Oracle® Fusion Middleware
Connectivity and Knowledge Modules Guide
for Oracle Data Integrator

12¢ (12.2.1.2.6)
E80994-03
February 2018

ORACLE"



Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator, 12¢
(12.2.1.2.6)

E80994-03
Copyright © 2010, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Laura Hofman Miquel, Aslam Khan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

Preface
Audience XXiii
Documentation Accessibility XXili
Related Documents XXiii
Conventions XXV
1 Introduction
1.1 Terminology 1-1
1.2 Using This Guide 1-2
Part | Databases, Files, and XML
2 Oracle Database
2.1 Introduction 2-1
2.1.1 Concepts 2-1
2.1.2 Knowledge Modules 2-1
2.2 Installation and Configuration 2-4
2.2.1 System Requirements and Certifications 2-4
2.2.2 Technology Specific Requirements 2-4
2.2.2.1 Using the SQL*Loader Utility 2-4
2.2.2.2 Using External Tables 2-4
2.2.2.3 Using Oracle Streams 2-5
2.2.3 Connectivity Requirements 2-6
2.3 Setting up the Topology 2-6
2.3.1 Creating an Oracle Data Server 2-7
2.3.1.1 Creation of the Data Server 2-7
2.3.2 Creating an Oracle Physical Schema 2-7
2.4 Setting Up an Integration Project 2-7
2.5 Creating and Reverse-Engineering an Oracle Model 2-8
2.5.1 Create an Oracle Model 2-8

ORACLE"



4 Files

2.5.2 Reverse-engineer an Oracle Model 2-8
2.6  Setting up Changed Data Capture 2-9
2.7 Setting up Data Quality 2-10
2.8 Designing a Mapping 2-10
2.8.1 Loading Data from and to Oracle 2-11
2.8.1.1 Loading Data from Oracle 2-11
2.8.1.2 Loading Data to Oracle 2-11
2.8.2 Integrating Data in Oracle 2-12
2.8.3 Designing an ETL-Style Mapping 2-13
2.9 Troubleshooting 2-16
2.9.1 Troubleshooting Oracle Database Errors 2-16
2.9.2 Common Problems and Solutions 2-17

3 Oracle Autonomous Data Warehouse Cloud
3.1 Introduction 3-1
3.1.1 Concepts 3-1
3.1.2 Knowledge Modules 3-1
3.2 Prerequisites 3-2
3.3 Setting up the Topology 3-3
3.3.1 Creating an Oracle Data Server 3-3
3.3.2 Creating an Oracle Physical Schema 3-4
3.4 Creating and Reverse-Engineering an Oracle Model 3-4
3.4.1 Create an Oracle Model 3-5
3.4.2 Reverse Engineer an Oracle Model 3-5
3.5 Designing a Mapping 3-5
3.5.1 Loading data 3-5
3.5.2 Extracting data 3-6
4.1 Introduction 4-1
4.1.1 Concepts 4-1
4.1.2 Knowledge Modules 4-1
4.2 Installation and Configuration 4-2
4.2.1 System Requirements and Certifications 4-2
4.2.2 Technology Specific Requirements 4-2
4.2.3 Connectivity Requirements 4-3
4.3  Setting up the Topology 4-3
4.3.1 Creating a File Data Server 4-3
4.3.1.1 Creation of the Data Server 4-3
v

ORACLE



4.3.2 Creating a File Physical Schema 4-5

4.4  Setting Up an Integration Project 4-6

4.5 Creating and Reverse-Engineering a File Model 4-6

4.5.1 Create a File Model 4-6

4.5.2 Reverse-engineer a File Model 4-6

45.2.1 Delimited Files Reverse-Engineering 4-7

4.5.2.2 Fixed Files Reverse-engineering using the Wizard 4-7

45.2.3 COBOL Copybook reverse-engineering 4-8

45.2.4 Customized Reverse-Engineering 4-9

4.6 Designing a Mapping 4-11

4.6.1 Loading Data From Files 4-11

4.6.2 Integrating Data in Files 4-13

4.6.2.1 KM SQL to File Append 4-13

4.6.2.2 IKM File to File (Java) 4-13
Generic SQL

5.1 Introduction 5-1

5.1.1 Concepts 5-1

5.1.2 Knowledge Modules 5-2

5.2 Installation and Configuration 5-4

5.2.1 System Requirements and Certifications 5-5

5.2.2 Technology-Specific Requirements 5-5

5.2.3 Connectivity Requirements 5-5

5.3  Setting up the Topology 5-5

5.3.1 Creating a Data Server 5-5

5.3.2 Creating a Physical Schema 5-6

5.4  Setting up an Integration Project 5-6

5.5 Creating and Reverse-Engineering a Model 5-6

5.5.1 Create a Data Model 5-6

5.5.2 Reverse-engineer a Data Model 5-6

5.6 Setting up Changed Data Capture 5-7

5.7 Setting up Data Quality 5-7

5.8 Designing a Mapping 5-7

5.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology 5-7

5.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology 5-7

5.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology 5-8

5.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology 5-8

5.8.3 Designing an ETL-Style Mapping 5-9

ORACLE



XML Files

6.1 Introduction 6-1
6.1.1 Concepts 6-1
6.1.2 Pre/Post Processing Support for XML Driver 6-1
6.1.3 Knowledge Modules 6-2

6.2 Installation and Configuration 6-2
6.2.1 System Requirements 6-2
6.2.2 Technologic Specific Requirements 6-2
6.2.3 Connectivity Requirements 6-2

6.3 Setting up the Topology 6-3
6.3.1 Creating an XML Data Server 6-3

6.3.1.1 Creation of the Data Server 6-3
6.3.2 Creating a Physical Schema for XML 6-4

6.4 Setting Up an Integration Project 6-4

6.5 Creating and Reverse-Engineering a XML File 6-5
6.5.1 Create an XML Model 6-5
6.5.2 Reverse-Engineering an XML Model 6-5

6.6 Designing a Mapping 6-5
6.6.1 Notes about XML Mappings 6-6

6.6.1.1 Targeting an XML Structure 6-6
6.6.1.2 Synchronizing XML File and Schema 6-6
6.6.1.3 Handling Large XML Files 6-7
6.6.2 Loading Data from and to XML 6-7
6.6.2.1 Loading Data from an XML Schema 6-7
6.6.2.2 Loading Data to an XML Schema 6-7
6.6.3 Integrating Data in XML 6-8

6.7 Troubleshooting 6-8
6.7.1 Detect the Errors Coming from XML 6-8
6.7.2 Common Errors 6-9

Complex Files

7.1 Introduction 7-1
7.1.1 Concepts 7-1
7.1.2 Pre/Post Processing Support for Complex File Driver 7-2
7.1.3 Knowledge Modules 7-2

7.2 Installation and Configuration 7-2
7.2.1 System Requirements 7-3
7.2.2 Technology Specific Requirements 7-3
7.2.3 Connectivity Requirements 7-3

7.3 Building a Native Schema Description File Using the Native Format Builder 7-3

ORACLE

Vi



7.4  Setting up the Topology 7-4
7.4.1 Creating a Complex File Data Server 7-4
7.4.1.1 Creation of the Data Server 7-4
7.4.2 Creating a Complex File Physical Schema 7-5
7.5 Setting Up an Integration Project 7-5
7.6 Creating and Reverse-Engineering a Complex File Model 7-5
7.6.1 Create a Complex File Model 7-6
7.6.2 Reverse-engineer a Complex File Model 7-6
7.7 Designing a Mapping 7-6
Microsoft SQL Server
8.1 Introduction 8-1
8.1.1 Concepts 8-1
8.1.2 Knowledge Modules 8-1
8.2 Installation and Configuration 8-2
8.2.1 System Requirements and Certifications 8-2
8.2.2 Technology Specific Requirements 8-3
8.2.2.1 Using the BULK INSERT Command 8-3
8.2.2.2 Using the BCP Command 8-3
8.2.2.3 Using Linked Servers 8-3
8.2.3 Connectivity Requirements 8-4
8.3  Setting up the Topology 8-4
8.3.1 Creating a Microsoft SQL Server Data Server 8-4
8.3.1.1 Creation of the Data Server 8-4
8.3.2 Creating a Microsoft SQL Server Physical Schema 8-5
8.4  Setting Up an Integration Project 8-5
8.5 Creating and Reverse-Engineering a Microsoft SQL Server Model 8-5
8.5.1 Create a Microsoft SQL Server Model 8-6
8.5.2 Reverse-engineer a Microsoft SQL Server Model 8-6
8.6  Setting up Changed Data Capture 8-6
8.7 Setting up Data Quality 8-7
8.8 Designing a Mapping 8-7
8.8.1 Loading Data from and to Microsoft SQL Server 8-7
8.8.1.1 Loading Data from Microsoft SQL Server 8-7
8.8.1.2 Loading Data to Microsoft SQL Server 8-8
8.8.2 Integrating Data in Microsoft SQL Server 8-9
Microsoft Excel
9.1 Introduction 9-1

ORACLE

Vii



9.1.1 Concepts 9-1
9.1.2 Knowledge Modules 9-1
9.2 Installation and Configuration 9-2
9.2.1 System Requirements and Certifications 9-2
9.2.2 Technology Specific Requirements 9-2
9.2.3 Connectivity Requirements 9-2
9.3 Setting up the Topology 9-3
9.3.1 Creating a Microsoft Excel Data Server 9-3
9.3.2 Creating a Microsoft Excel Physical Schema 9-3
9.4  Setting Up an Integration Project 9-4
9.5 Creating and Reverse-Engineering a Microsoft Excel Model 9-4
9.5.1 Create a Microsoft Excel Model 9-4
9.5.2 Reverse-engineer a Microsoft Excel Model 9-4
9.6 Designing a Mapping 9-5
9.6.1 Loading Data From and to Microsoft Excel 9-5
9.6.1.1 Loading Data from Microsoft Excel 9-5
9.6.1.2 Loading Data to Microsoft Excel 9-6
9.6.2 Integrating Data in Microsoft Excel 9-6
9.7 Troubleshooting 9-6
9.7.1 Decoding Error Messages 9-6
9.7.2 Common Problems and Solutions 9-7
10 Microsoft Access
10.1 Introduction 10-1
10.2 Concepts 10-1
10.3 Knowledge Modules 10-1
10.4  Specific Requirements 10-2
11 Netezza
11.1  Introduction 11-1
11.1.1  Concepts 111
11.1.2 Knowledge Modules 11-1
11.2 Installation and Configuration 11-2
11.2.1 System Requirements and Certifications 11-2
11.2.2 Technology Specific Requirements 11-2
11.2.3 Connectivity Requirements 11-3
11.3 Setting up the Topology 11-3
11.3.1 Creating a Netezza Data Server 11-3
11.3.1.1 Creation of the Data Server 11-3
ORACLE viii



11.3.2 Creating a Netezza Physical Schema 11-4
11.4 Setting Up an Integration Project 11-4
11.5 Creating and Reverse-Engineering a Netezza Model 11-4

11.5.1 Create a Netezza Model 11-4

11.5.2 Reverse-engineer a Netezza Model 11-4
11.6  Setting up Data Quality 11-5
11.7 Designing a Mapping 11-5

11.7.1 Loading Data from and to Netezza 11-5

11.7.1.1 Loading Data from Netezza 11-5
11.7.1.2 Loading Data to Netezza 11-5
11.7.2 Integrating Data in Netezza 11-6
12 Teradata
12.1 Introduction 12-1

12.1.1 Concepts 12-1

12.1.2 Knowledge Modules 12-1
12.2 Installation and Configuration 12-2

12.2.1 System Requirements and Certifications 12-2

12.2.2 Technology Specific Requirements 12-3

12.2.3  Connectivity Requirements 12-3
12.3 Setting up the Topology 12-3

12.3.1 Creating a Teradata Data Server 12-4

12.3.1.1  Creation of the Data Server 12-4

12.3.2 Creating a Teradata Physical Schema 12-4
12.4  Setting Up an Integration Project 12-4
12.5 Creating and Reverse-Engineering a Teradata Model 12-5

12.5.1 Create a Teradata Model 12-5

12.5.2 Reverse-engineer a Teradata Model 12-5
12.6  Setting up Data Quality 12-6
12.7 Designing a Mapping 12-6

12.7.1 Loading Data from and to Teradata 12-7

12.7.1.1 Loading Data from Teradata 12-7
12.7.1.2 Loading Data to Teradata 12-7

12.7.2 Integrating Data in Teradata 12-8

12.7.3 Designing an ETL-Style Mapping 12-12
12.8 KM Optimizations for Teradata 12-15

12.8.1 Primary Indexes and Statistics 12-16

12.8.2  Support for Teradata Utilities 12-16

12.8.3  Support for Named Pipes 12-17

ORACLE ix



12.8.4 Optimized Management of Temporary Tables 12-17
13 Hypersonic SQL
13.1  Introduction 13-1
13.1.1 Concepts 13-1
13.1.2 Knowledge Modules 13-1
13.2 Installation and Configuration 13-2
13.2.1 System Requirements and Certifications 13-2
13.2.2 Technology Specific Requirements 13-2
13.2.3 Connectivity Requirements 13-2
13.3 Setting up the Topology 13-2
13.3.1 Creating a Hypersonic SQL Data Server 13-3
13.3.2 Creating a Hypersonic SQL Physical Schema 13-3
13.4 Setting Up an Integration Project 13-3
13.5 Creating and Reverse-Engineering a Hypersonic SQL Model 13-4
13.5.1 Create a Hypersonic SQL Model 13-4
13.5.2 Reverse-engineer a Hypersonic SQL Model 13-4
13.6  Setting up Changed Data Capture 13-4
13.7 Setting up Data Quality 13-5
13.8 Designing a Mapping 13-5
14  IBM Informix
14.1  Introduction 14-1
14.2  Concepts 14-1
14.3 Knowledge Modules 14-1
14.4  Specific Requirements 14-3
15 IBM DB2 for iSeries
15.1  Introduction 15-1
15.1.1 Concepts 15-1
15.1.2 Knowledge Modules 15-1
15.2 Installation and Configuration 15-2
15.2.1 System Requirements and Certifications 15-2
15.2.2 Technology Specific Requirements 15-3
15.2.3 Connectivity Requirements 15-3
15.3 Setting up the Topology 15-3
15.3.1 Creating a DB2/400 Data Server 15-3
15.3.1.1 Creation of the Data Server 15-3
15.3.2 Creating a DB2/400 Physical Schema 15-4
ORACLE X



15.4  Setting Up an Integration Project 15-4
15.5 Creating and Reverse-Engineering an IBM DB2/400 Model 15-5
15.5.1 Create an IBM DB2/400 Model 15-5
15.5.2 Reverse-engineer an IBM DB2/400 Model 15-5
15.6 Setting up Changed Data Capture 15-5
15.6.1 Setting up Trigger-Based CDC 15-6
15.6.2 Setting up Log-Based CDC 15-6
15.6.2.1 How does it work? 15-6
15.6.2.2 CDCRTVJRN Program Details 15-6
15.6.2.3 Installing the CDC Components on iSeries 15-7
15.6.2.4 Using the CDC with the Native Journals 15-9
15.6.2.5 Problems While Reading Journals 15-9

15.7  Setting up Data Quality 15-10
15.8 Designing a Mapping 15-10
15.8.1 Loading Data from and to IBM DB2 for iSeries 15-10
15.8.1.1 Loading Data from IBM DB2 for iSeries 15-10
15.8.1.2 Loading Data to IBM DB2 for iSeries 15-11

15.8.2 Integrating Data in IBM DB2 for iSeries 15-11
15.9 Specific Considerations with DB2 for iSeries 15-12
15.9.1 Installing the Run-Time Agent on iSeries 15-12
15.9.2 Alternative Connectivity Methods for iSeries 15-12
15.9.2.1  Using Client Access 15-12
15.9.2.2 Using the IBM JT/400 and Native Drivers 15-12

15.10 Troubleshooting 15-13
15.10.1  Troubleshooting Error messages 15-13
15.10.2 Common Problems and Solutions 15-14
15.10.2.1 Connection Errors 15-14

16 IBM DB2 UDB
16.1  Introduction 16-1
16.2 Concepts 16-1
16.3 Knowledge Modules 16-1
16.4 Specific Requirements 16-3
17  Salesforce.com

17.1  Introduction 17-1
17.1.1 Concepts 17-1
17.1.2 Knowledge Modules 17-1
17.2 Installation and Configuration 17-1

ORACLE

Xi



17.2.1 System Requirements and Certifications 17-2
17.2.2 Technology Specific Requirements 17-2
17.2.3  Connectivity Requirements 17-2
17.3 Setting up the Topology 17-2
17.3.1 Creating a Salesforce.com Data Server 17-2
17.3.2 Creating a Physical Schema for Salesforce.com Data Server 17-3
17.4  Setting Up an Integration Project 17-3
17.5 Creating and Reverse-Engineering a Salesforce.com Model 17-4
17.5.1 Create a Salesforce.com Model 17-4
17.5.2 Reverse-engineer a Salesforce.com Model 17-4
17.6 Designing a Mapping 17-4
17.6.1 Loading Data from and to Salesforce.com 17-4
17.6.1.1 Loading Data from Salesforce.com 17-5
17.6.1.2 Loading Data to Salesforce.com 17-5

17.6.2 Integrating Data in Salesforce.com 17-5

Part I Business Intelligence
18 Oracle Business Intelligence Enterprise Edition

18.1 Introduction 18-1
18.1.1 Concepts 18-1
18.1.2 Knowledge Modules 18-1
18.2 Installation and Configuration 18-2
18.2.1 System Requirements and Certifications 18-2
18.2.2 Technology Specific Requirements 18-2
18.2.3 Connectivity Requirements 18-2
18.3 Setting up the Topology 18-3
18.3.1 Creating an Oracle Bl Data Server 18-3
18.3.1.1  Creation of the Data Server 18-3

18.3.2 Creating an Oracle Bl Physical Schema 18-4
18.4  Setting Up an Integration Project 18-4
18.5 Creating and Reverse-Engineering an Oracle Bl Model 18-4
18.5.1 Create an Oracle Bl Model 18-4
18.5.2 Reverse-engineer an Oracle Bl Model 18-4
18.6  Setting up Data Quality 18-5
18.7 Designing a Mapping 18-5
18.7.1 Loading Data from and to Oracle Bl 18-5
18.7.1.1 Loading Data from Oracle BI 18-5
18.7.1.2 Loading Data to Oracle BI 18-6

ORACLE

Xii



18.7.2 Integrating Data in Oracle BI 18-6
19 Oracle Business Intelligence Enterprise Edition Data Lineage
19.1 Introduction 19-1
19.1.1 Components 19-1
19.1.2 Lineage Lifecycle 19-2
19.1.2.1 Setting up the Lineage 19-2
19.1.2.2 Refreshing the Lineage 19-2
19.1.2.3 Using the Lineage 19-2
19.2 Installing the Lineage in an OBIEE Server 19-3
19.2.1 Installation Overview 19-3
19.2.2 Requirements 19-4
19.2.3 Installation Instructions 19-5
19.2.3.1 Installing and Starting the OBIEE Lineage Wizard 19-5
19.2.3.2 Deploying the OBIEE Lineage Artifacts using the Wizard 19-6
19.2.4 Post-Installation Tasks 19-7
19.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage 19-9
19.4 Refreshing the OBIEE Lineage from Existing Exports 19-12
19.4.1 Exporting the OBIEE Repository Documentation to a Text File 19-12
19.4.2 Exporting the OBIEE Web Catalog Report to a Text File 19-13
19.4.3 Refreshing the OBIEE Lineage From Existing Exports 19-13
19.5 Automating the Lineage Tasks 19-15
19.5.1 Configuring the Scripts 19-15
19.5.2 Automating Lineage Deployment 19-18
19.5.3 Automating Lineage Refresh 19-19
19.6 Using the Lineage in OBIEE Dashboards 19-20
19.6.1 Viewing Execution Statistics 19-20
19.6.2 Viewing and Filtering Lineage Data 19-21
19.6.3 Using the Dashboard 19-23
19.6.4 Using Lineage and Hierarchy 19-23
19.6.5 Using Contextual Lineage 19-25
20 Oracle Business Intelligence Cloud Service
20.1 Introduction 20-1
20.2 Setting up the Topology 20-2
20.2.1 Creating an Oracle BICS Data Server 20-2
20.2.2 Creating an Oracle BICS Physical Schema 20-2
20.2.3 Importing BICS Certificate into Trust Store of Standalone Agent 20-3
20.3 Reverse Engineering a BICS Model 20-4
ORACLE Xiii



20.4 Designing a Mapping 20-4
21  Oracle Hyperion Planning
21.1 Introduction 21-1
21.1.1 Integration Process 21-1
21.1.2 Knowledge Modules 21-1
21.2 Installation and Configuration 21-2
21.2.1 System Requirements and Certifications 21-2
21.2.2 Technology Specific Requirements 21-2
21.2.3 Connectivity Requirements 21-2
21.3 Setting up Hyperion Planning Adapter 21-2
21.3.1 Setting up Adapter for ODI Studio 21-3
21.3.2 Setting up Adapter for ODI Standalone Agent 21-3
21.4  Setting up the Topology 21-3
21.4.1 Creating an Hyperion Planning Data Server 21-3
21.4.2 Creating an Hyperion Planning Physical Schema 21-4
21.5 Creating and Reverse-Engineering a Planning Model 21-4
21.5.1 Create a Planning Model 21-4
21.5.2 Reverse-engineer a Planning Model 21-4
21.6 Designing a Mapping 21-4
21.6.1 Loading Metadata 21-5
21.6.2 Loading Data 21-6
21.6.3 Load Options 21-7
21.7 Datastore Tables and Data Load Columns 21-8
21.7.1  Accounts 21-8
21.7.2 Employee 21-15
21.7.3 Entities 21-21
21.7.4 User-Defined Dimensions 21-26
21.7.5 Attribute Dimensions 21-32
21.7.6 UDA 21-33
21.7.7 Data Load Columns 21-34
22  Oracle Hyperion Essbase
22.1 Introduction 22-1
22.1.1 Integration Process 22-1
22.1.2 Knowledge Modules 22-2
22.2 Installation and Configuration 22-2
22.2.1 System Requirements and Certifications 22-2
22.2.2 Technology Specific Requirements 22-2
ORACLE Xiv



22.2.3 Connectivity Requirements 22-2
22.3 Setting up Hyperion Essbase Adapter 22-3
22.3.1 Setting up Adapter for ODI Studio 22-3
22.3.2 Setting up Adapter for ODI Standalone Agent 22-3
22.4  Setting up the Topology 22-3
22.4.1 Creating an Hyperion Essbase Data Server 22-3
22.4.2 Creating an Hyperion Essbase Physical Schema 22-4
22.5 Creating and Reverse-Engineering an Essbase Model 22-4
22.5.1 Create an Essbase Model 22-4
22.5.2 Reverse-engineer an Essbase Model 22-4
22.6  Designing a Mapping 22-6
22.6.1 Loading Metadata 22-6
22.6.2 Loading Data 22-8
22.6.3 Extracting Data 22-12
22.6.3.1 Data Extraction Methods for Essbase 22-12
22.6.3.2 Extracting Essbase Data 22-13
22.6.3.3 Extracting Members from Metadata 22-15
Part Ill  Other Technologies
23  JIMS

23.1 Introduction 23-1
23.1.1 Concepts 23-1
23.1.1.1 JMS Message Structure 23-1
23.1.1.2 Using a JMS Destination 23-2

23.1.2 Knowledge Modules 23-3
23.2 Installation and Configuration 23-3
23.2.1 System Requirements and Certifications 23-4
23.2.2 Technology Specific Requirements 23-4
23.2.3 Connectivity Requirements 23-4
23.3 Setting up the Topology 23-4
23.3.1 Creating a JMS Data Server 23-4
23.3.1.1 Creation of the Data Server 23-4

23.3.2 Creating a JMS Physical Schema 23-5
23.4  Setting Up an Integration Project 23-5
23.5 Creating and Defining a JMS Model 23-5
23.5.1 Create a JMS Model 23-6
23.5.2 Defining the JMS Datastores 23-6
23.6  Designing a Mapping 23-7
23.6.1 Loading Data from a JMS Source 23-7

ORACLE

XV



23.6.2 Integrating Data in a JMS Target 23-7
23.7 JMS Standard Properties 23-9
23.7.1 Using JMS Properties 23-11
23.7.1.1 Declaring JMS Properties 23-11
23.7.1.2 Filtering on the Router 23-11
23.7.1.3 Filtering on the Client 23-12
23.7.1.4 Using Property Values as Source Data 23-12
23.7.1.5 Setting Properties when Sending a Message 23-12
24  IMS XML

24.1 Introduction 24-1
2411 Concepts 24-1
24.1.1.1 JMS Message Structure 24-1
24.1.1.2 Using a JMS Destination 24-1
24.1.2 Knowledge Modules 24-3
24.2 Installation and Configuration 24-3
24.2.1  System Requirements and Certifications 24-3
24.2.2 Technology Specific Requirements 24-3
24.2.3 Connectivity Requirements 24-4
24.3  Setting up the Topology 24-4
24.3.1 Creating a JMS XML Data Server 24-4
24.3.1.1 Creation of the Data Server 24-5
24.3.2 Creating a JMS XML Physical Schema 24-6
24.4  Setting Up an Integration Project 24-7
24.5 Creating and Reverse-Engineering a JMS XML Model 24-7
2451 Create a JMS XML Model 24-7
24.5.2 Reverse-Engineering a JMS XML Model 24-8
24.6  Designing a Mapping 24-8
24.6.1 Loading Data from a JMS XML Source 24-8
24.6.2 Integrating Data in a JMS XML Target 24-9

25 LDAP Directories
25.1 Introduction 25-1
25.1.1 Concepts 25-1
25.1.2 Knowledge Modules 25-2
25.2 Installation and Configuration 25-2
25.2.1 System Requirements 25-2
25.2.2 Technologic Specific Requirements 25-2
25.2.3  Connectivity Requirements 25-2
ORACLE XVi



25.3  Setting up the Topology 25-3
25.3.1 Creating an LDAP Data Server 25-3
25.3.1.1 Creation of the Data Server 25-3
25.3.2 Creating a Physical Schema for LDAP 25-4
25.4  Setting Up an Integration Project 25-4
25.5 Creating and Reverse-Engineering an LDAP Directory 25-4
25.5.1 Create an LDAP Model 25-5
25.5.2 Reverse-Engineering an LDAP Model 25-5
25.6  Designing a Mapping 25-5
25.6.1 Loading Data from and to LDAP 25-6
25.6.1.1 Loading Data from an LDAP Directory 25-6
25.6.1.2 Loading Data to an LDAP Directory 25-6
25.6.2 Integrating Data in an LDAP Directory 25-6
25.7 Troubleshooting 25-6
26  Oracle TimesTen In-Memory Database
26.1 Introduction 26-1
26.1.1 Concepts 26-1
26.1.2 Knowledge Modules 26-2
26.2 Installation and Configuration 26-2
26.2.1 System Requirements and Certifications 26-2
26.2.2 Technology Specific Requirements 26-2
26.2.3 Connectivity Requirements 26-3
26.3 Setting up the Topology 26-3
26.3.1 Creating a TimesTen Data Server 26-3
26.3.1.1 Creation of the Data Server 26-4
26.3.2 Creating a TimesTen Physical Schema 26-4
26.5 Creating and Reverse-Engineering a TimesTen Model 26-4
26.5.1 Create a TimesTen Model 26-4
26.5.2 Reverse-engineer a TimesTen Model 26-5
26.6  Setting up Data Quality 26-5
26.7 Designing a Mapping 26-5
26.7.1 Loading Data from and to TimesTen 26-5
26.7.1.1 Loading Data from TimesTen 26-6
26.7.1.2 Loading Data to TimesTen 26-6
26.7.2 Integrating Data in TimesTen 26-6
26.4 Setting Up an Integration Project 26-6
ORACLE XVii



27  Oracle GoldenGate

27.1 Introduction 27-1
27.1.1  Overview of the GoldenGate CDC Process 27-1
27.1.2 Knowledge Modules 27-2

27.2 Installation and Configuration 27-3
27.2.1 System Requirements and Certifications 27-3
27.2.2 Technology Specific Requirements 27-4
27.2.3 Connectivity Requirements 27-4

27.3  Working with the Oracle GoldenGate JKMs 27-4
27.3.1 Define the Topology 27-5

27.3.1.1 Define the Source Data Server 27-5
27.3.1.2 Create the Source Physical Schema 27-5
27.3.1.3 Define the Staging Server 27-5
27.3.1.4 Create the Staging Physical Schema 27-6
27.3.1.5 Define the Oracle GoldenGate Data Servers 27-6
27.3.1.6 Create the Oracle GoldenGate Physical Schemas 27-6
27.3.1.7 Create the Oracle GoldenGate Logical Schemas 27-8
27.3.2 Create the Replicated Tables 27-9
27.3.3 Set Up an Integration Project 27-9
27.3.4 Configure CDC for the Source Datastores 27-10
27.3.4.1 Create Oracle GoldenGate Physical Schemas from the model 27-12
27.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only) 27-13
27.3.6  Design Mappings Using Replicated Data 27-14

27.4  Advanced Configuration 27-14
27.4.1 Initial Load Method 27-14
27.4.2 Tuning Replication Performances 27-14
27.4.3 One Source Multiple Staging Configuration (Offline mode only) 27-14

27.5 Integrated Capture 27-15
27.5.1 Integrated Capture Deployment Options 27-16
27.5.2 Deciding Which Apply Method to Use 27-17

27.5.2.1 Nonintegrated Replicat 27-17

27.6 Using Different Capture and Apply Modes Together 27-21

27.7 Switching to Different Process Mode 27-22

27.8 Upgrading GoldenGate Classic Extract to Integrated 27-22

28  Oracle SOA Suite Cross References

28.1 Introduction 28-1

28.1.1 Concepts 28-1

28.1.1.1 General Principles 28-1

28.1.1.2 Cross Reference Table Structures 28-2

ORACLE Xviii



28.1.1.3 Handling Cross Reference Table Structures 28-3

28.1.2 Knowledge Modules 28-3
28.1.3 Overview of the SOA XREF KM Process 28-4
28.1.3.1 Loading Phase (LKM) 28-4
28.1.3.2 Integration and Cross-Referencing Phase (IKM) 28-5
28.1.3.3 Updating/Deleting Processed Records (LKM) 28-5

28.2 Installation and Configuration 28-6
28.2.1 System Requirements and Certifications 28-6
28.2.2 Technology Specific Requirements 28-6
28.2.3 Connectivity Requirements 28-6
28.3  Working with XREF using the SOA Cross References KMs 28-6
28.3.1 Defining the Topology 28-7
28.3.2  Setting up the Project 28-7
28.3.3 Designing a Mapping with the Cross-References KMs 28-7
28.4 Knowledge Module Options Reference 28-8

Part I\ Appendices

A Oracle Data Integrator Driver for LDAP Reference

A.1 Introduction to Oracle Data Integrator Driver for LDAP A-1
A.2 LDAP Processing Overview A-1
A.2.1 LDAP to Relational Mapping A-2
A.2.1.1  General Principle A-2

A.2.1.2 Grouping Factor A-4

A.2.1.3 Mapping Exceptions A-5
A.2.1.4 Reference LDAP Tree A-5

A.2.2 Managing Relational Schemas A-6
A.2.2.1 Relational Schema Storage A-6

A.2.2.2 Accessing Data in the Relational Structure A-7

A.3 Installation and Configuration A-7
A.3.1 Driver Configuration A-8
A.3.2 Using an External Database to Store the Data A-13
A.3.2.1 Passing the Properties in the Driver URL A-13

A.3.2.2 Setting the Properties in ODI Studio A-13

A.3.2.3 Setting the Properties in a Properties File A-14

A.3.3 LDAP Directory Connection Configuration A-16
A.3.4 Table Aliases Configuration A-16
A.4  SQL Syntax A-18
A.4.1 SQL Statements A-18
A.4.1.1 DISCONNECT A-18

ORACLE XixX



A.4.1.2 INSERT INTO A-19

A.4.1.3 SELECT A-19

A4.1.4 UPDATE A-19

A.4.1.5 Expressions, Condition & values A-19

A.4.2  SQL FUNCTIONS A-20
A.5 JDBC API Implemented Features A-23

B Oracle Data Integrator Driver for XML Reference

B.1 Introduction to Oracle Data Integrator Driver for XML B-1
B.2 XML Processing Overview B-1
B.2.1 XML to SQL Mapping B-2
B.2.2 XML Namespaces B-3
B.2.3 Managing Schemas B-3
B.2.3.1 Schema Storage B-3

B.2.3.2 Multiple Schemas B-4

B.2.3.3 Accessing Data in the Schemas B-4

B.2.3.4 Case Sensitivity B-4

B.2.3.5 Loading/Synchronizing B-5

B.2.4 Locking B-5
B.2.5 XML Schema (XSD) Support B-5

B.3 Installation and Configuration B-5
B.3.1 Driver Configuration B-6
B.3.2 Automatically Create Multiple Schemas B-11
B.3.3 Using an External Database to Store the Data B-11
B.4 Detailed Driver Commands B-16
B.4.1 CREATE FILE B-17
B.4.2 CREATE FOREIGNKEYS B-18
B.4.3 CREATE XMLFILE B-18
B.4.4 CREATE SCHEMA B-19
B.4.5 DROP FOREIGNKEYS B-21
B.4.6 DROP SCHEMA B-21
B.4.7 LOAD FILE B-21
B.4.8 SET SCHEMA B-22
B.49 SYNCHRONIZE B-22
B.4.10 UNLOCK FILE B-23
B.4.11 TRUNCATE SCHEMA B-23
B.4.12 VALIDATE B-23
B.4.13 WRITE MAPPING FILE B-24
B.5 SQL Syntax B-25
B.5.1 SQL Statements B-25

ORACLE

XX



B.5.1.1 COMMIT B-26

B.5.1.2 CREATE TABLE B-26
B.5.1.3 DELETE B-26
B.5.1.4 DISCONNECT B-26
B.5.1.5 DROP TABLE B-27
B.5.1.6 INSERT INTO B-27
B.5.1.7 ROLLBACK B-27
B.5.1.8 SELECT B-27
B.5.1.9 SET AUTOCOMMIT B-27
B.5.1.10 UPDATE B-27
B.5.1.11 Expressions, Condition and Values B-28
B.5.2 SQL FUNCTIONS B-28
B.6 JDBC API Implemented Features B-31
B.7 Rich Metadata B-32
B.7.1 Supported user-specified types for different databases B-33
B.8 XML Schema Supported Features B-34
B.8.1 Datatypes B-34
B.8.2 Supported Elements B-35
B.8.2.1 All B-36
B.8.2.2 Any B-36
B.8.2.3  AnyAttribute B-36
B.8.2.4 AnyType B-36
B.8.2.5 Attribute B-36
B.8.2.6  AttributeGroup B-37
B.8.2.7 Choice B-37
B.8.2.8 ComplexContent B-37
B.8.2.9 ComplexType B-38
B.8.2.10 Element B-38
B.8.2.11 Extension B-39
B.8.2.12 Group B-39
B.8.2.13 Import B-39
B.8.2.14 Include B-39
B.8.2.15 List B-40
B.8.2.16 Restriction B-40
B.8.2.17 Schema B-40
B.8.2.18 Sequence B-41
B.8.2.19 SimpleContent B-41
B.8.2.20 SimpleType B-41
B.8.3 Unsupported Features B-41
B.8.3.1 Unsupported Elements B-41
B.8.3.2 Unsupported Features B-42

ORACLE XXi



B.8.3.3 Unsupported Datatypes B-42
C Oracle Data Integrator Driver for Complex Files Reference
C.1 Introduction to Oracle Data Integrator Driver for Complex Files C-1
C.2 Complex Files Processing Overview C-1
C.2.1 Generating the Native Schema C-2
C.2.2 XML to SQL Mapping C-2
C.2.3 JSON Support C-2
C.2.4 Supported Features C-2
C.3 Driver Configuration C-3
C.4 Detailed Driver Commands C-5
C.5 JDBC API and XML Schema Supported Features C-5
D Pre/Post Processing Support for XML and Complex File Drivers
D.1  Overview D-1
D.2  Configuring the processing stages D-1
D.3 Implementing the processing stages D-3
D.4 Example: Groovy Script for Reading XML Data From Within a ZIP File D-4
D.5 Example: Groovy Script for Transforming XML Data and Writing to a Different
Format D-5
D.6 Example: Java Class for Reading Data From HTTP Source Requiring
Authentication D-6
D.7 Example: Groovy Code Embedded in Configuration XML File D-8
ORACLE XXIi



Preface

Audience

This book describes how work with different technologies in Oracle Data Integrator.
This preface contains the following topics:

* Audience

e Documentation Accessibility

* Related Documents

e Conventions

This document is intended for developers who want to work with Knowledge Modules
for their integration processes in Oracle Data Integrator.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?
ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / ww. or acl e. coml pl s/ t opi ¢/

| ookup?ct x=acc&i d=i nfo or visit htt p: // ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Related Documents

ORACLE

For more information, see the following documents in Oracle Data Integrator Library.

* Release Notes for Oracle Data Integrator

e Understanding Oracle Data Integrator

e Administering Oracle Data Integrator

»  Developing Integration Projects with Oracle Data Integrator
e Installing and Configuring Oracle Data Integrator

e Upgrading Oracle Data Integrator

e Application Adapters Guide for Oracle Data Integrator

»  Developing Knowledge Modules with Oracle Data Integrator

XXiii


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/middleware/1221/index.html

Preface

*  Migrating From Oracle Warehouse Builder to Oracle Data Integrator

*  Oracle Data Integrator Tools Reference

» Data Services Java API Reference for Oracle Data Integrator

* Open Tools Java API Reference for Oracle Data Integrator

* Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator
e Java API Reference for Oracle Data Integrator

*  Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator User's
Guide

*  Oracle Data Integrator 12c Online Help, which is available in ODI Studio through
the JDeveloper Help Center when you press F1 or from the main menu by
selecting Help, and then Search or Table of Contents.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XXiV



Introduction

The Connectivity and Knowledge Modules Guide for Oracle Data Integrator describes
how to work with different technologies in Oracle Data Integrator.
This book includes the following parts:

o Databases, Files, and XML
e Business Intelligence
e Other Technologies

Application Adapters are covered in a separate guide. See the Application Adapters
Guide for Oracle Data Integrator for more information.

This chapter provides an introduction to the terminology used in the Oracle Data
Integrator documentation and describes the basic steps of how to use Knowledge
Modules in Oracle Data Integrator.

This chapter contains the following sections:

e Terminology
e Using This Guide

1.1 Terminology

ORACLE

This section defines some common terms that are used in this document and
throughout the related documents mentioned in the Preface.

Knowledge Module

Knowledge Modules (KMs) are components of Oracle Data Integrator that are used to
generate the code to perform specific actions against certain technologies.

Combined with a connectivity layer such as, for example, JDBC, JMS, or JCA,
Knowledge Modules allow running defined tasks against a technology, such as
connecting to this technology, extracting data from it, transforming the data, checking
it, integrating it, etc.

Application Adapter

Oracle Application Adapters for Data Integration provide specific software components
for integrating enterprise applications data. Enterprise applications suported by Oracle
Data Integrator include Oracle E-Business Suite, Siebel, SAP, etc.

An adapter is a group of Knowledge Modules. In some cases, this group also contains
an attached technology definition for Oracle Data Integrator.

Application Adapters are covered in a separate guide. See the Application Adapters
Guide for Oracle Data Integrator for more information.

1-1



Chapter 1
Using This Guide

1.2 Using This Guide

ORACLE

This guide provides conceptual information and processes for working with knowledge
modules and technologies supported in Oracle Data Integrator.

Each chapter explains how to configure a given technology, set up a project and use
the technology-specific knowledge modules to perform integration operations.

Some knowledge modules are not technology-specific and require a technology that
support an industry standard. These knowledge modules are referred to as Generic
knowledge modules. For example the knowledge modules listed in Generic SQL and
in JMS are designed to work respectively with any ANSI SQL-92 compliant database
and any JMS compliant message provider.

When these generic knowledge module can be used with a technology, the technology
chapter will mention it. However, we recommend using technology-specific knowledge
modules for better performances and enhanced technology-specific feature coverage.

Before using a knowledge module, it is recommended to review the knowledge module
description in Oracle Data Integrator Studio for usage details, limitations and
requirements. In addition, although knowledge modules options are pre-configured
with default values to work out of the box, it is also recommended to review these
options and their description.

The chapters in this guide will provide you with the important usage, options, limitation
and requirement information attached to the technologies and knowledge modules.

1-2



Databases, Files, and XML

It is important to understand how to work with databases, files, and XML files in Oracle
Data Integrator.
Part | contains the following chapters:

e Oracle Database

e Oracle Autonomous Data Warehouse Cloud

e Files
e Generic SQL
e« XML Files

e Complex Files

e Microsoft SQL Server
*  Microsoft Excel

*  Microsoft Access

* Netezza

e Teradata

e Hypersonic SQL

e IBM Informix

+ |IBM DB2 for iSeries

- |BM DB2 UDB

e Salesforce.com

ORACLE



Oracle Database

It is important to understand how to work with Oracle Database in Oracle Data
Integrator.
This chapter includes the following sections:

e Introduction

* Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering an Oracle Model
e Setting up Changed Data Capture

e Setting up Data Quality

* Designing a Mapping

e Troubleshooting

2.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle Database. All
Oracle Data Integrator features are designed to work best with the Oracle Database
engine, including reverse-engineering, changed data capture, data quality, and
mappings.

2.1.1 Concepts

The Oracle Database concepts map the Oracle Data Integrator concepts as follows:
An Oracle Instance corresponds to a data server in Oracle Data Integrator. Within this
instance, a schema maps to an Oracle Data Integrator physical schema. A set of
related objects within one schema corresponds to a data model, and each table, view
or synonym will appear as an ODI datastore, with its attributes, columns and
constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle
database instance.

2.1.2 Knowledge Modules

ORACLE

Oracle Data Integrator provides the Knowledge Modules (KM) listed in the following
table for handling Oracle data. The KMs use Oracle specific features. It is also
possible to use the generic SQL KMs with the Oracle Database. See Generic SQL for
more information.

2-1



Chapter 2
Introduction

Table 2-1 Oracle KMs

Knowledge Description
Module

RKM Oracle  Reverse-engineers tables, views, columns, primary keys, non unique indexes and foreign keys.

JKM Oracle  Creates the journalizing infrastructure for consistent set journalizing on Oracle 11g tables, using
11g Oracle Streams.

Consistent  Thjs KM is deprecated.
(Streams)

JKM Oracle  Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using
Consistent triggers.

JKM Oracle  Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using triggers
Consistent based on a Last Update Date column on the source tables.
(Update Date)

JKM Oracle  Creates the journalizing infrastructure for simple journalizing on Oracle tables using triggers.
Simple

JKM Oracle to Creates and manages the ODI CDC framework infrastructure when using Oracle GoldenGate for
Oracle CDC. See Oracle GoldenGate for more information.

Consistent

(OGG Online)

CKM Oracle  Checks data integrity against constraints defined on an Oracle table.

LKM File to Loads data from a file to an Oracle staging area using the EXTERNAL TABLE SQL Command.
Oracle

(EXTERNAL

TABLE)

LKM File to Loads data from a file to an Oracle staging area using the SQL*Loader command line utility.
Oracle
(SQLLDR)

LKM MSSQL Loads data from a Microsoft SQL Server to Oracle database (staging area) using the BCP and
to Oracle SQL*Loader utilities.

(BCP

SQLLDR)

LKM Oracle  Loads data from any Oracle Bl physical layer to an Oracle target database using database links.
Bl to Oracle  See Oracle Business Intelligence Enterprise Edition for more information.
(DBLINK)

LKM Oracle  Loads data from an Oracle source database to an Oracle staging area database using database
to Oracle links.
(DBLINK)

LKM Oracle  Loads data from an Oracle source database to an Oracle staging area database using database
to Oracle Pull links. It does not create a view in the source database. It also does not creates the synonym in the
(DB Link) staging database. Built-in KM.

LKM Oracle  Loads and integrates data into Oracle target table using database links. It does not create the

to Oracle synonym in the staging database. Any settings in the IKM would be ignored. Built-in KM.

Push (DB

Link)

LKM Oracle  Loads data from an Oracle source database to an Oracle staging area database using external
to Oracle tables in the datapump format.

(datapump)

LKM SQLto Loads data from any ANSI SQL-92 source database to an Oracle staging area.
Oracle

ORACLE 2-2



Chapter 2
Introduction

Table 2-1 (Cont.) Oracle KMs
]

Knowledge
Module

Description

LKM SAP BW Loads data from SAP BW systems to an Oracle staging using SQL*Loader utilities. See the

to Oracle Application Adapters Guide for Oracle Data Integrator for more information.

(SQLLDR)

LKM SAP Loads data from SAP ERP systems to an Oracle staging using SQL*Loader utilities. See the

ERP to Application Adapters Guide for Oracle Data Integrator for more information.

Oracle

(SQLLDR)

IKM Oracle Integrates data in an Oracle target table in incremental update mode. Supports Flow Control.
Incremental

Update

IKM Oracle Integrates data in an Oracle target table in incremental update mode, using a MERGE statement.
Incremental  Supports Flow Control.

Update

(MERGE)

IKM Oracle Integrates data in an Oracle target table in incremental update mode using PL/SQL. Supports Flow
Incremental  Control.

Update (PL

SQL)

IKM Oracle Integrates data into an Oracle target table in append mode. The data is loaded directly in the target
Insert table with a single INSERT SQL statement. Built-in KM.

IKM Oracle Integrates data into an Oracle target table in incremental update mode. The data is loaded directly
Update into the target table with a single UPDATE SQL statement. Built-in KM.

IKM Oracle Integrates data into an Oracle target table in incremental update mode. The data is loaded directly
Merge into the target table with a single MERGE SQL statement. Built-in KM.

IKM Oracle Integrates data from one source into one or many Oracle target tables in append mode, using a
Multi-Insert multi-table insert statement (MTI). This IKM can be utilized in a single mapping to load multiple

targets. Built-in KM.

IKM Oracle Integrates data from one source into one or many Oracle target tables in append mode, using a
Multi Table multi-table insert statement (MTI). Supports Flow Control.

Insert

IKM Oracle Integrates data in an Oracle target table used as a Type Il Slowly Changing Dimension. Supports
Slowly Flow Control.

Changing

Dimension

IKM Oracle Integrates data into an Oracle (9i or above) target table in incremental update mode using the
Spatial MERGE DML statement. This module supports the SDO_GEOMETRY datatype. Supports Flow
Incremental  Control.

Update

IKM Oracle to Integrates data from one Oracle instance into an Oracle target table on another Oracle instance in
Oracle control append mode. Supports Flow Control.

Control This IKM is typically used for ETL configurations: source and target tables are on different Oracle
Append instances and the mapping's staging area is set to the logical schema of the source tables or a
(DBLINK) third schema.

SKM Oracle  Generates data access Web services for Oracle databases. For information about how to use this

SKM, see Generating and Deploying Data Servicesin the Administering Oracle Data Integrator.

ORACLE 2-3



Chapter 2
Installation and Configuration

2.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle Knowledge Modules:

e System Requirements and Certifications
»  Technology Specific Requirements

*  Connectivity Requirements

2.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn .

2.2.2 Technology Specific Requirements

Some of the Knowledge Modules for Oracle use specific features of this database.
This section lists the requirements related to these features.

2.2.2.1 Using the SQL*Loader Utility

This section describes the requirements that must be met before using the
SQL*Loader utility with Oracle database.

* The Oracle Client and the SQL*Loader utility must be installed on the machine
running the Oracle Data Integrator Agent.

*  The server names defined in the Topology must match the Oracle TNS name used
to access the Oracle instances.

* A specific log file is created by SQL*Loader. We recommend looking at this file in
case of error. Control Files (CTL), Log files (LOG), Discard Files (DSC) and Bad
files (BAD) are placed in the work directory defined in the physical schema of the
source files.

* Using the DIRECT mode requires that Oracle Data integrator Agent run on the
target Oracle server machine. The source file must also be on that machine.

2.2.2.2 Using External Tables

This section describes the requirements that must be met before using external tables
in Oracle database.

e The file to be loaded by the External Table command needs to be accessible from
the Oracle instance. This file must be located on the file system of the server
machine or reachable from a Unique Naming Convention path (UNC path) or
stored locally.

ORACLE 2.4


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 2
Installation and Configuration

For performance reasons, it is recommended to install the Oracle Data Integrator
Agent on the target server machine.

2.2.2.3 Using Oracle Streams

ORACLE

This section describes the requirements for using Oracle Streams Journalizing
knowledge modules.

# Note:

See also the Extraction in Data Warehouses chapter in the Oracle Database
Data Warehousing Guide, which contains the comprehensive list of
requirements for Oracle Streams.

The following requirements must be met before setting up changed data capture using
Oracle Streams:

Oracle Streams must be installed on the Oracle Database.

The Oracle database must run using a SPFILE (only required for
AUTO_CONFIGURATION option).

The AQ_TM_PROCESSES option must be either left to the default value, or set to
a value different from 0 and 10.

The COMPATIBLE option should be set to 10.1 or higher.
The database must run in ARCHIVELOG mode.

PARALLEL_MAX_SERVERS must be increased in order to take into count the
number of Apply and Capture processes. It should be increased at least by 6 for
Standalone configuration, 9 for Low-Activity and 21 for High-Activity.

UNDO_RETENTION must be set to 3600 at least.

STREAMS_POOL_SIZE must be increased by 100MB for Standalone
configuration, 236MB for Low-Activity and 548MB for High-Activity.

All the columns of the primary key defined in the ODI Model must be part of a
SUPPLEMENTAL LOG GROUP.

When using the AUTO_CONFIGURATION knowledge module option, all the
above requirements are checked and set-up automatically, except some actions
that must be set manually. See Using the Streams JKMsfor more information.

In order to run this KM without AUTO_CONFIGURATION knowledge module
option, the following system privileges must be granted:

— DBA role to the connection user

— Streams Administrator to the connection user
— RESOURCE role to the work schema

— SELECT ANY TABLE to the work schema

Asynchronous mode gives the best performance on the journalized system, but
this requires extra Oracle Database initialization configuration and additional
privileges for configuration.

2-5



Chapter 2
Setting up the Topology

Asynchronous mode requires the journalized database to be in ARCHIVELOG.
Before turning this option on, you should first understand the concept of
asynchronous AutoLog publishing. See the Oracle Database Administrator's
Guide for information about running a database in ARCHIVELOG mode. See
Extraction in Data Warehouses in the Oracle Database Data Warehousing Guide
for more information on supplemental logging. This will help you to correctly
manage the archives and avoid common issues, such as hanging the Oracle
instance if the archive files are not removed regularly from the archive repository.

When using asynchronous mode, the user connecting to the instance must be
granted admin authorization on Oracle Streams. This is done using the
DMBS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure when logged
in with a user already having this privilege (for example the SYSTEM user).

The work schema must be granted the SELECT ANY TABLE privilege to be able
to create views referring to tables stored in other schemas.

For detailed information on all other prerequisites, see the Extraction in Data
Warehouses chapter in the Oracle Database Data Warehousing Guide.

2.2.3 Connectivity Requirements

This section lists the requirements for connecting to an Oracle Database.

JDBC Driver

Oracle Data Integrator is installed with a default version of the Oracle Type 4 JDBC
driver. This drivers directly uses the TCP/IP network layer and requires no other
installed component or configuration.

It is possible to connect an Oracle Server through the Oracle JDBC OCI Driver, or
even using ODBC. For performance reasons, it is recommended to use the Type 4
driver.

Connection Information

You must ask the Oracle DBA the following information:

Network Name or IP address of the machine hosting the Oracle Database.
Listening port of the Oracle listener.

Name of the Oracle Instance (SID).

TNS alias of the connected instance.

Login and password of an Oracle User.

2.3 Setting up the Topology

Setting up the Topology consists of:

ORACLE

1.
2.

Creating an Oracle Data Server

Creating an Oracle Physical Schema

2-6



Chapter 2
Setting Up an Integration Project

2.3.1 Creating an Oracle Data Server

An Oracle data server corresponds to an Oracle Database Instance connected with a
specific Oracle user account. This user will have access to several schemas in this
instance, corresponding to the physical schemas in Oracle Data Integrator created
under the data server.

2.3.1.1 Creation of the Data Server

Create a data server for the Oracle technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This
section details only the fields required or specific for defining an Oracle data server:

1. Inthe Definition tab:
 Name: Name of the data server that will appear in Oracle Data Integrator.

* Instanceldblink: TNS Alias used for this Oracle instance. It will be used to
identify the Oracle instance when using database links and SQL*Loader.

» User/Password: Oracle user (with its password), having select privileges on
the source schemas, select/insert privileges on the target schemas and select/
insert/object creation privileges on the work schemas that will be indicated in
the Oracle physical schemas created under this data server.

2. Inthe JDBC tab:
e JDBC Driver: oracl e. j dbc. Oracl eDri ver

e JDBC URL:jdbc:oracl e:thin: @network name or ip address of the Oracle
machi ne>: <port of the Oracle |istener (1521)>:<name of the Oracle
i nstance>

To connect an Oracle RAC instance with the Oracle JDBC thin driver, use an
Oracle RAC database URL as shown in the following example:

jdbc: oracl e: t hi n: @DESCRI PTI ON=( LOAD_BALANCE=0n)
( ADDRESS=( PROTOCOL=TCP) ( HOST=host 1) (PORT=1521))
( ADDRESS=( PROTOCOL=TCP) ( HOST=host 2) (PORT=1521))
( CONNECT_DATA=( SERVI CE_NAME=ser vi ce)))

2.3.2 Creating an Oracle Physical Schema

Create an Oracle physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

2.4 Setting Up an Integration Project

Setting up a project using the Oracle Database follows the standard procedure. See
Creating an Integration Project of the Developing Integration Projects with Oracle Data
Integrator.

ORACLE .



Chapter 2
Creating and Reverse-Engineering an Oracle Model

It is recommended to import the following knowledge modules into your project for
getting started with Oracle Database:

*  RKM Oracle

* CKM Oracle

e LKM SQL to Oracle

* LKM File to Oracle (SQLLDR)

e LKM File to Oracle (EXTERNAL TABLE)

e |IKM Oracle Incremental Update

2.5 Creating and Reverse-Engineering an Oracle Model

This section contains the following topics:

* Create an Oracle Model

e Reverse-engineer an Oracle Model

2.5.1 Create an Oracle Model

Create an Oracle Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

2.5.2 Reverse-engineer an Oracle Model

ORACLE

Oracle supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve
the structure of the objects directly from the Oracle dictionary.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Oracle retrieves tables, views, columns,
primary keys, and references.

Consider switching to customized reverse-engineering for retrieving more metadata.
Oracle customized reverse-engineering retrieves the table and view structures,
including columns, primary keys, alternate keys, indexes, check constraints,
synonyms, and references.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Oracle with a RKM, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator. This section details only the fields specific to the
Oracle technology:

In the Reverse Engineer tab of the Oracle Model, select the KM RKM Or acl e. <pr oj ect
name>.

2-8



Chapter 2
Setting up Changed Data Capture

2.6 Setting up Changed Data Capture

ORACLE

The ODI Oracle Knowledge Modules support the Changed Data Capture feature. See
Using Changed Data of Developing Integration Projects with Oracle Data Integrator for
details on how to set up journalizing and how to use captured changes.

Oracle Journalizing Knowledge Modules support Simple Journalizing and Consistent
Set Journalizing. The Oracle JKMs use either triggers or Oracle Streams to capture
data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 2-2 for
journalizing Oracle tables.

Table 2-2 Oracle Journalizing Knowledge Modules

I
KM Notes

JKM Oracle 11g Consistent (Streams)  Creates the journalizing infrastructure for consistent
set journalizing on Oracle 119 tables, using Oracle
Streams.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent
set journalizing on Oracle tables using triggers.

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent
set journalizing on Oracle tables using triggers based
on a Last Update Date column on the source tables.

JKM Oracle Simple Creates the journalizing infrastructure for simple
journalizing on Oracle tables using triggers.

Note that it is also possible to use Oracle GoldenGate to consume changed records
from an Oracle database. See Oracle GoldenGate for more information.

Using the Streams JKMs

The Streams KMs work with the default values. The following are the recommended
settings:

» By default, the AUTO_CONFIGURATION KM option is set to Yes. If set to Yes,
the KM provides automatic configuration of the Oracle database and ensures that
all prerequisites are met. As this option automatically changes the database
initialization parameters, it is not recommended to use it in a production
environment. You should check the Create Journal step in the Oracle Data
Integrator execution log to detect configurations tasks that have not been
performed correctly (Warning status).

* By default, the CONFIGURATION_TYPE option is set to Low Activity. Leave this
option if your database is having a low transactional activity.

Set this option to St andal one for installation on a standalone database such as a
development database or on a laptop.

Set this option to H gh Activity if the database is intensively used for transactional
processing.

e By default, the STREAMS_OBJECT_GROUP option is set to CDC. The value
entered is used to generate object names that can be shared across multiple CDC

2-9



Chapter 2
Setting up Data Quality

sets journalized with this JKM. If the value of this option is CDC, the naming rules
listed in Table 2-3 will be applied.

Note that this option can only take upper case ASCII characters and must not
exceed 15 characters.

Table 2-3 Naming Rules Example for the CDC Group Name
]

CDC Group Naming Convention
Capture Process ODI_CDC_C

Queue ODI_CDC_Q

Queue Table ODI_CDC_QT

Apply Process ODI_CDC_A

* VALIDATE enables extra steps to validate the correct use of the KM. This option
checks various requirements without configuring anything (for configuration steps,
please see AUTO_CONFIGURATION option). When a requirement is not met, an
error message is written to the log and the execution of the JKM is stopped in
error.

By default, this option is set to Yes in order to provide an easier use of this
complex KM out of the box

Using the Update Date JKM

This JKM assumes that a column containing the last update date exists in all the
journalized tables. This column name is provided in the UPDATE_DATE_COL_NAME
knowledge module option.

2.7 Setting up Data Quality

Oracle Data Integrator provides the CKM Oracle for checking data integrity against
constraints defined on an Oracle table. See Flow Control and Static Control in
Developing Integration Projects with Oracle Data Integrator.

Oracle Data Integrator provides the Knowledge Module listed in Table 2-4 to perform a
check on Oracle. It is also possible to use the generic SQL KMs. See Generic SQL for
more information.

Table 2-4 Check Knowledge Modules for Oracle Database

Recommended KM Notes

CKM Oracle Uses Oracle's Rowid to identify records

2.8 Designing a Mapping

ORACLE

You can use Oracle as a source, staging area or a target of a mapping. It is also
possible to create ETL-style mappings based on the Oracle technology.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning an Oracle data server.

2-10



2.8.1 Loading Data from and to Oracle

Oracle can be used as a source, target or staging area of a mapping. The LKM choice
in the Mapping's Loading Knowledge Module tab to load data between Oracle and
another type of data server is essential for the performance of a mapping.

2.8.1.1 Loading Data from Oracle

Chapter 2
Designing a Mapping

The following KMs implement optimized methods for loading data from an Oracle
database to a target or staging area database. In addition to these KMs, you can also
use the Generic SQL KMs or the KMs specific to the other technology involved.

Target or KM Notes

Staging Area

Technology

Oracle LKM Oracle to Oracle (dblink) Creates a view on the source server,
and synonyms on this view on the
target server.

Oracle LKM Oracle to Oracle Push (DB Creates a view on the source server,

Link) but does not create synonyms on
this view on the target server. This
KM ignores any settings on the IKM.
Built-in KM.

Oracle LKM Oracle to Oracle Pull (DB Link) Does not create a view on the
source server, or the synonyms on
this view on the target server. Built-in
KM.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the

datapump format.

2.8.1.2 Loading Data to Oracle

The following KMs implement optimized methods for loading data from a source or
staging area into an Oracle database. In addition to these KMs, you can also use the
Generic SQL KMs or the KMs specific to the other technology involved.

ORACLE

Source or KM Notes

Staging Area

Technology

Oracle LKM Oracle to Oracle (dblink) Views created on the source server,
synonyms on the target.

Oracle LKM Oracle to Oracle Push (DB Views not created on the source

Link) server, synonyms created on the
target. Built-in KM.

Oracle LKM Oracle to Oracle Pull (DB Link) Views not created on the source
server, synonyms not created on the
target. Built-in KM.

SAP BW LKM SAP BW to Oracle (SQLLDR) Uses Oracle's bulk loader. File
cannot be Staging Area.

SAP ERP LKM SAP ERP to Oracle (SQLLDR) Uses Oracle's bulk loader. File

cannot be Staging Area.

2-11



Chapter 2
Designing a Mapping

Source or KM Notes

Staging Area

Technology

Files LKM File to Oracle (EXTERNAL Loads file data using external tables.

TABLE)

Files LKM File to Oracle (SQLLDR) Uses Oracle's bulk loader. File
cannot be Staging Area.

Oracle LKM Oracle to Oracle (datapump)  Uses external tables in the datapump
format.

Oracle BI LKM Oracle Bl to Oracle (DBLINK) Creates synonyms for the target
staging table and uses the OBIEE
populate command.

MSSQL LKM MSSQL to Oracle (BCP- Unloads data from SQL Server using

SQLLDR) BCP, loads data into Oracle using
SQL*Loader.

All LKM SQL to Oracle Faster than the Generic LKM (Uses

Statistics)

2.8.2 Integrating Data in Oracle

The data integration strategies in Oracle are numerous and cover several modes. The
IKM choice in the Mapping's Physical diagram determines the performances and

ORACLE

possibilities for integrating.

The following KMs implement optimized methods for integrating data into an Oracle
target. In addition to these KMs, you can also use the Generic SQL KMs.

Mode KM Note

Update IKM Oracle Incremental Optimized for Oracle. Supports Flow Control.
Update

Update IKM Oracle Update Optimized for Oracle. Oracle UPDATE statement KM.

Built-in KM.
Update IKM Oracle Merge Optimized for Oracle. Oracle MERGE statement KM.
Built-in KM.

Update IKM Oracle Spatial Supports SDO_GEOMETRY datatypes. Supports Flow
Incremental Update Control.

Update IKM Oracle Incremental Recommended for very large volumes of data because of
Update (MERGE) bulk set-based MERGE feature. Supports Flow Control.

Update IKM Oracle Incremental Use PL/SQL and supports long and blobs in incremental
Update (PL SQL) update mode. Supports Flow Control.

Specific  IKM Oracle Slowly Supports type 2 Slowly Changing Dimensions. Supports
Changing Dimension Flow Control.

Specific  IKM Oracle Multi Table Supports multi-table insert statements. Supports Flow
Insert Control.

Append  IKM Oracle to Oracle Optimized for Oracle using DB*Links. Supports Flow
Control Append Control.
(DBLINK)

Append  IKM Oracle Insert Optimized for Oracle. Oracle INSERT statement KM.

Built-in KM. Supports Flow Control.

2-12



Chapter 2
Designing a Mapping

Mode KM Note

Append  IKM Oracle Multi-Insert Optimized for Oracle. Oracle multi-target INSERT
statement KM, applied to each target. Built-in KM.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing
Dimension value for each column of the Target datastore. This value is used by the
IKM Oracle Slowly Changing Dimension to identify the Surrogate Key, Natural Key,
Overwrite or Insert Column, Current Record Flag and Start/End Timestamps columns.

Using Multi Table Insert

The IKM Oracle Multi Table Insert is used to integrate data from one source into one to
many Oracle target tables with a multi-table insert statement. This IKM must be used
in mappings that are sequenced in a Package. This Package must meet the following
conditions:

*  The first mapping of the Package must have a temporary target and the KM option
DEFINE_QUERY set to YES.

This first mapping defines the structure of the SELECT clause of the multi-table
insert statement (that is the source flow).

*  Subsequent mappings must source from this temporary datastore and have the
KM option IS_ TARGET_TABLE set to YES.

* The last mapping of the Package must have the KM option EXECUTE set to YES in
order to run the multi-table insert statement.

* Do not set Use Temporary Mapping as Derived Table (Sub-Select) to true on any
of the mappings.

If large amounts of data are appended, consider to set the KM option
OPTIMIZER_HINT to / *+ APPEND */.

Using Spatial Datatypes

To perform incremental update operations on Oracle Spatial datatypes, you need to
declare the SDO_GEOMETRY datatype in the Topology and use the IKM Oracle
Spatial Incremental Update. When comparing two columns of SDO_GEOMETREY
datatype, the GEOMETRY_TOLERANCE option is used to define the error margin
inside which the geometries are considered to be equal. See the Oracle Spatial User's
Guide and Reference, for more information.

2.8.3 Designing an ETL-Style Mapping

ORACLE

See Creating a Mapping in Developing Integration Projects with Oracle Data Integrator
for generic information on how to desigh mappings. This section describes how to
design an ETL-style mapping where the staging area is Oracle database or any
ANSI-92 compliant database and the target on Oracle database.

In an ETL-style mapping, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from an
Oracle staging area to an Oracle target:

e Using a Multi-connection IKM

2-13



ORACLE

Chapter 2
Designing a Mapping

* Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling Oracle
data: IKM Oracle to Oracle Control Append (DBLINK). You can also use the generic
SQL multi-connection IKMs. See Generic SQL for more information.

See Table 2-5 for more information on when to use a multi-connection IKM.
To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping with the staging area on Oracle or an ANSI-92 compliant
technology and the target on Oracle using the standard procedure as described in
Creating a Mapping of Developing Integration Projects with Oracle Data Integrator.
This section describes only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source
tables or a third schema. See Configuring Execution Locations of Developing
Integration Projects with Oracle Data Integrator for information about how to
change the staging area.

3. Inthe Physical diagram, select an access point. The Property Inspector opens for
this object.

4. Inthe Loading Knowledge Module tab, select an LKM to load from the source(s) to
the staging area. See Table 2-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property
Inspector opens for this object.

In the Integration Knowledge Module tab, select an ETL multi-connection IKM to
load the data from the staging area to the target. See Table 2-5 to determine the
IKM you can use.

Note the following when setting the KM options:

e For IKM Oracle to Oracle Control Append (DBLINK)

— If large amounts of data are appended, set the KM option OPTIMIZER_HINT
to/*+ APPEND */.

— Set AUTO_CREATE_DB_LINK to true to create automatically db link on the
target schema. If AUTO_CREATE_DB_LINK is set to f al se (default), the link
with this name should exist in the target schema.

— If you set the options FLOW_CONTROL and STATIC_CONTROL to Yes,
select a CKM in the Check Knowledge Module tab. If FLOW_CONTROL is set
to Yes, the flow table is created on the target.

Using an LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to load
the flow table from the staging area to the target. The mono-connection IKM is used to
integrate the data flow into the target table.

2-14



Chapter 2
Designing a Mapping

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source of an ETL-style mapping. Staging area and the target are Oracle.

See Table 2-5 for more information on when to use the combination of a standard
exporting LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1.

Create a mapping with the staging area and target on Oracle using the standard
procedure as described in Creating a Mapping of Developing Integration Projects
with Oracle Data Integrator. This section describes only the ETL-style specific
steps.

Change the staging area for the mapping to the logical schema of the source
tables or a third schema. See Configuring Execution Locationsof Developing
Integration Projects with Oracle Data Integrator for information about how to

change the staging area.

In the Physical diagram, select an access point. The Property Inspector opens for
this object.

In the Loading Knowledge Module tab, select an LKM to load from the source(s) to
the staging area. See Table 2-5 to determine the LKM you can use.

Optionally, modify the KM options.

Select the access point for the Staging Area. The Property Inspector for this object
appears.

In the Loading Knowledge Module tab, select an LKM to load from the staging
area to the target. See Table 2-5 to determine the LKM you can use.

Optionally, modify the KM options.
Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM
to update the target. See Table 2-5 to determine the IKM you can use.

Table 2-5 KM Guidelines for ETL-Style Mappings with Oracle Data
]

Source Staging Area Target Exporting IKM KM Strategy Comment
LKM

ANSI Oracle Oracle NA IKM Multi- Use this KM strategy to:
SQL-92 Oracle to  connection «  Perform control append
stand?rd 8racleI IKM «  Use DB*Links for
compliant ontro performance reasons

Append Supports flow and static

(DBLINK) upp W

control.

ORACLE 2-15



Chapter 2
Troubleshooting

Table 2-5 (Cont.) KM Guidelines for ETL-Style Mappings with Oracle Data

Source Staging Area Target Exporting IKM KM Strategy Comment
LKM
ANSI Oracle orany  Oracle or NA IKM SQL  Multi- Allows an incremental
SQL-92 ANSI SQL-92 any to SQL connection update strategy with no
standard standard ANSI Increment 1KM temporary target-side
compliant  compliant SQL-92 al Update objects. Use this KM if it is
database standard not possible to create

complian temporary objects in the

t target server.

database The application updates are

made without temporary
objects on the target, the
updates are made directly
from source to target. The
configuration where the flow
table is created on the
staging area and not in the
target should be used only
for small volumes of data.

Supports flow and static

control
Oracle Oracle Oracle LKM to Oracle IKM LKM + na
to Oracle Oracle standard IKM
(DBLINK) Slowly
Changing
Dimension
Oracle Oracle Oracle LKM to Oracle IKM LKM + na
to Oracle Oracle standard IKM
(DBLINK) Increment
al Update
Oracle Oracle Oracle LKM to Oracle IKM LKM + na
to Oracle Oracle standard IKM
(DBLINK) Increment
al Update
(MERGE)

2.9 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using Oracle Knowledge Modules. It contains the following topics:

e Troubleshooting Oracle Database Errors

e Common Problems and Solutions

2.9.1 Troubleshooting Oracle Database Errors

Errors appear often in Oracle Data Integrator in the following way:

java. sql . SQLException: ORA-01017: invalid username/ password; |ogon denied
at ...
at ...

ORACLE 2-16



Chapter 2
Troubleshooting

the j ava. sql . SQLExcept i oncode simply indicates that a query was made to the database
through the JDBC driver, which has returned an error. This error is frequently a
database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
Oracle documentation. If its contains an error code specific to Oracle, like here (in
red), the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the erroneous task.

2.9.2 Common Problems and Solutions

ORACLE

This section describes common problems and solutions.

ORA-12154 TNS: coul d not resol ve service nane

TNS alias resolution. This problem may occur when using the OCI driver, or a KM
using database links. Check the configuration of the TNS aliases on the machines.

ORA- 02019 connection description for remote database not found

You use a KM using non existing database links. Check the KM options for
creating the database links.

ORA-00900 invalid SQ statenent
ORA- 00923 FROM Keyword not found where expected

The code generated by the mapping, or typed in a procedure is invalid for Oracle.
This is usually related to an input error in the mapping, filter of join. The typical
case is a missing quote or an unclosed bracket.

A frequent cause is also the call made to a non SQL syntax, like the call to an
Oracle stored procedure using the syntax

EXECUTE SCHEMA. PACKAGE. PROC( PARAML, PARAMR) .

The valid SQL call for a stored procedure is:

BEG N
SCHEMA. PACKAGE. PROC( PARAML, PARANR) ;
END;

The syntax EXECUTE SCHEMA. PACKAGE. PROC( PARAML, PARAM) is specific to SQL*PLUS,
and do not work with JDBC.
ORA- 00904 invalid colum nane

Keying error in a mapping/join/filter. A string which is not a column name is
interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a
datastore with a recently modified structure. It is necessary to impact in the error
table the modification, or drop the error tables and let Oracle Data Integrator
recreate it in the next execution.

ORA-00903 invalid table name

The table used (source or target) does not exist in the Oracle schema. Check the
mapping logical/physical schema for the context, and check that the table
physically exists on the schema accessed for this context.

2-17



ORACLE

Chapter 2
Troubleshooting

ORA-00972 I dentifier is too Long

There is a limit in the object identifier in Oracle (usually 30 characters). When
going over this limit, this error appears. A table created during the execution of the
mapping went over this limit. and caused this error (see the execution log for more
details).

Check in the topology for the oracle technology, that the maximum lengths for the
object names (tables and columns) correspond to your Oracle configuration.

ORA- 01790 expression nust have sanme datatype as correspondi ng expression

You are trying to connect two different values that can not be implicitly converted
(in a mapping, a join...). Use the explicit conversion functions on these values.

2-18



Oracle Autonomous Data Warehouse

Cloud

This chapter describes how to work with Autonomous Data Warehouse Cloud (ADWC)
in Oracle Data Integrator.

This chapter includes the following sections:

* Introduction

e Prerequisites

e Setting up the Topology

* Creating and Reverse-Engineering an Oracle Model

* Designing a Mapping

3.1 Introduction

Autonomous Data Warehouse Cloud (ADWC) is a fully-managed, high-performance
elastic cloud service providing analytical capability over data stored in the database
and Oracle Object Store.

Oracle Data Integrator (ODI) seamlessly integrates with ADWC. By integrating ODI
with ADWC, you can get the full performance of Oracle Database, in a fully-managed
environment that is tuned and optimized for data warehouse workloads.

3.1.1 Concepts

The Oracle ADWC concepts map the Oracle Data Integrator concepts as follows: An
Oracle ADWC Instance corresponds to a data server in Oracle Data Integrator. Within
this instance, a schema maps to an Oracle Data Integrator physical schema. A set of
related objects within one schema corresponds to a data model, and each table, view
or synonym will appear as an ODI datastore, with its attributes, columns and
constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle
ADWC instance. All connections to the ADWC require the use of an Oracle Wallet to
manage public key security credentials.

3.1.2 Knowledge Modules

ORACLE

Oracle Data Integrator provides the following Knowledge Modules (KM) for loading
data into ADWC. The KMs use Oracle specific features. It is also possible to use the
generic SQL KMs with ADWC.

3-1



Chapter 3
Prerequisites

Table 3-1 ADWC Knowledge Modules

____________________________________________________________________________________________|]
Knowledge Module Description

LKM SQL to Oracle (Built-In) Loads data from any ANSI SQL-92 source database to an Oracle staging area.
LKM SQL Multi-Connect Enables the use of multi-connect IKM for target table. Built-in IKM.

LKM File to Oracle (SQLLDR) Loads data from a file to an Oracle staging area using the SQL*Loader

command line utility.

IKM SQL to File Append Integrates data in a target file from any ANSI SQL-92 compliant staging area in

IKM Oracle Insert

replace mode.

Integrates data into an Oracle target table in append mode. The data is loaded
directly in the target table with a single INSERT SQL statement. Built-in KM.

IKM Oracle Update Integrates data into an Oracle target table in incremental update mode. The data

IKM Oracle Merge

is loaded directly into the target table with a single UPDATE SQL statement.
Built-in KM.

Integrates data into an Oracle target table in incremental update mode. The data
is loaded directly into the target table with a single MERGE SQL statement. Built-
in KM.

IKM Oracle Multi-Insert Integrates data from one source into one or many Oracle target tables in append

RKM Oracle

mode, using a multi-table insert statement (MTI). This IKM can be utilized in a
single mapping to load multiple targets. Built-in KM.

Reverse-engineers tables, views, columns and creates data models to use as
targets or sources in Oracle Data Integrator mappings.

3.2 Prerequisites

ORACLE

The following prerequisites are essential for connecting to ADWC environment. Make
sure you go through the following prerequisites, before connecting to ADWC
environment.

# Note:

The following prerequisites are common for both ODI Studio and ODI Agent.

Wallet Configuration

All connections to ADWC require the use of an Oracle Wallet to manage public key
security credentials. A wallet is a password-protected container used to store
authentication and signing credential, including private key, certificates, and trusted
certificates needed by SSL. Oracle Wallet provides a simple and easy method to
manage database credentials across multiple domains. It allows you to update
database credentials by updating the Wallet instead of having to change individual
data source definitions. To connect to the ADWC, applications need access to the
Oracle wallet.

For more details on wallet, refer to Securing Passwords in Application Design
section of Managing Security for Application Developers in Database Security Guide.

The JDBC properties require a Wallet file location.

3-2


https://docs.oracle.com/database/122/DBSEG/managing-security-for-application-developers.htm#DBSEG005

Chapter 3
Setting up the Topology

* Get the wallet zip file from ADWC wallet location and place it in a local directory
accessible to both ODI Studio and ODI Agent and unzip it.

Java Cryptography

Download and install JCE Unlimited Strength under the JAVA_HOME used by ODI
studio and ODI Agent. JCE Unlimited Strength provides a higher level of security as
compared to the standard Java installation.

* Download and install Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files from the location — Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files.

Java Security configuration

" Note:

Steps listed below are not required for JDK1.8.0_ul61.

Update the file j ava. securi ty, from the location JDK_HOME)jre\lib\security and add the
line "security. provider. 11=or acl e. security. pki . Oracl ePKl Provi der " as shown below:

security. provider. 1=sun. security. provider. Sun

security. provider.2=sun. security.rsa. SunRsaSi gn

security. provider. 3=sun. security.ec. SuneC

security. provider.4=com sun. net.ssl.internal.ssl.Provider
security. provi der.5=com sun. crypto. provi der. SunJCE
security. provider.6=sun.security.jgss. SunProvider
security. provider.7=com sun. security.sasl. Provider
security.provider.8=org.jcp.xm.dsig.internal.dom XM.DSi gRl
security. provider.9=sun. security.smartcardi 0. SunPCSC
security. provider. 10=sun. security. mscapi . SUnMSCAP
security. provider.11l=oracl e. security.pki. O acl ePKl Provi der

3.3 Setting up the Topology

" Note:

Please note the ADWC data server is created under Oracle Technology.

Setting up the Topology consists of:

e Creating an Oracle Data Server

» Creating an Oracle Physical Schema
3.3.1 Creating an Oracle Data Server

Create a data server for ADWC using the standard procedure, as described in
Creating a Data Server of Administering Oracle Data Integrator. This section details

ORACLE 3-3


http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Chapter 3
Creating and Reverse-Engineering an Oracle Model

only the properties required to be set in the data server created under Oracle
technology for ADWC:

1. In the Definition tab:
a. Name : Enter a name for the data server definition

b. Instance / dblink (Data Server) : TNS Alias used for this Oracle instance. It
will be used to identify the Oracle instance when using database links and
SQL*Loader

c. Under Connection, enter a user name and password for connecting to the
Oracle server

2. Inthe JDBC tab:
a. JDBC Driver : oracle.jdbc.OracleDriver

b. JDBC URL : JDBC URL: jdbc:oracle:thin:@<network name or ip address of
the Oracle machine>:<port of the Oracle listener (1521)>:<name of the Oracle
instance>

To connect an ADWC instance with the Oracle JDBC thin driver, use a
database URL as shown below:

j dbc: oracl e: t hi n: @ DESCRI PTI ON=( ADDRESS=( PROTOCOL=t cps) ( HOST=<host name or
i paddr ess>) (PORT=<por t >) ) (CONNECT_DATA=( SERVI CE_NAME=<db service>))
(security=(ssl _server_cert_dn="<certificate_info>")) )

c. JDBC Properties:
e oracle.net.ssl_server_dn_match = true

e oracle.net.wallet_location =(SOURCE=(METHOD=file)
(METHOD_DATA=(DIRECTORY=<wallet_directory>)).

This property is used to force the distinguished name (dn) of the server to
match with its service name.

e oracle.net.ssl_cipher_suites=(TLS_RSA_WITH_AES 256 CBC_SHA256)

e oracle.net.ssl_version=1.2
3.3.2 Creating an Oracle Physical Schema

Create an Oracle physical schema for ADWC using the standard procedure, as
described in Creating a Physical Schema in Administering Oracle Data Integrator.

Create a logical schema for this physical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

3.4 Creating and Reverse-Engineering an Oracle Model

This section contains the following topics:

e Create an Oracle Model

* Reverse Engineer an Oracle Model

ORACLE 3-4



Chapter 3
Designing a Mapping

3.4.1 Create an Oracle Model

Create an Oracle Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

3.4.2 Reverse Engineer an Oracle Model

An Oracle model for ADWC supports both Standard reverse-engineering - which uses
only the abilities of the JDBC driver - and Customized reverse-engineering, which
uses a RKM to retrieve the structure of the objects directly from the Oracle dictionary.
In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Oracle retrieves tables, views, columns
and references.

Consider switching to customized reverse-engineering for retrieving more metadata.
Oracle customized reverse-engineering retrieves the table and view structures,
including columns, indexes, check constraints, synonyms, and references.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on an Oracle model for ADWC, use the
usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Oracle model for ADWC with a
RKM, use the usual procedure, as described in Reverse-engineering a Model of
Developing Integration Projects with Oracle Data Integrator.

This section details only the fields specific to the Oracle technology. In the Reverse
Engineer tab of the Oracle Model, select the KM — RKM Or acl e. <pr oj ect name>.

3.5 Designing a Mapping

You can use Oracle ADWC as a source or a target of a mapping. It is also possible to
create ETL-style mappings based on the Oracle technology for ADWC.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning an Oracle data server.

e Loading Data

e Extracting data

3.5.1 Loading data

ORACLE

ADWC can be used as a source or target of a mapping. The LKM choice in the
Mapping's Loading Knowledge Module tab to load data between Oracle and another
type of data server is essential for the performance of a mapping.

The following KMs implement optimized methods for loading data from an Oracle
database to a target database. In addition to these KMs, you can also use the Generic
SQL KMs or the KMs specific to the other technology involved.

3-5



Chapter 3
Designing a Mapping

1. Loading Data using Oracle KMs

You can load data into Oracle tables using the following Oracle KMs by designing a
mapping where ADWC Oracle datastores can be the target. KMs that can be used for
mapping are:

* LKM SQL to Oracle (Built-In)
* |KM Oracle Insert

* |KM Oracle Update

* |IKM Oracle Merge

* |KM Oracle Multi-Insert

2. Loading Data using SQL* Loader KMs

You can also load data into Oracle tables for ADWC using the SQL* Loader KM. LKM
File to Oracle (SQLLDR) loads data into Oracle tables from files. You can design a
mapping that uses the data stores for an Oracle Schema for ADWC as the target of
the mapping, where the data is loaded using the SQL*Loader KM.

Connection Setup for SQL* Loader KMs

Make sure your thsnames.ora and sqlnet.ora properties are configured to use a
Wallet file.

For Example:

1. sqlnet.ora : WALLET_LOCATI ON=( SOURCE = (METHOD = file) (METHOD DATA =
(DI RECTORY="<wal | et _directory>"))) SSL_SERVER DN_MATCH-=yes

2. tnsnames.ora:

e <db_name>_DB_hi gh=(descri ption=(address=(protocol =t cps) (port=<port>)
(host =<host nane or ipaddress>))(connect_data=(servi ce_nane=<db_servi ce>))
(security=(ssl_server_cert_dn="<certificate_info>")) )

* <db_nane>_DB nedi umr(descri ption=(address=(protocol =t cps) (port=<port>)
(host =<host nane or ipaddress>))(connect_data=(servi ce_nane=<db_service>))
(security=(ssl _server_cert_dn="<certificate_info>")) )

e <db_nane>_DB | ow=(descri ption=(address=(protocol =t cps) (port=<port>)
(host =<host nane or ipaddress>))(connect _data=(servi ce_nane=<db_servi ce>))
(security=(ssl_server_cert_dn="<certificate_info>")) )

For more details, refer to Use of an External Password Store to Secure Passwords
section of Database Security Guide.

3.5.2 Extracting data

ORACLE

In ODI, you can extract data from ADWC via JDBC using Oracle KMs.

You can design a mapping that uses the Data Stores for an ADWC Schema as the
source of the mapping, where you can extract data via JDBC using the following
Oracle KMs:

» Extract data from ADWC and load to on premise Oracle Table (Component KMs)
through

3-6


https://docs.oracle.com/database/122/DBSEG/managing-security-for-application-developers.htm#DBSEG136

Chapter 3
Designing a Mapping

— LKM SQL to Oracle (Built-In)
— IKM Oracle Insert
» Extract data from ADWC and load to on premise File through
— LKM SQL Multi-Connect
— IKM SQL to File Append

ORACLE 3.7



Files

It is important to understand how to work with Files in Oracle Data Integrator.
This chapter includes the following sections:

e Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a File Model

» Designing a Mapping

4.1 Introduction

Oracle Data Integrator supports fixed or delimited files containing ASCII or EBCDIC
data.

4.1.1 Concepts

The File technology concepts map the Oracle Data Integrator concepts as follows: A
File server corresponds to an Oracle Data Integrator data server. In this File server, a
directory containing files corresponds to a physical schema. A group of flat files within
a directory corresponds to an Oracle Data Integrator model, in which each file
corresponds to a datastore. The fields in the files correspond to the datastore columns.

Oracle Data Integrator provides a built-in driver for Files and knowledge modules for
integrating Files using this driver, using the metadata declared in the File data model
and in the topology.

Most technologies also have specific features for interacting with flat files, such as
database loaders, utilities, and external tables. Oracle Data Integrator can also benefit
from these features by using technology-specific Knowledge Modules. In terms of
performance, it is most of the time recommended to use database utilities when
handling flat files.

Note that the File technology concerns flat files (fixed and delimited). XML files are
covered in XML Files .

4.1.2 Knowledge Modules

ORACLE

Oracle Data Integrator provides the knowledge modules (KM) listed in this section for
handling File data using the File driver.

Note that the SQL KMs listed in Table 4-1 are generic and can be used with any
database technology. Technology-specific KMs, using features such as loaders or
external tables, are listed in the corresponding technology chapter.

4-1



Chapter 4
Installation and Configuration

Table 4-1 SQL KMs

_______________________________________________________________________________________________|]
Knowledge Module Description

LKM File to SQL Loads data from an ASCII or EBCDIC File to any ANSI SQL-92
compliant database used as a staging area.

IKM SQL to File Append Integrates data in a target file from any ANSI SQL-92 compliant
staging area in replace mode.

IKM File to File (Java) Integrates data in a target file from a source file using a Java
processing. Can take several source files and generates a log and a
bad file. See IKM File to File (Java) for more information.

4.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the File technology:

*  System Requirements and Certifications
* Technology Specific Requirements

*  Connectivity Requirements

4.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conl t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htni.

4.2.2 Technology Specific Requirements

Some of the knowledge modules for File data use specific features of the database.
This section lists the requirements related to these features.

Database Utilities

Most database technologies have their own utilities for interacting with flat files. All
require that the database client software is accessible from the Agent that runs the
mapping that is using the utility. Some examples are:

e Oracle: SQL*Loader
e Microsoft SQL Server: bcp
e Teradata: FastLoad, MultiLoad, TPump, FastExport

You can benefit from these utilities in Oracle Data Integrator by using the technology-
specific knowledge modules. See the technology-specific chapter in this guide for
more information about the knowledge modules and the requirements for using the
database utilities.

ORACLE 4-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 4
Setting up the Topology

Requirements for IKM File to File (Java)

The IKM File to File (Java) generates, compiles, and runs a Java program to process
the source files. In order to use this KM, a JDK is required.

4.2.3 Connectivity Requirements

This section lists the requirements for connecting to flat files.

JDBC Driver

Oracle Data Integrator includes a built-in driver for flat files. This driver is installed with
Oracle Data Integrator and does not require additional configuration.

4.3 Setting up the Topology

Setting up the topology consists in:

1. Creating a File Data Server

2. Creating a File Physical Schema

4.3.1 Creating a File Data Server

A File data server is a container for a set of file folders (each file folder corresponding
to a physical schema).

Oracle Data Integrator provides the default FILE_GENERIC data server. This data
server suits most of the needs. In most cases, it is not required to create a File data
server, and you only need to create a physical schema under the FILE_GENERIC
data server.

# Note:

Starting with JDK 8, the JDBC-ODBC Bridge is no longer included with the
JDK.

The JDBC-ODBC Bridge has always been considered transitional and a non-
supported product that was only provided with select JDK bundles and not
included with the JRE. Instead, use a JDBC driver provided by the vendor of
the database or a commercial JDBC Driver instead of the JDBC-ODBC Bridge.

4.3.1.1 Creation of the Data Server

ORACLE

Create a data server for the File technology using the standard procedure, as
described in Creating a Data Server of Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
File data server:

1. In the Definition tab:

* Name: Name of the data server that will appear in Oracle Data Integrator.

4-3



ORACLE

2. Inthe JDBC tab, enter the following values:

Chapter 4
Setting up the Topology

User/Password: These fields are not used for File data servers.

JDBC Driver: com sunopsi s. j dbc. driver.file. FileDriver

JDBC URL.: j dbc: snps: dbfi | e?<propert y=val ue>&<property=val ue>&. . .

You can use in the URL the properties listed in Table 4-2.

Table 4-2 JDBC File Driver Properties

Property Value

Description

DATA_CONTAINS_LIN TRUE| FALSE
E_SEPARATOR

ENCODING

ERR_FILE_PATH enpty

MULTIBYTES_MODE 0, 1, or 2

NO_PAD_DEL_NUMER TRUE| FALSE
IC

TRUNC_FIXED_STRIN TRUE| FALSE
GS

TRUNC_DEL_STRING TRUE| FALSE
S

<encodi ng_code>

If set to true, when reading data, if a
record contains a character (or
sequence of characters) that is set as a
line separator, it is not considered as a
line break, but the data is read on till
the read 'row size' number of
characters.

File encoding. The list of supported
encoding is available athttp://
java.sun.conl j2se/ 1. 4. 2/ docs/

gui de/intl/encoding. doc. htnl. The
default encoding value is | SO8859_1.

File location path. This path is taken by
the File driver and any errors
encountered by driver in parsing the
data is put into <property value>

+ .error. The rows that cause problem
are put into <property value> + .bad.
So this actually causes creation of two
files, in case of any problems.

0 is the default and indicates no special
handling for multibyte. The driver reads
file byte by byte

1 indicates that the file contains
multibyte strings. The driver reads
multibytes file character by character.

2 indicates that the file contains
mixture of multibyte characters and
binary data. The driver read multibytes
file byte by byte for BINARY columns
and character by character for other
columns.

Restricts left-padding of numbers
(integer, float) with spaces to match the
physical length of the column. Default
value is FALSE.

Truncates strings to the field size for
fixed files. Default value is FALSE.

Truncates strings to the field size for
delimited files. Default value is FALSE.

4-4


http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Chapter 4
Setting up the Topology

Table 4-2 (Cont.) JIDBC File Driver Properties
|

Property Value Description
NO_RTRIM_DEL_STRI TRUE| FALSE Despite its name, this same property
NG acts on both DELimited, and FIXED

format text files.

When the value is set to FALSE, the
trailing spaces at the end of a string
value are removed. To avoid right-
trimming, the property must be set to
TRUE.

# Note:

The TRUNC_FIXED_STRINGS and TRUNC_DEL_STRINGS
properties affect the treatment of data that is fed into the File driver via
an INSERT statement, not the data that File driver reads from the
backing file.

JDBC URL example:
j dbc: snps: dbfi | e?ENCODI NG=1 SO8859_1&TRUNC FI XED STRI NGS=FALSE

4.3.2 Creating a File Physical Schema

Create a File physical schema using the standard procedure, as described in Creating
a Physical Schema in Administering Oracle Data Integrator.

In your physical schema, you must set a pair of directories:

* The Directory (Schema), where Oracle Data Integrator will look for the source
and target files and create error files for invalid records detected in the source
files.

* A Directory (Work Schema), where Oracle Data Integrator may create temporary
files associated to the sources and targets contained in the Data Schema.

# Note:

- Data and Work schemas each correspond to a directory. This directory
must be accessible to the component that will access the files. The
directory can be an absolute path (m/public/data/files) or relative to the
runtime agent or Studio startup directory (. ./ deno/ fil es). It is strongly
advised to use a path that is independent from the execution location.

e In UNIX in particular, the agent must have read/write permission on both
these directories.

e Keep in mind that file paths are different in Windows than they are in UNIX.
Take the platform used by the agent into account when setting up this
information.

ORACLE 4.5



Chapter 4
Setting Up an Integration Project

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

4.4 Setting Up an Integration Project

Setting up a project using the File database follows the standard procedure. See
Creating an Integration Project of the Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started:

e LKM File to SQL
e |IKM SQL to File Append
e |IKM File to File (Java)

In addition to these knowledge modules, you can also import file knowledge modules
specific to the other technologies involved in your product.

4.5 Creating and Reverse-Engineering a File Model

This section contains the following topics:

e Create a File Model

* Reverse-engineer a File Model

4.5.1 Create a File Model

An File model is a set of datastores, corresponding to files stored in a directory. A
model is always based on a logical schema. In a given context, the logical schema
corresponds to one physical schema. The data schema of this physical schema is the
directory containing all the files (eventually in sub-directories) described in the model.

Create a File model using the standard procedure, as described in Creating a Model of
Developing Integration Projects with Oracle Data Integrator.

4.5.2 Reverse-engineer a File Model

Oracle Data Integrator provides specific methods for reverse-engineering files. File
database supports four types of reverse-engineering:

e Delimited Files Reverse-Engineering is performed per file datastore.
e Fixed Files Reverse-engineering using the Wizard is performed per file datastore.

e COBOL Copybook reverse-engineering, which is available for fixed files, if a
copybook describing the file is provided. It is performed per file datastore.

e Customized Reverse-Engineering, which uses a RKM (Reverse Knowledge
Module) to obtain, from a Microsoft Excel spreadsheet, column definitions of each
file datastore within a model and automatically create the file datastores in batch
without manual input.

ORACLE 4-6



Chapter 4
Creating and Reverse-Engineering a File Model

# Note:

The built-in file driver uses metadata from the Oracle Data Integrator models
(field data type or length, number of header rows, etc.). Driver-specific tags are
generated by Oracle Data Integrator and passed to the driver along with regular
SQL commands. These tags control how the driver reads or writes the file.

Similarly, when Oracle Data Integrator uses database loaders and utilities, it
uses the model metadata to control these loaders and utilities.

It is important to pay close attention to the file definition after a reverse-
engineering process, as discrepancy between the file definition and file content
is a source of issues at run-time.

4.5.2.1 Delimited Files Reverse-Engineering

To perform a delimited file reverse-engineering:

1.

N o g »

8.

In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

In the Definition tab, enter the following fields:
* Name: Name of this datastore

* Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the browse icon next to the field.

Go to the Files tab to describe the type of file. Set the fields as follows:
* File Format: Delimited

* Heading (Number of Lines): Enter the number of lines of the header. Note
that if there is a header, the first line of the header will be used by Oracle Data
Integrator to name the columns in the file.

* Select a Record Separator.

* Select or enter the character used as a Field Separator.
» Enter a Text Delimiter if your file uses one.

» Enter a Decimal Separator if your file contains decimals.
From the File main menu, select Save.

In the Datastore Editor, go to the Attributes tab.

In the editor toolbar, click Reverse Engineer.

Verify the datatype and length for the reverse engineered attributes. Oracle Data
Integrator infers the fields datatypes and lengths from the file content, but may set
default values (for example 50 for the strings field length) or incorrect data types in
this process.

From the File main menu, select Save.

4.5.2.2 Fixed Files Reverse-engineering using the Wizard

Oracle Data Integrator provides a wizard to graphically define the columns of a fixed
file.

ORACLE

4-7



Chapter 4
Creating and Reverse-Engineering a File Model

To reverse-engineer a fixed file using the wizard:

1.

In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

In the Definition Tab, enter the following fields:
* Name: Name of this datastore

* Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the browse icon next to the field.

Go to the Files tab to describe the type of file. Set the fields as follows:

* File Format: Fixed

* Header (Number of Lines): Enter the number of lines of the header.
* Select a Record Separator.

From the File main menu, select Save.

In the Datastore Editor, go to the Attributes tab.

In the editor toolbar, click Reverse Engineer.The Attributes Setup Wizard is
launched. The Attributes Setup Wizard displays the first records of your file.

Click on the ruler (above the file contents) to create markers delimiting the
attributes. You can right-click within the ruler to delete a marker.

Attributes are created with pre-generated names (C1, C2, and so on). You can edit
the attribute name by clicking in the attribute header line (below the ruler).

In the properties panel (on the right), you can edit all the parameters of the
selected attribute. You should set at least the Attribute Name, Datatype, and
Length for each attribute.

10. Click OK when the attributes definition is complete.

11. From the File main menu, select Save.

4.5.2.3 COBOL Copybook reverse-engineering

ORACLE

COBOL Copybook reverse-engineering allows you to retrieve a legacy file structure
from its description contained in a COBOL Copybook file.

To reverse-engineer a fixed file using a COBOL Copybook:

1.

In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

In the Definition Tab, enter the following fields:
* Name: Name of this datastore

* Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the browse icon next to the field.

Go to the Files tab to describe the type of file. Set the fields as follows:

* File Format: Fixed

* Header (Number of Lines): Enter the number of lines of the header.
* Select a Record Separator.

From the File main menu, select Save.

4-8



Chapter 4
Creating and Reverse-Engineering a File Model

In the Datastore Editor, go to the Attributes tab.

Create or open a File datastore that has a fixed format.

In the Datastore Editor, go to the Attributes tab.

In the toolbar menu, click Reverse Engineer COBOL CopyBook.

© ®» N o 0

In the Reverse Engineer Cobol CopyBook Dialog, enter the following fields:
*  File: Location of the Copybook file

* Character set: Copybook file charset.

» Description format (EBCDI C | ASC! | ): Copybook file format

e Data format (EBCDI C | ASCI | ): Data file format

10. Click OK.

The attributes described in the Copybook are reverse-engineered and appear in the
attributes list.

" Note:

If a field has a data type declared in the Copybook with no corresponding
datatype in Oracle Data Integrator File technology, then this attribute will
appear with no data type.

4.5.2.4 Customized Reverse-Engineering

ORACLE

In this reverse-engineering method, Oracle Data Integrator reads from a Microsoft
Excel spreadsheet containing column definitions of each file datastore within a model
and creates the file datastores in batch.

A sample file called file_repository.xls is supplied by ODI, typically under / deno/
excel sub-directory. Follow the specific format in the sample file to input your datastore
information.

The following steps assume that you have modified this file with the description of the
structure of your flat files.

It is recommended that this file shall be closed before the reverse engineering is
started.

To perform a customized reverse-engineering, perform the following steps:

1. Create an ODBC Datasource for the Excel Spreadsheet corresponding to the
Excel Spreadsheet containing the files description.

2. Define the Data Server, Physical and Logical Schema for the Microsoft Excel
Spreadsheet

3. Run the customized reverse-engineering using the RKM File from Excel RKM.

Create an ODBC Datasource for the Excel Spreadsheet

1. Launch the Microsoft ODBC Administrator.
Note that ODI running on 64-bit JRE will work with 64-bit ODBC only.

4-9



ORACLE

Chapter 4
Creating and Reverse-Engineering a File Model

Add a System DSN (Data Source Name).
Select the Microsoft Excel Driver (*.xlIs, and *.xIsx etc.) as the data source driver.

Name the data source ODI _EXCEL_FI LE_REPO and select the file / deno/ excel /
file_repository.xl s as the default workbook. Be sure to select driver version
accordingly. Example, "Excel 12.0" for ".xIsx" files.

Define the Data Server, Physical and Logical Schema for the Microsoft Excel
Spreadsheet

1.

3.

In Topology Navigator, add a Microsoft Excel data server with the following
parameters:

* Name: EXCEL_FILE_REPOSITORY

- JDBC Driver: Select the appropriate JDBC driver for Excel.

» JDBC URL: Enter the URL as required by the selected JDBC driver.
* Array Fetch Size: 0

Use default values for the rest of the parameters. From the File main menu, select
Save.

Click Test Connection to see if the data sever connects to the actual Excel file.

Add a physical schema to this data server. Leave the default values in the
Definition tab.

In the Context tab of the physical schema, click Add.

In the new line, select the context that will be used for reverse engineering and
enter in the logical schema column EXCEL_FI LE_REPOSI TCRY. This logical schema will
be created automatically. Note that this name is mandatory.

From the File main menu, select Save.

Run the customized reverse-engineering

1.

In Designer Navigator, import the RKM File (FROM EXCEL) Knowledge Module
into your project.

" Note:

If the EXCEL_FI LE_REPGCSI TORY logical schema does not get created before the
time of import, the customization status of the imported RKM will be
"Modified by User". Upon the creation of EXCEL_FI LE_REPQOSI TCRY, it will be
visible as source command schema under the corresponding RKM tasks.

Open an existing File model (or create a new one). Define the parameters as you
normally will for a File model. Note that the Technology is File, not Microsoft Excel.

In the Reverse Engineer tab, set the following parameters:
* Select Customized

* Context: Reverse Context

*  Knowledge Module: RKM File (FROM EXCEL)

In the toolbar menu, click Reverse Engineer.

4-10



Chapter 4
Designing a Mapping

5. You can follow the reverse-engineering process in the execution log.

# Note:

e The mandatory Microsoft Excel schema, EXCEL_FI LE_REPCSI TCRY, is
automatically used by RKM File (FROM EXCEL). It is independent from an
actual File model using RKM File (FROM EXCEL).

e Refer to Common Problems and Solutions for information on mitigating
common Excel-related ODBC exceptions.

4.6 Designing a Mapping

You can use a file as a source or a target of a mapping, but NOT as a staging area.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM for
different situations concerning a File data server.

4.6.1 Loading Data From Files

ORACLE

Files can be used as a source of a mapping. The LKM choice in the Loading
Knowledge Module tab to load a File to the staging area is essential for the mapping
performance.

The LKM File to SQL uses the built-in file driver for loading data from a File database
to a staging area. In addition to this KM, you can also use KMs that are specific to the
technology of the staging area or target. Such KMs support technology-specific
optimizations and use methods such as loaders or external tables.

This knowledge module, as well as other KMs relying on the built-in driver, support the
following two features attached to the driver:

» Erroneous Records Handling

e Multi-Record Files Support

Erroneous Records Handling

Oracle Data Integrator built-in driver provides error handling at column level for the File
technology. When loading a File, Oracle Data Integrator performs several controls.
One of them verifies if the data in the file is consistent with the datastore definition. If
one value from the row is inconsistent with the column description, the On Error option
- on the Control tab of the Attribute Editor - defines the action to perform and continues
to verify the remaining rows. The On Error option can take the following values:

* Reject Error: The row containing the error is moved to a .BAD file, and a reason
of the error is written to a .ERROR file.

The .BAD and .ERROR files are located in the same directory as the file being
read and are named after this file, with a .BAD and .ERROR extension.

* Null if error (inactive trace): The row is kept in the flow and the erroneous value
is replaced by null.

4-11



ORACLE

Chapter 4
Designing a Mapping

* Null if error (active trace): The row is kept in the flow, the erroneous value is
replaced by null, and an reason of the error is written to the .ERROR file.

Multi-Record Files Support

Oracle Data Integrator is able to handle files that contain multiple record formats. For
example, a file may contain records representing orders (these records have 5
columns) and other records representing order lines (these records having 8 columns
with different datatypes).

The approach in Oracle Data Integrator consists in considering each specific record
format as a different datastore.

To handle multi record files as a source of a mapping:

1. Create a File Model using a logical schema that points to the directory containing
the source file.

2. Identify the different record formats and structures of the flat file. In Example 4-1
two record formats can be identified: one for the orders and one for the order lines.

3. For each record format identified, do the following:
a. Create a datastore in the File Model for each type of record.
For Example 4-1 create two datastores.

b. In the Definition tab of the Datastore Editor, enter a unique name in the Name
field and enter the flat file name in the Resource Name field. Note that the
resource name is identical for all datastores of this model.

For Example 4-1 you can use ORDERS and ORDER LI NES as the name of your
datastores. Enter or ders. t xt in the Resource Name field for both datastores.

c. Inthe Files tab, select, depending on the format of your flat file, Fixed or
Delimited from the File Format list and specify the record and field separators.

d. In the Attributes tab, enter the attribute definitions for this record type.

e. One or more attributes can be used to identify the record type. The record
code is the field value content that is used as distinguishing element to be
found in the file. The record code must be unique and allows files with several
record patterns to be processed. In the Record Codes field, you can specify
several values separated by the semicolon (;) character.

In the Attribute Editor, assign a record code for each record type in the
Record Codes field.

In Example 4-1, enter ORD in the Record Codes field of the CODE_REC
attribute of the ORDERS datastore and enter LI Nin the Record Codes field of
the CODE_REC attribute of the ORDER_LINES datastore.

With such definition, when reading data from the ORDERS datastore, the file driver will
filter only those of the records where the first attribute contains the value ORD. The
same applies to the ORDER_LINES datastore (only the records with the first attribute
containing the value LIN will be returned).

Example 4-1 Multi Record File

This example uses the multi record file or ders. t xt . It contains two different record
types: orders and order lines.

Order records have the following format:

4-12



Chapter 4
Designing a Mapping

REC_CODE, ORDER | D, CUSTOMER | D, ORDER DATE
Order lines records have the following format
REC_CCDE, ORDER | D, LI NE_I D, PRODUCT_I D, QTY
Order records are identified by REC_CODE=0RD

Order lines are identified by REC CODE=LI N

4.6.2 Integrating Data in Files

Files can be used as a source and a target of a mapping. The data integration
strategies in Files concern loading from the staging area to Files. The IKM choice in
the Integration Knowledge Module tab determines the performances and possibilities
for integrating.

Oracle Data Integrator provides two Integration Knowledge Modules for integrating File
data:

* |IKM SQL to File Append
* IKM File to File (Java)

4.6.2.1 IKM SQL to File Append

The IKM SQL to File Append uses the file driver for integrating data into a Files target
from a staging area in truncate-insert mode.

This KM has the following options:

e INSERT automatically attempts to insert data into the target datastore of the
mapping.

e CREATE_TARG_TABLE creates the target table.
«  TRUNCATE deletes the content of the target file and creates it if it does not exist.
e GENERATE_HEADER creates the header row for a delimited file.

In addition to this KM, you can also use IKMs that are specific to the technology of the
staging area. Such KMs support technology-specific optimizations and use methods
such as loaders or external tables.

4.6.2.2 IKM File to File (Java)

ORACLE

The IKM File to File (Java) is the solution for handling File-to-File use cases. This IKM
optimizes the integration performance by generating a Java program to process the
files. It can process several source files when the datastore's resource name contains
a wildcard. This program is able to run the transformations using several threads.

The IKM File to File (Java) provides a KM option for logging and error handling
purposes: BAD_FILE.

This IKM supports flat delimited and fixed files where the fields can be optionally
enclosed by text delimiters. EBCDIC and XML formats are not supported.

4-13



ORACLE

Chapter 4
Designing a Mapping

Using the IKM File to File (Java)

To use the IKM File to File (Java), the staging area must be on a File data server. It is
the default configuration when creating a new mapping. The staging area is located on
the target, which is the File technology.

The IKM File to File (Java) supports mappings and filters. Mappings and filters are
always executed on the source or on the staging area, never on the target. When
defining the mapping expressions and filters use the Java syntax. Note that the
mapping expressions and filter conditions must be written in a single line with no
carriage return. The IKM supports the following standard Java datatypes: string,
numeric, and date and accepts any Java transformation on these datatypes.

The following are two examples of a mapping expression:

e FIC CO.1.toLower()
* FIC COL1+FI C COL2

In the second example, if COL1 and COL2 are numeric, the IKM computes the sum of
both numbers otherwise it concatenates the two strings.

The following are two examples of a filter condition:

°* FIC COL1. equal s("ORDER")

«  (FIC. COL1==FI C. COL2) && FI C. COL3 ! =None)

The following objects and features are not supported:
e Joins

* Datasets

* Changed Data Capture (CDC)

*  Flow Control

*  Lookups

Processing Several Files

The IKM File to File (Java) is able to process several source files. To specify several
source files use wildcards in the datastore's resource name. You can use the
PROCESSED_FILE_PREFIX and PROCESSED_FILE_SUFFIX KM options to
manage the source files by renaming them once they are processed.

Using the Logging Features

Once the mapping is completed, Oracle Data Integrator generates the following output
files according to the KM options:

» Log file: This file contains information about the loading process, including names
of the source files, the target file, and the bad file, as well as a summary of the
values set for the major KM options, error messages (if any), statistic information
about the processed rows.

» Bad file: This file logs each row that could not be processed. If no error occurs, the
bad file is empty.

4-14



ORACLE

Chapter 4
Designing a Mapping

KM Options

This KM has the following options:

JAVA HOME indicates the full path to the bin directory of your JDK. If this options
is not set, the ODI Java Home will be used.

APPEND appends the transformed data to the target file if set to Yes. If set to No,
the file is overwritten.

DISCARDMAX indicates the maximum number of records that will be discarded
into the bad file. The mapping fails when the number of discarded records exceeds
the number specified in this option.

# Note:

Rollback is not supported. The records that have been inserted remain.

MAX_NB_THREADS indicates the number of parallel threads used to process the
data.

BAD_FILE indicates the bad file name. If this option is not set, the bad file name
will be automatically generated and the bad file will be written in the target work
schema.

SOURCE_ENCODING indicates the charset encoding for the source files. Default
is the machine's default encoding.

TARGET_ENCODING indicates the charset encoding for the target file. Default is
the machine's default encoding.

REMOVE_TEMPORARY_OBJECTS removes the log and bad files if set to Yes.

PROCESSED_FILE_PREFIX indicates the prefix that will be added to the source
file name after processing.

PROCESSED_FILE_SUFFIX indicates the suffix that will be added to the source
file name after processing.

Example 4-2 Log File

Source File: /xxx/abc. dat
Target File: /yyy/data/target _file.dat
Bad File: /yyyl/log/target file.bad

Header Nunber to skip: 1

Errors allowed: 3

Insert option: APPEND (coul d be REPLACE)
Thread: 1

ERROR LI NE 100: FIELD COL1 IS NOT A DATE
ERROR LI NE 120: UNEXPECTED ERROR

32056 Rows susccessfully read
2000 Rows not | oaded due to data filter
2 Rows not |oaded due to data errors

30054 Rows successfully | oaded

4-15



Generic SQL

It is important to understand how to work with technologies supporting the ANSI
SQL-92 syntax in Oracle Data Integrator.

" Note:

This is a generic chapter. The information described in this chapter can be
applied to technologies supporting the ANSI SQL-92 syntax, including Oracle,
Microsoft SQL Server, Sybase ASE, IBM DB2, Teradata, PostgreSQL, MySQL,
Derby and so forth.

Some of the ANSI SQL-92 compliant technologies are covered in a separate
chapter in this guide. Refer to the dedicated technology chapter for specific
information on how to leverage the ODI optimizations and database utilities of
the given technology.

This chapter includes the following sections:

* Introduction

* Installation and Configuration

e Setting up the Topology

e Setting up an Integration Project

» Creating and Reverse-Engineering a Model
»  Setting up Changed Data Capture

e Setting up Data Quality

* Designing a Mapping

5.1 Introduction

Oracle Data Integrator supports ANSI SQL-92 standard compliant technologies.

5.1.1 Concepts

ORACLE

The mapping of the concepts that are used in ANSI SQL-92 standard compliant
technologies and the Oracle Data Integrator concepts are as follows: a data server in
Oracle Data Integrator corresponds to a data processing resource that stores and
serves data in the form of tables. Depending on the technology, this resource can be
named for example, database, instance, server and so forth. Within this resource, a
sub-division maps to an Oracle Data Integrator physical schema. This sub-division can
be named schema, database, catalog, library and so forth. A set of related objects
within one schema corresponds to a data model, and each table, view or synonym will
appear as an ODI datastore, with its attributes, columns, and constraints

5-1



Chapter 5
Introduction

5.1.2 Knowledge Modules

Oracle Data Integrator provides a wide range of Knowledge Modules for handling data
stored in ANSI SQL-92 standard compliant technologies. The Knowledge Modules
listed in Table 5-1 are generic SQL Knowledge Modules and apply to the most popular
ANSI SQL-92 standard compliant databases.

Oracle Data Integrator also provides specific Knowledge Modules for some particular
databases to leverage the specific utilities. Technology-specific KMs, using features
such as loaders or external tables, are listed in the corresponding technology chapter.

Table 5-1 Generic SQL KMs
]

Knowledge Module

Description

CKM SQL

IKM SQL Control Append

IKM SQL Incremental Update

IKM SQL Incremental Update
(row by row)

IKM SQL to File Append

IKM SQL to SQL Control
Append

ORACLE

Checks data integrity against constraints defined on a Datastore. Rejects invalid
records in the error table created dynamically. Can be used for static controls as
well as for flow controls.

Consider using this KM if you plan to check data integrity on an ANSI SQL-92
compliant database. Use specific CKMs instead if available for your database.

Integrates data in an ANSI SQL-92 compliant target table in replace/append
mode. When flow data needs to be checked using a CKM, this IKM creates a
temporary staging table before invoking the CKM. Supports Flow Control.

Consider using this IKM if you plan to load your SQL compliant target table in
replace mode, with or without data integrity check.

To use this IKM, the staging area must be on the same data server as the target.

Integrates data in an ANSI SQL-92 compliant target table in incremental update
mode. This KM creates a temporary staging table to stage the data flow. It then
compares its content to the target table to identify the records to insert and the
records to update. It also allows performing data integrity check by invoking the
CKM. This KM is therefore not recommended for large volumes of data.
Supports Flow Control.

Consider using this KM if you plan to load your ANSI SQL-92 compliant target
table to insert missing records and to update existing ones. Use technology-
specific incremental update IKMs whenever possible as they are more optimized
for performance.

To use this IKM, the staging area must be on the same data server as the target.

Integrates data in any AINSI-SQL92 compliant target database in incremental
update mode. This IKM processes the data row by row, updates existing rows,
and inserts non-existent rows. It isolates invalid data in the Error Table, which
can be recycled. When using this IKM with a journalized source table, the
deletions can be synchronized. Supports Flow Control.

Integrates data in a target file from an ANSI SQL-92 compliant staging area in
replace mode. Supports Flow Control.

Consider using this IKM if you plan to transform and export data to a target file. If
your source datastores are located on the same data server, we recommend
using this data server as staging area to avoid extra loading phases (LKMs)

To use this IKM, the staging area must be different from the target.
Integrates data into a ANSI-SQL92 target database from any ANSI-SQL92
compliant staging area. Supports Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the mapping's staging area is set to the logical schema
of the source tables or a third schema.

5-2



Chapter 5
Introduction

Table 5-1 (Cont.) Generic SQL KMs
]

Knowledge Module

Description

IKM SQL to SQL Incremental
Update

IKM SQL Insert

IKM SQL Update

IKM SQL Merge

LKM File to SQL

LKM SQL to File

LKM SQL to SQL

LKM SQL to SQL (Built-in)

ORACLE

Integrates data from any AINSI-SQL92 compliant database into any AINSI-
SQL92 compliant database target table in incremental update mode. Supports
Flow Control.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the mapping's staging area is set to the logical schema
of the source tables or a third schema.

Integrates data into an ANSI-SQL92 target table in append mode. The data is
loaded directly in the target table with a single INSERT SQL statement. Built-in
KM.

Integrates data into an ANSI-SQL92 target table in incremental update mode.
The data is loaded directly into the target table with a single UPDATE SQL
statement. Built-in KM.

Integrates data into an ANSI-SQL92 target table in incremental update mode.
The data is loaded directly into the target table with a single MERGE SQL
statement. Built-in KM.

Loads data from an ASCII or EBCDIC File to an ANSI SQL-92 compliant
database used as a staging area. This LKM uses the Agent to read selected data
from the source file and write the result in the staging temporary table created
dynamically.

Consider using this LKM if one of your source datastores is an ASCIl or EBCDIC
file. Use technology-specific LKMs for your target staging area whenever
possible as they are more optimized for performance. For example, if you are
loading to an Oracle database, use the LKM File to Oracle (SQLLDR) or the LKM
File to Oracle (EXTERNAL TABLE) instead.

Loads and integrates data into a target flat file. This LKM ignores the settings in
the IKM. Built-in KM.

Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92
compliant staging area. This LKM uses the Agent to read selected data from the
source database and write the result into the staging temporary table created
dynamically.

Consider using this LKM if your source datastores are located on a SQL
compliant database different from your staging area. Use technology-specific
LKMs for your source and target staging area whenever possible as they are
more optimized for performance. For example, if you are loading from an Oracle
source server to an Oracle staging area, use the LKM Oracle to Oracle (dblink)
instead.

Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92
compliant staging area. This LKM uses the Agent to read selected data from the
source database and write the result into the staging temporary table created
dynamically. The extract options specified in the source execution unit will be
used to generate source query. Built-in KM.

5-3



Chapter 5
Installation and Configuration

Table 5-1 (Cont.) Generic SQL KMs
]

Knowledge Module

Description

LKM SQL to SQL (row by row)

LKM SQL to SQL (JYTHON)

LKM SQL Multi-Connect
RKM SQL (JYTHON)

SKM SQL

Loads data from any 1ISO-92 database to any 1ISO-92 compliant target database.
This LKM uses a Jython script to read selected data from the database and write
the result into the target temporary table, which is created dynamically. It loads
data from a staging area to a target and indicates the state of each processed
row.

The following options are used for the logging mechanism:
*  MAX_ERRORS: Specify the maximum number of errors.

The LKM process stops when the maximum number of errors specified in
this option is reached.
This Knowledge Module is NOT RECOMMENDED when using LARGE
VOLUMES. Other specific modules using Bulk utilities (SQL*LOADER, BULK
INSERT...) or direct links (DBLINKS, Linked Servers...) are usually more
efficient.

Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92
compliant staging area. This LKM uses Jython scripting to read selected data
from the source database and write the result into the staging temporary table
created dynamically. This LKM allows you to modify the default JDBC data type
binding between the source database and the target staging area by editing the
underlying Jython code provided.

Consider using this LKM if your source datastores are located on an ANSI
SQL-92 compliant database different from your staging area and if you plan to
specify your own data type binding method.

Use technology-specific LKMs for your source and target staging area whenever
possible as they are more optimized for performance. For example, if you are
loading from an Oracle source server to an Oracle staging area, use the LKM
Oracle to Oracle (dblink) instead.

Enables the use of multi-connect IKM for target table. Built-in IKM.

Retrieves JDBC metadata for tables, views, system tables and columns from an
ANSI SQL-92 compliant database. This RKM may be used to specify your own
strategy to convert JDBC metadata into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the standard JDBC
reverse-engineering process due to some specificities of your JDBC driver. This
RKM allows you to edit the underlying Jython code to make it match the
specificities of your JDBC driver.

Generates data access Web services for ANSI SQL-92 compliant databases.
Data access services include data manipulation operations such as adding,
removing, updating or filtering records as well as changed data capture
operations such as retrieving changed data. Data manipulation operations are
subject to integrity check as defined by the constraints of your datastores.

Consider using this SKM if you plan to generate and deploy data manipulation or
changed data capture web services to your Service Oriented Architecture
infrastructure. Use specific SKMs instead if available for your database

5.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
generic SQL Knowledge Modules:

e System Requirements and Certifications

ORACLE

5-4



Chapter 5
Setting up the Topology

*  Technology-Specific Requirements

»  Connectivity Requirements

5.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conl t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htni.

5.2.2 Technology-Specific Requirements

See the Technology Specific Requirements section of the specific technology chapter
for more information.

If your technology does not have a dedicated chapter in this guide, see the
documentation of your technology for any technology-specific requirements.

5.2.3 Connectivity Requirements

See the Connectivity Requirements section of the specific technology chapter for more
information.

The Java Database Connectivity (JDBC) is the standard for connecting to a database
and other data sources. If your technology does not have a dedicated chapter in this
guide, see the documentation of your technology for the JDBC configuration
information, including the required driver files, the driver name, and the JDBC URL
format.

5.3 Setting up the Topology

Setting up the Topology consists in:

1. Creating a Data Server

2. Creating a Physical Schema

5.3.1 Creating a Data Server

ORACLE

Create a data server under the ANSI SQL-92 compliant technology listed in the
Physical Architecture accordion using the standard procedure, as described in
Creating a Data Server of Administering Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information. For other technologies, see the documentation of your technology for the
JDBC driver name and JDBC URL format.

5-5


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 5
Setting up an Integration Project

5.3.2 Creating a Physical Schema

Create a Physical Schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

5.4 Setting up an Integration Project

Setting up a Project using an ANSI SQL-92 compliant database follows the standard
procedure. See Creating an Integration Project of the Developing Integration Projects
with Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started
depend on the corresponding technology. If your technology has a dedicated chapter
in this guide, see this chapter for more information.

5.5 Creating and Reverse-Engineering a Model

This section contains the following topics:

* Create a Data Model

* Reverse-engineer a Data Model

5.5.1 Create a Data Model

Create a data model based on the ANSI SQL-92 compliant technology using the
standard procedure, as described in Creating a Model of Developing Integration
Projects with Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

5.5.2 Reverse-engineer a Data Model

ORACLE

ANSI SQL-92 standard compliant technologies support both types of reverse-
engineering, the Standard reverse-engineering, which uses only the abilities of the
JDBC driver, and the Customized reverse-engineering, which uses a RKM which
provides logging features.

In most of the cases, consider using the standard JDBC reverse engineering instead
of the RKM SQL (Jython). However, you can use this RKM as a starter if you plan to
enhance it by adding your own metadata reverse-engineering behavior.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering on ANSI SQL-92 technologies use the
usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

5-6



Chapter 5
Setting up Changed Data Capture

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on ANSI SQL-92 technologies with a
RKM, use the usual procedure, as described in Reverse-engineering a Model of
Developing Integration Projects with Oracle Data Integrator. This section details only
the fields specific to the usage of the RKM SQL (Jython):

This RKM provides a logging option:

USE_LOG: Set to Yes if you want the reverse-engineering to process log details in a
log file.

5.6 Setting up Changed Data Capture

Oracle Data Integrator does not provide journalizing Knowledge Modules for ANSI
SQL-92 compliant technologies.

5.7 Setting up Data Quality

Oracle Data Integrator provides the CKM SQL for checking data integrity against
constraints defined on an ANSI SQL-92 compliant table. See Flow Control and Static
Control in the Developing Integration Projects with Oracle Data Integrator.

5.8 Designing a Mapping

You can use ANSI SQL-92 compliant technologies as a source, staging area or a
target of a mapping. It is also possible to create ETL-style mappings based on an
ANSI SQL-92 compliant technology.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM for
different situations concerning a data server based on an ANSI SQL-92 compliant
technology.

5.8.1 Loading Data From and to an ANSI SQL-92 Compliant
Technology

ANSI SQL-92 compliant technologies can be used as a source, target or staging area
of a mapping. The LKM choice in the Loading Knowledge Module tab to load data
between an ANSI SQL-92 compliant technology and another type of data server is
essential for the performance of a mapping.

5.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology

The generic KMs that are listed in Table 5-2 implement methods for loading data from
an ANSI SQL-92 compliant database to a target or staging area database. In addition
to these KMS, Oracle Data Integrator provides KMs specific to the target or staging
area database. If your technology has a dedicated chapter in this guide, see this
chapter for more information.

ORACLE 5.7



Chapter 5
Designing a Mapping

Table 5-2 KMs to Load from an ANSI SQL-92 Compliant Technology
]

Source or Staging Area

KM

Notes

ANSI SQL-92 compliant technology

ANSI SQL-92 compliant technology

ANSI SQL-92 compliant technology

ANSI SQL-92 compliant technology
ANSI SQL-92 compliant technology

LKM SQL to SQL

LKM SQL to SQL (Built-in)

LKM SQL to SQL (Jython)

LKM SQL to SQL (row by row)
LKM SQL to File

Standard KM for SQL-92 to SQL-92
transfers.

Built-in KM for SQL-92 to SQL-92 transfers
through the agent using JDBC.

This LKM uses Jython scripting to read
selected data from the source database
and write the result into the staging
temporary table created dynamically. This
LKM allows you to modify the default JDBC
data types binding between the source
database and the target staging area by
editing the underlying Jython code
provided.

This LKM uses row by row logging.
Built-in KM for SQL-92 to flat file transfers.

5.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology

The generic KMs that are listed in Table 5-3 implement methods for loading data from
a source or staging area into an ANSI SQL-92 compliant database. In addition to these
KMs, Oracle Data Integrator provides KMs specific to the source or staging area
database. If your technology has a dedicated chapter in this guide, see this chapter for
more information.

Table 5-3 KMs to Load to an ANSI SQL-92 Compliant Technology
|

Source or Staging Area

KM

Notes

File
ANSI SQL-92 compliant technology
ANSI SQL-92 compliant technology

ANSI SQL-92 compliant technology

ANSI SQL-92 compliant technology

LKM File to SQL
LKM SQL to SQL
LKM SQL to SQL (Built-in)

LKM SQL to SQL (Jython)

LKM SQL to SQL (row by row)

Standard KM
Standard KM

Built-in KM for SQL-92 to SQL-92 transfers
through the agent using JDBC.

This LKM uses Jython scripting to read
selected data from the source database
and write the result into the staging
temporary table created dynamically. This
LKM allows you to modify the default JDBC
data types binding between the source
database and the target staging area by
editing the underlying Jython code
provided.

This LKM uses row by row logging.

5.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology

An ANSI SQL-92 compliant technology can be used as a target of a mapping. The IKM
choice in the Integration Knowledge Module tab determines the performance and
possibilities for integrating.

ORACLE

5-8



Chapter 5
Designing a Mapping

The KMs listed in Table 5-4 implement methods for integrating data into an ANSI
SQL-92 compliant target. In addition to these KMs, Oracle Data Integrator provides
KMs specific to the source or staging area database. See the corresponding
technology chapter for more information.

Table 5-4 KMs to Integrate Data in an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant IKM SQL Control Append Uses Bulk data movement inside data

technology server. Supports Flow Control.

ANSI SQL-92 compliant IKM SQL Incremental Update Uses Bulk data movement inside data

technology server. Supports Flow Control.

ANSI SQL-92 compliant IKM SQL Incremental Update (row  Uses Bulk data movement inside data

technology by row) server, processes data row by row.
Supports Flow Control.

ANSI SQL-92 compliant IKM SQL Insert Uses SQL INSERT statement for data

technology movement. Built-in KM.

ANSI SQL-92 compliant IKM SQL Update Uses SQL UPDATE statement for data

technology movement. Built-in KM.

ANSI SQL-92 compliant IKM SQL Merge Uses SQL MERGE statement for data

technology movement. Built-in KM.

ANSI SQL-92 compliant IKM SQL to File Append Uses agent for data movement. Supports

technology Flow Control.

ANSI SQL-92 compliant IKM SQL to SQL Incremental Uses agent or JYTHON for data

technology Update movement. Supports Flow Control.

ANSI SQL-92 compliant IKM SQL to SQL Control Append Uses agent for control append strategies.

technology Supports Flow Control.

5.8.3 Designing an ETL-Style Mapping

ORACLE

See Creating a Mapping in Developing Integration Projects with Oracle Data Integrator
for generic information on how to design mappings. This section describes how to
design an ETL-style mapping where the staging area and target are ANSI SQL-92
compliant.

In an ETL-style mapping, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from an
ANSI SQL-92 compliant staging area to an ANSI SQL-92 compliant target:

* Using a Multi-connection IKM
* Using a LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers.

Oracle Data Integrator provides the following multi-connection IKMs for ANSI SQL-92
compliant technologies: IKM SQL to SQL Incremental Update and IKM SQL to SQL
Control Append.

5-9



ORACLE

Chapter 5
Designing a Mapping

See Table 5-5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style mapping:

1.

Create a mapping with an ANSI SQL-92 compliant staging area and target using
the standard procedure as described in Creating a Mapping in Developing
Integration Projects with Oracle Data Integrator. This section describes only the
ETL-style specific steps.

Change the staging area for the mapping to the logical schema of the source
tables or a third schema. See Configuring Execution Locations in Developing
Integration Projects with Oracle Data Integrator for information about how to
change the staging area.

In the Physical diagram, select an access point. The Property Inspector opens for
this object.

In the Loading Knowledge Module tab, select an LKM to load from the source(s) to
the staging area. See Table 5-5 to determine the LKM you can use.

Optionally, modify the KM options.

In the Physical diagram, select the Target by clicking its title. The Property
Inspector opens for this object.

In the Integration Knowledge Module, select an ETL multi-connection IKM to load
the data from the staging area to the target. See Table 5-5 to determine the IKM
you can use.

Note the following when setting the KM options:

For IKM SQL to SQL Incremental Update

— If you do not want to create any tables on the target system, set
FLOW CONTROL=f al se and FLOW TABLE_LOCATI ON=STAG NG.

Please note that this will lead to row-by-row processing and therefore
significantly lower performance.

— If you set the options FLOW_CONTROL or STATIC_CONTROL to true, select
a CKM in the Check Knowledge Module tab. Note that if FLOW_CONTROL is
set to true, the flow table is created on the target, regardless of the value of
FLOW_TABLE_LOCATION.

— The FLOW_TABLE_LOCATION option can take the following values:

Value Description Comment

TARGET Objects are created on the Default value.
target.

STAGING  Objects are created only on Cannot be used with flow control. Leads to
the staging area, not on the row-by-row processing and therefore loss

target. of performance.
NONE No objects are created on  Cannot be used with flow control. Leads to
staging area nor target. row-by-row processing and therefore loss

of performance. Requires to read source
data twice in case of journalized data
sources

5-10



ORACLE

Chapter 5
Designing a Mapping

Using a LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to load
the flow table from the staging area to the target. The mono-connection IKM is used to
integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source, staging area, and target of an ETL-style mapping.

See Table 5-5 for more information on when to use the combination of a standard LKM
and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1.

10.

Create a mapping with an ANSI SQL-92 compliant staging area and target using
the standard procedure as described in Creating a Mapping in Developing
Integration Projects with Oracle Data Integrator. This section describes only the
ETL-style specific steps.

Change the staging area for the mapping to the logical schema of the source
tables or a third schema. See Configuring Execution Locations in Developing
Integration Projects with Oracle Data Integrator for information about how to
change the staging area.

In the Physical diagram, select an access point. The Property Inspector opens for
this object.

In the Loading Knowledge Module tab, select an LKM to load from the source(s) to
the staging area. See Table 5-5 to determine the LKM you can use.

Optionally, modify the KM options.

Select the access point for the Staging Area. The Property Inspector opens for this
object.

In the Loading Knowledge Module tab, select an LKM to load from the staging
area to the target. See Table 5-5 to determine the LKM you can use.

Optionally, modify the options.
Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM
to update the target. SeeTable 5-5 to determine the IKM you can use.

5-11



Chapter 5
Designing a Mapping

Table 5-5 KM Guidelines for ETL-Style Mappings based on an ANSI SQL-92 standard compliant

technology

___________________________________________________________________________________________|]
KM Strategy Comment

Source Staging Area Target

Exporting
LKM

IKM

ANSI
SQL-92
standard
compliant

ANSI
SQL-92
standard
complian
t
database

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
compliant

ANSI
SQL-92
standard
complian
t
database

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
complian
t
database

NA

NA

any standard
KM loading
from an ANSI
SQL-92
standard
compliant
technology to
an ANSI
SQL-92
standard
compliant
technology

IKM SQL to SQL
Incremental Update

IKM SQL to SQL

Control Append

IKM SQL Incremental
Update

Multi-
connection
IKM

Multi-
connection
IKM

Mono-
connection
IKM

Allows an
incremental
update strategy
with no
temporary target-
side objects. Use
this KM if it is not
possible to create
temporary
objects in the
target server.

The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.

Supports flow
and static control

Use this KM
strategy to
perform control
append.

Supports flow
and static control.

Allows an
incremental
update strategy

ORACLE

5-12



XML Files

It is important to understand how to work with XML files in Oracle Data Integrator.
This chapter includes the following sections:

e Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a XML File
» Designing a Mapping

e Troubleshooting

6.1 Introduction

Oracle Data Integrator supports XML files integration through the Oracle Data
Integrator Driver for XML.

6.1.1 Concepts

The XML concepts map the Oracle Data Integrator concepts as follows: An XML file
corresponds to a data server in Oracle Data Integrator. Within this data server, a
single schema maps the content of the XML file.The Oracle Data Integrator Driver for
XML (XML driver) loads the hierarchical structure of the XML file into a relational
schema. This relational schema is a set of tables located in the schema that can be
gueried or modified using SQL. The XML driver is also able to unload the relational
schema back in the XML file.The relational schema is reverse-engineered as a data
model in ODI, with tables, columns, and constraints. This model is used like a normal
relational data model in ODI. If the modified data within the relational schema needs to
be written back to the XML file, the XML driver provides the capability to synchronize
the relational schema into the file.

See Oracle Data Integrator Driver for XML Reference for more information on this
driver.

6.1.2 Pre/Post Processing Support for XML Driver

ORACLE

You can now customize the way data is fed to the XML driver. You can set up
intermediate processing stages to process the data that is retrieved from an external
endpoint using Oracle Data Integrator, or to write the data out to an external endpoint.

For detailed information about configuring and implement the pre and post processing
stages for XML driver, see Pre/Post Processing Support for XML and Complex File
Drivers.

6-1



Chapter 6
Installation and Configuration

6.1.3 Knowledge Modules

Oracle Data Integrator provides the IKM XML Control Append for handling XML data.
This Knowledge Module is a specific XML Knowledge Module. It has a specific option
to synchronize the data from the relational schema to the file.

In addition to this KM, you can also use an XML data server as any SQL data server.
XML data servers support both the technology-specific KMs sourcing or targeting SQL
data servers, as well as the generic KMs. See Generic SQL or the technology
chapters for more information on these KMs.

6.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
XML Knowledge Module:

e System Requirements
e Technologic Specific Requirements

e Connectivity Requirements

6.2.1 System Requirements

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htnl.

6.2.2 Technologic Specific Requirements

There are no technology-specific requirements for using XML Files in Oracle Data
Integrator.

6.2.3 Connectivity Requirements
This section lists the requirements for connecting to XML database.

Oracle Data Integrator Driver for XML

XML files are accessed through the Oracle Data Integrator Driver for XML. This JDBC
driver is installed with Oracle Data Integrator and requires no other installed
component or configuration.

You must ask the system administrator for the following connection information:

e The location of the DTD or XSD file associated with your XML file
e The location of the XML file

ORACLE 6-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 6
Setting up the Topology

6.3 Setting up the Topology

Setting up the topology consists in:

1.
2.

Creating an XML Data Server
Creating a Physical Schema for XML

6.3.1 Creating an XML Data Server

An XML data server corresponds to one XML file that is accessible to Oracle Data
Integrator.

6.3.1.1 Creation of the Data Server

Create a data server for the XML technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This
section details only the fields required or specific for defining a File data server:

ORACLE

1.

In the Definition tab:

¢ Name: Name of the data server that will appear in Oracle Data Integrator.
» User/Password: These fields are not used for XML data servers.

In the JDBC tab, enter the values according to the driver used:

e JDBC Driver: com sunopsi s. j dbc. driver.xm . SnpsXm Dri ver

 JDBC URL: jdbc: snps: xm ?[ property=val ue&property=val ue. . .]

Table 6-1 lists the key properties of the Oracle Data Integrator Driver for XML.
These properties can be specified in the JDBC URL.

See Oracle Data Integrator Driver for XML Reference for a detailed description of
these properties and for a comprehensive list of all properties.

Table 6-1 JDBC Driver Properties

|
Property Value Notes

f <XML File location> XML file name. Use slash "/" in the path name instead
of back slash "\". It is possible to use an HTTP, FTP or
File URL to locate the file. Files located by URL are

read-only.
d <DTD/XSD File Description file: This file may be a DTD or XSD file. It
location> is possible to use an HTTP, FTP or File URL to locate

the file. Files located by URL are read-only.

Note that when no DTD or XSD file is present, the
relational schema is built using only the XML file
content. It is not recommended to reverse-engineer
the data model from such a structure as one XML file
instance may not contain all the possible elements
described in the DTD or XSD, and data model may be
incomplete.

6-3



Chapter 6
Setting Up an Integration Project

Table 6-1 (Cont.) JIDBC Driver Properties

___________________________________________________________________|
Property Value Notes

re <Root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This property
can be used for reverse-engineering for example a
specific message definition from a WSDL file, or when
several possible root elements exist in a XSD file.

ro true | false If true, the XML file is opened in read only mode.

s <schema name> Name of the relational schema where the XML file will
be loaded. If this property is missing, a schema named
after the five first letters of the XML file name will
automatically be created.

cs true | false Load the XML file in case sensitive or insensitive
mode. For case insensitive mode, all element names
in the DTD file should be distinct (For example: Abc
and abc in the same file will result in name collisions).

The following examples illustrate these properties:

Connects to the PROD20100125_001. xmi file described by product s. xsd in the
PRODUCTS schema.

jdbc: snps: xm ?f =/ xm / PROD20100125_001. xm &d=/ xm / pr oduct s. xsd&s=PRODUCTS
Connects in read-only mode to the staff_i nternal . xm file described by
staff _internal.dtd in read-only mode. The schema name will be staff.

j dbc: snps: xm ?f =/ deno/ xm / staf f _i nternal . xm &=/ deno/ xm /
staff_internal.dtd& o=true&s=staff

6.3.2 Creating a Physical Schema for XML

Create an XML physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for
both the Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

6.4 Setting Up an Integration Project

ORACLE

Setting up a Project using the XML database follows the standard procedure. See
Creating an Integration Project of the Developing Integration Projects with Oracle Data
Integrator.

The recommended knowledge modules to import into your project for getting started
with XML are the following:

¢ LKM SQL to SQL
e LKM File to SQL
e |IKM XML Control Append

6-4



Chapter 6
Creating and Reverse-Engineering a XML File

6.5 Creating and Reverse-Engineering a XML File

This section contains the following topics:

e Create an XML Model

* Reverse-Engineering an XML Model

6.5.1 Create an XML Model

An XML file model groups a set of datastores. Each datastore typically represents an
element in the XML file.

Create an XML Model using the standard procedure, as described in Creating a Model
of Developing Integration Projects with Oracle Data Integrator. Select the XML
technology and the XML logical schema created when configuring the topology.

6.5.2 Reverse-Engineering an XML Model

XML supports standard reverse-engineering, which uses only the abilities of the XML
driver.

It is recommended to reference a DTD or XSD file in the dtd or d parameters of the
URL to reverse-engineer the structure from a generic description of the XML file
structure. Reverse-engineering can use an XML instance file if no XSD or DTD is
available. In this case, the relational schema structure will be inferred from the data
contained in the XML file.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering on XML use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with
Oracle Data Integrator.

The standard reverse-engineering process will automatically reverse-engineer the
table from the relational schema generated by the XML driver. Note that these tables
automatically include:

e Primary keys (PK columns) to preserve parent-child elements relationships
e Foreign keys (FK columns) to preserve parent-child elements relationships

e Order identifier (ORDER columns) to preserve the order of elements in the XML
file

These extra columns enable the mapping of the hierarchical XML structure into the
relational schema. See XML to SQL Mapping in the Oracle Data Integrator Driver for
XML Reference for more information.

6.6 Designing a Mapping

ORACLE

You can use XML as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning an XML data server.

6-5



Chapter 6
Designing a Mapping

6.6.1 Notes about XML Mappings

Read carefully these notes before working with XML in mappings.

6.6.1.1 Targeting an XML Structure

When using a datastore of an XML model as a target of a mapping, you must make
sure to load the driver-generated columns that are used for preserving the parent-child
relationships and the order in the XML hierarchy. For example, if filling records for the
regi on element into an XML structure as shown in Example 6-1, that correspond to a
REGION table in the relational schema, you should load the columns REGION_ID and
REGION_NAME of the REGION table. These two columns correspond to XML
attributes.

<country COUNTRY_I D="6" COUNTRY_NAME="Australia">
<region REG ON_| D="72" REG ON_NAME="Queensl| and">
</ country>

In Example 6-1 you must also load the following additional columns that are
automatically created by the XML Driver in the REGION table:

* REGIONPK: This column enables you to identify each <regi on> element.

* REGIONORDER: This column enables you to order the <regi on> elements in the
XML file (records are not ordered in a relational schema, whereas XML elements
are ordered).

«  COUNTRYFK: This columns enables you to put the <regi on> element in relation
with the <count ry> parent element. This value is equal to the
COUNTRY.COUNTRYPK value for the Australia record in the COUNTRY table.

Example 6-1 XML Structure

6.6.1.2 Synchronizing XML File and Schema

ORACLE

To ensure a perfect synchronization of the data in an XML file and the data in the XML
schema, the following commands have to be called:

* Before using the tables of an XML model, either to read or update data, it is
recommended that you use the SYNCHRONI ZE FROM FI LE command on the XML
logical schema. This operation reloads the XML hierarchical data in the relational
XML schema. The schema is loaded in the built-in or external database storage
when first accessed. Subsequent changes made to the file are not automatically
synchronized into the schema unless you issue this command.

e After performing changes in the relational schema, you must unload this schema
into the XML hierarchical data by calling the SYNCHRONI ZE ALL or SYNCHRONI ZE FROM
DATABASE commands on the XML Logical Schema. The IKM XML Control Append
implements this synchronize command.

These commands must be executed in procedures in the packages before (and after)
the mappings and procedures manipulating the XML schema.

See Oracle Data Integrator Driver for XML Reference for more information on these
commands.

6-6



Chapter 6
Designing a Mapping

6.6.1.3 Handling Large XML Files

Large XML files can be handled with high performance with Oracle Data Integrator.

The default driver configuration stores the relational schema in a built-in engine in
memory. It is recommended to consider the use of external database storage for
handling large XML files.

See Schema Storage for more information on these commands.

6.6.2 Loading Data from and to XML

An XML file can be used as a mapping's source or target. The LKM choice in the
Loading Knowledge Module tab that is used to load data between XML files and other
types of data servers is essential for the performance of the mapping.

6.6.2.1 Loading Data from an XML Schema

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from an XML database to a target or staging area database.

Table 6-2 lists some examples of KMs that you can use to load from an XML source to
a staging area:

Table 6-2 KMs to Load from XML to a Staging Area
|

Staging Area KM Notes

Microsoft SQL LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Server

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

All LKM SQL to SQL Generic KM to load data between

an ANSI SQL-92 source and an
ANSI SQL-92 staging area.

6.6.2.2 Loading Data to an XML Schema

ORACLE

It is not advised to use an XML schema as a staging area, except if XML is the target
of the mapping and you wish to use the target as a staging area. In this case, it might
be required to load data to an XML schema.

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a source or staging area into an XML schema.

Table 6-3 lists some examples of KMs that you can use to load from a source to an
XML staging area.

Table 6-3 KMs to Load to an XML Schema
'
Source KM Notes

File LKM File to SQL Generic KM to load a file in a ANSI
SQL-92 staging area.

6-7



Chapter 6
Troubleshooting

Table 6-3 (Cont.) KMs to Load to an XML Schema

____________________________________________________________________________|
Source KM Notes
All LKM SQL to SQL Generic KM to load data between an

ANSI SQL-92 source and an ANSI
SQL-92 staging area.

6.6.3 Integrating Data in XML

XML can be used as a target of a mapping. The data integration strategies in XML
concern loading from the staging area to XML. The IKM choice in the Integration
Knowledge Module tab determines the performances and possibilities for integrating.

The IKM XML Control Append integrates data into the XML schema and has an option
to synchronize the data to the file. In addition to this KM, you can also use the Generic
SQL KMs or the KMs specific to the other technology involved. Note that if using
generic or technology-specific KMs, you must manually perform the synchronize
operation to write the changes made in the schema to the XML file.

Table 6-4 lists some examples of KMs that you can use to integrate data:

* From a staging area to an XML target

» From an XML staging area to an XML target. Note that in this case the staging
area is on the XML target.

Table 6-4 KMs to Integrate Data in an XML File

Mode Staging Area KM Notes

Update XML IKM SQL Incremental Update Generic KM
Append XML IKM SQL Control Append Generic KM
Append All RDBMS IKM SQL to SQL Append Generic KM

6.7 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using XML in Oracle Data Integrator. It contains the following topics:

*  Detect the Errors Coming from XML

e Common Errors

6.7.1 Detect the Errors Coming from XML

ORACLE

Errors appear often in Oracle Data Integrator in the following way:

java. sql . SQLException: No suitable driver
at ...
at ...

6-8



Chapter 6
Troubleshooting

the java. sql . SQLExcept i oncode simply indicates that a query was made through the
JDBC driver, which has returned an error. This error is frequently a database or driver
error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
XML driver documentation. If it contains a specific error code, like here, the error can
be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the task in error.

6.7.2 Common Errors

ORACLE

This section describes the most common errors with XML along with the principal
causes. It contains the following topics:

* No suitable driver
The JDBC URL is incorrect. Check that the URL syntax is valid.
° File <XM. file>is already |ocked by another instance of the XM driver.

The XML file is locked by another user/application. Close all application that might
be using the XML file. If such an application has crashed, then remove the .Ick file
remaining in the XML file's directory.

e The DID file "xxxxxxx.dtd" doesn't exist

This exception may occur when trying to load an XML file by the command LOAD
FILE. The error message can have two causes:

— The path of the DTD file is incorrect.

— The corresponding XML file was already opened by another schema (during
connection for instance).

* Table not found: S0002 Table not found: <table name> in statenent [<SQL
st at enent >]

The table you are trying to access does not exist in the schema.

e Colum not found: S0022 Column not found: <columm name> in statenent [<SQ
st at ement >]

The column you are trying to access does not exist in the tables specified in the
statement.

6-9



Complex Files

It is important to understand how to work with Complex Files in Oracle Data Integrator.
This chapter includes the following sections:

e Introduction

* Installation and Configuration

e Building a Native Schema Description File Using the Native Format Builder
e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a Complex File Model

» Designing a Mapping

7.1 Introduction

Oracle Data Integrator supports several files types. This chapter describes how to
work with the Complex (or native) File format. See Files for information about simple
fixed or delimited files containing ASCII or EBCDIC data.

For complex files it is possible to build a Native Schema description file that describes
the file structure. Using this Native Schema (nXSD) description and the Oracle Data
Integrator Driver for Complex Files, Oracle Data Integrator is able to reverse-engineer,
read and write information from complex files.

See Building a Native Schema Description File Using the Native Format Builder for
information on how to build a native schema description file using the Native Format
Builder Wizard, and Oracle Data Integrator Driver for Complex Files Reference for
reference information on the Complex File driver.

7.1.1 Concepts

The Oracle Data Integrator Driver for Complex Files (Complex File driver) converts
native format to a relational structure and exposes this relational structure as a data
model in Oracle Data Integrator.

The Complex File driver translates internally the native file into an XML structure, as
defined in the Native Schema (nXSD) description and from this XML file it generates a
relational schema that is consumed by Oracle Data Integrator. The overall mechanism
is shown in Figure 7-1.

Figure 7-1 Complex File Driver Process

Relational
Schema

|
y

Mative File e———= XML (Internal)

[ 3

t——= Oracle Data Integ

ORACLE 7-1



Chapter 7
Installation and Configuration

Most concepts and processes that are used for Complex Files are equivalent to those
used for XML files. The main difference is the step that transparently translates the
Native File into an XML structure that is used internally by the driver but never
persisted.

The Complex File technology concepts map the Oracle Data Integrator concepts as
follows: A Complex File corresponds to an Oracle Data Integrator data server. Within
this data server, a single schema maps the content of the complex file.

The Oracle Data Integrator Driver for Complex File (Complex File driver) loads the
complex structure of the native file into a relational schema. This relational schema is
a set of tables located in the schema that can be queried or modified using SQL. The
Complex File driver is also able to unload the relational schema back into the complex
file.The relational schema is reverse-engineered as a data model in ODI, with tables,
columns, and constraints. This model is used like a standard relational data model in
ODI. If the modified data within the relational schema needs to be written back to the
complex file, the driver provides the capability to synchronize the relational schema
into the file.

Note that for simple flat files formats (fixed and delimited), it is recommended to use
the File technology, and for XML files, the XML technology. See Files and XML Files
for more information.

7.1.2 Pre/Post Processing Support for Complex File Driver

You can now customize the way data is fed to the Complex File driver. You can set up
intermediate processing stages to process the data that is retrieved from an external
endpoint using Oracle Data Integrator, or to write the data out to an external endpoint.

For detailed information about configuring and implement the pre and post processing
stages for Complex File driver, see Pre/Post Processing Support for XML and
Complex File Drivers.

7.1.3 Knowledge Modules

You can use a Complex File data server as any SQL data server. Complex File data
servers support both the technology-specific KMs sourcing or targeting SQL data
servers, as well as the generic KMs. See Generic SQL or the technology chapters for
more information on these KMs.

You can also use the IKM XML Control Append when writing to a Complex File data
server. This Knowledge Module implements specific option to synchronize the data
from the relational schema to the file, which is supported by the Complex File driver.

7.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the Complex File technology:

*  System Requirements
* Technology Specific Requirements

»  Connectivity Requirements

ORACLE 7-2



Chapter 7
Building a Native Schema Description File Using the Native Format Builder

7.2.1 System Requirements

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conl t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htni.

7.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Complex Files in Oracle Data
Integrator.

7.2.3 Connectivity Requirements

This section lists the requirements for connecting to complex files.

Oracle Data Integrator Driver for Complex Files

Complex files are accessed through the Oracle Data Integrator Driver for Complex
File. This JDBC driver is installed with Oracle Data Integrator and requires no other
installed component or configuration.

You must ask the system administrator for the following connection information:

* The location of the Native Schema (nXSD) file associated with your native file

*  The location of the native complex file

7.3 Building a Native Schema Description File Using the
Native Format Builder

ORACLE

You can build a Native Schema (nXSD) description file using the Native Format
Builder Wizard. You can start the Native Format Builder Wizard from the Data Server
Editor when creating the Complex File data server.

To build a native schema description file using the native format builder:

1. Inthe Topology Navigator expand the Technologies node in the Physical
Architecture accordion.

2. Select the Complex File technology.
3. Right-click and select New Data Server.

4. Inthe JDBC tab, click the Edit nXSD button. The Native Format Builder Wizard
appears.

5. Follow the on-screen instructions and complete the Native Format Builder Wizard
to create a Native Schema description file.

See Native Format Builder Wizard in the User's Guide for Technology Adapters, for
more information on the Native Schema format.

7-3


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 7
Setting up the Topology

7.4 Setting up the Topology

Setting up the topology consists in:

1. Creating a Complex File Data Server

2. Creating a Complex File Physical Schema

7.4.1 Creating a Complex File Data Server

A Complex File data server corresponds to one native file that is accessible to Oracle
Data Integrator.

7.4.1.1 Creation of the Data Server

Create a data server for the Complex File technology using the standard procedure, as
described in Creating a Data Server of Administering Oracle Data Integrator. This
section details only the fields required or specific for defining a Complex File data

ORACLE

server:

1. In the Definition tab:

Name: Name of the data server that will appear in Oracle Data Integrator.

User/Password: These fields are not used for Complex File data servers.

2. Inthe JDBC tab, enter the following values:

JDBC Driver: oracl e. odi . j dbc. driver.file.conpl ex. Conpl exFi | eDri ver
JDBC URL: j dbc: snps: conpl exfile

Edit nXSD: Launch the Native Format Builder Wizard if you want to create a
Native Schema description file.

For more information on Native Format Builder Wizard, see Building a Native
Schema Description File Using the Native Format Builder.

Properties: Configure the properties, such as native file location, native
schema, root element, and schema name, for the Oracle Data Integrator
Driver for Complex Files.

Table 7-1 lists the key properties of the Oracle Data Integrator Driver for
Complex Files. These properties can be specified in JDBC URL.

See Oracle Data Integrator Driver for Complex Files Reference for a detailed
description of these properties and for a comprehensive list of all properties.

Table 7-1 Complex File Driver Properties

|
Property Value Notes

f

<native file name> Native file location. Use slash "/" in the path name
instead of back slash "\". It is possible to use an HTTP,
FTP or File URL to locate the file. Files located by
URL are read-only. This parameter is mandatory.

<native schema> Native Schema (nXSD) file location. This parameter is
mandatory.

7-4



Chapter 7
Setting Up an Integration Project

Table 7-1 (Cont.) Complex File Driver Properties

___________________________________________________________________|
Property Value Notes

re <root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This property
can be used for reverse-engineering for example a
specific section of the Native Schema. This parameter
is mandatory.

s <schema name> Name of the relational schema where the complex file
will be loaded. This parameter is optional.

This schema will be selected when creating the
physical schema under the Complex File data server.

7.4.2 Creating a Complex File Physical Schema

Create a Complex File physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for
both the Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

7.5 Setting Up an Integration Project

Setting up a project using the Complex File technology follows the standard
procedure. See Creating an Integration Project of Developing Integration Projects with
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started:

e LKM SQL to SQL
e |IKM XML Control Append

In addition to these knowledge modules, you can also import file knowledge modules
specific to the other technologies involved in your product.

7.6 Creating and Reverse-Engineering a Complex File
Model

This section contains the following topics:

e Create a Complex File Model

* Reverse-engineer a Complex File Model

ORACLE 7.5



Chapter 7
Designing a Mapping

7.6.1 Create a Complex File Model

A Complex File model groups a set of datastores. Each datastore typically represents
an element in the intermediate XML file generated from the native file using the native
schema.

Create a Complex File model using the standard procedure, as described in Creating
a Model of Developing Integration Projects with Oracle Data Integrator.

7.6.2 Reverse-engineer a Complex File Model

The Complex File technology supports standard reverse-engineering, which uses only
the abilities of the Complex File driver.

Standard Reverse-Engineering

To perform a Standard Reverse- Engineering with a Complex File model use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

This reverse-engineering uses the same process as the reverse-engineering of XML
Files. The native schema (nXSD) provided in the data server URL is used as the XSD
file to describe the XML structure. See Reverse-Engineering an XML Model and XML
to SQL Mapping for more information.

7.7 Designing a Mapping

ORACLE

You can use a complex file as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM for
different situations concerning a Complex File data server.

Complex File data models are handled in mappings similarly to XML structures. For
example, the Synchronization model is the same for complex files and XML files and
the same knowledge modules can be used for both technologies.

See Designing a Mapping in XML Files for more information.

7-6



Microsoft SQL Server

It is important to understand how to work with Microsoft SQL Server in Oracle Data
Integrator.
This chapter includes the following sections:

e Introduction

* Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a Microsoft SQL Server Model
e Setting up Changed Data Capture

e Setting up Data Quality

* Designing a Mapping

8.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in Microsoft SQL Server.
Oracle Data Integrator features are designed to work best with Microsoft SQL Server,
including reverse-engineering, changed data capture, data integrity check, and
mappings.

8.1.1 Concepts

The Microsoft SQL Server concepts map the Oracle Data Integrator concepts as
follows: A Microsoft SQL Server server corresponds to a data server in Oracle Data
Integrator. Within this server, a database/owner pair maps to an Oracle Data Integrator
physical schema. A set of related objects within one database corresponds to a data
model, and each table, view or synonym will appear as an ODI datastore, with its
attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to
Microsoft SQL Server.

8.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 8-1 for
handling Microsoft SQL Server data. In addition to these specific Microsoft SQL Server
Knowledge Modules, it is also possible to use the generic SQL KMs with Microsoft
SQL Server. See Generic SQL for more information.

ORACLE 8-1



Table 8-1 MSSQL KMs

Chapter 8
Installation and Configuration

Knowledge Module

Description

IKM MSSQL Incremental Update

IKM MSSQL Slowly Changing Dimension

JKM MSSQL Consistent

JKM MSSQL Simple

LKM File to MSSQL (BULK)

LKM MSSQL to MSSQL (BCP)
LKM MSSQL to MSSQL (LINKED
SERVERS)

LKM MSSQL to ORACLE (BCP SQLLDR)

LKM SQL to MSSQL (BULK)

LKM SQL to MSSQL

RKM MSSQL

Integrates data in a Microsoft SQL Server target table in incremental
update mode.

Integrates data in a Microsoft SQL Server target table used as a Type
Il Slowly Changing Dimension in your Data Warehouse.

Creates the journalizing infrastructure for consistent journalizing on
Microsoft SQL Server tables using triggers.

Creates the journalizing infrastructure for simple journalizing on
Microsoft SQL Server tables using triggers.

Loads data from a File to a Microsoft SQL Server staging area
database using the BULK INSERT SQL command.

Loads data from a Microsoft SQL Server source database to a
Microsoft SQL Server staging area database using the native BCP
out/BCP in commands.

Loads data from a Microsoft SQL Server source database to a
Microsoft SQL Server staging area database using the native linked
servers feature.

Loads data from a Microsoft SQL Server to an Oracle database
(staging area) using the BCP and SQLLDR utilities.

Loads data from any ANSI SQL-92 source database to a Microsoft
SQL Server staging area database using the native BULK INSERT
SQL command.

Loads data from any ANSI SQL-92 source database to a Microsoft
SQL Server staging area. This LKM is similar to the standard LKM
SQL to SQL described in Generic SQL except that you can specify
some additional specific Microsoft SQL Server parameters.

Retrieves metadata for Microsoft SQL Server objects: tables, views
and synonyms, as well as columns and constraints.

8.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the Microsoft SQL Server technology:

e System Requirements and Certifications

e Technology Specific Requirements

e Connectivity Requirements

8.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network

(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn.

ORACLE

8-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 8
Installation and Configuration

8.2.2 Technology Specific Requirements

Some of the Knowledge Modules for Microsoft SQL Server use specific features of this
database. The following restrictions apply when using these Knowledge Modules. See
the Microsoft SQL Server documentation for additional information on these topics.

8.2.2.1 Using the BULK INSERT Command

This section describes the requirements that must be met before using the BULK
INSERT command with Microsoft SQL Server:

The file to be loaded by the BULK INSERT command needs to be accessible from
the Microsoft SQL Server instance machine. It could be located on the file system
of the server or reachable from a UNC (Unique Naming Convention) path.

UNC file paths are supported but not recommended as they may decrease
performance.

For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

8.2.2.2 Using the BCP Command

This section describes the requirements that must be met before using the BCP
command with Microsoft SQL Server:

The BCP utility as well as the Microsoft SQL Server Client Network Utility must be
installed on the machine running the Oracle Data Integrator Agent.

The server names defined in the Topology must match the Microsoft SQL Server
Client connect strings used for these servers.

White spaces in server names defined in the Client Utility are not supported.

UNC file paths are supported but not recommended as they may decrease
performance.

The target staging area database must have the option select into/bulk copy.
Execution can remain pending if the file generated by the BCP program is empty.

For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

8.2.2.3 Using Linked Servers

This section describes the requirements that must be met before using linked servers
with Microsoft SQL Server:

ORACLE

The user defined in the Topology to connect to the Microsoft SQL Server
instances must have the following privileges:

— The user must be the db_owner of the staging area databases
— The user must have db_ddladmin role
— For automatic link server creation, the user must have sysdamin privileges

The MSDTC Service must be started on both SQL Server instances (source and
target). The following hints may help you configure this service:

8-3



Chapter 8
Setting up the Topology

— The Log On As account for the MSDTC Service is a Network Service account
(and not the 'LocalSystem' account).

— MSDTC should be enabled for network transactions.

— Windows Firewall should be configured to allow the MSDTC service on the
network. By default, the Windows Firewall blocks the MSDTC program.

— The Microsoft SQL Server must be started after MSDTC has completed its
startup.

See the following links for more information about configuring the MSDTC Service:
— http://support.mcrosoft.cont ?kbi d=816701
— http://support.mcrosoft.cont ?kbi d=839279

8.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Microsoft SQL Server database.

JDBC Driver

Oracle Data Integrator is installed with a default Microsoft SQL Server Datadirect
Driver. This drivers directly uses the TCP/IP network layer and requires no other
installed component or configuration. You can alternatively use the drivers provided by
Microsoft for SQL Server.

8.3 Setting up the Topology

Setting up the Topology consists of:

1. Creating a Microsoft SQL Server Data Server

2. Creating a Microsoft SQL Server Physical Schema

8.3.1 Creating a Microsoft SQL Server Data Server

A Microsoft SQL Server data server corresponds to a Microsoft SQL Server server
connected with a specific user account. This user will have access to several
databases in this server, corresponding to the physical schemas in Oracle Data
Integrator created under the data server.

8.3.1.1 Creation of the Data Server

Create a data server for the Microsoft SQL Server technology using the standard
procedure, as described in Creating a Data Server of Developing Integration Projects
with Oracle Data Integrator.

This section details only the fields required or specific for defining a Microsoft SQL
data server:

1. In the Definition tab:
* Name: Name of the data server that will appear in Oracle Data Integrator
» Server: Physical name of the data server

* User/Password: Microsoft SQLServer user with its password

ORACLE 8-4


http://support.microsoft.com/?kbid=816701
http://support.microsoft.com/?kbid=839279

Chapter 8
Setting Up an Integration Project

2. Inthe JDBC tab:
« JDBC Driver: webl ogi c. j dbc. sql server. SQLServer Dri ver
e JDBC URL.: jdbc:weblogic:sqlserver://hosthname:port[;property=value[;...]]

8.3.2 Creating a Microsoft SQL Server Physical Schema

Create a Microsoft SQL Server physical schema using the standard procedure, as
described in Creating a Physical Schema in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a
database/owner pair. The work schema should point to a temporary database and the
data schema should point to the database hosting the data to integrate.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

8.4 Setting Up an Integration Project

Setting up a project using the Microsoft SQL Server database follows the standard
procedure. See Creating an Integration Project of Developing Integration Projects with
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Microsoft SQL Server:

e |IKM MSSQL Incremental Update

* IKM MSSQL Slowly Changing Dimension

« JKM MSSQL Consistent

* JKM MSSQL Simple

* LKM File to MSSQL (BULK)

e LKM MSSQL to MSSQL (BCP)

* LKM MSSQL to MSSQL (LINKED SERVERS)
e LKM MSSQL to ORACLE (BCP SQLLDR)

* LKM SQL to MSSQL (BULK)

« LKM SQL to MSSQL

 CKM SQL. This generic KM is used for performing integrity check for SQL Server.
*  RKM MSSQL

8.5 Creating and Reverse-Engineering a Microsoft SQL
Server Model

This section contains the following topics:

e Create a Microsoft SQL Server Model

* Reverse-engineer a Microsoft SQL Server Model

ORACLE 8-5



Chapter 8
Setting up Changed Data Capture

8.5.1 Create a Microsoft SQL Server Model

Create a Microsoft SQL Server Model using the standard procedure, as described in
Creating a Model of the Developing Integration Projects with Oracle Data Integrator.

8.5.2 Reverse-engineer a Microsoft SQL Server Model

Microsoft SQL Server supports both Standard reverse-engineering - which uses only
the abilities of the JDBC driver - and Customized reverse-engineering, which uses a
RKM to retrieve the metadata.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Microsoft SQL Server retrieves tables,
views, and columns.

Consider switching to customized reverse-engineering for retrieving more metadata.
Microsoft SQL Server customized reverse-engineering retrieves the tables, views, and
synonyms. The RKM MSSQL also reverse-engineers columns that have a user
defined data type and translates the user defined data type to the native data type.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Microsoft SQL Server use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Microsoft SQL Server with a RKM,
use the usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator . This section details only the fields
specific to the Microsoft SQL Server technology:

1. Inthe Reverse Engineer tab of the Microsoft SQL Server Model, select the KM RKM
MSSQL. <pr oj ect name>.

2. In the COMPATIBLE option, enter the Microsoft SQL Server version. This option
decides whether to enable reverse synonyms. Note that only Microsoft SQLServer
version 2005 and above support synonyms.

Note the following information when using this RKM:

e The connection user must have SELECT privileges on any
INFORMATION_SCHEMA views.

e Only native data type will be saved for the attribute with user defined data type in
the repository and model.

« User defined data types implemented through a class of assembly in the
Microsoft .NET Framework common language runtime (CLR) will not be reversed.

8.6 Setting up Changed Data Capture

The ODI Microsoft SQL Server Knowledge Modules support the Changed Data
Capture feature. See Working with Changed Data Capture of Developing Integration

ORACLE 8-6



Chapter 8
Setting up Data Quality

Projects with Oracle Data Integrator, for details on how to set up journalizing and how
to use captured changes.

Microsoft SQL Server Journalizing Knowledge Modules support Simple Journalizing
and Consistent Set Journalizing. The Microsoft SQL Server JKMs use triggers to
capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 8-2 for
journalizing Microsoft SQL Server tables.

Table 8-2 Microsoft SQL Server Journalizing Knowledge Modules

I
KM Notes

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent
journalizing on Microsoft SQL Server tables using
triggers.

JKM MSSQL Simple Creates the journalizing infrastructure for simple
journalizing on Microsoft SQL Server tables using
triggers.

Log-based changed data capture is possible with Microsoft SQL Server using the
Oracle GoldenGate. See Oracle GoldenGate for more information.

8.7 Setting up Data Quality

Oracle Data Integrator provides the generic CKM SQL for checking data integrity
against constraints defined on a Microsoft SQL Server table. See Flow Control and
Static Control in Developing Integration Projects with Oracle Data Integrator for details.

See Generic SQL for more information.

8.8 Designing a Mapping

You can use Microsoft SQL Server as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning a Microsoft SQL Server data server.

8.8.1 Loading Data from and to Microsoft SQL Server

Microsoft SQL Server can be used as a source, target or staging area of a mapping.
The LKM choice in the Loading Knowledge Module tab to load data between Microsoft
SQL Server and another type of data server is essential for the performance of a

mapping.

8.8.1.1 Loading Data from Microsoft SQL Server

ORACLE

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from Microsoft SQL Server to a target or staging area
database. These optimized Microsoft SQL Server KMs are listed in Table 8-3.

8-7



Chapter 8
Designing a Mapping

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific
to the other technology involved to load data from Microsoft SQL Server to a target or
staging area database.

Table 8-3 KMs for loading data from Microsoft SQL Server
|

Source or Staging Area KM Notes

Technology

Microsoft SQL Server LKM MSSQL to MSSQL Loads data from a
(BCP) Microsoft SQL Server

source database to a
Microsoft SQL Server
staging area database
using the native BCP
out/BCP in commands.

Microsoft SQL Server LKM MSSQL to MSSQL Loads data from a
(LINKED SERVERS) Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native linked
servers feature.

Oracle LKM MSSQL to ORACLE Loads data from a
(BCP SQLLDR) Microsoft SQL Server to
an Oracle database
(staging area) using the
BCP and SQLLDR utilities.

8.8.1.2 Loading Data to Microsoft SQL Server

ORACLE

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Microsoft SQL Server
database. These optimized Microsoft SQL Server KMs are listed in Table 8-4.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific
to the other technology involved.

Table 8-4 KMs for loading data to Microsoft SQL Server
|

Source or Staging Area KM Notes
Technology
File LKM File to MSSQL (BULK) Loads data from a File to a

Microsoft SQL Server
staging area database
using the BULK INSERT
SQL command.

Microsoft SQL Server LKM MSSQL to MSSQL Loads data from a
(BCP) Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native BCP
out/BCP in commands.

8-8



Chapter 8
Designing a Mapping

Table 8-4 (Cont.) KMs for loading data to Microsoft SQL Server
|

Source or Staging Area KM Notes

Technology

Microsoft SQL Server LKM MSSQL to MSSQL Loads data from a
(LINKED SERVERS) Microsoft SQL Server

source database to a

Microsoft SQL Server
staging area database
using the native linked
servers feature.

SQL LKM SQL to MSSQL (BULK) Loads data from any ANSI
SQL-92 source database
to a Microsoft SQL Server
staging area database
using the native BULK
INSERT SQL command.

SQL LKM SQL to MSSQL Loads data from any ANSI
SQL-92 source database
to a Microsoft SQL Server
staging area.

8.8.2 Integrating Data in Microsoft SQL Server

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Microsoft SQL Server. These optimized Microsoft SQL Server
KMs are listed in Table 8-5.

In addition to these KMs, you can also use the Generic SQL KMs.
The IKM choice in the Integration Knowledge Module tab determines the

performances and possibilities for integrating.

Table 8-5 KMs for integrating data to Microsoft SQL Server

|
KM Notes

IKM MSSQL Incremental Update  Integrates data in a Microsoft SQL Server target table in
incremental update mode.

IKM MSSQL Slowly Changing Integrates data in a Microsoft SQL Server target table used
Dimension as a Type Il Slowly Changing Dimension in your Data
Warehouse

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing
Dimension value for each column of the target datastore. This value is used by the
IKM MSSQL Slowly Changing Dimension to identify the Surrogate Key, Natural Key,
Overwrite or Insert Column, Current Record Flag and Start/End Timestamps columns.

ORACLE 8-9



Microsoft Excel

It is important to understand how to work with Microsoft Excel in Oracle Data
Integrator.
This chapter includes the following sections:

e Introduction

* Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a Microsoft Excel Model
» Designing a Mapping

e Troubleshooting

9.1 Introduction

Oracle Data Integrator (ODI) integrates data stored into Microsoft Excel workbooks. It
allows reverse-engineering as well as read and write operations on spreadsheets.

Oracle Data Integrator uses Open Database Connectivity (ODBC) to connect to a
Microsoft Excel data server. See Connectivity Requirements for more details.

9.1.1 Concepts

A Microsoft Excel data server corresponds to one Microsoft Excel workbook (. x! s file)
that is accessible through your local network. A single physical schema is created
under this data server.

Within this schema, a spreadsheet or a given named zone of the workbook appears as
a datastore in Oracle Data Integrator.

9.1.2 Knowledge Modules

Oracle Data Integrator provides no Knowledge Module (KM) specific to the Microsoft
Excel technology. You can use the generic SQL KMs to perform the data integration
and transformation operations of Microsoft Excel data. See Generic SQL for more
information.

ORACLE 9-1



Chapter 9
Installation and Configuration

< Note:

Excel technology cannot be used as the staging area, does not support
incremental update or flow/static check. As a consequence, the following KMs
will not work with the Excel technology:

+  RKM SQL (JYTHON)

e LKM File to SQL

+ CKMSQL

¢ |KM SQL Incremental Update
e |IKM SQL Control Append

+  LKM SQL to SQL (JYTHON)

9.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Microsoft Excel Knowledge Module:

e System Requirements and Certifications
» Technology Specific Requirements

*  Connectivity Requirements

9.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. coni t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn .

9.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Microsoft Excel files in Oracle
Data Integrator.

9.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Microsoft Excel workbook.
To be able to access Microsoft Excel data, you need to:

» Install the Microsoft Excel ODBC Driver

» Declare a Microsoft Excel ODBC Data Source

ORACLE 9-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 9
Setting up the Topology

Install the Microsoft Excel ODBC Driver

Microsoft Excel workbooks can only be accessed through ODBC connectivity. The
ODBC Diriver for Excel must be installed on your system.

Declare a Microsoft Excel ODBC Data Source

An ODBC data source must be defined for each Microsoft Excel workbook (. x!I s file)
that will be accessed from ODI. ODBC datasources are created with the Microsoft
ODBC Data Source Administrator. Refer to your Microsoft Windows operating system
documentation for more information on datasource creation. Also refer to Create an
ODBC Datasource for the Excel Spreadsheet, Customized Reverse-Engineering.

9.3 Setting up the Topology

Setting up the Topology consists in:

1. Creating a Microsoft Excel Data Server

2. Creating a Microsoft Excel Physical Schema

9.3.1 Creating a Microsoft Excel Data Server

A Microsoft Excel data server corresponds to one Microsoft Excel workbook (. x! s file)
that is accessible through your local network.

Create a data server for the Microsoft Excel technology using the standard procedure,
as described in Creating a Data Server of Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Microsoft Excel Data Server:

1. In the Definition tab:
* Array Fetch Size: 0
e Batch Update Size: 1
2. Inthe JDBC tab:
» JDBC Driver: Select the appropriate JDBC driver for Excel.
» JDBC URL: Enter the URL as required by the selected JDBC driver.

WARNING:

To access a Microsoft Excel workbook via ODBC, you must first ensure
that this workbook is not currently open in a Microsoft Excel session. This
can lead to unexpected results.

9.3.2 Creating a Microsoft Excel Physical Schema

Create a Microsoft Excel Physical Schema using the standard procedure, as described
in Creating a Physical Schema in Administering Oracle Data Integrator.

ORACLE 9-3



Chapter 9
Setting Up an Integration Project

Note that Oracle Data Integrator needs only one physical schema for each Microsoft
Excel data server. If you wish to connect a different workbook, a different data server
must be created to connect a ODBC datasource corresponding to this other workbook.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

" Note:

An Excel physical schema only has a data schema, and no work schema.
Microsoft Excel cannot be used as the staging area of a mapping.

9.4 Setting Up an Integration Project

Setting up a Project using the Microsoft Excel follows the standard procedure. See
Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

Import the following generic SQL KMs into your project for getting started with
Microsoft Excel:

« LKM SQL to SQL
* |IKM SQL to SQL Append

See Generic SQL for more information about these KMs.

9.5 Creating and Reverse-Engineering a Microsoft Excel
Model

This section contains the following topics:

* Create a Microsoft Excel Model

e Reverse-engineer a Microsoft Excel Model

9.5.1 Create a Microsoft Excel Model

A Microsoft Excel Model is a set of datastores that correspond to the tables contained
in a Microsoft Excel workbook.

Create a Microsoft Excel Model using the standard procedure, as described in
Creating a Model of Developing Integration Projects with Oracle Data Integrator

9.5.2 Reverse-engineer a Microsoft Excel Model

Microsoft Excel supports only the Standard reverse-engineering, which uses only the
abilities of the ODBC driver.

Oracle Data Integrator reverse-engineers:

ORACLE 9-4



Chapter 9
Designing a Mapping

*  Spreadsheets: Spreadsheets appear as system tables. Such a table is named
after the spreadsheet name, followed with a dollar sign ($). This table's columns
are named after the first line of the spreadsheet. Note that new records are added
at the end of the spreadsheet.

* Named Cell Ranges in a spreadsheet. These will appear as tables named after the
cell range name. Depending on the scope of a hame, the table name may be
prefixed by the name of the spreadsheet (in the following format:
<spr eadsheet _nanme>$<zone_name>). The columns for such a table are named after
the first line of the cell range. Note that new records are added automatically
below the named cell. It is possible to create a blank named cell range that will be
loaded using ODI by naming a cell range that contains only the first header line.

In most Microsoft Excel versions, you can simply select a cell range and use the
Name a Range... popup menu to name this range. See the Microsoft Excel
documentation for conceptual information about Names and how to define a cell
range in a spreadsheet.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Microsoft Excel use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

# Note:

On the Reverse Engineer tab of your Model, select in the Types of objects to
reverse-engineer section Table and System Table to reverse-engineer
spreadsheets and named cell ranges.

9.6 Designing a Mapping

You can use a Microsoft Excel file as a source or a target of a mapping, but NOT as
the staging area

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM for
different situations concerning a Microsoft Excel server.

9.6.1 Loading Data From and to Microsoft Excel

Microsoft Excel can be used as a source or a target of a mapping. The LKM choice in
the Mapping Flow tab to load data between Microsoft Excel and another type of data
server is essential for the performance of a mapping.

9.6.1.1 Loading Data from Microsoft Excel

ORACLE

Oracle Data Integrator does not provide specific knowledge modules for Microsoft
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the
staging area. The following table lists some generic SQL KMs that can be used for
loading data from Microsoft Excel to any staging area.

9-5



Chapter 9
Troubleshooting

Table 9-1 KMs to Load from Microsoft Excel

Target or Staging Area KM Notes

Oracle LKM SQL to Oracle Loads data from any 1ISO-92 database to
an Oracle target database. Uses statistics.

SQL LKM SQL to SQL Loads data from any 1SO-92 database to

any 1SO-92 compliant target database.

Sybase LKM SQL to Sybase (bcp) Loads data from any 1SO-92 compliant
database to a Sybase ASE Server
database. Uses Bulk Loading.

Microsoft SQL Server LKM SQL to MSSQL (bulk) Loads data from any 1ISO-92 database to a
Microsoft SQL Server target database.
Uses Bulk Loading.

9.6.1.2 Loading Data to Microsoft Excel

Because Microsoft Excel cannot be used as staging area you cannot use a LKM to
load data into Microsoft Excel. See Integrating Data in Microsoft Excel for more
information on how to integrate data into Microsoft Excel.

9.6.2 Integrating Data in Microsoft Excel

Oracle Data Integrator does not provide specific knowledge modules for Microsoft
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the
staging area. For integrating data from a staging area to Microsoft Excel, you can use,
for example the IKM SQL to SQL Append.

9.7 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using the Microsoft Excel technology in Oracle Data Integrator. It
contains the following topics:

* Decoding Error Messages

e Common Problems and Solutions

9.7.1 Decoding Error Messages

Errors appear often in Oracle Data Integrator in the following way:

java.sql . SQLException: java.sql.SQLException: [Mcrosoft][CDBC Driver Manager] Data
source name not found and no default driver specified RC=Oxb
at ... ...

the java.sql.SQLException code simply indicates that a query was made through the
JDBC-ODBC bridge, which has returned an error. This error is frequently a database
or driver error, and must be interpreted in this direction.

Only the part of text in italic must first be taken in account. It must be searched in the
ODBC driver or Excel documentation. If its contains a specific error code, like here in
bold italic, the error can be immediately identified.

ORACLE 9-6



Chapter 9
Troubleshooting

If such an error is identified in the execution log, it is necessary to analyze the SQL
code to find the source of the error. The code is displayed in the description tab of the
task in error.

The most common errors with Excel are detailed below, with their principal causes.

9.7.2 Common Problems and Solutions

This section describes common problems and solutions.

ORACLE

[Mcrosoft][ODBC Excel Driver] Invalid SQ statenent; expected ' DELETE',
"INSERT', ' PROCEDURE , 'SELECT', or 'UPDATE'.

This error is probably due to a functionality limitation of the installed ODBC driver.
You might have to install a full version of ODBC driver, such as the default one
with Microsoft Office.

Invalid Fetch Size

Make sure array Fetch Size is set to 0 for the Microsoft Excel data sever defined in
ODl.

[Mcrosoft][ODBC Excel Driver] Could not decrypt file.

You might have to keep the password-protected Microsoft Excel workbook open
for the JDBC-ODBC connection to work.

UnknownDr i ver Excepti on
The JDBC driver is incorrect. Check the name of the driver.

[Mcrosoft][ODBC Driver Manager] Data source name not found and no default
driver specified RC=0Oxb Datasource not found or driver name not specified

The ODBC Datasource specified in the JDBC URL is incorrect.
The Mcrosoft Jet Database engine could not find the object <object nane>

The table you are trying to access does not exist or is not defined in the Excel
spreadsheet.

Too few parameters. Expected 1.
You are trying to access an nonexisting column in the Excel spreadsheet.
Operation nust use an updateabl e query.

This error is probably due to the fact that you have not unchecked the "read only"
option when defined the Excel DSN. Unselect this option and re-execute your

mapping.

9-7



Microsoft Access

It is important to understand how to work with Microsoft Access in Oracle Data
Integrator.
This chapter includes the following sections:

* Introduction
e Concepts
*  Knowledge Modules

e Specific Requirements

10.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in a Microsoft Access
database. Oracle Data Integrator features are designed to work best with Microsoft
Access, including mappings.

10.2 Concepts

The Microsoft Access concepts map the Oracle Data Integrator concepts as follows:
An Microsoft Access database corresponds to a data server in Oracle Data Integrator.
Within this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Open Database Connectivity (ODBC) to connect to a
Microsoft Access database.

10.3 Knowledge Modules

ORACLE

Oracle Data Integrator provides the IKM Access Incremental Update for handling
Microsoft Access data. This IKM integrates data in a Microsoft Access target table in
incremental update mode.

The IKM Access Incremental Update creates a temporary staging table to stage the
data flow and compares its content to the target table to identify the records to insert
and the records to update. It also allows performing data integrity check by invoking
the CKM.

Consider using this KM if you plan to load your Microsoft Access target table to insert
missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as the target.

This KM uses Microsoft Access specific features. It is also possible to use the generic
SQL KMs with the Microsoft Access database. See Generic SQL for more information.

10-1



Chapter 10
Specific Requirements

< Note:

When reverse engineering MS Access, primary keys are not retrieved. Primary
key constraints have to be added manually to the datastores for IKM Access
Incremental Update to work correctly.

10.4 Specific Requirements

There are no specific requirements for using Microsoft Access in Oracle Data
Integrator.

ORACLE 10-2



Netezza

It is important to understand how to work with Netezza in Oracle Data Integrator.
This chapter includes the following sections:

e Introduction

* Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a Netezza Model
e Setting up Data Quality

» Designing a Mapping

11.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in a Netezza database.
Oracle Data Integrator features are designed to work best with Netezza, including
reverse-engineering, data integrity check, and mappings.

11.1.1 Concepts

The Netezza database concepts map the Oracle Data Integrator concepts as follows:
A Netezza cluster corresponds to a data server in Oracle Data Integrator. Within this
server, a database/owner pair maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a
Netezza database.

11.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 11-1 for
handling Netezza data. These KMs use Netezza specific features. It is also possible to
use the generic SQL KMs with the Netezza database. See Generic SQL for more
information.

Table 11-1 Netezza KMs

L __________________________________________________________________________________________|]
Knowledge Module Description

CKM Netezza

Checks data integrity against constraints defined on a Netezza table. Rejects invalid
records in the error table created dynamically. Can be used for static controls as well
as flow controls.

IKM Netezza Control Integrates data in a Netezza target table in replace/append mode. When flow data

Append

ORACLE

needs to be checked using a CKM, this IKM creates a temporary staging table
before invoking the CKM.

11-1



Chapter 11
Installation and Configuration

Table 11-1 (Cont.) Netezza KMs
]

Knowledge Module Description

IKM Netezza Incremental Integrates data in a Netezza target table in incremental update mode.

Update

IKM Netezza To File Integrates data in a target file from a Netezza staging area. It uses the native
(EXTERNAL TABLE) EXTERNAL TABLE feature of Netezza.

LKM File to Netezza Loads data from a File to a Netezza Server staging area using the EXTERNAL
(EXTERNAL TABLE) TABLE feature (dataobject).

LKM File to Netezza Loads data from a File to a Netezza Server staging area using NZLOAD.
(NZLOAD)

RKM Netezza Retrieves JDBC metadata from a Netezza database. This RKM may be used to

specify your own strategy to convert Netezza JDBC metadata into Oracle Data
Integrator metadata.

Consider using this RKM if you encounter problems with the standard JDBC reverse-
engineering process due to some specificities of the Netezza JDBC driver.

11.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Netezza Knowledge Modules:

»  System Requirements and Certifications
» Technology Specific Requirements

*  Connectivity Requirements

11.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. coni t echnol ogy/ product s/ oracl e-dat a-integrator/index. htn .

11.2.2 Technology Specific Requirements

Some of the Knowledge Modules for Netezza use the NZLOAD utility.
The following requirements and restrictions apply for these Knowledge Modules:

*  The source file must be accessible by the ODI agent executing the mapping.

* The run-time agent machine must have Netezza Performance Server client
installed. And the NZLOAD install directory needs to be in the PATH variable when
the agent is started.

* All mappings need to be on the staging area.

» All source fields need to be mapped, and must be in the same order as the target
table in Netezza.

ORACLE 11-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 11
Setting up the Topology

» Date, Time, Timestamp and Numeric formats should be specified in consistent
with Netezza Data Type definition.

For KMs using the EXTERNAL TABLE feature: Make sure that the file is accessible by
the Netezza Server.

11.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Netezza database.

JDBC Driver

Oracle Data Integrator uses the Netezza JDBC to connect to a NCR Netezza
database. This driver must be installed in your Oracle Data Integrator drivers directory.

11.3 Setting up the Topology

Setting up the Topology consists of:

1. Creating a Netezza Data Server

2. Creating a Netezza Physical Schema

11.3.1 Creating a Netezza Data Server

A Netezza data server corresponds to a Netezza cluster connected with a specific
Netezza user account. This user will have access to several databases in this cluster,
corresponding to the physical schemas in Oracle Data Integrator created under the
data server.

11.3.1.1 Creation of the Data Server

Create a data server for the Netezza technology using the standard procedure, as
described in Creating a Data Server of Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Netezza data server:

1. In the Definition tab:
* Name: Name of the data server that will appear in Oracle Data Integrator
* Server: Physical name of the data server
* User/Password: Netezza user with its password
2. Inthe JDBC tab:
« JDBC Driver: org. netezza. Dri ver

e JDBC URL:jdbc: Net ezza: / / <host >: <por t >/ <dat abase>

# Note:

Note that Oracle Data Integrator will have write access only on the database
specified in the URL.

ORACLE 11-3



Chapter 11
Setting Up an Integration Project

11.3.2 Creating a Netezza Physical Schema

Create a Netezza physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

# Note:

When performing this configuration, the work and data databases names must
match. Note also that the dollar sign ($) is an invalid character for names in
Netezza. Remove the dollar sign ($) from work table and journalizing elements
prefixes.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

11.4 Setting Up an Integration Project

Setting up a project using the Netezza database follows the standard procedure. See
Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Netezza:

¢ CKM NetezzalKM Netezza Control AppendIKM Netezza Incremental UpdatelKM
Netezza To File (EXTERNAL TABLE)LKM File to Netezza (EXTERNAL
TABLE)LKM File to Netezza (NZLOAD)RKM Netezza

11.5 Creating and Reverse-Engineering a Netezza Model

This section contains the following topics:

* Create a Netezza Model

* Reverse-engineer a Netezza Model

11.5.1 Create a Netezza Model

Create a Netezza Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

11.5.2 Reverse-engineer a Netezza Model

Netezza supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

ORACLE 11-4



Chapter 11
Setting up Data Quality

Consider switching to customized reverse-engineering if you encounter problems with
the standard JDBC reverse-engineering process due to some specificities of the
Netezza JDBC driver.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Netezza use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Netezza with a RKM, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator:

1. Inthe Reverse Engineer tab of the Netezza Model, select the KM RKM
Net ezza. <proj ect nane>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign
Keys.

11.6 Setting up Data Quality

Oracle Data Integrator provides the CKM Netezza for checking data integrity against
constraints defined on a Netezza table. See Flow Control and Static Control in
Developing Integration Projects with Oracle Data Integrator for details.

11.7 Designing a Mapping
You can use Netezza as a source, staging area, or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning a Netezza data server.

11.7.1 Loading Data from and to Netezza

Netezza can be used as a source, target or staging area of a mapping. The LKM
choice in the Loading Knowledge Module tab to load data between Netezza and
another type of data server is essential for the performance of a mapping.

11.7.1.1 Loading Data from Netezza

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a Netezza database to a target or staging area database.

For extracting data from a Netezza staging area to a file, use the IKM Netezza to File
(EXTERNAL TABLE). See Integrating Data in Netezza for more information.

11.7.1.2 Loading Data to Netezza

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Netezza database.
These optimized Netezza KMs are listed in Table 11-2. In addition to these KMs, you

ORACLE 11-5



Chapter 11
Designing a Mapping

can also use the Generic SQL KMs or the KMs specific to the other technology
involved.

Table 11-2 KMs for loading data to Netezza
|

Source or Staging Area KM Notes
Technology
File LKM File to Netezza Loads data from a File to a Netezza
(EXTERNAL TABLE) staging area database using the
Netezza External table feature.
File LKM File to Netezza Loads data from a File to a Netezza
(NZLOAD) staging area database using the

NZLOAD bulk loader.

11.7.2 Integrating Data in Netezza

ORACLE

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Netezza. These optimized Netezza KMs are listed in
Table 11-3. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the
performances and possibilities for integrating.

Table 11-3 KMs for integrating data to Netezza
|

KM Notes
IKM Netezza Control Append Integrates data in a Netezza target table in replace/append
mode.

IKM Netezza Incremental Update Integrates data in a Netezza target table in incremental
update mode.
This KM implements a DISTRIBUTE_ON option to define
the processing distribution. It is important that the chosen
column has a high cardinality (many distinct values) to
ensure evenly spread data to allow maximum processing
performance.
Please follow Netezza's recommendations on choosing a
such a column.Valid options are:
* [PK]: Primary Key of the target table.
*  [UK]: Update key of the mapping
*  [RANDOM]: Random distribution
*  <list of column>: a comma separated list of columns
If no value is set (empty), no index will be created.
This KM also uses an ANALYZE_TARGET option to
generate statistics on the target after integration.

IKM Netezza to File (EXTERNAL Integrates data from a Netezza staging area to a file using
TABLE) external tables.

This KM implements an optional BASE_TABLE option to
specify the name of a table that will be used as a template
for the external table.

11-6



Teradata

It is important to understand how to work with Teradata in Oracle Data Integrator.
This chapter includes the following sections:

* Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a Teradata Model
e Setting up Data Quality

» Designing a Mapping

* KM Optimizations for Teradata

12.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an Teradata database.
Oracle Data Integrator features are designed to work best with Teradata, including
reverse-engineering, data integrity check, and mappings.

12.1.1 Concepts

The Teradata database concepts map the Oracle Data Integrator concepts as follows:
A Teradata server corresponds to a data server in Oracle Data Integrator. Within this
server, a database maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) and Teradata Utilities
to connect to Teradata database.

12.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 12-1 for
handling Teradata data. These KMs use Teradata specific features. It is also possible
to use the generic SQL KMs with the Teradata database. See Generic SQL for more

information.

Table 12-1 Teradata KMs

L ______________________________________________________________________________________________|]
Knowledge Module Description

CKM Teradata

ORACLE

Checks data integrity against constraints defined on a Teradata table.
Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

12-1



Chapter 12
Installation and Configuration

Table 12-1 (Cont.) Teradata KMs

_______________________________________________________________________________________________|]
Knowledge Module Description

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the Teradata utilities
for loading files directly to the target. See Support for Teradata
Utilities for more information.

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a Teradata
database target table using Teradata Utilities FastLoad, MultiLoad,
TPump or Parallel Transporter. See Support for Teradata Utilities for
more information.

IKM Teradata Control Append Integrates data in a Teradata target table in replace/append mode.
IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update
mode.

IKM Teradata Slowly Changing Dimension Integrates data in a Teradata target table used as a Type Il Slowly
Changing Dimension in your Data Warehouse.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in replace
mode. See Support for Teradata Utilities for more information.

IKM Teradata Multi Statement Integrates data in Teradata database target table using multi
statement requests, managed in one SQL transaction. See Using
Multi Statement Requests for more information.

IKM SQL to Teradata Control Append Integrates data from an ANSI-92 compliant source database into
Teradata target table in truncate / insert (append) mode.

This IKM is typically used for ETL configurations: source and target
tables are on different databases and the mapping's staging area is
set to the logical schema of the source tables or a third schema.

LKM File to Teradata (TTU) Loads data from a File to a Teradata staging area database using the
Teradata bulk utilities. See Support for Teradata Utilities for more
information.

LKM SQL to Teradata (TTU) Loads data from a SQL compliant source database to a Teradata

staging area database using a native Teradata bulk utility. See
Support for Teradata Utilities for more information.

RKM Teradata Retrieves metadata from the Teradata database using the DBC
system views. This RKM supports UNICODE columns.

12.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Teradata Knowledge Modules:

»  System Requirements and Certifications
»  Technology Specific Requirements

*  Connectivity Requirements

12.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

ORACLE 12-2



Chapter 12
Setting up the Topology

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htnl.

12.2.2 Technology Specific Requirements

Some of the Knowledge Modules for Teradata use the following Teradata Tools and
Utilities (TTU):

FastLoad
MultiLoad
Tpump
FastExport

Teradata Parallel Transporter

The following requirements and restrictions apply for these Knowledge Modules:

Teradata Utilities must be installed on the machine running the Oracle Data
Integrator Agent.

The server name of the Teradata Server defined in the Topology must match the
Teradata connect string used for this server (without the COP_n postfix).

It is recommended to install the Agent on a separate platform than the target
Teradata host. The machine were the Agent is installed should have a very large
network bandwidth to the target Teradata server.

The IKM File to Teradata (TTU) and LKM File to Teradata (TTU) support a File
Character Set Encoding option specify the encoding of the files integrated with
TTU. If this option is unset, the default TTU charset is used. Refer to the Getting
Started: International Character Sets and the Teradata Database Teradata guide
for more information about character set encoding.

See the Teradata documentation for more information.

12.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Teradata Database.

JDBC Driver

Oracle Data Integrator uses the Teradata JDBC Driver to connect to a Teradata
Database. The Teradata Gateway for JDBC must be running, and this driver must be
installed in your Oracle Data Integrator installation. You can find this driver at:

http:// ww. t er adat a. conl Downl oadCent er / G oup48. aspx

12.3 Setting up the Topology

Setting up the Topology consists of:

1.
2.

ORACLE

Creating a Teradata Data Server

Creating a Teradata Physical Schema

12-3


http://www.oracle.com/technology/products/oracle-data-integrator/index.html
http://www.teradata.com/DownloadCenter/Group48.aspx

Chapter 12
Setting Up an Integration Project

12.3.1 Creating a Teradata Data Server

A Teradata data server corresponds to a Teradata Database connected with a specific
Teradata user account. This user will have access to several databases in this
Teradata system, corresponding to the physical schemas in Oracle Data Integrator
created under the data server.

12.3.1.1 Creation of the Data Server

Create a data server for the Teradata technology using the standard procedure, as
described in Creating a Data Server of Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Teradata data server:

1. Inthe Definition tab:
* Name: Name of the data server that will appear in Oracle Data Integrator
e Server: Physical name of the data server
» User/Password: Teradata user with its password
2. Inthe JDBC tab:
e JDBC Driver: com teradat a. j dbc. TeraDri ver
e JDBC URL:jdbc:teradata://<host>: <port>/<server>
The URL parameters are:
— <host >: Teradata gateway for JDBC machine network name or IP address.
— <port>: gateway port number (usually 7060)

— <server>: name of the Teradata server to connect

12.3.2 Creating a Teradata Physical Schema

Create a Teradata physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

12.4 Setting Up an Integration Project

ORACLE

Setting up a project using the Teradata database follows the standard procedure. See
Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Teradata:

 CKM Teradata
* |IKM File to Teradata (TTU)
* |KM SQL to Teradata (TTU)

12-4



Chapter 12
Creating and Reverse-Engineering a Teradata Model

e |IKM Teradata Control Append

* |KM Teradata Incremental Update

* IKM Teradata Multi Statement

* |IKM Teradata Slowly Changing Dimension
* |IKM Teradata to File (TTU)

e |IKM SQL to Teradata Control Append

* LKM File to Teradata (TTU)

* LKM SQL to Teradata (TTU)

*  RKM Teradata

12.5 Creating and Reverse-Engineering a Teradata Model

This section contains the following topics:

e Create a Teradata Model

» Reverse-engineer a Teradata Model

12.5.1 Create a Teradata Model

Create a Teradata Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

12.5.2 Reverse-engineer a Teradata Model

ORACLE

Teradata supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve
the metadata from Teradata database using the DBC system views.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Teradata retrieves tables and columns.

Preferably use customized reverse-engineering for retrieving more metadata. Teradata
customized reverse-engineering retrieves the tables, views, columns, keys (primary
indexes and secondary indexes) and foreign keys. Descriptive information (column
tittes and short descriptions) are also reverse-engineered.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on Teradata use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on Teradata with a RKM, use the
usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator:

1. Inthe Reverse Engineer tab of the Teradata Model, select the KM RKM
Ter adat a. <proj ect nane>.

12-5



Chapter 12
Setting up Data Quality

2. Setthe REVERSE_FKS option to t rue if you want to reverse-engineer existing FK
constraints in the database.

3. Setthe REVERSE_TABLE_CONSTRAINTS to true if you want to reverse-
engineer table constrains.

4. Set REVERSE_COLUMN_CHARACTER_SET to true if you want to reverse-
engineer VARCHAR and CHAR for a Unicode database as CHAR()CHARACTER
SET UNICODE or VARCHAR()CHARACTER SET UNICODE respectively,
regardless of the use of CHARACTER SET UNICODE clause at table creation.

The reverse-engineering process returns tables, views, columns, Keys (primary
indexes and secondary indexes) and Foreign Keys. Descriptive information (Column
tittes and short descriptions) are also reverse-engineered

Note that Unique Indexes are reversed as follows:

e The unique primary index is considered as a primary key.

e The primary index is considered as a non unigue index.

* The secondary unique primary index is considered as an alternate key

*  The secondary non unique primary index is considered as a non unique index.

You can use this RKM to retrieve specific Teradata metadata that is not supported by
the standard JDBC interface (such as primary indexes).

12.6 Setting up Data Quality

Oracle Data Integrator provides the CKM Teradata for checking data integrity against
constraints defined on a Teradata table. See Flow Control and Static Control in
Developing Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 12-2 to perform
a check on Teradata.

Table 12-2 Check Knowledge Modules for Teradata Database

Recommended KM Notes

CKM Teradata Checks data integrity against constraints defined on a Teradata
table. Rejects invalid records in the error table created
dynamically. Can be used for static controls as well as flow
controls.

This KM supports the following Teradata optimizations:

e Primary Indexes
e  Statistics

12.7 Designing a Mapping

ORACLE

You can use Teradata as a source, staging area or a target of a mapping. It is also
possible to create ETL-style mappings based on the Teradata technology.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning a Teradata data server.

12-6



Chapter 12
Designing a Mapping

12.7.1 Loading Data from and to Teradata

Teradata can be used as a source, target or staging area of a mapping. The LKM
choice in the Loading Knowledge Module tab to load data between Teradata and
another type of data server is essential for the performance of a mapping.

12.7.1.1 Loading Data from Teradata

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a Teradata database to a target or staging area database.

For extracting data from a Teradata staging area to a file, use the IKM File to Teradata
(TTU). See Integrating Data in Teradata for more information.

12.7.1.2 Loading Data to Teradata

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Teradata database.
These optimized Teradata KMs are listed in Table 12-3. In addition to these KMs, you
can also use the Generic SQL KMs or the KMs specific to the other technology
involved.

Table 12-3 KMs for loading data to Teradata
|

Source or Staging Area KM Notes
Technology
File LKM File to Teradata (TTU) Loads data from a File to a

Teradata staging area database
using the Teradata bulk utilities.

Because this method uses the
native Teradata utilities to load the
file in the staging area, it is more
efficient than the standard LKM File
to SQL when dealing with large
volumes of data.

Consider using this LKM if your
source is a large flat file and your
staging area is a Teradata
database.

This KM support the following

Teradata optimizations:

e Statistics

e Optimized Temporary Tables
Management

ORACLE 12-7



Chapter 12
Designing a Mapping

Table 12-3 (Cont.) KMs for loading data to Teradata

Source or Staging Area KM Notes
Technology
SQL LKM SQL to Teradata (TTU) Loads data from a SQL compliant

source database to a Teradata
staging area database using a
native Teradata bulk utility.

This LKM can unload the source
data in a file or Named Pipe and
then call the specified Teradata
utility to populate the staging table
from this file/pipe. Using named
pipes avoids landing the data in a
file. This LKM is recommended for
very large volumes.

Consider using this IKM when:

e The source data located on a
SQL compliant database is
large

e You don't want to stage your
data between the source and
the target

e Your staging area is a Teradata
database.

This KM support the following

Teradata optimizations:

e Support for Teradata Utilities
e Support for Named Pipes

e Optimized Temporary Tables
Management

12.7.2 Integrating Data in Teradata

ORACLE

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Teradata. These optimized Teradata KMs are listed in
Table 12-4. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the
performances and possibilities for integrating.

12-8



Chapter 12
Designing a Mapping

Table 12-4 KMs for integrating data to Teradata

|
KM Notes

IKM Teradata Control Append Integrates data in a Teradata target table in replace/
append mode. When flow data needs to be checked using
a CKM, this IKM creates a temporary staging table before
invoking the CKM.

Consider using this IKM if you plan to load your Teradata
target table in replace mode, with or without data integrity
check.

To use this IKM, the staging area must be on the same
data server as the target Teradata table.

This KM support the following Teradata optimizations:
e Primary Indexes and Statistics
e Optimized Temporary Tables Management

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental
update mode. This IKM creates a temporary staging table
to stage the data flow. It then compares its content to the
target table to guess which records should be inserted and

which others should be updated. It also allows performing
data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing
to maximize performance. Therefore, this IKM is optimized
for large volumes of data.

Consider using this IKM if you plan to load your Teradata
target table to insert missing records and to update
existing ones.

To use this IKM, the staging area must be on the same
data server as the target.

This KM support the following Teradata optimizations:

e Primary Indexes and Statistics
e Optimized Temporary Tables Management

IKM Teradata Multi Statement Integrates data in Teradata database target table using
multi statement requests, managed in one SQL transaction

ORACLE 12-9



Chapter 12
Designing a Mapping

Table 12-4 (Cont.) KMs for integrating data to Teradata
|

KM Notes
IKM Teradata Slowly Changing Integrates data in a Teradata target table used as a Type Il
Dimension Slowly Changing Dimension in your Data Warehouse. This

IKM relies on the Slowly Changing Dimension metadata
set on the target datastore to figure out which records
should be inserted as new versions or updated as existing
versions.

Because inserts and updates are done in bulk set-based
processing, this IKM is optimized for large volumes of data.
Consider using this IKM if you plan to load your Teradata
target table as a Type Il Slowly Changing Dimension.

To use this IKM, the staging area must be on the same
data server as the target and the appropriate Slowly
Changing Dimension metadata needs to be set on the
target datastore.

This KM support the following Teradata optimizations:

e Primary Indexes and Statistics

e Optimized Temporary Tables Management

This KM also includes a COMPATIBLE option. This option
corresponds to the Teradata engine major version number.
If this version is 12 or above, then a MERGE statement will
be used instead of the standard INSERT then UPDATE

statements to merge the incoming data flow into the target
table.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area
in replace mode. This IKM requires the staging area to be
on Teradata. It uses the native Teradata utilities to export
the data to the target file.

Consider using this IKM if you plan to transform and export
data to a target file from your Teradata server.

To use this IKM, the staging area must be different from
the target. It should be set to a Teradata location.

This KM support the following Teradata optimizations:

e Support for Teradata Utilities

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the
Teradata utilities for loading files directly to the target. It is
restricted to one file as source and one Teradata table as
target.

Depending on the utility you choose, you'll have the ability
to integrate the data in either replace or incremental
update mode.

Consider using this IKM if you plan to load a single flat file
to your target table. Because it uses the Teradata utilities,
this IKM is recommended for very large volumes.

To use this IKM, you have to set the staging area to the
source file's schema.

This KM support the following Teradata optimizations:

e Primary Indexes and Statistics
e Support for Teradata Utilities
e Optimized Temporary Tables Management.

ORACLE 12-10



Chapter 12
Designing a Mapping

Table 12-4 (Cont.) KMs for integrating data to Teradata

|
KM Notes

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a
Teradata database target table using Teradata Utilities
TPUMP, FASTLOAD OR MULTILOAD.

This IKM is designed to leverage the power of the
Teradata utilities for loading source data directly to the
target. It can only be used when all source tables belong to
the same data server and when this data server is used as
a staging area (staging area on source). Source data can
be unloaded into a file or Named Pipe and then loaded by
the selected Teradata utility directly in the target table.
Using named pipes avoids landing the data in a file. This
IKM is recommended for very large volumes.

Depending on the utility you choose, you'll have the ability

to integrate the data in replace or incremental update
mode.

Consider using this IKM when:

*  You plan to load your target table with few
transformations on the source

e All your source tables are on the same data server
(used as the staging area)

*  You don't want to stage your data between the source
and the target

To use this IKM, you have to set the staging area to the

source data server's schema.

This KM support the following Teradata optimizations:

e Primary Indexes and Statistics

e Support for Teradata Utilities

e Support for Named Pipes

e Optimized Temporary Tables Management

IKM SQL to Teradata Control Integrates data from an ANSI-92 compliant source
Append database into Teradata target table in truncate / insert
(append) mode.

This IKM is typically used for ETL configurations: source
and target tables are on different databases and the
mapping's staging area is set to the logical schema of the
source tables or a third schema. See Designing an ETL-
Style Mapping for more information.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing
Dimension value for each column of the target datastore. This value is used by the
IKM Teradata Slowly Changing Dimension to identify the Surrogate Key, Natural Key,
Overwrite or Insert Column, Current Record Flag, and Start/End Timestamps columns.

Using Multi Statement Requests

Multi statement requests typically enable the parallel execution of simple mappings.
The Teradata performance is improved by synchronized scans and by avoiding
transient journal.

Set the KM options as follows:

ORACLE 12-11



Chapter 12
Designing a Mapping

*  Mappings using this KM must be used within a package:

— Inthe first mapping of the package loading a table via the multi-statement set
the INIT_MULTI_STATEMENT option to YES.

— The subsequent mappings loading a table via the multi-statement must use
this KM and have the INIT_MULTI_STATEMENT option set to NO.

— The last mapping must have the EXECUTE option set to YES in order to run the
generated multi-statement.

e Inthe STATEMENT_TYPE option, specify the type of statement (insert or update)
for each mapping.

e Inthe SQL_OPTION option, specify the additional SQL sentence that is added at
the end of the query, for example QUALIFY Clause.

Note the following limitations concerning multi-statements:

*  Multi-statements are only supported when they are used within a package.
*  Temporary indexes are not supported.

* Updates are considered as Inserts in terms of row count.

* Updates can only have a single Dataset.

*  Only executing mapping (EXECUTE = YES) reports row counts.

* Journalized source data not supported.

* Neither Flow Control nor Static Control is supported.

* The SQL_OPTION option applies only to the last Dataset.

12.7.3 Designing an ETL-Style Mapping

ORACLE

See Creating a Mapping in Developing Integration Projects with Oracle Data Integrator
for generic information on how to design mappings. This section describes how to
design an ETL-style mapping where the staging area is on a Teradata database or any
ANSI-92 compliant database and the target on Teradata.

In an ETL-style mapping, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from a
Teradata or an ANSI-92 compliant staging area to a Teradata target:

e Using a Multi-connection IKM
e Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM

A multi-connection IKM allows integrating data into a target when the staging area and
sources are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling
Teradata data: IKM SQL to Teradata Control Append. You can also use the generic
SQL multi-connection IKMs. See Generic SQL for more information.

See Table 12-5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style mapping:

12-12



ORACLE

Chapter 12
Designing a Mapping

1. Create a mapping with an ANSI-92 compliant staging area and the target on
Teradata using the standard procedure as described in Creating a Mapping in
Developing Integration Projects with Oracle Data Integrator. This section describes
only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source
tables or a third schema. See Configuring Execution Locations in Developing
Integration Projects with Oracle Data Integrator for information about how to
change the staging area.

3. Inthe Physical diagram, select an access point. The Property Inspector opens for
this object.

4. In the Loading Knowledge Module tab, select an LKM to load from the source(s) to
the staging area. See Table 12-5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select the Target by clicking its title. The Property
Inspector opens for this object.

7. Inthe Integration Knowledge Module tab, select an ETL multi-connection IKM to
load the data from the staging area to the target. See Table 12-5 to determine the
IKM you can use.

Note the following when setting the KM options of the IKM SQL to Teradata Control
Append:

» If you do not want to create any tables on the target system, set
FLOW CONTROL=f al se. If FLOW CONTROL=f al se, the data is inserted directly into the
target table.

» If FLON CONTROL=t r ue, the flow table is created on the target or on the staging area.

» If you want to recycle data rejected from a previous control, set RECYCLE_ERROR=t r ue
and set an update key for your mapping.

Using an LKM and a mono-connection IKM

If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to load
the flow table from the staging area to the target. The mono-connection IKM is used to
integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source and staging area of an ETL-style mapping. The target is Teradata.

See Table 12-5 for more information on when to use the combination of a standard
LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping with an ANSI-92 compliant staging area and the target on
Teradata using the standard procedure as described in Creating a Mapping in
Developing Integration Projects with Oracle Data Integrator. This section describes
only the ETL-style specific steps.

2. Change the staging area for the mapping to the logical schema of the source
tables or a third schema. See Configuring Execution Locations in the Developing
Integration Projects with Oracle Data Integrator for information about how to
change the staging area.

12-13



Table 12-5 KM Gui

Chapter 12
Designing a Mapping

In the Physical diagram, select an access point. The Property Inspector opens for
this object.

In the Loading Knowledge Module tab, select an LKM to load from the source(s) to
the staging area. See Table 12-5 to determine the LKM you can use.

Optionally, modify the KM options.

Select the access point for the Staging Area. The Property Inspector opens for this
object.

In the Loading Knowledge Module tab, select an LKM to load from the staging
area to the target. See Table 12-5 to determine the LKM you can use.

Optionally, modify the options.
Select the Target by clicking its title. The Property Inspector opens for this object.

In the Integration Knowledge Module tab, select a standard mono-connection IKM
to update the target. See Table 12-5 to determine the IKM you can use.

delines for ETL-Style Mappings with Teradata Data

Source Staging Area Target Exporting IKM KM Strategy Comment
LKM

ANSI ANSI SQL-92 Teradata NA IKM SQL to Teradata Multi- Recommended to

SQL-92 standard Control Append connection perform control

standard compliant IKM append

compliant Supports flow
control.

ORACLE 12-14



Chapter 12

KM Optimizations for Teradata

Table 12-5 (Cont.) KM Guidelines for ETL-Style Mappings with Teradata Data

Source Staging Area Target Exporting IKM KM Strategy Comment
LKM
ANSI Teradata or Teradata NA IKM SQL to SQL Multi- Allows an
SQL-92 any ANSI or any Incremental Update  connection incremental
standard SQL-92 ANSI IKM update strategy
compliant  standard SQL-92 with no
compliant standard temporary target-
database complian side objects. Use
t this KM if it is not
database possible to create
temporary
objects in the
target server.
The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.
Supports flow
and static control
ANSI Teradata or Teradata LKM SQL to IKM Teradata LKM +
SQL-92 ANSI SQL-92 Teradata Incremental Update  standard IKM
standard standard (TTU)
compliant  compliant
ANSI Teradata Teradata LKM SQL to IKM Teradata Slowly LKM +
SQL-92 Teradata Changing Dimension standard IKM
standard (TTU)
compliant
ANSI ANSI SQL-92 Teradata LKM SQL to IKM SQL to Teradata LKM + If no flow control,
SQL-92 standard Teradata (TTU) standard IKM this strategy is
standard compliant (TTU) recommended for
compliant large volumes of

data

12.8 KM Optimizations for Teradata

This section describes the specific optimizations for Teradata that are included in the
Oracle Data Integrator Knowledge Modules.

ORACLE

12-15



Chapter 12
KM Optimizations for Teradata

This section includes the following topics:

*  Primary Indexes and Statistics
e Support for Teradata Utilities
e Support for Named Pipes

*  Optimized Management of Temporary Tables

12.8.1 Primary Indexes and Statistics

Teradata performance heavily relies on primary indexes. The Teradata KMs support
customized primary indexes (PI) for temporary and target tables. This applies to
Teradata LKMs, IKMs and CKMs. The primary index for the temporary and target
tables can be defined in these KMs using the PRIMARY_INDEX KM option, which
takes the following values:

e [PK: The PI will be the primary key of each temporary or target table. This is the
default value.

e [NOPI]: Do not specify primary index (Teradata 13.0 & above only).
e [UK: The PI will be the update key of the mapping. This is the default value.

— <Column list>: This is a free Pl based on the comma-separated list of column
names.

— <Empty string>: No primary index is specified. The Teradata engine will use
the default rule for the PI (first column of the temporary table).

Teradata MultiColumnStatistics should optionally be gathered for selected PI columns.
This is controlled by COLLECT_STATS KM option, which is set to true by default.

12.8.2 Support for Teradata Utilities

ORACLE

Teradata Utilities (TTU) provide an efficient method for transferring data from and to
the Teradata engine. When using a LKM or IKM supporting TTUs, it is possible to set
the method for loading data using the TERADATA_UTILITY option.

This option takes the following values when pushing data to a Teradata target (IKM) or
staging area (LKM):

e FASTLOAD: use Teradata FastLoad

°  MOAD: use Teradata MultiLoad

e TPUWP: use Teradata TPump

e TPT-LOAD: use Teradata Parallel Transporter (Load Operator)

e TPT-SQ- I NSERT: use Teradata Parallel Transporter (SQL Insert Operator)

This option takes the following values when pushing data FROM Teradata to a file:
*  FEXP: use Teradata FastExport

e TPT: use Teradata Parallel Transporter

When using TTU KMs, you should also take into account the following KM parameters:

*  REPORT_NB_ROWS: This option allows you to report the number of lines
processed by the utility in a Warning step of the mapping.

12-16



Chapter 12
KM Optimizations for Teradata

SESSIONS: Number of FastLoad sessions

MAX_ALLOWED_ERRORS: Maximum number of tolerated errors. This
corresponds to the ERRLIMIT command in FastLoad/MultiLoad/TPump and to the
ErrorLimit attribute for TPT.

MULTILOAD_TPUMP_TYPE: Operation performed by the MultiLoad or TPump
utility. Valid values are | NSERT, UPSERT and DELETE. For UPSERT and DELETE an update
key is required in the mapping.

For details and appropriate choice of utility and load operator, refer to the Teradata
documentation.

12.8.3 Support for Named Pipes

When using TTU KMs to move data between a SQL source and Teradata, it is
possible to increase the performances by using Named Pipes instead of files between
the unload/load processes. Named Pipes can be activated by setting the
NP_USE_NAMED_PIPE option to YES. The following options should also be taken into
account for using Named Pipes:

NP_EXEC_ON_WINDOWS: Set this option to YES if the run-time agent runs on a
windows platform.

NP_ACCESS_MODULE: Access module used for Named Pipes. This access
module is platform dependant.

NP_TTU_STARTUP_TIME: This number of seconds for the TTU to be able to
receive data through the pipe. This is the delay between the moment the KM starts
the TTU and the moment the KM starts to push data into the named pipe. This
delay is dependant on the machine workload.

12.8.4 Optimized Management of Temporary Tables

Creating and dropping Data Integrator temporary staging tables can be a resource
consuming process on a Teradata engine. The ODI_DDL KM option provides a mean
to control these DDL operations. It takes the following values:

ORACLE

DROP_CREATE: Always drop and recreate all temporary tables for every
execution (default behavior).

CREATE_DELETE_ALL: Create temporary tables when needed (usually for the
first execution only) and use DELETE ALL to drop the temporary table content.
Temporary table are reused for subsequent executions.

DELETE_ALL: Do not create temporary tables. Only submit DELETE ALL for all
temporary tables.

NONE: Do not issue any DDL on temporary tables. Temporary tables should be
handled separately.

12-17



Hypersonic SQL

It is important to understand how to work with Hypersonic SQL in Oracle Data
Integrator.
This chapter includes the following sections:

* Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

» Creating and Reverse-Engineering a Hypersonic SQL Model
e Setting up Data Quality

» Designing a Mapping

13.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an Hypersonic SQL
database. Oracle Data Integrator features are designed to work best with Hypersonic
SQL, including reverse-engineering, data integrity check, and mappings.

13.1.1 Concepts

The Hypersonic SQL database concepts map the Oracle Data Integrator concepts as
follows: A Hypersonic SQL server corresponds to a data server in Oracle Data
Integrator. Within this server, one single Oracle Data Integrator physical schema maps
to the database.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to
Hypersonic SQL.

13.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 13-1for
handling Hypersonic SQL data. These KMs use Hypersonic SQL specific features. It is
also possible to use the generic SQL KMs with the Hypersonic SQL database. See for
more information.

Table 13-1 Hypersonic SQL Knowledge Modules

L ______________________________________________________________________________________________|]
Knowledge Module Description

CKM HSQL

ORACLE

Checks data integrity against constraints defined on a Hypersonic
SQL table. Rejects invalid records in the error table created
dynamically. Can be used for static controls as well as flow controls.

13-1



Chapter 13
Installation and Configuration

Table 13-1 (Cont.) Hypersonic SQL Knowledge Modules

Knowledge Module Description

JKM HSQL Consistent Creates the journalizing infrastructure for consistent journalizing on
Hypersonic SQL tables using triggers. Enables consistent Changed
Data Capture on Hypersonic SQL.

JKM HSQL Simple Creates the journalizing infrastructure for simple journalizing on
Hypersonic SQL tables using triggers.

SKM HSQL Generates data access Web services for Hypersonic SQL databases.

13.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Hypersonic SQL Knowledge Modules:

*  System Requirements and Certifications
* Technology Specific Requirements

»  Connectivity Requirements

13.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conl t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htni.

13.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Hypersonic SQL in Oracle
Data Integrator.

13.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Hypersonic SQL Database.

JDBC Driver

Oracle Data Integrator is installed with a JDBC driver for Hypersonic SQL. This driver
directly uses the TCP/IP network layer and requires no other installed component or
configuration.

13.3 Setting up the Topology

Setting up the Topology consists of:

1. Creating a Hypersonic SQL Data Server

ORACLE 13-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 13
Setting Up an Integration Project

2. Creating a Hypersonic SQL Physical Schema

13.3.1 Creating a Hypersonic SQL Data Server

A Hypersonic SQL data server corresponds to an Hypersonic SQL Database
connected with a specific Hypersonic SQL user account. This user will have access to
the database via a physical schema in Oracle Data Integrator created under the data
server.

Create a data server for the Hypersonic SQL technology using the standard
procedure, as described in Creating a Data Server of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator. This section details only the fields
required or specific for defining a Hypersonic SQL data server:

1. In the Definition tab:
* Name: Name of the data server that will appear in Oracle Data Integrator
e Server: Physical name of the data server
* User/Password: Hypersonic SQL user with its password (usually sa)
2. Inthe JDBC tab:
e JDBC Driver: org. hsgl db. j dbcDri ver
e JDBC URL: j dbc: hsql db: hsql : // <host >: <port >
The URL parameters are:
— <host >: Hypersonic SQL machine network name or IP address

— <port>: Port number

13.3.2 Creating a Hypersonic SQL Physical Schema

Create a physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

13.4 Setting Up an Integration Project

ORACLE

Setting up a project using the Hypersonic SQL database follows the standard
procedure. See Creating an Integration Project of Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Hypersonic SQL:

- CKMHSQL

Import also the Generic SQL KMs into your project. See for more information about
these KMs.

13-3



Chapter 13
Creating and Reverse-Engineering a Hypersonic SQL Model

13.5 Creating and Reverse-Engineering a Hypersonic SQL
Model

This section contains the following topics:

e Create a Hypersonic SQL Model

* Reverse-engineer a Hypersonic SQL Model

13.5.1 Create a Hypersonic SQL Model

Create a Hypersonic SQL Model using the standard procedure, as described in
Creating a Model of Developing Integration Projects with Oracle Data Integrator.

13.5.2 Reverse-engineer a Hypersonic SQL Model

Hypersonic SQL supports Standard reverse-engineering - which uses only the abilities
of the JDBC driver.

To perform a Standard Reverse- Engineering on Hypersonic SQL use the usual
procedure, as described in Reverse-engineering a Model of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

13.6 Setting up Changed Data Capture

The ODI Hypersonic SQL Knowledge Modules support the Changed Data Capture
feature. See Working with Changed Data Capture of Developing Integration Projects
with Oracle Data Integrator for details on how to set up journalizing and how to use
captured changes.

Hypersonic SQL Journalizing Knowledge Modules support Simple Journalizing and
Consistent Set Journalizing. The JKMs use triggers to capture data changes on the
source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 13-2for
journalizing Hypersonic SQL tables.

Table 13-2 Hypersonic SQL Journalizing Knowledge Modules

|
KM Notes

JKM HSQL Consistent Creates the journalizing infrastructure for consistent
journalizing on Hypersonic SQL tables using triggers.
Enables consistent Changed Data Capture on
Hypersonic SQL.

JKM HSQL Simple Creates the journalizing infrastructure for simple
journalizing on Hypersonic SQL tables using triggers.

ORACLE 13-4



Chapter 13
Setting up Data Quality

13.7 Setting up Data Quality

Oracle Data Integrator provides the CKM HSQL for checking data integrity against
constraints defined on a Hypersonic SQL table. See Flow Control and Static Control in
Developing Integration Projects with Oracle Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 13-3to perform
a check on Hypersonic SQL.

Table 13-3 Check Knowledge Modules for Hypersonic SQL Database

Recommended KM Notes

CKM HSQL Checks data integrity against constraints defined on a
Hypersonic SQL table. Rejects invalid records in the error table
created dynamically. Can be used for static controls as well as
flow controls.

13.8 Designing a Mapping

ORACLE

You can use Hypersonic SQL as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning a Hypersonic SQL data server.

Oracle Data Integrator does not provide specific loading or integration knowledge
modules for Hypersonic SQL. Use the KMs or the KMs specific to the other
technologies used as source, target, or staging area.

13-5



IBM Informix

It is important to understand how to work with IBM Informix in Oracle Data Integrator.
This chapter includes the following sections:

* Introduction
e Concepts
*  Knowledge Modules

e Specific Requirements

14.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an IBM Informix database.
Oracle Data Integrator features are designed to work best with IBM Informix, including
reverse-engineering, journalizing, and mappings.

14.2 Concepts

The IBM Informix concepts map the Oracle Data Integrator concepts as follows: An
IBM Informix Server corresponds to a data server in Oracle Data Integrator. Within this
server, an Owner maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM
Informix database.

14.3 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 14-1 for
handling IBM Informix data. These KMs use IBM Informix specific features. It is also
possible to use the generic SQL KMs with the IBM Informix database. See for more
information.

ORACLE 14-1



Chapter 14
Knowledge Modules

Table 14-1 IBM Informix Knowledge Modules

Knowledge Module

Description

IKM Informix Incremental Update

JKM Informix Consistent

JKM Informix Simple

LKM Informix to Informix (SAME SERVER)

RKM Informix

RKM Informix SE

SKM Informix

Integrates data in an IBM Informix target table in incremental update
mode. This IKM creates a temporary staging table to stage the data
flow. It then compares its content to the target table to guess which
records should be inserted and which others should be updated. It
also allows performing data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your IBM Informix target
table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server
as the target.

Creates the journalizing infrastructure for consistent journalizing on
IBM Informix tables using triggers.

Enables Consistent Set Changed Data Capture on IBM Informix.

The source database must have transaction logging enabled to use
this KM.

Creates the journalizing infrastructure for simple journalizing on IBM
Informix tables using triggers.

Enables Simple Changed Data Capture on IBM Informix.

Loads data from a source Informix database to a target Informix
staging area located inside the same server.

This LKM creates a view in the source database and a synonym in
the staging area database. This method if often more efficient than
the standard "LKM SQL to SQL" when dealing with large volumes of
data.

Consider using this LKM if your source tables are located on an IBM
Informix database and your staging area is on an IBM Informix
database located in the same Informix server.

Both databases must have the same logging mode enabled to use
this KM.

Retrieves IBM Informix specific metadata for tables, views, columns,
primary keys and non unique indexes. This RKM accesses the
underlying Informix catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata
from your Informix catalog when it is not provided by the default
JDBC reverse-engineering process.

Retrieves IBM Informix SE specific metadata for tables, views,
columns, primary keys and non unique indexes. This RKM accesses
the underlying Informix SE catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata
from your Informix SE catalog when it is not provided by the default
JDBC reverse-engineering process.

Generates data access Web services for IBM Informix databases.
See SKM SQL in for more details.

ORACLE

14-2



Chapter 14
Specific Requirements

14.4 Specific Requirements

There are no specific requirements for using IBM Informix in Oracle Data Integrator.

ORACLE 14-3



IBM DB2 for iISeries

It is important to understand how to work with IBM DB2 for iSeries in Oracle Data
Integrator.
This chapter includes the following sections:

* Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering an IBM DB2/400 Model
e Setting up Changed Data Capture

e Setting up Data Quality

» Designing a Mapping

e Specific Considerations with DB2 for iSeries

e Troubleshooting

15.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in IBM DB2 for iSeries. Oracle
Data Integrator features are designed to work best with IBM DB2 for iSeries, including
reverse-engineering, changed data capture, data integrity check, and mappings.

15.1.1 Concepts

The IBM DB2 for iSeries concepts map the Oracle Data Integrator concepts as follows:
An IBM DB2 for iSeries server corresponds to a data server in Oracle Data Integrator.
Within this server, a collection or schema maps to an Oracle Data Integrator physical
schema. A set of related objects within one schema corresponds to a data model, and
each table, view or synonym will appear as an ODI datastore, with its attributes,
columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to IBM
DB2 for iSeries.

15.1.2 Knowledge Modules

ORACLE

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 15-1 for
handling IBM DB2 for iSeries data. In addition to these specific IBM DB2 for iSeries
Knowledge Modules, it is also possible to use the generic SQL KMs with IBM DB2 for
iSeries. See Generic SQL for more information.

15-1



Table 15-1 DB2 for iSeries KMs

Chapter 15
Installation and Configuration

Knowledge Module

Description

IKM DB2 400 Incremental Update

IKM DB2 400 Incremental Update (CPYF)

IKM DB2 400 Slowly Changing Dimension

JKM DB2 400 Consistent

JKM DB2 400 Simple

JKM DB2 400 Simple (Journal)

LKM DB2 400 Journal to SQL

LKM DB2 400 to DB2 400

LKM SQL to DB2 400 (CPYFRMIMPF)

RKM DB2 400

Integrates data in an IBM DB2 for iSeries target table in incremental
update mode.

Integrates data in an IBM DB2 for iSeries target table in incremental
update mode. This IKM is similar to the "IKM DB2 400 Incremental
Update" except that it uses the CPYF native OS/400 command to
write to the target table, instead of set-based SQL operations.

Integrates data in an IBM DB2 for iSeries target table used as a Type
Il Slowly Changing Dimension in your Data Warehouse.

Creates the journalizing infrastructure for consistent journalizing on
IBM DB2 for iSeries tables using triggers.

Creates the journalizing infrastructure for simple journalizing on IBM
DB2 for iSeries tables using triggers.

Creates the journalizing infrastructure for simple journalizing on IBM
DB2 for iSeries tables using the journals.

This KM is deprecated.

Loads data from an IBM DB2 for iSeries source to a ANSI SQL-92
compliant staging area database. This LKM can source from tables
journalized with the JKM DB2 400 Simple (Journal) as it refreshes the
CDC infrastructure from the journals.

This KM is deprecated.

Loads data from an IBM DB2 for iSeries source database to an IBM

DB2 for iSeries staging area database using CRTDDMF to create a

DDM file on the target and transfer data from the source to this DDM
file using CPYF.

Loads data from an ANSI SQL-92 compliant source database to an
IBM DB2 for iSeries staging area database using a temporary file
loaded into the DB2 staging area with CPYFRMIPF.

Retrieves metadata for IBM DB2 for iSeries: physical files, tables,
views, foreign keys, unique keys.

15.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the IBM DB2 for iSeries technology:

*  System Requirements and Certifications

* Technology Specific Requirements

»  Connectivity Requirements

15.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network

(OTN):

ORACLE

15-2



Chapter 15
Setting up the Topology

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn .

15.2.2 Technology Specific Requirements

Some of the Knowledge Modules for IBM DB2 for iSeries use specific features of this
database. The following restrictions apply when using these Knowledge Modules.

See the IBM DB2 for iSeries documentation for additional information on these topics.

Using System commands

This section describes the requirements that must be met before using iSeries specific
commands in the knowledge modules for IBM DB2 for iSeries:

*  Knowledge modules using system commands such as CPYF or CPYFRMIPF
require that the agent runs on the iSeries runs on the iSeries system.

Using CDC with Journals

This section describes the requirements that must be met before using the Journal-
based Change Data Capture with IBM DB2 for iSeries:

e This journalizing method requires that a specific program is installed and runs on
the iSeries system. See Setting up Changed Data Capture for more information.

15.2.3 Connectivity Requirements
This section lists the requirements for connecting to an IBM DB2 for iSeries system.

JDBC Driver

Oracle Data Integrator is installed with a default IBM DB2 Datadirect Driver. This driver
directly uses the TCP/IP network layer and requires no other installed component or
configuration. You can alternatively use the drivers provided by IBM, such as the
Native Driver when installing the agent on iSeries.

15.3 Setting up the Topology

Setting up the Topology consists of:

1. Creating a DB2/400 Data Server
2. Creating a DB2/400 Physical Schema

15.3.1 Creating a DB2/400 Data Server

An IBM DB2/400 data server corresponds to an iSeries server connected with a
specific user account. This user will have access to several databases in this server,
corresponding to the physical schemas in Oracle Data Integrator created under the
data server.

15.3.1.1 Creation of the Data Server

Create a data server for the IBM DB2/400 technology using the standard procedure,
as described in Creating a Data Server of Developing Integration Projects with Oracle

ORACLE 15-3


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 15
Setting Up an Integration Project

Data Integrator. This section details only the fields required or specific for defining an
IBM DB2/400 data server:

1. In the Definition tab:
 Name: Name of the data server that will appear in Oracle Data Integrator
* Host (Data Server): Name or IP address of the host
e User/Password: DB2 user with its password
2. Inthe JDBC tab:
e JDBC Driver: webl ogi c. j dbc. db2. DB2Dr i ver

e JDBC URL: jdbc: as400:// <host>[; libraries=<library>]
[; <property>=<val ue>...]

The URL parameters are:
— <host>: server network name or IP address
— <library>: default library or collection to access

— <property>=<value>: connection properties. Refer to the driver's
documentation for a list of available properties.

15.3.2 Creating a DB2/400 Physical Schema

Create an IBM DB2/400 physical schema using the standard procedure, as described
in Creating a Physical Schema in Administering Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a
schema (collection or library). The work schema should point to a temporary schema
and the data schema should point to the schema hosting the data to integrate.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

15.4 Setting Up an Integration Project

ORACLE

Setting up a project using the IBM DB2 for iSeries database follows the standard
procedure. See Creating an Integration Project of Developing Integration Projects with
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with IBM DB2 for iSeries:

* |IKM DB2 400 Incremental Update

* IKM DB2 400 Slowly Changing Dimension
* JKM DB2 400 Consistent

* JKM DB2 400 Simple

* RKM DB2 400

« CKM SQL

15-4



Chapter 15
Creating and Reverse-Engineering an IBM DB2/400 Model

15.5 Creating and Reverse-Engineering an IBM DB2/400
Model

This section contains the following topics:

* Create an IBM DB2/400 Model
* Reverse-engineer an IBM DB2/400 Model

15.5.1 Create an IBM DB2/400 Model

Create an IBM DB2/400 Model using the standard procedure, as described in Creating
a Model of Developing Integration Projects with Oracle Data Integrator.

15.5.2 Reverse-engineer an IBM DB2/400 Model

IBM DB2 for iSeries supports both Standard reverse-engineering - which uses only the
abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM
to retrieve the metadata.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

Consider switching to customized reverse-engineering for retrieving more metadata.
IBM DB2 for iSeries customized reverse-engineering retrieves the physical files,
database tables, database views, columns, foreign keys and primary and alternate
keys.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on IBM DB2 for iSeries use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on IBM DB2 for iSeries with a RKM,
use the usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator. This section details only the fields
specific to the IBM DB2/400 technology:

In the Reverse tab of the IBM DB2/400 Model, select the KM RKM DB2 400. <pr oj ect
nane>.

15.6 Setting up Changed Data Capture

Oracle Data Integrator handles Changed Data Capture on iSeries with two methods:

» Trigger-based CDC on the journalized tables. This method is set up with the JKM
DB2/400 Simple or JKM DB2/400 Consistent. This CDC is not different from the
CDC on other systems. See Setting up Trigger-Based CDC for more information.

* Log-based CDC by reading the native iSeries transaction journals. This
method is set up with the JKM DB2/400 Journal Simple and used by the LKM

ORACLE 15-5



Chapter 15
Setting up Changed Data Capture

DB2/400 Journal to SQL. This method does not support Consistent Set CDC and
requires a platform-specific configuration. See Setting up Trigger-Based CDC for
more information.

15.6.1 Setting up Trigger-Based CDC

This method support Simple Journalizing and Consistent Set Journalizing. The IBM
DB2 for iSeries JKMs use triggers to capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 15-2 for
journalizing IBM DB2 for iSeries tables using triggers.

See Working with Changed Data Capture of Developing Integration Projects with
Oracle Data Integrator for details on how to set up journalizing and how to use
captured changes.

Table 15-2 IBM DB2 for iSeries Journalizing Knowledge Modules

I
KM Notes

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent
journalizing on IBM DB2 for iSeries tables using
triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple
journalizing on IBM DB2 for iSeries tables using
triggers.

15.6.2 Setting up Log-Based CDC

This method is set up with the JKM DB2/400 Journal Simple and used by the LKM
DB2/400 Journal to SQL. It uses also an RPG program to retrieve the journal content.

15.6.2.1 How does it work?

A iSeries transaction journal contains the entire history of the data changes for a given
period. It is handled by the iSeries system for tables that are journaled. A journaled
table is either a table from a collection, or a table for which a journal receiver and a
journal have been created and journaling started.

Reading the transaction journal is performed by the a journal retriever CDCRTVJRN
RPG program provided with Oracle Data Integrator. This program loads on demand
the tables of the Oracle Data Integrator CDC infrastructure (J$ tables) with the
contents from the transaction journal.

This program can be either scheduled on the iSeries system or called by the KMs
through a stored procedure also called CDCRTVJRN. This stored procedure is
automatically created by the JKM DB2/400 Journal Simple and invoked by the LKM
DB2/400 Journal to SQL when data extraction is needed.

15.6.2.2 CDCRTVJRN Program Details

This program connects to the native iSeries journal for a given table, and captures
changed data information into the Oracle Data Integrator Journal (J$).

The program works as follows:

ORACLE 15-6



Chapter 15
Setting up Changed Data Capture

Journalized table attributes retrieval:

a. Table attributes retrieval: PK columns, J$ table name, last journal reading
date.

b. Attributes enrichment (short names, record size, etc.) using the QSYS. QADBXREF
system table.

c. Location of the iSeries journal using the QADBRTVFD() API.
PK columns information retrieval:

a. PK columns attributes (short name, data types etc.) using the QSYS. QADBI FLD
system table.

b. Attributes enrichment (real physical length) using the QUSLFLD({) API.

c. Data preprocessing (RPG to SQL datatype conversion) for the primary key
columns.

Extraction the native journal information into the J$ table:
a. Native journal reading using the QJoRet ri eveJournal Entries() API.
b. Conversion of the raw data to native SQL data and capture into the J$ table.

c. Update of the changes count.

This program accepts the parameters listed in Table 15-3.

Table 15-3 CDCRTVJRN Program Parameters
|

Parameter RPG Type SQL Type Description

SbsTName A138 Char(138) Full name of the subscribers table in the

following format: <Li b>. <Tabhl e>.
Example: ODI LI B. SNP_SUBSCRI BERS

JrnTName A138 Char(138) Full name of the table for which the extract is

done from the journal.
Example: FI NANCE. MY_COVPANY_ORDERS

JrnSubscriber A50 Char(50) Name of the current subscriber. It must

previously have been added to the list of
subscribers.

LogMessages Al Char(1) Flag activating logging in a spool file. Possible

values are: Y enable logging, and N to disable
logging.

15.6.2.3 Installing the CDC Components on iSeries

ORACLE

There are two major components installed on the iSeries system to enable native
journal reading:

The CDCRTVJRN Program. This program is provided in an archive that should
installed in the iSeries system. The installation process is described below.

The CDC Infrastructure. It includes the standard CDC objects (J$ tables, views, ...)
and the CDCRTVJRN Stored Procedure created by the JKM and used by the LKM
to read journals. This stored procedure executes the CDCRTVJRN program.

15-7



ORACLE

Chapter 15
Setting up Changed Data Capture

# Note:

The program must be set up in a library defined in the Topology as the default
work library for this iSeries data server. In the examples below, this library is
called ODI LI B.

Installing the CDCRTVJRN Program

To install the CDCRTVJRN program:

1.

Identify the location the program SAVF file. It is located in the ODI _HOME/ set up/
manual / cdc-i seri es directory, and is also available on the Oracle Data Integrator
Companion CD.

Connect to the iSeries system.

Create the default work library if it does not exist yet. You can use, for example,
the following command to create an ODILIB library:

CRTLI B LI B(ODI LI B)

Create in this library an empty save file that has the same name as the SAVF file
(mandatory). For example:

CRTSAVF FI LE(ODI LI B/ SAVPGVD110)

Upload the local SAVF file on the iSeries system in the library and on top of the file
you have just created. Make sure that the upload process is performed in binary
mode.

An FTP command sequence performing the upload is given below as an example.

FTP 192.0.2.1

LCD /oracl e/ odi / set up/ manual / cdc-i seri es/
Bl

CD O LIB

PUT SAVPGWD110

BYE

Restore the objects from the save file, using the RSTOBJ command. For example:

RSTOBJ OBJ(*ALL) SAVLI B( CDCSNPRELE) DEV(*SAVF) OBJTYPE(*ALL) SAVF(CDI LI B/
SAVPGWD110) RSTLI B( ODI LI B)

Check that the objects are correctly restored. The target library should contain a
program object called CDCRTVJRN.

Use the following command below to view it:

WRKOBJ OBJ( QDI LI B/ CDCRTVJRN)

Example 15-1 The CDCRTVJRN Stored Procedure

This procedure is used to call the CDCRTVJRN program. It is automatically created by
the JKM DB2/400 Journal Simple KM when journalizing is started. Journalizing startup
is described in the Change Data Capture topic.

The syntax for the stored procedure is provided below for reference:

create procedure CDI LI B. CDCRTVIRN(

SbsTNane char (138), /* Qualified Subscriber Table Name */
JrnTNane char(138), /* Qualified Table Name */

15-8



Chapter 15
Setting up Changed Data Capture

Subscriber char(50) , /* Subscriber Name */
LogMessages char(1) /* Create a Log (Y - Yes, N- No) */
)

| anguage rpgle
external nanme ' QDI LI B/ CDCRTVIRN

# Note:

The stored procedure and the program are installed in a library defined in the
Topology as the default work library for this iSeries data server

15.6.2.4 Using the CDC with the Native Journals

Once the program is installed and the CDC is setup, using the native journals consists
in using the LKM DB2/400 Journal to SQL to extract journalized data from the iSeries
system. The retrieval process is triggered if the RETRIEVE_JOURNAL_ENTRIES
option is set to t rue for the LKM.

15.6.2.5 Problems While Reading Journals

ORACLE

This section list the possibly issues when using this changed data capture method.

CDCRTVJRN Program Limits
The following limits exist for the CDCRTVJRN program:

* The source table should be journaled and the iSeries journal should be readable
by the user specified in the iSeries data server.

»  The source table should have one PK defined in Oracle Data Integrator.

* The PK declared in Oracle Data Integrator should be in the 4096 first octets of the
physical record of the data file.

*  The number of columns in the PK should not exceed 16.

*  The total number of characters of the PK column names added to the number of
columns of the PK should not exceed 255.

» Large object datatypes are not supported in the PK. Only the following SQL types
are supported in the PK: SMALLINT, INTEGER, BIGINT, DECIMAL (Packed),
NUMERIC (Zoned), FLOAT, REAL, DOUBLE, CHAR, VARCHAR, CHAR
VARYING, DATE, TIME, TIMESTAMP and ROWID.

*  Several instances of CDCRTVJRN should not be started simultaneously on the
same system.

* Reinitializing the sequence number in the iSeries journal may have a critical
impact on the program (program hangs) if the journal entries consumption date
(SNP_SUBSCRIBERS.JRN_CURFROMDATE) is before the sequence
initialization date. To work around this problem, you should manually set a later
date in SNP_SUBSCRIBERS.JRN_CURFROMDATE.

Troubleshooting the CDCRTVJRN Program

The journal reading process can be put in trace mode:

15-9



Chapter 15
Setting up Data Quality

» either by calling from your query tool the CDCRTVJRN stored procedure with the
LogMsg parameter setto Y,

e or by forcing the CREATE_SPOOL_FILE LKM option to 1 then restarting the
mapping.

The reading process logs are stored in a spool file which can be reviewed using the

WRKSPLF command.

You can also review the raw contents of the iSeries journal using the DSPJRN
command.

15.7 Setting up Data Quality

Oracle Data Integrator provides the generic CKM SQL for checking data integrity
against constraints defined in DB2/400. See Flow Control and Static Control in
Developing Integration Projects with Oracle Data Integrator for details.

See Generic SQL for more information.

15.8 Designing a Mapping

You can use IBM DB2 for iSeries as a source, staging area or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning an IBM DB2 for iSeries data server.

15.8.1 Loading Data from and to IBM DB2 for iSeries

IBM DB2 for iSeries can be used as a source, target or staging area of a mapping. The
LKM choice in the Mapping Flow tab to load data between IBM DB2 for iSeries and
another type of data server is essential for the performance of a mapping.

15.8.1.1 Loading Data from IBM DB2 for iSeries

ORACLE

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from IBM DB2 for iSeries to a target or staging area
database. These optimized IBM DB2 for iSeries KMs are listed in Table 15-4.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific
to the other technology involved to load data from IBM DB2 for iSeries to a target or
staging area database.

Table 15-4 KMs for loading data from IBM DB2 for iSeries
|

Source or Staging KM Notes
Area Technology
IBM DB2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for

iSeries source database to an IBM
DB2 for iSeries staging area
database using CRTDDMF to create
a DDM file on the target and transfer
data from the source to this DDM file
using CPYF.

15-10



Chapter 15
Designing a Mapping

Table 15-4 (Cont.) KMs for loading data from IBM DB2 for iSeries
|

Source or Staging KM Notes

Area Technology

IBM DB2 for iSeries LKM DB2 400 Journal to Loads data from an IBM DB2 for
SQL iSeries source to a ANSI SQL-92

compliant staging area database.
This LKM can source from tables
journalized with the JKM DB2 400
Simple (Journal) as it refreshes the
CDC infrastructure from the journals.

15.8.1.2 Loading Data to IBM DB2 for iSeries

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into an IBM DB2 for iSeries
database. These optimized IBM DB2 for iSeries KMs are listed in Table 15-5.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific
to the other technology involved.

Table 15-5 KMs for loading data to IBM DB2 for iSeries
|

Source or Staging Area KM Notes
Technology
IBM DB2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for

iSeries source database to an IBM
DB2 for iSeries staging area
database using CRTDDMF to create
a DDM file on the target and transfer
data from the source to this DDM file

using CPYF.
SQL LKM SQL to DB2 400 Loads data from an ANSI SQL-92
(CPYFRMIMPF) compliant source database to an IBM

DB2 for iSeries staging area
database using a temporary file
loaded into the DB2 staging area
with CPYFRMIPF.

15.8.2 Integrating Data in IBM DB2 for iSeries

ORACLE

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for IBM DB2 for iSeries. These optimized IBM DB2 for iSeries
KMs are listed in Table 15-6. |

In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Mapping Flow tab determines the performances and
possibilities for integrating.

15-11



Chapter 15
Specific Considerations with DB2 for iSeries

Table 15-6 KMs for integrating data to IBM DB2 for iSeries

|
KM Notes

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in
incremental update mode.

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in

(CPYF) incremental update mode. This IKM is similar to the "IKM
DB2 400 Incremental Update" except that it uses the
CPYF native 0S/400 command to write to the target table,
instead of set-based SQL operations.

IKM DB2 400 Slowly Changing Integrates data in an IBM DB2 for iSeries target table used
Dimension as a Type |l Slowly Changing Dimension in your Data
Warehouse.

Using Slowly Changing Dimensions

For using slowly changing dimensions, make sure to set the Slowly Changing
Dimension value for each attributes of the target datastore. This value is used by the
IKM DB2 400 Slowly Changing Dimension to identify the Surrogate Key, Natural Key,
Overwrite or Insert Column, Current Record Flag and Start/End Timestamps columns.

15.9 Specific Considerations with DB2 for iSeries

This section provides specific considerations when using Oracle Data Integrator in an
iSeries environment.

15.9.1 Installing the Run-Time Agent on iSeries

The Oracle Data Integrator Standalone Agent can be installed on iSeries.

See the Installing and Configuring Oracle Data Integrator, for more information.

15.9.2 Alternative Connectivity Methods for iSeries

It is preferable to use the built-in IBM DB2 Datadirect driver in most cases. This driver
directly use the TCP/IP network layer and require no other components installed on
the client machine. Other methods exist to connect DB2 on iSeries.

15.9.2.1 Using Client Access

It is also possible to connect through ODBC with the IBM Client Access component
installed on the machine. This method does not have very good performance and does
not support the reverse engineering and some other features. It is therefore not
recommended.

15.9.2.2 Using the IBM JT/400 and Native Drivers

This driver appears as a j t 400. zi p file you must copy into your Oracle Data Integrator
installation drivers directory.

To connect DB2 for iSeries with a Java application installed on the iSeries machine,
IBM recommends that you use the JT/400 Native driver (j t 400nati ve. j ar) instead of

ORACLE 15-12



Chapter 15
Troubleshooting

the JT/400 driver (j t 400. j ar). The Native driver provides optimized access to the DB2
system, but works only from the iSeries machine.

To support seamlessly both drivers with one connection, Oracle Data Integrator has a
built-in Driver Wrapper for AS/400. This wrapper connects through the Native driver if
possible, otherwise it uses the JT/400 driver. It is recommended that you use this
wrapper if running agents installed on AS/400 systems.

To configure a data server with the driver wrapper:

1. Change the driver and URL to your AS/400 server with the following information:
e Driver: com sunopsi s. j dbc. driver. w apper. SnpsDri ver W apper
e URL.: j dbc: snps400: <machi ne_name>[ ; par anl=val uel[; par an2=val ue2...]]

2. Set the following java properties for the java machine the run-time agent deployed
on iSeries:

e HOST_NAME: comma separated list of host names identifying the current
machine.

e HOST_I P: IP Address of the current machine.

The value allow the wrapper to identify whether this data server is accessed on the
iSeries machine or from a remote machine.

15.10 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using Oracle Knowledge Modules. It contains the following topics:

»  Troubleshooting Error messages

e Common Problems and Solutions

15.10.1 Troubleshooting Error messages

ORACLE

Errors in Oracle Data Integrator appear often in the following way:

java.sql . SQLException: The application server rejected the connection.(Signon was
cancel ed.)

at ...

at ...

the j ava. sql . SQLExcept i oncode simply indicates that a query was made to the database
through the JDBC driver, which has returned an error. This error is frequently a
database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
DB2 or iSeries documentation. If its contains sometimes an error code specific to your
system, with which the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the erroneous task.

15-13



Chapter 15
Troubleshooting

15.10.2 Common Problems and Solutions

This section describes common problems and solutions.

15.10.2.1 Connection Errors

ORACLE

UnknownDr i ver Excepti on
The JDBC driver is incorrect. Check the name of the driver.

The application requester cannot establish the connection.(<name or |P
address>) Cannot open a socket on host: <name or |P address>, port: 8471
(Exception: java.net.UnknownHost Exception: <name or | P address>)

Oracle Data Integrator cannot connect to the database. Either the machine name
or IP address is invalid, the DB2/400 Services are not started or the TCP/IP
interface on AS/400 is not started. Try to ping the AS/400 machine using the same
machine name or IP address, and check with the system administrator that the
appropriate services are started.

Dat asource not found or driver name not specified
The ODBC Datasource specified in the JDBC URL is incorrect.

The application server rejected the connection. (Signon was cancel ed.) Database
login failed, please verify userid and password. Communication Link Failure.
Comm RC=8001 - CWBSY0001 - ...

The user profile used is not valid. This error occurs when typing an invalid user
name or an incorrect password.

Communi cation Link Failure

An error occurred with the ODBC connectivity. Refer to the Client Access
documentation for more information.

SQL5001 - Colum qualifier or table & undefined. SQ5016 - bject name &l not
valid for nanming convention

Your JDBC connection or ODBC Datasource is configured to use the wrong
naming convention. Use the ODBC Administrator to change your datasource to
use the proper (*SQL or *SYS) naming convention, or use the appropriate option
in the JDBC URL to force the naming conversion (for instance,
jdbc:as400://192.0.2.1;naming=system) . Note that if using the system naming
convention in the Local Object Mask of the Physical Schema, you must enter
%SCHEMA/%OBJECT instead of %SCHEMA.%OBJECT.

"*SQL" should always be used unless your application is specifically designed for
*SYS. Oracle Data Integrator uses the *SQL naming convention by default.

SQL0204 &1 in & type *&3 not found

The table you are trying to access does not exist. This may be linked to an error in
the context choice, or in the sequence of operations (E.g.: The table is a
temporary table which must be created by another mapping).

Hexadeci mal characters appear in the target tables. Accentuated characters are
incorrectly transferred.

The iSeries computer attaches a language identifier or CCSID to files, tables and
even fields (columns). CCSID 65535 is a generic code that identifies a file or field

15-14



Chapter 15
Troubleshooting

as being language independent: i.e. hexadecimal data. By definition, no translation
is performed by the drivers. If you do not wish to update the CCSID of the file, then
translation can be forced, in the JDBC URL, thanks to the flags ccsid=<ccsid
code> and convert _ccsid_65535=yes|no. See the driver's documentation for more
information.

e SQ0901 SQL systemerror
This error is an internal error of the DB2/400 system.
e SQL0206 Colum &1 not in specified tables

Keying error in a mapping/join/filter. A string which is not a column name is
interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a
datastore with a structure recently modified. It is necessary to impact in the error
table the modification, or drop the error tables and let Oracle Data Integrator
recreate it in the next execution.

ORACLE 15-15



IBM DB2 UDB

It is important to understand how to work with IBM DB2 UDB in Oracle Data Integrator.
This chapter includes the following sections:

* Introduction
e Concepts
*  Knowledge Modules

e Specific Requirements

16.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data in an IBM DB2 UDB
database. Oracle Data Integrator features are designed to work best with IBM DB2
UDB, including journalizing, data integrity checks, and mappings.

16.2 Concepts

The IBM DB2 UDB concepts map the Oracle Data Integrator concepts as follows: An
IBM DB2 UDB database corresponds to a data server in Oracle Data Integrator. Within
this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM
DB2 UDB database.

16.3 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 16-1 for
handling IBM DB2 UDB data. These KMs use IBM DB2 UDB specific features. It is
also possible to use the generic SQL KMs with the IBM DB2 UDB database. See
Generic SQL for more information

ORACLE 16-1



Table 16-1 DB2 UDB KMs

Chapter 16
Knowledge Modules

Knowledge Module

Description

IKM DB2 UDB Incremental Update

IKM DB2 UDB Slowly Changing Dimension

JKM DB2 UDB Consistent

JKM DB2 UDB Simple

LKM DB2 UDB to DB2 UDB
(EXPORT_IMPORT)

ORACLE

Integrates data in an IBM DB2 UDB target table in incremental
update mode. This IKM creates a temporary staging table to stage
the data flow. It then compares its content to the target table to
identify which records should be inserted and which others should be
updated. It also allows performing data integrity check by invoking the
CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB target
table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server
as the target.

Integrates data in an IBM DB2 UDB target table used as a Type Il
Slowly Changing Dimension in your Data Warehouse. This IKM relies
on the Slowly Changing Dimension metadata set on the target
datastore to figure out which records should be inserted as new
versions or updated as existing versions.

Because inserts and updates are done in bulk set-based processing,
this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB target
table as a Type Il Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data server
as the target and the appropriate Slowly Changing Dimension
metadata needs to be set on the target datastore.

Creates the journalizing infrastructure for consistent journalizing on
IBM DB2 UDB tables using triggers.

Enables Consistent Changed Data Capture on IBM DB2 UDB.

Creates the journalizing infrastructure for simple journalizing on IBM
DB2 UDB tables using triggers.

Enables Simple Changed Data Capture on IBM DB2 UDB.

Loads data from an IBM DB2 UDB source database to an IBM DB2
UDB staging area database using the native EXPORT / IMPORT
commands.

This module uses the EXPORT CLP command to extract data in a
temporary file. Data is then loaded in the target staging DB2 UDB
table using the IMPORT CLP command. This method if often more
efficient than the standard LKM SQL to SQL when dealing with large
volumes of data.

Consider using this LKM if your source tables are located on a DB2
UDB database and your staging area is on a different DB2 UDB
database.

16-2



Table 16-1 (Cont.) DB2 UDB KMs

Chapter 16
Specific Requirements

Knowledge Module

Description

LKM File to DB2 UDB (LOAD)

LKM SQL to DB2 UDB

LKM SQL to DB2 UDB (LOAD)

SKM IBM UDB

Loads data from a File to a DB2 UDB staging area database using
the native CLP LOAD Command.

Depending on the file type (Fixed or Delimited) this LKM will generate
the appropriate LOAD script in a temporary directory. This script is
then executed by the CLP and automatically deleted at the end of the
execution. Because this method uses the native IBM DB2 loaders, it
is more efficient than the standard LKM File to SQL when dealing
with large volumes of data.

Consider using this LKM if your source is a large flat file and your
staging area is an IBM DB2 UDB database.

Loads data from any ANSI SQL-92 standard compliant source
database to an IBM DB2 UDB staging area. This LKM is similar to the
standard LKM SQL to SQL described in Generic SQL except that you
can specify some additional specific IBM DB2 UDB parameters.

Loads data from any ANSI SQL-92 standard compliant source
database to an IBM DB2 UDB staging area using the CLP LOAD
command.

This LKM unloads the source data in a temporary file and calls the
IBM DB2 native loader using the CLP LOAD command to populate
the staging table. Because this method uses the native IBM DB2
loader, it is often more efficient than the LKM SQL to SQL or LKM
SQL to DB2 UDB methods when dealing with large volumes of data.

Consider using this LKM if your source data located on a generic
database is large, and when your staging area is an IBM DB2 UDB
database.

Generates data access Web services for IBM DB2 UDB databases.
See SKM SQL in Generic SQL for more information.

16.4 Specific Requirements

Some of the Knowledge Modules for IBM DB2 UDB use operating system calls to
invoke the IBM CLP command processor to perform efficient loads. The following
restrictions apply when using such Knowledge Modules:

* The IBM DB2 UDB Command Line Processor (CLP) as well as the DB2 UDB
Connect Software must be installed on the machine running the Oracle Data

Integrator Agent.

*  The server names defined in the Topology must match the IBM DB2 UDB connect
strings used for these servers.

* Some DB2 UDB JDBC drivers require DB2 UDB Connect Software to be installed
on the machine running the ODI Agent.

See the IBM DB2 documentation for more information.

ORACLE

16-3



Salesforce.com

It is important to understand how to work with Salesforce.com in Oracle Data
Integrator.
This chapter includes the following sections:

* Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a Salesforce.com Model

» Designing a Mapping

17.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates with Salesforce.com. Oracle Data
Integrator features are designed to work best with Salesforce.com, including reverse-
engineering and mappings.

17.1.1 Concepts

The Salesforce.com database concepts map the Oracle Data Integrator concepts as
follows: A Salesforce.com server corresponds to a data server in Oracle Data
Integrator. Within this server, a database maps to an Oracle Data Integrator physical
schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a
Salesforce.com data server. See Connectivity Requirements for more details.

17.1.2 Knowledge Modules

Oracle Data Integrator provides no Knowledge Module (KM) specific to the
Salesforce.com technology. You can use the generic SQL KMs to perform the data
integration and transformation operations of Salesforce.com data. See Generic SQL
for more information.

17.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Salesforce.com Knowledge Module:

»  System Requirements and Certifications
» Technology Specific Requirements

e Connectivity Requirements

ORACLE 17-1



Chapter 17
Setting up the Topology

17.2.1 System Requirements and Certifications

Before performing any installation, you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conl t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htnl .

17.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Salesforce.com in Oracle
Data Integrator.

17.2.3 Connectivity Requirements

This section lists the requirements for connecting to a Salesforce.com database.

JDBC Driver

Oracle Data Integrator uses the Salesforce.com JDBC Driver to connect to a
Salesforce.com database.

17.3 Setting up the Topology

Setting up the topology consists of:

e Creating a Salesforce.com Data Server

e Creating a Physical Schema for Salesforce.com Data Server

17.3.1 Creating a Salesforce.com Data Server

Create a data server for the Salesforce.com technology using the standard procedure,
as described in Creating a Data Server of Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
Salesforce.com data server:

1. In the Definition tab:
* Name: Name of the data server that will appear in Oracle Data Integrator

* Instanceldblink (Data Server): Not required for Salesforce.com. Leave this
field blank.

* User/Password: User name and password for connecting to the data server
2. Inthe JDBC tab:
e JDBC Driver: webl ogi c. j dbc. sf or ce. SFor ceDri ver

e JDBC URL: The URL used for connecting to the data server. For example,
j dbc: webl ogi c: sforce://1ogin.sal esforce.com

3. Inthe Properties section:

ORACLE 17-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 17
Setting Up an Integration Project

» ConfigOptions: The configuration options that you want to use. For example,
(Audi t Col ums=al | ; MapSyst enCol urmNanes=0; ) .

- DatabaseName: The instance of the database. This needs to be changed as
per the JDBC URL used.

# Note:

For more information on the connection properties supported by the
Salesforce.com driver, see http:// medi a. dat adi r ect . coml downl oad/ docs/
jdbc/alljdbc/ hel p. ht m #page/ j dbcconnect 9%2FConnecti on_Properties_11. htn
923w DOEZTSY.

17.3.2 Creating a Physical Schema for Salesforce.com Data Server

An Oracle Data Integrator physical schema corresponds to a pair of schemas:

* A Data Schema into which Oracle Data Integrator will look for the source and
target data structures for the mapping.

* A Work Schema into which Oracle Data Integrator can create and manipulate
temporary work data structures associated with the sources and targets contained
in the data schema.

Create a physical schema for the Salesforce.com data server using the standard
procedure, as described in Creating a Physical Schema in Administering Oracle Data
Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

17.4 Setting Up an Integration Project

Setting up a project using Salesforce.com follows the standard procedure. See
Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

Import the following generic SQL KMs into your project for getting started with
Salesforce.com:

* |KM SQL to SQL Control Append
* |IKM SQL to SQL Incremental Update

See Generic SQL for more information about these KMs.

ORACLE 17-3


http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/jdbcconnect/Connection_Properties_11.html%23wwID0EZT5Y
http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/jdbcconnect/Connection_Properties_11.html%23wwID0EZT5Y
http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/jdbcconnect/Connection_Properties_11.html%23wwID0EZT5Y

Chapter 17
Creating and Reverse-Engineering a Salesforce.com Model

< Note:
The following KMs are available in the system by default:
* LKM SQL to Oracle (Built-In)
e LKM SQL to SQL (Built-In)
¢ LKM SQL Multi-Connect
e IKM Oracle Insert
e |KM Oracle Update

17.5 Creating and Reverse-Engineering a Salesforce.com
Model

This section contains the following topics:

* Create a Salesforce.com Model

» Reverse-engineer a Salesforce.com Model

17.5.1 Create a Salesforce.com Model

Create a Salesforce.com model using the standard procedure, as described in
Creating a Model of Developing Integration Projects with Oracle Data Integrator.

17.5.2 Reverse-engineer a Salesforce.com Model

Salesforce.com supports Standard reverse-engineering - which uses only the abilities
of the JDBC driver.

To perform a Standard reverse-engineering on Salesforce.com, use the usual
procedure, as described in Reverse-engineering a Model of Developing Integration
Projects with Oracle Data Integrator.

17.6 Designing a Mapping
You can use Salesforce.com as a source or a target of a mapping, but not as the
staging area.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations below help in the selection of the KM for
different situations concerning a Salesforce.com server.

17.6.1 Loading Data from and to Salesforce.com

Salesforce.com can be used as a source or a target of a mapping. The LKM choice in
the Mapping Flow tab to load data between Salesforce.com and another type of data
server is essential for the performance of a mapping.

ORACLE 17-4



Chapter 17
Designing a Mapping

17.6.1.1 Loading Data from Salesforce.com

Oracle Data Integrator does not provide specific knowledge modules for
Salesforce.com. Use the generic SQL KMs or the KMs specific to the technology used
as the staging area. The following table lists some generic SQL KMs that can be used
for loading data from Salesforce.com to any staging area.

Table 17-1 KMs to Load from Salesforce.com
]
Target or Staging Area KM Notes

Oracle LKM SQL to Oracle Loads data from any ANSI
SQL-92 source database to an
Oracle staging area.

SQL LKM SQL to SQL Loads data from an ANSI
SQL-92 compliant database
for an ANSI SQL-92 compliant
staging area. This LKM uses
the agent to read selected
data from the source database
and write the result into the
staging temporary table
created dynamically.

17.6.1.2 Loading Data to Salesforce.com

Because Salesforce.com cannot be used as staging area, you cannot use a LKM to
load data into Salesforce.com. See Integrating Data in Salesforce.com for more
information on how to integrate data into Salesforce.com.

17.6.2 Integrating Data in Salesforce.com

ORACLE

Oracle Data Integrator does not provide specific knowledge modules for
Salesforce.com. Use the Generic SQL KMs or the KMs specific to the technology used
as the staging area. For integrating with Salesforce.com, only the IKMs that do not
require a LKM and that do not require the staging area to be set on target can be
used. The following table lists the generic SQL KMs that can be used for integrating
data from a staging area to Salesforce.com.

Table 17-2 KMs for Integrating Data to Salesforce.com

|
KM Notes

IKM SQL to SQL Control Append Integrates data into an ANSI-SQL92 target
database from any ANSI-SQL92 compliant
staging area. This IKM is typically used for
ETL configurations: source and target tables
are in different databases and the mapping's
staging area is set to the logical schema of the
source tables or a third schema.

17-5



ORACLE

Chapter 17
Designing a Mapping

Table 17-2 (Cont.) KMs for Integrating Data to Salesforce.com
|

KM

Notes

IKM SQL to SQL Incremental Update

Integrates data from any AINSI-SQL92
compliant database into any AINSISQL92
compliant database target table in incremental
update mode. This IKM is typically used for
ETL configurations: source and target tables
are on different databases and the mapping's
staging area is set to the logical schema of the
source tables or a third schema.

To use this IKM, the FLOW TABLE_LOCATI ON
option should be set to STAG NG

17-6



Business Intelligence

It is important to understand how to work with Business Intelligence in Oracle Data

Integrator.
Part Il contains the following chapters:

e Oracle Business Intelligence Enterprise Edition
e Oracle Business Intelligence Enterprise Edition Data Lineage

e Oracle Business Intelligence Cloud Service

ORACLE



Oracle Business Intelligence Enterprise
Edition

It is important to understand how to work with Oracle Business Intelligence Enterprise
Edition in Oracle Data Integrator.
This chapter includes the following sections:

* Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering an Oracle Bl Model
e Setting up Data Quality

» Designing a Mapping

18.1 Introduction

Oracle Data Integrator (ODI) seamlessly integrates data from Oracle Business
Intelligence Enterprise Edition (Oracle BI).

Oracle Data Integrator provides specific methods for reverse-engineering and
extracting data from ADF View Objects (ADF-VOSs) via the Oracle Bl Physical Layer
using mappings.

18.1.1 Concepts

The Oracle Business Intelligence Enterprise Edition concepts map the Oracle Data
Integrator concepts as follows: An Oracle Bl Server corresponds to a data server in
Oracle Data Integrator. Within this server, a catalog/owner pair maps to an Oracle
Data Integrator physical schema.

Oracle Data Integrator connects to this server to access, via a bypass connection pool,
the physical sources that support ADF View Objects.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an
Oracle BI Server.

18.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 18-1 for
handling Oracle Bl data. These KMs use Oracle Bl specific features.

ORACLE 18-1



Chapter 18
Installation and Configuration

Table 18-1 Oracle Bl KMs
]

Knowledge Module Description

RKM Oracle BI (Jython) Retrieves the table structure in Oracle Bl (columns and primary keys).

LKM Oracle Bl to Oracle (DBLink) Loads data from an Oracle Bl source to an Oracle database area
using dblinks.

LKM Oracle Bl to SQL Loads data from an Oracle Bl source to any ANSI SQL-92 compliant
database.

IKM Oracle Bl to SQL Append Integrates data into a ANSI-SQL92 target database from an Oracle Bl
source.

18.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle Bl Knowledge Modules:

*  System Requirements and Certifications
* Technology Specific Requirements

»  Connectivity Requirements

18.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn.

18.2.2 Technology Specific Requirements

There are no technology-specific requirements for using Oracle Bl in Oracle Data
Integrator.

18.2.3 Connectivity Requirements

This section lists the requirements for connecting to an Oracle Bl Server.

JDBC Driver

Oracle Data Integrator uses the Oracle Bl native driver to connect to the Oracle BI
Server. This driver must be installed in your Oracle Data Integrator drivers directory.

Bypass Connection Pool

In Oracle BIl, a sqlbypass database connection must be setup to bypass the ADF layer
and directly fetch data from the underlying database. The name of this connection pool
is required for creating the Oracle Bl data server in Oracle Data Integrator.

ORACLE 18-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 18
Setting up the Topology

18.3 Setting up the Topology

Setting up the Topology consists of:

1.
2.

Creating an Oracle Bl Data Server

Creating an Oracle Bl Physical Schema

18.3.1 Creating an Oracle Bl Data Server

A data server corresponds to a Oracle Bl Server. Oracle Data Integrator connects to
this server to access, via a bypass connection pool, the physical sources that support
ADF View Objects. These physical objects are located under the view objects that are
exposed in this server. This server is connected with a user who has access to several
catalogs/schemas. Catalog/schemas pairs correspond to the physical schemas that
are created under the data server.

18.3.1.1 Creation of the Data Server

Create a data server for the Oracle Bl technology using the standard procedure, as
described in Creating a Data Server of Developing Integration Projects with Oracle

Data Integrator. This section details only the fields required or specific for defining a
Oracle Bl data server:

ORACLE

1.

In the Definition tab:

¢ Name: Name of the data server that will appear in Oracle Data Integrator
e Server: Leave this field empty.

» User/Password: Oracle Bl user with its password

In the JDBC tab:

e JDBC Driver: oracl e. bi . j dbc. AnaJdbcDri ver

 JDBC URL: jddbc: oracl ebi : // <host >: <port >

<host > is the server on which Oracle Bl server is installed. By default the
<port > number is 9703.

In the Properties tab, add a JDBC property with the following key/value pair.
e Key: NQ SESSI ON. SELECTPHYSI CAL

e Value: Yes

" Note:

This option is required for accessing the physical data. Using this option
makes the Oracle Bl connection read-only.

In the Flexfield tab, set the name of the bypass connection pool in the
CONNECTION_POOL flexfield.

*  Name: CONNECTI ON_POOL

e Value: <connection pool name>

18-3



Chapter 18
Setting Up an Integration Project

¢ Note:

Note this bypass connection pool must also be defined in the Oracle Bl
server itself.

18.3.2 Creating an Oracle Bl Physical Schema

Create a Oracle Bl physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

In the physical schema the Data and Work Schemas correspond each to an Oracle Bl
Catalog/schema pair.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

18.4 Setting Up an Integration Project

Setting up a project using an Oracle Bl Server follows the standard procedure. See
Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Oracle BI:

*  RKM Oracle Bl (Jython)LKM Oracle BI to Oracle (DBLink)LKM Oracle Bl to
SQLIKM Oracle Bl to SQL Append

Import also the knowledge modules (IKM, CKM) required for the other technologies
involved in your project.

18.5 Creating and Reverse-Engineering an Oracle Bl Model

This section contains the following topics:

» Create an Oracle Bl Model

e Reverse-engineer an Oracle Bl Model

18.5.1 Create an Oracle Bl Model

Create an Oracle Bl Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

18.5.2 Reverse-engineer an Oracle Bl Model

Oracle Bl supports Customized reverse-engineering.

To perform a Customized Reverse-Engineering on Oracle Bl with a RKM, use the
usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator. This section details only the fields
specific to the Oracle Bl technology:

ORACLE 18-4



Chapter 18
Setting up Data Quality

1. Inthe Reverse Engineer tab of the Oracle Bl Model, select the KM RKM Oracl e Bl
(Jython). <proj ect name>.

This KM implements the USE_LOG logging option to trace the reverse-engineering
process.

18.6 Setting up Data Quality

Data integrity check is not supported in an Oracle Bl Server. You can check data
extracted Oracle Bl in a staging area using another technology.

18.7 Designing a Mapping
You can use Oracle Bl as a source of a mapping.

The KM choice for a mapping determines the abilities and performance of this
mapping. The recommendations in this section help in the selection of the KM for
different situations concerning an Oracle Bl server.

18.7.1 Loading Data from and to Oracle Bl

The LKM choice in the Loading Knowledge Module tab to load data between Oracle Bl
and another type of data server is essential for the performance of a mapping.

18.7.1.1 Loading Data from Oracle Bl

Use the knowledge modules listed in Table 18-2 to load data from an Oracle Bl server
to a target or staging area database.

Table 18-2 KMs for loading data From Oracle BI
|

Staging ArealTarget KM Notes

Technology

Oracle LKM Oracle Bl to Oracle Loads data from an Oracle Bl
(Dblink) source to an Oracle Database

staging area using DBLinks.

To use this knowledge module, a
DBLink must be manually created
from the source Fusion Transaction
DB (that is the database storing the
underlying data tables) to the
Oracle staging area. This DBLink
name must be the one specified in
the Oracle staging area data server
connection.

SQL LKM Oracle Bl to SQL Loads data from an Oracle BI
Source to an ANSI SQL-92
compliant staging area database via
the agent.

ORACLE 18-5



Chapter 18
Designing a Mapping

Table 18-2 (Cont.) KMs for loading data From Oracle Bl
|

Staging ArealTarget KM Notes

Technology

SQL IKM Oracle Bl to SQL Loads and Integrates data from an
Append Oracle Bl Source to an ANSI

SQL-92 compliant staging area
database via the agent.

To use this KM, you must set the
staging are of your mapping on the
source Oracle Bl server.

In this configuration, no temporary
table is created and data is loaded
and integrated directly from the
source to the target tables.

18.7.1.2 Loading Data to Oracle Bl

Oracle Bl cannot be used as a staging area. No LKM targets Oracle BI.

18.7.2 Integrating Data in Oracle Bl

Oracle BI cannot be used as a target or staging area. It is not possible to integrate
data into Oracle BI with the knowledge modules.

ORACLE 18-6



Oracle Business Intelligence Enterprise
Edition Data Lineage

You can integrate Oracle Business Intelligence Enterprise Edition (OBIEE) and Oracle
Data Integrator (ODI) metadata to build report-to-source data lineage.

" Note:

This feature is deprecated.

This chapter includes the following sections:

* Introduction

* Installing the Lineage in an OBIEE Server

*  Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage
* Refreshing the OBIEE Lineage from Existing Exports

* Automating the Lineage Tasks

* Using the Lineage in OBIEE Dashboards

19.1 Introduction

OBIEE users need to know the origin of the data displayed on their reports. When this
data is loaded from source systems into the data warehouse using ODlI, it is possible
to use the Oracle Data Integrator Lineage for Oracle Business Intelligence feature to
consolidate Oracle Data Integrator (ODI) metadata with Oracle Business Intelligence
Enterprise Edition (OBIEE) and expose this metadata in a report-to-source data
lineage dashboards in OBIEE.

19.1.1 Components

ORACLE

The OBIEE Lineage is made up of the following components:

e Lineage Tables: These tables consolidate both the OBIEE and ODI metadata.
They are stored in the ODI Work Repository.

e Lineage Artifacts for OBIEE: This pre-packaged OBIEE artifacts are deployed in
OBIEE to access the lineage information. These include:

— Lineage RPD containing the Physical, Logical and Presentation layers to
access the Lineage Tables,

— Lineage Web Catalog Requests to be used in existing dashboard to create
report -to-source dashboards,

— Images used in these dashboards.

19-1



Chapter 19
Introduction

¢ Command Line Tools and a Wizard to automate the lineage tasks:
— Deployment of the Lineage Artifacts for OBIEE in an OBIEE instance,
— Extraction of the OBIEE Metadata from a OBIEE Instance,
— Consolidation of the OBIEE and ODI Metadata in the ODI repository.

19.1.2 Lineage Lifecycle

This section describes the different phases of using OBIEE Lineage and the persons
involved in these phases.

19.1.2.1 Setting up the Lineage

OBIEE or ODI administrators set up the lineage process. Setting up this process is
required once and consists of the following tasks:

1. Deploying the Lineage Artifacts for OBIEE

2. Configuring and automating the Extraction/Consolidation (Refresh) Process

19.1.2.2 Refreshing the Lineage

OBIEE or ODI project managers refresh the lineage when either ODI or OBIEE
metadata has changed, to synchronize the lineage tables content with their active
OBIEE and ODI systems' metadata. This refresh process:

1. Extracts the OBIEE Metadata from a OBIEE Instance

2. Consolidates the OBIEE and ODI Metadata in the Lineage Tables stored in the
ODI Work Repository.

During this phase, a correspondence between the ODI Data Models and the OBIEE
Physical Databases must be provided. By doing this mapping, you indicate that an
existing model definition in Oracle Data Integrator corresponds to an existing database
in OBIEE. These two should contain the same tables. By providing this mapping
information, you enable the lineage to consolidate the OBIEE and ODI metadata and
build an end-to-end lineage.

19.1.2.3 Using the Lineage

The lineage is used to extend existing dashboards. You can create specific links in
these dashboards to browse the data lineage and view the execution statistics of the
ODI sessions.

You can also customize your own dashboards using the pre-packaged Lineage
Artifacts for OBIEE.

Figure 19-1 describes the Lineage lifecycle after the initial setup.

ORACLE 19-2



Figure 19-1 Lineage Lifecycle

p

! =

ODI Repository

ODI Metadata
* Models
= Interfaces/Packages

@

T
Lineage Tables
= OBI-EE Metadata (Catalog = RPD)
= DD Metadata

<

kE

3

Chapter 19

Installing the Lineage in an OBIEE Server

a

.q_..:
Il

OBI-EE Server
Web Catalog

Dashboards

* Based on DWH reports
* Links to the Lineage

BIEE Webcat Lineage
* Requests Requests
* Pre-packaged
Requests
RPD
BIEE RPD Lineage RPD
* Physical * Physical
* | agical = | agical

« Presantation

* Prasantation

The BIEE metadata is extracted (1) and consolidated with the ODI Metadata in the
lineage tables (2). The lineage tables are accessed from the end-user's dashboard (3)
through the Lineage Artifacts deployed in the BIEE Server.

19.2 Installing the Lineage in an OBIEE Server

This section contains information and instructions for installing OBIEE Lineage:

* Installation Overview
e Requirements
e Installation Instructions

e Post-Installation Tasks

19.2.1 Installation Overview

Installing Lineage in an OBIEE Server deploys the required OBIEE artifacts in the
OBIEE Repository and Web Catalog. The OBIEE Lineage artifacts are the Lineage
RPD, the Lineage Web Catalog Requests, and the dashboard images. These artifacts

ORACLE

are used to access the lineage content from your reports and dashboards.

The installation is performed using the OBIEE Lineage Wizard. This wizard guides you
through the installation, and also through the configuration and refresh of the Oracle
Data Integrator (ODI) Lineage for Oracle Business Intelligence Enterprise edition

(OBIEE).

19-3



Chapter 19
Installing the Lineage in an OBIEE Server

After installation and configuration are complete, there are some post-installation tasks
you need to perform, depending on your OBIEE version.

The complete installation flow is as follows:

Installation Flow when Using OBIEE 10g

When using OBIEE 10g, the OBIEE Lineage wizard installs only the Lineage RPD. To
install the Lineage Web Catalog Requests and the dashboard images, you have to
perform some additional tasks. The following installation flow describes the complete
installation instructions, including the deployment of the Web Catalog Requests and
Images:

1. Review the Requirements.
2. Installing and Starting the OBIEE Lineage Wizard.

Note that you can also use the install lineage script instead of the OBIEE Lineage
wizard. See Automating Lineage Deployment for more information.

3. Use the OBIEE Lineage wizard to install Lineage in OBIEE Server and deploy the
OBIEE Lineage artifacts. See Deploying the OBIEE Lineage Artifacts using the
Wizard.

4. Deploy the Web Catalog requests in the OBIEE 10g Web Catalog. See Post-
Installation Tasks.

5. Deploy the images. See Post-Installation Tasks.
6. Update the BI Physical Layer Connection to ODI Work Repository. See Post-
Installation Tasks.

Installation Flow when Using OBIEE 11g

When using OBIEE 11g, the OBIEE Lineage wizard installs only the Lineage RPD and
the Web catalog Requests. To install the dashboard images, you have to perform
some additional tasks. The following installation flow describes the complete
installation instructions, including the deployment Images:

1. Review the Requirements.
2. Installing and Starting the OBIEE Lineage Wizard.

Note that you can also use the install lineage script instead of the OBIEE Lineage
wizard. See Automating Lineage Deployment for more information.

3. Use the OBIEE Lineage wizard to install Lineage in OBIEE Server and deploy the
OBIEE Lineage artifacts. See Deploying the OBIEE Lineage Artifacts using the
Wizard.

4. Deploy the images. See Post-Installation Tasks.

5. Update the Bl Physical Layer Connection to ODI Work Repository. See Post-
Installation Tasks.

19.2.2 Requirements

Before installing OBIEE Lineage, you should review the following requirements:

* The OBIEE Lineage Wizard requires a Java Runtime Environment 1.6 (JRE).
Before starting the wizard, make sure that your JAVA_HOME is pointing to a valid
JRE.

ORACLE 19-4



Chapter 19
Installing the Lineage in an OBIEE Server

*  The work repository has to be stored in an Oracle database.

» Before installing the artifacts, stop the Bl Server and Bl Presentation services
component.

* Make a backup copy of the OBIEE RPD and Webcat.
* Make sure the RPD file used by the server is NOT open in the Bl Admin tool.

» Install and Execute OBIEE Lineage Wizard or Command Line tools on the
machine where the Bl Admin tool is installed.

* The database user used to connect the Work Repository schema must have
sufficient privileges to create views in the schema hosting the Work Repository.

19.2.3 Installation Instructions

This section provides the installation instructions and contains the following topics:

* Installing and Starting the OBIEE Lineage Wizard
» Deploying the OBIEE Lineage Artifacts using the Wizard

# Note:

After performing the installation instructions, please perform the required post-
installation tasks describes in Post-Installation Tasks.

19.2.3.1 Installing and Starting the OBIEE Lineage Wizard

The OBIEE Lineage wizard is included in the odi obi | i neage. zi p file, which is located in
the <ODI _Home>/ odi / i sc/ bi ee- | i neage directory.

Perform the following steps to start the OBIEE Lineage wizard:

1. Extract the contents of the zip file to a directory. For example, extract the content
of this file to C:\ bi ee_| i neage\ folder.

2. Start the wizard by executing one of the following commands from the / bi n sub-
folder:

e On UNIX operating systems:
.Irefreshlineage. sh

*  On Windows operating systems:
refreshl i neage. bat

You can also use the i nstal | | i neage. bat script to start the wizard. When one of
these scripts is started with no parameter, it opens the OBIEE Lineage Wizard

ORACLE 19-5



Chapter 19
Installing the Lineage in an OBIEE Server

# Note:

You can also use the install lineage script instead of the OBIEE Lineage wizard
for installing the Lineage Artifacts from a command line. The install and export
options are supported only on Windows. The refresh lineage option is
supported both on Windows and Unix. See Automating Lineage Deployment for
more information.

19.2.3.2 Deploying the OBIEE Lineage Artifacts using the Wizard

Table 19-1

This section describes how to install OBIEE Lineage in OBIEE Server and how to
deploy the required OBIEE Lineage artifacts in the OBIEE Repository and Web
Catalog using the OBIEE Lineage wizard.

To install Lineage in OBIEE Server and deploy the required artifacts:

1. Start the wizard as described in Installing and Starting the OBIEE Lineage Wizard.
The wizard displays a sequence of screens, in the order listed in Table 19-1.
2. Follow the instructions in Table 19-1.

If you need additional help with any of the installation screens, click Help to access the
online help.

Instructions for Deploying the OBIEE Lineage Artifacts

No. Screen When Does This Screen Description and Action Required
Appear?
1 Welcome Screen Always Click Next to continue.
2 Select Action Screen  Always Select Install Lineage in OBIEE Server.
Click Next to continue.

3 OBIEE Repository If Install Lineage in OBIEE Provide the connection information to your existing
Connection Server or Export Metadata OBIEE Repository for deploying the required Lineage
Information Screen from OBIEE and Refresh  Artifacts:

Lineage is selectedonthe . oracle Home: Specify the Oracle Home
Select Action screen. directory for the OBIEE installation. You can
click Browse to select an existing directory in
your system. For example: C:/obieellg/
Oracle_BI1
*  RPD File Location: Enter the location of your
BIEE Repository (RPD) file.
e User: Enter the OBIEE repository administrator
user name. This field is only mandatory for
OBIEE 10g and is disabled for OBIEE 11g.
« Password: Enter the OBIEE repository
administrator password.
Click Next to continue.
ORACLE 19-6



Chapter 19
Installing the Lineage in an OBIEE Server

Table 19-1 (Cont.) Instructions for Deploying the OBIEE Lineage Artifacts

No. Screen When Does This Screen Description and Action Required
Appear?
4 OBIEE Web Catalog If Install Lineage in OBIEE Provide the connection information to the OBIEE
Connection Server or Export OBIEE Web Catalog for installing the required Lineage

Information Screen Metadata and Refresh
Lineage is selected on the
Select Action screen.

If using OBIEE 10g, this
screen is disabled. You must
manually install the Lineage
Artifacts. See Post-
Installation Tasks for more

information.
5 Wallet Information Always
Screen
6 Action Complete Always
Screen

Artifacts:

e OBIEE Version: Displays the OBIEE version.
This version is detected from the RPD selected
in the previous screen.

«  Web Catalog Location: Enter the location of
the OBIEE Web Catalog.

*  OBIEE Instance Home: Enter the Home
Directory of your OBIEE Instance. For example:
C:\ OBl EE\ M ddl ewar e\ i nst ances\i nstancel.

«  Web Catalog Folder Name: Enter the name of
the web catalog folder into which the Lineage
Artifacts will be deployed. For example: / shar ed

Click Next to continue and deploy the lineage

artifacts.

Select Store passwords in secure wallet check
box.

Enter the wallet password or create a new wallet
password and click OK.

Click Next to continue.

Note: If you do not want to store the passwords in
secure wallet, ensure that the Store passwords in
secure wallet check box is not selected and click
Next.

Click Finish to complete the wizard.

After installing the Lineage on the OBIEE Server, you should deploy the OBIEE
Lineage Artifacts. See Post-Installation Tasks for more information.

19.2.4 Post-Installation Tasks

This section describes the post-installation tasks. Theses tasks depend on your

OBIEE Server version.

For OBIEE 10g, you need to perform the following post-installation tasks:

* Deploy the Web Catalog Requests in the OBIEE 10g Web Catalog

*  Deploy the Dashboard Images

* Update the BI Physical Layer Connection to the ODI Work Repository

For OBIEE 11g, you need to perform the following post-installation tasks:

*  Deploy the Dashboard Images

» Update the Bl Physical Layer Connection to the ODI Work Repository

ORACLE

19-7



ORACLE

Chapter 19
Installing the Lineage in an OBIEE Server

Deploy the Web Catalog Requests in the OBIEE 10g Web Catalog

< Note:

This procedure is required for OBIEE 10g only.

The OBIEE/ODI Lineage comes with a Web Catalog for building your reports on top of
the Lineage and ODI Repository tables.To import the Web Catalog requests, perform
the following steps:

1. Connect to your Web Catalog.
To connect to your Web Catalog:

a. Select Start > All Programs > Oracle Business Intelligence > Catalog
Manager.

b. Click File > Open Catalog.
c. Provide the path to the web catalog used by the Bl Server.
d. Click OK.

2. (Optional Step) Make a backup copy of the catalog into which you want to install
the lineage artifacts.

To make a backup copy:

a. Select the catalog.

b. Select File > Archive.

c. Provide a name for the archive file, for example webcat al og_backup. cat .
d. Click OK.

3. Expand the catalog and select the shared folder into which the ODI catalog items
will be imported.

4. Select File > Unarchive.

5. Inthe Unarchive catalog window, enter in the Archive File Path field the location of
the ODI catalog archive file. Note that this file is located in the /arti f act s/ 10g sub-
folder of the Lineage installation folder.

e For OBIEE 10.1.3.3, enter artifact s/ 10godi _cat al og_ar chi ve_10g. cat
« For OBIEE 10.1.3.4, enter artifacts/10g/ odi _catal og_archive_10_1_3_4. cat
6. Click OK.

A new folder called ODI appears in the catalog folder.

Deploy the Dashboard Images

The prepackaged requests use images that should be deployed into the application
server that hosts the analytic application. Theses tasks depend on your OBIEE Server
version:

19-8



Chapter 19
Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

* For OBIEE 10g, copy the dashboard images (hie.gif andlin. gif, located in the /
artifacts/images sub-folder of the Lineage installation folder) to the res folder
under the deployment directory of the Bl analytics application.

For example:
<OC4J_HOME>\ | 2ee\ hone\ appl i cati ons\ anal ytics\anal ytics\res

e For OBIEE 11g, copy the dashboard images (hie.gif and lin.gif, located in the in
the /artifacts/i mges sub-folder of the Lineage installation folder) to the res folder
under the deployment directory of the Bl analytics application.

For example:
<DOVAI N_HOVE>\ ser ver s\ <SERVER NAME>\t np\ _W._user\anal ytics_11. 1. 1\ 7dezj | \ war

\res

Update the BI Physical Layer Connection to the ODI Work Repository

1. Start the Oracle Bl Administration tool. For example, select All Programs >
Oracle Business Intelligence > Administration.

2. Open the RPD file (. rpd) used by the BI Server.

3. Expand the ORACLE_ODI_REPOSITORY database in the OBIEE Physical Layer,
double-click the Connection Pool node, and edit the Connection Pool to match
your ODI work repository configuration:

a. Update the Data source name, Username and Password fields.
b. Click OK.

c. Right-click the Physical schema and rename it to match the schema of the
ODI Work Repository.

d. Click OK to save your changes.
4. Expand the renamed schema and test this updated connection as follows:

a. Right-click one of the tables of this physical schema and updating the row
count.

b. Right-click the same table again and select View data to view data with the
updated row count.

19.3 Exporting Metadata from OBIEE and Refreshing the
OBIEE Lineage

This section describes how to export metadata from the OBIEE Repository and Web
Catalog and how to consolidate it with ODI Metadata into the Lineage.

To export metadata from OBIEE and Refresh Lineage:

1. Start the OBIEE Lineage wizard as described in Installing and Starting the OBIEE
Lineage Wizard.

ORACLE 19-9



Chapter 19

Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

# Note:

" Note:

With OBIEE 10g it is not possible to automatically export the web catalog
content; As a consequence, you need to perform manually an export of the
web catalog content. See Exporting the OBIEE Web Catalog Report to a
Text File for more information.

You will provide the location of this export file to the wizard.

You can also use the refresh lineage script instead of the OBIEE Lineage
wizard. See Automating Lineage Refresh for more information.

The wizard displays a sequence of screens, in the order listed in Table 19-2.

2. Follow the instructions in Table 19-2.

If you need additional help with any of the installation screens, click Help to access the

online help.

Table 19-2 Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

No. Screen When Does This Screen Description and Action Required
Appear?
Welcome Screen Always Click Next to continue.

Select Action Screen  Always

3 OBIEE Repository If Install Lineage in OBIEE
Connection Server or Export Metadata
Information Screen from OBIEE and Refresh

Lineage is selected on the
Select Action screen

ORACLE

Select Export Metadata from OBIEE and Refresh
Lineage.

Click Next to continue.

Provide the connection information to the OBIEE
Repository for extracting Metadata:

Oracle Home: Specify the Oracle Home
directory for the OBIEE installation. You can
click Browse to select an existing directory in
your system. For example: C:/obieellg/
Oracle_BI1

RPD File Location: Enter the location of your
BIEE Repository (RPD) file.

User: Enter the OBIEE repository administrator
user name. This field is only mandatory for
OBIEE 10g and is disabled for OBIEE 11g.
Password: Enter the OBIEE repository
administrator password.

Click Next to continue.

19-10



Chapter 19

Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage

Table 19-2 (Cont.) Instructions for Exporting Metadata from OBIEE and Refreshing Lineage

No. Screen When Does This Screen Description and Action Required
Appear?

4 OBIEE Web Catalog If Install Lineage in OBIEE Provide the connection information to extract
Connection Server or Export OBIEE metadata from the OBIEE Web Catalog (OBIEE
Information Screen Metadata and Refresh 11g), or provide the location to a web catalog export

Lineage is selected on the  (OBIEE 10g):

Select Action screen. «  OBIEE Version: Enter the OBIEE version. This

If using OBIEE 10g, This version is selected from RPD previously

screen only allows selection selected.

of a Web Catalog Export .  web Catalog Location: Enter the location of

File. the OBIEE web catalog from which the metadata
is exported.
If using OBIEE 10g, this field is replaced with a
Web Catalog Export File field. Select the web
catalog export file created manually using the
procedure described in Exporting the OBIEE
Web Catalog Report to a Text File.

*  OBIEE Instance Home: Enter the home
directory of your OBIEE Instance. For example:
C:\ OBl EE\ M ddl ewar e\ i nst ances\i nst ancel. If
using OBIEE 10g, this field is disabled.

* Web Catalog Folder Name: Enter the name of
the web catalog folder that needs to be
exported. For example: / shar ed. If using OBIEE
10g, this field is disabled.

Click Next to continue and install the lineage

artifacts.

5 ODI Repository If Export Metadata from Provide the ODI repository connection information:
Connection OBIEE and Refresh Oracle Data Integrator Connection
Information Screen t!neage or Refresh e User: Enter the ODI username. This user should

ineage is selected on the h SUPERVISOR orivil
Select Action screen. ave - Priviieges.

e Password: Enter this user's password.

Database Connection (Master Repository)

e User: Enter the database user name to connect
to the schema (or database, library) that
contains the ODI Master Repository.

e Password: Enter this user's password.

e Driver Name: Enter the name of the driver used
to connect to the master repository.

e URL: Enter the URL used to connect to the
master repository.

Work Repository

*  Work Repository: Use the Select button to
select a work repository attached to the master
repository. The Lineage Tables will be created in
this Work Repository, and the lineage
consolidated into these tables.

Click Next to continue.

ORACLE 19-11



Chapter 19
Refreshing the OBIEE Lineage from Existing Exports

Table 19-2 (Cont.) Instructions for Exporting Metadata from OBIEE and Refreshing Lineage
]

No. Screen When Does This Screen Description and Action Required
Appear?

6 Mapping Information  If Export Metadata from Use this table to provide the correspondence
OBIEE and Refresh mapping between the ODI data models and the
Lineage or Refresh OBIEE physical schemas:

Lineage is selected on the

Select Action screen. From the Bl Mapping -Physical DB, Schema,

Catalog list, select the OBIEE physical schema
you want to map.

2. From the ODI Model list, select the ODI Model
you want to map to this OBIEE schema.

3. For each mapping that you want to define, click
Add. This adds a new row to the table.

4. Repeat the previous steps for each mapping.
Click Next to continue.
7 Wallet Information Always Select Store passwords in secure wallet check
Screen box.

Enter the wallet password or create a new wallet
password and click OK.

Click Next to continue.

Note: If you do not want to store the passwords in
secure wallet, ensure that the Store passwords in
secure wallet check box is not selected and click
Next.

8 Action Complete Always Click Finish to dismiss the wizard.
Screen

19.4 Refreshing the OBIEE Lineage from Existing Exports

This section describes how to refresh the OBIEE Lineage from existing exports. This
operation consolidates OBIEE Repository and Web Catalog exports manually created
with ODI Repository metadata into the Lineage. This section also describes how to
export the OBIEE Repository and the Web Catalog.

This section contains the following topics:

*  Exporting the OBIEE Repository Documentation to a Text File
*  Exporting the OBIEE Web Catalog Report to a Text File
* Refreshing the OBIEE Lineage From Existing Exports

19.4.1 Exporting the OBIEE Repository Documentation to a Text File

This section explains how to manually export the OBIEE Repository metadata for
consolidating it in the OBIEE Lineage.

To export the OBIEE Repository documentation to a text file:

1. Open the Oracle Bl Administration tool and connect to the OBIEE Repository
containing the metadata that you want to include in the lineage.

ORACLE 19-12



Chapter 19
Refreshing the OBIEE Lineage from Existing Exports

2. In the OBIEE Administration tool, select Tools > Utilities.

3. Inthe Utilities dialog, select the Repository Documentation utility and click
Execute.

4. Save the repository documentation in a temporary file, for example c:\tenp
\repo_doc. txt.

Make sure to save this repository documentation as Tab-separated values (*.txt)
file type

5. Click Save.

19.4.2 Exporting the OBIEE Web Catalog Report to a Text File

This section explains how to manually export the OBIEE Web Catalog metadata for
consolidating it in the OBIEE Lineage.

To export the OBIEE Web Catalog report to a text file:

1. Open OBIEE Catalog Manager and connect to the catalog that contains the
metadata that you want to include in the lineage.

2. Select the catalog folder containing the reports that you want to include in the
lineage, for example / shar ed/ Pai nt Deno or / shared/ QDI .

3. Select Tools > Create Report.

4. Inthe Create Catalog Report dialog, select the following columns to include in the
report: Owner, Request Folder, Request Name, Request Subject Area, Request
Criteria Formula, Request Criteria Table, Request Criteria Column.

M ake sure to include these columns in this precise order.
5. Save the report in a temporary file, for example c:\t enp\ webcat _doc. txt .
6. Click OK.
7. Check the Report Preview and click OK.

19.4.3 Refreshing the OBIEE Lineage From Existing Exports

ORACLE

This section describes how to refresh the OBIEE Lineage from existing OBIEE
Repository and Web Catalog exports created manually.

To refresh the OBIEE Lineage:

1. Start the OBIEE Lineage wizard as described in Installing and Starting the OBIEE
Lineage Wizard.

# Note:

You can also use the refresh lineage script instead of the OBIEE Lineage
wizard. See Automating Lineage Refresh for more information.

The wizard displays a sequence of screens, in the order listed in Table 19-3.

2. Follow the instructions in Table 19-3.

19-13



Chapter 19
Refreshing the OBIEE Lineage from Existing Exports

If you need additional help with any of the installation screens, click Help to access the
online help.

Table 19-3

Instructions for Refreshing the OBIEE Lineage Artifacts

No. Screen

When Does This Screen
Appear?

Description and Action Required

Welcome Screen

Select Action Screen

3 OBIEE Export
Location Screen

4 ODI Repository
Connection
Information Screen

ORACLE

Always

Always

Only if Refresh Lineage is
selected on the Select
Action screen.

If Export Metadata from
OBIEE and Refresh
Lineage or Refresh
Lineage is selected on the
Select Action screen.

Click Next to continue.

Select Refresh Lineage.
Click Next to continue.

Provide the location of the OBIEE metadata exports:

«  Repository Export File: Enter the location of
the repository export file. See Exporting the
OBIEE Repository Documentation to a Text File
for more information.

*  Web Catalog Export File: Enter the location of
the web catalog export file. See Exporting the
OBIEE Web Catalog Report to a Text File for
more information.

Click Next to continue.

Provide the ODI repository connection information:

Oracle Data Integrator Connection

e User: Enter the ODI username. This user should
have SUPERVISOR privileges.

e Password: Enter this user's password.

Database Connection (Master Repository)

e User: Enter the database user name to connect

to the schema (or database, library) that
contains the ODI Master Repository.

« Password: Enter this user's password.

e Driver Name: Enter the name of the driver used
to connect to the master repository.

e URL: Enter the URL used to connect to the
master repository.

Work Repository

*  Work Repository: Use the Select button to
select a work repository attached to the master
repository. The Lineage Tables will be created in
this Work Repository, and the lineage
consolidated into these tables.

Click Next to continue.

19-14



Chapter 19
Automating the Lineage Tasks

Table 19-3 (Cont.) Instructions for Refreshing the OBIEE Lineage Artifacts
]

No.

When Does This Screen
Appear?

Screen

Description and Action Required

5

Mapping Information  If Export Metadata from
OBIEE and Refresh
Lineage or Refresh
Lineage is selected on the

Select Action screen.

Wallet Information
Screen

Always

Action Complete
Screen

Always

Use this table to provide the correspondence
mapping between the ODI data models and the
OBIEE physical schemas:

From the Bl Mapping -Physical DB, Schema,
Catalog list, select the OBIEE physical schema
you want to map.

2. From the ODI Model list, select the ODI Model
you want to map to this OBIEE schema.

3. For each mapping that you want to define, click
Add. This adds a new row to the table.

4. Repeat the previous steps for each mapping.
Click Next to continue.

Select Store passwords in secure wallet check
box.

Enter the wallet password or create a new wallet
password and click OK.

Click Next to continue.

Note: If you do not want to store the passwords in
secure wallet, ensure that the Store passwords in
secure wallet check box is not selected and click
Next.

Click Finish to dismiss the wizard.

19.5 Automating the Lineage Tasks

Scripts are also provided to automate the lineage tasks. These scripts can be used
instead of the wizard and require that option values are provided in a property file

instead.

The scripts for automating the lineage tasks are in the / bi n sub-folder of the Lineage

installation folder.

This section describes how to automate lineage tasks with scripts and contains the

following topics:

e Configuring the Scripts

e Automating Lineage Deployment

e Automating Lineage Refresh

19.5.1 Configuring the Scripts

Before starting any of the scripts, you need to provide the configuration information in
a property file. This property file contains the values provided via the wizard user

interface.

ORACLE

19-15



ORACLE

# Note:

Chapter 19
Automating the Lineage Tasks

When running the wizard, a property file is automatically generated in the / t np
sub-folder of the Lineage installation folder. You can re-use this property file as
a starting point for working with the command line scripts.

Figure 19-4 lists the properties defined in the property file.

Table 19-4 Properties

Property Values Required Description
for
OBIEE_VERSION <10g| 11g> install | Version of the OBIEE Server.
export |
refresh
OBIEE_RPD <rpd_file_location> install | Location of the repository (.rpd) file
export of the BI Server.
OBIEE_WEBCAT  <web_catal og_f ol der install | Location of the Web Catalog folder
> export used by the Bl Server.
Required
only for
OBIEE 11g
OBIEE_RPD_PASS <rpd_file_pwl> install | The RPD File Password.
export
OBIEE_RPD_USER <rpd_file_usernane> install | The RPD File username.
export
Required
only for
OBIEE 10g
OBIEE_RPD_EXPO <rpd_export_file_l o refresh Location of the OBIEE Repository
RT_FILE cation> Documentation export file used for

OBIEE_WEBCAT_ <webcat _export _file refresh
EXPORT_FILE _location>

OBIEE_ORACLE_H <obi ee_oracl e_hone> install |

OME export
OBIEE_INSTANCE <obi ee_i nstance_hom install |
_HOME e> export
Required
only for
OBIEE 11g.
ODI_MASTER_URL <odi _nmaster_url > export |
refresh
ODI_MASTER_DRI <odi _master _driver> export|
VER refresh
ODI_SUPERVISOR <odi _supervi sor _pwd export |
_PASS > refresh

refreshing the lineage.

Location of the OBIEE Web
catalog report used for refreshing
the lineage.

The Bl Server Oracle Home
directory

The BI Server Instance Home
directory.

The JDBC URL to connect to the
ODI Master Repository

The DB Driver to connect to the
ODI Master Repository

The ODI Password for ODI User
with SUPERVISOR privileges

19-16



ORACLE

Chapter 19
Automating the Lineage Tasks

Table 19-4 (Cont.) Properties
|

Property Values Required Description

for
ODI_SUPERVISOR <odi _supervi sor_use export | The ODI user with SUPERVISOR
_USER r> refresh privileges
ODI_MASTER_US <odi _naster_user>  export | The ODI Master repository
ER refresh username
ODI_MASTER_PAS <odi _nast er _passwor export | The ODI Master repository
S d> refresh password
ODI_SECU_WORK <odi _work_rep> export | The Name of the Work Repository
_REP refresh containing the lineage tables.
OBIEE_WEBCAT_F <webcat _fol der_to_e install | The Web Catalog folder to export
OLDER_TO_EXPO xport> export in the report. For example: /
RT shar ed/ CDI
INSTALL_ODI_LIN <yes| no> only used in  Set to yes to deploy ODI Artifacts
EAGE script on the BIEE Server.
EXPORT_OBIEE_ <yes|no> only used in Set to yes to export Bl Metadata as
METADATA script flat files. Set to no to only refresh

lineage metadata.

Example 19-1 shows a sample property file:

Encoding Passwords

To avoid storing the passwords in plain text, use the encode. [ sh| cmd] <passwor d>
command to encode and store the passwords in the property file. If the password are
encoded, the property names will change to
ODI_MASTER_REPO_ENCODED_PASS, ODI_SUPERVISOR_ENCODED_PASS,
and OBIEE_RPD_ENCODED_PASS.

Example 19-1 Property File

# Version of BIEE Server. Values: 10g / 1lg
OBl EE_VERS| ON=10g

# The location of the repository documentation (.rpd) file of the Bl Server
OBl EE_RPD=C: / obi eell1g/i nst ances/ i nstance2/ bi f oundati on/ Oracl eBl Server Conponent /
coreappl i cation_obi s1/repository/ TechDeno_11g. rpd

# The location of the Wb Catalog fol der used by the Bl Server.

# Required only for OBIEE 11g.

OBl EE_WEBCAT=C:. / obi eel1g/ i nstances/ i nstance2/ bi f oundat i on/

O acl eBl Present ati onSer vi cesConponent / cor eappl i cati on_obi psl/ cat al og/ TechDeno

# The OBl EE Repository user. Required only for OBIEE 10g.
OBl EE_RPD_USER=Adni ni st rat or

# The password of the OBIEE Repository user

OBl EE_RPD_PASS=<ohi ee passwor d>

# The location of the exported Repository Docunentation file
OBl EE_RPD_EXPORT_FI LE=c: / odi /| i neage/ run/ repo_doc. t xt

# The location of the exported Wb catalog file

OBl EE_WEBCAT_EXPORT_FI LE=c: / odi / | i neage/ r un/ webcat _doc. t xt

19-17



Chapter 19
Automating the Lineage Tasks

# The Bl Server Oracle Hone directory

OBl EE_ORACLE_HOME=C: / obi eellg/ Oracl e_BI 1

# The Bl Server Instance Hone directory. Required only for OBIEE 1lg.
OBl EE_| NSTANCE_HOME=C: / obi eel1g/ i nst ances/ i nst ance2

# The JDBC URL to connect to the ODI Master Repository

ODI _MASTER_URL=j dbc: oracl e: thi n: @ ocal host: 1521: orcl

# The JDBC Driver to connect to the ODI Master Repository

ODI _MASTER DRI VER=or acl e. j dbc. Oracl eDri ver

# The Database user for the schema that contains the ODI master repository.
QDI _MASTER _USER=MASTER_REPO

# This user's password

ODI _MASTER_PASS=<mast er _passwor d>

# The ODI user with SUPERVI SOR privil eges

0Dl _SUPERVI SOR_USER=SUPERVI SOR

# The ODI Password of the ODI User with SUPERVI SOR privil eges
0Dl _SUPERVI SOR_PASS=<super vi sor passwor d>

# Wrk Repository containing the |ineage
0D _SECU WORK_REP=WORK_REP1

# The Web Catalog folder to export in the report. Eg: /shared/ ODl
OBl EE_VEBCAT_FOLDER _TO_EXPORT=/ shar ed/ CDI

# Option to deploy ODI Artifacts on the Bl Server.
| NSTALL_ODI _LI NEAGE=no

# Option to export Bl Metadata as flat files
EXPORT_OB| EE_METADATA=yes

19.5.2 Automating Lineage Deployment

ORACLE

The install lineage script deploys the following ODI Artifacts in the OBIEE Server:

* Lineage RPD
* Lineage Web Catalog (11g OBIEE only)

The script uses the OBIEE tools to merge the Lineage RPD and Lineage Web Catalog
with the BIEE Server components.

# Note:

After running this script, you have to perform the tasks described in Post-
Installation Tasks.

Syntax
The script syntax is as follows:

installlineage.bat [-propertyFile=property file] [-prop_name=prop_value [...]] [-
usage]

where:

o propertyfile represents the Property File that contains all the required properties
to install the lineage artifacts. See Configuring the Scripts for more information. If

19-18



Chapter 19
Automating the Lineage Tasks

no value is specified, the User Wizard will be launched to gather the required
information from the User. All the properties in the property file can be overridden
by specifying the property value in the command line option - pr opNane=pr opVal ue.

e prop_nane represents the property that can be specified. The value specified in
prop_val ue will override the value specified in the property file (if any).

e prop_val ue represents the value for the prop_nane property. It will override the value
specified in the property file (if any).

* usage prints the detailed usage information

e wal | et Passwor d represents the value of the wallet password. If this option is not
provided, you will be prompted to enter the password through command line. This
option is valid only for command line mode execution of the Lineage tool and not
the Ul wizard mode.

19.5.3 Automating Lineage Refresh

The refresh lineage script performs one of the following operations, depending on the
value set in the EXPORT_OBIEE_METADATA option defined in the property file:

e Export and refresh metadata, if the EXPORT_OBIEE_METADATA option is set to
Yes

* Refresh lineage metadata, if the EXPORT_OBIEE_METADATA option is set to No

Note that in order to use refreshl i neage. sh you need to manually copy the
repo_doc. text and the webcat _doc. txt files to the target Linux machine.

Syntax
The script syntax is as follows:

refreshlineage [-propertyFile=property file] [-mappingFile=mapping file] [-
prop_nane=prop_value [...]] [-usage]

where:

e propertyfile represents the Property File that contains all the required properties
to export and consolidate lineage metadata. See Configuring the Scripts for more
information. If no value is specified, the User Wizard will be launched to gather the
required information from the User. All the properties in the property file can be
overridden by specifying the property value in the command line option -
pr op_nane=prop_val ue.

* mappi ngfil e represents the mapping of the Model code to BI_PHYSICAL_DB,
Bl_PHYSICAL _SCHEMA and BI_PHYSICAL_CATALOG. This mapping must be
provided in the form of a comma separated values (. csv) file.

* wal | et Passwor d represents the value of the wallet password. If this option is not
provided, you will be prompted to enter the password through command line. This
option is valid only for command line mode execution of the Lineage tool and not
the Ul wizard mode.

ORACLE 19-19



Chapter 19
Using the Lineage in OBIEE Dashboards

< Note:

If propertyfile and mappi ngfil e options are not specified, the Ul wizard will be
shown to take user input. Otherwise the script will be run from command line
itself taking the values from the property file and mapping file to refresh lineage
and the Ul wizard will not be shown.

Example 19-2 shows a sample mapping file.
Example 19-2 Mapping File

# (c) Copyright Oacle. Al rights reserved.

# Sanpl e Mapping File for ODI-OBIEE Metadata Lineage

# Format: Bl Physical DB, Bl Physical Schema, Bl Physical Catalog, ODI Mdel ID
# Note: Lines starting with # are considered as coments.

DB- 1, Schema- 1, Cat al og- 1, nodel 1

DB- 2, Schema- 2, Cat al 0g- 2, nodel 2

19.6 Using the Lineage in OBIEE Dashboards

The OBIEE Lineage Artifact deployed in the BIEE Server allow for many usage
scenarios. The most common usage scenarios are listed in this section:

*  Viewing Execution Statistics

* Viewing and Filtering Lineage Data
* Using the Dashboard

* Using Lineage and Hierarchy

» Using Contextual Lineage

19.6.1 Viewing Execution Statistics

ORACLE

In this scenario, we want to display the execution statistics of ODI within a OBI-EE
dashboard.

To add ODI statistics, insert the RuntimeStats request from the Lineage Web Catalog
into your dashboard. The statistics appear as shown in Figure 19-2.

19-20



Chapter 19
Using the Lineage in OBIEE Dashboards

Figure 19-2 Runtime Statistics

ORACLE" Interactive Dashboards d SOUTHAMND  Cortact Center Dashbos
LY TR Dashboard Reports
ODI Demo Dashboard Welcome, Administrator!
Last Runtime Statistics = Query Lineage | Customer Per Country | Customers Per Reps
Oracle Data Integrator Run-Time Statistics
RuntimeStats
Session Step Step
1] Session Hame Step Hame Type Start Date End Date Duration
12,052 loadMeasires loadMeasuras F 3N22008 3M22008 Ly
Geanse Customer |70 Cleansed Customer | 12182007 1241872007 1
9,052 Data Data
OcliDataGualty 1 SE 12182007 12782007 24
8,052 Cleanse Customer OciDatatuality 1 SE 121872007 121872007 :
Data Send Email on Error SE 12182007 124872007 z
7052 Claanges Cusiomer OcliDataGuality 1 SE 12182007 12182007 C
" Data Send Email on Error SE 12182007 1218/2007 E
6.052 Cleanse Customer OcliDatatualty 1 SE 12182007 124872007 [
"7 Data Send Email on Error SE 121812007 124182007 3
Load Cities F 121872007 121812007 1

19.6.2 Viewing and Filtering Lineage Data

In this scenario, you want to view the lineage data and filter the results.

To create such a dashboard, add the Prompt Lineage dashboard prompt and the
LineageRequestColumns request on a dashboard. Both objects are in the lineage web
catalog as shown in Figure 19-3.

ORACLE"

19-21



Chapter 19
Using the Lineage in OBIEE Dashboards

Figure 19-3 Lineage Web Catalog

Properties |Delete

Fmpmhs]ﬂmimtlml-ﬂi"
Section 1
'F'ropmiulﬁtmrntlﬂtln:ll
PromptLineage
Properties |Rename |Detete]|
LineageRequestColumns

Figure 19-4 shows the resulting dashboard.

Figure 19-4 Resulting Dashboard

ORACLE Interactive Dashboards L -enter Dashboard  ODI Demo Dashboard

0D1 Demo Dashboard Welcome, Administratort ¥ Akrs! - Dashboards -
| Last Runtime Statistics m Customer Per Country | Customers Per Reps |

Folder,/Catalog Request/Table
fsharediODI Customer Demo =] | =l
Columns Used By a Reguest
Mote: Chick an the mages 1o folow dala Bl Présentalion Cohkamn
Bl Request Cokatin
00 Cobumn Transformation
Target Column Expression Used Columns
Column Table Columin
Catalog Folder Request Hame Hame Expression Catalog Hame Hame
oo |
COUNTRY Courtries COUNTRY Cusiomers Courtries COUNTR
) 0|
Customer List with Reps. CUST_MAME Customars CUST_MAME e Customers  CUST_M
oo |
SALES PERS Customers SALES FERS Customers Customers  SALES |
feharadiOD] Customer ) o0 |
b CITY Ciies CTY eivicmars Cities CITY
Customer Per Countries 0| )
- COUNTRY Countries COUNTRY e Couniries COUNTR
o
REGION Regons REGION Customers Riegions RECGION

ORACLE" 19-22



Chapter 19
Using the Lineage in OBIEE Dashboards

19.6.3 Using the Dashboard

In this dashboard, you can filter using:

The Origin of the column (ODI Column or OBI-EE Logical, Physical, Presentation
or Request Column)

The OBI-EE Folder/Catalog or ODI Project containing the table and the column

The Request or table containing the column

Click Go to display the filtered list of columns.

19.6.4 Using Lineage and Hierarchy

From this request, you can display the Lineage and Hierarchy for each column by
clicking one of the following buttons:

ORACLE

Icon Description

Lineage

T

Hierarchy

55

Using the Lineage

The Lineage icon allows you to drill down into a column lineage. The lineage goes
down the following path:

> The OBIEE Presentation Column(s) used in a request's column

> The OBIEE Logical Column(s) used in a Presentation Column

> The OBIEE Physical Column(s) used in a Presentation Column

> The ODI Column(s) corresponding to OBIEE Physical Column(s)

> The ODI source columns used to load a given ODI target column via an ODI
mapping. This path can recurse if the source columns are targets for other ODI
mappings.

For each level of the lineage, the dashboard displays:

The Type, Catalog, Table Name, and Column Name for the (target) column
The Type, Catalog, Table Name, and Column Name for the (source) column(s)

The transformation Expression between the source column(s) and the target
column

19-23



Chapter 19
Using the Lineage in OBIEE Dashboards

* If the expression is an ODI mapping, you can drill down the ODI run-time statistics
(Exec. Stats) for this transformation.

* You can drill down at any point of the lineage by clicking Lineage in the view.

Figure 19-5 shows one lineage level displayed in a dashboard.

Figure 19-5 Lineage Level

ORACLE" Interactive Dashboards My Dashboard SOUTHARD  Contact Center Dashboard 0Dl Demo Dashboard

Service Dazhboard  TRI Dazhboard Reporis

0DI Demo Dashboard wWelcome, Administrator! ¥ alsrte! - Dashbosrds

Columns and Expressions Used 1o Populate a Column
Mote: Cick on the images 10 folow data neage

Target Column Transformation Expression Used Columns
Column Type Catalog Table Hame Column Hame Expression Exec Stats  Catalog Table Hame Column
Bl Presentation Column ODI Customers Customers  CUST_NAME  (Same Column) ® O CUST_DW _DEV CUSTOMER  CLUST_N

Using the Hierarchy

The Hierarchy displays the entire lineage of a given request column in a hierarchical
view. Figure 19-6 shows the hierarchical column lineage.

Figure 19-6 Hierarchical Column Lineage

ORALCLE Interactive Dashboards My Dashboard  SOLUTHWND  Contact Center Dashboard  ODI Demao

Service Dashboard  TRI Dashboard Reports

0ODI Dema Dashboard Welcome, Administratorl ¥ Alerdsl . Dashbo

Hierarchical Column Lineage

Ciolurmn Type Expression

fshared fODI Customer Demo.Customer List with Reps. CUST_NAME E.Rew Customers CUST_MAME
Bl

. DD Custormers. Customers CUST_MAME Pregantation (Seme Column)
Column
Bl Logical -

- DODICILET_DW_DEW.CLUSTOMER. CUST_MAME Coh ORCL.™ CUST_Dw_DEV CLSTOMER CLIST_MAD
Bl Prrysical

o CUSTOMER.CUST_HAME ek (Same Column)

Oracle Sales Warehouse CLISTOMER CLST_NAME ODI Colume "RSOP(CUSTOMER FIRST_NAME) | ' I inkcap

(CLSTOMER LAST_NAME)

ORACLE" 19-24



Chapter 19
Using the Lineage in OBIEE Dashboards

19.6.5 Using Contextual Lineage

You can create contextual lineage link using the LineageRequestColumns on any
dashboard. This contextual lineage link will open a dashboard showing the lineage for
a given request.

ORACLE

To create contextual lineage:

1.
2.

Edit a Dashboard.
Insert a Text object with the following code:

<p><font class=Nav onclick="JavaScri pt: CoNavEx(event,

"<lineage_requests_fol der>/LineageRequest Col ums'," ", ' Target

Colum', ' Catal og', " <your _request _fol der>',' Target Colum',' Table

Nanme',' <your _request_name>');"><ing src="res/lin.gif" alt="Navigate Metadata
Li neage" >&nbsp; Met adat a Li neage</ f ont >

In this code, you must set the following items according to your configuration:

e <lineage requests_fol der> is the folder containing the
LineageRequestColumns request. This folder is the folder into which the
OBIEE Lineage Requests have been deployed.

e <your _request_fol der> is the folder containing the request for which you want
to display the lineage.

e <your_request_nanme> is the name of the request for which you want to display
the lineage.

For example, if the lineage requests are installed in the / shared/ 0D folder, and
you want to view lineage for the / shared/ ODI Cust omer Deno/ Cust omer Per Countries
Chart request, the code will be:

<p><font class=Nav onclick="JavaScri pt: GoNavEx(event, '/shared/ OD/

Li neageRequest Col ums', "', ' Target Colum',' Catal og','/shared/ 0Dl  Custoner
Deno', ' Target Column',' Table Nane',' Customer Per Countries Chart');"><ing
src="res/lin.gif" alt="Navigate Metadata Lineage">&nbsp; Met adata Li neage</font>

Before saving your code, make sure that Contains HTML Markup is selected in
the Text Properties editor as shown in Figure 19-7.

19-25



ORACLE

Chapter 19
Using the Lineage in OBIEE Dashboards

Figure 19-7 Text Properties Editor

Text Properties
Enter text and formatting tags below to include on your Dashboard

B| 7| |u| LineBreak | W Cortains HTML Markup

Preview |

_OI.{ J _ Cancel

This text will create a link on the dashboard that opens the column lineage for the
given request.

4. Click OK.

The Metadata Lineage object is added to the dashboard as shown in Figure 19-8.

19-26



Chapter 19
Using the Lineage in OBIEE Dashboards

Figure 19-8 Text Object on Dashboard

0DI Demo Welcome - Dashbosrds - Arswers ~ More
Dashboard e e B * " Products v
Last Runtime Query Customers Per
Statistics Lineage Reps

12

§ —
—

P Metadata Lineage

Clicking Metadata Lineage displays the dashboard shown in Figure 19-9.

ORACLE" 19-27



Chapter 19

Using the Lineage in OBIEE Dashboards

Figure 19-9 What is displayed when clicking on "Metadata Lineage"

Columns Used By a Request
Note: Click on the images to follow data lineage

Transformation
Target Column Expression Used Columns
Catalog Request Column Table Column
Folder Hame Hame Expression Catalog Hame  Hame Origin
oDl o
CiTY Cities CITY Cities CITY Presentation
Customers Column
ishared/oDI g:rm"e' - B
Customer e COUNTRY Courtries COUNTRY RTs Countries COUNTRY Presentation
Demo c Column
hart
oD ot
REGION  Regions REGION Regions REGION Presentation
Customers Colutmn

ORACLE"

19-28



Oracle Business Intelligence Cloud Service

It is important to understand how to work with Oracle Business Intelligence Cloud
Service (BICS) in Oracle Data Integrator.
This chapter includes the following sections:

* Introduction
e Setting up the Topology
* Reverse Engineering a BICS Model

» Designing a Mapping

20.1 Introduction

Oracle Business Intelligence Cloud Service (BICS) uses entities called Datasets and
Tables for storing data that then get used in an analytics solution.

Table 20-1 Datasets versus Tables

]
Datasets Tables

Does not have index Can have index
Creation and insertion of data can be a single operation Creation and insertion of data are two distinct steps with
different payloads

Loading data supports batching explicitly Loading data involves more fine-grained controls
For example, maximum number of errors to be allowed,
while loading

Also, more controls exist over column definition

" Note:

Both the Datasets and the Tables have the parameters ‘firstBatch’ and
‘lastBatch.” They are backed by a DBCS schema. The DBCS schema
information is not published. Data is loaded into Datasets/Tables as application/
octet-stream format part of a multi-part message. The stream can be Text
stream with delimiters or Java object array stream. ODI will load data only into
the BICS Dataset or the Table. ODI will not read data from the BICS Dataset or
the Table.

For both the Dataset and the Table, you must define a BICS target. As each of these
entities are bound to a different URL endpoint, an ODI Datastore container will be
bound to either Dataset or Table, but never to both. This implies that an ODI Model
(and by inference the associated Logical and Physical Schema) can be only bound to
either the Datasets endpoint or the Tables endpoint.

ORACLE 20-1



Chapter 20
Setting up the Topology

Since loading data into a BICS target involves Mappings, you must model a BICS
Dataset or Table as a Datastore in ODI. BICS Logical Schema cannot be used for
staging, and BICS Datastores cannot be used as source in a Mapping.

20.2 Setting up the Topology

Setting up the topology consists of:

e Creating an Oracle BICS Data Server

* Creating an Oracle BICS Physical Schema

20.2.1 Creating an Oracle BICS Data Server

BICS Dataserver defines the endpoint URL and the dataloader suffix. The data source
suffix part of the URL depends on whether we are exploring Datasets or Tables and
will be exposed in the Physical Schema page. This will allow a single BICS Dataserver
to work with both the Dataset and the Table.

The Data Server page contains fields for the Dataserver name, base URI, username,
password, and the Identity domain.

The following is a full BICS URI:

https://service-
identity_dommin. anal ytics. data_center. oracl ecl oud. coni resour ce-
pat h

The base URI is the BICS service instance’s first paths segment.
The following is a base URI:

https://service-
identity dommin.anal ytics.data center. oracl ecl oud. com

The Data loader path field is a constant, auto-filled. This enables you to see the path
segment.

The following is a data loader path segment:

/ dat al oad/ v1

20.2.2 Creating an Oracle BICS Physical Schema

ORACLE

Once the BICS Dataserver is configured, you can configure its Physical Schema. BICS
Physical Schema will prompt for choosing either Dataset or Table. This in turn will
control the Resource URI.

# Note:

Resource URI can be chosen from the list or typed in, but once chosen/typed in
and then saved, it cannot be edited again.

20-2



Chapter 20
Setting up the Topology

Choice of whether the Physical Schema is to be bound to BICS Tables or Datasets
triggers the association of REST Operations. The Operations are unique and pre-
defined for Datasets and Tables.

20.2.3 Importing BICS Certificate into Trust Store of Standalone Agent

ORACLE

ODI Studio’s local agent uses the JDK's certificate store, whereas the standalone
agent does not. It is therefore possible, and quite likely, that while the local agent will
provide a successful connection to the BICS server, the standalone agent may
produce an error in establishing the connection. To resolve this issue, the BICS
Certificate needs to be added to the trust store used by the standalone agent.

Perform the following steps to import the BICS certificate to the trust store of the
standalone agent:

1. In a browser, open the BICS /analytics portal and then click on the padlock icon.
This opens an information box.

2. Click View certificates from within the information box. This opens the Certificate
dialog box.

3. Inthe Details tab of the Certificate dialog box, click Copy to File. This opens the
Certificate Export Wizard dialog box.

Select the DER encoded binary X.509 (.CER) format and click Next.
Choose a path and file name for the certificate and click Next.

Click Finish to export the certificate.

N o g &

Copy the certificate file created in the previous steps to a file system accessible by
the host running the standalone ODI agent.

8. Set JAVA HOME to the path of the JDK used while installing the standalone agent.
For example, export JAVA HOVE=/ u0l/oracl e/jdk1.8.0_ 111/ bin.

9. Browse to the bin directory of the ODI Domain Home.

10. Run the set CDI Donai nEnv script. In a linux environment, this would be: ./
set ODI Domai nEnv. sh.

The DenoTrust . j ks keystore used by the agent should be located in the following
path:

$ORACLE_HOVE/ Wl server/server/lib

# Note:

There may be a number of DenoTrust . j ks key stores on the file system. So
it is important to ensure that the correct one is updated. If this process fails
to resolve the error with the standalone agent, search the file system to
check whether it is using a different trust store.

11. Browse to the required directory and confirm that the DempoTrust . j ks file exists. In
the same directory, run the keyt ool command to import the certificate created
earlier.

The syntax for the command is as follows:
keytool -inportcert -file $CERTIFI CATE -alias $ALIAS -keystore $KEYSTORE

20-3



12.

13.

Chapter 20
Reverse Engineering a BICS Model

where $CERTI FI CATE references the name/path for the certificate file downloaded
from the BICS environment through the browser, $ALI AS is a name for this file,
and $KEYSTORE is the name/path of the key store.

For example, keyt ool -inportcert -file /u01/oracl e/ Downl oads/BI CS. cer -alias
BI CS -keystore DenoTrust.jks.

This displays the details of the certificate, and a prompt to ‘Trust this certificate?’
appears.

Type yes and then hit enter.

If the import is successful, a confirmation that the certificate was added to the
keystore is given.

Return to ODI and run the mapping, this time selecting the standalone agent, and
confirm that it runs successfully.

20.3 Reverse Engineering a BICS Model

Once the BICS Logical Schema is set, you can create a Model based on this Logical
Schema, and then reverse engineer. You must select the RKM Oracle Bl Cloud
Service to reverse engineer the BICS tables or datasets metadata.

# Note:

After reverse engineering, make sure to manually fix the column datatypes,
after seeing the BICS Table/Dataset.

Table 20-2 KM Options
- __________________________________________________________________________________]

Option Type Default Description
GET_TABLE_INDEXES Table True Whether or not to retrieve
table indexes.
DEFAULT_DIRECTORY Table java.lang.System.getPrope Directory for generated
rty(“java.io.tmpdir") temporary (return) files by
REST calls.

All temporary data files
generated by REST calls
will be deleted at the end of
RKM execution.

20.4 Designing a Mapping

Similar to the IKMs for Hyperion, BICS IKM is also multi-connect. It uses batching
capabilities of the BICS Dataset/Table.

ORACLE

20-4



Chapter 20
Designing a Mapping

# Note:

The IKM SQL to Oracle Bl Cloud Service does not support loading the Oracle
SDO_GEOMETRY data type column to the BICS target table.

Oracle BI Cloud Service cannot be used as the staging area, and does not
support incremental update or flow/static check. Therefore, the following KMs
will not work with the Oracle Bl Cloud Service technology:

RKM SQL (JYTHON)

LKM File to SQL

CKM SQL

IKM SQL Incremental Update
IKM SQL Control Append
LKM SQL to SQL (JYTHON)

BICS Datastore as target for Mapping

The IKM SQL to Oracle Bl Cloud Service exposes Dataset/Table loading options as
KM options.

Table 20-3 Supported KM Options

Option Type Default Description
TRUNCATE_TARGET_TA Boolean False Deletes data before
BLE starting to load data. This is

DROP_TARGET

ORACLE

only applicable for BICS
Table.

Boolean False Drops the target Table/

Dataset before starting to
load data.

20-5



Chapter 20
Designing a Mapping

Table 20-3 (Cont.) Supported KM Options
]

Option Type Default Description

CREATE_TARGET Boolean False If the target Table/Dataset
does not exist, creates it
first.

s N
o
t

TOTVO TS O3IO0ONAON0 T T OO0 TYO0 T TU>HOMOU® S A

- 0

ORACLE 20-6



Chapter 20
Designing a Mapping

Table 20-3 (Cont.) Supported KM Options

___________________________________________________________________________________________|]
Option Type Default Description

Tt X o' TOS ' wmopOQ ! T DO D

T "0 *TT OSSO0 TTTTDOoOWTAQS TTTTTODOLOWWn TS O W

ORACLE 20-7



Table 20-3 (Cont.) Supported KM Options

Chapter 20
Designing a Mapping

Option

Type

Default

Description

DATA_WRITE_MODE

NUM_RETRIES

RETRY_DELAY

REMOVE_DUPLICATES

BATCH_SIZE

VALIDATE_COLUMNS

MAX_ERR_PER_BATCH

TRACE_FILE

Choice

Text

Text

Boolean

Text

Boolean

Text

Text

Insert all

False

1000

False

Empty

Choice between Insert all,
Insert missing, Upsert,
Update only. This is
applicable only if the target
is BICS Table. Choosing
Upsert/Update only will fail,
if the BICS Table does not
have unique indexes.

Each dataload batch
operation could error out.
This is a numeric option
that will allow retry. Default
is not to retry at all.

Time delay in seconds
between each retry
attempt.

Applicable only for BICS
Table to indicate whether
or not to remove duplicate
data from within the batch
that is being sent. Does not
touch data already in the
BICS Table.

Number of rows to be send
at one time (in one POST
request).

Whether to validate the
BICS target’s column
names before trying to load
data.

Maximum number of errors
per batch that Oracle BICS
will allow. Applicable only
for Tables.

Location of file to which
trace of all the REST calls
made by the IKM are
logged. If left empty, no
trace will be created.

ORACLE

20-8



Chapter 20
Designing a Mapping

# Note:

Datasets
* BICS Datasets do not have indexes.
* No unique index errors will be raised on loading data.

e Only possible errors are when data does not match the datatype of the
target column.

Tables
e BICS Tables support unique indexes.

e The insert/update modes depend on unique indexes being present and
being part of the data load operation.

* ‘Remove duplicates’ also requires unique indexes.

e Insert missing/Update only/Upsert all require unique index be part of the
data load

e ‘Insert all' does not need unique index as long as the columns involved in
the data load are nullable.

ORACLE 20-9



Oracle Hyperion Planning

It is important to understand how to work with Oracle Hyperion Planning in Oracle
Data Integrator.
This chapter includes the following sections:

Introduction

Installation and Configuration

Setting up Hyperion Planning Adapter

Setting up the Topology

Creating and Reverse-Engineering a Planning Model
Designing a Mapping

Datastore Tables and Data Load Columns

21.1 Introduction

Oracle Data Integrator Adapter for Hyperion Planning enables you to connect and
integrate Oracle's Hyperion Planning with any database through Oracle Data
Integrator. The adapter provides a set of Oracle Data Integrator Knowledge Modules
(KMs) for loading metadata and data into Planning, Oracle's Hyperion Workforce
Planning, and Oracle's Hyperion Capital Expense Planning applications.

21.1.1 Integration Process

Loading a Planning application with metadata and data using Oracle Data Integrator
Adapter for Hyperion Planning involves these tasks:

Setting up an environment: Defining data servers and schemas
See Setting up the Topology.

Reverse-engineering a Planning application using the adapter's Reverse-
engineering Knowledge Module (RKM)

See Creating and Reverse-Engineering a Planning Model.

Loading metadata and data into the Planning application using the adapter's
Integration Knowledge Module (IKM)

See Designing a Mapping.

21.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 21-1 for
handling Hyperion Planning data. These KMs use Hyperion Planning specific features.
It is also possible to use the generic SQL KMs with the Hyperion Planning database.

ORACLE

21-1



Chapter 21
Installation and Configuration

Table 21-1 Hyperion Planning Knowledge Modules

_______________________________________________________________________________________________|]
Knowledge Module Description

RKM Hyperion Planning Reverse-engineers Planning applications and creates data models to
use as targets in Oracle Data Integrator mappings.
Each dimension (standard dimension and attribute dimension) is
reversed as a datastore with the same name as the dimension with
appropriate columns. Creates a datastore named "UDA" for loading
UDA's.

IKM SQL to Hyperion Planning Loads metadata and data into Planning applications.

21.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle Data Integrator Adapter for Planning:

e System Requirements and Certifications
e Technology Specific Requirements
e Connectivity Requirements

e Setting up Hyperion Planning Adapter

21.2.1 System Requirements and Cetrtifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn.

21.2.2 Technology Specific Requirements

There are no technology-specifc requirements for using the Oracle Data Integrator
Adapter for Planning.

21.2.3 Connectivity Requirements

There are no connectivity-specific requirements for using the Oracle Data Integrator
Adapter for Planning.

21.3 Setting up Hyperion Planning Adapter

The following sections explain how to set up Hyperion Planning Adapter for ODI Studio
and ODI standalone agent.

ORACLE 21-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 21
Setting up the Topology

21.3.1 Setting up Adapter for ODI Studio

Exit from ODI Studio before setting up Hyperion Planning Adapter.

1. In Oracle Hyperion Planning directory, locate HspJS.jar

2. If HspJS.jar is not directly accessible by ODI, copy it to a location that allows ODI
access.

3. Modify <ODI_HOME>/odi/studio/bin/odi.conf file to include HspJS.jar.
For Example:
AddJavaLibFile /server/lib/HspJS.jar

21.3.2 Setting up Adapter for ODI Standalone Agent

Stop ODI Agent before setting up Hyperion Planning Adapter.

1. In Oracle Hyperion Planning directory, locate HspJS.jar
2. Copy it into <DOMAIN_HOME>/lib directory.

For more information, see Configuring the Domain for the Standalone Collocated
Agent in Installing and Configuring Oracle Data Integrator.

21.4 Setting up the Topology

Setting up the Topology consists of:

1. Creating an Hyperion Planning Data Server

2. Creating an Hyperion Planning Physical Schema

21.4.1 Creating an Hyperion Planning Data Server

Create a data server for the Hyperion Planning technology using the standard
procedure, as described in Creating a Data Server of Developing Integration Projects
with Oracle Data Integrator. This section details only the fields required or specific for
defining a Hyperion Planning data server:

1. In the Definition tab:
« Name: Enter a name for the data server definition.

» Server (Data Server): Enter the Planning application host name and RMI port
number in this format: <host >: <port >.

2. Under Connection, enter a user name and password for connecting to the
Planning server.

# Note:

The Test button does not work for a Hyperion Planning data server connection.
This button works only for relational technologies that have a JDBC Driver.

ORACLE 21-3



Chapter 21
Creating and Reverse-Engineering a Planning Model

21.4.2 Creating an Hyperion Planning Physical Schema

Create a Hyperion Planning physical schema using the standard procedure, as
described in Creating a Physical Schema of Developing Integration Projects with
Oracle Data Integrator.

Under a data server, you can define a physical schema corresponding to an
application and the logical schemas on which models are based.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema of Developing Integration Projects with Oracle
Data Integrator and associate it in a given context.

21.5 Creating and Reverse-Engineering a Planning Model

This section contains the following topics:

» Create a Planning Model

* Reverse-engineer a Planning Model

21.5.1 Create a Planning Model

Create a Planning Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

21.5.2 Reverse-engineer a Planning Model

Reverse-engineering a Planning application creates an Oracle Data Integrator model
that includes a datastore for each dimension in the application. Note that the Year/
Period/Version/Scenario are not reverse-engineered.

To perform a Customized Reverse-Engineering on Hyperion Planning with a RKM, use
the usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator. This section details only the fields
specific to the Hyperion Planning technology.

1. Inthe Reverse tab of the Planning Model, select the RKM Hyperion Planning.

The RKM connects to the application (which is determined by the logical schema and
the context) and imports the following items:

* A datastore for each dimension in the application, with the same name as the
dimension

* A datastore called UDA, for UDA loading

21.6 Designing a Mapping

After reverse-engineering a Planning application as a model, you can use the
datastores in this model as targets of mappings for loading data and metadata into the
application.

ORACLE 21-4



Chapter 21
Designing a Mapping

The KM choice for a mapping determines the abilities and performance of this
mapping. The recommendations in this section help in the selection of the KM for
different situations concerning Hyperion Planning.

This section contains the following topics:

e Loading Metadata
e Loading Data
e Load Options

21.6.1 Loading Metadata

ORACLE

Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading
metadata into a Planning application.

Metadata consists of dimension members. You must load members, or metadata,
before you load data values for the members. For example, before loading salary data
for five new employees, you load the employees (as members) to the Planning
relational database before you load the data to the Oracle's Hyperion Essbase
database.

You can load members only to dimensions that exist in Planning. You must use a
separate mapping for each dimension that you load. You can chain mappings to load
metadata into several dimensions at once.

" Note:
Please note the following:

* You must refresh the Essbase database after loading the dimension
members in the application. The Essbase database is refreshed if you set
the REFRESH_DATABASE option in IKM SQL to Hyperion Planning to
Yes. See Load Options.

e Ifthe REFRESH_DATABASE option in IKM SQL to Hyperion is set to Yes
and refresh Essbase database operation fails with an error, the execution is
still shown as successful in the Operator tab. However, the errors are
reported in the log file. In situations when the Essbase database is not
refreshed and the execution is successful in the Operator tab, check the log
file for errors.

To load metadata into a Planning application:

1. Create a mapping. Make sure that you select the IKM SQL to Hyperion Planning
on the Flow tab.

2. Specify the load options as described in Load Options.
3. Run the mapping to load the metadata into the application
4. Validate the dimension:

a. Log on to Planning Web.

b. Select Administration > Dimensions.

21-5



Chapter 21
Designing a Mapping

21.6.2 Loading Data

ORACLE

Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading data
into a Planning application.

You can load data into selected dimension members that are already created in
Planning. You must set up the Planning, Workforce Planning, or Capital Expense
Planning application before you can load data into it.

Before loading data, ensure that the members (metadata) exist in the Planning
relational database and the Essbase database. A data load fails if the members do not
exist. (This includes the driver member and the members specified in the point of
view.) If necessary, load metadata and refresh the Essbase database to synchronize
the members.

Before loading data into a Planning, Workforce Planning, or Capital Expense Planning
application, you must set up the relevant data load and driver dimensions in Planning.
After you set up the data load and driver dimensions in Planning, you must determine
the point of view for the members whose data you are loading.

To load data into a Planning application:

1. In Planning, specify parameters for data to load:
a. Select Administration > Data Load Administration.
b. For Available Data Load Dimensions, select a dimension, and click Go.

c. For Available Driver Dimensions, select the dimension to which you are
loading data in an Essbase database; for example, select the Account
dimension.

d. Select the members of the driver dimension to load with data.

After the Hyperion Planning data load is set up, use Hyperion Planning RKM
to perform the reverse-engineering process. Reverse-engineering retrieves
and updates the datastore for the data load dimension with additional columns
(fields) required for the data load.

e. Click Save.

2. In Oracle Data Integrator Studio, run a mapping for loading data.

# Note:

You can use the same mapping for loading metadata and data. Load
Options lists the options of the IKM SQL to Hyperion Planning

3. Check the Operator log to see if the mapping ran successfully.
4. To validate the data load, use either method:
» Create a Planning data form to retrieve data.

* Check Oracle's Essbase Administration Services to ensure that blocks were
created in the appropriate cube.

21-6



Chapter 21
Designing a Mapping

21.6.3 Load Options

IKM SQL to Hyperion Planning supports these options for defining how Oracle Data
Integrator Adapter for Hyperion Planning loads data:

ORACLE

LOAD_ORDER_BY_INPUT

Possible values: Yes or No; default: No If set to Yes, members are loaded in the
same order as in the input records.

SORT_PARENT_CHILD

Possible values: Yes or No; default: No If set to Yes, incoming records are sorted
so that all parents are inserted before children.

LOG_ENABLED

Possible values: Yes or No; default: No If set to Yes, logging is done during the
load process to the file specified by the LOG_FILE_NAME option.

LOG_FILE_NAME

The name of the file where logs are saved; default value:Java temp folder/
dimension.log

MAXIMUM_ERRORS_ALLOWED
Maximum number of errors before the load process is stopped; default value: 0

If set to O or a negative number, the load process is not stopped regardless of the
number of errors.

LOG_ERRORS
Possible values: Yes or No; default: No

If set to Yes, error records are loggedto the file specified by the
ERROR_LOG_FILE property.

ERROR_LOG_FILE

The name of the file where error records are logged; default value: Java temp
folder/ dimension.err

ERR_COL_DELIMITER
The column delimiter used for the error record file; default value: comma ()
ERR_ROW_DELIMITER

The row delimiter used for the error record file; default value: \r\n

# Note:

Row and column delimiters values can also be specified in hexadecimal. A
value that starts with Ox is treated as hexadecimal; for example, 0x0041 is
treated as the letter A.

ERR_TEXT _DELIMITER
The text delimiter to be used for the column values in the error record file
ERR_LOG_HEADER_ROW:

21-7



Chapter 21
Datastore Tables and Data Load Columns

Possible values: Yes or No; default: Yes

If set to Yes, the row header (with all column names) is logged in the error records
file.

REFRESH_DATABASE:
If set to Yes, completion of the load operation invokes a cube refresh.

Possible values: Yes or No; default: No

21.7 Datastore Tables and Data Load Columns

IKM SQL to Hyperion Planning loads columns in tables to create datastores. The
following topics describe the columns in each datastore:

ORACLE

Accounts

Employee

Entities

User-Defined Dimensions
Attribute Dimensions
UDA

Data Load Columns are columns used for loading data into dimensions.

21.7.1 Accounts

Table 21-2 describes the columns of the Accounts table. See Data Load Columns for
descriptions of additional columns that are displayed for loading Account dimension
data if the application has been set up for data load in Planning.

Table 21-2 Accounts
]

Column Description

Account Takes the name of the account member you are loading. If this

member exists, its properties are modified; otherwise, the record is
added. This field is required.

The value for this field must meet these requirements:

* Unique

e Alphanumeric

*  Not more than 80 characters

*  Member name cannot contain tabs, double quotation marks ("), or
backslash (\) characters.

*  Member name cannot start with any of these characters: '\ < |, =
@_+-{}().

*  Value must not be an Essbase reserved word such as Children,
Parent, $$SUNIVERSE $3$3$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string.

21-8



Chapter 21
Datastore Tables and Data Load Columns

Table 21-2 (Cont.) Accounts

_______________________________________________________________________|
Column Description

Parent Takes the name of the parent of the member you are loading. It is
used to create the hierarchy in the dimension.

When you load data for a member and specify a different parent
member that from the parent member in the application, the member
is updated with the parent value that you specify.

Example: If Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent value of
Member B, your application is updated, and Member B becomes the
parent of Member 1. Member 1 and its descendants are moved from
Member A to Member B. If the column is left blank, it is ignored during
the load.

The record is not loaded if one of the following situations occurs:
*  The specified parent is a descendant of the member that you are

loading.
»  The specified parent does not exist in the Planning application.
Default Alias Takes an alternate name for the member being loaded. If you are

modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or
<none> as the value, the alias in the Planning application is deleted.

The value for this column must meet the following requirements for a

successful load:

e Unique

e Alphanumeric

*  Not more than 80 characters

*  Member name cannot contain tabs, double quotation marks ("), or
backslash (\) characters.

*  Member name cannot start with any of these characters: '\ < |, =
@_+-{10).

*  Value must not be an Essbase reserved word such as Children,
Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase
online help.

This value is passed as a string; default value: a null string.
Additional Alias Can take an alternate name for the member being loaded. There will
be as many Alias columns as there are Alias tables defined in
Planning. The value for multiple alias columns must conform to the
same requirements as those listed for the default alias column.
Data Storage Takes the storage attribute for the member being loaded.
Valid values:
*  Store
*  Dynamic Calc
*  Dynamic Calc and Store

e Shared
*  Never Share (default)
e Label Only

This value is passed as a string.

ORACLE 21-9



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-2 (Cont.) Accounts
|

Column

Description

Two Pass Calculation

Account Type

Time Balance

Skip Value

Boolean value to indicate whether the member being loaded has the
Two-Pass Calculation associated attribute. Valid values: 0 for False
(default), or any other number for True. Values are valid only when the
Data Storage value is Dynamic Calc or Dynamic Calc and Store;
otherwise, the record is rejected.

Takes the account type of the member that is being loaded. Valid
values: Revenue, Expense, Asset, Liability, Equity, and Saved
Assumption. The default is taken from the parent of the member that
is being loaded, or it is Expense if the member is being added to the
root dimension.

Takes a type for members with an account type of Saved Assumption
only or when the record is rejected. Valid values: Flow, First, Balance,
Average, and two averaging options, Actual_365 and Actual_Actual.
(Actual_365 assumes the actual number of days in each month and
28 days in February; Actual_Actual accounts for 29 days in February
during leap years.)

The default is taken from the parent of the member being loaded or is
Flow if the member is being added to the root dimension. This value is
passed as a string. Default values of Time Balance for Account types:
*  Revenue-Flow

e Expense-Flow

* Asset-Balance

*  Liability-Balance

»  Equity-Balance

Note: When Time Balance is Flow, records with any valid Skip Values
are loaded, but Skip Value is disabled for all account types.

Skip ValueTakes the skip option that is set for the Time Balance
property. When the Time Balance property is set to First, Balance, or
Average, these Skip options are available:

*  None-Indicates that zeros and #missing value are considered
when the parent value is calculated

*  Missing-Excludes #missing values when calculating parent values

«  Zeros-Excludes zero values when calculating parent values

*  Missing and Zeros-Excludes #missing and zero values when
calculating parent values

Note: When Time Balance is Flow, records with any valid Skip Values
are loaded, but Skip Value is disabled for all Account types.

21-10



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-2 (Cont.) Accounts

Column

Description

Data Type

Exchange Rate Type

Use 445

Takes the data storage value. Valid values:
*  Currency-Stores and displays the member's data value in the
default currency.

»  Non-currency-Stores and displays the member's data value as a
numeric value.

*  Percentage-Stores data values as a numeric value and displays
the member's data value as a percentage.

*  Smart list / enumeration-Stores data values as a numeric value
and displays the member's data value as a string.

- Date-Stores and displays the member's data value in the format
mm/dd/yyyy or dd/ mm/yyyy

e Text-Stores and displays the member's data value as text.

*  Unspecified-Stores and displays the member's data value as
"unspecified."

The default value is taken from the parent of the member being loaded
or is Currency if the member is being added to the root dimension.

Takes the exchange rate. This column is dependent on the value

specified for the Data Type column. Valid values:

»  Average, Ending, and Historical when Data Type is equal to
Currency

*  None when Data Type is equal to Non-currency or Percentage
This value is passed as a string. The default value is taken from
the parent of the member that is being loaded or, if the member is
being added to the root dimension, is based on the account type
and takes the following values:

*  Revenue-Average

*  Expense-Average

*  Asset-Ending

e Liability-Ending

*  Equity-Ending

e Saved Assumption-None

Indicates the distribution selected in the Planning application. If the
application has no distribution, this column is not displayed.

Valid values are 0 and 1 (or any number other than 0); default value:
1.

21-11



Chapter 21
Datastore Tables and Data Load Columns

Table 21-2 (Cont.) Accounts

_______________________________________________________________________|
Column Description

Variance Reporting Takes a value for account members with an account type of Saved
Assumption or if the record is rejected. Valid values:

*  Expense-designates the saved assumption as an expense. The
actual amount is subtracted from the budgeted amount to
determine the variance.

*  Non-Expense-designates the saved assumption as revenue. The
budgeted amount is subtracted from the actual amount to
determine the variance.

This value is passed as a string. The default value is taken from the

parent of the member being loaded or, if the member is being added

to the root dimension, is based on the value of the count type.

For Account types, the value is set to the following:

*  Revenue-Non-Expense
*  Expense-Expense
*  Asset-Non-Expense
e Liability-Non-Expense
*  Equity-Non-Expense
Source Plan Type Takes a plan type name for the plan type assigned to the member

being loaded. Valid values are any plan types specified in Planning
application.

This value is passed as a string. The default is taken from the parent
of the member being loaded. If the source plan of the parent is not
valid for the member, the specified plan type is not selected for the
member in the application, and the first plan type that the member is
used in is used. If the member is being loaded to the root dimension,
the first plan type the member is used in is used.

When you update or save the parent of a member, the system verifies
if the Source Plan Type associated with the member being loaded is
valid for the new parent. If the member's source plan type is not a
valid plan type of its parent member, you receive the error message,
"The source plan type is not in the subset of valid plan types."

If the source plan type of a member is valid for the parent member but
not for the member itself, the member is saved but its source plan type
is set to the first valid plan type (in the order Plan 1, Plan 2, Plan 3,
Wrkforce, Capex).

Note: If a Source Plan Type is specified in the adapter but is not valid
for the parent, the record is rejected.

Plan Type (Planl) Boolean value that indicates if the member being loaded is used in
Planl. Valid values are 0 for False and any other number for True.
The default value is True. The name of the column varies depending
on the name of the plan type in the Planning application.

ORACLE 21-12



Chapter 21
Datastore Tables and Data Load Columns

Table 21-2 (Cont.) Accounts

_______________________________________________________________________|
Column Description

Aggregation (Planl) Takes the aggregation option for the member being loaded as related
to Planl. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

e+ (default)

° *
o
- %
*  Never

Plan Type (Plan 2) Boolean value that indicates if the member being loaded is used in

Plan2. Valid values are 0 for False and any other number for True.
The default value is True. The name of the column varies depending
on the name of the plan type in the Planning application.

Aggregation (Plan2) Takes the aggregation option for the member being loaded as related
to Plan2. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

e+ (default)

° *
o
- %
*  Never
Plan Type (Plan3) Boolean value that indicates if the member being loaded is used in

Plan3. Valid values: 0 for False or any other number for True; default
value: True. The name of the column varies depending on the name of
the plan type in the Planning application.

Aggregation (Plan3) Takes the aggregation option for the member being loaded as related
to Plan3. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

e+ (default)

. *
e/

e %

. Never

ORACLE 21-13



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-2 (Cont.) Accounts
|

Column

Description

Plan Type (Wrkforce)

Aggregation (Wrkforce)

Plan Type (Capex)

Aggregation (Capex)

Custom Attribute

Member Formula

For Workforce Planning: The Plan Type (Wrkforce) column is a
Boolean value that indicates if the member being loaded is used in
Workforce Planning. Valid values are 0 for False and any other
number for True. The default is True. The actual name of the column
varies, depending on by the name of the plan type in the Planning
application.

For Workforce Planning: The Aggregation (Wrkforce) column takes
the aggregation option for the member being loaded as related to
Workforce Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column varies,
depending on the name of the plan type in the Planning application.

This value is passed as a string. Valid values:
e+ (default)

° *
e/

e %

. Never

For Capital Expense Planning: The Plan Type (Capex) column is a
Boolean value that indicates if the member being loaded is used in
Capital Expense Planning. Valid values are 0 for False and any other
number for True. The default is True. The actual name of the column
varies, depending on by the name of the plan type in the Planning
application.

For Capital Expense Planning: Takes the aggregation option for the
member being loaded as related to Capital Expense Planning. This
column is available only if the Planning application is valid for this plan
type. The name of the column varies, depending on the name of the
plan type in the Planning application.

This value is passed as a string. Valid values:
e+ (default)

° *
e/

e %

. Never

Takes the custom attribute member values. The name of the column
is determined by the name of the custom attribute in the Planning
application. The number of custom attribute columns varies depending
on the number of attributes defined for the Account dimension. If you
modify properties and do not specify a value, the custom attribute is
not changed in the Planning application. If you specify <NONE> or
<none> as the value, then the custom attribute in the Planning
application is deleted. This value is passed as a string.

Takes the member formula values defined for the dimension member.
By default, there is no member formula associated with a dimension or
dimension member. You cannot load member formulas for dimension
members that are Shared or Label Only.

21-14



Chapter 21
Datastore Tables and Data Load Columns

Table 21-2 (Cont.) Accounts

_______________________________________________________________________|
Column Description

UDA Specifies a list of user-defined attributes to be updated.Note: You
must define the UDA for the dimension members within Planning or by
way of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the Planning
application. This value is passed as a string. The default for Smart
Lists is <None>. Smart Lists are used in a metadata or dimension load
(not a data load) allowing you to define the association of the Smart
List name (not the values) with a given dimension member. You can
have multiple Smart Listsassociatedwith a dimension but only one
Smart Listassociated witha dimension member.

These predefined Smart Lists are available in a Workforce Planning

application:
*  None

. Status
c FT_PT

*  HealthPlan
e TaxRegion

*  Month
*  Performance
*  Position
e EmployeeType
Description Takes a description for the member that is being loaded. By default,

the Description column is empty.

Note: If you do not enter a value for this column or do not connect the
column, a new member is loaded without a description, and the
description of an existing member is unchanged. If you enter <NONE>
as the value for this column, any existing description for the member is
deleted and is not loaded with the member.

Operation Takes any of these values:
*  Update (default)-Adds, updates, or moves the member being
loaded.
* Delete Level 0-Deletes the member being loaded if it has no
children.

»  Delete Idescendants-Deletes the member being loaded and all of
its descendants.

* Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any

associated planning units are permanently removed and cannot be

restored.

21.7.2 Employee

Table 21-3 describes the columns of the Employee table. See Data Load Columns for
descriptions of additional columns that are displayed for loading Employee dimension
data if the application has been set up for data load in Planning.

ORACLE 21-15



ORACLE

Table 21-3 Employee

Chapter 21
Datastore Tables and Data Load Columns

Column Description
Employee Takes the name of the account member you are loading. If this
member exists, its properties are modified; otherwise, the record
is added. This field is required.
The value for this field must meet these requirements:
e Unique
e Alphanumeric
*  Not more than 80 characters
«  Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.
e Member name cannot start with any of these characters: '\
<|l,=@_+-{}().
e Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.
This value is passed as a string.
Parent Takes the name of the parent of the member you are loading. It

is used to create the hierarchy in the dimension.

When you load data for a member and specify a different parent
member that from the parent member in the application, the
member is updated with the parent value that you specify.

Example: If Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent value
of Member B, your application is updated, and Member B
becomes the parent of Member 1. Member 1 and its
descendants are moved from Member A to Member B. If the
column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

e The specified parent is a descendant of the member that
you are loading.

*  The specified parent does not exist in the Planning
application.

21-16



Chapter 21
Datastore Tables and Data Load Columns

Table 21-3 (Cont.) Employee

__________________________________________________________________________|
Column Description

Default Alias Takes an alternate name for the member being loaded. If you
are modifying properties and do not specify a value, the alias is
not changed in the Planning application. If you specify <NONE>
or <none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements

for a successful load:

e Unique

e Alphanumeric

e Not more than 80 characters

«  Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

e Member name cannot start with any of these characters: '\
<], =@_+-{}0).

e Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Can take an alternate name for the member being loaded. There
will be as many Alias columns as there are Alias tables defined
in Planning. The value for multiple alias columns must conform
to the same requirements as those listed for the default alias
column.

Data Storage Takes the storage attribute for the member being loaded.
Valid values:
e  Store
e Dynamic Calc
e Dynamic Calc and Store
e Shared
e Never Share (default)
e Label Only
This value is passed as a string.

Valid for Consolidation The column is ignored.

Two Pass Calculation Boolean value to indicate whether the member being loaded has
the Two-Pass Calculation associated attribute. Valid values: 0
for False (default), or any other number for True. Values are
valid only when the Data Storage value is Dynamic Calc or
Dynamic Calc and Store; otherwise, the record is rejected.

ORACLE 21-17



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-3 (Cont.) Employee

Column

Description

Data Type

Custom Attribute

Aggregation (Planl)

Takes the data storage value. Valid values:

e Currency-Stores and displays the member's data value in
the default currency.

*  Non-currency-Stores and displays the member's data value
as a numeric value.

e Percentage-Stores data values as a numeric value and
displays the member's data value as a percentage.

e Smart list / enumeration-Stores data values as a numeric
value and displays the member's data value as a string.

e Date-Stores and displays the member's data value in the
format mm/dd/yyyy or dd/ mm/yyyy

«  Text-Stores and displays the member's data value as text.

e Unspecified-Stores and displays the member's data value
as "unspecified.”

The default value is taken from the parent of the member being

loaded or is Currency if the member is being added to the root

dimension.

Takes the custom attribute member values. The name of the
column is determined by the name of the custom attribute in the
Planning application. The number of custom attribute columns
varies depending on the number of attributes defined for the
Employee dimension. If you modify properties and do not specify
a value, the custom attribute is not changed in the Planning
application. If you specify <NONE> or <none> as the value, then
the custom attribute in the Planning application is deleted. This
value is passed as a string.

Takes the aggregation option for the member being loaded as
related to Planl. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

. *
o/

e %

o Never

21-18



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-3 (Cont.) Employee

Column

Description

Aggregation (Plan2)

Aggregation (Plan3)

Aggregation (Wrkforce)

Takes the aggregation option for the member being loaded as
related to Plan2. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

. *
o/

e %

o Never

Takes the aggregation option for the member being loaded as
related to Plan3. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

° *
o/

e %

o Never

For Workforce Planning: The Aggregation (Wrkforce) column
takes the aggregation option for the member being loaded as
related to Workforce Planning. This column is available only if
the Planning application is valid for this plan type. The name of
the column varies, depending on the name of the plan type in the
Planning application.

This value is passed as a string. Valid values:

e+ (default)
o

L)

*  Never

21-19



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-3 (Cont.) Employee
|

Column

Description

Aggregation (Capex)

Member Formula

UDA

Smart Lists

Description

For Capital Expense Planning: Takes the aggregation option for
the member being loaded as related to Capital Expense
Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column
varies, depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

° *
o/

e %

o Never

Takes the member formula values defined for the dimension
member. By default, there is no member formula associated with
a dimension or dimension member. You cannot load member
formulas for dimension members that are Shared or Label Only.

Specifies a list of user-defined attributes to be updated.Note:
You must define the UDA for the dimension members within
Planning or by way of the UDA target.

Takes the name of a user-defined Smart List defined in the
Planning application. This value is passed as a string. The
default for Smart Lists is <None>. Smart Lists are used in a
metadata or dimension load (not a data load) allowing you to
define the association of the Smart List name (not the values)
with a given dimension member. You can have multiple Smart
Lists associatedwith a dimension but only one Smart List
associated with a dimension member.

These predefined Smart Lists are available in a Workforce
Planning application:

*  None
. Status
« FT PT

e HealthPlan
e TaxRegion

. Month
. Performance
e Position

«  EmployeeType

Takes a description for the member that is being loaded; empty
by default.

Note: If you do not enter a value for this column or do not
connect the column, a new member is loaded without a
description, and the description of an existing member is
unchanged. If you enter <NONE> as the value for this column,
any existing description for the member is deleted and is not
loaded with the member.

21-20



Chapter 21
Datastore Tables and Data Load Columns

Table 21-3 (Cont.) Employee

Column Description
Operation Takes any of these values:
e Update (default)-Adds, updates, or moves the member
being loaded.
«  Delete Level 0-Deletes the member being loaded if it has no
children.

e Delete Idescendants-Deletes the member being loaded and
all of its descendants.

* Delete Descendants-Deletes the descendants of the
member being loaded, but does not delete the member
itself.

Note: If you delete a member, that member, its data, and any

associated planning units are permanently removed and cannot

be restored.

21.7.3 Entities

Table 21-4 describes the columns of the Entities table. See Data Load Columns for
descriptions of additional columns that are displayed for loading Entities data if the
application has been set up for data load in Planning.

Table 21-4 Entities

______________________________________________________________________|
Column Description

Entity Takes the name of the member you are loading. If this member
exists, its properties are modified. If the member does not exist,
then the record is added. This column is required.

The value for this column must meet the following requirements
for a successful load:

The value for this field must meet these requirements:

e Unique

e Alphanumeric

*  Not more than 80 characters

«  Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

*  Member name cannot start with any of these characters: '\
<[, =@_+-{}()-

e Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string.

ORACLE 21-21



Chapter 21
Datastore Tables and Data Load Columns

Table 21-4 (Cont.) Entities

__________________________________________________________________________|
Column Description

Parent Takes the name of the parent of the member you are loading. It
is used to create the hierarchy in the dimension.

When you update a member of an application using the Load

method and specify a parent member that is different than the
parent member in the application, the member is updated with
the new parent value specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in
your Planning application and you load Member 1 with a parent
value of Member B, the system updates your application and
makes Member B the parent of Member 1. Member 1 and its
descendants are moved from Member A to Member B. If the
column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

e The specified parent is a descendant of the member that
you are loading.

e The specified parent does not exist in the Planning
application.

Default Alias Takes an alternate name for the member being loaded. If you
are modifying properties and do not specify a value, the alias is
not changed in the Planning application. If you specify <NONE>
or <none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements

for a successful load:

e Unique

e Alphanumeric

*  Not more than 80 characters

«  Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

«  Member name cannot start with any of these characters: '\
<[, =@_+-{}().

e Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MlI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the
member being loaded. There are as many Alias columns as
there are Alias tables defined in Planning. The value for multiple
alias columns must conform to the same requirements as those
listed for the default alias column.

ORACLE 21-22



Chapter 21
Datastore Tables and Data Load Columns

Table 21-4 (Cont.) Entities

Column Description

Data Storage Takes the storage attribute for the member being loaded.
Valid values:
e Store

e Dynamic Calc
e Dynamic Calc and Store

e Shared
e Never Share (default)
e Label Only

This value is passed as a string.

Two Pass Calculation Boolean value to indicate if the member being loaded has the
Two-Pass Calculation attribute associated in the
Planningapplication. Valid values: 0 for False (default), or any
other number for True. Values are valid only when the Data
Storage value is Dynamic Calc or Dynamic Calc and Store;
otherwise, the record is rejected.

Data Type Takes the data storage value. Valid values:

e Currency-Stores and displays the member's data value in
the default currency.

«  Non-currency-Stores and displays the member's data value
as a numeric value.

e Percentage-Stores data values as a numeric value and
displays the member's data value as a percentage.

*  Smart list/ enumeration-Stores data values as a numeric
value and displays the member's data value as a string.

e Date-Stores and displays the member's data value in the
format mm/dd/yyyy or dd/ mm/yyyy

«  Text-Stores and displays the member's data value as text.

*  Unspecified-Stores and displays the member's data value
as "unspecified."

The default value is taken from the parent of the member being

loaded or is Currency if the member is being added to the root

dimension.

Base Currency Takes the base currency for the entity being loaded. It takes the
code of the currency as defined in your Planning application. The
default value is USD. This column is displayed only when the
application is defined to be multi-currency.

Plan Type (Planl) Boolean value that indicates if the member being loaded is used
in Planl. Valid values: O for False or any other number for True
(default). The name of the column varies depending on the name
of the plan type in the Planning application.

ORACLE 21-23



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-4 (Cont.) Entities

Column

Description

Aggregation (Planl)

Plan Type (Plan2)

Aggregation (Plan2)

Plan Type (Plan 3)

Aggregation (Plan3)

Takes the aggregation option for the member being loaded as
related to Planl. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

. *
o/

e %

o Never

Boolean value that indicates if the member being loaded is used
in Plan2. Valid values are O for False and any other number for
True. The default value is True. The name of the column varies
depending on the name of the plan type in the Planning
application.

Takes the aggregation option for the member being loaded as
related to Plan2. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

. *
o/

e %

o Never

Boolean value that indicates if the member being loaded is used
in Plan3. Valid values: 0 for False or any other number for True;
default value: True. The name of the column varies depending
on the name of the plan type in the Planning application.

Takes the aggregation option for the member being loaded as
related to Plan3. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

° *
o/

e %

. Never

21-24



Chapter 21
Datastore Tables and Data Load Columns

Table 21-4 (Cont.) Entities
|

Column

Description

Aggregation (Wrkforce)

Aggregation (Capex)

Custom Attribute

Member Formula

UDA

ORACLE

For Workforce Planning: The Aggregation (Wrkforce) column
takes the aggregation option for the member being loaded as
related to Workforce Planning. This column is available only if
the Planning application is valid for this plan type. The name of
the column varies, depending on the name of the plan type in the
Planning application.

This value is passed as a string. Valid values:

e+ (default)
. *

o/

e %

. Never

For Capital Expense Planning: Takes the aggregation option for
the member being loaded as related to Capital Expense
Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column
varies, depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

° *
o/

e %

o Never

Takes the custom attribute member values. The name of the
column is determined by the name of the custom attribute in the
Planning application. The number of custom attribute columns
varies depending on the number of attributes defined for the
Entity dimension. If you modify properties and do not specify a
value, the custom attribute is not changed in the Planning
application. If you specify <NONE> or <none> as the value, then
the custom attribute in the Planning application is deleted. This
value is passed as a string.

Takes the member formula values defined for the dimension
member. By default, there is no member formula associated with
a dimension or dimension member. You cannot load member
formulas for dimension members that are Shared or Label Only.

Specifies a list of user-defined attributes to be updated.Note:
You must define the UDA for the dimension members within
Planning or by way of the UDA target.

21-25



Chapter 21
Datastore Tables and Data Load Columns

Table 21-4 (Cont.) Entities

Column

Description

Smart Lists

Description

Operation

Takes the name of a user-defined Smart List defined in the
Planning application. This value is passed as a string. The
default for Smart Lists is <None>. Smart Lists are used in a
metadata or dimension load (not a data load) allowing you to
define the association of the Smart List name (not the values)
with a given dimension member. You can have multiple Smart
Lists associatedwith a dimension but only one Smart List
associated with a dimension member.

These predefined Smart Lists are available in a Workforce
Planning application:

. None
. Status
. FT_PT

e HealthPlan
e TaxRegion

. Month
. Performance
. Position

e EmployeeType

Takes a description for the member that is being loaded; empty
by default.

Note: If you do not enter a value for this column or do not
connect the column, a new member is loaded without a
description, and the description of an existing member is
unchanged. If you enter <NONE> as the value for this column,
any existing description for the member is deleted and is not
loaded with the member.

Takes any of these values:

e Update (default)-Adds, updates, or moves the member
being loaded.

e Delete Level 0-Deletes the member being loaded if it has no
children.

«  Delete Idescendants-Deletes the member being loaded and
all of its descendants.

*  Delete Descendants-Deletes the descendants of the
member being loaded, but does not delete the member
itself.

Note: If you delete a member, that member, its data, and any

associated planning units are permanently removed and cannot

be restored.

21.7.4 User-Defined Dimensions

Table 21-5 describes the columns of the User-Defined Dimensions table.

ORACLE

21-26



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-5 User-Defined Dimensions

Column

Description

Entity

Parent

Takes the name of the member you are loading. If this member
exists, its properties are modified. If the member does not exist,
then the record is added. This column is required.

The value for this column must meet the following requirements

for a successful load:

The value for this field must meet these requirements:

e Unique

e Alphanumeric

*  Not more than 80 characters

. Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

Member name cannot start with any of these characters: '\
<[, =@_+-{}().

e Value must not be an Essbase reserved word such as
Children, Parent, $$SUNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string.

Takes the name of the parent of the member you are loading. It
is used to create the hierarchy in the dimension.

When you update a member of an application using the Load

method and specify a parent member that is different than the
parent member in the application, the member is updated with
the new parent value specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in
your Planning application and you load Member 1 with a parent
value of Member B, the system updates your application and
makes Member B the parent of Member 1. Member 1 and its
descendants are moved from Member A to Member B. If the
column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

e The specified parent is a descendant of the member that
you are loading.

e The specified parent does not exist in the Planning
application.

21-27



Chapter 21
Datastore Tables and Data Load Columns

Table 21-5 (Cont.) User-Defined Dimensions

__________________________________________________________________________|
Column Description

Default Alias Takes an alternate name for the member being loaded. If you
are modifying properties and do not specify a value, the alias is
not changed in the Planning application. If you specify <NONE>
or <none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements

for a successful load:

e Unique

e Alphanumeric

*  Not more than 80 characters

«  Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

e Member name cannot start with any of these characters: '\
<|l,=@_+-{}0).

e Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the
member being loaded. There are as many Alias columns as
there are Alias tables defined in Planning. The value for multiple
alias columns must conform to the same requirements as those
listed for the default alias column.

Data Storage Takes the storage attribute for the member being loaded.
Valid values:
e Store

e Dynamic Calc
e Dynamic Calc and Store

*  Shared
e Never Share (default)
e Label Only

This value is passed as a string.

Two Pass Calculation Boolean value to indicate if the member being loaded has the
Two-Pass Calculation attribute associated in the
Planningapplication. Valid values: O for False (default), or any
other number for True. Values are valid only when the Data
Storage value is Dynamic Calc or Dynamic Calc and Store;
otherwise, the record is rejected.

ORACLE 21-28



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-5 (Cont.) User-Defined Dimensions

Column

Description

Data Type

Aggregation (Plani)

Aggregation (Plan2)

Takes the data storage value. Valid values:

e Currency-Stores and displays the member's data value in
the default currency.

*  Non-currency-Stores and displays the member's data value
as a numeric value.

e Percentage-Stores data values as a numeric value and
displays the member's data value as a percentage.

e Smart list / enumeration-Stores data values as a numeric
value and displays the member's data value as a string.

e Date-Stores and displays the member's data value in the
format mm/dd/yyyy or dd/ mm/yyyy

«  Text-Stores and displays the member's data value as text.

e Unspecified-Stores and displays the member's data value
as "unspecified.”

The default value is taken from the parent of the member being

loaded or is Currency if the member is being added to the root

dimension.

Takes the aggregation option for the member being loaded as
related to Planl. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

e+ (default)
° *

o/

e %

. Never

Takes the aggregation option for the member being loaded as
related to Plan2. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

e+ (default)
o

%

*  Never

21-29



Chapter 21
Datastore Tables and Data Load Columns

Table 21-5 (Cont.) User-Defined Dimensions

Column

Description

Aggregation (Plan3)

Aggregation (Wrkforce)

Aggregation (Capex)

Custom Attribute

ORACLE

Takes the aggregation option for the member being loaded as
related to Plan3. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

. *
o/

e %

o Never

For Workforce Planning: The Aggregation (Wrkforce) column
takes the aggregation option for the member being loaded as
related to Workforce Planning. This column is available only if
the Planning application is valid for this plan type. The name of
the column varies, depending on the name of the plan type in the
Planning application.

This value is passed as a string. Valid values:
e+ (default)

° *
o/

e %

o Never

For Capital Expense Planning: Takes the aggregation option for
the member being loaded as related to Capital Expense
Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column
varies, depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:
e+ (default)

° *

o
%

*  Never

Takes the custom attribute member values. The name of the
column is determined by the name of the custom attribute in the
Planning application. The number of custom attribute columns
varies depending on the number of attributes defined for the
Entity dimension. If you modify properties and do not specify a
value, the custom attribute is not changed in the Planning
application. If you specify <NONE> or <none> as the value, then
the custom attribute in the Planning application is deleted. This
value is passed as a string.

21-30



Chapter 21
Datastore Tables and Data Load Columns

Table 21-5 (Cont.) User-Defined Dimensions

__________________________________________________________________________|
Column Description

Member Formula Takes the member formula values defined for the dimension
member. By default, there is no member formula associated with
a dimension or dimension member. You cannot load member
formulas for dimension members that are Shared or Label Only.

UDA Specifies a list of user-defined attributes to be updated.Note:
You must define the UDA for the dimension members within
Planning or by way of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the
Planning application. This value is passed as a string. The
default for Smart Lists is <None>. Smart Lists are used in a
metadata or dimension load (not a data load) allowing you to
define the association of the Smart List name (not the values)
with a given dimension member. You can have multiple Smart
Lists associatedwith a dimension but only one Smart List
associated with a dimension member.

These predefined Smart Lists are available in a Workforce
Planning application:

«  None
. Status
« FT_PT

e HealthPlan
e TaxRegion

*  Month
e Performance
e Position
«  EmployeeType
Description Takes a description for the member that is being loaded; empty
by default.

Note: If you do not enter a value for this column or do not
connect the column, a new member is loaded without a
description, and the description of an existing member is
unchanged. If you enter <NONE> as the value for this column,
any existing description for the member is deleted and is not
loaded with the member.

Operation Takes any of these values:
e Update (default)-Adds, updates, or moves the member
being loaded.
«  Delete Level 0-Deletes the member being loaded if it has no
children.

«  Delete Idescendants-Deletes the member being loaded and
all of its descendants.

e Delete Descendants-Deletes the descendants of the
member being loaded, but does not delete the member
itself.

Note: If you delete a member, that member, its data, and any

associated planning units are permanently removed and cannot

be restored.

ORACLE 21-31



21.7.5 Attribute Dimensions

Chapter 21
Datastore Tables and Data Load Columns

Table 21-6 describes the columns of the Attribute Dimensions table.

# Note:

The Parent, Default Alias, and Additional Alias columns are available only in
Planning 9.3.1 and later.

Table 21-6 Attribute Dimensions
]

Column

Description

Entity

Parent

ORACLE

Takes the name of the member you are loading. If this member
exists, its properties are modified. If the member does not exist,
then the record is added. This column is required.

The value for this column must meet the following requirements

for a successful load:

The value for this field must meet these requirements:

e Unique

e Alphanumeric

*  Not more than 80 characters

. Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

*«  Member name cannot start with any of these characters: '\
<l,=@_+-{}().

e Value must not be an Essbase reserved word such as
Children, Parent, $$3SUNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string.

Takes the name of the parent of the member you are loading. It
is used to create the hierarchy in the dimension.

When you update a member of an application using the Load

method and specify a parent member that is different than the
parent member in the application, the member is updated with
the new parent value specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in
your Planning application and you load Member 1 with a parent
value of Member B, the system updates your application and
makes Member B the parent of Member 1. Member 1 and its
descendants are moved from Member A to Member B. If the
column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

*  The specified parent is a descendant of the member that
you are loading.

e The specified parent does not exist in the Planning
application.

21-32



Chapter 21
Datastore Tables and Data Load Columns

Table 21-6 (Cont.) Attribute Dimensions
|

Column

Description

Default Alias

Additional Alias

Operation

Takes an alternate name for the member being loaded. If you
are modifying properties and do not specify a value, the alias is
not changed in the Planning application. If you specify <NONE>
or <none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements

for a successful load:

e Unique

e Alphanumeric

*  Not more than 80 characters

«  Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

e Member name cannot start with any of these characters: '\
<|l,=@_+-{}().

e Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias columns can take alternate names for the
member being loaded. There are as many Alias columns as
there are Alias tables defined in Planning. The value for multiple
alias columns must conform to the same requirements as those
listed for the default alias column.

Takes any of these values:

e Update (default)-Adds, updates, or moves the member
being loaded.

«  Delete Level 0-Deletes the member being loaded if it has no
children.

*  Delete Idescendants-Deletes the member being loaded and
all of its descendants.

* Delete Descendants-Deletes the descendants of the
member being loaded, but does not delete the member
itself.

Note: If you delete a member, that member, its data, and any

associated planning units are permanently removed and cannot

be restored.

21.7.6 UDA

Table 21-7 describes the columns of the UDA table.

ORACLE

21-33



Table 21-7 UDA

Chapter 21
Datastore Tables and Data Load Columns

Column

Description

Dimension

UDA

Dimension

Operation

Takes the dimension name for the UDA. You can associate
UDAs only with dimensions that exist in the Planning application.
If the UDA exists, its properties are modified; otherwise, the
record is added. This column is required.

Takes the values of the UDA that you are loading.

Takes the values of the UDA you are loading. The value for this
column must meet the following requirements for a successful
load:

The value for this column must meet the following requirements

for a successful load:

e Unique

e Alphanumeric

e Not more than 80 characters

*  Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

«  Member name cannot start with any of these characters: '\
<[, =@_+-{}().

e Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MlI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Takes any of these values:

e Update (default)-Adds, updates, or moves the member
being loaded.

«  Delete Level 0-Deletes the member being loaded if it has no
children.

e Delete Idescendants-Deletes the member being loaded and
all of its descendants.

* Delete Descendants-Deletes the descendants of the
member being loaded, but does not delete the member
itself.

Note: If you delete a member, that member, its data, and any

associated planning units are permanently removed and cannot

be restored.

21.7.7 Data Load Columns

These columns for loading data into Account, Employee, Entities, and user-defined
dimensions are displayed if the application has been set up for data load in Planning.

ORACLE

21-34



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Table 21-8 Data Load Columns
]

Columns

Description

Data Load Cube
Name

Driver Member

Point-of-View

Takes the name of the plan type to which data is being loaded. The
value is passed as a string. Valid values are any plan types specified in
the Planning application. For example:

e Planl

e Plan2

e Plan3

e Wkforce
*  Capex

Takes the name of the driver member that is selected when the
Planning, Oracle's Hyperion® Workforce Planning, or Oracle's
Hyperion® Capital Expense Planning application is set up for loading
data. You can have one driver dimension per load. The Driver
Dimension and Driver Dimension Members are defined in the Data
Load Administration page in Planning. The driver members are the
members into which the data is loaded. The number of driver member
columns depends on the number of driver members you select in
Oracle's Hyperion® Planning - System 9. The value is passed as a
string representing a numeric value or, if a Smart List is bound to the
member represented on this column, a Smart List value.

Note: The Smart List field on this load method does not affect this
column.

Takes the names of all the other dimensions that are required to
determine the intersection to load the data. The value is passed as a
string. The data load automatically performs cross-product record
creations based on dimension parameters defined in the POV. For
example, an employee's Smart List attribute values that are constant
over time such as full time status for all twelve months need only be
supplied once in the data feed and the load file will create and load that
data record for each relevant cell intersection.

Column

Description

Data Load Cube
Name

Takes the name of the plan type to which data is being loaded. The
value is passed as a string. Valid values are any plan types specified in
the Planning application. For example:

- Planl

«  Plan2

. Plan3

e Wkforce
e Capex

21-35



ORACLE

Chapter 21
Datastore Tables and Data Load Columns

Column

Description

Driver Member

Point-of-View

Takes the name of the driver member that is selected when the
Planning, Oracle's Hyperion® Workforce Planning, or Oracle's
Hyperion® Capital Expense Planning application is set up for loading
data. You can have one driver dimension per load. The Driver
Dimension and Driver Dimension Members are defined in the Data
Load Administration page in Planning. The driver members are the
members into which the data is loaded. The number of driver member
columns depends on the number of driver members you select in
Oracle's Hyperion® Planning - System 9. The value is passed as a
string representing a numeric value or, if a Smart List is bound to the
member represented on this column, a Smart List value.

Note: The Smart List field on this load method does not affect this
column.

Takes the names of all the other dimensions that are required to
determine the intersection to load the data. The value is passed as a
string. The data load automatically performs cross-product record
creations based on dimension parameters defined in the POV. For
example, an employee's Smart List attribute values that are constant
over time such as full time status for all twelve months need only be
supplied once in the data feed and the load file will create and load that
data record for each relevant cell intersection.

21-36



Oracle Hyperion Essbase

It is important to understand how to work with Oracle Hyperion Essbase in Oracle Data
Integrator.
This chapter includes the following sections:

e Introduction

e Installation and Configuration

e Setting up Hyperion Essbase Adapter

e Setting up the Topology

e Creating and Reverse-Engineering an Essbase Model

» Designing a Mapping

22.1 Introduction

Oracle Data Integrator Adapter for Oracle's Hyperion Essbase enables you to connect
and integrate Essbase with virtually any source or target using Oracle Data Integrator.
The adapter provides a set of Oracle Data Integrator Knowledge Modules (KMs) for
loading and extracting metadata and data and calculating data in Essbase
applications.

22.1.1 Integration Process

You can use Oracle Data Integrator Adapter for Essbase to perform these data
integration tasks on an Essbase application:

* Load metadata and data
e Extract metadata and data

Using the adapter to load or extract metadata or data involves the following tasks:

e Setting up an environment: defining data servers and schemas.
See Setting up the Topology.

* Reverse-engineering an Essbase application using the Reverse-engineering
Knowledge Module (RKM)

See Creating and Reverse-Engineering an Essbase Model.
» Extracting metadata and data using Load Knowledge Modules (LKM).
See Designing a Mapping

* Integrating the metadata and data into the Essbase application using the
Integration Knowledge Modules (IKM).

See Designing a Mapping

ORACLE 22-1



Chapter 22
Installation and Configuration

22.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 22-1 for
handling Hyperion Essbase data. These KMs use Hyperion Essbase specific features.
It is also possible to use the generic SQL KMs with the Hyperion Essbase database.

Table 22-1 Hyperion Essbase Knowledge Modules
]

Knowledge Module Description

RKM Hyperion Essbase Reverse-engineers Essbase applications and creates data models to
use as targets or sources in Oracle Data Integrator mappings

IKM SQL to Hyperion Essbhase (DATA) Integrates data into Essbase applications.

IKM SQL to Hyperion Esshase Integrates metadata into Essbase applications

(METADATA)

LKM Hyperion Essbase DATA to SQL Loads data from an Essbase application to any SQL compliant
database used as a staging area.

LKM Hyperion Essbase METADATA to Loads metadata from an Essbase application to any SQL compliant

SQL database used as a staging area.

22.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle Data Integrator Adapter for Essbase:

e System Requirements and Certifications
e Technology Specific Requirements

e Connectivity Requirements

22.2.1 System Requirements and Cetrtifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conft echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htnl.

22.2.2 Technology Specific Requirements

There are no technology-specifc requirements for using the Oracle Data Integrator
Adapter for Essbase.

22.2.3 Connectivity Requirements

There are no connectivity-specific requirements for using the Oracle Data Integrator
Adapter for Essbase.

ORACLE 22-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 22
Setting up Hyperion Essbase Adapter

22.3 Setting up Hyperion Essbase Adapter

The following sections explain how to set up Hyperion Essbase Adapter for ODI Studio
and ODI standalone agent.

22.3.1 Setting up Adapter for ODI Studio

Exit from ODI Studio, before starting the setup process.

1. In Oracle Hyperion Essbase directory, locate ess_japi.jar and ess_es_server.jar.

2. Ifess_japi.jar and ess_es_server.jar are not directly accessible by ODI, copy them
to a location that allows ODI access.

3. Modify <ODI_HOME>/odi/studio/bin/odi.conf file to include ess_japi.jar and
ess_es_server.jar.

For example:
AddJavaLibFile /server/lib/ess_japi.jar

AddJavaLibFile /server/lib/ess_es_server.jar

22.3.2 Setting up Adapter for ODI Standalone Agent

Stop ODI Agent before starting the setup process.
1. In Oracle Hyperion Essbase directory, locate ess_japi.jar and ess_es_server.jar.

2. Copy them into <DOMAIN_HOME>/lib directory.

For more information, see Configuring the Domain for the Standalone Collocated
Agent in Installing and Configuring Oracle Data Integrator.

22.4 Setting up the Topology

Setting up the Topology consists of:

1. Creating an Hyperion Essbase Data Server

2. Creating an Hyperion Essbase Physical Schema

22.4.1 Creating an Hyperion Essbase Data Server

Create a data server for the Hyperion Essbase technology using the standard
procedure, as described in Creating a Data Server of Developing Integration Projects
with Oracle Data Integrator. This section details only the fields required or specific for
defining a Hyperion Essbase data server:

1. In the Definition tab:
 Name: Enter a name for the data server definition.

e Server (Data Server): Enter the Essbase server name.

ORACLE 22-3



Chapter 22
Creating and Reverse-Engineering an Essbase Model

# Note:

If the Essbase server is running on a port other than the default port (1423),
then provide the Essbase server details in this format, <Essbase Server
host nane>: <port >.

2. Under Connection, enter a user name and password for connecting to the
Essbase server.

# Note:

The Test button does not work for an Essbase data server connection. This
button works only for relational technologies that have a JDBC Driver.

22.4.2 Creating an Hyperion Essbase Physical Schema

Create a Hyperion Essbase physical schema using the standard procedure, as
described in Creating a Physical Schema of Developing Integration Projects with
Oracle Data Integrator.

Under Application (Catalog) and Application (Work Catalog), specify an Essbase
application and under Database (Schema) and Database (Work Schema), specify an
Essbase database associated with the application you selected.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema of Developing Integration Projects with Oracle
Data Integrator and associate it in a given context.

22.5 Creating and Reverse-Engineering an Essbase Model

This section contains the following topics:

e Create an Essbase Model

» Reverse-engineer an Essbase Model

22.5.1 Create an Esshase Model

Create an Essbase Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

22.5.2 Reverse-engineer an Essbase Model

Reverse-engineering an Essbase application creates an Oracle Data Integrator model
that includes a datastore for each dimension in the application and a datastore for
data.

To perform a Customized Reverse-Engineering on Hyperion Essbase with a RKM, use
the usual procedure, as described in Reverse-engineering a Model of Developing

ORACLE 22-4



ORACLE

Chapter 22

Creating and Reverse-Engineering an Esshase Model

Integration Projects with Oracle Data Integrator. This section details only the fields

specific to the Hyperion Essbase technology.

1.
2.

In the Reverse tab of the Essbase Model, select the RKM Hyperion Essbase.

Set the KM options as indicated in Table 22-2.

Table 22-2 RKM Hyperion Essbhase Options
]

Option Possible Values Description
MULTIPLE_DATA_C <+  No (Default) If this option is set to No, then the datastore
OLUMNS «  Yes created for the data extract / load model

DATA_COLUMN_DI  Account
MENSION

DATA_COLUMN_ME Account
MBERS

contains one column for each of the
standard dimensions and a single data
column.If this option is set to Yes, then the
datastore created for the data extract / load
model contains one column for each of the
standard dimensions excluding the
dimension specified by the
DATA_COLUMN_DIMENSION option and
as many data columns as specified by the
comma separated list for the
DATA_COLUMN_MEMBERS option.

This option is only applicable if
MULTIPLE_DATA_COLUMNS is set to Yes.

Specify the data column dimension name.
For example, data columns are spread
across the dimension Account or Time, and
so on.

This option is only applicable if
MULTIPLE_DATA_COLUMNS is set to Yes.

Separate the required data column
members with, (Comma).

For example, if the data column dimension
is set to Account and members are set to
Sal es, COGS then the datastore for data
extract/load contains one column for each of
the dimension except the data column
dimension and one column for each of the
data column member specified in the
comma separated value. For example.
Assuming that the dimensions in the
Essbase application are Account, Scenario,
Product, Market, and Year and the data
column dimension is specified as Account
and Data Column Members as Sal es,
COGS, the datastore will have the following
columns:

e Scenario (String)

*  Product (String)

*  Market (String)Year (String)
e Sales (Numeric)

*  COGS (Numeric)

22-5



Chapter 22
Designing a Mapping

Table 22-2 (Cont.) RKM Hyperion Essbase Options
]

Option Possible Values Description
EXTRACT_ATTRIBU <  No (Default) If this option is set to No, then the datastore
TE_MEMBERS « Yes created for the data extract / load model

contains one column for each of the

standard dimensions and a single data

column. Attribute dimensions are not

included.

If this option is set to Yes, then the data

model contains these columns.

. One column is created for each of the
standard dimensions

*  One or more Data column(s) are
created depending upon the value of
the MULTIPLE_DATA_COLUMN option

¢ One column is created for each of the
associated attribute dimension

The RKM connects to the application (which is determined by the logical schema and
the context) and imports some or all of these datastores, according to the dimensions
in the application.

22.6 Designing a Mapping

After reverse-engineering an Essbase application as a model, you can use the
datastores in this model in these ways:

» Targets of mappings for loading data and metadata into the application
*  Sources of mappings for extracting metadata and data from the application.

The KM choice for a mapping determines the abilities and performance of this
mapping. The recommendations in this section help in the selection of the KM for
different situations concerning Hyperion Essbase.

This section contains the following topics:

* Loading Metadata
e Loading Data

e Extracting Data

22.6.1 Loading Metadata

ORACLE

Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (METADATA) for
loading metadata into an Essbhase application.

Metadata consists of dimension members. You must load members, or metadata,
before you load data values for the members.

You can load members only to dimensions that exist in Essbase. You must use a
separate mapping for each dimension that you load. You can chain mappings to load
metadata into several dimensions at once.

22-6



Chapter 22
Designing a Mapping

1. | . Note:

The metadata datastore can also be modified by adding or deleting
columns to match the dimension build rule that will be used to perform the
metadata load. For example, the default datastore would have columns for
ParentName and ChildName, if the rule is a generational dimension build
rule, you can modify the metadata datastore to match the columns within
your generational dimension build rule. The loadMarkets mapping within
the samples is an example of performing a metadata load using a
generational dimension build rule.

Table 22-3 lists the options of the IKM SQL to Hyperion Essbase (METADATA). These
options define how the adapter loads metadata into an Essbase application.

Table 22-3 IKM SQL to Hyperion Esshase (METADATA) Options

____________________________________________________________________________|
Option Values Description
RULES_FI LE Blank (Default) Specify the rules file for loading or building
metadata. If the rules file is present on the Essbase
server, then, only specify the file name, otherwise,
specify the fully qualified file name with respect to
the Oracle Data Integrator Agent.
RULE_SEPARATOR , (Default) (Optional) Specify a rule separator in the rules file.
These are the valid values:
e Comma
e Tab
*  Space
e Custom character; for example, @, #, "
RESTRUCTURE_DATABASE ¢ KEEP_ALL_ Restructure database after loading metadata in the

DATA Essbasecube.
(Default) These are the valid values:

. _'FESAP?'ANPU . KEEP_ALL_DATA- Keep all the data

. K_EEP LEVE ° KEEP_INPUT_DATA Keep onlyinput data
LO DATA  KEEP_LEVELO_DATA-Keep onlylevel O data

. DISCARD_A . I.DISQARD._AI__L_DA.'I'A-Dlscard alldata
LL_DATA Note: This option is applicable for the Essbase
Release 9.3 and later. For the Essbase releases
prior to 9.3, this option is ignored.

PRE_LOAD MAXL_SCRI PT Blank (Default) Enable this option to execute a MAXL script before
loading metadata to the Essbase cube.
Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: To successfully execute this option, the
Essbase client must be installed and configured on
the machine where the Oracle Data Integrator
Agent is running.

ORACLE 22-7



Chapter 22
Designing a Mapping

Table 22-3 (Cont.) IKM SQL to Hyperion Essbhase (METADATA) Options
|

Option Values Description
POST_LOAD MAXL_SCRI P Blank (Default)  Enable this option to execute a MAXL script after
T loading metadata to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: To successfully execute this option, the
Essbase client must be installed and configured on
the machine where the Oracle Data Integrator
Agent is running.

ABORT_ON_PRE_MAXL_ER - No (Default)
ROR . Yes

This option is only applicable if you are enabling
the PRE_LOAD_MAXL_SCRIPT option.

If you set the ABORT_ON_PRE_MAXL_ERROR
option to Yes, then the load process is aborted on
encountering any error while executing the pre-
MAXL script.

If this option is set to Yes, during the IKM process,
logging is done to the file specified in the
LOG_FILE_NAME option.

Specify a file name to log events of the IKM
process.

LOG_ENABLED *  No (Default)
* Yes

LOG _FI LE_NAME <?
=java.lang.Syste
m.getProperty
("java.io.tmpdir")
?>/Extract_<%
=snpRef.getFro
m()%>.log
(Default)

ERROR LOG FI LENAME — <?
=java.lang.Syste
m.getProperty
("java.io.tmpdir")
?>/Extract_<%
=snpRef.getFro
m()%>.log
(Default)

Specify a file name to log the error records of the
IKM process.

22.6.2 Loading Data

ORACLE

Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (DATA) for loading
data into an Essbase application.

You can load data into selected dimension members that are already created in
Essbase. For a successful data load, all the standard dimension members are
required and they should be valid members. You must set up the Essbase application
before you can load data into it.

You can also create a custom target to match a load rule.

Before loading data, ensure that the members (metadata) exist in the Essbase
dimension. The data load fails for records that have missing members and this
information is logged (if logging is enabled) as an error record and the data load
process will continue until the maximum error threshold is reached.

22-8



Chapter 22
Designing a Mapping

# Note:

The data datastore can also be modified by adding or delete columns to match
the data load rule that will be used to perform the data load.

Table 22-4 lists the options of the IKM SQL to Hyperion Essbase (DATA). These
options define how the adapter loads and consolidates data in an Essbase application.

Table 22-4 IKM SQL to Hyperion Essbase (DATA)

|
Option Values Description
RULES_FI LE Blank (Default) (Optional) Specify a rules file to enhance the
performance of data loading.

Specify a fully qualified file name if the rules file is
not present on the Essbase server.

If the rules file option is not specified, then the API-
based data load is used. However, you cannot
specify the API.

RULE_SEPARATOR , (Default) (Optional) Specify a rule separator in the rules file.
These are the valid values:

¢ Comma

e Tab

e Space

. Custom character; for example, @, #, »

GROUP_ID Integer When performing multiple data loads in parallel,
many mappings can be set to use the same
GROUP_ID. This GROUP _ID is used to manage
parallel loads allowing the data load to be
committed when the final mapping for the
GROUP_ID is complete. For more information on
loading to parallel ASO cubes, refer to the Essbase
Database Administrators guide.

BUFFER I D 1-1000000 Multiple data load buffers can exist on an aggregate
storage database. To save time, you can load data
into multiple data load buffers at the same time.
Although only one data load commit operation on a
database can be active at any time, you can
commit multiple data load buffers in the same
commit operation, which is faster than committing
buffers individually. For more information on loading
to parallel ASO cubes, refer to the Essbase
Database Administrators guide.

ORACLE 22-9



Chapter 22
Designing a Mapping

Table 22-4 (Cont.) IKM SQL to Hyperion Essbase (DATA)
|

Option Values Description

BUFFER_SI ZE 0-100 When performing an incremental data load,
Essbase uses the aggregate storage cache for
sorting

data. You can control how much of the cache a
data load buffer can use by specifying the
percentage (between 0 and 100% inclusive). By
default, the resource usage of a data load buffer is
set to 100, and the total resource usage of all data
load buffers created on a database cannot exceed
100. For example, if a buffer of 90 exists, you
cannot create another buffer of a size greater than
10. A value of 0 indicates to Essbase to use a self-
determined, default load

buffer size.
CLEAR_DATABASE *  None (Default) Enable this option to clear data from the Essbase
. Al cube before loading data into it.
* UpperBlocks These are the valid values:
*  Non-input ¢ None—Clear database will not happen
Blocks +  All—Clears all data blocksinput data
e Upper Blocks—Clears all consolidated level
blocks

¢ Non-Input Blocks—Clears blocks containing
values derived from calculations

Note: For ASO applications, the Upper Blocks and

Non-Input Blocks options will not be applicable.

CALCULATI ON_SCRI P Blank (Default) (Optional) Specify the calculation script that you
T want to run after loading data in the Essbase cube.

Provide a fully qualified file name if the calculation
script is not present on the Essbase server.

RUN_CALC SCRIPT_O ¢ No (Default) This option is only applicable if you have specified a
NLY e Yes calculation script in the CALCULATION_SCRIPT
option.
If you set the RUN_CALC_SCRIPT_ONLY option
to Yes, then only the calculation script is executed
without loading the data into the target Essbase

cube.
PRE_LOAD MAXL_SCR Blank (Default) Enable this option to execute a MAXL script before
I PT loading data to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: Essbase client must be installed and
configured on the machine where the Oracle Data
Integrator Agent is running.

POST_LQAD_MAXL_SC Blank (Default) Enable this option to execute a MAXL script after
R PT loading data to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: Essbase client must be installed and
configured on the machine where the Oracle Data
Integrator Agent is running.

ORACLE 22-10



Chapter 22
Designing a Mapping

Table 22-4 (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description
ABORT_ON_PRE_MAXL +  No (Default) This option is only applicable if you are enabling the
_ERROR «  Yes PRE_LOAD_MAXL_SCRIPT option.

If you set the ABORT_ON_PRE_MAXL_ERROR
option to Yes, then the load process is aborted on
encountering any error while executing pre-MAXL

script.
MAXI MUM_ERRORS_AL 1 (Default) Enable this option to set the maximum number of
LOAED errors to be ignored before stopping a data load.

The value that you specify here is the threshold
limit for error records encountered during a data
load process. If the threshold limit is reached, then
the data load process is aborted. For example, the
default value 1 means that the data load process
stops on encountering a single error record. If value
5 is specified, then data load process stops on
encountering the fifth error record. If value 0 (==
infinity) is specified, then the data load process
continues even after error records are encountered.

COWM T_I NTERVAL 1000 (Default) Commit Interval is the chunk size of records that
are loaded in the Essbase cube in a complete
batch.

Enable this option to set the Commit Interval for the
records in the Essbase cube.

Changing the Commit Interval can increase
performance of data load based on design of the
Essbase database.

LOG_ENABLED *  No (Default) If this option is set to Yes, during the IKM process,
e Yes logging is done to the file specified in the
LOG_FILENAME option.
LOG_FI LENAMVE <? Specify a file name to log events of the IKM

Sjava.lang.System. process.
getProperty(“java.io
tmpdir")?/<
%=snpRef.getTarge
tTable("RES_NAM

E")%>.log (Default)

LOG_ERRORS *  No (Default) If this option is set to Yes, during the IKM process,
. Yes details of error records are logged to the file
specified in the ERROR_LOG_FILENAME option.
ERROR_LOG FI LENAM <? Specify a file name to log error record details of the
E =java.lang.System. IKM process.

getProperty(java.io.
tmpdir")?>/<
%-=snpRef.getTarge
tTable("RES_NAM

E"%>.err
ERR LOG HEADER RO ¢  No (Default) If this option is set to Yes, then the header row
w e Yes containing the column names are logged to the

error records file.

ORACLE 22-11



Chapter 22
Designing a Mapping

Table 22-4 (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description

ERR _COL_DELI M TER , (Default) Specify the column delimiter to be used for the error
records file.

ERR_ROW DELI M TER \r\n (Default) Specify the row delimiter to be used for the error
records file.

ERR_TEXT_DELIM TE ' (Default) Specify the text delimiter to be used for the column

R data in the error records file.

For example, if the text delimiter is setas ' "
' (double quote), then all the columns in the error
records file will be delimited by double quotes.

22.6.3 Extracting Data

This section includes the following topics:
» Data Extraction Methods for Essbase
e Extracting Essbase Data

»  Extracting Members from Metadata

22.6.3.1 Data Extraction Methods for Essbase

ORACLE

The Oracle Data Integrator Adapter for Essbase supports querying and scripting for
data extraction. To extract data, as a general process, create an extraction query and
provide the extraction query to the adapter. Before the adapter parses the output of
the extraction query and populates the staging area, a column validation is done. The
adapter executes the extraction query based on the results of the metadata output
query during the validation. The adapter does the actual parsing of the output query
only when the results of the column validation are successful.

After the extraction is complete, validate the results—make sure that the extraction
guery has extracted data for all the output columns.

You can extract data with these Essbase-supported query and scripts:
- Data Extraction Using Report Scripts
e Data Extraction Using MDX Queries

e Data Extraction Using Calculation Scripts

Data Extraction Using Report Scripts

Data can be extracted by parsing the reports generated by report scripts. The report
scripts can exist on the client computer as well as server, where Oracle Data
Integrator is running on the client computer and Essbase is running on the server. The
column validation is not performed when extracting data using report scripts. So, the
output columns of a report script is directly mapped to the corresponding connected
column in the source model. However, before you begin data extract using report
scripts, you must complete these tasks:

22-12



Chapter 22
Designing a Mapping

Suppress all formatting in the report script. Include this line as the first line in the
report script—{ROWREPEAT SUPHEADING SUPFORMAT SUPBRACKETS
SUPFEED SUPCOMMAS NOINDENTGEN TABDELIMIT DECIMAL 15}.

The number of columns produced by a report script must be greater than or equal
to the connected columns from the source model.

The column delimiter value must be set in the LKM option.

Data Extraction Using MDX Queries

An MDX query is an XML-based data-extraction mechanism. You can specify the MDX
query to extract data from an Essbase application. However, before you begin data
extract using MDX queries, you must complete these tasks:

The names of the dimension columns must match with the dimensions in the
Essbase cube.

For Type 1 data extraction, all the names of data columns must be valid members
of a single standard dimension.

For Type 1 data extraction, it is recommended that the data dimension exists in
the lower level axis, that is, axis (0) of columns. If it is not specified in the lowest
level axis then the memory consumption would be high.

If columns are connected with the associated attribute dimension from the source
model, then, the same attribute dimension must be selected in the MDX query.

The script of the MDX query can be present on the client computer or the server.

Data Extraction Using Calculation Scripts

Calculation scripts provide a faster option to extract data from an Essbase application.
However, before you extract data using the calculation scripts, take note of these
restrictions:

Data extraction using calculation scripts is supported ONLY for BSO applications.

Data extraction using calculation scripts is supported ONLY for the Essbase
Release 9.3 and later.

Set the DataExportDimHeader option to ON.

(If used) Match the DataExportColHeader setting to the data column dimension (in
case of multiple data columns extraction).

The Oracle Data Integrator Agent, which is used to extract data, must be running
on the same machine as the Essbase server.

When accessing calculation scripts present on the client computer, a fully qualified
path to the file must be provided, for example, C:\Essbase Samples\Calc_Scripts
\calcall.csc, where as, to access calculation scripts present on the server, only the
file name is sufficient.

22.6.3.2 Extracting Essbase Data

Oracle Data Integrator provides the LKM Hyperion Essbase DATA to SQL for
extracting data from an Essbase application.

You can extract data for selected dimension members that exist in Essbase. You must
set up the Essbase application before you can extract data from it.

ORACLE

22-13



ORACLE

Chapter 22
Designing a Mapping

Table 22-5 provides the options of the LKM Hyperion Essbase Data to SQL. These
options define how Oracle Data Integrator Adapter for Essbase extracts data.

Table 22-5 LKM Hyperion Essbase DATA to SQL Options
|

Option Values

Description

PRE_CALCULATI ON_SCR Blank (Default)
I PT

EXTRACTI ON_QUERY_TY <  ReportScript
PE (Default)

*  MDXQuery

e CalcScript

EXTRACTI ON_QUERY_FI
LE

EXT_COL_DELI M TER

Blank (Default)

\t (Default)

EXTRACT_DATA FI LE_|
N_CALC SCRI PT

Blank (Default)

PRE_EXTRACT_MAXL Blank (Default)

POST_EXTRACT_MAXL  Blank (Default)

ABORT_ON_PRE_MAXL_E -
RROR .

No (Default)
Yes

LOG_ENABLED

No (Default)
* Yes

LOG_FI LENAME <?
=java.lang.System.get
Property
("java.io.tmpdir")?/<%
=snpRef.getTargetTab
le("RES_NAME")
%>.log (Default)

MAXI MUM ERRORS_ALLO 1 (Default
VED

(Optional) Specify the calculation script that
you want to run before extracting data from the
Essbase cube.

Specify an extraction query type—report script,
MDX query, or calculation script.

Provide a valid extraction query, which fetches
all the data to fill the output columns.

The first record (first two records in case of
calculation script) contains the meta
information of the extracted data.

Specify a fully qualified file name of the
extraction query.

Specify the column delimiter for the extraction
query.

If no value is specified for this option, then
space (" ") is considered as column delimiter.

This option is only applicable if the query type
in the EXTRACTION_QUERY_TYPE option is
specified as CalcScript.

Specify a fully qualified file location where the
data is extracted through the calculation script..

Enable this option to execute a MAXL script
before extracting data from the Essbase cube.

Enable this option to execute a MAXL script
after extracting data from the Essbase cube.

This option is only applicable if the
PRE_EXTRACT_MAXL option is enabled.

If the ABORT_ON_PRE_MAXL_ERROR
option is set to Yes, while executing pre-MAXL
script, the load process is aborted on
encountering any error.

If this option is set to Yes, during the LKM
process, logging is done to the file specified in
the LOG_FILE_NAME option.

Specify a file name to log events of the LKM
process.

Enable this option to set the maximum number
of errors to be ignored before stopping extract.

22-14



Chapter 22
Designing a Mapping

Table 22-5 (Cont.) LKM Hyperion Esshase DATA to SQL Options

Option Values Description
LOG_ERRORS *  No (Default) If this option is set to Yes, during the LKM
e Yes process, details of error records are logged to

the file specified in the
ERROR_LOG_FILENAME option.

ERROR_LOG FI LENAME <7 Specify a file name to log error record details
=java.lang.System.get of the LKM process.
Property(java.io.tmpdir
N?>/<
%=snpRef.getTargetT
able("RES_NAME")

%>.err
ERR_LOG HEADER ROV «  No (Default) If this option is set to Yes, then the header row
e Yes containing the column names are logged to the
error records file.
ERR_COL_DELIM TER , (Default) Specify the column delimiter to be used for the
error records file.
ERR ROWDELI M TER  \r\n (Default) Specify the row delimiter to be used for the
error records file.
ERR TEXT_DELIM TER ' (Default) Specify the text delimiter to be used for the
column data in the error records file.
For example, if the text delimiter is setas ' "
' (double quote), then all the columns in the
error records file are delimited by double
quotes.
DELETE TEMPORARY_OB «  No (Default) Set this option to No, in order to retain
JECTS e Yes temporary objects (tables, files, and scripts)

after integration.
This option is useful for debugging.

22.6.3.3 Extracting Members from Metadata

Oracle Data Integrator provides the LKM Hyperion Essbase METADATA to SQL for
extracting members from a dimension in an Essbase application.

To extract members from selected dimensions in an Essbase application, you must set
up the Esshase application and load metadata into it before you can extract members
from a dimension.Before extracting members from a dimension, ensure that the
dimension exists in the Essbase database. No records are extracted if the top member
does not exist in the dimension.

Table 22-6 lists the options of the LKM Hyperion Esshase METADATA to SQL. These
options define how Oracle Data Integrator Adapter for Oracle's Hyperion Essbase
extracts dimension members.

ORACLE 22-15



Chapter 22
Designing a Mapping

Table 22-6 LKM Hyperion Esshase METADATA to SQL
|

Option Values Description
MEMBER FILTER CRI T IDescendants, Enable this option to select members from the
ERI A (Default) dimension hierarchy for extraction. You can

specify these selection criteria:

. IDescendants
. Descendants

e IChildren

e Children

*  Member_Only

« Level0

. UDA
MEMBER_FI LTER_VALU Blank (Default) Enable this option to provide the member name
E for applying the specified filter criteria. If no

member is specified, then the filter criteria is
applied on the root dimension member.If the
MEMBER_FILTER_CRITERIA value is
MEMBER_ONLY or UDA, then the
MEMBER_FILTER_VALUE option is mandatory
and cannot be an empty string.

LOG_ENABLED *  No (Default) If this option is set to Yes, during the LKM
«  Yes process, logging is done to the file specified by
the LOG_FILE_NAME option.
LOG _FI LE_NAME <? Specify a file name to log events of the LKM

=java.lang.System.ge process.
tProperty(java.io.tmpd
ir)?>/Extract_<
%=snpRef.getFrom()

%>.log
MAXI MUM_ERRORS_ALL 1 (Default) Enable this option to set the maximum number of
ONED errors to be ignored before stopping extract.
LOG_ERRORS ¢ No (Default) If this option is set to Yes, during the LKM

e Yes process, details of error records are logged to

the file specified in the
ERROR_LOG_FILENAME option.

ERROR_LOG FI LENAME <? Specify a file name to log error record details of
=java.lang.System.ge the LKM process.
tProperty(java.io.tmpd
ir")?>/Extract_<
%=snpRef.getFrom()

%>.err
ERR_LOG HEADER ROW ¢« No (Default) If this option is set to Yes, then the header row
e Yes containing the column names are logged to the
error records file.
ERR COL_DELIM TER , (Default) Specify the column delimiter to be used for the
error records file.
ERR ROWDELI M TER \r\n (Default) Specify the row delimiter to be used for the error
records file.

ORACLE 22-16



Chapter 22
Designing a Mapping

Table 22-6 (Cont.) LKM Hyperion Esshase METADATA to SQL

________________________________________________________________________|
Option Values Description

ERR TEXT_DELI M TER

Blank (Default)  Specify the text delimiter to be used for the data

o \" column in the error records file. For example, if

.\ the text delimiter is set as ' "' (double quote),
then all the columns in the error records file are
delimited by double quotes.

DELETE_TEMPORARY_O <  No (Default) Set this option to No, in order to retain temporary
BJECTS «  Yes objects (tables, files, and scripts) after
integration.

This option is useful for debugging.

ORACLE 22-17



Other Technologies

It is important to understand how to work with other technologies in Oracle Data
Integrator.
Part Il contains the following chapters:

* JMS

e JMS XML

* LDAP Directories

e Oracle TimesTen In-Memory Database
* Oracle GoldenGate

e Oracle SOA Suite Cross References

ORACLE



JMS

It is important to understand how to work with Java Message Services (JMS) in Oracle
Data Integrator.
This chapter includes the following sections:

e Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Defining a JMS Model
» Designing a Mapping

e JMS Standard Properties

23.1 Introduction

Oracle Data Integrator provides a simple and transparent method to integrate JMS
destinations. This chapter focuses on processing JMS messages with a text payload in
batch mode. For XML payload processing, refer to JIMS XML .

23.1.1 Concepts

The JMS Knowledge Modules apply to most popular JIMS compliant middleware,
including Oracle Service Bus, Sonic MQ, and so forth. Most of these Knowledge
Modules include transaction handling to ensure message delivery.

23.1.1.1 IMS Message Structure

ORACLE

This section describes the structure of a message in a JMS destination.
A JMS Message consists of three sections:

e Header
*  Properties

* Payload

Header

The header contains in the header fields standard metadata concerning the message,
including the destination (JMSDestination), Message ID (JMSMessagelD), Message
Type (JMSType), and so forth.

Properties

The properties section contains additional metadata concerning the message. These
metadata are properties, that can be separated in three groups:

23-1



Chapter 23
Introduction

* JMS-Defined properties which are optional IMS Headers. Their name begins with
JMSX(IMSXUserlD, IMSXAppID, etc.).

*  Provider-specific properties. They are specific to the router vendor. Their names
start with IMS_<vendor name>.

»  Application-specific properties. These properties depend on the application
sending the messages. These are user-defined information that is not included in
the message payload.

The Header and Properties sections provide a set of header fields and properties that:
» Have a specific Java data type (Boolean, string, short, and so forth),
e Can be accessed for reading and/or writing,

* Can be used for filtering on the router through the JMS Selector.

Payload

The payload section contains the message content. This content can be anything (text,
XML, binary, and so forth).

23.1.1.2 Using a JMS Destination

ORACLE

Oracle Data Integrator is able to process JMS Text and Byte messages that are
delivered by a JMS destination. Each message is considered as a container for rows
of data and is handled through the JMS Queue or JMS Topic technology.

With JMS Queue/JMS Topic technologies, each JMS destination is defined similarly to
a flat file datastore. Each message in the destination is a record in the datastore.

In the topology, each JMS router is defined as a JMS Topic/Queue data server, with a
single physical schema. A JMS router may be defined therefore twice to access its
topics using one data server, and its queues using another one.

Each JMS destination (Topic of Queue) is defined as a JMS datastore which resource
name matches the name of the JMS destination (hame of the queue or topic as
defined in the router). A model groups message structures related to different topics or
queues.

The JMS datastore structure is defined similarly to a flat file (delimited or fixed width).
The properties or header fields of the message can be declared with IMS-specific data
types as additional pseudo-columns in this flat file structure. Each message in the
destination is processed as a record of a JMS datastore.

Processing Messages

JMS destinations are handled as regular file datastores and messages as rows from
these datastores. With these technologies, entire message sets are produced and
consumed within each mapping.

Message publishing as well consumption requires a commit action to finalize
removing/posting the message from/to the JMS destination. Committing is particularly
important when reading. Without a commit, the message is read but not consumed. It
remains in the JMS Topic/Queue and will be re-read at a later time.

Both the message content and pseudo-columns can be used as regular attributes in
the mappings (for mapping, filter, etc.). Certain pseudo-columns (such as the one

23-2



Chapter 23
Installation and Configuration

representing the MESSAGE_ID property) are read-only, and some properties of
header fields are used (or set) through the Knowledge Module options.

Using Data Integrator you can transfer information either through the message
payload - the attributes -, or through the properties - pseudo-columns - (application
properties, for example).

Using the properties to carry information is restricted by third-party applications
producing or consuming the messages.

Filtering Messages

It is possible to filter messages from a JMS destination in two ways:

» By defining a filter using the datastore's attributes and pseudo-columns. In this
case Data Integrator performs the filtering operation after consuming the
messages. This implies that messages rejected by this filter may also be

consumed.

* By defining a Message Selector (MESSAGE_SELECTOR KM option). This type of
filter can only use the properties or header fields of the message. The filter is
processed by the router, and only the messages respecting the filter are
consumed, reducing the number of messages transferred.

23.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 23-1 for
handling JMS messages.

Table 23-1 JMS Knowledge Modules

Knowledge Module

Description

IKM SQL to JMS Append

LKM JMS to SQL

Integrates data into a JMS compliant message queue or topic in text
or binary format from any SQL compliant staging area.

Consider using this IKM if you plan to transform and export data to a
target JMS queue or topic. If most of your source datastores are
located on the same data server, we recommend using this data
server as staging area to avoid extra loading phases (LKMs).

To use this IKM, the staging area must be different from the target.

Loads data from a text or binary JMS compliant message queue or
topic to any SQL compliant database used as a staging area. This
LKM uses the Agent to read selected messages from the source
gueue/topic and write the result in the staging temporary table
created dynamically.

To ensure message delivery, the message consumer (or subscriber)
does not commit the read until the data is actually integrated into the
target by the IKM.

Consider using this LKM if one of your source datastores is a text or
binary JMS message.

23.2 Installation and Configuration

Make sure you have read the information in this section before you start using the JMS

Knowledge Modules:

ORACLE

23-3



Chapter 23
Setting up the Topology

*  System Requirements and Certifications
* Technology Specific Requirements

» Connectivity Requirements

23.2.1 System Requirements and Cetrtifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conl t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htni.

23.2.2 Technology Specific Requirements

The JMS destinations are usually accessed via a JNDI service. The configuration and
specific requirements for JNDI and JMS depends on the JMS Provider you are
connecting to. Refer to the JMS Provider specific documentation for more details.

23.2.3 Connectivity Requirements

Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the
JMS Provider documentation for the connectivity requirement of this provider.

23.3 Setting up the Topology

Setting up the Topology consists of:

1. Creating a JMS Data Server
2. Creating a JMS Physical Schema

23.3.1 Creating a JMS Data Server

A JMS data server corresponds to one JMS provider/router that is accessible through
your local network.

It exists two types of JMS data servers: IMS Queue and JMS Topic.

A JMS Queue data server is used to access several queues in the JMS router.

A JMS Topic data server is used to access several topics in the JMS router

23.3.1.1 Creation of the Data Server

Create a data server either for the IMS Queue technology or for the IMS Topic
technology using the standard procedure, as described in Creating a Data Server of
Developing Integration Projects with Oracle Data Integrator. This section details only
the fields required or specific for defining a IMS Queue or JIMS Topic data server.

1. In the Definition tab:

¢ Name: Name of the data server as it will appear in Oracle Data Integrator.

ORACLE 23-4


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 23
Setting Up an Integration Project

» User/Password: Not used here. Leave these fields empty.
2. Inthe JNDI tab:
* JNDI Authentication: Set this field to None.

e JNDI User: Enter the username to connect to the JNDI directory (optional
step).

e Password: This user's password (optional step).
e JNDI Protocol: From the list, select the JNDI protocol (optional step).

e JNDI Driver: Name of the initial context factory java class to connect to the
JNDI provider, for example: com sun. j ndi . | dap. LdapCt xFact ory for LDAP

*  JNDI URL: <JM5_RESQURCE>, for example | dap: / / <host >: <por t >/ <dn> for LDAP

e JNDI Resource: Logical name of the JNDI resource corresponding to your
JMS Queue or Topic connection factory.

For example, specify QueueConnect i onFact ory if you want to access a message
gueue and Topi cConnect i onFact ory if you want to access a topic. Note that
these parameters are specific to the JNDI directory and the provider.

23.3.2 Creating a JMS Physical Schema

Create a JMS physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

< Note:

Only one physical schema is required per JMS data server.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

23.4 Setting Up an Integration Project

Setting up a project using JMS follows the standard procedure. See Creating an
Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with JMS:

e |IKM SQL to JMS Append
¢ LKMJMS to SQL

23.5 Creating and Defining a JMS Model

This section contains the following topics:

* Create a JMS Model
* Defining the JMS Datastores

ORACLE 23-5



Chapter 23
Creating and Defining a JMS Model

# Note:

It is not possible to reverse-engineer a JMS model. To create a datastore you
have to create a JMS model and define the JMS datastores.

23.5.1 Create a JMS Model

Create a JMS Model using the standard procedure, as described in Creating a Model
of Developing Integration Projects with Oracle Data Integrator.

A JMS Model is a set of datastores corresponding to the Topics or Queues of a router.
Each datastore corresponds to a specific Queue or Topic. The datastore structure
defines the message structure for this queue or topic. A model is always based on a
Logical Schema. In a given Context, the Logical Schema corresponds to one JMS
Physical Schema. The Data Schema corresponding to this Physical Schema contains
the Topics or Queues.

23.5.2 Defining the JMS Datastores

ORACLE

In Oracle Data Integrator, each datastore is a JMS Topic or Queue. Each message in
this topic or queue is a row of the datastore.

A JMS message may carry any type of information and there is no metadata retrieval
method available. Therefore reverse-engineering is not possible.

To define the datastore structure, do one of the following:

e Create the datastore as a file datastore and manually declare the message
structures.

» Use the File reverse-engineering through an Excel spreadsheet in order to
automate the reverse engineering of messages. See Files for more information
about this reverse-engineering method.

» Duplicate a datastore from another model into the JMS model.

" Note:

The datastores' resource names must be identical to the name of JIMS
destinations (this is the logical INDI name) that will carry the message
corresponding to their data. Note that these names are frequently case-
sensitive.

Declaring JMS Properties as Pseudo-Columns

The property pseudo-columns represent properties or header fields of a message.
These pseudo-columns are defined in the Oracle Data Integrator model as attributes in
the JMS datastore, with IMS-specific datatypes. The JMS-specific datatypes are
called IMS_xxx (for example: JMS String, JMS Long, JMS Int, and so forth).

To define these property pseudo-columns, simply declare additional attributes named
identically to the properties and specified with the appropriate JMS-specific datatypes.

23-6



Chapter 23
Designing a Mapping

If you define pseudo-columns that are named like standard, provider-specific or
application-specific properties, they will be consumed or published with the message
as such. If a pseudo-column is not listed in the standard or provider-specific set of
JMS properties, It is considered as additional application-specific property.

For example, to use or set in mappings the JMSPriority default property on messages
consumed from or pushed to a JMS queue called CUSTOMER, you would add a
attribute called JMSPriority (with this exact case) to the CUSTOMER datastore. This
attribute would have the JMS Int datatype available for the IMS Queue technology.

WARNING:

e Property pseudo-columns must be defined and positioned in the IMS
datastore after the attributes making up the message payload in a
DELIMITED file format. Use the Order field in the column definition to
position these columns. The order of the pseudo-columns themselves is
not important as long as they appear at the end of the datastore definition.

¢ Pseudo-columns names are case-sensitive.

For more information about JMS Properties, see:

e JMS Standard Properties
e Using JMS Properties

23.6 Designing a Mapping

You can use JMS as a source or a target of a mapping. It cannot be used as the
staging area.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning JMS messages.

23.6.1 Loading Data from a JMS Source

JMS can be used as a source or a target in a mapping. Data from a JMS message
Queue or Topic can be loaded to any SQL compliant database used as a staging area.
The LKM choice in the Mapping Flow tab to load data between JMS and another type
of data server is essential for the performance of a mapping.

Oracle Data Integrator provides the LKM JMS to SQL for loading data from a JMS
source to a Staging Area. This LKM loads data from a text or binary IMS compliant
message queue or topic to any SQL compliant database used as a staging area.

Table 23-2 lists the JMS specific options.

23.6.2 Integrating Data in a JMS Target

ORACLE

Oracle Data Integrator provides the IKM SQL to JMS Append that implements
optimized data integration strategies for JMS. This IKM integrates data into a JMS

23-7



ORACLE

Chapter 23
Designing a Mapping

compliant message queue or topic in text or binary format from any SQL compliant
staging area. Table 23-2 lists the JMS specific KM options of this IKM.

The IKM choice in the Mapping Flow tab determines the performances and
possibilities for integrating.

JMS Knowledge Modules Options

Table 23-2 lists the IMS specific KM options of the IMS IKM and LKM.

The JMS specific options of this LKM are similar to the options of the IKM SQL to JIMS
Append. There are only two differences:

* The DELETE_TEMPORARY_OBJECTS option is only provided for the LKM.
*  The PUBLISH option is only provided for the IKM.

Table 23-2 JMS Specific KM Options

________________________________________________________________________|
Option Used to Description

PUBLISH Write Check this option if you want to publish new
messages in the destination. This option is set to
Yes by default.

JMS_COMMIT Read/Write Commit the publication or consumption of a
message. Uncheck this option if you don't want to
commit your publication/consumption on your
router. This option is set to Yes by default.

JMS_COMMIT=1 Read/Write  Commit the JMS read operation, immediately after
the driver is done with the reading of all available
messages.

JMS server considers the messages read as being
consumed by some client.

JMS_COMMIT=0: Read/Write  JMS driver reads messages, but the JMS 'read' is
not considered 'done’ by the JMS server. This
happens when the corresponding ODI session (not
necessarily just the interface) finishes successfully.

If the session fails, the messages are NOT
consumed.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2:
Persistent). A persistent message remains on the
server and is recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message
on the server [0..4 000 000 000]. 0 signifies that
the message never expires.

Warning! After this delay, a message is considered
as expired, and is no longer available in the topic
or queue. When developing mappings it is advised
to set this parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9
(highest).
SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2 -
>TextMessage).
JMSTYPE Write Optional name of the message.
23-8



Chapter 23
JMS Standard Properties

Table 23-2 (Cont.) IMS Specific KM Options

________________________________________________________________________|
Option Used to Description
CLIENTID Read Subscriber identification string. This option is
described only for IMS compatibility.
Not used for publication.
DURABLE Read D: Session is durable. Indicates that the subscriber

definition remains on the router after
disconnection.

MESSAGEMAXNUMBER  Read Maximum number of messages retrieved [0 .. 4
000 000 000]. 0: All messages are retrieved.
MESSAGETIMEOUT Read Time to wait for the first message in milliseconds

[0 .. 4 000 000 000]. if MESSAGETIMEOUT is
equal to 0, then there is no timeout.

MESSAGETIMEOUT and
MESSAGEMAXNUMBER cannot be both equal to
zero. if MESSAGETIMEOUT= 0 and
MESSAGEMAXNUMBER =0, then
MESSAGETIMEOUT takes the value 1.

Warning! A mapping may retrieve no message if
this timeout value is too small.

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value
is 1000.

Warning! A mapping may retrieve only part of the
messages available in the topic or the queue if this
value is too small.

MESSAGESELECTOR Read Message selector in ISO SQL syntax. See Using
JMS Properties for more information on message
selectors.

23.7 JMS Standard Properties

This section describes the JMS properties contained in the message header and how
to use them.

In Oracle Data Integrator, pseudo-columns corresponding to the JMS Standard
properties should be declared in accordance with the descriptions provided in
Table 23-3.

The JMS type and access mode columns refer to the use of these properties in Oracle
Data Integrator or in Java programs. In Oracle Data Integrator, some of these
properties are used through the IKM options, and the pseudo-column values should
not be set by the mappings.

For more details on using these properties in a Java program, see http://
j ava. sun. com products/jns/.

ORACLE 23-9


http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Chapter 23
JMS Standard Properties

Table 23-3 Standard JMS Properties of Message Headers

Property

JMS Type

Access (Read/
Write)

Description

JMSDestination

JMSDeliveryMode

JMSMessagelD

JMSTimestamp

JMSEXxpiration

JMSRedelivered

JMSPriority

JMSCorrelationID

JMSType

JMS String

JMS Integer

JMS String

JMS Long

JMS Long

JMS Boolean

JMS Int

JMS String

JMS String

R

R/W (set by IKM
option)

R/W (set by IKM
option)

R/W

R/W

R/W (set by IKM
option)

Name of the destination (topic or
gueue) of the message.

Distribution mode: 1 = Not Persistent
or 2 = Persistent. A persistent
message is never lost, even if a
router crashes.

When sending messages, this
property is set by the
JMSDELIVERYMODE KM option.

Unique Identifier for a message. This
identifier is used internally by the
router.

Date and time of the message
sending operation. This time is
stored in a UTC standard format (1).

Message expiration date and time.
This time is stored in a UTC
standard format (1).

To set this property the
JMSEXPIRATION KM option must
be used.

Indicates if the message was resent.
This occurs when a message
consumer fails to acknowledge the
message reception.

Name of the destination (topic or
gueue) the message replies should
be sent to.

Correlation ID for the message. This
may be the IMSMessagelD of the
message this message generating
this reply. It may also be an
application-specific identifier.

Message type label. This type is a
string value describing the message
in a functional manner (for example
Sal esEvent, Support Probl en).

To set this property the IMSTYPE
KM option must be used.

Table 23-4 lists the optional JMS-defined properties in the JIMS standard.

Table 23-4 Optional JMS Properties of Message Headers

Property JMS Type Access (Read/ Description
Write)
JMSXUserID JMS String R Client User ID.

ORACLE

23-10



Chapter 23
JMS Standard Properties

Table 23-4 (Cont.) Optional JMS Properties of Message Headers
|

Property JMS Type Access (Read/ Description

Write)
JMSXAppID JMS String R Client Application ID.
JMSSXProducerTXI JMS String R Transaction ID for the production
D session. This ID is the same for all

the messages sent to a destination
by a producer between two JMS
commit operations.

JMSSXConsumerT JMS String R Transaction ID for current

XID consumption session. This ID is the
same of a batch of message read
from a destination by a consumer
between two JMS commit read

operations.
JMSXRcvTimestam JMS Long R Message reception date and time.
p This time is stored in a UTC
standard format (1).
JMSXDeliveryCount JMS Int R Number of times a message is
received. Always set to 1.
JMSXState JMS Int R Message state. Always set to 2
(Ready).
JMSXGrouplD JMS String R/W ID of the group to which the

message belongs.

JMSXGroupSeq JMS Int R/W Sequence number of the message in
the group of messages.

(1): The UTC (Universal Time Coordinated) standard is the number of milliseconds
that have elapsed since January 1st, 1970

23.7.1 Using JMS Properties

In addition to their contents, messages have a set of properties attached to them.
These may be provider-specific, application-specific (user defined) or IMS Standard
Properties.

JMS properties are used in Oracle Data Integrator as complementary information to
the message, and are used, for example, to filter the messages.

23.7.1.1 Declaring JMS Properties

When Defining the JMS Datastores, you must append pseudo-columns corresponding
to the JMS properties that you want to use in your mappings. See Declaring JMS
Properties as Pseudo-Columns for more information.

23.7.1.2 Filtering on the Router

With this type of filtering, the filter is specified when sending the JMS read query. Only
messages matching the message selector filter are retrieved. The message selector is
specified in Oracle Data Integrator using the MESSAGE_SELECTOR KM option

ORACLE 23-11



Chapter 23
JMS Standard Properties

# Note:

Router filtering is not a IMS mandatory feature. It may be unavailable. Please
confirm that it is available by reviewing the JMS provider documentation.

The MESSAGE_SELECTOR is programmed in an SQL WHERE syntax. Comparison,
boolean and mathematical operators are supported:

+, -, * [, = > < <>, >3 <=, OR AND, BETVEEN, IN, NOT, LIKE, IS NULL.

# Note:

e« The IS NULL clause handles properties with an empty value but does not
handle nonexistent application-specific properties.

For example, if the selector COLOR IS NULL is defined, a message with the
application-specific property COLOR specified with an empty value is
consumed correctly. Another message in the same topic/queue without this
property specified would raise an exception.

Examples

Filter all messages with priority greater than 5

JMSPriority > 5

Filter all messages with priority not less than 6 and with the type Sales_Event.

NOT JMSPriority < 6 AND JMSType = ' Sal es_Event'

23.7.1.3 Filtering on the Client

Filtering is performed after receiving the messages, and is setup by creating a
standard Oracle Data Integrator mapping filter, which must be executed on the staging
area. A filter uses pseudo-columns from the source JMS datastore. The pseudo-
columns defined in the Oracle Data Integrator datastore represent the JMS properties.
See Declaring JMS Properties as Pseudo-Columns for more information. Note that
messages filtered this way are considered as consumed from the queue or topic.

23.7.1.4 Using Property Values as Source Data

It is possible to use the values of JIMS properties as source data in a mapping. This is
carried out by specifying the pseudo-columns of the source JMS datastore in the
mapping. See Declaring JMS Properties as Pseudo-Columns for more information.

23.7.1.5 Setting Properties when Sending a Message

When sending messages it is possible to specify JMS properties by mapping values of
the pseudo-columns in a mapping targeting a JMS datastore. Certain properties may
be set using KM options. See JMS Standard Properties for more information.

ORACLE 23-12



JMS XML

It is important to understand how to work with Java Message Services (JMS) with a
XML payload in Oracle Data Integrator.
This chapter includes the following sections:

* Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a JMS XML Model
» Designing a Mapping

24.1 Introduction

Oracle Data Integrator provides a simple and transparent method to integrate JMS
destinations. This chapter focuses on processing JMS messages with a XML payload.
For text payload processing in batch mode, refer to JMS.

24.1.1 Concepts

The JMS XML Knowledge Modules apply to most popular JIMS compliant middleware,
including Oracle Service Bus, Sonic MQ, and so forth. Most of these Knowledge
Modules include transaction handling to ensure message delivery.

24.1.1.1 IMS Message Structure

See JMS Message Structure for information about the JMS message structure.

24.1.1.2 Using a JMS Destination

Oracle Data Integrator is able to process XML messages that are delivered by a IMS
destination. Each message is considered as a container for XML data and is handled
through the JIMS XML Queue or JMS XML Topic technology.

With IMS XML Queue/JMS XML Topic technologies, each messages payload
contains a complete XML data structure. This structure is mapped into a relational
schema (XML Schema) that appears as a model, using the Oracle Data Integrator
XML Driver.

ORACLE 24-1



ORACLE

Chapter 24
Introduction

# Note:

This method is extremely similar to XML files processing. In JIMS XML, the
message payload is the XML file. See XML Files and Oracle Data Integrator
Driver for XML Referencefor more information about XML Files processing and
the XML Driver.

In the topology, each JMS destination is defined as a IMS XML Topic/Queue data
server with a single physical schema. A data server/physical schema pair will be
declared for each topic or queue delivering message in the XML format.

The structure of the XML message mapped into a relational structure (called the XML
schema) appears as a data model. Each datastore in this model represents a portion
(typically, an element type) in the XML file.

Processing Messages

As each XML message corresponds to an Oracle Data Integrator model, the entire
model must be used and loaded as one single unit when a JMS XML message is
consumed or produced. The processing unit for an XML message is the package.

It is not possible to declare the properties or header fields of the message in the model
or use them as attributes in a mapping. They still can be used in message selectors, or
be set through KM options.

Consuming an XML message
Processing an incoming XML message is performed in packages as follows:

1. Synchronize the JMS message to the XML schema: This operation reads the
message and generates the XML schema. This is usually performed by the first
mapping accessing the message.

2. Extract the data: A sequence of mappings use datastores from the XML schema
as sources. This data is usable until the session is terminated, another message is
read by a new Synchronize action, or the Commit JMS Read is performed.

3. Commit JMS Read: This operation validates the message consumption and
deletes the XML schema. It should be performed by the last mapping which
extracts data from the XML message.

Producing an XML message

To produce an XML message, a package must be designed to perform the following
tasks:

1. Initialize the XML schema: This operation creates an empty XML schema
corresponding to the XML message to generate. This operation is usually
performed in the first mapping loading the structure.

2. Load the data: A sequence of mappings loads data into the XML schema.

3. Synchronize the XML schema to JMS: This operation converts the XML schema to
an XML message, and sends it to the JMS destination. This operation is usually
performed by the last mapping loading the schema.

24-2



Chapter 24
Installation and Configuration

Filtering Messages

It is possible to filter messages from a JMS XML destination by defining a Message
Selector (MESSAGE_SELECTOR KM option) to filter messages on the server. This
type of filter can use only the properties or header fields of the message. The filter is
processed by the server, reducing the amount of information read by Data Integrator. It
is also possible to filter data in the mapping using data extracted from the XML
schema. These filters are processed in Data Integrator, after the message is
synchronized to the XML schema.

24.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 24-1 for
handling XML messages.

Table 24-1 JMS XML Knowledge Modules

Knowledge Module Description

IKM SQL to JMS XML Append Integrates data into a JMS compliant message queue or topic in XML
format from any ANSI SQL-92 standard compliant staging area.

LKM JMS XML to SQL Loads data from a JMS compliant message queue or topic in XML to
any ANSI SQL-92 standard compliant database used as a staging
area.

24.2 Installation and Configuration

Make sure you have read the information in this section before you start using the JMS
Knowledge Modules:

»  System Requirements and Certifications
» Technology Specific Requirements

e Connectivity Requirements

24.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. coni t echnol ogy/ product s/ oracl e-dat a-integrator/index. htn .

24.2.2 Technology Specific Requirements

The JMS destinations are usually accessed via a JNDI service. The configuration and
specific requirements for JNDI and JMS depends on the JMS Provider you are
connecting to. Refer to the JMS Provider specific documentation for more details.

ORACLE 24-3


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 24
Setting up the Topology

# Note:

By default, a sequence of four ';" is used as fixed record separator for IMS XML
driver read operations. If the XML data also contains a sequence of four or
more ';' characters, an error will occur and you must set the record separator to
a different value. This is achieved using the Dor acl e. odi . j msxm Col SepStri ng
JVM option. For example, Dor acl e. odi . j nsxm Col SepSt ri ng=""2???" will set the
JMS XML driver record separator to "????" instead of ";;;;".

This option must be set in the following locations:

e In Studio, this parameter is set in the odi . conf paraneter file. Add a new
AddVMXpt i on entry.

e For 12c Standalone/Colocated Agents, use ODI _| NSTANCE_CPTI ONS in the
instance.sh script.

e For 11g Standalone Agents, use CDI _ADDI TI ONAL_JAVA _CPTI ONS in the
odiparams file.

e For JEE Agents, add it to JAVA OPTI ONS in the st art Managed\Wébl ogi ¢ Script.

24.2.3 Connectivity Requirements

This section lists the requirements for connecting to a JMS XML database.

Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the
JMS Provider documentation for the connectivity requirement of this provider.

XML Configuration

XML content is accessed through the Oracle Data Integrator JDBC for XML driver. The
driver is installed with Oracle Data Integrator.

Ask your system administrator for the location of the DTD file describing the XML
content.

24.3 Setting up the Topology

Setting up the Topology consists of:

1. Creating a JMS XML Data Server
2. Creating a JMS XML Physical Schema

24.3.1 Creating a JMS XML Data Server

An JMS XML data server corresponds to one JMS provider/router that is accessible
through your local network.

There are two types of IMS XML data servers: IMS Queue XML and JMS Topic XML.

A JMS Queue XML data server is used to connect a single queue in the JMS
router to integrate XML messages.

ORACLE 24-4



Chapter 24
Setting up the Topology

A JMS Topic XML data server is used to connect a single Topic in the JMS router
to integrate XML messages.

The Oracle Data Integrator JMS driver loads the messages that contains the XML
content into a relational schema in memory. This schema represents the hierarchical
structure of the XML message and enables unloading the relational structure back to
the JMS messages.

24.3.1.1 Creation of the Data Server

ORACLE

Create a data server either for the JIMS Queue XML technology or for the JMS Topic
XML technology using the standard procedure, as described in Creating a Data Server
of Developing Integration Projects with Oracle Data Integrator.

The creation process for a JIMS XML Queue or JMS Topic XML data server is identical
to the creation process of an XML data server except that you need to define a JNDI
connection with IMS XML specific information in the JNDI URL. See Creating an XML
Data Server for more information.

This section details only the fields required or specific for defining a IMS Queue XML
or JMS Topic XML data server.

1. In the Definition tab:
* Name: Name of the data server as it will appear in Oracle Data Integrator.
* User/Password: Not used here. Leave these fields empty.

2. Inthe JNDI tab:
* JNDI Authentication: From the list, select the authentication mode.

* JNDI User: Enter the username to connect to the JNDI directory (not
mandatory).

» Password: This user's password (not mandatory).
* JNDI Protocol: From the list, select the JNDI protocol (not mandatory).

* JNDI Driver: Name of the initial context factory java class to connect to the
JNDI provider, for example:

com sun. j ndi . | dap. LdapCt xFact ory

* JNDI URL: <JMS_RESOURCE>?
d=<DTD_FI LE>&s=<SCHEMA>&JMS_DESTI NATI ON=<JMS_DESTI NATI ON_NAME>.

The IJNDI URL properties are described inTable 24-2.

e JNDI Resource: Logical name of the JNDI resource corresponding to your
JMS Queue (or Topic) connection factory.

# Note:

Specify QueueConnect i onFact ory if you want to access a message queue
and TopicConnectionFactory if you want to access a topic. Note that
these parameters are specific to the JNDI directory.

24-5



Table 24-2 JNDI URL Properties

Chapter 24
Setting up the Topology

Parameter

Value

Notes

d

re

ro

cs

JMSXML_ROW
SEPARATOR

JMS_DESTINA
TION

transform_nona
scii or tha

<DTD File location>

<Root element>

true | false

<schema name>

true | false

5B23245D

JNDI Queue name
or Topic name

boolean (true|false)

DTD File location (relative or absolute) in UNC
format. Use slash "/" in the path name and not
backslash "\" in the file path. This parameter is
mandatory.

Name of the element to take as the root table
of the schema. This value is case sensitive.
This parameter can be used for reverse-
engineering a specific message definition from
a WSDL file, or when several possible root
elements exist in a XSD file.

If true, the XML file is opened in read only
mode.

Name of the relational schema where the XML
file will be loaded.This value must match the
one set for the physical schema attached to
this data server. This parameter is mandatory.

Load the XML file in case sensitive or
insensitive mode. For case insensitive mode,
all element names in the DTD file should be
distinct (Ex: Abc and abc in the same file are
banned). The case sensitive parameter is a
permanent parameter for the schema. It
CANNOT be changed after schema creation.
Please note that when opening the XML file in
insensitive mode, case will be preserved for
the XML file.

Hexadecimal code of the string used as a line
separator (line break) for different XML
contents. Default value is 5B23245D which
corresponds to the string [#$].

JNDI Name of the JMS Queue or Topic. This
parameter is mandatory.

Transform Non Ascii. Set to false to keep non-
ascii characters. Default is true. This
parameter is not mandatory.

Example 24-1 Example

If using an LDAP directory as the JNDI provider, you should use the following

parameters:

e JNDI Driver: com sun. j ndi . | dap. LdapCt xFact ory

« JNDI URL: I dap: // <l dap_host >: <por t >/ <dn>?
d=<DTD_FI LE>&s=<SCHEMA>&JMS_DESTI NATI ON=<JMS_DESTI NATI ON_NAME>

* JNDI Resource: <Nane of the connection factory>

24.3.2 Creating a JMS XML Physical Schema

Create a JMS XML physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

ORACLE

24-6



Chapter 24
Setting Up an Integration Project

< Note:

For the name of the Schema and Work Schema use the schema name defined
in the s=<schema name> property of the JINDI URL of the IMS Queue XML or
JMS Topic XML data server.

# Note:

Only one physical schema is required per JIMS XML data server.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

24.4 Setting Up an Integration Project

Setting up a project using JMS XML follows the standard procedure. See Creating an
Integration Project of Developing Integration Projects with Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with IMS XML.:

e |KM SQL to JMS XML Append
¢ LKMJMS XML to SQL

24.5 Creating and Reverse-Engineering a JMS XML Model

This section contains the following topics:

* Create a JMS XML Model
* Reverse-Engineering a JMS XML Model

24.5.1 Create a JMS XML Model

ORACLE

Create a JMS Queue XML or JMS Topic XML Model using the standard procedure, as
described in Creating a Model of Developing Integration Projects with Oracle Data
Integrator.

A IJMS Queue XML or JMS Topic XML Model corresponds to a set of datastores, with
each datastore representing an entry level in the XML file. The models contain
datastores describing the structure of the JIMS messages. A model contains the
message structure of one topic or one queue. This model's structure is reverse-
engineered from the DTD or the XML file specified in the data server definition, using
standard reverse-engineering.

24-7



Chapter 24
Designing a Mapping

24.5.2 Reverse-Engineering a JMS XML Model

JMS XML supports Standard reverse-engineering - which uses only the abilities of the
XML driver.

To perform a Standard Reverse-Engineering on JMS Queue XML or JMS Topic XML
use the usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator.

Oracle Data Integrator will automatically add the following attributes to the datastores
generated from the XML data:

* Primary keys (PK attributes) for parent-child relationships
* Foreign keys (FK attributes) for parent-child relationships

*  Order identifier (ORDER attributes) to enable the retrieval of the order in which the
data appear in the XML file.

These extra attributes enable the hierarchical XML structure's mapping in a relational
structure stored in the schema. See Oracle Data Integrator Driver for XML Reference
for more information.

24.6 Designing a Mapping

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning XML messages.

24.6.1 Loading Data from a JMS XML Source

ORACLE

JMS XML can be used as a source or a target in a mapping. Data from an XML
message Queue or Topic can be loaded to any ANSI SQL-92 standard compliant
database used as a staging area. The LKM choice in the Mapping Flow tab to load
data between JMS XML and another type of data server is essential for successful
data extraction.

Oracle Data Integrator provides the LKM JMS XML to SQL for loading data from a
JMS compliant message queue or topic in XML to any ANSI SQL-92 standard
compliant database used as a staging area. This LKM uses the Agent to read selected
messages from the source queue/topic and write the result in the staging temporary
table created dynamically.To ensure message delivery, the message consumer (or
subscriber) does not commit the read until the data is actually integrated into the target
by the IKM.Consider using this LKM if one of your source datastores is an XML JMS
message.

In order to load XML messages from a JMS provider, the following steps must be
followed:

*  The first mapping reading the XML message from the JMS XML source must use
the LKM JMS XML to SQL with the SYNCHRO_JMS_TO_XML LKM option set to
Yes. This option creates and loads the XML schema from the message retrieved
from the queue or topic.

e The last mapping should commit the message consumption by setting the
JMS_COMMIT to Yes.

24-8



Chapter 24
Designing a Mapping

Table 24-3 lists the JMS specific options of this knowledge module.

24.6.2 Integrating Data in a JMS XML Target

ORACLE

Oracle Data Integrator provides the IKM SQL to JMS XML Append that implements
optimized data integration strategies for IMS XML. This IKM integrates data into a
JMS compliant message queue or topic in XML format from any ANSI SQL-92
standard compliant staging area.

To use this IKM, the staging area must be different from the target.

In order to integrate XML data into a JMS XML target, the following steps must be
followed:

*  The first mapping loading the XML schema must provide a value for the
ROOT_TABLE (it is the model's table that corresponds to the root element of the
XML file), and also set the INITIALIZE_XML_SCHEMA option to Yes.

# Note:

The root table of the XML schema usually corresponds to the datastore at
the top of the hierarchy tree view of the JMS XML model. Therefore the
ROOT_TABLE parameter should take the value of the resource name for
this datastore.

*  The mappings should load the datastores in the hierarchy order, starting by the top
of the hierarchy and going down. The mappings loading subsequent levels of the
XML schema hierarchy should load the foreign key attribute linking the current
hierarchy level to a higher one.

For example, when loading the second level of the hierarchy (the one under the
root table), the foreign key attribute should be set to '0' (Zero), as it is the value
that is set by the IKM in the root table primary key when the root table is initialized.

e The last mapping should send the XML schema to the JMS provider by setting the
SYNCHRO_JMS_TO_XML parameter to Yes.

Example
An XML file format generates a schema with the following hierarchy of datastores:

+ GEOGRAPHY_DI M (GEO DI MPK, ...)

I
+--- COUNTRY (GEO DI MFK, COUNTRYPK, COUNTRY_NAME, ...)

|
+--- REG ON (COUNTRYFK, REG ONPK, REG ON_NAME, ...)

In this hierarchy, GEOGRAPHY_DIM is the root table, and its GEOGRAPHY_DIMPK
attribute is set to '0' at initialization time. The tables should be loaded in the
GEOGRAPHY_DIM, COUNTRY, REGION sequence.

*  When loading the second level of the XML hierarchy (COUNTRY) make sure that
the FK field linking this level to the root table level is set to '0". In the model above,
when loading COUNTRY, we must load the COUNTRY.GEOGRAPHY_DIMFK set
to'0'.

24-9



ORACLE

Chapter 24
Designing a Mapping

* You must also link the records of REGION to the COUNTRY level by loading the
REGION.COUNTRYFK attribute with values that correspond to a parent record in
COUNTRY (having REG ON. COUNTRYFK = COUNTRY. COUNTRYPK).

For more information on loading data to XML schemas, see Oracle Data Integrator
Driver for XML Reference.

Table 24-3 lists the JMS specific KM options of this IKM. Options that are specific to
XML messages are in bold.

JMS XML Knowledge Modules Options

Table 24-3 lists the KM options for the LKM and IKM for JMS XML. Options that are
specific to XML messages are in bold.

Although most options are the same for the LKM and IKM, there are only few
differences:

e The INITIALIZE_XML_SCHEMA and ROOT_TABLE options are only provided for
the IKM.

e The DELETE_TEMPORARY_OBJECTS and JMS_COMMIT options are only
provided for the LKM.

e Set JMS_COMMIT to Yes to commit the message consumption on the Router
(IMS XML).

Table 24-3 JMS Specific KM Options

Option Used to Description

CLIENTID Read Subscriber identification string.
Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber
definition remains on the router after disconnection.

INITIALIZE_XML_SCHEMA Write Initializes an empty XML schema. This option must
be set to YES for the first mapping loading the
schema.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2:

Persistent). A persistent message remains on the
server and is recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on
the server [0..4 000 000 000]. 0 signifies that the
message never expires.

Warning! After this delay, a message is considered
as expired, and is no longer available in the topic or
queue. When developing mappings it is advised to
set this parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9
(highest).

JMSTYPE Write Optional name of the message.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000
000 000]. 0: All messages are retrieved.

MESSAGESELECTOR Read Message selector in ISO SQL syntax for filtering on

the router. See Using JMS Properties for more
information on message selectors.

24-10



ORACLE

Chapter 24
Designing a Mapping

Table 24-3 (Cont.) IMS Specific KM Options
|

Option Used to

Description

MESSAGETIMEOUT Read

NEXTMESSAGETIMEOUT Read

ROOT_TABLE Write

SENDMESSAGETYPE Write

SYNCHRO_XML_TO_JMS Write

Time to wait for the first message in milliseconds
[0 .. 4 000 000 000]. If MESSAGETIMEOUT is
equal to 0, then there is no timeout.

MESSAGETIMEOUT and
MESSAGEMAXNUMBER cannot be both equal to
zero. If MESSAGETI MEQUT= 0 and MESSAGEMAXNUMBER
=0, then MESSAGETIMEOUT takes the value 1.

Warning! A mapping may retrieve no message if
this timeout value is too small.

Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value
is 1000.

Warning! A mapping may retrieve only part of the
messages available in the topic or the queue if this
value is too small.

Resource name of the datastore that is the root of
the XML model hierarchy. Option applicable only to
first mapping loading the schema
(INITIALIZE_XML_SCHEMA-=true). IKM inserts a
record for the root element of the XML schema, if
ROOT_TABLE<>" and
INITIALIZE_XML_SCHEMA=true.

Warning! Use only, if no mapping will populate the
root table of the XML structure. Otherwise a
duplicate root element will be encountered.

Type of message to send (1 -> BytesMessage, 2 -
>TextMessage).

Generates the XML message from the XML
schema, and sends this message. This option must
be set to YES for the last mapping that writes to the
schema XML.

24-11



LDAP Directories

It is important to understand how to work with LDAP directories in Oracle Data
Integrator.
This chapter includes the following sections:

e Introduction

* Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering an LDAP Directory
* Designing a Mapping

e Troubleshooting

25.1 Introduction

Oracle Data Integrator supports LDAP directories integration using the Oracle Data
Integrator Driver for LDAP.

25.1.1 Concepts

ORACLE

The LDAP concepts map the Oracle Data Integrator concepts as follows: An LDAP
directory tree, more specifically the entry point to this LDAP tree, corresponds to a
data server in Oracle Data Integrator. Within this data server, a single schema maps
the content of the LDAP directory tree.

The Oracle Data Integrator Driver for LDAP (LDAP driver) loads the hierarchical
structure of the LDAP tree into a relational schema. This relational schema is a set of
tables that can be queried or modified using standard SQL statements.

¢ Note:

ODI LDAP driver's support for LDAP servers is limited. All the features of the
driver may not work on any given instance of an LDAP server. ODI uses Java
JNDI API to interact with the LDAP servers. If the LDAP server adheres exactly
with LDAP specifications, then driver features will work. Otherwise, some of the
features may not work.

The relational schema is reverse-engineered as a data model in ODI, with tables,
columns, and constraints. This model is used like a normal relational data model in
ODI. Any changes performed in the relational schema data (insert/update) is
immediately impacted by the driver in the LDAP data.

25-1



Chapter 25
Installation and Configuration

See Oracle Data Integrator Driver for LDAP Reference for more information on this
driver.

25.1.2 Knowledge Modules

Oracle Data Integrator does not provide specific Knowledge Modules (KM) for the
LDAP technology. You can use LDAP as a SQL data server. LDAP data servers
support both the technology-specific KMs sourcing or targeting SQL data servers, as
well as the generic KMs. See Generic SQL or the technology chapters for more
information on these KMs.

25.2 Installation and Configuration

Make sure you have read the information in this section before you start working with
the LDAP technology.

e System Requirements
e Technologic Specific Requirements

*  Connectivity Requirements

25.2.1 System Requirements

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn .

25.2.2 Technologic Specific Requirements

There are no technology-specific requirements for using LDAP directories in Oracle
Data Integrator.

25.2.3 Connectivity Requirements
This section lists the requirements for connecting to LDAP database.

Oracle Data Integrator Driver for LDAP

LDAP directories are accessed through the Oracle Data Integrator Driver for LDAP.
This JDBC driver is installed with Oracle Data Integrator.

To connect to an LDAP directory you must ask the system administrator for the
following connection information:

* The URL to connect to the directory
e The User and Password to connect to the directory

*  The Base Distinguished Name (Base DN). This is the location in the LDAP tree
that ODI will access.

ORACLE 25-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 25
Setting up the Topology

You may also require a connection to the Reference LDAP Tree structure and to an
External Storage database for the driver. See Oracle Data Integrator Driver for XML
Reference for more information on these concepts and configuration parameters.

25.3 Setting up the Topology

Setting up the topology consists in:

1. Creating an LDAP Data Server
2. Creating a Physical Schema for LDAP

25.3.1 Creating an LDAP Data Server

An LDAP data server corresponds to an LDAP tree that is accessible to Oracle Data
Integrator.

25.3.1.1 Creation of the Data Server

Create a data server for the LDAP technology using the standard procedure, as
described in Creating a Data Server of Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
LDAP data server:

1. In the Definition tab:
« Name: Name of the data server that will appear in Oracle Data Integrator.
» User/Password: Name and password of the LDAP directory user.
2. Inthe JDBC tab, enter the values according to the driver used:
e JDBC Driver: com sunopsi s. | dap. j dbc. dri ver. SnpsLdapDri ver
e JDBC URL: The driver supports two URL formats:
— jdbc:snps: | dap?<property>=<val ue>[ &property>=<val ue>. ..]
— jdbc: snps: | dap2?<pr opert y>=<val ue>[ &property>=<val ue>. . .]

These two URLs accept the key properties listed in Table 25-1. See Driver
Configuration for a detailed description of these properties and for a
comprehensive list of all IDBC driver properties.

# Note:

The first URL requires the LDAP directory password to be encoded.
The second URL allows you to give the LDAP directory password
without encoding it. It is recommended to use the first URL to secure
the LDAP directory password.

ORACLE 25-3



Chapter 25
Setting Up an Integration Project

Table 25-1 JDBC URL Properties
|

Property Value Notes

ldap_auth  <authentication LDAP Directory authentication method. See the aut h property in Table A-1
mode>

Idap_url <LDAP URL> LDAP Directory URL. The URL must not contain spaces. If there are spaces

in the URL, replace them with %20.
See the url| property in Table A-1

Idap_user  <LDAP user name>  LDAP Directory user name. See the user property in Table A-1

ldap_passw <LDAP user LDAP Directory user password. This password must be encoded if using the
ord password> jdbc:snps:ldap URL syntax.
See the passwor d property in Table A-1
Idap_based <base DN> LDAP Directory basedn. The basedn must not contain spaces. If there are
n spaces in the basedn, replace them with %20.
See the basedn property in Table A-1

Example 25-1 URL Examples

To connect an Oracle Internet Directory on server CHOST_QO D and port 3060, using the
user orcl adni n, and accessing this directory tree from the basedn
dc=us, dc=or acl e, dc=comyou can use the following URL:

j dbc: snps: | dap?l dap_ur| =l dap: // OHOST_Qi D: 3060/
&l dap_basedn=dc=us, dc=or acl e, dc=com

&l dap_passwor d=ENCODED_PASSWORD

&l dap_user=cn=orcl admin

25.3.2 Creating a Physical Schema for LDAP

Create an LDAP physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

25.4 Setting Up an Integration Project

Setting up a Project using the LDAP database follows the standard procedure. See
Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

The recommended knowledge modules to import into your project for getting started
are the following:

+  LKM SQL to SQL
¢ LKM File to SQL
* |IKM SQL Control Append

25.5 Creating and Reverse-Engineering an LDAP Directory

This section contains the following topics:

ORACLE 25-4



Chapter 25
Designing a Mapping

* Create an LDAP Model
* Reverse-Engineering an LDAP Model

25.5.1 Create an LDAP Model

A data model groups a set of datastores. Each datastore represents in the context of a
directory a class or group of classes. Typically, classes are mapped to tables and
attributes to column. See LDAP to Relational Mapping for more information.

Create an LDAP Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

25.5.2 Reverse-Engineering an LDAP Model

LDAP supports standard reverse-engineering, which uses only the abilities of the
LDAP driver.

When the reverse-engineering process of the LDAP driver translates the LDAP tree
into a relational database structure, it constructs tables from sets of objects in the tree.

The names of these tables must reflect this original structure in order to maintain the
mapping between the two. As a result, the table names are composed of the original
LDAP object names that may be extremely long and not appropriate as datastore
names in mappings.

The solution consists in creating an alias file that contains a list of short and clear table
name aliases. See Table Aliases Configuration for more information.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on LDAP use the usual procedure, as
described in Reverse-engineering a Model of Developing Integration Projects with
Oracle Data Integrator.

The standard reverse-engineering process will automatically map the LDAP tree
contents to a relational database structure. Note that these tables automatically
include primary key and foreign key columns to map the directory hierarchy.

The reverse-engineering process also creates a ROOT table that represents the root
of the LDAP tree structure from the LDAP entry point downwards.

See LDAP Processing Overview for more information.

25.6 Designing a Mapping
You can use LDAP entries as a source or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performances of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning an LDAP data server.

ORACLE 25-5



Chapter 25
Troubleshooting

25.6.1 Loading Data from and to LDAP

An LDAP directory can be used as a mapping's source or target. The LKM choice in
the Loading Knowledge Module tab that is used to load data between LDAP entries
and other types of data servers is essential for the performance of the mapping.

25.6.1.1 Loading Data from an LDAP Directory

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from an LDAP database to a target or staging area database.

Table 25-2 lists some examples of KMs that you can use to load from an LDAP source
to a staging area.

Table 25-2 KMs to Load from LDAP to a Staging Area
|

Staging Area KM Notes

Microsoft SQL LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Server

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

Sybase LKM SQL to Sybase ASE (BCP)  Uses Sybase's bulk loader.

All LKM SQL to SQL Generic KM

25.6.1.2 Loading Data to an LDAP Directory

It is not advised to use an LDAP directory as a staging area.

25.6.2 Integrating Data in an LDAP Directory

LDAP can be used as a target of a mapping. The IKM choice in the Integration
Knowledge Module tab determines the performances and possibilities for integrating.

Use the Generic SQL KMs or the KMs specific to the other technology involved to
integrate data in an LDAP directory.

Table 25-3 lists some examples of KMs that you can use to integrate data from a
staging area to an LDAP target.

Table 25-3 KMs to Integrate Data in an LDAP Directory

|
Mode KM Notes

Append IKM SQL to SQL Append Generic KM

25.7 Troubleshooting

This section provides information on how to troubleshoot problems that you might
encounter when using LDAP in Oracle Data Integrator. It contains the following topics:

ORACLE 25-6



ORACLE

Chapter 25
Troubleshooting

SQL operations (insert, update, delete) performed on the relational model are not
propagated to the LDAP directory.

You are probably using an external RDBMS to store your relational model.
java.util.M ssingResourceException: Can't find bundle for base name Idap_....

The property bundle file is missing, present in the incorrect directory or the
filename is incorrect.

java. sql . SQLException: A Nami ngException occurred saying: [LDAP: error code
32 ....

The connection property bundle is possibly incorrect. Check the property values in
the bundle files.

java.sql . SQLException: A Nam ngException occurred saying: [LDAP. error code 49
- Invalid Credentials]

The authentication property is possibly incorrect. Check the password.

java. sql . SQLException: Exception class javax.nam ng. NameNot FoundExcepti on
occurred saying: [LDAP: error code 32 - No Such CObject].

The LDAP tree entry point is possibly incorrect. Check the target
DistinguishedName in the LDAP URL.

java.sql . SQLException: No suitable driver

This error message indicates that the driver is unable to process the URL is
registered. The JDBC URL is probably incorrect. Check that the URL syntax is
valid. See Installation and Configuration .

25-7



Oracle TimesTen In-Memory Database

It is important to understand how to work with Oracle TimesTen In-Memory Database
in Oracle Data Integrator.
This chapter includes the following sections:

* Introduction

e Installation and Configuration

e Setting up the Topology

e Setting Up an Integration Project

e Creating and Reverse-Engineering a TimesTen Model
e Setting up Data Quality

» Designing a Mapping

26.1 Introduction

The Oracle TimesTen In-Memory Database (TimesTen) provides real-time data
management. It provides application-tier database and transaction management built
on a memory-optimized architecture accessed through industry-standard interfaces.
Optional data replication and Oracle caching extend the product to enable multi-node
and multi-tier configurations that exploit the full performance potential of today's
networked, memory-rich computing platforms.

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, TimesTen operates on databases that fit entirely in
physical memory using standard SQL interfaces. High availability for the in-memory
database is provided through real-time transactional replication.

TimesTen supports a variety of programming interfaces, including JDBC (Java
Database Connectivity) and PL/SQL (Oracle procedural language extension for SQL).

26.1.1 Concepts

The TimesTen concepts map the Oracle Data Integrator concepts as follows: An
Oracle TimesTen In-Memory Database instance corresponds to a data server in
Oracle Data Integrator. Within this database instance, the database/owner pair maps
to an Oracle Data Integrator physical schema. A set of related objects within one
database corresponds to a data model, and each table, view or synonym will appear
as an ODI datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an
Oracle TimesTen In-Memory Database ODBC DSN.

ORACLE 26-1



Chapter 26
Installation and Configuration

26.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 26-1 for
handling TimesTen data. These KMs use TimesTen specific features. It is also
possible to use the generic SQL KMs with the TimesTen database. See Generic SQL
for more information.

Table 26-1 TimesTen KMs
]

Knowledge Module Description

IKM TimesTen Incremental Update Integrates data from staging area into a TimesTen target table using

(MERGE) TimesTen JDBC driver in incremental update mode. For example,
inexistent rows are inserted; already existing rows are updated.

LKM SQL to TimesTen Loads data from an ANSI SQL-92 source to a TimesTen staging table
using the TimesTen JDBC driver.

LKM File to TimesTen (ttBulkCp) Loads data from a file to a TimesTen staging table using ttBulkCp
utility.

26.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
TimesTen Knowledge Modules:

»  System Requirements and Certifications
* Technology Specific Requirements

e Connectivity Requirements

26.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http: //wwmv. oracl e. com t echnol ogy/ product s/ or acl e-dat a-i nt egrat or/i ndex. ht ni

26.2.2 Technology Specific Requirements

Some of the Knowledge Modules for TimesTen use the ttBulkCp utility.
The following requirements and restrictions apply for these Knowledge Modules:

* The host of the ODI Agent running the job must have the TimesTen Client utilities
installed (TTBULKCP)

» Data transformations should be executed on the staging area or target
* The correct ODBC entry must be created on the agent machine:

— Client DSN: A Client DSN specifies a remote database and uses the
TimesTen Client. A Client DSN refers to a TimesTen database indirectly by

ORACLE 26-2


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 26
Setting up the Topology

specifying a hostname, DSN pair, where the hostname represents the server
machine on which TimesTen Server is running and the DSN refers to a Server
DSN that specifies the TimesTen database on the server host.

— Server DSN: A Server DSN is always defined as a system DSN and is defined
on the server system for each database on that server that will be accessed by
clientapplications. The format and attributes of a server DSN are very similar
to those of a Data Manager DSN.

26.2.3 Connectivity Requirements

This section lists the requirements for connecting to a TimesTen database.
To be able to access Microsoft Excel data, you need to:

* Install the TimesTen ODBC Driver

* Declare a TimesTen ODBC Data Source
« JDBC Driver

« ODI Agent

Install the TimesTen ODBC Driver

Microsoft Excel workbooks can only be accessed through ODBC connectivity. The
ODBC Diriver for TimesTen must be installed on your system.

Declare a TimesTen ODBC Data Source

An ODBC data source must be defined for each Microsoft Excel workbook (. xI s file)
that will be accessed from ODI. ODBC datasources are created with the Microsoft
ODBC Data Source Administrator. Refer to your Microsoft Windows operating system
documentation for more information on datasource creation.

JDBC Driver

Oracle Data Integrator uses the TimesTen JDBC driver to connect to a TimesTen
database. This driver must be installed in your Oracle Data Integrator drivers directory.

ODI Agent

The ODI Agent running the job must have the TimesTen JDBC Driver and ODBC
driver installed and configured.

26.3 Setting up the Topology

Setting up the Topology consists of:

1. Creating a TimesTen Data Server

2. Creating a TimesTen Physical Schema

26.3.1 Creating a TimesTen Data Server

A TimesTen data server corresponds to a TimesTen database.

ORACLE 26-3



Chapter 26
Creating and Reverse-Engineering a TimesTen Model

26.3.1.1 Creation of the Data Server

Create a data server for the TimesTen technology using the standard procedure, as
described in Creating a Data Server of Developing Integration Projects with Oracle
Data Integrator. This section details only the fields required or specific for defining a
TimesTen data server:

1. In the Definition tab:
* Name: Name of the data server that will appear in Oracle Data Integrator
e Server: Physical name of the data server
» User/Password: TimesTen user with its password
2. Inthe JDBC tab:
e JDBC Driver: org. Ti mesTen. Dri ver
e JDBC URL:jdbc:tinesten:direct:dsn=<DSNnane>

where DSNnane is the name of an ODBC datasource configured on the machine
running the agent

# Note:

Note that Oracle Data Integrator will have write access only on the database
specified in the URL.

26.3.2 Creating a TimesTen Physical Schema

Create a TimesTen physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

26.5 Creating and Reverse-Engineering a TimesTen Model

This section contains the following topics:

 Create a TimesTen Model

* Reverse-engineer a TimesTen Model

26.5.1 Create a TimesTen Model

Create a TimesTen Model using the standard procedure, as described in Creating a
Model of Developing Integration Projects with Oracle Data Integrator.

ORACLE 26-4



Chapter 26
Setting up Data Quality

26.5.2 Reverse-engineer a TimesTen Model

TimesTen supports both Standard reverse-engineering - which uses only the abilities
of the JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

Consider switching to customized reverse-engineering if you encounter problems with
the standard JDBC reverse-engineering process due to some specificities of the
TimesTen JDBC driver.

Standard Reverse-Engineering

To perform a Standard Reverse-Engineering on TimesTen use the usual procedure,
as described in Reverse-engineering a Model of Developing Integration Projects with
Oracle Data Integrator.

Customized Reverse-Engineering

To perform a Customized Reverse-Engineering on TimesTen with a RKM, use the
usual procedure, as described in Reverse-engineering a Model of Developing
Integration Projects with Oracle Data Integrator. This section details only the fields
specific to the TimesTen technology:

1. Inthe Reverse Engineer tab of the TimesTen Model, select the KM RKM SQL
(Jython). <proj ect name>.

The reverse-engineering process returns tables, views, attributes, Keys and Foreign
Keys.

26.6 Setting up Data Quality

Oracle Data Integrator provides the CKM SQL for checking data integrity against
constraints defined on a TimesTen table. See Flow Control and Static Control in
Developing Integration Projects with Oracle Data Integrator for details.

See Generic SQL for more information.

26.7 Designing a Mapping
You can use TimesTen as a source, staging area, or a target of a mapping.

The KM choice for a mapping or a check determines the abilities and performance of
this mapping or check. The recommendations in this section help in the selection of
the KM for different situations concerning a TimesTen data server.

26.7.1 Loading Data from and to TimesTen

TimesTen can be used as a source, target or staging area of a mapping. The LKM
choice in the Loading Knowledge Module tab to load data between TimesTen and
another type of data server is essential for the performance of a mapping.

ORACLE 26-5



Chapter 26
Setting Up an Integration Project

26.7.1.1 Loading Data from TimesTen

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a TimesTen database to a target or staging area database.

For extracting data from a TimesTen staging area to a TimesTen table, use the IKM
TimesTen Incremental Update (MERGE). See Loading Data from TimesTen for more
information.

26.7.1.2 Loading Data to TimesTen

Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a TimesTen database.
These optimized TimesTen KMs are listed in Table 26-2. In addition to these KMs, you
can also use the Generic SQL KMs or the KMs specific to the other technology
involved.

Table 26-2 KMs for loading data to TimesTen
|

Source or Staging Area KM Notes
Technology
SQL LKM SQL to TimesTen Loads data from an ANSI SQL-92

source to a TimesTen staging table
using the TimesTen JDBC driver.

File LKM File to TimesTen Loads data from a file to a
(ttBulkCp) TimesTen staging table using
ttBulkCp utility.

26.7.2 Integrating Data in TimesTen

Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for TimesTen. These optimized TimesTen KMs are listed in
Table 26-3. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Integration Knowledge Module tab determines the
performances and possibilities for integrating.

Table 26-3 KMs for integrating data to TimesTen
|

KM Notes
IKM TimesTen Incremental Integrates data from staging area into a TimesTen target
Update (MERGE) table using TimesTen JDBC driver in incremental update

mode. For example, inexistent rows are inserted; already
existing rows are updated.

26.4 Setting Up an Integration Project

Setting up a project using the TimesTen database follows the standard procedure. See
Creating an Integration Project of Developing Integration Projects with Oracle Data
Integrator.

ORACLE 26-6



Chapter 26
Setting Up an Integration Project

It is recommended to import the following knowledge modules into your project for
getting started with TimesTen:

«  CKM SQL

* |IKM SQL Control Append

e |IKM TimesTen Incremental Update (MERGE)
e LKM SQL to TimesTen

e LKM File to TimesTen (ttBulkCp)

«  RKM SQL (Jython)

ORACLE 26-7



Oracle GoldenGate

You can work with Oracle GoldenGate to capture changes on source transactional
systems and replicate them in a staging server for consumption by Oracle Data
Integrator mappings.

This chapter includes the following sections:

* Introduction

* Installation and Configuration

e Working with the Oracle GoldenGate JKMs

e Advanced Configuration

* Integrated Capture

» Using Different Capture and Apply Modes Together
e Switching to Different Process Mode

» Upgrading GoldenGate Classic Extract to Integrated

27.1 Introduction

Oracle GoldenGate (OGG) product offers solutions that provide key business
applications with continuous availability and real-time information. It provides
guaranteed capture, routing, transformation and delivery across heterogeneous
databases and environments in real-time.

Using the Oracle GoldenGate knowledge modules requires that you know and
understand Oracle GoldenGate concepts and architecture. See the Oracle
GoldenGate Documentation on OTN for more information:

http://wwmv. oracl e. com't echnet wor k/ ni ddl ewar e/ gol dengat e/ over vi ew' i ndex. ht m

27.1.1 Overview of the GoldenGate CDC Process

ORACLE

Oracle Data Integrator can capture changes in a source database using Oracle
GoldenGate to process them in the ODI CDC framework. Oracle Data Integrator uses
Oracle GoldenGate to replicate data from a source database to a staging database.
This staging database contains a copy of the source tables and the ODI Changed
Data Capture (CDC) infrastructure, both loaded using Oracle GoldenGate.

The staging database can be stored in an Oracle or Teradata schema. The source
database can be Oracle, Microsoft SQL Server, DB2 UDB, or Sybase ASE. In this
chapter, <database> refers to any of these source database technologies.

Setting up CDC with GoldenGate is done using the following process:

1. Areplica of the source tables is created in the staging database, using, for
example, the Oracle Data Integrator Common Format Designer feature.

27-1


http://www.oracle.com/technetwork/middleware/goldengate/overview/index.html

4,

Chapter 27
Introduction

Oracle Data Integrator Changed Data Capture (CDC) is activated on the source
tables using either the JKM <database> to Oracle Consistent (OGG Online) or the
JKM <database> to Teradata Consistent (OGG Online).

The journals are started in either online mode or offline mode.

* Online mode: Starting the journals in online mode configures and starts the
GoldenGate Capture (Extract) process to capture the changes in the source
database and corresponding Delivery (Replicat) processes to replicate the
changes in the staging database. Changes are replicated into both the
replicated source table and the CDC infrastructure.

The GoldenGate Capture and Delivery processes are deployed and started
using the GoldenGate JAgent interface. The GoldenGate JAgent facilitates
communication between Oracle Data Integrator and Oracle GoldenGate.

» Offline mode: Starting the journals in offline mode creates the Oracle
GoldenGate configuration files and sets up a CDC infrastructure in the staging
database. Note that no active process is started for capturing source data at
this stage.

Using the generated configuration files, an Oracle GoldenGate Capture
process is configured and started to capture changes from the source
database, and corresponding Delivery processes are configured and started to
replicate these changes into the staging database. Changes are replicated
into both the replicated source table and the CDC infrastructure.

GoldenGate can optionally be configured to perform the initial load of the
source data into the staging tables.

# Note:

The offline mode requires an Oracle GoldenGate data server to be first
created in Topology. See Define the Oracle GoldenGate Data Servers
for instructions on how to create one.

ODI mappings can source from the replicated tables and use captured changes
seamlessly within any ODI scenario.

27.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules listed in Table 27-1 for
replicating online data from a source to a staging database. Like any other CDC JKMs,
the Oracle GoldenGate JKMs journalize data in the source server.

ORACLE

The JKM <database> to Oracle Consistent (OGG Online) and the JKM <database> to
Teradata Consistent (OGG Online) perform the same tasks:

Create and manage the ODI CDC framework infrastructure on the replicated
tables.

If the journals are started in online mode, configure and start the Oracle Capture
and Delivery processes on the GoldenGate servers using the GoldenGate JAgent.

If the journals are started in offline mode, generate the parameter files to set up
the Oracle GoldenGate Capture and Delivery processes and the Readne. t xt
explaining how to complete the setup.

27-2



Chapter 27
Installation and Configuration

* Provide extra steps to check the configuration of the source database and
proposes tips to correct the configuration.

Table 27-1 Oracle GoldenGate Knowledge Modules
|

Knowledge Module Description
JKM Oracle to Oracle Creates the infrastructure for consistent set journalizing on an
Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate

configuration for replicating data from an Oracle source to this
staging server.

JKM DB2 UDB to Oracle Creates the infrastructure for consistent set journalizing on an

Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from an IBM DB2 UDB source
to this staging server.

JKM Sybase ASE to Oracle Creates the infrastructure for consistent set journalizing on an

Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from a Sybase ASE source to
this staging server.

JKM MSSQL to Oracle Creates the infrastructure for consistent set journalizing on an

Consistent (OGG Online) Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from a Microsoft SQL Server
source to this staging server.

JKM Oracle to Teradata Creates the infrastructure for consistent set journalizing on a

Consistent (OGG Online) Teradata staging server and generates the Oracle GoldenGate
configuration for replicating data from an Oracle source to this
staging server.

JKM DB2 UDB to Teradata Creates the infrastructure for consistent set journalizing on a

Consistent (OGG Online) Teradata staging server and generates the Oracle GoldenGate
configuration for replicating data from an IBM DB2 UDB source
to this staging server.

JKM Sybase ASE to Creates the infrastructure for consistent set journalizing on a
Teradata Consistent (OGG  Teradata staging server and generates the Oracle GoldenGate
Online) configuration for replicating data from a Sybase ASE source to

this staging server.

JKM MSSQL to Teradata Creates the infrastructure for consistent set journalizing on a

Consistent (OGG Online) Teradata staging server and generates the Oracle GoldenGate
configuration for replicating data from a Microsoft SQL Server
source to this staging server.

27.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
Oracle GoldenGate Knowledge Modules:

»  System Requirements and Certifications

» Technology Specific Requirements

27.2.1 System Requirements and Certifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

ORACLE 27-3



Chapter 27
Working with the Oracle GoldenGate JKMs

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htnl.

See also the Oracle GoldenGate documentation on OTN for source and staging
database version platform support.

27.2.2 Technology Specific Requirements

In order to run the Capture and Delivery processes, Oracle GoldenGate must be
installed on both the source and staging servers. Installing Oracle GoldenGate installs
all of the components required to run and manage GoldenGate processes.

Oracle GoldenGate Manager Process must be running on each system before
Capture or Delivery can be started, and must remain running during their execution for
resource management.

In order to perform online journalizing, the Oracle GoldenGate JAgent process must
be configured and running on the Oracle GoldenGate instances.

Oracle GoldenGate has specific requirement and installation instructions that must be
performed before starting the Capture and Delivery processes configured with the
Oracle GoldenGate JKMs. See the Oracle GoldenGate Documentation on OTN for
more information.

27.2.3 Connectivity Requirements

If the source database is Oracle, there are no connectivity requirements for using
Oracle GoldenGate data in Oracle Data Integrator.

If the source database is IBM DB2 UDB, Microsoft SQL Server, or Sybase ASE,
Oracle GoldenGate uses the ODBC driver to connect to the source database. You
need to install the ODBC driver and to declare the data source in your system. You
also need to set the data source name (DSN) in the KM option SRC_DSN.

27.3 Working with the Oracle GoldenGate JKMs

To use the JKM <database> to Oracle Consistent (OGG Online) or the JKM
<database> to Teradata Consistent (OGG Online) in your Oracle Data Integrator
integration projects, you need to perform the following steps:

Define the Topology

Create the Replicated Tables

Set Up an Integration Project

Configure CDC for the Source Datastores

Configure and Start Oracle GoldenGate Processes (Offline mode only)

e g » B NP

Design Mappings Using Replicated Data

ORACLE 27-4


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 27
Working with the Oracle GoldenGate JKMs

27.3.1 Define the Topology

This step consists in declaring in Oracle Data Integrator the staging data server, the
source data server, as well as the physical and logical schemas attached to these
servers.

To define the topology in this configuration, perform the following tasks:

Define the Source Data Server
Create the Source Physical Schema

Define the Staging Server

Define the Oracle GoldenGate Data Servers

1

2

3

4. Create the Staging Physical Schema

5

6. Create the Oracle GoldenGate Physical Schemas
7

Create the Oracle GoldenGate Logical Schemas

27.3.1.1 Define the Source Data Server

You have to define a source data server from which Oracle GoldenGate will capture
changes.

Create a data server for your source technology using the standard procedure. For
more information, see the chapter corresponding to your source technology in this
guide:

e Creating an Oracle Data Server
e Creating a Microsoft SQL Server Data Server
e Creating a DB2/400 Data Server

This data server represents the source database instance.

27.3.1.2 Create the Source Physical Schema

Create a physical schema under the data server that you have created in Define the
Source Data Server. Use the standard procedure, as described in Creating a Physical
Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

27.3.1.3 Define the Staging Server

Create a data server for the Oracle or Teradata technology. For more information, see:

* Creating an Oracle Data Server

» Creating a Teradata Data Server

ORACLE 27-5



Chapter 27
Working with the Oracle GoldenGate JKMs

27.3.1.4 Create the Staging Physical Schema

Create an Oracle or Teradata physical schema using the standard procedure, as
described in Creating a Physical Schema in Administering Oracle Data Integrator.

" Note:

The physical schema defined in the staging server will contain in the data
schema the changed records captured and replicated by the Oracle
GoldenGate processes. The work schema will be used to store the ODI CDC
infrastructure.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

27.3.1.5 Define the Oracle GoldenGate Data Servers

An Oracle GoldenGate data server corresponds to the Oracle GoldenGate JAgent
process in Oracle Data Integrator (ODI). The Oracle GoldenGate JAgent process
facilitates communication between ODI and the Oracle GoldenGate servers. You must
create a JAgent process for both the source and the target Oracle GoldenGate
servers.

Create a data server for the Oracle GoldenGate technology using the standard
procedure, as described in Creating a Data Server of Developing Integration Projects
with Oracle Data Integrator. This section details only the fields required or specific for
defining an Oracle GoldenGate data server:

1. In the Definition tab:
¢ Name: Name of the data server that will appear in the Oracle Data Integrator.

e Host: Hostname or the IP address of the server where the JAgent process is
running.

e JMX Port: Port number of the JAgent process.

* Manager Port: Port number of the Oracle GoldenGate manager instance.
e JMX User: User name to connect to the JAgent.

+ Password: Password of the user credentials.

e Installation Path: Location path for the Oracle GoldenGate installation. You
must use this path when you create the capture process definitions from a
model.

27.3.1.6 Create the Oracle GoldenGate Physical Schemas

The Oracle GoldenGate physical schemas in ODI correspond to the GoldenGate
Capture and Delivery processes that perform CDC in Oracle GoldenGate. You must
define the Oracle GoldenGate physical schemas to configure the Capture process on
the source GoldenGate server and Delivery process on the target GoldenGate server.

ORACLE 27-6



ORACLE

Chapter 27
Working with the Oracle GoldenGate JKMs

Create a physical schema under the Oracle GoldenGate data server that you have
created in Define the Oracle GoldenGate Data Servers. Use the standard procedure,
as described in Creating a Physical Schema in Administering Oracle Data Integrator.
This section details only the fields required or specific to create the physical schemas
to configure the Oracle GoldenGate Capture and Replicate processes.

# Note:

Alternatively, you can create the Oracle GoldenGate physical schemas from
the model. See Create Oracle GoldenGate Physical Schemas from the model
for information about how to create physical schemas from the model.

GoldenGate Capture Process Fields

Note that the GoldenGate Capture process must be configured on the source
GoldenGate server.

1. Inthe Process Definition tab:

* Process Type: Type of the process that you want to configure. Select Capture
as the process type.

e Name: Name of the process (physical schema) in Oracle Data Integrator.
Process name cannot exceed 8 characters and only upper case is allowed.

e Trail File Path: Location of the Oracle GoldenGate trail file. Only two
characters for the file name part are allowed.

* Remote Trail File Path: Location of the remote trail file. Only two characters
for the file name part are allowed.

e Trail File Size: Size of the Oracle GoldenGate trail file in Megabytes.
* Report Fetch: Enables report information to include the fetching statistics.

* Report Count Frequency: Reports the total operations count at specific
intervals. If the interval is not specified the entry is not added to the parameter
file.

e Select a parameter: List of available Oracle GoldenGate parameters. Only
the parameters for the supported database are listed. Select a parameter and
click Add. A template of the selected parameter is added to the text box.

See the Oracle GoldenGate Reference Guide on OTN for information about
the GoldenGate parameters.

Delivery Process Fields

Note that the GoldenGate Delivery process must be configured on the target
GoldenGate server.

1. In the Process Definition tab:

* Process Type: Type of the process that you want to configure. Select
Delivery as the process type.

* Name: Name of the process (physical schema) in Oracle Data Integrator.
Process name cannot exceed 7 characters and only uppercase is allowed.

27-7



Chapter 27
Working with the Oracle GoldenGate JKMs

Trail File Path: Location of the trail file. Only two characters for the filename
part are allowed.

Discard File Path: Location of the discard file.
Definition File Path: Location of the definition file.
Report Detail: Enables report information to include any collision counts.

Report Count Frequency: Report the total operations count at specific
intervals. If the interval is not specified the entry is not added to the parameter
file.

Select a parameter: List of available Oracle GoldenGate parameters. Only
the parameters for the supported database are listed. Select a parameter and
click Add.

See the Oracle GoldenGate Reference Guide on OTN for information about
the GoldenGate parameters.

# Note:

In the definition of the logical schema, you must select the logical
schema for the staging database.

27.3.1.7 Create the Oracle GoldenGate Logical Schemas

Create logical schemas for the GoldenGate physical schemas (GoldenGate Capture
and Delivery processes) that you created in section Create the Oracle GoldenGate
Physical Schemas. You must create a logical schema for both the Capture process
and the Delivery process.

To create logical schemas:

1.

6.

ORACLE

In the Topology Navigator expand the Technologies node in the Logical
Architecture accordion.

Right-click Oracle GoldenGate and select New Logical Schema.
Fill in the Logical Schema Name.

Select the appropriate process type, either Capture or Delivery, to which you want
to attach your logical schema.

For each Context in the left column, select an existing Physical Schema in the
right column. This Physical Schema is automatically associated to the logical
schema in this context. Repeat this operation for all necessary contexts.

" Note:

If the process type is set to 'Delivery', you must select the name of the
logical schema that GoldenGate will use to deliver the changes. In this
case, select a logical schema name for the 'Target DB Logical Schema'.

From File menu, click Save.

27-8



Chapter 27
Working with the Oracle GoldenGate JKMs

27.3.2 Create the Replicated Tables

Oracle GoldenGate will replicate in the staging server the records changed in the
source. In order to perform this replication, the source table structures must be
replicated in the staging server.

To replicate these source tables:

1. Create a new Data Model using the Oracle or Teradata technology. This model
must use the logical schema created using the instructions in Create the Staging
Physical Schema.

See Creating a Model in Developing Integration Projects with Oracle Data
Integrator for more information on model creation.

Note that you do not need to reverse-engineer this data model.

2. Create a new diagram for this model and add to this diagram the source tables
that you want to replicate.

3. Generate the DDL Scripts and run these scripts for creating the tables in the
staging data server.

4. Aninitial load of the source data can be made to replicate this data into the staging
tables. You can perform this initial load with ODI using the Generate Interface IN
feature of Common Format Designer. Alternately, you can use Oracle GoldenGate
to perform this initial load, by specifying a capture or delivery process to perform
the initial load or by setting the USE_OGG_FOR_INIT JKM option to Yes to create
a process to perform the initial load when you Configure CDC for the Source
Datastores.

" Note:

See Creating Data Models with Common Format Designer in Developing
Integration Projects with Oracle Data Integrator for more information on
diagrams, generating DDL, and generating Interface IN features.

27.3.3 Set Up an Integration Project

ORACLE

Setting up a project using Oracle GoldenGate features follows the standard procedure.
See Creating an Integration Project of Developing Integration Projects with Oracle
Data Integrator.

Depending on the technology of your source data server and staging server, import
one of the following KMs into your project:

* JKM Oracle to Oracle Consistent (OGG Online)
 JKM DB2 UDB to Oracle Consistent (OGG Online)

* JKM Sybase ASE to Oracle Consistent (OGG Online)
* JKM MSSQL to Oracle Consistent (OGG Online)

e JKM Oracle to Teradata Consistent (OGG Online)
 JKM DB2 UDB to Teradata Consistent (OGG Online)

27-9



Chapter 27
Working with the Oracle GoldenGate JKMs

JKM Sybase ASE to Teradata Consistent (OGG Online)
JKM MSSQL to Teradata Consistent (OGG Online)

27.3.4 Configure CDC for the Source Datastores

Changed Data Capture must be configured for the source datastores. This
configuration is similar to setting up consistent set journalizing and is performed using
the following steps.

ORACLE

1.

Edit the data model that contains the source datastore. In the Journalizing tab of
the data model, set the Journalizing Mode to Consistent Set and select the
appropriate JKM <database> to Oracle Consistent (OGG Online) or JKM
<database> to Teradata Consistent (OGG Online).

Select the following GoldenGate processes (physical schemas) using the process
selection drop-down list:

e Capture Process
e Delivery Process
e Initial Load Capture Process
e Initial Load Delivery Process

If you do not want to use an existing GoldenGate process, you can create new
processes from here using the Create button next to the <Process Name> field.
See Create Oracle GoldenGate Physical Schemas from the model for information
about how to create GoldenGate processes from the model.

Set the KM options as follows:

*  ONLINE: If you set this option to true, the JKM configures the CDC
infrastructure and configures and starts the GoldenGate Capture and Delivery
processes. If you set this option to false, the JKM generates the CDC
infrastructure and the configuration files that are required to set up the
GoldenGate Capture and Delivery processes. It also generates the Readne. t xt
that contains the instructions to configure and start the GoldenGate processes.

For more information about online and offline mode, see Overview of the
GoldenGate CDC Process.

For information about how to configure and start GoldenGate processes using
the configuration files, see Configure and Start Oracle GoldenGate Processes
(Offline mode only).

* LOCAL_TEMP_DIR: Full path to a temporary folder into which the Oracle
GoldenGate configuration files will be generated

* SRC_DSN: Name of the data source. This KM option is required when the
ODBC driver is used. Note that this option does not exist in the JKM Oracle to
Oracle Consistent (OGG Online).

# Note:

For Sybase users only: When defining the data source hame, you have
to add the database server name to the datasource name as follows:

DSN_nanme @YBASE_DBSERVER

27-10



ORACLE

Chapter 27
Working with the Oracle GoldenGate JKMs

« USE_OGG_FOR_INIT: Applicable for offline mode only. Generate the Oracle
GoldenGate processes to perform the initial load of the replicated tables. If you
have performed this initial load using Oracle Data Integrator while Creating the
Replicated Tables, you can leave this option to NO.

e USE_INTEGRATED_REPLICAT_MODE: This KM option is required when the
delivery mode is classic or integrated replicat.

Values

True: Use integrated replicat mode

False: Use classic mode (default value)

Only the following KMs have this parameter implemented:
KM_JKM DB2 UDB to Oracle Consistent (OGG Online).xml
KM_JKM MSSQL to Oracle Consistent (OGG Online).xml
KM_JKM Oracle to Oracle Consistent (OGG Online).xml

KM_JKM Sybase ASE to Oracle Consistent (OGG Online).xmIKM_JKM DB2
UDB to Oracle Consistent (OGG Online).xml

KM_JKM MSSQL to Oracle Consistent (OGG Online).xml
KM_JKM Oracle to Oracle Consistent (OGG Online).xml
KM_JKM Sybase ASE to Oracle Consistent (OGG Online).xml

Select the datastores that you want to replicate or the model if want to replicate all
datastores, right-click then select Changed Data Capture > Add to CDC.

Select the model, right-click then select Changed Data Capture > Subscriber >
Subscribe. Add subscribers for this model.

Select the model, right-click then select Changed Data Capture > Start Journal.
If journals are started in online mode (ONLINE option for the JKM is set to true),
the JKM creates the CDC infrastructure and configures and starts the Oracle
GoldenGate processes. If journals are started in offline mode (ONLINE option for
the JKM is set to false), the JKM creates the CDC infrastructure and generates the
configuration files that are required to configure the Oracle GoldenGate processes.
It also generates Readne. t xt that contains the instructions to configure and start
the GoldenGate processes.

For information about how to configure and start GoldenGate processes, see
Configure and Start Oracle GoldenGate Processes (Offline mode only).

You can review the result of the journal startup action:

If journals are started in online mode, the Oracle GoldenGate processes are
configured and started. The changed data in the source datastores is captured
and replicated in the staging tables.

If the journals are started in offline mode, the Oracle GoldenGate configuration
files, as well as a Readne. t xt file are generated in the directory that is specified in
the LOCAL_TEMP_DIR KM option. You can use these files to Configure and Start
Oracle GoldenGate Processes (Offline mode only).

The CDC infrastructure is set up correctly. The journalized datastores appear in
the Models accordion with a Journalizing Active flag. You can right-click the model
and select Changed Data Capture > Journal Data... to access the journalized
data for these datastores.

27-11



Chapter 27
Working with the Oracle GoldenGate JKMs

See Using Journalizing in Developing Integration Projects with Oracle Data Integrator
for more conceptual information and detailed instructions on CDC.

# Note:

Although this CDC configuration supports consistent set journalizing, it is not
required to order datastores in the Journalized Tables tab of the model after
adding them to CDC.

27.3.4.1 Create Oracle GoldenGate Physical Schemas from the model

ORACLE

You can create the Oracle GoldenGate physical schemas for the following
GoldenGate processes from the Journalizing tab of the Model Editor.

e Capture Process
e Delivery Process
e Initial Capture Process (Capture process to be used for initial load)
e Initial Delivery Process (Delivery process to be used for initial load)

When you create the Oracle GoldenGate physical schemas from the models, the
default values are derived from the JAgent and the Model details.

To create the Oracle GoldenGate physical schemas from the model:

1. Inthe Designer Navigator expand the Models panel.

2. Expand the Models folder that contains the model from which you want to create
the physical schemas.

Right-click the Model and select Open.

Click the Journalizing tab of the Model Editor.

Click Create button next to the Capture Process field.
Select the appropriate JAgent and Context.

Fill in the Process Name and Logical Process Name.

® N o o p W

Click OK to create and select the Capture process.

WARNING:

The physical schema generated for the Capture process needs to be
changed manually. The Remote Trail File Path property of the physical
schema uses the path for the Capture instance and needs to be changed to
use the path for the Delivery instance.

9. Click Create button next to the Delivery Process field.
10. Select the appropriate JAgent and Context.
11. Fill in the Process Name and Logical Process Name.

12. Select the Target Database Logical Schema for the Delivery process.

27-12



Chapter 27
Working with the Oracle GoldenGate JKMs

13. Click OK.

14. Similarly, click Create buttons next to the Initial Load Capture Process and Initial

Load Delivery Process fields to create physical schemas for them.

27.3.5 Configure and Start Oracle GoldenGate Processes (Offline

mode only)

ORACLE

< Note:

e This section is applicable only if the journals are started in offline mode.
That means only if the O\LI NE option for the JKM is set to fal se.

e Connection to a JAgent is not required to configure Oracle GoldenGate
Processes in offline mode. However, the necessary information must be
available in Topology.

The JKM generates in the LOCAL_TEMP_DIR a folder named after the source and
target object groups. This folder contains the following:

The Readne. txt file that contains detailed instructions for configuring and starting
the Oracle GoldenGate processes.

The src folder that contains configuration files to upload on the source server, in
the Oracle GoldenGate installation directory.

The st g folder that contains configuration files to upload on the staging server, in
the Oracle GoldenGate installation directory.

The detailed instructions, customized for your configuration, are provided in the
readme file.

These instructions include:

1.
2.
3.

Uploading or copying files from the src folder to the source server.
Uploading or copying files from the st g folder to the staging server.

Running on the source server the OBEY file generated by the JKM for starting the
Capture process, using the ggsci command line.

Generating on the source server definition file using the defgen command line.
Copying this definition file to the staging server.
If the initial load option is used:

* Running on the staging server the OBEY file generated by the JKM for the initial
load, using the ggsci command line.

* Running on the source server the OBEY file generated by the JKM for the initial
load, using the ggsci command line.

Finally Running on the staging server the OBEY file generated by the JKM for the
starting the Delivery processes, using the ggsci command line.

See the Oracle GoldenGate documentation on OTN for more information on OBEY files,
the ggsci and def gen utilities.

27-13



Chapter 27
Advanced Configuration

27.3.6 Design Mappings Using Replicated Data

You can use the data in the replicated data as a source in your mappings. This
process is similar to using a source datastore journalized in consistent set mode. See
Using Changed Data: Consistent Set Journalizing in Developing Integration Projects
with Oracle Data Integrator for more information.

27.4 Advanced Configuration

This section includes the following advanced configuration topics:
* Initial Load Method
e Tuning Replication Performances

*  One Source Multiple Staging Configuration (Offline mode only)

27.4.1 Initial Load Method

The staging tables contain a replica of the structure and data from the source tables.
The Oracle GoldenGate processes capture changes on the source tables and apply
them to the target. Yet the staging tables must be initially loaded with the original
content of the source tables. You can use the following methods to perform the initial
load:

e Using Oracle GoldenGate: A specific GoldenGate process loads the whole content
of the source tables into the staging tables.

e Using Oracle Data Integrator. The Generate Interfaces IN option of Oracle Data
Integrator's Common Format Designer. This method uses ODI mappings to
transfer the data.

e Using database backup/restore tools to copy data and structures.

27.4.2 Tuning Replication Performances

The following KM options can be used to improve replication performances:

 COMPATIBLE: This Oracle-specific option affects the use of the PURGE key word
and the way statistics (using DBMS_STATS or ANALYZE) are collected. Set this
value to the database version of your staging server.

*  NB_APPLY_PROCESS: Number of Oracle GoldenGate Delivery processes
created on the staging server.

* TRAIL_FILE_SIZE: Size of the Oracle GoldenGate trail file in Megabytes.

For the NB_APPLY_PROCESS and TRAIL_FILE_SIZE parameters, see the Oracle
GoldenGate Documentation on OTN for more information on performance tuning.

27.4.3 One Source Multiple Staging Configuration (Offline mode only)

Note that one source multiple staging configuration can be done only in the offline
journalizing mode.

ORACLE 27-14



Chapter 27
Integrated Capture

It is possible to set up a configuration where changes are captured on a single source
and replicated to several staging servers. The example below illustrates how to set this
up in a typical configuration.

Replication should source from source server SRC and replicate in both STG1 and
STG2 staging servers.

1. Edit the source model and ensure that the logical schema for STG1 is selected.

2. Start the journals in offline mode and follow the instructions in the readme to set
up the Oracle GoldenGate processes in SRC and STG1.

3. Edit the source model again, and select the logical schema for STG2.

4. Start the journals in offline mode and follow the instructions in the readme to set
up the Oracle GoldenGate process in SRC and STG2.

# Note:

Playing the configuration on SRC again will not recreate a capture process,
trail files, or definition files. It will simply create a new Oracle GoldenGate
Datapump process to push data to STG2.

27.5 Integrated Capture

ORACLE

In the Integrated Capture mode, the Oracle GoldenGate extract process interacts
directly with a database logmining server, to receive data changes in the form of
logical change records (LCR).

The following are the benefits of Integrated Capture:

As the Integrated Capture uses the database logmining server to access the Oracle
redo stream, you can automatically switch between different copies of archive logs or
different mirrored versions of the online logs.

» Being fully integrated with the database, no additional steps are required to work
with Oracle RAC, ASM, and TDE

* Enables faster filtering of tables
* Handles point-in-time recovery and RAC integration more efficiently

* Enables integrated log management, as the Oracle Recovery Manager (RMAN)
automatically retains the archive logs required for the extract

e Supports capture from a multi-tenant container database

* As the Integrated Capture and the Integrated Apply are both database objects, the
objects naming follows the same rules as other Oracle database objects

* For arelease 11.2.0.4 source database and later (with source compatibility set to
11.2.0.4 or higher), the capture of DDL is performed by the logmining server
asynchronously and requires no special triggers, tables, or other data objects
installation

» DDL trigger and supporting objects are required when extract is in Integrated
mode with a Oracle 11g source database earlier than version 11.2.0.4

27-15



Chapter 27
Integrated Capture

* Oracle GoldenGate upgrades can be performed without stopping the user
applications

* Figure 27-1 Configuration of Extract in Integrated Capture

Database

Oracle
Database

Oracle
Redo/Archive
Logs

27.5.1 Integrated Capture Deployment Options

Depending on where the mining database is deployed, you have two deployment
options for integrated capture. The mining database is the one where the logmining
server is deployed.

Local Deployment

For local deployment, the source database and the mining database are the same.
The source database is the database:

*  For which you want to mine the redo stream to capture changes.

*  Where you deploy the logmining server.

As Integrated Capture is fully integrated with the database, this mode does not require
any special database setup.

Downstream Deployment

In downstream deployment, the source and mining databases are different databases.
When using a downstream mining configuration, the source database and mining
database must be of the same platform. For example, if the source database is
running on Windows 64-bit, the downstream database must also be on a Windows 64-
bit platform.

1. Create the logmining server at the downstream database.

ORACLE" 27-16



Chapter 27
Integrated Capture

2. Configure redo transport at the source database to ship the redo logs to the
downstream mining database for capture at that location.

# Note:

Using a downstream mining server for capture is recommended to offload the
capture overhead, and any other overhead from transformation or other
processing from the production server, but requires log shipping and other
configuration.

27.5.2 Deciding Which Apply Method to Use

The Replicat process enables the application of replicated data to an Oracle target
database. For more information about Oracle GoldenGate processes, see
Administering Oracle GoldenGate for Windows and UNIX.

For an Oracle target database, you can run Replicat in either nonintegrated or
integrated mode. The following section explains these modes and the database
versions that each mode supports:

27.5.2.1 Nonintegrated Replicat

In nonintegrated mode, the Replicat process uses standard SQL to apply data directly
to the target tables.

You can apply transactions in parallel with a nonintegrated Replicat, by using a
coordinated Replicat configuration. For more information, see Administering Oracle
GoldenGate for Windows and UNIX.

Use nonintegrated Replicat when:

e The target Oracle database is a version earlier than Oracle 11.2.0.4.

* You want to extensively use features that are not supported in integrated Replicat
mode.

In nonintegrated mode, Replicat operates as follows:
1. Reads the Oracle GoldenGate trail.

2. Performs data filtering, mapping, and conversion.

3. Constructs SQL statements that represent source database DML or DDL
transactions (in committed order).

4. Applies the SQL to the target through Oracle Call Interface (OCI).

ORACLE 27-17



Chapter 27
Integrated Capture

Figure 27-2 Nonintegrated Replicat Configuration

Source Database q

(Optional)

27.5.2.1.1 Integrated Replicat

In integrated mode, the Replicat process leverages the apply processing functionality
that is available within the Oracle database. In this mode, Replicat operates as follows:

Reads the Oracle GoldenGate trail.
Performs data filtering, mapping, and conversion.

Constructs logical change records (LCR) that represent source database DML
transactions (in committed order). DDL is applied directly by Replicat.

Attaches to a background process in the target database known as a database
inbound server by means of a lightweight streaming interface.

Transmits the LCRs to the inbound server, which applies the data to the target
database.

ORACLE"

27-18

Trail




Chapter 27
Integrated Capture

Figure 27-3 Integrated Replicat Configuration

Source Database

ey

Trail

(Optional)

Within a single Replicat configuration, multiple inbound server child processes known
as apply servers apply transactions in parallel, while preserving the original transaction
atomicity. You can increase this parallelism as much as your target system will
support, when you configure the Replicat process or dynamically as needed.

ORACLE"

27-19

Trail




Chapter 27
Integrated Capture

Figure 27-4 Integrated Replicat with Two Parallel Apply Servers

Database

Inbound
Server

Integrated Replicat applies transactions asynchronously. Transactions that do not
have interdependencies can be safely executed and committed out of order to achieve
fast throughput. Transactions with dependencies are guaranteed to be applied in the
same order as on the source.

A reader process in the inbound server computes the dependencies among the
transactions in the workload based on the constraints defined at the target database
(primary key, unique, foreign key). Barrier transactions and DDL operations are
managed automatically, as well. A coordinator process coordinates multiple
transactions and maintains order among the apply servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete
transactions in its queue, and then applies the transaction to the database in direct
apply mode through OCI. Replicat resumes processing in integrated mode after
applying the direct transaction.

The following features are applied in direct mode by Replicat:

* DDL operations
* Sequence operations
*  SQLEXEC parameter within a TABLE or MAP parameter

ORACLE"

27-20



Chapter 27
Using Different Capture and Apply Modes Together

« EVENTACTIONS processing

» UDT Note, if the extract uses USENATIVEOBJSUPPORT to capture the UDT,
then integrated Replicat will apply it with the inbound server, otherwise it will be
handled by Replicat directly.

¢ Note:

Because transactions are applied serially in direct apply mode, heavy use of
such operations may reduce the performance of the integrated Replicat mode.
Integrated Replicat performs best when most of the apply processing can be
performed in integrated mode.

User exits are executed in integrated mode. The user exit may produce
unexpected results, if the exit code depends on data in the replication stream.

27.5.2.1.2 Integrated Replicat Requirements

To use integrated Replicat, the following must be true:

*  The target Oracle database must be Oracle 11.2.0.4 or later.

»  Supplemental logging must be enabled on the source database to support the
computation of dependencies among tables and scheduling of concurrent
transactions on the target.

»  Supplemental logging can be enabled at any time up to, but before, you start the
Oracle GoldenGate processes.

27.6 Using Different Capture and Apply Modes Together

ORACLE

You can use the following capture and apply modes together:

e Classic capture (Oracle or non-Oracle source) and nonintegrated Replicat
e Classic capture (Oracle or non-Oracle source) and integrated Replicat

e Integrated capture and nonintegrated Replicat

e Integrated capture and integrated Replicat

You can use integrated capture and classic capture concurrently within the same
source Oracle GoldenGate instance, and you can use integrated Replicat and
nonintegrated Replicat concurrently within the same target Oracle GoldenGate
instance.

This configuration requires careful placement of your objects within the appropriate
process group, because there is no coordination of DDL or DML between classic and
integrated capture modes, nor between nonintegrated and integrated Replicat modes.
Each Extract group must process objects that are suited to the processing mode,
based on table data types and attributes. No objects in one Extract can have DML or
DDL dependencies on objects in the other Extract. The same type of segregation must
be applied to the Replicat configuration.

The recommended Oracle GoldenGate configuration, when supported by the Oracle
version, is to use one integrated capture on an Oracle source and one integrated

27-21



Chapter 27
Switching to Different Process Mode

Replicat per source database on an Oracle target. Integrated capture supports certain
data types more completely than classic capture. One integrated Replicat
configuration supports all Oracle data types either through the inbound server or by
switching to direct apply when necessary, and it preserves source transaction integrity.
You can adjust the parallelism settings to the desired apply performance level as
needed.

If the target database is an Oracle version that does not support integrated Replicat, or
if it is a non-Oracle database, you can use a coordinated Replicat configuration. For
more information, see Administering Oracle GoldenGate for Windows and UNIX.

27.7 Switching to Different Process Mode

You can switch between the process modes. For example, you can switch from classic
capture to integrated capture, or from integrated capture to classic capture. For
instructions, see Administering Oracle GoldenGate for Windows and UNIX.

27.8 Upgrading GoldenGate Classic Extract to Integrated

ORACLE

To run integrated extract in GoldenGate 11.2.1, the following requirements should be
met:

e Oracle RDBMS must be 11.2.0.3 or higher

« RDBMS (Database) patches must be applied:
— 11.2.0.3 Database specific bundle patch for Integrated Extract 11.2.x
— Redo compatibility should be set to 11.2.0.3, matching the DB version

The following section explains the upgrade procedure:

1. If you are using RAC environments and OGG versions 11.2.1.0.23+, execute the
steps a to d. If you are using OGG version prior to 11.2.1.0.23, skip these steps
and proceed with step 2.

2. a. Forarunning extract, issue the following command:
b. SEND extract <extract nanme> tranl ogoptions prepareforupgradetoie

c. For a stopped extract, start it after adding the following line to the parameter
file:

d. TRANLOGOPTI ONS PREPAREFORUPGRADETO E

e. Monitor the ggserr.log file or corresponding extract report file for an INFO
GG-01873 message, indicating that the change has taken affect, and that you
can proceed with the upgrade.

# Note:

For the INFO message to be displayed, extract has to process a
committed transaction on all the RAC nodes for a table being captured.
As an alternative, a dummy table can be added to the extract
parameter file, and doing DML on this table from all the threads will
give extract commit boundary current checkpoints for all the threads.

27-22



ORACLE

N o g »

©®

10.
11.

Chapter 27
Upgrading GoldenGate Classic Extract to Integrated

Exanpl e fromreport file:

2014-06-05 17:06:09 [INFO OGG 01873 The paraneter TRANLOGOPTI ONS
PREPAREFORUPGRADETO E has taken effect. Proceed to the next step in the
upgrade process.

Exanpl e fromggserr.log file:

2014-06-05 17:06:09 INFO  0OGG 01873 Oracle Col denGate Capture for
Oracle, src.prm The paraneter TRANLOGOPTI ONS PREPAREFORUPGRADETO E has
taken effect.

f. Once the message appears, stop the extract, perform dblogin, and alter for
conversion to Integrated as follows:

Connect to the Extract database, and grant the following privilege to GG Admin
user:

SQ>exec dbms_gol dengat e_aut h. grant _admi n_pri vi | ege(' <ggadni n>")
Login into GGSCI.
Check to see if upgrade is possible.

GGSCl > DBLOG N USERI D <I D> PASSWORD <PV
GGSCl > | NFO <extract _name> UPGRADE

If there are existing open transactions, the upgrade may fail:

GGSCl >stop extract <extract _name>
GGSCl >dbl ogi n userid <ggadm n>, password <passwor d>

Register the extract in the database, if not done already.

GGSCl >regi ster extract <extract_name> dat abase
GGSCl >al ter extract <extract_name>, upgrade integrated tranlog

GGSCl >start extract <extract_name>

27-23



Oracle SOA Suite Cross References

It is important to understand how to work with Oracle SOA Suite cross references in
Oracle Data Integrator.
This chapter includes the following sections:

* Introduction
e Installation and Configuration
*  Working with XREF using the SOA Cross References KMs

» Knowledge Module Options Reference

28.1 Introduction

Oracle Data Integrator features are designed to work best with Oracle SOA Suite
cross references, including mappings that load a target table from several source
tables and handle cross references.

28.1.1 Concepts

Cross-referencing is the Oracle Fusion Middleware Function, available through the
Oracle BPEL Process Manager and Oracle Mediator, previously Enterprise Service
Bus (ESB), and leveraged typically by any loosely coupled integration built on the
Service Oriented Architecture. It is used to manage the runtime correlation between
the various participating applications of the integration.

28.1.1.1 General Principles

The cross-referencing feature of Oracle SOA Suite enables you to associate identifiers
for equivalent entities created in different applications. For example, you can use cross
references to associate a customer entity created in one application (with native id
Cust_100) with an entity for the same customer in another application (with native id
CT_001).

Cross-referencing (XREF) facilitates mapping of native keys for entities across
applications. For example, correlate the same order across different ERP systems.

The implementation of cross-referencing uses a database schema to store a cross
reference information to reference records across systems and data stores.

For more information about cross references, see Working with Cross References in
the Developer's Guide for Oracle SOA Suite.

The optional ability to update or delete source table data after the data is loaded into
the target table is also a need in integration. This requires that the bulk integration
provides support for either updating some attributes like a status field or purging the
source records once they have been successfully processed to the target system.

ORACLE 28-1



Chapter 28
Introduction

28.1.1.2 Cross Reference Table Structures

ORACLE

The XREF data can be stored in multiple cross reference tables and in two formats:

Generic (legacy) table - The table name is XREF_DATA and the table structure
stores the cross references for all entities. The table format is as follows:

XREF_TABLE_NAME NOT NULL VARCHAR2(2000)
XREF_COLUMN_NAME NOT NULL VARCHAR2(2000)
ROW NUMBER NOT NULL VARCHAR2(48)

VALUE NOT NULL VARCHAR2(2000)

'S DELETED NOT NULL VARCHAR2(1)
LAST_MCDI FI ED NOT NULL TI MESTAMP( 6)

This table stores cross references for multiple entities. In this table:
— XREF_TABLE_NAME is the name of the cross reference table

—  XREF_COLUWN_NAME is the name of the column to be populated. This column
name, for example the application name, is used as a unique identifier for the
cross reference table.

— ROWNUMBER stores a unique identifier (Row Number) for a given entity instance,
regardless of the application

— VALUE is the value of the record identifier for a given entity in this application

A specific XREF_COLUMN_NAME entry called COMMON exists to store a
generated identifier that is common to all applications.

For example, an ORDER existing in both SIEBEL and EBS will be mapped in a
generic table as shown below:

Table 28-1 Example of an XREF_DATA (Partial)

I
XREF_TABLE_NAME XREF_COLUMN_NAME ROW_NUMBER VALUE

ORDER SIEBEL 100012345 SBL_101
ORDER EBS 100012345 EBS_002
ORDER COMMON 100012345 COM_100

Custom (new) table structure - The table is specific to one entity and has a
custom structure. For example:

ROWID VARCHAR(48) NOT NULL PK,
APP1  VARCHAR2(100),
APP2  VARCHAR2(100),

COWON  VARCHAR2( 100) ,
LAST_MODI FIED Tl MESTAMP NOT NULL

Where:

— Columns such as APP1 and APP2 are used to store PK values on different
applications and link to the same source record

— ROWID(Row Number) is used to uniquely identify records within a XREF data
table.

28-2



Chapter 28
Introduction

— Covholds the common value for the integration layer and is passed among
participating applications to establish the cross reference

The same ORDER existing in both SIEBEL and EBS would be mapped in a
custom XREF_ORDER table as shown below:

Table 28-2 Example of a Custom Table: XREF_ORDERS (Partial)

I
ROW_ID SIEBEL EBS COMMON

100012345 SBL_101 EBS_002 COM_100

See Designing a Mapping with the Cross-References KMs and Knowledge Module
Options Reference for more information.

28.1.1.3 Handling Cross Reference Table Structures

The IKM SQL Control Append (SOA XREF) provides the following parameters to
handle these two table structures:

e XREF_DATA_STRUCTURE: This option can be set to | egacy to use the
XREF_DATA generic table, or to newto use the custom table structure.

If using the generic table structure, you must set the following options:

« XREF_TABLE_NAME: Value inserted in the XREF_TABLE_NAME column of the
XREF_DATA table. In the example above (See Table 28-1) this option would be
ORDER.

e XREF_COLUMN_NAME: Value inserted in the XREF_COLUMN_NAME column of
the XREF_DATA table. This value corresponds to the application that is the target
of the current mapping. In the example above (See Table 28-1), this option would
take either the value S| EBEL or EBS depending on which system is targeted.

If using the custom table structure, you must use the following options:

XREF_DATA_TABLE: Name of the cross reference table. It defaults to XREF_DATA.
In the example above (See Table 28-2), this table name would be XREF_ORDER.

»  XREF_DATA_TABLE_COLUMN: Name of the column that stores the cross
references for the application that is the target of the current mapping. In the
example above (See Table 28-2), this option would take either the value SI EBEL or
EBS depending on which system is targeted.

28.1.2 Knowledge Modules

Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 28-3 for
handling SOA cross references (XREF).

These new Knowledge Modules introduce parameters to support SOA cross
references. See Cross Reference Table Structures and Designing a Mapping with the
Cross-References KMs for more information on these parameters.

ORACLE 28-3



Chapter 28
Introduction

Table 28-3 SOA XREF KMs

_______________________________________________________________________________________________|]
Knowledge Module Description

LKM SQL to SQL (SOA XREF) This KM replaces the LKM SQL to SQL (ESB XREF).

This KM supports cross references while loading data from a
standard I1SO source to any ISO-92 database.

Depending of the option SRC_UPDATE_DELETE_ACTION, this LKM
can DELETE or UPDATE source records.

The LKM SQL to SQL (SOA XREF) has to be used in conjunction
with the IKM SQL Control Append (SOA XREF) in the same mapping.

LKM MSSQL to SQL (SOA XREF) This KM replaces the LKM MSSQL to SQL (ESB XREF).

This KM is a version of the LKM SQL to SQL (SOA XREF) optimized
for Microsoft SQL Server.

IKM SQL Control Append (SOA XREF) This KM replaces the IKM SQL Control Append (ESB XREF).

This KM provides support for cross references while integrating data
in any 1ISO-92 compliant database target table in truncate/insert
(append) mode. This KM provides also data control: Invalid data is
isolated in an error table and can be recycled.When loading data to
the target, this KM also populates PK/GUID XREF table on a
separate database.

This IKM SQL Control Append (SOA XREF) has to be used in

conjunction with the LKM SQL to SQL (SOA XREF) or LKM MSSQL
to SQL (SOA XREF).

28.1.3 Overview of the SOA XREF KM Process

To load the cross reference tables while performing integration with Oracle Data
Integrator, you must use the SOA XREF knowledge modules. These knowledge
modules will load the cross reference tables while extracting or loading information
across systems.

# Note:

In order to maintain the cross referencing between source and target systems,
the LKM and IKM supporting cross referencing must be used in conjunction.

The overall process can be divided into the following three main phases:
1. Loading Phase (LKM)
2. Integration and Cross-Referencing Phase (IKM)

3. Updating/Deleting Processed Records (LKM)

28.1.3.1 Loading Phase (LKM)

ORACLE

During the loading phase, a Source Primary Key is created using columns from the
source table. This Source Primary Key is computed using a user-defined SQL
expression that should return a VARCHAR value. This expression is specified in the
SRC_PK_EXPRESSION KM option.

28-4



Chapter 28
Introduction

For example, for a source Order Line Table (aliased OLINE in the mapping) you can
use the following expression:

TO_CHAR(OLINE. ORDER ID) || '-' || TO CHAR(CLINE. LI NE_ID)

This value will be finally used to populate the cross reference table.

28.1.3.2 Integration and Cross-Referencing Phase (IKM)

During the integration phase, a Common ID is created for the target table. The value
for the Common ID is computed from the expression in the XREF_SYS_GUID KM
option. This expression can be for example:

e A database sequence (<SEQUENCE_NAME>. NEXTVAL)

* A function returning a global unique Id (SYS_aul () for Oracle, Newi D() for SQL
Server)

This Common ID can also be automatically pushed to the target columns of the target
table that are marked with the UD1 flag.

Both the Common ID and the Source Primary Key are pushed to the cross reference
table. In addition, the IKM pushes to the cross reference table a unique Row Number
value that creates the cross reference between the Source Primary Key and Common
ID. This Row Number value is computed from the
XREF_ROWNUMBER_EXPRESSION KM option, which takes typically expressions
similar to the Common ID to generate a unigue identifier.

The same Common ID is reused (and not re-computed) if the same source row is used
to load several target tables across several mappings with the Cross-References KMs.
This allows the creation of cross references between a unique source row and
different targets rows.

28.1.3.3 Updating/Deleting Processed Records (LKM)

ORACLE

This optional phase (parameterized by the SRC_UPDATE_DELETE_ACTION KM
option) deletes or updates source records based on the successfully processed source
records:

e If SRC_UPDATE_DELETE_ACTION takes the DELETE value, the source records
processed by the mapping are deleted.

 If SRC_UPDATE_DELETE_ACTION takes the UPDATE value, a source column of
the source table will be updated with an expression for all the processed source
records. The following KM options parameterize this behavior:

— SRC_UPD_COL: Name of the source column to update

— SRC_UPD_COL_EXPRESSION: Expression used to generate the value to
update in the column

It is possible to execute delete and update operations on a table different table from
the source table. To do this, you must set the following KM options in the LKM:

* SRC_PK_LOGICAL_SCHEMA: Oracle Data Integrator Logical schema containing
the source table to impact.

« SRC_PK_TABLE_NAME: Name of the source table to impact.
e SRC_PK TABLE_ALIAS: Table alias for this table.

28-5



Chapter 28
Installation and Configuration

28.2 Installation and Configuration

Make sure you have read the information in this section before you start using the
SOA XREF Knowledge Modules:

e System Requirements and Certifications
e Technology Specific Requirements

*  Connectivity Requirements

28.2.1 System Requirements and Cetrtifications

Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http:// ww. oracl e. conf t echnol ogy/ product s/ oracl e-dat a-i ntegrator/index. htn .

28.2.2 Technology Specific Requirements

There are no technology requirements for using Oracle SOA Suite cross references in
Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQI
Server apply also to Oracle SOA Suite cross references. For more information, see:

e Oracle Database
*  Microsoft SQL Server

28.2.3 Connectivity Requirements

There are no connectivity requirements for using Oracle SOA Suite cross references in
Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQI
Server apply also to Oracle SOA Suite cross references. For more information, see:

e Oracle Database
e Microsoft SQL Server

28.3 Working with XREF using the SOA Cross References
KMs

This section consists of the following topics:

e Defining the Topology
e Setting up the Project

e Designing a Mapping with the Cross-References KMs

ORACLE 28-6


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Chapter 28
Working with XREF using the SOA Cross References KMs

28.3.1 Defining the Topology

The steps to create the topology in Oracle Data Integrator, which are specific to
projects using SOA XREF KMs, are the following:

1. Create the data servers, physical and logical schemas corresponding to the
sources and targets.

2. Create a data server and a physical schema for the Oracle or Microsoft SQL
Server technology as described in the following sections:

e Creating an Oracle Data Server and Creating an Oracle Physical Schema

» Creating a Microsoft SQL Server Data Server and Creating a Microsoft SQL
Server Physical Schema

This data server and this physical schema must point to the Oracle instance and
schema or to the Microsoft SQL Server database containing the cross reference
tables.

3. Create a logical schema called XREF pointing to the physical schema. containing
the cross reference table.

See Creating a Logical Schema in Administering Oracle Data Integrator for more
information.

28.3.2 Setting up the Project

Import the following KMs into your project, if they are not already in your project:

e |IKM SQL Control Append (SOA XREF)

¢ LKM SQL to SQL (SOA XREF) or LKM MSSQL to SQL (SOA XREF) if using
Microsoft SQL Server

28.3.3 Designing a Mapping with the Cross-References KMs

ORACLE

To create a mapping, which both loads a target table from several source tables and
handles cross references between one of the sources and the target, run the following
steps:

1. Create a mapping with the source and target datastores which will have the cross
references.

2. Create joins, filters and mappings as usual.

Mapping the Common ID: If you want to map in a target column the Common ID
generated for the cross reference table, check the UD1 flag for this column and
enter a dummy mapping. For example a constant value such as' X .

3. Inthe Physical diagram of the mapping, select the access point for the execution
unit containing the source table to cross reference. The Property Inspector for this
object opens.

4. In the Loading Knowledge Module tab, select the LKM SQL to SQL (SOA XREF)
or LKM MSSQL to SQL (SOA XREF) if the source data store is in Microsoft SQL
Server.

5. Specify the KM options as follows:

28-7



Chapter 28
Knowledge Module Options Reference

» Specify in SRC_PK_EXPRESSION the expression representing the Source
Primary Key value that you want to store in the XREF table.

If the source table has just one attribute defined as a key, enter the attribute
name (for example SEQ NO).

If the source key has multiple attributes, specify the expression to use for
deriving the key value. For example, if there are two key attributes SEQ NOand
DOC_DATE in the table and you want to store the concatenated value of those
attributes as your source value in the XREF table enter SEQ NO || DOC_DATE.
This option is mandatory.

e Optionally set the SRC_UPDATE_DELETE_ACTION to impact the source
table, as described in Updating/Deleting Processed Records (LKM)

6. In the Physical diagram of the mapping, select the access point for your staging
area. The Property Inspector opens for this object.

7. Inthe Integration Knowledge Module tab, select the IKM SQL Control Append
(SOA XREF).

8. Specify the KM options as follows:

*  XREF_DATA_STRUCTURE: Enter New to use the new XREF_DATA Table
structure. Otherwise enter Legacy to use legacy XREF_DATA Table. Default is
New. Configure the options depending on the table structure you are using, as
specified in Handling Cross Reference Table Structures

* XREF_SYS_GUID_EXPRESSION: Enter the expression to be used to
computing the Common ID. This expression can be for example:

— adatabase sequence (<SEQUENCE_NAVE>. NEXTVAL)

— afunction returning a global unique Id (SYS_GuUI D() for Oracle and Newi DY)
for SQL Server)

+  XREF_ROWNUMBER_EXPRESSION: This is the value that is pushed into
the Row Number column. Use the default value of GUID unless you have the
need to change it to a sequence.

*  FLOW_CONTROL: Set to YES in order to be able to use the CKM Oracle.

# Note:

If the target table doesn't have any placeholder for the Common ID and you
are for example planning to populate the source identifier in one of the
target attributes, you must use the standard mapping rules of ODI to
indicate which source identifier to populate in which attribute.

If the target attribute that you want to load with the Common ID is a unique
key of the target table, it needs to be mapped. You must put a dummy
mapping on that attribute. At runtime, this dummy mapping will be
overwritten with the generated common identifier by the integration
knowledge module. Make sure to flag this target attribute with UD1.

28.4 Knowledge Module Options Reference

This section lists the KM options for the following Knowledge Modules:

ORACLE 28-8



 Table 28-4

* LKM MSSQL to SQL (SOA XREF)

 Table 28-5

Table 28-4 LKM SQL to SQL (SOA XREF)

________________________________________________________________________________________|]
Mandatory Description

Option

Values

Chapter 28
Knowledge Module Options Reference

SRC_UPDATE_DELETE_
ACTION

SRC_PK_EXPRESSION

SRC_PK_LOGICAL_SCH
EMA

SRC_PK_TABLE_NAME

SRC_PK_TABLE_ALIAS

SRC_UPD_COL

ORACLE

NONE|UPDATE|
DELETE

Concatenating
expression

Name of source table's
logical schema

Source table name,
default is MY_TABLE

Source table alias,
default is

MY _ALIAS

Aliased source column
name

Yes

Yes

No

No

No

No

Indicates what action to take on source
records after integrating data into the target.
See Updating/Deleting Processed Records
(LKM) for more information.

Expression that concatenates values from the
PK to have them fit in a single large varchar
column. For example: for the source Orderline
Table (aliased OLINE in the mapping) you can
use expression:

TO CHAR(OLINE. ORDER ID) || '-' ||
TO_CHAR( OLI NE. LI NE_I D)

Indicates the source table's logical schema.
The source table is the one from which we
want to delete or update records after
processing them. This logical schema is used
to resolve the actual physical schema at
runtime depending on the Context. For
example: ORDER_BOCKI NG. This option is
required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE or DELETE.

Indicate the source table name of which we
want to delete or update records after
processing them. For example: ORDERS This
option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE or DELETE.

Indicate the source table's alias within this
mapping. The source table is the one from
which we want to delete or update records
after processing them. For example: ORD. This
option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE or DELETE.

Aliased source column name that holds the
update flag indicator. The value of this column
will be updated after integration when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE with the expression literal
SRC_UPD_EXPRESSION. The alias used for
the column should match the one defined for
the source table. For example:

ORD. LOADED FLAG. This option is required only
when SRC_UPDATE_DELETE_ACTION is
set to UPDATE.

28-9



Chapter 28
Knowledge Module Options Reference

Table 28-4 (Cont.) LKM SQL to SQL (SOA XREF)
]

Option

Values

Mandatory Description

SRC_UPD_EXPRESSION Literal or expression

DELETE_TEMPORARY_
OBJECTS

Yes|No

No Literal or expression used to update the
SRC_UPD_COL. This value will be used to
update this column after integration when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE. For example: RECORDS PROCESSED.
This option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE.

Yes Set this option to NOif you wish to retain
temporary objects (files and scripts) after
integration. Useful for debugging.

LKM MSSQL to SQL (SOA XREF)

See Table 28-4 for details on the LKM MSSQL to SQL (SOA XREF) options.

Table 28-5 IKM SQL Control Append (SOA XREF)
]

Option Values Mandatory Description

INSERT Yes|No Yes Automatically attempts to insert data into the
Target Datastore of the Mapping.

COMMIT Yes|No Yes Commit all data inserted in the target
datastore.

FLOW_CONTROL Yes|No Yes Check this option if you wish to perform flow
control.

RECYCLE_ERRORS Yes|No Yes Check this option to recycle data rejected from
a previous control.

STATIC_CONTROL Yes|No Yes Check this option to control the target table
after having inserted or updated target data.

TRUNCATE Yes|No Yes Check this option if you wish to truncate the
target datastore.

DELETE_ALL Yes|No Yes Check this option if you wish to delete all the
rows of the target datastore.

CREATE_TARG_TABLE Yes|No Yes Check this option if you wish to create the
target table.

DELETE_TEMPORARY_ Yes|No Yes Set this option to NOif you wish to retain

OBJECTS

XREF_TABLE_NAME

XREF_COLUMN_NAME

ORACLE

XREF table name

Column name

temporary objects (tables, files and scripts)
after integration. Useful for debugging.

Yes, if using Table Name to use in the XREF table.
Legacy Example: ORDERS. See Handling Cross
XREF table Reference Table Structures for more
structure. information.

Yes, if using Primary key column name to use as a literal in
Legacy the XREF table. See Handling Cross

XREF table Reference Table Structures for more
structure. information.

28-10



Chapter 28
Knowledge Module Options Reference

Table 28-5 (Cont.) IKM SQL Control Append (SOA XREF)

Option Values Mandatory Description
XREF_SYS_GUID_EXPR SYS_GUID() Yes Enter the expression used to populate the
ESSION common ID for the XREF table (column name
"VALUE"). Valid examples are: SYS_GU D)) ,
MY_SEQUENCE. NEXTVAL, and so forth.
XREF_ROWNUMBER_EX SYS_GUID() Yes Enter the expression used to populate the
PRESSION row_number for the XREF table. For example
for Oracle: SYS_GUI () , MY_SEQUENCE. NEXTVAL
and so forth.
XREF_DATA_STRUCTUR New|Legacy Yes Enter New to use the new XREF_DATA Table
E structure.. Otherwise enter Legacy to use
legacy XREF_DATA Table. Default is New.
See Handling Cross Reference Table
Structures for more information.
XREF_DATA TABLE XREF table name No. Can be Enter the name of the table storing cross
used with reference information. Default is XREF_DATA.
custom See Handling Cross Reference Table
XREF table Structures for more information.
structure.
XREF_DATA _TABLE_CO XREF data table Yes, if using For new XREF data structure only: Enter the
LUMN column name custom column name of the XREF data table to store
XREF table the source key values. See Handling Cross
structure Reference Table Structures for more

information.

ORACLE

28-11



Appendices

You can find out more information on the various drivers available for Oracle Data
Integrator.
Part IV contains the following appendices:

e Oracle Data Integrator Driver for LDAP Reference
e Oracle Data Integrator Driver for XML Reference

e Oracle Data Integrator Driver for Complex Files Reference

ORACLE



Oracle Data Integrator Driver for LDAP
Reference

The Oracle Data Integrator Driver for LDAP (LDAP driver) allows Oracle Data
Integrator to manipulate complex LDAP trees using standard SQL queries.
This appendix includes the following sections:

Introduction to Oracle Data Integrator Driver for LDAP
LDAP Processing Overview

Installation and Configuration

SQL Syntax

JDBC API Implemented Features

A.1 Introduction to Oracle Data Integrator Driver for LDAP

With Oracle Data Integrator Driver for LDAP (LDAP driver) , Oracle Data Integrator is
able to manipulate complex LDAP trees using standard SQL queries.

The LDAP driver supports:

Manipulation of LDAP entries, their object classes and attributes
Standard SQL (Structured Query Language) Syntax

Correlated subqueries, inner and outer joins

ORDER BY and GROUP BY

COUNT, SUM, MIN, MAX, AVG and other functions

All Standard SQL functions

Referential Integrity (foreign keys)

Persisting modifications into directories

A.2 LDAP Processing Overview

The LDAP driver works in the following way:

ORACLE

1.

The driver loads (upon connection) the LDAP structure and data into a relational
schema, using a LDAP to Relational Mapping.

The user works on the relational schema, manipulating data through regular SQL
statements. Any changes performed in the relational schema data (insert/update)
are immediately impacted by the driver in the LDAP data.

A-1



Appendix A
LDAP Processing Overview

A.2.1 LDAP to Relational Mapping

The LDAP to Relational Mapping is a complex but automated process that is used to
generate a relational structure. As LDAP servers do not provide metadata information
in a standard way, this mapping is performed using data introspection from the LDAP
tree. Therefore, automatic mapping is carried out on the contents of the LDAP tree
used as a source for this process.

This section contains the following topics:

General Principle
Grouping Factor
Mapping Exceptions
Reference LDAP Tree

A.2.1.1 General Principle

ORACLE

The LDAP driver maps LDAP elements to a relational schema in the following way:

Each LDAP class or combination of classes is mapped to a table. Each entry from
the LDAP tree is mapped to a record in the table.

Each attribute of the class instances is mapped to a column.

Hierarchical relationships between entries are mapped using foreign keys. A table
representing a hierarchical level is created with a primary key called <t abl enane>PK.
Records reference their parent tables through a <parent _| evel _t abl enane>FK

col um. The root of the LDAP tree structure is mapped to a table called ROOT
containing a ROOTPK column in a unique record.

Attributes with multiple values for an entry (for example, a Person entry with
several email attributes) are mapped as sub-tables called

<parent _t abl enane><attribut e_name>. Each sub-table contains a

<parent _t abl ename>FK col um linking it to the parent table.

Figure A-1 shows an LDAP tree with OrganizationalUnit entries linking to Person
instances. In this case, certain Person entries have multiple email addresses.

A-2



Appendix A
LDAP Processing Overview

Figure A-1 LDAP Tree Example

& LDAP Browser\Editor v2.8.1 - [Idap:ffoursfo=Goliath,dc=sunopsis,.d... |Z||E|E|
File Edit View LDIF Help

A= I A R e A N AR A
[ o=Gaoliath,de=sunapsis,de=cam : Atribute | Walue
o] CJ ou=Zales : telephonerumber 123 456 987
[ ch=John Smith farmail HULIE (LD e 18 )
slemail | SUpporEsSUnopSis.com
E‘ tn=Faul Young §§ description Technical Support
@ [ au=Marketing “lobjectClass top
|j| ch=martha Grim nhjectClass [erson
@ [ ou=Support §§ ch Chrig Potter
D ch=Chris Potter :
1 !il’-'ﬂs‘xJs'x};};};};};};};};};};};};};};};};};};};};};};};}Q}#Q]_T

This LDAP tree will be mapped into the following relational structure:

e The ROOT table represents the root of the hierarchy and contains one ROOTPK
column.

*  The ORGANI ZATI ONALUNI T table represents different organizationalUnit instances of
the tree. It contains the ORGANI ZATI ONALUNI TPK primary key column and the
attributes of the organizationalUnit instances (cn, telephoneNumber, etc.). It is
linked to the ROOT table by the ROOTFK foreign key column.

e The PERSON table represents the instances of the person class. It contains the
PERSONPK primary key column and the ORGANI ZATI ONALUNI TFK linking it to the
ORGANI ZATI ONALUNI T table and the attributes of PERSON instances,
(telephoneNumber, description, cn).

*  The email attribute appears as a PERSON_EMAI L table containing the EMAI L column
and a PERSONFK linking a list of email attributes to a PERSON record.

Figure A-2 shows the resulting relational structure.

ORACLE' A3



Appendix A
LDAP Processing Overview

Figure A-2 Relational Structure mapped from the LDAP Tree Example shown in
Figure A-1

ORGANTSATIONA NI TPE

ROCTRE
| TELEFHOME
T
DESCRIPTION

CRGAMIZATIONALLIMITFE
TELEPHOMEMUMEER.

M

DESCRIPTION

A.2.1.2 Grouping Factor

ORACLE

In LDAP directories, class entries are often specified by inheriting attributes from
multiple class definitions. In the relational mapping procedure, the LDAP driver
translates this fact by combining each combination of classes in an LDAP entry to
generate a new table.

For example, some entries of the Person class may also be instances of either of the
Manager or BoardMember classes (or both). In this case, the mapping procedure
would generate a PERSON table (for the instances of Person) but also MANAGER PERSON,
BOARDIVEMBER _PERSON, BOARDVEMBER MANAGER_PERSON and so forth, tables depending on the
combination of classes existing in the LDAP tree.

In order to avoid unnecessary multiplication of generated tables, it is possible to
parameterize this behavior. The Grouping Factor parameter allows this by defining the
number of divergent classes below which the instances remain grouped together in the
same table. This resulting table contains flag columns named IS_<classname>, whose
values determine the class subset to which the instance belongs. For example, if

I S _<cl assnane> is set to 1, then the instance represented by the record belongs to

<cl assnane>.

The behavior where one table is created for each combination of classes corresponds
to a Grouping Factor equal to zero. With a grouping factor equal to one, instances with
only one divergent class remain in the same table.

In our example, with a Grouping Factor higher than or equal to 2, all company person
instances (including Person, Manager and BoardMember class instances) are grouped
in the PERSON table. The | S_MANAGER and | S_BOARDVEMBER columns enable the
determination of PERSON records that are also in the Manager and/or BoardMember
classes.

A-4



Appendix A
LDAP Processing Overview

A.2.1.3 Mapping Exceptions

This section details some specific situations of the mapping process.

* Table name length limits and collisions: In certain cases, name-length
restrictions may result in possible object name collisions. The LDAP driver avoids
such situations by automatically generating 3 digit suffixes to the object name.

* Key column: It is possible to have the driver automatically create an additional
SNPSLDAPKEY column containing the Relative Distinguished Name (RDN) that can be
used as identifier for the current record (original LDAP class instance). This is
done by setting the key_col um URL property to true. This SNPSLDAPKEY column must
be loaded if performing DML commands that update the LDAP tree contents. Note
that this column is created only in tables that originate from LDAP instances.
Tables that correspond to multiple valued instance attributes will not be created
with these columns.

e Case sensitivity: This is set by the case_sens URL property that makes the
RDBMS and LDAP servers to enforce case-sensitivity.

» Special characters: It is possible in LDAP to have non-alphanumeric characters
into attribute or class names. These characters are converted to underscores ("_")
during the mapping. Exception: If non alphanumeric, the first character is
converted to "x".

* SQL Reversed Keywords: Generated tables and columns with names that match
SQL keywords are automatically renamed (an underscore is added after their
name) in the relational structure to avoid naming conflicts between table/column
names and SQL keywords. For example, a class named SELECT will be mapped to
a table named SELECT .

A.2.1.4 Reference LDAP Tree

ORACLE

As LDAP servers do not provide metadata information in a standard way, the LDAP to
Relational Mapping process is performed by default using data introspection from the
LDAP tree.

With the LDAP driver it is also possible to use a Reference LDAP Tree for the LDAP to
Relational Mapping process instead of using the LDAP tree that contains the actual
data.

This Reference LDAP Tree is configured using the | dap_net adat a property of the driver
URL. This property specifies a. properti es file that contains the connection information
to a LDAP tree whose hierarchical structure rigorously reflects that of the operational
LDAP tree but without the accompanying data volume.

This technique reveals certain advantages:

e The Reference LDAP Tree can be maintained by the directory administrator as a
stable definition of the operational LDAP tree.

* The Reference LDAP Tree contains few instances that make up the skeleton of
the real LDAP tree, and the LDAP to Relational Mapping process runs faster on
this small reference tree. This is particularly important for large operational LDAP
directories, and will result in reduced processing time and resources for running
the procedure.

A-5



Appendix A
LDAP Processing Overview

The use of this technique, however, imposes a certain number of constraints in the
design of the precise structure of the Reference LDAP Tree:

* All optional LDAP instance attributes must be instantiated in the reference entries.
Even if these attributes are absent in the operational LDAP directory entries, they
must be declared in the Reference LDAP Tree if they are to be used at a later
time.

*  Any multiple valued attributes that exist in the operational LDAP directory must be
instantiated as such in the Reference LDAP Tree. For example, if any Person
instance in the operational LDAP directory possesses two telephoneNumber
attributes, then the generic Person class must instantiate at least two
telephoneNumber attributes in the Reference LDAP Tree.

" Note:

These issues have a direct impact on the generated relational structure by
forcing the creation of additional tables and columns to map multiple attribute
fields and must be taken into consideration when designing the Reference
LDAP Tree.

A.2.2 Managing Relational Schemas

This section contains the following topics:

* Relational Schema Storage

» Accessing Data in the Relational Structure

A.2.2.1 Relational Schema Storage

ORACLE

The relational structure resulting from the LDAP to Relational mapping may be
managed by virtual mapping or stored in an external database.

The virtual mapping stores the relational structure in the run-time agent's memory and
requires no other component. The relational structure is transparently mapped by the

driver to the LDAP tree structure. SQL commands and functions that are available for
the LDAP driver are listed in the SQL Syntax.

" Note:

The virtual mapping may require a large amount of memory for large LDAP tree
structures.

The external database may be any relational database management system. The
driver connects through JDBC to this engine and uses it to store the relational schema.
This method provides the following benefits:

e Processing and storage capabilities of the selected external database engine.

e Acccess to the specific SQL statements, procedures, and functions of the external
database engine.

A-6



Appendix A
Installation and Configuration

* Flexible persistence of the relational structure. This schema content may persist
after the connection to the LDAP driver is closed.

See Using an External Database to Store the Data for more information on how to set
up external storage.

A.2.2.2 Accessing Data in the Relational Structure

DML operations on tables in the relational are executed with standard SQL
statements.

Modifications made to the relational data are propagated to the directory depending on
the selected storage :

e Inthe case where the virtual mapping is used, all insert, update, and delete
requests are automatically propagated to the original LDAP server in an
autocommit mode. No explicit COMMIT or ROLLBACK statements will have any
impact on the Oracle Data Integrator driver for LDAP.

* Inthe case where the external database is used to store the relational structure, all
types of DML statements may be used with the driver. However, it is important to
know that no modifications will be propagated to the original LDAP server.

A.3 Installation and Configuration

The Oracle Data Integrator driver for LDAP is automatically installed during the Oracle
Data Integrator installation. The following topics cover advanced configuration topics
and reference information.

This section contains the following topics:

»  Driver Configuration
* Using an External Database to Store the Data
* LDAP Directory Connection Configuration

* Table Aliases Configuration

" Note:

You must add the libraries and drivers required to connect the LDAP directory
using JNDI to the Oracle Data Integrator classpath.

" Note:

If using an external database engine you must also make sure that the JDBC
driver used to connect to the external database and the .properti es file are in
the classpath.

ORACLE A7



Appendix A
Installation and Configuration

A.3.1 Driver Configuration

< Note:

ODI LDAP driver's support for LDAP servers is limited. All the features of the
driver will work on any given instance of an LDAP server. ODI uses Java JNDI
API to interact with the LDAP servers. If the LDAP server adheres exactly with
LDAP specifications, then driver features will work. Otherwise, some of the
features may not work.

This section details the driver configuration.

ORACLE

The driver name is: com sunopsi s. | dap. j dbc. dri ver. SnpsLdapDri ver
The driver supports two URL formats:

— jdbc:snps: | dap?<property=val ue>[ & ..]

— jdbc: snps: | dap2?<property=val ue>[ & . .]

The first URL requires the LDAP directory password to be encoded. The second
URL allows you to give the LDAP directory password without encoding it.

# Note:

It is recommended to use the first URL to secure the LDAP directory
password.

The LDAP driver uses different properties depending on the established
connection. Figure A-3 shows when to use which properties.

A-8



Appendix A
Installation and Configuration

Figure A-3 Properties Files for LDAP Driver

LDAP Directory .properties files . .
Contains the connecti

ldap for the LDAP Directon
The properties start w
For example, 1dap b

@ Criver = Reference LDAP Tree .properties files
Contains the connacti
E im_ for the Reference Dire
T~ — The properties start w

For example, 1m_bas

¥
External Database

.properties files
Contains the external database
db connection information:
The properties start with db_ .
For example, db_ url

For example.
Cracle or HS0I

The LDAP driver connects to the LDAP directory. You can configure this
connection with the properties that start with | dap_. For example, | dap_basedn.
Instead of passing the LDAP directory properties in the driver URL, you can use a
properties file for the configuration of the connection to the LDAP directory. This
properties file must be specified in the | dap_pr ops property of the driver URL.

If you want to use the hierarchical structure of the LDAP tree without the
accompanying data volume, you can use the Reference LDAP tree. The
connection to the Reference LDAP tree is configured with the properties that start
with I m . For example, | m basedn. Instead of passing the | m_properties in the driver
URL, you can use a properties file. This properties file must be specified in the

| dap_net adat a property of the driver URL. See Reference LDAP Tree for more
information.

To configure the connection of the LDAP driver to an external database, use the
properties that start with db_. For example, db_ur| . Instead of passing the external
database properties in the driver URL, you can use a properties file for the
configuration of the connection to the external database. This properties file must
be specified in the db_props property of the driver URL. See Using an External
Database to Store the Data for more information.

Table A-1 describes the properties that can be passed in the driver URL.

ORACLE' A9



Table A-1 URL Properties

Appendix A
Installation and Configuration

Property Mandatory Type

Default

Description

db_props or No string (file
dp location)

Idap_props No
orlp

string (file
location)

Idap_metad No
ata or Im

string (file
location)

case_sens No

orcs false)
alias_bundl No string (file
eorab location)
alias_bundl No string
e_encoding (encoding
or abe code)

ORACLE

Empty
string

N/A

N/A

boolean (true | false

Empty
string

Default
encoding

Name of a . properti es file containing the external database
connection configuration. See Using an External Database
to Store the Data for the details of this file content.

Note: This property should contain the name of
the .properties file without the file extension.

Note: This . properti es file must be in the run-time agent
classpath.

Note: You can specify the external database connection
configuration using all the db_ properties listed below in this
table.

Name of a . properti es file containing the directory
connection configuration. See LDAP Directory Connection
Configuration for the details of this file content.

Note: This property should contain the name of
the .properties file without the file extension.

Note: This . properti es file must be in the run-time agent
classpath.

Note: You can specify the LDAP directory connection
configuration using all the | dap_ properties listed below in
this table.

Name of a . properti es file containing the directory
connection configuration for the Reference LDAP Tree. See
LDAP Directory Connection Configuration for the details of
this file content, and Reference LDAP Tree for an
explanation of the reference tree.

Note: This property should contain the name of
the .properties file without the file extension.

Note: This . properti es file must be in the run-time agent
classpath.

Note: You can specify the reference LDAP directory
connection configuration using all the | m_ properties listed
below in this table.

Enable / disable case sensitive mode for both LDAP- and
RDBMS-managed objects.

Full name of a properties file including both the absolute
path to the properties file and the file extension. The
properties file is a file that contains the list of aliases for the
LDAP to Relational Mapping. If this file does not exist, it will
be created by the driver. See Table Aliases Configuration for
more information.

Note: The file extension does not need to be . properties.
Alias bundle file encoding. This encoding is used while

reading and overwriting the alias_bundle file. If it is not
defined then the default encoding would be used.

You will find a list of supported encoding at the following
URL: http://java.sun.con j 2se/ 1. 3/ docs/ gui de/intl/
encodi ng. doc. htni .

A-10


http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

Table A-1 (Cont.) URL Properties

Appendix A
Installation and Configuration

_________________________________________________________________________________________|
Property Mandatory Type

Default

Description

grouping_fa No
ctor or gf

key_column No
or kc

numeric_ids No
orni

id_length or No
il

table_prefix No
ortp

Idap_auth No

Idap_url Yes
Idap_user  No
Idap_passw No

ord

Idap_based No
n

Im_auth No
Im_url Yes
Im_user No

Im_passwor No
d

Im_basedn No
db_driver Yes
db_url Yes
db_user No
db_passwor No

d

db_schema No

ORACLE

integer

2

boolean (true | false

false)

boolean (true | true

false)

integer

string

string

string

string

string

string

string

string

string

string

string

string

string

string

string

string

10/30

N/A

simple

N/A

Empty
string

Empty
string

N/A

simple

N/A

Empty
string

Empty
string

N/A

N/A

N/A

Empty
string
Empty
string
Empty
string

Determines how many object classes will be grouped
together to set up a single relational table mapping. See
Grouping Factor for more information.

If set to true, a technical column called SNPSLDAPKEY is
created to store the Relative Distinguished Name (RDN) for
each LDAP entry. See Mapping Exceptions for more
information.

If set to true, all internal Primary and Foreign Keys are of
NUMERIC type. Otherwise, they are of the VARCHAR type.

The length of the internal Primary and Foreign Key columns.
The default is 10 for NUMERIC column types and 30 for
VARCHAR column types.

Prefix added to relational tables of the current connection.

LDAP Directory authentication method. See the aut h
property in LDAP Directory Connection Configuration.

LDAP Directory URL. See the ur| property in LDAP
Directory Connection Configuration.

LDAP Directory user name. See the user property in LDAP
Directory Connection Configuration.

LDAP Directory user password. See the passwor d property
in LDAP Directory Connection Configuration.

LDAP Directory basedn. See the basedn property in LDAP
Directory Connection Configuration.

Reference LDAP authentication method. See the aut h
property in LDAP Directory Connection Configuration.

Reference LDAP URL. See the url| property in LDAP
Directory Connection Configuration.

Reference LDAP Directory user name. See the user
property in LDAP Directory Connection Configuration.

Reference LDAP Directory user password. See the password
property in LDAP Directory Connection Configuration.

Reference LDAP Directory basedn. See the basedn property
in LDAP Directory Connection Configuration.

External Database JDBC Driver. See the dri ver property in
Using an External Database to Store the Data.

External Database JDBC URL. See the ur| property in
Using an External Database to Store the Data.

External Database user. See the user property in Using an
External Database to Store the Data.

External Database password. See the passwor d property in
Using an External Database to Store the Data.

External Database schema. See the schema property in
Using an External Database to Store the Data.

A-11



Appendix A
Installation and Configuration

Table A-1 (Cont.) URL Properties
]

db_catalog No

db_drop_on No
_disconnect
or db_dod

db_load_mo No
de or db_Im

Property Mandatory Type Default Description
string Empty External Database catalog. See the cat al og property in
string Using an External Database to Store the Data.

boolean (true| true Drop tables on disconnect on the external database. See the

false) drop_on_di sconnect property in Using an External
Database to Store the Data.

string ci Loading method for the external database. See the
| oad_node property in Using an External Database to Store
the Data.

integer 0 Read data from LDAP servers with this page size limit.

page_size  No

transform_n No
onascii or
tna

Setting this property to a positive value will cause the LDAP
driver to try to use pagination to retrieve all the results, in
case the LDAP driver has enforced pagination on search
results.

" Note:

The value set for page_size must
match the maximum page size
(maximum number of results) set
on the LDAP server.

boolean (true| true Transform Non Ascii. Set to false to keep non-ascii
false) characters.

ORACLE

URL Examples

The following section lists URL examples:

j dbc: snps: | dap?l p=I dap_mi r & dap_basedn=o0=t est s&gf =10&l f =

Connects to the LDAP directory specified in the Idap_mir . properti es file,
overriding the basedn property of the Idap bundle and using a grouping factor of
10. General information (important) is sent to the standard output.

j dbc: snps: | dap?l p=I dap_our s& nmegeneri c&b=c: /t np/ al i ases. t xt &gf =10&kc=t r ue

Connects to the LDAP directory using the Idap_ours . properti es file; a generic
Directory tree for relational model creation is signaled by the Im property; an alias
bundle file is used for the creation of the relational structure; a maximum grouping
factor of 10 is used; key column creation is enabled for the SNPSLDAPKEY field
to allow updates requests in the relational model.

j dbc: snps: | dap?
| p=I dap_nmi r &p=nysql _nir_| dap& dap_basedn=dc=t est s& mrl dap_mi r & m basedn=dc=no
del &b=d: / t enp/ napl dap. t xt &

Connects to the LDAP directory using the Idap_mir . properti es file; overriding Idap
basedn property; using the "dc=model" subtree of the same directory to perform
mapping; using an alias bundle; overriding the Im database property (load mode);

A-12



Appendix A
Installation and Configuration

specifying a grouping factor of 0 to indicate no grouping (grouping disabled); Full
trace logging is activated.
* Connects to a LDAP directory on the hydraroid machine. The LDAP server

connection information - url, base dn, user and password - is specified in the URL
using the Idap_xxx properties.

jdbc: snps: | dap?l dap_url =l dap: // hydr ar oi d: 389/
dc=l ocal host, dc=I ocal domai n& dap_passwor d=KPLEKFMIKCLFJNMDFDDGPGPDB&! dap_user =ch=0
rcl adm n&l dap_basedn=ou=appl i cati ons

A.3.2 Using an External Database to Store the Data

The relational structure resulting from the LDAP to relational mapping of the LDAP tree
can be stored in the run-time agent's memory or in an external database.

" Note:

The list of technologies that support external storage is available on Oracle
Technical Network (OTN) :

http:// ww. oracl e. com t echnol ogy/ sof t war e/ products/ias/files/
fusion_certification. htn

The external storage is configured with a set of properties described in Table A-2.
The external storage properties can be passed in several ways:

* Passing the Properties in the Driver URL
»  Setting the Properties in ODI Studio

»  Setting the Properties in a Properties File

A.3.2.1 Passing the Properties in the Driver URL

The properties can be directly set in the driver URL. When using this method, the
properties have to be prefixed with db_ . For example, if connecting to an Oracle
database, specify the Oracle JDBC driver name in the dri ver parameter as follows:

db_driver=oracle.jdbc. Oracl eDriver.

A.3.2.2 Setting the Properties in ODI Studio

The properties can be specified on the Properties tab of the Data Server editor in
Topology Navigator. When using this method, the properties have to be prefixed with
db_. For example, if you want to set the driver parameter:

1. Inthe Key column, enter db_dri ver

2. In the Value column, enter oracl e. j dbc. Oracl eDri ver if you are connecting to an
Oracle database.

ORACLE A-13


http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html
http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html

Appendix A
Installation and Configuration

A.3.2.3 Setting the Properties in a Properties File

The properties can be set in an external database properties file. This properties file,
also called property bundle, is a text file with the . properti es extension containing a
set of lines with on each line a <propert y>=<val ue> pair.This external database
porperties file contains the properties of a JDBC connection to the relational database
schema. The properties file is referenced using the db_props property in the JDBC
URL.

# Note:

It is important to understand that the LDAP driver loads external property
bundle files once only at runtime startup. If errors occur in these files, it is
advisable to exit Oracle Data Integrator and then reload it before re-testing.

When using this method, note the following:

ORACLE

The properties in the properties file are not prefixed and used as described in
Table A-2.

The db_props property is set to the name of the properties file without

the . properties extension. For example, if you have in your classpath the
prod_directory. properties file, you should refer to this file as follows:
db_props=prod_directory.

The db_props property indicates that the schema must be loaded in a database
schema whose connection information is stored in a external database properties
file.

The properties files have to be deployed by the agent using the LDAP connection.
The location the properties file depends on the agent you are using:

— Local agent (Studio): Place the external DB properties file in the
<user. di r>/odi/oracl edi/userlib folder

— Standalone Agent: Place the external DB properties file in or acl edi / agent/
drivers folder

— JavaEE Agent:. The external DB properties file should be packed into a JAR or
ZIP file and added to the template generated by the Java EE agent. See
Deploying an Agent in a Java EE Application Server (Oracle WebLogic
Server) in Administering Oracle Data Integrator for more information.

When using property bundle files, you must make sure that the property bundle is
present in the Oracle Data Integrator classpath. Typically, you should install this
bundle in the drivers directories.

# Note:

When connecting to the external database, the LDAP driver uses JDBC
connectivity. Make sure that the JDBC driver to access this external database
is also available in the ODI classpath.

A-14



Appendix A
Installation and Configuration

It is possible to set or override the external database properties on the URL. These
properties must be prefixed with the string db_. For example:

jdbc: snps: | dap?l dap_url =l dap: //1 ocal host: 389/
&l dap_basedn=o=conpany&db_dri ver=oracl e. j dbc. Oracl eDri ver &b_ur| =<ext ernal _db_url >

The properties for configuring external storage are described in Table A-2.

Table A-2 External Storage Configuration Properties

Prop Man Ty Defau Description
erty dato pe It
ry

driver Yes stri N/A  JDBC driver name

ng
url Yes stri N/A  JDBC URL

ng
user No stri Empty Login used to connect the database

ng string
pass No stri Empty Encrypted database user password.
word ng stng Note: To encrypt the password, use the encode. bat (cnt| sh) command. See

Encoding a Password in Administering Oracle Data Integrator for more information.

sche No stri Empty Database schema storing the LDAP Tree. This property should not be used for
ma ng string Microsoft SQLServer, and the catalog property should be used instead.
catalo No  stri Empty Database catalog storing the LDAP Tree. For Microsoft SQL Server only. This property
g ng string should not be used simultaneously with the schema property.
drop_ No boo true If true, drop the tables from the database at disconnection time. If set to false the
on_di lea tables are preserved in the database.
sconn n
ect or (tru
dod el

fals

e)
load_ No stri ci The loading method. Values may be:
mode ng « n(none): the model and table mappings are created in memory only.
or Im * dci (drop_create_insert): drop all tables that may cause name conflicts then create

tables and load the LDAP tree into the relational model.
» ci(create_insert): Create the relational tables and throw an exception for existing
tables, then load the LDAP tree into the relational model.

unico No boo For MS SQL Server:
de lea If unicode = true, nvarchar is used.

n . .

(tru If unicode = false or not set, varchar is used.

el

fals

e)
varch No inte 255 Size of all the columns of the relational structure that will be used to contain string
ar_le ger data.
ngth
or vl

The following is an example of an external database . properti es file to connect to an
external Oracle database:

ORACLE A-15



Appendix A
Installation and Configuration

driver=oracle.jdbc. Oracl eDri ver

url =j dbc: oracl e: t hi n: @vydraro: 1521: SNPTST1
user=LDAP_T_1

passwor d=ENCODED_PASSWWORD

schema=LDAP_T_1

A.3.3 LDAP Directory Connection Configuration

The Oracle Data Integrator driver for LDAP uses the properties described in Table A-3
to connect to a directory server that contains the LDAP data or the Reference LDAP
Tree. These properties can be provided either in a property bundle file or on the driver
URL.

The properties for configuring a directory connection are detailed in Table A-3.

Table A-3 Directory Connection Properties

Prop Man Typ Def Description
erty dato e ault
ry
auth No  strin simp The authentication method
g le
url Yes strin N/A URL to connect to the directory. It is an LDAP URL.

g Note: This driver supports the LDAPS (LDAP over SSL) protocol. The LDAPS URL must
start with Idaps://. To connect a server using LDAPS, you must manually install the
certificate in the java machine. See the keytool program provided with the JVM for more
information.

user No strin Emp The LDAP server user-login name. Mandatory only if "auth” is set.
9 ty ~ Note: If user and password properties are provided to create the connection with the
strin - 3pBC Driver for LDAP, then they are used to connect the LDAP directory.
g
pass No strin Emp LDAP server user-login password. Mandatory only if "auth" is set.
word g t{i ~ Note: The password needs to be encrypted, unless the ‘jdbc:snps:ldap2’ URL syntax.
3 in Note: To encrypt the password, use the encode. bat (cnd| sh) command. See Encoding
a Password in Administering Oracle Data Integrator for more information.
base No strin N/A The base dn with which you wish to connect to the LDAP tree. The base dn is the top
dn g level of the LDAP directory tree. If it not specified, the base dn specified in the LDAP

URL is used.

The following is an example of an LDAP properties file content:

url =l dap://ours: 389
user=cn=Directory Manager
passwor d=ENCODED_PASSWWORD
basedn=dc=or acl e, dc=com

A.3.4 Table Aliases Configuration

ORACLE

The LDAP driver allows a certain flexibility in the definition of the model table names in
Oracle Data Integrator by the use of table aliases. This is particularly useful when the
algorithm used to navigate the LDAP tree generates long composite names from the
LDAP object class hierarchy. To avoid issues related to RDBMS-specific object name-
length constraints, the LDAP driver can set up and use aliases.

A-16



Appendix A
Installation and Configuration

# Note:

It is also possible to change the default "Maximum Table Name Length" and
"Maximum Column Name Length" values on the Others tab of the Technology
Editor in the Physical Architecture accordion.

To create a table alias file:

1. Inthe LDAP Driver Data Server URL, include and set the alias_bundle (ab)
property that indicates the name of the alias text file, for example:

jdbc: snps: | dap?..... &ab=C:/tnp/aliases.txté& ...

The alias file is created by the driver at connection time when the al i as_bundl e
property is specified. Typically, a user connects initially through the LDAP driver
which creates this file containing a list of potential table names to be created by
the reverse-engineering operation.

2. Test the connection to the LDAP data server.

3. Verify the that the text file has been created and has the expected structure. The
list consists of <original table nane > = <desired alias name> values.
Example A-1 shows an extract of an alias file after the user has provided
shortened names. See step 4 for more information.

4. Inthe alias text file, add short text value aliases to replace the originally derived
composite names and save the file.

5. Reconnect to the same LDAP data server. The relational schema is created and
this time the aliases will be used for defining relational table names.

6. Now reverse-engineer the LDAP directory as described in Reverse-Engineering an
LDAP Model. Oracle Data Integrator will create datastores with the table names
defined as aliases in the alias file.

Example A-1 Alias File

| NETORGPERSON_CRGANI ZATI ONALPERSON_PERSON_BI SOBJECT_MAI L = PERSONVAI L
ORGANI ZATI ONALUNI T_RFC822MAI LMEMBER = ORG_228MAI L

| NETORGPERSON_CRGANI ZATI ONALPERSON_PERSON = ORG_PERSON

ORGANI ZATI ONALUNI T_MEMBER = ORG_UN_MEMBER

ORGANI ZATI ONALUNIT = CRG.UNI T

ROOT = ROOT

# Note:

If any modifications have been applied to the object class structure or attribute
sets of the LDAP directory, the driver will rewrite this file while including the
new or modified entries to the table name list.

ORACLE A-17



A.4 SQL Syntax

Appendix A
SQL Syntax

The SQL statements described in SQL Statements are available when using the
Oracle Data Integrator driver for LDAP. They enable the management of relational
data structure and data through standard SQL Syntax.

" Note:

permitted.

e If you are using an external database you may use its proprietary query
engine syntax in place of the following commands.

e The LDAP driver works uniquely in auto commit mode. No explicit
transaction management with COMMIT or ROLLBACK commands is

¢ When using an external database to store LDAP tree data, DDL statements
may only be carried out on temporary tables.

Table A-4 summarizes the recommendations to apply when performing the listed DML

operations on specific key fields.

Table A-4 DML Opertaions on Key Fields
|

Type of Column Insert

Update

Delete

Foreign Key Pay attention to master
table referential constraints
and ordered table populate
operations.

Primary Key Pay attention to slave table
referential constraints and
ordered table populate
operations.

IS_xxx Pay attention to associating
the correct flag value to the
original object class.

Key_Column Pay attention to setting the
RDN value in the correct
LDAP syntax.

Not permitted

Not permitted

Not permitted

Not permitted

Pay attention to master table
referential constraints and
ordered delete requests.

Pay attention to slave table
referential constraints and
ordered delete requests

OK

OK

A.4.1 SQL Statements

Any number of commands may be combined. The semicolon (;) may be used to
separate each command but is not necessary.

A.4.1.1 DISCONNECT

DI SCONNECT

Closes this connection.

ORACLE

A-18



Appendix A
SQL Syntax

Remarks

* Itis not required to call this command when using the JDBC interface: it is called
automatically when the connection is closed.

»  After disconnecting, it is not possible to execute other queries with this connection.

A.4.1.2 INSERT INTO

Insert one or more new rows of data into a table.

I NSERT | NTO <t abl e_name> [ ( <colum_name> [,...] ) ]
{ VALUES (<expression>[,...]) | <SELECT Statenent> }

A.4.1.3 SELECT

Retrieves information from one or more tables in the schema.

SELECT [DI STINCT] { <select_expression> | <table_name>.* | * } [, ... ]
[ INTO <new_tabl e> ]
FROM <tabl e_| i st>
[ WHERE <expression> ]
[ GROUP BY <expression> [, ...] ]
[ ORDER BY <order_expression> [, ...] ]
[ { UNION [ALL] | {M NUS| EXCEPT} | INTERSECT } <sel ect_stat ement >

]

<table_|ist>::=
<table_name> [ { INNER | LEFT [QUTER] } JO N <tabl e_name> ON <expression> ]

[

<sel ect _expression> ::=
{ <expression> | COUNT(*) | {COUNT | MN| MAX | SUM| AVG
(<expression>) <colum_alias>}

<order_expression> ::=
{ <colum_nunber> | <colum_alias> | <select_expression>} [ ASC | DESC ]

A.4.1.4 UPDATE

Modifies data of a table in the database.

UPDATE tabl e SET col utm = <expression> [, ...] [WHERE <expression>]

A.4.1.5 Expressions, Condition & values

ORACLE

<expression> ::=
[NOT] <condition> [ { OR| AND } <condition>
]

<condition> ::=
<value> [ || <value> ]

EXI STS(<sel ect _st at enent >)
<val ue> BETWEEN <val ue> AND <val ue>
<value> [NOT] IN ( {<value> [, ...] | selectStatenent } )

{
| <value> { = | <| <=| >| >=| <> | !'=| IS[NO] } <value>
|
|
|
| <value> [NOT] LIKE <val ue> [ ESCAPE] val ue }

A-19



Appendix A
SQL Syntax

<value> ::=

[+ -1 {term[ {+] -] * [/} term]
| ( condition)

| function ( [parameter] [,...] )

| selectStatenment giving one val ue

<termp ::=
{ "string' | nunmber | floatingpoint | [table.]Jcolum | TRUE | FALSE | NULL }

<string> ::=

e Starts and ends with a single ". In a string started with ' use " to create a '.

* LIKE uses '%' to match any (including 0) number of characters, and '_' to match
exactly one character. To search for '%' itself, \%' must be used, for'_'use "\_'; or
any other escaping character may be set using the ESCAPE clause.

<nanme> .=
* A name starts with a letter and is followed by any number of letters or digits.

Lowercase is changed to uppercase except for strings and quoted identifiers.
Names are not case-sensitive.

* Quoted identifiers can be used as names (for example for tables or columns).
Quoted identifiers start and end with ". In a quoted identifier use "" to create a ".
With quoted identifiers it is possible to create mixed case table and column names.
Example: CREATE TABLE "Address" ("Nr" INTEGER,"Name" VARCHAR);
SELECT * FROM "Address". Quoted identifiers are not strings.

<val ues> ::=

e A’'date’ value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).
* A'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

* Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example
is 3 bytes, first 0, second 4 and last 255 (0xff).

A.4.2 SQL FUNCTIONS

ORACLE

Table A-5 describes the numeric functions.

Table A-5 Numeric Functions

Function Description

ABS(d) returns the absolute value of a double value
ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle
ATAN2(a,b) returns the tangent of a/b

BITAND(a,b) returnsa & b

BITOR(a,b) returnsa | b

CEILING(d) returns the smallest integer that is not less than d
COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

A-20



ORACLE

Appendix A
SQL Syntax

Table A-5 (Cont.) Numeric Functions
|

Function Description

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller than 1.0
ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, O if d==0 and 1 if d is bigger than O
SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigopnometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

Function

Table A-6 describes the string functions.

Table A-6 String Functions
|

Description

ASCII(s)

BIT_LENGTH(s)

CHAR(c)

CHAR_LENGTH(s)
CONCAT(str1,str2)
DIFFERENCE(s1,52)
HEXTORAW(s1)
INSERT(s,start,len,s2)

LCASE(s)
LEFT(s,count)
LENGTH(s)

returns the ASCII code of the leftmost character of s
returns the string length in bits

returns a character that has the ASCII code ¢

returns the string length in characters

returns strl + str2

returns the difference between the sound of s1 and s2
returns the string translated from hexadecimal to raw

returns a string where len number of characters beginning at start
has been replaced by s2

converts s to lower case
returns the leftmost count of characters of s

returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is found in

LTRIM(s)

OCTET_LENGTH(s)
RAWTOHEX(s)

s, starting at start
removes all leading blanks in s
returns the string length in bytes

returns translated string

A-21



ORACLE

Appendix A
SQL Syntax

Table A-6 (Cont.) String Functions
|

Function

Description

REPEAT(s,count)
REPLACE(s,replace,s2)
RIGHT(s,count)
RTRIM(s)

SOUNDEX(s)
SPACE(count)
SUBSTR(s,start[,len])
SUBSTRING(s,start[,len])

TRIM

UCASE(s)
LOWER(s)
UPPER(s)

returns s repeated count times

replaces all occurrences of replace in s with s2

returns the rightmost count of characters of s

removes all trailing blanks

returns a four character code representing the sound of s
returns a string consisting of count spaces

(alias for substring)

returns the substring starting at start (1=left) with length len.
Another syntax is SUBSTRING(s FROM start [FOR len])

TRIM([{LEADING | TRAILING | BOTH}] FROM s): removes trailing
and/or leading spaces from s.

converts s to upper case
converts s to lower case

converts s to upper case

Table A-7 describes the date and time functions.

Table A-7 Date and Time Functions

Function Description
CURDATE() returns the current date
CURTIME() returns the current time

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
DATEDIFF(s, d1,d2)

DAYNAME(date)
DAYOFMONTH(date)
DAYOFWEEK(date)
DAYOFYEAR(date)
EXTRACT

HOUR(time)
MINUTE(time)
MONTH(date)
MONTHNAME (date)
NOW()

returns the current date
returns the current time
returns the current timestamp

returns the counts of unit of times specified in s elapsed from
datetime d1 to datetime d2. s may take the following values:
'ms'='millisecond’, 'ss'='second’,'mi'="minute’,'hh’="hour’, 'dd'='day",
'mm'="'month’, 'yy' = 'year'.

returns the name of the day

returns the day of the month (1-31)

returns the day of the week (1 means Sunday)
returns the day of the year (1-366)

EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND}
FROM <datetime>): extracts the appropriate part from the
<datetime> value.

return the hour (0-23)

returns the minute (0-59)
returns the month (1-12)
returns the name of the month

returns the current date and time as a timestamp

A-22



Appendix A
JDBC API Implemented Features

Table A-7 (Cont.) Date and Time Functions
|

Function Description

QUARTER(date) returns the quarter (1-4)
SECOND(time) returns the second (0-59)

WEEK( (date) returns the week of this year (1-53)
YEAR(date) returns the year

Note that A date value starts and ends with ', the format is yyyy-mm-dd (see
java.sgl.Date). A time value starts and ends with ', the format is hh:mm:ss (see
java.sgl.Time).

Table A-8 describes the system functions.

Table A-8 System Functions
|

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp
CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2

CONVERT(term,type) converts exp to another data type
COALESCENCE(el,e2,e3,... if el is not null then it is returned, else e2 is evaluated. If €2 is
) null, then is it returned, else e3 is evaluated and so on.
NULLIF(v1,v2) returns v1 if vl is not equal to v2, else returns null

CASE WHEN There are two syntax for the CASE WHEN statement:

CASE v1 WHEN v2 THEN v3 [ELSE v4] END: if v1 equals v2
then returns v3 [otherwise v4 or null if ELSE is not specified].

CASE WHEN el THEN v1[WHEN e2 THEN v2] [ELSE v4] END:
when el is true return v1 [optionally repeated for more cases]
[otherwise v4 or null if there is no ELSE]

CAST(term AS type) converts exp to another data type

Table A-9 describes the system and connection functions.

Table A-9 System and Connection Functions

Function Description

DATABASE() returns the name of the database of this connection

USER() returns the user name of this connection

IDENTITY() returns the last identity values that was inserted by this connection

A.5 JDBC API Implemented Features

Table A-10 lists the JDBC API features of the Oracle Data Integrator driver for LDAP.

ORACLE A-23



Appendix A
JDBC API Implemented Features

Table A-10 JDBC API Features

Feature Groups JDBC Version Support
Batch Update 2.0 Core Yes
Blob/Clob 2.0 Core No

JNDI DataSources 2.0 Optional No
Failover support - No
Transaction SavePoints 3.0 No
Unicode support - No
Disributed Transaction 2.0 Optional No
Connection Pooling 2.0 Optional No
Cluster support - No

The following table identifies the JDBC classes supported by the Oracle Data
Integrator driver for LDAP.

Table A-11 JDBC Classes

JDBC Classes JDBC Version Support
Array 2.0 Core No
Blob 2.0 Core No
Clob 2.0 Core No
CallableStatement 1.0 Yes
Connection 1.0 Yes
ConnectionPoolDataSource 2.0 Optional No
DatabaseMetaData 1.0 Yes
DataSource 2.0 Optional No
Driver 1.0 Yes
PreparedStatement 1.0 Yes
Ref 2.0 Core No
RowSet 2.0 Optional No
ResultSet 1.0 Yes
ResultSetMetaData 1.0 Yes
Statement 1.0 Yes
Struct 2.0 Core No
XAConnection 2.0 Optional No
XADataSource 2.0 Optional No

ORACLE A-24



Oracle Data Integrator Driver for XML
Reference

The Oracle Data Integrator Driver for XML (XML driver) allows Oracle Data Integrator
to use XML documents as data servers.
This appendix includes the following sections:

e Introduction to Oracle Data Integrator Driver for XML
e XML Processing Overview

* Installation and Configuration

* Detailed Driver Commands

*  SQL Syntax

e JDBC API Implemented Features

* Rich Metadata

e XML Schema Supported Features

B.1 Introduction to Oracle Data Integrator Driver for XML

Oracle Data Integrator Driver for XML (XML driver) handles an XML document as a
JDBC data source. This allows Oracle Data Integrator to use XML documents as data
servers.

With Oracle Data Integrator Driver for XML, Oracle Data Integrator can query XML
documents using standard SQL syntax and perform changes in the XML files. These
operations occur within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for XML supports the following features:
* Standard SQL (Structured Query Language) Syntax

» Correlated subqgueries, inner and outer joins

e ORDER BY and GROUP BY

*  COUNT, SUM, MIN, MAX, AVG and other functions

e Standard SQL functions

» Transaction Management

» Referential Integrity (foreign keys)

e Saving Changes made on XML data into the XML files

B.2 XML Processing Overview

The XML driver works in the following way:

ORACLE B-1



Appendix B
XML Processing Overview

1. The driver loads (upon connection or user request) the XML structure and data
into a relational schema, using a XML to SQL Mapping.

2. The user works on the relational schema, manipulating data through regular SQL
statements or specific driver commands for driver operations.

3. Upon disconnection or user request, the XML driver synchronizes the data and
structure stored in the schema back to the XML file.

B.2.1 XML to SQL Mapping

The XML to SQL Mapping is a complex process that is used to map a hierarchical
structure (XML) into a relational structure (schema). This mapping is automatic.

Elements and Attributes Mapping
The XML driver maps XML elements and attributes the following way:

» Elements are mapped as tables with the same name.
e Attributes are mapped as columns named like the attributes. Each column is
created in the table representing the attribute's element.

Hierarchy & Order Mapping
Extra data may appear in the relational structure as follows:

e In order to map the hierarchy of XML elements, or a one-to-many relation between
elements, the XML driver generates in each table corresponding to an element the
following extra columns:

— <el ement_name>PK: This column identifies the element.

— <parent_el enent _nanme>FK: This column links the current element to its parent in
the hierarchy. It contains a value matching the parent element's
<el enent _name>PK value. In case of XML recursion the parent element or
ancestors of the parent element can be located in the same table.

* Records in a table, unlike elements in an XML file, are not ordered, unless a
specific column is used to define the order. The driver generates also a column
named <el enent _name>ORDER to preserve the order of the elements. When adding
new rows in the relational schema, make sure that the ORDER column is correctly
set to have the elements correctly ordered under the parent element.

*  The root of the hierarchy is identified by a root table named after the root element.
This table contains a single record with the following columns:

— <root_el enent _nane>PK: All level 1 sub-elements will refer to this PK entry.

—  SNPSFI LENAME: This column contains the names of the XML file loaded into this
schema.

—  SNPSFI LEPATH: This column contains the XML file path.

—  SNPSLOADDATE: This column contains the date and time when the file was loaded
into the schema.

The values in this table are managed by the driver and should not be modified.

Mapping Exceptions

This section details some specific situations for the mapping of extra data.

ORACLE B-2



Appendix B
XML Processing Overview

* Elements containing only #PCDATA are not mapped as tables, but as columns of the
table representing their parent element. These columns are named
<el ement _nane>_DATA.

e List Attributes are mapped as a new table with a link (PK, FK) to the table
representing the element containing the list.

XML elements and attributes with names that match SQL reserved keywords are
automatically renamed (an underscore is added after their name) in the relational
structure to avoid naming conflict between table/column names and SQL reserved
keywords. For example, an element named SELECT will be mapped to a table
named SELECT . Such elements are restored in the XML file with their original
naming when a synchronize operation takes place.

Note that extra objects created by the driver are used to keep the XML file
consistency. These records must be loaded in the relational schema before it is
synchronized to an XML file.

B.2.2 XML Namespaces

The XML driver supports XML namespaces (xm ns: ) specified for XML attributes and
elements.

Elements or attributes specified with a namespace (using the syntax

<nanespace>: <el enent or attribute name>) are mapped as tables or columns prefixed
with the namespace using the syntax: <nanespace> <el enent or attribute name>. When
synchronizing the XML data back to the file, the namespace information is
automatically generated.

" Note:

In v3 mode, the table names are not prefixed with <namespace>_.

B.2.3 Managing Schemas

A schema corresponds to the concept used in Oracle database and other RDBM
systems and is a container that holds a set of relational tables. A schema is a generic
relational structure in which an entire set of XML file instances may be successfully
parsed and extracted. The identified elements and attributes are inserted in the
appropriate relational tables and fields.

This schema is generated by the XML driver from either an XML instance file, a DTD
file, or an XSD file. It is recommended to generate the schema from a DTD or XSD file.

Note that only a single DTD or XSD file may be referenced in definition of an XML data
server URL. In this case, this DTD or XSD may be considered as a master DTD or
XSD file if the artifact includes references to other DTD / XSD files. Note that in certain
cases multiple schemas may be required. In this case use the add_schena_bundl e

property.

B.2.3.1 Schema Storage

The schema may be stored either in a built-in engine or in an external database.

ORACLE B-3



Appendix B
XML Processing Overview

e The built-in engine requires no other component to run. The XML schema is stored
in memory within the driver. The SQL commands and functions available on this
driver are detailed in the SQL Syntax.

* The external database can be a relational database management system. The
driver connects through JDBC to this engine, and uses it to store the schema. This
enables the:

— Use of the processing and storage power of the RDBMS engine
— Use of the statements and functions of the RDBMS
— Persistence of schema storage

See Using an External Database to Store the Data for more information.

B.2.3.2 Multiple Schemas

It is possible to handle, within the same JDBC connection, multiple schemas and to
load multiple XML files simultaneously. It is possible to CREATE, TRUNCATE, SET,
and LOAD FILE INTO schemas. When connecting to the JDBC driver, you connect to
the schema that is specified on the URL. It is possible to set the current schema to
another one using the SET SCHEMA command. See Detailed Driver Commands for
more information.

The default schema is a specific schema that is used for storing temporary data. The
default schema is read-only and cannot be used to store XML files. It is recommeded
to create a schema for each XML file.

It is also possible to automatically create additional schemas with different XML
structures when creating the connection to the driver. See Driver Configuration for
more information.

B.2.3.3 Accessing Data in the Schemas

Data in the schemas is handled using the SQL language.

It is possible to access tables in a schema that is different from the current schema. To
access the tables of a different schema, prefix the table name with the schema name,
followed by a period character (.). For example:

SELECT col 1, schemn2.tabl e2.col 2, tablel.col3 FROMtabl el, schema2.tabl e2.

This query returns data from tablel in the current schema, and from table2 from
schemaz2.

# Note:

Note that the other schema must be located on the same storage space - built-
in engine or external database - as than the current schema.

B.2.3.4 Case Sensitivity

A schema cannot be case-sensitive. All elements in the schema (tables and columns)
are in UPPERCASE. If the XML file element names contain lowercase letters, they are

ORACLE B-4



Appendix B
Installation and Configuration

converted to upper case. When the elements are synchronized to the XML file, their
names are created with their original case.

B.2.3.5 Loading/Synchronizing

A schema is usually automatically created when connecting to an XML file, and loaded
with the data contained in the XML file. It is possible to force the schema creation and
the data loading in the schema using specific driver commands. See Detailed Driver
Commands for more information. It is also possible to force a synchronization process
of the data by using the SYNCHRONI ZE command, as described in SYNCHRONIZE.

B.2.4 Locking

When accessing an XML file, the driver locks it in order to prevent other instances of
the driver to connect to the file. The lock file has the same name as the XML file but
an .l ck extension.

If the driver is incorrectly disconnected, a lock may remain on the file. To remove it,
delete the . | ck file. It is also possible to unlock an XML file with the UNLOCK FILE
command.

B.2.5 XML Schema (XSD) Support

XSD is supported by the XML driver for describing XML file structures. See XML
Schema Supported Features for more information.

In addition, the XML driver supports document validation against XSD schemas
specified within the XML file. This operation may be performed using the VALIDATE
driver specific command.

B.3 Installation and Configuration

The Oracle Data Integrator driver for XML is automatically installed with Oracle Data
Integrator. The following topics cover advanced configuration topics and reference
information.

This section contains the following topics:

»  Driver Configuration
* Automatically Create Multiple Schemas

* Using an External Database to Store the Data

" Note:

If using an External Database storage, you must also make sure that the JDBC
driver used to connect the external database, as well as the. properti es file are
in the classpath.

ORACLE B-5



B.3.1 Driver Configuration

Appendix B
Installation and Configuration

This section details the driver configuration.

e The driver name is: com sunopsi s. j dbc. dri ver. xm . SnpsXm Dri ver

e The URL Syntax is: j dbc: snps: xm

The properties to be entered in Properties table are detailed in Table B-1.

Table B-1 Driver Properties

Property

Default

Value

Mandatory

Description

blank_attribute_as_  False

column

file

dtd

root_elt

read_only

ORACLE

False

No

Yes

No

No

No

If this property is set to true, any empty element in the XML file
that does not have child element of its own is considered as a
column rather than a table.

XML file name. Use slash "/" in the path name instead of back
slash "\". It is possible to use an HTTP, FTP or File URL to locate
the file. Files located by URL are read-only.

For an XML file, if this property is missing, a relational schema is
created by the XML driver from the DTD/XSD file and no XML file
is searched for.

Description file: This file may be a DTD or XSD file. It is possible
to use an HTTP, FTP or File URL to locate the file. Files located
by URL are read-only.

Note that the DTD or XSD file that is specified in the URL takes
precedence over the DTD or XSD file that is specified within the
XML file. References should be made with an absolute path.

For an XML file, if this property is missing, and no DTD or XSD is
referenced in the XML file, the driver will automatically consider a
DTD file name similar to the XML file name with . dt d extension.

A DTD file may be created from the XML file structure depending
on the generate_dtd URL property.

Note that when no DTD or XSD file is present, the relational
structure is built using only the XML file content. It is not
recommended to reverse-engineer the data model from such a
structure as one XML file instance may not contain all the possible
elements described in the DTD or XSD, and data model may be
incomplete.

Name of the element to take as the root table of the schema. This
value is case sensitive. This property can be used for reverse-
engineering for example a specific message definition from a
WSDL file, or when several possible root elements exist in a XSD
file.

Important: This property is used to designate ONLY the Element
in the XSD / DTD file which will serve as the Root Element
DEFINITION of any XML instance file Root Element.

Open the XML file in read only mode.

B-6



Appendix B
Installation and Configuration

Table B-1 (Cont.) Driver Properties

Property Default Mandatory  Description
Value

schema - No It is the database schema storing the relational schema and the
XML data. Name of the schema where the XML file will be loaded.
If this property is missing, a schema name is automatically
generated from the XML file name.

If this property is not specified in the XML data Server URL, the
XML Driver will automatically create a schema name. This
schema will be named after the five first letters of the XML file
name.

Note: It is not possible to make more than one connection to a
schema. Subsequent connections fail if trying to connect to a
schema already in use.

Important: The schema name should be specified in uppercase.

Important: It is forbidden to have a schema name identical to an
XML ELEMENT name.

standalone False No If this option is set to true, the schema for this connection is
completely isolated from all other schemas. With this option, you
can specify the same schema name for several connections, each
schema being kept separated. When using this option, tables in
this schema cannot be accessed from other schemas, and this
connection cannot access tables from other schemas. The
schema is restricted to this connection and only this one. Other
connections cannot see this schema.This option is active only for
In-Memory HSQL intermediate database. Using this option
causes increased memory consumption by the agent, as for every
staging schema, an entirely new HSQL instance is created in the
in-memory.Useful for parallel jobs with the same topology in order
to avoid that the jobs overlap each other.Note: This option is not
applicable when an external database is used.If a dataserver has
its 'standalone’ property set to 'true,' then it cannot be used as a
target datastore(s) to store data, and then write it out. This is
because of the complete isolation of 'standalone’ instances.

Note: The property 'standalone' can be used:

e When f= parameter is not present in the JDBC connection
URL/properties.

e And you are not trying to load the same file using 'LOAD
FILE' command in parallel.

This is because, before reading a source file, it is locked by
the driver, until all operations on it are done. Hence, if you
have parallel sessions, the first session will lock the file, until
the session is complete.

Caution: If f= parameter is present, immediately on opening
connection, the driver will lock the file and read from it. It will
be unlocked only when all connections to the file are closed.
There is an explicit 'UNLOCK' command, but use it with
extreme caution after you are sure of what you are doing.

ORACLE 5



Table B-1 (Cont.) Driver Properties

Appendix B
Installation and Configuration

Property Default

Value

Mandatory

Description

ns_prefix_generatio auto
n

no_default_ns False

no_closing_tags False

db_props -

load_data_on_conn True
ect

drop_on_disconnect False

ignore_unknown_el True
ements

useimplicitmaxvalue False

ORACLE

No

No

No

No

No

No

No

No

This option defines how namespace prefixes are generated and
written in the XML file.

* auto (default): Prefixes are automatically generated from the
namespace names themselves when possible or generated
as nsl, ns2, etc.

»  xml: Namespace prefixes are taken from the source XML file,
if any.

«  xsd: Namespace prefixes are taken from the XSD file, if any.

Note that the xsd option value assumes that a similar prefix is not

used in several XSD files to reference a different namespace.

If this property is set to true, the driver generates the target file
with no default namespace entry.

If this property is set to true, the driver generates the empty tags

without their closing tags (for example <element/>). If set to false
the driver generates an empty element as <element></element>.
This property is true by default if the vl_compatibility property is

used.

This property is used to use an external database instead of the
memory engine to store the schema.

The db_props property indicates that the schema must be loaded
in a database schema whose connection information are stored in
a external database property file named like the db_props
property with the extension . properti es. This property file must
be located in the application's classpath.

Load automatically the data in the schema when performing the
JDBC connection. If set to false, a SYNCHRONIZE statement is
required after the connection to load the data.

This option is useful to test the connection or browse metadata
without loading all the data.

Drop automatically the schema when closing the JDBC
connection.

If true, the schema is stored in the built-in engine, it is always
dropped.

If true and the data is on an external database, only the current
reference to the schema in memory will be dropped, but the tables
will remain in the external database. This means that if you try to
connect to this schema again, it will reuse the tables in the
external database rather than starting from scratch (as it would
when the data is loaded in memory).

Ignore all elements in the XML file that do not exist in the
associated DTD (Document Type Definition) or XSD (XML
Schema Definition) file.

When this property is set to true, elements for which maxOccurs
is not specified in the XSD are considered as maxOccurs
="unbounded". Otherwise, the driver assumes that maxOccurs=1
when maxOccurs is not specified.

B-8



Table B-1 (Cont.) Driver Properties

Appendix B
Installation and Configuration

Property Default

Value

Mandatory

Description

generate_dtd auto

java_encoding UTF8

useimplicitmaxvalue False

xml_encoding UTF8

v1_compatibility False

compat_mode v3

ORACLE

No

No

No

No

No

No

Defines if a DTD file must be created from the XML file structure:

e auto: create the DTD file if the it does not exist. if the DTD
exists, does nothing.

e yes: always create the DTD file. An existing DTD will be
overwritten.

* no: never create the DTD file. The DTD file must exist.

Warning: DTD files created using this option contain only the

definition of XML elements appearing in the XML file, and may not

be complete.

Target file encoding (for example: | SO8859_1). You will find a list
of supported encoding at the following URL: http://

downl oad. oracl e. conl j avase/ 6/ docs/ t echnot es/ gui des/intl/
encodi ng. doc. htni .

Note that if the Java encoding is specified, the XML encoding
should also be specified.

With this property set to yes, an elements for which maxOccurs is
not specified in the XSD is considered as multivalued
(maxOccurs="unbounded").

Encoding specified in the generated XML File, in the tag (for
example | SO 8859- 1: <?xm version="1. 0"

encodi ng="1 S0 8859- 1" ?>. You will find a list of supported
encoding at the following URL: htt p: // downl oad. or acl e. conl
j avase/ 6/ docs/ t echnot es/ gui des/ i nt1/encodi ng. doc. ht nl .
Note that if the XML encoding is specified, the Java encoding
should also be specified.

With this property set to true, the driver performs the XML to SQL

mapping as if in version 1.x. This property is provided for

compatibility.

Indicates the compatibility with mapping modes. This property can

take the following values:

e vlisequivalentto vl_conpati bility=true which is the 1.x
compatibility mode

e v2indicates the 10g/11g compatibility mode where the
custom written XSD parser is used
Please note that when you use a DTD or only a XML file, you
must specify conpat _node=v2 in the JDBC URL. For
example:
jdbc:snps: xm ?file=/tnp/nyfile.xn &onpat_node=v2
j dbc: snps: xm ?f =/t np/ nyf il e. xm &conpat _node=v2

e v3indicates the compability with the XDK XSD parser.
Please note that conpat _node=v3 is not supported when you
use a DTD or only a XML file. For example, the following
syntaxes are not supported:

jdbc:snps: xm ?file=/tnp/nyfile.xm &onpat _nmode=v3
jdbc: snps: xm ?f =/t mp/ nyfil e. xm &conpat _node=v3
If conpat _nmode=v3, the v1_conpati bility property will be
ignored.

B-9


http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Appendix B
Installation and Configuration

Table B-1 (Cont.) Driver Properties
]

Property Default Mandatory  Description
Value
numeric_ids True No If set to true, all internal Primary and Foreign Keys are of

id_length -

no_batch_update False

add_schema_bund! -
e

add_schema_path -

transform_nonascii True

max_table _name_le -
ngth

max_column_name -
_length

case_sens True

default_length_varc 255
har

default_type_varcha False
r

pipeline_config_file -

No

No

No

No

No
No

No

No

No

No

NUMERIC type. Otherwise, they are of the VARCHAR type.

The length of the internal Primary and Foreign Key columns. The
default is 10 for NUMERIC column types and 30 for VARCHAR
column.

Batch update is not used for this connection. The command to set
the batch update is not sent. This prevents errors to occur for
external databases that do not support this JDBC feature, or
allows to debug errors related to batch update usage.

Additional schemas bundle file. This property indicates that
additional schemas must be created at connection time. The
description for these extra schemas are located in an additional
schemas property file named like the add_schema_bundle
property with the extension ".properties". The additional schemas
property file contains a list of valid JDBC driver's URL. In this file,
the property names are ignored. Only the list of values is taken
into account.

All these additional schemas are created with the
drop_on_disconnect option set to true by default.

Example of additional schemas property files contents:
addschema_1=j dbc: snps: xnl ?f =c: /

myfile.xm & o=true&s=nyschemal

addschema_2=j dbc: snps: xnl ?file=c:/

myfile2.xnm &=nyschema2 addschenma_3=j dbc: snps: xm ?d=c:/
nyfil e3. dt d&s=nyschema3

Directory containing a set of XSD files. For each XSD file in this
directory, an additional schema is created in the built-in engine or
external database storage, based on this XSD. Note that no
object is created in the external database storage for these
additional schemas. The schema names are default generated
named (5 first characters of the file name, uppercased).

Note: This option is not supported in v3 mode.
Transform Non Ascii. Set to false to keep non-ascii characters.

Maximum length of table names irrespective of the value as
supported by internal/external DB.

Maximum length of column names irrespective of the value as
supported by internal/external DB.

Indicates whether the table and column names are case sensitive
or not. Name comparisons are carried out accordingly.

Indicates the default length of the VARCHAR column used for
storing XML annotation and documentation elements.

If this property is set to true, the default datatype will be
VARCHAR of size 255 else on false, the LONG datatype is used.

Pre/post processing configuration file.

ORACLE

B-10



Appendix B
Installation and Configuration

B.3.2 Automatically Create Multiple Schemas

It is possible to automatically create additional schemas with different XML structures
when creating the connection with the driver. This is performed by:

e Declaring in the add_schema_bundle URL property a property file that contains a
list of JIDBC URLSs corresponding to the different additional schemas to create.

» Declaring in the add_schema_path URL property a directory that contains a set of
XSD files. For each XSD file an additional schema is created in the built-in engine,
based on the XML schema description.

»  Specifying additional valid driver URLs as JDBC properties, named addschema_X
(X is a number). An additional schema will be created for each URL found in a
JDBC property called addschema_X.

Note that all these additional schemas are automatically dropped when their last
connection is closed.

B.3.3 Using an External Database to Store the Data

ORACLE

In most cases, the XML driver stores the relational schema mapping of the XML
schema in a built-in engine. It is also possible to store the relational schema in an
external relational database.

Use external storage:

* When loading very large XML files with the XML driver into the relational schema
derived by the XML driver

* To reduce the overall time taken to process the files with the built-in engine of the
XML driver

* To avoid timeouts to the ODI repositories. Please note that the time taken to
process an XML file is dependent on:

— The complexity of the XML file structure
— The length of XML file content

— The host server RAM resources

— The host server CPU resources

Before using external storage, ensure that you have understood the impacts of its
usage and that you have increased the ODI timeout to values which conform to your
performance requirements.

# Note:

Supported RDBMS for external storage include Oracle, Microsoft SQL Server,
MySQL, and Hypersonic SQL 2.0. The complete list of technologies that
support external storage is available on Oracle Technical Network (OTN) :

http:// ww. oracl e. conf t echnol ogy/ product s/ or acl e-dat a-i nt egrator/index. htni .

B-11


http://www.oracle.com/technology/products/oracle-data-integrator/index.html

Appendix B
Installation and Configuration

These schemas are created in addition to the one that may be created with the
properties specified in the JDBC driver URL.

The external storage is configured with a set of properties described in Table B-2.
These properties can be passed in several ways:

e Passing the Properties in the Driver URL
e Setting the Properties in ODI Studio

e Setting the Properties in a Properties File

Passing the Properties in the Driver URL

The properties can be directly set in the Properties table as detailed in Table B-2 table.

Setting the Properties in ODI Studio

The properties can be specified on the Properties table below the JDBC URL of the
JDBC tab in Topology Navigator. The properties can be directly set in the Properties
table as detailed in Table B-2 table.

Setting the Properties in a Properties File

The properties can be set in an external database properties file. This properties file,
also called property bundle, is a text file with the . properti es extension containing a
set of lines with on each line a <propert y>=<val ue> pair. This external database
porperties file contains the properties of a JDBC connection to the relational database
schema. The properties file is referenced using the db_props property in the JDBC
URL. When using this method, note the following:

e The properties in the properties file are not prefixed and used as described in
Table B-2.

e The db_props property is set to the name of the properties file including
the . properties extension. The db_props property indicates that the schema must
be loaded in a database schema whose connection information is stored in a
external database properties file.

* The properties files has to be deployed by the agent using the XML connection.
The location of the properties file depends on the agent you are using:

— Local agent (Studio): Place the external DB properties file in the
<user. di r>/odi/oracl edi/userlib folder

— Standalone Agent: Place the external DB properties file in domai n_hone/li b
folder

— JavaEE Agent: The external DB properties file should be packed into a JAR or
ZIP file and added to the template generated by the Java EE agent. See
Deploying an Agent in a Java EE Application Server (Oracle WebLogic
Server) in Administering Oracle Data Integrator for more information.

*  The properties file must be set in the classpath of Oracle Data Integrator that uses
the XML driver. Typically, you can install it with your custom drivers.

ORACLE B-12



Appendix B
Installation and Configuration

# Note:

When connecting to the external database, the XML driver uses JDBC
connectivity. Make sure that the JDBC driver to access this external database
is also available in the ODI classpath.

It is possible to set or override the external database properties on the URL. You can
use the Properties table below the URL to override the file. For example:

jdbc: snps: xm ?file=/tenp/
payl oad. xm &dp_dri ver =<ext ernal _db_dri ver>&dp_ur| =<ext ernal _db_url >

The properties for configuring external storage are described in Table B-2.

Table B-2 Properties of the External Database Properties File

_____________________________________________________________________________________________|]
Property Defa Mand Description

ult atory
Value

dp_driver - Yes  JDBC driver name.
Important: The driver class file must be in the classpath of the java application.

dp_url - Yes JDBC URL

dp_user - Yes Login used to connect the database

dp_pass - Yes Encrypted password of the user.

word Note: To encrypt the password, use the encode. bat (cnd| sh) command. See
Encoding a Password in Administering Oracle Data Integrator for more information.

dp_sche - Yes Database schema storing the relational schema and the XML data.

ma Note for MS SQLServer that:
e If schema is not specified, tables will be created under the default schema of the

user

. If schema is specified, tables will be created under this schema
Limitation when using v3 mode: When using an external database, make sure that
the provided or calculated schema name exists. The schema driver property value must
match the schena property value of the external database. Otherwise an error is raised.

dp_catal - Yes  For Microsoft SQL Server only. Database catalog storing the XML data & information.

og

dp_drop_ False No Drop the tables from the database schema if they already exist. If set to N the existing

on_conn tables are preserved.

ect

dp_creat auto No Y: create systematically the tables in the schema.

e_tables N: never create the tables in the schema
AUTO: Create the tables if they do not exist.

dp_creat True No Y: create indexes on tables' PK and FK

e_indexe N: do not create the indexes. This value provides faster INSERT but dramatically slows

s SELECT in the data. It also saves storage space on your RDB.

dp_nume - No Scale of the numeric columns generated during the XML to SQL mapping.

ric_scale

ORACLE B-13



Appendix B
Installation and Configuration

Table B-2 (Cont.) Properties of the External Database Properties File

___________________________________________________________________________________________|]
Property Defa Mand Description

ult atory

Value

dp_trunc True No
ate_befor
e_load

dp_ids_in True No
_db

dp_drop_ True No
tables_o

n_drop_s

chema

dp_use_ True No
prepared

_stateme

nts

dp_use_ True No
batch_up
date

dp_batch 30 No
_update_

size

dp_com True No
mit_perio

dically

dp_num_ 1000 No
inserts_b

efore_co

mmit

ORACLE

True: truncate all data when connecting
False: preserve existing data

True: preserve identifiers (counters) in the database for a future append connection
False: do not preserve identifiers. Future append is not possible.

True: a DROP SCHEMA does not only causes the reference to the database schema to
be erased from the driver, but also causes all tables to be dropped.

False: DROP SCHEMA erases the reference to the database schema from the driver,
but the tables are kept in the database schema.

True: use the prepared statements with the database connection to perform driver
operation (load/unload files).
False: do not use the prepare statement.

Processing is usually faster with prepare statement. The database and driver must
support prepared statements in order to use this option.

True: use batch update with the database connection.

False: do not use batch update.

Inserting data is usually faster with batch update. Should be set to true only if the
following conditions are met:

e The database and driver support batch update

e The database supports prepared statements

e The use_prepared_statements parameter is set toYes

Note: The batch update options specified here are only used to load the data in the
schema. To use batch update when manipulating data in the schema, you must specify
batch update options in your Java application.

Batch update size. Records will be written in the database schema by batches of this
size, if the use_batch_update property is set to true.

A COMMIT will be sent regularly when loading data from the XML file into the database
schema. This regular COMMIT avoids overloading of the database log when loading
large XML data files.

Should be set to true only if the following conditions are met:

e The database supports batch update

*  The database supports prepared statements

e The use_prepared_statements parameter is set to Yes

e The use_batch_updates parameters is set to Yes

Note: The commit options specified here are only used to load the data in the schema.
To commit when performing transactions in the schema, you must specify the commit in
your Java application.

Interval in records between each COMMIT, if the commit_periodically property is set to
true.

B-14



Appendix B
Installation and Configuration

Table B-2 (Cont.) Properties of the External Database Properties File

Property Defa Mand Description
ult atory

Value
dp_reser 3 No Long XML names are truncated to fit the maximum allowed size on the RDBMS,
ve_chars according to the maximum allowed size for column names returned by the JDBC driver.
_for_colu However, there are some situations when you will want to reserve characters to make
mn the driver-generated names shorter. The number of reserved character is defined in the
reserve_chars_for_column value.
For example, on a database with a maximum of 30 characters and with this property set
to 3 (which is the default), all column names will not be larger than 27 characters.
dp_reser 3 No Same as reserve_chars_for_column (rcfc) property but applies to names of the table
ve_chars created in the RDBMS schema.
_for_tabl
e

dp_varch 255 No Size of all the columns of the relational structure that will be used to contain string data.

ar_length This property does not apply to Annotation or Documentation elements. For those
elements dp_default_length_varchar property should be used instead.

dp_defau N No If set to Yes, the default datatype used in the relational schema for columns storing XML
It_type_v annotation and documentation elements is VARCHAR of size 255. The length of this
archar column is specified using the dp_default_length_varchar property. If set to false, the

LONG datatype if used. This property should be set to yes for technologies that do not
support multiple LONG columns within the same table, such as Oracle.

dp_defau 255 No Default length of the VARCHAR column used for storing XML annotation and

It_length documentation elements. This properties is valid only if dp_default_type_varchar
_varchar property is set to yes.
For example:

defaul t _| engt h_var char =2000 where 2000 is the new desired default column size.

dp_nume 10 No Size of all the columns of the relational structure that will be used to contain numeric
ric_lengt data.
h
dp_unico False No For MS SQL Server:
de If unicode = true, nvarchar is used.

If unicode = false or not set, varchar is used.
dp_multi False No Its usage controls the way row ids are generated. If multi_user_safe is set to true, then
_user_sa each ID generation is tasked to the DB. If set to false at the very beginning of the data
fe load, retrieve the IDs which are stored in the ID table and then work off that stored data

in-memory. At the end of the data load this is then pushed to the DB.

The following sample is an example of a property file for using an Oracle Database as
the external storage:

driver=oracle.jdbc. Oracl eDriver

url =j dbc: oracl e: t hi n: @GHOST: PORT: SI D
user =USER_NAME

passwor d=ENCODED_PASSWORD
schema=USER_NAME

drop_on_connect =Y

create_tabl es=AUTO

create_i ndexes=Y

truncat e_bef ore_| oad=Y

i ds_in_db=Y

ORACLE B-15



Appendix B
Detailed Driver Commands

drop_tabl es_on_drop_schema=Y
use_prepar ed_st at ement s=Y
use_bat ch_updat e=Y

bat ch_updat e_si ze=30

commi t _periodically=Y
num.inserts_bef ore_comm t=1000
reserve_chars_for_col um=3
reserve_chars_for_tabl e=3

The following sample is an example of a property file for using a Microsoft SQL Server
database as the external storage:

driver=comnicrosoft.jdbc. sql server. SQLServerDri ver
url =j dbc: m crosoft: sql server:// SERVER NAME: PORT; Sel ect Met hod=cur sor
user =USER_NAME

passwor d=ENCODED_PASSWORD

schema=OWNNER_NAVE

drop_on_connect =Y

create_tabl es=AUTO

create_i ndexes=Y

truncate_before_| oad=Y

i ds_i n_db=Y

drop_tabl es_on_drop_schema=Y

use_prepar ed_st at ement s=Y

use_bat ch_updat e=Y

bat ch_updat e_si ze=30

conmi t _peri odi cal | y=Y

num.inserts_before_comm t=1000
reserve_chars_for_col um=3
reserve_chars_for_table=3

B.4 Detailed Driver Commands

" Note:

The notion of SCHEMA referred to in these commands refers to the string
value set with the s=.... parameter in the XML Driver Data Server URL present
in the physical architecture.

The following statements are specific to the XML driver, and allow to manage XML
files and schemas. They can be launched as standard SQL statements on the JDBC
connection to the XML driver.

To manipulate the data stored in the schemas, you may use standard SQL syntax.
This syntax is either the built-in engine's SQL Syntax, or the SQL Syntax of the
External Database engine you use.

Conventions
The following conventions are used within this document:

* [A]means A is optional
°* [A|B]means A or B but the parameter is optional.

 {B]|C}means B or C must be used.

ORACLE B-16



* [A] [B] means a set of arguments that are not ordered.

* (and) are the characters '(" and ')".

*  keywords are in UPPERCASE

This section details the following driver specific commands:

» CREATE FILE

» CREATE FOREIGNKEYS
» CREATE XMLFILE

* CREATE SCHEMA

» DROP FOREIGNKEYS
» DROP SCHEMA

» LOAD FILE

« SET SCHEMA

* SYNCHRONIZE

* UNLOCK FILE

*  TRUNCATE SCHEMA

* VALIDATE

*  WRITE MAPPING FILE
e  COMMIT

» CREATE TABLE

« DELETE

» DISCONNECT
» DROP TABLE
* INSERTINTO
*  ROLLBACK

- SELECT
- SET AUTOCOMMIT
- UPDATE

B.4.1 CREATE FILE

Appendix B
Detailed Driver Commands

If the EMPTY option is specified, create an empty XML instance file containing all
ELEMENTS (including optional ELEMENTS) present in the related XSD or DTD file.
However, no XML ATTRIBUTES declared in these files will be referenced in the

created XML instance file.

The attributes are handled differently between conpat _node v1/v2 and v3. In v1/v2
mode attributes are not written, while in v3 mode attributes are also written out.

CREATE [ EMPTY] FILE <file_name> [ FROM SCHEMA <schema_nanme>]
[ JAVA_ENCODI NG <j ava_encodi ng> XM._ENCODI NG <xml _encodi ng>]

[ NO_CLOSI NG TAGS] [ NO_DEFAULT_NS]

ORACLE

B-17



Appendix B
Detailed Driver Commands

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING

Encoding generated in the file's xml tag.

Example of generated tag: <?xm version="1.0" encodi ng="1S0 8859- 1" ?>
Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS

If this parameter is specified, the driver generates the empty tags with closing tag. By
default, the driver generates an empty element as <el ement ></ el enent >. with the
no_closing_tags parameter, it generates <el ement/ >.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default
namespace entry.

Remarks

* If the file name contains spaces, enclose it in double quotes

*  The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.2 CREATE FOREIGNKEYS

Create physically all the foreign keys joining the tables from the relational schema in
the database. This command is helpful to enforce integrity constraints on the schema.

# Note:

When requested, the driver always returns "virtual" foreign keys, corresponding
to the relational structure mapping. It does not return the real foreign keys
enforced at database level.

CREATE FOREI G\KEYS

Remarks

After using CREATE FOREIGNKEYS, it is not possible any longer to perform a LOAD
FILE.

B.4.3 CREATE XMLFILE

Generate an XML file called <file_name> from the default schema data, or from a
specific schema.

ORACLE B-18



Appendix B
Detailed Driver Commands

CREATE XM.FI LE <file_name> [ FROM SCHEMA <schema_nane>]
[ JAVA_ENCODI NG <j ava_encodi ng> XM._ENCODI NG <xm _encodi ng>]
[ NO_CLOSI NG_TAGS] [ NO_DEFAULT_NS]

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING

Encoding generated in the file's xml tag. Example of generated tag: <?xn
version="1.0" encoding="1S0 8859- 1" ?>.

Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAGS

If this parameter is specified, the driver generates the empty tags with closing tag. By
default, the driver generates an empty element as <el enent ></ el ement >, with the
no_closing_tags parameter, it generates <el enent / >.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default
namespace entry.

Remarks

» If the file name contains spaces, enclose it in double quotes

»  The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.4 CREATE SCHEMA

ORACLE

Create in <schema_name> an empty schema or a schema with tables mapping the
structure of the description file specified as <dt d/ xsd_nane>.

# Note:

This command cannot be used on an external database.

CREATE SCHEMA <schena_nanme> [W TH DTD <dt d/ xsd_nane>] [ REPLACE]
[ ROOTELT <root el ement>] [ READONLY] [ COMPAT_MOXDE <conpatibility node>]
[ JAVA_ENCODI NG <j ava_encodi ng> XM._ENCCODI NG <xm _encodi ng>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the
schema.

REPLACE
Specify if an existing schema structure must be replaced with the new one.

B-19



ORACLE

Appendix B
Detailed Driver Commands

ROOTELT
Element in the description file considered as the root of the XML file. This element
name is case sensitive.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

COMPAT_MODE
Indicates the compatibility with mapping modes. This property can take the following
values:

e vlisequivalentto vl_conpatibility=true wich is the 1.x compatibility mode
e v2isthe 10g/11g mode. This is the defa ult mode.

Please note that when you use a DTD or only a XML file, you must specify
conpat _node=v2 in the JDBC URL. For example:

j dbc: snps: xm ?2d=/t np/ nyDTD. dt d&conpat _node=v2
j dbc: snps: xm ?2f =/t np/ nyfil e. xn &onpat _node=v2

» v3indicates the compatibility with the XDK XSD parser. Please note that
conpat _node=v3 is not supported when you use a DTD or only a XML file. For
example, the following syntaxes are not supported:

— jdbc:snps: xm ?d=/t np/ myDTD. dt d&conpat _nmode=v3
— jdbc:snps: xm ?f =/t np/ nmyfile. xn &onpat _node=v3
If compat _node=v3, the v1_conpatibility property will be ignored.

¢ Note:

When using the SYNCHRONIZE command, only those DB schemas that have
been created with 'v3' option will parse the DTD/XSD in the 'v3' mode. In 'v3'
mode all the restrictions on schema name value corresponding with DB
property for schema name etc. will apply.

JAVA_ENCODING
Encoding of the target XML file(s) generated from schema.
Note: Java and XML encoding should always be specified together.

XML_ENCODING
Encoding generated in the target files' XML tag. Example of generated tag: <?xm
version="1.0" encodi ng="1S0 8859- 1" ?>.

Remarks

« The XML file data is not loaded. This command is similar to LOAD FILE but does
not load the XML file data.

« The schema is created in READONLY mode since no XML file is associated with
it.

*  The connection schema does not automatically switch to the newly created
schema.

» If the file name contains spaces, enclose the name in double quotes.

B-20



Appendix B
Detailed Driver Commands

* The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.5 DROP FOREIGNKEYS

Drop all the foreign keys on the tables of the relational schema in the database. This
command is helpful to drop all integrity constraints on the schema.

DRCOP FOREI G\KEYS

B.4.6 DROP SCHEMA

Drop an existing schema. If <schena_nane> is not specified, the current schema is
dropped. It is not possible to drop a schema if there are pending connections to this
schema. Trying to drop a schema with existing connections causes an exception.

DROP SCHEMA [ <schema_nane>]

B.4.7 LOAD FILE

ORACLE

Load the <fil e_nane> XML file into the specified <schenma_name> XML schema. If a
schema name is not specified with the ON SCHEMA parameter, one is generated with
the XML file name. If a schema with the specified or generated name is found, then
the properties of that schema are inherited. If a schema with the specified or
generated name does not exist at runtime, a new XML JDBC URL with only the
properties specified in the LOAD FI LE command is created. This schema does not
inherit any of the properties of the current schema.

LOAD FILE <file_nanme> [WTH DTD <dtd/ xsd_nanme> | | NSERT_ONLY] [ON SCHEMA
<schema_nanme>] [ REPLACE] [READONLY] [ROOTELT <root element>] [AUTO UNLOCK] [DB_PROPS
<external database properties>]

If INSERT_ONLY is absent,
i) Check to see if schema identifier is provided in the command via ON SCHEMA
ii) If not, use XML file name to generate a schema identifier (first 5 characters)

If this schema is already present and REPLACE option is not present in the command,
driver raises error. If the schema is already present, and REPLACE option is present,
it drops the existing schema and recreates it, loading the data from the FILE into it.

If schema is not present, create new schema and load FILE.
If INSERT_ONLY is present,
i) Use current schema

i) If ON SCHEMA is provided, check if schema of that name exists. If it does, use it,
otherwise continue with the current schema. Read FILE into this schema.

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the
schema.

B-21



Appendix B
Detailed Driver Commands

INSERT_ONLY
Adds the data from the XML file in the schema if it already exists. The new XML file
should have valid description file for the existing schema.

ON SCHEMA
Force the file to be loaded in <schema_name>. Note that the current schema is not
set after the command automatically to <schema_name>.

REPLACE
Specify if an existing schema structure with the same name must be replaced with the
one that is being loaded.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

ROOTELT
Element in the description file considered as the root of the XML file. This element
name is case sensitive.

AUTO_UNLOCK

If the XML file is already locked by another driver instance, an exception occurs
unless the AUTO_UNLOCK is specified. This parameter unlocks automatically the file
if it is locked.

DB_PROPS
Loads the file in the external database identified by the properties file called <external
database properties>.properties.

Remarks

* Enclose the file name in double quotes.

*  When no schema is specified, the driver automatically generates a schema name
from the file name.

*  The connection schema does not automatically switch to the loaded schema.

* If the XML file is already open in another schema, an exception occurs.

B.4.8 SET SCHEMA

Set the current schema to <schema_name>.

SET SCHEMA <schena_nane>

Remarks

It is necessary to specify a name for the schema.

B.4.9 SYNCHRONIZE

Synchronize data in the schema with the file data.

SYNCHRONI ZE [ALL | SCHEMA <schenm_name>] [ FROM FI LE/ FROM DATABASE]
[ | GNORE CONFLI CTS]

ORACLE B-22



Appendix B
Detailed Driver Commands

Parameters

ALL
Synchronizes all schemas

SCHEMA
Synchronizes only <schema_name>

FROM FILE
Forces the data to be loaded from the file to the schema. Erases all changes in the
schema.

FROM DATABASE
Forces the data to be loaded from the schema to the file. Erases all changes in the
file.

IGNORE CONFLICTS

If FROM FILE/DATABASE are not specified, the driver automatically determines
where data have been modified (in the FILE or DATABASE) and updates the
unmodified data. If both the FILE and the DATABASE have been modified, the driver
issues a Conflict Error. if the IGNORE CONFLICTS parameter is used, no error is
issued, and if performing a SYNCHRONIZE ALL, the following schemas will be
synchronized.

" Note:

A schema is marked updated only when a data modification (update, delete,
insert, drop) is executed in a connection to that schema. It is not marked as
updated, when the order is launched from a connection to another schema.

B.4.10 UNLOCK FILE

Unlocks <file_name> if it is locked by another instance of the driver.

UNLOCK FILE <file_name>

B.4.11 TRUNCATE SCHEMA

Clears all data from the current schema, or from <schema_name>.

TRUNCATE SCHEMA [ <schena_nane>]

The TRUNCATE command merely deletes all data from all tables of the schema.
Nothing is dropped. Connections are not closed.

B.4.12 VALIDATE

ORACLE

Verifies that the XML file <file_name> is well-formed and validates the content of the
XML file <file_name> against the XML Schema (XSD) if the schema is referenced in
the XML file. This command returns an exception if the file is not valid. For a full
description of the validation performed, see:

B-23



Appendix B
Detailed Driver Commands

http://xerces. apache. org/ xerces2-j/features. ht nl #val i dati on. schema

VALI DATE [FILE <file_name>] [ERROR_ON WARNI NG| | GNORE_ON_WARNI NG
[ ERROR ON_ERROR| | GNORE_ON_ERRCR]
[ ERROR ON_FATAL_ERROR| | GNORE_ON_FATAL_ERROR| [ VERBOSE]

Parameters

FILE <file_name>
Name of the XML file to validate.

ERROR_ON_WARNING | IGNORE_ON_WARNING
Ignore or generate errors on XSD validation warnings, such as values out of range.
The default value is IGNORE_ON_WARNING.

ERROR_ON_ERROR | IGNORE_ON_ERROR
Ignore or generate errors on XSD validation errors, such as non conform attribute or
element. The default value is ERROR_ON_ERROR.

ERROR_ON_FATAL_ERROR | IGNORE_ON_FATAL_ERROR
Ignore or generate errors on XSD validation fatal errors, such as malformed XML. The
default value is ERROR_ON_FATAL_ERROR.

VERBOSE
Displays on the Java console the detailed errors and number of the line causing the
error. Nothing is displayed by default on the console.

B.4.13 WRITE MAPPING FILE

ORACLE

Writes out the element/attribute name to table/table.column name mapping for each
element/attribute to the specified file. The mapping file helps to understand the
relational structure that has been created for the XSD/DTD file. This command can be
used only when the schema was created in v3 mode. Otherwise exception is thrown.

WRI TEMAPPI NGFI LE FI LE <file-path> [ FROM SCHEMA <schena- name>]
[ JAVA_ENCODI NG <j ava_encodi ng> XM._ENCODI NG <xml - encodi ng>]

Parameters

file_p ath
Name of the generated mapping file

FROM_SCHEMA
If the optional FROM SCHEMA parameter is not provided, the current schema will be
used.

JAVA_ENCODING

Encoding of the generated file, for example: 1508859 1. You will find a list of supported
encoding at the following URL: htt p:// downl oad. or acl e. cont j avase/ 6/ docs/ t echnot es/
gui des/intl/encodi ng. doc. htm .

Note that if the Java encoding is specified, the XML encoding should also be
specified.

XML_ENCODING
Encoding in the xml tag of the generated file.
Example of generated tag: <?xm version="1.0" encodi ng="1S0 8859- 1" 7>

B-24


http://xerces.apache.org/xerces2-j/features.html#validation.schema
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Appendix B
SQL Syntax

You will find a list of supported encoding at the following URL: http://

downl oad. oracl e. cont j avase/ 6/ docs/ t echnot es/ gui des/ i nt1/encodi ng. doc. ht i .
Note that if the XML encoding is specified, the Java encoding should also be
specified.

Example B-1 Mapping File

<?xm version = "1.0" encoding = 'UTF-8' 2>
<personnel xm ns:x2r="http://wwmv. oracl e. com odi / xn - mappi ng"
x2r : t abl eNanme="PERSONNEL" >
<person x2r:tabl eNane="PERSON' id="1D" sel ect="SELECT ">
<emai | x2r:tabl eName="EMAI L" ></ emai | >
<link x2r:tabl eName="LI NK" nanager="MANAGER' subor di nat es=" SUBORDI NATES" ></
I'ink>
<nane x2r:tabl eName="NAME" >
<gi ven x2r:col umNane="@d VEN'></ gi ven>
<fam |y x2r:col umName="FAM LY"></fam | y>
</ nane>
<url x2r:tabl eName="URL" href="HREF"></url >
</ per son>
</ personnel >

B.5 SQL Syntax

The following statements are available when using the built-in engine to store the XML
schema. They enable the management of the data and data structure in the schema
through Standard SQL Syntax.

This section contains the following topics:

¢ SQL Statements
*  SQL FUNCTIONS

# Note:

If you are using an external database, you may use the database engine
querying syntax instead of this one.

B.5.1 SQL Statements

ORACLE

Any number of commands may be combined. You can optionally use the semicolon
character (;) to separate each command.

This section details the following commands:

«  COMMIT
« CREATE TABLE
- DELETE

 DISCONNECT
« DROP TABLE
* INSERTINTO

B-25


http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Appendix B
SQL Syntax

*  ROLLBACK

e SELECT

« SET AUTOCOMMIT
- UPDATE

» Expressions, Condition and Values

B.5.1.1 COMMIT

Ends a transaction on the schema and makes the changes permanent.

COWM T [ VORK]

B.5.1.2 CREATE TABLE

Create a tables and its constraints in the relational schema.

CREATE TABLE <t abl e_name>
( <columbDefinition>[, ...] [, <constraintDefinition>. ..])

<col umbDefinition> ::=
<col um_nane> <dat atype> [(anything)] [[NOT] NULL] [IDENTITY] [PRI MARY KEY]

<constraintDefinition> ::=
[ CONSTRAINT <constraint_name> ]

UNIQUE ( <colum_name> [, <colum>...] ) |

PRI MARY KEY ( <col utm_nane> [, <col um_name>...] ) |

FOREI GN KEY ( <col um_nane> [, <col umm_nanme>...] )

REFERENCES <r ef erenced_t abl e> ( <col utm_nane> [, <col um_nane>...] )
Remarks

e IDENTITY columns are automatically incremented integer columns. The last
inserted value into an identity column for a connection is available using the
IDENTITY/() function.

* Valid datatypes are: BIT, TINYINT, BIGINT, LONGVARBINARY, VARBINARY,
BINARY, LONGVARCHAR, CHAR, NUMERIC, DECIMAL, INTEGER, SMALLINT,
FLOAT, REAL, DOUBLE, VARCHAR, DATE, TIME, TIMESTAMP, OBJECT

B.5.1.3 DELETE

Remove rows in a table in the relational schema. This function uses a standard SQL
Syntax.

DELETE FROM <t abl e_nanme> [ WHERE <expressi on> ]|

B.5.1.4 DISCONNECT

Closes this connection.

DI SCONNECT

Remarks

e Itis not required to call this command when using the JDBC interface: it is called
automatically when the connection is closed.

ORACLE B-26



Appendix B
SQL Syntax

» After disconnecting, it is not possible to execute other queries with this connection.

B.5.1.5 DROP TABLE

Remove a table, the data and indexes from the relational schema.

DROP TABLE <t abl e_nanme>

B.5.1.6 INSERT INTO

Insert one or more new rows of data into a table.

I NSERT | NTO <t abl e_name> [ ( <colum_name> [,...] ) ]
{ VALUES (<expression> [,...]) | <SELECT Statenent> }

B.5.1.7 ROLLBACK

Undo the changes made since the last COMMIT or ROLLBACK.
ROLLBACK

B.5.1.8 SELECT

Retrieves information from one or more tables in the schema.

SELECT [DI STINCT] { <select_expression> | <table name>.* | * } [, ... ]
[ INTO <new_tabl e> ]
FROM <t abl e _|ist>
[ WHERE <expression> ]
[ GROUP BY <expression> [, ...] ]
[ ORDER BY <order_expression> [, ...] ]
[ { UNTON [ALL] | {MNUS| EXCEPT} | INTERSECT } <sel ect_statement> ]

<table_list> ::=
<table_name> [ { INNER | LEFT [QUTER] } JO N <tabl e_name>
ON <expression>] [, ...]

<sel ect _expression> ::=
{ <expression>| COUNT(*) | {COUNT | MN| MAX | SUM| AVG
(<expression>) <colum_al i as>}

<order_expression> ::=
{ <col um_nunber> | <colum_alias> | <select_expression>} [ ASC| DESC ]

B.5.1.9 SET AUTOCOMMIT

Switches on or off the connection's auto-commit mode. If switched on, then all
statements will be committed as individual transactions. Otherwise, the statements are
grouped into transactions that are terminated by either COMMIT or ROLLBACK. By
default, new connections are in auto-commit mode.

SET AUTOCOMM T { TRUE | FALSE }

B.5.1.10 UPDATE

Modifies data of a table in the database.

UPDATE tabl e SET col utm = <expression> [, ...] [WHERE <expression>]

ORACLE B-27



Appendix B
SQL Syntax

B.5.1.11 Expressions, Condition and Values

<expression> ::=
[NOT] <condition>[ { OR| AND} <condition> ]

<condition> ::=
{ <value> [ || <value>]
<value> { = | <| <=| >| > ] <> | !'=| IS[NJM } <value>

I
| EXI STS(<sel ect _st at enent >)

| <val ue> BETWEEN <val ue> AND <val ue>

| <value> [NOT] IN ( {<value> [, ...] | selectStatenment } )
| <val ue> [NOT] LIKE <val ue> [ ESCAPE] val ue }

<val ue> ::=
[+ -1 {term[ { +] -] %]/} term]
| ( condition)
| function ( [parameter] [,...] )
| sel ect Statenment _giving_one_val ue

<termp ::=
{ "string" | nunmber | floatingpoint | [table.]Jcolum | TRUE | FALSE | NULL }

<string> ::=

e Starts and ends with a single '. In a string started with ' use " to create a '.

* LIKE uses '%' to match any (including 0) number of characters, and '_' to match
exactly one character. To search for '%' itself, \%' must be used, for'_'use "\_'; or
any other escaping character may be set using the ESCAPE clause.

<name> ::=
* A name starts with a letter and is followed by any number of letters or digits.

Lowercase is changed to uppercase except for strings and quoted identifiers.
Names are not case-sensitive.

* Quoted identifiers can be used as names (for example for tables or columns).
Quoted identifiers start and end with ". In a quoted identifier use "" to create a ".
With quoted identifiers it is possible to create mixed case table and column names.
Example: CREATE TABLE "Address" ("Nr" INTEGER, "Name" VARCHAR);
SELECT * FROM "Address". Quoted identifiers are not strings.

<val ues> ::=

* A’'date’ value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).
* A'time' value starts and ends with ', the format is hh:mm:ss (see java.sqgl.Time).

» Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example
is 3 bytes, first 0, second 4 and last 255 (0xff).

B.5.2 SQL FUNCTIONS

Table B-3 lists the numerical functions.

ORACLE B-28



ORACLE

Appendix B
SQL Syntax

Table B-3 Numerical Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and
smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is
bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigpnometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

BITAND(a,b) returna &b

BITOR(a,b) returns a | b

Table B-4 lists the string functions.

Table B-4 String Functions

Function Description
ASCII(s) returns the ASCII code of the leftmost character of s
CHAR(c) returns a character that has the ASCII code ¢

CONCAT(str1,str2)
DIFFERENCE(s1,s2)
INSERT(s,start,len,s2)

returns strl + str2
returns the difference between the sound of s1 and s2

returns a string where len number of characters beginning at
start has been replaced by s2

B-29



ORACLE

Appendix B
SQL Syntax

Table B-4 (Cont.) String Functions
|

Function Description

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s
LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start])

LTRIM(s)
REPEAT(s,count)
REPLACE(s,replace,s2)
RIGHT(s,count)
RTRIM(s)

SOUNDEX(s)
SPACE(count)
SUBSTRING(s,start[,len])
UCASE(s)

LOWER(s)

UPPER(s)

returns the first index (1=left, 0=not found) where search is
found in s, starting at start

removes all leading blanks in s

returns s repeated count times

replaces all occurrences of replace in s with s2

returns the rightmost count of characters of s

removes all trailing blanks

returns a four character code representing the sound of s
returns a string consisting of count spaces

returns the substring starting at start (1=left) with length len
converts s to upper case

converts s to lower case

converts s to upper case

Table B-5 lists the date/time functions.

Note that a date value starts and ends with a single quote ('), the format is yyyy- nm dd
(see java.sql.Date). A time value starts and ends with a single quote ('), the format is

hh: mm ss (see java.sgl.Time).

Table B-5 Date/Time Functions

Function Description

CURDATE() returns the current date

CURTIME() returns the current time

DAYNAME(date) returns the name of the day
DAYOFMONTH(date) returns the day of the month (1-31)
DAYOFWEEK(date) returns the day of the week (1 means Sunday)
DAYOFYEAR(date) returns the day of the year (1-366)
HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp
QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK((date) returns the week of this year (1-53)

B-30



Appendix B
JDBC API Implemented Features

Table B-5 (Cont.) Date/Time Functions

______________________________________________________________________|
Function Description

YEAR(date) returns the year

Table B-6 lists the system functions.

Table B-6 System Functions
|

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp
CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2
CONVERT(term,type) converts exp to another data type
CAST(term AS type) converts exp to another data type

B.6 JDBC API Implemented Features

Table B-7 lists the JDBC API features that are implemented in the Oracle Data
Integrator Driver for XML:

Table B-7 JDBC API Features

Feature Groups JDBC Version Support
Batch Update 2.0 Core Yes
Blob/Clob 2.0 Core Yes
JNDI DataSources 2.0 Optional Yes
Failover support - Yes
Transaction SavePoints 3.0 Yes
Unicode support - No
Distributed Transaction 2.0 Optional No
Connection Pooling 2.0 Optional No
Cluster support - No

Table B-8 lists JIDBC Java classes.

Table B-8 JDBC Java Classes

JDBC Class JDBC Version Support
Array 2.0 Core No

Blob 2.0 Core Yes
CallableStatement 1.0 Yes
Clob 2.0 Core Yes
Connection 1.0 Yes

ORACLE B-31



Appendix B
Rich Metadata

Table B-8 (Cont.) JDBC Java Classes

JDBC Class JDBC Version Support
ConnectionPoolDataSource 2.0 Optional No
DatabaseMetaData 1.0 Yes
DataSource 2.0 Optional No
Driver 1.0 Yes
Ref 2.0 Core No
ResultSet 1.0 Yes
ResultSetMetaData 1.0 Yes
RowSet 2.0 Optional No
Statement 1.0 Yes
Struct 2.0 Core No
PreparedStatement 1.0 Yes
XAConnection 2.0 Optional No
XADataSource 2.0 Optional No

B.7 Rich Metadata

ORACLE

When creating RDB structures based on XML schema, there must be flexibility to
supply the driver with metadata. For example, in situations where RDB table/column
names can conflict if element/attributes have same local names.

The ODI XML driver attaches an attribute in the x2r namespace (http://

wwmv. or acl e. cont odi / xm - mappi ng) to the elements/attribute namely: x2r:tableName/
x2r:.columnName. If conflicting names do not have the metadata attribute, then they
are appended with an incrementing number until a non-conflicting table/column name
is obtained.

The new object model maintains a map between xpath and table/table.column names
for each element/attribute.

If two elements with same name and same type exist in two different locations, same
table is used for storing the data but FK reference to parent element is used to
differentiate the data. The new implementation creates new tables. Table B-9 lists the
table attributes.

Table B-9 Table Attributes

Attribute Type Description

x2r:tableName String To be attached to elements that resolve to RDB tables/
attributes that are lists or enumerations whose local names
match.

x2r:columnName String To be attached to attributes whose local names match or

for elements that map to columns, but whose local names
match with each other or with an attribute of the containing

type.

B-32



Appendix B
Rich Metadata

Table B-9 (Cont.) Table Attributes

Attribute Type Description
x2r:columnDataTyp String Lets you provide the datatype information as a string from a
e mapping table that we will provide.

May only be attached to elements that the driver will map to
columns or to attributes. If this parameter is provided user
must also supply x2r:columnLength and/or
x2r:columnPrecision as required for the datatype.

x2r:columnLength integer Length of the column.

By default the values hard-coded in the driver are used.
VARCHAR and NUMERIC have global override option in
JDBC URL. This attribute, if provided, overrides both the
default value and the global overrride.

May only be attached to elements that the driver will map to
columns or to attributes.

x2r:columnPrecision integer Precision of the column. Used by driver only for those
datatypes that allow it. Same logic as for columnLength is
used when determining the value to be applied.

May only be attached to elements that the driver will map to
columns or to attributes.

The following sample is an example of an XSD enriched with metadata.

<xs:schema xm ns: xs="http:// ww. w3. org/ 2001/ XM_Schema" xml ns: x2r="http://
www. or acl e. cont odi / xm - mappi ng" >
<xs: el ement nanme="root">
<xs: conpl exType>
<XS: sequence>
<I-- Exanple for redefining table name -->
<xs: el ement name="person" maxCccurs="unbounded" x2r:t abl eName="CUSTOVER" >
<xs: conpl exType>
<XS: sequence>
<I-- Exanple for redefining colum name -->
<xs: el ement nanme="given" type="xs:string" x2r:col umNanme="FlI RST"/>
<xs: el ement name="last" type="xs:string"/>

<I-- Exanple for redefining colum length -->
<xs: el ement nane="address" type="xs:string" x2r:col unmLengt h="400"/>
<I-- Exanple for redefining colum type -->

<xs: el ement name="notes" type="xs:string" x2r:col umbataType="CLOB"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ Xxs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

B.7.1 Supported user-specified types for different databases

Table B-10 provides the details of the supported user-specified types for different
databases. Using any other type name will raise exception.

ORACLE B-33



Appendix B
XML Schema Supported Features

Table B-10 Supported user-specified types for databases
|

Type HSQL Oracle MySQL MS SQL Server
SMALLINT X X X
INTEGER X X

REAL X X
NUMERIC X X

NUMBER X

FLOAT X X X
DOUBLE X X

DECIMAL X X

CHAR X X X X
NCHAR X X X
VARCHAR X X X X
VARCHAR2 X

NVARCHAR2 X

BLOB X X X

CLOB X X

NCLOB X

TEXT X X
DATE X X X

TIME X X X

TIMESTAMP X X X X

B.8 XML Schema Supported Features

The driver supports part of the XML Schema (XSD) specification. Supported elements
are listed in this section.

For more information on the XML Schema specification, see the W3C specification at
http:// ww. w3. or g/ TR/ xm schema- 1/ .

This section contains the following topics:

* Datatypes
e Supported Elements

*  Unsupported Features

B.8.1 Datatypes

The following datatypes are supported:

e These datatypes are converted to String columns: string, normalizedString, token,
nmtoken, nmtokens, anyUri, id, idref, date, datetime, time, hexBinary

ORACLE B-34


http://www.w3.org/TR/xmlschema-1/

Appendix B
XML Schema Supported Features

* These datatypes are converted to Integer columns: int, positivelnteger,
negativelnteger, nonNegativelnteger, onPositivelnteger, long, unsignedLong,
unsignedInt, short, unsignedShort, byte, unsignedByte, boolean (Boolean are
converted to a numeric column with 0 or 1, but they can take "true" or "false"
values from the input files)

* These datatypes are converted to Decimal (with 2 decimal places) columns:
decimal, float, double

B.8.2 Supported Elements

ORACLE

This section lists all schema elements. Supported syntax elements are shown in bold.
Unsupported syntax elements are shown in regular font. They are ignored by the
driver.

This section details the following schema elements:

o Al

* Any

e AnyAttribute
* AnyType

* Attribute

e AttributeGroup

* Choice

e ComplexContent
e ComplexType

* Element

«  Extension

e Group

* Import

* Include
o List

* Restriction

e Schema

* Sequence

e SimpleContent

e SimpleType

< Note:

XML files generated or updated using the XML driver should ideally be
validated against their corresponding XSD files using the VALIDATE command
after generation.

B-35



B.8.2.1 All

B.8.2.2 Any

Appendix B
XML Schema Supported Features

This element specifies that child elements can appear in any order and that each child
element can occur zero or one time.

Note that child elements mandatory properties (minOccurs=1) are not managed by the
driver. This should be handled by checks on the data, and by validating the XML
contents against the XSD.

<all
id=ID
maxCccur s=1
m nCccur s=0| 1
any attributes
>
(annot ation?, el enent *)
<lall>

This element enables you to extend the XML document with elements not specified by
the schema.

<any
id=ID
maxCQccur s=(nonNegat i vel nt eger | unbounded): 1
m nCccur s=nonNegat i vel nteger: 1
namespace=( (##any| ##ot her) | Li st of (anyURI| (##t ar get Namespace| ##l ocal )) ) : ##any
processCont ent s=(1 ax| skip|strict):strict
any attributes

>

(annot ation?)

</ any>

B.8.2.3 AnyAttribute

This element enables you to extend the XML document with attributes not specified by
the schema.

<anyAttribute
id=ID
namespace=( (##any| ##ot her) | Li st of (anyURI| (##target Namespace| ##l ocal )) ) : ##any
processCont ent s=(| ax| skip|strict):strict
any attributes
>
(annot ation?)
</ anyAttribute>

B.8.2.4 AnyType

This XML Schema type is the root type for all XML Schema types.

<xsd: el ement name="somet hi ng" type="xsd: anyType"/>

B.8.2.5 Attribute

ORACLE

This element defines an attribute.

B-36



Appendix B
XML Schema Supported Features

<attribute
defaul t=string
id=ID
nane=NCNare
type=QNane
use=opt i onal | prohi bit ed| requi red
ref =QNane
fixed=string
formequal i fied|unqualified
any attributes
>
(annot ation?, (si npl eType?))
<lattribute>

Note that the use attribute of this element defines the column mapped by the driver for
the attribute as mandatory or not.

B.8.2.6 AttributeGroup

This element defines a set of attributes.

<attributeGoup
id=ID
nane=NCName
ref =QNane
any attributes
>
(annotation?), ((attribute|attributeGoup)*, anyAttribute?))
<lattributeG oup>

B.8.2.7 Choice

This element allows one and only of the elements to be present within the containing
element.

<choi ce
id=ID
maxQccur s=nonNegat i vel nt eger | unbounded
m nCccur s=nonNegat i vel nt eger
any attributes
>
(annotation?, (el ement| group| choi ce| sequence| any) *)
</ choi ce>

Note that the child element's unique nature are not managed by the driver. This should
be handled by checks on the data, and by validating the XML contents against the
XSD.

B.8.2.8 ComplexContent

ORACLE

This element defines extensions or restrictions on a complex type.

<conpl exCont ent
id=1D
m xed=true|fal se
any attributes
>
(annot ation?, (restriction|extension))
</ conpl exCont ent >

B-37



Appendix B
XML Schema Supported Features

B.8.2.9 ComplexType

ORACLE

This element defines a complex type.

<conpl exType

>

nane=NCName

id=ID

abstract=true|fal se

m xed=true|fal se

bl ock=(#al | |l'ist of (extension|restriction))
final =(#all|list of (extension|restriction))
any attributes

(annot ation?, (si npl eCont ent | conpl exCont ent | ((group| al | | choi ce| sequence)?, ((attribute|
attributeGoup)*, anyAttribute?))))
</ conpl exType>

B.8.2.10 Element

This element defines an element of the XML file.

<el enent

nane=NCName

maxCccur s=nonNegat i vel nt eger | unbounded
m nCccur s=nonNegat i vel nt eger
type=QNane

id=ID

r ef =QNane

substitutionG oup=QNanme
defaul t=string

fixed=string

formequal i fied|unqualified
nillable=true|fal se
abstract=true|fal se

bl ock=(#al | |l'ist of (extension|restriction))

final =(#all|list of (extension|restriction))

any attributes
>
annot ati on?, ((si mpl eType| conpl exType) ?, (uni que| key| keyref)*))
</ el enent >

# Note:

The maxOccurs and minOccurs attributes of the element are used in the XML-
to-SQL mapping. If a child element is of a simple type and is monovalued (one
occurrence only), then this element is mapped to a simple column in the table
corresponding to its parent element. Otherwise, a table linked to the parent
element's table is created.

Note that if no reference to either minOccurs or maxOccurs is mentioned in an
element then the element is consider as monovalued and is transformed to a
column. This behavior can be changed using the usel npl i ci t MaxVal ue URL
property. When this property is set to yes, an elements for which maxOccurs is
not specified in the XSD is considered as multivalued (maxOccurs
="unbounded").

B-38



Appendix B
XML Schema Supported Features

# Note:

Using different sub-elements with the same name but with different types is not
supported by XML driver. An XSD with such a structure will not be processed
correctly.

B.8.2.11 Extension

This element extends an existing simpleType or complexType element

<ext ensi on
id=ID
base=QNane
any attributes
>
(annotation?, ((group|all|choice|sequence)?, ((attribute]
attributeGoup)*, anyAttribute?)))
</ ext ensi on>

B.8.2.12 Group

The group element is used to define a group of elements to be used in complex type
definitions.

<group
id=ID
nane=NCName
r ef =QNane
maxCccur s=nonNegat i vel nt eger | unbounded
m nCccur s=nonNegat i vel nt eger
any attributes
>
(annot ation?, (al || choi ce| sequence) ?)
</ group>

B.8.2.13 Import

This element is used to add multiple schemas with different target namespace to a
document.

<i nport
id=ID
nanespace=anyURl
schemaLocat i on=anyUR|
any attributes

>

(annot ation?)
</inport>

B.8.2.14 Include

This element is used to add multiple schemas with the same target namespace to a
document.

<include
id=ID

ORACLE B-39



B.8.2.15 List

Appendix B
XML Schema Supported Features

schemaLocat i on=anyUR|
any attributes

>

(annot ation?)

</include>

This element defines a simple type element as a list of values of a specified data type.

<list
id=ID
i t enlfype=QNane
any attributes
>
(annot ation?, (sinpl eType?))
</list>

B.8.2.16 Restriction

This element defines restrictions on a simpleType, simpleContent, or a
complexContent.

<restriction
id=ID
base=QNare
any attributes
>
Content for sinpleType:
(annot ation?, (si npl eType?, (m nExcl usi ve| mi nl ncl usi ve| maxExcl usi ve| max| ncl usi ve|
total Digits|fractionDigits|!|ength|ninLength| maxLength|enumeration|whiteSpace|
pattern)*))
Content for sinpleContent:
(annot ation?, (si npl eType?, (m nExcl usi ve| m nl ncl usi ve| maxExcl usi ve| max| ncl usi ve|
total Digits|fractionDigits|!|ength|ninLength| maxLength|enumeration|whiteSpace|
pattern)*)?, ((attribute|attributeG oup)*,anyAttribute?))
Content for conpl exContent:
(annot ation?, (group|all|choice| sequence)?, ((attribute|
attributeGoup)*, anyAttribute?))
</restriction>

B.8.2.17 Schema

ORACLE

This element defines the root element of a schema.

<schema
id=ID
attribut eFormDef aul t =qual i fi ed| unqual i fied
el ement For nDef aul t =qual i fi ed| unqual i fi ed
bl ockDefaul t=(#al | |l1ist of (extension|restriction|substitution))
final Defaul t=(#all|list of (extension|restriction|list|union))
tar get Nanespace=anyURI
ver si on=t oken
xm ns=anyUR
any attributes
>
((include|inport|redefine|annotation)*, (((sinpleType|conplexType|group
attributeGoup)|elenment|attribute|notation),annotation*)*)
</ schema>

B-40



B.8.2.18 Sequence

This element specifies that the child elements must appear in a sequence. Each child

element can occur 0 or more times.

<sequence
id=1D
maxQCccur s=nonNegat i vel nt eger | unbounded
m nCccur s=nonNegat i vel nt eger
any attributes
>

(annot ation?, (el ement| group| choi ce| sequence| any) *)

</ sequence>

Note the following:

Appendix B
XML Schema Supported Features

e The Sequence order is not managed by the driver. The sequence order should be
handled by loading the xxx_ORDER column generated by the driver.

e The maxOccurs and minOccurs attributes are not managed by the driver. This
should be handled by checks on the data, and by validating the XML contents

against the XSD.

B.8.2.19 SimpleContent

This element contains extensions or restrictions on a text-only complex type or on a

simple type as content.

<si npl eCont ent
id=ID
any attributes
>
(annotation?, (restriction|extension))
</ si npl eCont ent >

B.8.2.20 SimpleType

This element defines a simple type element.

<si npl eType
name=NCName
id=1D
any attributes
>
(annotation?, (restriction|list]|union))
</ si npl eType>

B.8.3 Unsupported Features

The following elements and features are not supported or implemented by the XML

driver.

B.8.3.1 Unsupported Elements

ORACLE

The following schema elements are not supported by the XML driver.

B-41



Appendix B
XML Schema Supported Features

KeylkeyRef/Unique: These elements allow the definition of constraints in the
schema. These elements and their child elements (selector, field) are ignored.

Redefine: The redefine element redefines simple and complex types, groups, and
attribute groups from an external schema. This element is not supported.

In v3 mode an error is raised, if any unsupported XSD element is encountered.

WARNING:

Elements and attributes allowed in an XML file due to an Any or AnyAttribute
clause in the XSD may cause errors when the file is loaded.

B.8.3.2 Unsupported Features

Multipass parsing is supported in v3 mode. The other modes do not support multipass
parsing.

B.8.3.3 Unsupported Datatypes

The following datatypes are not supported:

ORACLE

gYear
gYearMonth
gMonth
gMonthDay
gDay
language
ENTITY
ENTITIES
NOTATION
IDREFS

B-42



Oracle Data Integrator Driver for Complex

Files Reference

The Oracle Data Integrator Driver for Complex Files (Complex File driver) allows
Oracle Data Integrator to use complex files as data servers.
This appendix includes the following sections:

e Introduction to Oracle Data Integrator Driver for Complex Files
e Complex Files Processing Overview

»  Driver Configuration

* Detailed Driver Commands

e JDBC APl and XML Schema Supported Features

C.1 Introduction to Oracle Data Integrator Driver for
Complex Files

The Oracle Data Integrator Driver for Complex Files (Complex File driver) handles files

in a Complex (or Native) Format as a JDBC data source. This allows Oracle Data

Integrator to use complex files as data servers.

With the Complex File driver, Oracle Data Integrator can query complex files using
standard SQL syntax and perform changes in the complex files. These operations

occur within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for Complex Files supports the following features:

e Standard SQL (Structured Query Language) Syntax
» Correlated subqgueries, inner and outer joins

e ORDER BY and GROUP BY

*  COUNT, SUM, MIN, MAX, AVG and other functions
e Standard SQL functions

¢ Transaction Management

» Referential Integrity (foreign keys)

e Saving changes into the complex files

C.2 Complex Files Processing Overview

ORACLE

The Complex File driver uses a Native Schema file. This file, written in the nXSD

format describes the structure of the Native File and how to translate it to an XML file.

The Complex File driver translates internally the native file into an XML structure, as
defined in the Native Schema (nXSD) description and from this XML file it generates a

C-1



Appendix C
Complex Files Processing Overview

relational schema that is consumed by Oracle Data Integrator. The overall mechanism
is shown in Figure C-1.

Figure C-1 Complex File Driver Process

Relational
Schema

[ Y

|
|

Mative File e XML (Internal)

Oracle Data Integrator

The second part of the process, starting from the XML structure, corresponds precisely
to the capabilities of the Oracle Data Integrator Driver for XML.

The Complex Files driver works in the following way:

1. The complex file is translated to an intermediate XML file using the Native Schema
(nXSD) file. Note that no physical file is created for the intermediate XML file but a
streaming XML structure.

2. The driver loads the XML structure and data into a relational schema, using a XML
to SQL Mapping.

3. The user works on the relational schema, manipulating data through regular SQL
statements or specific driver commands for driver operations.

4. Upon disconnection or user request, the Complex Files driver synchronizes the
data and structure stored in the schema back to the complex file.

C.2.1 Generating the Native Schema

The Native Schema can be created manually, or generated using the Native Format
Builder Wizard available as part of Fusion Middleware Technology Adapters. See
Native Format Builder Wizard in the User's Guide for Technology Adapters for more
information on the Native Schema format and the Native Format Builder Wizard.

C.2.2 XML to SQL Mapping

The XML to SQL Mapping is a complex process that is used to map a hierarchical
structure (XML) into a relational structure (schema). This mapping is automatic. See
XML to SQL Mapping for more information.

C.2.3 JSON Support

Flat files in JSON format are supported through the nXSD format. The nXSD file can
be created manually or through the Native Format Builder Wizard (See Generating the
Native Schema for details). If an XSD file with no nXSD annotation is used, you need
to provide additional JDBC property: tt=j son or trans| at or _t ype=j son, which will enable
the driver to use the JSON translator for parsing the input file.

C.2.4 Supported Features

ORACLE

The Complex File driver supports the same features as the XML driver:

C-2



Appendix C
Driver Configuration

* Schema Storage in a built-in engine or external database is supported in the same
way as the XML Driver. See Schema Storage and Using an External Database to
Store the Data for more information.

*  Multiple Schemas are supported, with the following differences:

— Only a single schema can be created at connection time, based on the Native
Schema file.

— Parameters allowing creating multiple schemas at connection time as
indicated in Automatically Create Multiple Schemas are not supported. This
includes add_schema_bundle, add_schema_path, and addschema_X.

— Additional schemas can be created after the connection using the CREATE
SCHEMA and LOAD FILE commands.

e Case-sensitivity is managed similarly to the XML driver. See Case Sensitivity for
more information.

* Loading/Synchronizing with the Complex File driver works the same way as the
XML Driver. Loading/Synchronizing operations automatically propagate to the
Native file. See Loading/Synchronizing for more information.

* Locking is supported. When connected, the complex file is locked and when
disconnected, it is unlocked. The UNLOCK FILE command is supported.

C.3 Driver Configuration

The Oracle Data Integrator driver for Complex Files is automatically installed with
Oracle Data Integrator. The following topics cover advanced configuration topics and
reference information.

This section details the driver configuration.

e The driver name is: oracl e. odi . jdbc.driver.file.conpl ex. Conpl exFi | eDri ver

* The URL Syntax is: j dbc: snps: conpl exfi | e?f =<native file |ocation>&l=<native
schema>&r e=<r oot el enent nane>[ &=<schema name>&<property>=<val ue>...]

The properties for the URL are detailed in Oracle Data Integrator Driver for Complex
Files Reference.

Table C-1 Driver Properties

Property Mandatory Type Default Description
file or f Yes string (file - Native file location. Use slash "/" in the path name
location) instead of back slash "\". It is possible to use an HTTP,
FTP or File URL to locate the file. Files located by URL
are read-only. This parameter is mandatory.
dtd or d Yes string (file - Native Schema (nXSD) file location. This parameter is
location) mandatory.
root_elt or re Yes String - Name of the element to take as the root table of the
schema. This value is case sensitive. This property can
be used for reverse-engineering for example a specific
section of the Native Schema. This parameter is
mandatory.
read_onlyorro No boolean (true | false Open the native file in read only mode.
false)

ORACLE

C-3



Table C-1 (Cont.) Driver Properties

Appendix C
Driver Configuration

Property

Mandatory Type

Default Description

schema or s No

standalone No

translator_type  No
or tt

db_propsordp No

load_data_on_c No
onnect or ldoc

drop_on_discon No
nect or dod

useimplicitmaxv  No
alue

ORACLE

string -

boolean (true | false
false)

string (json) -

string -

boolean (true | true
false)

boolean (true | false
false)

boolean (true | false
false)

Name of the relational schema where the complex file
will be loaded. This parameter is mandatory.

This schema will be selected when creating the physical
schema under the Complex File data server.

Note: It is not possible to make more than one
connection to a schema. Subsequent connections fail if
trying to connect to a schema already in use.

Important: The schema name should be specified in
uppercase, and cannot be named like an existing XML
element.

If this option is set to true, the schema for this
connection is completely isolated from all other
schemas. With this option, you can specify the same
schema name for several connections, each schema
being kept separated. When using this option, tables in
this schema cannot be accessed from other schemas,
and this connection cannot access tables from other
schemas.

Note: This option is not applicable when an external
database is used.

If this option is set to json, the xsd does not require
nXSD annotations and will automatically use the JSON
translator for parsing the input file.

This property is used to use an external database
instead of the memory engine to store the schema.

See Using an External Database to Store the Data for
more information.

Automatically load the data in the schema when
performing the JDBC connection. If set to false, a
SYNCHRONIZE statement is required after the
connection to load the data.

This option is useful to test the connection or browse
metadata without loading all the data.

Automatically drop the schema when closing the JDBC
connection.

If true, the schema is stored in the built-in engine, it is
always dropped.

If the schema is stored in an external database, the
driver attempts to drop the database schema, but might
fail if tables still exist in this schema. The
drop_tables_on_drop_schema property can be
specified in the external database property file to ensure
that all tables are automatically dropped when the
schema is dropped. See Using an External Database to
Store the Data for more information.

When this property is set to true, elements for which
maxQOccurs is not specified in the schema are
considered as maxOccurs ="unbounded". Otherwise,
the driver assumes that maxOccurs=1 when maxOccurs
is not specified.

C-4



Appendix C
Detailed Driver Commands

Table C-1 (Cont.) Driver Properties

java_encoding  No
orje

numeric_idsor  No
ni

Property Mandatory Type Default Description

string UTF8  Target file encoding (for example: |1 S8859_1). You will

(encoding find a list of supported encoding at the following URL:

code) http://java.sun.conlj2se/ 1.3/ docs/ guide/intl/
encodi ng. doc. htni .

boolean (true | true If set to true, all internal Primary and Foreign Keys are

false) of NUMERIC type. Otherwise, they are of the
VARCHAR type.

integer 10/30 The length of the internal Primary and Foreign Key

id_length or il No

numeric_scale  No
or ns

no_batch_updat No
e or nobu

transform_nonas No
cii or tna

columns. The default is 10 for NUMERIC column types
and 30 for VARCHAR column.

integer empty  Scale of the numeric columns generated in the
relational schema.

boolean (true | false Batch update is not used for this connection. The

false) command to set the batch update is not sent. This
prevents errors to occur for external databases that do
not support this JDBC feature, or allows to debug errors
related to batch update usage.

boolean (true| true Transform Non Ascii. Set to false to keep non-ascii
false) characters.

The following example illustrates these properties:

Connects to the PROD20100125_001. csv file described by product s. nxsd and expose this
file as a relational structure in the PRODUCT Schema.

jdbc: snps: conpl exfil e?f=/infiles/ PROD20100125 001. csv&d=/infil es/
products. nxsdé& e=r oot &=PRODUCTS

C.4 Detalled Driver Commands

The Complex File driver supports the same driver commands as the XML driver. See
Detailed Driver Commands for the driver commands supported by the XML Driver.

The exceptions to this rule are the following:

In the Complex File driver syntax, the commands that are related to the XML file
such as CREATE FILE or LOAD FILE, are applied to the Native File. For example,
the command CREATE FILE creates a native format file from the schema content.

VALIDATE is not supported.

CREATE FILE is supported but the NO_CLOSING_TAGS and NO_DEFAULT_NS
parameters are ignored.

CREATE SCHEMA requires the WITH DTD parameter.
LOAD FILE requires the WITH DTD parameter.

C.5 JDBC APl and XML Schema Supported Features

The Complex File driver supports the same JDBC features as the XML driver. See
SQL Syntax for more information.

ORACLE

C-5


http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

Pre/Post Processing Support for XML and
Complex File Drivers

It is possible to customize the way in which data is fed to the XML and Complex File
drivers. You can set up intermediate processing stages to process the data that is
retrieved from an external endpoint using Oracle Data Integrator, or to write the data
out to an external endpoint.

This appendix includes the following sections:

e Overview

e Configuring the processing stages

* Implementing the processing stages

e Example: Groovy Script for Reading XML Data From Within a ZIP File

e Example: Groovy Script for Transforming XML Data and Writing to a Different
Format

» Example: Java Class for Reading Data From HTTP Source Requiring
Authentication

e Example: Groovy Code Embedded in Configuration XML File

D.1 Overview

You can now customize the way data is fed to the XML and Complex File drivers. You
can set up intermediate processing stages to process the data that is retrieved from an
external endpoint using Oracle Data Integrator, or to write the data out to an external
endpoint.

You can configure one Terminal stage and zero or multiple Junction stages. The
terminal stage can read data from external endpoints and write data to external
endpoints. The terminal stage reads the source data from an external endpoint and
passes it to the junction stage for processing. The junction stages can be configured to
process the data passed by the terminal stage.

The source data can be in any format, not necessarily XML or Complex File, until it
reaches the XML driver or the Complex File driver. However, when the data is finally
handed off to the XML driver or the Complex File driver, the data must be in the
required format. That is, when the data is handed off to the XML driver, it must be a
valid XML that adheres to the XSD that has been configured for the data server.
Similarly, when the data is handed off to the Complex File driver, the data must exactly
match the pattern as defined by the nXSD file.

D.2 Configuring the processing stages

The complete configuration of the intermediate processing stages to the ODI JDBC
driver in the form an XML file. The XSD for the configuration XML file must also be
included.

ORACLE D-1



ORACLE

Appendix D
Configuring the processing stages

For an input pipeline configuration, the first stage would be the one that first processes
the input. The last stage would be the one that feeds data to the driver. This last stage
must provide an output that adheres to the format expected by the XML or the
Complex File driver.

For an output pipeline configuration, the last stage would be the one that writes out the
output. The first stage would be the one that accepts the data from the driver. This
data would have the same shape as the XSD of the dataserver.

After you create the XML file that contains the configuration, ensure that the
pi peline_config file orpcf property of the XML driver or the Complex File driver
points to the absolute file location of the XML file.

Example D-1 shows a sample configuration XML file.
Example D-1 Sample Configuration XML File

<?xm version="1.0" encodi ng="UTF-8"?>
<pi peline xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : noNanespaceSchenmaLocat i on="pr e- post . xsd">

<i nput - st ages>
<i 0-stage name="rest|nput">
<codeDefinition>
<j avaCd ass>com conpany. or g. | nput Processor</j avaC ass>
</ codeDefinition>
<debugQut put >htt p: // tenpuri . or g</ debugQut put >
</io-stage>
<stage nane="Buf ferlnput St age" >
<codeDefinition>
<j avad ass>com conpany. or g. Buf f eri ngCl ass</j avad ass>
</ codeDefinition>
<props>
<property name="buff er Si zeByt es" >2340</ pr operty>
</ props>
</ stage>
<stage nane="Unzi pStage">
<codeDefinition>
<code>[ Groovy text in Base64 encoded fornj</code>
</ codeDefinition>
</ stage>
</input-stages>
<out put - st ages>
<i 0-stage name="restQut">
<codeDefinition>
<j avaCd ass>com conpany. or g. Qut put Processor </ j avad ass>
</ codeDefinition>
<debugQut put >ht t p: // tenpuri . or g</ debugQut put >
</io-stage>
<stage nanme="SevenZi pQut put St age">
<codeDefinition>
<code>[ Groovy text in Base64 encoded fornj</code>
</ codeDefinition>
</ stage>
<stage nane="Buf f er Qut put St age" >
<codeDefinition>
<j avaCd ass>com conpany. or g. PushQut put </ j avad ass>
</ codeDefinition>
<debugQut put >/ scrat ch/j sm th/vi ew st orage/ t np/ buf f erout . t xt </ debugCQut put >
</ stage>

D-2



Appendix D
Implementing the processing stages

</ out put - st ages>
</ pi pel i ne>

D.3 Implementing the processing stages

Pre or post data processing support for XML driver and Complex File driver may be
implemented in three different ways.

 Groovy Code

By supplying the Groovy code directly into the configuration XML file. This Groovy
code is a part of the dataserver configuration and cannot be re-used. You can
supply the Groovy code as a Base64 encoded string or as a plain text string within
a CDATA section.

For an example, see Example: Groovy Code Embedded in Configuration XML
File.

e Java Class

By providing the fully qualified name of a Java class. This Java class must be
available on the ODI Agent classpath at runtime.

For ODI Studio it might be made into a JAR and placed in USER_HOVE/ odi / or acl edi /
userlib directory.

For Standalone or Collocated agents this JAR must either be placed in
DOVAI N_HOVE/ | i b directory or should be coded into the classpath using one of the
scripts.

For JEE Agents it must be deployed as a shared library and ODI Agent application
must depend on this shared library.

For an example, see Example: Java Class for Reading Data From HTTP Source
Requiring Authentication.

* Groovy Script

By providing the name of a Groovy script. All the requirements of Java class apply
to this Groovy script as well. As an exception you may provide either the name of
the script, for example, MyG oovySour ce. gr oovy or an absolute path to the script, for
example, / hone/ gr oupuser / nane/ MyCust onx oovy. gr oovy.

In the former case, the script is looked up as a Java Class resource using the
ClassLoader. The usual locator pattern for class resources applies for this. For
example, if the file is not in a JAR, the file name must be provided as /

MG oovySour ce. groovy. If it is in a subdirectory of a JAR, then the locator will
be / com f oo/ MG oovySour ce. groovy. If using absolute path, the Groovy script is
accessed as a plain Java File.

For examples, see the following sections:
— Example: Groovy Script for Reading XML Data From Within a ZIP File

— Example: Groovy Script for Transforming XML Data and Writing to a Different
Format

ORACLE D-3



Appendix D
Example: Groovy Script for Reading XML Data From Within a ZIP File

< Note:
Take a note of the following:

e The changes in the embedded Groovy code or Groovy script file located via
absolute path will not be picked up unless the XML driver schema is
dropped. In the case of Java class or Groovy script file located via
classpath, you must restart the JVM to pick up the changes.

e The inline Groovy code, Groovy script, or Java class must all conform to
the Java interfaces as provided in the Public APIs. ODI driver will apply
chaining to the resultant code with the ordering as set up in the
configuration and the data will flow through the multiple stages as
configured.

D.4 Example: Groovy Script for Reading XML Data From
Within a ZIP File

ORACLE

Following is an example of a Groovy script to read XML data from within a ZIP file.
Example D-2 Groovy Script: Read XML Data from within a ZIP file

import java.io.lCException
inmport java.io.lnputStream
inport java.util.Properties;
inmport java.util.logging.Logger;

import oracle.odi.jdbc.drivers. common. pi peline. api. St age;
import oracle.odi.jdbc.drivers. common. pi pel i ne. api. Terninal St ream nput St age;

class FileFronZip extends Term nal Strean nput St age {

public FileFronzip(Properties pStageProperties, String pDataserverUrl,
Properties pDataserverProperties, String pJavaEncoding,
Logger pLogger, String pDebuglLocation, String pDebugEncoding, String
pSt ageName) {

super (pSt ageProperties, pDataserverUr |, pDataserverProperties,
pJavaEncodi ng, plLogger, pDebuglLocation, pDebugEncoding, pStageName);
}

@verride
public InputStreamreadSource() throws | CException {
def zipFile = new java.util.zip.ZipFile(new
File(get StageProperties().get("ZIP_FILE")))
def zipEntry = zipFile.entries().find { !it.directory &&
get St ageProperties().get("XM._FILE").equal sl gnoreCase(it.name)}
return zipFile.getlnputStreanm zi pEntry)

1
@verride

public void close() throws | CException {
// TODO Aut o-generated nethod stub

D-4



Appendix D
Example: Groovy Script for Transforming XML Data and Writing to a Different Format

}

D.5 Example: Groovy Script for Transforming XML Data and
Writing to a Different Format

ORACLE

Following is an example of a Groovy script to transform XML data and write it out to a
different format.

Example D-3 Groovy Script: Transform XML data and write it to a different
format

package oracle.odi.jdbc.driver
i mport groovy.xn . Mar kupBui | der;

import java.io. | CException;
inport java.io.QutputStream
inport java.util.Properties;
import java.util.logging.Logger;

import oracle.odi.jdbc.drivers. common. pi peline.api.JunctionStreanQut put St age;
import oracle.odi.jdbc.drivers. common. pi peline. api. St age;

class TransformXm Qut put extends JunctionStreanQut put St age {
private Qutput Stream out put

public TransformXm Qut put (Properties pStageProperties, String pDataserverUrl,
Properties pDataserverProperties, String pJavaEncoding, Logger pLogger, String
pDebuglLocati on,
String pDebugEncoding, String pStageName) {
super (pSt ageProperties, pDataserverUrl, pDataserverProperties,
pJavaEncodi ng, pLogger,
pDebugLocat i on, pDebugEncodi ng, pStageNane);
}

@verride
public Qutput StreamwiteQutput (QutputStreamout) {
Systemout. printIn("In TransformXm Qut put witeQutput")
def Witer w = new BufferedWiter(new QutputStreamiNiter(out))
Systemout.printin("Created witer")
output = pipelnput { input ->
Il Perform transformation
System out. print!ln("Piping")
def builder = new MarkupBuil der (w);
def cars = new Xm Sl urper (). parse(input)

Systemout. println("Parsed XM.")
bui | der. mkp. xm Decl aration(version: "1.0", encoding: "utf-8")

bui I der. htm (xm ns: "http://ww. w3. org/ 1999/ xhtm ") {
head {
title "Cars collection"
}
body {
h1("Cars")

D-5



Appendix D
Example: Java Class for Reading Data From HTTP Source Requiring Authentication

ul () {
cars. car. each{car ->
li(car.@ane.toString() +"," + car.country +
"," + car.description + ", Age: " + (2012 - car.@ear.tolnteger()) + " years")
}
}
}
}
w. f 1 ush()

Systemout. println("C osing connectedStage")
cl oseConnect edSt age() ;

}

@verride
public void close() throws | OException {
Systemout. println("d osing TransformXm Qutput")
if(output!=null) {
output. flush();
out put. cl ose()

}

public static QutputStream pipelnput(C osure read) {

Pi pedl nput Stream i nput = new Pi pedl nput St reant()
Pi pedQut put Stream out put = new Pi pedQut put Strean(i nput)
get ThreadsSour ce. submi t {

tryf
read(i nput)
} catch (Exception e) {
Systemout. println("Exception in thread")
e.printStackTrace();
throw e;

} finally {
out put. flush()
}

}

return out put

}

D.6 Example: Java Class for Reading Data From HTTP
Source Requiring Authentication

Following is an example of a Java class to read data from an HTTP source that
requires authentication.

Example D-4 Java Class: Read Data From HTTP Source Requiring
Authentication
/**
*/
package oracle.odi.jdbc.driver.xn;

import java.io.ByteArraylnput Stream

inmport java.io.|CException;
inmport java.io.lnputStream

ORACLE D-6



ORACLE

Appendix D
Example: Java Class for Reading Data From HTTP Source Requiring Authentication

inport java.net.URL;

inport java.net.URLConnection;
inport java.util.Properties;
import java.util.logging.Logger;

import oracle.odi.jdbc.drivers.common. pi peline.api.Terninal Stream nput St age;

/**

* @uthor jsnith
*

*/
public class FrontttpBasi cAut hJava extends Term nal Stream nput Stage {

/**
* (@aram pSt ageProperties
* (@aram pDat aserver Ul
* (@aram pDat aserver Properties
* (@aram pJavaEncodi ng
* @ar am pLogger
* (@aram pDebugLocation
* (@ar am pDebugEncodi ng
* @aram pSt ageNanme
*|
public FrontttpBasi cAuthJava(Properties pStageProperties, String pDataserverUl,
Properties pDataserverProperties, String pJavaEncoding,
Logger pLogger, String pDebuglLocation, String pDebugEncoding,
String pStageNane) {
super (pSt ageProperties, pDataserverUrl, pDataserverProperties,
pJavaEncodi ng, pLogger, pDebuglocation, pDebugEncoding,
pSt ageName) ;
}

/* (non-Javadoc)
* @ee
oracl e.odi.jdbc.drivers.conmon. pi pel i ne. api . Ter mi nal Strean nput St age#r eadSour ce()
*/
@verride
public InputStreamreadSource() throws |CException {
String username = (String)(getStageProperties().get("usernane"));
String password = (String)(getStageProperties().get("password"));
byte[] credential = org.apache. commns. codec. bi nary. Base64. encodeBase64(
(usernane + ":" + password).getBytes());

/I pass encoded user nane and password as header

URL url = new URL ("http://local host: 18000/ get");

URLConnection conn = url.openConnection();

conn. set Request Property ("Authorization", "Basic " + new String(credential));
url Stream = conn. get I nput Strean();

StringBuilder result = new StringBuilder();

byte[] read;

int bytesRead,

while(true) {
read = new byte[1024];
if((bytesRead = url Streamread(read)) == -1) {
br eak;
} else

resul t.append(new String(read, 0, bytesRead));
}

return new ByteArraylnputStream(result.toString().getBytes());

D-7



Appendix D
Example: Groovy Code Embedded in Configuration XML File

/* (non-Javadoc)
* @ee oracle.odi.jdbc.drivers.comon. pi peline. api. Stage#cl ose()
*/
@verride
public void close() throws | CException {
if(urlStream!= null)
url Stream cl ose();

}

private InputStreamurl Stream = null;

}

D.7 Example: Groovy Code Embedded in Configuration

XML File

ORACLE

Following is an example of a configuration XML with Groovy code embedded as
Base64 string.

Example D-5 Configuration XML file with Groovy code embedded as Base64
string

<?xm version="1.0" encodi ng="UTF-8"?>

<pi peline xm ns: xsi="http:// ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNamespaceSchemalLocat i on="pr e- post . xsd">

<i nput - st ages>
<i 0-stage nane="fronzip">

<codeDef i ni tion>
<code>
CgppbXBvcnQuant2YS5pby5J TOVAY2VwdG vbgppbXBvcnQuant2YS5pby5JbnB1dFNOcmvhbTs KaWwh3J 01
GphdEud XRpb C5QemdwiZXJ 0aW/z OnppbXBvenQuanF2YS51dG sLmkvZ2dpbmcuT@InZ2Vy OnoKaWwb3J01 G
9y YWNs ZS5vZGkuanRi Yy5kem 2ZXJzLmNvbWivbi 5SwaXBl bG uzS5hc GkuU3RhZ2U7Cn t ¢y dCBvenfj bGU
ub2RpLnpk YmVuZHI pdmvycy5j b21t b24uc@ wzZWpbmuYXBpLI R cmlpbnFs U3Ry ZWFt SWewd XRTAGFnZTsK
CNs YXNz | EZpbGVGe Bt RnJvbVppc CBl eHRI bRz | FRI enlpbnFs U3Ry ZWFt SWewd XRTdGFnZSB7CgoJcHVi b
A j | EZpbGvGendt RnJvbVppe ChQemdwzXJ0aWz 1 HBTdGFnZVByb3Bl cnRpZXMs| FNOcm uZyBawRGFOYXN ch
Zl ¢l VybOWKCQKJUHIve Gy dd | cyBWRGFOYXN cnZl ¢l Byb3Bl cnRpZXMs| FNOcm uzy BwSn2YUVuY29kaVib
nLA0JCQ Mr2dnzXI gcExvZ2dl ci wgU3RyaWsnl HBEZW 1Z0xv Y2F0aVWuLCBTdHIpbntgcER YnVnRW5j b2Rp
bresl FNOcm uZy BWU3RhZ2VOYWLI KSB7Cgk Jc3VWwzZXI oc FNOYWHI UHIveGWdG | cywgcERhAGRzZXJ2ZXIVe
mas| HBEYXRhc 2Vy dmvy UHIve Gy dG | cywKCQkJ CXBKYXZhRWBj b2Rpbnts| HBMb2dnZXI s| HBEZW 1Z0xvY2
FOaVWQuLCBWRGVI dWiFbm\vZG uzZywgcFNOYWI Trt ZSk7Cgl 9CgoJ QE92ZXJyaWRl Cgl wdW saWvg SVBWdXR
TdHJI YWgenmvhZFNvdXJj ZSgpl HRocmB3cyBITOVAY2Vwd G vbi B7CgkJZGVim Hppc EZpbGUgPSBuZXcgant2
YS51dd sLnppcCoaaXBGaVwk| KG5I dyBGaWwk! KGdl dFNOYWdI UHIveGWydd | cygpLndl dCgi Wkl QX0ZJITEU K
SkpCgkJZGvm HppcEVudHI5I DOgem wRml sZS51 bnRyaW/zKCkuZm uzZCB71 CFpdCokaXxJl Y3RvenkgJi YgZ2
VOU3RhZ2VQe mBwZXJ 0aWz KCkuZ2VOKCI YTUxf Rkl MRSI pLmvxdWFscOl nbrBy ZUNhc2UoaXQubnt 2SI 9Cgk
JemV0dXJul Hppc EZpbGUuZ2VOSWBwWIXRTdHI I YWDoem wRWs0cnkpCgl 9CgoJ QE92ZXJyaVRl Cgl wdWisaWy
dmBpZCBj bGzZSgpl HRocnd3cyBITOVAY2Vwd G vhi B7CgkJLy8gVEIETYBBAXRvLWI by YXRI ZCBt ZXRob
2Qyc3R1YgoKCXOKCnOK
</ code>

</ codeDef i ni tion>

<props>

<property name="Zl P_FI LE">/ home/ myuser/fil es/ personal . zi p</ property>
<property name="XM._FI LE">personal . xm </ property>
</ props>
</io-stage>
</input-stages>

</ pi pel i ne>

D-8



	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 Terminology
	1.2 Using This Guide

	Part I Databases, Files, and XML
	2 Oracle Database
	2.1 Introduction
	2.1.1 Concepts
	2.1.2 Knowledge Modules

	2.2 Installation and Configuration
	2.2.1 System Requirements and Certifications
	2.2.2 Technology Specific Requirements
	2.2.2.1 Using the SQL*Loader Utility
	2.2.2.2 Using External Tables
	2.2.2.3 Using Oracle Streams

	2.2.3 Connectivity Requirements

	2.3 Setting up the Topology
	2.3.1 Creating an Oracle Data Server
	2.3.1.1 Creation of the Data Server

	2.3.2 Creating an Oracle Physical Schema

	2.4 Setting Up an Integration Project
	2.5 Creating and Reverse-Engineering an Oracle Model
	2.5.1 Create an Oracle Model
	2.5.2 Reverse-engineer an Oracle Model

	2.6 Setting up Changed Data Capture
	2.7 Setting up Data Quality
	2.8 Designing a Mapping
	2.8.1 Loading Data from and to Oracle
	2.8.1.1 Loading Data from Oracle
	2.8.1.2 Loading Data to Oracle

	2.8.2 Integrating Data in Oracle
	2.8.3 Designing an ETL-Style Mapping

	2.9 Troubleshooting
	2.9.1 Troubleshooting Oracle Database Errors
	2.9.2 Common Problems and Solutions


	3 Oracle Autonomous Data Warehouse Cloud
	3.1 Introduction
	3.1.1 Concepts
	3.1.2 Knowledge Modules

	3.2 Prerequisites
	3.3 Setting up the Topology
	3.3.1 Creating an Oracle Data Server
	3.3.2 Creating an Oracle Physical Schema

	3.4 Creating and Reverse-Engineering an Oracle Model
	3.4.1 Create an Oracle Model
	3.4.2 Reverse Engineer an Oracle Model

	3.5 Designing a Mapping
	3.5.1 Loading data
	3.5.2 Extracting data


	4 Files
	4.1 Introduction
	4.1.1 Concepts
	4.1.2 Knowledge Modules

	4.2 Installation and Configuration
	4.2.1 System Requirements and Certifications
	4.2.2 Technology Specific Requirements
	4.2.3 Connectivity Requirements

	4.3 Setting up the Topology
	4.3.1 Creating a File Data Server
	4.3.1.1 Creation of the Data Server

	4.3.2 Creating a File Physical Schema

	4.4 Setting Up an Integration Project
	4.5 Creating and Reverse-Engineering a File Model
	4.5.1 Create a File Model
	4.5.2 Reverse-engineer a File Model
	4.5.2.1 Delimited Files Reverse-Engineering
	4.5.2.2 Fixed Files Reverse-engineering using the Wizard
	4.5.2.3 COBOL Copybook reverse-engineering
	4.5.2.4 Customized Reverse-Engineering


	4.6 Designing a Mapping
	4.6.1 Loading Data From Files
	4.6.2 Integrating Data in Files
	4.6.2.1 IKM SQL to File Append
	4.6.2.2 IKM File to File (Java)



	5 Generic SQL
	5.1 Introduction
	5.1.1 Concepts
	5.1.2 Knowledge Modules

	5.2 Installation and Configuration
	5.2.1 System Requirements and Certifications
	5.2.2 Technology-Specific Requirements
	5.2.3 Connectivity Requirements

	5.3 Setting up the Topology
	5.3.1 Creating a Data Server
	5.3.2 Creating a Physical Schema

	5.4 Setting up an Integration Project
	5.5 Creating and Reverse-Engineering a Model
	5.5.1 Create a Data Model
	5.5.2 Reverse-engineer a Data Model

	5.6 Setting up Changed Data Capture
	5.7 Setting up Data Quality
	5.8 Designing a Mapping
	5.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
	5.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
	5.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology

	5.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
	5.8.3 Designing an ETL-Style Mapping


	6 XML Files
	6.1 Introduction
	6.1.1 Concepts
	6.1.2 Pre/Post Processing Support for XML Driver
	6.1.3 Knowledge Modules

	6.2 Installation and Configuration
	6.2.1 System Requirements
	6.2.2 Technologic Specific Requirements
	6.2.3 Connectivity Requirements

	6.3 Setting up the Topology
	6.3.1 Creating an XML Data Server
	6.3.1.1 Creation of the Data Server

	6.3.2 Creating a Physical Schema for XML

	6.4 Setting Up an Integration Project
	6.5 Creating and Reverse-Engineering a XML File
	6.5.1 Create an XML Model
	6.5.2 Reverse-Engineering an XML Model

	6.6 Designing a Mapping
	6.6.1 Notes about XML Mappings
	6.6.1.1 Targeting an XML Structure
	6.6.1.2 Synchronizing XML File and Schema
	6.6.1.3 Handling Large XML Files

	6.6.2 Loading Data from and to XML
	6.6.2.1 Loading Data from an XML Schema
	6.6.2.2 Loading Data to an XML Schema

	6.6.3 Integrating Data in XML

	6.7 Troubleshooting
	6.7.1 Detect the Errors Coming from XML
	6.7.2 Common Errors


	7 Complex Files
	7.1 Introduction
	7.1.1 Concepts
	7.1.2 Pre/Post Processing Support for Complex File Driver
	7.1.3 Knowledge Modules

	7.2 Installation and Configuration
	7.2.1 System Requirements
	7.2.2 Technology Specific Requirements
	7.2.3 Connectivity Requirements

	7.3 Building a Native Schema Description File Using the Native Format Builder
	7.4 Setting up the Topology
	7.4.1 Creating a Complex File Data Server
	7.4.1.1 Creation of the Data Server

	7.4.2 Creating a Complex File Physical Schema

	7.5 Setting Up an Integration Project
	7.6 Creating and Reverse-Engineering a Complex File Model
	7.6.1 Create a Complex File Model
	7.6.2 Reverse-engineer a Complex File Model

	7.7 Designing a Mapping

	8 Microsoft SQL Server
	8.1 Introduction
	8.1.1 Concepts
	8.1.2 Knowledge Modules

	8.2 Installation and Configuration
	8.2.1 System Requirements and Certifications
	8.2.2 Technology Specific Requirements
	8.2.2.1 Using the BULK INSERT Command
	8.2.2.2 Using the BCP Command
	8.2.2.3 Using Linked Servers

	8.2.3 Connectivity Requirements

	8.3 Setting up the Topology
	8.3.1 Creating a Microsoft SQL Server Data Server
	8.3.1.1 Creation of the Data Server

	8.3.2 Creating a Microsoft SQL Server Physical Schema

	8.4 Setting Up an Integration Project
	8.5 Creating and Reverse-Engineering a Microsoft SQL Server Model
	8.5.1 Create a Microsoft SQL Server Model
	8.5.2 Reverse-engineer a Microsoft SQL Server Model

	8.6 Setting up Changed Data Capture
	8.7 Setting up Data Quality
	8.8 Designing a Mapping
	8.8.1 Loading Data from and to Microsoft SQL Server
	8.8.1.1 Loading Data from Microsoft SQL Server
	8.8.1.2 Loading Data to Microsoft SQL Server

	8.8.2 Integrating Data in Microsoft SQL Server


	9 Microsoft Excel
	9.1 Introduction
	9.1.1 Concepts
	9.1.2 Knowledge Modules

	9.2 Installation and Configuration
	9.2.1 System Requirements and Certifications
	9.2.2 Technology Specific Requirements
	9.2.3 Connectivity Requirements

	9.3 Setting up the Topology
	9.3.1 Creating a Microsoft Excel Data Server
	9.3.2 Creating a Microsoft Excel Physical Schema

	9.4 Setting Up an Integration Project
	9.5 Creating and Reverse-Engineering a Microsoft Excel Model
	9.5.1 Create a Microsoft Excel Model
	9.5.2 Reverse-engineer a Microsoft Excel Model

	9.6 Designing a Mapping
	9.6.1 Loading Data From and to Microsoft Excel
	9.6.1.1 Loading Data from Microsoft Excel
	9.6.1.2 Loading Data to Microsoft Excel

	9.6.2 Integrating Data in Microsoft Excel

	9.7 Troubleshooting
	9.7.1 Decoding Error Messages
	9.7.2 Common Problems and Solutions


	10 Microsoft Access
	10.1 Introduction
	10.2 Concepts
	10.3 Knowledge Modules
	10.4 Specific Requirements

	11 Netezza
	11.1 Introduction
	11.1.1 Concepts
	11.1.2 Knowledge Modules

	11.2 Installation and Configuration
	11.2.1 System Requirements and Certifications
	11.2.2 Technology Specific Requirements
	11.2.3 Connectivity Requirements

	11.3 Setting up the Topology
	11.3.1 Creating a Netezza Data Server
	11.3.1.1 Creation of the Data Server

	11.3.2 Creating a Netezza Physical Schema

	11.4 Setting Up an Integration Project
	11.5 Creating and Reverse-Engineering a Netezza Model
	11.5.1 Create a Netezza Model
	11.5.2 Reverse-engineer a Netezza Model

	11.6 Setting up Data Quality
	11.7 Designing a Mapping
	11.7.1 Loading Data from and to Netezza
	11.7.1.1 Loading Data from Netezza
	11.7.1.2 Loading Data to Netezza

	11.7.2 Integrating Data in Netezza


	12 Teradata
	12.1 Introduction
	12.1.1 Concepts
	12.1.2 Knowledge Modules

	12.2 Installation and Configuration
	12.2.1 System Requirements and Certifications
	12.2.2 Technology Specific Requirements
	12.2.3 Connectivity Requirements

	12.3 Setting up the Topology
	12.3.1 Creating a Teradata Data Server
	12.3.1.1 Creation of the Data Server

	12.3.2 Creating a Teradata Physical Schema

	12.4 Setting Up an Integration Project
	12.5 Creating and Reverse-Engineering a Teradata Model
	12.5.1 Create a Teradata Model
	12.5.2 Reverse-engineer a Teradata Model

	12.6 Setting up Data Quality
	12.7 Designing a Mapping
	12.7.1 Loading Data from and to Teradata
	12.7.1.1 Loading Data from Teradata
	12.7.1.2 Loading Data to Teradata

	12.7.2 Integrating Data in Teradata
	12.7.3 Designing an ETL-Style Mapping

	12.8 KM Optimizations for Teradata
	12.8.1 Primary Indexes and Statistics
	12.8.2 Support for Teradata Utilities
	12.8.3 Support for Named Pipes
	12.8.4 Optimized Management of Temporary Tables


	13 Hypersonic SQL
	13.1 Introduction
	13.1.1 Concepts
	13.1.2 Knowledge Modules

	13.2 Installation and Configuration
	13.2.1 System Requirements and Certifications
	13.2.2 Technology Specific Requirements
	13.2.3 Connectivity Requirements

	13.3 Setting up the Topology
	13.3.1 Creating a Hypersonic SQL Data Server
	13.3.2 Creating a Hypersonic SQL Physical Schema

	13.4 Setting Up an Integration Project
	13.5 Creating and Reverse-Engineering a Hypersonic SQL Model
	13.5.1 Create a Hypersonic SQL Model
	13.5.2 Reverse-engineer a Hypersonic SQL Model

	13.6 Setting up Changed Data Capture
	13.7 Setting up Data Quality
	13.8 Designing a Mapping

	14 IBM Informix
	14.1 Introduction
	14.2 Concepts
	14.3 Knowledge Modules
	14.4 Specific Requirements

	15 IBM DB2 for iSeries
	15.1 Introduction
	15.1.1 Concepts
	15.1.2 Knowledge Modules

	15.2 Installation and Configuration
	15.2.1 System Requirements and Certifications
	15.2.2 Technology Specific Requirements
	15.2.3 Connectivity Requirements

	15.3 Setting up the Topology
	15.3.1 Creating a DB2/400 Data Server
	15.3.1.1 Creation of the Data Server

	15.3.2 Creating a DB2/400 Physical Schema

	15.4 Setting Up an Integration Project
	15.5 Creating and Reverse-Engineering an IBM DB2/400 Model
	15.5.1 Create an IBM DB2/400 Model
	15.5.2 Reverse-engineer an IBM DB2/400 Model

	15.6 Setting up Changed Data Capture
	15.6.1 Setting up Trigger-Based CDC
	15.6.2 Setting up Log-Based CDC
	15.6.2.1 How does it work?
	15.6.2.2 CDCRTVJRN Program Details
	15.6.2.3 Installing the CDC Components on iSeries
	15.6.2.4 Using the CDC with the Native Journals
	15.6.2.5 Problems While Reading Journals


	15.7 Setting up Data Quality
	15.8 Designing a Mapping
	15.8.1 Loading Data from and to IBM DB2 for iSeries
	15.8.1.1 Loading Data from IBM DB2 for iSeries
	15.8.1.2 Loading Data to IBM DB2 for iSeries

	15.8.2 Integrating Data in IBM DB2 for iSeries

	15.9 Specific Considerations with DB2 for iSeries
	15.9.1 Installing the Run-Time Agent on iSeries
	15.9.2 Alternative Connectivity Methods for iSeries
	15.9.2.1 Using Client Access
	15.9.2.2 Using the IBM JT/400 and Native Drivers


	15.10 Troubleshooting
	15.10.1 Troubleshooting Error messages
	15.10.2 Common Problems and Solutions
	15.10.2.1 Connection Errors



	16 IBM DB2 UDB
	16.1 Introduction
	16.2 Concepts
	16.3 Knowledge Modules
	16.4 Specific Requirements

	17 Salesforce.com
	17.1 Introduction
	17.1.1 Concepts
	17.1.2 Knowledge Modules

	17.2 Installation and Configuration
	17.2.1 System Requirements and Certifications
	17.2.2 Technology Specific Requirements
	17.2.3 Connectivity Requirements

	17.3 Setting up the Topology
	17.3.1 Creating a Salesforce.com Data Server
	17.3.2 Creating a Physical Schema for Salesforce.com Data Server

	17.4 Setting Up an Integration Project
	17.5 Creating and Reverse-Engineering a Salesforce.com Model
	17.5.1 Create a Salesforce.com Model
	17.5.2 Reverse-engineer a Salesforce.com Model

	17.6 Designing a Mapping
	17.6.1 Loading Data from and to Salesforce.com
	17.6.1.1 Loading Data from Salesforce.com
	17.6.1.2 Loading Data to Salesforce.com

	17.6.2 Integrating Data in Salesforce.com



	Part II Business Intelligence
	18 Oracle Business Intelligence Enterprise Edition
	18.1 Introduction
	18.1.1 Concepts
	18.1.2 Knowledge Modules

	18.2 Installation and Configuration
	18.2.1 System Requirements and Certifications
	18.2.2 Technology Specific Requirements
	18.2.3 Connectivity Requirements

	18.3 Setting up the Topology
	18.3.1 Creating an Oracle BI Data Server
	18.3.1.1 Creation of the Data Server

	18.3.2 Creating an Oracle BI Physical Schema

	18.4 Setting Up an Integration Project
	18.5 Creating and Reverse-Engineering an Oracle BI Model
	18.5.1 Create an Oracle BI Model
	18.5.2 Reverse-engineer an Oracle BI Model

	18.6 Setting up Data Quality
	18.7 Designing a Mapping
	18.7.1 Loading Data from and to Oracle BI
	18.7.1.1 Loading Data from Oracle BI
	18.7.1.2 Loading Data to Oracle BI

	18.7.2 Integrating Data in Oracle BI


	19 Oracle Business Intelligence Enterprise Edition Data Lineage
	19.1 Introduction
	19.1.1 Components
	19.1.2 Lineage Lifecycle
	19.1.2.1 Setting up the Lineage
	19.1.2.2 Refreshing the Lineage
	19.1.2.3 Using the Lineage


	19.2 Installing the Lineage in an OBIEE Server
	19.2.1 Installation Overview
	19.2.2 Requirements
	19.2.3 Installation Instructions
	19.2.3.1 Installing and Starting the OBIEE Lineage Wizard
	19.2.3.2 Deploying the OBIEE Lineage Artifacts using the Wizard

	19.2.4 Post-Installation Tasks

	19.3 Exporting Metadata from OBIEE and Refreshing the OBIEE Lineage
	19.4 Refreshing the OBIEE Lineage from Existing Exports
	19.4.1 Exporting the OBIEE Repository Documentation to a Text File
	19.4.2 Exporting the OBIEE Web Catalog Report to a Text File
	19.4.3 Refreshing the OBIEE Lineage From Existing Exports

	19.5 Automating the Lineage Tasks
	19.5.1 Configuring the Scripts
	19.5.2 Automating Lineage Deployment
	19.5.3 Automating Lineage Refresh

	19.6 Using the Lineage in OBIEE Dashboards
	19.6.1 Viewing Execution Statistics
	19.6.2 Viewing and Filtering Lineage Data
	19.6.3 Using the Dashboard
	19.6.4 Using Lineage and Hierarchy
	19.6.5 Using Contextual Lineage


	20 Oracle Business Intelligence Cloud Service
	20.1 Introduction
	20.2 Setting up the Topology
	20.2.1 Creating an Oracle BICS Data Server
	20.2.2 Creating an Oracle BICS Physical Schema
	20.2.3 Importing BICS Certificate into Trust Store of Standalone Agent

	20.3 Reverse Engineering a BICS Model
	20.4 Designing a Mapping

	21 Oracle Hyperion Planning
	21.1 Introduction
	21.1.1 Integration Process
	21.1.2 Knowledge Modules

	21.2 Installation and Configuration
	21.2.1 System Requirements and Certifications
	21.2.2 Technology Specific Requirements
	21.2.3 Connectivity Requirements

	21.3 Setting up Hyperion Planning Adapter
	21.3.1 Setting up Adapter for ODI Studio
	21.3.2 Setting up Adapter for ODI Standalone Agent

	21.4 Setting up the Topology
	21.4.1 Creating an Hyperion Planning Data Server
	21.4.2 Creating an Hyperion Planning Physical Schema

	21.5 Creating and Reverse-Engineering a Planning Model
	21.5.1 Create a Planning Model
	21.5.2 Reverse-engineer a Planning Model

	21.6 Designing a Mapping
	21.6.1 Loading Metadata
	21.6.2 Loading Data
	21.6.3 Load Options

	21.7 Datastore Tables and Data Load Columns
	21.7.1 Accounts
	21.7.2 Employee
	21.7.3 Entities
	21.7.4 User-Defined Dimensions
	21.7.5 Attribute Dimensions
	21.7.6 UDA
	21.7.7 Data Load Columns


	22 Oracle Hyperion Essbase
	22.1 Introduction
	22.1.1 Integration Process
	22.1.2 Knowledge Modules

	22.2 Installation and Configuration
	22.2.1 System Requirements and Certifications
	22.2.2 Technology Specific Requirements
	22.2.3 Connectivity Requirements

	22.3 Setting up Hyperion Essbase Adapter
	22.3.1 Setting up Adapter for ODI Studio
	22.3.2 Setting up Adapter for ODI Standalone Agent

	22.4 Setting up the Topology
	22.4.1 Creating an Hyperion Essbase Data Server
	22.4.2 Creating an Hyperion Essbase Physical Schema

	22.5 Creating and Reverse-Engineering an Essbase Model
	22.5.1 Create an Essbase Model
	22.5.2 Reverse-engineer an Essbase Model

	22.6 Designing a Mapping
	22.6.1 Loading Metadata
	22.6.2 Loading Data
	22.6.3 Extracting Data
	22.6.3.1 Data Extraction Methods for Essbase
	22.6.3.2 Extracting Essbase Data
	22.6.3.3 Extracting Members from Metadata




	Part III Other Technologies
	23 JMS
	23.1 Introduction
	23.1.1 Concepts
	23.1.1.1 JMS Message Structure
	23.1.1.2 Using a JMS Destination

	23.1.2 Knowledge Modules

	23.2 Installation and Configuration
	23.2.1 System Requirements and Certifications
	23.2.2 Technology Specific Requirements
	23.2.3 Connectivity Requirements

	23.3 Setting up the Topology
	23.3.1 Creating a JMS Data Server
	23.3.1.1 Creation of the Data Server

	23.3.2 Creating a JMS Physical Schema

	23.4 Setting Up an Integration Project
	23.5 Creating and Defining a JMS Model
	23.5.1 Create a JMS Model
	23.5.2 Defining the JMS Datastores

	23.6 Designing a Mapping
	23.6.1 Loading Data from a JMS Source
	23.6.2 Integrating Data in a JMS Target

	23.7 JMS Standard Properties
	23.7.1 Using JMS Properties
	23.7.1.1 Declaring JMS Properties
	23.7.1.2 Filtering on the Router
	23.7.1.3 Filtering on the Client
	23.7.1.4 Using Property Values as Source Data
	23.7.1.5 Setting Properties when Sending a Message



	24 JMS XML
	24.1 Introduction
	24.1.1 Concepts
	24.1.1.1 JMS Message Structure
	24.1.1.2 Using a JMS Destination

	24.1.2 Knowledge Modules

	24.2 Installation and Configuration
	24.2.1 System Requirements and Certifications
	24.2.2 Technology Specific Requirements
	24.2.3 Connectivity Requirements

	24.3 Setting up the Topology
	24.3.1 Creating a JMS XML Data Server
	24.3.1.1 Creation of the Data Server

	24.3.2 Creating a JMS XML Physical Schema

	24.4 Setting Up an Integration Project
	24.5 Creating and Reverse-Engineering a JMS XML Model
	24.5.1 Create a JMS XML Model
	24.5.2 Reverse-Engineering a JMS XML Model

	24.6 Designing a Mapping
	24.6.1 Loading Data from a JMS XML Source
	24.6.2 Integrating Data in a JMS XML Target


	25 LDAP Directories
	25.1 Introduction
	25.1.1 Concepts
	25.1.2 Knowledge Modules

	25.2 Installation and Configuration
	25.2.1 System Requirements
	25.2.2 Technologic Specific Requirements
	25.2.3 Connectivity Requirements

	25.3 Setting up the Topology
	25.3.1 Creating an LDAP Data Server
	25.3.1.1 Creation of the Data Server

	25.3.2 Creating a Physical Schema for LDAP

	25.4 Setting Up an Integration Project
	25.5 Creating and Reverse-Engineering an LDAP Directory
	25.5.1 Create an LDAP Model
	25.5.2 Reverse-Engineering an LDAP Model

	25.6 Designing a Mapping
	25.6.1 Loading Data from and to LDAP
	25.6.1.1 Loading Data from an LDAP Directory
	25.6.1.2 Loading Data to an LDAP Directory

	25.6.2 Integrating Data in an LDAP Directory

	25.7 Troubleshooting

	26 Oracle TimesTen In-Memory Database
	26.1 Introduction
	26.1.1 Concepts
	26.1.2 Knowledge Modules

	26.2 Installation and Configuration
	26.2.1 System Requirements and Certifications
	26.2.2 Technology Specific Requirements
	26.2.3 Connectivity Requirements

	26.3 Setting up the Topology
	26.3.1 Creating a TimesTen Data Server
	26.3.1.1 Creation of the Data Server

	26.3.2 Creating a TimesTen Physical Schema

	26.5 Creating and Reverse-Engineering a TimesTen Model
	26.5.1 Create a TimesTen Model
	26.5.2 Reverse-engineer a TimesTen Model

	26.6 Setting up Data Quality
	26.7 Designing a Mapping
	26.7.1 Loading Data from and to TimesTen
	26.7.1.1 Loading Data from TimesTen
	26.7.1.2 Loading Data to TimesTen

	26.7.2 Integrating Data in TimesTen

	26.4 Setting Up an Integration Project

	27 Oracle GoldenGate
	27.1 Introduction
	27.1.1 Overview of the GoldenGate CDC Process
	27.1.2 Knowledge Modules

	27.2 Installation and Configuration
	27.2.1 System Requirements and Certifications
	27.2.2 Technology Specific Requirements
	27.2.3 Connectivity Requirements

	27.3 Working with the Oracle GoldenGate JKMs
	27.3.1 Define the Topology
	27.3.1.1 Define the Source Data Server
	27.3.1.2 Create the Source Physical Schema
	27.3.1.3 Define the Staging Server
	27.3.1.4 Create the Staging Physical Schema
	27.3.1.5 	Define the Oracle GoldenGate Data Servers
	27.3.1.6 Create the Oracle GoldenGate Physical Schemas
	27.3.1.7 Create the Oracle GoldenGate Logical Schemas

	27.3.2 Create the Replicated Tables
	27.3.3 Set Up an Integration Project
	27.3.4 Configure CDC for the Source Datastores
	27.3.4.1 Create Oracle GoldenGate Physical Schemas from the model

	27.3.5 Configure and Start Oracle GoldenGate Processes (Offline mode only)
	27.3.6 Design Mappings Using Replicated Data

	27.4 Advanced Configuration
	27.4.1 Initial Load Method
	27.4.2 Tuning Replication Performances
	27.4.3 One Source Multiple Staging Configuration (Offline mode only)

	27.5 Integrated Capture
	27.5.1 Integrated Capture Deployment Options
	27.5.2 Deciding Which Apply Method to Use
	27.5.2.1 Nonintegrated Replicat
	27.5.2.1.1 Integrated Replicat
	27.5.2.1.2 Integrated Replicat Requirements



	27.6 Using Different Capture and Apply Modes Together
	27.7 Switching to Different Process Mode
	27.8 Upgrading GoldenGate Classic Extract to Integrated

	28 Oracle SOA Suite Cross References
	28.1 Introduction
	28.1.1 Concepts
	28.1.1.1 General Principles
	28.1.1.2 Cross Reference Table Structures
	28.1.1.3 Handling Cross Reference Table Structures

	28.1.2 Knowledge Modules
	28.1.3 Overview of the SOA XREF KM Process
	28.1.3.1 Loading Phase (LKM)
	28.1.3.2 Integration and Cross-Referencing Phase (IKM)
	28.1.3.3 Updating/Deleting Processed Records (LKM)


	28.2 Installation and Configuration
	28.2.1 System Requirements and Certifications
	28.2.2 Technology Specific Requirements
	28.2.3 Connectivity Requirements

	28.3 Working with XREF using the SOA Cross References KMs
	28.3.1 Defining the Topology
	28.3.2 Setting up the Project
	28.3.3 Designing a Mapping with the Cross-References KMs

	28.4 Knowledge Module Options Reference


	Part IV Appendices
	A Oracle Data Integrator Driver for LDAP Reference
	A.1 Introduction to Oracle Data Integrator Driver for LDAP
	A.2 LDAP Processing Overview
	A.2.1 LDAP to Relational Mapping
	A.2.1.1 General Principle
	A.2.1.2 Grouping Factor
	A.2.1.3 Mapping Exceptions
	A.2.1.4 Reference LDAP Tree

	A.2.2 Managing Relational Schemas
	A.2.2.1 Relational Schema Storage
	A.2.2.2 Accessing Data in the Relational Structure


	A.3 Installation and Configuration
	A.3.1 Driver Configuration
	A.3.2 Using an External Database to Store the Data
	A.3.2.1 Passing the Properties in the Driver URL
	A.3.2.2 Setting the Properties in ODI Studio
	A.3.2.3 Setting the Properties in a Properties File

	A.3.3 LDAP Directory Connection Configuration
	A.3.4 Table Aliases Configuration

	A.4 SQL Syntax
	A.4.1 SQL Statements
	A.4.1.1 DISCONNECT
	A.4.1.2 INSERT INTO
	A.4.1.3 SELECT
	A.4.1.4 UPDATE
	A.4.1.5 Expressions, Condition & values

	A.4.2 SQL FUNCTIONS

	A.5 JDBC API Implemented Features

	B Oracle Data Integrator Driver for XML Reference
	B.1 Introduction to Oracle Data Integrator Driver for XML
	B.2 XML Processing Overview
	B.2.1 XML to SQL Mapping
	B.2.2 XML Namespaces
	B.2.3 Managing Schemas
	B.2.3.1 Schema Storage
	B.2.3.2 Multiple Schemas
	B.2.3.3 Accessing Data in the Schemas
	B.2.3.4 Case Sensitivity
	B.2.3.5 Loading/Synchronizing

	B.2.4 Locking
	B.2.5 XML Schema (XSD) Support

	B.3 Installation and Configuration
	B.3.1 Driver Configuration
	B.3.2 Automatically Create Multiple Schemas
	B.3.3 Using an External Database to Store the Data

	B.4 Detailed Driver Commands
	B.4.1 CREATE FILE
	B.4.2 CREATE FOREIGNKEYS
	B.4.3 CREATE XMLFILE
	B.4.4 CREATE SCHEMA
	B.4.5 DROP FOREIGNKEYS
	B.4.6 DROP SCHEMA
	B.4.7 LOAD FILE
	B.4.8 SET SCHEMA
	B.4.9 SYNCHRONIZE
	B.4.10 UNLOCK FILE
	B.4.11 TRUNCATE SCHEMA
	B.4.12 VALIDATE
	B.4.13 WRITE MAPPING FILE

	B.5 SQL Syntax
	B.5.1 SQL Statements
	B.5.1.1 COMMIT
	B.5.1.2 CREATE TABLE
	B.5.1.3 DELETE
	B.5.1.4 DISCONNECT
	B.5.1.5 DROP TABLE
	B.5.1.6 INSERT INTO
	B.5.1.7 ROLLBACK
	B.5.1.8 SELECT
	B.5.1.9 SET AUTOCOMMIT
	B.5.1.10 UPDATE
	B.5.1.11 Expressions, Condition and Values

	B.5.2 SQL FUNCTIONS

	B.6 JDBC API Implemented Features
	B.7 Rich Metadata
	B.7.1 Supported user-specified types for different databases

	B.8 XML Schema Supported Features
	B.8.1 Datatypes
	B.8.2 Supported Elements
	B.8.2.1 All
	B.8.2.2 Any
	B.8.2.3 AnyAttribute
	B.8.2.4 AnyType
	B.8.2.5 Attribute
	B.8.2.6 AttributeGroup
	B.8.2.7 Choice
	B.8.2.8 ComplexContent
	B.8.2.9 ComplexType
	B.8.2.10 Element
	B.8.2.11 Extension
	B.8.2.12 Group
	B.8.2.13 Import
	B.8.2.14 Include
	B.8.2.15 List
	B.8.2.16 Restriction
	B.8.2.17 Schema
	B.8.2.18 Sequence
	B.8.2.19 SimpleContent
	B.8.2.20 SimpleType

	B.8.3 Unsupported Features
	B.8.3.1 Unsupported Elements
	B.8.3.2 Unsupported Features
	B.8.3.3 Unsupported Datatypes



	C Oracle Data Integrator Driver for Complex Files Reference
	C.1 Introduction to Oracle Data Integrator Driver for Complex Files
	C.2 Complex Files Processing Overview
	C.2.1 Generating the Native Schema
	C.2.2 XML to SQL Mapping
	C.2.3 JSON Support
	C.2.4 Supported Features

	C.3 Driver Configuration
	C.4 Detailed Driver Commands
	C.5 JDBC API and XML Schema Supported Features

	D Pre/Post Processing Support for XML and Complex File Drivers
	D.1 Overview
	D.2 Configuring the processing stages
	D.3 Implementing the processing stages
	D.4 Example: Groovy Script for Reading XML Data From Within a ZIP File
	D.5 Example: Groovy Script for Transforming XML Data and Writing to a Different Format
	D.6 Example: Java Class for Reading Data From HTTP Source Requiring Authentication
	D.7 Example: Groovy Code Embedded in Configuration XML File


