

servlet-descriptor

B-24 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-15 (Cont.) servlet-descriptor Elements

Element Required/
Optional

Description

dispatch-policy
Optional This is a deprecated element. Used to assign a

given servlet to a configured Work Manager
by identifying the Work Manager name. This
setting overrides the Web application-level
dispatch policy defined by wl-dispatch-
policy.

B.22 session-descriptor
The following table describes the elements you can define within a session-
descriptor element to define parameters for servlet sessions.

Table B-16 session-descriptor

Element Name Default Value Value

timeout-secs
3600 Sets the time, in seconds, that WebLogic

Server waits before timing out a session. The
default value is 3600 seconds.

On busy sites, you can tune your application
by adjusting the timeout of sessions. While
you want to give a browser client every
opportunity to finish a session, you do not
want to tie up the server needlessly if the user
has left the site or otherwise abandoned the
session.

This element can be overridden by the
session-timeout element (defined in
minutes) in web.xml.

invalidation-interval-
secs

60
Sets the time, in seconds, that WebLogic
Server waits between doing house-cleaning
checks for timed-out and invalid sessions,
and deleting the old sessions and freeing up
memory. Use this element to tune WebLogic
Server for best performance on high traffic
sites.

The default value is 60 seconds.

invalidate-on-relogin false
Sets whether the container must invalidate
the current session if the currently logged-in
user switches to a different user name (which
is valid in the security realm) and attempts to
log in again.

If the value of this parameter is set to true,
the current session is invalidated if the user
attempts to log in again using a different user
name.

session-descriptor

weblogic.xml Deployment Descriptor Elements B-25

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

sharing-enabled
false Enables Web applications to share HTTP

sessions when the value is set to true at the
application level.

This element is ignored if turned on at the
Web application level.

debug-enabled
false Enables the debugging feature for HTTP

sessions.

The default value is false.

id-length
52 Sets the size of the session ID.

The minimum value is 32 bytes and the
maximum value is Integer.MAX_VALUE.

Note: If a value lower than 32 bytes is set,
WebLogic Server automatically raises the
value to 32 and displays the following
message:

The IDLength is too short. It is not
secure. WLS will raise the length to 32.

If you are writing a WAP application, you
must use URL rewriting because the WAP
protocol does not support cookies. Also,
some WAP devices have a 128-character limit
on URL length (including attributes), which
limits the amount of data that can be
transmitted using URL rewriting. To allow
more space for attributes, use this attribute to
limit the size of the session ID that is
randomly generated by WebLogic Server.

You can also limit the length to a fixed 52
characters, and disallow special characters,
by setting the WAPEnabled attribute. For
more information, see URL Rewriting and
Wireless Access Protocol (WAP).

tracking-enabled
true Enables session tracking between HTTP

requests.

cache-size
1028 Sets the cache size for JDBC and file-

persistent sessions.

session-descriptor

B-26 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

max-in-memory-sessions
-1 Sets the maximum limit for memory/

replicated sessions.

Without the ability to configure bound in-
memory servlet session use, as new sessions
are continually created, the server eventually
grows out of memory. To protect against this,
WebLogic Server provides a configurable
bound on the number of sessions created.
When this number is exceeded, the
weblogic.servlet.SessionCreationE
xception occurs for each attempt to create a
new session. This feature applies to both
replicated and non-replicated in-memory
sessions.

To configure bound in-memory servlet
session use, you set the limitation in the max-
in-memory-sessions element.

The default is -1 (unlimited); any negative
value works as the same as -1.

max-save-post-size
4096 Sets the maximum size, in bytes, of the POST

data that the container saves/buffers during
FORM authentication.

The default value is 4096 bytes.

save-post-timeout-secs
40 Defines the timeout, in seconds, for the

session that saved/buffered POST data. For
FORM authentication, POST data is saved in
a session while the user is redirected to the
login form.

The default value is 40 seconds.

If the value of the save-post-timeout-
secs element is less than the value of the
timeout-secs element, then session
invalidation may occur during user
operations. In this scenario, increase the value
of save-post-timeout-secs to match the
timeout-secs value or to an acceptable
value, according to your needs.

save-post-timeout-
interval-secs

20 Sets the invalidation trigger interval, in
seconds, for saving POST data in a session.

The default value is 20 seconds.

cookies-enabled true
Use of session cookies is enabled by default
and is recommended, but you can disable
them by setting this property to false. You
might turn this option off to test.

cookie-name JSESSIONID
Defines the session tracking cookie name.
Defaults to JSESSIONID if not set. You may
set this to a more specific name for your
application.

session-descriptor

weblogic.xml Deployment Descriptor Elements B-27

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

cookie-path
null Defines the session tracking cookie path.

If not set, this attribute defaults to / (slash),
where the browser sends cookies to all URLs
served by WebLogic Server. You may set the
path to a narrower mapping, to limit the
request URLs to which the browser sends
cookies.

cookie-domain
null Specifies the domain for which the cookie is

valid. For example, setting cookie-domain
to.mydomain.com returns cookies to any
server in the *.mydomain.com domain.

The domain name must have at least two
components. Setting a name to *.com or
*.net is not valid.

If not set, this attribute defaults to the server
that issued the cookie.

For more information, see
Cookie.setDomain() in the Servlet
specification.

cookie-comment
null Specifies the comment that identifies the

session tracking cookie in the cookie file.

cookie-secure false
Tells the browser to only send the cookie
back over an HTTPS connection. This ensures
that the cookie ID is secure and should only
be used on Web sites that use HTTPS. Session
Cookies over HTTP no longer work if this
feature is enabled.

You should disable the url-rewriting-
enabled element if you intend to use this
feature.

cookie-max-age-secs -1
Sets the life span of the session cookie, in
seconds, after which it expires on the client.

This value can be set as any integer; the
default value is -1 (unlimited).

For more information about cookies, see
Using Sessions and Session Persistence.

session-descriptor

B-28 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

persistent-store-type memory
Sets the persistent store method to one of the
following options:

• memory—Disables persistent session
storage.

• replicated—Same as memory, but
session data is replicated across the
clustered servers.

• replicated_if_clustered—If the
Web application is deployed on a
clustered server, the in-effect
persistent-store-type will be
replicated. Otherwise, memory is the
default.

• async-replicated—Enables
asynchronous session replication in an
application or Web application. See
Asynchronous HTTP Session Replication
in Tuning Performance of Oracle WebLogic
Server.

• async-replicated-if-clustered—
Enables asynchronous session replication
in an application or Web application
when deployed to a cluster environment.
If deployed to a single server
environment, then the session
persistence/replication defaults to in-
memory. This allows testing on a single
server without deployment errors.

• file—Uses file-based persistence (See
also session-descriptor).

• async-jdbc—Enables asynchronous
JDBC persistence for HTTP sessions in an
application or Web application. See
Configuring Session Persistence.

• jdbc—Uses a database to store persistent
sessions. (see also session-descriptor).

• cookie—All session data is stored in a
cookie in the user's browser.

persistent-store-
cookie-name

WLCOOKIE
Sets the name of the cookie used for cookie-
based persistence. The WLCOOKIE cookie
carries the session state, which should not be
shared between Web applications.

For more information, see Using Cookie-
Based Session Persistence.

session-descriptor

weblogic.xml Deployment Descriptor Elements B-29

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

persistent-store-dir session_db
Specifies the storage directory used for file-
based persistence

Ensure that you have enough disk space to
store the number of valid sessions multiplied
by the size of each session. You can find the
size of a session by looking at the files created
in the persistent-store-dir. Note that
the size of each session can vary as the size of
serialized session data changes.

Each server instance has a default persistent
file store that requires no configuration.
Therefore, if no directory is specified, a
default store is automatically created in the
<server-name>\data\store\default
directory. However, the default store is not
shareable among clustered servers.

You can make file-persistent sessions
clusterable by creating a custom persistent
store in a directory that is shared among
different servers. However, this requires you
to create this directory manually.

persistent-store-pool None
Specifies the name of a JDBC connection pool
to be used for persistence storage.

persistent-data-source-
jndi-name

None
Specifies the data source JNDI name of a
JDBC connection to be used for jdbc- and
async-jdbc-based persistence (see
persistent-store-type above).

For async-jdbc-based persistence, you
must specify the persistent-data-
source-jndi-name parameter to configure
persistence storage.

persistent-store-table wl_servlet_sess
ions

Specifies the database table name used to
store JDBC-based persistent sessions. This
applies only when persistent-store-
type is set to jdbc.

The persistent-store-table element is
used when you choose a database table name
other than the default.

jdbc-column-name-max-
inactive-interval

Serves as an alternative name for the
wl_max_inactive_interval column
name. This jdbc-column-name-max-
inactive-interval element applies only
to JDBC-based persistence. It is required for
certain databases that do not support long
column names.

url-rewriting-enabled
true Enables URL rewriting, which encodes the

session ID into the URL and provides session
tracking if cookies are disabled in the
browser.

session-descriptor

B-30 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

http-proxy-caching-of-
cookies

true When set to false, WebLogic Server adds
the following header with the following
response:

"Cache-control: no-cache=set-cookie"

This indicates that the proxy caches do not
cache the cookies.

encode-session-id-in-
query-params

false
The latest servlet specification requires
containers to encode the session ID in path
parameters. Certain Web servers do not work
well with path parameters. In such cases, the
encode-session-id-in-query-params
element should be set to true. (The default is
false.)

runtime-main-attribute
Used in ServletSessionRuntimeMBean.
The getMainAttribute() of the
ServletSessionRuntimeMBean returns
the session attribute value using this string as
a key.

Example: user-name

This element is useful for tagging session
runtime information for different sessions.

monitoring-attribute-
name

Configures the monitoring ID for a given
HTTP session.

HTTP sessions are identified with a
monitoring ID. By default, the monitoring ID
for a given HTTP session is a random string
(not the same as a session ID for security
reasons). This monitoring ID can be
configured by setting the monitoring-
attribute-name element in session-
descriptor of the weblogic.xml deployment
descriptor and then setting a session attribute
the defined monitoring-attribute-
name. The toString() of the session
attribute value will then be used as a
monitoring ID.

This element is useful for tagging session
runtime information for different sessions.
For example, you can set it to "username", if
you have a "username" attribute that is
unique.

cookie-http-only
true Specifies whether HttpOnly cookies are

enabled. When this element is set to true, all
session cookies would be unavailable to the
browser scripts. The default value is true.
Therefore, HttpOnly cookies are enabled by
default.

session-descriptor

weblogic.xml Deployment Descriptor Elements B-31

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

auth-cookie-id-length
20 Defines the length of the secure cookie,

_WL_AUTHCOOKIE_JSESSIONID. The
default cookie length is 20, and the minimum
cookie length is 8.

B.23 url-match-map
Use this element to specify a class for URL pattern matching. The WebLogic Server
default URL match mapping class is weblogic.servlet.utils.URLMatchMap,
which is based on Java EE standards. Another implementation included in WebLogic
Server is SimpleApacheURLMatchMap, which you can plug in using the url-
match-map element.

Rule for SimpleApacheURLMatchMap:

If you map *.jws to JWSServlet then

http://foo.com/bar.jws/baz will be resolved to JWSServlet with pathInfo
= baz.

Configure the URLMatchMap to be used in weblogic.xml as in the following
example:

<url-match-map>
 weblogic.servlet.utils.SimpleApacheURLMatchMap
</url-match-map>

B.24 virtual-directory-mapping
Use the virtual-directory-mapping element to specify document roots other
than the default document root of the Web application for certain kinds of requests,
such as image requests. All images for a set of Web applications can be stored in a
single location, and need not be copied to the document root of each Web application
that uses them. For an incoming request, if a virtual directory has been specified, the
servlet container will search for the requested resource first in the virtual directory
and then in the Web application's original document root. This defines the precedence
if the same document exists in both places.

Example:

<virtual-directory-mapping>
 <local-path>c:/usr/gifs</local-path>
 <url-pattern>/images/*</url-pattern>
 <url-pattern>*.jpg</url-pattern>
</virtual-directory-mapping>
<virtual-directory-mapping>
 <local-path>c:/usr/common_jsps.jar</local-path>
 <url-pattern>*.jsp</url-pattern>
</virtual-directory-mapping>

The following table describes the elements you can define within the virtual-
directory-mapping element.

url-match-map

B-32 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-17 virtual-directory-mapping Elements

Element Required/
Optional

Description

local-path
Required Specifies a physical location on the disk.

url-pattern
Required Contains the URL pattern of the mapping.

Must follow the rules specified in Section 11.2
of the Servlet API Specification.

The WebLogic Server implementation of virtual directory mapping requires that you
have a directory that matches the url-pattern of the mapping. The image example
requires that you create a directory named images at c:/usr/gifs/images. This
allows the servlet container to find images for multiple Web applications in the images
directory.

B.25 weblogic-version
The weblogic-version element indicates the version of WebLogic Server on which
this Web application (as defined in the root element weblogic-web-app) is intended
to be deployed. This element is informational only and is not used by WebLogic
Server.

B.26 wl-dispatch-policy
Use the wl-dispatch-policy element to assign the Web application to a configured
Work Manager by identifying the Work Manager name. This Web application-level
parameter can be overridden by the dispatch policy setting at the individual servlet or
JSP level. You can set the dispatch policy by using:

• The servlet's wl-dispatch-policy, using <init-param> of the <servlet>
element in web.xml

• The <dispatch-policy> element in the <servlet-descriptor> element of
weblogic.xml

Note:

The <dispatch-policy> setting in weblogic.xml overrides the wl-
dispatch-policy <init-param> configuration in web.xml.

B.27 work-manager
The work-manager element is a sub-element of the weblogic-web-app element.
You can define the following elements within the work-manager element.

weblogic-version

weblogic.xml Deployment Descriptor Elements B-33

Table B-18 work-manager Elements

Element Required/
Optional

Description

name
Required Specifies the name of the Work Manager.

response-time-request-
class / fair-share-
request-class /
context-request-
class / request-class-
name

Optional You can choose between the following four
elements:

• response-time-request-class—
Defines the response time request class
for the application. Response time is
defined with attribute goal-ms in
milliseconds. The increment is ((goal - T)
Cr)/R, where T is the average thread use
time, R the arrival rate, and Cr a
coefficient to prioritize response time
goals over fair shares.

• fair-share-request-class—
Defines the fair share request class. Fair
share is defined with attribute percentage
of default share. Therefore, the default is
100. The increment is Cf/(P R T), where P
is the percentage, R the arrival rate, T the
average thread use time, and Cf a
coefficient for fair shares to prioritize
them lower than response time goals.

• context-request-class—Defines the
context class. Context is defined with
multiple cases mapping contextual
information, like current user or its role,
cookie, or work area fields to named
service classes.

• request-class-name—Defines the
request class name.

min-threads-
constraint, min-
threads-constraint-name

Optional You can choose between the following two
elements:

• min-threads-constraint—Used to
guarantee a number of threads the server
allocates to requests of the constrained
work set to avoid deadlocks. The default
is zero. A min-threads value of one is
useful, for example, for a replication
update request, which is called
synchronously from a peer.

• min-threads-constraint-name—
Defines a name for the min-threads-
constraint element.

work-manager

B-34 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Table B-18 (Cont.) work-manager Elements

Element Required/
Optional

Description

max-threads-
constraint, max-
threads-constraint-name

Optional You can choose between the following two
elements:

• max-threads-constraint—Limits the
number of concurrent threads executing
requests from the constrained work set.
The default is unlimited. For example,
consider a constraint defined with
maximum threads of 10 and shared by 3
entry points. The scheduling logic ensures
that not more than 10 threads are
executing requests from the three entry
points combined.

• max-threads-constraint-name—
Defines a name for the max-threads-
constraint element.

capacity, capacity-name
Optional You can choose between the following two

elements:

• capacity—Constraints can be defined
and applied to sets of entry points, called
constrained work sets. The server starts
rejecting requests only when the capacity
is reached. The default is zero. Note that
the capacity includes all requests, queued
or executing, from the constrained work
set. This constraint is primarily intended
for subsystems like JMS, which do their
own flow control. This constraint is
independent of the global queue
threshold.

• capacity-name—Defines a name for
the capacity element.

B.28 Backwards Compatibility Flags
For WebLogic Server, backward compatibility for WebLogic Server 9.2 or earlier is
supported via the backward-compatible element within the jsp-descriptor
element.

B.28.1 Compatibility with JSP 2.0 Web Applications
JSP 2.1 is supported as of WebLogic Server 10.0. Depending on the version of the Web
application (version 2.4 or 2.5) and the setting of the backward-compatible element
in the weblogic.xml descriptor file, WebLogic Server will also support JSP 2.0.

B.28.1.1 JSP Behavior and Buffer Suffix

• If a Web application version is 2.5 (for example, its web.xml has a version attribute
of 2.5) and the backward-compatible flag is set to false, then:

– All version 2.1 JSP/TAG files will follow the new JSP behavior.

Backwards Compatibility Flags

weblogic.xml Deployment Descriptor Elements B-35

– All version 2.0 or earlier JSP/TAG files will follow the previous JSP 2.0 or earlier
behavior.

• If a Web application version is 2.5 and the backward-compatible flag is set to
true, then all JSP/TAG files will follow the previous JSP 2.0 or earlier behavior.

• If the Web application version is 2.4 or earlier, then all JSP/TAG files will follow
the previous JSP 2.0 or earlier behavior no matter how the backward-
compatible flag is set.

B.28.1.2 Implicit Servlet 2.5 Package Imports

The Servlet 2.5 specification mandates that only the java.lang.*,
javax.servlet.*, javax.servlet.jsp.*, and javax.servlet.http.*
packages be implicitly imported. In compliance with the Servlet 2.5 specification,
WebLogic Server will only import these mandated packages. Whereas, previous
releases of WebLogic Server also imported the java.io.*, java.util.*, and
javax.servlet.jsp.tagext.* packages.

WebLogic Server will follow the previous 2.4 or earlier behavior and import the non-
mandated packages, if any of the following occur:

• The backward-compatible flag is set to true in the weblogic.xml descriptor
file.

• The Web application version is 2.4 or earlier.

• The individual JSP/TAG files in a version 2.5 Web application are version 2.0 or
earlier.

B.29 Web Container Global Configuration
To configure your Web container at a global level, use the WebAppContainerMBean.
For information on the WebAppContainerMBean attributes and how to use them to
specify domain-wide defaults for all of your Web applications, see the
WebAppContainerMBean.

Web Container Global Configuration

B-36 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

C
Support for GlassFish Deployment

Descriptors

This appendix describes WebLogic Server support for GlassFish deployment
descriptors. WebLogic Server offers support for a subset of GlassFish deployment
descriptors so that basic Web applications which deploy and run on GlassFish Server
can be deployed on WebLogic Server.

If a Web application has both weblogic.xml and glassfish-web.xml or sun-
web.xml, WebLogic Server will use weblogic.xml and ignore the GlassFish
deployment descriptors. If a Web application has both glassfish-web.xml and
sun-web.xml, WebLogic Server will use glassfish-web.xml and ignore sun-
web.xml.

If the GlassFish element is on the list of supported deployment descriptors described
in Table C-1, WebLogic Server will use the settings of its counterpart element in
weblogic.xml. If the element is not on the list of supported deployment descriptors,
WebLogic Server will ignore the element.

When glassfish-web.xml or sun-web.xml is being used, WebLogic Server emits
an INFO level log message including whether individual settings are being used or
ignored. WebLogic Server will not generate or persist the corresponding
weblogic.xml descriptor elements.

Note:

Web services do not support glassfish-web.xml deployment descriptor
elements. If you are using Web services and define GlassFish elements in your
Web application, the GlassFish deployment descriptors will not work.

Table C-1 Supported GlassFish Deployment Descriptors

glassfish-web.xml Element Name Corresponding weblogic.xml Element Name

context-root context-root

security-role-mapping

• role-name

• principal-name

• group-name

security-role-assignment

• role-name

• principal-name

• principal-name

Support for GlassFish Deployment Descriptors C-1

Table C-1 (Cont.) Supported GlassFish Deployment Descriptors

glassfish-web.xml Element Name Corresponding weblogic.xml Element Name

session-config

• session-manager:manager-
properties:reapIntervalSeconds

• session-manager:manager-
properties:maxSessions

• session-manager:store-
properties:directory

• session-properties:timeoutSeconds

session-descriptor

• invalidation-interval-seconds

• max-in-memory-sessions

• persistent-store-dir

• timeout-secs

ejb-ref

• ejb-ref-name

• jndi-name

ejb-reference-description

• ejb-ref-name

• jndi-name

resource-ref

• res-ref-name

• jndi-name

resource-description

• res-ref-name

• jndi-name

resource-env-ref

• resource-env-ref-name

• jndi-name

resource-env-description

• resource-env-ref-name

• jndi-name

class-loader

• delegate

container-descriptor

• prefer-web-inf-classes

jsp-config

• checkInterval

• keepgenerated

• scratchdir

jsp-descriptor

• page-check-seconds

• keepgenerated

• working-dir

C-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

D
Web Application Best Practices

This appendix describes Oracle best practices for designing, developing, and
deploying WebLogic Web applications and application resources in WebLogic Server.

This appendix includes the following sections:

• CGI Best Practices

• Servlet Best Practices

• JSP Best Practices

• Best Practice When Subclassing ServletResponseWrapper

D.1 CGI Best Practices
The following are CGI best practices with respect to calling a subscript:

• You can use sh subscript.sh for both exploded (unarchived) Web applications
and archived Web applications (WAR files).

• You can use sh $PWD/subscript.sh for both exploded (unarchived) Web
applications and archived Web applications (WAR files).

• You can use sh $DOCUMENT_ROOT/$PATH/subscript.sh for exploded
(unarchived) Web applications. You cannot use it, however, for archived Web
applications (WAR files). This is due to the fact that the document root might point
you to the root of your WAR file, and the scripting language cannot open that
WAR file and locate the subscript.sh needed for execution. This is true not only
for sh, but for any scripting language.

D.2 Servlet Best Practices
Consider the following best practices when writing HTTP servlets:

• Compile your servlet classes into the WEB-INF/classes directory of your Web
application.

• Make sure your servlet is registered in the Java EE standard Web applications
deployment descriptor (web.xml).

• When responding to a request for a servlet, WebLogic Server checks the time stamp
of the servlet class file prior to applying any filters associated with the servlet, and
compares it to the servlet instance in memory. If a newer version of the servlet class
is found, WebLogic Server re-loads all servlet classes before any filtering takes
place. When the servlets are re-loaded, the init() method of the servlet is called.
All servlets are reloaded when a modified servlet class is discovered due to the
possibility that there are interdependencies among the servlet classes.

Web Application Best Practices D-1

You can set the interval (in seconds) at which WebLogic Server checks the time
stamp with the Servlet Reload attribute. This attribute is set on the Files tab
of your Web application, in the Administration Console. If you set this attribute to
zero, WebLogic Server checks the time stamp on every request, which can be useful
while developing and testing servlets but is needlessly time consuming in a
production environment. If this attribute is set to -1, WebLogic Server does not
check for modified servlets.

D.3 JSP Best Practices
For a complete explanation on how to avoid JSP recompilation, see Avoiding
Unnecessary JSP Compilation at http://www.oracle.com/us/solutions/
midsize/index-155241.html and specifically the section called "Scenarios that
Cause Recompilation of JSPs."

D.4 Best Practice When Subclassing ServletResponseWrapper
Java EE provides the class javax.servlet.ServletResponseWrapper, which
you can subclass in your Servlet to adapt its response.

Oracle recommends that if you create your own response wrapper by subclassing the
ServletResponseWrapper class, you should always override the flushBuffer()
and resetBuffer() methods. Not doing so might result in the response being
committed prematurely.

JSP Best Practices

D-2 Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

http://www.oracle.com/us/solutions/midsize/index-155241.html
http://www.oracle.com/us/solutions/midsize/index-155241.html

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide To This Document
	1.3 Related Documentation
	1.4 Examples for the Web Application Developer
	1.4.1 Avitek Medical Records Application (MedRec)
	1.4.2 Web Application Examples in the WebLogic Server Distribution

	1.5 New and Changed Features In This Release

	2 Understanding Web Applications, Servlets, and JSPs
	2.1 The Web Applications Container
	2.1.1 Web Applications and Java EE
	2.1.2 Web Application Development Key Points

	2.2 Servlets
	2.2.1 Servlets and Java EE
	2.2.2 What You Can Do with Servlets
	2.2.3 Servlet Development Key Points

	2.3 JavaServer Pages
	2.3.1 JSPs and Java EE
	2.3.2 What You Can Do with JSPs
	2.3.3 Overview of How JSP Requests Are Handled

	2.4 Web Application Developer Tools
	2.4.1 Other Tools

	2.5 Web Application Security
	2.5.1 Limiting the Number of Parameters in an HTTP Request

	2.6 Avoiding Redirection Attacks
	2.7 P3P Privacy Protocol
	2.8 Displaying Special Characters on Linux Browsers

	3 Creating and Configuring Web Applications
	3.1 WebLogic Web Applications and Java EE
	3.2 Directory Structure
	3.2.1 Accessing Information in WEB-INF
	3.2.2 Directory Structure Example

	3.3 Main Steps to Create and Configure a Web Application
	3.3.1 Step One: Create the Enterprise Application Wrapper
	3.3.2 Step Two: Create the Web Application
	3.3.3 Step Three: Creating the build.xml File
	3.3.4 Step Four: Execute the Split Development Directory Structure Ant Tasks

	3.4 Configuring How a Client Accesses a Web Application
	3.5 Configuring Virtual Hosts for Web Applications
	3.5.1 Configuring a Channel-based Virtual Host
	3.5.2 Configuring a Host-based Virtual Host

	3.6 Targeting Web Applications to Virtual Hosts
	3.7 Loading Servlets, Context Listeners, and Filters
	3.8 Shared Java EE Web Application Libraries
	3.9 Enabling GZIP Compression for Web Applications

	4 Creating and Configuring Servlets
	4.1 What's New and Changed in Servlets
	4.1.1 What's New and Changed in Servlet 3.1
	4.1.2 What Was New and Changed in Servlet 3.0

	4.2 Configuring Servlets
	4.2.1 Servlet Annotations
	4.2.2 Servlet Mapping

	4.3 Setting Up a Default Servlet
	4.4 Servlet Initialization Attributes
	4.5 Writing a Simple HTTP Servlet
	4.6 Advanced Features
	4.7 Complete HelloWorldServlet Example
	4.8 Debugging Servlet Containers
	4.8.1 Disabling Access Logging
	4.8.1.1 Usage
	4.8.1.2 Example
	4.8.1.3 Debugging Specific Sessions
	4.8.1.4 Usage

	4.8.2 Tracking a Request Handle Footprint
	4.8.2.1 Usage

	5 Creating and Configuring JSPs
	5.1 WebLogic JSP and Java EE
	5.2 Configuring JavaServer Pages (JSPs)
	5.3 Registering a JSP as a Servlet
	5.4 Configuring JSP Tag Libraries
	5.5 Configuring Welcome Files
	5.6 Customizing HTTP Error Responses
	5.7 Determining the Encoding of an HTTP Request
	5.8 Mapping IANA Character Sets to Java Character Sets
	5.9 Configuring Implicit Includes at the Beginning and End of JSPs
	5.10 Configuring JSP Property Groups
	5.10.1 JSP Property Group Rules
	5.10.2 What You Can Do with JSP Property Groups

	5.11 Writing JSP Documents Using XML Syntax
	5.11.1 How to Use JSP Documents
	5.11.2 Important Information about JSP Documents

	6 Using JSF and JSTL
	6.1 Using JSF and JSTL With Web Applications
	6.1.1 JavaServer Faces (JSF)
	6.1.2 JavaServer Pages Standard Tag Libraries (JSTL)

	6.2 JSF Backward Compatibility
	6.2.1 Deploying JSF and JSTL Libraries
	6.2.2 Referencing a JSF or JSTL Library

	7 Configuring Resources in a Web Application
	7.1 Configuring Resources in a Web Application
	7.2 Configuring Resources
	7.3 Referencing External EJBs
	7.4 More about the ejb-ref* Elements
	7.5 Referencing Application-Scoped EJBs
	7.6 Serving Resources from the CLASSPATH with the ClasspathServlet
	7.7 Using CGI with WebLogic Server
	7.7.1 Configuring WebLogic Server to Use CGI
	7.7.2 Requesting a CGI Script
	7.7.3 CGI Best Practices

	8 WebLogic Annotation for Web Components
	8.1 Servlet Annotation and Dependency Injection
	8.1.1 Web Component Classes That Support Annotations
	8.1.2 Annotations Supported By a Web Container
	8.1.2.1 Fault Detection and Recovery
	8.1.2.2 Limitations

	8.2 Annotating Servlets
	8.2.1 WLServlet
	8.2.1.1 Attributes
	8.2.1.2 Fault Detection And Recovery

	8.2.2 WLFilter
	8.2.2.1 Attributes
	8.2.2.2 Fault Detection and Recovery

	8.2.3 WLInitParam
	8.2.3.1 Attributes

	9 Servlet Programming Tasks
	9.1 Initializing a Servlet
	9.1.1 Initializing a Servlet when WebLogic Server Starts
	9.1.2 Overriding the init() Method

	9.2 Providing an HTTP Response
	9.3 Retrieving Client Input
	9.3.1 Methods for Using the HTTP Request
	9.3.2 Example: Retrieving Input by Using Query Parameters

	9.4 Securing Client Input in Servlets
	9.4.1 Using a WebLogic Server Utility Method

	9.5 Using Cookies in a Servlet
	9.5.1 Setting Cookies in an HTTP Servlet
	9.5.2 Retrieving Cookies in an HTTP Servlet
	9.5.3 Using Cookies That Are Transmitted by Both HTTP and HTTPS
	9.5.4 Application Security and Cookies

	9.6 Response Caching
	9.6.1 Initialization Parameters

	9.7 Using WebLogic Services from an HTTP Servlet
	9.8 Accessing Databases
	9.8.1 Connecting to a Database Using a DataSource Object
	9.8.1.1 Using a DataSource in a Servlet

	9.8.2 Connecting Directly to a Database Using a JDBC Driver

	9.9 Threading Issues in HTTP Servlets
	9.10 Dispatching Requests to Another Resource
	9.10.1 Forwarding a Request
	9.10.2 Including a Request
	9.10.3 RequestDispatcher and Filters

	9.11 Proxying Requests to Another Web Server
	9.11.1 Overview of Proxying Requests to Another Web Server
	9.11.1.1 Setting Up a Proxy to a Secondary Web Server

	9.11.2 Sample Deployment Descriptor for the Proxy Servlet

	9.12 Clustering Servlets
	9.13 Referencing a Servlet in a Web Application
	9.14 URL Pattern Matching
	9.15 The SimpleApacheURLMatchMap Utility
	9.16 A Future Response Model for HTTP Servlets
	9.16.1 Abstract Asynchronous Servlet
	9.16.1.1 doRequest
	9.16.1.2 doResponse
	9.16.1.3 doTimeOut

	9.16.2 Future Response Servlet

	10 Using Sessions and Session Persistence
	10.1 Overview of HTTP Sessions
	10.2 Setting Up Session Management
	10.2.1 HTTP Session Properties
	10.2.2 Session Timeout
	10.2.3 Configuring WebLogic Server Session Cookies
	10.2.4 Configuring Application Cookies That Outlive a Session
	10.2.5 Logging Out
	10.2.6 Enabling Web Applications to Share the Same Session
	10.2.7 Limiting Number of Concurrent Requests for a Session

	10.3 Configuring Session Persistence
	10.3.1 Attributes Shared by Different Types of Session Persistence
	10.3.2 Using Memory-based, Single-server, Non-replicated Persistent Storage
	10.3.3 Using File-based Persistent Storage

	10.4 Using a Database for Persistent Storage (JDBC Persistence)
	10.4.1 Configuring JDBC-based Persistent Storage
	10.4.2 Caching and Database Updates for JDBC Session Persistence
	10.4.3 Using Cookie-Based Session Persistence

	10.5 Using URL Rewriting Instead of Cookies
	10.5.1 Coding Guidelines for URL Rewriting
	10.5.2 URL Rewriting and Wireless Access Protocol (WAP)

	10.6 Session Tracking from a Servlet
	10.6.1 A History of Session Tracking
	10.6.2 Tracking a Session with an HttpSession Object
	10.6.3 Lifetime of a Session
	10.6.4 How Session Tracking Works
	10.6.5 Detecting the Start of a Session
	10.6.6 Setting and Getting Session Name/Value Attributes
	10.6.7 Logging Out and Ending a Session
	10.6.7.1 Using session.invalidate() for a Single Web Application
	10.6.7.2 Implementing Single Sign-On for Multiple Applications
	10.6.7.3 Exempting a Web Application for Single Sign-on

	10.6.8 Configuring Session Tracking
	10.6.9 Using URL Rewriting Instead of Cookies
	10.6.10 URL Rewriting and Wireless Access Protocol (WAP)
	10.6.11 Making Sessions Persistent
	10.6.11.1 Scenarios to Avoid When Using Sessions
	10.6.11.2 Use Serializable Attribute Values
	10.6.11.3 Configuring Session Persistence

	10.6.12 Configuring a Maximum Limit on In-memory Servlet Sessions
	10.6.13 Enabling Session Memory Overload Protection

	11 Application Events and Event Listener Classes
	11.1 Overview of Application Event Listener Classes
	11.2 Servlet Context Events
	11.3 HTTP Session Events
	11.4 Servlet Request Events
	11.5 Configuring an Event Listener Class
	11.6 Writing an Event Listener Class
	11.7 Templates for Event Listener Classes
	11.7.1 Servlet Context Event Listener Class Example
	11.7.2 HTTP Session Attribute Event Listener Class Example

	11.8 Additional Resources

	12 Using the HTTP Publish-Subscribe Server
	12.1 Overview of HTTP Publish-Subscribe Servers
	12.1.1 How the Pub-Sub Server Works
	12.1.2 Channels
	12.1.3 Message Delivery and Order of Delivery Guarantee

	12.2 Examples of Using the HTTP Publish-Subscribe Server
	12.3 Using the HTTP Publish-Subscribe Server: Typical Steps
	12.3.1 Creating the weblogic-pubsub.xml File
	12.3.2 Programming Using the Server-Side Pub-Sub APIs
	12.3.2.1 Overview of the Main API Classes and Interfaces
	12.3.2.2 Getting a Pub-Sub Server Instance and Creating a Local Client
	12.3.2.3 Publishing Messages to a Channel
	12.3.2.4 Subscribing to a Channel

	12.3.3 Configuring and Programming Message Filter Chains
	12.3.3.1 Programming the Message Filter Class
	12.3.3.2 Configuring the Message Filter Chain

	12.3.4 Updating a Browser Client to Communicate with the Pub-Sub Server
	12.3.5 Overriding the Default Servlet Mapping of the pubsub Java EE Library

	12.4 Getting Run-time Information about the Pub-Sub Server and Channels
	12.5 Enabling Security
	12.5.1 Use Pub-Sub Constraints
	12.5.1.1 Specify Access to Channel Operations
	12.5.1.2 Restricting Access to All Channel Operations
	12.5.1.3 Opening Access to All Channel Operations
	12.5.1.4 Updating a Constraint Requires Redeploy of Web Application

	12.5.2 Map Roles to Principals
	12.5.3 Configure SSL for Pub-Sub Communication
	12.5.4 Additional Security Considerations
	12.5.4.1 Use AuthCookieEnabled to Access Resources
	12.5.4.2 Locking Down the Pub-Sub Server

	12.6 Advanced Topic: Using JMS as a Provider to Enable Cluster Support
	12.6.1 Configuring JMS as a Handler
	12.6.2 Configuring Client Session Failover

	12.7 Advanced Topic: Persisting Messages to Physical Storage
	12.7.1 Configuring Persistent Channels

	13 WebLogic JSP Reference
	13.1 JSP Tags
	13.2 Defining JSP Versions
	13.2.1 Rules for Defining a JSP File Version
	13.2.2 Rules for Defining a Tag File Version

	13.3 Reserved Words for Implicit Objects
	13.4 Directives for WebLogic JSP
	13.4.1 Using the page Directive to Set Character Encoding
	13.4.2 Using the taglib Directive

	13.5 Declarations
	13.6 Scriptlets
	13.7 Expressions
	13.8 Example of a JSP with HTML and Embedded Java
	13.9 Actions
	13.9.1 Using JavaBeans in JSP
	13.9.1.1 Instantiating the JavaBean Object
	13.9.1.2 Doing Setup Work at JavaBean Instantiation
	13.9.1.3 Using the JavaBean Object
	13.9.1.4 Defining the Scope of a JavaBean Object

	13.9.2 Forwarding Requests
	13.9.3 Including Requests

	13.10 JSP Expression Language
	13.10.1 Expressions and Attribute Values
	13.10.2 Expressions and Template Text

	13.11 JSP Expression Language Implicit Objects
	13.12 JSP Expression Language Literals and Operators
	13.12.1 Literals
	13.12.2 Errors, Warnings, Default Values
	13.12.3 Operators
	13.12.4 Operator Precedence

	13.13 JSP Expression Language Reserved Words
	13.14 JSP Expression Language Named Variables
	13.15 Securing User-Supplied Data in JSPs
	13.15.1 Using a WebLogic Server Utility Method

	13.16 Using Sessions with JSP
	13.17 Deploying Applets from JSP
	13.18 Using the WebLogic JSP Compiler
	13.18.1 JSP Compiler Syntax
	13.18.2 JSP Compiler Options
	13.18.3 Precompiling JSPs
	13.18.3.1 Using the JSPClassServlet

	14 Filters
	14.1 Overview of Filters
	14.1.1 How Filters Work
	14.1.2 Uses for Filters

	14.2 Writing a Filter Class
	14.3 Configuring Filters
	14.3.1 Configuring a Filter
	14.3.2 Configuring a Chain of Filters

	14.4 Filtering the Servlet Response Object
	14.5 Additional Resources

	15 Using WebLogic JSP Form Validation Tags
	15.1 Overview of WebLogic JSP Form Validation Tags
	15.2 Validation Tag Attribute Reference
	15.2.1 <wl:summary>
	15.2.2 <wl:form>
	15.2.3 <wl:validator>

	15.3 Using WebLogic JSP Form Validation Tags in a JSP
	15.4 Creating HTML Forms Using the <wl:form> Tag
	15.4.1 Defining a Single Form
	15.4.2 Defining Multiple Forms
	15.4.3 Re-Displaying the Values in a Field When Validation Returns Errors
	15.4.3.1 Re-Displaying a Value Using the <input> Tag
	15.4.3.2 Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

	15.5 Using a Custom Validator Class
	15.5.1 Extending the CustomizableAdapter Class
	15.5.2 Sample User-Written Validator Class

	15.6 Sample JSP with Validator Tags

	16 Using Custom WebLogic JSP Tags (cache, process, repeat)
	16.1 Overview of WebLogic Custom JSP Tags
	16.2 Using the WebLogic Custom Tags in a Web Application
	16.3 Cache Tag
	16.3.1 Refreshing a Cache
	16.3.2 Flushing a Cache

	16.4 Process Tag
	16.5 Repeat Tag

	17 Using the WebLogic EJB to JSP Integration Tool
	17.1 Overview of the WebLogic EJB-to-JSP Integration Tool
	17.2 Basic Operation
	17.3 Interface Source Files
	17.4 Build Options Panel
	17.5 Troubleshooting
	17.6 Using EJB Tags on a JSP Page
	17.7 EJB Home Methods
	17.8 Stateful Session and Entity Beans
	17.9 Default Attributes

	A web.xml Deployment Descriptor Elements
	A.1 web.xml Namespace Declaration and Schema Location
	A.2 context-param
	A.3 description
	A.4 display-name
	A.5 distributable
	A.6 ejb-local-ref
	A.7 ejb-ref
	A.8 env-entry
	A.9 error-page
	A.10 filter
	A.11 filter-mapping
	A.12 icon
	A.13 jsp-config
	A.13.1 taglib
	A.13.2 jsp-property-group

	A.14 listener
	A.15 login-config
	A.15.1 form-login-config

	A.16 message-destination-ref
	A.17 mime-mapping
	A.18 resource-env-ref
	A.19 resource-ref
	A.20 security-constraint
	A.20.1 web-resource-collection
	A.20.2 auth-constraint
	A.20.3 user-data-constraint

	A.21 security-role
	A.22 servlet
	A.22.1 icon
	A.22.2 init-param
	A.22.3 security-role-ref

	A.23 servlet-mapping
	A.24 session-config
	A.25 web-app
	A.26 welcome-file-list

	B weblogic.xml Deployment Descriptor Elements
	B.1 weblogic.xml Namespace Declaration and Schema Location
	B.2 async-descriptor
	B.3 async-work-manager
	B.4 auth-filter
	B.5 charset-params
	B.5.1 charset-mapping
	B.5.2 input-charset

	B.6 container-descriptor
	B.6.1 access-logging-disabled
	B.6.2 allow-all-roles
	B.6.3 check-auth-on-forward
	B.6.4 client-cert-proxy-enabled
	B.6.5 container-initializer-enabled
	B.6.6 default-mime-type
	B.6.7 disable-implicit-servlet-mappings
	B.6.8 filter-dispatched-requests-enabled
	B.6.9 gzip-compression
	B.6.10 index-directory-enabled
	B.6.11 index-directory-sort-by
	B.6.12 langtag-revision
	B.6.13 minimum-native-file-size
	B.6.14 native-io-enabled
	B.6.15 optimistic-serialization
	B.6.16 prefer-application-packages
	B.6.17 prefer-application-resources
	B.6.18 prefer-forward-query-string
	B.6.19 prefer-web-inf-classes
	B.6.20 redirect-with-absolute-url
	B.6.21 relogin-enabled
	B.6.22 require-admin-traffic
	B.6.23 resource-reload-check-secs
	B.6.24 save-sessions-enabled
	B.6.25 servlet-reload-check-secs
	B.6.26 session-monitoring-enabled
	B.6.27 show-archived-real-path-enabled
	B.6.28 single-threaded-servlet-pool-size
	B.6.29 temp-dir

	B.7 context-root
	B.8 description
	B.9 ejb-reference-description
	B.10 fast-swap
	B.11 jsp-descriptor
	B.12 library-ref
	B.13 logging
	B.14 ready-registration
	B.15 resource-description
	B.16 resource-env-description
	B.17 run-as-role-assignment
	B.18 security-permission
	B.19 security-role-assignment
	B.20 service-reference-description
	B.21 servlet-descriptor
	B.22 session-descriptor
	B.23 url-match-map
	B.24 virtual-directory-mapping
	B.25 weblogic-version
	B.26 wl-dispatch-policy
	B.27 work-manager
	B.28 Backwards Compatibility Flags
	B.28.1 Compatibility with JSP 2.0 Web Applications
	B.28.1.1 JSP Behavior and Buffer Suffix
	B.28.1.2 Implicit Servlet 2.5 Package Imports

	B.29 Web Container Global Configuration

	C Support for GlassFish Deployment Descriptors
	D Web Application Best Practices
	D.1 CGI Best Practices
	D.2 Servlet Best Practices
	D.3 JSP Best Practices
	D.4 Best Practice When Subclassing ServletResponseWrapper

