ORACLE"

Oracle® Fusion Middleware

Developing Applications for Oracle WebLogic Server
12¢(12.2.1.2.0)

E78011-03

December 2016

This document describes building WebLogic Server e-
commerce applications using the Java Platform, Enterprise
Edition 6.

Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server, 12¢ (12.2.1.2.0)
E78011-03
Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ... Y
Documentation AccesSIbilitycouoiiiiiiiiiiiiie s XV
CONVENIONSvviiereieieieie bbb XV

1 Overview of WebLogic Server Application Development

1.1 Document Scope and AUAIENCE. ... 11
1.2 WebLogic Server and the Java EE Platform..........cccocooviiiinnniiniiiiiinncnncrececenes 1-2
1.3 Overview of Java EE Applications and Modules...............ccooormiiiiiiiininiiiceeceee 1-2
1.4 Web Application MOdULES...........c.oviiiiiii s 1-3
14T SEIVIEES ..ottt 1-3
1.4.2 JavaServer Pages.........ccooiiiiiiiiiiiiii e 1-3
1.4.3 More Information on Web Application Modules...........cccccoceeuiiiiiiiiiiiiiiiiens 1-4
1.5 Enterprise JavaBean Modules ... 1-4
1.5.1 EJB Documentation in WebLogiC SeIVer ..o 1-4
1.5.2 Additional EJB INfOrmMationcccueeieuirieirieinieinieirieteetetetete sttt se e aens 1-4
1.6 Connector MOAUIESccuviiiiiiiiiic 1-5
1.7 Enterprise APPLCAtiONScoovviiiiiiiiiiiiiiic s 1-5
1.7.1 Java EE Programming Modelccccccoiiiiiiiiiiiiiiicceenenes 1-5
1.7.2 Packaging and Deployment OVeIVIeWccccoouoiimirieiiiicieicicccenci e 1-5
1.8 WebLogic Web Services.........ooouoiiiiiiiiiicicic e 1-6
1.9 JMS and JDBC MOAUIESccoivuieiirieieieieieietetetetetes e ssesrestesse s s essessessessessesaesasssassasassessessensenes 1-7
1.10 WebLogic Diagnostic Framework Modulescccccoiiviiiiiiniiiiceccceceee 1-7
1.10.1 Using an External Diagnostics Descriptor...........cooceueieiicieiiiniccieicceeccee 1-8
1.11 Coherence Grid Archive (GAR) ModUIEsccooeirieiniinincincnceeeeeceee e 1-8
1.12 Bean Validationcccooviiiiiiiiiiii s 1-8
1.13 XML Deployment DeSCIiPOrSccovvvriririririniniiiirrnrrreeesiesrseseeee s 1-9
1.13.1 Automatically Generating Deployment Descriptorscccccceecuiuiiiccciiiccnnas 1-14
1.13.2 EJBGEIN ..ot 1-14
1.13.3 Java-based Command-line Utilitiescecrireririniinineniesieieeeeeteeeeeeseeiese e 1-15
1.13.4 Upgrading Deployment Descriptors From Previous Releases of Java EE and
WEDLOGIC SEIVET ... 1-15
1.14 Deployment PIans...........cooiiiioiiiiiicie ettt 1-16

1.15 Development TOOLS..........couiiiriiiiiii s 1-17

1.15.1 Java API Reference and the wls-apijar File.........cccocoiviiiiiiiiiiiiiiiccccccnenas 1-17
1.15.2 APAChe ANt 1-18
1.15.3 Source Code Editor or IDE..........cccccooiuiiiiiiiiiiiiiiccccccecee e 1-19
1.15.4 Database System and JDBC DIiVer..........cocooiiiiiiiiiiiiiiiccieeece e 1-19
1.15.5 WED BIOWSET ...cvviiiiiiictcictttttt sttt 1-19
1.15.6 Third-Party SOftWarecccccciiiiiiiiiicceccceeeeece e 1-20
1.16 New and Changed Features in this Release.............cccoooeuniviiiiiiiiiniccc 1-20

2 Using Ant Tasks to Configure and Use a WebLogic Server Domain

2.1 Overview of Configuring and Starting Domains Using Ant Taskscccccceevvivniiinicnnnnnn. 2-1
2.2 Starting Servers and Creating Domains Using the wlserver Ant Taskc.ccccooeiiiennnan. 2-1
2.2.1 Basic Steps for USING WISETVETcccuiuiiiieiiiiciicicc s 2-2
2.2.2 Sample build.xml Files for WISeIVerccoocvviviiiiiiiiiiiicce 2-3
2.2.3 wiserver Ant Task Reference ..o, 2-3
2.3 Configuring a WebLogic Server Domain Using the wlconfig Ant Taskcccccooiiiinnnce. 2-7
2.3.1 What the wlconfig Ant Task DO€Sccccoermriiiiiiiiiiiiiicc 2-7
2.3.2 Basic Steps for Using WICONSIgcceviueiiiiiciicicccc s 2-8
2.3.3 wlconfig Ant Task Reference..........ccooiiiiiiiiiiiciiiccccerrcccc e 2-8
2.3.4 Main AttrIDULES.oovivii e 2-9
2.3.5 Nested EIEMENtS.......ccocoiiiiiiiiiiiiicc e 2-9
2.4 Example of Creating a Security Realm with the wlconfig Ant Task........cccccoeveiiiiiinnnnn. 2-12
2.5 Using the libclasspath Ant Taskccooiiiiiiiici e 2-13
2.5.1 libclasspath Task Definition........ccccooiiiiiiiiiiiiiiiiccicc e 2-13
2.5.2 libclasspath Ant Task Reference............ccoiiiiiiiiiiiiiiiiiiicccccccceaee 2-13
2.5.3 Main libclasspath Attributes. ... 2-13
2.5.4 Nested libclasspath Elements.............cocoooeuiiiiiiiiiiiiicccec 2-14
2.5.5 Example libclasspath Ant Taskccccccoviiiiiiii 2-14

3 Using the WebLogic Maven Plug-In

3.1 Installing Mavenccoviiiiiiiic e 3-1
3.2 Configuring the WebLogic Maven Plug-In...........cccccooiiiiniiiiirniiieecceeeeeeeeeeaes 3-2
3.2.1 How to use the WebLogic Maven Plug-in...........cccooooioininiiiiiccc, 3-2
3.2.2 Basic Configuration POM File.........cccooiiiiiiiiiic 3-5
3.3 Maven Plug-In GOals.........cooueiiiiiii e 3-6
331 @PPC ettt 3-7
3.3.2 create-dOmainccoooiuiiiiiiiiieii e 3-12
3.3.3 dEPLOY.ciiiiii s 3-14
3.3.4 diStribUte-apPP...cueveiieiecieic 3-19
3.3.5 NSl ..o 3-23
3.3.6 LISt-aPPS et s 3-27
3.3.7 PUIZETASKS ..o 3-30
3.3.8 T€AEPIOY .. 3-31

CTC IO BN V=Y 1 410) (£ St [0) 1 4 =1 b o VER R 3-35

3310 SEATE-APP ceevieieiiiiic s 3-36
3311 StArt-SEIVET ...cuiviuiiiiieiiicice s 3-39
3312 SOP-APP ceeerverereririnietiiint et 3-40
3.3.13 SEOP-SEIVET ..evtiviiiiititititiitititi ittt 3-43
3.3.14 UNAEPLOY ..oviiieiiiiieecte et 3-46
3.3.15 UNINSTALL c..oviiiiiii 3-49
3.3.16 UPAALE-APP covvvvimimiiiiiiiiccc e 3-50
3317 WISE s 3-53
3.3.18 WISE-CLHENE ..o 3-57
3.3.19 WS-CHENEZEN ...ovtie s 3-62
3.3.200 WSZBTL oottt s 3-67
3.3.21 WSIMPOTt...oiiiiiiiiiiiiiitcicc s 3-71
3.3.22 WS-WSAIC ...t 3-77
3.3.23 WSTJWSChiriviiiiititititiiititstes ittt 3-80

4 Creating a Split Development Directory Environment

4.1

4.2
4.3

44

4.5

4.6

4.7

Overview of the Split Development Directory Environmentcccccooevveeiiieiiininicininnne. 4-1
4.1.1 Source and Build Directories ... 4-2
4.1.2 Deploying from a Split Development Directory..........cccccouiiiiiiniiiiiiiicciceenes 4-3
4.1.3 Split Development Directory Ant Tasks ..o 4-4
Using the Split Development Directory Structure: Main Steps.........ccccoooiieieiiiciiciciicnnn, 4-4
Organizing Java EE Components in a Split Development Directoryccccooueeeieiiiinnnnnn. 4-5
4.3.1 Source Directory OVEIVIEW ..ot 4-5
4.3.2 Enterprise Application Configuration.............ccciiiiiiiiiiiiiiiiiicccccee 4-7
4.3.3 Web APPLCAtiONSc.couimimiiiiiiiiiiiiic s 4-7
4.3.4 EJBS ..ottt 4-8
4.3.5 Important Notes Regarding EJB Descriptorsccccooiiieiiiiiciiiiiiccccc, 4-9
Organizing Shared Classes in a Split Development Directorycccccoevveeevrvecccnenenes 4-10
4.4.1 Shared Utility Classes........cccocoeeiieuririiiiiieiiiciceece s 4-10
4.4.2 Third-Party LIDIaries ... 4-10
4.43 Class Loading for Shared Classescccceiirieiiiiiciiisccicec i 4-11
Generating a Basic build.xml File Using weblogic. BuildXMLGencccccoevriirieriiinnnnnen. 4-11
4.5.1 weblogic.BuildXMLGEN SYNtaxccccoiiiiiiiiiiiiiiiiiecccceccc e 4-12
Developing Multiple-EAR Projects Using the Split Development Directory............c.......... 4-13
4.6.1 Organizing Libraries and Classes Shared by Multiple EARsccccccoooniiini 4-13
4.6.2 Linking Multiple build.xml Filesccccoooiiiiiiiii 4-14
Best Practices for Developing WebLogic Server Applications..........ccccovvivviviiiniininnnnnnn. 4-14

5 Building Applications in a Split Development Directory

51

Compiling Applications Using WICOMPILEccccceiiiiiiiiiiiiiiiciccicccceecec e 5-1
5.1.1 Using includes and excludes Properties ... 5-2
5.1.2 wlcompile Ant Task Attributes ... 5-2

5.1.3 Nested javac OPHONSccueiiiiiieiicc e 5-2
5.1.4 Setting the Classpath for Compiling Code ..o 5-3
5.1.5 Library Element for wlcompile and Wlappc........ccccovoiiiiiiiiiiiiiiiciiccccceee 5-3
5.2 Building Modules and Applications Using Wlappccccccevvvivviiniinnniiiiin 5-4
5.2.1 wlappc Ant Task Atributes........ccoovoiiiiiii 5-4
5.2.2 wlappc Ant Task SYNtaX ... 5-6
5.2.3 Syntax Differences between appc and wlappccccociiiiiiiiiniiiiccccceeees 5-6
5.2.4 weblogic.appc REfEIeNCe.........ccooiimimiiiiiiiiiiiicccc e 5-7
5.2.5 weblogic.apPC SYNaAXccoiuiiiiiiiiiiiiii s 5-7
5.2.6 weblogic.appc OPtiONSc.cviiiiiiiic e 5-7
6 Deploying and Packaging from a Split Development Directory
6.1 Deploying Applications Using Wldeploy........cccoeiiiiiiiiiiiiieiicc e 6-1
6.2 Packaging Applications Using wlpackage...........cccooviviviiiniiininiiiiiieccces 6-1
6.2.1 Archive versus Exploded Archive Directorycccovvvvvniinnnnniirnrceeceenes 6-1
6.2.2 wlpackage Ant Task EXamplecccocovviiiiiiiniiiiiisccs 6-2
6.2.3 wlpackage Ant Task Attribute Reference ..., 6-2
7 Developing Applications for Production Redeployment
7.1 What is Production Redeployment?c.ccooiriiiiiiiiice 7-1
7.2 Supported and Unsupported Application TYPescceuevoiiurieiiiinieieiiicece 7-1
7.2.1 Additional Application SUPPOTtccvvvvevvririririrrrirrrrerr s 7-2
7.3 Programming Requirements and CONVENtions..........c.coovviriririiinirinninniiinnnsinrrseeeeeenes 7-2
7.3.1 Applications Should Be Self-Contained...........c.cccocevvivininnininiiniiinnnnne 7-2
7.3.2 Versioned Applications Access the Current Version JNDI Tree by Default................ 7-3
7.3.3 Security Providers Must Be Compatible.............coooooiiiiiiiiiiii, 7-3
7.3.4 Applications Must Specify a Version Identifier..........c.cccccovvvviirnnnnnvnnninrrene 7-3
7.3.5 Applications Can Access Name and Identifier ..o, 7-3
7.3.6 Client Applications Use Same Version when Possible.............ccccocvvviinnnnnnnnnnnn 7-3
7.4 Assigning an Application VeISIONcccocruiiiiiiiiieiiiicie e 7-4
7.4.1 Application Version CONVENtIONS........ccccovuiviiiiiiiiiiiiiiiiiiiiiiiicse s 7-4
7.5 Upgrading Applications to Use Production Redeploymentcccocecvevuvvevevnrnnnennennenenes 7-4
7.6 Accessing Version INformation...........cocoeviviviiiiiniiininiinie s 7-5
8 Using Java EE Annotations and Dependency Injection
8.1 ANNOotation ProCeSSINgccoviviiiiiiiiiiiiiiiiiicc e 8-1
8.1.1 Annotation Parsing ... 8-1
8.1.2 Deployment View of Annotation Configuration.............ccceeeueieiiicinininicicececes 8-2
8.1.3 Compiling Annotated CIAaSSESceuvurereriririrerirerirrrereere e 8-2
8.1.4 Dynamic Annotation Updates..........ccovvviiiiiiinniiiniiiiiiiinrrccereeeeesseeeseeeeeas 8-2
8.2 Dependency Injection of RESOUICESccccouviviiiiiiiiiiiiiiiiiiiiiiic s 8-2
8.2.1 Application Life Cycle Annotation Methodsccoooeiiiiiiiiii, 8-3
8.3 Standard JDK ANNOtatiOnSccererierierierieieietetet ettt sttt sttt ettt et ettt s e st be b bt sbesbesaens 8-3

Vi

8.3.1 javax.annotation.PostCONnStIUCtcooeuiiiiiiiiiiic 8-4

8.3.2 javax.annotation.PreDestroy ... 8-4
8.3.3 javax.annotation.ReSOUICEccccoiiiiiiiiiiiiiiiiccc 8-5
8.3.4 javax.annotation.ReSOUICES. ...t 8-6
8.4 Standard Security-Related JDK ANNotations...........ccocueuiimicieiiiicieeeccec s 8-6
8.4.1 javax.annotation.security.DeclareRoles ..., 8-7
8.4.2 javax.annotation.security. DenyAlL ... 8-7
8.4.3 javax.annotation.security. PermitAll..........ccccoviiiiiiiiiiiiiie 8-7
8.4.4 javax.annotation.security.RolesAllowedccccovviniiininiiniiiiiic, 8-7
8.4.5 javax.annotation.security. RUNAS ..o 8-8

9 Using Contexts and Dependency Injection for the Java EE Platform

9.1 About CDI for the Java EE PIatfOrmmccccecivieiirieieieieeieieeeeeeee ettt 9-2
9.2 Defining a Managed Bean ..o s 9-3
9.3 Injecting @ Beamccccciiiiiiiiiiiiic e 9-3
9.4 Defining the Scope of @ Bean.........ccccccvuviiiiiiiiiniiiiiiiiiiii s 9-4
9.5 Opverriding the Scope of a Bean at the Point of Injectioncccoooiiiii 9-5
9.6 UsiNg QUALIfIrScovuiviiiiiiic s 9-5
9.6.1 Defining Qualifiers for Implementations of a Bean Typecccccoovoveiiircccinnncnce. 9-6
9.6.2 Applying Qualifiers to a Beamn ... 9-7
9.6.3 Injecting a Qualified Bean ... 9-8
9.7 Providing Alternative Implementations of a Bean Typecccoeeuiiiiiiiiiiiiie 9-8
9.7.1 Defining an Alternative Implementation of a Bean Typec.ccccocovevrieiiininiiinicnnne. 9-9
9.7.2 Selecting an Alternative Implementation of a Bean Type for an Application............ 9-10
9.8 Applying a Scope and Qualifiers to a Session Beancccccceeuevviviiiiininniiiinncccee 9-10
9.8.1 Applying a Scope to a Session Bean ... 9-11
9.8.2 Applying Qualifiers to a Session Bean ... 9-11
9.9 Using Producer Methods, Disposer Methods, and Producer Fields...........cccccceeiiiinnnnnn. 9-11
9.9.1 Defining a Producer Method ... 9-11
9.9.2 Defining a Disposer Method............cooiiiiiiiiiiiiiiicccae, 9-12
9.9.3 Defining a Producer Fieldccoiiiiiiiiiiic 9-13
9.10 Initializing and Preparing for the Destruction of a Managed Beancc.ccccoooeenne. 9-13
9.10.1 Initializing a Managed Beancooooioiiiiiiiiiic 9-13
9.10.2 Preparing for the Destruction of a Managed Bean............ccccooiiniiiinnnnincnncnnnne. 9-14
9.11 Intercepting Method Invocations and Life Cycle Events of Bean Classescccccue..... 9-14
9.11.1 Defining an Interceptor Binding Typecccooeuoiiiiiiiiiiiiicce 9-15
9.11.2 Defining an Interceptor Class...........cocoururieiiiiieiiiicccc 9-16
9.11.3 Identifying Methods for Interception...........cooevviviiiiiniiiiiiiiiicieae 9-17
9.11.4 Enabling an INterceptor ... 9-18
9.12 Decorating a Managed Bean Class............cccccoeuriiirininininiiiniiniiiicnnceeeees 9-19
9.12.1 Defining a Decorator Classcocoeiirieieiiiicieieecei e 9-19
9.12.2 Enabling a Decorator Class..........ccooiirueiiiiiicieieeccc i 9-21
9.13 Assigning an EL Name to a CDI Bean Class..........ccccoeeueurrrneinnenieeeereeeeeeeeeeeeeeeeens 9-21

Vii

10

11

viii

9.14 Defining and Applying StereotyPescocoeuviueiiieiiieiiiciieise 9-23

9.14.1 DefiNiNg @ StEIEOLYPE. ...cucuviuimieieiiiiiiiiccctttee ettt 9-23
9.14.2 Applying Stereotypes to a Bean ..., 9-24
9.15 Using Events for Communications Between Beans.............cccccccevvviiiiinniiinniiin, 9-24
9.15.1 Defining an EvVent TYPe........ccccoiiiiiiiicie i 9-25
9.15.2 Sending an EVeNt........c.ccoiiiiiiiiiiic 9-25
9.15.3 Handling an EVENt ... 9-26
9.16 Injecting a Predefined Bean............ccccoocuiiiiiiiiiiiiiiiiiiiiicc s 9-27
9.17 Injecting and Qualifying ReSOUICEScccceuviiiiiiiiiiiiiiiiiiiiiiis 9-28
9.18 Using CDI With JCA Technology.........ccccevimieieiiiiiicieeccie e 9-30
9.19 Configuring a CDI APPLCAtionc.ccevriiiieiiieiiec 9-31
9.20 Enabling and Disabling CDIccccocoiiiiiiiiiiicrereeeeeeeeeeee e 9-32
9.20.1 Enabling and Disabling CDI for a Domain............cccceiiiiiiiiiniiiiiiccceae, 9-32
9.21 Implicit Bean DiSCOVEIYcoiiiiiiiiiiiicie ettt 9-33
9.21.1 Enabling and Disabling Implicit Bean Discovery for a Domainccccccooruennnne 9-33
9.22 Supporting Third-Party Portable EXteNSions ..., 9-34

Java API for JSON Processing

10.1 About JavaScript Object Notation (JSON).......cccccoeiiimiiiiiiiiieeeeeeeeeeeeeeeeeenenenes 10-1
10.2 Object MOdel API.......coiiiiiiiiiiiiccece e 10-2
10.2.1 Creating an Object Model from JSON Data.........ccccoeuriiimiininiiieicce e 10-2
10.2.2 Creating an Object Model from Application Codeccoeueiiriiiiiiiniiiceee 10-2
10.2.3 Navigating an Object Model.............ccooouiiiiiiii e 10-3
10.2.4 Writing an Object Model t0 @ STreamccocociiiciiiicieeccccceecceeee e 10-5
10.3 Streaming AP ... 10-5
10.3.1 Reading JSON Data Using a Parser ..o 10-6
10.3.2 Writing JSON Data Using a Generatorc..oocrueieiicicieieiiccieeecce s 10-7

Understanding WebLogic Server Application Classloading

11.1 Java Classloading ...t s 11-1
11.1.1 Java Classloader Hierarchy ... 11-1
11.1.2 Loading @ CLass......c.coceueuiuiuiimiiiiiiiiiicieieieieeieee et nenenen 11-2
11.1.3 prefer-web-inf-classes Elementccccccceiiiiiiiiiiiiiiiiicccccccceceeeennes 11-2
11.1.4 Changing Classes in a Running Program............ccccooovoiriiiniiinenccce e 11-3
11.1.5 Class Caching With the Policy Classloaderccccooiriiiiiiniiiiiiccce 11-3

11.2 WebLogic Server Application Classloadingcccocoevviiiiiiniinniiiicenns 11-3
11.2.1 Overview of WebLogic Server Application Classloading...........ccccccccucceccicccnnes 11-4
11.2.2 Application Classloader Hierarchy ..., 11-4
11.2.3 Custom Module Classloader Hierarchies.............cccccoceeuiiiiiiiiiiiiniiiiciccicnnes 11-5
11.2.4 Declaring the Classloader Hierarchy...........ccocoooiiiiiiiiiiiiiccc 11-6
11.2.5 User-Defined Classloader Restrictions...........ccccoieiiiiniiiiiniiiiicccceccnens 11-8
11.2.6 Individual EJB Classloader for Implementation Classes.............cccococueucuiccucucucccnnns 11-9
11.2.7 Application Classloading and Pass-by-Value or Reference............ccccccceueuiuiuiunnnnnsns 11-10

12

11.2.8 Using a Filtering ClassLoaderccccooiiiiiiiiiicieiiccc 11-11

11.2.9 What is a Filtering ClassLoader ... 11-11
11.2.10 Configuring a Filtering ClassLoader ... 11-12
11.2.11 Resource Loading Order ... 11-12
11.3 Resolving Class References Between Modules and Applications..........ccccccceviiirieienninnee. 11-13
11.3.1 About Resource Adapter Classes...........cooviiiimimiiiiiiiiiccccesanes 11-13
11.3.2 Packaging Shared Utility Classes...........ccccoeeueuiimiiiiiiiiiiiciceceececeeeeeenenas 11-14
11.3.3 Manifest Class-Path...........ccccooiiiiiiiiiiicccccenes 11-14
11.4 Using the Classloader Analysis TOOL (CAT) ... 11-14
11.4.1 Opening the CAT Interface........c.cccoooorimeiiiiiiiiiiiee s 11-15
11.4.2 How CAT Analyzes Classescccooeeueiriiirieiiiieiicie et 11-15
11.4.3 Identifying Class References through Manifest Hierarchiescccccccocoecincnnes 11-16
11.5 Sharing Applications and Modules By Using Java EE Libraries.........cccccccooiiiiiinnnnes 11-17
11.6 Adding JARs to the Domain /1ib Directory........ccccooeueiiiiiiiiiiiieiiccc 11-17
Creating Shared Java EE Libraries and Optional Packages
12.1 Overview of Shared Java EE Libraries and Optional Packages...........ccccocoveieiriiiiiiincnnnnes 12-1
12.1.1 Optional Packages.........cooceuiiiiuiiciiiiiiicie e 12-2
12.1.2 Library DireCtories ... 12-3
12.1.3 Versioning Support for LIbTaries ... 12-3
12.1.4 Shared Java EE Libraries and Optional Packages Compared............ccccccoeeueuiuiunnnnnnns 12-4
12.1.5 Additional INformation ... 12-5
12.2 Creating Shared Java EE LiDIaries ..o 12-5
12.2.1 Assembling Shared Java EE Library Files..........cccccccoiiiiiiiiiiiiiiicicceeccenes 12-5
12.2.2 Assembling Optional Package Class Files...........cccccociiiiiiiiiiiiiiiiiccccccnne, 12-6
12.2.3 Editing Manifest Attributes for Shared Java EE Libraries..........cccccccoeiiiiiiiinnnnns 12-6
12.2.4 Packaging Shared Java EE Libraries for Distribution and Deployment 12-8
12.3 Referencing Shared Java EE Libraries in an Enterprise Applicationcccccoeovviviiiiiininns 12-8
12.3.1 Overriding context-roots Within a Referenced Enterprise Libraryc.ccc.c..... 12-10
12.3.2 URIs for Shared Java EE Libraries Deployed As a Standalone Module.................. 12-11
12.4 Referencing Optional Packages from a Java EE Application or Module............................ 12-11
12.5 Using weblogic.appmerge to Merge Librariesccccocoiiiiiioiiiiciiicc 12-13
12.5.1 Using weblogic.appmerge from the CLI.........ccccccooviiiiiiiiiiniiiecce 12-13
12.5.2 Using weblogic.appmerge as an Ant Task ... 12-14
12.6 Integrating Shared Java EE Libraries with the Split Development Directory Environment
.. 12-14
12.7 Deploying Shared Java EE Libraries and Dependent Applications..........c.cccccccoccucucurucnnes 12-14
12.8 Web Application Shared Java EE Library Information...........ccccoeoiiiiiiiiiiiincenns 12-15
12.9 Using WebApp Libraries With Web Applications ..o 12-16
12.10 Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean
.. 12-16
12.11 Order of Precedence of Modules When Referencing Shared Java EE Libraries.............. 12-16
12.12 Best Practices for Using Shared Java EE Librariescccoocoeooioiiiiiiiccce 12-17

13

14

15

16

17

Programming Application Life Cycle Events

13.1 Understanding Application Life Cycle Events..........cccooooiiiiii 13-1
13.2 Registering Events in weblogic-application.Xml...........cccoooiiiiiiiiiciii 13-2
13.3 Programming Basic Life Cycle Listener Functionality............cccocoeviiiiiiiiincncicicncenns 13-2
13.3.1 Configuring a Role-Based Application Life Cycle Listenercccccoovevvvrirrerennennnen. 13-4
13.4 Examples of Configuring Life Cycle Events with and without the URI Parameter 13-4
13.5 Understanding Application Life Cycle Event Behavior During Re-deployment 13-5
13.6 Programming Application Version Life Cycle Events..........cccoovviviiniiiiiiiininns 13-5
13.6.1 Understanding Application Version Life Cycle Event Behaviorcccccccccceunee. 13-6
13.6.2 Types of Application Version Life Cycle Eventsccccccciiiiiiiiiiiiiiccnas 13-6

13.6.3 Example of Production Deployment Sequence When Using Application Version
Life CYCle EVENLES ..ooviiiiiiiccccceccree e 13-7

Programming Context Propagation

14.1 Understanding Context Propagation.............cccccoieiiiiiiiciiicceeeeeeeeeeeeeneneeenenenes 14-1
14.2 Programming Context Propagation: Main Steps..........cccccooeivviniiinniiniiccce, 14-2
14.3 Programming Context Propagation in a Client.............cccccoeiiiiiiiiiiiiiiiicciccnas 14-3
14.4 Programming Context Propagation in an Application............cooeeeeiiiiieiiiiiciiic 14-4

Programming JavaMail with WebLogic Server

15.1 Overview of Using JavaMail with WebLogic Server Applications..........c.ccccccoveeveirinirinnnee. 15-1
15.2 Understanding JavaMail Configuration Files.........c.ccccooviiiiiininiins 15-2
15.3 Configuring JavaMail for WebLogic SEIrVer ... 15-2
15.4 Sending Messages with JavaMail ... 15-2
15.5 Reading Messages with JavaMail..........ccccooiiiiiiiiiii 15-3

Threading and Clustering Topics

16.1 Using Threads in WebLOZIC SEIVET.........cccuoiiiriiiiiiicc e 16-1
16.2 Using the Work Manager API for Lower-Level Threading...........ccccoooeviviiiininiiiinincne 16-2
16.3 Programming Applications for WebLogic Server Clusters...........cccccoeeeeeeccccccccncnenes 16-2

Developing OSGi Bundles for WebLogic Server Applications

17.1 Understanding OSGi ..ot nenes 17-1
17.2 Features Provided in WebLogic Server OSGi Implementationc.cccocceeicccinicennes 17-2
17.3 Configuring the OSGi Framework..........ccciiiiiiiiiiiiiiiccccccennas 17-3
17.3.1 Configuring OSGi Framework Instances...........cccococeueviimcieiniiicicicicceecceee 17-3
17.3.2 Configuring OSGi Framework Persistenceccooeuvieiriniiiciniinccecec 17-9
17.3.3 USING OSGIL SEIVICES......cccuiiiiiiiiniiiiiiiiiiiic e 17-9
17.4 Creating OSGIi BUNAIEScoimimiiiiiiiiiiiicc e 17-9
17.5 Deploying OSGi Bundles............c.oooiiiiiiiiiii e 17-10
17.5.1 Preparing to Deploy an OSGi Bundle on a Target System.............ccoccoeveiiirriennnne. 17-10
17.5.2 Deploying OSGi Bundles in the 0sgi-lib Directoryccccoovivviivvnincninnn, 17-13

18

17.6 Accessing Deployed Bundle Objects From JNDI...........c.cccooioiiiiiiiiiiic 17-13

17.7 Using OSGi Logging Via WebLOgiC SEIVET ..o 17-15
17.8 Configuring a Filtering ClassLoader for OSGi Bundles............cccccccoiiiiiiiiiiiiiiiccnns 17-16
17.9 OSGILEXQMPIE ... 17-16
Using the WebSocket Protocol in WebLogic Server
18.1 Understanding the WebSocket Protocol ... 18-2
18.1.1 Limitations of the HTTP Request-Response Model...........c.ccccooreiiiiiniiiiiniciene 18-2
18.1.2 WebSocket ENAPOINES.....c.ciiuiiiiiiiiiiiiiiiiiicticiictctits s 18-2
18.1.3 Handshake Requests in the WebSocket Protocolcccccceeiiiiiiiiiccciccnas 18-3
18.1.4 Messaging and Data Transfer in the WebSocket Protocolcccccceiicuiiiiicnnnnes 18-3
18.2 Understanding the WebLogic Server WebSocket Implementation.............ccccoeeveicineiennne. 18-3
18.2.1 WebSocket Protocol Implementationcccoieueioiiiiieiiiccecc 18-4
18.2.2 WebLogic WebSocket Java API.........c.ccoiiiiiiiiiciicccc e 18-4
18.2.3 Protocol Fallback for WebSocket MeSsagingccccceeceueiuiicmcuccucinccncneccenenes 18-4
18.2.4 Sample WebSocket APPLiCAtiONSc.couiuiuimiiiiiiiiiiiiiiiicicccccec e 18-5
18.3 Overview of Creating a WebSocket Applicationcccoreiiiiiniiiiiiiiccc 18-5
18.4 Creating an ENAPOintcoeuiiiiiiiii s 18-5
18.4.1 Creating an Annotated ENdpoint.........cccocceiiiiiiiiiiiiiiicceececeeeeeeenenes 18-5
18.4.2 Creating a Programmatic ENdpoint..........cccccooiiiiiiiiiiiiiiiiicccccccccnnes 18-7
18.4.3 Specifying the Path Within an Application to a Programmatic Endpoint................ 18-7
18.5 Handling Life Cycle Events for a WebSocket Connection...........ccccouiriieiiiiiiiiiiicca 18-8
18.5.1 Handling Life Cycle Events in an Annotated WebSocket Endpointc.......... 18-8
18.5.2 Handling Life Cycle Events in a Programmatic WebSocket Endpoint.................... 18-12
18.6 Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint 18-13
18.7 Sending a MESSAZE.ccvovimimimiiiiiiiiiiiic s 18-15
18.7.1 Sending a Message to a Single Peer of an Endpoint.............ccoooiiiiiinn. 18-15
18.7.2 Sending a Message to All Peers of an ENdpointccooeevoiiiiiciniciicnicce, 18-16
18.7.3 Ensuring Thread Safety for WebSocket Endpoints...........cccccoceeeciciicccccnccnns 18-18
18.8 Encoding and Decoding a WebSocket Message............ccccuiuiuiiiiiiiiiicniiiiccccecennes 18-18
18.8.1 Encoding a Java Object as a WebSocket Message............ccccocviiiiiiiiiciiiicnnns 18-18
18.8.2 Decoding a WebSocket Message as a Java Objectcccoeuiiiiieiiiicicieiiccie 18-20
18.9 Specifying a Part of an Endpoint Deployment URI as an Application Parameter 18-22
18.10 Maintaining CHENt STAte ..o 18-23
18.11 Configuring a Server Endpoint Programmatically ... 18-24
18.12 Building Applications that Use the Java API for WebSocket............ccccoviiiiiiiiinnnns 18-26
18.13 Deploying a WebSocket AppLicationcccoviuriiieiiiicieiiiccc e 18-26
18.14 Monitoring WebSocket Applications..........ccccvviuiiviiiiniiiiniiiiiies 18-27
18.15 Using WebSockets with ProXy SEIrVers...........cccoioiiiiiiiiiiiiiceiieeeiececeeeeeeenenes 18-30
18.16 Writing a WebSocket CLENtccciiiiiiiiiiiiiccccena 18-31
18.16.1 Writing a Browser-Based WebSocket Clientccoooiiiiiiiiii 18-31
18.16.2 Writing a Java WebSocket Clientccooueiiiiiiiiiic 18-32
18.17 Securing a WebSocket APPLCAtIONcccuiuiuiuiiiiiiiiiccciccccercce e 18-36

Xi

18.17.1 Applying Verified-Origin POLCIEScccevevrviimieiiiiceiccce s 18-37
18.17.2 Authenticating and Authorizing WebSocket Clients...........cccccccocveeiiccccccccnes 18-37
18.17.3 Establishing Secure WebSocket Connections.............cccccoeiiiicccciicccccnenenns 18-38
18.17.4 Avoiding Mixed CONtentcoceiiiiiiiiiiiiiicccccccc e 18-39
18.17.5 Specifying Limits for a WebSocket Connection...........cccoueeieieioiiciciciiicciee 18-39
18.18 Enabling Protocol Fallback for WebSocket Messagingccccooeueurueiiuniicenicincinicinne, 18-40
18.18.1 Using the JavaScript API for WebSocket Fallback in Client Applications............ 18-40
18.18.2 Packaging and Specifying the Location of the WebSocket Fallback Client Library
... 18-46
18.18.3 Enabling WebSocket Fallback..........cccccciiiiiiiiiiiiiicccceceeecccceeeeeenenes 18-46
18.19 Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated
APT o 18-46
18.19.1 Comparison of the JSR 356 API and Proprietary WebLogic Server WebSocket
APT e 18-47
18.19.2 Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356 API.. 18-49
18.19.3 Replacing the /* Suffix in a Path Pattern Stringccccoooeviiiiiiince, 18-51
18.19.4 Example of Converting a Proprietary WebSocket Server Endpoint to Use the JSR
356 APL o 18-53
18.20 Example of Using the Java API for WebSocket with WebLogic Server.............c.............. 18-54

A Enterprise Application Deployment Descriptor Elements

Xii

A.1 weblogic-application.xml Deployment Descriptor Elements............ccccoovoirieiniiiiiiiininnnnnn, A-1
A1l Weblogic-apPLiCatioN.cccoiuiuimiuiiiiiiiiccctrcc e A-l
A2 @D A-9
A13 MaX-CAChE-SIZE.....coiiiiiiiiiii s A-11
AL XD A-11
A.15 jdbc-connection-PoOL........cccueiiiiiiii A-13
ALD SECUTILY ..oviiiiiiiiic s A-21
A7 applicatioN-Param ... A-22
A1.8 classloader-StrUCtUTe.cciiimiiiiiiiii s A-22
AL TISTENET ..o A-22
AL10 SINGIETON-SEIVICE.....cuivitiieititeieicictct et A-23
ATLTT SEATEUP ceoviiiccci s A-24
AL12 ShUAOWI...oieiiic e A-24
A113 WOTK-IMANAGET ..o A-25
A114 5eSSION-A@SCIIPLOTcviiieiecieiecct e A-26
ALLS HDIary-ref ... A-29
A.1.16 library-context-root-OVerride. ... A-29
AL17 fASE-SWAP c.eiiiiic s A-30

A.2 weblogic-application.xml Schema............ccoooniiiiii e, A-30

A3 application.Xml SChema ..o A-31

B wldeploy Ant Task Reference

B.1
B.2
B.3
B4

Overview of the wldeploy Ant Task ..o B-1
Basic Steps for Using Wldeployccccoeuoiiiiiiiniiiiiicc s B-1
Sample build.xml Files for WIAeployccocovvviiiirrriiirrcccereeeeer s B-2
wldeploy Ant Task Attribute Reference ..o, B-3
B.4.1 Main AHIIDULES ..o B-3
B.4.2 Nested <files> Child Element ... B-9

Xiii

Xiv

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Applications for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis, or placeholder

variables for which you supply particular values.

nonospace Monospace type indicates commands within a paragraph,
URLs, code in examples, text that appears on the screen, or
text that you enter.

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Overview of WebLogic Server Application
Development

This chapter provides an overview of WebLogic Server applications and basic
concepts.

This chapter includes the following sections:

* Document Scope and Audience

* WebLogic Server and the Java EE Platform
* Overview of Java EE Applications and Modules
¢ Web Application Modules

* Enterprise JavaBean Modules

¢ Connector Modules

¢ Enterprise Applications

¢ WebLogic Web Services

e JMS and JDBC Modules

¢ WebLogic Diagnostic Framework Modules
e Coherence Grid Archive (GAR) Modules.

* Bean Validation.

¢ XML Deployment Descriptors

¢ Deployment Plans

* Development Tools

¢ New and Changed Features in this Release

1.1 Document Scope and Audience

This document is written for application developers who want to build WebLogic
Server applications using the Java Platform, Enterprise Edition (Java EE). It is assumed
that readers know Web technologies, object-oriented programming techniques, and
the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create modules that implement

Overview of WebLogic Server Application Development 1-1

WebLogic Server and the Java EE Platform

the business and presentation logic for the application. Application assemblers
assemble the modules into applications that are ready to deploy on WebLogic Server.

1.2 WebLogic Server and the Java EE Platform

WebLogic Server implements Java Platform, Enterprise Edition (Java EE) Version 7.0
technologies (see ht t p: / / www. or acl e. com’ t echnet wor k/ j ava/ j avaee/
overvi ew i ndex. ht nl). Java EE is the standard platform for developing multi-tier
enterprise applications based on the Java programming language. The technologies
that make up Java EE were developed collaboratively by several software vendors.

Java EE 7 Programming Model: Increased Productivity

An important aspect of the Java EE programming model is the continued evolution of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application
component behaves in the container, requests for dependency injection, and so on.
Annotations are an alternative to deployment descriptors that were required by older
versions of enterprise applications.

With Java EE 7, there is a continuing focus on ease of development. There is less code
to write — much of the boilerplate code has been removed, defaults are used whenever
possible, and annotations are used extensively to reduce the need for deployment
descriptors. Also, improvements to development tooling and open source support
expand developer choices and simplify creation of development environments. For
information about all the new Java EE 7 updates supported in WebLogic Server, see
Java EE 7 Support in What's New in Oracle WebLogic Server 12.2.1.2.0.

WebLogic Server and Java EE Applications

WebLogic Server Java EE applications are based on standardized, modular
components. WebLogic Server provides a complete set of services for those modules
and handles many details of application behavior automatically, without requiring
programming. Java EE defines module behaviors and packaging in a generic, portable
way, postponing run-time configuration until the module is actually deployed on an
application server.

Java EE includes deployment specifications for Web applications, EJB modules, Web
services, enterprise applications, client applications, and connectors. Java EE does not
specify how an application is deployed on the target server—only how a standard
module or application is packaged. For each module type, the specifications define the
files required and their location in the directory structure.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

For more information, refer to the Java EE specification at: ht t p: / /
www. or acl e. com' t echnet wor k/ j ava/ j avaee/t ech/ i ndex-
j sp-142185. htm .

1.3 Overview of Java EE Applications and Modules

A WebLogic Server Java EE application consists of one of the following modules or
applications running on WebLogic Server:

1-2 Developing Applications for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html

Web Application Modules

* Web application modules—HTML pages, servlets, JavaServer Pages, and related
files. See Web Application Modules.

¢ Enterprise JavaBeans (EJB) modules—entity beans, session beans, and message-
driven beans. See Enterprise JavaBean Modules.

* Connector modules—resource adapters. See Connector Modules.

* Enterprise applications—Web application modules, EJB modules, resource
adapters and Web services packaged into an application. See Enterprise
Applications.

* Web services—See WebLogic Web Services.
A WebLogic application can also include the following WebLogic-specific modules:
e JDBC and JMS modules—See JMS and JDBC Modules.

e WebLogic Diagnostic FrameWork (WLDF) modules—See WebLogic Diagnostic
Framework Modules.

e Coherence Grid Archive (GAR) Modules—See Coherence Grid Archive (GAR)
Modules.

1.4 Web Application Modules

1.4.1 Servlets

A Web application on WebLogic Server includes the following files:
¢ Atleast one servlet or JSP, along with any helper classes.

* Optionally, a web. xm deployment descriptor, a Java EE standard XML document
that describes the contents of a WAR file.

* Optionally, a webl ogi c. xm deployment descriptor, an XML document
containing WebLogic Server-specific elements for Web applications.

¢ A Web application can also include HTML and XML pages with supporting files
such as images and multimedia files.

Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. An Ht t pSer vl et is
most often used to generate dynamic Web pages in response to Web browser requests.

1.4.2 JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it
possible to embed Java code in a Web page. JSPs can call custom Java classes, known
as tag libraries, using HTML-like tags. The appc compiler compiles JSPs and
translates them into servlets. WebLogic Server automatically compiles JSPs if the
servlet class file is not present or is older than the JSP source file. See Building
Modules and Applications Using wlappc.

You can also precompile JSPs and package the servlet class in a Web application
(WAR) file to avoid compiling in the server. Servlets and JSPs may require additional
helper classes that must also be deployed with the Web application.

Overview of WebLogic Server Application Development 1-3

Enterprise JavaBean Modules

1.4.3 More Information on Web Application Modules

See the following documentation:
* Organizing Java EE Components in a Split Development Directory.
* Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

® Developing |SP Tag Extensions for Oracle WebLogic Server

1.5 Enterprise JavaBean Modules

Enterprise JavaBeans (E]B) technology is the server-side component architecture for
the development and deployment of component-based business applications. EJB
technology enables rapid and simplified development of distributed, transactional,
secure, and portable applications based on Java EE 8 technology.

The EJB 3.3 specification provides simplified programming and packaging model
changes. The mandatory use of Java interfaces from previous versions has been
removed, allowing plain old Java objects to be annotated and used as EJB components.
The simplification is further enhanced through the ability to place EJB modules
directly inside of Web applications, removing the need to produce archives to store the
Web and EJB components and combine them together in an EAR file.

1.5.1 EJB Documentation in WebLogic Server

For more information about using EJBs with WebLogic Server, see:

¢ For information about all the new features in EJB, see New Features and Changes
in EJB in Developing Enterprise JavaBeans for Oracle WebLogic Server.

¢ For information about basic EJB concepts and components, see Enterprise Java
Beans (E]JBs) in Understanding Oracle WebLogic Server.

¢ For instructions on how to program, package, and deploy 3.1 E]Bs on WebLogic
Server, see Developing Enterprise JavaBeans for Oracle WebLogic Server.

¢ For instructions on how to organize and build WebLogic Server E]Bs in a split
directory environment, see Creating a Split Development Directory Environment.

e For more information on how to program and package 2.x E]Bs, see Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

1.5.2 Additional EJB Information

To learn more about EJB concepts, such as the benefits of enterprise beans, the types of
enterprise beans, and their life cycles, then visit the following Web sites:

e FEJB 3.2 Specification (JSR-345) at htt p: / /j cp. or g/ en/j sr/ summar y?i d=345

* The Enterprise Beans chapter of the Java EE 7 Tutorial at ht t p: //
docs. oracl e. com j avaee/ 7/ tut ori al / part ent beans. ht m#BNBLR

e Java EE 7 Platform: ht t p: / / www. or acl e. conf t echnetwor k/ arti cl es/
javal/ i ndex. ht m

1-4 Developing Applications for Oracle WebLogic Server

http://jcp.org/en/jsr/summary?id=318
http://docs.oracle.com/javaee/6/tutorial/doc/bnblr.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnblr.html
http://www.oracle.com/technetwork/articles/java/index.html
http://www.oracle.com/technetwork/articles/java/index.html

Connector Modules

1.6 Connector Modules

Connectors (also known as resource adapters) contain the Java, and if necessary, the
native modules required to interact with an Enterprise Information System (EIS). A
resource adapter deployed to the WebLogic Server environment enables Java EE
applications to access a remote EIS. WebLogic Server application developers can use
HTTP servlets, JavaServer Pages (JSPs), Enterprise JavaBeans (E]Bs), and other APIs to
develop integrated applications that use the EIS data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure
WebLogic Server-specific deployment descriptor, webl ogi c-ra. xm file, and add
this to the deployment directory. Resource adapters can be deployed to WebLogic
Server as standalone modules or as part of an enterprise application. See Enterprise
Applications.

For more information on connectors, see Developing Resource Adapters for Oracle
WebLogic Server.

1.7 Enterprise Applications

An enterprise application consists of one or more Web application modules, EJB
modules, and resource adapters. It might also include a client application. An
enterprise application can be optionally defined by an appl i cati on. xm file, which
was the standard Java EE deployment descriptor for enterprise applications.

1.7.1 Java EE Programming Model

An important aspect of the Java EE programming model is the introduction of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application
behaves in the container, requests for dependency injection, and so on. Annotations
are an alternative to deployment descriptors that were required by older versions of
enterprise applications (1.4 and earlier).

With Java EE annotations, the standard appl i cati on. xm and web. xml
deployment descriptors are optional. The Java EE programming model uses the JDK
annotations feature (see ht t p: / / docs. or acl e. conl j avaee/ 7/ api /') for Web
containers, such as E]Bs, servlets, Web applications, and JSPs. See Using Java EE
Annotations and Dependency Injection.

If the application includes WebLogic Server-specific extensions, the application is
further defined by a webl ogi c- appl i cati on. xnl file. Enterprise applications that
include a client module will also have a cl i ent - appl i cati on. xml deployment
descriptor and a WebLogic run-time client application deployment descriptor. See
Enterprise Application Deployment Descriptor Elements.

1.7.2 Packaging and Deployment Overview

For both production and development purposes, Oracle recommends that you
package and deploy even standalone Web applications, E]Bs, and resource adapters as
part of an enterprise application. Doing so allows you to take advantage of Oracle's
split development directory structure, which greatly facilitates application
development. See Creating a Split Development Directory Environment.

An enterprise application consists of Web application modules, EJB modules, and
resource adapters. It can be packaged as follows:

Overview of WebLogic Server Application Development 1-5

http://docs.oracle.com/javaee/6/api/

WebLogic Web Services

* For development purposes, Oracle recommends the WebLogic split development
directory structure. Rather than having a single archived EAR file or an exploded
EAR directory structure, the split development directory has two parallel
directories that separate source files and output files. This directory structure is
optimized for development on a single WebLogic Server instance. See Creating a
Split Development Directory Environment. Oracle provides the W package Ant
task, which allows you to create an EAR without having to use the JAR utility; this
is exclusively for the split development directory structure. See Packaging
Applications Using wlpackage.

¢ For development purposes, Oracle further recommends that you package
standalone Web applications and Enterprise JavaBeans (E]Bs) as part of an
enterprise application, so that you can take advantage of the split development
directory structure. See Organizing Java EE Components in a Split Development
Directory.

¢ For production purposes, Oracle recommends the exploded (unarchived) directory
format. This format enables you to update files without having to redeploy the
application. To update an archived file, you must unarchive the file, update it, then
rearchive and redeploy it.

* You can choose to package your application as a JAR archived file using the j ar
utility with an . ear extension. Archived files are easier to distribute and take up
less space. An EAR file contains all of the JAR, WAR, and RAR module archive files
for an application and an XML descriptor that describes the bundled modules. See
Packaging Applications Using wlpackage.

The optional META- | NF/ appl i cati on. xnm deployment descriptor contains an
element for each Web application, EJB, and connector module, as well as additional
elements to describe security roles and application resources such as databases. If this
descriptor is present the WebLogic deployer picks the list of modules from this
descriptor. However if this descriptor is not present, the container guesses the
modules from the annotations defined on the POJO (plain-old-Java-object) classes. See
Enterprise Application Deployment Descriptor Elements.

1.8 WebLogic Web Services

Web services can be shared by and used as modules of distributed Web-based
applications. They commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on.
Web services can reside on different computers and can be implemented by vastly
different technologies, but they are packaged and transported using standard Web
protocols, such as HTTP, thus making them easily accessible by any user on the Web.

A Web service consists of the following modules, at a minimum:

e A Web service implementation hosted by a server on the Web. WebLogic Web
services are hosted by WebLogic Server. A Web service module may include either
Java classes or E]Bs that implement the Web service. Web services are packaged
either as Web application archives (WARs) or EJB modules (JARs), depending on
the implementation.

¢ A standard for transmitting data and Web service invocation calls between the
Web service and the user of the Web service. WebLogic Web services use Simple
Object Access Protocol (SOAP) 1.1 as the message format and HTTP as the
connection protocol.

1-6 Developing Applications for Oracle WebLogic Server

JMS and JDBC Modules

¢ A standard for describing the Web service to clients so they can invoke it.
WebLogic Web services use Web services Description Language (WSDL) 1.1, an
XML-based specification, to describe themselves.

¢ A standard for clients to invoke Web services—JAX-WS or JAX-RPC. See
Developing JAX-WS Web Services for Oracle WebLogic Server or Developing JAX-RPC
Web Services for Oracle WebLogic Server, respectively.

* A standard for finding and registering the Web service (UDDI).

For more information about WebLogic Web services and the standards that are
supported, see Understanding WebLogic Web Services for Oracle WebLogic Server.

1.9 JMS and JDBC Modules

JMS and JDBC configurations are stored as modules, defined by an XML file that
conforms to the webl ogi ¢c-j ms. xsd and j dbc- dat a- sour ce. xsd schema,
respectively. These modules are similar to standard Java EE modules. An
administrator can create and manage JMS and JDBC modules as global system
resources, as modules packaged with a Java EE application (as a packaged resource),
or as standalone modules that can be made globally available.

With modular deployment of JMS and JDBC resources, you can migrate your
application and the required JMS or JDBC configuration from environment to
environment, such as from a testing environment to a production environment,
without opening an enterprise application file (such as an EAR file) or a JMS or JDBC
standalone module, and without extensive manual JMS or JDBC reconfiguration.

Application developers create application modules in an enterprise-level IDE or
another development tool that supports editing of XML files, then package the JMS or
JDBC modules with an application and pass the application to a WebLogic
administrator to deploy.

For more information, see:
¢ Configuring JMS Application Modules for Deployment

¢ Configuring JDBC Application Modules for Deployment

1.10 WebLogic Diagnostic Framework Modules

The WebLogic Diagnostic Framework (WLDF) provides features for generating,
gathering, analyzing, and persisting diagnostic data from WebLogic Server instances
and from applications deployed to server instances. For server-scoped diagnostics,
some WLDF features are configured as part of the configuration for the domain. Other
features are configured as system resource descriptors that can be targeted to servers
(or clusters). For application-scoped diagnostics, diagnostic features are configured as
resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic
module, which is similar to a diagnostic system module. However, an application
module is configured in an XML configuration file named webl ogi c-

di agnosti cs. xm which is packaged with the application archive.

For detailed instructions for configuring instrumentation for applications, see
Configuring Application-Scoped Instrumentation.

Overview of WebLogic Server Application Development 1-7

Coherence Grid Archive (GAR) Modules

1.10.1 Using an External Diagnostics Descriptor

WebLogic Server also supports the use of an external diagnostics descriptor so you can
integrate diagnostic functionality into an application that has not imported diagnostic
descriptors. This feature supports the deployment view and deployment of an
application or a module, detecting the presence of an external diagnostics descriptor if
the descriptor is defined in your deployment plan (pl an. xm).

1.10.1.1 Defining an External Diagnostics Descriptor

First, define the diagnostic descriptor as external and configure its URI in the
pl an. xm file. For example:

<modul e- override>
<nodul e- nane>r evi ewSer vi ce. ear </ nodul e- nanme>
<modul e-t ype>ear </ nodul e-type>
</ modul e- descri pt or>
<nodul e- descriptor external ="true">
<root - el ement >wl df - resour ce</root - el enent >
<uri >META- | NF/ webl ogi c- di agnosti cs. xm </ uri >

</ modul e- overri de>
<config-root >D:\ pl an</ confi g-root >

Then place the external diagnostic descriptor file under the URL Using the example
above, you would place the descriptor file under d: \ pl an\ META- | NF.

1.11 Coherence Grid Archive (GAR) Modules

A Coherence GAR module provides distributed in-memory caching and data grid
computing that allows applications to increase their availability, scalability, and
performance. GAR modules are deployed as both standalone modules and packaged
with Java EE applications (as a packaged resource). A GAR module may also be made
globally available.

A GAR module is defined by the coherence-application.xml deployment descriptor
and must conform to the coher ence- appl i cati on. xsd XML schema. The GAR
contains the artifacts that comprise a Coherence application: Coherence configuration
files, application classes (such as entry processors, aggregators, filters), and any
dependencies that are required.

1.12 Bean Validation

The Bean Validation specification (JSR 349) defines a metadata model and API for
validating data in JavaBeans components. It is supported on both the server and Java
EE 7 client; therefore, instead of distributing validation of data over several layers,
such as the browser and the server side, you can define the validation constraints in
one place and share them across the different layers. Further, bean validation is not
only for validating beans. In fact, it can also be used to validate any Java object.

Bean Validation and JNDI

Where required by the Java EE specifications, the default Val i dat or and

Val i dat or Fact or y are located using JNDI under the names j ava: conp/

Val i dat or and j ava: conp/ Val i dat or Fact ory. These two artifacts reflect the
validation descriptor that is in scope.

1-8 Developing Applications for Oracle WebLogic Server

XML Deployment Descriptors

Bean Validation Configuration

Bean validation can be configured by using XML descriptors or annotation.
® Descriptors:
— Descriptor elements override corresponding annotations.

— Weblogic Server allows one descriptor per module. Therefore, an application
can have several validation descriptors but only one is allowed per module
scope.

— Validation descriptors are named val i dati on. xm and are packaged in the
META- | NF directory, except for Web modules, where the descriptor is packaged
in the VEEB- | NF directory.

e Annotations:

— Injection of the default Val i dat or and Val i dat or Fact ory is requested
using the @Resour ce annotation. However, not all source files are scanned for
this annotation.

— The WebLogic Connector uses bean validation internally to validate the
connector descriptors.

Once bean validation is configured, the standard set of container managed classes for
a given container will be scanned. For example, for E]Bs, bean and interceptor classes
are scanned. Web application classes and ManagedBeans also support the injection of
Val i dat or and Val i dat or Fact ori es.

For more information about the classes that support bean validation, please see the
related component specifications for the list of classes that support dependency
injection.

1.13 XML Deployment Descriptors

A deployment configuration refers to the process of defining the deployment descriptor
values required to deploy an enterprise application to a particular WebLogic Server
domain. The deployment configuration for an application or module is stored in three
types of XML document: Java EE deployment descriptors, WebLogic Server
descriptors, and WebLogic Server deployment plans. This section describes the Java
EE and WebLogic-specific deployment descriptors. See Deployment Plans for
information on deployment plans.

The Java EE programming model uses the JDK annotations feature for Web containers,
such as EJBs, servlets, Web applications, and JSPs. Annotations simplify the
application development process by allowing a developer to specify within the Java
class itself how the component behaves in the container, requests for dependency
injection, and so on. Annotations are an alternative to deployment descriptors that
were required by older versions of Web applications (2.4 and earlier), enterprise
applications (1.4 and earlier), and Enterprise JavaBeans (2.x and earlier). See Using
Java EE Annotations and Dependency Injection.

However, enterprise applications fully support the use of deployment descriptors,
even though the standard Java EE ones are not required. For example, you may prefer
to use the old EJB 2.x programming model, or might want to allow further
customizing of the EJB at a later development or deployment stage; in these cases you
can create the standard deployment descriptors in addition to, or instead of, the
metadata annotations.

Overview of WebLogic Server Application Development 1-9

XML Deployment Descriptors

Modules and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The Java EE specifications define standard,
portable deployment descriptors for Java EE modules and applications. Oracle defines
additional WebLogic-specific deployment descriptors for deploying a module or
application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their Java EE-standard and
WebLogic-specific deployment descriptors.

Note:

The XML schemas for the WebLogic deployment descriptors listed in the
following table include elements from the ht t p: // xm ns. or acl e. com
webl ogi ¢/ webl ogi c-j avaee/ 1. 7/ webl ogi c-j avaee. xsd schema,
which describes common elements shared among all WebLogic-specific
deployment descriptors.

For the most current schema information, see: ht t p: / / ww. or acl e. conf
t echnet wor k/ m ddl ewar e/ webl ogi c/ overvi ew i ndex. ht i .

Table 1-1 Java EE and WebLogic Deployment Descriptors
. __|

Module or Application Scope Deployment Descriptors

Web Application Java EE web. xmi

See the Servlet 3.0 Schema at ht t p: / / www. or acl e. cont
webf ol der/technetwork/jsc/ xm / ns/javaeel web-
app_3_1. xsd

VEB- | NF/ beans. xm —required only if the classes in the
WAR file are to participate in Contexts and Dependency
Injection (CDI)

Schema: htt p: / / www. or acl e. coni webf ol der/
technetwork/jsc/xm /ns/javaeel/ beans_1_1. xsd

See Using Contexts and Dependency Injection for the Java EE
Platform.

Web Applicati WebLogi
eb Application ebLogic webl ogi ¢. xn

Schema: htt p: // xm ns. or acl e. com webl ogi c/
webl ogi c- web- app/ 1. 8/ webl ogi c- web- app. xsd
See weblogic.xml Deployment Descriptor Elements in
Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

1-10 Developing Applications for Oracle WebLogic Server

http://xmlns.oracle.com/weblogic/weblogic-javaee/1.7/weblogic-javaee.xsd
http://xmlns.oracle.com/weblogic/weblogic-javaee/1.7/weblogic-javaee.xsd
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd

XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors
. __|

Module or Application Scope Deployment Descriptors

Enterprise Bean 3.0 Java EE o
ej b-jar.xn

See the EJB 3.2 Schema at ht t p: / / www. or acl e. com
webf ol der/technetwork/jsc/ xm / ns/javaeel ej b-
jar_3_1.xsd

META- | NF/ beans. xm —required only if the classes in the
EJB JAR file are to participate in CDI

Schema: ht t p: / / www. or acl e. coml webf ol der/
technetwork/jsc/xm /ns/javaeel/ beans_1_1. xsd

See Using Contexts and Dependency Injection for the Java EE

Platform.
Enterprise Bean 3.0 WebLogic . o
webl ogi c-ej b-jar. xm
Schema htt p: // xm ns. or acl e. com webl ogi c/
webl ogi c-ej b-jar/ 1. 6/ webl ogi c-ej b-j ar. xsd
webl ogi c-rdbns-j ar. xn
Schema: htt p: // xm ns. or acl e. conf webl ogi ¢/
webl ogi c-rdbms-j ar/ 1. 2/ webl ogi c-rdbns-j ar. xsd
per si st ence- confi guration. xm
Schema: ht t p: // xm ns. or acl e. conf webl ogi ¢/
persi stence-configuration/ 1.0/ persistence-
configuration. xsd
See Developing Enterprise JavaBeans for Oracle WebLogic Server.
Enterprise Bean 2.1 Java EE o
ej b-jar.xm
See the EJB 2.1 Schema athtt p: //j ava. sun. coml xm / ns/
j 2eel ejb-jar_2_1.xsd
Enterprise Bean 2.1 WebLogic

webl ogi c-ej b-jar. xm

Schema: ht t p: // xm ns. or acl e. conf webl ogi ¢/

webl ogi c-ej b-jar/ 1. 6/ webl ogi c-ej b-j ar. xsd

See The weblogic-ejb-jar.xml Deployment Descriptor in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server.

webl ogi c- cnp-rdbns-j ar. xn

Schema: htt p: // xm ns. or acl e. com webl ogi c/
webl ogi c-rdbns-jar/ 1. 2/ webl ogi c-rdbns-j ar. xsd

See The weblogic-cmp-rdbms-jar.xml Deployment Descriptor
in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

Overview of WebLogic Server Application Development 1-11

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd

XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors
. __|

Module or Application Scope Deployment Descriptors

Web services Java EE)
webservi ces. xnl

See the Web services 1.4 Schema at htt p: //
www. or acl e. conf webf ol der/
technetwor k/jsc/xm /ns/javaeel

j avaee_web_services_1_4. xsd

Web services WebLogic))
webl ogi c- webser vi ces. xni
Schema: htt p: // xm ns. or acl e. com webl ogi c/
webl ogi c-webservi ces/ 1. 1/ webl ogi c-
webservi ces. xsd
webl ogi c- wsee- ¢l i ent Handl er Chai n. xn
Schema: htt p: // xm ns. or acl e. com webl ogi c/
webl ogi c-wsee- cl i ent Handl er Chai n/ 1. 0/ webl ogi c-
wsee- cl i ent Handl er Chai n. xsd
weblogic-webservices-policy.xml
Schema: htt p: // xm ns. or acl e. com webl ogi c/
webservi ce-policy-ref/ 1.1/ webservice-policy-
ref.xsd
weblogic-wsee-standaloneclient.xml
Schema: htt p: // xm ns. or acl e. com webl ogi c/
webl ogi c- wsee- st andal onecl i ent/ 1. 0/ webl ogi c-
wsee- st andal onecl i ent . xsd
See WebLogic Web Service Deployment Descriptor Element
Reference in WebLogic Web Services Reference for Oracle
WebLogic Server.

Resource Adapter Java EE
ra.xn
See the Connector 1.6 Schema at ht t p: / / www. or acl e. coml
webf ol der/technetwork/j sc/xm / ns/javaee/
connector_1 7.xsd
META- | NF/ beans. xm —required only if the classes in the
RAR file are to participate in CDI
Schema: ht t p: / / www. or acl e. coml webf ol der/
technetwork/jsc/xm/ns/javaeel/ beans_1_1. xsd
See Using Contexts and Dependency Injection for the Java EE
Platform.

Resource Adapter WebLogic

webl ogi c-ra. xm

Schema: http://xm ns. oracl e. conf webl ogi ¢/ webl ogi ¢c-
connector/ 1. 5/ webl ogi c- connect or . xsd

See weblogic-ra.xml Schema in Developing Resource Adapters
for Oracle WebLogic Server.

1-12 Developing Applications for Oracle WebLogic Server

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors
. __|

Module or Application

Scope

Deployment Descriptors

Enterprise Application

Java EE

appl i cation. xn

See the Application 7Schema at ht t p: / / www. or acl e. conf
webf ol der/technetwork/j sc/xm / ns/javaee/
application_7.xsd

Enterprise Application

WebLogic

webl ogi c-application. xn

Schema: htt p: // xm ns. or acl e. com webl ogi c/
webl ogi c-application/ 1.7/ webl ogi c-
application. xsd

See weblogic-application.xml Deployment Descriptor
Elements.

Client Application

Java EE

application-client.xm

See the Application Client 7Schema at ht t p: / /

www. or acl e. conf webf ol der/

technetwor k/jsc/xm /ns/javaeel applicati on-
client 7.xsd

META- | NF/ beans. xm —required only if the classes in the
application client JAR file are to participate in CDI

Schema: ht t p: / / www. or acl e. coml webf ol der/
technetwork/jsc/xm/ns/javaeel/ beans_1_1. xsd

See Using Contexts and Dependency Injection for the Java EE
Platform.

Client Application

WebLogic

application-client.xm

Schema: ht t p: // xm ns. or acl e. conf webl ogi ¢/
webl ogi c-application-client/1.4/webl ogi c-
application-client.xsd

See Developing a Java EE Application Client (Thin Client) in
Developing Stand-alone Clients for Oracle WebLogic Server.

HTTP Pub/Sub
Application

WebLogic

webl ogi c- pubsub. xm

Schema: htt p: // xm ns. or acl e. conf webl ogi ¢/
webl ogi c- pubsub/ 1. 0/ webl ogi ¢c- pubsub. xsd

See Using the HTTP Publish-Subscribe Server in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

JMS Module

WebLogic

Fi | eNanme-j ms. xnl , where Fi | eNane can be anything you
want.

Schema: ht t p: // xm ns. or acl e. conf webl ogi ¢/
webl ogi c-j ms/ 1. 4/ webl ogi c-j ms. xsd

See Configuring JMS Application Modules for Deployment in
Administering JMS Resources for Oracle WebLogic Server.

Overview of WebLogic Server Application Development 1-13

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.4/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.4/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.4/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd

XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors
. __|

Module or Application Scope Deployment Descriptors
JDBC Module WebLogic Fi | eNanme-j dbc. xnl , where Fi | eNanme can be anything
you want.

Schema: htt p: // xm ns. or acl e. com webl ogi c/j dbc-
dat a- source/ 1. 5/ j dbc- dat a- sour ce. xsd

See Configuring JDBC Application Modules for Deployment
in Administering JDBC Data Sources for Oracle WebLogic Server.

Depl t Pl WebLogi
eployment Plan ebLogic ol an. xr

Schema: htt p: // www. or acl e. coni webf ol der/
t echnet wor k/ webl ogi c/ depl oynent - pl an/
i ndex. ht m

See Understanding WebLogic Server Deployment in Deploying
Applications to Oracle WebLogic Server.

Resource Deployment WebLogic
Plan resour ce- depl oynent - pl an. xm

Schema: ht t p: // xm ns. or acl e. conf webl ogi ¢/
resour ce-depl oynent - pl an/ 1. 0/ r esour ce-
depl oyment - pl an. xsd

See Using Resource Deployment Plans in Using Oracle
WebLogic Server Multitenant.

WLDF Module WebLogic . . .
webl ogi c- di agnosti cs. xm

Schema: ht t p: // xm ns. or acl e. conf webl ogi ¢/
webl ogi c-di agnosti cs/ 1. 0/ webl ogi c-
di agnosti cs. xsd

See Deploying WLDF Application Modules in Configuring and
Using the Diagnostics Framework for Oracle WebLogic Server.

Coherence Modules WebLogic coherence-appl i cation. xm

Schema: http:/ /xmlns.oracle.com/coherence/coherence-
application/1.0/coherence-application.xsd

See Developing Oracle Coherence Applications for Oracle WebLogic
Server.

When you package a module or application, you create a directory to hold the
deployment descriptors—WEB- | NF or META- | NF—and then create the XML
deployment descriptors in that directory.

1.13.1 Automatically Generating Deployment Descriptors

WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

1.13.2 EJBGen

EJBGen is an Enterprise JavaBeans 2.x code generator or command-line tool that uses
Javadoc markup to generate EJB deployment descriptor files. You annotate your Bean

1-14 Developing Applications for Oracle WebLogic Server

http://xmlns.oracle.com/weblogic/jdbc-data-source/1.5/jdbc-data-source.xsd
http://xmlns.oracle.com/weblogic/jdbc-data-source/1.5/jdbc-data-source.xsd
http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

XML Deployment Descriptors

class file with Javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to a single
file you need to edit and maintain your EJB . j ava and descriptor files. See EJBGen
Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

1.13.3 Java-based Command-line Utilities

WebLogic Server includes a set of Java-based command-line utilities that
automatically generate both standard Java EE and WebLogic-specific deployment
descriptors for Web applications and enterprise applications.

These command-line utilities examine the classes you have assembled in a staging
directory and build the appropriate deployment descriptors based on the servlet
classes, and so on. These utilities include:

e java webl ogi c. marat hon. ddi ni t. Ear | ni t — automatically generates the
deployment descriptors for enterprise applications.

e java webl ogi c. mar at hon. ddi ni t. Wbl ni t — automatically generates the
deployment descriptors for Web applications.

For an example of DDl ni t, assume that you have created a directory called c: \ st age
that contains the JSP files and other objects that make up a Web application but you
have not yet created the web. xm and webl ogi ¢. xm deployment descriptors. To
automatically generate them, execute the following command:

pronpt> java webl ogi c. marat hon. ddinit. Wblnit c:\stage

The utility generates the web. xml and webl ogi ¢c. xm deployment descriptors and
places them in the WEB- | NF directory, which DDI ni t will create if it does not already
exist.

1.13.4 Upgrading Deployment Descriptors From Previous Releases of Java EE and
WebLogic Server

So that your applications can take advantage of the features in the current Java EE
specification and release of WebLogic Server, Oracle recommends that you always
upgrade deployment descriptors when you migrate applications to a new release of
WebLogic Server.

To upgrade the deployment descriptors in your Java EE applications and modules,
first use the webl ogi c. DDConvert er tool to generate the upgraded descriptors into
a temporary directory. Once you have inspected the upgraded deployment descriptors
to ensure that they are correct, repackage your Java EE module archive or exploded
directory with the new deployment descriptor files.

Invoke webl ogi c. DDConver t er with the following command:

pronpt > java webl ogi c. DDConverter [options] archive_file_ or_directory

where ar chi ve_fil e_or_directory refers to the archive file (EAR, WAR, JAR, or
RAR) or exploded directory of your enterprise application, Web application, EJB, or
resource adapter.

The following table describes the webl ogi ¢. DDConvert er command options.

Overview of WebLogic Server Application Development 1-15

Deployment Plans

Option Description
-d <dir> Specifies the directory to which descriptors are written.
hel p Prints the standard usage message.

qui et Turns off output messages except error messages.

-verbose Turns on additional output used for debugging.

The following example shows how to use the webl ogi c. DDConver t er command to
generate upgraded deployment descriptors for the my. ear enterprise application into
the subdirectory t enpdi r in the current directory:

pronpt > java webl ogi c. DDConverter -d tenpdir ny.ear

1.14 Deployment Plans

A deployment plan is an XML document that defines an application's WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment
plan resides outside of an application's archive file, and can apply changes to
deployment properties stored in the application's existing WebLogic Server
deployment descriptors. Administrators use deployment plans to easily change an
application's WebLogic Server configuration for a specific environment without
modifying existing Java EE or WebLogic-specific deployment descriptors. Multiple
deployment plans can be used to reconfigure a single application for deployment to
multiple, differing WebLogic Server environments.

After programmers have finished programming an application, they export its
deployment configuration to create a custom deployment plan that administrators
later use for deploying the application into new WebLogic Server environments.
Programmers distribute both the application deployment files and the custom
deployment plan to deployers (for example, testing, staging, or production
administrators) who use the deployment plan as a blueprint for configuring the
application for their environment.

WebLogic Server provides the following tools to help programmers export an
application's deployment configuration:

¢ webl ogi c. Pl anGener at or creates a template deployment plan with null
variables for selected categories of WebLogic Server deployment descriptors. This
tool is recommended if you are beginning the export process and you want to
create a template deployment plan with null variables for an entire class of
deployment descriptors.

¢ The WebLogic Server Administration Console updates or creates new deployment
plans as necessary when you change configuration properties for an installed
application. You can use the WebLogic Server Administration Console to generate
a new deployment plan or to add or override variables in an existing plan. The
WebLogic Server Administration Console provides greater flexibility than
webl ogi c. Pl anCener at or, because it allows you to interactively add or edit
individual deployment descriptor properties in the plan, rather than export entire
categories of descriptor properties.

1-16 Developing Applications for Oracle WebLogic Server

Development Tools

For complete and detailed information about creating and using deployment plans,
see:

¢ Understanding WebLogic Server Deployment
e Exporting an Application for Deployment to New Environments

¢ Understanding WebLogic Server Deployment Plans

1.15 Development Tools

This section describes required and optional tools for developing WebLogic Server
applications.

1.15.1 Java API Reference and the wis-api.jar File

Oracle provides the Oracle Fusion Middleware Java API Reference for Oracle
WebLogic Server, which defines all of the supported Java classes available for use
when developing Java EE applications for WebLogic Server. See the Java API Reference
for Oracle WebLogic Server.

In conjunction with the Java API Reference for Oracle WebLogic Server, Oracle
recommends using the W s- api . j ar file to develop and compile Java EE
applications for your WebLogic Server environment. The WM s- api . j ar file is located
in the w server/server/|i b directory of your WebLogic Server distribution and
offers the following benefits:

* developing more performant code based on tested best practices

¢ avoiding deprecated or unsupported code paths

1.15.1.1 Using the wis-api.jar File

Use thew s- api . j ar file and the api . j ar file to develop and compile your Java EE
applications in Integrated Development Environments (IDEs), such as Oracle
JDeveloper. IDEs provide an array of tools to simplify development of Java-based
applications. The W s- api . j ar file provides a clean and concise API jar to develop
and run Java EE applications for WebLogic environments.

Note:

The W s-api . j ar file does not reference any Java EE classes. Oracle provides
the api . j ar file with a manifest classpath that includes access to Java EE
JARs.

You may need to include the webl ogi c. j ar file in the classpath of your
development environment to access tools such as WLST, the webl ogi c. Depl oyer
utilty, and webl ogi c. appc.

1.15.1.2 Using the weblogic.jar File

You must continue to use the webl ogi c. j ar file for runtime environments, as a
client or to develop and compile legacy applications. However, use the W s- api . j ar
file to develop and compile Java EE applications for your WebLogic Server
environment.

Overview of WebLogic Server Application Development 1-17

Development Tools

1.15.2 Apache Ant

The preferred Oracle method for building applications with WebLogic Server is
Apache Ant. Ant is a Java-based build tool. One of the benefits of Ant is that is it is
extended with Java classes, rather than shell-based commands. Oracle provides
numerous Ant extension classes to help you compile, build, deploy, and package
applications using the WebLogic Server split development directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts
in eXtensible Markup Language (XML). XML tags define the targets to build,
dependencies among targets, and tasks to execute in order to build the targets. Ant
libraries are bundled with WebLogic Server to make it easier for our customers to
build Java applications out of the box.

To use Ant, you must first set your environment by executing either the

set Exanpl esEnv. cd (Windows) or set Exanpl esEnv. sh (UNIX) commands
located in the W._ SERVER\ sanpl es\ domai ns\ wl _ser ver directory, where
W._ SERVERis your WebLogic Server installation directory.

For a complete explanation of ant capabilities, see: ht t p: / /
j akart a. apache. org/ ant/ manual /i ndex. ht m

Note:

The Apache Jakarta Web site publishes online documentation for only the
most current version of Ant, which might be different from the version of Ant
that is bundled with WebLogic Server. Use the following command, after
setting your WebLogic environment, to determine the version of Ant bundled
with WebLogic Server:

pronpt> ant -version

To view the documentation for a specific version of Ant, such as the version
included with WebLogic Server, download the Ant zip file from ht t p: //
archi ve. apache. org/ di st/ ant/ bi nari es/ and extract the
documentation.

For more information on using Ant to compile your cross-platform scripts or using
cross-platform scripts to create XML scripts that can be processed by Ant, refer to any
of the WebLogic Server examples, such as ORACLE_HOME/ Wl ser ver/ sanpl es/
server/ exanpl es/ src/ exanpl es/ ej b20/ basi ¢/ beanManaged/ bui | d. xm ,
where ORACLE_HQOME represents the directory in which you installed WebLogic
Server. For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Also refer to the following WebLogic Server documentation on building examples
using Ant: ORACLE_HOVE/ Wl server/ sanpl es/ server/ exanpl es/ src/
exanpl es/ exanmpl es. htm .

1.15.2.1 Using a Third-Party Version of Ant

You can use your own version of Ant if the one bundled with WebLogic Server is not
adequate for your purposes. To determine the version of Ant that is bundled with
WebLogic Server, run the following command after setting your WebLogic
environment:

pronpt > ant -version

1-18 Developing Applications for Oracle WebLogic Server

http://jakarta.apache.org/ant/manual/index.html
http://jakarta.apache.org/ant/manual/index.html
http://archive.apache.org/dist/ant/binaries/
http://archive.apache.org/dist/ant/binaries/

Development Tools

If you plan to use a different version of Ant, you can replace the appropriate JAR file
in the W._HOME\ ser ver\ | i b\ ant directory with an updated version of the file
(where W._HOME refers to the main WebLogic installation directory, such as c:

\ O acl e\ M ddl ewar e\ Or acl e_Horre\ Wl ser ver) or add the new file to the front
of your CLASSPATH.

1.15.2.2 Changing the Ant Heap Size

By default the environment script allocates a heap size of 128 megabytes to Ant. You
can increase or decrease this value for your own projects by setting the - X option in
your local ANT_OPTS environment variable. For example:

pronpt > setenv ANT_OPTS=- Xnx128m

If you want to set the heap size permanently, add or update the MEM_ARGS variable in
the scripts that set your environment, start WebLogic Server, and so on, as shown in
the following snippet from a Windows command script that starts a WebLogic Server
instance:

set MEM ARGS=- Xns32m - Xmx200m

See the scripts and commands in W._ HOVE/ ser ver / bi n for examples of using the
MEM_ARGS variable.

1.15.3 Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML
pages, and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differences is preferred, but there are no other special requirements for
your editor. You can edit HTML or XML pages and JavaServer Pages with a plain text
editor, or use a Web page editor such as Dreamweaver. For XML pages, you can also
use an enterprise-level IDE with DTD validation or another development tool that
supports editing of XML files.

1.15.4 Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any
DBMS that you can access with a standard JDBC driver, but services such as WebLogic
Java Message Service (JMS) require a supported JDBC driver for Oracle, Sybase,
Informix, Microsoft SQL Server, or IBM DB2. See the Oracle Fusion Middleware
Supported System Configurations page on Oracle Technology Network to find out
about supported database systems and JDBC drivers.

1.15.5 Web Browser

Most Java EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Firefox and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support Secure Socket Layers (SSL) protocol? Test alternative security settings in the
browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differences in the JVMs embedded in

Overview of WebLogic Server Application Development 1-19

New and Changed Features in this Release

various browsers. One solution is to require users to install the Java plug-in so that
everyone has the same Java run-time version.

1.15.6 Third-Party Software

You can use third-party software products to enhance your WebLogic Server
development environment. WebLogic Developer Tools Resources provides developer
tools information for products that support the application servers.

Note:

Check with the software vendor to verify software compatibility with your
platform and WebLogic Server version.

1.16 New and Changed Features in this Release

This release of WebLogic Server introduces the following new application
development features:

* Monitoring support for WebSockets—You can monitor message statistics and
runtime properties for WebSocket applications and endpoints. For more
information, see Monitoring WebSocket Applications.

WebLogic Server now supports version 1.1 of the Java API for WebSockets.

* Maven support updates, including the following:

WebLogic Server now supports Maven version 3.2.5.
The Install goal now supports the quickstart installers.

Beginning in version 12.2.1, there is a single unified version of WLST that
automatically includes the WLST environment from all products in the
ORACLE_HOME. If you use the wlst-client goal to run WLST scripts that
contain Fusion Middleware dependencies, you must first include the
FMWSHARE dependency to pull in the necessary libraries needed by those
scripts.

The sour ce parameter of the deploy, redeploy, and distribute-app goals now
supports using a Maven coordinate, HTTP URL, or a local file/directory to
specify the application to deploy

For more information about the updated Maven support, see Using the WebLogic
Maven Plug-In.

® C(lass caching with the policy classloader —The policy classloader is the default
system class loader when starting WebLogic Server using a st art WebLogi ¢
script. The policy classloader improves class loader performance and server startup
time through class caching and indexing and is supported in any WebLogic mode
(development or production). For more information, see Class Caching With the
Policy Classloader..

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

1-20 Developing Applications for Oracle WebLogic Server

http://www.oracle.com/technetwork/developer-tools/index.html

2

Using Ant Tasks to Configure and Use a
WebLogic Server Domain

This chapter describes how to start and stop WebLogic Server instances and configure
WebLogic Server domains using WebLogic Ant tasks in your development build
scripts.

This chapter includes the following sections:

* Overview of Configuring and Starting Domains Using Ant Tasks

Starting Servers and Creating Domains Using the wlserver Ant Task

Configuring a WebLogic Server Domain Using the wlconfig Ant Task

Using the libclasspath Ant Task

2.1 Overview of Configuring and Starting Domains Using Ant Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common
configuration tasks in a development environment. The configuration tasks enable you
to start and stop WebLogic Server instances as well as create and configure WebLogic
Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts
for demonstrating or testing your application with custom domains. For example, a
single Ant build script can:

e Compile your application using the W conpi | e, W appc, and Web services Ant
tasks.

¢ Create a new single-server domain and start the Administration Server using the
W server Ant task.

¢ Configure the new domain with required application resources using the
w confi g Ant task.

¢ Deploy the application using the W depl oy Ant task.

* Automatically start a compiled client application to demonstrate or test product
features.

The sections that follow describe how to use the configuration Ant tasks, W ser ver
and W confi g.

2.2 Starting Servers and Creating Domains Using the wiserver Ant Task

The W server Ant task enables you to start, reboot, shutdown, or connect to a
WebLogic Server instance. The server instance may already exist in a configured

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-1

Starting Servers and Creating Domains Using the wiserver Ant Task

WebLogic Server domain, or you can create a new single-server domain for
development by using the gener at econf i g=t r ue attribute.

When you use the W ser ver task in an Ant script, the task does not return control
until the specified server is available and listening for connections. If you start up a
server instance using wlserver, the server process automatically terminates after the
Ant VM terminates. If you only connect to a currently-running server using the

W server task, the server process keeps running after Ant completes.

The W ser ver WebLogic Server Ant task extends the standard j ava Ant task

(org. apache. t ool s. ant. t askdef s. Java). This means that all the attributes of
the j ava Ant task also apply to the W ser ver Ant task. For example, you can use the
out put and err or attributes to specify the name of the files to which output and
standard errors of the W ser ver Ant task is written, respectively. For full
documentation about the attributes of the standard Java Ant task, see Java on the
Apache Antsite (ht t p: // ant . apache. or g/ manual / Tasks/j ava. ht m).

2.2.1 Basic Steps for Using wiserver

To use the W server Ant task:

1. Set your environment.

On Windows, execute the set W.SEnv. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOVE is the top-level directory of your
WebLogic Server installation.

On UNIX, execute the set W.SEnv. sh command, located in the directoryW._HOVE
\'server\ bi n, where W._HOVE is the top-level directory of your WebLogic Server
installation.

Note:

The Wl server task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant installation,
add the following task definition in your build file:

<taskdef name="wl server" classnanme="webl ogi c. ant.taskdefs. managenent. W.Server"/>

Note:

On UNIX operating systems, the set W.SEnv. sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

2. Add acall to thew ser ver task in the build script to start, shutdown, restart, or
connect to a server. See wlserver Ant Task Reference for information about
W ser ver attributes and default behavior.

3. Execute the Ant task or tasks specified in the bui | d. xmi file by typing ant in the
staging directory, optionally passing the command a target argument:

pronpt > ant

Use ant - ver bose to obtain more detailed messages from the W ser ver task.

2-2 Developing Applications for Oracle WebLogic Server

http://ant.apache.org/manual/Tasks/java.html

Starting Servers and Creating Domains Using the wiserver Ant Task

2.2.2 Sample build.xml Files for wiserver

The following shows a minimal W ser ver target that starts a server in the current
directory using all default values:

<target name="w server-default">
<w server/>
</target>

This target connects to an existing, running server using the indicated connection
parameters and user name/password combination:

<target name="connect-server">

<wl server host="127.0.0.1" port="7001" usernanme="webl ogi c" password="webl ogi c"
action="connect"/>
</target>

This target starts a WebLogic Server instance configured in the conf i g subdirectory:

<target name="start-server">
<wl server dir="./config" host="127.0.0.1" port="7001" action="start"/>
</target>

This target creates a new single-server domain in an empty directory, and starts the
domain's server instance:

<target name="new server">

<delete dir="./tnmp"/>

<nkdir dir="./tnp"/>

<wl server dir="./tnp" host="127.0.0.1" port="7001"

gener ateConfi g="true" username="webl ogi c" password="webl ogi ¢c" action="start"/>
</target>

2.2.3 wiserver Ant Task Reference

The following table describes the attributes of the W ser ver Ant task.

Table 2-1 Attributes of the wilserver Ant Task

Attribute Description Data Type Required?
policy The path to the security policy file for the WebLogic Server File No
domain. This attribute is used only for starting server instances.
dir The path that holds the domain configuration (for example, C: File No
\ O acl e\ M ddl ewar e\ user _pr oj ect s\ domai ns
\ nydonai n). By default, M ser ver uses the current directory.
beahome The path to the Middleware Home directory (for example, C: File No
\ O acl e\ M ddl ewar e).
weblogichome The path to the WebLogic Server installation directory (for File No

example, c: \ Oracl e\ M ddl ewar e\ W server_12. 1).

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-3

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
. __|

Attribute Description Data Type Required?
servername The name of the server to start, shutdown, reboot, or connect to. String Required
A WebLogic Server instance is uniquely identified by its only When
protocol, host, and port values, so if you use this set of attributes shutting
down the

to specify the server you want to start, shutdown or reboot, you P
do not need to specify its actual name using the ser ver nane Administrat
attribute. The only exception is when you want to shutdown the 10n server.
Administration server; in this case you must specify this attribute.

The default value for this attribute is nyser ver.

For more information on server naming convention, see Domain
and Server Name Restrictions in Understanding Domain
Configuration for Oracle WebLogic Server.

domainname The name of the WebLogic Server domain in which the server is String No
configured.

adminserveru The URL to access the Administration Server in the domain. This ~ String Required
rl attribute is required if you are starting up a Managed Server in for starting
the domain. Managed
Servers.

username The user name of an administrator account. If you omit both the String No
user nane and passwor d attributes, W ser ver attempts to
obtain the encrypted user name and password values from the
boot . properti es file. See Boot Identity Files in the
Administering Server Startup and Shutdown for Oracle WebLogic
Server for more information on boot . properti es.

password The password of an administrator account. If you omit both the String No
user nanme and passwor d attributes, W ser ver attempts to
obtain the encrypted user name and password values from the
boot . properti es file. See Boot Identity Files in the
Administering Server Startup and Shutdown for Oracle WebLogic
Server for more information on boot . properti es.

pkpassword The private key password for decrypting the SSL private key file. = String No

timeout The maximum time, in milliseconds, that W ser ver waits for a long No
server to boot. This also specifies the maximum amount of time
to wait when connecting to a running server.

The default value for this attribute is 0, which means that the Ant
task will wait indefinitely until the server transitions to
theRUNNI NGstate.

timeoutSecon The maximum time, in seconds, that W ser ver waits for a long No
ds server to boot. This also specifies the maximum amount of time
to wait when connecting to a running server.

The default value for this attribute is 0,which means that the Ant
task will wait indefinitely until the server transitions to the
RUNNI NGstate.

2-4 Developing Applications for Oracle WebLogic Server

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
. __|

Attribute

Description

Data Type Required?

productionmo
deenabled

Specifies whether a server instance boots in development mode Boolean
or in production mode.

Development mode enables a WebLogic Server instance to
automatically deploy and update applications that are in the
donai n_nane/ aut odepl oy directory (where domai n_nare is
the name of a WebLogic Server domain). In other words,
development mode lets you use auto-deploy. Production mode
disables the auto-deployment feature. See Deploying
Applications and Modules for more information.

Valid values for this attribute are Tr ue and Fal se. The default
value is Fal se (which means that by default a server instance
boots in development mode.)

Note: If you boot the server in production mode by setting this
attribute to Tr ue, you must reboot the server to set the mode
back to development mode. Or in other words, you cannot reset
the mode on a running server using other administrative tools,
such as the WebLogic Server Scripting Tool (WLST).

No

host

The DNS name or IP address on which the server instance is String
listening.

The default value for this attribute is | ocal host .

No

port

The TCP port number on which the server instance is listening. int
The default value for this attribute is 7001.

generateconfig

Specifies whether or not W ser ver creates a new domain for the Boolean
specified server.

Valid values for this attribute are t r ue and f al se. The default
valueis f al se.

No

action

Specifies the action W server performs: st art, shut down, String
r eboot , or connect.

The shut down action can be used with the optional
f or ceshut down attribute perform a forced shutdown.

The default value for this attributeis st art .

No

failonerror

This is a global attribute used by WebLogic Server Ant tasks. It Boolean
specifies whether the task should fail if it encounters an error
during the build.

Valid values for this attribute are t r ue and f al se. The default
valueis f al se.

No

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-5

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
. __|

Attribute Description Data Type Required?
forceshutdow This optional attribute is used in conjunction with the Boolean No
n acti on="shut down" attribute to perform a forced shutdown.

For example:

<w server
host ="${w s. host}"
port="${port}"
user nane="${w s. user nane}"
passwor d="${w s. passwor d}"
acti on="shut down"
forceshutdown="true"/>

Valid values for this attribute are true and
fal se. The default value is fal se.

noExit (Optional) Leave the server process running after Ant exits. Valid Boolean No
values are t r ue or f al se. The default value is f al se, which
means the server process will shut down when Ant exits.

protocol Specifies the protocol that the W ser ver Ant task uses to String No
communicate with the WebLogic Server instance.

Valid values aret 3,t 3s, htt p, htt ps, and i i op. The default

valueist 3.
forceImplicitU Specifies whether the W ser ver Ant task, if run against an 8.1 Boolean No.
pgrade (or previous) domain, should implicitly upgrade it.

Valid values are t r ue or f al se. The default value is f al se,
which means that the Ant task does not implicitly upgrade the
domain, but rather, will fail with an error indicating that the
domain needs to be upgraded.

For more information about upgrading domains, see Upgrading
Oracle WebLogic Server.

configFile Specifies the configuration file for your domain. String No.

The value of this attribute must be a valid XML file that conforms
to the XML schema as defined in the WebLogic Server Domain
Configuration Schema at ht t p: / / xnl ns. or acl e. com

webl ogi ¢/ donmai n/ 1. 0/ domai n. xsd.

The XML file must exist in the Administration Server's root
directory, which is either the current directory or the directory
that you specify with the di r attribute.

If you do not specify this attribute, the default value is

confi g. xm in the directory specified by the di r attribute. If
you do not specify the dir attribute, then the default domain
directory is the current directory.

2-6 Developing Applications for Oracle WebLogic Server

http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd
http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
. __|

Attribute

Description Data Type Required?

useBootProper
ties

Specifies whether to use the boot . properti es file when Boolean No
starting a WebLogic Server instance. If this attribute is set to

t r ue, WebLogic Server uses the user name and encrypted

password stored in the boot . properti es file to start rather

than any values set with the user nane and passwor d

attributes.

Note: The values of the user nane and passwor d attributes are
still used when shutting down or rebooting the WebLogic Server
instance. The useBoot Pr oper ti es attribute applies only when
starting the server. Valid values for this attribute are t r ue and

f al se. The default value is f al se.

verbose

Specifies that the Ant task output additional information asitis =~ Boolean No
performing its action.

Valid values for this attribute are t r ue and f al se. The default

value is f al se.

2.3 Configuring a WebLogic Server Domain Using the wiconfig Ant Task

The following sections describe how to use the W conf i g Ant task to configure a
WebLogic Server domain.

Note:

For equivalent functionality, you should use the WebLogic Scripting Tool
(WLST). See Understanding the WebLogic Scripting Tool.

2.3.1 What the wiconfig Ant Task Does

The W confi g Ant task enables you to configure a WebLogic Server domain by
creating, querying, or modifying configuration MBeans on a running Administration
Server instance. Specifically, W conf i g enables you to:

* Create new MBeans, optionally storing the new MBean Object Names in Ant
properties.

e Set attribute values on a named MBean available on the Administration Server.

* Create MBeans and set their attributes in one step by nesting set attribute
commands within create MBean commands.

* Query MBeans, optionally storing the query results in an Ant property reference.
¢ Query MBeans and set attribute values on all matching results.

e Establish a parent/child relationship among MBeans by nesting create commands
within other create commands.

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-7

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

2.3.2 Basic Steps for Using wiconfig

1. Set your environment in a command shell. See Basic Steps for Using wlserver for
details.

Note:

The wl confi g task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant installation,
add the following task definition in your build file:

<taskdef name="wl config" classname="webl ogi c. ant.taskdefs. management. W.Confi g"/>

2. Wl confi g is commonly used in combination with Wl ser ver to configure a new
WebLogic Server domain created in the context of an Ant task. If you will be using
W confi g to configure such a domain, first use W ser ver attributes to create a
new domain and start the WebLogic Server instance.

3. Add an initial call to the W conf i g task to connect to the Administration Server
for a domain. For example:

<target name="doconfig">
<wl config url="t3://local host:7001" username="webl ogi c"
passwor d=passwor d>
</target>

4. Addnested creat e, del et e, get , set, and quer y elements to configure the
domain.

5. Execute the Ant task or tasks specified in the bui | d. xni file by typing ant in the
staging directory, optionally passing the command a target argument:

pronpt > ant doconfig

Use ant -ver bose to obtain more detailed messages from the W conf i g task.

Note:

Since WLST is the recommended tool for domain creation scripts, you should
refer to the WLST offline sample scripts that are installed with the software.
The offline scripts demonstrate how to create domains using the domain
templates and are located in the following directory: W._ HOVE\ conmmon
\tenpl at es\ scri pt s\ W st , where W._ HOVE refers to the top-level
installation directory for WebLogic Server. For example, the

basi cW.SDomai n. py script creates a simple WebLogic domain, while

sanpl eMedRecDonmai n. py creates a domain that defines resources similar to
those used in the Avitek MedRec sample. See Understanding the WebLogic
Scripting Tool.

2.3.3 wiconfig Ant Task Reference

The following sections describe the attributes and elements that can be used with
w config.

2-8 Developing Applications for Oracle WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

2.3.4 Main Attributes

The following table describes the main attributes of the W conf i g Ant task.

Table 2-2 Main Attributes of the wlconfig Ant Task

Attribute Description Data Type Requi
red?
url The URL of the domain's Administration Server. String Yes
username The user name of an administrator account. String No
password The password of an administrator account. String No

To avoid having the plain text password appear in the build file or
in process utilities such as ps, first store a valid user name and
encrypted password in a configuration file using the WebLogic
Scripting Tool (WLST) st or eUser Conf i g command. Then omit
both the user name and passwor d attributes in your Ant build
file. When the attributes are omitted, Wl conf i g attempts to login
using values obtained from the default configuration file.

If you want to obtain a user name and password from a non-
default configuration file and key file, use the user confi gfile
and user keyf i | e attributes with w confi g.

See the command reference for st or eUser Confi g in the
Understanding the WebLogic Scripting Tool for more information on
storing and encrypting passwords.

failonerror This is a global attribute used by WebLogic Server Ant tasks. It Boolean No
specifies whether the task should fail if it encounters an error
during the build. This attribute is set to true by default.

userconfigfile Specifies the location of a user configuration file to use for File No
obtaining the administrative user name and password. Use this
option, instead of the user name and passwor d attributes, in your
build file when you do not want to have the plain text password
shown in-line or in process-level utilities such as ps.

Before specifying the user conf i gf i | e attribute, you must first
generate the file using the WebLogic Scripting Tool (WLST)

st oreUser Conf i g command as described in the Understanding
the WebLogic Scripting Tool.

userkeyfile Specifies the location of a user key file to use for encrypting and File No
decrypting the user name and password information stored in a
user configuration file (the user confi gf i | e attribute).

Before specifying the user keyf i | e attribute, you must first
generate the key file using the WebLogic Scripting Tool (WLST)
st or eUser Conf i g command as described in the Understanding
the WebLogic Scripting Tool.

2.3.5 Nested Elements

W confi g also has several elements that can be nested to specify configuration
options:

® create

e delete

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-9

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

* set

e get

* query
e invoke

2.3.5.1 create

The cr eat e element creates a new MBean in the WebLogic Server domain. The
W conf i g task can have any number of cr eat e elements.

A cr eat e element can have any number of nested set elements, which set attributes
on the newly-created MBean. A cr eat e element may also have additional, nested
cr eat e elements that create child MBeans.

The cr eat e element has the following attributes.

Table 2-3 Attributes of the create Element

Attribute Description Data Type Required?

name The name of the new MBean object to create. String No (W config
supplies a default
name if none is
specified.)

type The MBean type. String Yes

property The name of an optional Ant property that holds the String No

object name of the newly-created MBean.

Note: If you nest a cr eat e element inside of another
cr eat e element, you cannot specify the pr operty
attribute for the nested cr eat e element.

2.3.5.2 delete

The del et e element removes an existing MBean from the WebLogic Server domain.
del et e takes a single attribute:

Table 2-4 Attribute of the delete Element

Attribute Description Data Type Required?
mbean The object name of the ~ String Required when the del et e element is a direct
MBean to delete. child of the W conf i g task. Not required when

nested within a quer y element.

2.3.5.3 set

The set element sets MBean attributes on a named MBean, a newly-created MBean,
or on MBeans retrieved as part of a query. You can include the set element as a direct
child of the W conf i g task, or nested within a cr eat e or quer y element.

The set element has the following attributes:

2-10 Developing Applications for Oracle WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-5 Attributes of the set Element

Attribute Description Data Type Required?
attribute The name of the MBean attribute to set. String Yes
value The value to set for the specified MBean attribute. String Yes

You can specify multiple object names (stored in Ant
properties) as a value by delimiting the entire value list
with quotes and separating the object names with a

semicolon.

mbean The object name of the MBean whose values are being String Required only when the
set. This attribute is required only when the set set element is a direct
element is included as a direct child of the main child of the W confi g
W conf i g task; it is not required when the set element task.
is nested within the context of a cr eat e or query
element.

domain This attribute specifies the JMX domain name for String No

Security MBeans and third-party SPI MBeans. It is not
required for administration MBeans, as the domain
corresponds to the WebLogic Server domain.

Note: You cannot use this attribute if the set element is
nested inside of a cr eat e element.

2.3.5.4 get

The get element retrieves attribute values from an MBean in the WebLogic Server
domain. The W confi g task can have any number of get elements.

The get element has the following attributes.

Table 2-6 Attributes of the get Element

Attribute Description Data Type Required?

attribute The name of the MBean attribute whose value you String Yes
want to retrieve.

property The name of an Ant property that will hold the String Yes
retrieved MBean attribute value.

mbean The object name of the MBean you want to retrieve ~ String Yes
attribute values from.

2.3.5.5 query
The quer y elements finds MBean that match a search pattern.

The query element supports the following nested child elements:
* set —performs set operations on all MBeans in the result set.
e get —performs get operations on all MBeans in the result set.
* creat e—each MBean in the result set is used as a parent of a new MBean.

¢ del et e—performs delete operations on all MBeans in the result set.

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-11

Example of Creating a Security Realm with the wiconfig Ant Task

* i nvoke—invokes all matching MBeans in the result set.
W confi g can have any number of nested quer y elements.

quer y has the following attributes:

Table 2-7 Attributes of the query Element
. ___|

Attribute Description Data Type Required?

domain The name of the WebLogic Server domain in which to String No
search for MBeans.

type The type of MBean to query. String No
name The name of the MBean to query. String No
pattern A JMX query pattern. String No
property The name of an optional Ant property that will store the String No

query results.

domain This attribute specifies the JMX domain name for String No
Security MBeans and third-party SPI MBeans. It is not
required for administration MBeans, as the domain
corresponds to the WebLogic Server domain.

2.3.5.6 invoke

The i nvoke element invokes a management operation for one or more MBeans. For
WebLogic Server MBeans, you usually use this command to invoke operations other
than the get At t ri but e and set At t ri but e that most WebLogic Server MBeans
provide.

The i nvoke element has the following attributes.

Table 2-8 Attributes of the invoke Element
- - - - -]

Attribute Description Data Type Required?
mbean The object name of the MBean you wantto String You must specify either the
invoke. nbean ort ype attribute of

the invoke element.

type The type of MBean to invoke. String You must specify either the
nbean ort ype attribute of
the invoke element.

methodName The method of the MBean to invoke. String Yes

arguments The list of arguments (separated by spaces) String No
to pass to the method specified by the
met hodName attribute.

2.4 Example of Creating a Security Realm with the wiconfig Ant Task

The following example demonstrates how to create a security realm with the wlconfig
Ant task:

2-12 Developing Applications for Oracle WebLogic Server

Using the libclasspath Ant Task

Example 2-1 Creating a Security Realm with wiconfig

<w config url="t3://nyhost: 7001"
user nane="webl ogi c"
passwor d="passwor d" >
<create type="webl ogi c. managenent. security. Real ' name="MReal nf
property="new. provi der">
<set attribute="Defaul tReal ' val ue="fal se"/>
<create nane="MAut henticator"
type="webl ogi c. security. providers. aut henti cation. Def aul t Aut henti cator"
real me" MyReal ni'/ >
<create nane="MAuthorizer"
type="webl ogi c. security. provi ders. aut hori zation. Def aul t Aut hori zer" real m=" MyReal ni'/ >
<create name="MRol eMapper "
type="webl ogi c. security. provi ders. aut hori zati on. Def aul t Rol eMapper" real m=" MyReal ni'/ >
<create nane="MCredenti al Mapper"
type="webl ogi c. security. providers. credential s. Defaul t Credenti al Mapper"
real me" MyReal ni'/ >
<create nane="MCert Pat hProvi der"
type=""webl ogi c. security. provi ders. pk. WebLogi cCert Pat hProvi der" real n" MyReal n{'/ >
</create>
<set nbean="Security: Nane=MyReal n{ attri bute="Cert Pat hBui |l der"
val ue="Security: Name=MyReal mWCert Pat hProvi der"/>
</w config>

2.5 Using the libclasspath Ant Task

Use the | i bcl asspat h Ant task to build applications that use libraries, such as
application libraries and Web libraries.

¢ libclasspath Task Definition
e wilserver Ant Task Reference

¢ Example libclasspath Ant Task

2.5.1 libclasspath Task Definition

To use the task with your own Ant installation, add the following task definition in
your build file:

<taskdef name="li bcl asspat h"
cl assname="webl ogi c. ant . t askdefs. bui | d. Li bCl asspat hTask"/>

2.5.2 libclasspath Ant Task Reference

The following sections describe the attributes and elements that can be used with the
[i bcl asspat h Ant task.

e Main libclasspath Attributes

* Nested libclasspath Elements

2.5.3 Main libclasspath Attributes

The following table describes the main attributes of the | i bcl asspat h Ant task.

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-13

Using the libclasspath Ant Task

Table 2-9 Attributes of the libclasspath Ant Task
- ___|

Attribute Description Required
] The root of .ear or . war file to extract from. Either basedi r or basewar is
basedi r required.
b The name of the .war file to extract from. If basewar is specified, basedi r
asewar

is ignored and the library
referenced in basewar is used as
the . war file to extract classpath
or resourcepath information from.

) The fully qualified name of the directory to be used for ~ Yes.
tmpdi r extracting libraries.

Contains the classpath for the referenced libraries. At least one of the two attributes
cl asspat hpropert

v For example, if basedi r points to a . war file that is required.

references Web application libraries in the

webl ogi c. xm file, the cl asspat hproperty
contains the VEB- | NF/ cl asses and VEB- I NF/ | i b
directories of the Web application libraries.

Additionally, if basedi r points toa . war file that
has . war files under VEEB- | NF/ bea- ext , the

cl asspat hproperty contains the WEB- | NF/

cl asses and EEB- | NF/ | i b directories for the Oracle
extensions.

Contains library resources that are not classes.
resour cepat hprop

erty For example, if basedi r points toa. war file that

has . war files under VEB- | NF/ bea- ext,
resour cepat hpr oper ty contains the roots of the
exploded extensions.

2.5.4 Nested libclasspath Elements

I'i bcl asspat h also has two elements that can be nested to specify configuration
options. At least one of the elements is required when using the | i bcl asspat h Ant
task:

2.5.4.1 librarydir
The following attribute is required when using this element:

di r —Specifies that all files in this directory are registered as available libraries.

2.5.4.2 library
The following attribute is required when using this element:

fi | e—Register this file as an available library.

2.5.5 Example libclasspath Ant Task

This section provides example code of a | i bcl asspat h Ant task:

2-14 Developing Applications for Oracle WebLogic Server

Using the libclasspath Ant Task

Example 2-2 Example libclasspath Ant Task Code

<t askdef name="Ii bcl asspat h"
cl assname="webl ogi c. ant . t askdef s. bui | d. Li bl asspat hTask"/>

<I-- Builds classpath based on libraries defined in webl ogic-application. xm. -->
<target name="init.app.libs">

<libclasspath basedir="${src.dir}" tmpdir="${tnp.dir}"

cl asspat hproperty="app.|ib.cl asspath">
<l'ibrarydir dir="${webl ogic. home}/common/ depl oyabl e-1ibraries/"/>

</libcl asspat h>
<echo message="app.lib.claspath is ${app.lib.classpath}" |evel="info"/>
</target>

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-15

Using the libclasspath Ant Task

2-16 Developing Applications for Oracle WebLogic Server

3

Using the WebLogic Maven Plug-In

Apache Maven is a software tool for building and managing Java-based projects.
WebLogic Server provides support for Maven through the provisioning of plug-ins
that enable you to perform various operations on WebLogic Server from within a
Maven environment.

The webl ogi c- maven- pl ugi n provides enhanced functionality to install, start and
stop servers, create domains, execute WLST scripts, and compile and deploy
applications. With the webl ogi c- maven- pl ugi n, you can install WebLogic Server
from within your Maven environment to fulfill the local WebLogic Server requirement
when needed.

The following sections describe using webl ogi c- maven- pl ugi n:
¢ Installing Maven
* Configuring the WebLogic Maven Plug-In

* Maven Plug-In Goals

See Developing Applications Using Continuous Integration for additional Maven
documentation. In particular, see the section Building Java EE Projects for WebLogic
Server with Maven.

3.1 Installing Maven

Before you can use the webl ogi ¢c- maven- pl ugi n plug-in, you must first have a
functional Maven installation and a Maven repository. WebLogic Server supports
Maven 3.0.4 and later.

A distribution of Maven 3.2.5 is included with WebLogic Server in the following
location: ORACLE_HOVE\ or acl e_comon\ nodul es\ or g. apache. maven_3. 2. 5.
This is a copy of the standard Maven 3.2.5 release, without any modifications.

Run the ORACLE_HOME\ Wi ser ver\ server\ bi n\ set W.SEnv script to configure
Maven.

Alternatively, you can download and install your own copy of Maven from the Maven
Web site: ht t p: / / maven. apache. or g. Make sure you set any required variables as
detailed in that documentation, such as M2_HOVE and JAVA_HOVE.

Using the WebLogic Maven Plug-In 3-1

http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=MAVEN306
http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=MAVEN8767
http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=MAVEN8767
http://maven.apache.org

Configuring the WebLogic Maven Plug-In

Note:

The webl ogi c- maven- pl ugi n sets the Java protocol handler to

webl ogi c. net . To use the default JDK protocol handlers, specify the system
property - DUseSunHt t pHandl er =t r ue in the JVM that executes Maven. To
do this, override the environment variable MAVEN OPTS inside the mvn. bat
or mvn. sh files to set the appropriate value. For example: set
MAVEN_OPTS="- DUseSunHt t pHandl er =t rue".

For detailed information on installing and using Maven to build applications and
projects, see the Maven Users Centre at ht t p: / / maven. apache. or g/ user s/
i ndex. htni .

3.2 Configuring the WebLogic Maven Plug-In

The webl ogi c- maven- pl ugi n plug-in is provided as a pre-built JAR file and
accompanying pom file.

Follow these steps for installing and configuring webl ogi c- maven- pl ugi n:

1. Install the Oracle Maven sync plug-in and run the push goal:

a. Change directory to ORACLE_HOVE\ or acl e_common\ pl ugi ns\ maven
\ com or acl e\ maven\ or acl e- maven- sync\ 12. 2. 1.

b. mvn install:install-file -Dpontil e=oracl e- maven-
sync-12. 2. 1. pom -Dfi | e=or acl e-maven-sync-12. 2. 1.jar.

c. mvn com oracl e. naven: or acl e- maven-sync: push -
Dor acl eHone=c: \ or acl e\ ni ddl ewar e\ or acl e_hone\ .

2. You can validate whether you have successfully installed the plug-in using the
Maven hel p: descri be goal. See the Apache help plug-in describe goal
documentation for additional information.

mvn hel p: describe - Dgroupl d=com or acl e. webl ogi ¢
-Dartifact!|d=webl ogi c- maven- pl ugi n - Dversion=12.2.1-0-0

3.2.1 How to use the WebLogic Maven Plug-in
There are two ways to invoke the goals in the WebLogic Maven plug-in:
* From a Maven project POM.

e From the command line.

The appc, wsgen, wsimport, ws-jwsc, ws-wsdlc, and ws-clientgen goals require a
POM.

Other goals will work either way. For example, install, wlst, wlst-client, start-server, or
stop-server work either from a POM or the command line.

The preferred and recommended way is to use a Maven POM file.

To invoke a WebLogic Maven plug-in goal from a POM file, do the following:

1. Add a build section to your POM if you do not already have one.

2. Add a plug-in section to the build section for the WebLogic Maven plug-in.

3-2 Developing Applications for Oracle WebLogic Server

http://maven.apache.org/users/index.html
http://maven.apache.org/users/index.html
http://maven.apache.org/plugins/maven-help-plugin/describe-mojo.html

Configuring the WebLogic Maven Plug-In

3. Add an execution section to the WebLogic Maven plug-in's pl ugi n section for
each goal that you want to execute. This section must provide the necessary
parameters for the goal, and map the goal to a phase in the Maven Lifecycle.

The following shows an example of the necessary additions, including a few goals.
The detailed descriptions of each goal later in this section present the details for
parameters and examples for each goal.

If you map multiple goals to the same lifecycle phase, they are typically executed in
the order you list them in the POM.

Example 3-1 Modifying the POM File

<bui | d>
<pl ugi ns>
<pl ugi n>
<I-- This is the configuration for the
webl ogi c- maven- pl ugi n
-->
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifact!d>
<versi on>12. 2. 1- 0- 0</ ver si on>
<configuration>
<ni ddl ewar eHone>/ f mwhone/ W $12210</ ni ddl ewar eHone>
</ configuration>
<executions>
<!I-- Execute the appc goal during the package phase -->
<execution>
<i d>W s- appc</id>
<phase>package</ phase>
<goal s>
<goal >appc</ goal >
</ goal s>
<configuration>
<source>${project.build.directory}/${project.name}. ${project. packagi ng} </ source>
</ configuration>
</ execution>
<I-- Deploy the application to the WebLogic Server in the
pre-integration-test phase
-->
<execution>
<i d>w s- depl oy</i d>
<phase>pre-integration-test</phase>
<goal s>
<goal >depl oy</ goal >
</ goal s>
<configuration>
<!I--The adnin URL where the app is depl oyed
Here use the plugin's default value t3://1ocal host:7001-->
<adminurl>t3://127.0.0. 1: 7001</ admi nur| >
<user >webl ogi c</ user>
<passwor d>passwor d</ passwor d>
<I--The location of the file or directory to be depl oyed-->
<source>${project.build. directory}/${project.build.final Name}. ${project. packagi ng}</
source>
<I--The target servers where the application is deployed
Here use the plugin's default value Adm nServer-->
<t arget s>Adm nServer</target s>
<ver bose>t r ue</ ver bose>
<name>${ proj ect. bui | d. fi nal Name} </ name>
</ configuration>

Using the WebLogic Maven Plug-In 3-3

Configuring the WebLogic Maven Plug-In

</ execution>
<I-- Stop the application in the pre-integration-test phase -->
<execution>
<i d>wl s- st op- app</i d>
<phase>pre-integration-test</phase>
<goal s>
<goal >st op- app</ goal >
</ goal s>
<configuration>
<admi nurl>t3://127.0.0. 1: 7001</ adm nur| >
<user >webl ogi c</ user>
<passwor d>passwor d</ passwor d>
<name>${ proj ect . bui | d. fi nal Name} </ nane>
</ confi guration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ buil d>

Table 3-1 lists the phases in the default Maven lifecycle.

Table 3-1 Maven Lifecycle Phases

Phase Description

validate Validates the project is correct and all necessary information is
available.

compile Compiles the source code of the project.

test Tests the compiled source code using a suitable unit testing
framework. These tests should not require the code be packaged
or deployed.

package Takes the compiled code and package it in its distributable

format, such as a JAR.

integration-test Processes and deploys the package if necessary into an
environment where integration tests can be run.

verify Runs any checks to verify the package is valid and meets quality
criteria.
install Installs the package into the local repository, for use as a

dependency in other projects locally.

deploy In an integration or release environment, copies the final package
to the remote repository for sharing with other developers and
projects.

Table 3-2 shows the most common mappings of goals to phases

Table 3-2 Common Mapping of Goals to Phases
|

Phase Goal

validate ws-clientgen, ws-wsdlc

3-4 Developing Applications for Oracle WebLogic Server

Configuring the WebLogic Maven Plug-In

Table 3-2 (Cont.) Common Mapping of Goals to Phases
-

Phase Goal

compile Ws-jwsc

test NA

package appc

pre—integration—testl install, create-domain, start-server, distribute-app,

deploy, purge-tasks, redeploy, update-app, start-
app, stop-app, wlst, wist-client, and list-apps

post-integration-test? remove-domain, undeploy, stop-server, uninstall
verify NA
install NA
deploy NA

1 The integration-test phase has pre sub-phases that are executed before the actual execution of any
integration tests, respectively.

2 The integration-test phase has post sub-phases that are executed after the actual execution of any
integration tests, respectively.

3.2.2 Basic Configuration POM File

Example 3-2 illustrates a basic Java EE Web application pom.xml file that
demonstrates the use of the weblogic-maven-plugin appc goal.

Example 3-2 Basic Configuration pom.xml File

<project xmns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schen®a- i nst ance"
xsi : schemaLocation="http://mven. apache. org/ POM 4. 0.0
http://maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>denm. sah</ groupl d>
<artifact!|d>maven-deno</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>war </ packagi ng>

<nane>naven- denpo</ nane>

<properties>
<endor sed. di r>${ proj ect. bui | d. di rect ory}/ endor sed</ endor sed. di r >
<proj ect. bui | d. sour ceEncodi ng>UTF- 8</ pr oj ect . bui | d. sour ceEncodi ng>
</ properties>

<dependenci es>
<dependency>
<groupl d>com oracl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c-server-ponk/artifact!d>
<version>12. 2. 1- 0- 0</ ver si on>
<t ype>ponx/type>
<scope>provi ded</ scope>

Using the WebLogic Maven Plug-In 3-5

Maven Plug-In Goals

</ dependency>
</ dependenci es>

<pbui | d>
<pl ugi ns>

<!I-- \bLogic Server 12c Maven Plugin -->
<pl ugi n>
<groupl d>com oracl e. webl ogi c</ gr oupl d>
<artifact|d>webl ogi c- maven-pl ugi n</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
</ pl ugi n>
<configuration>
</ confi guration>
<executions>
<execution>
<i d>W s-appc</i d>
<phase>package</ phase>
<goal s>
<goal >appc</ goal >
</ goal s>
<configuration>
<sour ce>${proj ect. buil d. directory}/${project.name}.
${ proj ect . packagi ng} </ sour ce>
</configuration>
</ execution>
</ executi ons>
</ pl ugi ns>
</ bui | d>

</ proj ect>

3.3 Maven Plug-In Goals

Table 3-3 lists all the webl ogi c- maven- pl ugi n goals. Each goal is described in
detail in the sections that follow.

Table 3-3 Maven Plug-In Goals
- ___|

Goal Name Description

appc Generates and compiles the classes needed to deploy E]JBs and JSPs to
WebLogic Server. Also validates the deployment descriptors for
compliance with the current specifications at both the individual
module level and the application level.

create-domain Creates a domain for WebLogic Server using a domain template. This
goal supports specifying the domain directory (the last directory
determines the domain name) and the administrative username and
password. For more complex domain creation, use the W st goal.

deploy Deploys WebLogic Server applications and modules to a running
server. Supports all deployment formats; for example, WAR, JAR,
RAR, and such.

distribute-app Prepares deployment files for deployment by copying deployment

files to target servers and validating them.

3-6 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

3.3.1 appc

Table 3-3 (Cont.) Maven Plug-In Goals
__|

Goal Name Description
install Installs WebLogic Server.
list-apps Lists the deployment names for applications and standalone modules

deployed, distributed, or installed in the domain.

purge-tasks

Flushes out retired deployment tasks.

redeploy

Redeploys a running application or part of a running application.

remove-domain

Removes a domain directory.

start-app

Starts an application deployed on WebLogic Server.

start-server

Starts WebLogic Server. This goal starts WLS by running a local start
script. For starting remote servers using the node manager, use the
wlst goal instead.

stop-app

Stops an application.

stop-server

Stops WebLogic Server. This goal stops WLS by running a local start
script. For stopping remote servers using the node manager, use the
wlst goal instead.

undeploy Undeploys the application from WebLogic Server. Stops the
deployment unit and removes staged files from target servers.

uninstall Uninstalls WebLogic Server.

update-app Updates an application's deployment plan by redistributing the plan
files and reconfiguring the application based on the new plan
contents.

wlst WLST wrapper for Maven.

wlst-client

WLST wrapper that does not require a local server install for WLST
online commands.

ws-clientgen

Generates client Web service artifacts from a WSDL.

wsgen JAX-WS service endpoint implementation class and generates all of
the portable artifacts for a JAX-WS Web service.

wsimport Maven goal that parses a WSDL and binding files and generates the
Java code needed to access it

ws-jwsc Builds a JAX-WS Web service.

ws-wsdlc Generates a set of artifacts and a partial Java implementation of the
Web service from a WSDL.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: appc

Using the WebLogic Maven Plug-In 3-7

Maven Plug-In Goals

Description

Generates and compiles the classes needed to deploy E]JBs and JSPs to WebLogic
Server. Also validates the deployment descriptors for compliance with the current
specifications at both the individual module level and the application level. Does not
require a local server installation.

Parameters

Table 3-4 appc Parameters
. ___|

Name Type Required Description
al t appdd java.lang. Stri false Specifies an alternate descriptor. May be used to
ng specify an alternate appl i cati on. xnl for an. ear

deployment or an alternate web. xm or ej b. xmi for
standalone module deployments.

al twl sappdd java.lang. Stri false Specifies the path to an alternative WebLogic Server
ng application deployment descriptor.
basi cCl i entJar bool ean false When true, does not include deployment descriptors
in client JARs generated for E]JBs. Default value is:
fal se
cl asspath java.lang. Stri false This parameter is deprecated in this release and
ng ignored. Use the standard Maven dependency model
instead to manipulate the effective CLASSPATH
during a build.
clientJarQutpu java.lang.Stri false Specifies a directory where generated client JARs will
tDir ng be written.
comment ary bool ean false This parameter is deprecated in this release.
conpi | er java.lang. Stri false Specifies the Java compiler for compiling class files
ng from the generated Java source code. The Java

compiler program should be in your PATH unless you
specify the absolute path to the compiler explicitly.
Default value is: j avac

conpi | erd ass java.lang. Stri false The class that invokes the compiler. Default value is:
ng com sun. tool s.javac. Mai n

conti nueConpil bool ean false When true, continues compilation even when there

ation are errors in the JSP files. Default value is: f al se

debug bool ean false When true, compiles debugging information into

class files. Default value is: f al se

deprecation bool ean false When true, warns about the use of deprecated
methods in the generated Java source file when
compiling the source file into a class file. Default
value is: f al se

destdir java.io.File false Specifies the directory where compiled class files are
written. Use this parameter to place compiled classes
in a directory that is already in your CLASSPATH.

3-8 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-4 (Cont.) appc Parameters
. __|

Name Type Required Description
enabl eHot CodeG bool ean false This parameter is deprecated in this release.
en
forceGenerati o bool ean false When true, forces the generation of EJB and JSP
n classes. Otherwise, the classes will not be regenerated
if it is determined to be unnecessary. Default value is:
fal se
idl bool ean false When true, generates IDL for EJB remote interfaces.
Default value is: f al se
id Directory java.lang. Stri false Specifies the directory where IDL files will be
ng written. Default: the target directory or JAR
i dl Factories bool ean false When true, generates factory methods for valuetypes.
Default value is: f al se
i dl Met hodSi gna java.lang.Stri false Specifies the method signatures used to trigger IDL
tures ng code generation.
i dl NoAbstract| bool ean false When true, does not generate abstract interfaces and
nterfaces methods or attributes that contain them. Default
value is: f al se
i dl NoVal ueType bool ean false Does not generate valuetypes or the methods and
S attributes that contain them. Default value is: f al se
i dl O bi x bool ean false When true, generates IDL somewhat compatible with
Orbix 2000 2.0 C++. Default value is: f al se
id Overwite bool ean false When true, overwrites existing IDL files. Default
value is: f al se
i dl Ver bose bool ean false When true, displays additional status information for
IDL generation. Default value is: f al se
i dl Vi si broker bool ean false When true, generates IDL somewhat compatible
witih Visibroker 4.5 C++. Default value is: f al se
i gnorePl anVali bool ean false When true, ignores the plan file if it does not exist.
dation
iiop bool ean false When true, generates CORBA stubs for EJBs. Default
value is: f al se
iiopDirectory java.lang.Stri false Specifies the directory where IIOP stub files will be
ng written. Default: the target directory or JAR
keepgener at ed bool ean false When true, preserves the generated . j ava files.
Default value is: f al se
libraries java.lang. Stri false A comma-separated list of libraries.
ng
l'i brarydir java.io.File false Registers all the files in the specified directory as

libraries.

Using the WebLogic Maven Plug-In 3-9

Maven Plug-In Goals

Table 3-4 (Cont.) appc Parameters

Name Type Required Description
I'i neNunbers bool ean false When true, adds JSP line numbers to generated class
files to aid in debugging. Default value is: f al se
mani f est java.io.File false This parameter is deprecated in this release. Use the
standard Maven mechanism to specify the Manifest
during packaging.
maxfil es java.lang.Inte false Specifies the maximum number of generated Java
ger files to be compiled at one time.
nm ddl ewar eHone java.lang.Stri false This parameter is deprecated in this release and
ng ignored.
noexi t bool ean false When true, does not exit from the execution of the
appc goal when encountering JSP compile errors.
Default value is: t r ue
nor mi bool ean false This parameter is deprecated in this release.
nowar n bool ean false When true, suppresses compiler warnings. Default
valueis: f al se
nowite bool ean false This parameter is deprecated in this release.
optimize bool ean false When true, compiles with optimization on. Default
value is: f al se
out put java.io.File false Specifies an alternate output archive or directory.
When not set, the output is placed in the source
archive or directory.
pl an java.io.File false Specifies the path to an optional deployment plan.
qui et bool ean false When true, turns off output except for errors.
runti meFl ags java.lang. Stri false Passes a list of options to the compiler.
ng
serverC asspat java.lang.Stri false This parameter is deprecated in this release and
h ng ignored. Use the standard Maven dependency model
instead to manipulate the effective CLASSPATH.
sour ce java.io.File false Specifies the path to the source files. Default value is:
${project.build.directory}/${project.artifactld}.$
{project.packaging}
sour ceVer si on java.lang. Stri false Limits the compatibility of the Java files to a JDK no
ng higher than specified. For example "1.5". The default
value is the JDK version of the Java compiler used.
supressConpil e bool ean false This parameter is deprecated in this release and

r

ignored. Use the standard Maven dependency model
instead to add the target classes to the effective
CLASSPATH during a build.

3-10 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-4 (Cont.) appc Parameters
. __|

Name Type Required Description
targetVersion java.lang.Stri false Specifies the minimum level of the JVM required to
ng run the compiled class files. For example, "1.5". The

default value is the JDK version of the Java compiler
used.

ver bose boolean false When true, displays additional status information
during the compilation process. Default value is:
fal se

ver boseJavac bool ean false When true, enables verbose output from the Java

compiler. Default value is: f al se

webl ogi cHorre java.lang. Stri false This parameter is deprecated in this release and
ng ignored.
writelnferredD boolean false When true, writes out the descriptors with inferred

escriptors

information including annotations.

Usage Example

The appc goal executes the WebLogic Server application compiler utility to prepare
an application for deployment.

<execution>

<i d>W s-appc</id>

<phase>package</ phase>

<goal s>

<goal >appc</ goal >

</ goal s>

<configuration>
<source>${project.build.directory}/${project.name}.${project. packagi ng} </ source>
</ configuration>

</ execution>

Example 3-3 shows typical appc goal output.
Example 3-3 appc

$ nvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: appc
- Dsour ce=t ar get / basi c\\ebapp. war - Df or ceGener ati on=true
[INFOQ Scanning for projects...
[INFO
[INFQ - o
[INFQ Building basi c\Webapp 1. 0- SNAPSHOT
[INFQ] o
[INFO
[INFQ --- webl ogic-maven-plugin:12.2.1-0-0: appc (default-cli) @min-test ---
[INFO Runni ng webl ogic. appc on
[hone/ oracl e/ src/tests/main-test/target/basi c\Webapp. war

0 e
[INFO] BU LD SUCCESS

[INFQ] e o
[INFO Total tine: 7.901s

[INFQ Finished at: Wed Aug 19 10:52:46 EST 2015

[INFO Final Menory: 26M 692M

[INFO

Using the WebLogic Maven Plug-In 3-11

Maven Plug-In Goals

3.3.2 create-domain

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: cr eat e- domai n

Description

Creates a domain for WebLogic Server using a domain template. This goal supports
specifying the domain directory (the last directory determines the domain name) and
the administrative username and password. For more complex domain creation, use

the w st goal.

Note: Beginning in version 12.2.1, there is a single unified version of WLST
that automatically includes the WLST environment from all products in the
ORACLE_HOME.

Parameters

Table 3-5 create-domain Parameters

Name Type Required Description
domai nHone java.lang. St true Specifies the directory to use for creating the domain.
ring This goal takes the name of the last subdirectory
specified as the domain name and sets the new domain's
name to that value. For example, domainHome=/
weblogic/domains/MyNewDomain causes the domain
name to be set to MyNewDomain'.
domai nTenpl ate java.lang. St false Specifies the domain template file to use to create the
ring domain. The default domain template included with
WebLogic Server is used when this parameter is not
specified.
fai | OnDomai nEx bool ean false When t r ue and the domain to be created already exists,
ists the build fails and an exception is thrown. When f al se
and the domain to be created already exists, the build is
successful and the existing domain is not overwritten. If
the domain does not exist, this parameter has no effect.
Default value is: f al se
nm ddl ewar eHone java.lang. St true The path to the Oracle Middleware install directory.
ring
password java.lang. St true Specifies the administrative password.
ring
server Cl asspat java.lang. St false This parameter is deprecated and ignored in this release.
h ring
user java.lang. St true Specifies the administrative user name.
ring
webl ogi cHone java.lang. St false This parameter is deprecated and ignored in this release.
ring

3-12 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-5 (Cont.) create-domain Parameters
. __|

Name Type Required Description
w st Ver si on java.lang. St false Deprecated. As of version 12.2.1, there is a single, unified
ring version of WLST. This parameter is deprecated and
ignored.
wor ki ngDi r java.lang. St false The current working directory where the create-domain
ring goal executes. The default value is: $

{project.build.directory} /weblogic-maven-plugin

Usage Example

Use the cr eat e- domai n goal to create a WebLogic Server domain from a specified
WebLogic Server installation. You specify the location of the domain using the
domai nHone configuration parameter.

When creating a domain, a user name and password are required. You can specify
these using the user and passwor d configuration parameters in your POM file or by
specifying them on the command line.

The domain name is taken from the last subdirectory specified in donai nHorre.

<execution>

<i d>w s-creat e- domai n</i d>
<phase>pre-integration-test</phase>

<goal s>

<goal >cr eat e- domai n</ goal >

</ goal s>

<configuration>

<ni ddl ewar eHone>c: / dev/ w s12210</ mi dd| ewar eHorme>
<domai nHome>${ pr oj ect . bui | d. di rect ory}/ base_donai n</ domai nHone>
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

</ configuration>

</ execution>

Example 3-4 shows typical command output from the execution of the cr eat e-
donmai n goal.

Example 3-4 create-domain

m/n com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: cr eat e- domai n
- Ddomai nHone=c: \ or acl e\ mi ddl ewar e\ or acl e_hone\ user _pr oj ect s\ domai ns\ maven- domai n
- Dmi ddl ewar eHone=c: \ or acl e\ mi ddl ewar e\ or acl e_hone - Duser =webl ogi ¢ - Dpasswor d=password
[INFQ Scanning for projects...

[INFO
[INFQ] - mmmmmmm i m e e s s e e oo
[INFQ Building WbLogi c Server Maven Plugin 12.2.1-0-0
[INFQ] - mmmmmmmmm i m e e e s e oo
[INFQ
[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0: create-domain (default-cli) @

webl ogi c- maven-plugin ---
[INFQ [create-domin]Domain creation script:
readTenpl ate(r' C /oracl e/ m ddl ewar e/ or acl e_hone/ W server/ conmon/t enpl at es/ W s/
ws.jar')
set (' Name', 'maven-domain')
cd('/ Security/ maven- domai n/ User/ webl ogi c')
set (' Name', 'webl ogoc')

Using the WebLogic Maven Plug-In 3-13

Maven Plug-In Goals

set (' Password', '***')

writeDomain(r'c:/oraclel/mddl eware/ oracl e_hone/ user _

proj ect s/ domai ns/ maven- donai n')

[INFO [wWst]script temp file = C/Users/user/AppDatalLocal / Tenp/

t est 6066166061714573929. py

[INFQ [wWst]Executing: [cnd:[C://wi ndows\\systenB82\\cmd. exe, /c,

C:\oracl e\ m ddl ewar e\ oracl e_home\ wl server\ common\ bi n\w st. cnd

C:\ User s\ user\ AppDat a\ Local \ Tenp\t est 6066166061714573929. py 1]

[INFQ Process being executed, waiting for conpletion.

[INFQ [exec]

[INFQ [exec] Initializing WbLogic Scripting Tool (WST) ...

[INFQ [exec]

[INFQ [exec] Velcome to WebLogic Server Administration Scripting Shell
[INFQ [exec]

[INFQ [exec] Type help() for help on availabl e commands

[INFQ [exec]

[INFQ [wst][cnd: [C\\windows\\systenB82\\cnd. exe, /c, C\oracle\niddl evare
\oracl e_horme\ wl server\ common\ bi n\w st. cnd

C:\ Users\ user\ AppDat a\ Local \ Tenp\ t est 6066166061714573929. py]] exit code=0
[ENFQL - e e e e e e e o e o e
[INFQ BU LD SUCCESS

[ENFQL - e e e e e e e o e e
[INFQ Total time: 18.276s

[INFQ Finished at: Wed Aug 19 13:13:25 EDT 2015

[INFQ Final Menory: 9M 23M

[INFQ] == mmm e e e e e e e e e e e e e
3.3.3 deploy

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: depl oy

Description

Deploys WebLogic Server applications and modules to a running server. Supports all
deployment formats; for example, WAR, JAR, RAR, and such. Does not require a local
server installation.

Parameters

Table 3-6 deploy Parameters
- __|

Name Type Required Description

adminurl java.lang.String false Specifies the listen address and listen port of the
Administration Server. Default value is: t3:/ /localhost:
7001

advanced boolean false When true, prints advanced usage options.

altappdd java.lang.String false Specifies an alternate descriptor. May be used to specify

an alternate application.xml for an .ear deployment or
an alternate web.xml or ejb.xml for standalone module
deployments.

appversion java.lang.String false Version of the application to start.

3-14 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-6 (Cont.) deploy Parameters
. __|

Name Type Required Description

debug boolean false When true, displays debug-level messages to the
standard output. Default value is: false

enableSecurityValid | boolean false When true, enables validation of security data. Default

ation value is: false

examples boolean false When true, displays examples of how to use this plug-
in.

external_stage boolean false When true, indicates that the user wants to copy the

application in the server staging area externally or using
a third-party tool. When specified, WebLogic Server
looks for the application under
StagingDirectoryName(of target server)/
applicationName. Default value is: false

failOnError boolean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: true

id java.lang.String false Specifies an optional, user-supplied, unique deployment
task identifier.

libimplver java.lang.String false Implementation version of a Java EE library or optional
package. This option can be used only if the library or
package does not include an implementation version in
its manifest file.

library boolean false Deploy as a shared Java EE library or optional package.

libspecver java.lang.String false Specification version of a Java EE library or optional
package. This option can be used only if the library or
package does not include a specification version in its
manifest file.

middlewareHome | java.lang.String false This parameter is deprecated in this release and ignored.

name java.lang.String false Specifies the deployment name to assign to a newly-
deployed application or standalone module.

nostage boolean false When true, does not copy the deployment files to target
servers, but leaves them in a fixed location, specified by
the source parameter. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.

noversion boolean false When true, ignores all version related code paths on the
Administration Server. Default value is: false

nowait boolean false When true, initiates multiple tasks and then monitors
them later with the -list action. Default value is: false

Using the WebLogic Maven Plug-In 3-15

Maven Plug-In Goals

Table 3-6 (Cont.) deploy Parameters
. __|

Name Type Required Description

partition java.lang.String false Specifies the name of the partition associated with the
resource group to which you want to deploy an
application or library.

For deploy and distribute operations, you must specify
the name of the partition resource group to which you
want to deploy or distribute applications or libraries by
setting the resourceGroup attribute. If only one resource
group exists in the specified partition, then the
resourceGroup attribute is optional. The partition
parameter is optional for partition administrators.

password java.lang.String false Specifies the administrative password.
plan java.lang.String false Specifies the path to the deployment plan.
remote boolean false When true, specifies that the plug-in is not running on

the same machine as the Administration Server. In this
case, the source parameter specifies a path on the server,
unless the upload parameter is also used. Default value
is: false

resourceGroup java.lang.String false Specifies the name of the resource group at the partition
or domain level to which you want to deploy an
application or library.

For deploy and distribute operations, you must specify
the name of the resource group to which you want to
deploy or distribute applications or libraries by setting
the resourceGroup attribute. For partitions, if only one
resource group exists in the specified partition, then the
resourceGroup attribute is optional.

For other supported deployment actions, you do not

specify the resourceGroup attribute, as WebLogic Server
derives the resource group from the unique application

name.
resourceGroupTem | java.lang.String false Specifies the name of the resource group template to
plate which you want to deploy an application or library.
retiretimeout java.lang.Integer | false Specifies the number of seconds before WebLogic Server

undeploys the currently-running version of this
application or module so that clients can start using a
new version. When not specified, a graceful retirement
policy is assumed. Default value is: -1

securityModel java.lang.String false Specifies the security model to be used for this
deployment, overriding the default security model for
the security realm. Possible values are: DDOnly,
CustomRoles, CustomRolesAndPolicies, and Advanced.

serverClasspath java.lang.String false This parameter is deprecated in this release and ignored.

3-16 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-6 (Cont.) deploy Parameters

Name

Type

Required

Description

source

java.lang.String

false

Specifies the address of the artifact to deploy. The
address can be one of the following:

* A colon (:) separated list of Maven coordinates of the
form: groupld:artifactld:packaging:classifier:version.

® An archive file or exploded archive directory on the
local system. For example, /home/myhome/
myapps/helloworld.war.

¢ Aremote HTTP URL (http://foo/a/b.ear).

stage

boolean

false

When true, indicates that the application needs to be
copied into the target server staging area before
deployment. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.

submoduletargets

java.lang.String

false

Specifies JMS Server targets for resources defined within
a JMS application module. Possible values have the
form: submod@mod-jms.xml@target or
submoduleName®@target.

targets

java.lang.String

false

Specifies a comma-separated list of targets for the
current operation. The default is AdminServer.

timeout

java.lang.Integer

false

Specifies the maximum number of seconds WebLogic
Server will wait for the deployment task to complete.
The default value of -1 means wait forever. Default
value is: -1

upload

boolean

false

When true, copies the source files to the Administration
Server's upload directory prior to deployment. Use this
setting when running the plug-in remotely (using the
remote parameter) and when the user lacks normal
access to the Administration Server's file system. Default
value is: false.

usenonexclusiveloc
k

boolean

false

When true, the deployment operation uses an existing
lock, already acquired by the same user, on the domain.
This parameter is helpful in environments where
multiple deployment tools are used simultaneously and
one of the tools has already acquired a lock on the
domain configuration.

Default value is: false.

user

java.lang.String

false

Specifies the administrative user name.

userConfigFile

java.lang.String

false

Specifies the location of a user configuration file to use
for the administrative user name and password instead
of specifying the user name and password directly in
plain text.

userKeyFile

java.lang.String

false

Specifies the location of a user key file to use for
encrypting and decrypting the user name and password
stored in the user configuration file.

Using the WebLogic Maven Plug-In 3-17

Maven Plug-In Goals

Table 3-6 (Cont.) deploy Parameters
. __|

Name Type Required Description

verbose boolean false When true, displays additional status information.
Default value is: false

version boolean false When true, prints the version information. Default value
is: false
weblogicHome java.lang.String false This parameter is deprecated in this release and ignored.

Usage Example
Use this goal to deploy an application.

<execution>

<i d>W s-depl oy</i d>
<phase>pre-integration-test</phase>
<goal s>

<goal >depl oy</ goal >

</ goal s>

<configuration>

<adminurl >t 3://127.0.0. 1: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${proj ect. bui | d. di rectory}/${project. bui | d. fi nal Nane}
. ${proj ect. packagi ng} </ sour ce>

<t arget s>Admi nServer </ target s>

<ver bose>t r ue</ verbose>

<nanme>${ proj ect . bui | d. fi nal Nane} </ nane>
</ configuration>

</ executi on>

Example 3-5 shows typical depl oy goal output.
Example 3-5 deploy

mvn com oracl e. webl ogi c: webl ogi ¢c- maven- pl ugi n: depl oy

- Dsour ce=C: \ webser vi ces\ MySi npl eEj b. j ar

- Dpasswor d=passwor d - Duser =webl ogi ¢

[INFQ Scanning for projects...

[INFO

T 0
[INFQ Building WbLogi ¢ Server Maven Plugin 12.2.1-0-0

0
[INFO

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0:deploy (default-cli) @webl ogic-nmave
n-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://1ocal host:7001 -
depl oy -user weblogic -source C \webservices\MSinpleEb.jar -targets Adm nServe
r

<Aug 19, 2015> <Info> <J2EE Depl oynent SPI> <BEA-260121> <Initiati

ng depl oy operation for application, M/SinpleEb [archive: C\webservices\MSinp
leEjb.jar], to Adm nServer .>

Task 0 initiated: [Deployer:149026] depl oy application MySinpleE b on Adm nServer

Task 0 conpl eted: [Deployer:149026] depl oy application MySinpleEj b on Admi nServer

Target state: deploy conpleted on Server AdninServer

3-18 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

I 1
[INFQ BU LD SUCCESS

T 0
[INFQ Total time: 9.042s

[INFQ Finished at: Wed Aug 19 13:41:11 EDT 2015
[INFQ Final Menory: 10M 25M

3.3.4 distribute-app

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: di stri but e-app

Description

Prepares deployment files for deployment by copying deployment files to target
servers and validating them. Does not require a local server installation.

Parameters

Table 3-7 distribute-app Parameters

Name Type Required Description

adminurl java.lang.String | false Specifies the listen address and listen port of the
Administration Server. Default value is: t3:/ /localhost:
7001

advanced boolean false When true, prints advanced usage options.

debug boolean false When true, displays debug-level messages to the
standard output. Default value is: false

enableSecurityValidati | boolean false When true, enables validation of security data. Default

on value is: false

examples boolean false When true, displays examples of how to use this plug-
in.

external_stage boolean false When true, indicates that the user wants to copy the

application in the server staging area externally or
using a third-party tool. When specified, WebLogic
Server looks for the application under
StagingDirectoryName(of target server)/
applicationName. Default value is: false

failOnError boolean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: true

id java.lang.String | false Specifies an optional, user-supplied, unique
deployment task identifier.

middlewareHome java.lang.String | false This parameter is deprecated in this release and
ignored.
name java.lang.String | false Specifies the deployment name to assign to a newly-

deployed application or standalone module.

Using the WebLogic Maven Plug-In 3-19

Maven Plug-In Goals

Table 3-7 (Cont.) distribute-app Parameters
. ___|

Name

Type

Required

Description

nostage

boolean

false

When true, does not copy the deployment files to target
servers, but leaves them in a fixed location, specified by
the source parameter. By default, nostage is true for the
Administration Server and stage is true for the
Managed Server targets.

noversion

boolean

false

When true, ignores all version related code paths on the
Administration Server. Default value is: false

nowait

boolean

false

When true, initiates multiple tasks and then monitors
them later with the -list action. Default value is: false

partition

java.lang.String

false

Specifies the name of the partition associated with the
resource group on which you want to distribute an
application or library.

For deploy and distribute operations, you must specify
the name of the partition resource group to which you
want to deploy or distribute applications or libraries by
setting the resourceGroup attribute. If only one resource
group exists in the specified partition, then the
resourceGroup attribute is optional. The partition
parameter is optional for partition administrators.

password

java.lang.String

false

Specifies the administrative password.

plan

java.lang.String

false

Specifies the path to the deployment plan.

remote

boolean

false

When true, specifies that the plug-in is not running on
the same machine as the Administration Server. In this
case, the source parameter specifies a path on the
server, unless the upload parameter is also used.
Default value is: false

resourceGroup

java.lang.String

false

Specifies the name of the resource group at the partition
or domain level on which you want to distribute an
application or library.

For deploy and distribute operations, you must specify
the name of the resource group to which you want to
deploy or distribute applications or libraries by setting
the resourceGroup attribute. For partitions, if only one
resource group exists in the specified partition, then the
resourceGroup attribute is optional.

For other supported deployment actions, you do not
specify the resourceGroup attribute, as WebLogic
Server derives the resource group from the unique
application name.

resourceGroupTempla
te

java.lang.String

false

Specifies the name of the resource group template on
which you want to distribute an application or library.

retiretimeout

java.lang.Intege
r

false

Specifies the number of seconds before WebLogic
Server undeploys the currently-running version of this
application or module so that clients can start using a
new version. When not specified, a graceful retirement
policy is assumed. Default value is: -1

3-20 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-7 (Cont.) distribute-app Parameters
. ___|

Name

Type

Required

Description

securityModel

java.lang.String

false

Specifies the security model to be used for this
deployment, overriding the default security model for
the security realm. Possible values are: DDOnly,
CustomRoles, CustomRolesAndPolicies, and
Advanced.

serverClasspath

java.lang.String

false

This parameter is deprecated in this release and
ignored.

source

java.lang.String

false

Specifies the address of the artifact to distribute. The
address can be one of the following;:

* A colon (:) separated list of Maven coordinates of
the form:
groupld:artifactld:packaging:classifier:version.

* An archive file or exploded archive directory on the
local system. For example, /home/myhome/
myapps/helloworld.war.

¢ Aremote HTTP URL (http://foo/a/b.ear).

stage

boolean

false

When true, indicates that the application needs to be
copied into the target server staging area before
deployment. By default, nostage is true for the
Administration Server and stage is true for the
Managed Server targets.

submoduletargets

java.lang.String

false

Specifies JMS Server targets for resources defined
within a JMS application module. Possible values have
the form: submod@mod-jms.xml@target or
submoduleName®@target.

targets

java.lang.String

false

Specifies a comma-separated list of targets for the
current operation. When not specified, all configured
targets are used. For a new application, the default
target is the Administration Server.

timeout

java.lang.Intege
r

false

Specifies the maximum number of seconds WebLogic
Server will wait for the deployment task to complete.
The default value of -1 means wait forever. Default
value is: -1

upload

boolean

false

When true, copies the source files to the Administration
Server's upload directory prior to deployment. Use this
setting when running the plug-in remotely (using the
remote parameter) and when the user lacks normal
access to the Administration Server's file system.
Default value is: false

user

java.lang.String

false

Specifies the administrative user name.

userConfigFile

java.lang.String

false

Specifies the location of a user configuration file to use
for the administrative user name and password instead
of specifying the user name and password directly in
plain text.

Using the WebLogic Maven Plug-In 3-21

Maven Plug-In Goals

Table 3-7 (Cont.) distribute-app Parameters
. ___|

Name Type Required Description

userKeyFile java.lang.String | false Specifies the location of a user key file to use for
encrypting and decrypting the user name and password
stored in the user configuration file.

verbose boolean false When true, displays additional status information.
Default value is: false

version boolean false When true, prints the version information. Default
value is: false

weblogicHome java.lang.String | false This parameter is deprecated in this release and
ignored.

Use this goal to prepare deployment files for deployment.

<execution>

<i d>W s-di stribute-app</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >di stri but e- app</ goal >

</ goal s>

<configuration>

<admi nurl >t 3://127.0.0. 1: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${proj ect. bui | d. di rectory}/ ${project. bui | d. fi nal Nane}
. ${proj ect. packagi ng} </ sour ce>
<targets>cl usterl</targets>

<ver hose>t r ue</ verbose>

<nanme>${ proj ect . bui | d. fi nal Nane} </ name>
</ configuration>

</ execut i on>

Example 3-6 shows typical di st ri but e- app goal output.
Example 3-6 distribute-app

$ nvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: di stri but e-app
-Dadm nurl =t3://l ocal host: 7001 - Dstage=true - Dmi ddl ewar eHone=/ maven/ w 12210
-Dname=cl ust er-test -Duser=webl ogi ¢ - Dpasswor d=wel conel -Dtargets=clusterl
-Dsour ce=target/cl uster-test-1.0- SNAPSHOT. war

[INFQ Scanning for projects...

[INFO

0
[INFQ Building cluster-test 1.0- SNAPSHOT

0
[INFO

[INFQ --- weblogic-mven-plugin:12.2.1-0-0:distribute-app (default-cli) @
cluster-test ---

webl ogi c. Depl oyer invoked with options: -noexit -adnminurl t3://1ocal host: 7001
-distribute -user weblogic -nane cluster-test -source

/'hone/ oracl e/ src/tests/uber-test/cluster-test/

target/cluster-test-1.0- SNAPSHOT. war -targets clusterl -stage

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI> <BEA-260121>
<lInitiating distribute operation for application, cluster-test [archive:

/'hone/ oracl e/ src/tests/uber-test/cluster-test/

3-22 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

3.3.5 install

target/cluster-test-1.0- SNAPSHOT. war], to clusterl .>
Task 0 initiated: [Deployer:149026]distribute application cluster-test on

clusterl.

Task 0 conpleted: [Deployer:149026]distribute application cluster-test on

clusterl.

Target state: distribute conpleted on Cluster clusterl

[INFQ Total time: 6.953s
[INFQ Finished at: Wed Aug 19 14:10:00 EST 2015
[INFQ Final Menory: 15M 429M

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: i nst al

Description

Installs WebLogic Server from a JAR file.

Parameters

Table 3-8 install Parameters

Name

Type

Required

Description

artifactLocation

java.lang.String

true

Specifies the address of the installation. The address can be

one of the following;:

* A colon (:) separated list of Maven coordinates of the
form: groupld:artifactld:packaging:classifier:version.

¢ A file on the local system (/home/myhome/myapps/
wls_genericjar).

e Aremote HTTP URL (http://myarchive/installers/
wls_genericjar).

Using the WebLogic Maven Plug-In 3-23

Maven Plug-In Goals

Table 3-8 (Cont.) install Parameters

Name

Type

Required

Description

installCommand

java.lang.String

false

Installs the product with a binary or jar installer (including

the quickstart installers.) The following macros are supported:

* @INSTALLER_FILE@ - the path to the installer file.

e @INSTALL_TO_LOCATION@ - the target directory (only
relevant for the quickstart installer).

e @AVA_HOMER - path to the Java home.

* @JAVA_TMPDIR@ - path to the Java temporary directory.

* @RESPONSE_FILE@ - path to the OUI silent installer
response file.

e @INV_PTR_LOC_FILE@ - path to the OUI invPtrLoc file.

JAR installer example:

@JAVA_HOME@/bin/java -Xms512m -Xmx1024m -

Djava.io.tmpdir=@JAVA_TMPDIR@ -jar

@INSTALLER_FILE@ -silent -responseFile

@RESPONSE_FILE@ -invPtrLoc @INV_PTR_LOC_FILE@

Quick Start JAR installer example:

@JAVA_HOME@/bin/java -Xms512m -Xmx1024m -
Djava.io.tmpdir=@JAVA_TMPDIR@ -jar
@INSTALLER_FILE@
ORACLE_HOME=@QINSTALL_TO_LOCATION@

This parameter is optional.

If specified for a quickstart installer when the
supplementalQuickStartLocation parameter is supplied, the
same command is used for the supplemental quickstart
installer by replacing the @INSTALLER_FILE@ macro with
the file location derived from the
supplementalQuickStartLocation parameter.

If the @INSTALLER_FILE@ macro is not being used, the
install goal replaces the argument following the 'jar'
argument in the installCommand string with the
supplemental quickstart installer JAR file name.

installDir

java.lang.String

true

Deprecated. Use the middlewareHome parameter instead.

invPtrLoc

java.lang.String

false

The silent installer inventory location file. This is required on
Unix-based platforms when using the binary or JAR installers.

middlewareHom
e

java.lang.String

false

The ORACLE_HOME directory to install into when using the
quickstart installer.

quickStartInstalle
r

boolean

false

Indicates that this is a quickstart installer. The quickstart
installer requires you to specify the artifactLocation and
installDir parameter. All other parameters are ignored when
this parameter is set to true. The default value is false.

response

java.lang.String

false

Deprecated. Use the responseFile parameter instead.

responseFile

java.lang.String

false

The silent installer response file. This is required when using
the binary or jar installers.

supplementalQui
ckStartLocation

java.lang.String

false

The Quick Start supplemental installer.

3-24 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Usage Example

Use this goal to install WebLogic Server into a local directory so it can be used to
execute other goals, as well as to create a WebLogic Server domain for deploying and
testing the application represented as the Maven project.

Note:

The install goal creates a single managed server called nyser ver, and does
not create a domain. Most other goals, including create-domain, use a default
server name of Adm nSer ver . You therefore need to override the default
Admi nSer ver server name in your POM.

This goal installs WebLogic Server using a specified installation distribution. You
specify the location of the distribution using the art i f act Locat i on configuration
parameter, which can be the location of the distribution as a file on the file system; an
HTTP URL which can be accessed; or a Maven coordinate of the distribution installed
in a Maven repository. Specify the ar ti f act Locat i on configuration element in the
webl ogi c- maven- pl ugi n section of the pom xml file, or by using the —
Dartifact Locati on property when invoking Maven.

Example 3-7 shows an example of installing WebLogic Server using a JAR file on a
Windows-based system.

Example 3-7 Install From JAR File

m/n com or acl e. webl ogi c: webl ogi c- maven- pl ugi n:instal |

-DartifactLocation=c:\w s-tenp\w s_jrf_generic.jar
-Dinstal I Dir=C\test-maven -DresponseFile=c:\w s-tenp\response. txt
[INFQ Scanning for projects...
[INFO
[INFQ] - mm i mm s e oo
[INFOQ Building Maven Stub Project (No POV 1
[INFQ - mmm i mm s s oo
[INFO
[INFQ --- webl ogic-maven-plugin:12.2.1-0-0:install (default-cli) @ standal one-p
om ---
[INFQ [install]ORACLE HOVE = C:\test-maven\ O acl e\ M ddl ewar e\ Or acl e_Hone
[INFQ Executing: [cmd:[C\\Wndows\\SystenB2\\cnd. exe, /c, C\weblogic\dev\AUT
O D~1\x86_64\ JDK180~3\ JDK18~1. 0_4\jre\bi n\java. exe - Xms1024m - Xmx1024m - Dj ava.io
.tnpdir=C:\ Users\user\ AppDat a\ Local \ Tenp\ -jar c:\ws-tenp\ws_jrf_g
eneric.jar -silent -responseFile c:\w s-tenp\response.txt]]
[INFO Process being executed, waiting for conpletion.
[INFO [exec] Launcher log file is C\Users\user\AppData\Local\Tenp\ Oral nsta
['12015- 04- 23_09- 45- 13AM | auncher 2015- 04- 23_09- 45- 13AM | og.
[INFO [exec] Extracting files. e

[INFO [exec] Starting Oracle Universal Installer

[INFQ [exec]

[INFO [exec] Checking if CPU speed is above 300 MHz. Actual 2491 Passed
[INFQ [exec] Checking swap space: nust be greater than 512 MB Passed
[INFO [exec] Checking if this platformrequires a 64-bit JVM Actual 64 Pa
ssed (64-bit not required)

[INFQ [exec]

[INFQ [exec]

[INFO [exec] Preparing to launch the Oracle Universal Installer from C:\Users\
user\ AppDat a\ Local \ Tenp\ O al nst al | 2015- 04- 23_09- 45- 13AM

[INFQ [exec] Log: C:\Users\user\AppData\Local\Tenp\ O alnstall2015- 04-23_09-

Using the WebLogic Maven Plug-In 3-25

Maven Plug-In Goals

45-13AM i nst al | 2015- 04- 23_09- 45- 13AM | og

[INFQ [exec] Copyright (c) 1996, 2015, Oracle and/or its affiliates. Al rights
reserved.

[INFQ [exec] Reading response file..

[INFQ [exec] -nocheckForUpdates / SKI P_SOFTWARE_UPDATES flag i s passed and henc
e skipping software update

[INFQ [exec] Skipping Software Updates...

[INFQ [exec] Starting check : CertifiedVersions

[INFQ [exec] Expected result: One of 6.1,6.2,6.3

[INFO [exec] Actual Result: 6.1

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CertifiedVersions Check: Success.

[INFQ [exec] Starting check : CheckJDKVersion

[INFQ [exec] Expected result: 1.8.0_40

[INFQ [exec] Actual Result: 1.8.0_40-ea

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CheckJDKVersion Check: Success.

[INFQ [exec] Validations are enabled for this session.

[INFQ [exec] Verifying data......

[INFQ [exec] Copying Files...

[INFQ [exec] ----------- 20%--------- 40% --------- 60%--------- 80%----Visit ht
tp:// ww. oracl e. com support/policies.htm for Oracle Technical Support policies.

[INFQ [exec] ---100%

[INFQ [exec]

[INFQ [exec] The installation of Oracle Fusion Mddleware 12c Infrastructure 12
.2.1.0.0 conpleted successfully.

[INFQ [exec] Logs successfully copied to C\weblogic\src

\inventory\l ogs.

[INFQ Installer exited with code: 0

1o
[INFO BU LD SUCCESS

Example 3-8 shows an example of installing WebLogic Server using a JAR file and the
i nst al | Command parameter on a Windows-based system.

Example 3-8 Install From JAR File With installCommand

m/n com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: i nstal |

-Dinstal | Conmand="@AVA_HOME@ bi n/ j ava - Xms512m - Xmx1024m

-jar @NSTALLER FILE@-silent -responseFile c:\w s-tenp\response.txt"
-DartifactLocation=c:\w s-tenmp\wls_jrf_generic.jar

-DresponseFil e=c:\w s-tenp\response. t xt

INFQ Scanning for projects...

[INFQ)

[ENFQL - - m e e e e e e e e
[INFQ Building Maven Stub Project (No POV 1

[ENFQL - - m e e e e o e e e e
[INFQ)

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0:install (default-cli) @ standal one-p
om---

[INFQ [install]ORACLE_HOME = C:\test-maven\ Oracl e\ M ddl ewar e\ Oracl e_Home

[INFQ Executing: [cmd:[C \\Wndows\\SystenB2\\cnd. exe, /c, C: \weblogic\dev\AUT
0O _D~1\x86_64\ JDK180~3\ JDK18~1. 0_4\jre/ bin/java - Xms512m - Xmx1024m -jar c:\w s-t
emp\wl s_jrf_generic.jar -silent -responseFile c:\w s-tenp\response.txt]]

[INFQ Process being executed, waiting for conpletion.

[INFQ [exec] Launcher log file is C\Users\user\AppData\Local\Tenp\Oralnsta
I'12015- 04-23_10-58- 13AM | auncher 2015- 04- 23_10- 58- 13AM | og.

[INFQ [exec] Extracting files..o

[INFQ [exec] Starting Oracle Universal Installer

3-26 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

[INFQ [exec]

[INFQ [exec] Checking if CPU speed is above 300 MHz. Actual 2491 Passed
[INFQ [exec] Checking swap space: nust be greater than 512 MB Passed

[INFQ [exec] Checking if this platformrequires a 64-bit JVM Actual 64 Pa
ssed (64-bit not required)

[INFQ [exec]

[INFQ [exec]

[INFQ [exec] Preparing to launch the Oracle Universal Installer fromC\Users\
user\ AppDat a\ Local \ Tenp\ Or al nst al | 2015- 04- 23_10- 58- 13AM

[INFQ [exec] Log: C:\Users\user\AppData\Local\Tenp\ Oral nstal | 2015- 04- 23_10-
58- 13AM i nst al | 2015- 04- 23_10-58- 13AM | og

[INFQ [exec] Copyright (c) 1996, 2015, Oracle and/or its affiliates. Al rights
reserved.

[INFQ [exec] Reading response file..

[INFQ [exec] -nocheckForUpdates / SKI P_SOFTWARE_UPDATES flag i s passed and henc
e skipping software update

[INFQ [exec] Skipping Software Updates...

[INFQ [exec] Starting check : CertifiedVersions

[INFQ [exec] Expected result: One of 6.1,6.2,6.3

[INFOQ [exec] Actual Result: 6.1

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CertifiedVersions Check: Success.

[INFQ [exec] Starting check : CheckJDKVersion

[INFQ [exec] Expected result: 1.8.0_40

[INFQ [exec] Actual Result: 1.8.0_40-ea

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CheckJDKVersion Check: Success.

[INFQ [exec] Validations are enabled for this session.

[INFQ [exec] Verifying data......

[INFQ [exec] Copying Files...

[INFQ [exec] ----------- 20%--------- 40% --------- 60%--------- 80%----Visit ht
tp:// ww. oracl e. com support/policies.htm for Oracle Technical Support policies.

[INFQ [exec] ---100%

[INFQ [exec]

[INFQ [exec] The installation of Oracle Fusion Mddleware 12c Infrastructure 12
.2.1.0.0 conpleted successfully.

[INFQ [exec] Logs are located here: C:\Users\user\AppData\Local\Tenp\Oral ns
tall2015- 04- 23_10- 58- 13AM

[INFQ Installer exited with code: 0

1
[INFQ BU LD SUCCESS

1=
3.3.6 list-apps

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: |i st -apps

Description

Lists the deployment names for applications and standalone modules deployed,
distributed, or installed in the domain. Does not require a local server installation.

Using the WebLogic Maven Plug-In 3-27

Maven Plug-In Goals

Parameters

Table 3-9 list-apps Parameters
. ___|]
Name Type Required Description
admi nur | java.lang. Stri false Specifies the listen address and listen port of the
ng Administration Server. Default valueis: t 3: / /
| ocal host: 7001
advanced bool ean false When true, prints advanced usage options.
debug bool ean false When true, displays debug-level messages to the
standard output. Default value is: f al se
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: t r ue
m ddl ewareHo java.lang. Stri false This parameter is deprecated in this release and ignored.
ne ng
noversi on bool ean false When true, ignore all version-related code paths on the
Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors
them later with the - | i st action.
password java.lang. Stri false Specifies the administrative password.
ng
renot e bool ean false When true, specifies that the plug-in is not running on
the same machine as the Administration Server. In this
case, the sour ce parameter specifies a path on the
server, unless the upl oad parameter is also used.
serverClassp java.lang.Stri false This parameter is deprecated in this release and ignored.
ath ng
ti meout java.lang.Inte false Specifies the maximum number of seconds WebLogic
ger Server will wait for the deployment task to complete.
The default value of -1 means wait forever. Default value
is:-1
user java.lang. Stri false Specifies the administrative user name.
ng
userConfigFi java.lang.Stri false Specifies the location of a user configuration file to use
le ng for the administrative user name and password instead
of specifying the user name and password directly in
plain text.
user KeyFi | e java.lang. Stri false Specifies the location of a user key file to use for
ng encrypting and decrypting the user name and password
stored in the user configuration file.
ver bose bool ean false When true, displays additional status information.

Default valueis: f al se

3-28 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-9 (Cont.) list-apps Parameters
. __|

Name Type Required Description
ver si on bool ean false When true, prints the version information. Default value
is:fal se
webl ogi cHome java.lang. Stri false This parameter is deprecated in this release and ignored.
ng

Use the list-apps goal to list the deployment names.

<execution>

<id>w s-1ist-apps</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >l i st - apps</ goal >

</ goal s>

<configuration>
<adminurl>t3://127.0.0. 1: 7001</ admi nur| >
<user>webl ogi c</ user >

<passwor d>passwor d</ passwor d>

</ configuration>

</ execution>

Example 3-9 shows typical | i st - apps goal output.
Example 3-9 list-apps

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: | i st -apps

- Duser =webl ogi ¢ - Dpasswor d=passwor d

[INFOQ Scanning for projects...

[INFO

[INFQ] - oo
[INFO Building WbLogic Server Maven Plugin 12.2.1.0

[INFQ] - m e e oo
[INFO

[INFQ --- weblogic-maven-plugin:12.2.1-0-0:1ist-apps (default-cli) @webl ogic-m
aven-plugin ---
webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://1ocal host:7001 -
I'istapps -user weblogic

Sanpl esSear chWebApp

st ockBackEnd

aj axJSF

asyncServl et 30

si ngl et onBean

webFragnment

exanpl esVebApp

mai n\\ebApp

annot ation

MSi npl eEj b

st ockFront End

j sfBeanVal i dati on

programmaticSecurity

entityBeanValidation

facel et sSJSF

bookmar ki ngJ SF

st ockAdapt er

nol nter faceVi ewt nWAR

j dbcDat aSour ce. war

Using the WebLogic Maven Plug-In 3-29

Maven Plug-In Goals

asyncMet hodOf EJB

cal endar Styl edTi mer

cdi

jaxrs

criteriaQuery

port abl ed obal JNDI Nare

mul tipartFil eHandl i ng

el enent Col | ection

Nunber of Applications Found : 27

1=
[INFQ BU LD SUCCESS

L=
[INFQ Total time: 8.656s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 11M 28M

1=

C\Oracl e\M ddl ewar e\ Oracl e_Home\ wi server\server\lib>
3.3.7 purge-tasks

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: pur ge-t asks

Description

Flushes out retired deployment tasks.
Parameters

Table 3-10 purge-tasks Parameters
- __|

Name Type Required Description
admi nur | java.lang. Strin false Specifies the listen address and listen port of the
g Administration Server. Default valueis: t 3: / /

| ocal host: 7001

debug bool ean false When true, compiles debugging information into class
files. Default value is: f al se

fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: t r ue

password java.lang. Strin false Specifies the administrative password.
g
user java.lang. Strin false Specifies the administrative user name.
g
userConfigFile java.lang.Strin false Specifies the location of a user configuration file to use
g for the administrative user name and password instead
of specifying the user name and password directly in
plain text.
user KeyFi | e java.lang. Strin false Specifies the location of a user key file to use for
g encrypting and decrypting the user name and

password stored in the user configuration file.

3-30 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-10 (Cont.) purge-tasks Parameters
. ___|

Name Type Required Description

ver bose bool ean false When true, displays additional status information
during the deployment process. Default value is:
fal se

Use the purge-tasks goal to flush out retired deployment tasks.

<execution>

<i d>wl s- purge</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >pur ge-t asks</ goal >

</ goal s>

<configuration>

<admi nurl>t3://127.0.0. 1: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

</ configuration>

</ execut i on>

Example 3-11 shows typical pur ge- t asks goal output.
Example 3-10 purge-tasks

m/n com oracl e. webl ogi ¢: webl ogi ¢c- maven- pl ugi n: pur ge-t ask

s - Duser=webl ogi ¢ - Dpasswor d=password

[INFQ Scanning for projects...

[INFO

0
[INFQ Building Maven Stub Project (No POV 1

0
[INFO

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0: purge-tasks (default-cli) @standal o
ne- pom - - -

webl ogi c. Depl oyer invoked with options: -noexit -purgetasks -user weblogic -adm
inurl t3://1ocal host: 7001

Currently there are no retired tasks.

0
[INFO BU LD SUCCESS

0
[INFQ Total tine: 13.139s

[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 8M 24M

LENFQ] - m e
3.3.8 redeploy

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r edepl oy

Description

Redeploys a running application or part of a running application. Does not require a
local server installation.

Using the WebLogic Maven Plug-In 3-31

Maven Plug-In Goals

Table 3-11

Parameters

redeploy Parameters
- ___|

Name Type Required Description
admi nur | java.lang. Str false Specifies the listen address and listen port of the
ing Administration Server. Default value is: t 3: / / | ocal host :
7001
appversion java.lang.Str false Version of the application to start.
ing
deleteFile java.lang.Str false Removes the files specified in this parameter while leaving the
S ing application activated. This parameter is valid only for
unarchived deployments.
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnErro bool ean false When true, forces the Mojo to fail the build upon encountering
r an error if it would otherwise just log the error. Default value is:
true
id java.lang. Str false Specifies an optional, user-supplied, unique deployment task
ing identifier.
I'ibimplver java.lang.Str false Implementation version of a Java EE library or optional
i ng package. This option can be used only if the library or package
does not include an implementation version in its manifest file.
library boolean false Deploy as a shared Java EE library or optional package.
| i bspecver java.lang.Str false Specification version of a Java EE library or optional package.
i ng This option can be used only if the library or package does not
include a specification version in its manifest file.
m ddl eware java.lang. Str false This parameter is deprecated in this release and ignored.
Home ing
name java.lang. Str false Specifies the deployment name to assign to a newly-deployed
i ng application or standalone module.
partition java.lang.String false Specifies the name of the partition associated with the resource
group on which you want to redeploy an application or library.
The par ti ti on parameter is optional for partition
administrators.
password java.lang. Str false Specifies the administrative password.
ing
pl an java.lang. Str false Specifies the path to the deployment plan.
ing
renot e bool ean false When true, specifies that the plug-in is not running on the same

machine as the Administration Server. In this case, the sour ce
parameter specifies a path on the server, unless the upl oad
parameter is also used.

3-32 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-11 (Cont.) redeploy Parameters
. ___|

Name Type Required Description
removePlanO | boolean false Removes an overridden deployment plan during a r edepl oy
verride or updat e deployment action.

For applications or libraries deployed to a resource group, you

can override the application configuration defined in a resource

group template that a resource group references. To remove an
application override, specify the r enbvePl anOverri de
attribute.

resourceGrou | java.lang.String false Specifies the name of the resource group template on which

pTemplate you want to redeploy an application or library.

retiretime java.lang.Int false Specifies the number of seconds before WebLogic Server

out eger undeploys the currently running version of this application or
module so that clients can start using a new version. When not
specified, a graceful retirement policy is assumed. Default value
is:-1

rm GracePe java.lang.Int false Specifies the number of seconds in the grace period for RMI

riod eger requests during graceful shutdown. Can be used only when the
gracef ul parameteristrue. The default value of - 1 means

no grace period. Default value is: - 1

serverClas java.lang.Str false This parameter is deprecated in this release and ignored.

spath ing

source java.lang. Str false Specifies the address of the artifact to redeploy. The address can
ing be one of the following;:

* A colon (:) separated list of Maven coordinates of the form:
groupld:artifactld:packaging:classifier:version.

* An archive file or exploded archive directory on the local
system. For example, /home/myhome/myapps/
helloworld.war.

¢ A remote HTTP URL (http://foo/a/b.ear).

subnodul et java.lang. Str false Specifies JMS Server targets for resources defined within a JMS
argets i ng application module. Possible values have the form:
subnod@rod-j ns. xm @ ar get or

subnodul eNane@ ar get .

targets java.lang. Str false Specifies a comma-separated list of targets for the current
ing operation. The default target is AdminServer.

ti meout java.lang.Int false Specifies the maximum number of seconds WebLogic Server
eger will wait for the deployment task to complete. The default

value of -1 means wait forever. Default value is: - 1

upl oad bool ean false When true, copies the specified source files to the

Administration Server's upl oad directory prior to

redeployment. Use this setting when running the plug-in

remotely (using the r endt e parameter) and when the user
lacks normal access to the Administration Server's file system.

Default value is: f al se

user java.lang. Str false Specifies the administrative user name.

ing

Using the WebLogic Maven Plug-In 3-33

Maven Plug-In Goals

Table 3-11 (Cont.) redeploy Parameters
. ___|

Name Type Required Description
userConfig java.lang.Str false Specifies the location of a user configuration file to use for the
File i ng administrative user name and password instead of specifying

the user name and password directly in plain text.

userKeyFi |l java.lang. Str false Specifies the location of a user key file to use for encrypting and
e i ng decrypting the user name and password stored in the user
configuration file.

ver bose bool ean false When true, displays additional status information during the
deployment process. Default value is: f al se

ver si on bool ean false When true, prints the version information. Default value is:
fal se

webl ogi cHo java.lang. Str false This parameter is deprecated in this release and ignored.

me ing

Use the redeploy goal to redeploy an application or part of that application.

<execution>

<i d>w s-redepl oy</i d>
<phase>pre-integration-test</phase>
<goal s>

<goal >r edepl oy</ goal >

</ goal s>

<configuration>

<admi nurl>t3://127.0.0. 1: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${proj ect. bui | d. di rectory}/${project.build.final Nane}. ${proj ect. packagi ng}</
sour

ce>

<nanme>${ proj ect . bui | d. fi nal Nane} </ nanme>
</ configuration>

</ execution>

Example 3-11 shows typical r edepl oy goal output.
Example 3-11 redeploy

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: redepl oy -Dsou

rce=C:\ Oracl e\ M ddl ewar e\ Oracl e_Horme\ wl server\server\lib\ M/Si mpl eEj b.jar -Duser
=webl ogi ¢ - Dpasswor d=passwor d - Dname=Exanpl eEJB

[INFQ Scanning for projects...

[INFO

0
[INFQ Building WhbLogi ¢ Server Maven Plugin 12.2.1.0

0
[INFO

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0:redepl oy (default-cli) @webl ogic-ma
ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://1ocal host:7001 -
redepl oy -user webl ogi c -nane Exanpl eEJB -source C\Oracl e\ M ddl eware\ Oracl e_Hom
e\w server\server\lib\MSinpleEjb.jar -targets Adm nServer

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI> <BEA-260121> <Initiat

ing redepl oy operation for application, Exanpl eEJB [archive: C\Oacle\M ddl ewar

3-34 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

e\ Oracl e_Hone\w server\server\lib\MSinpleEb.jar], to Adm nServer .>
Task 3 initiated: [Deployer:149026] depl oy application Exanpl eEJB on Admi nServer.

Task 3 conpl eted: [Deployer: 149026] depl oy application Exanpl eEJB on Admi nServer.

Target state: redeploy conpleted on Server Adm nServer

I 1o
[INFO BU LD SUCCESS

1o
[INFO Total time: 6.322s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
3.3.9 remove-domain

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r enrove- donmai n

Description

Removes a domain directory. The domain must not be running for this goal to
succeed. This is a convenience goal for the simple use case. If the domain is already
removed, stdout prints a status message but the goal does not fail.

Parameters

Table 3-12 remove-domain Parameters
- - - - -]

Name Type Required Description
donmmi nHome java.lang. Stri true The path to the domain directory.
ng
workingDir java.lang. Stri false Specifies the current working directory.
ng Default value is: ${ pr oj ect . bui | d. di rect ory}/

webl ogi c- maven- pl ugi n)

Use the remove-domain goal to remove a domain directory.

<execution>

<i d>w s-renove- domai n</i d>

<phase>pre-integration-test</phase>

<goal s>

<goal >r enove- donai n</ goal >

</ goal s>

<configuration>

<donai nHome>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHome>
</ configuration>

</ executi on>

Example 3-13 shows typical r enbve- domai n goal output.
Example 3-12 remove-domain

m/n com or acl e. webl ogi ¢: webl ogi c- maven- pl ugi n: r enove- domai n
- Ddomai nHome=C: \ Or acl e\ M ddl ewar e\ Or acl e_Hone\ user _pr oj ect s\ domai ns\ base_domai n

[INFQ [renove-domain] Executing: [cmd:[C \\ W ndows\\ SystenB82\\cnd. exe, /¢, rndir

Using the WebLogic Maven Plug-In 3-35

Maven Plug-In Goals

1Q/S C\Oracle\Mddl ewar e\ Oracl e_Home\ user _pr oj ect s\ donai ns\ base_donai n] |
[INFQ Process being executed, waiting for conpletion.

[INFQ [renove-domain][cnd: [C \\Wndows\\SystenB2\\cnd.exe, /c, rmdir /Q/S C\O
racl e\ M ddl ewar e\ Or acl e_Home\ user _proj ect s\ donmai ns\ base_domai n]] exit code=0
[ENFQL - - e e o o e e e e e e e
[INFQ BU LD SUCCESS

[ENFQL - - m e e e o e o e e e e e e
[INFQ Total time: 4:01.074s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 8M 20M

Y510
3.3.10 start-app
Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start -app

Description

Starts an application deployed on WebLogic Server. Does not require a local server
installation.

Parameters

Table 3-13 start-app Parameters

Name Type Required Description
admi nnode bool ean false When true, switches the application to administration
mode so that it accepts only administration requests
via a configured administration channel. When false,
production mode is assumed. Default value is: f al se
admi nur java.lang. Stri false Specifies the listen address and listen port of the
ng Administration Server. Default valueis: t 3: //
| ocal host: 7001
advanced bool ean false When true, prints advanced usage options.
appver si on java.lang. Stri false Specifies the version identifier of the application.
ng When not specified, the currently active version of

the application is assumed.

debug bool ean false When true, displays debug-level messages to the
standard output. Default value is: f al se
domai nHone java.lang. Stri false This parameter is deprecated in this release and
ng ignored.
exanpl es bool ean false When true, displays examples of how to use this
plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log
the error. Default value is: t r ue
id java.lang. Stri false Specifies an optional, user-supplied, unique
ng deployment task identifier.

3-36 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-13 (Cont.) start-app Parameters
. ___|

Name Type Required Description
m ddl ewar eHom java.lang. Stri false This parameter is deprecated in this release and
e ng ignored.
name java.lang. Stri false Specifies the deployment name to assign to a newly-
ng deployed application or standalone module.
nover si on bool ean false When true, ignores all version-related code paths on
the Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors
them later with the - | i st action.
partition java.lang.String false Specifies the name of the partition associated with
the resource group on which you want to start an
application or library.
The parti ti on parameter is optional for partition
administrators.
password java.lang. Stri false Specifies the administrative password.
ng
pl anver si on java.lang. Stri false Specifies the version of the deployment plan. When
ng not specified, the currently active version of the
application's deployment plan is assumed.
renot e bool ean false When true, specifies that the plug-in is not running
on the same machine as the Administration Server. In
this case, the sour ce parameter specifies a path on
the server, unless the upl oad parameter is also used.
Default value is: f al se
retiretimeout java.lang.Inte false Specifies the number of seconds before WebLogic
ger Server undeploys the currently running version of
this application or module so that clients can start
using a new version. When not specified, a graceful
retirement policy is assumed. Default value is: - 1
serverClasspa java.lang.Stri false This parameter is deprecated in this release and
th ng ignored.
subnmodul etarg java.lang.Stri false Specifies JMS Server targets for resources defined
ets ng within a JMS application module. Possible values
have the form: submbd@rod- j ms. xm @ ar get or
subnmodul eNanme@ ar get .
targets java.lang. Stri false Specifies a comma-separated list of targets for the
ng current operation. When not specified, all configured
targets are used. For a new application, the default
target is all targets to which the application is
deployed.
ti meout java.lang.Inte false Specifies the maximum number of seconds WebLogic

ger

Server will wait for the deployment task to complete.
The default value of - 1 means wait forever. Default
valueis: - 1

Using the WebLogic Maven Plug-In 3-37

Maven Plug-In Goals

Table 3-13 (Cont.) start-app Parameters
. ___|

Name Type Required Description
user java.lang. Stri false Specifies the administrative user name.
ng
userConfigFil java.lang.Stri false Specifies the location of a user configuration file to
e ng use for the administrative user name and password
instead of specifying the user name and password
directly in plain text.
user KeyFil e java.lang. Stri false Specifies the location of a user key file to use for
ng encrypting and decrypting the user name and

password stored in the user configuration file.

ver bose bool ean false When true, displays additional status information
during the deployment process. Default value is:
fal se

ver si on bool ean false When true, prints the version information. Default

valueis: f al se

webl ogi cHome java.lang. Stri false This parameter is deprecated in this release and
ng ignored.

Use the start-app goal to start an application.

<execution>

<id>w s-start-app</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >st art - app</ goal >

</ goal s>

<configuration>

<admi nurl >t 3://1 ocal host: 7001</ adm nur| >
<user>webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<nane>${ proj ect . bui | d. fi nal Nane} </ nane>
</ confi guration>

</ execution>

Example 3-13 shows typical st ar t - app goal output.
Example 3-13 start-app

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: start - app

- Duser =webl ogi ¢ - Dpasswor d=password - Dnane=Exanpl eEJB

[INFQ Scanning for projects...

[1 NFO|

T =1 e
[INFQ Building WebLogic Server Maven Plugin 12.2.1.0

T =1 e
[1 NFO|

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0:start-app (default-cli) @webl ogic-m
aven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://1ocal host:7001 -
start -user weblogic -name Exanpl eEJB -retiretineout -1

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI> <BEA-260121> <Initi at

ing start operation for application, ExanpleEJB [archive: null], to configured t

3-38 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

argets.>

Task 5 initiated: [Deployer:149026]start application Exanpl eEJB on Adni nServer.
Task 5 conpleted: [Deployer:149026]start application Exanpl eEJB on Adni nServer.
Target state: start conpleted on Server Adm nServer

I 1
[INFO BU LD SUCCESS

0
[INFQ Total time: 6.053s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 10M 26M

;20 e

3.3.11 start-server

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start-server

Descript

ion

Starts WebLogic Server from a script in the current working directory. This is a
convenience goal for the simple use case. If the server is already started, stdout prints
a status message but the goal does not fail.

Parameters

Table 3-14 start-server Parameters
- - -]

Name Type Required Description
command java.lang. Stri false Specifies the script to start WebLogic Server. If this
ng[] parameter is not specified, it will default to either
start WebLogi c. shorstartWbLogi c. cnd,
based on the platform.
domai nHone java.lang. Stri false Specifies the path to the WebLogic Server domain.
ng Default value is: ${ basedi r}/ Or acl e/ Domai ns/
mydonai n
htt pPi ngUr | java.lang. Stri false Specifies the URL that, when pinged, will verify that
ng the server is running.
m ddl ewar eHone java.lang. Stri false This parameter is deprecated in this release and
ng ignored.
serverCl asspath java.lang. Stri false This parameter is deprecated in this release and
ng ignored.
ti meout Secs java.lang.Inte false Specifies in seconds, the timeout for the script. Valid
ger when the wai t For Exi t parameteristrue. A zero
(0) or negative value indicates that the script will not
timeout. Default value is: - 1
webl ogi cHone java.lang. Stri false This parameter is deprecated in this release and
ng ignored.

Using the WebLogic Maven Plug-In 3-39

Maven Plug-In Goals

Usage Example

The st art - server goal executes a st ar t WebLogi ¢ command on a given domain,
starting the WebLogic Server instance.

<execution>

<id>w s-w st-start-server</id>
<phase>pre-integration-test</phase>

<goal s>

<goal >start-server</goal >

</ goal s>

<configuration>

<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
</ confi guration>

</ executi on>

Example 3-14 shows typical st ar t - ser ver goal output.
Example 3-14 start-server

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: start - server
- Ddomai nHonme=c: \ or acl e\ mi ddl ewar e\ or acl e_hone\ user _proj ect s\ domai ns\w _server
[INFQ Scanning for projects...

[INFQ

1=
[INFQ Building WebLogic Server Maven Plugin 12.2.1-0-0

1= [INFQ
[INFQ --- webl ogic-maven-plugin:12.2.1-0-0:start-server (default-cli)

@ webl ogi c- maven-plugin ---

.[INFQ Starting server in domain:

c:\oracl e\ m ddl ewar e\ oracl e_hone\ user _proj ect s\ domai ns\w _server
[INFQ Check stdout file for details:

c:\oracl e\ m ddl ewar e\ oracl e_hone\ user _proj ect s\ domai ns\w _server
\'server-2183114106972126386. out

[INFQ Process being executed, waiting for conpletion.

[INFQ Total time: 37.725s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 8M 23M

3.3.12 stop-app

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- app

Description

Stops an application. Does not require a local server installation.

3-40 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Parameters

Table 3-15 stop-app Parameters
- __|

Name Type Required Description
admi nnode bool ean false When true, switches the application to administration
mode so that it accepts only administration requests via a
configured administration channel. When false,
production mode is assumed. Default value is: f al se
admi nur | java.lang. Stri false Specifies the listen address and listen port of the
ng Administration Server. Default valueis: t 3: //
I ocal host : 7001
advanced bool ean false When true, prints advanced usage options.
appver si on java.lang. Stri false Specifies the version identifier of the application. When
ng not specified, the currently active version of the
application is assumed.
debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se
donai nHone java.lang. Stri false This parameter is deprecated in this release and ignored.
ng
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default valueis: t r ue
gracef ul bool ean false When true, stops the application after existing HTTP
clients have completed their work. When not specified,
force shutdown is assumed.
id java.lang. Stri false Specifies an optional, user-supplied, unique deployment
ng task identifier.
i gnoresessio bool ean false When true, ignores pending HTTP sessions during
ns graceful shutdown. Can be used only when the
gracef ul parameteristrue. Default valueis: f al se
m ddl ewareHo java.lang. Stri false This parameter is deprecated in this release and ignored.
ne ng
name java.lang. Stri false Specifies the deployment name to assign to a newly-
ng deployed application or standalone module.
nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors
them later with the - | i st action.
partition java.lang.String false Specifies the name of the partition associated with the

resource group on which you want to stop an application
or library.

The parti ti on parameter is optional for partition
administrators.

Using the WebLogic Maven Plug-In 3-41

Maven Plug-In Goals

Table 3-15 (Cont.) stop-app Parameters
. __|

Name Type Required Description

password java.lang. Stri false Specifies the administrative password.
ng

pl anver si on java.lang. Stri false Specifies the version of the deployment plan. When not
ng specified, the currently active version of the application's

deployment plan is assumed.

renot e bool ean false When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case,
the sour ce parameter specifies a path on the server,
unless the upl oad parameter is also used. Default value

is: f al se
rm GracePeri java.lang.Inte false Specifies the number of seconds in the grace period for
od ger RMI requests during graceful shutdown. Can be used

only when the gr acef ul parameter is t r ue. The default
value of - 1 means no grace period. Default value is: - 1

serverClassp java.lang. Stri false This parameter is deprecated in this release and ignored.
ath ng

subnodul etar java.lang. Stri false Specifies JMS Server targets for resources defined within a
gets ng JMS application module. Possible values have the form:

subnmod@rod- j ns. xm @ ar get or
subnodul eNanme@ ar get .

targets java.lang. Stri false Specifies a comma-separated list of targets for the current
ng operation. When not specified, all configured targets are
used.
ti meout java.lang.Inte false Specifies the maximum number of seconds WebLogic
ger Server will wait for the deployment task to complete. The
default value of - 1 means wait forever. Default value is:
-1
user java.lang. Stri false Specifies the administrative user name.
ng
userConfigFi java.lang. Stri false Specifies the location of a user configuration file to use for
le ng the administrative user name and password instead of
specifying the user name and password directly in plain
text.
user KeyFil e java.lang. Stri false Specifies the location of a user key file to use for
ng encrypting and decrypting the user name and password

stored in the user configuration file.

ver bose bool ean false When true, displays additional status information.
Default value is: f al se

ver si on bool ean false When true, prints the version information. Default value
is: f al se
webl ogi cHome java.lang. Stri false This parameter is deprecated in this release and ignored.
ng

3-42 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Use the stop-app goal to stop an application.

<execution>

<id>wW s-start-app</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >start - app</ goal >

</ goal s>

<configuration>

<admi nurl >t 3:// ocal host: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<name>${ proj ect. bui | d. fi nal Name} </ nane>
</ confi guration>

</ executi on>

Example 3-15 shows typical st op- app goal output.
Example 3-15 stop-app

m/n com oracl e. webl ogi c: webl ogi ¢c- maven- pl ugi n: stop-app -Dus
er=webl ogi ¢ - Dpasswor d=password - Dnane=Exanpl eEJB

[INFQ Scanning for projects...

[INFQ)

1=
[INFQ Building WebLogic Server Maven Plugin 12.2.1.0

1=
[INFQ)

[INFQ --- webl ogi c- maven-pl ugin:12. 2. 1-0-0: stop-app (default-cli)
@ webl ogi c-ma

ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit

-adminurl t3://1ocal host: 7001 -

stop -user webl ogi ¢ -nane Exanpl eEJB

<Aug 19, 2015> <Info>

<J2EE Depl oynent SPI > <BEA-260121> <Initi at

ing stop operation for application, ExanpleEJB [archive: null],

to configured ta

rgets. >

Task 6 initiated: [Deployer:149026]stop application Exanpl eEJB on
Admi nServer.

Task 6 conpleted: [Deployer:149026]stop application Exanpl eEJB on
Admi nServer.

Target state: stop conpleted on Server Adm nServer

[INFQ Total time: 6.028s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 10M 29M

C\Oracl e\M ddl ewar e\ Oracl e_Home\ w server\server\lib>
3.3.13 stop-server

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- server

Using the WebLogic Maven Plug-In 3-43

Maven Plug-In Goals

Description

Stops WebLogic Server from a script in the current working directory. This is a
convenience goal for the simple use case. If the server is already stopped, stdout prints
a status message but the goal does not fail.

Parameters

Table 3-16 stop-server Parameters

Name Type Required Description
admi nur | java.lang. Str false Specifies the listen address and listen port of the
ing Administration Server. Default value is: t 3: / /

| ocal host: 7001

conmmand java.lang. Str false Specifies the script to stop WebLogic Server. This will
i ng[] default to st opWebLogi c. sh or st opWebLogi c. cnd,
based on the platform.
donai nHone java.lang. Str false Specifies the path to the WebLogic Server domain. Default
i ng value is: ${ basedi r}/ O acl e/ Domai ns/ mydonai n
m ddl ewar eHorre j ava.lang. Str false This parameter is deprecated in this release and ignored.
i ng
out put Log java.lang. Str false Specifies the log file to which the script output will be
i ng redirected. When not specified, it defaults to st dout .
password java.lang. Str true Specifies the administrative password.
i ng
ti meout Secs java.lang. I nt false Specifies, in seconds, the timeout for the script. This is
eger valid when the wai t For Exi t parameterist rue. A zero

(0) or negative value indicates that the script will not
timeout. Default value is: - 1

user java.lang. Str true Specifies the administrative user name.
i ng
wai t For Exi t bool ean false When true, the plug-in should wait for the script to

complete. Default value is: t r ue

webl ogi cHone java.lang. Str false This parameter is deprecated in this release and ignored.
i ng

wor ki ngDi r java.lang. Str false Specifies the working directory for the script. If you do not
i ng specify this attribute, it defaults to the current working

directory. Default value is: $
{project.base. directory}

Usage Example

The st op- ser ver goal stops a server instance using the st opWebLogi ¢ script in the
specified domain.

<execution>

<i d>W s-wW st -stop-server</id>
<phase>post -i nt egration-test </ phase>
<goal s>

3-44 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

<goal >st op- server </ goal >

</ goal s>

<configuration>

<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<admi nurl >t 3://1 ocal host: 7001</ adm nur| >

</ configuration>

</ execut i on>

Example 3-16 shows typical st op- ser ver goal output.
Example 3-16 stop-server

mvn com or acl e. webl ogi ¢: webl ogi ¢c- maven- pl ugi n: st op- ser ver

- Ddomai nHone=c: \ or acl e\ mi ddl ewar e\ or acl e_hone\ user proj ect s\ domai ns\wl _server
- Dwor ki ngDi r=c: \ oracl e\ mi ddl ewar e\ or acl e_home\ user _proj ect s\ domai ns\w _server
- Duser =webl ogi ¢ - Dpasswor d=passwor d

[INFQ Scanning for projects...

[NFQ

[ENFQ] - - m e e e e e e e e o e e o o e o e e e
[INFQ Building WebLogic Server Maven Plugin 12.2.1-0-0

[ENFQ] - - m e e e e e o e e o e e o o e o e e e
[NFQ

[INFQ --- webl ogi c- maven-pl ugi n: 12. 2. 1-0- 0: stop- server (default-cli)

@ webl ogi c

-maven-plugin ---

[INFQ Stop server in domain:

c:\oracl e\ m ddl ewar e\ or acl e_hone\ user_proj ect s\ dom

ains\wl _server

[INFQ Process being executed, waiting for conpletion.

[INFO [exec] Stopping Weblogic Server...

[INFQ [exec]

[INFQ [exec] Initializing WbLogic Scripting Tool (WST) ...

[INFQ [exec]

[INFQ [exec] Velcome to WeblLogic Server Administration Scripting Shell

[INFQ [exec]

[INFQ [exec] Type help() for help on availabl e commnds

[INFQ [exec]

[INFQ [exec] Connecting to t3://local host:7001 with userid weblogic ...
[INFQ [exec] Successfully connected to Admin Server "Adm nServer" that bel ongs
to domain "W _server".

[INFQ [exec]

[INFQ [exec] Warning: An insecure protocol was used to connect to the

[INFQ [exec] server. To ensure on-the-wire security, the SSL port or

[INFQ [exec] Admin port should be used instead.

[INFQ [exec]

[INFQ [exec] Shutting down the server AdminServer with force=false while connec
ted to Adm nServer ...

[INFQ [exec] WST lost connection to the Weblogic Server that you were
[INFQ [exec] connected to, this may happen if the server was shutdown or
[INFQ [exec] partitioned. You will have to re-connect to the server once the
[INFQ [exec] server is available.

[INFQ [exec] Disconnected from weblogic server: Adm nServer

[INFQ [exec] Disconnected from weblogic server:

[INFQ [exec]

[INFQ [exec]

[INFQ [exec] Exiting WebLogic Scripting Tool .

[INFQ [exec]

[INFQ [exec] Done

[INFQ [exec] Stopping Derby Server...

[INFQ [exec] Derby server stopped.

Using the WebLogic Maven Plug-In 3-45

Maven Plug-In Goals

[INFQ Total tine: 23.270s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 9M 23M

3.3.14 undeploy
Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: undepl oy

Description

Undeploys the application from WebLogic Server. Stops the deployment unit and
removes staged files from target servers. Does not require a local server installation.

Parameters

Table 3-17 undeploy Parameters

Name Type Required Description
admi nur | java.lang. Str false Specifies the listen address and listen port of the
ing Administration Server. Default value is: t 3: / /| ocal host:
7001
advanced bool ean false When true, prints advanced usage options.
appver si on java.lang. Str false Specifies the version identifier of the application. When not
i ng specified, the currently active version of the application is
assumed.
debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the error.
Default valueis: t r ue
gracef ul bool ean false When true, stops the application after existing HTTP clients
have completed their work. When not specified, forced
shutdown is assumed.
id java.lang. Str false Specifies an optional, user-supplied, unique deployment task
ing identifier.
i gnor esessi o bool ean false When true, ignores pending HT TP sessions during graceful
ns shutdown. Can be used only when the gr acef ul parameter
ist rue. Default valueis: f al se
m ddl ewareHo java.lang.Str false This parameter is deprecated in this release and ignored.

me ing

3-46 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-17 (Cont.) undeploy Parameters
. __|

Name Type Required Description
name java.lang. Str false Specifies the deployment name to assign to a newly-deployed
ing application or standalone module.
nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the - | i st action.
partition java.lang.String false Specifies the name of the partition associated with the
resource group on which you want to update an application
or library.
The parti ti on parameter is optional for partition
administrators.
password java.lang. Str false Specifies the administrative password.
ing
pl anversion java.lang.Str false Specifies the version of the deployment plan. When not
ing specified, the currently active version of the application's
deployment plan is assumed.
renote bool ean false When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case, the
sour ce parameter specifies a path on the server, unless the
upl oad parameter is also used. Default value is: f al se
resour ce& ou | javalang.String false Specifies the name of the resource group template from
pTenpl at e which you want to undeploy an application or library.
rm GracePeri java.lang.Int false Specifies the number of seconds in the grace period for RMI
od eger requests during graceful shutdown. Can be used only when
the gr acef ul parameter is t r ue. The default value of - 1
means no grace period. Default value is: - 1
serverClassp java.lang.Str false This parameter is deprecated in this release and ignored.
ath ing
subnodul etar java.lang. Str false Specifies JMS Server targets for resources defined within a
gets i ng JMS application module. Possible values have the form:
subnod@rod- j ns. xm @ ar get or
subnodul eNanme@ ar get .
targets java.lang. Str false Specifies a comma-separated list of targets for the current
i ng operation. When not specified, all configured targets are
used.
ti meout java.lang. | nt false Specifies the maximum number of seconds WebLogic Server
eger will wait for the deployment task to complete. The default
value of - 1 means wait forever. Default value is: - 1
user java.lang. Str false Specifies the administrative user name.

ing

Using the WebLogic Maven Plug-In 3-47

Maven Plug-In Goals

Table 3-17 (Cont.) undeploy Parameters
. __|

Name Type Required Description
userConfigFi java.lang.Str false Specifies the location of a user configuration file to use for the
le i ng administrative user name and password instead of specifying

the user name and password directly in plain text.

userKeyFile java.lang. Str false Specifies the location of a user key file to use for encrypting
i ng and decrypting the user name and password stored in the
user configuration file.

ver bose bool ean false When true, displays additional status information during the
deployment process. Default value is: f al se

ver si on bool ean false When true, prints the version information. Default value is:
fal se
webl ogi cHone java.lang. Str false This parameter is deprecated in this release and ignored.
ing

Use the undeploy goal to undeploy an application from WebLogic Server.

<execution>

<i d>w s- undepl oy</i d>
<phase>post -i ntegration-test </ phase>
<goal s>

<goal >undepl oy</ goal >

</ goal s>

<configuration>

<admi nurl>t3://127.0.0. 1: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<nanme>${ proj ect . bui | d. fi nal Nane} </ name>
</ configuration>

</ execution>

Example 3-17 shows typical undepl oy goal output.
Example 3-17 undeploy

mvn com oracl e. webl ogi c: webl ogi ¢c- maven- pl ugi n: undepl oy

- Duser =webl ogi ¢ - Dpasswor d=password - Dnane=Exanpl eEJB

[INFQ Scanning for projects...

[INFO

0
[INFQ Building WhbLogi ¢ Server Maven Plugin 12.2.1.0

0
[INFO

[INFQ --- webl ogi c-maven-plugin: 12. 2. 1-0-0: undepl oy (default-cli)

@ webl ogi c-ma

ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit

-adminurl t3://1ocal host: 7001 -

undepl oy -user webl ogi c -nane Exanpl eEJB -targets Adm nServer

<Aug 19, 2015> <Info> <J2EE Depl oynment SPI>

<BEA-260121> <Initi at

ing undepl oy operation for application, ExanpleEJB [archive: null],

to Adm nServ

er .>

3-48 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Task 7 initiated: [Deployer:149026]renove application Exanpl eEJB
on Admi nServer.

Task 7 conpleted: [Deployer:149026] remove application Exanpl eEJB
on Adni nServer.

Target state: undeploy conpleted on Server Adm nServer

[INFQ Total time: 6.114s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 9M 26M

3.3.15 uninstall

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: uni nst al |

Description

Uninstalls WebLogic Server.

Parameters

Table 3-18 uninstall Parameters
- - -]

Name Type Required Description

invPtrLoc java.io.File true This parameter is deprecated and ignored.

m ddl ewareHo java.lang. St true The Oracle Middleware installation directory. This
me ring parameter is required when uninstalling a server

installed using the Quickstart installer. Otherwise, it is
ignored and the location in the responseFile is used.

response

java.io.File true Deprecated. Use the responseFile parameter.

responseFil e

java.io.File | true The silent installer response file. This is required when
using the binary or JAR installers.

Example 3-18 shows an example of uninstalling WebLogic Server in a JAR file
installation.

Example 3-18 uninstall in JAR Installation

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: uni nstal | -DresponseFi |l e=c:\w s-tenp
\response. t xt

[INFQ Scanning for projects...

[INFQ

T =1 e
[INFQ Building Maven Stub Project (No POW 1

T 21 e
[INFQ

[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0: uninstall (default-cli) @standal one
-pom --a

[INFQ [uninstal |]ORACLE_HOME = C:\test-maven\ Oracl e\ M ddl ewar e\ Or acl e_Hone

Using the WebLogic Maven Plug-In 3-49

Maven Plug-In Goals

[INFQ [uninstal |]ORACLE_HOME = C:\test-maven\ Oracl e\ M ddl ewar e\ Or acl e_Hone
[INFQ Executing: [cmd:[C \\Wndows\\SystenB2\\cnd. exe, /c, C\test-mven\ O acl
e\ M ddl ewar e\ Oracl e_Hone\ oui \ bi n\dei nstal | .cnd -noconsol e -deinstall -silent -re
sponseFile c:\w s-temp\response. txt]]

[INFQ Process being executed, waiting for conpletion.

[INFQ Installer exited with code: 0

1o
[INFQ BU LD SUCCESS

1=
3.3.16 update-app

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: updat e- app

Description

Updates an application's deployment plan by redistributing the plan files and
reconfiguring the application based on the new plan contexts. Does not require a local
server installation.

Parameters

Table 3-19 update-app Parameters
- __|

Name Type Required Description
admi nur | java.lang. Strin false Specifies the listen address and listen port of the
g Administration Server. Default valueis: t 3: / /

| ocal host: 7001

advanced bool ean false When true, prints advanced usage options.
appversion java.lang.Strin false Specifies the version identifier of the application. When not
g specified, the currently active version of the application is
assumed.
debug bool ean false When true, displays debug-level messages to the standard

output. Default value is: f al se

donmmi nHome java.lang. Strin false This parameter is deprecated in this release and ignored.
g

exanpl es bool ean false When true, displays examples of how to use this plug-in.

failOnErro Dbool ean false When true, forces the Mojo to fail the build upon

r encountering an error if it would otherwise just log the

error. Default value is: t r ue

id java.lang. Strin false Specifies an optional, user-supplied, unique deployment
g task identifier.
m ddl eware java.lang.Strin false This parameter is deprecated in this release and ignored.
Hone g
nane java.lang. Strin false Specifies the deployment name to assign to a newly-
g deployed application or standalone module.

3-50 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-19 (Cont.) update-app Parameters
. ___|

Name Type Required Description
nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the - | i st action.
partition java.lang. Strin | false Specifies the name of the partition associated with the
g resource group on which you want to update an
application or library.
The partiti on parameter is optional for partition
administrators.
password java.lang. Strin false Specifies the administrative password.
g
pl an java.lang. Strin false Specifies the location of the deployment plan.
g
planversio java.lang.Strin false Specifies the version of the deployment plan. When not
n g specified, the currently active version of the application's
deployment plan is assumed.
renote bool ean false When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case,
the sour ce parameter specifies a path on the server, unless
the upl oad parameter is also used. Default value is: f al se
removePl an | bool ean false Removes an overridden deployment plan during a
Override redepl oy or updat e deployment action.
For applications or libraries deployed to a resource group,
you can override the application configuration defined in a
resource group template that a resource group references.
To remove an application override, specify the
renovePl anOverri de attribute.
rm GracePe java.lang.Integ false Specifies the number of seconds in the grace period for RMI
riod er requests during graceful shutdown. Can be used only when
the gr acef ul parameter ist r ue. The default value of - 1
means no grace period. Default value is: - 1
serverClas java.lang.Strin false This parameter is deprecated in this release and ignored.
spath g
subnodul et java.lang.Strin false Specifies JMS Server targets for resources defined within a
argets g JMS application module. Possible values have the form:
subnod@rod- j ms. xm @ ar get or
subnodul eNane@ ar get .
targets java.lang. Strin false The targets on which to update the application or module.
g This attribute can be a comma-separated list. If no targets
are specified, all targets are updated.
ti meout java.lang.Integ false Specifies the maximum number of seconds WebLogic
er Server will wait for the deployment task to complete. The

default value of - 1 means wait forever. Default value is: - 1

Using the WebLogic Maven Plug-In 3-51

Maven Plug-In Goals

Table 3-19 (Cont.) update-app Parameters
. ___|

Name Type Required Description

upl oad bool ean false When true, copies the source files to the Administration
Server's upload directory prior to deployment. Use this
setting when running the plug-in remotely (using the
r enot e parameter) and when the user lacks normal access
to the Administration Server's file system. Default value is:

fal se

user java.lang. Strin false Specifies the administrative user name.

g

userConfig java.lang.Strin false Specifies the location of a user configuration file to use for

File g the administrative user name and password instead of
specifying the user name and password directly in plain
text.

user KeyFi | java.lang. Strin false Specifies the location of a user key file to use for encrypting

e g and decrypting the user name and password stored in the
user configuration file.

ver bose bool ean false When true, displays additional status information. Default
valueis: f al se

ver si on bool ean false When true, prints the version information. Default value is:
fal se

webl ogicHo java.lang.Strin false This parameter is deprecated in this release and ignored.

e g

Use the update-app goal to update an application's deployment plan.

<execution>

<i d>w s-updat e- app</i d>
<phase>pre-integration-test</phase>
<goal s>

<goal >updat e- app</ goal >

</ goal s>

<configuration>
<adminurl>t3://127.0.0.1: 7001</ admi nurl >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<name>${ proj ect . bui | d. fi nal Name} </ name>
<pl an>${ basedi r}/ m sc/ nypl an. xn </ pl an>
</ configuration>

</ execution>

Example 3-19 shows typical W st goal output.
Example 3-19 update-app

$ nvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: updat e- app - Duser =webl ogi ¢
- Dpasswor d=passwor d - Dadmi nurl =t 3://1ocal host: 7001 - Dpl an=ni sc/ mypl an. xm
- Dname=basi c\Webapp
[INFOQ Scanning for projects...
[INFO
[INFQ] - o

3-52 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

3.3.17 wist

[INFQ Building basi cWebapp 1.0- SNAPSHOT

0
[INFQ)

[INFQ --- webl ogi c- maven-plugin: 12. 2. 1-0- 0: update-app (default-cli)
@main-test ---

webl ogi c. Depl oyer invoked with options: -noexit -adninurl

t3://1ocal host: 7001 -update -user weblogic -plan

/'hone/ oracl e/ src/tests/min-test/msc/nyplan.xm -nane basi c\Webapp -targets
Admi nSer ver

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI> <BEA-260121>

<lnitiating update operation for application, basicWbapp [archive: null],
to Admi nServer .>

Task 10 initiated: [Deployer:149026] update application basi cWebapp on

Admi nServer .

Task 10 conpl eted: [Depl oyer: 149026] update application basi cWebapp on

Admi nServer .

Target state: update conpleted on Server AdninServer

I 1
[INFO BU LD SUCCESS

1=
[INFQ Total time: 10.651s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 18M 435M

;20 e

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: w st

Description

This goal is a wrapper for the WLST scripting tool. It requires a server install for WLST
online commands.

Parameters

Table 3-20 wlst Parameters
- -]

Name

Type Require Description
d

args

java.lang. false Deprecated. Use the scriptArgs parameter to specify the
String arguments as a list of scriptArg elements.

Specifies a string value containing command-line arguments
to pass to the WLST Python interpreter. The arguments are
delimited by spaces. An argument that contains embedded
spaces should be quoted either with single quotes or with
escaped double quotes. For example, here is a string for args
that contains two parameters:

"' Thomas Paine' \"Nowis the tine that tries nen's
soul s.\""

debug

bool ean false When true, displays additional status information.
Default value is: f al se

Using the WebLogic Maven Plug-In 3-53

Maven Plug-In Goals

Table 3-20 (Cont.) wist Parameters

Name Type Require Description
d
executeScri ptBe bool ean false When true, specifies whether a script, if supplied, executes

foreFile before or after the file, if supplied. Either a file or a script is
required, and both are allowed. See f i | enane and scri pt
parameters.
Default value is: t r ue
fail OnError bool ean false When true, the Maven build fails if the Wl st goal fails. The
default value is t r ue, and consequently any error condition
will cause the build to fail. In some cases, setting
fail OnError tof al se will allow the W st goal to ignore
the error.
Default value is: t r ue
fil eName j ava. | ang. false Specifies the file path of the WLST Python script to execute.
String Eitherafi |l eName orascri pt parameter must be specified,
and both are allowed.
ni ddl ewar eHone java. |l ang. true The path to the Oracle Middleware install directory.
String
propertiesFile java.lang. false Specifies the path to a Java properties file. The property names
String become defined variables in the WLST Python interpreter and
are initialized to the values supplied. For example, if the
properties file contains the line " f oobar: Very
i mportant stuff",the variable f oobar can be used in a
Python statement in the following manner: " pri nt (' f oobar
has the value: ' + foobar)".
scri pt java.lang. false Specifies an inline WLST Python script, for example,
String "print('Hello, world!")"
Because Python uses indentation to demarcate nested code
blocks, scripts that contain multiple lines must be specified in
the POM without any indentation within the pom.xml, unless
required for code block demarcation.
scri pt Args java. |l ang. false Specifies the command-line arguments to pass to the WLST
String Jython interpreter as a list of string values. If the argument
contains any embedded whitespace, the caller must include
enclosing single quotes or escaped double quotes within the
scriptArg element's value. If scriptArgs is specified, the args
parameter (deprecated) is ignored.
serverCl asspath java.lang. false This parameter is deprecated and ignored in this release.
String
webl ogi cHorre j ava. | ang. false This parameter is deprecated and ignored in this release.
String
w st Ver si on java. | ang. false This parameter is deprecated and ignored in this release.
String
wor ki ngDi r j ava. |l ang. false The current working directory where the wlst-script and
String create-domain goal executes. The default value is: $

{project.build.directory}/weblogic-maven-plugin

3-54 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Usage Example

The W st goal enables the WebLogic Scripting Tool (WLST) to be used to execute
scripts that configure resources or perform other operations on a WebLogic Server
domain. The W st Maven goal uses the WebLogic Server WLST standard
environment so you can use it with all your existing WLST scripts.

You can use the W st goal to execute an external WLST script specified with the
fil eName configuration parameter, or you can specify a sequence of WLST
commands within the pom xm file using the scri pt configuration element:

<execution>

<i d>W s-w st-server</id>

<phase>post -i ntegration-test</phase>

<goal s>

<goal >wl st </ goal >

</ goal s>

<configuration>

<m ddl ewar eHone>c: / dev/w $12210</ mi dd| ewar eHome>

<fil eName>${project.basedir}/ msc/configure_resources. py</fileNane>
<args>t3://1 ocal host: 7001 webl ogi c password Admi nServer</args>
<script>

print('This is a WST inline script\n')

print('Next, we run a W.ST script to create JMS resources on the server\n')
</script>

<execut eScri pt Bef or eFi | e>t rue</ execut eScri pt Bef or eFi | e>

</ confi guration>

</ execution>

Example 3-20 shows typical W st goal output.
Example 3-20 wlst

m/n com or acl e. webl ogi ¢: webl ogi c- maven- pl ugi n: w st
-Df i | eNare=cr eat e- dat asour ce. py

[INFQ Scanning for projects...

[INFQ

1=
[INFQ Building maven-deno 1.0

1=
[INFQ

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0: W st (default-cli) @maven-dem ---
[INFQ ++ ++
[INFQ ++ webl ogic- maven-plugin: w st ++
[INFQ ++ ++

*** Creating DataSource ***

Connecting to t3://1ocal host: 7001 with userid weblogic ...

Successful |y connected to Admin Server 'AdminServer' that belongs to domain
"nydonain'.

Warning: An insecure protocol was used to connect to the

server. To ensure on-the-wire security, the SSL port or

Admin port should be used instead.

Location changed to edit tree. This is a witable tree with

Domai nMBean as the root. To make changes you will need to start

an edit session via startEdit().

For nore help, use hel p(edit)

Using the WebLogic Maven Plug-In 3-55

Maven Plug-In Goals

Starting an edit session ...

Started edit session, please be sure to save and activate your
changes once you are done.

Activating all your changes, this may take a while ...

The edit |ock associated with this edit session is released

once the activation is conpleted.

Activation conpl eted

Location changed to serverRuntime tree. This is a read-only tree with
Server Runti meMBean as the root.

For nore help, use hel p(serverRuntine)

% DataSource Details *

Nane: cp

Driver Name: Oracl e JDBC driver

Dat aSour ce: oracl e.jdbc. xa.client.Oacl eXADat aSour ce

Properties: {user =deno}

State: Runni ng

1=

[INFO BU LD SUCCESS

By default, the W st goal is bound to the pre-integration-test phase. To override the
default phase binding for a goal, you can explicitly bind plug-in goals to a particular
life cycle phase, for example, to the post-integration-test phase, as shown below. The
pom xm file binds the W st goal to both the pre- and post-integration-test phases (a
dual phase target). As shown, you can run different scripts in different phases,
overriding the default settings, and make modifications according to your needs.

Example pom xm file

<proj ect >

<executions>
<execution>
<i d>W.S_SETUP_RESOURCES</ i d>
<phase>pre-integration-test</phase>
<goal s>
<goal >w st </ goal >
</ goal s>
<configuration>
<fileNanme>src/ mai n/w st/ create-datasource. py</fil eName>
</ confi guration>
</ execution>

<execution>
<i d>W.S_TEARDOMN_RESOURCES</ i d>
<phase>post -i ntegration-test </ phase>
<goal s>
<goal >w st </ goal >
</ goal s>
<configuration>
<fileNanme>src/ mai n/w st/remove-dat asource. py</fil eName>
</ confi guration>
</ execution>
</ executi ons>

</ project>

3-56 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

3.3.18 wist-client

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: Wl st-client

Description

This goal is a WLST wrapper that does not require a local server install for WLST
online commands. If a local server install is not present, this goal supports only WLST

online commands.

Parameters

Table 3-21 wlst-client Parameters

Name Type Required

Description

ar gs java.lang.S false
tring

Deprecated. Use the scriptArgs parameter to specify the
arguments as a list of scriptArg elements.

debug bool ean false

When true, displays additional status information.
Default value is: f al se

executeScri ptB bool ean false
eforeFile

When true, specifies whether a script, if supplied, executes
before or after the file, if supplied. Either a file or a script is
required, and both are allowed. See f i | ename and scri pt
parameters.

Default value is: t r ue

fail OnError bool ean false

When true, the Maven build fails if the W st goal fails. The

default value is t r ue, and consequently any error condition
will cause the build to fail. In some cases, setting

fail OnError tof al se will allow the W st goal to ignore

the error.

Default valueis: t r ue

fil eName java.lang. S false
tring

Specifies the file path of the WLST Python script to execute.
Eitherafi |l eName orascri pt parameter must be
specified, and both are allowed.

m ddl ewareHone java.lang.S false
tring

The path to the Oracle Middleware install directory.

This parameter is required for any WLST offline commands.
If a WLST script uses offline commands without specifying a
valid middlewareHome, thisw st - cl i ent goal fails.

propertiesFile java.lang.S false
tring

Specifies the path to a Java properties file. The property
names become defined variables in the WLST Python
interpreter and are initialized to the values supplied. For
example, if the properties file contains the line " f oobar :
Very inportant stuff",the variable f oobar canbe
used in a Python statement in the following manner:
"print('foobar has the value: ' + foobar)".

Using the WebLogic Maven Plug-In 3-57

Maven Plug-In Goals

Table 3-21 (Cont.) wist-client Parameters
. __|

Name Type Required Description
scri pt java.lang. S false Specifies an inline WLST Python script, for example,
tring "print('Hello, world!")"

Because Python uses indentation to demarcate nested code
blocks, scripts that contain multiple lines must be specified
in the POM without any indentation within the pom.xml,
unless required for code block demarcation.

scri pt Args java.lang. S | false Specifies the command-line arguments to pass to the WLST
tring Jython interpreter as a list of string values. If the argument
contains any embedded whitespace, the caller must include
enclosing single quotes or escaped double quotes within the
scriptArg element's value. If scriptArgs is specified, the args
parameter (deprecated) is ignored.

Running Scripts With Fusion Middleware Dependencies

If you use the wlst-client goal to run WLST scripts that contain Fusion Middleware
dependencies, you must first include the com.oracle.fmwshare dependency to pull in
the necessary libraries needed by those scripts.

The com.oracle.fmwshare dependency must be listed before any Fusion Middleware
dependencies.

For example, to run a WLST script for SOA, add a dependency on
com.oracle.fmwshare and SOA, similar to the following:

<pl ugi n>
<groupl d>com oracl e. webl ogi c</ groupl d>
<artifact!d>webl ogi c- maven-pl ugi n</artifact!d>
<version>12, 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<jd>soa-w st-client</id>
<goal s>
<goal >wl st -cl i ent </ goal >
</ goal s>
<configuration>
<fil eName>${ proj ect. basedir}/ m sc/ doSoaSt uf f. py</fil eName>
<scri pt Args>
<scri pt Arg>${ adm nUser Nane} </ scri pt Ar g>
<scri pt Arg>${ adm nPasswor d} </ scri pt Ar g>
<script Arg>${admi nUrl}</script Arg>
</scriptArgs>
</configuration>
</ execution>
</ executions>
<dependenci es>
<dependency>
<gr oupl d>com or acl e. f mashar e</ gr oupl d>
<artifact!d>f mwshare-w st-dependenci es</artifact!d>
<versi on>12. 2. 1- 0- 0</ ver si on>
<t ype>ponx/type>
</ dependency>
<dependency>
<groupl d>com or acl e. soa</ groupl d>

3-58 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

<artifactld>soa-w st-dependenci es</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<t ype>ponx/type>
</ dependency>
</ dependenci es>
</ pl ugi n>

Usage Example

The W st - cl i ent goal enables the WebLogic Scripting Tool (WLST) to be used to
execute scripts that configure resources or perform other operations on a WebLogic
Server domain. The W st - cl i ent goal does not require a local server install for
WLST online commands.

The W st - cl i ent Maven goal uses the WebLogic Server WLST standard
environment so you can use it with all your existing WLST scripts.

You can use the W st - cl i ent goal to execute an external WLST script specified with
the f i | eName configuration parameter, you can specify a sequence of WLST
commands within the pom xm file using the scri pt configuration element, or you
can use both mechanisms.

For example:

<execution>

<id>W s-w st-server</id>

<phase>post -i ntegration-test </ phase>

<goal s>

<goal >w st -cl i ent </ goal >

</ goal s>

<configuration>

<fil eName>${proj ect . basedir}/m sc/configure_resources. py</fil eNane>
<args>t 3:// some- host : 7001 webl ogi ¢ password Adni nServer </ ar gs>
<script>

print('This is a WST inline script\n')

print(' Next, we run a WST script to create JMS resources on the server\n')
</script>

<execut eScri pt Bef or eFi | e>t rue</ execut eScri pt Bef or eFi | e>

</ confi guration>

</ execution>

Example 3-20 shows typical W st - ¢l i ent goal output.
Example 3-21 wlst-client

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: wl st-client
-Df i | eNare=cr eat e- dat asour ce. py

[INFQ Scanning for projects...

[INFO

[INFQ] - oo
[INFQ Building maven-deno 1.0

[INFQ] - m oo
[INFO

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0: W st (default-cli) @maven-demo ---
[INFQ ++ ++
[INFQ ++ webl ogic- maven-plugin: w st ++
[INFQ ++ ++

*** Creating DataSource ***

Using the WebLogic Maven Plug-In 3-59

Maven Plug-In Goals

Connecting to t3://some-host: 7001 with userid weblogic ...
Successful Iy connected to Admin Server 'AdminServer' that belongs to domain
"nydonmain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

Location changed to edit tree. This is a witable tree with
Domai nMBean as the root. To make changes you will need to start
an edit session via startEdit().

For nore help, use hel p(edit)

Starting an edit session ...

Started edit session, please be sure to save and activate your
changes once you are done.

Activating all your changes, this may take a while ...

The edit |ock associated with this edit session is released

once the activation is conpleted.

Activation conpl eted

Location changed to serverRuntime tree. This is a read-only tree with
Server Runti meMBean as the root.

For nore help, use hel p(serverRuntine)

% DataSource Details *

Nane: cp

Driver Name: Oracl e JDBC driver

Dat aSour ce: oracl e.jdbc. xa.client.Oacl eXADat aSour ce

Properties: {user =deno}

State: Runni ng

1=

[INFO BU LD SUCCESS

As another example, assume that you have the following simple WLST script:

try:
connect (' webl ogic', ' password','t3://10.151. 69. 120: 7001")
l'i st Applications()
print (' TEST PASS')
except:
print(' TEST FAIL")

You can supply this WLST script with the f i | eNane configuration parameter, as
shown in Example 3-22.

Example 3-22 wlst-client Script Example

C\Oracl e\ M ddl ewar e\ Oracl e_Hore\ or acl e_common\ pl ugi ns\ maven\ com or acl e\ maven\ or

acl e-maven-sync\ 12. 2. 1>mvn com or acl e. webl ogi ¢: webl ogi c- maven- pl ugi n: w st-client
-Dfi | eName=t est . py

[INFQ Scanning for projects...

[INFQ)

1=

[INFQ Building Maven Stub Project (No POV 1

0=

[INFQ)

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0:w st-client (default-cli) @standalo

ne- pom - - -

[INFQ [wst-client]No middl ewareHorme specified.

3-60 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Connecting to t3://10.151.69.120: 7001 with userid weblogic ...
Successful Iy connected to Admin Server "AdminServer" that belongs to domain "bas
e_domain".

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

j axwsej b30ws
TEST PASS

I 1
[INFO BU LD SUCCESS

0
[INFQ Total time: 29.197s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 18M 45M

By default, the W st goal is bound to the pre-integration-test phase. To override the
default phase binding for a goal, you can explicitly bind plug-in goals to a particular
life cycle phase, for example, to the post-integration-test phase, as shown below. The
pom xm file binds the W st goal to both the pre- and post-integration-test phases (a
dual phase target). As shown, you can run different scripts in different phases,
overriding the default settings, and make modifications according to your needs.

Example pom xm file

<proj ect >

<executions>
<execution>
<i d>W.S_SETUP_RESOURCES</ i d>
<phase>pre-integration-test</phase>
<goal s>
<goal >w st </ goal >
</ goal s>
<configuration>
<fileNanme>src/ mai n/w st/ create-datasource. py</fil eName>
</ confi guration>
</ execution>

<execution>
<i d>W.S_TEARDOMN_RESOURCES</ i d>
<phase>post -i ntegration-test</phase>
<goal s>
<goal >w st </ goal >
</ goal s>
<configuration>
<fileNanme>src/ mai n/w st/remove-dat asource. py</fil eName>
</ confi guration>
</ execution>
</ executions>

</ |.o.roj ect>
exit() is Trapped

exi t () exits WLST from the user session and closes the scripting shell. By default,
WLST calls Syst em exi t (0) for the current WLST JVM when exiting WLST.
Because wlst-client runs inside the same JVM as the Maven build process, the entire
Maven build process would exit. To provide for this, the Maven implementation traps
WLST exi t () calls and throws an exception.

Using the WebLogic Maven Plug-In 3-61

Maven Plug-In Goals

Calling exit() explicitly from a WLST script is discouraged.

For example, assume you were to modify the previous WLST script example to
include exi t (), as follows:

try:
connect (' webl ogi ¢', ' password','t3://10.151. 69. 120: 7001")
l'i st Applications()
exit()
print (' TEST PASS')
except:
print(' TEST FAIL")

When the Maven implementation traps exi t (), it throws an exception:

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

j axwsej b30ws

Exiting WebLogi ¢ Scripting Tool .

TEST FAIL
I 1
[INFQ BU LD SUCCESS

1o

[INFQ Total time: 29.250s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 19M 45M

;20 e

3.3.19 ws-clientgen

Deprecated

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-cl i ent gen

Description

Parameters

Table 3-22 briefly describes the ws- cl i ent gen parameters. These parameters are
more fully described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant
Task in WebLogic Web Services Reference for Oracle WebLogic Server.

3-62 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-22 ws-clientgen Parameters
- ___|

Name Type Require Description
d

binding java.lang. Str false Specifies one or more customization files that specify JAX-WS

bindings i ng and JAXB custom binding declarations or SOAP handler files. If
there is only one binding element, both <bi ndi ng>. /
fil enanme</ bi ndi ng> and <bi ndi ngs><bi ndi ng>. /
fil enanme</ bi ndi ng></ bi ndi ngs> are allowed.
See Table 3-23 for a description of bi ndi ngs parameters.

cat al og java.lang. Str false Specifies an external XML catalog file to resolve external entity

ing references.

For more information about creating XML catalog files, see
Using XML Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server

copyVédl boolean false Controls where the WSDL should be copied in the ws-clientgen
goal 's destination dir.

debug boolean false Turns on additional debug output.

debugLevel boolean false Uses Ant debug levels.

destDir java.io.File true Specifies the directory into which the ws-clientgen goal
generates the client source code, WSDL, and client deployment
descriptor files.
You must specify either the dest Fi | e or dest Di r attribute,
but not both.

fail OnError boolean false Specifies whether the ws-clientgen goal continues executing in
the event of an error. The default value is True.

fork boolean false Specifies whether to execute javac using the JDK compiler
externally. The default value is false.

genRunti meC boolean false Specifies whether the ws-clientgen goal should generate the

at al og XML catalog artifacts in the client runtime environment. This
value defaults to true.

i ncl udeAnt R boolean false Specifies whether to include the Ant run-time libraries in the

unti me classpath.

i ncl udeJava boolean false Specifies whether to include the default run-time libraries from

Runti nme the executing VM in the classpath.

jmstranspor JMSTransportClie false Invoking a WebLogic Web service using JMS transport.

telient nt Table 3-25 describes the parameters of the
j metransportclient parameter.

packageNane java.lang.Str false Specifies the package name into which the generated client

i ng interfaces and stub files are packaged.

produce FileSet false There is only one FileSet.

produces List<FileSet> There is more than one FileSet.

ver bose boolean false Turns on verbose output

Using the WebLogic Maven Plug-In 3-63

Maven Plug-In Goals

Table 3-22 (Cont.) ws-clientgen Parameters

Name Type Require Description
d

wsdl java.lang. Str true Specifies a full path name or URL of the WSDL that describes a

ing Web service (either WebLogic or non-WebLogic) for which the

client component files should be generated.

wsdl Locatio java.lang.Str false Controls the value of the wsdlLocation attribute generated on
n i ng the WebSer vi ce or WebSer vi cePr ovi der annotation.
xauthfile java.lang. Str false Specifies the authorization file.

i ng
xm Catal og java.lang.Str false Not used.

i ng

Table 3-23 describes the parameters of the bi ndi ngs parameter.

Table 3-23 Binding Parameters

Name Type Required Description
file java.lang. St false Specifies a customization file that contains JAX-WS and
ring JAXB custom binding declarations or SOAP handler files.

Table 3-24 describes the parameters of the xnl Cat al og parameter.

Table 3-24 xmlCatalog Parameters

Name Type Required Description
refid java.lang. Str false Specifies the directories (separated by semi-colons) that the
i ng Ws- j wsc goal should search for JWS files to compile.

Table 3-25 describes the parameters of the j nst r ansport cl i ent parameter.

Table 3-25 jmstransportclient Parameters

Name Type Require Description
d
destinati onName java.lang.St false JNDI name of the destination queue or topic. Default value
ring iscom or acl e. webservi ces. j ms. Request Queue.
destinationType java.lang.St false Valid values include: QUEUE or TOPIC. Default value is
ring QUEUE.
repl yToNane java.lang. St false JNDI name of the JMS destination to which the response
ring message is sent.
target Service java.lang. St false Port component name of the Web service.
ring
jndilnitial Cont java.lang. St false Name of the initial context factory class used for JNDI
ext Factory ring lookup. Default value is

webl ogi c. j ndi . W.I ni tial Cont ext Factory.

3-64 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-25 (Cont.) jmstransportclient Parameters
. __|

Name Type Require Description
d
j ndi Connecti onF java.lang. St JNDI name of the connection factory that is used to
act or yNane ring establish a JMS connection. Default value is
com or acl e. webservi ces. j ms. Connect i onFact or
y.
j ndi Url java. |l ang. St JNDI provider URL. Default valueist 3: / / | ocal host :
ring 7001.
del i ver yMode java. |l ang. St Delivery mode indicating whether the request message is
ring persistent. Valid values are PERSISTENT and
NON_PERSISTENT. Default value is PERSISTENT.
ti meTolLi ve long false Lifetime, in milliseconds, of the request message. Default
value is 180000L.
priority int false JMS priority associated with the request and response
message. Default value is 0.
j ndi ContextPara java.lang.St false JNDI properties, in a format like:
met er ring someParameterNamel=someValuel ,
someParameterName2=someValue2.
bi ndi ngVer si on java.lang. St false Version of the SOAP JMS binding. Default value is 1.0.
ring
runAsPri nci pal java.lang. St false Principal used to run the listening MDB.
ring
runAsRol e java.lang. St false Role used to run the listening MDB.
ring
nessageType java.lang. St false Message type to use with the request message. Valid
ring values are
com or acl e. webservi ces. api . j ns. JMSMessageTy
pe. BYTES and
com or acl e. webservi ces. api . j n6. JMSMessageTy
pe. TEXT. Default value is BYTES.
enabl eHt t pWsdl A boolean false Boolean flag that specifies whether to publish the WSDL
ccess through HTTP. Default value is true.
mdbPer Desti nat i boolean false Boolean flag that specifies whether to create one listening
on message-driven bean (MDB) for each requested
destination. Default value is true.
activationConfi java.lang.St false Activation configuration properties passed to the JMS
g ring provider.
cont ext Pat h java.lang. St false The deployed context of the web service.
ring
servi celri java.lang. St false Web service URI portion of the URL.

ring

Using the WebLogic Maven Plug-In 3-65

Maven Plug-In Goals

Table 3-25 (Cont.) jmstransportclient Parameters
. __|

Name Type Require Description
d
por t Nane java.lang. St false The name of the port in the generated WSDL.
ring

Usage Example
The ws- cl i ent gen goal generates client Web service artifacts from a WSDL.

This goal benefits from the convention-over-configuration approach, allowing you to
execute it using the defaults of the project.

There are two ways to run the ws-clientgen goal:

e From the command line. For example, after you define an alias:

mvn -Dvari abl eNanel=val uel -Dvariabl eNane2=val ue2 com oracl e. webl ogi c: webl ogi c-
maven- pl ugi n: ws-clientgen

* By specifying the Maven gener at e- r esour ces life cycle phase. Then run nvn
gener at e- r esour ces in the same directory of pom.xml

To do this, modify the pom xni file to specify the gener at e-r esour ces life
cycle phase, the ws- cl i ent gen goal, and include any parameters you need to set.
Consider the following example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!d>maven_pl ugi n_sinple</artifactld>
<versi on>1. 0</ ver si on>
<pbui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>com oracl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven-pl ugi n</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<i d>clientgen</id>
<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >ws-cl i ent gen</ goal >
</ goal s>
<configuration>
<wsdl >${ basedi r }/ AddNunber s. wsdl </ wsdl >
<dest ${proj ect. bui | d. out put Di rect ory} </ dest Di r >
<packageNane>maven_pl ugi n. si npl e. cl i ent </ packageName>
</configuration>
</ execution>
</ executions>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

Example 3-23 shows typical ws- cl i ent gen goal output.

3-66 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

3.3.20 wsgen

Example 3-23 ws-clientgen

m/n -f C\maven-doc\jwsc-test-2\clientgen_pomxm generate-resources

[INFQ Scanning for projects...

[INFQ

0
[INFQ Building maven_plugin_sinple 1.0

0
[INFQ

[INFQ --- webl ogi c- maven-plugin:12. 2. 1-0-0: ws-clientgen (clientgen) @
maven_pl ugi n_sim

ple ---

[INFQ Executing standal one...

[INFQ Executing Maven goal 'clientgen'...

calling method public static void webl ogic.wsee.tools.clientgen. MavendientGen.e

xecut e(or g. apache. maven. pl ugi n. | oggi ng. Log, j ava. util.Map) throws java.lang. Throw

abl e

[INFQ Consider using <depends>/ <produces> so that wsinport won't do unnecessary
conpilation

[WARNI NG parsing WeDL. ..

[WARNI NG

[WARNI NG

[WARNI NG

[WARNI NG Cenerating code. ..

[WARNI NG

[WARNI NG

[WARNI NG Conpi | ing code. ..

[WARNI NG

T 0
[INFQ BU LD SUCCESS

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: wsgen

Description

Maven goal that reads a JAX-WS service endpoint implementation class and generates
all of the portable artifacts for a JAX-WS Web service. Use the wsgen goal when you
are starting from Java classes.

You can then package the service endpoint interface and implementation class, value
types, and generated classes, if any, into a WAR file, and deploy the WAR to a Web
container.

The wsgen goal provides a wrapper for the JAX-WS Maven wsgen plug-in goal.

Parameters

Table 3-26 describes the wsgen parameters.

Using the WebLogic Maven Plug-In 3-67

https://jax-ws-commons.java.net/jaxws-maven-plugin/wsgen-mojo.html

Maven Plug-In Goals

Table 3-26 wsgen Parameters
- __|

Name Type Required Description
ar gs java.lang. St false Specifies optional command-line options. Multiple elements
ring can be specified, and each token must be placed in its own
list.
destDir java.io.File false Specifies the full pathname of where to place output

generated classes. Use xnoconpi | e to turn this off. The
defaultis ${ pr oj ect. bui | d. out put Di rectory}).

encodi ng java.lang. St false Specifies the character encoding of the output files, such as
ring the deployment descriptors and XML files. Examples of
character encodings are SHIFT-JIS and UTF-8. The default
value is platform dependent.

ext ensi on boolean false ext ensi on is always set to t r ue and you do not need to
set it. Extensions are not limited to Oracle JAX-WS vendor
extensions.

execut abl e j ava. |l ang. St false Name of the executable. Can be wsgen.

ring

genWsdl boolean false Specifies that a WSDL file should be generated in $
{resour ceDest Di r}. By default, the WSDL is not
generated.

i nlineSchemas boolean false Generates inline schemas in a generated WSDL. The default
isfal se.

The genWsdl parameter must be set tot r ue.

j metransportse boolean false Use JMS transport for Web services. It can be omitted. See

rvice Table 3-34 for a description of j mst r ansport servi ce
parameters.

keep boolean false Specifies whether to keep generated files. The default is
true.

met adat a java.io.File false Metadata file for the wsgen task, as described in External

Web Service Metadata in JAX-WS Release Documentation.
Unmatched files are ignored.

por t Nane java.lang. St false Specify the port name to use in the generated WSDL. The
ring genWsdl parameter must be set tot rue.

pr ot ocol java.lang. St false Use in conjunction with genWédl to specify the protocol to
ring use in the wsdl : bi ndi ng. The genWsdl parameter must

besettotrue.
Valid values are soapl. 1 and Xsoapl. 2.

The default is soap soapl. 1. Xsoapl. 2 is non-standard
and you can use it only in conjunction with the extension

option.
resourceDestDi java.io.File false Specifies the directory to contain the generated WSDL files.
r The default is ${ pr oj ect . bui | d. di rect ory}/

gener at ed- sour ces/ wsdl . The genWdl parameter
must be set to true.

3-68 Developing Applications for Oracle WebLogic Server

https://jax-ws.java.net/2.2.8/docs/ch03.html#users-guide-external-metadata
https://jax-ws.java.net/2.2.8/docs/ch03.html#users-guide-external-metadata
https://jax-ws.java.net/2.2.8/docs/index.html

Maven Plug-In Goals

Table 3-26 (Con

t.) wsgen Parameters

Name Type Required Description
sei java.lang. St false Specifies the service endpoint implementation class name.
ring
servi cenane j ava. |l ang. St false Specify the service name (Wsdl : ser vi cenane) to use in
ring the generated WSDL. The genWd|l parameter must be set
to true.
sourceDestDi r java.io.File false Specify where to place generated source files. This

parameter also sets keep to true. The default is $
{project.build.directory}/generated-sources/

wsgen.
ver bose boolean false Output messages about what the tool is doing. Default value
is: f al se.
VIMAr gs java.util.Li false Specify optional JVM options. You can specify multiple
st elements, and each token must be placed in its own list.
xdonot overw it boolean false No description provided
e
xnoconpi | e boolean false Turns off compilation after code generation, and lets the

generated sources be compiled by Maven during the
compilation phase. The default is f al se.

This parameter also sets keep to true.

Usage Example

The wsgen goal reads a JAX-WS service endpoint implementation class and generates
all of the portable artifacts for a JAX-WS Web service.

Specify the Maven pr ocess- cl asses life cycle phase. Then, run mvn pr ocess-
cl asses in the same directory of the POM file.

To do this, modify the pom xm file to specify the pr ocess- cl asses life cycle
phase, the wsgen goal, and include any parameters you need to set. Consider the
following example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!ld>maven_pl ugi n_sinple</artifactld>
<versi on>1. 0</ versi on>
<pbui | d>
<sour ceDi rect ory>. </ sour ceDi rect ory>
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifact!d>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<i d>wsgen</i d>
<phase>process- cl asses</ phase>
<goal s>

Using the WebLogic Maven Plug-In 3-69

Maven Plug-In Goals

<goal >wsgen</ goal >
</ goal s>
<configuration>
<dest Di r>${ proj ect. bui | d. di rect ory}/wsgenQut put/ </ dest Di r >
<sei >nyexanpl e. | Pl nf o</ sei >
<verhose>t rue</ verbose>
<genWdl >t rue</ genVid| >
</ confi guration>
</ executi on>
</ executions>
</ pl ugi n>
</ pl ugi ns>
</ buil d>
</ project>

Example 3-24 shows typical wsgen goal output.
Example 3-24 wsgen

mvn -Dfi [e=pom xm process-cl asses

[INFQ Scanning for projects...

[INFQ)

[ENFQL - - e e o o e o e o e e e
[INFQ Building maven_plugin_sinple 1.0

[ENFQL - - m e e e e e e e e e e
[INFQ)

[INFQ --- maven-resources-plugin:2.5:resources (default-resources) @ maven_plug
in_sinmple ---

[debug] execute contextualize

[WARNING Using platformencoding (Cpl252 actually) to copy filtered resources,
i.e. build is platform dependent!

[INFQ skip non existing resourceDirectory C\Oracle\Mddl eware\ O acl e_Honme\ orac
| e_common\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven- sync\ 12. 1. 3\ src\ mai n\resou
rces

[INFQ)

[INFQ --- maven-conpiler-plugin:2.3.2:conpile (default-conpile) @maven_plugin_
sinple ---

[WARNING File encoding has not been set, using platformencoding Cpl252, i.e. b
uild is platform dependent!

[INFQ Conpiling 1 source file to C:\Oracle\M ddl eware\ Oracl e_Hone\ or acl e_conmon
\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven- sync\ 12. 1. 3\t ar get\ cl asses

[INFQ)

[INFQ --- webl ogi c- maven-plugin: 12. 2. 1-0- 0: wsgen (wsgen) @ maven_pl ugi n_si npl e

[INFQ Processing: nyexanple.|Plnfo

[WARNI NG Using pl atformencoding (Cpl252), build is platform dependent!

[INFQ jaxws:wsgen args: [-keep, -s, 'C\Oracle\M ddl eware\ Oracl e_Hone\oracl e_co
mmon\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven- sync\ 12. 2. 1\ t ar get \ gener at ed- so
urces\wsgen', -d, 'C\Oacle\Mddl eware\ Oracl e_Hone\ oracl e_comon\ pl ugi ns\ maven\
com oracl e\ maven\ or acl e- maven-sync\ 12. 2. 1\t ar get \ wsgenQut put', -verbose, -extens
ion, -wsdl, -r, 'C\Oracle\M ddl ewar e\ Oracl e_Hone\ or acl e_comon\ pl ugi ns\ maven\ co
m or acl e\ maven\ or acl e- maven- sync\ 12. 2. 1\ t ar get\ gener at ed- sour ces\wsdl ', nmyexanypl
e. | Pl nfo]

myexanpl e\ j axws\ Get | pAddr ess. j ava

myexanpl e\ j axws\ Get | pAddr essResponse. j ava

0=
[INFQ BU LD SUCCESS

0=
[INFQ Total time: 21.309s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 8M 32M

;20 e

3-70 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

In this example, the wsgen goal creates the following files:

target
cl asses
META- | NF
wsdl
| PI nf oServi ce. wsdl
| Pl nf oServi ce_schemal. xsd
myexanpl e
| Pl nfo.class
gener at ed- sour ces
wsdl
| PI nf oServi ce. wsdl
| PI nf oServi ce_schemal. xsd
wsgen
myexanpl e
j axws
Get | pAddress. java
Get | pAddr essResponse. j ava
wsgenout put
myexanpl e
j axws
Get | pAddress. cl ass
CGet | pAddr essResponse. cl ass

3.3.21 wsimport

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: wsi nport

Description

Maven goal that parses a WSDL and binding files and generates the Java code needed
to access it. Use the wsi nport goal when you are starting from a WSDL.

The wsi npor t goal provides a wrapper for the JAX-WS Maven wsimport goal.

Parameters

Table 3-27 describes the wsi nmpor t parameters.

Table 3-27 wsimport Parameters

Name Type Required Description
ar gs java.lang. Str false Specifies optional command-line options. Multiple
i ng elements can be specified, and each token must be placed

in its own list.

bi ndingDirecto java.io.File false

Directory containing binding files.

ry

bi ndi ngFi | es java.util.Lis false List of files to use for bindings. If not specified, all . xm
t files in the bi ndi ngDi r ect or y are used.

cat al og java.io.File false Catalog file to resolve external entity references support

TR9401, XCatalog, and OASIS XML Catalog format.

Using the WebLogic Maven Plug-In 3-71

https://jax-ws-commons.java.net/jaxws-maven-plugin/wsimport-mojo.html

Maven Plug-In Goals

Table 3-27 (Cont.) wsimport Parameters

Name Type Required Description
destDir java.io.File false Specifies the full pathname of where to place output
generated classes. Use xnoconpi | e to turn this off. The
default is ${ pr oj ect . bui | d. out put Di rect ory}).
encodi ng java.lang. Str false Specifies the character encoding of the output files, such as
i ng the deployment descriptors and XML files. Examples of
character encodings are SHIFT-JIS and UTF-8. The default
is platform dependent.
execut abl e java.lang. Str false Name of the executable. Can be wsi nport .
ing
ext ensi on boolean false ext ensi on is always set to t r ue and you do not need to
set it. Extensions are not limited to Oracle JAX-WS vendor
extensions.
genJws boolean false Generate stubbed JWS implementation file. The default is
fal se.
ht t ppr oxy java.lang. Str false Set HTTP /HTTPS proxy. Format is
ing [user [: passwor d] @ pr oxyHost [: proxyPort].
impl DestDir java.io.File false Specify where to generate JWS implementation file.
i mpl Port Nare java.lang.String false Local portion of port name for generated JWS
implementation. Implies genJW5=t r ue. Note: It is a
QName string, formatted as: "{" + Namespace URI + "}" +
local part.
i npl Servi ceNam java.lang.String false Local portion of service name for generated JWS
e implementation. Implies genJW5=t r ue. Note: It is a
QName string, formatted as: "{" + Namespace URI + "}" +
local part.
jmstransportcl JMSTransportClie false Invoking a WebLogic Web service using JMS transport.
Ient nt Table 3-25 describes the parameters of the
j mstransportclient parameter.
jmsUri jmsUri false Override jmsUri defined in a WSDL file. Requires
ext ensi on=true.
keep boolean false Specifies whether to keep generated files. The default is
true.
packageNane java.lang. Str false The package in which the source files will be generated.
ing
qui et boolean false Suppress wsimport output. The defaultis f al se.
sourceDest Di r java.io.File false Specify where to place generated source files. This

parameter also sets keep to true. The default is $
{project.build. directory}/generated-
sour ces/ wsi nport.

3-72 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-27 (Cont.) wsimport Parameters
. ___|

Name

Type

Required Description

staleFile

java.io.File

false

The folder containing flag files used to determine if the
output is stale.

If you do not specify a folder, the default is $
{project.build. directory}/jaxws/stale.

tar get

java.lang.String

false

Generate code as per the given JAXWS specification
version. Setting "2. 0" will cause JAX-WS to generate
artifacts that run with JAX-WS 2.0 runtime.

ver bose

boolean

false

Output messages about what the tool is doing. Default
valueis: f al se.

VIMAr gs

java.lang. Str
ing

false

Specify optional JVM options. You can specify multiple
elements, and each token must be placed in its own list.

wsdl Di rectory

java.io.File

false

Directory containing WSDL files.

wsdl Fi |l es

java.util.List

false

List of files to use for WSDLs. If not specified, all .wsdl files
in the wsdl Di r ect or y will be used.

wsdl Locati on

java.lang.String

false

@ebServi ce. wsdl Locat i on and
@\ebServi ced i ent.wsdl Locat i on value.

Can end with asterisk, in which case relative path of the
WSDL will be appended to the given wsdl Locat i on.

Example:

<configuration>
<wsdl Di rect ory>src/ nywsdl s</ wsdl Di rectory>
<wsdl Fi | es>
<wsdl Fi | e>a. wsdl </ wsdl Fi | >
<wsdl Fi | e>b/ b. wsdl </ wsdl Fi | e>
<wsdl Fi | e>${basedi r}/src/nmywsdl s/ c. wsdl </
wsdl Fi | e>
</ wsdl Fi | es>
<wsdl Locati on>http://exanpl e. cont
mywebser vi ces/ *</ wsdl Locat i on>
</ configuration>

wsdl Locat i on for a. wsdl will be http://example.com/
mywebservices/a.wsdl

wsdl Locat i on for b/ b. wsdl will be http://
example.com/mywebservices/b/b.wsdl

wsdl Locat i on for ${ basedi r}/ src/ mywsdl s/
c. wsdl will be file:/ /absolute/path/to/c.wsdl

Note: External binding files cannot be used if asterisk
notation is in place.

wsdl Url s

java.util.List

false

List of external WSDL URLs to be compiled.

xaddi ti onal Hea
ders

boolean

false

Maps headers not bound to the request or response
messages to Java method parameters.

Using the WebLogic Maven Plug-In 3-73

Maven Plug-In Goals

Table 3-27 (Cont.) wsimport Parameters
. ___|

Name Type Required Description

xaut hFil e java.io.File false Specify the location of authorization file.

xdebug boolean false Turn on debug message. The defaultis f al se.

xdi sabl eAut hen boolean false Disable Authenticator used by JAX-WS RI, xaut hfi |l e

ticator will be ignored if set.

xdi sabl eSSLHos boolean false Disable the SSL Hostname verification while fetching

tnameVeri fi cat WSDL(s).

ion

Xj CArgs java.util.List false Specify optional XJC-specific parameters that should
simply be passed to xjc using -B option of WsImport
command.

Multiple elements can be specified, and each token must
be placed in its own list.

xnoAddr essi ngD boolean false Binding W3C Endpoi nt Ref er enceType to Java. By

at aBi ndi ng default WsImport follows spec and does not bind
Endpoi nt Ref er enceType to Java and uses the spec
provided VBCENndpoi nt Ref er ence.

xnoconpi | e boolean false Turns off compilation after code generation, and lets the
generated sources be compiled by Maven during the
compilation phase. The defaultis t r ue.

This parameter also sets keep to true.

xuseBaseResour boolean false No description provided by JAX-WS Maven wsimport.
ceAndURLTolLoad
WSDL

Usage Example

The wsi nport goal parses a WSDL and binding files and generates Java code needed
to access the Web service.

You can use the wsi nport goal in two ways:

¢ To generate the client-side artifacts. Then, implement the client to invoke the Web
service.

* To create your own implementation of the Web service. Use wsi nmpor t goal with
the genJW6 parameter to generate portable artifacts and a stubbed implementation
file. You then implement the service endpoint.

Specify the Maven gener at e- sour ces life cycle phase. Then, run nvn gener at e-
sour ces in the same directory of the POM file.

Assume that you want to import the WSDL shown in Example 3-25.
Example 3-25 WSDL to Import

<?xm version='"1.0" encodi ng=" UTF-8' ?><!-- Published by JAX-Ws Rl at
http://jax-ws.dev.java.net. RI's version is JAX-WS R 2.2.9-b14041
svn-revision#14041. --><!-- Generated by JAX-WS Rl at

http://jax-ws.dev.java.net. RI's version is JAX-WS R 2.2.9-b14041

3-74 Developing Applications for Oracle WebLogic Server

https://jax-ws-commons.java.net/jaxws-maven-plugin/wsimport-mojo.html

Maven Plug-In Goals

svn-revisi on#14041. --><definitions
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecuri ty- ut
lity-1.0.xsd" xm ns:wsp="http://ww. w3. org/ns/ws-policy" xmns:wspl_
2="http://schenmas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: wsame"ht t p: // ww. w3. or g/ 2007/ 05/ addr essi ng/ net adat a"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ws.web.w s.nmy.org/"
xm ns: xsd="htt p: // www. w3. or g/ 2001/ XM.Schenma"
xm ns="http://schemas. xn soap. or g/ wsdl /"
target Nanespace="http://ws. web. w s. ny.org/" nane="Sanpl eV¢" >
<types>
<xsd: schema>
<xsd:inport namespace="http://ws.web.w s.my.org/"
schemalocati on="x. xsd"/>
</ xsd: schema>
</types>
<nessage nanme="hell 0" >
<part name="paranmeters" elenent="tns:hello"/>
</ message>
<nessage name="hel | oResponse" >
<part name="parameters" el enent="tns: hel | oResponse"/>
</ message>
<port Type nane="Sanpl eV$" >
<operation nanme="hello0">
<input wsam Action="http://ws.web.w s. ny.org/ Sanpl eW/ hel | oRequest "
message="tns: hel | 0" />
<out put wsam Action="http://ws.web.w s. ny. org/ Sanpl eWé/ hel | oResponse"
message="t ns: hel | oResponse"/ >
</ operati on>
</ port Type>
<bi ndi ng xm ns: soapj ns="http://ww. w3. or g/ 2010/ soapj ns/ "
nane="Sanpl eWsPor t Bi ndi ng" type="tns: Sanpl eV$" >
<soapj ns:j ndi | nitial Context Fact ory>webl ogi c.jndi.W.Initial ContextFactory</
soapj ns: j ndi I ni tial Cont ext Fact ory>

<soapj ns: j ndi Connect i onFact or yNane>com or acl e. webser vi ces. api . j ms. Connect i onFact or y</
soapj ns: j ndi Connect i onFact or yNane>
<soapj ms: j ndi Url >t 3://1 ocal host: 7001</ soapj ms: j ndi Ur | >
<soapj nms: bi ndi ngVer si on>SOAP_JMS_1_0</ soapj ms: bi ndi ngVer si on>
<soapj ns: desti nati onNane>com or acl e. webservi ces. api . j ms. Request Queue</
soapj ns: desti nati onName>
<soapj ns: t ar get Servi ce>Sanpl eWs</ soapj ms: t ar get Servi ce>
<soapj ns: ti meToLi ve>180000</ soapj ms: ti meToli ve>
<soapj ns: del i ver yMode>PERS| STENT</ soapj ns: del i ver yMbde>
<soapj nms: pri ority>0</soapj ms: priority>
<soapj ns: nessageType>BYTES</ soapj ms: nessageType>
<soapj ns: desti nati onType>QUEUE</ soapj ns: desti nati onType>
<soap: bi nding transport="http://ww:. w3. org/ 2010/ soapj ns/" styl e="docunent"/>
<operation nanme="hell0">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input >
<out put >
<soap: body use="literal"/>
</ out put >
</ operati on>
</ bi ndi ng>
<servi ce name="Sanpl eVs" >
<port name="Sanpl eVéPort" bi ndi ng="t ns: Sanpl eWsPor t Bi ndi ng" >
<soap: addr ess

Using the WebLogic Maven Plug-In 3-75

Maven Plug-In Goals

I ocation="j ms:jndi:com oracl e. webservi ces. api . j ms. Request Queue?t ar get Ser vi ce=Sanpl
eVs&anp; j ndi URL=t 3:/ /1 ocal host :
7001&anp; messageType=BYTES&anp; del i ver yMode=PERSI STENT"/ >
</ port>
</ service>
</ definitions>

To import this WSDL, modify the pom xmi file to specify the gener at e- sour ces
life cycle phase, the wsi nmpor t goal, the WSDL location, and include any parameters
you need to set. This example uses a local WSDL file for demonstration purposes.

Consider the following example:

<?xnm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!|d>maven_pl ugi n_sinpl e</artifactld>
<versi on>1. 0</ ver si on>
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi c</ groupl d>
<artifact|d>webl ogi c- maven- pl ugi n</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<i d>wsi nport -j nesanpl e</ i d>
<goal s>
<goal >wsi nport </ goal >
</ goal s>
<phase>gener at e- sour ces</ phase>
<configuration>
<wsdl Fi | es>
<wsdl Fi | e>${basedir}/inport-exanpl e/ Sampl eV$. wsdl </ wsdl Fi | >
</wsdl Fil es>
<genJW6>t r ue</ genJWs>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ buil d>
</ project>

Example 3-26 shows typical wsi npor t goal output.
Example 3-26 wsimport

mvn -Dfi [e=pom xnl gener at e- sour ces

[INFQ Scanning for projects..

[INFQ)

1=
[INFQ Building maven_plugin_sinple 1.0

0=
[INFQ)

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0: wsinport (wsinport-jnssanple) @ nave
n_plugin_sinple ---

[INFQ Processing: file:/C/Oacle/Mddleware..../inport-exanple/ Sanpl eW. wsdl
[WARNING Usi ng pl atformencoding (Cpl252), build is platform dependent

[INFQ jaxws:wsinport args: [-keep, -s

"C\Oracle\M ddl eware\...\inport-exanpl e\target\generated-sources\wsinmport', -d

3-76 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

"C\Oacle\Mddl eware...\inport-exanpl e\target\classes', -extension,
-Xnoconpi le, -jms, -jmsuri, jms:jndi:null?targetServi
ce=nul |, -httpproxy:sone-proxy-name, -generateJWs, -inplDestDr,
"C\Oracle\M ddl eware...\inport-exanple',
"file:/C/COracle/Mddl eware...inport-exanpl e/ Sanpl eV. wsdl "]
parsing WSDL. ..

Generating code. ..

I 1
[INFQ BU LD SUCCESS

T 0
[INFQ Total time: 20.888s

[INFQ Finished at: Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 7M 23M

;20 e

In this example, the wsi nmpor t goal creates the following files:

org
my
w s
web
ws
Sanpl eVé_Sanpl eWsPort | npl . java
target
classes
gener at ed- sour ces
wsi nport
org
my
w's
web
ws
Hel lo.java
Hel | oResponse. j ava
bj ect Factory. java
package-info.java
Sanpl eVé. j ava
Sanpl eVé_Servi ce. java
j axws
stale
. 2b48c6ef 28hcB8ad5aa2dasd246c0c4ac90cf 82¢57

3.3.22 ws-wsdlc

Deprecated

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-wsdl ¢

Description

Maven goal to generate a set of artifacts and a partial Java implementation of the Web
service from a WSDL.

Using the WebLogic Maven Plug-In 3-77

Maven Plug-In Goals

The ws- wsdl ¢ goal provides a Maven wrapper for the wsdlc Ant task, which is
described in WebLogic Web Services Reference for Oracle WebLogic Server.

Parameters

Table 3-28 briefly describes the ws- wsdl ¢ parameters. These parameters are more
fully described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task in
WebLogic Web Services Reference for Oracle WebLogic Server.

Table 3-28 ws-wsdlc Parameters
-]

Name Type Required Description
bi ndi ngs java.lang. Str false Customization files that specify JAX-WS and JAXB custom
ing binding declarations or SOAP handler files.
cat al og java.lang. Str false Specifies an external XML catalog file.
I ng For more information about creating XML catalog files, see
Using XML Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server
debug boolean false Specifies the flag to set when debugging the process. Default
value is false.
debugLevel java.lang. Str false Uses Ant debug levels.
i ng
destinplDir java.lang.Str false Specifies the directory into which the stubbed-out JWS
i ng implementation file is generated.
dest Javadoc java.lang. Str false Specifies the directory into which the Javadoc that describes
Dir ing the JWS interface is generated.
dest JwsDir java.lang. Str true Specifies the directory into which the JAR file that contains
i ng the JWS interface and data binding artifacts should be
generated.
expl ode boolean false Specifies the flag to set if you want exploded output. Defaults
to true.
fail OnError boolean false Specifies whether the ws-clientgen goal continues executing

in the event of an error. The default value is true

fork boolean false Specifies whether to execute javac using the JDK compiler
externally. The default value is false.

i ncl udeAnt R boolean false Specifies whether to include the Ant run-time libraries in the

unti me classpath. The default value is true.

i ncl udeJava boolean false Specifies whether to include the default run-time libraries

Runti nme from the executing VM in the classpath. The default value is
false.

optimze boolean false Specifies the flag to set if you want optimization. Defaults to
true.

packageNanme java.lang.Str false Specifies the package into which the generated JWS interface

ing and implementation files should be generated.

3-78 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-28 (Cont.) ws-wsdlc Parameters
. __|

Name

Type Required

Description

srcPort Nanme

java.lang. Str false
i ng

Specifies the name of the WSDL port from which the JWS
interface file should be generated. Set the value of this
parameter to the value of the name parameter of the por t
parameter that corresponds to the Web service port for which
you want to generate a JWS interface file.

The port parameter is a child of the ser vi ce parameter in
the WSDL file. If you do not specify this attribute, ws- wsdl ¢
generates a JWS interface file from the service specified by
srcServi ceNarre.

srcServi ceN
ane

java.lang. Str false
i ng

Specifies the name of the Web service from which the JWS
interface file should be generated.

srcwdl java.lang. Str true Specifies the name of the WSDL from which to generate the
i ng JAR file that contains the JWS interface and data binding
artifacts.
ver bose boolean false Specifies the flag to set if you want verbose output. Default

value is false.

Usage Example

The ws- wsdl ¢ goal generates a set of artifacts and a partial Java implementation of
the Web service from a WSDL.

This goal benefits from the convention-over-configuration approach, allowing you to
execute it using the defaults of the project.

There are two ways to run the ws- wsdl ¢ goal:

* From the command line. For example, after you define an alias:

mvn -Dvari abl eNamel=val uel

maven- pl ugi n: ws-wsdl ¢

—Dvari abl eNane2=val ue2 com oracl e. webl ogi c: webl ogi c-

* By specifying the Maven gener at e- r esour ces life cycle phase.

To do this, modify the pom xmi file to specify the gener at e- r esour ces life
cycle phase, the ws- wsdl ¢ goal, and include any parameters you need to set. Then
run nvn gener at e-r esour ces in the same directory of pom.xml.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<proj ect >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!ld>maven_pl ugi n_sinple</artifactld>

<version>1. 0</ ver si on>
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifact!d>
<versi on>12. 2. 1- 0- 0</ ver si on>

<executions>
<execution>

<i d>wsdl c</i d>

Using the WebLogic Maven Plug-In 3-79

Maven Plug-In Goals

3.3.23 ws-jwsc

<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >ws-wsdl c</ goal >
</ goal s>
<configuration>
<src\Wdl >${ basedi r }/ AddNurber s. wsdl </ srcVéd| >
<dest JwsDi r>${ proj ect. bui | d. di rectory}/jwsl npl </ dest JwsDi r>
<dest I npl Di r>${ proj ect . bui | d. di rect ory}/ out put </ dest | npl Di r>
<packageNane>maven_pl ugi n. si npl e</ packageName>
<ver hose>t r ue</ ver bose>
</ confi guration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ buil d>
</ proj ect>

Example 3-27 shows typical ws- wsdl ¢ goal output.
Example 3-27 ws-wsdlc

mn -f wsdl c_pom xm generat e-resources

[INFQ Scanning for projects...

[INFQ

1=
[INFQ Building maven_plugin_sinple 1.0

1=
[INFQ

[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0: ws-wsdl ¢ (wsdlc) @ maven_pl ugi n_sinple

[INFQ Executing standal one...

[INFQ Executing Maven goal 'wsdlc'...

calling method public static void webl ogic.wsee.tool s.wsdl c. MavenViédl c. execut e(o
rg. apache. maven. pl ugi n. | oggi ng. Log, j ava. util.Map) throws java.lang. Throwabl e
Catalog dir = C\Users\naven\ AppDat a\ Local \ Tenp\ _ckr 59b

Downl oad file [AddNunbers.wsdl] to C: \Users\maven\ AppDat a\ Local \ Tenp\ _ckr59b
srcWsdl is redefined as [C\Users\naven\ AppDat a\ Local \ Tenp\ _ckr 59b\ AddNunber
s.wsdl]

I 1o
[INFO BU LD SUCCESS

Deprecated

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-j wsc

Description
Maven goal to build a JAX-WS web service.

The ws- j wsc goal provides a Maven wrapper for the jwsc Ant task, which is
described in WebLogic Web Services Reference for Oracle WebLogic Server.

3-80 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Note:

The ws- j wsc goal does not work with the JAX-RPC-only JWS annotations
described in WebLogic-Specific Annotations

Nested Configuration in module Elements

The ws- j wsc goal supports nested configuration elements, as shown in bold in
Example 3-28. See Introduction to the POM for information on Maven projects with
multiple modules.

Example 3-28 Nested Configuration Elements

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<proj ect >
<nodel Ver si on>4. 0. 0</ odel Ver si on>
<groupl d>com t est . ws</ groupl d>
<artifactld>test-ws-jwscl</artifactld>
<versi on>1. 0</ versi on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifact!d>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<id>first-jwsc</id>
<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >ws-j wsc</ goal >
</ goal s>
<configuration>
<srcDi r>${basedir}/src/ min/java</srcDir>
<dest Di r>${ proj ect. bui | d. di rectory}/jwscQut put
I ${project.build.final Name}</destDir>
<listfiles>true</listfiles>
<debug>t r ue</ debug>

<modul e>
<nane>pocr eat e</ nane>
<cont ext Pat h>nypub</ cont ext Pat h>
<conpi | edWédl >D: \ maven- t est\ order _wsd| . j ar </ conpi | edVédl >

<j ws>
<file>exanpl es/ wsee/ jwsc/ POCreat el npl . java</file>
<transport Type>
<type>W.Ht t pTransport </type>
<servi ceUri >POCr eat e</ servi celri >
<por t Name>PCCr eat ePor t </ por t Nane>
</transport Type>
</jws>
<j ws>

</jws>
<descri pt or s>
<descri pt or >"resour ces/ web. xm "<descri ptor/ >
<descri pt or>"resour ces/ webl ogi c. xm " <descriptor />
</ descri ptors>
</ modul e>

Using the WebLogic Maven Plug-In 3-81

http://maven.apache.org/guides/mini/guide-multiple-modules.html

Maven Plug-In Goals

<nmodul e>

</ modul e>
</ modul es>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect>

These nested configuration elements for ws- j wsc¢ have the following conditions:

* You must use at least one of the following elements: j ws, j wses, nodul e, or
nmodul es.

e (Collection elements such as j wses and nodul es elements can be omitted.

e [f there is only one child element within the collection element, the collection
element can also be removed.

For example, if there is only one j Ws element, use j ws. If there are multiple j ws
elements, add all of the j ws elements under a j wses element.

* As with the JWSC ant task, if nodul e has only one j ws child element, then other
sub elements of modul e can be nested into j wsc and j wsc/ t ransport Type.

Example 3-29 shows an example without a module el enent in which the j ws
parameter is a child of ws-j wsc.

Example 3-29 jws Element as Child of ws-jwsc Goal

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect >
<nodel Ver si on>4. 0. 0</ odel Ver si on>
<groupl d>com t est . ws</ groupl d>
<artifactld>test-ws-jwsc</artifactld>
<versi on>1. 0</ versi on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifact!d>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<id>first-jwsc</id>
<phase>conpi | e</ phase>
<goal s>
<goal >ws-j wsc</ goal >
</ goal s>
<configuration>
<srcDir>${basedir}/src/ min/java</srcDir>
<dest Di r>${ proj ect. bui I d. di rectory}/jwscQut put/
${project.build.final Nane}</destDir>
<j ws> <I-- no parent <nmodule> -->
<file>exanpl es/ wsee/ j wsc/ POCreat el npl . java</file>
<conpi | edWdl >${ proj ect . bui | d. di rect ory}/ purchaseor der _wsdl . j ar >
<transport Type>
<type>W.Ht t pTransport</type>
</transport Type>

3-82 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

</jws>
</ confi guration>
</ executi on>
</ executions>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect>

ws-jwsc Parameters

Table 3-29 briefly describes the ws- j wsc parameters. These parameters are more fully
described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task in
WebLogic Web Services Reference for Oracle WebLogic Server.

Table 3-29 ws-jwsc Parameters
. __|

Name Type Require Description

d
applicatio java.lang.S false Specifies the full name and path of the application.xml deployment
nXm tring descriptor of the Enterprise Application. If you specify an existing

file, the ws-jwsc goal updates it to include the Web services
information. However, jwsc does not automatically copy the
updated application.xml file to the destDir; you must manually
copy this file to the destDIR. If the file does not exist, jwsc creates
it.

The ws-jwsc goal also creates or updates the corresponding
weblogic-application.xml file in the same directory. If you do not
specify this attribute, jwsc creates or updates the file destDir/
META-INF/application.xml, where destDir is the jwsc attribute.

debug boolean false Turns on additional debug output.
destDir java.lang.S true Specifies the full pathname of the directory that will contain the
tring compiled JWS files, XML Schemas, WSDL, and generated

deployment descriptor files, all packaged into a JAR or WAR file.

dest Encodi java.lang.S false Specifies the character encoding of the output files, such as the

ng tring deployment descriptors and XML files. Examples of character
encodings are SHIFT-JIS and UTF-8. The default value of this
attribute is UTF-8.

j ws Jws false There is only one <jws> element.
See Table 3-30 for a description of j ws parameters.

j wses Jws false It contains more than one< jws> element.

keepGenera boolean false Specifies whether the Java source files and artifacts generated by

ted

this goal should be regenerated if they already exist.

If you specify false, new Java source files and artifacts are always
generated and any existing artifacts are overwritten. If you specify
true, the goal regenerates only those artifacts that have changed,
based on the timestamp of any existing artifacts

listfiles

boolean false Specifies whether to list all of the files.

nodul e

Module false It contains one <module> element.

See Table 3-31 for a description of nodul e parameters.

Using the WebLogic Maven Plug-In 3-83

Maven Plug-In Goals

Table 3-29 (Cont.) ws-jwsc Parameters
. ___|

Name Type Require Description
d
nmodul es Module false It contains more than one <module> element.
optimze boolean false Specifies the flag to set when optimization is required. Defaults to
true.
sourcepath java.lang.S true The full pathname of top-level directory that contains the Java files
tring referenced by the JWS file, such as JavaBeans used as parameters

or user-defined exceptions.

srchDir java.lang.S true Specifies the full pathname of the top-level directory that contains
tring the JWS file you want to compile.

srcEncodin java.lang.S false Specifies the character encoding of the input files, such as the JWS

g tring file or configuration XML files.

Examples of character encodings are SHIFT-JIS and UTF-8. The
default value of this attribute is the character encoding set for the
JVM.

ver bose boolean false Specifies verbose output

jws Parameter

As described in jws, the j ws parameter specifies the name of a JWS file that
implements your Web service and for which the ws- j wsc goal should generate Java
code and supporting artifacts, and then package them into a deployable WAR file
inside of an Enterprise Application.

You can specify the j ws parameter in two ways:

¢ Animmediate child element of the ws- j wsc goal. In this case, WS- j WsC generates
a separate WAR file for each JWS file. You typically use this method if you are
specifying just one JWS file to the ws- j wsc goal.

¢ A child element of the mbdul e parameter, which in turn is a child of the ws-j wsc
goal. In this case, Ws- j wsC generates a single WAR file that includes all the
generated code and artifacts for all the JWS files grouped within the module
parameter.

This method is useful if you want all JWS files to share supporting files, such as
common Java data types.

Table 3-30 describes the child parameters of the j ws parameter. The description
specifies whether the parameter applies in the case that j Ws is a child of the ws- j wsc
goal, is a child of nodul e, or both.

3-84 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-30

jws Parameters

Name Type Require Description Child of ws-
d jwsc, module,
or both
conpi | edWd java.lang.S false Specifies the full pathname of the JAR file both
I tring generated by the ws- wsdl ¢ goal based on an
existing WSDL file.
Only required for the "starting from WSDL" use
case.
contextPath java.lang.S false Specifies the deployed context of the web service. ws-jwsc
tring
expl ode boolean false Specifies the flag to set when you want exploded = ws-jwsc
output. Defaults to true.
file java.lang. S true The name of the JWS file that you want to both
tring compile. The ws-jwsc goal looks for the file in the
srcdir directory.
generateVd boolean true Specifies whether the generated WAR file both
I includes the WSDL file in the WEB-INF directory.
Default value is false.
j mstranspor boolean false Use JMS transport for Web services. It can be Ws-jwsc
tservice omitted. See Table 3-34 for a description of
j mBt ransport servi ce parameters.
name java.lang. S false Specifies the name of the generated WAR file (or ~ ws-jwsc
tring exploded directory, if the explode attribute is set
to true) that contains the deployable Web service.
transport Ty transportType false Used when it contains only one transport t ype both
pe element. It can be omitted.
See Table 3-33 for a description of
transport Type parameters.
transport Ty transportType false Used when it contains more than one transport both
pes t ype element. It can be omitted.
See Table 3-33 for a description of
transport Type parameters.
wsdl Onl'y boolean false Specifies that only a WSDL file should be ws-jwsc

generated for this JWS file. The default value is
false.

module Parameters

As described in module, the nmodul e parameter groups one or more j WS parameters
together so that their generated code and artifacts are packaged in a single Web
application (WAR) file. The nodul e parameter is a child of the ws- j wsc goal.

Table 3-31 describes the parameters of the module parameter.

Using the WebLogic Maven Plug-In 3-85

Maven Plug-In Goals

Table 3-31 module Parameters
- - -]

Name Type Required Description
clientgen java.lang. St false There is only one <clientgen> element. It can be omitted.
ring
clientgens java.lang.St false There is more than one <clientgen> element. It can be omitted.
ring
contextPat java.lang.St false Specifies the deployed context of the Web service.
h ring
descriptor java.lang.St false Specifies the web.xml descriptor to use if a new one should not
ring be generated. The path should be fully qualified. The files should
be separated by ", ".
ej bWsI nVar boolean false Specifies whether to package EJB-based Web services in a WAR
file instead of a JAR file.
expl ode boolean false Specifies the flag to set when you want exploded output.
Defaults to true.
Fi | eSet FileSet false Used when it contains one FileSet element. It can be omitted.
Fil eSets FileSet false Used when it contains more than one FileSet element. It can be
omitted.
generateWs boolean true Specifies whether the generated WAR file includes the WSDL file
dl in the WEB-INF directory. Default value is false.
j ws Jws false Used when it contains one jws element. It can be omitted.
j wses Jws false Used when it contains more than one jws element. It can be
omitted.
name java.lang. St false Specifies the name of the WAR to use when evaluating the ear
ring file.
wsdl Onl'y boolean false Specifies that only a WSDL file should be generated for this JWS
file. The default value is false.
zipfileset java.lang. St false There is only one <zipfileset> element.

ring

FileSet Parameters

As described in jwsfileset, the Fi | eSet parameter specifies one or more directories in
which the ws- j wsc goal searches for JWS files to compile. The list of JWS files that
Ws-j wsc finds is then treated as if each file had been individually specified with the

j Ws parameter of modul e.

The Fi | eSet parameter is a child of the ws- j wsc goal.

Table 3-32 describes the parameters of the FileSet parameter.

3-86 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-32 FileSet Parameters

Name Type Required Description

srcDir java.lang. St true Specifies the directories (separated by semi-colons) that the ws-
ring jwsc goal should search for JWS files to compile.

prefix java.lang. St false Prefix to use.
ring

sourcelnclu java.lang. St false

des ring

Specifies the explicit includes-list for the file set.

sourceExclu java.lang. St false

des ring

Specifies the explicit excludes-list for the file set.

TransportType Parameters

As described in WLHttpTransport, WLHttpsTransport, and WL]JMSTransport, you use
transport parameters to specify the transport type, context path, and service URI
sections of the URL used to invoke the Web service, as well as the name of the port in
the generated WSDL.

The ws- j wsc goal combines these transport parameters into one, Tr ansport Type.

Table 3-32 describes the parameters of the t r anspor t Type parameter.

Table 3-33 transportType Parameters

Name Type Require Description
d
transport TypeN java.lang.S true Specifies the value is WLHttpTransport, WLHttpsTransport,
ame tring or WLJMSTransport.
Default value is WLHttpTransport.
serviceUri java.lang.S false Specifies the Web service URI portion of the URL.
tring
cont ext Pat h java.lang.S false Specifies the deployed context of the Web service.
tring
port Name java.lang.S false Specifies the name of the port in the generated WSDL.
tring

Table 3-34 describes the parameters of the j st r anspor t ser vi ce parameter.

Table 3-34 jmstransportservice Parameters

Name Type Require Description
d
destinati onNane java.lang. false JNDI name of the destination queue or topic. Default value is
String com or acl e. webservi ces. j ms. Request Queue.
destinationType java.lang. false Valid values include: QUEUE or TOPIC. Default value is

String

QUEUE.

Using the WebLogic Maven Plug-In 3-87

Maven Plug-In Goals

Table 3-34 (Cont.) jmstransportservice Parameters
. __|

Name Type Require Description
d
repl yToNarne java.lang. false JNDI name of the JMS destination to which the response
String message is sent.
target Service java.lang. false Port component name of the Web service.
String
jndilnitial Cont java.lang. false Name of the initial context factory class used for JNDI lookup.
ext Factory String Default value is

webl ogi c. j ndi . W.I ni tial Cont ext Factory.

j ndi Connecti onF java.l ang. JNDI name of the connection factory that is used to establish a
act or yNane String JMS connection. Default value is
com or acl e. webservi ces. j ns. Connecti onFactory.

jndi Url j ava. | ang. JNDI provider URL. Default valueist 3: / /| ocal host:
String 7001.
del i ver yMode java. |l ang. Delivery mode indicating whether the request message is
String persistent. Valid values are PERSISTENT and
NON_PERSISTENT. Default value is PERSISTENT.
timeTolLi ve long false Lifetime, in milliseconds, of the request message. Default value
is 180000L.
priority int false JMS priority associated with the request and response

message. Default value is 0.

j ndi Context Para java.lang. false JNDI properties, in a format like:
et er String someParameterNamel=someValuel ,
someParameterName2=someValue2.

bi ndi ngVersion java.lang. false Version of the SOAP JMS binding. Default value is 1.0.
String
runAsPri nci pal java.lang. false Principal used to run the listening MDB.
String
runAsRol e java.lang. false Role used to run the listening MDB.
String
messageType java.lang. false Message type to use with the request message. Valid values
String are
com or acl e. webser vi ces. api . j ms. JIMSMessageType.
BYTES and

com or acl e. webser vi ces. api . j ms. JIMSMessageType.
TEXT. Default value is BYTES.

enabl eHt t pWsdl A boolean false Boolean flag that specifies whether to publish the WSDL
ccess through HTTP. Default value is true.

mdbPer Desti nati boolean false Boolean flag that specifies whether to create one listening
on message-driven bean (MDB) for each requested destination.

Default value is true.

3-88 Developing Applications for Oracle WebLogic Server

Maven Plug-In Goals

Table 3-34 (Cont.) jmstransportservice Parameters

Name Type Require Description
d
activationConfi java.lang. false Activation configuration properties passed to the JMS
g String provider.
cont ext Pat h java.lang. false The deployed context of the web service.
String
servi celri java.lang. false Web service URI portion of the URL.
String
port Nane java.lang. false The name of the port in the generated WSDL.
String

Usage Example

The ws- j wsc goal builds a JAX-WS web service.

This goal benefits from the convention-over-configuration approach, allowing you to
execute it using the defaults of the project.

To run the ws- j wsc goal, specify the Maven gener at e- r esour ces phase.

To do this, modify the pom xni file to specify the gener at e- r esour ces phase, the
Ws-j wsc goal, and include any pa parameters you need to set. Then run mvn
gener at e-r esour ces in the same directory of pom.xml.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<proj ect >

<model Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!|d>maven_pl ugi n_sinple</artifactld>

<version>1. 0</ ver si on>

<pbui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ groupl d>

<artifact|d>webl ogi c- maven- pl ugi n</artifactld>

<version>12. 2. 1- 0- 0</ ver si on>

<executions>
<execution>

</jws>

<i d> wsc</id>
<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >ws-j wsc</ goal >
</ goal s>
<configuration>
<dest Di r>${ proj ect. bui | d. di rectory}/jwscCQut put/
<listfiles>true</listfiles>
<debug>t r ue</ debug>
<j ws> <I-- no parent <nmodule> -->
<fil e>exanpl es/ wsee/ jwsc/ POCreat el npl . java</fil e>
<conpi | edWsdl >${ proj ect . bui | d. di rect ory}/ purchaseor der _wsdl . j ar>
<transport Type>
<type>W.H t pTransport </ type>
</transport Type>

Using the WebLogic Maven Plug-In 3-89

Maven Plug-In Goals

<ver bose>t rue</ ver bose>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect>

Example 3-30 shows typical ws- j wsc goal output.
Example 3-30 ws-jwsc

mn -f jwsc_pom xm generat e-resour ces

INFQ Scanning for projects...

[INFQ

L=
[INFQ Building maven_plugin_sinple 1.0

1=
[INFQ

[INFQ --- webl ogic-maven-plugin:12. 2. 1-0-0: ws-j wsc (jwsc) @nmaven_plugin_sinple ---
[INFQ Executing standal one...

INFO Executing Maven goal 'jwsc'...

calling method public static void

webl ogi c. wsee. tool s. j ws. MavenJwsc. execut e(or g. apache. maven. pl ugi n. | oggi ng. Log,
java.util.Mp) throws java.lang. Throwabl e

[EarFile] Application File : C\maven-doc\jwsc-test-2\output\META-| NF\ application. xm

1o
[INFO BU LD SUCCESS

3-90 Developing Applications for Oracle WebLogic Server

A

Creating a Split Development Directory
Environment

This chapter describes how to create a WebLogic Server split development directory
that you can use to develop a Java EE application or module.

This chapter includes the following sections:

* Overview of the Split Development Directory Environment

¢ Using the Split Development Directory Structure: Main Steps

¢ Organizing Java EE Components in a Split Development Directory

* Organizing Shared Classes in a Split Development Directory

¢ Generating a Basic build.xml File Using weblogic.BuildXMLGen

* Developing Multiple-EAR Projects Using the Split Development Directory

® Best Practices for Developing WebLogic Server Applications

4.1 Overview of the Split Development Directory Environment

The WebLogic split development directory environment consists of a directory layout
and associated Ant tasks that help you repeatedly build, change, and deploy Java EE
applications. Compared to other development frameworks, the WebLogic split
development directory provides these benefits:

¢ Fast development and deployment. By minimizing unnecessary file copying, the
split development directory Ant tasks help you recompile and redeploy
applications quickly without first generating a deployable archive file or exploded
archive directory.

* Simplified build scripts. The Oracle-provided Ant tasks automatically determine
which Java EE modules and classes you are creating, and build components in the
correct order to support common classpath dependencies. In many cases, your
project build script can simply identify the source and build directories and allow
Ant tasks to perform their default behaviors.

¢ Easy integration with source control systems. The split development directory
provides a clean separation between source files and generated files. This helps you
maintain only editable files in your source control system. You can also clean the
build by deleting the entire build directory; build files are easily replaced by
rebuilding the project.

Creating a Split Development Directory Environment 4-1

Overview of the Split Development Directory Environment

4.1.1 Source and Build Directories

The source and build directories form the basis of the split development directory
environment. The source directory contains all editable files for your project—Java
source files, editable descriptor files, JSPs, static content, and so forth. You create the
source directory for an application by following the directory structure guidelines
described in Organizing Java EE Components in a Split Development Directory.

The top level of the source directory always represents an enterprise application (. ear
file), even if you are developing only a single Java EE module. Subdirectories beneath
the top level source directory contain:

¢ Enterprise Application Modules (E]Bs and Web applications)

Note:

The split development directory structure does not provide support for
developing new Resource Adapter components.

® Descriptor files for the enterprise application (appl i cati on. xm and
webl ogi c-application.xm)

e Utility classes shared by modules of the application (for example, exceptions,
constants)

* Libraries (compiled. j ar files, including third-party libraries) used by modules of
the application

The build directory contents are generated automatically when you run the

W conpi | e ant task against a valid source directory. The W conpi | e task recognizes
EJB, Web application, and shared library and class directories in the source directory,
and builds those components in an order that supports common class path
requirements. Additional Ant tasks can be used to build Web services or generate
deployment descriptor files from annotated E]JB code.

Figure 4-1 Source and Build Directories

Source
Directory Build Process Build Directory

Java Source,

JSPs, g;:lmpiled

Annotated .EJB asses
Generated

Static HTML and Deployment

Graphics Descriptors

Editable

Deployment

Descriptors

Third-Party JAR

Files

The build directory contains only those files generated during the build process. The
combination of files in the source and build directories form a deployable Java EE
application.

4-2 Developing Applications for Oracle WebLogic Server

Overview of the Split Development Directory Environment

The build and source directory contents can be place in any directory of your choice.
However, for ease of use, the directories are commonly placed in directories named
sour ce and bui | d, within a single project directory (for example, \ mypr oj ect

\ bui I d and \ nypr oj ect\ sour ce).

4.1.2 Deploying from a Split Development Directory

All WebLogic Server deployment tools (webl ogi c. Depl oyer , w depl oy, and the
WebLogic Server Administration Console) support direct deployment from a split
development directory. You specify only the build directory when deploying the
application to WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source
directory for deploying the application. If a required resource is not available in the
source directory, WebLogic Server then looks in the application's build directory for
that resource. For example, if a deployment descriptor is generated during the build
process, rather than stored with source code as an editable file, WebLogic Server
obtains the generated file from the build directory.

WebLogic Server discovers the location of the source directory by examining
the . beabui | d. t xt file that resides in the top level of the application's build
directory. If you ever move or modify the source directory location, edit

the . beabui | d. t xt file to identify the new source directory name.

Deploying Applications Using wldeploy describes the W depl oy Ant task that you
can use to automate deployment from the split directory environment.

Figure 4-2 shows a typical deployment process. The process is initiated by specifying
the build directory with a WebLogic Server tool. In the figure, all compiled classes and
generated deployment descriptors are discovered in the build directory, but other
application resources (such as static files and editable deployment descriptors) are
missing. WebLogic Server uses the hidden . beabui | d. t xt file to locate the
application's source directory, where it finds the required resources.

Figure 4-2 Split Directory Deployment

Deploy
Source . .
Directory Build Directory
Java Source,
! Compiled
JEPs, i
Annotated .EJB Classes
Static HTML Generated
and Graphics < Deployment -
Descriptors
Editable
Deployment i beabuild txt f—
Descriptors
Third-Party JAR

Files -+

Creating a Split Development Directory Environment 4-3

Using the Split Development Directory Structure: Main Steps

4.1.3 Split Development Directory Ant Tasks

Oracle provides a collection of Ant tasks designed to help you develop applications
using the split development directory environment. Each Ant task uses the source,
build, or both directories to perform common development tasks:

W conpi | e—This Ant task compiles the contents of the source directory into
subdirectories of the build directory. W conpi | e compiles Java classes and also
processes annotated . ej b files into deployment descriptors, as described in
Compiling Applications Using wlcompile.

W appc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See Building Modules and
Applications Using wlappc.

W depl oy—This Ant task deploys any format of Java EE applications (exploded or
archived) to WebLogic Server. To deploy directly from the split development
directory environment, you specify the build directory of your application. See
wldeploy Ant Task Reference.

w package—This Ant task uses the contents of both the source and build
directories to generate an EAR file or exploded EAR directory that you can give to
others for deployment.

4.2 Using the Split Development Directory Structure: Main Steps

The following steps illustrate how you use the split development directory structure to
build and deploy a WebLogic Server application.

1.

Create the main EAR source directory for your project. When using the split
development directory environment, you must develop Web applications and E]Bs
as part of an enterprise application, even if you do not intend to develop multiple
Java EE modules. See Organizing Java EE Components in a Split Development
Directory.

Add one or more subdirectories to the EAR directory for storing the source for Web
applications, EJB components, or shared utility classes. See Organizing Java EE
Components in a Split Development Directory and Organizing Shared Classes in a
Split Development Directory.

Store all of your editable files (source code, static content, editable deployment
descriptors) for modules in subdirectories of the EAR directory. Add the entire
contents of the source directory to your source control system, if applicable.

. Set your WebLogic Server environment by executing either the set W.SEnv. cnd

(Windows) or set W.SEnv. sh (UNIX) script. The scripts are located in the
WL_HOME\ ser ver\ bi n\ directory, where W._HOME is the top-level directory in
which WebLogic Server is installed.

Note:

On UNIX operating systems, the set W.SEnv. sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

4-4 Developing Applications for Oracle WebLogic Server

Organizing Java EE Components in a Split Development Directory

5. Use the webl ogi c. Bui | dXM_Gen utility to generate a default bui | d. xni file for
use with your project. Edit the default property values as needed for your
environment. See Generating a Basic build.xml File Using weblogic.BuildXMLGen.

6. Use the default targets in the bui | d. xm file to build, deploy, and package your
application. See Generating a Basic build.xml File Using weblogic.BuildXMLGen
for a list of default targets.

4.3 Organizing Java EE Components in a Split Development Directory

The split development directory structure requires each project to be staged as a Java
EE enterprise application. Oracle therefore recommends that you stage even
standalone Web applications and E]JBs as modules of an enterprise application, to
benefit from the split directory Ant tasks. This practice also allows you to easily add or
remove modules at a later date, because the application is already organized as an
EAR.

Note:

If your project requires multiple EARs, see also Developing Multiple-EAR
Projects Using the Split Development Directory.

The following sections describe the basic conventions for staging the following
module types in the split development directory structure:

¢ Enterprise Application Configuration
e Web Applications

e EJBs

e Shared Utility Classes

¢ Third-Party Libraries

The directory examples are taken from the spl i t di r sample application installed in
ORACLE _HOVE\ W server\ sanpl es\ src\ exanpl es\ splitdir, where
ORACLE_HOQVE represents the directory in which the WebLogic Server code examples
are configured. For more information about the WebLogic Server code examples, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

4.3.1 Source Directory Overview

The following figure summarizes the source directory contents of an enterprise
application having a Web application, EJB, shared utility classes, and third-party
libraries. The sections that follow provide more details about how individual parts of
the enterprise source directory are organized.

Creating a Split Development Directory Environment 4-5

Organizing Java EE Components in a Split Development Directory

Figure 4-3 Overview of Enterprise Application Source Directory

helloWarldEar

— build.xml

— META-INF
I: application.xml
weblogic-application.xml|

— helloWebipp

| hellojsp

— WEB-INF

weh.xml
weblogic.xml

5rc

|_ Java Source Files

. (in package
— static directories)

HTML, Graphics,
Static files”
— helloEJB

Java Source Files
(in package directories)

META-INF

weblogic-ejb-jar.xmi

— appUtils ejb-jar.xml*

Java Source Flles
{in package directories)

1 APPINF

T

|— Third-Party JAR Files

4-6 Developing Applications for Oracle WebLogic Server

Organizing Java EE Components in a Split Development Directory

4.3.2 Enterprise Application Configuration

The top level source directory for a split development directory project represents an
enterprise application. The following figure shows the minimal files and directories
required in this directory.

Figure 4-4 Enterprise Application Source Directory

Source

helloWorldEar

— build.xml

META-INF

—— application.xml

—— weblogic-application,.xml

The enterprise application directory will also have one or more subdirectories to hold
a Web application, EJB, utility class, and/or third-party Jar file, as described in the
following sections.

4.3.3 Web Applications

Web applications use the basic source directory layout shown in the figure below.

Creating a Split Development Directory Environment 4-7

Organizing Java EE Components in a Split Development Directory

Figure 4-5 Web Application Source and Build Directories

Source Build
helloWorldEar helloWorldEar

|— helloWebApp |— helloWebApp
hello.jsp I_
WEB-INF
WEB-INF L
classes

; —— src

: r — jsp_serviet

L Java Source Files

H (in package directories)

: Compiled JSPs
H and Serviets
: — web.xml | Java Class Files

: (in package directories)

H — weblogic.xml

E r

:-----1 static*

|

— — — —
.

i... HTML, Graphics,
Static files*

*Not used in
helloWorldEar sample

The key directories and files for the Web application are:

e hel | oWebApp\ —The top level of the Web application module can contain JSP
files and static content such as HTML files and graphics used in the application.
You can also store static files in any named subdirectory of the Web application (for
example, hel | oWebApp\ gr aphi cs or hel | oWWebApp\ st ati c.)

¢ hel | oVebApp\ VEB- | NF\ —Store the Web application's editable deployment
descriptor files (web. xm and webl ogi c¢. xm) in the VEB- | NF subdirectory.

e hel | oWebApp\ VEEB- | NF\ sr ¢ —Store Java source files for Servlets in package
subdirectories under VEB- | NF\ sr c.

When you build a Web application, the appc Ant task and j spc compiler compile
JSPs into package subdirectories under hel | oVWebApp\ VEEB- | NF\ cl asses

\j sp_servl et in the build directory. Editable deployment descriptors are not copied
during the build process.

4.3.4 EJBs

EJBs use the source directory layout shown in the figure below.

4-8 Developing Applications for Oracle WebLogic Server

Organizing Java EE Components in a Split Development Directory

Figure 4-6 EJB Source and Build Directories

Source Build
helloWorldEar helloWorldEar
helloEJE helloEJE
Jawa Source Files Java Class Files
' (in package directories) {in package directories)
o ,
1 METAANF* . META-INF
. |
—_——— =
§- ------- ajb-jar.xmi* e @ b=jar. xmi
fammaman weablogic-ajb-jar. xmil* weblogic-gjb-jar
*MNot used in

helloWorldEar sample
The key directories and files for an E]B are:

e hel | oEJB\ —Store all EJB source files under package directories of the EJB
module directory. The source files can be either . j ava source files, or
annotated . ej b files.

¢ hel | oEJB\ META- I NF\ —Store editable EJB deployment descriptors (ejb-jar.xml
and weblogic-ejb-jar.xml) in the META- | NF subdirectory of the EJB module
directory. The hel | oWor | dEar sample does not include a hel | oEJB\ META- | NF
subdirectory, because its deployment descriptors files are generated from
annotations in the . ej b source files. See Important Notes Regarding EJB
Descriptors.

During the build process, EJB classes are compiled into package subdirectories of the
hel | oEJB module in the build directory. If you use annotated . ej b source files, the
build process also generates the EJB deployment descriptors and stores them in the
hel | oEJB\ META- | NF subdirectory of the build directory.

4.3.5 Important Notes Regarding EJB Descriptors

EJB deployment descriptors should be included in the source META- | NF directory and
treated as source code only if those descriptor files are created from scratch or are
edited manually. Descriptor files that are generated from annotated . ej b files should
appear only in the build directory, and they can be deleted and regenerated by
building the application.

For a given EJB component, the E]B source directory should contain either:

e EJB source code in . j ava source files and editable deployment descriptors in
META- | NF

or:

Creating a Split Development Directory Environment 4-9

Organizing Shared Classes in a Split Development Directory

* EJB source code with descriptor annotations in . €j b source files, and no editable
descriptors in META- | NF.

In other words, do not provide both annotated . ej b source files and editable
descriptor files for the same E]JB component.

4.4 Organizing Shared Classes in a Split Development Directory

The WebLogic split development directory also helps you store shared utility classes
and libraries that are required by modules in your enterprise application. The
following sections describe the directory layout and classloading behavior for shared
utility classes and third-party JAR files.

4.4.1 Shared Utility Classes

Enterprise applications frequently use Java utility classes that are shared among
application modules. Java utility classes differ from third-party JARs in that the source
files are part of the application and must be compiled. Java utility classes are typically
libraries used by application modules such as EJBs or Web applications.

Figure 4-7 Java Utility Class Directory

Source Build
helloWorldEar helloWeorldEar
I— appUtils L APPANF
Java Source Files | Jawa Class Files
fin package directories) fin package direcfories)

Place the source for Java utility classes in a named subdirectory of the top-level
enterprise application directory. Beneath the named subdirectory, use standard
package subdirectory conventions.

During the build process, the W conpi | e Ant task invokes the javac compiler and
compiles Java classes into the APP- | NF/ cl asses/ directory under the build
directory. This ensures that the classes are available to other modules in the deployed
application.

4.4.2 Third-Party Libraries

You can extend an enterprise application to use third-party . j ar files by placing the
files in the APP- 1 NF\ | i b\ directory, as shown below:

4-10 Developing Applications for Oracle WebLogic Server

Generating a Basic build.xml File Using weblogic.BuildXMLGen

Figure 4-8 Third-party Library Directory

Source

helloWorldEar

APP-INF

L

I— Third-Party JAR Files

Third-party JARs are generally not compiled, but may be versioned using the source
control system for your application code. For example, XML parsers, logging
implementations, and Web application framework JAR files are commonly used in
applications and maintained along with editable source code.

During the build process, third-party JAR files are not copied to the build directory,
but remain in the source directory for deployment.

4.4.3 Class Loading for Shared Classes

The classes and libraries stored under APP- | NF/ cl asses and APP-| NF/ | i b are
available to all modules in the enterprise application. The application classloader
always attempts to resolve class requests by first looking in APP- | NF/ cl asses, then
APP- 1 NF/ 1 b.

4.5 Generating a Basic build.xml File Using weblogic.BuildXMLGen

After you set up your source directory structure, use the webl ogi c. Bui | dXM.Gen
utility to create a basic bui | d. xni file. webl ogi c. Bui | dXM_Gen is a convenient
utility that generates an Ant build.xml file for enterprise applications that are
organized in the split development directory structure. The utility analyzes the source
directory and creates build and deploy targets for the enterprise application as well as
individual modules. It also creates targets to clean the build and generate new
deployment descriptors.

Additionally, optional packages are supported as Java EE shared libraries in

webl ogi c. Bui | dXM_Gen, whereby all manifests of an application and its modules
are scanned to look for optional package references. If optional package references are
found they are added to the compile and appc tasks in the generated bui | d. xmi file.

For example, if a library located at | i b\ echol i b. j ar is referenced as an optional
package, the tasks generated by webl ogi c. Bui | dXM_Gen will contains an appc task
that would appear as follows:

<target name="appc" description="Runs webl ogi c. appc on your application">
<l appc source="${dest.dir}" verbose="${verbose}">
<library file="lib\echolib\echolib.jar" />
</ wl appc>
</target>

Creating a Split Development Directory Environment 4-11

Generating a Basic build.xml File Using weblogic.BuildXMLGen

The compile and appc tasks for modules also use the li b\ echol i b\ echol i b. j ar
library.

4.5.1 weblogic.BuildXMLGen Syntax
The syntax for webl ogi ¢. Bui | dXM_Gen is as follows:

java webl ogi c. Bui | dXMLCGen [options] <source directory>

where opt i ons include:

- hel p—Print standard usage message
e -versi on—Print version information
e -projectName <project name>—Name of the Ant project

e -d <directory>—Directory where bui | d. xml is created. The default is the
current directory.

-file <build.xm >—Name of the generated build file

-librarydir <directories>—Create build targets for shared Java EE
libraries in the comma-separated list of directories. See Creating Shared Java EE
Libraries and Optional Packages..

e -username <user name>—User name for deploy commands

e -password <passwor d>—User password

After running webl ogi ¢. Bui | dXM_Gen, edit the generated bui | d. xni file to
specify properties for your development environment. The list of properties you need
to edit are shown in the listing below.

Example 4-1 build.xml Editable Properties

<l-- BUI LD PROPERTI ES ADJUST THESE FOR YOUR ENVI RONMENT - ->
<property name="tnp.dir" value="/tmp" />
<property name="dist.dir" value="${tnmp.dir}/dist"/>
<property name="app.nane" val ue="hel | oWor| dEar" />
<property name="ear" val ue="${dist.dir}/${app. name}.ear"/>
<property name="ear.expl oded" val ue="${dist.dir}/${app. name}_expl oded"/ >
<property name="verbose" val ue="true" />
<property name="user" val ue="USERNAME" />
<property name="password" val ue="PASSWORD" />
<property name="servernanme" val ue="nyserver" />
<property name="adnmi nurl" val ue="iiop://Iocal host:7001" />

In particular, make sure you edit the t np. di r property to point to the build directory
you want to use. By default, the bui | d. xm file builds projects into a subdirectory
t mp. di r named after the application (/ t mp/ hel | oWor | dEar in the above listing).

The following listing shows the default main targets created in the bui | d. xnl file.
You can view these targets at the command prompt by entering the ant -
pr oj ect hel p command in the EAR source directory.

Example 4-2 Default build.xm| Targets

appc Runs webl ogi c. appc on your application

build Conpi | es hel | oWor | dEar application and runs appc
cl ean Del etes the build and distribution directories
conpile Only conpiles hel |l oWrl dEar application, no appc

4-12 Developing Applications for Oracle WebLogic Server

Developing Multiple-EAR Projects Using the Split Development Directory

conpile. appStartup Conpiles just the appStartup modul e of the application
conpi l e. appUtils Conpiles just the appltils nodul e of the application
conpile.build.orig Conpiles just the build.orig module of the application
conpi | e. hel | oEJB Conpi l es just the hell oEJB nodul e of the application
conpi | e. hel | oVWebApp Conpi l es just the hel | oVebApp modul e of the application

conpi | e. j avadoc Conpi l es just the javadoc nodul e of the application

depl oy Depl oys (and redepl oys) the entire hel | oWorl dEar application
descriptors Cenerates application and nodul e descriptors

ear Package a standard J2EE EAR for distribution

ear . expl oded Package a standard expl oded J2EE EAR

redepl oy. appStartup Redepl oys just the appStartup modul e of the application
redepl oy. appUtils Redepl oys just the appUtils nodule of the application
redepl oy. build.orig Redeploys just the build.orig mdule of the application
redepl oy. hel | oEJB Redepl oys just the hell oEJB nodul e of the application
redepl oy. hel | oVWebApp Redepl oys just the hel | oVebApp nodul e of application
redepl oy. j avadoc Redepl oys just the javadoc nodul e of the application
undepl oy Undepl oys the entire hell oWorl dEar application

4.6 Developing Multiple-EAR Projects Using the Split Development

Directory

The split development directory examples and procedures described previously have
dealt with projects consisting of a single enterprise application. Projects that require
building multiple enterprise applications simultaneously require slightly different
conventions and procedures, as described in the following sections.

Note:

The following sections refer to the MedRec sample application, which consists
of three separate enterprise applications as well as shared utility classes, third-
party JAR files, and dedicated client applications. The MedRec source and
build directories are installed under ORACLE_HOME/ user _pr oj ect s/

domai n/ medr ec, where ORACLE_HOME is the directory you specified as
Oracle Home when you installed Oracle WebLogic Server. For more
information, see Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

4.6.1 Organizing Libraries and Classes Shared by Multiple EARs

For single EAR projects, the split development directory conventions suggest keeping
third-party JAR files in the APP- | NF/ | i b directory of the EAR source directory.
However, a multiple-EAR project would require you to maintain a copy of the same
third-party JAR files in the APP- | NF/ | i b directory of each EAR source directory. This
introduces multiple copies of the source JAR files, increases the possibility of some
JAR files being at different versions, and requires additional space in your source
control system.

To address these problems, consider editing your build script to copy third-party JAR
files into the APP- | NF/ | i b directory of the build directory for each EAR that requires
the libraries. This allows you to maintain a single copy and version of the JAR files in
your source control system, yet it enables each EAR in your project to use the JAR
files.

The MedRec sample application installed with WebLogic Server uses this strategy, as
shown in the following figure.

Creating a Split Development Directory Environment 4-13

Best Practices for Developing WebLogic Server Applications

Figure 4-9 Shared JAR Files in MedRec

lbwild build

I— medrecEar I— physicianEar
I— APP-NF I— APP-NF
I_ lib I— liky

l—— commons-",jar l—— commons-* jar
exceplions.jar exceptions.jar
struts.jar struts.jar
utils.jar utils.jar
value.jar value.jar

MedRec takes a similar approach to utility classes that are shared by multiple EARs in
the project. Instead of including the source for utility classes within the scope of each
ear that needs them, MedRec keeps the utility class source independent of all EARSs.
After compiling the utility classes, the build script archives them and copies the JARs
into the build directory under the APP- | NF/ LI B subdirectory of each EAR that uses
the classes, as shown in figure Figure 4-9.

4.6.2 Linking Multiple build.xml Files

When developing multiple EARs using the split development directory, each EAR
project generally uses its own bui | d. xml file (perhaps generated by multiple runs of
webl ogi c. Bui | dXM_Gen.). Applications like MedRec also use a master bui | d. xm
file that calls the subordinate bui | d. xm files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build
files within a master bui | d. xrm file. The following line from the MedRec master
build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xm"/>

The above task instructs Ant to execute the file named bui | d. xml in the /
st art upEar subdirectory. Thei nherit Al | parameter instructs Ant to pass only
user properties from the master build file tot the bui | d. xml filein/ st art upEar .

MedRec uses multiple tasks similar to the above to build the st ar t upEar,
medr ecEar, and physi ci anEar applications, as well as building common utility
classes and client applications.

4.7 Best Practices for Developing WebLogic Server Applications

Oracle recommends the following "best practices” for application development.

¢ Package applications as part of an enterprise application. See Packaging
Applications Using wlpackage.

4-14 Developing Applications for Oracle WebLogic Server

Best Practices for Developing WebLogic Server Applications

Use the split development directory structure. See Organizing Java EE Components
in a Split Development Directory.

For distribution purposes, package and deploy in archived format. See Packaging
Applications Using wlpackage.

In most other cases, it is more convenient to deploy in exploded format. See
Archive versus Exploded Archive Directory.

Never deploy untested code on a WebLogic Server instance that is serving
production applications. Instead, set up a development WebLogic Server instance
on the same computer on which you edit and compile, or designate a WebLogic
Server development location elsewhere on the network.

Even if you do not run a development WebLogic Server instance on your
development computer, you must have access to a WebLogic Server distribution to
compile your programs. To compile any code using WebLogic or Java EE APIs, the
Java compiler needs access to the webl ogi c. j ar file and other JAR files in the
distribution directory. Install WebLogic Server on your development computer to
make WebLogic distribution files available locally.

Creating a Split Development Directory Environment 4-15

Best Practices for Developing WebLogic Server Applications

4-16 Developing Applications for Oracle WebLogic Server

5

Building Applications in a Split
Development Directory

This chapter describes how to build WebLogic Server Java EE applications using the
WebLogic split development directory environment.

This chapter includes the following sections:
¢ Compiling Applications Using wlcompile

* Building Modules and Applications Using wlappc

5.1 Compiling Applications Using wicompile

You use the W conpi | e Ant task to invoke the javac compiler to compile your
application's Java components in a split development directory structure. The basic
syntax of M conpi | e identifies the source and build directories, as in this command
from the hel | oWr | dEar sample:

<w compile srcdir="${src.dir}" destdir="${dest.dir}"/>

Note:

Deployment descriptors are no longer mandatory as of Java EE 5; therefore,
exploded module directories must indicate the module type by using the .war
or . j ar suffix when there is no deployment descriptor in these directories.
The suffix is required so that W conpi | e can recognize the modules.

The . war suffix indicates the module is a Web application module and

the . j ar suffix indicates the module is an EJB module.

The following is the order in which events occur using this task:

1. Wl conpi | e compiles the Java components into an output directory:

ORACLE_HOVEW ser ver\ sanpl es\ server\ exanpl es\ bui | d\ hel | oWr | dEar\ APP- | NF\ ¢l asses\

where ORACLE_HOME represents the directory in which the WebLogic Server code
examples are configured. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

2. Wl conpi | e builds the E]Bs and automatically includes the previously built Java
modules in the compiler's classpath. This allows the EJBs to call the Java modules
without requiring you to manually edit their classpath.

3. Finally, W conpi | e compiles the Java components in the Web application with the
EJB and Java modules in the compiler's classpath. This allows the Web applications

Building Applications in a Split Development Directory 5-1

Compiling Applications Using wicompile

to refer to the EJB and application Java classes without requiring you to manually
edit the classpath.

5.1.1 Using includes and excludes Properties

More complex enterprise applications may have compilation dependencies that are
not automatically handled by the wlcompile task. However, you can use the include
and exclude options to wlcompile to enforce your own dependencies. The includes
and excludes properties accept the names of enterprise application modules—the
names of subdirectories in the enterprise application source directory—to include or
exclude them from the compile stage.

The following line from the hel | oWbr | dEar sample shows the appSt ar t up module
being excluded from compilation:

<wl conpile srcdir="${src.dir}" destdir="${dest.dir}"
excl udes="appStartup"/>

5.1.2 wicompile Ant Task Attributes
Table 5-1 contains Ant task attributes specific to w conpi | e.

Table 5-1 wlcompile Ant Task Attributes
- -]

Attribute Description
) The source directory.
srcdir
) The build/output directory.
destdir P Y
Allows you to change the classpath used by Wl conpi | e.
cl asspat h Y & P Y P
. Allows you to include specific directories from the build.
i ncl udes
Allows you to exclude specific directories from the build.
excl udes
lib i Specifies a directory of shared Java EE libraries to add to the
i brarydir

classpath. See Creating Shared Java EE Libraries and Optional
Packages.

5.1.3 Nested javac Options

The W conpi | e Ant task can accept nested javac options to change the compile-time
behavior. For example, the following Wl conpi | € command ignores deprecation
warnings and enables debugging:

<w compile srcdir="${mysrcdir}" destdir="${nybuilddir}">
<javac deprecation="fal se" debug="true"
debugl evel ="l i nes, var s, source"/ >

</w conpi | e>

5-2 Developing Applications for Oracle WebLogic Server

Compiling Applications Using wicompile

5.1.4 Setting the Classpath for Compiling Code

Most WebLogic services are based on Java EE standards and are accessed through
standard Java EE packages. The WebLogic and other Java classes required to compile
programs that use WebLogic services are packaged in the W s- api . j ar file in the
I'i b directory of your WebLogic Server installation. In addition tow s- api . j ar,
include the following in your compiler's CLASSPATH:

e Thelib\tools.jar filein the JDK directory, or other standard Java classes
required by the Java Development Kit you use.

¢ The exanpl es. property file for Apache Ant (for examples environment). This
file is discussed in the WebLogic Server documentation on building examples
using Ant located at: sanpl es\ server\ exanpl es\ src\ exanpl es
\ exampl es. htm

® C(lasses for third-party Java tools or services your programs import.

¢ Other application classes referenced by the programs you are compiling.

5.1.5 Library Element for wicompile and wlappc

Thel i br ary element is an optional element used to define the name and optional
version information for a module that represents a shared Java EE library required for
building an application, as described in Creating Shared Java EE Libraries and
Optional Packages. The | i br ar y element can be used with both wl conpi | e and

W appc, described in Building Modules and Applications Using wlappc.

The name and version information are specified as attributes to the library element,
described in Table 5-2.

Table 5-2 Library attributes
__|

Attribute Description

fil Required filename of a Java EE library
e

The optional name of a required Java EE

name library.

An optional specification version required for

speci ficationversion the library.

An optional implementation version required

i mpl ement ati onversion for the library.

The format choices for both speci fi cati onver si on and
i npl enment at i onver si on are described in Referencing Shared Java EE Libraries in
an Enterprise Application. The following output shows a sample | i br ar y reference:

<library file="c:\nylibs\lIib.jar" name="ReqLib" specificationversion="920"
i npl ement ationversion="1.1" />

Building Applications in a Split Development Directory 5-3

Building Modules and Applications Using wlappc

5.2 Building Modules and Applications Using wlappc

To reduce deployment time, use the webl ogi c. appc Java class (or its equivalent Ant
task Wl appc) to pre-compile a deployable archive file, (WAR, JAR, or EAR).
Precompiling with webl ogi c. appc generates certain helper classes and performs
validation checks to ensure your application is compliant with the current Java EE
specifications. The application-level checks include checks between the application-
level deployment descriptors and the individual modules, as well as validation checks
across the modules.

Additionally, optional packages are supported as Java EE shared libraries in appc,
whereby all manifests of an application and its modules are scanned to look for
optional package references.

W appc is the Ant task interface to the webl ogi c. appc compiler. The following
section describe the W appc options and usage. Both webl ogi c. appc and the
W appc Ant task compile modules in the order in which they appear in the

appl i cation. xm deployment descriptor file that describes your enterprise
application.

5.2.1 wlappc Ant Task Attributes

Table 5-3 describes Ant task options specific to W appc. These options are similar to
the webl ogi c. appc command-line options, but with a few differences.

Note:
See weblogic.appc Reference for a list of webl ogi c. appc options.

See also Library Element for wlcompile and wlappc.

Table 5-3 wlappc Ant Task Attributes
- _-__|

Option Description
- Prints the standard usage message.
prin
. Prints appc version information.
version

Specifies an alternate output archive or directory. If not
set, the output is placed in the source archive or
directory.

output <file>

Forces generation of EJB and JSP classes. Without this
flag, the classes may not be regenerated (if determined
to be unnecessary).

forceGeneration

Adds line numbers to generated class files to aid in

I'i neNunbers debugging.

Specifies that the application or module contains

writelnferredDescriptors deployment descriptors with annotation information.

5-4 Developing Applications for Oracle WebLogic Server

Building Modules and Applications Using wlappc

Table 5-3 (Cont.) wlappc Ant Task Attributes

Option

Description

basi cCientJar

Does not include deployment descriptors in client JARs
generated for EJBs.

Generates IDL for EJB remote interfaces.

idl

. . Always overwrites existing IDL files.
idlOverwite

) Displays verbose information for IDL generation.
i dl Verbose

i dl NoVal ueTypes

Does not generate valuetypes and the methods/
attributes that contain them.

i dl NoAbstractInterfaces

Does not generate abstract interfaces and methods/
attributes that contain them.

Generates factory methods for valuetypes.

i dl Factories

)) Generates IDL somewhat compatible with Visibroker
i dl Vi sibroker 45 Cit.

i dl Orbi Generates IDL somewhat compatible with Orbix 2000
i i X

2.0 C++.

id Directory <dir>

Specifies the directory where IDL files will be created
(default: target directory or JAR)

i dl Met hodSi gnat ures <>

Specifies the method signatures used to trigger IDL
code generation.

iiop

Generates CORBA stubs for E]Bs.

iiopDirectory <dir>

Specifies the directory where IIOP stub files will be
written (default: target directory or JAR)

keepgener at ed

Keeps the generated . j ava files.

l'ibrarydir

Specifies a directory of shared Java EE libraries to add
to the classpath. See Creating Shared Java EE Libraries
and Optional Packages.

conpiler <java.jdt>

Selects the Java compiler to use. Defaults to JDT.

Building Applications in a Split Development Directory 5-5

Building Modules and Applications Using wlappc

Table 5-3 (Cont.) wlappc Ant Task Attributes
. ___|

Option Description
deb Compiles debugging information into a class file.
ebug
. Compiles with optimization on.
optimze
Compiles without warnings.
nowar n
Compiles with verbose output.
ver bose

) Warns about deprecated calls.
deprecation

Passes flags through to Symantec's sj.
norm 8 & Y)

. Passes flags through to Java runtime
runtimefl ags

Selects the classpath to use during compilation.
cl asspath <pat h>

Specifies a directory to place generated client jar files. If
not set, generated jar files are placed into the same
directory location where the JVM is running.

clientJarQutputDir <dir>

Prints advanced usage options.
advanced

5.2.2 wlappc Ant Task Syntax

The basic syntax for using the W appc Ant task determines the destination source
directory location. This directory contains the files to be compiled by Wl appc.

<w appc source="${dest.dir}" />

The following is an example of a W appc Ant task command that invokes two options
(idl andidl Orver Wit e) from Table 5-3.

<w appc source="${dest.dir}"idl ="true" idl OverWite="true" />

5.2.3 Syntax Differences between appc and wlappc

There are some syntax differences between appc and W appc. For appc, the presence
of a flag in the command is a Boolean. For W appc, the presence of a flag in the
command means that the argument is required.

To illustrate, the following are examples of the same command, the first being an appc
command and the second being a W appc command:

5-6 Developing Applications for Oracle WebLogic Server

Building Modules and Applications Using wlappc

java webl ogi c. appc -idl foo.ear
<w appc source="${dest.dir} idl ="true"/>
5.2.4 weblogic.appc Reference

The following sections describe how to use the command-line version of the appc
compiler. The webl ogi c. appc command-line compiler reports any warnings or
errors encountered in the descriptors and compiles all of the relevant modules into an
EAR file, which can be deployed to WebLogic Server.

5.2.5 weblogic.appc Syntax
Use the following syntax to run appc:

pronpt >j ava webl ogi c. appc [options] <ear, jar, or war file or directory>

5.2.6 weblogic.appc Options

The following are the available appc options:

Option Description
it Prints the standard usage message.
-prin
. Prints appc version information.
-version

Specifies an alternate output archive or directory. If not set,

-output <file> the output is placed in the source archive or directory.

Forces generation of EJB and JSP classes. Without this flag,
the classes may not be regenerated (if determined to be
unnecessary).

-forceCGeneration

A comma-separated list of shared Java EE libraries. Optional
name and version string information must be specified in the
format described in Referencing Shared Java EE Libraries in
an Enterprise Application.

-library

<file[[@anme=<string>]
[@i bspecver =<versi on>]
[@i bi npl ver =<ver si on|
string>]]>

Specifies that the application or module contains deployment

-writelnferredDescriptors descriptors with annotation information.

Adds line numbers to generated class files to aid in

-lineNunbers debugging.

Does not include deployment descriptors in client JARs

-basi cO i ent Jar generated for E]Bs.

d Generates IDL for EJB remote interfaces.
-

]) Always overwrites existing IDL files.
-idl Overwite

Building Applications in a Split Development Directory 5-7

Building Modules and Applications Using wlappc

Option

Description

-idl Verbose

Displays verbose information for IDL generation.

-idl NoVal ueTypes

Does not generate valuetypes and the methods/attributes
that contain them.

-idl NoAbstractlInterfaces

Does not generate abstract interfaces and methods/attributes
that contain them.

Generates factory methods for valuetypes.

-idl Factories

)) Generates IDL somewhat compatible with Visibroker 4.5 C+
-idl Visibroker i

i dl Orbi Generates IDL somewhat compatible with Orbix 2000 2.0 C+
-i i X

+.

-idlDirectory <dir>

Specifies the directory where IDL files will be created
(default: target directory or JAR)

-idl Met hodSi gnatures <>

Specifies the method signatures used to trigger IDL code
generation.

-iiop

Generates CORBA stubs for EJBs.

-iiopDirectory <dir>

Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

- keepgener at ed

Keeps the generated . j ava files.

-conpi |l er <javac>

Selects the Java compiler to use.

Compiles debugging information into a class file.

-9
o Compiles with optimization on.
Compiles without warnings.
- howar n
Compiles with verbose output.
-ver bose

-deprecation

Warns about deprecated calls.

5-8 Developing Applications for Oracle WebLogic Server

Building Modules and Applications Using wlappc

Option Description
Passes flags through to Symantec's sj.
-nor i & & Yy)
) Passes flags through to Java runtime.
-J<option>

Selects the classpath to use during compilation.
-classpath <pat h>

Specifies a directory to place generated client jar files. If not
set, generated jar files are placed into the same directory
location where the JVM is running.

-clientJarQutputDir <dir>

Prints advanced usage options.
-advanced

Building Applications in a Split Development Directory 5-9

Building Modules and Applications Using wlappc

5-10 Developing Applications for Oracle WebLogic Server

6

Deploying and Packaging from a Split
Development Directory

This chapter describes how to deploy WebLogic Server Java EE applications using the
WebLogic split development directory environment.

This chapter includes the following sections:
¢ Deploying Applications Using wldeploy

e Packaging Applications Using wlpackage

6.1 Deploying Applications Using wideploy

The W depl oy task provides an easy way to deploy directly from the split
development directory. W conpi | e provides most of the same arguments as the
webl ogi c. Depl oyer directory. To deploy from a split development directory, you
simply identify the build directory location as the deployable files, as in:

<wl depl oy user="${user}" password="${password}"
action="depl oy" source="${dest.dir}"
name="hel | oVWr| dEar" />

The above task is automatically created when you use webl ogi c. Bui | dXM_Gen to
create the bui | d. xni file.

See wldeploy Ant Task Reference, for a complete command reference.

6.2 Packaging Applications Using wipackage

The Wl package Ant task uses the contents of both the source and build directories to
create either a deployable archive file (. EARfile), or an exploded archive directory
representing the enterprise application (exploded . EAR directory). Use W package
when you want to deliver your application to another group or individual for
evaluation, testing, performance profiling, or production deployment.

6.2.1 Archive versus Exploded Archive Directory

For production purposes, it is convenient to deploy enterprise applications in
exploded (unarchived) directory format. This applies also to standalone Web
applications, EJBs, and connectors packaged as part of an enterprise application. Using
this format allows you to update files directly in the exploded directory rather than
having to unarchive, edit, and rearchive the whole application. Using exploded
archive directories also has other benefits, as described in Deployment Archive Files
Versus Exploded Archive Directories in Deploying Applications to Oracle WebLogic
Server.

Deploying and Packaging from a Split Development Directory 6-1

Packaging Applications Using wipackage

You can also package applications in a single archived file, which is convenient for
packaging modules and applications for distribution. Archive files are easier to copy,
they use up fewer file handles than an exploded directory, and they can save disk
space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file
the same way that it searches a directory in its classpath. Because the classloader can
search a directory or a JAR file, you can deploy Java EE modules on WebLogic Server
in either a JAR (archived) file or an exploded (unarchived) directory.

6.2.2 wipackage Ant Task Example

In a production environment, use the W package Ant task to package your split
development directory application as a traditional EAR file that can be deployed to
WebLogic Server. Continuing with the MedRec example, you would package your
application as follows:

<wl package tofile="\physicianEAR physi ci anEAR ear"
srcdi r="\ physi ci anEAR"
dest di r="\bui | d\ physi ci anEAR"/ >
<wl package todir="\physici anEAR\ expl odedphysi ci anEar"
srcdir="\'src\ physi ci anEAR"'
destdi r="\bui | d\ physi ci anEAR" />

6.2.3 wipackage Ant Task Attribute Reference
The following table describes the attributes of the Wl package Ant task.

Table 6-1 Attributes of the wipackage Ant Task
- ___|

Attribute Description Data Type Required?

tofile Name of the EAR archive file into which the String You must specify one of the
W package Ant task packages the split following two attributes: t of i | e
development directory application. ortodir.

todir Name of an exploded directory into which the String You must specify one of the
W package Ant task packages the split following two attributes: t of i | e
development directory application. ortodir.

srcdir Specifies the source directory of your split String Yes.

development directory application.

The source directory contains all editable files for
your project—Java source files, editable
descriptor files, JSPs, static content, and so forth.

destdir Specifies the build directory of your split String Yes.
development directory application.

It is assumed that you have already executed the
W conpi | e Ant task against the source
directory to generate the needed components
into the build directory; these components
include compiled Java classes and generated
deployment descriptors.

6-2 Developing Applications for Oracle WebLogic Server

v

Developing Applications for Production
Redeployment

This chapter describes how to program and maintain applications with WebLogic
Server using the production redeployment strategy.

This chapter includes the following sections:

e What is Production Redeployment?

* Supported and Unsupported Application Types

¢ Programming Requirements and Conventions

® Assigning an Application Version

* Upgrading Applications to Use Production Redeployment

® Accessing Version Information

7.1 What is Production Redeployment?

Production redeployment enables an administrator to redeploy a new version of an
application in a production environment without stopping the deployed application
or otherwise interrupting the application's availability to clients. Production
redeployment works by deploying a new version of an updated application alongside
an older version of the same application. WebLogic Server automatically manages
client connections so that only new client requests are directed to the new version.
Clients already connected to the application during the redeployment continue to use
the older, retiring version of the application until they complete their work.

See Using Production Redeployment to Upgrade Applications for more information.

7.2 Supported and Unsupported Application Types

Production redeployment only supports HT'TP clients and RMI clients. Your
development and design team must ensure that applications using production
redeployment are not accessed by an unsupported client. WebLogic Server does not
detect when unsupported clients access the application, and does not preserve
unsupported client connections during production redeployment.

Enterprise applications can contain any of the supported Java EE module types.
Enterprise applications can also include application-scoped JMS and JDBC modules.

If an enterprise application includes a JCA resource adapter module, the module:

® Must be JCA 1.5 compliant

Developing Applications for Production Redeployment 7-1

Programming Requirements and Conventions

* Must implement the webl ogi c. connect or. ext ensi ons. Suspendabl e
interface

* Must be used in an application-scoped manner, having enabl e- access-
out si de- app set to f al se (the default value).

Before resource adapters in a newer version of the EAR are deployed, resource
adapters in the older application version receive a callback. WebLogic Server then
deploys the newer application version and retires the entire older version of the EAR.

For a complete list of production redeployment requirements for resource adapters,
see Production Redeployment in Developing Resource Adapters for Oracle WebLogic
Server.

7.2.1 Additional Application Support

Additional production redeployment support is provided for enterprise applications
that are accessed by inbound JMS messages from a global JMS destination, and that
use one or more message-driven beans as consumers. For this type of application,
WebLogic Server suspends message-driven beans in the older, retiring application
version before deploying message-driven beans in the newer version. Production
redeployment is not supported with JMS consumers that use the JMS API for global
JMS destinations. If the message-driven beans need to receive all messages published
from topics, including messages published while bean are suspended, use durable
subscribers.

7.3 Programming Requirements and Conventions

WebLogic Server performs production redeployment by deploying two instances of an
application simultaneously. You must observe certain programming conventions to
ensure that multiple instances of the application can co-exist in a WebLogic Server
domain. The following sections describe each programming convention required for
using production redeployment.

7.3.1 Applications Should Be Self-Contained

As a best practice, applications that use the in-place redeployment strategy should be
self-contained in their use of resources. This means you should generally use
application-scoped JMS and JDBC resources, rather than global resources, whenever
possible for versioned applications.

If an application must use a global resource, you must ensure that the application
supports safe, concurrent access by multiple instances of the application. This same
restriction also applies if the application uses external (separately-deployed)
applications, or uses an external property file. WebLogic Server does not prevent the
use of global resources with versioned applications, but you must ensure that
resources are accessed in a safe manner.

Looking up a global JNDI resource from within a versioned application results in a
warning message. To disable this check, set the JNDI environment property

webl ogi c. j ndi . W.Cont ext . ALLOW GLOBAL_RESOURCE_LOOKUP tot r ue when
performing the JNDI lookup.

Similarly, looking up an external application results in a warning unless you set the
JNDI environment property,
webl ogi c. j ndi . W.Cont ext . ALLOW EXTERNAL_APP_LOOKUP, to t r ue.

7-2 Developing Applications for Oracle WebLogic Server

Programming Requirements and Conventions

7.3.2 Versioned Applications Access the Current Version JNDI Tree by Default

WebLogic Server binds application-scoped resources, such as JMS and JDBC
application modules, into a local JNDI tree available to the application. As with non-
versioned applications, versioned applications can look up application-scoped
resources directly from this local tree. Application-scoped JMS modules can be
accessed via any supported JMS interfaces, such as the JMS API or a message-driven
bean.

Application modules that are bound to the global JNDI tree should be accessed only
from within the same application version. WebLogic Server performs version-aware
JNDI lookups and bindings for global resources deployed in a versioned application.
By default, an internal JNDI lookup of a global resource returns bindings for the same
version of the application.

If the current version of the application cannot be found, you can use the JNDI
environment property webl ogi c. j ndi . W.Cont ext . RELAX_VERSI ON_LOOKUP to
return bindings from the currently active version of the application, rather than the
same version.

Note:

Set webl ogi c. j ndi . W.Cont ext . RELAX_VERSI ON_LOOKUP to t r ue only
if you are certain that the newer and older version of the resource that you are
looking up are compatible with one another.

7.3.3 Security Providers Must Be Compatible

Any security provider used in the application must support the WebLogic Server
application versioning SSPI. The default WebLogic Server security providers for
authorization, role mapping, and credential mapping support the application
versioning SSPL

7.3.4 Applications Must Specify a Version Identifier

In order to use production redeployment, both the current, deployed version of the
application and the updated version of the application must specify unique version
identifiers. See Assigning an Application Version.

7.3.5 Applications Can Access Name and Identifier

Versioned applications can programmatically obtain both an application name, which
remains constant across different versions, and an application identifier, which
changes to provide a unique label for different versions of the application. Use the
application name for basic display or error messages that refer to the application's
name irrespective of the deployed version. Use the application ID when the
application must provide unique identifier for the deployed version of the application.
See Accessing Version Information for more information about the MBean attributes
that provide the name and identifier.

7.3.6 Client Applications Use Same Version when Possible

As described in What is Production Redeployment?, WebLogic Server attempts to
route a client application's requests to the same version of the application until all of
the client's in-progress work has completed. However, if an application version is

Developing Applications for Production Redeployment 7-3

Assigning an Application Version

retired using a timeout period, or is undeployed, the client's request will be routed to
the active version of the application. In other words, a client's association with a given
version of an application is maintained only on a "best-effort basis."

This behavior can be problematic for client applications that recursively access other
applications when processing requests. WebLogic Server attempts to dispatch requests
to the same versions of the recursively-accessed applications, but cannot guarantee
that an intermediate application version is not undeployed manually or after a timeout
period. If you have a group of related applications with strict version requirements,
Oracle recommends packaging all of the applications together to ensure version
consistency during production redeployment.

7.4 Assigning an Application Version

Oracle recommends that you specify the version identifier in the MANI FEST. MF of the
application, and automatically increment the version each time a new application is
released for deployment. This ensures that production redeployment is always
performed when the administrator or deployer redeploys the application.

For testing purposes, a deployer can also assign a version identifier to an application
during deployment and redeployment. See Assigning a Version Identifier During
Deployment and Redeployment in Deploying Applications to Oracle WebLogic Server.

7.4.1 Application Version Conventions

WebLogic Server obtains the application version from the value of the Vbl ogi c-
Appl i cati on- Ver si on property in the MANI FEST. M file. The version string can be

a maximum of 215 characters long, and must consist of valid characters as identified in
Table 7-1.

Table 7-1 Valid and Invalid Characters

Valid ASCII Characters Invalid Version Constructs

a-Z

A-Z

0-9

period ("."), underscore ("_"), or
hyphen ("-") in combination with
other characters

For example, the following manifest file content describes an application with version
"v920. bet a™

Mani f est-Version: 1.0
Created-By: 1.4.1 05-b01 (Sun M crosystens Inc.)
Vbl ogi c- Appli cation-Version: v920. beta

7.5 Upgrading Applications to Use Production Redeployment

If you are upgrading applications for deployment to WebLogic Server 9.2 or later, note
that the Nare attribute retrieved from AppDepl oynent MBean now returns a unique
application identifier consisting of both the deployed application name and the
application version string. Applications that require only the deployed application
name must use the new Appl i cat i onNane attribute instead of the Nane attribute.

7-4 Developing Applications for Oracle WebLogic Server

Accessing Version Information

Applications that require a unique identifier can use either the Nane or
Applicationldentifier attribute, as described in Accessing Version Information.

7.6 Accessing Version Information

Your application code can use new MBean attributes to retrieve version information
for display, logging, or other uses. The following table describes the read-only
attributes provided by Appl i cat i onMBean.

Table 7-2 Read-Only Version Attributes in ApplicationMBean
- -]

Attribute Name Description

Appl i cat i onNa A String that represents the deployment name of the application
pl i cati onNare

A String that uniquely identifies the current application version across all

Versi onl denti fier versions of the same application

A String that uniquely identifies the current application version across all

Applicationl dentifier deployed applications and versions

Appl i cati onRunt i meMBean also provides version information in the new read-
only attributes described in the following table.

Table 7-3 Read-Only Version Attributes in ApplicationRuntimeMBean
|

Attribute Name Description

Appl i cat i onla A String that represents the deployment name of the application
plicationNane

o) A string that represents the version of the application.
Appl i cationVersion

An integer that indicates the current state of the active application version.

ActiveVersionState Valid states for an active version are:

¢ ACTIVATED—indicates that one or more modules of the application are
active and available for processing new client requests.

¢ PREPARED—indicates that WebLogic Server has prepared one or more
modules of the application, but that it is not yet active.

¢ UNPREPARED—indicates that no modules of the application are prepared
or active.

See the Java API Reference for Oracle WebLogic Server for more information.
Note that the currently active version does not always correspond to the last-
deployed version, because the administrator can reverse the production
redeployment process. See Rolling Back the Production Redeployment Process
in Deploying Applications to Oracle WebLogic Server.

Developing Applications for Production Redeployment 7-5

Accessing Version Information

7-6 Developing Applications for Oracle WebLogic Server

8

Using Java EE Annotations and
Dependency Injection

This chapter describes Java EE MetaData annotations and dependency injection (DI).

This chapter includes the following sections:
* Annotation Processing

* Dependency Injection of Resources

e Standard JDK Annotations

¢ Standard Security-Related JDK Annotations

8.1 Annotation Processing

With Java EE annotations, the standard appl i cati on. xm and web. xm
deployment descriptors are optional. The Java EE programming model uses the JDK
annotations feature for Web containers, such as E]Bs, servlets, Web applications, and
JSPs (see ht t p: / / docs. or acl e. com j avaee/ 6/ api /).

Annotations simplify the application development process by allowing developers to
specify within the Java class itself how the application component behaves in the
container, requests for dependency injection, and so on. Annotations are an alternative
to deployment descriptors that were required by older versions of enterprise
applications (Java EE 1.4 and earlier).

8.1.1 Annotation Parsing

The application components can use annotations to define their needs. Annotations
reduce or eliminate the need to deal with deployment descriptors. Annotations
simplify the development of application components. The deployment descriptor can
still override values defined in the annotation. One usage of annotations is to define
fields or methods that need Dependency Injection (DI). Annotations are defined on the
POJO (plain old Java object) component classes like the EJB or the servlet.

An annotation on a field or a method can declare that fields/methods need injection,
as described in Dependency Injection of Resources. Annotations may also be applied
to the class itself. The class-level annotations declare an entry in the application
component's environment but do not cause the resource to be injected. Instead, the
application component is expected to use JNDI or component context lookup method
to lookup the entry. When the annotation is applied to the class, the JNDI name and
the environment entry type must be specified explicitly.

Using Java EE Annotations and Dependency Injection 8-1

http://docs.oracle.com/javaee/6/api/

Dependency Injection of Resources

8.1.2 Deployment View of Annotation Configuration

The Java EE Deployment API [JSR88] provides a way for developers to examine
deployment descriptors. For example, consider an EJB Module that has no deployment
descriptors. Assuming that it has some classes that have been declared as E]Bs using
annotations, a user of Session Helper will still be able to deal with the module as if it
had the deployment descriptor. So the developer can modify the configuration
information and it will be written out in a deployment plan. During deployment, such
a plan will be honored and will override information from annotations.

8.1.3 Compiling Annotated Classes

The WebLogic Server utility appc (and its Ant equivalent W appc) and Appner ge
support metadata annotations. The appmer ge and appc utilities take an application
or module as inputs and process them to produce an output application or module
respectively. When used with - wr i t el nf er r edDescr i pt or s flag, the output
application/module will contain deployment descriptors with annotation information.
The descriptors will also have the met adat a- conpl et e attribute set to t r ue, as no
annotation processing needs to be done if the output application or module is
deployed directly. However, setting of net adat a- conpl et e attribute to t r ue will
also restrict appmer ge and appc from processing annotations in case these tools are
invoked on a previously processed application or module.

The original descriptors must be preserved in such cases to with an . ori g suffix. If a
developer wants to reapply annotation processing on the output application, they
must restore the descriptors and use the - wri t el nf erredDescri pt or s flag again.
If apprrer ge or appc is used with - wri t el nf erredDescri pt or s on an enterprise
application for which no standard deployment descriptor exists, the descriptor will be
generated and written out based on the inference rules in the Java EE specification.

For more information on using appc, see weblogic.appc Reference. For more
information on using appmner ge, see Using weblogic.appmerge to Merge Libraries.

8.1.4 Dynamic Annotation Updates

Deployed modules can be updated using updat e deployment operation. If such an
update has changes to deployment descriptor or updated classes, the container must
consider annotation information again while processing the new deployment
descriptor.

Containers use the descriptor framework's two-phase update mechanism to check the
differences between the current and proposed descriptors. This mechanism also
informs the containers about any changes in the non-dynamic properties. The
containers then deal with such non-dynamic changes in their own specific ways. The
container must perform annotation processing on the proposed descriptor to make
sure that it is finding the differences against the right reference.

Similarly, some of the classes from a module could be updated during an update
operation. If the container knows that these classes could affect configuration
information through annotations, it makes sure that nothing has changed.

8.2 Dependency Injection of Resources

Dependency injection (DI) allows application components to declare dependencies on
external resources and configuration parameters via annotations. The container reads
these annotations and injects resources or environment entries into the application

8-2 Developing Applications for Oracle WebLogic Server

Standard JDK Annotations

components. Dependency injection is simply an easier-to-program alternative to using
the j avax interfaces or JNDI APIs to look up resources.

A field or a method of an application component can be annotated with the

@Rresour ce annotation. Note that the container will unbox the environment entry as
required to match it to a primitive type used for the injection field or method.
Example 8-1 illustrates how an application component uses the @Resour ce
annotation to declare environment entries.

Example 8-1 Dependency Injection of Environment Entries

Il fields

Il The maxi num nunber of tax exenptions, configured by the Depl oyer.
@resour ce int maxExenpti ons;
/1 The m ni num nunber of tax exenptions, configured by the Depl oyer.
@resour ce int m nExenptions;

In the above code the @Resour ce annotation has not specified a name; therefore, the
container would look for an env- ent r y name called <cl ass- nane>/

maxExenpt i ons and inject the value of that entry into the maxExenpt i ons variable.
The field or method may have any access qualifier (public, private, etc.). For all classes
except application client main classes, the fields or methods must not be static.
Because application clients use the same life cycle as Java EE applications, no instance
of the application client main class is created by the application client container.
Instead, the static main method is invoked. To support injection for the application
client main class, the fields or methods annotated for injection must be static.

8.2.1 Application Life Cycle Annotation Methods

An application component may need to perform initialization of its own after all
resources have been injected. To support this case, one method of the class can be
annotated with the @0st Const r uct annotation. This method will be called after all
injections have occurred and before the class is put into service. This method will be
called even if the class doesn't request any resources to be injected. Similarly, for
classes whose life cycle is managed by the container, the @r eDest r oy annotation
can be applied to one method that will be called when the class is taken out of service
and will no longer be used by the container. Each class in a class hierarchy may have
@Post Construct and @Pr eDest r oy methods.

The order in which the methods are called matches the order of the class hierarchy,
with methods on a superclass being called before methods on a subclass. From the
Java EE side only the application client container is involved in invoking these life
cycle methods for Java EE clients. The life cycle methods for Java EE clients must be
static. The Java EE client just supports the @0st Const r uct callback.

8.3 Standard JDK Annotations

This section provides reference information about the following annotations:
¢ javax.annotation.PostConstruct
¢ javax.annotation.PreDestroy

* javax.annotation.Resource

Using Java EE Annotations and Dependency Injection 8-3

Standard JDK Annotations

. javax.annotation.Resources

For detailed information about EJB-specific annotations for WebLogic Server
Enterprise JavaBeans, see Developing Enterprise JavaBeans for Oracle WebLogic Server.

For detailed information about Web component-specific annotations WebLogic Server
applications, see WebLogic Annotation for Web Components in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

8.3.1 javax.annotation.PostConstruct
Target: Method

Specifies the life cycle callback method that the application component should execute
before the first business method invocation and after dependency injection is done to
perform any initialization. This method will be called after all injections have occurred
and before the class is put into service. This method will be called even if the class
doesn't request any resources to be injected.

You must specify a @o0st Const r uct method in any component that includes
dependency injection.

Only one method in the component can be annotated with this annotation.

The method annotated with @0st Const r uct must follow these requirements:

¢ The method must not have any parameters, except in the case of EJB interceptors,
in which case it takes an javax.interceptor.InvocationContext object as defined by
the EJB specification.

® The return type of the method must be voi d.

¢ The method must not throw a checked exception.

* The method may be publ i c, pr ot ect ed, package private orprivate.
¢ The method must not be st at i ¢ except for the application client.

® The method may be fi nal or non-fi nal , except in the case of E]Bs where it must
be non-final.

¢ If the method throws an unchecked exception, the class must not be put into
service. In the case of EJBs, the method annotated with PostConstruct can handle
exceptions and cleanup before the bean instance is discarded.

This annotation does not have any attributes.

8.3.2 javax.annotation.PreDestroy
Target: Method

Specifies the life cycle callback method that signals that the application component is
about to be destroyed by the container. You typically apply this annotation to methods
that release resources that the class has been holding.

Only one method in the bean class can be annotated with this annotation.

The method annotated with @r eDest r oy must follow these requirements:

* The method must not have any parameters, except in the case of EJB interceptors,
in which case it takes an javax.interceptor.InvocationContext object as defined by
the EJB specification.

8-4 Developing Applications for Oracle WebLogic Server

Standard JDK Annotations

¢ The return type of the method must be voi d.

® The method must not throw a checked exception.

* The method may be publ i c, pr ot ect ed, package private orprivate.
¢ The method must not be st at i ¢ except for the application client.

¢ The method may be fi nal or non-fi nal, exceptin the case of E]Bs where it must
be non-final.

¢ If the method throws an unchecked exception, the class must not be put into
service. In the case of E]JBs, the method annotated with Pr eDest r oy can handle
exceptions and cleanup before the bean instance is discarded.

This annotation does not have any attributes.

8.3.3 javax.annotation.Resource

Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a JMS
destination or connection factory.

If you specify the annotation on a field or method, the application component injects
an instance of the requested resource into the bean when the bean is initialized. If you
apply the annotation to a class, the annotation declares a resource that the component
will look up at runtime.

Attributes

Table 8-1 Attributes of the javax.annotation.Resource Annotation
- |

Name

Description Data Type Required?

name

Specifies the JNDI name of the resource. String No

If you apply the @Resour ce annotation to a field, the default
value of the name attribute is the field name, qualified by the
class name. If you apply it to a method, the default value is the
component property name corresponding to the method,
qualified by the class name. If you apply the annotation to class,
there is no default value and thus you are required to specify the
attribute.

type

Specifies the Java data type of the resource. Class No

If you apply the @Resour ce annotation to a field, the default
value of the t ype attribute is the type of the field. If you apply it
to a method, the default is the type of the component property. If
you apply it to a class, there is no default value and thus you are
required to specify this attribute.

authenticati
onType

Specifies the authentication type to use for the resource. Authenticatio No
Valid values for this attribute are: nType

e Aut henticati onType. CONTAI NER

e Aut henticationType. APPLI CATI ON

Default value is Aut hent i cati onType. CONTAI NER

Using Java EE Annotations and Dependency Injection 8-5

Standard Security-Related JDK Annotations

Table 8-1 (Cont.) Attributes of the javax.annotation.Resource Annotation
. ___|

Name Description Data Type Required?

shareable Indicates whether a resource can be shared between this Boolean No
component and other components.

Valid values for this attribute are t r ue and f al se. Default value

istrue.
mappedNa Specifies a WebLogic Server-specific name to which the String No
me component reference should be mapped.

However, if you do not specify a JNDI name in the WebLogic
deployment descriptor file, then the value of mappedNane will
always be used as the JNDI name to look up. For example:

@Resour ce(mappedNane = "http://ww. bea. cont';)
URL url;

@Resour ce(mappedNane="cust ormer DB")

Dat aSour ce db;

@Resour ce(mappedNane = "j ns/ Connecti onFactory")
Connecti onFactory connecti onFactory;
@Resour ce(mappedNane = "j ns/ Queue")

Queue queue;

In other words, MappedNare is honored as JNDI name only
when there is no JNDI name specified elsewhere, typically in the
WebLogic deployment descriptor file.

description Specifies a description of the resource. String No

8.3.4 javax.annotation.Resources
Target: Class

Specifies an array of @Resour ce annotations. Since repeated annotations are not
allowed, the Resources annotation acts as a container for multiple resource
declarations.

Attributes

Table 8-2 Attributes of the javax.annotation.Resources Annotation

Name Description Data Type Required?

value Specifies the array of Resource[] Yes
@Resour ce annotations.

8.4 Standard Security-Related JDK Annotations

This section provides reference information about the following annotations:
® javax.annotation.security.DeclareRoles

® javax.annotation.security.DenyAll

® javax.annotation.security.PermitAll

* javax.annotation.security.RolesAllowed

8-6 Developing Applications for Oracle WebLogic Server

Standard Security-Related JDK Annotations

* javax.annotation.security.RunAs

8.4.1 javax.annotation.security.DeclareRoles
Target: Class
Defines the security roles that will be used in the Java EE container.

You typically use this annotation to define roles that can be tested from within the
methods of the annotated class, such as using the i sUser | nRol e method. You can
also use the annotation to explicitly declare roles that are implicitly declared if you use
the @Rol esAl | owed annotation on the class or a method of the class.

You create security roles in WebLogic Server using the WebLogic Server
Administration Console. For details, see Manage Security Roles.

Attributes

Table 8-3 Attributes of the javax.annotation.security.DeclareRoles Annotation
- -~ -]

Name Description Data Type Required?
value Specifies an array of security roles String][] Yes

that will be used in the Java EE

container.

8.4.2 javax.annotation.security.DenyAll
Target: Method

Specifies that no security role is allowed to access the annotated method, or in other
words, the method is excluded from execution in the Java EE container.

This annotation does not have any attributes.

8.4.3 javax.annotation.security.PermitAll
Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to
access the annotated method.

This annotation does not have any attributes.

8.4.4 javax.annotation.security.RolesAllowed
Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the Java EE
container.

If you specify it at the class-level, then it applies to all methods in the application
component. If you specify it at the method-level, then it only applies to that method. If
you specify the annotation at both the class- and method-level, the method value
overrides the class value.

You create security roles in WebLogic Server using the WebLogic Server
Administration Console. For details, see Manage Security Roles.

Attributes

Using Java EE Annotations and Dependency Injection 8-7

Standard Security-Related JDK Annotations

Table 8-4 Attributes of the javax.annotation.security.RolesAllowed Annotation
- -~ -~ |

Name Description Data Type Required?

value List of security roles that are allowed to ~ String[] Yes
access methods of the Java EE container.

8.4.5 javax.annotation.security.RunAs
Target: Class
Specifies the security role which actually executes the Java EE container.

The security role must exist in the WebLogic Server security realm and map to a user
or group. For details, see Manage Security Roles.

Attributes

Table 8-5 Attributes of the javax.annotation.security.RunAs Annotation
- -]

Name Description Data Type Required?

value Specifies the security role that the String Yes
Java EE container should run as.

8-8 Developing Applications for Oracle WebLogic Server

9

Using Contexts and Dependency Injection
for the Java EE Platform

WebLogic Server provides an implementation of the Contexts and Dependency
Injection (CDI) specification. The CDI specification defines a set of services for using
injection to specify dependencies in an application. CDI provides contextual life cycle
management of beans, type-safe injection points, a loosely coupled event framework,
loosely coupled interceptors and decorators, alternative implementations of beans,
bean navigation through the Unified Expression Language (EL), and a service
provider interface (SPI) that enables CDI extensions to support third-party
frameworks or future Java EE components.

The following sections explain how to use CDI for the Java EE platform in your
applications:

e About CDI for the Java EE Platform

¢ Defining a Managed Bean

¢ Injecting a Bean

¢ Defining the Scope of a Bean

* Overriding the Scope of a Bean at the Point of Injection

¢ Using Qualifiers

¢ Providing Alternative Implementations of a Bean Type

* Applying a Scope and Qualifiers to a Session Bean

* Using Producer Methods_ Disposer Methods_ and Producer Fields
¢ Initializing and Preparing for the Destruction of a Managed Bean

¢ Intercepting Method Invocations and Life Cycle Events of Bean Classes
¢ Decorating a Managed Bean Class

¢ Assigning an EL Name to a CDI Bean Class

¢ Defining and Applying Stereotypes

¢ Using Events for Communications Between Beans

¢ Injecting a Predefined Bean

¢ Injecting and Qualifying Resources

¢ Using CDI With JCA Technology

Using Contexts and Dependency Injection for the Java EE Platform 9-1

About CDI for the Java EE Platform

* Configuring a CDI Application
* Supporting Third-Party Portable Extensions
* Enabling and Disabling CDI

¢ Enabling and Disabling Implicit Bean Discovery

9.1 About CDI for the Java EE Platform

CDl is specified by Java Specification Request (JSR) 299: Contexts and Dependency
Injection for the Java EE 1.1. This specification was formerly called Web Beans. CDI
uses the following related specifications:

® JSR 330: Dependency Injection for Java

¢ Java EE 7 Managed Beans Specification, which is a part of JSR 342: Java Platform,
Enterprise Edition 7 (Java EE 7) Specification

* Interceptors specification, which is a part of JSR 345: Enterprise JavaBeans 3.2

CDI provides the following features:

¢ Contexts. This feature enables you to bind the life cycle and interactions of stateful
components to well-defined but extensible life cycle contexts.

* Dependency injection. This feature enables you to inject components into an
application in a type-safe way and to choose at deployment time which
implementation of a particular interface to inject.

CDlI is integrated with the major component technologies in Java EE, namely:
e Servlets

* JavaServer Pages (JSP)

e JavaServer Faces (JSF)

* Enterprise JavaBeans (EJB)

¢ Java EE Connector architecture (JCA)

e Web services

Such integration enables standard Java EE objects, such as Servlets and EJB
components, to use CDI injection for dependencies. CDI injection simplifies, for
example, the use of managed beans with JSF technology in Web applications.

For more information, see Introduction to Contexts and Dependency Injection for the
Java EE Platform in the Java EE 7Tutorial.

CDI 1.1 Examples
Oracle provides Java EE 7 examples that demonstrate new features in CDI 1.1, such as:
¢ CDI Events CDI Sample Application — Demonstrates how beans can interact in a

decoupled fashion with no compile-time dependencies between the interacting
beans.

* CDI Transactional Annotation — Demonstrates how to inject a bean annotated with
the @Transactional annotation, which provides an application with the ability to
declaratively control transaction boundaries on CDI managed beans.

9-2 Developing Applications for Oracle WebLogic Server

http://jcp.org/en/jsr/summary?id=346
http://jcp.org/en/jsr/summary?id=346
http://jcp.org/en/jsr/summary?id=330
http://jcp.org/en/jsr/summary?id=342
http://jcp.org/en/jsr/summary?id=342
http://jcp.org/en/jsr/detail?id=345
http://docs.oracle.com/javaee/7/tutorial/cdi-basic.htm#GIWHB
http://docs.oracle.com/javaee/7/tutorial/cdi-basic.htm#GIWHB

Defining a Managed Bean

¢ CDI Transaction Scoped API — Demonstrate how the @TransactionScoped
annotation provides the ability to specify a standard CDI scope to define bean
instances whose life cycle is scoped to the currently active JTA transaction.

For more information, see the CDI 1.1 examples in the WebLogic Server distribution
kit: ORACLE _HOVE/ sanpl es/ server/ src/ exanpl es/j avaee7/ cdi where
ORACLE_HOVE represents the directory in which the WebLogic Server code examples
are configured. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

CDI 1.0 Example

A Java EE 6 example that shows how to use CDI is provided in the cdi sample
application, which is installed in ORACLE_HOVE/ sanpl es/ server/ src/

exanpl es/ j avaee7/ cdi where ORACLE_HOME represents the directory in which the
WebLogic Server code examples are configured. For more information, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

9.2 Defining a Managed Bean

A bean is a source of the objects that CDI can create and manage. For more
information, see About Beans in The Java EE 7Tutorial.

A managed bean is the basic component in a CDI application and defines the beans
that CDI can create and manage. To define a managed bean, define a top-level plain
old Java object (POJO) class that meets either of the following conditions:

® The class is defined to be a managed bean by any other Java EE specification.

¢ The class meets all of the conditions that are required by JSR 346 as listed in About
Managed Beans in The Java EE 7Tutorial.

Note:

No special declaration, such as an annotation, is required to define a managed
bean. To make the managed beans of an application available for injection,
you must configure the application as explained in Configuring a CDI
Application.

9.3 Injecting a Bean

To use the beans that you define, inject them into another bean that an application
such as a JavaServer Faces application can use. For more information, see Injecting
Beans in The Java EE 7Tutorial.

CDI ensures type-safe injection of beans by selecting the bean class on the basis of the
Java type that is specified in the injection point, not the bean name. CDI also
determines where to inject a bean from the Java type in the injection point.

In this respect, CDI bean injection is different than the resource injection that was
introduced in the Java EE 5 specification, which selects the resource to inject from the
string name of the resource. For example, a data source that is injected with the
javax.annotation.Resource annotation is identified by its string name.

To inject a bean, obtain an instance of the bean by creating an injection point in the
class that is to use the injected bean. Create the injection point by annotating one of the
following program elements with the j avax. i nj ect . | nj ect annotation:

Using Contexts and Dependency Injection for the Java EE Platform 9-3

http://docs.oracle.com/javaee/7/tutorial/cdi-basic003.htm#GJEBJ
http://docs.oracle.com/javaee/7/tutorial/cdi-basic004.htm#GJFZI
http://docs.oracle.com/javaee/7/tutorial/cdi-basic004.htm#GJFZI
http://docs.oracle.com/javaee/7/tutorial/cdi-basic007.htm#GJBAN
http://docs.oracle.com/javaee/7/tutorial/cdi-basic007.htm#GJBAN
http://docs.oracle.com/javaee/6/api/javax/annotation/Resource.html
http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html

Defining the Scope of a Bean

* An instance class field
* An initializer method parameter

* A bean constructor parameter

Example 9-1 shows how to use the @ nj ect annotation to inject a bean into another
bean.

Example 9-1 Injecting a Bean into Another Bean

This example annotates an instance class field to inject an instance of the bean class
Gr eet i ng into the class Pri nt er.

inport javax.inject.Inject;

public class Printer {
@nject Geeting greeting;

}

9.4 Defining the Scope of a Bean

The scope of a bean defines the duration of a user's interaction with an application that
uses the bean. To enable a Web application to use a bean that injects another bean
class, the bean must be able to hold state over the duration of the user's interaction
with the application.

To define the scope of a bean, annotate the class declaration of the bean with the scope.
Thej avax. ent er pri se. cont ext package defines the following scopes:

e @Request Scoped

e @pessi onScoped

e @\pplicationScoped

e @Conversati onScoped

e @ependent

For information about these scopes, see Using Scopes in The Java EE 7 Tutorial.

If you do not define the scope of a bean, the scope of the bean is @ependent by
default. The @ependent scope specifies that the bean's life cycle is the life cycle of
the object into which the bean is injected.

The predefined scopes except @ependent are contextual scopes. CDI places beans
of contextual scope in the context whose life cycle is defined by the Java EE
specifications. For example, a session context and its beans exist during the lifetime of
an HTTP session. Injected references to the beans are contextually aware. The
references always apply to the bean that is associated with the context for the thread
that is making the reference. The CDI container ensures that the objects are created
and injected at the correct time as determined by the scope that is specified for these
objects.

Example 9-2 shows how to define the scope of a bean.
Example 9-2 Defining the Scope of a Bean

This example defines the scope of the Account ant bean class to be
@request Scoped.

9-4 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/enterprise/context/package-summary.html
http://docs.oracle.com/javaee/7/tutorial/cdi-basic008.htm#GJBBK

Overriding the Scope of a Bean at the Point of Injection

The Account ant class in this example is qualified by the @eanCount er qualifier.
For more information, see Using Qualifiers.

package com exanpl e. managers;
inport javax.enterprise.context.Request Scoped;

@Request Scoped
@eanCount er
public class Accountant inplenents Manager

{
.

9.5 Overriding the Scope of a Bean at the Point of Injection

Overriding the scope of a bean at the point of injection enables an application to
request a new instance of the bean with the default scope @ependent . The
@ependent scope specifies that the bean's life cycle is the life cycle of the object into
which the bean is injected. The CDI container provides no other life cycle management
for the instance. For more information about scopes, see Defining the Scope of a Bean.

Note:

The effects of overriding the scope of a bean may be unpredictable and
undesirable, particularly if the overridden scope is @Request or @essi on.

To override the scope of a bean at the point of injection, inject the bean by using the
j avax. enterpri se.inj ect. Newannotation instead of the @ nj ect annotation.
For more information about the @ nj ect annotation, see Injecting a Bean.

9.6 Using Qualifiers

Qualifiers enable you to provide more than one implementation of a particular bean
type. When you use qualifiers, you select between implementations at development
time. For more information, see Using Qualifiers in The Java EE 7 Tutorial.

Note:

To select between alternative implementations at deployment time, use
alternatives as explained in Providing Alternative Implementations of a Bean

Type.

Using qualifiers involves the tasks that are explained in the following sections:
* Defining Qualifiers for Implementations of a Bean Type
¢ Applying Qualifiers to a Bean

¢ Injecting a Qualified Bean

Using Contexts and Dependency Injection for the Java EE Platform 9-5

http://docs.oracle.com/javaee/7/api/javax/enterprise/inject/New.html
http://docs.oracle.com/javaee/7/tutorial/cdi-basic006.htm#GJBCK

Using Qualifiers

9.6.1 Defining Qualifiers for Implementations of a Bean Type

A qualifier is an application-defined annotation that enables you to identify an
implementation of a bean type. Define a qualifier for each implementation of a bean
type that you are providing.

Define qualifiers only if you are providing multiple implementations of a bean type
and if you are not using alternatives. If no qualifiers are defend for a bean type, CDI
applies the predefined qualifier @ef aul t when a bean of the type is injected.

Note:

CDI does not require a qualifier to be unique to a particular bean. You can
define a qualifier to use for more than one bean type.

To define a qualifier:

1. Define a Java annotation type to represent the qualifier.

2. Annotate the declaration of the annotation type with the
javax.inject.Qualifier annotation.

3. Specify that the qualifier is to be retained by the virtual machine at run time.

Use the j ava. | ang. annot ati on. Ret ent i on(RUNTI ME) meta-annotation for
this purpose.

4. Specify that the qualifier may be applied to the program elements METHOD, FI ELD,
PARAMETER, and TYPE.

Use the j ava. | ang. annot ati on. Tar get ({ METHOD, FI ELD, PARAMETER,
TYPE}) meta-annotation for this purpose.

The following examples show how to define qualifiers @eanCount er and
@eopl eManager for different implementations of the same bean type.
Example 9-3 Defining the @BeanCounter Qualifier

This example defines the @eanCount er qualifier.

package com exanpl e. managers;

inport static java.lang.annotation. El ement Type. Fl ELD;
inport static java.lang.annotation. El ement Type. METHOD,
inmport static java.lang.annotation. El ement Type. PARAVETER,
inmport static java.lang.annotation. El ement Type. TYPE;

inport static java.lang.annotation. RetentionPolicy. RUNTI ME;

import java.lang.annotation. Retention;
import java.lang.annotation. Target;

inmport javax.inject.Qualifier;
@ualifier
@ret ent i on(RUNTI MVE)

@ar get ({ METHOD, FI ELD, PARAMETER TYPE})
public @nterface BeanCounter {}

9-6 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/inject/Qualifier.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Target.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Target.html

Using Qualifiers

Example 9-4 Defining the @PeopleManager Qualifier
This example defines the @eopl eManager qualifier.

package com exanpl e. managers;

inport static java.lang.annotation. El enment Type. Fl ELD;
inport static java.lang.annotation. El ement Type. METHOD;
inport static java.lang.annotation. El ement Type. PARAVETER,
inport static java.lang.annotation. El enent Type. TYPE;

inport static java.lang.annotation. RetentionPolicy. RUNTI MVE;

inport java.lang.annotation. Retention;
i mport java.lang.annotation. Target;

import javax.inject.Qualifier;

@ualifier

@ret ent i on(RUNTI ME)

@ar get ({ METHOD, FIELD, PARAVETER, TYPE})
public @nterface Peopl eManager {}

9.6.2 Applying Qualifiers to a Bean

Applying qualifiers to a bean identifies the implementation of the bean type. You can
apply any number of qualifiers or no qualifiers to a bean. If you do not apply any
qualifiers to a bean, CDI implicitly applies the predefined qualifier @ef aul t to the
bean.

Note:

CDI does not require a qualifier to be unique to a particular bean. You can
apply the same qualifier to different types of beans in the set of beans that are
available in the application.

To apply qualifiers to a bean, annotate the class declaration of the bean with each
qualifier to apply. Any qualifier that you apply to a bean must be defined as explained
in Defining Qualifiers for Implementations of a Bean Type.

The following examples show how to apply the qualifiers @eanCount er and
@eopl eManager to different implementations of the Manager bean type.

Example 9-5 Applying the @BeanCounter Qualifier to a Bean

This example applies the @eanCount er qualifier to the Account ant class. The
Account ant class is an implementation of the Manager bean type. The
@eanCount er qualifier is defined in Example 9-3.

package com exanpl e. managers;

@eanCount er
public class Accountant inplenents Manager

{...}

Example 9-6 Applying the@ PeopleManager Qualifier to a Bean

This example applies the @eopl eManager qualifier to the Boss class. The Boss
class is an implementation of the Manager bean type. The @eopl eManager qualifier
is defined in Example 9-4.

Using Contexts and Dependency Injection for the Java EE Platform 9-7

Providing Alternative Implementations of a Bean Type

package com exanpl e. managers;

@’éopl eManager
public class Boss inplenents Manager
{..-}

9.6.3 Injecting a Qualified Bean

To inject a qualified bean, create an injection point and annotate the injection point
with the bean's qualifiers. The qualifiers at the injection point define the overall
requirements of the injection target. The CDI application must contain a CDI managed
bean that matches the type of the injection point and the qualifiers with which the
injection point is annotated. Otherwise, a deployment error occurs. For more
information about how to create an injection point, see Injecting a Bean.

If you do not annotate the injection point, the predefined qualifier @ef aul t is
applied to the injection point by default.

CDI resolves the injection point by first matching the bean type and then matching
implementations of that type with the qualifiers in the injection point.

Only one active bean class may match the bean type and qualifiers in the injection
point. Otherwise, an error occurs.

A bean class is active in one of the following situations:
¢ The bean class is an alternative that is enabled.

* The bean class is not an alternative and no alternatives for its bean type are
enabled.

For information about alternatives, see Providing Alternative Implementations of a
Bean Type.

Example 9-7 shows how to inject a qualified bean.
Example 9-7 Injecting a Qualified Bean

This example injects the @eanCount er implementation of the Manager bean type.
The Manager bean type is implemented by the following classes:

e Account ant , which is shown in Example 9-5

* Boss, which is shown in Example 9-6

In this example, the Account ant class is injected because the bean type and qualifier
of this class match the bean type and qualifier in the injection point.

package com exanpl e. managers;
inport javax.inject.Inject;

public class PennyPincher {
@nject @eanCounter Manager accountant;

}

9.7 Providing Alternative Implementations of a Bean Type

The environments for the development, testing, and production deployment of an
enterprise application may be very different. Differences in configuration, resource

9-8 Developing Applications for Oracle WebLogic Server

Providing Alternative Implementations of a Bean Type

availability, and performance requirements may cause bean classes that are
appropriate to one environment to be unsuitable in another environment.

Different deployment scenarios may also require different business logic in the same
application. For example, country-specific sales tax laws may require country-specific
sales tax business logic in an order-processing application.

By providing alternative implementations of a bean type, you can modify an
application at deployment time to meet such differing requirements. CDI enables you
to select from any number of alternative bean type implementations for injection
instead of a corresponding primary implementation. For more information, see Using
Alternatives in The Java EE 7 Tutorial.

Note:

To select between alternative implementations at development time, use
qualifiers as explained in Using Qualifiers.

Providing alternative implementations of a bean type involves the tasks that are
explained in the following sections:

¢ Defining an Alternative Implementation of a Bean Type

¢ Selecting an Alternative Implementation of a Bean Type for an Application

9.7.1 Defining an Alternative Implementation of a Bean Type

To define an alternative implementation of a bean type:

1. Write a bean class of the same bean type as primary implementation of the bean
type.

To ensure that any alternative can be injected into an application, you must ensure
that all alternatives and the primary implementation are all of the same bean type.
For information about how to inject a bean, see Injecting a Bean.

2. Annotate the class declaration of the implementation with the
javax. enterprise.inject.Alternative annotation.

Note:

To ensure that the primary implementation is selected by default, do not
annotate the class declaration of the primary implementation with
@\ ternative.

The following examples show the declaration of the primary implementation and an
alternative implementation of a bean type. The alternative implementation is a mock
implementation that is intended for use in testing.

Example 9-8 Declaring a Primary Implementation of a Bean Type

This example declares the primary implementation Or der | npl of the bean type
O der.

package com exanpl e. or der processor;

public class Oderlnpl inplenents Order {

Using Contexts and Dependency Injection for the Java EE Platform 9-9

http://docs.oracle.com/javaee/7/tutorial/cdi-adv002.htm#GJSDF
http://docs.oracle.com/javaee/7/tutorial/cdi-adv002.htm#GJSDF
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Alternative.html

Applying a Scope and Qualifiers to a Session Bean

}...

Example 9-9 Declaring an Alternative Implementation of a Bean Type

This example declares the alternative implementation MockQr der | npl of the bean
type Or der . The declaration of the primary implementation of this bean type is shown
in Example 9-8.

package com exanpl e. or der processor;

import javax.enterprise.inject.Alternative;

@\ ternative
public class MckOrderlnpl inplenents Order {
}

9.7.2 Selecting an Alternative Implementation of a Bean Type for an Application

By default, CDI selects the primary implementation of a bean type for injection into an
application. If you require an alternative implementation to be injected, you must
select the alternative explicitly.

To select an alternative implementation for an application:

1. Add acl ass element for the alternative to the al t er nat i ves element in the
beans. xnl file.

2. Inthe cl ass element, provide the fully qualified class name of the alternative.

For more information about the beans. xnl file, see Configuring a CDI Application.

Example 9-16 shows a cl ass element in the beans. xni file for selecting an
alternative implementation of a bean type.

Example 9-10 Selecting an Alternative Implementation of a Bean Type

This example selects the alternative implementation
com exanpl e. or der processor. MockOr der | mpl .

<alternatives>
<cl ass>com exanpl e. order processor. MockOr der | npl </ cl ass>
<lalternatives>

9.8 Applying a Scope and Qualifiers to a Session Bean

CDI enables you to apply a scope and qualifiers to a session bean. A session bean is an
EJB component that meets either of the following requirements:

¢ The class that implements the bean is annotated with one of the following
annotations:

— javax. ej b. Si ngl et on, which denotes a singleton session bean
— javax. ejb. Stat ef ul , which denotes a stateful session bean

— javax. ej b. St at el ess, which denotes a stateless session bean

9-10 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/ejb/Singleton.html
http://docs.oracle.com/javaee/6/api/javax/ejb/Stateful.html
http://docs.oracle.com/javaee/6/api/javax/ejb/Stateless.html

Using Producer Methods, Disposer Methods, and Producer Fields

* The bean is listed in the ej b-j ar. xm deployment-descriptor file.
For more information about session beans, see the following documents:
e Developing Enterprise JavaBeans for Oracle WebLogic Server

e Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server

9.8.1 Applying a Scope to a Session Bean

The scopes that CDI allows you to apply to a session bean depend on the type of the
session bean as shown in Table 9-1.

Table 9-1 Allowed CDI Scopes for Session Beans
- - -]

Session Bean Type Allowed Scopes

Singleton Either of the following scopes:

¢ Dependent
e Application

Stateful Any

Stateless Dependent

For more information about scopes in CDI, see Defining the Scope of a Bean.

When CDI injects a reference to a stateful session bean, CDI creates the bean, injects
the bean's fields, and manages the stateful session bean according to its scope. When
the context is destroyed, CDI calls the stateful session bean's remove method to
remove the bean.

9.8.2 Applying Qualifiers to a Session Bean

CDI allows you to apply any qualifier to a session bean. CDI does not restrict the type
of qualifier that you can apply to a session bean. For more information about qualifiers
in CDJ, see Using Qualifiers.

9.9 Using Producer Methods, Disposer Methods, and Producer Fields

A producer method is a method that generates an object that can then be injected.

A disposer method enables an application to perform customized cleanup of an object
that a producer method returns.

A producer field is a field of a bean that generates an object. A producer field is a
simpler alternative to a producer method.

For more information, see Using Producer Methods, Producer Fields, and Disposer
Methods in CDI Applications in The Java EE 7 Tutorial.

9.9.1 Defining a Producer Method

A producer method enables an application to customize how CDI managed beans are
created. This customization involves overriding the process that CDI normally uses to
resolve beans. A producer method enables you to inject an object that is not an
instance of a CDI bean class.

Using Contexts and Dependency Injection for the Java EE Platform 9-11

http://docs.oracle.com/javaee/7/tutorial/cdi-adv003.htm#GKGKV
http://docs.oracle.com/javaee/7/tutorial/cdi-adv003.htm#GKGKV

Using Producer Methods, Disposer Methods, and Producer Fields

A producer method must be a method of a CDI bean class or session bean class.
However, a producer method may return objects that are not instances of CDI bean
classes. In this situation, the producer method must return an object that matches a
bean type.

A producer method can have any number of parameters. If necessary, you can apply
qualifiers to these parameters. All parameters of a producer method are injection
points. Therefore, the parameters of a producer method do not require the @ nj ect
annotation.

To define a producer method, annotate the declaration of the method with the
j avax.enterprise.inject.Produces annotation.

If the producer method sometimes returns null, set the scope of the method to
dependent.

Note:

Calling a producer method directly in application code does not invoke CDI.

For an example of the definition of a producer method, see Example 9-11.

9.9.2 Defining a Disposer Method

If you require customized cleanup of an object that a producer method returns, define
a disposer method in the class that declares the producer method.

To define a disposer method, annotate the disposed parameter in the declaration of the
method with the j avax. ent er pri se. i nj ect. Di sposes annotation. The type of
the disposed parameter must be the same as the return type of the producer method.

A disposer method matches a producer method when the disposed object's injection
point matches both the type and qualifiers of the producer method. You can define
one disposer method to match to several producer methods in the class.

Example 9-11 shows how to use the @r oduces annotation to define a producer
method and the @i sposes annotation to define a disposer method.

Example 9-11 Defining a Producer Method and Disposer Method
This example defines the producer method connect and the disposer method cl ose.

The producer method connect returns an object of type Connect i on. In the
disposer method cl ose, the parameter connect i on is the disposed parameter. This
parameter is of type Connect i on to match the return type of the producer method.

At run time, the CDI framework creates an instance of SoneC ass and then calls the
producer method. Therefore, the CDI framework is responsible for injecting the
parameters that are passed to the producer method.

The scope of the producer method is @equest Scoped. When the request context is
destroyed, if the Connect i on object is in the request context, CDI calls the disposer
method for this object. In the call to the disposer method, CDI passes the Connect i on
object as a parameter.

i mport javax.enterprise.inject.Produces;
inport javax.enterprise.inject.D sposes;

inport javax.enterprise.context.Request Scoped;

9-12 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Produces.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Disposes.html

Initializing and Preparing for the Destruction of a Managed Bean

public class Soned ass {
@roduces @equest Scoped
public Connection connect(User user) {
return createConnection(user.getld(),
user. get Password());

}

private Connection createConnection(
String id, String password) {...}

public void cl ose(@i sposes Connection connection) {
connection. cl ose();
}

}

9.9.3 Defining a Producer Field

A producer field is a simpler alternative to a producer method. A producer field must
be a field of a managed bean class or session bean class. A producer field may be
either static or nonstatic, subject to the following constraints:

* In a session bean class, the producer field must be a static field.

¢ In amanaged bean class, the producer field can be either static or nonstatic.

To define a producer field, annotate the declaration of the field with the
javax. enterprise.inject.Produces annotation.

If the producer field may contain a null when accessed, set the scope of the field to
dependent.

Note:

Using a producer field directly in application code does not invoke CDI.

Producer fields do not have disposers.

9.10 Initializing and Preparing for the Destruction of a Managed Bean

CDI managed bean classes and their superclasses support the annotations for
initializing and preparing for the destruction of a managed bean. These annotations
are defined in JSR 250: Common Annotations for the Java Platform. For more
information, see Using Java EE Annotations and Dependency Injection.

9.10.1 Initializing a Managed Bean

Initializing a managed bean specifies the life cycle callback method that the CDI
framework should call after dependency injection but before the class is put into
service.

To initialize a managed bean:

1. In the managed bean class or any of its superclasses, define a method that performs
the initialization that you require.

2. Annotate the declaration of the method with the
j avax. annot at i on. Post Const r uct annotation.

Using Contexts and Dependency Injection for the Java EE Platform 9-13

http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Produces.html
http://jcp.org/en/jsr/detail?id=250
http://docs.oracle.com/javaee/6/api/javax/annotation/PostConstruct.html

Intercepting Method Invocations and Life Cycle Events of Bean Classes

When the managed bean is injected into a component, CDI calls the method after
all injection has occurred and after all initializers have been called.

Note:

As mandated by JSR 250, if the annotated method is declared in a superclass,
the method is called unless a subclass of the declaring class overrides the
method.

9.10.2 Preparing for the Destruction of a Managed Bean

Preparing for the destruction of a managed bean specifies the life cycle callback
method that signals that an application component is about to be destroyed by the
container.

To prepare for the destruction of a managed bean:

1. In the managed bean class or any of its superclasses, define a method that prepares
for the destruction of the managed bean.

In this method, perform any cleanup that is required before the bean is destroyed,
such a releasing resources that the bean has been holding.

. Annotate the declaration of the method with the
j avax. annot at i on. Pr eDest r oy annotation.

CDI calls the method before starting the logic for destroying the bean.

Note:

As mandated by JSR 250, if the annotated method is declared in a superclass,
the method is called unless a subclass of the declaring class overrides the
method.

9.11 Intercepting Method Invocations and Life Cycle Events of Bean

Classes

Intercepting a method invocation or a life cycle event of a bean class interposes an
interceptor class in the invocation or event. When an interceptor class is interposed,
additional actions that are defined in the interceptor class are performed. An
interceptor class simplifies the maintenance of code for tasks that are frequently
performed and are separate from the business logic of the application. Examples of
such tasks are logging and auditing.

Note:

The programming model for interceptor classes is optimized for operations
that are separate from the business logic of the application. To intercept
methods that perform operations with business semantics, use a decorator
class as explained in Decorating a Managed Bean Class.

The interceptors that were introduced in the Java EE 5 specification are specific to EJB
components. For more information about Java EE 5 interceptors, see Specifying

9-14 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/annotation/PreDestroy.html

Intercepting Method Invocations and Life Cycle Events of Bean Classes

Interceptors for Business Methods or Life Cycle Callback Events in Developing
Enterprise JavaBeans for Oracle WebLogic Server.

CDI enables you to use interceptors with the following types of Java EE managed
objects:

¢ CDImanaged beans
e EJB session beans

¢ EJB message-driven beans

Note:

You cannot use interceptors with EJB entity beans because CDI does not
support EJB entity beans.

For more information, see Using Interceptors in The Java EE 7 Tutorial.

Intercepting method invocations and life cycle events of bean classes involves the
tasks that are explained in the following sections:

® Defining an Interceptor Binding Type
¢ Defining an Interceptor Class
¢ Identifying Methods for Interception

¢ Enabling an Interceptor

9.11.1 Defining an Interceptor Binding Type

An interceptor binding type is an application-defined annotation that associates an
interceptor class with an intercepted bean. Define an interceptor binding type for each
type of interceptor that you require.

Note:

CDI does not require an interceptor binding type to be unique to a particular
interceptor class. You can define an interceptor binding type to use for more
than one interceptor class.

To define an interceptor binding type:
1. Define a Java annotation type to represent the interceptor binding type.

2. Annotate the declaration of the annotation type with the
javax.interceptor.|nterceptorBi ndi ng annotation.

3. Specify that the interceptor binding type is to be retained by the virtual machine at
run time.

Use thej ava. | ang. annot ati on. Ret ent i on(RUNTI ME) meta-annotation for
this purpose.

4. Specify that the interceptor binding type may be applied to the program elements
METHOD and TYPE.

Using Contexts and Dependency Injection for the Java EE Platform 9-15

http://docs.oracle.com/javaee/7/tutorial/cdi-adv006.htm#GKHJX
http://docs.oracle.com/javaee/6/api/javax/interceptor/InterceptorBinding.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html

Intercepting Method Invocations and Life Cycle Events of Bean Classes

Use thej ava. | ang. annot ati on. Tar get ({ METHOD, TYPE}) meta-annotation
for this purpose.

Example 9-12 Defining An Interceptor Binding Type

This example defines the @ ansact i onal interceptor binding type.

package com exanpl e. bi |l paynent.interceptor;

inport static java.lang.annotation. El enment Type. METHOD;
inport static java.lang.annotation. El enent Type. TYPE;
import static java.lang.annotation. RetentionPolicy. RUNTI ME

inport java.lang.annotation. Retention;
i mport java.lang.annotation. Target;

inport javax.interceptor.InterceptorBinding;

@nt er cept or Bi ndi ng

@ar get ({ METHOD, TYPE})

@ret ent i on(RUNTI ME)

public @nterface Transactional {}

9.11.2 Defining an Interceptor Class

An interceptor class is used to interpose in method invocations or life cycle events that
occur in an associated target bean class. In an interceptor class, provide the code for
tasks that are frequently performed and are separate from the business logic of the
application, such as logging and auditing.

To define an interceptor class:

1. Define a Java class to represent the interceptor.

2. Annotate the declaration of the class with the following annotations:
e javax.interceptor.|nterceptor

* The interceptor binding types that are defined for the class

You can apply any number of interceptor binding types to an interceptor class.

Note:

CDI does not require an interceptor binding type to be unique to a particular
interceptor class. You can apply the same interceptor binding type to multiple
interceptor classes.

3. Implement the interceptor methods in the class.

CDI does not require the signature of an interceptor method to match the signature
of the intercepted method.

4. Identify the interceptor methods in the class.

An interceptor method is the method that is invoked when a method invocation or
a life cycle event of a bean class is intercepted.

To identify an interceptor method, annotate the declaration of the method with the
appropriate annotation for the type of the interceptor method.

9-16 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Target.html
http://docs.oracle.com/javaee/6/api/javax/interceptor/Interceptor.html

Intercepting Method Invocations and Life Cycle Events of Bean Classes

Interceptor Method Type Annotation
Method invocation javax.interceptor. Aroundl nvoke
EJB timeout j avax. i nterceptor. AroundTi neout

Initialization of a managed bean or j avax. annot at i on. Post Const r uct
EJB component

Destruction of a managed bean or j avax. annot ati on. PreDest r oy
EJB component

Activation of a stateful sessionbean j avax. ej b. Post Acti vate

Passivation of a stateful session bean | avax. ej b. PrePassi vat e

Note:

An interceptor class can have multiple interceptor methods. However, an
interceptor class can have no more than one interceptor method of a given

type.

Example 9-13 shows how to define an interceptor class.
Example 9-13 Defining an Interceptor Class

This example defines the interceptor class for which the @r ansact i onal interceptor
binding type is defined. The manageTr ansact i on method of this class is an
interceptor method. The @t ansact i onal interceptor binding is defined in

Example 9-12.

package com exanpl e. bi |l paynent.interceptor;

i nport javax.annotati on. Resour ce;
inport javax.interceptor.?*;

@ransactional @nterceptor
public class Transactionlnterceptor {
@esource User Transaction transaction;
@\r ound! nvoke
public Cbject manageTransaction(lnvocationContext ctx)
throws Exception {

}

9.11.3 Identifying Methods for Interception

Identifying methods for interception associates the methods with the interceptor that
is invoked when the methods are invoked. CDI enables you to identify all methods of
a bean class or only individual methods of a bean class for interception.

¢ To identify all methods of a bean class for interception, annotate the declaration of
the bean class with the appropriate interceptor binding type.

¢ To identify an individual method of a bean class for interception, annotate the
declaration of the method with the appropriate interceptor binding type.

Using Contexts and Dependency Injection for the Java EE Platform 9-17

http://docs.oracle.com/javaee/6/api/javax/interceptor/AroundInvoke.html
http://docs.oracle.com/javaee/6/api/javax/interceptor/AroundTimeout.html
http://docs.oracle.com/javaee/6/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/6/api/javax/annotation/PreDestroy.html
http://docs.oracle.com/javaee/6/api/javax/ejb/PostActivate.html
http://docs.oracle.com/javaee/6/api/javax/ejb/PrePassivate.html

Intercepting Method Invocations and Life Cycle Events of Bean Classes

CDI does not require the signature of an intercepted method to match the signature of
the interceptor method. To determine the arguments and return type of an intercepted
method, an interceptor must query an interceptor context. Therefore, you can intercept
any method or life cycle event in a bean class without any knowledge at compilation
time of the interfaces of bean class.

Note:

An implementation of a Java EE 5 interceptor must be declared in the
annotation on the method that is to be intercepted. A CDI interceptor uses an
interceptor binding to identify an interceptor method and to relate an
intercepted method to its interceptor method. Both the intercepted method
and the interceptor method must be annotated with the binding. In this way,
the intercepted method and the interceptor are related to each other only
through the interceptor binding.

Example 9-14 Identifying All Methods of a Bean Class for Interception

This example identifies all methods of the Shoppi ngCar t class for interception by the
@r ansact i onal interceptor.

package com exanpl e. bill paynent.interceptor;

@r ansact i onal
public class ShoppingCart {

}

Example 9-15 Identifying an Individual Method of a Class for Interception

This example identifies only the checkout method of the Shoppi ngCar t class for
interception by the @r ansact i onal interceptor.

package com exanpl e. bill paynent.interceptor;
public class ShoppingCart {

@ransactional public void checkout() {

s
}
9.11.4 Enabling an Interceptor

By default, an interceptor is disabled. If you require an interceptor to be interposed in
method invocations and events, you must enable the interceptor explicitly.

To enable an interceptor:

1. Add acl ass element for the interceptor to the i nt er cept or s element in the
beans. xni file.

2. Inthe cl ass element, provide the fully qualified class name of the interceptor.

Ensure that the order of t he cl ass elements in the beans. xm file matches the
order in which the interceptors are to be invoked.

CDI interceptors are invoked in the order in which they are declared in the
beans. xm file. Interceptors that are defined in the ej b-j ar. xm file or by the

9-18 Developing Applications for Oracle WebLogic Server

Decorating a Managed Bean Class

j avax.interceptor.|nterceptors annotation are called before the CDI
interceptors. Interceptors are called before CDI decorators.

Note:

Java EE 5 interceptors are invoked in the order in which they are annotated on
an intercepted method.

For more information about the beans. xnl file, see Configuring a CDI Application.

Example 9-16 shows a cl ass element in the beans. xm file for enabling an
interceptor class.

Example 9-16 Enabling an Interceptor Class

This example enables the interceptor class
com exanpl e. bi | | payment . i nterceptor. Transacti onl nt ercept or. The
interceptor class is defined in Example 9-13.

<i nterceptors>
<cl ass>com exanpl e. bi | | paynent.interceptor. Transactionl nterceptor</class>
<linterceptors>

9.12 Decorating a Managed Bean Class

Decorating a managed bean class enables you to intercept invocations of methods in
the decorated class that perform operations with business semantics. You can decorate
any managed bean class.

Note:

The programming model for decorator classes is optimized for operations that
perform the business logic of the application. To intercept methods that are
separate from the business logic of an application, use an interceptor class as
explained in Intercepting Method Invocations and Life Cycle Events of Bean
Classes.

For more information, see Using Decorators in The Java EE 7 Tutorial.

Decorating a managed bean class involves the tasks that are explained in the following
sections:

¢ Defining a Decorator Class

* Enabling a Decorator Class

9.12.1 Defining a Decorator Class

A decorator class intercepts invocations of methods in the decorated class that perform
operations with business semantics. A decorator class and an interceptor class are
similar because both classes provide an around-method interception. However, a
method in a decorator class has the same signature as the intercepted method in the
decorated bean class.

To define a decorator class:

Using Contexts and Dependency Injection for the Java EE Platform 9-19

http://docs.oracle.com/javaee/6/api/javax/interceptor/Interceptors.html
http://docs.oracle.com/javaee/7/tutorial/cdi-adv007.htm

Decorating a Managed Bean Class

1. Write a Java class that implements the same interface as the bean class that you
are decorating.

If you want to intercept only some methods of the decorated class, declare the
decorator class as an abstract class. If you declare the class as abstract, you are not
required to implement all the methods of the bean class that you are decorating.

2. Annotate the class declaration of the decorator class with the
j avax. decor at or . Decor at or annotation.

3. Implement the methods of the decorated bean class that you want to intercept.

If the decorator class is a concrete class, you must implement all the methods of
the bean class that you are decorating.

You must ensure that the intercepting method in a decorator class has the same
signature as the intercepted method in the decorated bean class.

4. Add a delegate injection point to the decorator class.

A decorator class must contain exactly one delegate injection point. A delegate
injection point injects a delegate object, which is an instance of the decorated class,
into the decorator object.

You can customize how any method in the decorator object handles the
implementation of the decorated method. CDI allows but does not require the
decorator object to invoke the corresponding delegate object. Therefore, you are
free to choose whether the decorator object invokes the corresponding delegate
object.

a. In the decorator class, inject an instance of the bean class that you are
decorating.

b. Annotate the injection point with the j avax. decor at or. Del egat e
annotation.

c. Apply qualifiers that you require to the injection point, if any.

If you apply qualifiers to the injection point, the decorator applies only to
beans whose bean class matches the qualifiers of the injection point.

Note:

No special declaration, such as an annotation, is required to define a decorated
bean class. An enabled decorator class applies to any bean class or session
bean that matches the bean type and qualifiers of the delegate injection point.

Example 9-17 shows the definition of a decorator class.
Example 9-17 Defining a Decorator Class

This example defines the decorator class Dat aAccessAut hDecor at or . This class
decorates any bean of type Dat aAccess.

Because only some methods of the decorated class are to be intercepted, the class is
declared as an abstract class. This class injects a delegate instance del egat e of the
decorated implementation of the Dat aAcess bean type.

inport javax.decorator.*;
i mport javax.inject.lnject;

9-20 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/decorator/Decorator.html
http://java.sun.com/javaee/6/docs/api/javax/decorator/Delegate.html

Assigning an EL Name to a CDI Bean Class

i mport java.lang. Override;

@ecor at or
public abstract class DataAccessAut hDecor at or
i npl ement s Dat aAccess {

@nject @el egate DataAccess del egate;

@verride

public void del ete(hject object) {
aut hori ze(Secur eActi on. DELETE, object);
del egat e. del et e(obj ect);

}

private void authorize(SecureAction action, Object object) {

}
}

9.12.2 Enabling a Decorator Class

By default, a decorator class is disabled. If you require a decorator class to be invoked
in a CDI application, you must enable the decorator class explicitly.

To enable an decorator class:

1. Add acl ass element for the decorator class to the decor at or s element in the
beans. xnl file.

2. Inthe cl ass element, provide the fully qualified class name of the decorator class.

Ensure that the order of the cl ass elements in the beans. xml file matches the
order in which the decorator classes are to be invoked.

Note:

Any interceptor classes that are defined for an application are invoked before
the application's decorator classes.

For more information about the beans. xni file, see Configuring a CDI Application.

Example 9-18 shows a cl ass element in the beans. xm file for enabling a decorator
class.

Example 9-18 Enabling a Decorator Class

This example enables the decorator class
com exanpl e. bi | | payment . decor at or . Dat aAccessAut hDecor at or.

<decor at or s>
<cl ass>com exanpl e. bi | | paynent . decor at or. Dat aAccessAut hDecor at or </ ¢l ass>
</ decorat or s>

9.13 Assigning an EL Name to a CDI Bean Class

EL enables components in the presentation layer to communicate with managed beans
that implement application logic. Components in the presentation layer are typically

Using Contexts and Dependency Injection for the Java EE Platform 9-21

Assigning an EL Name to a CDI Bean Class

JavaServer Faces (JSF) pages and JavaServer Pages (JSP) pages. For more information,
see JSP Expression Language in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

In the scripting languages in JSP pages and JSF pages, the syntax of an injected
variable is identical to the syntax of a built-in variable of these languages. Any CDI
bean that is injected into a JSP page or JSF page must be accessible through an EL
name. For more information, see Giving Beans EL Names in The Java EE 7 Tutorial.

To assign an EL name to a CDI bean class, annotate the class declaration of the bean
class with the j avax. i nj ect . Naned annotation.

If you do not specify a name, the EL name is the unqualified class name with the first
character in lower case. For example, if the unqualified class name is Shoppi ngCart,
the EL name is shoppi ngCart .

To specify a name, set the val ue element of the @\anmed annotation to the name that
you require.

Note:

To assign an EL name to a CDI bean class, you must annotate the bean class
declaration with the @Nanmed annotation. If the class is not annotated with
@\aned, the CDI bean class does not have an EL name.

The following example shows how to use the @Naned annotation to assign an EL
name to a CDI bean class. This example assigns the EL name cart to the
Shoppi ngCart class.

import javax.enterprise.context.Sessi onScoped;

@essi onScoped

@anmed("cart")
public class ShoppingCart {
public String getTotal () {

}

}

Any bean that a JSP page or JSF page accesses must conform to the JavaBeans
standard. To access a CDI managed bean from a JSP page or JSF page through the
bean's EL name, use a syntax that is similar to the syntax for JavaBeans components.

The following example shows how an instance of the Shoppi ngCart class is accessed
in a JSF page through the EL name that is assigned to the class.

Example 9-19 Accessing a Bean Through its EL Name

This example accesses an instance of the Shoppi ngCar t class to display the value of
itst ot al property in a JSF page.
This property is returned by the get Tot al getter method of the Shoppi ngCar t

class.

<h: out put Text val ue="#{cart.total}"/>

9-22 Developing Applications for Oracle WebLogic Server

https://docs.oracle.com/javaee/7/tutorial/cdi-basic009.htm
http://docs.oracle.com/javaee/7/api/javax/inject/Named.html

Defining and Applying Stereotypes

9.14 Defining and Applying Stereotypes

In a large application in which several beans perform similar functions, you may
require the same set of annotations to be applied to several bean classes. Defining a
stereotype requires you to define the set of annotations only once. You can then use
the stereotype to guarantee that the same set of annotations is applied to all bean
classes that require the annotations. For more information, see Using Stereotypes in
The Java EE 7 Tutorial.

Defining and applying stereotypes involves the tasks that are explained in the
following sections:

¢ Defining a Stereotype

* Applying Stereotypes to a Bean

9.14.1 Defining a Stereotype

A stereotype is an application-defined annotation type that incorporates other
annotation types.

To define a stereotype:

1. Define a Java annotation type to represent the stereotype.

2. Annotate the declaration of the annotation type with the following annotations:
e javax.enterprise.inject. Stereotype

e The other annotation types that you want the stereotype to incorporate

You can specify the following annotation types in a stereotype:
— A default scope—see Defining the Scope of a Bean
- @\ ternative—see Providing Alternative Implementations of a Bean Type

— One or more interceptor bindings—see Intercepting Method Invocations and
Life Cycle Events of Bean Classes

— @lanmed—see Assigning an EL Name to a CDI Bean Class
3. Specify that the stereotype is to be retained by the virtual machine at run time.

Use the j ava. | ang. annot ati on. Ret ent i on(RUNTI ME) meta-annotation for
this purpose.

4. Specify that the stereotype may be applied to the program element TYPE.

Use the j ava. | ang. annot at i on. Tar get (TYPE) meta-annotation for this
purpose.

The following example shows the definition of a stereotype.

Example 9-20 Defining a Stereotype

This example defines the stereotype @\ct i on, which specifies the following for each
bean that the stereotype annotates:

Using Contexts and Dependency Injection for the Java EE Platform 9-23

https://docs.oracle.com/javaee/7/tutorial/cdi-adv008.htm
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Stereotype.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Target.html

Using Events for Communications Between Beans

* The default scope is request scope unless the scope is overridden with a scope
annotation.

¢ The default EL name is assigned to the bean unless the name is overridden with the
@\aned annotation.

¢ The interceptor bindings @ecur e and @r ansact i onal are applied to the bean.
The definition of these interceptor bindings is beyond the scope of this example.

inport javax.enterprise.inject.Stereotype;

i mport javax.inject.Naned,

inport javax.enterprise.context.Request Scoped;

inport static java.lang.annotation. El enent Type. TYPE;

import static java.lang.annotation. RetentionPolicy. RUNTI ME;
i mport java.lang.annotation. Retention;

i mport java.lang.annotation. Target;

@Request Scoped

@ecure

@ransact i onal

@aned

@t er eot ype

@ar get (TYPE)

@ret ent i on(RUNTI ME)

public @nterface Action {}

9.14.2 Applying Stereotypes to a Bean

To apply stereotypes to a bean, annotate the class declaration of the bean with each
stereotype to apply. You can apply any number of stereotypes to a bean. Any
stereotype that you apply to a bean must be defined as explained in Defining a
Stereotype.

Example 9-21 shows how to apply stereotypes to a bean.
Example 9-21 Applying Stereotypes to a Bean

This example applies the stereotypes @\ct i on and @bck to the bean class
MockLogi nAct i on. The definition of the @\ct i on stereotype is shown in
Example 9-20. The definition of the @vbck stereotype is beyond the scope of this
example.

@\ction
@bck

public class MckLoginAction extends Logi nAction {

}...

9.15 Using Events for Communications Between Beans

At run time, your application may perform operations that generate information or
cause state changes that must be communicated between beans. For example, an
application may require stateful beans in one architectural tier of the application to
synchronize their internal state with state changes that occur in a different tier.

Events enable beans to communicate this information without any compilation-time
dependency. One bean can define an event, another bean can send the event, and yet
another bean can handle the event. The beans can be in separate packages and even in
separate tiers of the application. For more information, see Using Events in The Java EE
7 Tutorial.

9-24 Developing Applications for Oracle WebLogic Server

https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm

Using Events for Communications Between Beans

Using events for communications between beans involves the tasks that are explained
in the following sections:

* Defining an Event Type
* Sending an Event

¢ Handling an Event

9.15.1 Defining an Event Type

An event type is a Java class that represents the information that you want to
communicate between beans. For example, an event type may represent the state
information that a stateful bean must synchronize with state changes in a different tier
of an application.

Define an event type for each set of changes that you want to communicate between
beans.

To define an event type:

1. Define a Java class to represent the event type.
Ensure that the class meets these requirements:
e The class is declared as a concrete Java class.

e The class has no type variables.

The event types of the event include all superclasses and interfaces of the run
time class of the event object. An event type must not contain a type variable.
Any Java type can be an observed event type.

2. If necessary, define any qualifiers to further distinguish events of this type. For
more information, see Defining Qualifiers for Implementations of a Bean Type.

3. Provide code in the class to populate the event payload of event objects that are
instantiated from the class.

The event payload is the information that you want the event to contain. You can
use a JavaBeans property with getter and setter methods to represent an item of
information in the event payload.

9.15.2 Sending an Event

To communicate a change that occurs in response to an operation, your application
must send an event of the correct type when performing the operation. CDI provides a
predefined event dispatcher object that enables application code to send an event and
select the associated qualifiers at run time.

To send an event:
1. Obtain an instance of the event type to send.

2. Call methods of the event instance to populate the event payload of the event
object that you are sending.

3. Inject an instance of the parameterized j avax. ent er pri se. event. Event
interface.

Using Contexts and Dependency Injection for the Java EE Platform 9-25

http://docs.oracle.com/javaee/6/api/javax/enterprise/event/Event.html

Using Events for Communications Between Beans

If you are sending a qualified event, annotate the injection point with the event
qualifier.

4. Call the fi r e method of the injected Event instance.

In the call to the f i r @ method, pass as a parameter the event instance that you are
sending.

Example 9-22 shows how to send an event.

Example 9-22 Sending an Event

This example injects an instance of the event of type User with the qualifier
@oggedl n. The f i r e method sends only User events to which the @.oggedI| n
qualifier is applied.

import javax.enterprise.event.Event;

import javax.enterprise.context.Sessi onScoped;
inmport javax.inject.Inject;

inport java.io.Serializable;

@essi onScoped
public class Login inplenments Serializable {

@nj ect @oggedl n Event <User> user Loggedl nEvent ;
private User user;

public void login(Credentials credentials) {
/... use credentials to find user
if (user '=null) {

user Loggedl nEvent . fire(user);

}

}
9.15.3 Handling an Event

Any CDI managed bean class can handle events.

To handle an event:

1. In your bean class, define a method to handle the event.

Note:

If qualifiers are applied to an event type, define one method for each qualified
type.

2. In the signature of the method, define a parameter for passing the event to the
method.

Ensure that the type of the parameter is the same as the Java type of the event.

3. Annotate the parameter in the method signature with the
j avax. enterprise. event. Gbser ves annotation.

9-26 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/enterprise/event/Observes.html

Injecting a Predefined Bean

If necessary, set elements of the @bser ves annotation to specify whether the
method is conditional or transactional. For more information, see Using Observer
Methods to Handle Events in The Java EE 7 Tutorial.

4. If the event type is qualified, apply the qualifier to the annotated parameter.

5. In the method body, provide code for handling the event payload of the event
object.

Example 9-23 shows how to declare an observer method for receiving qualified events
of a particular type. Example 9-24 shows how to declare an observer method for
receiving all events of a particular type.

Example 9-23 Handling a Qualified Event of a Particular Type

This example declares the af t er Logi n method in which the parameter user is
annotated with the @bser ves annotation and the @.ogged! n qualifier. This method
is called when an event of type User with the qualifier @ oggedI n is sent.

inport javax.enterprise.event.Qbserves;
public void afterLogi n(@bserves @oggedln User user) {

}

Example 9-24 Handling Any Event of a Particular Type

This example declares the af t er Logi n method in which the parameter user is
annotated with the @bser ves annotation. This method is called when any event of
type User is sent.

i mport javax.enterprise.event. Qhserves;
public void afterLogin(@bserves User user) {

}

9.16 Injecting a Predefined Bean

CDI provides predefined beans that implement the following interfaces:

j avax.transaction. User Transacti on
Java Transaction API (JTA) user transaction.

java.security. Princi pal
The abstract notion of a principal, which represents any entity, such as an individual,
a corporation, and a login ID.

The principal represents the identity of the current caller. Whenever the injected
principal is accessed, it always represents the identity of the current caller.

For example, a principal is injected into a field at initialization. Later, a method that
uses the injected principal is called on the object into which the principal was injected.
In this situation, the injected principal represents the identity of the current caller
when the method is run.

j avax. val i dation. Val i dat or
Validator for bean instances.

Using Contexts and Dependency Injection for the Java EE Platform 9-27

https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm
https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html
http://docs.oracle.com/javase/6/docs/api/java/security/Principal.html
http://docs.oracle.com/javaee/6/api/javax/validation/Validator.html

Injecting and Qualifying Resources

The bean that implements this interface enables a Val i dat or object for the default
bean validation Val i dat or Fact ory object to be injected.

javax.val idation. Val i dat or Fact ory
Factory class for returning initialized Val i dat or instances.

The bean that implements this interface enables the default bean validation
Val i dat or Fact or y object to be injected.

To inject a predefined bean, create an injection point by using the
j avax. annot at i on. Resour ce annotation to obtain an instance of the bean. For the
bean type, specify the class name of the interface that the bean implements.

Predefined beans are injected with dependent scope and the predefined default
qualifier @ef aul t .

For more information about injecting resources, see Resource Injection in The Java EE 7
Tutorial.

Example 9-25 shows how to use the @Resour ce annotation to inject a predefined
bean.

Example 9-25 Injecting a Predefined Bean

This example injects a user transaction into the servlet class Tr ansact i onSer vl et .
The user transaction is an instance of the predefined bean that implements the
javax. transaction. User Transact i on interface.

i mport javax.annotation. Resour ce;
inport javax.servlet.http.*;

public class TransactionServlet extends HttpServlet {
@Resource User Transaction transaction;

9.17 Injecting and Qualifying Resources

Java EE 5 resource injection relies on strings for configuration. Typically, these strings
are JNDI names that are resolved when an object is created. CDI ensures type-safe
injection of beans by selecting the bean class on the basis of the Java type that is
specified in the injection point.

Even in a CDI bean class, Java EE 5 resource injection is required to access real
resources such as data sources, Java Message Service (JMS) resources, and Web service
references. Because CDI bean classes can use Java EE 5 resource injection, you can use
producer fields to minimize the reliance on Java EE 5 resource injection. In this way,
CDI simplifies how to encapsulate the configuration that is required to access the
correct resource.

To minimize the reliance on Java EE 5 resource injection:
1. Use Java EE 5 resource injection in only one place in the application.

2. Use producer fields to translate the injected resource type into a CDI bean.

You can the inject this CDI bean into the application in the same way as any other
CDI bean.

For more information about producer fields, see Defining a Producer Field.

The following example shows how to use Java EE 5 annotations to inject resources.

9-28 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/validation/ValidatorFactory.html
http://docs.oracle.com/javaee/7/api/javax/annotation/Resource.html
https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm

Injecting and Qualifying Resources

i mport javax.annotation. Resour ce;

i mport javax. persi stence. Persi st enceCont ext;
i mport javax. persistence. Persistencelnit;

i mport javax.ejb. EJB;

i mport javax.xm .ws. WebServi ceRef;

public class Soned ass {

@ébSer vi ceRef (| ookup="j ava: app/ servi ce/ Payment Servi ce")
Paynent Servi ce payment Servi ce;

@JB(ej bLi nk="../paynent. | ar#Paynent Servi ce")
Paynent Servi ce payment Servi ce;

@resour ce(| ookup="j ava: gl obal / env/j dbc/ Cust oner Dat asour ce")
Dat asour ce cust oner Dat abase;

@er si st enceCont ext (uni t Name="Cust orer Dat abase")
EntityManager custoner Dat abasePersi st enceCont ext;

@er si st enceUni t (uni t Nane="Cust oner Dat abase")
EntityManager Fact ory cust oner Dat abasePer si stenceUnit;

}

The following example shows how to inject the same set of resources by combining
Java EE 5 resource injection with CDI producer fields.

The declaration of the SomeC ass class is annotated with @ppl i cati onScoped to
set the scope of this bean to application. The @ependent scope is implicitly applied
to the producer fields.

i mport javax.enterprise.context.ApplicationScoped;
i mport javax.enterprise.inject.Produces;

i mport javax. annot ation. Resour ce;

i mport javax. persi stence. Persi st enceCont ext;

i mport javax. persistence. Persistencelnit;

inport javax.ejb.EJB;

javax. xnl . ws. WebSer vi ceRef ;

@\ppl i cati onScoped

public class Soned ass {

@r oduces
@eébSer vi ceRef (| ookup="j ava: app/ servi ce/ Payment Servi ce")
Paynent Servi ce payment Servi ce;

@r oduces
@EJB(ej bLi nk="../their.]jar#Payment Servi ce")
Paynent Servi ce payment Servi ce;

@'roduces @ust omer Dat abase

@resour ce(| ookup="j ava: gl obal / env/j dbc/ Cust oner Dat asour ce")
Dat asour ce cust oner Dat abase;

@'roduces @ust omer Dat abase

@er si st enceCont ext (uni t Name="Cust orer Dat abase")
EntityManager custoner Dat abasePersi st enceCont ext;

@'roduces @ust omer Dat abase

Using Contexts and Dependency Injection for the Java EE Platform 9-29

Using CDI With JCA Technology

@er si st enceUni t (uni t Nane="Cust oner Dat abase")
EntityManager Fact ory cust oner Dat abasePer si stenceUnit;

}

CDI enables you to use Java EE resources in CDI applications in a way that is
consistent with CDI. To use Java EE resources in this way, inject the resources as CDI
beans into other beans.

The following example shows how to inject a Java EE resource as a CDI bean into
another bean.

This example injects a persistence unit resource into a request-scoped bean.

inport javax.enterprise.context.Request Scoped;
inport javax.enterprise.inject.lnject;

@Request Scoped
public class SomeQt herC ass {

@nj ect @ust oner Dat abase
private EntityManagerFactory enf;

}

Another class, for example Yet Anot her Cl ass, could inject a field of type
SomeQ her d ass. If an instance of SomeQt her O ass does not already exist in the
current request context, CDI performs the following sequence of operations:

1. Constructing the instance of SomeQ her d ass
2. Injecting the reference to the entity manager factory by using the producer field.

3. Saving the new instance of SomeQt her O ass in the current request context

In every case, CDI injects the reference to this instance of SomeQt her Cl ass into the
field in Yet Anot her Cl ass. When the request context is destroyed, the instance of
SomeQ her C ass and its reference to the entity manager factory are destroyed.

9.18 Using CDI With JCA Technology

WebLogic Server supports CDI in embedded resource adapters and global resource
adapters. To enable a resource adapter for CDI, provide a beans. xni file in the
META- | NF directory of the packaged archive of the resource adapter. For more
information about the beans. xni file, see Configuring a CDI Application.

All classes in the resource adapter are available for injection. All classes in the resource
adapter can be CDI managed beans except for the following classes:

e Resource adapter beans. These beans are classes that are annotated with the
j avax. resour ce. spi . Connect or annotation or are declared as corresponding
elements in the resource adapter deployment descriptor r a. xm .

e Managed connection factory beans. These beans are classes that are annotated
with the j avax. r esour ce. spi . Connect i onDefi ni ti on annotation or the
j avax. resource. spi . Connecti onDef i ni ti ons annotation, or are declared
as corresponding elements in r a. xm .

9-30 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/resource/spi/Connector.html
http://docs.oracle.com/javaee/6/api/javax/resource/spi/ConnectionDefinition.html
http://docs.oracle.com/javaee/6/api/javax/resource/spi/ConnectionDefinitions.html

Configuring a CDI Application

e Activation specification beans. These beans are classes that are annotated with the
j avax. resource. spi . Acti vati on annotation or are declared as
corresponding elements inr a. xm .

e Administered object beans. These beans are classes that are annotated with the
j avax. resource. spi . Adm ni st er edObj ect annotation or are declared as
corresponding elements inr a. xm .

9.19 Configuring a CDI Application

Configuring a CDI application enables CDI services for the application.You must
configure a CDI application to identify the application as a CDI application. No special
declaration, such as an annotation, is required to define a CDI managed bean. And no
module type is defined specifically for packaging CDI applications.

To configure a CDI application, provide a file that is named beans. xnl in the
packaged archive of the application. The beans. xm file must be an instance of the
extensible markup language (XML) schema beans_1_0. xsd.

If your application does not use any alternatives, interceptors, or decorators, the
beans. xm file can be empty. However, you must provide the beans. xmi file even
if the file is empty.

If your CDI application uses alternatives, interceptors, or decorators, you must enable
these items by declaring them in the beans. xml file. For more information, see:

¢ Selecting an Alternative Implementation of a Bean Type for an Application
* Enabling an Interceptor

¢ Enabling a Decorator Class

The required location of the beans. xim file depends on the type of the application:
e For a Web application, the beans. xmi file must be in the WEB- | NF directory.

e For an EJB module, resource archive (RAR) file, application client JAR file, or
library JAR file, the beans. xml file must be in the META- | NF directory.

You can provide CDI bean archives in the | i b directory of an EJB module. You must
provide a beans. xni file in the META- | NF directory of each CDI bean archive the
I'i b directory of an EJB module.

Example 9-26 shows a beans. xni file for configuring a CDI application.
Example 9-26 beans.xml File for Configuring a CDI Application

This example configures a CDI application by enabling the following classes:

® The alternative implementation
com exanpl e. or der processor. MockOr der | npl

* The interceptor class
com exanpl e. bi | | payment . i nt ercept or. Transacti onl nt er cept or

e The decorator class
com exanpl e. bi | | paynment . decor at or . Dat aAccessAut hDecor at or

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://java. sun. con xnl /ns/javaee"
xmins: xsi ="http:// ww. w3. or g/ 2001/ XM.Schema- i nst ance"
xsi : schemaLocat i on="

Using Contexts and Dependency Injection for the Java EE Platform 9-31

http://docs.oracle.com/javaee/6/api/javax/resource/spi/Activation.html
http://docs.oracle.com/javaee/6/api/javax/resource/spi/AdministeredObject.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_0.xsd

Enabling and Disabling CD

http://java.sun.con xm /ns/javaee
http://java.sun.conm xn /ns/javaee/ beans_1_1.xsd">
<al ternatives>
<cl ass>com exanpl e. or der processor. MockOr der | npl </ cl ass>
</alternatives>
<i nterceptors>
<cl ass>com exanpl e. bi | | payment . i nterceptor. Transactionl nterceptor</cl ass>
<linterceptors>
<decor at or s>
<cl ass>com exanpl e. bi | | paynent . decor at or . Dat aAccessAut hDecor at or </ ¢l ass>
</ decor at or s>
</ beans>

9.20 Enabling and Disabling CDI

CDI for a domain is enabled by default. However, even when an application does not
use CDJ, there is some CDI initialization that occurs when you deploy an application
in WebLogic Server. To maximize deployment performance for applications that do
not use CD], you can disable CDI.

You can control whether CDI is enabled in the domain by setting the Pol i cy
parameter on the CDI container. When this parameter is set to Enabl ed, CDI is
enabled for all applications in the domain. When the Pol i cy parameter is set to
Di sabl ed, CDl is disabled for all applications in the domain.

You can disable CDI only for a domain.
9.20.1 Enabling and Disabling CDI for a Domain

To disable CDI for every application that is deployed to a domain, add the following
lines to the confi g. xm file:

<domai n>

<cdi - cont ai ner >

<pol i cy>Di sabl ed</ pol i cy>
</ cdi - cont ai ner>

<donai n>

You can use the WLST scripting tool to enable or disable CDI for a domain. The
following examples demonstrate how to use WLST to enable and disable CDI for a
domain whether you are online or offline.

Example 9-27 Enabling CDI While Online

In the following example, WebLogic Server is running. The arguments username and
password represent the credentials for the user who is connecting WLST to the server,
and url represents the listen address and listen port of the server instance (for
example, localhost:7001). Also note that domain represents the domain name.

connect (' user','password','url")
domai nConfig()
edit()
cd("' Cdi Cont ai ner/ nmydomai n')
startEdit()
set('Policy', Enabled") // 'Enabled or 'Disabled
val i dat e()
save()
activate(bl ock="true")

9-32 Developing Applications for Oracle WebLogic Server

Implicit Bean Discovery

Example 9-28 Enabling CDI While Offline

In the following example, domain represents the path of your domain (for example, /
or acl e/ W s/ mydomain). Also note that mydomai n must match the domain name.

readDomai n(' domai n')
create(' nydomain', ' Cdi Contai ner')
cd(' Cdi Cont ai ner/ mydomai n')
set('Policy', Enabled') // 'Enabled or 'Disabled
updat eDonai n()
cl oseDonai n()

9.21 Implicit Bean Discovery

CDI 1.1 and Java EE 7 introduced the concept of implicit bean archives. An implicit
bean archive is an archive of a JAR or a WAR file that does not contain a beans. xni
file; it contains beans that can be managed by CDI. This can significantly increase the
time that it takes to deploy an application. This increase in time is especially noticeable
when applications built for releases prior to Java EE 7 are deployed on a Java EE 7
application server. To be compatible with CDI 1.0, WebLogic Server contains an
option that sets the container to ignore the archive even when the beans. xni file is
not present.

You control whether implicit bean discovery is enabled in the domain by setting the

i nplicit-bean-di scovery-enabl ed parameter on the CDI container. When this
parameter is set to 1, implicit bean discovery is enabled for all applications in the
domain. When the i npl i ci t - bean- di scover y- enabl ed parameter is set to O,
implicit bean discovery is disabled for all applications in the domain.

You can disable implicit bean discovery only for a domain.

9.21.1 Enabling and Disabling Implicit Bean Discovery for a Domain

To disable implicit bean discovery for every application that is deployed to a domain,
add the following lines conf i g. xni file:

<domai n>

<cdi - cont ai ner >

<inplicit-bean-di scovery-enabl ed>f al se</inplicit-bean-di scobery-enabl ed>
</ cdi - cont ai ner>

<domai n>

You can use WLST scripting too to enable or disable this feature. The following
examples demonstrate how to use WLST to enable and disable implicit bean discovery
for a domain whether you are online or offline.

Example 9-29 Enabling Implicit Bean Discovery Using WLST Online

In the following example, WebLogic Server is running. The arguments username and
password represent the credentials for the user who is connecting WLST to the server,
and url represents the listen address and listen port of the server instance (for
example, localhost:7001). Also note that domain represents the domain name.

connect (' user', ' password','url")

domai nConfi g()

edit()

cd(' Cdi Cont ai ner/ nydomai n")

startEdit()

set (' I nplicitBeanDi scoveryEnabled' ,1) // 1 to enable 0 to disable
val i dat e()

Using Contexts and Dependency Injection for the Java EE Platform 9-33

Supporting Third-Party Portable Extensions

save()
activate(bl ock="true")

Example 9-30 Enabling Implicit Bean Discovery Using WLST Offline

In the following example, domain represents the path of your domain (for example, /
or acl e/ W s/ mydomain). Also note that mydomai n must match the domain name.

r eadDonai n(domai n)

create(' nydomain', ' Cdi Contai ner')
cd(' Cdi Cont ai ner/ nydomain')

set (' InplicitBeanDi scoveryEnabl ed', 1)
/1 1to enable 0 to disable

updat eDonai n()

cl oseDomai n()

9.22 Supporting Third-Party Portable Extensions

CDlI is intended to be a foundation for frameworks, extensions, and integration with
other technologies. Therefore, CDI exposes SPIs that enable the development of
portable extensions to CDI, such as:

* Integration with business process management engines
* Integration with third-party frameworks such as Spring, Seam, GWT or Wicket

¢ New technology that is based upon the CDI programming model

The SPIs that enable the development of portable extensions to CDI are provided in
thej avax. enterpri se.inject.spi package.

Code in CDI extensions can handle events that are sent by the CDI framework.

For more information, see "Portable extensions" in JSR 346: Contexts and Dependency
Injection for the Java EE platform.

9-34 Developing Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/enterprise/inject/spi/package-summary.html
http://jcp.org/en/jsr/summary?id=346
http://jcp.org/en/jsr/summary?id=346

10

Java API for JSON Processing

WebLogic Server supports the Java API for JSON Processing 1.0 (JSR 353) specification
by including the JSR-353 reference implementation for use with applications deployed
on a WebLogic Server instance.

This chapter includes the following sections:
* About JavaScript Object Notation (JSON)
* Object Model API

e Streaming API

To learn more about JSON concepts, see the "JSON Processing" chapter in the Java EE
7 Tutorial at ht t p: / / docs. oracl e. com j avaee/ 7/ tutorial /jsonp. htm

10.1 About JavaScript Object Notation (JSON)

JSON is a lightweight data-interchange format that is widely used as a common
format to serialize and deserialize data in applications that communicate with each
other over the Internet. These applications are often created using different
programming languages and run in very different environments. JSON is suited to
this scenario because it is an open standard, it is easy to read and write, and it is more
compact than other representations. RESTful web services typically make extensive
use of JSON as the format for the data inside requests and responses, with the JSON
representations usually being more compact than the counterpart XML
representations since JSON does not have closing tags.

The Java API for JSON Processing provides a convenient way to process (parse,
generate, transform, and query) JSON text. For generating and parsing JSON data,
there are two programming models, which are similar to those used for XML
documents:

¢ The object model creates a tree that represents the JSON data in memory. The tree
can then be navigated and analyzed. Although the JSON data created in memory is
immutable and cannot be modified, the object model is the most flexible and allows
for processing that requires access to the complete contents of the tree. However, it
is often slower than the streaming model and requires more memory. The object
model generates JSON output by navigating the entire tree at once.

For information about using the object model, see Object Model APL

¢ The streaming model uses an event-based parser that reads JSON data one element
at a time. The parser generates events and stops for processing when an object or
an array begins or ends, when it finds a key, or when it finds a value. Each element
can be processed or discarded by the application code, and then the parser
proceeds to the next event. This approach is adequate for local processing, in which
the processing of an element does not require information from the rest of the data.

Java API for JSON Processing 10-1

https://jcp.org/en/jsr/detail?id=353
http://docs.oracle.com/javaee/7/tutorial/jsonp.htm

Object Model API

The streaming model generates JSON output to a given stream by making a
function call with one element at a time.

For information about using the